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Abstract. Cognitive intelligence-enabled manufacturing (CoIM) uses machines
to utilize technologies that mimic human cognitive abilities to solve complex
problems in manufacturing. With the support of a cognitive intelligence-enabled
manufacturing system (CoIMS) architecture, information flow is organized and
coordinated appropriately, starting from the machine sensory system, central sys-
tem to the motor system. Machine perceptive abilities monitor, sense and capture
equipment performance, aggregate data, and help gain valuable insights into the
production process. It uses the industrial internet of things, data analytics, arti-
ficial intelligence and related techniques and cognitive computing and related
technologies to address production issues in an autonomous manner. As such,
CoIMS solves complex production problems. It also transforms manufacturing
by improving product quality, productivity, and safety, reducing costs and down-
times, identifying knowledge gaps, and enhancing customer experience. Even so,
a CoIMS is not responsible for making the final decision. Instead, it supplements
information on the fly for engineers to take necessary actions.

Keywords: Cognitive intelligence ·Manufacturing · Self-X cognition · Smart
decision making · Artificial intelligence

1 Introduction

Smart factories are automated production facilities that use sensors, cyber-physical sys-
tems (CPS), industrial internet of things (IIoTs), artificial intelligence (AI), robotics, and
other modern technologies to improve efficiency and reduce costs [1]. These technolo-
gies also aid inmonitoring, diagnostics, and prognostics. However, cognitive intelligence
can strengthen the learning mechanism in manufacturing systems. For instance, the 5C
architecture for implementing CPS inherently supports the reasoning in making manu-
facturing cognitive intelligent [2]. TheCPSmanages the interconnected systems between
the physical assets and computational capabilities while leveraging the interconnectivity
of machines to become cognitive intelligent [3]. Besides, the CPS coupled with IIoTs
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adds a layer of knowledgeability to any system through data collection and monitoring.
This is established through the Data-Information-Knowledge-Wisdom (DIKW) hierar-
chy, which facilitates the functional relationship between data, information, knowledge,
and wisdom to better understand a subject [26], a trait of human cognition. Strube (2001)
defines cognition as “a class of advanced control mechanisms that allow for sophisti-
cated adaption to changing needs (e.g., learning and planning) through computations
operating on mental representations” [4]. These mental actions form the foundation for
cognitive science. Cognitive science studies human thought processes, including per-
ception, memory, language, reasoning, problem-solving, decisionmaking, planning, and
learning [5]. It has been used across many fields. For instance, Tesla electric vehicles uti-
lize cognitive intelligence features in their vehicle maintenance program tomonitor their
health condition continuously, and users are signalled in case of any aberrations while
proactively and independently ordering the replacement ahead of servicing schedules
[6].

The human mind is a complex system otherwise described as an information pro-
cessing machine that receives, stores, retrieves, transforms, and transmits information
through computational processes [5, 7]. With the help of the sensory receptors, humans
extract meaning from a sensation due to contact with external stimuli through percep-
tion [8]. Figure 1 illustrates the stages of information processing in humans. Humans
use their senses to gather information acquired through environmental stimulation. It
is then followed by perception, cognition, or recognition within the information pro-
cessing region. For example, humans recognize objects by their shape, colour, size, or
speech. Consequently, the human cognitive system makes decisions by identifying and
comprehending these patterns. In this paper, the authors use the information processing
mechanism in Fig. 1 and the general view of human cognitive architecture in Fig. 2 as
the foundation and inspiration for proposing a CoIMS, where Fig. 2 details the stages
of information transfer.

Fig. 1. Cognition, perception, and
information processing

Fig. 2. A general view of human cognitive
architecture

Manufacturing is evolutional, andCoIM is a phase in this advancement. This progres-
sion toward human-machine collaboration andSelf-Xcognitive systems is the inspiration
behind CoIM and the proposed architecture of CoIMS. In addition, this paper highlights
the enabling technologies of CoIMS and ongoing applications across selected industries
using cognitive intelligence-enabled technologies.
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2 Fundamentals of CoIMS

The CoIMS imitates ordinary brain-related skills and acts as the information process-
ing region, including memory, attention, concentration, problem-solving, creativity, and
critical thinking. ACoIMS applies these imitated skills to execute regular manufacturing
tasks. The information processing capacity of humans, plus the system’s mechanism, is
described as cognitive architecture (see Fig. 4) [5]. Like brain-based skills, the CoIMS
has different compartments with specific skills for performing categorical functions, as
shown in Fig. 3.

