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Abstract Quantile regression, which estimates various conditional quantiles of a
response variable, including the median (0.5th quantile), is particularly useful when
the conditional distribution is asymmetric or heterogeneous or fat-tailed or trun-
cated. Bayesian methods for the inference of quantile regression have been receiving
increasing attention from both theoretical and empirical viewpoints but facing the
challenge of scaling up the existing methods when the data are too large to be pro-
cessed by a single machine under many big data environments nowadays. In this
paper, we explore Bayesian quantile regression (BQR) analysis via normal-inverse-
gamma (N IG) distribution type of likelihood function, prior distribution and pos-
terior distribution. We further develop the details of methods of BQR for massive
data applications. The performance of proposed methods is evaluated via real data
illustrations.

Keywords Quantile regression (QR) · Bayesian inference · Big data ·
Normal-inverse-gamma (NIG)

1 Introduction

Quantile regression (QR) estimates various conditional quantiles of a response or
dependent random variable, including the median (0.5th quantile). Putting different
quantile regressions together provides a more complete description of the underly-
ing conditional distribution of the response than a simple mean regression. This is
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particularly useful when the conditional distribution is asymmetric or heterogeneous
or fat-tailed or truncated. Quantile regression has been widely used in statistics and
numerous application areas ([3, 5, 11, 25] and among others). In the “big data” era
for statistical science, the rich of data sources with many complicated data structures
and the increase of extreme values and heterogeneity may see quantile regression
methods more relevant than mean regression to dig deep into the data and grab
information from it. In particular, with advanced power of computer, complicated
quantile regression-based models could be developed under a Bayesian framework,
and Bayesian quantile regression (BQR) has received increasing attention from both
theoretical and empirical viewpoints with wide applications and variants (see [4, 10,
12, 17, 19, 23] and amongothers). So far, in the context of quantile regression, several
methods have been developed for big data analysis ([6, 9, 22, 27] and among oth-
ers), but little attention has been paid to such methodology under Bayesian inference
paradigm.

In this paper, we propose a new approach of BQR for big data. This approach has
its posterior distribution on the whole data as a joint posterior from M sub data split
from the whole data. Section 2 introduces the likelihood function for BQR based
on the location-scale mixture of normals for asymmetric Laplace distribution [15,
18]. Section 3 gives details of the normal-inverse-gamma (N IG) expressions of the
prior and posterior distributions for BQR via informative g-prior [28]. Section 4
derives the posterior distribution on the whole data as a joint multiplication of the
posterior obtained from M sub data split from the whole data via N IG summation
operator, and provides big data based algorithms for BQR. Section 5 demonstrates
the proposed approaches and algorithms via real data illustrations. Some concluding
remarks are presented in Sect. 6.

2 Quantile Regression and Its Likelihood Function

Let yi , i = 1, . . . , n be a continuous response variable and xi a k × 1 vector of
predictors for the i th observation. The linear quantile regression model for the pth
quantile can be denoted as yi = xiTβ + εi , where β is a k × 1 vector of unknown
parameters of interest, and εi is the error term whose distribution is assumed to have
zero pth quantile. The estimation forβ is solved byminimizing

∑n
i=1 ρp(yi − xiTβ),

where ρp(u) = u{p − I (u < 0)} is the check function and I (·) denotes the indicator
function. According to [24, 26], such minimization is equivalent to maximizing a
likelihood function that is based on the asymmetric Laplace distribution (ALD) at
specific value of p. Assume that errors εi , i = 1, . . . , n are ALD(0, σ, p), with the
likelihood given by

f (ε|σ) ∝ σ−n exp{−
n∑

i=1

|εi | + (2p − 1)εi
2σ

},
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where ε = (ε1, . . . , εn)
T . Following [15, 18], we can represent εi as a location-scale

mixture of normals as follows:

εi |vi , σ ∼ N ((1 − 2p)vi , 2σvi ), vi |σ ∼ Exp(σ−1 p(1 − p)),

where Exp(θ) denotes an exponential distribution with rate parameter θ . Denote Y
as an n × 1 response vector of yi , X an n × k predictor matrix with i th row xiT , we
have

