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Abstract. This paper investigated an electricity control strategy to
minimize the electrical peak demand of a microgrid system composed
of households. Each household can install a distributed generation sys-
tem by applying for the subsidy program that the central grid system
operator (GSO) encourages. The distributed generation system includes
an electricity storage system and residential electricity generators such
as photovoltaics and wind turbines. Each consumer seeks to arrange
an appropriate schedule that minimizes the overall cost including elec-
tricity bills, investment costs, and penalty costs incurred by consumer
dissatisfaction. Simultaneously, the GSO wants to minimize the peak
demand among households. To address the problem, this paper developed
a mixed-integer bilevel programming (MIBP) model. An exact algorithm
based on consumer behavior is developed to attain optimal solutions for
optimistic consumers. Numerical experiments are presented to illustrate
the practical use of the model in the applications.

Keywords: Microgrid system · Peak demand · Bilevel programming

1 Introduction

Electricity consumption has rapidly increased globally over the last few decades.
The ever-growing electricity demand affects the stability of electricity grids. If the
demand exceeds the capacity reserved by power generators in the grid, critical
failures such as overloads of power transmitters or blackout may happen. Hence,
it is important to manage the consumption demand so that it can be controlled
against the maximum capacity of the grid. The highest demand that occurs over
a specified time period is called peak demand. Especially in South Korea, daily
peak demand has shown a relatively higher growth rate than the daily average
electricity consumption [1]. This trend shows that the peak demand is getting
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closer to the maximum capacity and that demand within any given day fluctuates
significantly. A simple solution is to add a new generator to the grid (i.e., supply-
side management) to avoid the peak demand exceeding the maximum capacity.
However, the construction of new baseload generation sources, such as nuclear
and coal plants, can be a significant financial burden for the grid system operator
(GSO). In addition, the simple expansion of grid generators can cause a low
utilization rate for some generators.

Another way to deal with the problem of the supply-demand imbalance is
demand-side management. In demand-side management, the GSO can level off
a fluctuating demand or reduce the peak demand by rewarding (or penalizing)
users depending on conditions. If the program proposed by the GSO makes
it reasonable for users to change their electricity usage patterns, the realized
demand will help match supply and demand as a response to the program.
Another way to manage the demand side is to reduce a residential microgrid
system by installing small decentralized generators on the grid. If a consumer
has a small decentralized generator from renewable energy sources (RES) such
as wind turbines and photovoltaics, the consumer in the microgrid system can
generate electricity, save electricity for his or her energy storage system (ESS),
and trade the surplus electricity within an energy market. With these functions,
consumers should control their electricity usage according to the pre-announced
central electricity planning strategy. Both the GSO and individual consumers can
benefit from such a microgrid system. The GSO can reduce the peak electricity
demand level and contribute to decreased carbon emissions by financially sup-
porting consumers in building their RES-based generators. Consumers can save
on their electricity bills by generating electricity themselves at lower costs and
by making a profit by selling electricity credits that have been locally generated.

However, constructing a microgrid system with financial assistance from the
GSO provokes decentralized decisions that assume electricity usage in households
is scheduled after the GSO makes its decisions regarding subsidization.

Therefore, the following consecutive questions arise:

• What is the optimal proportion of GSO subsidies for investments in RES-
based generators and ESS to reduce peak demand in microgrid systems?

• How should the GSO decide whether or not to install RES and ESS?
• What is the optimal schedule for the electrical appliances installed?

In the microgrid system, participants constitute a Stackelberg leader-follower
game, especially in bilevel programming, where consumers’ lower-level programs
are embedded in the GSO’s upper-level program [2,3]. The bilevel program deals
with decision-making in various sectors such as the electricity generation market
and the chemical industries, where network members interact with each other in
a supply chain, but not in a cooperative manner [4].

The proposed mixed-integer bilevel programming (MIBP) generalizes the
classical bilevel programming setup by considering binary decisions about invest-
ments in RES and ESS at a lower level. To the best of our knowledge, there is no
existing research that integrates individual electricity strategies with GSO subsi-
dization. In this study, we develop a solution algorithm for an MIBP that includes



470 Y.-B. Woo and I. Moon

discrete decisions based on optimistic consumers–an algorithm that although it
has been treated as generally intractable [5]. The performance of the algorithm
is evaluated with randomly generated instances.

The remainder of this paper is organized as follows. Section 2 describe the
problem and introduce the MIBP model. Section 3 propose an algorithm based on
optimistic consumers. In Sect. 4, numerical experiments are conducted. Finally,
conclusions are presented in Sect. 5.