Fig. 3. CoIMS composition

Engineers have, over the years, made tremendous progress in automating the replica-
tion of human senses. These human-like sensory systems are used in smartmanufacturing
for system diagnostics and prognostics. For instance, machine vision [9] technologies
are used in visual inspection, fault diagnostics, and product defect detection. Other
machine perceptions include machine audition [10], machine olfaction [11], machine
touch or tactile perception [12], and machine gustatory (the process of mimicking the
perception of taste and feel experiences food at a machine level), a term coined pur-
posely for illustration, has seen very little progress. Machine perceptions mimic human
senses to gather data on the manufacturing operations and their surroundings. Data col-
lected is forwarded for analysis and interpretation. Then, the machine motor systems
coordinate certain machine motor functions as per the directives of the CoIMS to solve
production issues. Based on this logic of mimicking human cognition, perception, and
information processing to solve problems as described in this paper, we define cognitive
intelligence-enabled manufacturing (CoIM) as using machines to utilize technologies
that mimic human cognitive abilities to solve complex problems in manufacturing.

Generally, human cognition and learning are based on three thematic theories: “the
nature of knowledge, learning and transfer, and the nature ofmotivation and engagement”
[13]. A CoIMS is structured on the same pattern of cognition and learning. Unlike
humans, machines acquire knowledge through data supply (historical and real-time).
Subsequently, they learn new information from the acquired data using knowledge graphs
[14] to map data points using relationships. Identical to human knowledge transfer and
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learning is themachine learning technique called transfer learning [17]. Transfer learning
is used in transferring knowledge in different but related source domains to improve the
performance of target learners on a target domain [15, 16]. As humans learn and transfer
knowledge, they are motivated extrinsically or intrinsically to become better at their
tasks. Likewise, machines use reinforcement learning (RL) [21]. Applications of RL
are seen in robotic control, end-to-end control, recommendation systems, and natural
language dialogue systems [18, 19]. However, a critical cognitive skill, Metacognition,
is barely used in smart systems. Metacognitive processes refer to the ability to reflect on
one’s thinking processes and evaluate them for improvements [20]. Metacognitive skills
such as self-monitoring and evaluation, help the system to reflect on its performance,
thus enabling it to be self-motivating, engaging, and enthusiastic about finding problems.
Such abilities enable machines to identify problems early and take corrective action.

3 CoIMS Characteristics and Enabling Technologies

CoIMS simulates human cognition to perform production tasks and solve problems. It
learns from experience and adapts its behaviour based on system feedback. However,
the CoIMS needs the support of enabling technologies, to learn from data and perform
tasks efficiently without explicit programming.

3.1 Characteristics of CoIMS

A CoIMS is knowledgeable, flexible, and attentive to be adaptive. It imitates human
cognitive architecture using flexible programmable systems and technology for reason-
ing, planning, and solving problems. A CoIMS independently performs diagnostics and
prognostics. It utilizes metacognitive abilities, cognitive reasoning, learning, knowledge
transfer, mapping, and graphing.

3.2 Enabling Technologies in CoIMS

CoIM is dependent on enabling technologies which are integrated andwork as collabora-
tive systems. They include cognitive computing and informatics, machine learning, deep
learning, big data and analytics, robotics, CPS, IIoTs, machine vision, cloud comput-
ing, knowledge graphs, natural language processing (NLP), and reinforcement learning.
These techniques and technologies are tools formimicking human cognitive abilities and
are applied to manufacturing processes. As a result, the system performs diagnostics and
suggests preventive and corrective actions. For example, to take proactive measures in
CoIM, the machine learning (ML) and deep learning (DL) models are trained on the data
harvested within the machine sensory system. The trained models acquire knowledge
to identify patterns within a defined data group and present detailed information on the
right approach to solve a production issue. The CoIMS supplements relevant information
to engineers for analysis and implementation, thereby enhancing an interactive change
and innovation drive.
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4 The Proposed System Architecture of CoIM

ACoIMS functions effectively and efficiently with a defined architecture, namedCoIMS
architecture in this paper (see Fig. 4). The compositions of the CoIMS architecture in
Fig. 4 are depicted in Fig. 3, which are modelled using Figs. 1 and 2. Inspired by the
functionalities of Figs. 1 and 2, machine sensory systems perform the role of machine
perceptions in a CoIMS. The machine central systems and motor systems in a CoIMS
mimic human central thinking systems and motor systems shown in Fig. 2. The machine
central system is the engine of the CoIMS, where it analyzes data from the machine
sensory system (to identify inefficiencies and potential production issues). The machine
motor system is also responsible for coordinating real-time and historical data in the
machine central system for decision making. As a result, the CoIMS interacts with
cognitive machines, processors, devices, and cloud platforms to identify issues and
communicate them to engineers.

