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Abstract The Power-Expected-Posterior (PEP) prior gives us a convenient and
objective method to deal with variable selection problems, under the Bayesian
perspective, in regression models. The PEP prior inherits all of the advantages of
Expected-Posterior-Prior (EPP) and furthermore it drops the need of selection over
the imaginary data and decreases their effect over the final prior. Under the PEP prior
methodology an initial (usually default) baseline prior is updated using imaginary
data. This work focuses on normal regression models when the number of observa-
tions n is smaller than the number of explanatory variables p. We introduce the PEP
prior methodology using different baseline shrinkage priors and we perform some
comparisons in simulated data sets.

Keywords Bayesian variable selection · imaginary training sample · objective
priors · shrinkage priors · sparse datasets

1 Introduction

We consider the variable selection problem for normal regression models, where the
number of observations n is smaller than the number of explanatory variables p.
Suppose the model space consists of all combinations of available covariates. Then
for every model M�, in model space M, the likelihood is given by

f�( y|X�,β�, σ
2) = fNn ( y; X�β�, σ

2 In),

where fNd ( y;μ, �) is denoting the d-dimensional normal distribution with mean
μ and covariance matrix �. Furthermore, y = (y1, . . . , yn)T denotes the response
data, X� is the n × p� designmatrix; where p� is the number of explanatory variables
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under model M�, β� is a vector of length p� of the effects of each covariate on the
response variable, In is the n × n identity matrix and σ 2 is the error variance. We
assume that y and the columns of the design matrix of the full model (including all
available explanatory variables) have been centered on zero, so there is no intercept
in our model.

Under the Bayesian model choice perspective, we have to set priors both for the
model space and the parameter space of each model. Regarding the prior on the
model space, for sparsity reasons, we consider the uniform prior on model size, as a
special case of the beta-binomial prior; see [18].With respect to the prior distribution
on the coefficients in each model, because we are not confident about any given set
of regressors as explanatory variables, little prior information on their regression
coefficients can be expected. This argument alone justifies the need for an objective
model choice approach in which vague prior information is assumed. Furthermore,
we need to use a prior capable to deal with the n < p scenario. Finally, regarding
the (common across models) error variance, the reference prior will be used, i.e.
π(σ 2) ∝ σ−2.

1.1 Shrinkage Priors

A common way to deal with normal regression problems, when n < p, is by using
shrinkage methods. Under the Bayesian perspective this can be done using a shrink-
age prior on the model coefficients. By the term shrinkage, it is declared that the
covariates that correspond to explanatory variables that do not affect the response
variable will shrink towards zero. Shrinkage priors share eminent theoretical prop-
erties, compelling computational complexity and great empirical performance (e.g.
[5, 17]).

A shrinkage prior can often be conceived as a scale-mixture prior, which is placed
on the regression coefficients of every possible model. Something that characterizes
such shrinkage priors, is their hyperparameters: the global shrinkage hyperparameter,
that determines the overall sparsity in thewhole parameter vector and the local shrink-
age hyperparameter, where a distinct shrinkage parameter is considered specifically
for every single effect and controls the shrinkage of this individual effect. Depending
on the shrinkage prior, the global parameter or the local parameters may be absent
from the formation.

By assuming a shrinkage prior, on the vector of regression coefficients β�, in
most of the cases a prior with heavy mass around zero is being produced and by so,
non-true effects shrink towards zero. Furthermore, heavy tails are important, as they
avert true effects to get shrinked. In Table1, we mention some, often used, shrinkage
priors, where by τ we refer to local shrinkage hyperparameters and by λ to global
shrinkage hyperparameters. In all of the cases that a global shrinkage hyperparame-
ter exists in the formation of a shrinkage prior (except Ridge g-prior), we consider a
half-Cauchy prior on λ, which is a common choice in Bayesian hierarchical models
(e.g. [17]). Furthermore, except Ridge g-prior, independent conditional priors for the
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Table 1 A list of shrinkage priors

