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Abstract Recently proposedTensorRobust PrincipalComponentAnalysis (TRPCA)
(Lu et al. in Tensor robust principal component analysis: exact recovery of corrupted
low-rank tensors via convex optimization, 2019 [14]) aims to exactly recover the
low-rank and sparse components from their sum, extending the Low-Rank Tensor
Completion model of Mu et al. (Lower bounds and improved relaxations for tensor
recovery, 2013 [17]). We construct a Bayesian approximate inference algorithm for
TRPCA, based on regression adjustment methods suggested in the literature to cor-
rect for high-dimensional nature of the problem (Blum in J Am Stat Assoc 105(491),
2010 [3]; Blum and François in Stat Comput 20(1):63–73, 2010 [4]). Our results are
compared to previous studies using variational Bayes inference for tensor completion
(Hawkins and Zhang in Conference: IEEE international conference on data mining,
2018 [11]). In a short application, we study spatiotemporal traffic data imputation
using nine-week spatiotemporal traffic speed data set of Guangzhou, China.

Keywords Tensor robust PCA · Low-rank · Tensor completion · Approximate
bayesian computation · Regression adjustment · Variational bayes
AMS Subject Classification 62F15

1 Introduction: Tensor Robust Principal Component
Analysis and Its Extensions

Classical Principal Component Analysis (PCA) is the most widely used statistical
tool for data analysis and dimensionality reduction. It is computationally efficient
and powerful for the data which are mildly corrupted by small noises. However, a
major issue of PCA is that it is brittle to grossly corrupted observations or presence
of outliers, which are ubiquitous in real world data. To date, a number of robust ver-
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sions of PCA were proposed. But many of them suffer from the high computational
cost. The recently proposed Robust PCA [7] is the first polynomial-time algorithm
with strong performance guarantees. Suppose we are given a data matrix X ∈ R

n1×n2

which can be decomposed as X = L0 + E0 where L0 is low-rank and E0 is sparse.
It is shown in Candès et al. [7] that if the singular vectors of L0 satisfy some inco-
herent conditions, L0 is low-rank and E0 is sufficiently sparse, then L0 and E0 can
be recovered with high probability by solving the following convex optimization
problem:

min
L ,E

‖L‖∗ + λ ‖E‖1 , s.t. X = L + E (1)

where ‖L‖∗ denotes the nuclear norm (sumof the singular values of L), ‖E‖1 denotes
the �1-norm (sum of the absolute values of all the entries in E) and

λ = 1/
√
max (n1, n2) (2)

To use RPCA, one has to first restructure/transform the multi-way data into a
matrix. Such a preprocessing usually leads to the information loss and would cause
performance degradation. To alleviate this issue, a common approach is tomanipulate
the tensor data by taking the advantage of its multi-dimensional structure. In this
work, we study the Tensor Robust Principal Component (TRPCA) which aims to
exactly recover a low-rank tensor corrupted by sparse errors.

Tensors are mathematical objects that can be used to describe physical properties,
just like scalars and vectors. They are a generalisation of scalars and vectors; a scalar
is a zero rank tensor, and a vector is a first rank tensor. The rank (or order) of a tensor
is defined by the number of directions (i.e. dimensionality of the array) required to
describe it.

The tensor multi rank of A ∈ R
n1×n2×n3 is a vector r ∈ R

n3 with its i-th entry as

the rank of the i-th frontal slice of A, i.e., ri = rank(A
(i)

). The tensor tubal rank,
denoted as rankt (A), is defined as the number of nonzero singular tubes of S, where
S is from the t-SVD of A = U ∗ S ∗ V∗. That is

rankt (A) = #{i : S(i, i, :) �= 0} = max
i

ri (3)

The tensor nuclear norm of a tensor A ∈ R
n1×n2×n3 , denoted as ‖A‖∗, is defined

as the average of the nuclear norm of all the frontal slices of A, i.e., ‖A‖∗ =
1
n3

∑n3
i=1

∥∥∥A
(i)

∥∥∥∗
.

Tensor Robust PCA (TRPCA) [14] aims to exactly recover a low-rank tensor
corrupted by sparse errors. It aims to recover the low tubal rank component L0 and
sparse component E0 from X = L0 + E0 ∈ R

n1×n2×n3 by convex optimization

min
L,E

‖L‖∗ + λ ‖E‖1 , s.t.X = L + E (4)
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We firstly define few necessary concepts. An orthogonal tensor is a tensor Q ∈
R

n×n×n3 if it satisfies:

Q∗ ∗ Q = Q ∗ Q∗ = I (5)

where I is the identity tensor.
f-diagonal tensor is a tensor if each of its frontal slices is a diagonal matrix.
The Tensor Singular Value Decomposition (T-SVD) for third order tensors was pro-
posed by Kilmer and Martin [13] and has been applied successfully in many fields,
such as computed tomography, facial recognition, and video completion. Kilmer
and Martin presented the concept of a tensor-tensor product with suitable algebraic
structure such that classical matrix-like factorizations are possible. In particular, they
gave the definition of the Tensor SVD (T-SVD) over this new product, and showed
that truncating that expansion does give a compressed result that is optimal in the
Frobenius norm.

