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Preface

This volume collects a selection of peer-reviewed contributions presented at the
fifth Bayesian Young Statistician Meeting (BaYSM 2021), showcasing current and
new advances in the frontiers of Bayesian statistics. The conference was originally
planned to take place during 2020 at the Yunnan University, as a satellite to the ISBA
2020WorldMeeting inKunming,China.Due to theCOVID-19pandemic, the confer-
ence was first postponed and then turned into a virtual event held completely online
from 1 to 3 September 2021. The event was patronized and graciously supported by
the Yunnan University, the International Society of Bayesian Analysis (ISBA) and
the junior section of ISBA (j-ISBA).

BaYSM is a conference designed as a platform for early-career researchers,
including M.Sc. and Ph.D. students as well as post-doctoral researchers, to connect
with the Bayesian scientific community at the beginning of their career. BaYSMaims
at stimulating collaborations, encouraging discussion, and establishing networks
between early-stage researcher as well as with senior professors.

The scientific programofBaYSM2021 included six keynote sessions delivered by
established senior researchers, in addition to contributed sessions and poster sessions
featuring junior researchers. The keynote sessions offered brilliant and stimulating
talks by Maria De Iorio (Yale-NUS College and University College London), David
Dunson (Duke University), LongNguyen (University ofMichigan), Amy Shi (SAS),
Jessica Utts (University of California, Irvine), and Francesca Dominici (Harvard
University).

Contributions from early-career researchers highlighted different aspects of
Bayesian statistics. Applications included personalized medicine to epidemiology
and migrations pathways. Computation ranged from MCMC methods to ABC,
while among methodological contributions, we mention graphical models and
Bayesian nonparametrics. A senior discussant was present at each contributed
session, providing helpful suggestions, encouragement, and directions for current
and future research. One of the major challenges of this edition was the organization
of an online environment able to facilitate virtual networking among participants.
This goal was achieved setting up a virtual-townwhere participants could freely roam
and chatwith each other, altogetherwith the planning of a community event involving
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viii Preface

a Bayesian themed Quiz. Finally, through the support of our sponsors, outstanding
contributions of junior researchers were acknowledged by four prizes recognizing
the Best Talk and Best Poster in “Theory and Methods” and in “Applications and
Computation”, as well as two honourable mentions for Best Talk.

We acknowledge all BaYSM 2021 attendees, whose active (online) participation
and contributions made the conference an amazing scientific event and an enjoyable
experience. We thank the speakers, both junior and senior; and in particular, we
are grateful to the discussants—Li Ma, Pierre Jacob, David Rossell, Rosangela H.
Loschi, Christian Robert, Peter Müller—for their valuable work. Moreover, a special
thanks goes toMichele Guindani for hosting the Bayesian themedQuiz in spite of the
time zone difficulties. Finally, we express our sincere gratitude to the referees, who
thoroughly reviewed the contributions in this volume and provided helpful comments
for the early-career researchers.

Despite the challenges of the pandemic, organizing BaYSM 2021 has been an
exciting and rewarding experience for all the committee’s members. BaYSM has
now become the official meeting of j-ISBA; we hope that the j-ISBA section will
become more and more a point of reference for early-career researchers, and that
the BaYSM conference will continue with the same success of the previous editions,
providing inspiration for new generations of Bayesian statisticians. We look forward
for the next in-person meeting, which will be held next month in Montréal, Canada,
as a satellite event of the ISBA 2022 World Meeting.

Bergamo, Italy
Milan, Italy
Boston, USA
May 2022

Raffaele Argiento
Federico Camerlenghi

Sally Paganin
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Approximate Bayesian Algorithm
for Tensor Robust Principal Component
Analysis

Andrej Srakar

Abstract Recently proposedTensorRobust PrincipalComponentAnalysis (TRPCA)
(Lu et al. in Tensor robust principal component analysis: exact recovery of corrupted
low-rank tensors via convex optimization, 2019 [14]) aims to exactly recover the
low-rank and sparse components from their sum, extending the Low-Rank Tensor
Completion model of Mu et al. (Lower bounds and improved relaxations for tensor
recovery, 2013 [17]). We construct a Bayesian approximate inference algorithm for
TRPCA, based on regression adjustment methods suggested in the literature to cor-
rect for high-dimensional nature of the problem (Blum in J Am Stat Assoc 105(491),
2010 [3]; Blum and François in Stat Comput 20(1):63–73, 2010 [4]). Our results are
compared to previous studies using variational Bayes inference for tensor completion
(Hawkins and Zhang in Conference: IEEE international conference on data mining,
2018 [11]). In a short application, we study spatiotemporal traffic data imputation
using nine-week spatiotemporal traffic speed data set of Guangzhou, China.

Keywords Tensor robust PCA · Low-rank · Tensor completion · Approximate
bayesian computation · Regression adjustment · Variational bayes
AMS Subject Classification 62F15

1 Introduction: Tensor Robust Principal Component
Analysis and Its Extensions

Classical Principal Component Analysis (PCA) is the most widely used statistical
tool for data analysis and dimensionality reduction. It is computationally efficient
and powerful for the data which are mildly corrupted by small noises. However, a
major issue of PCA is that it is brittle to grossly corrupted observations or presence
of outliers, which are ubiquitous in real world data. To date, a number of robust ver-

A. Srakar (B)
Ljubljana and School of Economics and Business, Institute for Economic Research (IER),
University of Ljubljana, Ljubljana, Slovenia
e-mail: andrej.srakar@ier.si
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2 A. Srakar

sions of PCA were proposed. But many of them suffer from the high computational
cost. The recently proposed Robust PCA [7] is the first polynomial-time algorithm
with strong performance guarantees. Suppose we are given a data matrix X ∈ R

n1×n2

which can be decomposed as X = L0 + E0 where L0 is low-rank and E0 is sparse.
It is shown in Candès et al. [7] that if the singular vectors of L0 satisfy some inco-
herent conditions, L0 is low-rank and E0 is sufficiently sparse, then L0 and E0 can
be recovered with high probability by solving the following convex optimization
problem:

min
L ,E

‖L‖∗ + λ ‖E‖1 , s.t. X = L + E (1)

where ‖L‖∗ denotes the nuclear norm (sumof the singular values of L), ‖E‖1 denotes
the �1-norm (sum of the absolute values of all the entries in E) and

λ = 1/
√
max (n1, n2) (2)

To use RPCA, one has to first restructure/transform the multi-way data into a
matrix. Such a preprocessing usually leads to the information loss and would cause
performance degradation. To alleviate this issue, a common approach is tomanipulate
the tensor data by taking the advantage of its multi-dimensional structure. In this
work, we study the Tensor Robust Principal Component (TRPCA) which aims to
exactly recover a low-rank tensor corrupted by sparse errors.

Tensors are mathematical objects that can be used to describe physical properties,
just like scalars and vectors. They are a generalisation of scalars and vectors; a scalar
is a zero rank tensor, and a vector is a first rank tensor. The rank (or order) of a tensor
is defined by the number of directions (i.e. dimensionality of the array) required to
describe it.

The tensor multi rank of A ∈ R
n1×n2×n3 is a vector r ∈ R

n3 with its i-th entry as

the rank of the i-th frontal slice of A, i.e., ri = rank(A
(i)

). The tensor tubal rank,
denoted as rankt (A), is defined as the number of nonzero singular tubes of S, where
S is from the t-SVD of A = U ∗ S ∗ V∗. That is

rankt (A) = #{i : S(i, i, :) �= 0} = max
i

ri (3)

The tensor nuclear norm of a tensor A ∈ R
n1×n2×n3 , denoted as ‖A‖∗, is defined

as the average of the nuclear norm of all the frontal slices of A, i.e., ‖A‖∗ =
1
n3

∑n3
i=1

∥∥∥A
(i)

∥∥∥∗
.

Tensor Robust PCA (TRPCA) [14] aims to exactly recover a low-rank tensor
corrupted by sparse errors. It aims to recover the low tubal rank component L0 and
sparse component E0 from X = L0 + E0 ∈ R

n1×n2×n3 by convex optimization

min
L,E

‖L‖∗ + λ ‖E‖1 , s.t.X = L + E (4)
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We firstly define few necessary concepts. An orthogonal tensor is a tensor Q ∈
R

n×n×n3 if it satisfies:

Q∗ ∗ Q = Q ∗ Q∗ = I (5)

where I is the identity tensor.
f-diagonal tensor is a tensor if each of its frontal slices is a diagonal matrix.
The Tensor Singular Value Decomposition (T-SVD) for third order tensors was pro-
posed by Kilmer and Martin [13] and has been applied successfully in many fields,
such as computed tomography, facial recognition, and video completion. Kilmer
and Martin presented the concept of a tensor-tensor product with suitable algebraic
structure such that classical matrix-like factorizations are possible. In particular, they
gave the definition of the Tensor SVD (T-SVD) over this new product, and showed
that truncating that expansion does give a compressed result that is optimal in the
Frobenius norm.

Theorem 1 (Tensor Singular Value Decomposition (T-SVD) [13, 14]) Let A ∈
R

n1×n2×n3 . Then it can be factored as:

A = U ∗ S ∗ V∗ (6)

where U ∈ R
n1×n1×n3 , V ∈ R

n2×n2×n3 are orthogonal, and S ∈ R
n1×n2×n3 is an f-

diagonal tensor.

Alternative tensor factorization is CANDECOMP/PARAFAC (CP) and expresses
a N -way tensor A as the sum of multiple rank-1 tensors:

A =
R∑

r=1

sra
(1)
r

◦...◦a(N )
r , wi th a(k)

r ∈ R
Ik (7)

Our Bayesian approach is based on likelihood representation of the problem in
(4) following variational Bayes perspective of Hawkins and Zhang [11]. Variational
perspectives have been earlier adopted as solutions to intractable likelihood problems
in matrix and tensor completion [1, 21, 22]. In general, likelihood free perspective
is applied to matrix and tensor completion problems as computational complexity
is significantly higher for high-dimensional data than that of other methods, and
convergence is generally hard to assess [1, 5]. In order to address problems of high-
dimensionality in approximate Bayesian inference regression adjustment is often
recommended [2–5, 18] and we use it also in our analysis.

We assume that each tensor slice can be fit by Xk = X̃k + Sk + Ek , where X̃k is
low-rank, Sk contains sparse outliers and Ek denotes dense noise with small mag-
nitudes. We will denote with Y�,k the observation of current slice and by S�,k its
outliers. For the likelihood function representation let τ specify the noise precision,
â(n)
in

the in-th row of A(n), λ controls the rank of factorization and {γi1,...,iN } controls
the sparsity of S�.
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We define the likelihood function and used priors for the transformed problem in
(4) using Gaussian and Gamma priors as:

(
Y�

∣∣∣
{
A(n)

}N+1

n=1 ,S�, τ
)

=
∏

(i1,...,in)∈�

N (Yi1...iN

∣∣∣
〈
â(1)
i1

, . . . , â(N )
iN

〉
+ Si1...iN , τ−1

)

(8)

(� |Y�)

=
p

(
Y�

∣∣∣
{
A(n)

}N+1
n=1 ,S�, τ

) {∏(N+1)
n=1 p

(
A(n)|λ)}

p (λ) p (S�|γ ) p (γ ) p(τ )

p(Y�)

(9)

p
(
A(n) |λ) =

In∏

in=1

N (̂a(n)
in

∣∣0,�−1
)
, ∀n ∈ [1, N + 1] (10)

p (S� | γ ) =
∏

(i1,...,iN )∈�

N (Si1...iN

∣∣0, γ −1
i1...iN

)
(11)

p (τ ) = Ga
(
τ |aτ

0 , b
τ
0

)
, p (λ) =

R∏

r=1

Ga (λr |c0, d0) (12)

p(γ ) =
∏

(i1,...,iN )∈�

Ga(γi1...iN
∣∣aγ

0 , bγ

0

)
(13)

2 Scheme of the Approximate Bayesian Algorithm

Modern statistical applications increasingly require the fitting of complex statistical
models. Often these models are “intractable” in the sense that it is impossible to eval-
uate the likelihood function. This prohibits standard implementation of likelihood-
based methods, such as maximum likelihood estimation or a Bayesian analysis. To
overcome this problem there has been substantial interest in “likelihood-free” or
simulation-based methods. Examples of such likelihood-free methods include simu-
lated methods of moments [10], indirect inference (Gourièroux and Ronchetti 1993)
[12], synthetic likelihood [9] and approximate Bayesian computation [19]. Of these,
approximate Bayesian computation (ABC) methods are arguably the most common
methods for performing Bayesian inference [15, 19]. For a number of years, ABC
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methods have been popular in population genetics (e.g. Cornuet et al. [8]) and sys-
tems biology (e.g. Toni et al. [20]); more recently they have seen increased use in
other application areas, such as econometrics [6] and epidemiology [9].

In our ABC algorithm for TRPCA we amend the variational Bayes perspective
of Hawkins and Zhang [11] who use it on a temporally defined problem. We use
regression adjustment based ABC using as a summary statistic array of tensor first
and second moment defined as k-statistics [16] and tensor tubal rank as defined
above.

Scheme of the algorithm:

Step 1. Simulate θ(i), i = 1, . . . , n according to the prior structure defined above.
Step 2. Simulate s(i) = array(A)(i) using the generative model p(s(i)|θ(i)).
Step 3. Associatewith each pair (θ(i), s(i)) aweightw(i) ∝ Kh(

∥∥s(i) − sobs
∥∥), where

Kh is a kernel function and || || the multidimensional Euclidean distance.
Step 4. Fit a regressionmodelwhere the response is θ and the predictive variables are

the summary statistics s. Use a regression model to adjust the θ(i) in order
to produce a weighted sample of adjusted values. We use heteroskedastic
adjustment, following Blum (2017), as follows:

θ
(i)
c′ = m̂(sobs) + σ̂ (sobs)

σ̂ (s(i))
(θ (i) − m̂(s(i))) (14)

where m̂ and σ̂ are the standard estimators of the conditional mean and of
the conditional standard deviation.

3 Numerical Experiments and Application

With the development of intelligent transportation systems, large quantities of urban
traffic data are collected on a continuous basis from various sources. These data sets
capture the underlying states and dynamics of transportation networks and the whole
system. In general, traffic data register full spatial and temporal features, togetherwith
some other site-specific attributes. Usually, we can organize the spatiotemporal traffic
data into a multi-dimensional structure. Combined with information from other links
in a city, the overall spatiotemporal data can be structured as a multi-dimensional
array, which is often referred to as a tensor. A common drawback that undermines the
use of such spatiotemporal data is the “missingness” problem, whichmay result from
various factors such as hardware/software failure, network communication problems,
and zero/limited reports from floating/crowdsourcing systems.

To demonstrate the performance of this model, in this section we conduct numeri-
cal experiments based on a large-scale traffic speed data set collected in Guangzhou,
China. The data set is generated by a widely-used navigation app on smart phones.
The data set contains travel speed observations from214 road segments in twomonths
(61days from August 1, 2016 to September 30, 2016) at 10-min interval (144 time
intervals in a day). The speed data can be organized as a third-order tensor (road
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segment × day × time interval). Among the 1.88 million elements, about 1.29% are
not observed or provided in the raw data.

In Tables1 and 2 we compare performance of different models applied to sev-
eral scenarios.We compare: Bayesian Gaussian CANDECOMP/PARAFAC (BGCP)
tensor decomposition model, high accuracy low-rank tensor completion (HaLRTC)
(Liu et al. 2013), which is used in Ran et al. (2016), SVD-combined tensor decom-
position (STD) (Chen et al. 2018), DA (daily average) fills the missing value with
an average of observed data (over different days) for the same road segment and
the same time window (Li et al. 2013). kNN is another baseline method where the
neighbors refer to road segments. Finally, TRPCA-VAR and TRPCA-ABC refer
to tensor robust PCA specification in variational Bayes and approximate Bayesian
computation algorithm form. The mean absolute percentage error (MAPE) and root
mean square error (RMSE) are used to evaluate model performance. Our first exper-
iment examines the performance of different models and different representations in
the random missing scenario. In the second experiment, we present a more realistic
temporally correlated missing scenario. From the original data set we create five
novel datasets with different missing rates ranging from 10 to 50%. We use two data
representations: matrix representation (A) and third-order tensor representation (B).

As can be seen from the tables (the bestmodels aremarked in bold), for the random
missing scenario, frequently the Variational Bayes specification performs best. On
the other hand, our ABC approach performs very well in the second, temporally
correlated missing scenario.

4 Conclusion

Our article provides an initial step in the development of ABC algorithms for tensor
completion and tensor principal component analysis. We upgrade the tensor robust
PCA approach of Lu and coauthors using approximate Bayesian perspective which
provides ground for further research in the area of Bayesian approaches inmatrix and
tensor completion. Also, our article provides additional information on approximate
Bayesian approaches to high-dimensional problems in statistics.

Few possible extensions of our work and pathways for future work seem apparent:

• Other possibilities of the ABC algorithms (such as SMC, HMC, other regression
and marginal adjustment approaches) integrated nested Laplace approximation,
including additional upgrades of the variational approach of Hawkins and Zhang
should lead to more evidence on methodological possibilities to approach matrix
and tensor completion from a Bayesian computational perspective.

• Different loss and divergence measures (for example Bregman type divergence
measures) could be tested and asymptotics of the approach developed.

• Extension to different type of tensor measures and different specifications of the
tensor robust PCA (the specification we use is only one of the possible ones) as
well as extensions to any type and size of a tensor.



Approximate Bayesian Algorithm for Tensor Robust Principal … 7

Ta
bl
e
1

T
he

im
pu

ta
tio

n
pe
rf
or
m
an
ce

of
B
G
C
P,
H
aL

R
T
C
,S

T
D
,D

A
(d
ai
ly

av
er
ag
e)
,k
N
N
,T

R
PC

A
-V
A
R
an
d
T
R
PC

A
-A

B
C
fo
r
tw
o
da
ta
re
pr
es
en
ta
tio

ns
in

th
e

fir
st
sc
en
ar
io

(b
es
tm

od
el
s
ar
e
hi
gh

lig
ht
ed

in
bo

ld
)

10
%

20
%

30
%

40
%

M
A
PE

R
M
SE

M
A
PE

R
M
SE

M
A
PE

R
M
SE

M
A
PE

R
M
SE

(A
)

B
G
C
P(
50
)

0.
09
37

3.
99
81

0.
09
52

4.
04
67

0.
09
62

4.
09
03

0.
09
76

4.
14
57

B
G
C
P(
80
)

0.
09
25

3.
94
83

0.
09
41

3.
99
58

0.
09
51

4.
04
49

0.
09
68

4.
10
91

B
G
C
P(
11
0)

0.
09
20

3.
93
03

0.
09
37

3.
97
90

0.
09
48

4.
02
92

0.
09
65

4.
09
37

H
aL

R
T
C

0.
09
57

3.
96
66

0.
09
76

4.
02
32

0.
09
91

4.
08
20

0.
10
09

4.
14
67

D
A

0.
12
13

5.
17
78

0.
12
18

5.
19
05

0.
12
17

5.
19
77

0.
12
17

5.
19
93

kN
N
(1
0)

0.
13
03

5.
11
01

0.
13
14

5.
14
86

0.
13
22

5.
19
66

0.
13
33

5.
25
65

T
R
PC

A
-V
A
R

0.
10
03

4.
34
52

0.
07
86

4.
40
13

0.
10
45

4.
42
91

0.
09
48

4.
47
78

T
R
PC

A
-A

B
C

0.
10
83

4.
36
52

0.
10
26

4.
40
63

0.
08
25

4.
41
41

0.
10
08

4.
48
54

(B
)

B
G
C
P(
50
)

0.
08
62

3.
70
97

0.
08
67

3.
71
99

0.
08
67

3.
72
98

0.
08
67

3.
73
17

B
G
C
P(
80
)

0.
08
23

3.
56
14

0.
08
27

3.
56
60

0.
08
27

3.
57
75

0.
08
29

3.
58
51

B
G
C
P(
11
0)

0.
07
95

3.
45
21

0.
07
98

3.
45
31

0.
07
99

3.
46
55

0.
08
01

3.
47
56

H
aL

R
T
C

0.
07
77

3.
19
17

0.
08
15

3.
33
24

0.
08
50

3.
47
48

0.
08
87

3.
61
43

ST
D

0.
08
88

3.
77
08

0.
09
11

3.
83
08

0.
09
36

3.
92
86

0.
09
63

4.
02
65

T
R
PC

A
-V
A
R

0.
06
39

3.
52
91

0.
08
04

3.
55
34

0.
06
66

3.
61
02

0.
09
29

3.
66
56

T
R
PC

A
-A

B
C

0.
09
39

3.
54
41

0.
09
64

3.
59
24

0.
08
56

3.
63
32

0.
09
79

3.
68
86



8 A. Srakar

Ta
bl
e
2

T
he

im
pu

ta
tio

n
pe
rf
or
m
an
ce

of
B
G
C
P,
H
aL

R
T
C
,S

T
D
,D

A
,k
N
N
,T

R
PC

A
-V
A
R
an
d
T
R
PC

A
-A

B
C
fo
rt
w
o
da
ta
re
pr
es
en
ta
tio

ns
in
th
e
se
co
nd

sc
en
ar
io

(b
es
tm

od
el
s
ar
e
hi
gh

lig
ht
ed

in
bo

ld
)

10
%

20
%

30
%

40
%

M
A
PE

R
M
SE

M
A
PE

R
M
SE

M
A
PE

R
M
SE

M
A
PE

R
M
SE

(A
)

B
G
C
P(
15
)

0.
10
11

4.
24
58

0.
10
13

4.
26
74

0.
10
20

4.
31
62

0.
10
31

4.
39
15

B
G
C
P(
20
)

0.
10
05

4.
23
07

0.
10
10

4.
27
55

0.
10
17

4.
32
29

0.
10
31

4.
41
24

H
aL

R
T
C

0.
10
15

4.
13
22

0.
10
22

4.
17
16

0.
10
35

4.
23
72

0.
10
57

4.
32
32

D
A

0.
12
08

5.
11
28

0.
12
07

5.
13
53

0.
12
00

5.
14
08

0.
11
96

5.
14
34

kN
N
(1
3)

0.
13
42

5.
17
14

0.
13
40

5.
19
83

0.
13
46

5.
25
91

0.
13
88

5.
44
05

T
R
PC

A
-V
A
R

0.
09
06

4.
59
26

0.
11
58

4.
58
66

0.
12
04

4.
63
52

0.
12
91

4.
73
32

T
R
PC

A
-A

B
C

0.
12
26

4.
57
36

0.
09
78

4.
58
66

0.
12
64

4.
63
62

0.
10
01

4.
73
52

(B
)

B
G
C
P(
15
)

0.
09
92

4.
17
60

0.
09
95

4.
19
49

0.
09
99

4.
24
25

0.
10
01

4.
28
81

B
G
C
P(
20
)

0.
09
80

4.
14
13

0.
09
84

4.
14
77

0.
09
80

4.
18
57

0.
10
06

4.
45
56

H
aL

R
T
C

0.
10
33

4.
15
76

0.
10
46

4.
20
86

0.
10
62

4.
27
92

0.
10
88

4.
38
13

ST
D

0.
10
19

4.
18
81

0.
10
54

4.
33
00

0.
10
68

4.
40
29

0.
11
15

4.
55
73

T
R
PC

A
-V
A
R

0.
09
56

4.
15
98

0.
11
00

4.
19
03

0.
10
47

4.
26
26

0.
09
43

4.
41
16

T
R
PC

A
-A

B
C

0.
07
46

4.
17
58

0.
07
40

4.
23
43

0.
11
67

4.
28
66

0.
08
53

4.
40
06



Approximate Bayesian Algorithm for Tensor Robust Principal … 9

References

1. Babacan, S.D., Luessi, M., Molina, R., Katsaggelos, A.K.: Sparse Bayesian methods for low-
rank matrix estimation. IEEE Trans. Signal Process 60(8), 3964–3977 (2012)

2. Beaumont, M.A., Zhang, W., Balding, D.J.: Approximate Bayesian computation in population
genetics. Genetics 162, 2025–2035 (2002)

3. Blum, M.G.: Approximate Bayesian computation: a nonparametric perspective. J. Am. Statis-
tical Assoc

4. Blum, M.G., François, O.: Non-linear regression models for approximate Bayesian computa-
tion. Stat. Comput. 20(1), 63–73 (2010)

5. Blum, M.G.B., Nunes, M.A., Prangle, D., Sisson, S.A.: A comparative review of dimension
reduction methods in approximate Bayesian computation. Stat. Sci. 28, 189–208 (2013)

6. Calvet, L.E., Czellar, V.: Accurate methods for approximate Bayesian computation filtering. J.
Financ. Econ. 13(4), 798–838 (2015)

7. Candès, E.J., Li, X.D., Ma, Y., Wright, J.: Robust principal component analysis? J. ACM 58(3)
(2011)

8. Cornuet, J.-M., Santos, F., Beaumont, M.A., Robert, C.P., Marin, J.-M., Balding, D.J., Guille-
maud, T., Estoup, A.: Inferring population history with DIY ABC: a user-friendly approach to
approximate Bayesian computation. Bioinformatics 24(23), 2713–2719 (2008)

9. Drovandi, C.C., Pettitt, A.N.: Estimation of parameters for macroparasite population evolution
using approximate Bayesian computation. Biometrics 67(1), 225–233 (2011)

10. Duffie, D., Singleton, K.J.: Simulated moments estimation of Markov models of asset prices.
Econometrica 61(4), 929–952 (1993)

11. Hawkins,C., Zhang,Z.:VariationalBayesian inference for robust streaming tensor factorization
and completion. In: Conference: IEEE International Conference on Data Mining, Nov 2018.
Available as arXiv:1809.01265v1 (2018)

12. Heggland, K., Frigessi, A.: Estimating functions in indirect inference. J. Roy. Stat. Soc. Ser. B
66, 447–462 (2004)

13. Kilmer, M.E., Martin, C.D.: Factorization strategies for third-order tensors. Linear Algebra
Appl. 435(3), 641–658 (2011)

14. Lu, C., Feng, J., Chen, Y., Liu, W., Lin, Z., Yan, S.: Tensor robust principal component
analysis: exact recovery of corrupted low-rank tensors via convex optimization. Available
as arXiv:1708.04181v3 (2019)

15. Martin, G., Frazier, D., Robert, C.P.: Computing Bayes: Bayesian computation from 1763 to
the 21st century. Available as arXiv:2004.06425 (2020)

16. McCullagh, P.: Tensor Methods in Statistics, 2nd edn. Dover Books on Mathematics (2018)
17. Mu, C., Huang, B., Wright, J., Goldfarb, D.: Square deal: lower bounds and improved relax-

ations for tensor recovery. Available as arXiv:1307.5870v2 (2013)
18. Nott, D.J., Ong, V.M.-H., Fan, Y., Sisson, S.A.: High-dimensional ABC. In: Handbook of

Approximate Bayesian Computation, pp. 211–242 (2018)
19. Robert, C.P.: Approximate Bayesian computation: a survey on recent methods. In: Cools, R.,

Nuyens, D. (eds.) Monte Carlo and Quasi-Monte Carlo Methods (MCqMC), pp. 195–205.
Springer, Berlin (2014)

20. Toni, T., Welch, D., Strelkowa, N., Ipsen, A., Stumpf, M.P.: Approximate Bayesian computa-
tion scheme for parameter inference and model selection in dynamical systems. J. Roy. Soc.
Interface 6(31), 187–202 (2009)

21. Zhao, Q., Zhang, L., Cichocki, A.: Bayesian CP factorization of incomplete tensors with auto-
matic rank determination. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1751–1763 (2015)

22. Zhao, Q., Zhou, G., Zhang, L., Cichocki, A., Amari, S.-I.: Bayesian robust tensor factorization
for incomplete multiway data. IEEE Trans. Neural Networks Learn. Syst. 27(4), 736–748
(2016)

http://arxiv.org/abs/1809.01265v1
http://arxiv.org/abs/1708.04181v3
http://arxiv.org/abs/2004.06425
http://arxiv.org/abs/1307.5870v2


Bayesian Quantile Regression
for Big Data Analysis

Yuanqi Chu, Xueping Hu, and Keming Yu

Abstract Quantile regression, which estimates various conditional quantiles of a
response variable, including the median (0.5th quantile), is particularly useful when
the conditional distribution is asymmetric or heterogeneous or fat-tailed or trun-
cated. Bayesian methods for the inference of quantile regression have been receiving
increasing attention from both theoretical and empirical viewpoints but facing the
challenge of scaling up the existing methods when the data are too large to be pro-
cessed by a single machine under many big data environments nowadays. In this
paper, we explore Bayesian quantile regression (BQR) analysis via normal-inverse-
gamma (N IG) distribution type of likelihood function, prior distribution and pos-
terior distribution. We further develop the details of methods of BQR for massive
data applications. The performance of proposed methods is evaluated via real data
illustrations.