# Name Conditional prior of
β�

Shrinkage
hyparameters

1 LASSO [15] β j |τ 2j , σ 2 ∼
N (0, σ 2τ 2j )

τ 2j |λ ∼ Exp( λ2

2 )

λ ∼ HC(0, 1)a

2 Horseshoe [2] β j |λ, τ j , σ
2 ∼

N (0, σ 2λ2τ 2j )

τ j ∼ HC(0, 1)
λ ∼ HC(0, 1)

3 Ridge [11] β j |λ, σ 2 ∼
N (0, σ 2 1

λ
)

λ ∼ HC(0, 1)

4 Local Student’s t [20] β j |τ 2j , σ 2 ∼
N (0, σ 2τ 2j )

τ 2j |λ ∼ IG( k2 , k
2λ )b

λ ∼ HC(0, 1)
k fixed

5 Elastic Net [13] β j |λ2, τ j , σ 2 ∼
N (0, σ 2 1

λ2+τ 2j
)

τ 2j |λ1 ∼ Exp(
λ21
2 )

λ1, λ2 ∼ HC(0, 1)

6 Beta Prime [1] β j |τ 2j , σ 2 ∼
N (0, τ 2j σ

2)

τ 2j ∼
I nv − Beta(a, b)
a, b fixed

7 Ridge g-prior [10] β�|λ, σ 2 ∼
Np�

(0, σ 2V�), V� =
g(XT

� X� + λIp�
)−1

g = max{n, p2� }, λ
fixed

a HC(x0, γ ), (half-Cauchy) is the truncated Cauchy distribution with location parameter x0, scale
parameter γ and support (x0,∞)
b IG(α, β), denotes the Inverse Gamma distribution, with shape parameter α and scale parameter β

coefficients of model M� are used and therefore, for those cases, we only present the
marginal prior for j = 1, . . . , p�.

1.2 Power-Expected-Posterior Priors

Aprincipal approach to defineobjective priors is the use of random imaginary training
data [4]. Power-Expected-Posterior (PEP) prior [6, 7], uses this methodology. In
particular the PEP prior is defined as

π PEP
� (β�|σ 2, δ, X∗

� ) =
∫

π N
� (β�| y∗, σ 2, δ, X∗

� )m
N
0 ( y∗|σ 2, δ, X∗

0)d y
∗, (1)

π PEP
� (σ 2) = π N (σ 2) ∝ 1

σ 2
,

with

π N
� (β�| y∗, σ 2, δ, X∗

� ) ∝ f�( y∗|β�, σ
2, δ, X∗

� )π
N
� (β�|σ 2, X∗

� ) (2)
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and

f�( y∗|β�, σ
2, δ, X∗

� ) = f�( y∗|β�, σ
2, X∗

� )
1/δ∫

f�( y∗|β�, σ
2, X∗

� )
1/δd y∗ . (3)

In the above equations, we have set y∗ to be the imaginary observations of size n∗ and
X∗

� the imaginary design matrix of model M�. By π N
� (β�| y∗, σ 2, δ, X∗

� ) we denote
the conditional on σ 2 posterior of β�, using a baseline prior π N

� (β�|σ 2, X∗
� ) and data

y∗. In equation (3) the likelihood of imaginary observations is raised to the power of
1/δ and density normalized. By doing this we decrease the effect of the imaginary
data. For δ = 1, Eq. (1) results to the Expected-Posterior-Prior (EPP) [16]. In order to
have a unit information interpretation [12], we could set δ = n∗ and in order to avoid
any effect of the choice of imaginary design matrices, we set n∗ = n and we have
that X∗

� = X�. In Eq. (1), mN
0 ( y∗|σ 2, δ, X∗

0), is the prior predictive distribution (or
the marginal likelihood), evaluated at y∗, of the reference model M0, given σ 2. As a
reference model we consider, for reasons of parsimony, the model with no covariates
(null model). Finally, for every model M�, the marginal likelihood under the baseline
prior is given by

mN
� ( y∗|σ 2, δ, X∗

� ) =
∫

f�( y∗|β�, σ
2, δ, X∗

� )π
N
� (β�|σ 2, X∗

� )dβ�. (4)

2 PEP-Shrinkage Prior

In the above formulation, by choosing as a baseline prior π N
� (β�|σ 2, X∗

� ) a shrinkage
prior (see Table1), a PEP-Shrinkage prior is created and thus we can apply the PEP
prior methodology in shrinkage problems.