The CoIMS architecture is the underlying principle behind a cognitive intelligence-
enabled factory. As depicted in Fig. 5, a cognitive intelligence-enabled factory com-
prises enabling technologies, a Self-X cognitive manufacturing network [21], machine-
to-machine cognitive-mutual collaboration, a real-time data centre, a CoIMS system,
and CoIM digital twin. Robots and other manufacturing equipment in this factory adopt
self-X cognitive abilities in their operations. In this factory, machines can self-learn and
unlearn. Enabling technologies and techniques enhance machine-to-machine interaction
while optimizing operations and making the system adaptive and flexible to understand
changes in the information process flow. It identifies problems by pulling historical
data if the data in the problem is incomplete by using cloud computing methodolo-
gies. Thereafter, predictive actions are forwarded to engineers for decision-making and
implementation based on data analytics. Simply, the CoIMS can be described as a con-
sultant (an expert using key enabling technologies to function), and the human is the
overseer. For instance, cognitive chatbots mimic human thinking processes using NLP
to engage in causal analysis and advisory interactions with engineers onways to improve
total system performance. Besides, this factory adopts a cognitive digital twin (CDT)
technology, a real-time virtual cognitive system [25]. The CDT aids in analyzing real-
time performance, adaptability, and cognitive capabilities. Thence, results in real-world
system optimization, problem-solving, and taking proactive measures.

Solving previously unknown issues birth new information to effectively leverage
manufacturing operations. For instance, if a new issue of material quality defect arises
during the production process, CoIMS will refer to historical data, draw inferences, and
make diagnostics or prognostics where necessary. Solving this new problem adds to
the existing knowledge database. As such, the CoIMS can be described as a system
equipped with the ability to gather new information in the manufacturing plant and
use the acquired information to improve product quality, productivity, and safety. The
same approach applies to cost and downtime reduction, identifying knowledge gaps, and
enhancing customer experience.

Besides Tesla, which comprehensively applies cognitive intelligence to their systems
at a product level, IBM Watson IoT perfectly illustrated how cognitive intelligence-
enabled systems could dramatically enhance efficiency and maximize performance on
the shop floor within the manufacturing plant.
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Fig. 4. A cognitive intelligence-enabled manufacturing system (CoIMS) architecture

Fig. 5. A cognitive intelligence-enabled factory

For instance, in their illustrative video case study, an NLP-enabled cognitive chatbot
relies on an enormous amount of manufacturing data, similar to the operation of the
machine sensory systems in Fig. 3. The chatbot uses a visual inspection system to
identify defective products and based on historical and production data, it recommends
probable servicing actions to the maintenance team 24. After that, the engineers feed
the new solution into the cognitive system for future proactive decision-making.

Furthermore, Zheng et al. (2021) highlighted the Self-X cognitivemanufacturing net-
work and focused on an industrial knowledge graph (IKG)-based multi-agent reinforce-
ment learning approach in manufacturing networks with a higher level of automation.
They used a simulated multi-robot based on their proposed IKG-based MARL-enabled
approach, comprising the Self-X cognitive attributes [22]. The success of the Self-X
cognitive manufacturing network lays a strong foundation for a cognitive intelligence-
enabled factory in Fig. 5. Also, Zheng et al. (2022) introduced the visual reasoning-based
mutual-cognitive human-robot collaborative (HRC) system. The proposed system will
enable industry robots to develop visual cognitive reasoning and perception during task
executions, which is relevant to activities on a manufacturing shop floor. With a holistic
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scene analysis, robots can logically and cognitively understand activities around them,
and then predict and support human actions in that environment [23].

Lastly, works on cognitive digital twins (CDT) for manufacturing are explored for
future implementations where it uses learning, reasoning, and automatic adjustment for
better decision-making using real-time IoT data [25, 27]. A CDT is relevant as it requires
semantic modelling, systems engineering, and product lifecycle to achieve higher levels
of automation and intelligence [27]. Nevertheless, it is a critical technology for the
establishment of a cognitive intelligence-enabled factory.

5 Conclusion and Future Work

This paper described the inspiration behind CoIM. Fundamentals and enabling technolo-
gies in CoIMS coupled with illustrative examples were also discussed. In addition, we
echo the Self-X cognitive manufacturing network with multi-robot collaboration and
envision a cognitive intelligence-enabled factory that generates a massive amount of
data to enable manufacturers to gain deeper insight into the workings of CoIMS. After
that, the cognitive system can gather new information in the manufacturing plant and
use the acquired information to subsequently improve product quality, productivity, and
safety. Others include cost and downtime reduction, identifying knowledge gaps, and
enhancing customer experience. In the near future, the authors shall explore the fluidity
in collaboration between varying robots (having distinct functions)with Self-X cognitive
capabilities in a cognitive intelligence-enabled factory.
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