Keywords Quantile regression (QR) · Bayesian inference · Big data ·
Normal-inverse-gamma (NIG)

1 Introduction

Quantile regression (QR) estimates various conditional quantiles of a response or
dependent random variable, including the median (0.5th quantile). Putting different
quantile regressions together provides a more complete description of the underly-
ing conditional distribution of the response than a simple mean regression. This is
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particularly useful when the conditional distribution is asymmetric or heterogeneous
or fat-tailed or truncated. Quantile regression has been widely used in statistics and
numerous application areas ([3, 5, 11, 25] and among others). In the “big data” era
for statistical science, the rich of data sources with many complicated data structures
and the increase of extreme values and heterogeneity may see quantile regression
methods more relevant than mean regression to dig deep into the data and grab
information from it. In particular, with advanced power of computer, complicated
quantile regression-based models could be developed under a Bayesian framework,
and Bayesian quantile regression (BQR) has received increasing attention from both
theoretical and empirical viewpoints with wide applications and variants (see [4, 10,
12, 17, 19, 23] and amongothers). So far, in the context of quantile regression, several
methods have been developed for big data analysis ([6, 9, 22, 27] and among oth-
ers), but little attention has been paid to such methodology under Bayesian inference
paradigm.

In this paper, we propose a new approach of BQR for big data. This approach has
its posterior distribution on the whole data as a joint posterior from M sub data split
from the whole data. Section 2 introduces the likelihood function for BQR based
on the location-scale mixture of normals for asymmetric Laplace distribution [15,
18]. Section 3 gives details of the normal-inverse-gamma (N IG) expressions of the
prior and posterior distributions for BQR via informative g-prior [28]. Section 4
derives the posterior distribution on the whole data as a joint multiplication of the
posterior obtained from M sub data split from the whole data via N IG summation
operator, and provides big data based algorithms for BQR. Section 5 demonstrates
the proposed approaches and algorithms via real data illustrations. Some concluding
remarks are presented in Sect. 6.

2 Quantile Regression and Its Likelihood Function

Let yi , i = 1, . . . , n be a continuous response variable and xi a k × 1 vector of
predictors for the i th observation. The linear quantile regression model for the pth
quantile can be denoted as yi = xiTβ + εi , where β is a k × 1 vector of unknown
parameters of interest, and εi is the error term whose distribution is assumed to have
zero pth quantile. The estimation forβ is solved byminimizing

∑n
i=1 ρp(yi − xiTβ),

where ρp(u) = u{p − I (u < 0)} is the check function and I (·) denotes the indicator
function. According to [24, 26], such minimization is equivalent to maximizing a
likelihood function that is based on the asymmetric Laplace distribution (ALD) at
specific value of p. Assume that errors εi , i = 1, . . . , n are ALD(0, σ, p), with the
likelihood given by

f (ε|σ) ∝ σ−n exp{−
n∑

i=1

|εi | + (2p − 1)εi
2σ

},
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where ε = (ε1, . . . , εn)
T . Following [15, 18], we can represent εi as a location-scale

mixture of normals as follows:

εi |vi , σ ∼ N ((1 − 2p)vi , 2σvi ), vi |σ ∼ Exp(σ−1 p(1 − p)),

where Exp(θ) denotes an exponential distribution with rate parameter θ . Denote Y
as an n × 1 response vector of yi , X an n × k predictor matrix with i th row xiT , we
have

Y|β, σ, v,X,� ∼ Nn(Xβ + (1 − 2p)v, 2σ�),

where v = (v1, . . . , vn)
T and � is the diagonal matrix of vi . Given � and further let

Y∗
p = 1√

2
(Y − (1 − 2p)v), X∗ = 1√

2
X respectively, then Y∗

p follows a normal-type
of conditional likelihood as

f (Y∗
p|β, σ, v,X∗,�) ∝ σ−n/2 exp{− 1

2σ
[Y∗

p − X∗β]T�−1[Y∗
p − X∗β]}. (1)

3 N IG Prior and Posterior Distributions for Bayesian
Quantile Regression

Mathematically, we introduce the definition of N IG [7] as follows.

Definition 1 Let β be a k-dimensional vector satisfying −∞ < β < ∞ and δ > 0
be the scalar parameter. The joint distribution of (β, δ) follows the k-dimensional
distribution N IGk(μ,Λ, a, b) if

f (β, δ) = Cδ−(a+ k
2 +1) exp{−1

δ
[b + 1

2
(β − μ)TΛ(β − μ)]},

where C is a proportionality constant. That is, f (δ) follows the inverse-gamma
(IG) distribution with shape parameter a and scale parameter b, and f (β|δ) follows
the multivariate normal distribution with k × 1 mean vector μ and k × k precision
matrix δ−1Λ.

3.1 N IG Expression for Prior Distribution

Recall the likelihood function (1) of quantile regression and denote β̂ p =
(X∗T�−1X∗)−1X∗T�−1Y∗

p, we can rewrite likelihood (1) as
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f (Y∗
p|β, σ, v,X∗) ∝ σ− n−k

2 exp{− 1

2σ
[Y∗

p − X∗β̂ p]T�−1[Y∗
p − X∗β̂ p]}

σ− k
2 exp{− 1

2σ
(β − β̂ p)

T (X∗T�−1X∗)(β − β̂ p)}

= (σ )−(a+ k
2 +1) exp{− 1

σ
[bp + 1

2
(β − μp)

TΛ(β − μp)]}
∝ IG(a, bp)Nk(μp, σΛ−1), (2)

whereμp = β̂ p,Λ = X∗T�−1X∗, a = n−k−2
2 and bp = 1

2 [Y∗
p − X∗β̂ p]T�−1[Y∗

p −
X∗β̂ p]. According to Definition 1 with δ = σ , the rewritten likelihood (2) can be
represented as the structure of a k-dimensional distribution N IGk(μ,Λ, a, b) in
terms of parameters (β, σ ).

Under the informative prior setting, following Alhamzawi and Yu [1], a conjugate
prior for (β, σ )with amodification of Zellner’s informative g-prior [28] in QR could
be provided as

β|σ, v,X∗,� ∼ Nk(0k, gσ(X∗T�−1X∗)−1), f (σ ) ∝ σ−1,

where g > 0 is a known scaling factor prescribed by the user. Smith and Kohn [20]
proposed a Bayesian variable selection algorithm utilizing regression splines. They
found that the choice of g = 100 works well and suggested to choose g between 10
and 1000. Following Smith and Kohn [20], the fixed setting of g = 100 has been
considered by some other authors (see [8, 13], among others). Then we obtain the
joint prior distribution of (β, σ )

f (β, σ |v,X∗,�) ∝ σ−( k
2 +1) exp{− 1

σ
[1
2
βT X

∗T�−1X∗

g
β]}, (3)

which is a special case of N IGk(μ0,Λg0, a0, b0) with μ0 = 0k,Λg0 = X∗T �−1X∗
g ,

a0 = 0, b0 = 0.

3.2 N IG Expression for Posterior Distribution

The joint conditional posterior distribution f (β, σ, v|Y∗
p,X

∗) under the informative
g-prior (3) is given by



Bayesian Quantile Regression for Big Data Analysis 15

f (β, σ, v|Y∗
p,X

∗) ∝ f (Y∗
p|β, σ, v) f (β|σ, v) f (v|σ) f (σ )

∝ σ−( 3n+k+2
2 )(

n∏

i=1

v
−1/2
i )|X∗T�−1X∗|1/2

× exp{− 1

2σ
[(Y∗

p − X∗β)T�−1(Y∗
p − X∗β)

+ βT X∗T�−1X∗

g
β + 2p(1 − p)

n∑

i=1

vi ]}.

Then the corresponding posterior f (β, σ |v,Y∗
p,X

∗) is given as follows:

f (β, σ |v,Y∗
p,X

∗) ∝ σ−( 3n+k+2
2 ) exp{− 1

2σ
[(Y∗

p − X∗β)T�−1(Y∗
p − X∗β)

+ βT X
∗T�−1X∗

g
β + 2p(1 − p)

n∑

i=1

vi ]}

= σ−( 3n
2 + k

2 +1) exp{− 1

σ
[b̄p + 1

2
(β − μ̄p)

T Λ̄(β − μ̄p)]},

which has an expression of N IGk(μ̄p, Λ̄, ā, b̄p), where μ̄p = [(1 + 1
g )X

∗T�−1

X∗]−1X∗T�−1Y∗
p, Λ̄ = (1 + 1

g )X
∗T�−1X∗, ā = 3n

2 , b̄p = 1
2Y

∗T
p �−1Y∗

p − 1
2 μ̄

T
p

Λ̄μ̄p + p(1 − p)
∑n

i=1 vi . Moreover, the full conditional distributions of β and σ

can be obtained respectively by

f (β|σ, v,Y∗
p,X

∗) ∝ exp{− 1

2σ
[(Y∗

p − X∗β)T�−1(Y∗
p − X∗β) + βT X∗T�−1X∗

g
β]},

which can be expressed as a k-dimensional normal Nk(μ̄p, σ Λ̄
−1

), and

f (σ |β, v,Y∗
p,X

∗) ∝ σ−( 3n+k
2 +1) exp{− 1

2σ
[(Y∗

p − X∗β)T�−1(Y∗
p − X∗β)

+ βT X
∗T�−1X∗

g
β + 2p(1 − p)

n∑

i=1

vi ]},

which is an IG distribution with shape 3n+k
2 and scale 1

2 [(Y∗
p − X∗β)T�−1(Y∗

p −
X∗β) + βT X∗T �−1X∗

g β + 2p(1 − p)
∑n

i=1 vi ]. The full posterior distribution of each
vi , i = 1, 2, . . . , n is also tractable:

f (vi |β, σ, yi , xi ) ∝ v−1
i exp{− 1

4σ
[vi−1((yi − (1 − 2p)vi − xTi β)2 + βT xixTi β

g
)] − p(1 − p)

σ
vi }

= v−1
i exp{− 1

4σ
[v−1
i ((yi − xTi β)2 + βT xixTi β

g
) + vi ]}

= v−1
i exp{− 1

2
(v−1

i ξ̄i
2 + vi ζ̄i

2
)},
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where ξ̄i
2 = [(yi − xTi β)2 + βT xixTi β/g]/2σ and ζ̄i

2 = 1/2σ , which can be rec-
ognized as a generalized inverse Gaussian distribution GIG(0, ξ̄i , ζ̄i ) [2].

4 Big Data Based Algorithms for Bayesian Quantile
Regression

4.1 N IG Multiplication Operator for Posterior Distribution

Toderive the posterior distribution induced by the entire data set forBayesian quantile
regression, we first introduce the N IG multiplication operator defined as follows.

Proposition 1 A general k-dimensional normal-inverse-gamma distribution
N IGk(μ,Λ, a, b) can be reformulated as a multiplication of H independent k-
dimensional distributions N IGk(μh,Λh, ah, bh), h = 1, . . . , H

N IGk(μ,Λ, a, b) =
H∏

h=1

N IGk(μh,Λh, ah, bh), (4)

where μ = (
∑H

h=1 Λh)
−1 ∑H

h=1 Λhμh,Λ = ∑H
h=1 Λh, a = ∑H

h=1 ah + (H−1)(k+2)
2

and b = ∑H
h=1 bh + 1

2

∑H
h=1(μh − μ)TΛh(μh − μ).

Recall the rewritten likelihood function of quantile regression (2) given in Sect. 3.1.
If we partition the big data of X∗ and Y∗

p into M subsets, where each X∗
m is an

nm × k matrix, Y∗
pm is an nm × 1 vector, �m is an nm × nm diagonal block of � and

∑M
m=1 nm = n, then the likelihood (2) can be reformulated as

f (Y∗
p|β, σ, v,X∗) ∝ σ−

∑M
m=1 nm−k

2 exp{− 1

2σ

M∑

m=1

[Y∗
pm − X∗

m β̂ p]T�−1
m [Y∗

pm − X∗
m β̂ p]}

σ− k
2 exp{− 1

2σ

M∑

m=1

(β − β̂ p)
T (X∗T

m �−1
m X∗

m)(β − β̂ p)},

which indicates a multiplication of M N IG distributions regarding parameters
(β, σ )

f (Y∗
p|β, σ, v,X∗) ∝

M∏

m=1

σ−(a(l)
m + k

2 +1) exp{− 1

σ
[b(l)

m + 1

2
(β − μ(l)

p )TΛm(β − μ(l)
p )]}

=
M∏

m=1

N IG(μ(l)
p ,Λ(l)

m , a(l)
m , b(l)

pm),

where the superscript (l) indicates the N IG parameters concerning (β, σ ) for the
likelihood function.μ(l)

p = β̂ p = (
∑M

m=1 X
∗T
m �−1

m X∗
m)−1 ∑M

m=1 X
∗T
m �−1

m Y∗
pm,Λ(l)

m =
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X∗T
m �−1

m X∗
m, a(l)

m = nm−k−2
2 and b(l)

pm = 1
2 [Y∗

pm − X∗
mμ(l)

p ]T�−1
m [Y∗

pm − X∗
mμ(l)

p ].
Then the full data posterior distribution is calibrated by the product of specified N IG
prior and this multiplicative likelihood function, employing Eq. (4) with H = M + 1
in this case. The following Theorem 1 elaborates the acquisition of posterior distri-
bution through the use of N IG multiplication operators.

Theorem 1 Consider a linear quantile regression model with full big data obser-
vations X and Y. Denote the posterior distribution of regression parameters (β, σ ),
under the prior N IGk(μ

(0),Λ(0), a(0), b(0)), be N IGk(μ̄, Λ̄, ā, b̄). If we partition
the whole data of size n into M subsets, each with an nm × k matrix Xm and
an nm × 1 vector Ym, m = 1, . . . , M, and let X∗

m = 1√
2
Xm,Y∗

pm = 1√
2
(Ym − (1 −

2p)vm),�m = diag(vm), where the latent variable vm is an nm × 1 vector generated
from the exponential distribution with rate σ−1 p(1 − p), then the full data posterior
distribution can be formulated as

N IGk(μ̄, Λ̄, ā, b̄) = N IGk(μ
(0),Λ(0), a(0), b(0))

M∏

m=1

N IGk(μ
(l)
p ,Λ(l)

m , a(l)
m , b(l)

pm),

where μ̄ = (Λ(0) + ∑M
m=1 X

∗T
m �−1

m X∗
m)−1(Λ(0)μ(0) + ∑M

m=1 X
∗T
m �−1

m Y∗
pm), Λ̄ =

Λ(0) + ∑M
m=1 X

∗T
m �−1

m X∗
m, ā = a(0) + n

2 and b̄ = b(0) + 1
2 [

∑M
m=1 Y

∗T
pm�−1

m Y∗
pm +

μ(0)TΛ(0)μ(0) − μ̄T Λ̄μ̄].

4.2 Algorithms for Bayesian Quantile Regression

Consider the linear QR model for the p-th quantile (0 < p < 1)

Y = Xβ + ε, (5)

where Y is an n × 1 response vector, X is an n × k predictor matrix, and ε is an
n × 1 vector of ALD(0, σ, p) disturbances. Then model (5) is equivalent to

Y∗
p = X∗β + √

σε∗,

whereY∗
p = 1√

2
(Y − (1 − 2p)v),X∗ = 1√

2
X andε∗ ∼ Nn(0n,�)withn × n known

positive definite covariance matrix �. Then we proceed to Bayesian inference for
big data quantile regressions through the proposed N IG multiplication operator. We
consider model (5) under the g-prior (3) for (β, σ ), and partition the entire data set
into M subsets (Xm,Ym) with individual sample size nm,m = 1, . . . , M . Then the
posterior distribution for the whole data can be obtained by merging the given prior
with the multiplication of M subset N IG distributions induced from the massive
observations. Based on this, an efficient divide-and-conquer algorithm for big data
Bayesian quantile regression is provided as below.
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Algorithm 1 Consider a pth (0 < p < 1) Bayesian quantile regression under g-
prior (3) with the observed n × k design matrix X and n × 1 response vector Y,
where the large data set cannot be fit into a single computer due to the memory
constraint. We can obtain the full data posterior distribution by the following divide-
and-conquer algorithm.

Step 1 partition the entire data set into M subsetsXm,Ym,m = 1, 2, . . . , M , where
Xm is an nm × k matrix, Ym is an nm × 1 vector and

∑M
m=1 nm = n.

Step 2 for each subset Xm,Ym , a Gibbs sampler for sampling βm, σm and vm in the
BQR would follow the sub-steps presented below:

2.1 denote j as the iteration count. Then set j = 0 and establish (β( j=0)
m , σ

( j=0)
m ,

v( j=0)
m ) to some starting values.

2.2 follow the full conditional distributions of βm, σm and vm ,
(i) sample v( j+1)

m from f (vm |β(0)
m , σ (0)

m ).
(ii) sample σ

( j+1)
m from f (σm |β(0)

m , v(1)
m ).

(iii) sample β( j+1)
m from f (βm |σ (1)

m , v(1)
m ).

2.3 set j = j + 1 and return to Step 2.2 until j = L , where L is the number of
iteration times.

Step 3 calculate the empirical estimates of the means β̄m and σ̄m separately based
on the (L − B) realizations of the Gibbs sequence (discarding the first B
iterations as a burn-in). Then generate an nm i.i.d. sample on vi , where vi ∼
GIG(0, ξ̄i , ζ̄i ), with ξ̄i

2 = [(yi − xTi β̄m)2 + β̄
T
mxix

T
i β̄m/g]/2σ̄m and ζ̄i

2 =
1/2σ̄m, i = 1, 2, . . . , nm . Let X∗

m = 1√
2
Xm , Y∗

pm = 1√
2
(Ym − (1 − 2p)vm),

where vm is the corresponding nm × 1 vector of vi for each subset, and
denote �m as an nm × nm diagonal matrix with vm its diagonal vector, m =
1, 2, . . . , M .

Step 4 for each subset, the corresponding likelihood can be represented as a form of
N IGk(μpm,Λm, am, bpm) distribution for (β, σ ). Obtain the multiplicative

distribution N IGk(μp,Λ, a, bp) = ∏M
m=1 N IG(μpm,Λm, am, bpm), then

the full data posterior can be given by merging the g-prior N IGk(μ0,

Λg0, a0, b0) and distribution N IGk(μp,Λ, a, bp):

N IGk(μ̄p, Λ̄, ā, b̄p) = N IGk(μ0,Λg0, a0, b0)N IGk(μp,Λ, a, bp),

where μ̄p = [(1 + 1
g )

∑M
m=1 X

∗T
m �−1

m X∗
m)]−1 ∑M

m=1 X
∗T
m �−1

m Y∗
pm, Λ̄ = (1 +

1
g )

∑M
m=1 X

∗T
m �−1

m X∗
m, ā = 3n

2 , b̄p = 1
2 [

∑M
m=1 Y

∗T
pm�−1

m Y∗
pm − μ̄T

p Λ̄μ̄p] +
p(1 − p)

∑M
m=1‖vm‖1 and ‖·‖1 denotes the 	1 norm of a vector.
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Table 1 Summary statistics for wind power observations at Aeolos, Iweco and Rokas

Aeolos Iweco Rokas

Min 0.000 0.000 0.000

Quantile (0.25) 1.692 0.921 1.573

Median 4.002 2.112 4.579

Mean 4.142 2.141 4.857

Quantile (0.75) 6.745 3.426 8.049

Max 8.302 4.549 11.635

Standard deviation 2.649 1.346 3.407

Sample size 17,819 15,621 21,949

5 Real-Data Analysis

In this section, we illustrate our divide-and-conquer algorithm for big data Bayesian
quantile regression by a real-world data analysis. We use hourly wind power data
recorded from 31 December 2007 to 30 December 2010 at the following three wind
farms in Crete: Aeolos, Iweco and Rokas. The data is a collection of hourly observa-
tions for wind speed (measured in m/s), direction (measured in degrees) and power
(measured in megawatts). A complete wind power data of the year 2010 is examined
in Taylor [21]. We remove all the missing data and retain positive observations of
the recorded hourly periods. Table 1 presents the summary statistics for wind power
observations (in MW) at Aeolos, Iweco and Rokas respectively.

We fit our big data BQR by modeling the wind power as a linear function of wind
speed and direction. We implement Algorithm 1 for these three power sequences at
p = 0.50 and p = 0.95 respectively. In each case, the Gibbs samplers are run for
11000 iterations, discarding the first 1000 as a burn-in. For Aeolos farm, the whole
observations are partitioned into 50 subsets with the size of n1 = n2 . . . = n49 = 356
and n50 = 375. For Iweco, we partition the whole data into 50 subsets with the
size of n1 = n2 . . . = n49 = 312 and n50 = 333. For Rokas, we consider 50 subsets
as n1 = n2 . . . = n49 = 438 and n50 = 487. We assign the informative g-prior by
choosing g = 100. Table 2 displays the estimates and posterior standard deviations
in our big data BQR model for the given three wind power series separately. Note
that for all power series, the estimated coefficients of direction are close to zero at
the measured percentiles, meaning that the effect of wind direction on power seems
to be minor. Instead, wind power presents a much stronger correlation to speed than
to direction. The positive coefficients of speed indicate that as wind speed increases,
so does the power capacity. Furthermore, it is visible that speed has a greater impact
on higher (95th percentile) power than lower (50th percentile) power capacity for all
the three aforementioned wind farms.
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6 Summary and Conclusion

This paper extends the divide-and-conquer algorithm for big data analysis from
traditional mean-based linear regression to quantile regression under Bayesian per-
spectives. This is achieved by using ALD-based working likelihood functions and
conjugate N IG priors. The resulting algorithms are easily implemented and the
real-data illustrations present that wind speed has a greater impact on higher power
values than lower ones, showing the proposed methods are promising. The devel-
oped algorithms can be investigated for other energy-related observations within big
data scenario, such as solar radiation and electrical power demand series. In this
empirical study, we have assigned the positive scaling g-prior by fixing it to be the
experimental value g = 100, as suggested in Smith and Kohn [20] after extensive
testing. However, a potential alternative is to assign a hyper-prior distribution on the
g parameter rather than keep it as a fixed constant. Under such circumstances, the
unknown parameter g can be estimated from the available data. Moreover, the unde-
sirable “Information Paradox”, which relates to the limiting behavior of the Bayes
factor for model selection with fixed g, can be avoided (see [14, 16]). Our possible
future work will focus on developing a novel Bayesian quantile regression for fitting
single-index models under high-dimensional data context, and its penalized version
for efficient variable selection implementations.
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Towards a Bayesian Analysis of
Migration Pathways Using Chain Event
Graphs of Agent Based Models

Peter Strong, Alys McAlpine, and Jim Q. Smith

Abstract Agent-Based Models (ABMs) are often used to model migration and
are increasingly used to simulate individual migrant decision-making and unfold-
ing events through a sequence of heuristic if-then rules. However, ABMs lack the
methods to embedmore principled strategies of performing inference to estimate and
validate the models, both of which are of significant importance for real-world case
studies. Chain Event Graphs (CEGs) can fill this need: they can be used to provide
a Bayesian framework which represents an ABM accurately. Through the use of the
CEG, we illustrate how to transform an elicited ABM into a Bayesian framework
and outline the benefits of this approach.

Keywords Applied statistics · Probabilistic graphical models · Context-specific
independence · Conditional independence

1 Introduction

Researchers and policymakers are interested in modelling migration as they aim to
understand the mechanisms involved in order to inform policy. For example, organ-
isations may aim to promote safe labour migration in line with the UN’s Sustainable
Development Goals [22]. Migration can increase vulnerability to human traffick-
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ing and exploitation. It is estimated that 23% of victims of forced labour [12] and
60% of victims of human trafficking were outside their country of residence [23].
In order to inform policymakers attempting to prevent exploitation, it is important
to understand migrants’ journeys and identify how individuals’ hyper-precarity and
livelihood insecurity, experienced due to both employment and immigration [14],
evolves on different migration pathways.

Increasingly, Agent BasedModels (ABMs) have been commonly used in contexts
such as migration as they focus on the level of the individual and can be constructed
by modelling the potential outcomes of successive events and decision-making [13,
15]. In order to construct these models, a range of data sources, such as large struc-
tured demographic datasets or natural language narratives and theories have been
used to inform deterministic and stochastic transitions within an ABM. These transi-
tions take the formof eithermathematical equations, such as differential equations, or
heuristic if-then rules and are informed by experts who describe the influences, pos-
sible options available and threats along their journey to another country. However
there is often ambiguity in the reporting of these models. For this type of egocentric
modelling with heterogeneous actors and actions, where the focus is on an indi-
vidual’s decisions, ABMs are an obvious choice and hence are being increasingly
applied to model migration, though not yet with great detail on the true range of
actors and decisions due to the complex nature of the application and difficulty in
acquiring testimonies. Despite their increasing popularity, ABMs are unable to nat-
urally combine expert judgement with available data to estimate and validate them.
This is a problem as these steps are particularly important in this domain due to the
previously mentioned difficulty in obtaining large amounts of data.