PEP priors can be considered as fully automatic, objective Bayesian methods for
model comparison in regression models (see for example [4, 6]). They are devel-
oped through the utilization of the device of “imaginary” samples, coming from the
simplest model under comparison. Therefore, PEP priors offer several advantages,
among which they have an appealing interpretation based on imaginary training data
coming from a prior predictive distribution and also provide an effective way to
establish compatibility of priors among models (see [3]), through their dependence
on a common marginal data distribution. Thus, the PEP methodology can be applied
also with proper baseline prior distributions. Furthermore, by choosing the sim-
plest model, as a reference model, to generate the imaginary samples, the PEP prior
shares common ideas with the skeptical-prior approach described by Spiegelhalter
et al. [19].

Under Eq. (3) the likelihood of the imaginary data y∗, under model M�, is given
by

f�( y∗|X∗
� ,β�, σ

2, δ) = fNn∗ ( y∗; X∗
� β�, δ σ 2 In∗).
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From Table1 it is obvious that all shrinkage priors that we will use as baseline priors
under the PEP methodology, have the following general form

π N
� (β�|θ �, σ

2) = fNp�
(β�; 0, σ 2��),

where �� ≡ ��(θ �) is a p� × p� matrix, where its i-th main diagonal element is
written as an equation of the global and the i-th local shrinkage hyperparameters.
By θ � we denote the vector containing all the shrinkage hyperparameters of model
M�, with a prior distribution denoted by π(θ �).

2.1 Conditional PEP-Shrinkage Prior

The conditional posterior distribution π N
� (β�| y∗, σ 2, δ, X∗

� , θ �), using the baseline
prior and the imaginary data is given by

π N
� (β�| y∗, σ 2, δ, X∗

� , θ �) ∝ f�( y∗|X∗
� ,β�, σ

2, δ)π N
� (β�|θ �, σ

2)

= fNn∗ ( y∗; X∗
� β�, δ σ 2 In∗) fNp�

(β�; 0, σ 2��)

and so we have have that

π N
� (β�| y∗, σ 2, δ, X∗

� , θ �) = fNp�
(β�; δ−1W�X∗

�
T y∗, σ 2W�),

where W� = [δ−1X∗
�
T X∗

� + �−1
� ]−1. Moreover, from Eq. (4), for any model M�, the

prior predictive distribution, under the baseline prior, conditional on σ 2 and θ � is

mN
� ( y∗|σ 2, δ, X∗

� , θ �) = fNn∗ ( y∗; 0, σ 2�),

where � = X∗
���X∗

�
T + δ In . Thus, the conditional PEP-Shrinkage prior is

π PEP
� (β�|σ 2, δ, X∗

� , θ �) = ∫
π N

� (β�| y∗, σ 2, δ, X∗
� , θ �)mN

0 ( y∗|σ 2, δ, X∗
0)d y

∗

= ∫
fNp�

(β�; δ−1W�X∗
�
T y∗, σ 2W�) fNn ( y

∗; 0, σ 20)d y∗

and therefore we have that

π PEP
� (β�|σ 2, δ, X∗

� , θ �) = fNp�
(β�; 0, σ 2V�),

where V� = [W−1
� − δ−2X∗

�
T Z�X∗

� ]−1 and Z� = [δ−2X∗
�W�X∗

�
T + −1

0 ]−1.
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2.2 Conditional Posterior Under the PEP-Shrinkage Prior

The posterior distribution, under the PEP prior, conditional on the shrinkage hyper-
parameters θ � of model M�, is given by

π PEP
� (β�, σ

2| y, δ, X∗
� , X�, θ �) ∝ π PEP

� (β�|σ 2, δ, X∗
� , θ �)π

N (σ 2) f�( y|X�,β�, σ
2)

= fNp�
(β�; 0, σ 2V�)π

N (σ 2) fNn ( y; X� β�, σ
2 In).

