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Abstract We develop a Bayesian nonparametric predictive model to establish per-
sonalized therapeutic strategies for oncology patients. We leverage characteristics of
both the patient and disease to support decision making in the selection of the opti-
mal treatment. The core component of the model is a product partition model with
covariates (ppmx) that induces clusters of observations that are more homogeneous
with respect to predictive biomarkers. We conduct a simulation study to evaluate dif-
ferent modeling choices regarding ppmx in the framework of personalized treatment
selection.
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1 Introduction

Our approach is motivated by an open problem in cancer genomics and personalized
medicine. Personalized medicine’s mission is to tailor treatment to individual patient
characteristics leveraging various sources of heterogeneity. The distinctive mark
of statistical inference under the personalized medicine paradigm is to disregard
heterogeneity as nuisance to inference, but rather to take advantage of it to improve
therapeutic strategies [2]. Cancer is a complex process and, to understand underlying
biological phenomena, heterogeneity in both patients and diseasemust be accounted.
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We develop a method for personalized treatment selection that leverages prognostic
and predictive biomarkers.

Prognostic biomarkers impact the likelihood of achieving a therapeutic response
regardless of the selected treatment. By contrast, predictive biomarkers determine
which patients are likely or unlikely to benefit from a particular class of treatment
regimes. Since cancer is an inherently heterogeneous disease, each tumor is unique
and hence, for predictive covariates, patients should not be regarded as exchange-
able [3]. Given genomic signatures and a set of prognostic markers, building on [4]
we leverage prognostic determinants to measure how likely a patient is to reach a
given clinical response. Predictive biomarkers are exploited to drive patients clus-
tering within each treatment. This is done to typify the extent of benefit offered by a
specific therapeutic strategy on groups of patients characterized by close profiles in
predictive determinants. We are assuming to know which biomarkers are prognostic
and which are predictive. Although this assumption seems restrictive, it remains cru-
cial. Biomarkers, in order to lead to optimal treatment selection, need to be validated
on completely independent data set not used during development. That is, rather
than develop prognostic/predictive biomarkers, our goal is personalized treatment
selection employing validated biomarkers.

The Bayesian framework naturally handles model-based clustering assuming as
random parameter of the model the partition of the sample subjects. In particular,
we adopt the product partition model with covariates (ppmx) [5] to induce clusters
of observations that are more homogeneous with respect to predictive covariates,
building partitions that are only partially exchangeable. The class of ppmx models
is a powerful Bayesian nonparametric tool to incorporate covariates’ information
into the prior for the random partition. Indeed, under this class of models, patients
with similar covariates are a priori more likely to be clustered together. This feature
enables us to quantify the effectiveness of each competing therapeutic strategy for
patients with similar genetic profiles.

Finally, the posterior predictive distribution of this model arises as a natural way
to assess the extent to which a new untreated patient is likely to attain a level of
clinical response for competing treatments. We elicit response utility weights and
evaluate utility expectation for each therapy [3]. The treatment with the largest mean
predictive utility is considered the optimal treatment.

The goal of this paper is to provide guidance regarding the specification of the
prior distribution for the random partition in the framework of optimal treatment
selection. In fact, as the number of predictive biomarkers grows, the influence of
ppmx models on clustering tends to overwhelm the information from the response,
negatively affecting inference and out-of-sample prediction. In order to calibrate
the influence that covariates have on partition probabilities we follow [8]’s strategy
to temper covariate impact on clustering. The evaluation of different calibrations is
empirically done through simulations based on gene expression data from a leukemia
study [1].

The remainder of the article is organized as follows. In Sect. 2 we state the pro-
posed model, focusing on the aspects addressed in the simulation study. We also
give some details on the computational strategy. In Sect. 3 we describe the predictive
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utility approach adopted for treatment selection. We report and discuss the results of
the simulation study in Sect. 4 and Sect. 5 concludes the paper.

2 The Model

Let a = 1, . . . , T index candidate therapies to whom n = ∑T
a=1 n

a patients are
assigned to, where na denotes the number of patients treated with therapy a. A
common choice to characterize varying levels of treatment response is to evaluate it
in terms of the extent of residual disease after a given clinically relevant post-therapy
follow-up duration. Let yai be the random variable of the i−th patient’s response to
treatment a among K possible levels of increasing treatment benefit, where yai = k
for i = 1, . . . , na and k = 1, . . . , K . In addition, let πa

i = (πa
i1, . . . , π

a
iK ) denote the

vector such that πa
ik is the probability of observing outcome k for the i−th patient

under treatment a. The treatment response is an ordinal-valued random variable and

yai follows amultinomial distribution yai | πa
i

ind∼ Multinomial(1,πa
i ). For each treat-

ment, we consider a training dataset of na patients, (yai , z
a
i , x

a
i ) where i = 1, . . . , na

and zai and xai are a P−dimensional and Q−dimensional vector of prognostic and
predictive features, respectively.