ChainEventGraphs (CEGs) are directed acyclic graphs that describe the evolution
of a process through an unfolding of events [20]. CEGs are transformations on event
trees and therefore are able to represent context-specific independence statements,
conditional independence statements that are true only in specific contexts. The CEG
should be thought of as a collection of florets (non-leaf nodes and their outgoing
edges) that represent the events and their outcomes of themodelled process. TheCEG
represents the aforementioned independence statements by providing a staging on the
florets that denotes their exchangeability. An example demonstrating these concepts
is shown in Sects. 2.1 and 3.1. A particular class of CEGs, non-stratified CEGs, are
able to more naturally represent an asymmetric unfolding of events. More generally,
CEGs have previously been used for modelling in a wide range of applications, such
as criminal collaborating [3], public health [18] and educational studies [6].

In this paper, we present a new methodology being developed to provide a
Bayesian framework to an existing ABM through transforming it into a CEG. There
are many key benefits of transforming the ABM into a CEG. One key advantage of
the CEG is its compact representation, which not only shows the asymmetries in the
events, as was the case with the initial diagram of the ABM, but also explicitly rep-
resents the context-specific conditional independences within the graph’s topology.
As a result, the potential series of events that may be experienced by a migrant and
how these events impact future events are easily comprehensible. Secondly, by using
the transformation of an ABM into a CEG we can apply a Bayesian framework in a
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natural way. This is particularly valuable in the situation where, due to the nature of
migration data, the ability to perform Bayesian inference to combine data expressed
through individual testimonies or expert descriptions is vital. Further benefits include
the ability to use Bayesian model selection to compare the likelihood of different
independence statements around the outcomes of events, represented by different
theories of migration, using Bayes factor. For these reasons, the CEGmakes a highly
effective conduit into a stochastic description of the problem.

Standard structural models such as Bayesian Networks (BNs), a subset of CEGs
[2], do not provide a good framework for egocentric modelling because the under-
lying processes and data tends to be highly asymmetrical and therefore does not
allow a product space structure that is present in a BN. This is illustrated by the fact
that ABMs—such as the ones used in the application above – typically need to use
very different transitions depending on the current state the agent finds themselves in.
BNs are also not able to represent context-specific independence statements where an
independence relationship holds only for certain values of the conditioning variable.
The presence of context-specific independence statements is also common in this
application; examples of such statements are provided in our illustrative example.

This is the first paper that investigates how an ABM can be used to construct
a CEG; it is the first genuine Bayesian model of migration processes to be built
which draws from a combination of testimonies, surveys typical data and expert
judgement. In Sect. 2, we give a background into ABMs of migration, formalise the
class of models we are considering and introduce our illustrative example. In Sect. 3,
we introduce the CEG, explain how it can represent the ABM and the benefits of this
approach and continue our example of how to convert a given ABM into a CEG. We
conclude, in Sect. 4, with a discussion of future work.

2 Agent Based Models of Migration

Migrants’ pathways are often complex and non-linear, making many conventional
modelling approaches unsuitable.ABMsprovide a bottom-up approach tomodelling,
where the focus is on the individual. The aim of thesemodels is to accurately replicate
a population, its environment and the interactions that occur.

Despite their ability to plausibly model the transitions of an agent, many ABMs,
both in migration research [15] and more broadly [7, 11], have been described as
opaque with many of the critical details needed to fully understand or replicate the
models missing from publication, such as the lack of standardising model devel-
opment. Some attempts, such as the ODD protocol, have been made to create a
standardised structure for explaining ABMs [7], but there is still significant variance
in how the protocol is used and the clarity it brings to ABMs. ABMs’ application
often depends on the implementation of often severely constraining software which
may or may not match the modelled domain well. Perhaps even more concerning
is the gulf that exists when applying such models between the domain and a prin-
cipled statistical inference about that domain. In particular no real guidance about
how to set the ABM parameters is given, estimation of these is naive and model
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selection performed simply by matching trajectories of hypothesised models with
chosen/estimated parameters with sampled trajectories. As a result, others [1, 8, 9,
16] have already identified the desperate need for embedding more principled ways
of performing inference in order to estimate and validate ABM models when these
are applied to real case studies. In this paper we argue that the best way of doing this
is by using Bayesian models formulated around tree based CEG methods in ways
we illustrate below.

As a first step we of course need to provide a proper formal systematic description
of an ABM—something that is sadly missing frommany applications of this promis-
ing technology. Here we follow [11] who express the ABM as a particular class of
dynamic system model where agents are variables and their transitions are given by
local updating functions. This work provides a similar statistical framework in order
to study ABMs. We consider a set of agents (x1, x2, . . . , xn) that take values in S a
finite discrete set that represents the possible states that an agent can be in. The set
of all possible values of all of the agents in the system gives the state-space. For any
given state in the space, the updating process that determines the transitions between
states is a Markov process. The possible transitions in the Markov process can be
represented by a directed graph G = (V, E) with V the state space and edges e ∈ E
between u ∈ V and v ∈ V if it is possible to transition from state u to v.

To provide a comprehensive translation of general ABMs as formally described
above into Bayesian stochastic models would be amassive task and beyond the scope
of this short paper. Here, for simplicity, we constrain our discussion to those ABMs
with only one agent, and with a Markov process that has graph representation in the
form of a finite, rooted, directed tree. The simplification of only using one agent is
reasoned by the nature of these models being largely egocentric with the process and
decision-making depending solely on the state of the individual, even if affected by
interactions with other agents and the environment. The rationale of only allowing a
finite, rooted, directed tree for the updating of states is justified: due to the nature of
models of migrants pathways, we are interested in ABMs that can be thought of as
an unfolding of a sequence of events. A tree gives the most natural representation of
this process [17].

2.1 An Illustrative Example of Migrant Behaviour

Here we introduce an illustrative example ABM of an individual’s decision on
whether to migration or not represented in Fig. 1. This decision is modelled as a
sequence of events that impact their final decision. In this example, the ABM starts
by initialising an individual’s socio-economic status, XI . The individual then may
receive an offer to migrate, XO . This offer either comes with or without employ-
ment, XE . Finally, the individual makes a decision as to whether they should migrate
or not, XM . Each of the nodes in this diagram has an if-then rule associated with
its transitions. For instance, Fig. 1 shows an example heuristic rule for the decision
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Start XO

EndXE XM

XI

Low SES

Mid-High SES

Do not receive offer

Receive offer

With employment

Without employment

Decide to migrate

Decide to not migrate

if XI == Low SES: 

 p(XM = Decide to migrate) = 0.8 

else if XE == With employment: 

 p(XM = Decide to migrate) = 0.6 

else :  
 p(XM = Decide to migrate) = 0.3 

Fig. 1 Example of an agent based model for migration

to migrate. This rule shows how the probability of migrating is dependent on the
outcomes of previous events.

3 From ABMs to CEGs

In Sect. 2, we described the class of ABMs that we are considering in this work.
This decision is justified as the types of information we have about this process
is best represented through a probability tree representing the possible progress of
each migrant in the migrant population. This is particularly useful as it depicts the
step-by-step nature of the process, where each migrant decides their next course
of action. Typical hypotheses concerning this progress assume various conditional
independence hypotheses, such as those shown in Sect. 3.1. Within an event tree
model, these can be expressed by the stage structure on the florets of the tree.

The if-then rules within a heuristic, egocentric ABM implicitly include indepen-
dence hypotheses regarding the outcome of an event for an individual through the
choice of inputs considered. By assuming this conditional independence within a
hypothesised model, we can identify those migrants within a sample who can be
assumed on the next step of their journey to be exchangeable with each other. This is
important if we wish to understand the processes of migration through the relation-
ships between unfolding events, and crucial if we wish to understand the impact of
potential targeted interventions. The CEG provides a framework in which to embed
this model.

Bayesian methods are critical within such models because whenever models are
sufficiently large to give a credible description of the processes, many parts of such
processes are only sparsely observed. It is, therefore, critical to embed expert judge-
ments through the priors on the hyperparameters. In this work, this is the distributions
on the prior floret probabilities. In this way, our proposed methodology scales up to
granularities of descriptions shared by the ABMs of such processes.

We can embed not only the prior expectations of these probabilities – as often
needed in typical ABMs—but also their uncertainty. This embellishment means
that, by using the exchangeability assumptions alluded to above and embedded in a
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Bayesian model, we can perform a prior-to-posterior update on these probabilities.
In particular, we can derive principled model selection algorithms that respect the
relative security of knowledge of different transitions within the system, through the
strength of the priors. We note that, even if no actual steps in some of the paths are
observed, we can proceed with this inference, whilst if many people are observed
making a particular collection of transitions then estimated transition probabilities
will be close to their sample proportions. The model is suitably regularised.

Furthermore, if we assume floret independence, we can perform a conjugate
Bayesian analysis (for full details, see [5] and [4]). The consequent Bayesian model
estimation and selection is both transparent and rapid due to the closed form repre-
sentation and the interpretative understanding of the hyperparameters.

In particular, assuming each transition is multinomially distributed over the set
of outcomes, to perform a conjugate analysis, we need to set the Dirichlet priors.
The distributions for the transition probabilities are often not elicited in advance,
due to the non-Bayesian nature of ABMs. However, if the values elicited are the
mean transition probabilities, we can use these values as the prior means for the
Dirichlet prior. In order to get the full prior distribution, we must add in a count of
effective sample size. This acts as a measure of strength of the beliefs held within the
ABM. This can be done either by eliciting such a value or by completing a sensitivity
analysis around the value chosen, similar to the method taken in [18]. Other methods
for setting up the hyperparameters can be seen in [4].

In order to compare competing models we can set the hyperparameters so they
match each other as closely as possible as in [10]. This is implemented via a mind
experiment, where strengths of expert’s elicited opinions are expressed using phan-
tom samples over potential root to leaf path developments.

Of course, we could fit a CEG directly to model the migration process, through
eliciting an event tree, the hypothesises and the prior distributions. However, if
such an ABM has already been developed and thoughtfully calibrated to domain
understanding—as is often the case—then it would be inefficient to ignore this infor-
mation. As we can exploit the fact that the CEG is largely compatible with the ABM,
it can be used to embellish the original, rather coarse, description given by the ABM
into an inferential model which is fit for purpose.

3.1 Example Continued

Returning to our example, by untangling the current representation, we can obtain
an event tree which is implied by the ABM. Within this class of ABM, an agent’s
transitions are determined by the outcomes of their previous transitions. Therefore,
the next transition is conditional on its previous events. Such events define the situ-
ations (non-leaf nodes) in the CEG; there is a direct link between the CEG and the
ABM. The nodes in the ABM define the situations in the CEG, with the possible
transitions from that node represented by the floret around that situation. The event
tree thus obtained is shown in Fig. 2. This is an example of an asymmetric unfolding
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Fig. 2 Event tree representation of the ABM shown in Fig. 1. The leaf nodes are suppressed to
prevent visual cluttering.

of events; if the migrant does not receive an offer to migrate, we do not need to
consider whether the offer contains employment. This is denoted here as:

�XE |XO = no. (1)

Next, by looking at the if-then rules within the ABM, we can identify the implicit
independence statements that exist within these rules. For the decision rule shown
about the decision to migrate, we have the independence statements:

XM ⊥⊥ XO , XE |XI = low (2)

XM ⊥⊥ XO |{XI = mid-high, XE �= yes} (3)

This provides the staging for the CEG. The staging can be represented by a staged
tree, an event tree with florets in the same stage coloured the same. The staged tree
for this example is shown in Fig. 3.

For this example, we assume that the other rules in the ABM represent the fol-
lowing statements:

• W2 (Yellow): Regardless of socio-economic status, the probability of receiving an
offer is the same.

• W3 (Green): When an offer is received, the probability of it containing an employ-
ment contract is the same, irrespective of socio-economic status.
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Fig. 3 Staged tree representation of the ABM. Here, ‘SES’ refers to socio-economic status. The
leaf nodes are suppressed to prevent visual cluttering

• W4 (Orange): A migrant with low socio-economic status has the same probability
of deciding to migrate, irrespective of whether they have received an offer and
whether their offer contained an employment contract.

• W6 (Pink): Amigrant with mid-high socio-economic status has the same probabil-
ity of deciding to migrate if either (a) they receive an offer but it does not contain
an employment contract or (b) they do not receive an offer in the first place.

From the staged tree, we can identify the nodes that are in the same position. In
this example, w4 and w6 have the same future unfoldings for all future events, and
are therefore in the same position.

Note that some nodes are the same stage but not the same position; w3 is one
such example, where the probability of the offer having employment is the same
but the migrants’ longer-term decision-making will still be influenced by their socio-
economic status fromearlier in the tree. This example demonstrates a context-specific
independence statement: the decision to migrate is independent of whether you have
an offer to migrate if your socio-economic status is low (Fig. 4).

This example shows the CEG can model and provide a compact representation of
the conditional independence hypotheses present in the ABM. The transformation
from the ABM into the CEG now enables the natural transformation of the model
into a Bayesian framework with its associated previously described benefits.
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4 Discussion

We have demonstrated that we are able to transform ABMs into CEGs. The benefits
of this transformation are clear: it provides a compact representation of its inde-
pendence statements, directly from the topology of the graph. This is valuable in
identifying whether the model is making a plausible set of assumptions and making
the independence structure accessible to be understood by those without a math-
ematical background, such as policymakers. The transformation into a CEG also
allows for a natural conversion into a Bayesian framework with additional bene-
fits: improved uncertainty quantification, Bayesian inference with available data and
Bayesian model selection.

Whilst this paper specifically focuses on migration, CEGs have many potential
applications in other domains where ABMs have been used to represent ego-based
processes, such as dietary, voting or criminal behaviour.

This research reflects work in process; further investigation is needed to extend
this methodology and increase the scope of ABMs that it applies to. Exploration of
new representations is ongoing; one extension of the CEG could include the recently
developed continuous time dynamic CEG, which is able to accommodate recur-
rent within the ABM structure and model holding times along the edges between
events [19]. Further extensions of interest focus on CEGs which are able to rep-
resent the interactions of multi-agent systems players such as in [21], and agents
looping through a CEG with changing probabilities over time depending on previ-
ous migration experience. Engaging with this research will provide many avenues
of future research to build upon the work presented in this paper, enabling for more
full and direct CEG-like representations of an even wider class of ABMs than those
discussed above. The full results of this study will be published, alongside any future
extensions, in a later paper.
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Fig. 4 A CEG representation of the above ABMwith some examples of independence statements.
‘SES’ stands for socio-economic status



32 P. Strong et al.

References

1. An, L., Grimm, V., Sullivan, A., Turner II, B., Malleson, N., Heppenstall, A., Vincenot, C.,
Robinson, D., Ye, X., Liu, J., et al.: Challenges, tasks, and opportunities in modeling agent-
based complex systems. Ecol. Modell. (2021). https://www.sciencedirect.com/science/article/
pii/S030438002100243X

2. Barclay, L., Hutton, J., Smith, J.Q.: Refining a Bayesian network using a chain event graph.
Int. J. Approximate Reasoning 54, 1300–1309 (2013). https://doi.org/10.1016/j.ijar.2013.05.
006

3. Bunnin, F.O., Shenvi, A., Smith, J.Q.: Network modelling of criminal collaborations with
dynamic Bayesian steady evolutions (2020). ArXiv preprint arXiv:2007.04410

4. Collazo, R.A., Görgen, C., Smith, J.Q.: Chain Event Graphs. CRC Press (2018)
5. Freeman, G., Smith, J.: Bayesian MAP model selection of chain event graphs. J. Multivar.

Anal. 102(7), 1152–1165 (2011). https://doi.org/10.1016/j.jmva.2011.03.008
6. Freeman, G., Smith, J.Q.: Dynamic staged trees for discrete multivariate time series: forecast-

ing, model selection and causal analysis. Bayesian Anal. 6(2) (2011). https://doi.org/10.1214/
11-ba610

7. Grimm,V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., Goss-Custard, J., Grand,
T., Heinz, S.K., Huse, G., et al.: A standard protocol for describing individual-based and agent-
based models. Ecol. Modell. 198(1–2), 115–126 (2006). https://doi.org/10.1016/j.ecolmodel.
2006.04.023

8. Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W.M., Railsback, S.F., Thulke, H.H.,
Weiner, J., Wiegand, T., DeAngelis, D.L., et al.: Pattern-oriented modeling of agent-based
complex systems: lessons fromecology. Science (2005). https://www.science.org/doi/10.1126/
science.1116681

9. Heckbert, S., Baynes, T., Reeson, A.: Agent-based modeling in ecological economics. Ann.
N. Y. Acad. Sci. (2010). https://nyaspubs.onlinelibrary.wiley.com/doi/10.1111/j.1749-6632.
2009.05286.x

10. Heckerman,D., Geiger, D., Chickering,D.M.: LearningBayesian networks: the combination of
knowledge and statistical data. Mach. Learn. 20(3), 197–243 (1995). https://doi.org/10.1007/
bf00994016

11. Hinkelmann, F., Murrugarra, D., Jarrah, A.S., Laubenbacher, R.: A mathematical framework
for agent based models of complex biological networks. Bull. Math. Biol. 73(7), 1583–1602
(2010). https://doi.org/10.1007/s11538-010-9582-8

12. International Labour Organisation: Global estimates of modern slavery: forced labour and
forced marriage. Tech. Rep, International Labour Organisation (2017)

13. Klabunde, A., Willekens, F.: Decision-making in agent-based models of migration: state of the
art and challenges. Eur. J. Popul. (2016). https://link.springer.com/article/10.1007/s10680-
015-9362-0

14. Lewis, H., Peter, D., Hodkinson, S., Louise, W.: Hyper-precarious lives: Migrants, work and
forced labour in the Global North. Prog. Human Geogr. 39(5), 580–600 (2015). https://doi.
org/10.1177/0309132514548303

15. Mcalpine, A., Kiss, L., Zimmerman, C., Chalabi, Z.: Agent-based modeling for migration and
modern slavery research: a systematic review. J. Comput. Soc. Sci. 4(1), 243–332 (2020).
https://doi.org/10.1007/s42001-020-00076-7

16. Schulze, J., Müller, B., Groeneveld, J., Grimm, V.: Agent-based modelling of social-ecological
systems: achievements, challenges, and a way forward. J. Artif. Soc. Soc. Simul. 20(2) (2017).
https://doi.org/10.18564/jasss.3423

17. Shafer, G.: The Art of Causal Conjecture. MIT Press (1996)
18. Shenvi, A., Smith, J.Q.: A Bayesian Dynamic Graphical Model for Recurrent Events in Public

Health (2019). ArXiv preprint arXiv:1811.08872
19. Shenvi,A., Smith, J.Q.: Propagation forDynamicContinuousTimeChainEventGraphs (2020).

ArXiv preprint arXiv:2006.15865

https://www.sciencedirect.com/science/article/pii/S030438002100243X
https://www.sciencedirect.com/science/article/pii/S030438002100243X
https://doi.org/10.1016/j.ijar.2013.05.006
https://doi.org/10.1016/j.ijar.2013.05.006
http://arxiv.org/abs/2007.04410
https://doi.org/10.1016/j.jmva.2011.03.008
https://doi.org/10.1214/11-ba610
https://doi.org/10.1214/11-ba610
https://doi.org/10.1016/j.ecolmodel.2006.04.023
https://doi.org/10.1016/j.ecolmodel.2006.04.023
https://www.science.org/doi/10.1126/science.1116681
https://www.science.org/doi/10.1126/science.1116681
https://nyaspubs.onlinelibrary.wiley.com/doi/10.1111/j.1749-6632.2009.05286.x
https://nyaspubs.onlinelibrary.wiley.com/doi/10.1111/j.1749-6632.2009.05286.x
https://doi.org/10.1007/bf00994016
https://doi.org/10.1007/bf00994016
https://doi.org/10.1007/s11538-010-9582-8
https://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10680-015-9362-0
https://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10680-015-9362-0
https://doi.org/10.1177/0309132514548303
https://doi.org/10.1177/0309132514548303
https://doi.org/10.1007/s42001-020-00076-7
https://doi.org/10.18564/jasss.3423
http://arxiv.org/abs/1811.08872
http://arxiv.org/abs/2006.15865


Towards a Bayesian Analysis of Migration Pathways … 33

20. Smith, J.Q., Anderson, P.E.: Conditional independence and chain event graphs. Artif. Intell.
172(1), 42–68 (2008)

21. Thwaites, P.A., Smith, J.Q.: A graphical method for simplifying Bayesian games. Reliab. Eng.
Syst. Saf. (2017). https://www.sciencedirect.com/science/article/pii/S0951832017305355

22. United Nations: The 17 goals | sustainable development. Tech. rep., U. N. (2021). https://sdgs.
un.org/goals

23. United Nations Office on Drugs and Crime: global report on trafficking in persons
2016. Tech. rep., UNODC (2017). https://www.unodc.org/documents/data-and-analysis/
glotip/2016_Global_Report_on_Trafficking_in_Persons.pdf

https://www.sciencedirect.com/science/article/pii/S0951832017305355
https://sdgs.un.org/goals
https://sdgs.un.org/goals
https://www.unodc.org/documents/data-and-analysis/glotip/2016_Global_Report_on_Trafficking_in_Persons.pdf
https://www.unodc.org/documents/data-and-analysis/glotip/2016_Global_Report_on_Trafficking_in_Persons.pdf


Power-Expected-Posterior Methodology
with Baseline Shrinkage Priors

G. Tzoumerkas and D. Fouskakis

Abstract The Power-Expected-Posterior (PEP) prior gives us a convenient and
objective method to deal with variable selection problems, under the Bayesian
perspective, in regression models. The PEP prior inherits all of the advantages of
Expected-Posterior-Prior (EPP) and furthermore it drops the need of selection over
the imaginary data and decreases their effect over the final prior. Under the PEP prior
methodology an initial (usually default) baseline prior is updated using imaginary
data. This work focuses on normal regression models when the number of observa-
tions n is smaller than the number of explanatory variables p. We introduce the PEP
prior methodology using different baseline shrinkage priors and we perform some
comparisons in simulated data sets.

Keywords Bayesian variable selection · imaginary training sample · objective
priors · shrinkage priors · sparse datasets

1 Introduction

We consider the variable selection problem for normal regression models, where the
number of observations n is smaller than the number of explanatory variables p.
Suppose the model space consists of all combinations of available covariates. Then
for every model M�, in model space M, the likelihood is given by

f�( y|X�,β�, σ
2) = fNn ( y; X�β�, σ

2 In),

where fNd ( y;μ, �) is denoting the d-dimensional normal distribution with mean
μ and covariance matrix �. Furthermore, y = (y1, . . . , yn)T denotes the response
data, X� is the n × p� designmatrix; where p� is the number of explanatory variables
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under model M�, β� is a vector of length p� of the effects of each covariate on the
response variable, In is the n × n identity matrix and σ 2 is the error variance. We
assume that y and the columns of the design matrix of the full model (including all
available explanatory variables) have been centered on zero, so there is no intercept
in our model.

Under the Bayesian model choice perspective, we have to set priors both for the
model space and the parameter space of each model. Regarding the prior on the
model space, for sparsity reasons, we consider the uniform prior on model size, as a
special case of the beta-binomial prior; see [18].With respect to the prior distribution
on the coefficients in each model, because we are not confident about any given set
of regressors as explanatory variables, little prior information on their regression
coefficients can be expected. This argument alone justifies the need for an objective
model choice approach in which vague prior information is assumed. Furthermore,
we need to use a prior capable to deal with the n < p scenario. Finally, regarding
the (common across models) error variance, the reference prior will be used, i.e.
π(σ 2) ∝ σ−2.

1.1 Shrinkage Priors

A common way to deal with normal regression problems, when n < p, is by using
shrinkage methods. Under the Bayesian perspective this can be done using a shrink-
age prior on the model coefficients. By the term shrinkage, it is declared that the
covariates that correspond to explanatory variables that do not affect the response
variable will shrink towards zero. Shrinkage priors share eminent theoretical prop-
erties, compelling computational complexity and great empirical performance (e.g.
[5, 17]).

A shrinkage prior can often be conceived as a scale-mixture prior, which is placed
on the regression coefficients of every possible model. Something that characterizes
such shrinkage priors, is their hyperparameters: the global shrinkage hyperparameter,
that determines the overall sparsity in thewhole parameter vector and the local shrink-
age hyperparameter, where a distinct shrinkage parameter is considered specifically
for every single effect and controls the shrinkage of this individual effect. Depending
on the shrinkage prior, the global parameter or the local parameters may be absent
from the formation.

By assuming a shrinkage prior, on the vector of regression coefficients β�, in
most of the cases a prior with heavy mass around zero is being produced and by so,
non-true effects shrink towards zero. Furthermore, heavy tails are important, as they
avert true effects to get shrinked. In Table1, we mention some, often used, shrinkage
priors, where by τ we refer to local shrinkage hyperparameters and by λ to global
shrinkage hyperparameters. In all of the cases that a global shrinkage hyperparame-
ter exists in the formation of a shrinkage prior (except Ridge g-prior), we consider a
half-Cauchy prior on λ, which is a common choice in Bayesian hierarchical models
(e.g. [17]). Furthermore, except Ridge g-prior, independent conditional priors for the
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Table 1 A list of shrinkage priors

# Name Conditional prior of
β�

Shrinkage
hyparameters

1 LASSO [15] β j |τ 2j , σ 2 ∼
N (0, σ 2τ 2j )

τ 2j |λ ∼ Exp( λ2

2 )

λ ∼ HC(0, 1)a

2 Horseshoe [2] β j |λ, τ j , σ
2 ∼

N (0, σ 2λ2τ 2j )

τ j ∼ HC(0, 1)
λ ∼ HC(0, 1)

3 Ridge [11] β j |λ, σ 2 ∼
N (0, σ 2 1

λ
)

λ ∼ HC(0, 1)

4 Local Student’s t [20] β j |τ 2j , σ 2 ∼
N (0, σ 2τ 2j )

τ 2j |λ ∼ IG( k2 , k
2λ )b

λ ∼ HC(0, 1)
k fixed

5 Elastic Net [13] β j |λ2, τ j , σ 2 ∼
N (0, σ 2 1

λ2+τ 2j
)

τ 2j |λ1 ∼ Exp(
λ21
2 )

λ1, λ2 ∼ HC(0, 1)

6 Beta Prime [1] β j |τ 2j , σ 2 ∼
N (0, τ 2j σ

2)

τ 2j ∼
I nv − Beta(a, b)
a, b fixed

7 Ridge g-prior [10] β�|λ, σ 2 ∼
Np�

(0, σ 2V�), V� =
g(XT

� X� + λIp�
)−1

g = max{n, p2� }, λ
fixed

a HC(x0, γ ), (half-Cauchy) is the truncated Cauchy distribution with location parameter x0, scale
parameter γ and support (x0,∞)
b IG(α, β), denotes the Inverse Gamma distribution, with shape parameter α and scale parameter β

coefficients of model M� are used and therefore, for those cases, we only present the
marginal prior for j = 1, . . . , p�.