Using the reference prior for σ 2 (see Sect. 1), this joint posterior can be written as
the product of

π PEP
� (β�| y, σ 2, δ, X∗

� , X�, θ �) = fNp�
(β�; S� XT

� y, σ 2S�)

and

π PEP
� (σ 2| y, δ, X∗

� , X�, θ �) = f IG(σ 2;α�, b�),

where f IG(x;α, b) is denoting the Inverse Gamma distribution with shape parameter
α and scale parameter b. Furthermore, we have set S� = (V−1

� + X�
T X�)

−1, α� = n
2

and b� = yT [In+X�V�X�
T ]−1 y

2 .

2.3 Marginal Likelihood Under the PEP-Shrinkage Prior

The marginal likelihood, of model M�, under the PEP-Shrinkage prior, given the
shrinkage parameter θ � is given by

mPEP
� ( y|δ, X∗

� , X�, θ�) =
∫

π PEP
� (β�|σ 2, δ, X∗

� , θ�)π
N (σ 2) f�( y|X�,β�, σ

2)dβ� dσ 2

∝ (det (In + X�V�X�
T ))−

1
2 ( yT [In + X�V�X�

T ]−1 y)−
n
2 .

Therefore in cases where the shrinkage parameters of the baseline prior are fixed (e.g.
Ridge g-prior), the above marginal likelihood can be calculated in closed form. The
unknown normalizing constant, in the above expression, comes from the improper
prior of the error variance, which is common in all compared models, and therefore
we do not face any indeterminacy issues when calculating the Bayes factor.

When the shrinkage parameters are not fixed, the marginal likelihood is given by

mPEP
� ( y) ≡ mPEP

� ( y|δ, X∗
� , X�) =

∫
mPEP

� ( y|δ, X∗
� , X�, θ �)π(θ �)dθ �.

If the dimension of θ � is one (e.g. Ridge prior) the above integral can be easily numer-
ically evaluated. Furthermore, in order to search the model space, MC3 procedures
[14] can be performed. If the dimension of θ � is greater than one (e.g. Horseshoe
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prior), we perform an MC3 procedure, conditionally on θ �, as in Algorithm 3 of the
Appendix of [9], where each component of θ � is generated from its full conditional
posterior distribution using a Metropolis-Hastings step.

3 Simulation Study

In this section we test the PEP-Shrinkage methodology (with δ = n = n∗, X∗
� = X�

and the reference model to be the null one) on simulated data. We use as a baseline
prior, all the shrinkage priors listed in Table1 and compare their results. Moreover
we compare the results under the PEP-Ridge prior with the ones obtain by using the
Ridge prior, without the PEP methodology.

Wehave simulated 100 different samples of length n = 25with p = 50 predictors.
The values of the explanatory variables have been generated from N50(0, �), where
the symmetrical matrix� has elements�i, j = (0.75)|i− j |, i, j = 1, . . . , 50. Finally,
we center the columns of the design matrix on zero. For the predictor effects we have
set (β1, β2, β10)

T = (2, 0.8, 1.5)T and for all of the rest, we set to be equal to 0. We
have set y = Xβ + ε, where ε ∼ N25(0, σ 2 I25), for σ 2 = 1.5. Finally, we center the
values of the response variable on zero.

In Fig. 1 (left), we present the boxplots of the marginal posterior inclusion prob-
abilities, for the true effects, of the 100 different samples, for the seven different
PEP-Shrinkage priors. Regarding the two most influential variables, X1 and X10,
under every baseline prior, we obtained high posterior inclusion probabilities with
the majority of cases to be above 0.5. Furthermore, for these two effects, PEP-Ridge
seems to outperform every other PEP-Shrinkage prior. On the contrary, PEP-(Ridge)
g-prior seems to give the least satisfactory results. For the predictor X2, the median
marginal posterior inclusion probabilities are above 0.5, for all baseline priors, except
one. As before, PEP-Ridge gives the most satisfactory results, while PEP-(Ridge)
g-prior produces posterior inclusion probabilities with a median value below 0.5.
For the non-true effects, for brevity reasons, we present results in Fig. 1 (right) only
for a subset of them. More specifically we present results only for variables X3, X9