As mentioned in Sect. 1, to relax exchangeability among observations, we adopt
a model for random partition depending on predictive markers. We denote with
ρa = {Sa1 , . . . , SaCa } the treatment-specific partition of the indices {1, . . . , na}, where
Ca is the number of clusters among patients treated with therapy a and naj =| Saj | is
the cardinality of cluster j , for j = 1, . . . ,Ca . Finally, cluster-specific quantities are
denoted with the super script “�”. For example, when considering the j−th cluster
for treatment a, the response vector is ya�

j = {yai : i ∈ Saj }while xa�
j = {xai : i ∈ Saj }

is the partitioned covariate matrix. Using a conjugate prior for πa
i , we assume the

following hierarchical model for a = 1, . . . , T :

yai |πa
i

ind∼ Multinomial(1,πa
i )

πa
1, . . . ,π

a
na | ηa�

1 , . . . , ηa�
Ca

, ρa,β ∼
Ca
∏

j=1

∏

i∈Sa
Dirichlet(πa

i ; γ a
i (η

a�
j ,β, zai )),

where β = (β1, . . . ,βK ) is a P × K matrix of regression parameter shared across
levels of response and individuals. The K -dimensional vectors ηa�

1 , . . . , ηa�
Ca

are
cluster-specific parameters, that is, ηa�

j is a parameter shared by all the individual
in cluster Saj . Finally, γ

a
i (η

a�
j ,β, zai ) = (γ a

i1(η
a�
j1,β1, z

a
i ), . . . , γ

a
iK (ηa�

j K ,βK , zai )), is
a vector of log-linear functions on the prognostic marker and cluster-specific param-
eters defined as follows:

log(γ a
ik(η

a�
jk,βk, z

a
i )) = ηa�

jk + β1k z
a
i1 + · · · + βPkz

a
i P .
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2.1 Priors

The choice of a covariate-dependent prior on the random partition enables predictive
biomarkers to drive the clustering. Priors for {ρa} and {ηa�

j }, are defined independent
across treatments. In fact, we want to allow the response probabilities to change
from treatment to treatment even for subject with similar genetic profile. This inde-
pendence assumption prevents the model from inducing a partition that implies the
same response probability for genetically similar subjects that have received different
treatments. The joint law of (ρa, ηa�

j ) is assigned hierarchically as:

P(ρa = {Sa1 , . . . , SaCa } | xa) ∝
Ca
∏

j=1

c(|Saj |)g(xa�
j ), (1)

ηa�
1 , . . . , ηa�

Ca | Ca iid∼ p0.

In Equation (1) the prior on the random partition is given via cohesion function c
and similarity function g.

The cohesion function acts on clusters, depending only on the cluster size. Fol-
lowing [5], we choose a commonly adopted cohesion function, that is c(Saj ) =
α	(|Saj |), α > 0, corresponding to the marginal partition model available from a
Dirichlet process.

The similarity g is a non-negative function that measures how homogeneous
patients in the same cluster are, with respect to predictive markers. It plays a crucial
role since it increases the probability that patients with close genetic profiles are
co-clustered. In Sect. 2.2 we list and describe two similarity function g along with
strategies designed to temper the covariates’ influence on clustering.

Following [10], for p0 we adopted a conjugate Normal-Inverse Wishart. The
posterior distribution for ηa� results inCa independent multivariate normal densities.

The priors for the parameters {βk} are assumed to be independent and, to enhance
predictive performance, we specified horseshoe priors: βpk ∼ N (0, σ 2

pk), for p =
1, . . . , P , where σ 2

pk = λ2
pk · τ 2

k , with λpk, τk ∼ HalfCauchy(0, 1).