1.2 Power-Expected-Posterior Priors

Aprincipal approach to defineobjective priors is the use of random imaginary training
data [4]. Power-Expected-Posterior (PEP) prior [6, 7], uses this methodology. In
particular the PEP prior is defined as

π PEP
� (β�|σ 2, δ, X∗

� ) =
∫

π N
� (β�| y∗, σ 2, δ, X∗

� )m
N
0 ( y∗|σ 2, δ, X∗

0)d y
∗, (1)

π PEP
� (σ 2) = π N (σ 2) ∝ 1

σ 2
,

with

π N
� (β�| y∗, σ 2, δ, X∗

� ) ∝ f�( y∗|β�, σ
2, δ, X∗

� )π
N
� (β�|σ 2, X∗

� ) (2)
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and

f�( y∗|β�, σ
2, δ, X∗

� ) = f�( y∗|β�, σ
2, X∗

� )
1/δ∫

f�( y∗|β�, σ
2, X∗

� )
1/δd y∗ . (3)

In the above equations, we have set y∗ to be the imaginary observations of size n∗ and
X∗

� the imaginary design matrix of model M�. By π N
� (β�| y∗, σ 2, δ, X∗

� ) we denote
the conditional on σ 2 posterior of β�, using a baseline prior π N

� (β�|σ 2, X∗
� ) and data

y∗. In equation (3) the likelihood of imaginary observations is raised to the power of
1/δ and density normalized. By doing this we decrease the effect of the imaginary
data. For δ = 1, Eq. (1) results to the Expected-Posterior-Prior (EPP) [16]. In order to
have a unit information interpretation [12], we could set δ = n∗ and in order to avoid
any effect of the choice of imaginary design matrices, we set n∗ = n and we have
that X∗

� = X�. In Eq. (1), mN
0 ( y∗|σ 2, δ, X∗

0), is the prior predictive distribution (or
the marginal likelihood), evaluated at y∗, of the reference model M0, given σ 2. As a
reference model we consider, for reasons of parsimony, the model with no covariates
(null model). Finally, for every model M�, the marginal likelihood under the baseline
prior is given by

mN
� ( y∗|σ 2, δ, X∗

� ) =
∫

f�( y∗|β�, σ
2, δ, X∗

� )π
N
� (β�|σ 2, X∗

� )dβ�. (4)

2 PEP-Shrinkage Prior

In the above formulation, by choosing as a baseline prior π N
� (β�|σ 2, X∗

� ) a shrinkage
prior (see Table1), a PEP-Shrinkage prior is created and thus we can apply the PEP
prior methodology in shrinkage problems.

PEP priors can be considered as fully automatic, objective Bayesian methods for
model comparison in regression models (see for example [4, 6]). They are devel-
oped through the utilization of the device of “imaginary” samples, coming from the
simplest model under comparison. Therefore, PEP priors offer several advantages,
among which they have an appealing interpretation based on imaginary training data
coming from a prior predictive distribution and also provide an effective way to
establish compatibility of priors among models (see [3]), through their dependence
on a common marginal data distribution. Thus, the PEP methodology can be applied
also with proper baseline prior distributions. Furthermore, by choosing the sim-
plest model, as a reference model, to generate the imaginary samples, the PEP prior
shares common ideas with the skeptical-prior approach described by Spiegelhalter
et al. [19].

Under Eq. (3) the likelihood of the imaginary data y∗, under model M�, is given
by

f�( y∗|X∗
� ,β�, σ

2, δ) = fNn∗ ( y∗; X∗
� β�, δ σ 2 In∗).
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From Table1 it is obvious that all shrinkage priors that we will use as baseline priors
under the PEP methodology, have the following general form

π N
� (β�|θ �, σ

2) = fNp�
(β�; 0, σ 2��),

where �� ≡ ��(θ �) is a p� × p� matrix, where its i-th main diagonal element is
written as an equation of the global and the i-th local shrinkage hyperparameters.
By θ � we denote the vector containing all the shrinkage hyperparameters of model
M�, with a prior distribution denoted by π(θ �).

2.1 Conditional PEP-Shrinkage Prior

The conditional posterior distribution π N
� (β�| y∗, σ 2, δ, X∗

� , θ �), using the baseline
prior and the imaginary data is given by

π N
� (β�| y∗, σ 2, δ, X∗

� , θ �) ∝ f�( y∗|X∗
� ,β�, σ

2, δ)π N
� (β�|θ �, σ

2)

= fNn∗ ( y∗; X∗
� β�, δ σ 2 In∗) fNp�

(β�; 0, σ 2��)

and so we have have that

π N
� (β�| y∗, σ 2, δ, X∗

� , θ �) = fNp�
(β�; δ−1W�X∗

�
T y∗, σ 2W�),

where W� = [δ−1X∗
�
T X∗

� + �−1
� ]−1. Moreover, from Eq. (4), for any model M�, the

prior predictive distribution, under the baseline prior, conditional on σ 2 and θ � is

mN
� ( y∗|σ 2, δ, X∗

� , θ �) = fNn∗ ( y∗; 0, σ 2�),

where � = X∗
���X∗

�
T + δ In . Thus, the conditional PEP-Shrinkage prior is

π PEP
� (β�|σ 2, δ, X∗

� , θ �) = ∫
π N

� (β�| y∗, σ 2, δ, X∗
� , θ �)mN

0 ( y∗|σ 2, δ, X∗
0)d y

∗

= ∫
fNp�

(β�; δ−1W�X∗
�
T y∗, σ 2W�) fNn ( y

∗; 0, σ 20)d y∗

and therefore we have that

π PEP
� (β�|σ 2, δ, X∗

� , θ �) = fNp�
(β�; 0, σ 2V�),

where V� = [W−1
� − δ−2X∗

�
T Z�X∗

� ]−1 and Z� = [δ−2X∗
�W�X∗

�
T + −1

0 ]−1.
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2.2 Conditional Posterior Under the PEP-Shrinkage Prior

The posterior distribution, under the PEP prior, conditional on the shrinkage hyper-
parameters θ � of model M�, is given by

π PEP
� (β�, σ

2| y, δ, X∗
� , X�, θ �) ∝ π PEP

� (β�|σ 2, δ, X∗
� , θ �)π

N (σ 2) f�( y|X�,β�, σ
2)

= fNp�
(β�; 0, σ 2V�)π

N (σ 2) fNn ( y; X� β�, σ
2 In).

Using the reference prior for σ 2 (see Sect. 1), this joint posterior can be written as
the product of

π PEP
� (β�| y, σ 2, δ, X∗

� , X�, θ �) = fNp�
(β�; S� XT

� y, σ 2S�)

and

π PEP
� (σ 2| y, δ, X∗

� , X�, θ �) = f IG(σ 2;α�, b�),

where f IG(x;α, b) is denoting the Inverse Gamma distribution with shape parameter
α and scale parameter b. Furthermore, we have set S� = (V−1

� + X�
T X�)

−1, α� = n
2

and b� = yT [In+X�V�X�
T ]−1 y

2 .

2.3 Marginal Likelihood Under the PEP-Shrinkage Prior

The marginal likelihood, of model M�, under the PEP-Shrinkage prior, given the
shrinkage parameter θ � is given by

mPEP
� ( y|δ, X∗

� , X�, θ�) =
∫

π PEP
� (β�|σ 2, δ, X∗

� , θ�)π
N (σ 2) f�( y|X�,β�, σ

2)dβ� dσ 2

∝ (det (In + X�V�X�
T ))−

1
2 ( yT [In + X�V�X�

T ]−1 y)−
n
2 .

Therefore in cases where the shrinkage parameters of the baseline prior are fixed (e.g.
Ridge g-prior), the above marginal likelihood can be calculated in closed form. The
unknown normalizing constant, in the above expression, comes from the improper
prior of the error variance, which is common in all compared models, and therefore
we do not face any indeterminacy issues when calculating the Bayes factor.

When the shrinkage parameters are not fixed, the marginal likelihood is given by

mPEP
� ( y) ≡ mPEP

� ( y|δ, X∗
� , X�) =

∫
mPEP

� ( y|δ, X∗
� , X�, θ �)π(θ �)dθ �.

If the dimension of θ � is one (e.g. Ridge prior) the above integral can be easily numer-
ically evaluated. Furthermore, in order to search the model space, MC3 procedures
[14] can be performed. If the dimension of θ � is greater than one (e.g. Horseshoe
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prior), we perform an MC3 procedure, conditionally on θ �, as in Algorithm 3 of the
Appendix of [9], where each component of θ � is generated from its full conditional
posterior distribution using a Metropolis-Hastings step.

3 Simulation Study

In this section we test the PEP-Shrinkage methodology (with δ = n = n∗, X∗
� = X�

and the reference model to be the null one) on simulated data. We use as a baseline
prior, all the shrinkage priors listed in Table1 and compare their results. Moreover
we compare the results under the PEP-Ridge prior with the ones obtain by using the
Ridge prior, without the PEP methodology.

Wehave simulated 100 different samples of length n = 25with p = 50 predictors.
The values of the explanatory variables have been generated from N50(0, �), where
the symmetrical matrix� has elements�i, j = (0.75)|i− j |, i, j = 1, . . . , 50. Finally,
we center the columns of the design matrix on zero. For the predictor effects we have
set (β1, β2, β10)

T = (2, 0.8, 1.5)T and for all of the rest, we set to be equal to 0. We
have set y = Xβ + ε, where ε ∼ N25(0, σ 2 I25), for σ 2 = 1.5. Finally, we center the
values of the response variable on zero.

In Fig. 1 (left), we present the boxplots of the marginal posterior inclusion prob-
abilities, for the true effects, of the 100 different samples, for the seven different
PEP-Shrinkage priors. Regarding the two most influential variables, X1 and X10,
under every baseline prior, we obtained high posterior inclusion probabilities with
the majority of cases to be above 0.5. Furthermore, for these two effects, PEP-Ridge
seems to outperform every other PEP-Shrinkage prior. On the contrary, PEP-(Ridge)
g-prior seems to give the least satisfactory results. For the predictor X2, the median
marginal posterior inclusion probabilities are above 0.5, for all baseline priors, except
one. As before, PEP-Ridge gives the most satisfactory results, while PEP-(Ridge)
g-prior produces posterior inclusion probabilities with a median value below 0.5.
For the non-true effects, for brevity reasons, we present results in Fig. 1 (right) only
for a subset of them. More specifically we present results only for variables X3, X9

and X11, which are the ones with the higher correlations with the true effects. For
every selection of baseline prior, the median marginal posterior inclusion probabili-
ties are below 0.5. It is distinct that, regardless the baseline prior we choose, only in
a small percentage of occasions, the non-true effects would have been accepted as
true effects of the model (posterior inclusion probabilities above 0.5). We notice that
PEP-Ridge manages to give, in general, very small posterior inclusion probabilities
with small variability also. For the rest of the non-true effects we get similar results.

In Fig. 2, we present the boxplots of the posterior inclusion probabilities of the
true main effects (left) and the (previously made) selection of non-true effects (right)
between thePEP-Ridge and theRidge prior (without applying thePEPmethodology).
As for the true effects we notice similar results, as both priors manages to accept
the true effects, in the vast majority of the cases. For predictor X10 we can observe
slightly better results under the PEP-Ridge methodology. As for the non-true effects,
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Fig. 1 Boxplots of posterior inclusion probabilities, across 100 simulated datasets, for the true
effects—variables X1, X2, X10 (left) and for some of the non-true effects—variables X3, X9, X11
(right) using the PEP-Shrinkage methodology, for different baseline prior (X-axis).

Fig. 2 Boxplots of posterior inclusion probabilities, across 100 simulated datasets, for the true
effects—variables X1, X2, X10 (left) and for some of the non-true effects—variables X3, X9, X11
(right), using the PEP-Ridge prior (PEP-R) and the Ridge prior without the PEP methodology
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the PEP-Ridge prior outperforms the Ridge prior, as it manages to restrains more
cases to the desirable limits, that is, producing marginal posterior probabilities far
below 0.5 with small variability. Thus we can conclude that the PEP methodology
improves the initially chosen Ridge prior, as it produces more parsimonious results.

4 Discussion

In this paper we briefly present the model formulation and some preliminary results
of an objective Bayesian prior distribution capable of dealing with variable selection
problems in normal regression models when the number of observations is smaller
than the number of explanatory variables. The proposed PEP-Shrinkage prior com-
bines two approaches: the PEP prior methodology and the shrinkage priors. The
resulting prior has a nice interpretation, based on imaginary data, and is compatible
across models. Based on the simulation study, presented here, the PEP-Shrinkage
priors, in the majority of cases, correctly identify the true model. Furthermore, under
the Ridge prior, the PEP methodology improves the initial prior, by being more
parsimonious, a property that is desirable on sparse regression problems.

There are several directions of future extensions. The main aim is to create a
unified approach; i.e. a new class of PEP-Shrinkage priors, that includes all the cases
mentioned in this paper. To achieve this goal our aim is to write the PEP-Shrinkage
prior as a scale mixture of normal distribution, with the mixing distribution denoting
the different baseline prior distributions used. This representation will offer several
advantages: faster evaluation of posterior distributions and Bayes factors, under all
approaches considered, as well as, computational tractability. The performance of
this new class of shrinkage prior distributions then have to be assessed in relation to:
(a) computational efficiency, (b) frequentist assessment, especially in terms of the
speed of concentration of the posterior parameter distribution, or functional thereof,
to the true value, and in terms of coverage of credible sets, (c) ease of interpretation,
(d) default set of tuning hyperparameters in scientific applications. Moreover, a very
important aspect is to check and prove mathematical properties of the new class of
prior distributions. Further research should be held, of what happens if we choose
the size of the imaginary data, not to be equal to the number of the observations
and how that affects the results. In the same manner, we should check what happens
for different values of δ, or even set a prior distribution for it, as in [8]. Finally,
more shrinkage methods could be considered, apart the ones presented in Table1.
Additional future extensions of our PEP-Shrinkage method include implementation
in generalized linear models, where computation is more demanding.
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Bayesian Nonparametric
Scalar-on-Image Regression
via Potts-Gibbs Random Partition
Models

Mica Shu Xian Teo and Sara Wade

Abstract Scalar-on-image regression aims to investigate changes in a scalar
response of interest based on high-dimensional imaging data. We propose a novel
Bayesian nonparametric scalar-on-image regression model that utilises the spatial
coordinates of the voxels to group voxels with similar effects on the response to have
a common coefficient. We employ the Potts-Gibbs random partition model as the
prior for the random partition in which the partition process is spatially dependent,
thereby encouraging groups representing spatially contiguous regions. In addition,
Bayesian shrinkage priors are utilised to identify the covariates and regions that are
most relevant for the prediction. The proposedmodel is illustrated using the simulated
data sets.

Keywords Bayesian nonparametric · Gibbs-type priors · Potts model ·
Clustering · Generalised Swendsen-Wang · High-dimensional imaging data

1 Introduction

Through advances in data acquisition, vast amounts of high-dimensional imaging
data are collected to study phenomena in many fields. Such data are common in
biomedical studies to understand a disease or condition of interest [2, 5, 39, 44], and
in other fields such as psychology [3, 42], social sciences [7, 15, 17, 38], economics
[12, 26, 27], climate sciences [30, 31], environmental sciences [4, 11, 22] and more.
While extracting features from the images based on predefined regions of interest
favours interpretation and eases computational and statistical issues, changes may
occur in only part of a region or span multiple structures. In order to capture the
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complex spatial pattern of changes and improve accuracy and understanding of the
underlying phenomenon, sophisticated approaches are required that utilize the entire
high-dimensional imaging data. However, the massive dimension of the images,
which is often in the millions, combined with the relatively small sample size, which
at best is usually in the hundreds, pose serious challenges.

In the statistical literature, this is framed as a scalar-on-image regression (SIR)
problem [10, 14, 16, 19]. SIR belongs to the “large p, small n” paradigm; thus,
many SIR models utilise shrinkage methods that additionally incorporate the spatial
information in the image [10, 14, 16, 18, 19, 24, 37, 40, 46]. In the SIR problem, the
covariates represent the image value at a single pixel/voxel, i.e. a very tiny region,
and the effect on the response is most often weak, unreliable and difficult to inter-
pret. Moreover, neighbouring pixels/voxels are highly correlated, making standard
regression methods, even with shrinkage, problematic due to multicollinearity.

To overcome these difficulties, we develop a novel Bayesian nonparametric (BNP)
SIRmodel that extracts interpretable and reliable features from the images by group-
ing voxels with similar effects on the response to have a common coefficient. Specif-
ically, we employ the Potts-Gibbs model [21] as the prior of the random image
partition to encourage spatially dependent clustering. In this case, features repre-
sent regions that are automatically defined to be the most discriminative. This not
only improves the signal and eases interpretability, but also reduces the compu-
tational burden by drastically decreasing the image dimension and addressing the
multicollinearity problem. Moreover, it allows sharp discontinuities in the coeffi-
cient image across regions, which may be relevant in medical applications to capture
irregularities [46].

In this direction, [19] proposed the Ising-DP SIRmodel, which combines an Ising
prior to incorporate the spatial information in the sparsity structure with a Dirichlet
Process (DP) prior to group coefficients. Still, the spatial information is only incor-
porated in the sparsity structure and not in the BNP clustering model, which could
result in regions that are dispersed throughout the image. Instead, we propose to
incorporate the spatial information in the random partition model, encouraging spa-
tially contiguous regions. Further advantages of the nonparametric model include
a data-driven number of clusters, interpretable parameters, and efficient computa-
tions. Moreover, we combine this with heavy-tailed shrinkage priors [41] to identify
relevant covariates and regions.

The remainder of this article is organized as follows. Section2 outlines the devel-
opment of the SIR model based on the Potts-Gibbs models. Section3 derives the
MCMC algorithm for posterior inference using the generalized Swendsen-Wang
(GSW) [47] algorithm for efficient split-merge moves that take advantage of the spa-
tial structure. Section4 illustrates the methods through simulation studies. Section5
concludes with a summary and future work.
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2 Model Specification

We introduce the statistical models that form the basis of the proposed Potts-Gibbs
SIR model: SIR, random image partition model and shrinkage prior.

2.1 Scalar-on-Image Regression

SIR is a statistical linear method used to study and analyse the relationship between a
scalar outcome and two or three-dimensional predictor images under a single regres-
sion model [10, 14, 16, 19]. For each data point, i = 1, . . . , n, we have

yi = wT
i μ + xTi β + εi , εi

i id∼ N
(
0, σ 2

)
, (1)

where yi is a scalar continuous outcomemeasure,wi = (wi1, . . . , wiq)
T ∈ R

q is a q-
dimensional vector of covariates, and xi = (xi1, . . . , xip)T ∈ R

p is a p-dimensional
image predictor. Each xi j indicates the value of the image at a single pixel with spatial
location s j = (s j1, s j2)T ∈ R

2 for j = 1, . . . , p. We define μ = (μ1, . . . , μq)
T ∈

R
q as a q-dimensional fixed effects vector and β = (

β(s1), . . . , β(sp)
)T

(with β j :=
β(s j )) as the spatially varying coefficient image described on the same lattice as xi .
We model the high-dimensional β by spatially clustering the pixels into M regions
and assuming common coefficients β∗

1 , . . . , β
∗
M within in each cluster, i.e. β j = β∗

m
given the cluster label z j = m. Thus, the prior on the coefficient image is decomposed
into two parts: the random image partition model for spatially clustering the pixels
and a shrinkage prior for the cluster-specific coefficients β∗ = (

β∗
1 , . . . , β

∗
M

)T
. The

SIR model in (1) can be extended for other types of responses through a generalized
linear model framework (GLM) [23].

2.2 Random Image Partition Model

The image predictors are observed on a spatially structured coordinate system.
Exchangeability is indeed no longer the proper assumption as the images contain
covariate information, that wewish to leverage to improvemodel performance in this
high-dimensional setting. Todo so,we combineBNP randompartitionmodels,which
avoid the need to prespecify the number of clusters, allowing it be determined and
growwith the data, with a Potts-like spatial smoothness component [36]. Spatial ran-
dom partition models in this direction are a growing research area, includingMarkov
random field (MRF) with the product partition model (PPM) [32], with DP [29, 47],
with Pitman-Yor process (PY)[21] and with mixture of finite mixtures (MFM) [13,
48]. Precisely, within the BNP framework, we focus on the class of Gibbs-type
random partitions [1, 9, 20, 35], motivated by their comprise between tractable pre-
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Table 1 Formulas of Vp(M),Wm(φ) and terms of the predictive probability for assigning current
cluster to either existing cluster or new cluster for DP, PY and MFM

DP PY MFM

Vp(M)
�(α)αM

�(α+p)
�(α+1)

∏M−1
m=1 (α+mδ)

�(α+p)

∑∞
l=1

�(γ l)l!
�(γ l+p)(l−m)! PL (·|λ)

Wm(φ) �(| Cm |) �(|Cm |−δ)
�(1−δ)

�(|Cm |+γ )
�(γ )

Existing cluster �(|C−Ao
m |+|Ao|)

�(|C−Ao
m |)

�(|C−Ao
m |+|Ao|−δ)

�(|C−Ao
m |−δ)

�(|C−Ao
m |+|Ao|+γ )

�(|C−Ao
m |+γ )

New cluster α�(|Ao|) (α + δM−Ao )
�(|Ao|−δ)
�(1−δ)

Vp(M−Ao+1)
Vp(M−Ao )

�(|Ao|+γ )
�(γ )

Note that the predictive probabilities are stated up to a proportionality constant

dictive rules and richness of the predictive structure, including important cases, such
as the DP [6], PY [33, 34], and MFM [25]. The Potts-Gibbs models induce a distri-
bution on the partition πp = {C1, . . . ,CM} of p pixels into M nonempty, mutually
exclusive, and exhaustive subsets C1, . . . ,CM such that ∪C∈πpC = {1, . . . , p}. The
model can be summarised as:

pr(πp) ∝ exp

⎛

⎝
∑

j∼k, j<k

υ jk1z j=zk

⎞

⎠

︸ ︷︷ ︸
Potts model

(

Vp(M)

M∏

m=1

Wm(φ)

)

︸ ︷︷ ︸
Gibbs-type random partition models

,

where z j ∈ {1, · · · , M}, j ∼ k means that j and k are neighbors, and 1z j=zk equals
to 1 if j and k in the same cluster and 0 otherwise. In the following, we assume
the spatial locations lie on a rectangular lattice with first-order neighbors and a
common coupling parameter υ for all neighbor pairs; a higher value of υ encourages
more spatial smoothness in the partition. We use the general notation φ to denote
the parameters of the Gibbs-type partition models, and focus our study on three
cases 1) DP with concentration parameter α > 0; 2) PY with discount parameter
δ ∈ [0, 1) and concentration parameter α > −δ; and 3) MFMwith parameter γ > 0
(larger values encouraging more equally sized clusters) and a distribution PL(·|λ)

with parameter λ related to the prior on the number of clusters. The {Vp(M) : p ≥
1, 1 ≤ M ≤ p} denotes the set of non-negative weights, which solves the backward
recurrence relation Vp(M) = (p − δM)Vp+1(M) + Vp+1(M + 1) with V1(1) = 1.
Table1 describes the Vp(M) and Wm(φ) for DP, PY and MFM models.

2.3 Shrinkage Prior

To identify relevant regions, we use heavy tailed priors for the unique values
(β∗

1 , . . . , β
∗
M) of

(
β(s1), . . . , β(sp)

)
. Specifically, a t-shrinkage prior is used, moti-

vated by its computational efficiency andnearly optimal contraction rate and selection
consistency [41]:
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σ 2 ∼ IG (aσ , bσ ) ,
(
β∗
m

) |σ 2 ∼ tν(sσ), for all m = 1, . . . , M,
(2)

where tν(sσ) denotes t-distributionwith degree of freedom ν and scale parameter sσ .
For posterior inference, the t-distribution (2) is rewritten as a hierarchical inverse-
gamma scaled Gaussian mixture,

σ 2 ∼ IG (aσ , bσ ) ,

η∗
m ∼ IG

(
aη, bη

)
,

(
β∗
m

) |σ 2, η∗
m ∼ N (0, η∗

mσ 2), for all m = 1, . . . , M,

where aη and bη are the shape and scaling parameter of the mixing distribution for
each η∗

m respectively with ν = 2aη and s = √
bη/aη.

3 Inference

We aim to infer the posterior distribution of the parameters based on the proposed
Potts-Gibbs SIR model:

yi | μ,β∗, πp, σ
2 ∼ N(wT

i μ + x∗T
i β∗, σ 2), for all i = 1, . . . , n,

μ | σ 2 ∼ N(mμ, σ 2�μ),

β∗ | η∗, σ 2 ∼ N(0M , σ 2�β∗),

σ 2 ∼ IG(aσ , bσ ),

η∗
m ∼ IG

(
aη, bη

)
, for all m = 1, . . . , M,

πp ∼ Potts-Gibbs(υ, φ),

where x∗
im = ∑p

j=1 xi j1( j ∈ Cm)/
√| Cm | represents the total value, e.g. volume in

themth region of the image,mμ = (mμ1, . . . ,mμq ), �μ = diag(cμ1 , . . . , cμq )
T , and

�β∗ = diag(η∗
1, . . . , η

∗
M
). Note that when defining x∗

im , we rescale by the square root
of cluster size , which is equivalent to rescaling the variance of β∗

m by the cluster
size, encouraging more shrinkage for larger regions.