Y|β, σ, v,X,� ∼ Nn(Xβ + (1 − 2p)v, 2σ�),

where v = (v1, . . . , vn)
T and � is the diagonal matrix of vi . Given � and further let

Y∗
p = 1√

2
(Y − (1 − 2p)v), X∗ = 1√

2
X respectively, then Y∗

p follows a normal-type
of conditional likelihood as

f (Y∗
p|β, σ, v,X∗,�) ∝ σ−n/2 exp{− 1

2σ
[Y∗

p − X∗β]T�−1[Y∗
p − X∗β]}. (1)

3 N IG Prior and Posterior Distributions for Bayesian
Quantile Regression

Mathematically, we introduce the definition of N IG [7] as follows.

Definition 1 Let β be a k-dimensional vector satisfying −∞ < β < ∞ and δ > 0
be the scalar parameter. The joint distribution of (β, δ) follows the k-dimensional
distribution N IGk(μ,Λ, a, b) if

f (β, δ) = Cδ−(a+ k
2 +1) exp{−1

δ
[b + 1

2
(β − μ)TΛ(β − μ)]},

where C is a proportionality constant. That is, f (δ) follows the inverse-gamma
(IG) distribution with shape parameter a and scale parameter b, and f (β|δ) follows
the multivariate normal distribution with k × 1 mean vector μ and k × k precision
matrix δ−1Λ.

3.1 N IG Expression for Prior Distribution

Recall the likelihood function (1) of quantile regression and denote β̂ p =
(X∗T�−1X∗)−1X∗T�−1Y∗

p, we can rewrite likelihood (1) as
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f (Y∗
p|β, σ, v,X∗) ∝ σ− n−k

2 exp{− 1

2σ
[Y∗

p − X∗β̂ p]T�−1[Y∗
p − X∗β̂ p]}

σ− k
2 exp{− 1

2σ
(β − β̂ p)

T (X∗T�−1X∗)(β − β̂ p)}

= (σ )−(a+ k
2 +1) exp{− 1

σ
[bp + 1

2
(β − μp)

TΛ(β − μp)]}
∝ IG(a, bp)Nk(μp, σΛ−1), (2)

whereμp = β̂ p,Λ = X∗T�−1X∗, a = n−k−2
2 and bp = 1

2 [Y∗
p − X∗β̂ p]T�−1[Y∗

p −
X∗β̂ p]. According to Definition 1 with δ = σ , the rewritten likelihood (2) can be
represented as the structure of a k-dimensional distribution N IGk(μ,Λ, a, b) in
terms of parameters (β, σ ).

Under the informative prior setting, following Alhamzawi and Yu [1], a conjugate
prior for (β, σ )with amodification of Zellner’s informative g-prior [28] in QR could
be provided as

β|σ, v,X∗,� ∼ Nk(0k, gσ(X∗T�−1X∗)−1), f (σ ) ∝ σ−1,

where g > 0 is a known scaling factor prescribed by the user. Smith and Kohn [20]
proposed a Bayesian variable selection algorithm utilizing regression splines. They
found that the choice of g = 100 works well and suggested to choose g between 10
and 1000. Following Smith and Kohn [20], the fixed setting of g = 100 has been
considered by some other authors (see [8, 13], among others). Then we obtain the
joint prior distribution of (β, σ )

f (β, σ |v,X∗,�) ∝ σ−( k
2 +1) exp{− 1

σ
[1
2
βT X

∗T�−1X∗

g
β]}, (3)

which is a special case of N IGk(μ0,Λg0, a0, b0) with μ0 = 0k,Λg0 = X∗T �−1X∗
g ,

a0 = 0, b0 = 0.