Theorem 1 (Tensor Singular Value Decomposition (T-SVD) [13, 14]) Let A ∈
R

n1×n2×n3 . Then it can be factored as:

A = U ∗ S ∗ V∗ (6)

where U ∈ R
n1×n1×n3 , V ∈ R

n2×n2×n3 are orthogonal, and S ∈ R
n1×n2×n3 is an f-

diagonal tensor.

Alternative tensor factorization is CANDECOMP/PARAFAC (CP) and expresses
a N -way tensor A as the sum of multiple rank-1 tensors:

A =
R∑

r=1

sra
(1)
r

◦...◦a(N )
r , wi th a(k)

r ∈ R
Ik (7)

Our Bayesian approach is based on likelihood representation of the problem in
(4) following variational Bayes perspective of Hawkins and Zhang [11]. Variational
perspectives have been earlier adopted as solutions to intractable likelihood problems
in matrix and tensor completion [1, 21, 22]. In general, likelihood free perspective
is applied to matrix and tensor completion problems as computational complexity
is significantly higher for high-dimensional data than that of other methods, and
convergence is generally hard to assess [1, 5]. In order to address problems of high-
dimensionality in approximate Bayesian inference regression adjustment is often
recommended [2–5, 18] and we use it also in our analysis.

We assume that each tensor slice can be fit by Xk = X̃k + Sk + Ek , where X̃k is
low-rank, Sk contains sparse outliers and Ek denotes dense noise with small mag-
nitudes. We will denote with Y�,k the observation of current slice and by S�,k its
outliers. For the likelihood function representation let τ specify the noise precision,
â(n)
in

the in-th row of A(n), λ controls the rank of factorization and {γi1,...,iN } controls
the sparsity of S�.
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We define the likelihood function and used priors for the transformed problem in
(4) using Gaussian and Gamma priors as:

(
Y�

∣∣∣
{
A(n)

}N+1

n=1 ,S�, τ
)

=
∏

(i1,...,in)∈�

N (Yi1...iN

∣∣∣
〈
â(1)
i1

, . . . , â(N )
iN

〉
+ Si1...iN , τ−1

)

(8)

(� |Y�)

=
p

(
Y�

∣∣∣
{
A(n)

}N+1
n=1 ,S�, τ

) {∏(N+1)
n=1 p

(
A(n)|λ)}

p (λ) p (S�|γ ) p (γ ) p(τ )

p(Y�)

(9)

p
(
A(n) |λ) =

In∏

in=1

N (̂a(n)
in

∣∣0,�−1
)
, ∀n ∈ [1, N + 1] (10)

p (S� | γ ) =
∏

(i1,...,iN )∈�

N (Si1...iN

∣∣0, γ −1
i1...iN

)
(11)

p (τ ) = Ga
(
τ |aτ

0 , b
τ
0

)
, p (λ) =

R∏

r=1

Ga (λr |c0, d0) (12)

p(γ ) =
∏

(i1,...,iN )∈�

Ga(γi1...iN
∣∣aγ

0 , bγ

0

)
(13)

2 Scheme of the Approximate Bayesian Algorithm

Modern statistical applications increasingly require the fitting of complex statistical
models. Often these models are “intractable” in the sense that it is impossible to eval-
uate the likelihood function. This prohibits standard implementation of likelihood-
based methods, such as maximum likelihood estimation or a Bayesian analysis. To
overcome this problem there has been substantial interest in “likelihood-free” or
simulation-based methods. Examples of such likelihood-free methods include simu-
lated methods of moments [10], indirect inference (Gourièroux and Ronchetti 1993)
[12], synthetic likelihood [9] and approximate Bayesian computation [19]. Of these,
approximate Bayesian computation (ABC) methods are arguably the most common
methods for performing Bayesian inference [15, 19]. For a number of years, ABC
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methods have been popular in population genetics (e.g. Cornuet et al. [8]) and sys-
tems biology (e.g. Toni et al. [20]); more recently they have seen increased use in
other application areas, such as econometrics [6] and epidemiology [9].

In our ABC algorithm for TRPCA we amend the variational Bayes perspective
of Hawkins and Zhang [11] who use it on a temporally defined problem. We use
regression adjustment based ABC using as a summary statistic array of tensor first
and second moment defined as k-statistics [16] and tensor tubal rank as defined
above.