We develop a Gibbs sampler to simulate from the posterior with a generalized
Swendsen-Wang (GSW) algorithm to draw samples from the Potts-Gibbs model.
Poor mixing can be seen in single-site Gibbs sampling [8] due to the high correlation
between the pixel labels. The SW algorithm [43] addresses this by forming nested
clusters of neighbouring pixels, then updating all of the labels within a nested cluster
to the same value. The generalisation of the technique for standard Potts models to
generalised Potts-partition models is called GSW [47]. At each step of the algorithm,
we proceed through the following steps:
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1. Sample the image partition πp given η∗ and the data (with β∗,μ, σ 2 marginal-
ized). GSW is used to update simultaneously nested groups of pixels and hence
improve the exploration of the posterior. The algorithm relies on the introduction
of auxiliary binary bond variables, where r jk = 1 if pixels j and k are bonded,
otherwise 0. The bondvariables define a partition of the pixels into nested clusters
A1, . . . , AO , where O denotes the number of nested clusters and each Ao ⊆ Cm

for some m = 1, . . . , M . For each neighbor pair j ∼ k for 1 ≤ j < k ≤ p,
we sample the bond variables as follows, r jk ∼ Ber{1 − exp(−υ jkζ jk1z j=zk )},
where we define ζ jk = κ exp{−τd(β̂ j , β̂k)}with β̂ j denoting the estimated coef-
ficient from univariate regression on the j th pixel and κ, τ are the tuning param-
eters of the GSW sampler. Notice that the algorithm reduces to single-site Gibbs
when κ = 0, and recovers classical SW when κ = 1 and τ = 0.
As we are dealing with non-conjugate priors, we update the cluster assignment
by extending Gibbs sampling with the addition of auxiliary parameters, which is
widely known as Algorithm 8 [28]. We denote by Ao the current nested cluster;
C−Ao
1 , . . . ,C−Ao

M the clusters without nested cluster Ao; M−Ao the number of
distinct clusters excluding Ao and h the number of temporary auxiliary variables.
For each nested cluster Ao, it is assigned to an existing clusterm = 1, . . . , M−Ao

or a new cluster m = M−Ao + 1, . . . , M−Ao + h with probability as follows,

pr(Ao ∈ C−Ao
m | · · · )

∝

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�(|C−Ao
m |+|Ao|−δ)

�(|C−Ao
m |−δ)

pr
(
y | π Ao→m

p , η∗)

∏
{( j,k)| j∈Ao,k∈C−Ao

m ,r jk=0} exp
{
υ jk(1 − ζ jk)

}
, for C−Ao

m ∈ π−Ao
p ,

1
h
Vp(M−Ao+1)
Vp(M−Ao )

�(|Ao|−δ)

�(1−δ)
pr

(
y | π Ao→M+1

p , η∗) , for new C−Ao
m ;

where pr
(
y | π Ao→m

p , η∗) and pr
(
y | π Ao→M+1

p , η∗) denote the marginal likeli-
hood of data obtained by moving Ao from its current cluster to existing clusters
or newly created cluster respectively. Before updating the cluster assignments,
we sample the nested clusters and compute the volume of each nested cluster for
all images, with computational cost O(np). When updating the cluster assign-
ments, the marginal likelihood dominates the computational cost, as it involves
inversion and determinants of (M + q) × (M + q) matrices and updating the
sufficient statistics for every nested cluster and every outer cluster allocation,
i.e. the cost is O([[M + q]3 + n[M + q]]OM).

2. Sample β∗,μ, σ 2 jointly given the partitionπp, η∗ and the data. Notationally, we
reformulate x̃i = (wT

i , x∗ T
i )T and β̃ = (μT ,β∗ T )T . We define X̃ be the matrix

with rows equal to x̃Ti . The corresponding full conditional for β̃ and σ 2 is

σ 2 | · · · ∼IG(âσ , b̂σ ),

β̃ | σ 2, · · · ∼N(m̂β̃ , σ 2�̂β̃),
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Fig. 1 Figures on the upper and bottom row showing the true and estimated coefficient matrix of
the simulated data sets for scenario 1 under each model

where �̂β̃ = (�−1
β̃

+ X̃
T
X̃)−1, m̂β̃ = �̂β̃(�−1

β̃
mβ̃ + X̃

T
y), and IG(âσ , b̂σ )

denotes the inverse-gamma distribution with updated shape âσ = aσ + n/2 and
scale b̂σ = bσ + [mT

β̃
�−1

β̃
mβ̃ + yT y − m̂T

β̃
�̂−1

β̃
m̂β̃]/2.

3. Sample η∗ given β∗. The corresponding full conditional for each η∗
m is an

inverse-gamma distribution with updated shape âη = aη + 1/2 and scale b̂η =
bη + (β∗

m)2/(2σ 2):

η∗
m | · · · ∼ IG(âη, b̂η), for m = 1, . . . , M.

4 Numerical Studies

We study through simulations the performance of the proposedmodel and compare it
with Ising-DP [19]. We consider 2D images in this simulation. The n = 300 images
are simulated on a two dimensional grid of size 10 × 10, with spatial locations s j =
(s j1, s j2) ∈ R2 for 1 ≤ s j1, s j2 ≤ 10. For simplicity’s sake, we include an intercept
but do not consider others covariates, wi . We concentrate on the two simulation
scenarioswith trueM = 2 andM = 5 as shown in Figs. 1 and 2. For each experiment,
we summarise the posterior of the clustering structure of the data sets by minimising
the posterior expected Variation of Information (VI) [45].
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Fig. 2 Figures on the upper and bottom row showing the true and estimated coefficient matrix of
the simulated data sets for scenario 2 under each model

The Potts-Gibbs models can detect correctly the cluster structure under scenario
1 (Fig. 1). The Potts-Gibbs models are also capable of capturing and identifying the
more complex cluster structure underlying the data for scenario 2 (Fig. 2) with the
ARI 0.621–0.830 (Table2). On the contrary, Ising-DP has failed terribly to recover
the cluster structure for scenario 2, as illustrated in Fig. 2. It is observed that under
the Potts-Gibbs models, most of the resultant clusters are spatially proximal, while
under Ising-DP, the clusters are dispersed throughout the image. By taking into
consideration spatial dependence in the random partition model via the Potts-Gibbs
models, the proposed models produce spatially aware clustering and thus improve
the predictions.

DP has a concentration parameter α, with larger values encouraging more new
clusters and a rich-get-richer property that favours allocation to larger clusters. The
PY has an additional discount parameter δ ∈ [0, 1) that helps tomitigate the rich-get-
richer property and phase transition of the Potts model. TheMFM has a parameter γ ,
with larger values encouraging more equal-sized clusters and helping to avoid phase
transition of the Potts model, as well as additional parameters λ which are related to
the prior on the number of clusters.
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Table 2 Mean, standard deviation (in parentheses) and highest posterior density (HPD) interval of
the posterior of adjusted Rand index (ARI), variation information (VI), mean squared error (MSE),
mean squared prediction error (MSPE), and number of clusters for each scenario under each model

Model Scenario Mean HPD (95%)

ARI Potts-DP 1 1.0 (0.004) (1.0, 1.0)

Potts-PY 1.0 (0.004) (1.0, 1.0)

Potts-MFM 0.999 (0.007) (1.0, 1.0)

Ising-DP 0.307 (0.079) (0.152, 0.464)

Potts-DP 2 0.621 (0.060) (0.472, 0.684)

Potts-PY 0.713 (0.050) (0.607, 0.818)

Potts-MFM 0.830(0.036) (0.756, 0.869)

Ising-DP 0.038 ( 0.021) (-0.001, 0.078)

VI Potts-DP 1 0.001 (0.010) (2.22e-16, 2.22e-16)

Potts-PY 0.001 (0.009) (2.220e-16,
2.220e-16)

Potts-MFM 0.001 (0.014) (2.220e-16,
2.220e-16)

Ising-DP 1.386 (0.154) (1.083, 1.680)

Potts-DP 2 1.160 (0.211) (0.902, 1.548)

Potts-PY 1.006 (0.147) (0.640, 1.299)

Potts-MFM 0.599 (0.133) (0.432, 0.866)

Ising-DP 3.990 (0.159) (3.691, 4.290)

MSE Potts-DP 1 1.33e-4 (5.59e-4) (3.97e-9, 2.67e-4)

Potts-PY 1.03e-4 (8.73e-5) (1.58e-7, 2.57e-4)

Potts-MFM 1.01e-4 (8.37e-5) (4.21e-7, 2.66e-4)

Ising-DP 0.807 (0.011) (0.790, 0.828)

Potts-DP 2 0.246 (0.064) (0.141, 0.374)

Potts-PY 0.157 (0.035) (0.094, 0.224)

Potts-MFM 0.093 (0.014) (0.079, 0.125)

Ising-DP 0.980 ( 0.025) (0.942, 1.020)

MSPE Potts-DP 1 4.215 (0.057) (4.152, 4.317)

Potts-PY 4.213 (0.052) (4.138, 4.311)

Potts-MFM 4.209 (0.052) (4.136, 4.314)

Ising-DP 145.912 (10.051) (129.142, 165.950)

Potts-DP 2 7.754 (2.653) (3.175, 13.356)

Potts-PY 0.868(0.168) (0.669, 1.189)

Potts-MFM 0.850 (0.122) (0.677, 1.108)

Ising-DP 3.641 (0.526) (2.766, 4.857)

Number of clusters Potts-DP 1 2.019 (0.138) (2.0, 2.0)

Potts-PY 2.015 (0.122) (2.0, 2.0)

Potts-MFM 2.007 (0.081) (2.0, 2.0)

Ising-DP 4.575 (1.340) (2.0, 7.0)

Potts-DP 2 6.722 (0.901) (5.0, 8.0)

Potts-PY 6.882 (1.090) (5.0, 9.0)

Potts-MFM 5.232 (0.475) (5.0, 6.0)

Ising-DP 15.542 (1.554) (13.0, 18.0)
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5 Conclusion

We have developed novel Bayesian scalar-on-image regression models to extract
interpretable features from the image by clustering and leveraging the spatial coor-
dinates of the pixels/voxels. To encourage groups representing spatially contiguous
regions, we incorporate the spatial information directly in the prior for the random
partition through Potts-Gibbs random partition models. We have shown the poten-
tial of Potts-Gibbs models in detecting the correct cluster structure on simulated
data sets. In our experiments, the hyperparameters of the Potts-Gibbs model were
determined via a simple grid search on selected combinations of hyperparameters.
However, future workwill consist of investigating the influence of the various param-
eters inherent to the model and guidelines and tools to determine hyperparameters.
The model will then be applied to real images, e.g. neuroimages. Motivated by
examining and identifying brain regions of interest in Alzheimer’s disease, we will
use MRI images obtained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database (www.adni-info.org). The proposed SIR model will be extended
to classification problems through the GLM framework.
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Block Structured Graph Priors
in Gaussian Graphical Models

Alessandro Colombi

Abstract Gaussian graphical models are a powerful statistical tool to describe the
concept of conditional independence between variables through a map between a
graph and the family of multivariate normal models. The structure of the graph is
unknown and has to be learned from the data. Inference is carried out in a Bayesian
framework: thus, the structure of the precision matrix is constrained by the graph
through a G-Wishart prior distribution. In this work we first introduce a prior dis-
tribution to impose a block structure in the adjacency matrix of the graph. Then
we develop a Double Reversible Jump Monte Carlo Markov chain that avoids any
G-Wishart normalizing constant calculation when comparing graphical models. The
novelty of this procedure is that it looks for block structured graphs, hence proposing
moves that add or remove not just a single link but an entire group of them.

Keywords Bayesian statistics · Double reversible jump · G-Wishart prior

1 Introduction

The increasing capacity of human beings of collecting large amount of data gave rise
to the need of developing models to study how variables interact with one another.
Benefits of such discoveries arewell known, for example in clinical and genetic appli-
cations it is useful to understand how risk factors are related so that patient-specific
therapies may be planned. See [5, 9, 27] for cancer applications. The same reasoning
applies to problems in economics, for example [25] studied the interconnectedness
of credit risk.

Probabilistic graphical modeling is a possible approach to the task of studying the
dependence structure among a set of variables. It relies on the concept of conditional
independence between variables that is described through a map between a graph
and a family of multivariate probability models. When such a family of probabilities
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is chosen to be Gaussian, those models are known as Gaussian graphical models
[12]. This is the choice made throughout the paper, which is the most common in
the literature.

Let X be a p-random vector distributed as Np(0,�). � is the covariance matrix
and we assume X to be centered without loss of generality. Let G = (V, E) be an
undirected graph, where V = {1, . . . , p} is the set of nodes and E is the set of undi-
rected edges. X is said to be Markov with respect to G if, for any edge (i, j) that
does not belong to E , the i-th and j-th variables are conditionally independent given
all the others. Moreover, under the normality assumption, the conditional indepen-
dence relationship between variables can be represented in terms of the null elements
of the precision matrix K = �−1. Therefore the following equivalence provides an
interpretation of the graph

Xi ⊥⊥ X j | X−(i j) ⇐⇒ (i, j) /∈ E ⇐⇒ ki j = 0, (1)

where X−(i j) is the random vector containing all elements in X except the i-th
and the j-th. Each node is associated to one of the variables of interest and its
links describe the structure of the non-zero elements of the precision matrix. The
absence of a link between two vertices means that the two corresponding variables
are conditionally independent, given all the others. Usually, G is unknown and it is
the goal of the statistical inference, along with K . Such a process is also known as
structural learning. In aBayesian framework,we set aG-Wishart prior distribution for
the precision matrix K [1, 20] , which is attractive as it is conjugate to the likelihood.
Since the graph G is considered to be a random variable having values in the space
G of all possible undirected graphs with p nodes, we need to specify a prior on it. A
common practice is to choose an uniform distribution over G. This is appealing for its
simplicity but it assigns most of its mass to graphs with a “medium” number of edges
[9]. On the other hand, it is known that an undirected graph is uniquely identified by
its set of edges E . Therefore it is simpler to define a prior on E , which then naturally
induces a prior overG. In this setting, themost natural choice is to assign independent
Bernoulli priors to each link. The Bernoulli parameters θ could be different from
edge to edge, but one usually assigns a common value. For example, [9] suggested to
choose θ = 2/(p − 1) to induce more sparsity in the graph. Scott and Carvalho [21]
placed instead a Beta hyperprior on that parameter, a solution known as multiplicity
correction prior. Similarly, [22] described amultivariate Bernoulli distribution where
edges are not necessarily independent. A common feature of previously described
priors is that they are non-informative. The only type of prior information they can
include in the model is the expected sparsity.

In this work we propose a prior for the graph that aims to be informative, accord-
ing to the prior information available for the application at hand. Since the graph
describes the conditional dependence structure of variables involved in complex and
high-dimensional phenomena, it is unrealistic to assume that prior knowledge is
available for one-to-one relationships between the observed quantities. It is instead
more reasonable to assume that variables may be grouped in smaller subsets. This
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is common in biological application where the groups may be families of bacteria
[17], or genomics where groups of genes are known to be part of a common process.
Also in market basket analysis products and customers can easily be grouped; see,
for instance [6].

We propose a class of priors, called block graph priors, that encodes such informa-
tion and imposes a block structure in the adjacency matrix that describes the graph.
We allow variables in different groups only to be fully connected or not connected at
all. Therefore, the goal is no longer in looking for all possible relationships between
nodes but on deriving the underlying pattern between groups.

We introduce a Reversible Jump sampler that leverages the structure induced by
our new prior. In particular, we generalize the procedure by Lenkoski [13]. The
resulting method is called Block Double Reversible Jump (BDRJ for short). Its main
feature is that itmodifies, at each step of the chain, an entire block of links to guarantee
a block structure that is always compatible with our hypotheses.

The remainder of the paper is organized as follows. Section2 introduces the block
structured graph priors and Sect. 3 provides the sampling strategy. In Sect. 4 we
present a simulation study along with a comparison against an existing approach.
Finally, we conclude with a brief discussion in Sect. 5.

2 Block Structured Graph Priors

The starting point for our proposed model is that we assume the p observed variables
to be grouped, a priori, in M mutually exclusive groups. Each group has cardinality
ni and

∑M
i=1 ni = p. We admit the possibility of having some ni = 1, as long as

M < p. Groups whose cardinality is equal to one are called singletons.
We aim to study relationships between groups of variables. Therefore the usual

graph representation G = (V, E), where V is the set of nodes and E is set of links,
is redundant. Indeed we assume that groups are given and links have to satisfy
a precise block structure. As a consequence, we synthesize those information by
defining a new space of undirected graphs whose nodes represent the chosen groups
of variables and links represent the structure of relationships between them. Namely,
let VB = {B1, . . . , BM } be a partition of V in M groups that are available a priori.
Then we define GB = (VB, EB) to be an undirected graph whose nodes are the sets
Bk, k = 1, . . . , M and that allows for self-loops if nk > 1. Namely,

EB ⊂ EB =
{
(l,m)|l,m ∈ VB, ∧ l < m, (l, l)|l ∈ VB, ∧ nl > 1

}
. (2)

In graph theory, graphs that have self-loops are calledmultigraphs. Finally, let GB be
the set of all possible multigraphs GB having VB as set of nodes. In the following,
we want to clarify the relationship between this space and G.

Consider GB ∈ GB and G ∈ G. By definition, the set of nodes of the first multi-
graph is obtained by grouping together the nodes of the second graph. What about
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Fig. 1 The map from multigraph GB ∈ GB (left) to its block structured form G ∈ B (right)

the set of edges? Is there any relation between the two sets? The following map
defines a relationship between them. Let ρ : GB → G, such that GB = (VB, EB) 	→
G = (V, E) by the following transformations

V = {Bl,h, l = 1, . . . nh, h = 1, . . . M} = {1, . . . , p}
if (l,m) ∈ EB ⇒ (i, j) ∈ E ∀i ∈ Bl, ∀ j ∈ Bm

if (l,m) /∈ EB ⇒ (i, j) /∈ E ∀i ∈ Bl, ∀ j ∈ Bm (3)

A visual representation of this mapping is given in Fig. 1. Once ρ is set we are able
to associate each GB in GB to one and only one G in G, since ρ is clearly injective.
We refer to GB as the multigraph form of G.

Nevertheless, ρ is not surjective which implies that there are graphs that do not
have a representative inGB . Indeed, only those graphswith a particular block structure
can be represented in amultigraph form. A non surjectivemap is the key ingredient to
define a subset ofG of block structured graphs that satisfy ourmodelling assumptions.
Let us consider the image of ρ, denoted by B. It is the subset of G containing all
the graphs having p nodes and a block structure consistent with VB . Moreover,
ρ : GB → B is a bijection, which means that every graph G ∈ B is associated to its
representativeGB ∈ GB via ρ−1.We say thatG ∈ B is the block graph representation
of the multigraph GB ∈ GB . This synthesised representation of block graphs allows
us to work in a space where we can use standard tools of graphical analysis. In a
different setting, [4] adopts a similar approach to model the conditional dependence
across Markov processes.

In particular, such a representation allows us to introduce a class of priors that
encodes the knowledge about the partition of the nodes. We place zero mass proba-
bility on all those graphs that belong to G\B, which is the set of all those graphs that
do not satisfy our block structure constraint. Then, we place a standard prior, say
πB(·), over GB , which is possible as it is a space of undirected multigraphs where
links can be considered to be independent with one another. Finally, we map the
results in B using ρ−1. Namely

π(G) ∝
{

πB
(
ρ−1(G)

)
, if G ∈ B

0, if G ∈ G\B.
(4)
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We refer to those priors as block graph priors. In this work, we consider a block-
Bernoulli prior, π(G), that is obtained by applying (4) to πB(GB) = θ |EB |(1 −
θ)(

M
2 )−|EB |, that is the Bernoulli prior where each link has prior probability of inclu-

sion θ , which is fixed a priori. The reasoning used to define block priors is similar to
priors described in [7]. However, in this case we are not limiting the learning of the
graph to the class of the decomposable ones but to block structured graphs.Moreover,
this limitation is not due to computational limitations but because prior knowledge is
available. In the next section we present a method to learn such a structure. In prin-
ciple, one can still apply such prior to limit the analysis to the class of decomposable
block graphs to exploit their properties. However, in this work we do not make such
assumption and we present a method that is valid also for non-decomposable graphs.

3 Sampling Strategy

One of the difficulties in the development of efficient methods for structural learning
is the presence of the G-Wishart prior distribution. Given a random matrix K , we
say that K |G, b, D ∼ G-Wishart (b, D) if its density is

P (K | G, b, D) = IG (b, D)−1 |K | b−2
2 exp

{

−1

2
tr (KD)

}

�PG (K ) , (5)

where b and D are fixed hyperparameters, PG is the space of all p × p symmetric
and positive definite matrices whose null elements are associated to links absent in
graph G and

IG(b, D) =
∫

PG

|K | b−2
2 exp

{

−1

2
tr (KD)

}

dK , (6)

is an intractable normalizing constant. Numerical methods to approximate such a
constant [1] are unstable in high dimensional problems [9, 15]. Several techniques
that avoid any calculation of IG(b, D) are available in the literature, but an exhaustive
review of them is beyond the goals of this work. In the following, we limit ourselves
to present how our proposed method, called Block Double Reversible Jump (BDRJ
for short). It generalizes the procedure by Lenkoski [13] to get a Reversible Jump
chain defined over the joint space of graph and precision matrix that visits only
the subspace B of block structured graphs. Note that if one is interested only in
decomposable graph models, the normalizing constant IG(b, D) can be computed
explicitly and it would be enough to use a standard Metropolis-Hastings algorithm
without resorting to the usage of the Reversible Jump technique presented in the
remaining part of this paper.

We denote the current state of the chain by (K [s],G[s]), with K [s] ∈ PG[s] . The pro-
posed state (K ′,G ′) is constructed in two subsequent steps; in Sect. 3.1 we describe
the proposal for the new graph G ′ and then in Sect. 3.2 we discuss how to get the
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proposed precision matrix K ′ ∈ PG ′ . Once that (K ′,G ′) has been drawn, we accept
or reject the whole state with a Metropolis-Hastings step.

3.1 Construction of Proposed Graph G′

A common factor in most of the existing MCMC methods for graphical models
is to set up chains such that the proposed graph G ′ = (V, E ′) belongs to the one-
edge-away neighbourhood of G. Namely, nbdp(G) = nbd+

p (G) ∪ nbd−
p (G) where

nbd+
p (G) and nbd−

p (G) are the sets of undirected graphs having p nodes that can
be obtained by adding, or removing, an edge to G ∈ G, respectively. A step in the
Markov chain that selects G ′ ∈ nbdp(G[s]) is said to be a local move.

The proposedBDRJ approach is innovative becausewederivemoves thatmodifies
an entire block of links, not just a single one. In other words, our moves are local in
GB but not in G. Suppose G[s] ∈ B, we propose a new graph G ′ ∈ B by first drawing
its multigraph representation G ′

B ∈ GB from

q(G ′
B |G[s]) = 1

2
Unif

(
nbdB,+

M

(
ρ−1(G[s])

)) + 1

2
Unif

(
nbdB,−

M

(
ρ−1(G[s])

))
,

(7)
where nbdB

M(G[s]
B ) is the one-edge-away neighbourhood of G[s]

B = ρ−1(G[s]) with
respect to the space of multigraphs GB . Addition and removal moves are chosen
with the same probability. Given this choice, q(G ′

B |G[s]) chooses, with uniform
probability, which link is to be added (or removed). Finally ρ is applied once again
to map the resulting multigraph back in B to obtain G ′, i.e. setting G ′ = ρ

(
G ′

B

)
. A

closer look at (7) reveals how our multigraph representation allows us to use standard
tools of structural learning in the space GB to get non-standard proposal in the usual
space G.

3.2 Construction of Proposed Precision Matrix K′

Once that the graph is selected, we need to specify a method to construct a pro-
posed precision matrix K ′ that satisfies the constraints imposed by the new graph.
The method by Wang and Li [26] based on the partial analytical structure of the
G-Wishart appears to be an efficient choice. However, it strongly relies on the possi-
bility of writing down an explicit formula for the full conditional of the elements of
K . Such results, presented in [20], can be handled in practice only if at each step of
the graph only one link of the graph is modified. Instead, the proposal distribution
presented in Sect. 3.1 modifies an arbitrary number of links. Hence, it is complicated,
if possible at all, to generalize the method by Wang and Li [26] to such framework.
As a consequence, we rely on a generalization of the Reversible Jumpmechanism by
Lenkoski [13]. The idea is that is it possible to guarantee the positive definiteness of
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K ′ and the zero constraints imposed by G ′ just by working on the Cholesky decom-
position matrix �[s] of K [s]. Indeed, [20] and [1] showed that the zero constraints
imposed by G[s] on the off-diagonal elements of K [s] induce a precise structure and
properties on �[s]. Let ν(G[s]) = {(i, j) | i, j ∈ V, i = j or (i, j) ∈ E [s]} be the set
of the diagonal elements and the links belonging to G[s] and define the set of free
elements of �[s] as �ν(G[s]) = {φi j | i, j ∈ ν(G[s])}. The remaining entries, that we
simply refer to as non-free elements, are uniquely determined through the completion
operation [1, Prop. 2] as a function of the free elements.

Suppose the proposed graphG ′ is obtained by adding edge (l,m) to themultigraph
representation of G[s]. The set of links that are changing in G is L = {(i, j) | i, j ∈
V, i < j, (i, j) ∈ E ′, (i, j) /∈ E [s]}. Its cardinality l = |L| is arbitrary and, in gen-
eral, different from one. We call V (L) = Bl ∪ Bm the set of the vertices involved
in the change. Note that ν(G ′) = ν(G[s]) ∪ L . Our solution to define the new free
elements is to maintain the same value for all the ones that are not involved in the
change and to set the new ones by perturbing the current, non free elements, inde-
pendently and all with the same variance σ 2

g . Namely, draw ηh ∼ind N (φ
[s]
h , σ 2

g ) and
set φ′

h = ηh for each h ∈ L . Then, it is enough to derive all non free elements of 	′
though completion operation and finally to set K ′ = (�′)T�. Note that, by doing
so, we are generating a random variable η of length l that matches the dimension
gap between K and K ′. As usual, the dimension decreasing case is deterministically
defined in terms of the dimension increasing one.

4 Simulation Study

Wecompare our performances to theBirth andDeath approach (BDMCMCfor short)
proposed byMohammadi andWit [14] and available in theRpackageBDgraph [16].