2.2 Similarity Function

Predictive biomarkers drive the clustering process trough the similarity function, that
measure the homogeneity of the xi ∈ x�

j . In theory any non-negative function that
produces larger values for more close covariates is suitable. In order to evaluate the
influence of this choice on the response to treatment prediction we present the two
similarity functions that are compared in the simulation study. As mentioned before,
in order to counteract the strong effect that a large number of covariates may have
on partition probabilities, we adopt a strategy to temper their effects. In particular,
we briefly discuss the coarsening of the similarity function.
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The original similarity function proposed by [5] is to choose g(xa�
j ) as themarginal

probability of an auxiliary probability model. It takes the form

g(xa�
j ) =

∫ ∏

i∈Saj
q(xai | ξ a�

j )q(ξ a�
j )dξ a�

j . (2)

Note that {xai } are not considered random: this structure is convenient because the
correlation induced by the cluster-specific parameters {ξ a�

j } leads to large values of
g(xa�

j ) for close {xai }.
For continuous covariates [5] suggests as default choice for g(xa�

j ) the marginal
distribution of xa�

j under a normal sampling model. A conjugate pair for q(· | ξ a�)

and q(ξ a�) greatly facilitates the evaluation of g(xa�
j ): q(· | ξ a�

j ) = N (·|ma�
j , υa�

j )

and q(ξ a�
j ) = q(ma�

j , υa�
j ) = N IG(ma�

j , υa�
j |m0, k0, υ0, n0), that are theNormal and

Normal-Inverse-Gamma density functions, respectively. A simplified version of this
conjugate model forces covariate clusters to have the same variance: υa�

j = υa� and
results in q(ξ a�

j ) = N (ma�
j | m0, s20 ). We will refer to this latter formulation as the

“Auxiliary NN” and the first one as the “Auxiliary NNIG”. Note that we focus here
on continuous covariates. A major advantage offered by similarities of the form of
(2) is that they easily account also for categorical, ordinal and count covariates [6].

[9] propose avariationof (2), defining g(x�
j ) as theposterior predictive distribution

of x�
j in cluster Sj :

g(xa�
j ) =

∫ ∏

i∈Saj
q(xai | ξ a�

j )q(ξ a�
j |xa�

j )dξ a�
j , (3)

with q(ξ �
j |x�

j ) ∝ ∏
i∈Sj

q(xi |ξ �
j )q(ξ �

j ). Since the covariates are used twice, this
function is called “Double-dipper". The rationale for this formulation, that has the
same form as (2), is to give more weight to the local covariate structure. This is
pursued by weighting x�

j s “likelihood” with the “posterior distribution” of ξ
�
j instead

of its “prior”.
As for the auxiliary similarity, when x is continuous we can have the “Double-

dipper NN” or “Double-dipper NNIG”. Finally note that, for multivariate xi =
(xi1, . . . , xiQ), as in our case of study, we use g(x�

j ) = ∏Q
q g(xa�

jq).

As an alternative to variable selection or to reducing the dimensionality of the covari-
ate space through the use of sufficient statistics, [8] proposes to calibrate the influence
of covariates on clustering. In particular we consider the coarsened similarity func-
tion:

g̃(xa�
j ) = g(xa�

j )1/Q . (4)

In order to shrink the degree of coarseningwe want to induce on the partition proba-
bilities, we also consider a small variation of (4) which will be referred to as shrunk
coarsened similarity: g̃(xa�

j ) = g(xa�
j )1/

√
Q .
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2.3 Posterior Computation

Amcmc procedure is used to fit the ppmxmodel. The core part of the algorithm is the
updating of the cluster labels. The computation associated with fitting Equation (1)
is based on [7]’s Algorithm 8, where applying a Gibbs sampling to a state augmented
by the addition of auxiliary parameters greatly facilitates the update of the partition.
Conditional on the updated cluster labels, all the remaining parameters are easily
updated with Gibbs sampler or Metropolis-Hastings steps.

3 Treatment Selection

In order to select the optimal treatment for a new, untreated patient ĩ , we are interested
in the predictive probability of yĩ . Given the observed responses for the na patients
previously treated with therapy a, that is ya , the predictive probability of response
level k under treatment a is

p(yĩ = k | ya, za, xa, z ĩ , x ĩ ),

where z ĩ and x ĩ denote the P and Q dimensional vectors containing prognostic and
predictive markers for the new patient. To facilitate treatment selection for multi-
nomial ordinal outcomes, we adopt utility weights. In clinical oncology response
categories are ordinal and consider changes in tumor size and/or distant migration
after the treatment. We establish utility weights that turn a multinomial setting into
a one-dimensional selection criterion considering the relative importance of each
level of the ordinal response. Let ω be a K−dimensional vector denoting the utility
assigned to tumor response levels. Tomakeω reflect clinical importance of each level
(non respondent, partially respondent and respondent), we set ω = (0, 40, 100)�,
following [4]. We can then compute the mean predictive utility for patient ĩ as:

ϕa(ĩ) =
K∑

k=1

ωk p(yĩ = k | ya, za, xa, z ĩ , x ĩ ).

The ĩ−th patient will be assigned to the therapy ensuring the largest predictive utility,
that can be considered to be optimal among the competing treatments.