Scheme of the algorithm:

Step 1. Simulate θ(i), i = 1, . . . , n according to the prior structure defined above.
Step 2. Simulate s(i) = array(A)(i) using the generative model p(s(i)|θ(i)).
Step 3. Associatewith each pair (θ(i), s(i)) aweightw(i) ∝ Kh(

∥∥s(i) − sobs
∥∥), where

Kh is a kernel function and || || the multidimensional Euclidean distance.
Step 4. Fit a regressionmodelwhere the response is θ and the predictive variables are

the summary statistics s. Use a regression model to adjust the θ(i) in order
to produce a weighted sample of adjusted values. We use heteroskedastic
adjustment, following Blum (2017), as follows:

θ
(i)
c′ = m̂(sobs) + σ̂ (sobs)

σ̂ (s(i))
(θ (i) − m̂(s(i))) (14)

where m̂ and σ̂ are the standard estimators of the conditional mean and of
the conditional standard deviation.

3 Numerical Experiments and Application

With the development of intelligent transportation systems, large quantities of urban
traffic data are collected on a continuous basis from various sources. These data sets
capture the underlying states and dynamics of transportation networks and the whole
system. In general, traffic data register full spatial and temporal features, togetherwith
some other site-specific attributes. Usually, we can organize the spatiotemporal traffic
data into a multi-dimensional structure. Combined with information from other links
in a city, the overall spatiotemporal data can be structured as a multi-dimensional
array, which is often referred to as a tensor. A common drawback that undermines the
use of such spatiotemporal data is the “missingness” problem, whichmay result from
various factors such as hardware/software failure, network communication problems,
and zero/limited reports from floating/crowdsourcing systems.

To demonstrate the performance of this model, in this section we conduct numeri-
cal experiments based on a large-scale traffic speed data set collected in Guangzhou,
China. The data set is generated by a widely-used navigation app on smart phones.
The data set contains travel speed observations from214 road segments in twomonths
(61days from August 1, 2016 to September 30, 2016) at 10-min interval (144 time
intervals in a day). The speed data can be organized as a third-order tensor (road
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segment × day × time interval). Among the 1.88 million elements, about 1.29% are
not observed or provided in the raw data.

In Tables1 and 2 we compare performance of different models applied to sev-
eral scenarios.We compare: Bayesian Gaussian CANDECOMP/PARAFAC (BGCP)
tensor decomposition model, high accuracy low-rank tensor completion (HaLRTC)
(Liu et al. 2013), which is used in Ran et al. (2016), SVD-combined tensor decom-
position (STD) (Chen et al. 2018), DA (daily average) fills the missing value with
an average of observed data (over different days) for the same road segment and
the same time window (Li et al. 2013). kNN is another baseline method where the
neighbors refer to road segments. Finally, TRPCA-VAR and TRPCA-ABC refer
to tensor robust PCA specification in variational Bayes and approximate Bayesian
computation algorithm form. The mean absolute percentage error (MAPE) and root
mean square error (RMSE) are used to evaluate model performance. Our first exper-
iment examines the performance of different models and different representations in
the random missing scenario. In the second experiment, we present a more realistic
temporally correlated missing scenario. From the original data set we create five
novel datasets with different missing rates ranging from 10 to 50%. We use two data
representations: matrix representation (A) and third-order tensor representation (B).

As can be seen from the tables (the bestmodels aremarked in bold), for the random
missing scenario, frequently the Variational Bayes specification performs best. On
the other hand, our ABC approach performs very well in the second, temporally
correlated missing scenario.

4 Conclusion

Our article provides an initial step in the development of ABC algorithms for tensor
completion and tensor principal component analysis. We upgrade the tensor robust
PCA approach of Lu and coauthors using approximate Bayesian perspective which
provides ground for further research in the area of Bayesian approaches inmatrix and
tensor completion. Also, our article provides additional information on approximate
Bayesian approaches to high-dimensional problems in statistics.

Few possible extensions of our work and pathways for future work seem apparent:

• Other possibilities of the ABC algorithms (such as SMC, HMC, other regression
and marginal adjustment approaches) integrated nested Laplace approximation,
including additional upgrades of the variational approach of Hawkins and Zhang
should lead to more evidence on methodological possibilities to approach matrix
and tensor completion from a Bayesian computational perspective.

• Different loss and divergence measures (for example Bregman type divergence
measures) could be tested and asymptotics of the approach developed.

• Extension to different type of tensor measures and different specifications of the
tensor robust PCA (the specification we use is only one of the possible ones) as
well as extensions to any type and size of a tensor.
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