All final estimates, both from BDRJ and BDMCMC outputs, were obtained by
controlling the Bayesian False Discovery Rate, as presented in [18] and [3]. Per-
formances are assessed in terms of the standardized Structural Hamming Distance
(Std-SHD, [23]) and the F1-score [2, 19]. The first one prefers lower values, the
second one higher values. Following the same approach of [14, 24], precision matrix
estimation is measured using one half of the Stein loss score (SL) [8] which is equal
to the Kullback-Leibler divergence [10] between Np(0, K−1

true) and Np(0, K̂
−1

).
In the first experiment, we set p = 40, n = 500 and M = p/2 groups of equal

size, which leads to off-diagonal blocks of size 2 × 2. The true underlying graph
is itself a block structured graph (see Fig. 2), while the true precision matrix was
sampled by drawing from a G-Wishart

(
3, I p

)
. σ 2

g was set equal to 0.5 after a little
tuning phase. 400,000 iterations were run plus 100,000 extra iterations as burn-in
period that were discarded. A simple visual inspection of Fig. 2 suggests that BDRJ
is more precise than BDMCMC. The number of misclassified edges is rather low,
Std-SHD = 0.0243, and it is well balanced between false positiveness (10) and nega-
tiveness (9). Many true discoveries are achieved and indeed it has F1-score = 0.954.
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Fig. 2 The adjacency matrices of true underlying graph (middle panel), the BDRJ one (leftmost
panel) and the one obtained using BDgraph (rightmost panel). Squares represent the included
links, crosses stand for edges that are wrongly classified

BDMCMC does not recognize the block structure of the true graph, actually it does
not even look for such a structure because the prior information can not be included
in the model. It estimates the probability of inclusion of every possible link indepen-
dently from the others. This entails more errors in the final estimate as well as a less
informative structure of the graph. It would be hard to explain why there are missing
edges within some structures that are clearly blocked ones. We repeated the same
experiments for 18 different dataset: the true underlying graphswere randomly gener-
ated by sampling from (4) with different sparsity indices θ uniformly distributed in
[0.2, 0.6]. The mean values, along with the standard deviations, for the F1-scores
are 0.845(0.13) and 0.80(0.03) and for the Std-SHD we have 0.053(0.04) and
0.060(0.02), respectively for BDRJ andBDMCMC.We see that BDRJ ismore unsta-
ble with respect to BDMCMC. This is probably due to the fact that we used the same
σ 2
g for all dataset, without tuning it every time. However both indices prefer BDRJ.
The second experiment is inspired by a simulation studypresented in [11] that aims

to learn a graph and precisionmatrix under a noisy setting. The true underlying graph
G is displayed in Fig. 3. We sample K true|G ∼ G-Wishart(3, I p) and set K noisy to be
a random perturbation of K true: every possible value is perturbed, with probability s,
by adding a random noise 0.1u. Here u ∼ Unif (−k∗, k∗), where k∗ = maxi< j |k truei j |.
Finally, data are generated from Np

(
0, K−1

noisy

)
. To investigate the behaviour under

different volumes of noise, s = 0.10, 0.20, 0.25,we repeat each experiment 15 times.
Results are reported in Table1.

BDRJ outperforms BDMCMC on every dataset and with respect to all indices we
considered. Its robustness is due to the fact that to conclude that a whole block has
to be inserted in the final graph a single, isolated link is not enough. Those isolated
values are not compatible with the block structured graph that BDRJ is looking for,
therefore they are rightly ignored. On the other hand, BDMCMC does not look for
any particular structure, hence it does not recognize the perturbed values as noise.
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Fig. 3 The true underlying graph (leftmost panel) used to generate the true precision matrix K true
(middle panel). The rightmost panel is K noisy (obtained with s = 0.25). For plotting purposes, we
removed the diagonal in both precision matrices

Table 1 F1-score, Std-SHD and Stein loss SL under different noise levels s

s = 0.1 s = 0.2 s = 0.25

F1-score BDRJ 0.75 (0.035) 0.70 (0.043) 0.68 (0.043)
BDMCMC 0.44 (0.022) 0.405 (0.028) 0.066 (0.042)

SHD BDRJ 0.039 (0.004) 0.047 (0.043) 0.049 (0.005)
BDMCMC 0.063 (0.002) 0.36 (0.042) 0.071 (0.003)

SL BDRJ 0.24 (0.030) 0.32 (0.041) 0.37 (0.060)
BDMCMC 1.00 (0.032) 1.05 (0.036) 1.08 (0.059)

Values in bold are the ones preferred by the corresponding index

5 Discussion

In the setting of graphical models, this work proposed a new class of priors, called
block graph priors. They allow to include in the model the prior knowledge available
about the partition of the nodes. We also introduced a new sampling strategy that
leverage these priors to look only for a block structured graph, whose block, if
included, have to be complete. In someapplications, as the number of variables grows,
the importance of each possible dependence loses of interest as it is more natural,
and more interpretable, to understand the general structure of dependencies. This is
the case of genomics applications as genes may be grouped in pathways, therefore
a block structured graph is expected and more interpretable. Another example is
market basket analysis which aims to find patterns of association between retailed
items so that they can be bundled together to the end of delivering an appealing
offer. Finally, we compared our model, on synthetic data, with BDMCMC. In both
experiments, BDRJ estimates are better in terms of Std-SHD, F1-score and SL.

As future developments, we aim to further develop the BDRJ technique, expand
the simulation study by investigating the behaviour of BDRJ when the underlying
graph has incomplete blocks and to assess its performances in realworld applications.
Moreover, experiments are performed using groups of only two nodes. Larger groups
imply larger jumps of the chain in the state space and therefore they are less likely to
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be accepted. We aim to better investigate the behaviour of our methodology in such
cases. We would also like to understand if the proposed methodology could be also
extended to Gaussian structured chain graph models for modelling the DAG model
induced by the chain components. Finally, we would like to add flexibility to the
model by allowing for a random partition of the nodes.
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A Bayesian Joint Spatio-temporal Model
for Multiple Mosquito-Borne Diseases

Jessica Pavani and Paula Moraga

Abstract Many infectious diseases studied in the epidemiological context are
caused by insects, mainly mosquitoes. These infections are known as arboviruses
because they need vectors to be transmitted. Some of them may be related to each
other since a same mosquito species can transmit different diseases. This study aims
to describe geographic and temporal patterns of twomosquito-borne diseases, dengue
and chikungunya, and their possible risk factors in the Brazilian state of Ceará in
2017. To pursue this, we consider a Bayesian hierarchical spatio-temporal model for
the joint analysis of both arboviruses. This specification also uses a Zero-Inflated
Poisson (ZIP) model to overcome the high proportion of zeros. Moreover, it includes
covariates as well as disease-specific and shared spatial and temporal effects, which
are estimated and mapped to identify similarities among diseases. Our findings help
understand geographic and temporal disease patterns, and to identify high risk areas
and potential risk factors, and can inform the development and implementation of
strategies for disease prevention and control.

Keywords Bayesian model · Chikungunya fever · Dengue fever · INLA ·
Multivariate disease mapping · Spatial modeling

1 Introduction

In an epidemiological investigation, the understanding of the connection between
disease occurrence and its geographic and temporal trends can help decision-makers
to develop strategies for disease prevention and control [10]. In case of mosquito-
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borne diseases, many spread characteristics are indistinguishable. Geographic and
temporal patterns are also similar. This occurs because some diseases are transmitted
by the same mosquito species, whose breeding and development are usually influ-
enced by climatic factors such as rainfall, humidity, and temperature [5]. Thus, it
is reasonable to think that both the geographical and the temporal patterns of these
diseases could show common features, and a potential autocorrelation between them
could exist.

Although the evolution of mosquito-borne diseases have been widely explored,
most of the studies focus on modeling arboviruses separately [2, 12]. Despite that,
some joint modeling approaches can be found in the literature. Freitas et al. [6] and
Kazazian et al. [8] investigated three mosquito-borne diseases outbreaks (dengue,
Zika, and chikungunya) in different Brazilian regions looking for simultaneous clus-
tering patterns. Carvalho et al. [3], on the other hand, analyzed the association among
the Zika epidemic and past dengue outbreaks in the same Brazilian region.

In this study, we jointly analyze dengue and chikungunya, two of the mosquito-
borne diseases that co-circulate in Brazil. Our goal is to identify geographic and
temporal patterns as well as potential risk factors. We consider the number of weekly
cases in 2017 in each municipality of the Brazilian state of Ceará, one of the states
with higher prevalence of both arboviruses. We use a Bayesian joint model that
includes spatio-temporal covariates, known to affect disease transmission, as well as
random effects to model residual variation, and considers the potential autocorrela-
tion between the two diseases. The model also uses a Zero-Inflated Poisson (ZIP)
formulation to overcome the high proportion of zeros.

The rest of this manuscript is organized as follows. Section2 presents the formu-
lation of the Bayesian spatio-temporal approach. In Sect. 3, we provide a description
of the dataset that motivates our analysis and more details about the study area and
the covariates. Section4 is dedicated to the results, and it includes details about the
risk factors, spatial and temporal effects, as well as the relative risks estimates for
each municipality in specific epidemiological weeks. Finally, in Sect. 5 we present a
discussion including limitations of our modeling approach that motivate future work.

2 Spatio-temporal Modeling

Different ways of inducing spatial and temporal correlation may be found in the lit-
erature. They usually consist of defining a prior distribution with some dependence
structure. Conditional autoregressive (CAR) prior is commonly used in spatial stud-
ies, while temporal analysis are typically based on autoregressive or random walk
structures. Such strategies may be extended to deal with multivariate dataset. In the
Bayesian disease mapping context, Moraga and Lawson [11], for instance, reviewed
two approaches used to induce the spatial dependence between regions, and also the
dependence among multiple diseases. On the other hand, Gómez-Rubio et al. [7]
proposed a spatio-temporal specification where both spatial and temporal random
effects are built considering disease-specific and shared components.
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This study aims to jointly model multiple diseases based on a specific and shared
spatial and temporal effects approach. Furthermore, in the context of arboviruses,
it is important to consider that cases of the disease are sparse at certain regions
and/or periods of the year. Therefore, in order to overcome the high proportion of
zeros, our specification uses a Zero-Inflated Poisson (ZIP) regression model. This
modeling combines the proportion of zeros with Poisson (Poi) distribution, so that
the probability function can be formulated as follows:

P[Oi,t | pi,t , θi,t , Ei,t ] = pi,t1[Oi,t=0] + (1 − pi,t )Poi(θi,t Ei,t ),

where pi,t is the probability of extra zeros, Oi,t is the observed number of cases, Ei,t is
the expected number of cases computed via internal standardization [1, Chapter 11],
and θi,t is the relative risk, for area i and time t .

Note that the interest here is to model two latent fields, pi,t and θi,t , using the
canonical link function logit(pi,t ) and log(θi,t ), where both can include covariates
and random effects. However, we incorporate spatio-temporal covariates only to the
Poisson component (see Sect. 3 for the dataset description), so the final model is
formulated as follows:

O(d)
i,t | pi,t , E (d)

i,t , θ
(d)
i,t ∼ ZIP(pi,t , E

(d)
i,t θ

(d)
i,t ) (1)

log(θ(d)
i,t ) = α(d) + β�Xi,t + �

(d)
i + �

(d)
t . (2)

In this notation, (d) represents the disease, α(d) are disease-specific intercepts and
β are regression coefficients related to the spatio-temporal covariates, Xi,t . Finally,
�

(d)
i and �

(d)
t are spatial and temporal effects also considered for area i , time t , and

disease d. These effects are composed of disease-specific and shared patterns, as
follows:

�
(d)
i = u(d)

i + δ
(d)
S Ui u(d)

i ∼ CAR(W, τ
(d)
S ) U ∼ CAR(W, τ0S) (3)

�
(d)
t = v

(d)
t + δ

(d)
T Vt v

(d)
t ∼ CAR(Q, τ

(d)
T ) V ∼ CAR(Q, τ0T ) . (4)

In this case,Ui and Vt represent spatial and temporal effects shared by the diseases,
while u(d)

i and v
(d)
t are spatial and temporal effects specific for each disease. δ(d)

S and
δ

(d)
T work as weights to control the shared effects on the relative risk. The model
formulation is completed by assuming a CAR specification to both disease-specific
and shared effects, whereW and Q are spatial and temporal adjacency matrices, and
τ

(d)
S , τ (d)

T , τ0S , and τ0T denote the precision of each effect.
For Bayesian inference, although Markov chain Monte Carlo (MCMC) methods

are extensively used they present some limitations, mainly related to computational
time and convergence implications. In this case, the complexity of the spatio-temporal
structure combined with a large dataset could lead to several days of computing time
to perform Bayesian inference via MCMC. To overcome this issue, the integrated
nested Laplace approximation was considered [13].
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Regarding the prior distributions, we follow the suggestions by Gómez-Rubio et
al. [7] and assign flat priors to the disease-specifics intercepts and to the precision
components of spatial and temporal effects. For the spatial and temporal weights,
log-Normal priors are defined, which restricts them to be positive.

3 Motivational Data

As motivation to this study, we consider two mosquito-borne diseases that co-
circulate in Brazil, namely dengue and chikungunya. The dataset consists of the
total number of cases of each disease reported per municipality in Ceará and epi-
demiological week. Such information has been collected by Infodengue, a system
that computes the clinically confirmed cases that are reported by medical profession-
als through official channels. See Codeco et al. [4] for more details about the system
and data collection.

3.1 Study Area

Located in South America, Brazil is politically divided into 27 administrative states,
being Ceará the eighth most populous. According to the Brazilian Institute of Geog-
raphy and Statistics, in 2020 the state reached an estimated population of 9.2 million.
Administratively, the state is divided into 184 municipalities, mostly with population
under 50 thousands people. These 184municipalities are the areal units contemplated
in this study.

In regard tomosquito-borne diseases, Ceará presents favorable environmental and
socio-demographic conditions for mosquitoes breeding [12]. Indeed, the state has
been faced to recurrent outbreaks of different arboviruses. In this study, we consider
two of the most prevalent, dengue and chikungunya. These diseases are transmitted
by the same mosquito species (Aedes aegypti) and co-circulate over the Ceará state
since 2016. To complete the spatio-temporal design, we considered the year of 2017,
which is divided in 52 epidemiological weeks and are the temporal units in this study.

3.2 Risk Factors

It is known that environmental factors play an important role in the spread of
arboviruses, since breeding and development of mosquitoes are influenced by cli-
matic factors. In this study, we consider two climatic factors as covariates, the min-
imum temperature (Celsius degree) and the maximum humidity (percentage). This
information was considered per municipality and week, and was collected by the
nearest airports [4].
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During the study period, it was observed minimum temperature between 19◦C
in winter and 26◦C in summer. At this point, it could be important to highlight
that in Brazil the winter occurs between June, 21st and September 21st while the
summer occurs between December 21st and March 21st. Similarly, the maximum
humidity ranged between 79 and 97%, reaching higher values between March and
May in regions with tropical wet climate. As noted, there was little variation in both
temperature and humidity. This is because the state of Ceará has a predominant semi-
arid climate. Only part of the coast and areas with the highest topographical elevation
present a tropical wet climate. This condition guarantees warm temperatures, fairly
constant throughout the year and little variation in humidity, since the semi-arid
climate is known for periodic droughts and low rainfall.

4 Results

The effect of predictors on the risk of dengue and chikungunya as well as disease-
specific intercepts are summarized in Table1. The posterior mean of the effect of
the predictors indicated that temperature is positively related to the diseases, while
the humidity is negatively related to them. Regarding the disease-specific intercepts,
negative valueswere found to both infections.However,while the posteriormean esti-
mates for the dengue-intercept is approximately−1.9, for the chikungunya-intercept
is approximately−3.1, showing difference between diseases.With respect to the ZIP
parameter, its posterior mean is 0.264 with 2.5 and 97.5 quantiles of 0.250 and 0.277,
respectively.

4.1 Spatial and Temporal Effects

In this section, we describe the patterns of spatial and temporal effects. Posterior
means of the total spatial effect, as presented by Eq. (3), can be seen in Fig. 1. We
observe dengue and chikungunya show different spatial patterns, especially in the
central area of the Ceará. However, the highest risk areas for both diseases tend to

Table 1 Summary statistics of the disease-specific and predictors—mean, standard deviation (SD),
2.5 , 50, and 97.5 quantiles

Predictors Mean SD 2.5% q. 50% q. 97.5% q.

Intercept for dengue −1.946 0.071 −2.086 −1.946 −1.807

Intercept for
chikungunya

−3.127 0.077 −3.280 −3.127 −2.977

Temperature 0.003 0.002 −0.001 0.003 0.006

Humidity −0.002 0.000 −0.003 −0.002 −0.001
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Fig. 1 Posterior mean of the spatial effect �i of dengue (left) and chikungunya (right).

Table 2 Summary statistics of the weights for shared spatial and temporal effects - mean, standard
deviation (SD), 2.5 , 50, and 97.5 quantiles. (1) indicates dengue and (2) chikungunya.

Parameter Mean SD 2.5% q. 50% q. 97.5% q.

δ
(1)
S 1.308 0.122 1.064 1.311 1.540

δ
(2)
S 1.675 0.103 1.478 1.673 1.880

δ
(1)
T 0.025 0.018 0.003 0.021 7.100

δ
(2)
T 0.504 1.748 0.009 0.146 3.180

concentrate in the northeast of the state, mainly on the coastal region. The spatial
weights, available in Table2, are similar for the diseases (δ(1)

S = 1.31 and δ
(2)
S = 1.67,

where (1) indicates dengue and (2) chikungunya). Hence, the spatial pattern of each
disease is similar to their shared pattern. Overall, weights greater than one indicate
a high dependence on the shared spatial effect.

Regarding the total temporal effect, represented as�t on Eq. (4), it is also possible
to notice a different pattern between the diseases, Fig. 2. Dengue pattern indicates a
decrease in risk over time. On the other hand, the temporal effect of chikungunya
has an increase behavior until reach its peak on 20th week, and then it starts falling.
Differently from the spatial weights, the temporal weights have values close to zero,
indicating a low dependence on the shared effect (δT = 0.02 for dengue and δT =
0.50 for chikungunya, Table2).

4.2 Relative Risk

Throughout the year, 66,083 cases of dengue and 98,933 cases of chikungunya were
reported in the state of Ceará. These cases were most concentrated between 12th
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Fig. 2 Posterior mean of the temporal effect �t of dengue (left) and chikungunya (right)

and 23rd epidemiological week, i.e., months of April and May, approximately. The
highest number of dengue cases occurred in the 15th week, in which 4939 cases were
reported. Regarding chikungunya, the peak was in the 19th week with 8421 reported
cases. In both situations, the capital Fortaleza was responsible for more than 70% of
the total cases.

For practical reasons, estimates of relative risk for eachmunicipality weremapped
only for the weeks that presented peak of cases for each disease. Thus, Fig. 3 cor-
responds to the 15th week, while Fig. 4 is related to the 19th week. Most of the
municipalities have a relative risk less than one for both diseases. As expected, there

Fig. 3 Posterior mean relative risk estimates of dengue (left) and chikungunya (right) in the Brazil-
ian state of Ceará—15th epidemiological week
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Fig. 4 Posterior mean relative risk estimates of dengue (left) and chikungunya (right) in the Brazil-
ian state of Ceará—19th epidemiological week

are more high risk areas for dengue in week 15th andmore high risk areas for chikun-
gunya in week 19th. Of the 184 municipalities, only 11 have an over one relative risk
for both diseases in the 15th week. This number slightly increases in the 19th week,
with 16 municipalities.

5 Discussion and Future Work

This study shows an analysis of how to jointly model mosquito-borne diseases using
Bayesian spatio-temporalmodeling.We have chosen to use an approach that includes
both spatial and temporal effects, considering disease-specific and shared compo-
nents. As covariates, we have used two climate factors that play an important role
in the spread of arboviruses, temperature and humidity. The model has been fitted
using the Bayesian computational approach INLA.

Overall, we have obtained interesting results. Different disease-specific inter-
cepts were found, which suggests an initial difference between the risk of diseases.
Temperature and humidity were included as covariates in the model. Data for these
covariates were collected from airports stations, and since the number of airports
available in the region is not large, this could have affected the quality of the data and
our results. Therefore, in future studies, more efficient ways to collect temperature
and humidity should be considered. Moreover, the inclusion of interactions as well
as non-linear effects of these covariates could also be considered. This will be treated
as extensions for this model and would help us to better understand the relationship
between mosquito-borne diseases and potential risk factors.

Regarding spatial and temporal patterns, we have noticed different behaviors
between diseases. When considering more closely, the weeks when the dengue and
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chikungunya peaks occurred, only 6% and 9% of the 184 municipalities shown rela-
tive risk greater than one, respectively. These results indicate a possible competition
between viruses since epidemiological knowledge indicates the diseases tend not to
occur at the same time and space. However, these results should be cautiously con-
sidered given that the syndromes of the two diseases are similar, which could lead
to misdiagnosis. Furthermore, a longer time period should be considered to verify
whether this pattern is maintained. The inclusion of space-time interactions is also a
possible extension to this model [9].

To conclude, future work will be devoted to implement the extensions mentioned
and address some limitations in data and modeling. The joint spatio-temporal model
developed allows us to better understand the geographic and temporal spread of
diseases and can help policymakers in the development of strategies for disease
prevention and control.
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A Bayesian Nonparametric Test
for Cross-Group Differences Relative
to a Control

Iván Gutiérrez, Luis Gutiérrez, and Danilo Alvares

Abstract We propose a newBayesian nonparametric multivariate testing procedure
for comparing several treatments against a control. The test is based on a general
model where the distribution of each treatment group can be identical to (or different
from) the control group distribution, depending on the value of a latent binary vector.
This vector is endowed with a spike-and-slab prior distribution carefully chosen
to ensure a multiplicity correction. Group distributions are modeled in a flexible
way using a dependent Dirichlet process. Monte Carlo experiments suggest that
our proposal performs better than state-of-the-art frequentist alternatives for small
sample sizes.

Keywords Dependent Dirichlet process · MANOVA · Multiple testing ·
Spike-and-slab prior

1 Introduction

Comparing the underlying multivariate distributions of J + 1 groups is a common
problem in applied statistics. Typically, we want to detect differences among any pair
of distributions (tests that tackle this problem are called k-sample tests). However,
in some situations, we only want to compare J of these groups (e.g., the treatment
groups) against the remaining one (e.g., the control group). Hypothesis tests that
handle this problem are known as k versus 1-sample tests.
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Historically, the k versus 1-sample test has been based on themultivariate analysis
of variance (MANOVA) [3]. Even today, MANOVA remains popular because is easy
to understand, and is currently implemented in all major statistical software (e.g.,
R, SAS, SPSS, Stata and so on). However, MANOVA can only detect differences
across the groups means.

The desire to detect more types of differences has motivated several new tests in
recent years. From the frequentist perspective, there are flexible univariate 2-sample
tests [31], multivariate 2-sample tests [4, 5, 11, 25], and multivariate k-sample tests
[22]. However, in order to adapt these procedures for k versus 1-sample tests, we
need to use post-hoc adjustments (e.g., a multiplicity correction); otherwise, part of
the power would be wasted trying to detect differences across the treatment groups.

From the Bayesian perspective, there exist flexible Bayesian non-parametricmod-
els specifically designed to borrow strength across several multivariate distributions
[23, 28, 30], but all these models treat the J + 1 groups symmetrically and do not
include a formal testing procedure. In addition, there exist flexible 2-sample tests
[16, 19] and k-sample tests [6, 7], all of them based on Polya trees [1] and Dirichlet
processes (DP) [10]. More recently, Gutiérrez et al. [14] developed a univariate k
versus 1-sample test based on DP with an absolutely continuous spike-and-slab (SS)
prior [21]. However, the choice of an absolutely continuous SS prior implies that the
groups distributions can never be identical but only similar. Moreover, the original
idea cannot be directly generalized to the multivariate case because many important
conjugacy properties would be lost. We still could adapt the idea, but the posterior
inference would depend on a difficult-to-tune MCMC algorithm, making the testing
procedure more fragile (from a computational point of view) and time consuming.

In this article, we present a flexible Bayesian nonparametric multivariate k versus
1-sample test that solves all the aforementioned problems. First, we replace the
original SS prior with a Dirac SS prior, enabling identical groups’ distributions under
the spike. Second, we move the SS prior from the DP base distribution to a higher
level of the model hierarchy, enabling the marginalization of several parameters
and the use of more efficient samplers. Our proposal differs from Gutiérrez et al.
[14] model in two critical ways. Firstly, the distribution of each treatment group
becomes identical (instead of similar) to the distribution of the control group under
the spike. Secondly, from a computational point of view, ourmodel can accommodate
multivariate responses without giving up its conjugacy properties, simplifying the
posterior inference to a considerable extent, reducing the computational cost of the
testing procedure. In addition, ourmodel differs from all the other Bayesian k-sample
tests in that, if the problem at hand is really a comparison of J treatments against a
control, then the number of the admissible hypotheses is 2J , which ismuch lower than
the BJ+1 admissible hypotheses in a k-sample test, where Bj is the jth Bell number.
For example, if J = 6, 26 = 64 � 877 = B7. This reduction in the cardinality of the
hypothesis space simplifies the posterior inference to a considerable extent.

The rest of themanuscript is organized as follows. In Sect. 2, we introduce our new
BNP k versus 1-sample test. In Sect. 3, we explain how to learn the key parameters
of this model. In Sect. 4, we compare our method with a state-of-the-art alternative
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thorough a simulation experiment. In Sect. 5, we conclude with a discussion and
some direction for future work.

2 A BNP Model for Multivariate Comparisons

LetD = {(yi , xi )}Ni=1 be a sample, where yi ∈ R
D is theD-variate response variable

for the ith experimental unit and xi ∈ J := {0, . . . , J } represents the group indica-
tor. There are two types of groups: one control group, labelled as 0, and J treatment
groups, labelled as 1, . . . , J . We want to know which treatment groups follow the
same distribution as the control group. To do so, we consider the following model:

yi | {xi = 0}, Q0
i id∼ Q0,

yi | {xi = j}, Q0, Q j
iid∼ γ j Q j + (1 − γ j )Q0,

where Q0, . . . , QJ are random distributions and γ := (γ1, . . . , γJ ) ∈ {0, 1}J is a
vector of latent variables determining which groups follow the same distribution as
the control group. So, each γ represents a different model or hypothesis.

Following a Bayesian framework, we can learn γ by computing

p(γ | y) =
⎛
⎝ ∑

β∈{0,1}J

π0(β)

π0(γ )
Bβ,γ

⎞
⎠

−1

, (1)

whereπ0 is the prior hypothesis distribution and Bβ,γ=L( y|β)/L( y|γ ) is theBayes factor
given two hypotheses β and γ , with L( y | γ ) being the marginal likelihood given
γ . This specification has two main advantages. Firstly, the Bayes factors control
for model complexity in a natural, principled way [18]. Secondly, some judicious
choices of π0 apply a multiplicity correction [26, 32]. However, in practice, L( y | γ )

can be difficult to compute, because it involves the marginalization of any additional
variable. Hence, we need to find the balance between the flexibility of our model and
its computational tractability.