3.2 N IG Expression for Posterior Distribution

The joint conditional posterior distribution f (β, σ, v|Y∗
p,X

∗) under the informative
g-prior (3) is given by
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f (β, σ, v|Y∗
p,X

∗) ∝ f (Y∗
p|β, σ, v) f (β|σ, v) f (v|σ) f (σ )

∝ σ−( 3n+k+2
2 )(

n∏

i=1

v
−1/2
i )|X∗T�−1X∗|1/2

× exp{− 1

2σ
[(Y∗

p − X∗β)T�−1(Y∗
p − X∗β)

+ βT X∗T�−1X∗

g
β + 2p(1 − p)

n∑

i=1

vi ]}.

Then the corresponding posterior f (β, σ |v,Y∗
p,X

∗) is given as follows:

f (β, σ |v,Y∗
p,X

∗) ∝ σ−( 3n+k+2
2 ) exp{− 1

2σ
[(Y∗

p − X∗β)T�−1(Y∗
p − X∗β)

+ βT X
∗T�−1X∗

g
β + 2p(1 − p)

n∑

i=1

vi ]}

= σ−( 3n
2 + k

2 +1) exp{− 1

σ
[b̄p + 1

2
(β − μ̄p)

T Λ̄(β − μ̄p)]},

which has an expression of N IGk(μ̄p, Λ̄, ā, b̄p), where μ̄p = [(1 + 1
g )X

∗T�−1

X∗]−1X∗T�−1Y∗
p, Λ̄ = (1 + 1

g )X
∗T�−1X∗, ā = 3n

2 , b̄p = 1
2Y

∗T
p �−1Y∗

p − 1
2 μ̄

T
p

Λ̄μ̄p + p(1 − p)
∑n

i=1 vi . Moreover, the full conditional distributions of β and σ

can be obtained respectively by

f (β|σ, v,Y∗
p,X

∗) ∝ exp{− 1

2σ
[(Y∗

p − X∗β)T�−1(Y∗
p − X∗β) + βT X∗T�−1X∗

g
β]},

which can be expressed as a k-dimensional normal Nk(μ̄p, σ Λ̄
−1

), and

f (σ |β, v,Y∗
p,X

∗) ∝ σ−( 3n+k
2 +1) exp{− 1

2σ
[(Y∗

p − X∗β)T�−1(Y∗
p − X∗β)

+ βT X
∗T�−1X∗

g
β + 2p(1 − p)

n∑

i=1

vi ]},

which is an IG distribution with shape 3n+k
2 and scale 1

2 [(Y∗
p − X∗β)T�−1(Y∗

p −
X∗β) + βT X∗T �−1X∗

g β + 2p(1 − p)
∑n

i=1 vi ]. The full posterior distribution of each
vi , i = 1, 2, . . . , n is also tractable:

f (vi |β, σ, yi , xi ) ∝ v−1
i exp{− 1

4σ
[vi−1((yi − (1 − 2p)vi − xTi β)2 + βT xixTi β

g
)] − p(1 − p)

σ
vi }

= v−1
i exp{− 1

4σ
[v−1
i ((yi − xTi β)2 + βT xixTi β

g
) + vi ]}

= v−1
i exp{− 1

2
(v−1

i ξ̄i
2 + vi ζ̄i

2
)},
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where ξ̄i
2 = [(yi − xTi β)2 + βT xixTi β/g]/2σ and ζ̄i

2 = 1/2σ , which can be rec-
ognized as a generalized inverse Gaussian distribution GIG(0, ξ̄i , ζ̄i ) [2].

4 Big Data Based Algorithms for Bayesian Quantile
Regression

4.1 N IG Multiplication Operator for Posterior Distribution

Toderive the posterior distribution induced by the entire data set forBayesian quantile
regression, we first introduce the N IG multiplication operator defined as follows.

Proposition 1 A general k-dimensional normal-inverse-gamma distribution
N IGk(μ,Λ, a, b) can be reformulated as a multiplication of H independent k-
dimensional distributions N IGk(μh,Λh, ah, bh), h = 1, . . . , H

N IGk(μ,Λ, a, b) =
H∏

h=1

N IGk(μh,Λh, ah, bh), (4)

where μ = (
∑H

h=1 Λh)
−1 ∑H

h=1 Λhμh,Λ = ∑H
h=1 Λh, a = ∑H

h=1 ah + (H−1)(k+2)
2

and b = ∑H
h=1 bh + 1

2

∑H
h=1(μh − μ)TΛh(μh − μ).