2 Problem Definition and Mathematical Formulation

The proposed MIBP consists of a GSO’s linear program and consumers’ mixed-
integer linear program. In the MIBP, we assume that the GSO is the leader and
each consumer is the follower. The detailed assumptions of the MIBP are defined
as follows: (1) the total time is divided into identical time slots; (2) consumers
can install the RES and ESS simultaneously with subsidies from the central
GSO; (3) energy potential of RES is predetermined; and (4) electricity loads of
appliances are deterministic; The following are the notations used in the MIBP.

Sets

N set of consumers
Ai

1 set of basic appliances
Ai

2 set of schedule-based appliances
Ai

3 set of model-based appliances
Ai set of all appliances (Ai = Ai

1

⋃
Ai

2

⋃
Ai

3)
T set of finite time slots

P i
a set of predetermined pattern for using schedule-based appliance a

Parameters

la length of operation time of appliance a ∀a ∈ Ai

Ea
electricity required for the operation of appliance a
per one hour

∀a ∈ Ai

Ea maximum electricity of appliance a used per one hour ∀a ∈ Ai

Ea minimum electricity of appliance a used per one hour ∀a ∈ Ai

π amortized cost of investment in the RES and ESS
ẽat electricity demand of appliance a at time t ∀a ∈ Ai, ∀t ∈ T
α minimum requirements of consumers’ utilization
ct unit supply cost of consumer at time t ∀t ∈ T
pt electricity price from the consumer at time t ∀t ∈ T

εdis efficiency when electricity is discharged from the ESS

εcha efficiency when electricity is charged to the ESS
Cout

t outside centigrade degree at time t ∀t ∈ T
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Decision variables

eit quantity of electricity used at time t ∀i ∈ N , ∀t ∈ T
eiat quantity of electricity of appliance a used at time t ∀i ∈ N , ∀a ∈ A, ∀t ∈ T
einit inbound quantity of electricity from a supplier at time t ∀t ∈ T
eoutit outbound quantity of electricity to a supplier at time t ∀t ∈ T
echait quantity of electricity charged in ESS at time t ∀t ∈ T
edisit quantity of electricity discharged in ESS at time t ∀t ∈ T
egenit quantity of electricity generated by RES at time t ∀i ∈ N , ∀t ∈ T
uit utilization of user at time t ∀i ∈ N , ∀t ∈ T
xi 1, if a consumer invests in ESS and RES; 0, otherwise. ∀i ∈ N
y proportion of subsidies
λiap 1, if predefined schedule p is selected for appliance a; ∀i ∈ N , ∀a ∈ A2i

0, otherwise. ∀p ∈ P i
a

Cin
it inside centigrade degree at time t ∀i ∈ N , ∀t ∈ T

The leader’s and follower’s optimization problems are presented separately
below.

2.1 Leader’s Upper-Level Problem

When the capacity of baseload generation sources is given, the GSO decide
the percentage of subsidies for followers, as well as a time-varying electricity
pricing schedule. The two objectives of the leader’s problem are to minimize
the maximum peak demands among households and to minimize the cost of the
subsidy. The relevant mathematical formulation is developed as follows:

min {max
t

∑

i∈N

eit,
∑

i∈N

πyxi} (1)

s.t. 0 ≤ y ≤ 1 (2)
{eit}, xi ∈ arg min

{eit}∈R
|t|
+ ,

xi∈B

{(4) : (5)(5) − (20)(20)}, ∀i ∈ N (3)

Objective function (1) simultaneously minimizes the peak demand and the sub-
sidy required for individuals. Constraint (2) defines the range of proportion of
subsidy over investment cost π. Constraint (3) represents the optimal electricity
load profile of individual consumers which will be presented in Sect. 2.2.

2.2 Follower’s Lower-Level Problem

In the follower’s problem, we assume three types of appliances in households.
A type-1 appliance is a machine required for daily use (e.g., refrigerators). A
type-2 appliance is used based on schedules. (e.g., televisions) Patterns of using
each schedule-based machine are predetermined by the users and are known
and have been established in this study. A type-3 appliance is a model-based
machine. Model-based machines operate to maintain comfortable living envi-
ronments (e.g., air conditioners and electric heaters). The formulations for the
lower-level problem are referred to [6].
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Objective Function. In the residential microgrid system, consumer i ∈ N
wants to minimize the overall cost of electricity bills, investment costs, and
deductions from the GSO’s subsidy support.

min
∑

t∈T

cte
in
it −

∑

t∈T

pte
out
it + π(1 − y)xi (4)

The objective function (4) minimizes the summation composed of electricity
bills, the revenue generated from selling surplus electricity to the power market,
and subsidies from the GSO. In the operation of RES and ESS, we assume that
the quantity of electricity charged (or discharged) is limited by capacity.

Constraints for RES and ESS. In the operation of RES and ESS, we assume
that the quantity of electricity charged (or discharged) is limited by the capacity
B.