and X11, which are the ones with the higher correlations with the true effects. For
every selection of baseline prior, the median marginal posterior inclusion probabili-
ties are below 0.5. It is distinct that, regardless the baseline prior we choose, only in
a small percentage of occasions, the non-true effects would have been accepted as
true effects of the model (posterior inclusion probabilities above 0.5). We notice that
PEP-Ridge manages to give, in general, very small posterior inclusion probabilities
with small variability also. For the rest of the non-true effects we get similar results.

In Fig. 2, we present the boxplots of the posterior inclusion probabilities of the
true main effects (left) and the (previously made) selection of non-true effects (right)
between thePEP-Ridge and theRidge prior (without applying thePEPmethodology).
As for the true effects we notice similar results, as both priors manages to accept
the true effects, in the vast majority of the cases. For predictor X10 we can observe
slightly better results under the PEP-Ridge methodology. As for the non-true effects,
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Fig. 1 Boxplots of posterior inclusion probabilities, across 100 simulated datasets, for the true
effects—variables X1, X2, X10 (left) and for some of the non-true effects—variables X3, X9, X11
(right) using the PEP-Shrinkage methodology, for different baseline prior (X-axis).

Fig. 2 Boxplots of posterior inclusion probabilities, across 100 simulated datasets, for the true
effects—variables X1, X2, X10 (left) and for some of the non-true effects—variables X3, X9, X11
(right), using the PEP-Ridge prior (PEP-R) and the Ridge prior without the PEP methodology
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the PEP-Ridge prior outperforms the Ridge prior, as it manages to restrains more
cases to the desirable limits, that is, producing marginal posterior probabilities far
below 0.5 with small variability. Thus we can conclude that the PEP methodology
improves the initially chosen Ridge prior, as it produces more parsimonious results.

4 Discussion

In this paper we briefly present the model formulation and some preliminary results
of an objective Bayesian prior distribution capable of dealing with variable selection
problems in normal regression models when the number of observations is smaller
than the number of explanatory variables. The proposed PEP-Shrinkage prior com-
bines two approaches: the PEP prior methodology and the shrinkage priors. The
resulting prior has a nice interpretation, based on imaginary data, and is compatible
across models. Based on the simulation study, presented here, the PEP-Shrinkage
priors, in the majority of cases, correctly identify the true model. Furthermore, under
the Ridge prior, the PEP methodology improves the initial prior, by being more
parsimonious, a property that is desirable on sparse regression problems.

There are several directions of future extensions. The main aim is to create a
unified approach; i.e. a new class of PEP-Shrinkage priors, that includes all the cases
mentioned in this paper. To achieve this goal our aim is to write the PEP-Shrinkage
prior as a scale mixture of normal distribution, with the mixing distribution denoting
the different baseline prior distributions used. This representation will offer several
advantages: faster evaluation of posterior distributions and Bayes factors, under all
approaches considered, as well as, computational tractability. The performance of
this new class of shrinkage prior distributions then have to be assessed in relation to:
(a) computational efficiency, (b) frequentist assessment, especially in terms of the
speed of concentration of the posterior parameter distribution, or functional thereof,
to the true value, and in terms of coverage of credible sets, (c) ease of interpretation,
(d) default set of tuning hyperparameters in scientific applications. Moreover, a very
important aspect is to check and prove mathematical properties of the new class of
prior distributions. Further research should be held, of what happens if we choose
the size of the imaginary data, not to be equal to the number of the observations
and how that affects the results. In the same manner, we should check what happens
for different values of δ, or even set a prior distribution for it, as in [8]. Finally,
more shrinkage methods could be considered, apart the ones presented in Table1.
Additional future extensions of our PEP-Shrinkage method include implementation
in generalized linear models, where computation is more demanding.
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