Recall the rewritten likelihood function of quantile regression (2) given in Sect. 3.1.
If we partition the big data of X∗ and Y∗

p into M subsets, where each X∗
m is an

nm × k matrix, Y∗
pm is an nm × 1 vector, �m is an nm × nm diagonal block of � and

∑M
m=1 nm = n, then the likelihood (2) can be reformulated as

f (Y∗
p|β, σ, v,X∗) ∝ σ−

∑M
m=1 nm−k

2 exp{− 1

2σ

M∑

m=1

[Y∗
pm − X∗

m β̂ p]T�−1
m [Y∗

pm − X∗
m β̂ p]}

σ− k
2 exp{− 1

2σ

M∑

m=1

(β − β̂ p)
T (X∗T

m �−1
m X∗

m)(β − β̂ p)},

which indicates a multiplication of M N IG distributions regarding parameters
(β, σ )

f (Y∗
p|β, σ, v,X∗) ∝

M∏

m=1

σ−(a(l)
m + k

2 +1) exp{− 1

σ
[b(l)

m + 1

2
(β − μ(l)

p )TΛm(β − μ(l)
p )]}

=
M∏

m=1

N IG(μ(l)
p ,Λ(l)

m , a(l)
m , b(l)

pm),

where the superscript (l) indicates the N IG parameters concerning (β, σ ) for the
likelihood function.μ(l)

p = β̂ p = (
∑M

m=1 X
∗T
m �−1

m X∗
m)−1 ∑M

m=1 X
∗T
m �−1

m Y∗
pm,Λ(l)

m =
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X∗T
m �−1

m X∗
m, a(l)

m = nm−k−2
2 and b(l)

pm = 1
2 [Y∗

pm − X∗
mμ(l)

p ]T�−1
m [Y∗

pm − X∗
mμ(l)

p ].
Then the full data posterior distribution is calibrated by the product of specified N IG
prior and this multiplicative likelihood function, employing Eq. (4) with H = M + 1
in this case. The following Theorem 1 elaborates the acquisition of posterior distri-
bution through the use of N IG multiplication operators.

Theorem 1 Consider a linear quantile regression model with full big data obser-
vations X and Y. Denote the posterior distribution of regression parameters (β, σ ),
under the prior N IGk(μ

(0),Λ(0), a(0), b(0)), be N IGk(μ̄, Λ̄, ā, b̄). If we partition
the whole data of size n into M subsets, each with an nm × k matrix Xm and
an nm × 1 vector Ym, m = 1, . . . , M, and let X∗

m = 1√
2
Xm,Y∗

pm = 1√
2
(Ym − (1 −

2p)vm),�m = diag(vm), where the latent variable vm is an nm × 1 vector generated
from the exponential distribution with rate σ−1 p(1 − p), then the full data posterior
distribution can be formulated as

N IGk(μ̄, Λ̄, ā, b̄) = N IGk(μ
(0),Λ(0), a(0), b(0))

M∏

m=1

N IGk(μ
(l)
p ,Λ(l)

m , a(l)
m , b(l)

pm),

where μ̄ = (Λ(0) + ∑M
m=1 X

∗T
m �−1

m X∗
m)−1(Λ(0)μ(0) + ∑M

m=1 X
∗T
m �−1

m Y∗
pm), Λ̄ =

Λ(0) + ∑M
m=1 X

∗T
m �−1

m X∗
m, ā = a(0) + n

2 and b̄ = b(0) + 1
2 [

∑M
m=1 Y

∗T
pm�−1

m Y∗
pm +

μ(0)TΛ(0)μ(0) − μ̄T Λ̄μ̄].