4 Illustrative Example

To empirically assess the performance of the coarsened similarity function presented
in Sect. 2.2, we conduct a simulation study. To compare model fit and treatment
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selection we generate synthetic data adopting the processes designed by [4] (see
Scenario 2), with the only difference that we use 10 predictive markers (instead of
90), while we consider the same two prognostic covariates.

This procedure yields n = 152 patients that are assigned to T = 2 competing
treatment. We consider 3 levels for the ordinal-valued response variable. We stan-
dardize all predictive biomarkers.

The hyperparameters for Auxiliary NN and Double-dipper NN similarities are
(m0 = 0, s20 = 1). For hyperparameters needed when the NNIG model is employed
in the similarities, on the ground of the results obtained by [8] in their extensive
simulation study and sensitivity analysis, we set (m0 = 0, k0 = 1, v0 = 10, n0 = 2).

For each similarity function we run the ppmx for 150, 000 iterations, descarding
the first 50, 000 due to burn-in and keeping each 10−th draw from the posterior
distribution. To compare the goodness-of-fit we report the log pseudomarginal like-
lihood (lplm). To evaluate the predictive performances we adopt the same metrics
as in [4]:

(i) mot, that is the number of misassigned patients;
(ii) %�mtu, it measures the relative gain in treatment utilitywith respect to the other

treatment; note that it is defined only for the case of two alternative treatments.
It ranges from −1 to 1 (%�mtu = 1 only in the case of optimal treatment
assignment rule);

(iii) npc that is the number of correctly predicted outcomes.

Prediction is based on a leave-one-out cross-validated strategy. The numerical results
reported in Table1 are averaged over 100 data sets generated for each case. Standard
deviations are given in brackets. The best performance for each metric is reported in
bold.

The Double-dipper similarity outperforms the Auxiliary similarity function.
Double-dipper best performances are probably due to the larger weight given to
the covariates in the model-based clustering process.

Focusing on the lower pane of Table1, we notice that the Double-dipper function
delivers better results when the NNIG model is assumed. In fact, NNIG offers a
greater flexibility than NN, as it does not force clusters to share the same variance.

Restricting our focus to the Double-dipper NNIG similarity function, Table1
offers a last comparison between Coarsening and Shrunk Coarsening. The former
achieves better performances in terms of goodness-of-fit, while the latter is to be pre-
ferred according to those metrics evaluating prediction. Shrunk Coarsened similarity
outperforms Coarsened similarity assigning fewer patient to the non optimal treat-
ment (15.18 vs 24.13) and reaching a larger relative gain in treatment utility (82%
versus 64%). Coarsening, on the other hand, yields slightly better performances in
terms of number of correctly predicted outcome and lpml.

Given the focus on treatment selection rather than inference onmodel parameters,
Shrunk Coarsened Double-dipper NNIG is the similarity function best suited for our
model.
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Table 1 Simulation study on similarity functions

Similarity mot %�mtu npc lpml

Coarsened Auxiliary NN 34.33 0.47 80.63 −129.98

(4.71) (0.05) (6.06) (4.33)

Coarsened Auxiliary NNIG 28.50 0.58 80.41 −129.18

(5.79) (0.08) (5.92) (4.47)

Shrunk Coarsened Auxiliary NN 55.70 0.30 74.28 −155.51

(33.72) (0.41) (7.00) (3.81)

Shrunk Coarsened Auxiliary NNIG 70.82 0.10 67.00 −156.75

(7.64) (0.10) (6.75) (3.95)

Coarsened Double-dipper NN 31.93 0.50 79.91 −124.08

(4.71) (0.05) (5.95) (4.17)

Coarsened Double-dipper NNIG 24.13 0.64 81.70 −121.26
(6.66) (0.09) (5.87) (3.65)

Shrunk Coarsened Double-dipper NN 19.83 0.73 77.40 −141.58

(9.03) (0.10) (6.50) (4.42)

Shrunk Coarsened Double-dipper NNIG 15.98 0.82 77.08 −146.17

(8.06) (0.09) (6.05) (4.44)

5 Conclusion

Employing ppmx to cluster together patients with close genetic profiles and then
evaluate the effectiveness of competing treatments on groups of similar patients
shows promise. In this paper we focus on the choice of the similarity function, that
is pivotal in ppmx models, in the framework of optimal treatment selection. We find
the Double-dipper similarity to perform particularly well when a shrunk coarsening
is employed and the NNIG model is adopted.

Several extension are currently under investigation, with a sharp focus on similar-
ity functions that could enable us to include a larger number of predictive markers.
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