2.1 A Prior for the Hypotheses

As in Womack et al. [32], we set a prior for π0(·) such that, for any γ ,β ∈ {0, 1}J ,
1. π0(γ ) = ζ0

∑
β:β�γ π0(β),

2. ‖γ ‖1 = ‖β‖1 ⇒ π0(γ ) = π0(β),

for some fixed ζ0 > 0, where β � γ means that β �= γ , and β j ≥ γ j for all j =
1, . . . , J . This distribution must exist, because each π0(γ ) is a deterministic function
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Fig. 1 Hasse diagram for the partially ordered set ({0, 1}3,�), alongside with the probability of
each node (in our context, hypothesis) under the Womack distribution with ζ0 = 1 (under each
vector). Given any hypotheses β and γ , it can be proved that β � γ if and only if there is a directed
path from β to γ . As some hypotheses are not connected by directed paths, they are incomparable

of (π0(β) : β � γ ). Using this prior, the more complex hypotheses are penalized in
a way that is easy to interpret. Figure1 illustrates this phenomena:

Moreover, as all the γ ’s with the same 1-norm must have the same probability, a
multiplicity correction is applied in a natural way. In particular, the prior probability
of finding at least one different treatment group will be exactly 1/(ζ0 + 1) no matter
the number of treatment groups.

2.2 A Prior for the Group Distributions

As in De Iorio et al. [8], we set a dependent Dirichlet process prior for Q j [20]:

Q j =
∑
k∈N

wkN(μ jk,� jk), ∀ j ∈ J ,

where
(μ jk,� jk)

i id∼ NIW(u0, r0, ν0, S0),

wk = vk
∏k−1

h=1
(1 − vh),

vk
iid∼ B(1, α),

α ∼ Ga(a0, b0),

(2)
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and N(·), NIW(·), B(·), Ga(·) represent the Normal, Normal-Inverse-Wishart, Beta,
and Gamma distributions, respectively (we will use the shape/rate parametrization
for the Gamma distribution). Note that all the group distributions share the same
weights. This assumption will simplify the posterior inference considerably.

3 Posterior Inference

To get the posterior p(γ | y) in (1) we need to calculate L( y | γ ), which in turn
requires marginalizing any additional variable in the model. In this case, the addi-
tional variables are the infinite dimensional objects (Q j ), which make the direct
computation of L( y | γ ) nearly impossible. In order to solve this problem, we pro-
pose to approximate p(γ | y) through a Gibbs sampler [12, 13]; more precisely, a
Metropolis-within-Gibbs algorithm, as we update γ using the Metropolis-Hastings
algorithm [15].

Before introducing our Gibbs sampler, let us rewrite our model in simpler terms.
First, note that given γ , the model behaves as if the effective group indicator was
not xi but zi := γxi xi , under the convention γ0 = 0. Second, note that we can always
rewrite G := ∏

j∈J G j as

G =
∑
k∈N

wkδξ k , ξ k
iid∼ Ḡ :=

∏
j∈J

NIW(u0, r0, ν0, S0),

with wk and vk defined as in (2), which is the stick-breaking representation of a
Dirichlet process [27] with concentration parameter α and base distribution Ḡ, a
DP(α, Ḡ) process. Hence, we can rewrite our full model as

yi | zi , ((μi j ,�i j )) j∈J
ind∼ ND(μi zi ,�i zi ),

((μi j ,�i j )) j∈J
i id∼ G,

G ∼ DP(α, Ḡ),

zi = γxi xi ,

γ ∼ π0(γ ),

α ∼ Ga(a0, b0),

(3)

and as G is a.s. discrete, the data will be clusterized. Indeed, let ((μ	
i j ,�i j )

	) j∈J
be the unique values in this sequence, then we can introduce N cluster membership
indicators s1, . . . , sN ∈ [K ] such that si = k if and only if θ i = θ 	

k .
Now we are ready to explain our Gibbs sampler. Our algorithm is based on two

key insights. The first one is that, given γ , our model behaves as the multivariate
counterpart of anANOVA-DDP [8]. For thismodel, there arewell-known procedures
for updating (si ), such as Neal’s algorithm 3 [24]. The other insight is that, given
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(z, s), our model behaves as a 2-way MANOVA model with z and s as factors:

yi | zi = j, si = k,μ	
jk,�

	
jk

ind∼ ND(μ	
jk,�

	
jk),

(μ	
jk,�

	
jk)

i id∼ N IW (u0, r0, ν0, S0).

Thus, conditionally on (γ, s), p( y | z, s) factorizes as

p( y | z, s) =
∏
j∈J

∏
k∈[K ]

p({ yi : i ∈ I jk} | I jk),

whereI jk := {i : zi = j, si = k}.Moreover, p({ yi : i ∈ I jk} | I jk) coincideswith
the likelihood of { yi : i ∈ I jk} under the model yi | μ	

jk,�
	
jk ∼ ND(μ	

jk,�
	
jk),

(μ	
jk,�

	
jk) ∼ N IW (u0, r0, ν0, S0). Hence, p({ yi : i ∈ I jk} | I jk) can be treated

analytically using the very well-known equation [2]:

p({ yi : i ∈ I jk} | I jk) = 1

π Dn jk/2

(
r0
r jk

)D/2 |S0|ν0/2
|S jk |ν jk/2

∏D
d=1 
((ν jk + d − 1)/2)∏D
d=1 
((ν0 + d − 1)/2)

,

where n jk = #I jk , ν jk = ν0 + n jk , r jk = r0 + n jk , u jk = (r0u0 + ∑
i∈I jk yi )/r jk

,
and S jk = S0 + ∑

i∈I jk
yi y

′
i + r0u0u′

0 − r jku jku′
jk . Using this formula, we can

compute (up to a proportionality constant) the value of p(γ | y, x, s, α) ∝ p( y |
x, s, γ , α)π0(γ ).

Then, we propose a Gibbs sampler composed of three steps:

1. Draw α from its full conditional distribution using the method described in
Escobar and West [9].

2. For each observation index i ∈ [N ], draw si from its full conditional distribution
using Neal’s algorithm 3 [24].

3. Draw γ ∼ p(γ | α, s, x, y) through a Metropolis-Hastings algorithm using
K (β | γ ) ∝ I (‖β − γ ‖1 = 1) as a proposal distribution.

Once we get a sample from this Gibbs sampler, we can approximate p(γ | y)
using the empirical distribution of the sampled γ ’s. From p(γ | y), we can recover
the Bayes factors (if desired) from the equation

Bγ ,β = L(γ | y)
L(β | y) = p(γ , y)

p(β, y)
π0(β)

π0(γ )
= p(γ | y)/p( y)

p(β | y)/p( y)
π0(β)

π0(γ )
= p(γ | y)

p(β | y)
π0(β)

π0(γ )
.

The full procedure is implemented in a Julia package, available at

https://github.com/igutierrezm/MANOVABNPTest.jl

The package can also be used from R using the JuliaConnectoR package.
See the aforementioned repository for more details.

https://github.com/igutierrezm/MANOVABNPTest.jl
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4 Monte Carlo Simulation Study

In order to evaluate the performance of our hypothesis testing procedure, we run a
MonteCarlo experiment comparing ourmethodwith the test proposed byMukhopad-
hyay and Wang [22]. We compare both methodologies on 72 different scenar-
ios, resulting from the combination of three different sample sizes (indexed by
h = 1, 2, 3), three different levels of similarity among the groups’ distributions
(indexed by l = 1, 2, 3), and eight different true hypotheses (indexed byβ ∈ {0, 1}3).
Specifically, for each (h, l,β) ∈ [3] × [3] × {0, 1}3, the data generating process
(DGP) is

xi = (i − 1) mod 4,

yi |xi ∼

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

N2(02,�), if xi = 0,

N2(β1cl112,�), if xi = 1,

N2(02, c
β2
l2 �), if xi = 2,

0.5N2(−β3cl312,�) + 0.5N2(β3cl312,�), if xi = 3,

i ∈ (mh),

where

� =
(

1 0.3
0.3 1

)
,

⎛
⎝
m1

m2

m3

⎞
⎠ =

⎛
⎝

200
600
1200

⎞
⎠ ,

⎛
⎝
c11 c12 c13
c21 c22 c23
c31 c32 c33

⎞
⎠ =

⎛
⎝
0.625 1.498 1.162
0.819 1.806 1.359
1.051 1.994 1.652

⎞
⎠ .

Note that each treatment group can differ in a different way from the control
group. For example, group 1 has a difference in location, group 2 has a difference
in scale, and group 3 has a distribution that does not translate into a difference in
location. Note also the role of l: the bigger the l, the stronger is the difference across
each group and the control group.

For each (h, l,β), we evaluate the performance of ourmethod as follows. First, we
simulate 100 samples from the aforementioned DGP, and standardized the outcomes.
Then, for each simulated sample, we approximate p(γ | y) using our approach and
average the results over the 100 simulations. In order to implement our approach, we
need to set the hyperparameters. Following Gutiérrez et al. [14], we set (a0, b0, ζ0) =
(1, 1, 1), and following Bouchard-Côté et al. [2], we set (r0, ν0, u0, S0) = (1, D +
2, 0D, ID). By repeating these specifications for each (h, l,β), we get 8 × 72 = 576
(averaged) posterior probabilities, one per each (h, l,β, γ ) ∈ [3] × [3] × {0, 1}3 ×
{0, 1}3.

Figure2 displays these 576 numbers as a panel of heatmaps in greyscale, with β

on the x-axis and γ on the y-axis of each plot, both arranged in the same order. In this
heatmap, black represents 1 and white represents 0. Hence, for the perfect test, each
element in the diagonal should be colored as black, and each element outside the
diagonal should be colored as white. As expected, our procedure does not produce
this perfect output. However, except for the case where we use the smallest sample
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Fig. 2 Posterior probabilities (averaged over 100 runs) for the Monte Carlo experiment. For
each sample, we run our Gibbs sampler for 4000 iterations and discard the first 2000. We stan-
dardize the responses before applying our method, with (r0, ν0, u0, S0, r0, a0, b0, ζ0) = (1, D +
2, 0D, ID, 1, 1, 1).

size and least obvious groups’ differences, our proposal works well. In particular, the
most probable hypothesis (on average) always coincided with the true hypothesis.

For the competitor, we used the same simulated samples. However, instead of
approximating p(γ | y), we computed the hypothesis selected by theMukhopadhyay
and Wang [22] test (including Bonferroni correction), and then averaged the results
for each (h, l,β). Figure3 displays these 576 relative frequencies as a second panel
of heatmap, specified as the first one. The test worked almost as well as our proposal
for large samples. However, for small samples sizes, this frequentist test is outer-
performed by our BNP procedure.

Admittedly, the comparison is not completely fair because in Fig. 2 we are aver-
aging posterior distributions of γ , whereas in Fig. 3 we are averaging concrete esti-
mations of γ . However, for this particular simulation example, using a Bayesian
estimator of γ in Fig. 2 (e.g., its MAP estimator) would not change the results ina
significant way, specially on panels (2, 1) and (3, 1), where the difference between
the performances is obvious.
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Fig. 3 Distribution of the hypothesis selected by the Mukhopadhyay and Wang [22] test (with
Bonferroni correction) across 100 simulations

5 Discussion

In this article we introduced a Bayesian nonparametric testing procedure for compar-
ing several treatment groups against some pre-specified control group. Our Monte
Carlo experiments suggest that our model can successfully detect difference in loca-
tion, scale and distribution. In addition, our procedure works similarly or better than
state-of-the-art nonparametric k-sample tests. In comparison to other classical pro-
posals, our hypothesis testing applies a multiplicity correction in a more principled
way, and in comparison to other BNP approaches, our proposal is easier to apply
in multivariate settings (in fact, many parameters can be marginalized), easier to
tune (since we use Dirac spike-and-slab priors instead of absolutely continuous) and
easier to communicate (since our construction is based on the well-known Dirichlet
process).

As future work we highlight potential improvements to the Gibbs sampler
described in Sect. 3. For example, we could use a split-merge procedure [17] instead
of Neal’s algorithm 3, which is relatively more efficient. Also, we could update γ

using an informed proposal as the one described in Zanella [33]. All these improve-
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ments would be specially relevant for applications with a large number of obser-
vations and groups. In addition, we highlight the possibility of using even more
flexible models for the involved group distributions. Indeed, under our construction,
the weights are entirely shared by the groups, but it is also possible to generate
weights that are only partially shared across the groups [29].
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Specification of the Base Measure
of Nonparametric Priors via Random
Means

Francesco Gaffi, Antonio Lijoi, and Igor Prünster

Abstract Functionals of random probability measures are probabilistic objects
whose properties are studied in different fields. They also play an important role
in Bayesian Nonparametrics: understanding the behavior of a finite dimensional fea-
ture of a flexible and infinite-dimensional prior is crucial for prior elicitation. In
particular distributions of means of nonparametric priors have been the object of
thorough investigation in the literature. We target the inverse path: the determination
of the parameter measure of a random probability measure giving rise to a fixedmean
distribution. This direction yields a better understanding of the sets of mean distribu-
tions of notable nonparametric priors, givingmoreover away to directly enforce prior
information, without losing inferential power. Here we summarize and report results
obtained in [6] for the Dirichlet process, the normalized stable random measure and
the Pitman–Yor process, with an application to mixture models.

Keywords Random probability measures · Random means · Nonparametric prior
elicitation · Dirichlet process · Pitman-Yor process · Normalized stable process

1 Introduction

Distributional properties of linear functionals of randomprobabilitymeasures (RPM)
of the form

M f (P̃) :=
∫

X

f (x)P̃(dx) for f : X → R measurable (1)

F. Gaffi (B) · A. Lijoi · I. Prünster
Department of Decision Sciences and BIDSA, Bocconi University, Milan, Italy
e-mail: francesco.gaffi@phd.unibocconi.it

A. Lijoi
e-mail: antonio.lijoi@unibocconi.it

I. Prünster
e-mail: igor@unibocconi.it

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
R. Argiento et al. (eds.), New Frontiers in Bayesian Statistics, Springer Proceedings
in Mathematics & Statistics 405, https://doi.org/10.1007/978-3-031-16427-9_9

91

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16427-9_9&domain=pdf
mailto:francesco.gaffi@phd.unibocconi.it
mailto:antonio.lijoi@unibocconi.it
mailto:igor@unibocconi.it
https://doi.org/10.1007/978-3-031-16427-9_9


92 F. Gaffi et al.

with X a Polish space and P̃ a RPM on X, were studied in the seminal contributions
by Cifarelli and Regazzini [1, 2] to tackle inferential problems in Bayesian Non-
parametrics. This area of research generated many interesting results from different
perspectives. See [29] for early results, [3] for a contextualization in the Bayesian
inferential framework and beyond, and [15] for an exhasutive account of results and
for a detailed account of the connections with other research fields. The distribution
of M(P̃) := ∫

R
x P̃(dx), with P̃ a RPM on R, has been characterized for:

1 P̃ = D̃α a Dirichlet process (DP) with parameter measure α = θ P0
2 P̃ = P̃σ,θ a Pitman–Yor process (PYP) with parameters σ ∈ (0, 1) and θ > −σ

3 P̃ a normalized random measure with independent increments (NRMI)

respectively in [2, 16], [8] and [9, 23]. The results are obtained forM(P̃), as they can
be extended to a linear functional M f (P̃), for any measurable function f : X → R

such that
∫ | f | d P̃ < ∞, almost surely. This follows from

∫
f d P̃

d=
∫

x P̃ f (dx) (2)

where P̃ f = P̃ ◦ f −1. As far asDirichlet randommeans are concerned, a preliminary
result in [5] gives a necessary and sufficient condition for (1) to exist almost surely
finite when P̃ = D̃α , namely

∫

X

log(1 + | f (x)|) α(dx) < ∞. (3)

In [2] a first characterization and the absolute continuity of the law of a random
Dirichlet mean are proved, while in [16] explicit expressions for the density func-
tion and the characteristic function are given. Moreover, [16] underlines, uses and
extends the connection of Dirichlet random densities with Lauricella hypergeometric
functions. Furthermore, general assumptions that allow to attain an explicit expres-
sion of the mean density and the mean cdf, as well as results on symmetry of the
mean distribution and on vectors of Dirichlet random means, can be found in [16]
and in [22].

Turning attention to means of a PYP instead, in [23] we find the almost sure
finiteness condition for M f (P̃σ,θ ), that is

∫
| f |σ dP0 < ∞ (4)

where P0 = E

[
P̃σ,θ

]
. In [8] an explicit expression for the density function of

M(P̃σ,θ ), together with the proof of the absolute continuity of its law, is presented.
Moreover, in [15] we can find an account of the connection between PYP means and
excursions of skew Bessel bridges, as introduced in [19].
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In [23] results for general NRMI means are proved. A NRMI on a Polish space
X can be defined as

P̃( · ) = μ̃( · )
μ̃(X)

(5)

where μ̃ is a proper completely random measure (CRM) on X (namely without
fixed locations) such that 0 < μ̃(X) < ∞ almost surely. As described in [14], μ̃ is
characterized by the Laplace functional

E

[
e
− ∫

X

f (x) μ̃(dx)
]

= exp

{
−

∫

R+×X

[
1 − e−s f (x)

]
ν(ds, dx)

}
(6)

where f : X → R is a measurable function such that
∫ | f | dμ̃ < ∞ (almost surely)

and ν is a measure on R+ × X such that
∫

B

∫

R+

min{s, 1} ν(ds, dx) < ∞ (7)

for any B inB(X). The measure ν is named the Lévy intensity of μ̃. In this case the
random mean M f (P̃) exists almost surely finite if and only if

∫

X×R+

(1 − e−λv | f (x)|)ν(dv, dx) < ∞ for every λ > 0. (8)

A general expression for the cumulative distribution of a NRMI mean is given in
[23].

A crucial analytical tool in obtaining these results is the generalized Cauchy–
Stieltjes transform

for g : R+ → R Sλ[z; g] :=
∫

R+

g(x)

(z + x)λ
dx λ > 0, z ∈ C \ R− (9)

whose properties and inversion formulas can be found in [10, 25, 26]. It is involved
inCifarelli–Regazzini (CR) identities, which equate integral transforms of base mea-
sures and of the corresponding mean density distributions. The original CR identity,
proved in [2, 27], concerns the Dirichlet case and states the following

Sθ [ z; qα ] = exp

⎧⎨
⎩−

∫

R

log(z + x) α(dx)

⎫⎬
⎭ z ∈ C \ R− (10)

where qα is the mean density function of M(D̃α). A generalized version, proved in
[11, 27, 28], holds for the PYP case: for any σ ∈ (0, 1) and θ > 0
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Sθ

[
z; qσ,θ

] =
⎧⎨
⎩

∫

R

(z + x)σ P0(dx)

⎫⎬
⎭

−θ/σ

z ∈ C \ R− (11)

where qσ,θ is the mean density function of M(P̃σ,θ ) and P0 = E

[
P̃σ,θ

]
.

To sum up, the standard approach has been relying on CR identities in order to
characterize randommeans distributions by, e.g., determining their density functions,
given the basemeasure P0. The purpose of ourwork is to address the inverse problem,
which amounts to determining the base measure of a RPM P̃ leading to a specific
distribution for M(P̃). Pursuing this direction has a strong motivation in Bayesian
inference: if one has enough a priori information to elicit the distribution of an
interpretable finite-dimensional feature of P̃ , such as its mean, then it is crucial
to identify which parameters for P̃ enforce correctly the prior knowledge we have
on such a feature. Moreover, our results allow to induce the elicited distribution
on the mean without otherwise modifying the random measure, that is keeping its
distribution in a selected class (e.g. DP or PYP). This entails that posterior inference,
whenever it is available for such class of nonparametric priors, can be leveraged on
with no further adjustments.

The solution to a special case of such a problem can be deduced from results
in the combinatorial literature, and this constitutes a further instance of connection
with seemingly unrelated research areas. In particular from [24] we can extrapolate
an expression for the cumulative distribution function (cdf) of the base measure of a
DP with concentration parameter θ = 1. In [6] results are provided yielding the base
measure corresponding to a fixed mean distribution for a DP with θ < 1, for a σ–
stable NRMI and for a PYP. Here we present the main statements and the statistical
implications of their application to mixture models.

2 Dirichlet Case

In the DP case, the CR identity (10) ensures that the total mass θ > 0 and the mean
distribution Qα uniquely identify the base measure. Hence, once θ is fixed, it is
a well-posed question to ask which P0 = α

θ
induces a desired distribution qα on a

Dirichlet random mean.
This problem has been addressed, from a completely different perspective, in [24]

by exploring the relationship between continual Young diagrams and the transition
measure they induce on a compact interval via a Markov process known as hook
walk. An early account on such combinatorial objects is given in [11]. Surprisingly,
if one considers the proper subset of convex diagrams, such relationship is the same
linking the base measure and the mean distribution of a DP when θ = 1. Hence,
leveraging on results in [24], we obtain
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P0([0, x]) = α([0, x]) = 1

π
arccot

⎛
⎝ 1

π q(x)
PV

1∫

0

q(t)

t − x
dt

⎞
⎠ (12)

with q being the DP mean density and PV
∫
denoting the Cauchy principal value.

For details about such singular integrals see e.g. [4]. Sufficient conditions for this to
hold are that q is piecewise C1, bounded away from 0 and with bounded derivative.

Let us now consider θ ∈ (0, 1). For a density function f such that

1∫

0

f (x)

|x − t |θ dx < ∞ ∀t ∈ [0, 1]

we define

Iθ [ f ; t ] :=

1∫

t

f (x)

|x − t |θ dx

t∫

0

f (x)

|x − t |θ dx

t ∈ (0, 1] (13)

Then it is possible to state the following.

Theorem 1 Let θ ∈ (0, 1) and qα be the density of M(D̃α) with supp(qα) = [0, 1].
If

1∫

0

qα(x)

|x − t |θ dx < ∞ ∀t ∈ [0, 1] (14)

then the cdf of the base measure P0 is given by

F0(t) =
1

θ

{
1

π
arctan

(
sin(θπ)

cos(θπ) + Iθ [ qα; t ]
)

+ 1(t∗,∞)(t)

}
1(0,1)(t) + 1[1,∞)(t)

(15)

where
t∗ = inf

{
t ∈ [0, 1]

∣∣∣Iθ [ qα; t ] ≤ − cos(θπ)
}

(16)

Note that the integrability condition (14), even if required for any t , is not restric-
tive, since θ ∈ (0, 1). Moreover, unlike in (12) for θ = 1, we do not assume smooth-
ness of the mean density. We also underline that the compact support hypothesis may
not be considered that restrictive in view of nonparametric prior elicitation and could
be anyhow relaxed as done e.g. in [7].
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As an example, the cdf of the base measure inducing a uniform distribution on
the random mean of a Dirichlet process is given in the following. For a specific
concentration parameter, (15) boils down to a particularly simple expression.

Example 1 Let qα(·) = 1[0,1](·) and θ = 1
2 . Then

F0(t) = 2

π
arctan

√
t

1 − t
t ∈ (0, 1)

3 Normalized Stable and Pitman–Yor Cases

Let α be a measure on X and σ ∈ (0, 1). A CRM μ̃σ with Lévy intensity given by

ν(dv, dx) = σ

�(1 − σ)
v−1−σ dv α(dx) (17)

is a σ -stable CRM with parameter measure α on X. If α(X) = θ < ∞, one can
consider

P̃σ := μ̃σ

μ̃σ (X)
(18)

obtaining the σ -stable NRMI, as in [13]. In [6] it is shown that, unlike for DP, once
fixed a probability measure P0, any α = θ P0 leads to the same law for M(P̃σ ),
regardless of θ . Hence we shall set θ = 1. Consider α = P0 supported on [0, 1], then
we can state the following.

Theorem 2 Let the density qσ of M(P̃σ ) be piecewise Hölder continuous and such
that

1∫

0

| log |x − t | | qσ (x) dx < ∞ (19)

Lebesgue-almost everywhere. Then the base measure P0 has cdf given by

F0(y) = 1

π

y∫

0

(y − t)−σ e
σ

1∫
0
log |x−t | qσ (x) dx

⎧⎨
⎩π qσ (t) cos(σπ Qσ (t)) + sin(σπQσ (t))PV

1∫

0

qσ (x)

t − x
d x

⎫⎬
⎭ d t

(20)

for any y ∈ (0, 1), where Qσ is the cdf of qσ .

The key idea of the proof relies on the following limiting version of the generalized
CR identity (11), proved in [27]
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exp

{
−

∫
log(z + x) qσ (x) d x

}
=

{∫
(z + x)σ P0(d x)

}1/σ

(21)

Arguments on existence and regularity of singular integrals are crucial in deter-
mining sufficient conditions onqσ .Moreover, the piecewiseHölder hypothesis can be
relaxed, by exploiting results from singular integral approximation literature reported
in [17] and [21].

In [8] a representation of PYP means in terms of DP and σ–stable NRMI means
is established. It reads ∫

x P̃σ,θ (d x)
d=

∫
x D̃α(d x) (22)

where α(B) = θ
∫
B qσ (x) dx andE

[
P̃σ,θ

]
= P0. In words, a Pitman-Yor(σ, θ) ran-

dommean has the same distribution as a Dirichlet randommean whose base measure
is given by θ times the mean distribution of a σ -stable NRMI. By combining (22),
(12) and Theorem 2 one can obtain the following result for the PYP.

Theorem 3 Let the density qσ,1 of the mean M(P̃σ,1) of a PYP with parameters
(σ, 1) be piecewise C1 with piecewise Hölder continuous derivative. Then the base
measure P0 of P̃σ,1 has cdf given by

F0(y) = 1

π

y∫

0

(y − t)−σ e
σ

1∫
0
log |x−t | qσ (x) d x

⎧⎨
⎩π qσ (t) cos(σπ Qσ (t)) + sin(σπQσ (t)) PV

1∫

0

qσ (x)

t − x
d x

⎫⎬
⎭ d t

(23)

with qσ having cdf given by

Qσ (t) = 1

π
arccot

⎛
⎝ 1

π qσ,1(t)
PV

1∫

0

qσ,1(x)

x − t
dx

⎞
⎠ (24)

The expression of sufficient conditions directly on qσ,1 requires the assessment,
achieved in [6], of a real CR identity, linking themean density function of a PYPwith
concentration parameter θ = 1 and the mean distribution function of the underling
stable NRMI, where we refer to the derivation of the PYP as normalization of a
power tilting of a stable CRM proposed in [20]. This identity reads

cos(πQσ (t))

1 − t
exp

⎧⎨
⎩PV

1∫

0

Qσ (s)

s − t
ds

⎫⎬
⎭ = PV

1∫

0

qσ,1(s)

s − t
ds (25)
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for Qσ being the cdf of a stable mean and qσ,1 being the density of a PYP mean with
θ = 1.

Explicit expressions of the base measure corresponding to specific choices of the
density of the mean, are identified in [6] through Theorems 1, 2 and 3. Moreover,
some special cases not covered by the general results are treated and solved.

4 Application to Mixture Models

Letting Y be a Polish space, a ν-absolutely continuous random mixture density is

p̃(y) =
∫

X

k(y, x) P̃(dx) (26)

where {k( · , x) : x ∈ X} is a collection of density functions on Y indexed by a
parameter in X. One can consider a linear functional of the mixture (26) and be
interested in fixing its distribution, as in [12]. For instance, in a model where data
are p̃-distributed, conditionally on p̃, it is natural that one wants to enforce a prior
belief on the distribution of the population mean

∫
y p̃(y) ν(dy).