4.2 Algorithms for Bayesian Quantile Regression

Consider the linear QR model for the p-th quantile (0 < p < 1)

Y = Xβ + ε, (5)

where Y is an n × 1 response vector, X is an n × k predictor matrix, and ε is an
n × 1 vector of ALD(0, σ, p) disturbances. Then model (5) is equivalent to

Y∗
p = X∗β + √

σε∗,

whereY∗
p = 1√

2
(Y − (1 − 2p)v),X∗ = 1√

2
X andε∗ ∼ Nn(0n,�)withn × n known

positive definite covariance matrix �. Then we proceed to Bayesian inference for
big data quantile regressions through the proposed N IG multiplication operator. We
consider model (5) under the g-prior (3) for (β, σ ), and partition the entire data set
into M subsets (Xm,Ym) with individual sample size nm,m = 1, . . . , M . Then the
posterior distribution for the whole data can be obtained by merging the given prior
with the multiplication of M subset N IG distributions induced from the massive
observations. Based on this, an efficient divide-and-conquer algorithm for big data
Bayesian quantile regression is provided as below.
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Algorithm 1 Consider a pth (0 < p < 1) Bayesian quantile regression under g-
prior (3) with the observed n × k design matrix X and n × 1 response vector Y,
where the large data set cannot be fit into a single computer due to the memory
constraint. We can obtain the full data posterior distribution by the following divide-
and-conquer algorithm.

Step 1 partition the entire data set into M subsetsXm,Ym,m = 1, 2, . . . , M , where
Xm is an nm × k matrix, Ym is an nm × 1 vector and

∑M
m=1 nm = n.

Step 2 for each subset Xm,Ym , a Gibbs sampler for sampling βm, σm and vm in the
BQR would follow the sub-steps presented below:

2.1 denote j as the iteration count. Then set j = 0 and establish (β( j=0)
m , σ

( j=0)
m ,

v( j=0)
m ) to some starting values.

2.2 follow the full conditional distributions of βm, σm and vm ,
(i) sample v( j+1)

m from f (vm |β(0)
m , σ (0)

m ).
(ii) sample σ

( j+1)
m from f (σm |β(0)

m , v(1)
m ).

(iii) sample β( j+1)
m from f (βm |σ (1)

m , v(1)
m ).

2.3 set j = j + 1 and return to Step 2.2 until j = L , where L is the number of
iteration times.

Step 3 calculate the empirical estimates of the means β̄m and σ̄m separately based
on the (L − B) realizations of the Gibbs sequence (discarding the first B
iterations as a burn-in). Then generate an nm i.i.d. sample on vi , where vi ∼
GIG(0, ξ̄i , ζ̄i ), with ξ̄i

2 = [(yi − xTi β̄m)2 + β̄
T
mxix

T
i β̄m/g]/2σ̄m and ζ̄i

2 =
1/2σ̄m, i = 1, 2, . . . , nm . Let X∗

m = 1√
2
Xm , Y∗

pm = 1√
2
(Ym − (1 − 2p)vm),

where vm is the corresponding nm × 1 vector of vi for each subset, and
denote �m as an nm × nm diagonal matrix with vm its diagonal vector, m =
1, 2, . . . , M .

Step 4 for each subset, the corresponding likelihood can be represented as a form of
N IGk(μpm,Λm, am, bpm) distribution for (β, σ ). Obtain the multiplicative

distribution N IGk(μp,Λ, a, bp) = ∏M
m=1 N IG(μpm,Λm, am, bpm), then

the full data posterior can be given by merging the g-prior N IGk(μ0,

Λg0, a0, b0) and distribution N IGk(μp,Λ, a, bp):

N IGk(μ̄p, Λ̄, ā, b̄p) = N IGk(μ0,Λg0, a0, b0)N IGk(μp,Λ, a, bp),

where μ̄p = [(1 + 1
g )

∑M
m=1 X

∗T
m �−1

m X∗
m)]−1 ∑M

m=1 X
∗T
m �−1

m Y∗
pm, Λ̄ = (1 +

1
g )