In order to use the described results on linear functionals of random probabil-
ity measures in this modeling framework, one can notice that, for a function
f : Y −→ R ∫

Y

f (y) p̃(y)ν(dy) =
∫
X

g(x) P̃(dx) (27)

where g(x) = ∫
Y
f (y)k(y, x)ν(dy). This strategy has been applied in [18] for deriv-

ing the distribution of means of DP and NRMI mixtures and implies that means with
respect to a random mixture density can be treated as means with respect to the mix-
ing random probability measure. Hence, it follows that Theorems 1, 2 and 3 can be
applied in this case to determine which parameter measure to use for mixing random
measure to induce a desired distribution on the functional in (27). This yields an
important tool for prior specification in mixture models.

Acknowledgements The authors are grateful to the Editor and two anonymous Referees for their
insightful comments and suggestions.
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Bayesian Nonparametric Predictive
Modeling for Personalized Treatment
Selection

Matteo Pedone, Raffaele Argiento, and Francesco C. Stingo

Abstract We develop a Bayesian nonparametric predictive model to establish per-
sonalized therapeutic strategies for oncology patients. We leverage characteristics of
both the patient and disease to support decision making in the selection of the opti-
mal treatment. The core component of the model is a product partition model with
covariates (ppmx) that induces clusters of observations that are more homogeneous
with respect to predictive biomarkers. We conduct a simulation study to evaluate dif-
ferent modeling choices regarding ppmx in the framework of personalized treatment
selection.

Keywords Product partition models · Nonparametric Bayes · Model-based
clustering · Personalized medicine

1 Introduction

Our approach is motivated by an open problem in cancer genomics and personalized
medicine. Personalized medicine’s mission is to tailor treatment to individual patient
characteristics leveraging various sources of heterogeneity. The distinctive mark
of statistical inference under the personalized medicine paradigm is to disregard
heterogeneity as nuisance to inference, but rather to take advantage of it to improve
therapeutic strategies [2]. Cancer is a complex process and, to understand underlying
biological phenomena, heterogeneity in both patients and diseasemust be accounted.
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We develop a method for personalized treatment selection that leverages prognostic
and predictive biomarkers.

Prognostic biomarkers impact the likelihood of achieving a therapeutic response
regardless of the selected treatment. By contrast, predictive biomarkers determine
which patients are likely or unlikely to benefit from a particular class of treatment
regimes. Since cancer is an inherently heterogeneous disease, each tumor is unique
and hence, for predictive covariates, patients should not be regarded as exchange-
able [3]. Given genomic signatures and a set of prognostic markers, building on [4]
we leverage prognostic determinants to measure how likely a patient is to reach a
given clinical response. Predictive biomarkers are exploited to drive patients clus-
tering within each treatment. This is done to typify the extent of benefit offered by a
specific therapeutic strategy on groups of patients characterized by close profiles in
predictive determinants. We are assuming to know which biomarkers are prognostic
and which are predictive. Although this assumption seems restrictive, it remains cru-
cial. Biomarkers, in order to lead to optimal treatment selection, need to be validated
on completely independent data set not used during development. That is, rather
than develop prognostic/predictive biomarkers, our goal is personalized treatment
selection employing validated biomarkers.

The Bayesian framework naturally handles model-based clustering assuming as
random parameter of the model the partition of the sample subjects. In particular,
we adopt the product partition model with covariates (ppmx) [5] to induce clusters
of observations that are more homogeneous with respect to predictive covariates,
building partitions that are only partially exchangeable. The class of ppmx models
is a powerful Bayesian nonparametric tool to incorporate covariates’ information
into the prior for the random partition. Indeed, under this class of models, patients
with similar covariates are a priori more likely to be clustered together. This feature
enables us to quantify the effectiveness of each competing therapeutic strategy for
patients with similar genetic profiles.

Finally, the posterior predictive distribution of this model arises as a natural way
to assess the extent to which a new untreated patient is likely to attain a level of
clinical response for competing treatments. We elicit response utility weights and
evaluate utility expectation for each therapy [3]. The treatment with the largest mean
predictive utility is considered the optimal treatment.

The goal of this paper is to provide guidance regarding the specification of the
prior distribution for the random partition in the framework of optimal treatment
selection. In fact, as the number of predictive biomarkers grows, the influence of
ppmx models on clustering tends to overwhelm the information from the response,
negatively affecting inference and out-of-sample prediction. In order to calibrate
the influence that covariates have on partition probabilities we follow [8]’s strategy
to temper covariate impact on clustering. The evaluation of different calibrations is
empirically done through simulations based on gene expression data from a leukemia
study [1].

The remainder of the article is organized as follows. In Sect. 2 we state the pro-
posed model, focusing on the aspects addressed in the simulation study. We also
give some details on the computational strategy. In Sect. 3 we describe the predictive
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utility approach adopted for treatment selection. We report and discuss the results of
the simulation study in Sect. 4 and Sect. 5 concludes the paper.

2 The Model

Let a = 1, . . . , T index candidate therapies to whom n = ∑T
a=1 n

a patients are
assigned to, where na denotes the number of patients treated with therapy a. A
common choice to characterize varying levels of treatment response is to evaluate it
in terms of the extent of residual disease after a given clinically relevant post-therapy
follow-up duration. Let yai be the random variable of the i−th patient’s response to
treatment a among K possible levels of increasing treatment benefit, where yai = k
for i = 1, . . . , na and k = 1, . . . , K . In addition, let πa

i = (πa
i1, . . . , π

a
iK ) denote the

vector such that πa
ik is the probability of observing outcome k for the i−th patient

under treatment a. The treatment response is an ordinal-valued random variable and

yai follows amultinomial distribution yai | πa
i

ind∼ Multinomial(1,πa
i ). For each treat-

ment, we consider a training dataset of na patients, (yai , z
a
i , x

a
i ) where i = 1, . . . , na

and zai and xai are a P−dimensional and Q−dimensional vector of prognostic and
predictive features, respectively.

As mentioned in Sect. 1, to relax exchangeability among observations, we adopt
a model for random partition depending on predictive markers. We denote with
ρa = {Sa1 , . . . , SaCa } the treatment-specific partition of the indices {1, . . . , na}, where
Ca is the number of clusters among patients treated with therapy a and naj =| Saj | is
the cardinality of cluster j , for j = 1, . . . ,Ca . Finally, cluster-specific quantities are
denoted with the super script “�”. For example, when considering the j−th cluster
for treatment a, the response vector is ya�

j = {yai : i ∈ Saj }while xa�
j = {xai : i ∈ Saj }

is the partitioned covariate matrix. Using a conjugate prior for πa
i , we assume the

following hierarchical model for a = 1, . . . , T :

yai |πa
i

ind∼ Multinomial(1,πa
i )

πa
1, . . . ,π

a
na | ηa�

1 , . . . , ηa�
Ca

, ρa,β ∼
Ca
∏

j=1

∏

i∈Sa
Dirichlet(πa

i ; γ a
i (η

a�
j ,β, zai )),

where β = (β1, . . . ,βK ) is a P × K matrix of regression parameter shared across
levels of response and individuals. The K -dimensional vectors ηa�

1 , . . . , ηa�
Ca

are
cluster-specific parameters, that is, ηa�

j is a parameter shared by all the individual
in cluster Saj . Finally, γ

a
i (η

a�
j ,β, zai ) = (γ a

i1(η
a�
j1,β1, z

a
i ), . . . , γ

a
iK (ηa�

j K ,βK , zai )), is
a vector of log-linear functions on the prognostic marker and cluster-specific param-
eters defined as follows:

log(γ a
ik(η

a�
jk,βk, z

a
i )) = ηa�

jk + β1k z
a
i1 + · · · + βPkz

a
i P .
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2.1 Priors

The choice of a covariate-dependent prior on the random partition enables predictive
biomarkers to drive the clustering. Priors for {ρa} and {ηa�

j }, are defined independent
across treatments. In fact, we want to allow the response probabilities to change
from treatment to treatment even for subject with similar genetic profile. This inde-
pendence assumption prevents the model from inducing a partition that implies the
same response probability for genetically similar subjects that have received different
treatments. The joint law of (ρa, ηa�

j ) is assigned hierarchically as:

P(ρa = {Sa1 , . . . , SaCa } | xa) ∝
Ca
∏

j=1

c(|Saj |)g(xa�
j ), (1)

ηa�
1 , . . . , ηa�

Ca | Ca iid∼ p0.

In Equation (1) the prior on the random partition is given via cohesion function c
and similarity function g.

The cohesion function acts on clusters, depending only on the cluster size. Fol-
lowing [5], we choose a commonly adopted cohesion function, that is c(Saj ) =
α	(|Saj |), α > 0, corresponding to the marginal partition model available from a
Dirichlet process.

The similarity g is a non-negative function that measures how homogeneous
patients in the same cluster are, with respect to predictive markers. It plays a crucial
role since it increases the probability that patients with close genetic profiles are
co-clustered. In Sect. 2.2 we list and describe two similarity function g along with
strategies designed to temper the covariates’ influence on clustering.

Following [10], for p0 we adopted a conjugate Normal-Inverse Wishart. The
posterior distribution for ηa� results inCa independent multivariate normal densities.

The priors for the parameters {βk} are assumed to be independent and, to enhance
predictive performance, we specified horseshoe priors: βpk ∼ N (0, σ 2

pk), for p =
1, . . . , P , where σ 2

pk = λ2
pk · τ 2

k , with λpk, τk ∼ HalfCauchy(0, 1).

2.2 Similarity Function

Predictive biomarkers drive the clustering process trough the similarity function, that
measure the homogeneity of the xi ∈ x�

j . In theory any non-negative function that
produces larger values for more close covariates is suitable. In order to evaluate the
influence of this choice on the response to treatment prediction we present the two
similarity functions that are compared in the simulation study. As mentioned before,
in order to counteract the strong effect that a large number of covariates may have
on partition probabilities, we adopt a strategy to temper their effects. In particular,
we briefly discuss the coarsening of the similarity function.
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The original similarity function proposed by [5] is to choose g(xa�
j ) as themarginal

probability of an auxiliary probability model. It takes the form

g(xa�
j ) =

∫ ∏

i∈Saj
q(xai | ξ a�

j )q(ξ a�
j )dξ a�

j . (2)

Note that {xai } are not considered random: this structure is convenient because the
correlation induced by the cluster-specific parameters {ξ a�

j } leads to large values of
g(xa�

j ) for close {xai }.
For continuous covariates [5] suggests as default choice for g(xa�

j ) the marginal
distribution of xa�

j under a normal sampling model. A conjugate pair for q(· | ξ a�)

and q(ξ a�) greatly facilitates the evaluation of g(xa�
j ): q(· | ξ a�

j ) = N (·|ma�
j , υa�

j )

and q(ξ a�
j ) = q(ma�

j , υa�
j ) = N IG(ma�

j , υa�
j |m0, k0, υ0, n0), that are theNormal and

Normal-Inverse-Gamma density functions, respectively. A simplified version of this
conjugate model forces covariate clusters to have the same variance: υa�

j = υa� and
results in q(ξ a�

j ) = N (ma�
j | m0, s20 ). We will refer to this latter formulation as the

“Auxiliary NN” and the first one as the “Auxiliary NNIG”. Note that we focus here
on continuous covariates. A major advantage offered by similarities of the form of
(2) is that they easily account also for categorical, ordinal and count covariates [6].

[9] propose avariationof (2), defining g(x�
j ) as theposterior predictive distribution

of x�
j in cluster Sj :

g(xa�
j ) =

∫ ∏

i∈Saj
q(xai | ξ a�

j )q(ξ a�
j |xa�

j )dξ a�
j , (3)

with q(ξ �
j |x�

j ) ∝ ∏
i∈Sj

q(xi |ξ �
j )q(ξ �

j ). Since the covariates are used twice, this
function is called “Double-dipper". The rationale for this formulation, that has the
same form as (2), is to give more weight to the local covariate structure. This is
pursued by weighting x�

j s “likelihood” with the “posterior distribution” of ξ
�
j instead

of its “prior”.
As for the auxiliary similarity, when x is continuous we can have the “Double-

dipper NN” or “Double-dipper NNIG”. Finally note that, for multivariate xi =
(xi1, . . . , xiQ), as in our case of study, we use g(x�

j ) = ∏Q
q g(xa�

jq).

As an alternative to variable selection or to reducing the dimensionality of the covari-
ate space through the use of sufficient statistics, [8] proposes to calibrate the influence
of covariates on clustering. In particular we consider the coarsened similarity func-
tion:

g̃(xa�
j ) = g(xa�

j )1/Q . (4)

In order to shrink the degree of coarseningwe want to induce on the partition proba-
bilities, we also consider a small variation of (4) which will be referred to as shrunk
coarsened similarity: g̃(xa�

j ) = g(xa�
j )1/

√
Q .
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2.3 Posterior Computation

Amcmc procedure is used to fit the ppmxmodel. The core part of the algorithm is the
updating of the cluster labels. The computation associated with fitting Equation (1)
is based on [7]’s Algorithm 8, where applying a Gibbs sampling to a state augmented
by the addition of auxiliary parameters greatly facilitates the update of the partition.
Conditional on the updated cluster labels, all the remaining parameters are easily
updated with Gibbs sampler or Metropolis-Hastings steps.

3 Treatment Selection

In order to select the optimal treatment for a new, untreated patient ĩ , we are interested
in the predictive probability of yĩ . Given the observed responses for the na patients
previously treated with therapy a, that is ya , the predictive probability of response
level k under treatment a is

p(yĩ = k | ya, za, xa, z ĩ , x ĩ ),

where z ĩ and x ĩ denote the P and Q dimensional vectors containing prognostic and
predictive markers for the new patient. To facilitate treatment selection for multi-
nomial ordinal outcomes, we adopt utility weights. In clinical oncology response
categories are ordinal and consider changes in tumor size and/or distant migration
after the treatment. We establish utility weights that turn a multinomial setting into
a one-dimensional selection criterion considering the relative importance of each
level of the ordinal response. Let ω be a K−dimensional vector denoting the utility
assigned to tumor response levels. Tomakeω reflect clinical importance of each level
(non respondent, partially respondent and respondent), we set ω = (0, 40, 100)�,
following [4]. We can then compute the mean predictive utility for patient ĩ as:

ϕa(ĩ) =
K∑

k=1

ωk p(yĩ = k | ya, za, xa, z ĩ , x ĩ ).

The ĩ−th patient will be assigned to the therapy ensuring the largest predictive utility,
that can be considered to be optimal among the competing treatments.

4 Illustrative Example

To empirically assess the performance of the coarsened similarity function presented
in Sect. 2.2, we conduct a simulation study. To compare model fit and treatment
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selection we generate synthetic data adopting the processes designed by [4] (see
Scenario 2), with the only difference that we use 10 predictive markers (instead of
90), while we consider the same two prognostic covariates.

This procedure yields n = 152 patients that are assigned to T = 2 competing
treatment. We consider 3 levels for the ordinal-valued response variable. We stan-
dardize all predictive biomarkers.

The hyperparameters for Auxiliary NN and Double-dipper NN similarities are
(m0 = 0, s20 = 1). For hyperparameters needed when the NNIG model is employed
in the similarities, on the ground of the results obtained by [8] in their extensive
simulation study and sensitivity analysis, we set (m0 = 0, k0 = 1, v0 = 10, n0 = 2).

For each similarity function we run the ppmx for 150, 000 iterations, descarding
the first 50, 000 due to burn-in and keeping each 10−th draw from the posterior
distribution. To compare the goodness-of-fit we report the log pseudomarginal like-
lihood (lplm). To evaluate the predictive performances we adopt the same metrics
as in [4]:

(i) mot, that is the number of misassigned patients;
(ii) %�mtu, it measures the relative gain in treatment utilitywith respect to the other

treatment; note that it is defined only for the case of two alternative treatments.
It ranges from −1 to 1 (%�mtu = 1 only in the case of optimal treatment
assignment rule);

(iii) npc that is the number of correctly predicted outcomes.

Prediction is based on a leave-one-out cross-validated strategy. The numerical results
reported in Table1 are averaged over 100 data sets generated for each case. Standard
deviations are given in brackets. The best performance for each metric is reported in
bold.

The Double-dipper similarity outperforms the Auxiliary similarity function.
Double-dipper best performances are probably due to the larger weight given to
the covariates in the model-based clustering process.

Focusing on the lower pane of Table1, we notice that the Double-dipper function
delivers better results when the NNIG model is assumed. In fact, NNIG offers a
greater flexibility than NN, as it does not force clusters to share the same variance.

Restricting our focus to the Double-dipper NNIG similarity function, Table1
offers a last comparison between Coarsening and Shrunk Coarsening. The former
achieves better performances in terms of goodness-of-fit, while the latter is to be pre-
ferred according to those metrics evaluating prediction. Shrunk Coarsened similarity
outperforms Coarsened similarity assigning fewer patient to the non optimal treat-
ment (15.18 vs 24.13) and reaching a larger relative gain in treatment utility (82%
versus 64%). Coarsening, on the other hand, yields slightly better performances in
terms of number of correctly predicted outcome and lpml.

Given the focus on treatment selection rather than inference onmodel parameters,
Shrunk Coarsened Double-dipper NNIG is the similarity function best suited for our
model.
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Table 1 Simulation study on similarity functions

Similarity mot %�mtu npc lpml

Coarsened Auxiliary NN 34.33 0.47 80.63 −129.98

(4.71) (0.05) (6.06) (4.33)

Coarsened Auxiliary NNIG 28.50 0.58 80.41 −129.18

(5.79) (0.08) (5.92) (4.47)

Shrunk Coarsened Auxiliary NN 55.70 0.30 74.28 −155.51

(33.72) (0.41) (7.00) (3.81)

Shrunk Coarsened Auxiliary NNIG 70.82 0.10 67.00 −156.75

(7.64) (0.10) (6.75) (3.95)

Coarsened Double-dipper NN 31.93 0.50 79.91 −124.08

(4.71) (0.05) (5.95) (4.17)

Coarsened Double-dipper NNIG 24.13 0.64 81.70 −121.26
(6.66) (0.09) (5.87) (3.65)

Shrunk Coarsened Double-dipper NN 19.83 0.73 77.40 −141.58

(9.03) (0.10) (6.50) (4.42)

Shrunk Coarsened Double-dipper NNIG 15.98 0.82 77.08 −146.17

(8.06) (0.09) (6.05) (4.44)

5 Conclusion

Employing ppmx to cluster together patients with close genetic profiles and then
evaluate the effectiveness of competing treatments on groups of similar patients
shows promise. In this paper we focus on the choice of the similarity function, that
is pivotal in ppmx models, in the framework of optimal treatment selection. We find
the Double-dipper similarity to perform particularly well when a shrunk coarsening
is employed and the NNIG model is adopted.

Several extension are currently under investigation, with a sharp focus on similar-
ity functions that could enable us to include a larger number of predictive markers.
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Bayesian Growth Curve Model
for Studying the Intra-abdominal
Volume During Pneumoperitoneum
for Laparoscopic Surgery

Gabriel Calvo, Carmen Armero, Virgilio Gómez-Rubio, and Guido Mazzinari

Abstract Laparoscopy is a surgical procedure carried out in the abdomen or pelvis
through small incisionswith the help of a camera to view the organs in the abdomen or
permit small-scale surgery. This technique needs the abdomen to be insufflated with
carbon dioxide (CO2) to obtain a working space for surgical instruments’ manipula-
tion. Identifying the critical point at which insufflation should be limited is crucial
to maximizing surgical working space and minimizing injurious effects. Bayesian
nonlinear growth mixed-effects models are applied to data coming from a repeated
measures design. The study allows to assess the relationship between the insufflation
pressure and the intra-abdominal volume as well as to draw inferences and predic-
tions for the main outcomes of the process.

Keywords Intra-abdominal pressure · Logistic function · Sigmoidal function

1 Introduction

Laparoscopy is an operation carried out in the abdomen or pelvis through small
incisions with the help of a camera. It is performed by insufflating CO2 into the
abdomen that yields a working space, i.e., pneumoperitoneum, and passing surgical
instruments through small incisions using a camera to have external visual control
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of the procedure [7]. Laparoscopy technological development has been limited to
improvements in camera image quality, whereas little innovation has been made in
insufflation devices.

This paper is based on a previously published work [1] about the subject with
the aim of estimating, through Bayesian inference, a non-linear model [3] about
the relationship between the CO2 insufflation pressure, i.e., intra-abdominal pres-
sure (I AP), measured in mmHg, and the intra-abdominal volume (I AV ) generated,
measured in L.

Data for the current modelling come from a previously published individual
patient meta-analysis [6] that included experimental information from three pre-
vious clinical studies. It consists in a repeated measure design where the variable of
interest I AV is measured for each individual with regard to different I AP values,
and age and sex have been taken into account as covariates. The final databank has
198 patients, 118 men and 80 women, with a total of 1361 observations.

2 Bayesian Growth Curve Model

Let the non-linear mixed effect model for the random variable Yi j that records the
I AV value for individual i , i = 1, . . . , n with I AP value xi j , j = 1, . . . , Ji , defined
as

(Yi j | μi j , σ
2) ∼ N(μi j , σ

2), (1)

where σ 2 is the unknown variance associated to the random measurement error. The
meanμi j is the true I AV value of patient i with I AP value xi j , and can be expressed
in terms of the conditional logistic growth function [1] as follows

(μi j | ai , bi , ci , xi j ) = ai
1 + exp{−(bi + ci xi j )} , (2)

where

ai = β
(a)
0 + u(a)

i + β
(a)
W IW (i) + β

(a)
A Agei , (3)

bi = β
(b)
0 + u(b)

i + β
(b)
W IW (i) + β

(b)
A Agei , (4)

ci = β
(c)
0 + β

(c)
W IW (i). (5)

β0 = (β
(a)
0 , β

(b)
0 , β

(c)
0 )′ stands for the common intercept with the men patients being

the reference group, IW (i) is the indicator variable with value 1 if individual i is a
woman and 0 otherwise, with associated coefficients βW = (β

(a)
W , β

(b)
W , β

(c)
W )′, and

β A = (β
(a)
A , β

(b)
A )′ are the vector of regression coefficients associated with the age.
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Random effects u(a)
i and u(b)

i , i = 1, . . . , n, are assumed normally distributed accord-
ing to f (u(a)

i |σ 2
a ) = N(0, σ 2

a ) and f (u(b)
i |σ 2

b ) = N(0, σ 2
b ), respectively.

In addition, the Bayesian model is completed with the elicitation of a prior distri-
bution for the parameters and hyperparameters θ = (β0,βW ,β A, σ, σa, σb)

′ of the
model. We assume prior independence and a non-informative prior scenario for all
of them. Normal distributions with a large standard deviation for most of the com-
mon regression coefficients are selected as prior distributions, π(β

(a)
0 ) = π(β

(b)
0 ) =

π(β
(c)
0 ) = π(β

(a)
W ) = π(β

(b)
W ) = π(β

(c)
W ) = π(β

(a)
A ) = π(β

(b)
A ) = N(0, 102). Further-

more, following [4],wehave selectedwideuniformdistributions as prior distributions
for all standard deviation parameters, π(σ) = π(σa) = π(σb) = U(0, 10), as well
as for β

(a)
0 and β

(c)
0 , π(β

(a)
0 ) = U(0, 20), and π(β

(c)
0 ) = U(0, 10).

An important value for clinical practice is the asymptotic deceleration point
(ADP) [5]. This point is the last of the critical points of the logistic growth curve. It
is calculated by equalling the fourth derivative to 0. It is located after the maximum
deceleration point, which is the minimum of the second derivative of the curve. The
ordinate (ai (3 + √

6)/6) of point ADP for individual i is extremely close to the hor-
izontal asymptote of the curve ai , so its second derivative, i.e. its acceleration, is neg-
ative but already very close to 0. This is due to the fact that the logistic growth curve
is always increasing. Finally, the value of the abscissa at this point is expressed as

ADPx (i) = −(ln(5 − 2
√
6) + bi )/ci . (6)

0.0

0.1

0.2

0.3

ADP pressure

0.0

0.1

0.2

0.3

4 8 12 16 4 8 12 16
ADP pressure

Fig. 1 Approximate posterior distribution density of the ADP pressure for men (on the left) and
women (on the right)
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3 Posterior Results

The posterior distribution π(θ, u | D), where u = (u(a)
i , u(b)

i ) and D represents the
observed data, contains all the relevant information of the problem and it is usually
the starting point of all relevant inferences. It was approximated by means ofMarkov
chain Monte Carlo (MCMC) simulation methods through the JAGS software [8].

Figure1 shows the approximate posterior distribution density of the ADPx for
men and women aged 64.65years (the mean of the sample). Posterior mean for the
ADPx ’s is 8.86 mmHg for men and 10.06 mmHg in the group of women. Men
do not need as much pressure as women to obtain the optimal I AV . This relevant
difference between male and female patients should be taken into account during the
laparoscopic procedure.

Individual prediction is a relevant issue of the study. In this sense, the posterior
predictive distribution of the I AV variable Yn+1, j of a new individual of the target
population with an I AP value xn+1, j is computed as follows

0 5 10 15

IAP

IA
V

0 5 10 15

0
2

4
6

8
10

0
2

4
6

8
10

IAP

IA
V

Fig. 2 Posterior predictivemean of the I AV and 95%predictive interval with regard to I AP values
for a man (top panel) and a woman (bottom panel) aged 64.65years (the sample mean)
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(Yn+1, j | xn+1, j ,D) ∼
∫

(Yn+1, j | xn+1, j , θ , un+1) π(θ , un+1 | D) d(θ , un+1),

(7)
where D represents the observed I AV data.

Figure2 shows the posterior predictive mean and a 95% predictive interval for the
I AV value of a new individual of the target population with respect to their I AP
by sex. The stabilisation of the values of I AV in both groups can be clearly seen, as
well as the variability associated with the predictive processes.

4 Conclusions

We have presented a logistic growth model that aims to achieve an optimal surgical
workspace while minimizing the pressure administered to the patient. According to
our results, the pressure needed to arrive to the ADP , which is the most critical point
in this work, is higher for women. However, there is high variability in the posterior
results.

This is a preliminary Bayesian study that will serve as a starting point for testing
more complex models to better explain the data. Additionally, in the future, other
covariates related to anthropometric measurements will be recorded and included
into the analysis to reduce the uncertainty about the estimates and predictions, and
increase the accuracy of the insufflation procedure. In addition, to better explain
heterogeneity among individuals, an alternative treatment of random effects in the
non-parametric statistical scheme [2] would be an interesting project.
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