∑M
m=1 X

∗T
m �−1

m X∗
m, ā = 3n

2 , b̄p = 1
2 [

∑M
m=1 Y

∗T
pm�−1

m Y∗
pm − μ̄T

p Λ̄μ̄p] +
p(1 − p)

∑M
m=1‖vm‖1 and ‖·‖1 denotes the 	1 norm of a vector.
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Table 1 Summary statistics for wind power observations at Aeolos, Iweco and Rokas

Aeolos Iweco Rokas

Min 0.000 0.000 0.000

Quantile (0.25) 1.692 0.921 1.573

Median 4.002 2.112 4.579

Mean 4.142 2.141 4.857

Quantile (0.75) 6.745 3.426 8.049

Max 8.302 4.549 11.635

Standard deviation 2.649 1.346 3.407

Sample size 17,819 15,621 21,949

5 Real-Data Analysis

In this section, we illustrate our divide-and-conquer algorithm for big data Bayesian
quantile regression by a real-world data analysis. We use hourly wind power data
recorded from 31 December 2007 to 30 December 2010 at the following three wind
farms in Crete: Aeolos, Iweco and Rokas. The data is a collection of hourly observa-
tions for wind speed (measured in m/s), direction (measured in degrees) and power
(measured in megawatts). A complete wind power data of the year 2010 is examined
in Taylor [21]. We remove all the missing data and retain positive observations of
the recorded hourly periods. Table 1 presents the summary statistics for wind power
observations (in MW) at Aeolos, Iweco and Rokas respectively.

We fit our big data BQR by modeling the wind power as a linear function of wind
speed and direction. We implement Algorithm 1 for these three power sequences at
p = 0.50 and p = 0.95 respectively. In each case, the Gibbs samplers are run for
11000 iterations, discarding the first 1000 as a burn-in. For Aeolos farm, the whole
observations are partitioned into 50 subsets with the size of n1 = n2 . . . = n49 = 356
and n50 = 375. For Iweco, we partition the whole data into 50 subsets with the
size of n1 = n2 . . . = n49 = 312 and n50 = 333. For Rokas, we consider 50 subsets
as n1 = n2 . . . = n49 = 438 and n50 = 487. We assign the informative g-prior by
choosing g = 100. Table 2 displays the estimates and posterior standard deviations
in our big data BQR model for the given three wind power series separately. Note
that for all power series, the estimated coefficients of direction are close to zero at
the measured percentiles, meaning that the effect of wind direction on power seems
to be minor. Instead, wind power presents a much stronger correlation to speed than
to direction. The positive coefficients of speed indicate that as wind speed increases,
so does the power capacity. Furthermore, it is visible that speed has a greater impact
on higher (95th percentile) power than lower (50th percentile) power capacity for all
the three aforementioned wind farms.
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6 Summary and Conclusion

This paper extends the divide-and-conquer algorithm for big data analysis from
traditional mean-based linear regression to quantile regression under Bayesian per-
spectives. This is achieved by using ALD-based working likelihood functions and
conjugate N IG priors. The resulting algorithms are easily implemented and the
real-data illustrations present that wind speed has a greater impact on higher power
values than lower ones, showing the proposed methods are promising. The devel-
oped algorithms can be investigated for other energy-related observations within big
data scenario, such as solar radiation and electrical power demand series. In this
empirical study, we have assigned the positive scaling g-prior by fixing it to be the
experimental value g = 100, as suggested in Smith and Kohn [20] after extensive
testing. However, a potential alternative is to assign a hyper-prior distribution on the
g parameter rather than keep it as a fixed constant. Under such circumstances, the
unknown parameter g can be estimated from the available data. Moreover, the unde-
sirable “Information Paradox”, which relates to the limiting behavior of the Bayes
factor for model selection with fixed g, can be avoided (see [14, 16]). Our possible
future work will focus on developing a novel Bayesian quantile regression for fitting
single-index models under high-dimensional data context, and its penalized version
for efficient variable selection implementations.
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