0 ≤
t∑

a=1

(εchaechaia − εdisedisia ) ≤ B ∀t ∈ T (5)

einit − eoutit + egent = eit + εchaechait − εdisedisit ∀t ∈ T (6)

0 ≤ echait ≤ Rxi ∀t ∈ T (7)

0 ≤ edisit ≤ Rxi ∀t ∈ T (8)

eoutit ≤ Mxi ∀t ∈ T (9)

eit ≥
∑

a∈A

eiat ∀t ∈ T (10)

Constraint (5) mandates that the energy level in ESS at time t should be non-
negative and lower than the maximum capacity of ESS. Constraint (6) is the
balance equation of electricity, which can be traded with an electricity provider,
transferred to the ESS, and generated by RES in the residential area. Constraints
(7)–(9) ensure that it is possible to sell energy and store energy only if the
RES and ESS are determined to be installed by a consumer. Constraint (10)
aggregates the entire electricity load from the operation of appliances at time t.

Constraint for Type-1 Appliances. A type-1 appliance always requires a
certain energy level, which is given. For instance, a refrigerator needs a specific
level of energy to maintain a low temperature.

eiat ≥ ẽiat ∀a ∈ Ai
1, ∀t ∈ T (11)

Constraint (11) indicates that energy is consumed regularly in an appliance a at
a time slot t.

Constraints for Type-2 Appliances. An appliance that belongs to a type-2
category is only operated within a consumer’s preferred time t ∈ [T a, T a]. Two
constraints are required for a type-2 appliance:
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eiat ≥
∑

∀p
Eaptλiap, ∀a ∈ Ai

2, ∀t ∈ [T a, T a] (12)

∑

∀p
λiap = 1, ∀a ∈ Ai

2 (13)

Constraints (12) and (13) ensure that only one predefined schedule can be deter-
mined, based on its association with an appliance, where Eapt is the electricity
load of the appliance at time slot t relevant to schedule p.

Constraints for Type-3 Appliances

Cin
it = Cin

i,t−1 + γ(Cout
t − Cin

i,t−1) + δeiat ∀a ∈ Ai
3, ∀t ∈ T (14)

Ea ≤ eiat ≤ Ea ∀a ∈ Ai
3, ∀t ∈ T (15)

Ctarget
t − ε ≤ Cin

it ≤ Ctarget
t + ε ∀t ∈ T (16)

Constraints (14) and (15) describe energy demanded in order to adjust for
environmental conditions such as temperature and humidity at a given time
slot. Constraint (14) represents a physical model that expresses the relationship
between environmental conditions and electricity consumption. Constraint (15)
stipulates that the electricity load of an application should be within the oper-
ating range. Constraint (16) represents that the environmental condition over
time should be within the desirable condition range.

Constraints on a Consumer’s Dissatisfaction

uit ≥
∑

a∈Ai

∑

p∈P

ũaptλiap ∀t ∈ T (17)

∑

t∈T

uit ≤ 1 − α (18)

0 ≤ eit, eiat, e
gen
it , einit , eoutit , echait , edisit , Cin

it , uit (19)
xi, λiap ∈ B (20)

In the microgrid system, a consumer’s dissatisfaction level is calculated by the
predefined dissatisfaction level of schedule p. Constraint (17) defines the dissat-
isfaction level at time t. Constraint (18) stipulates that the aggregated dissatis-
faction level is lower than or equal to the given level. Constraints (19) and (20)
define decision variables.

3 Solution Strategy

It is obvious that a consumer should install the equipment by applying for the
subsidy program if the profit from operating ESS and RES is greater than the
cost of installing ESS and RES. Using this fact, one can obtain the threshold
proportion of a subsidy. If decision variable y is equal to the threshold, the
consumer is indifferent about installing ESS and RES. If it is assumed that
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consumers always choose to install the equipment to reduce peak demand (opti-
mistic), we can easily find the global optimal solution. In our problem, Pareto
points correspond to peak demand for a whole grid system and subsidy sup-
port. If we predetermine y as the threshold that spurs a household to adopt
the program, the dominating Pareto point is determined by calculating all the
schedules of consumers and the total subsidies. An algorithm for obtaining the
Pareto curve is presented in Algorithm 1.

Algorithm 1: Algorithm for the optimal solution for optimistic consumers

1: Step 1: Finding optimal solutions of lower-level problems (LLPs)
2: initialize a list R with 0.
3: for i = 1 → N
4: solve ith LLP with y = 0 and let αi be the optimal function value.
5: find an optimistic solution

{eNone
it } ← argmin{maxt{eit} : OBJLLP ≤ αi, (5) − (20)}.

6: solve ith LLP model with y = 1 and let βi be the optimal function value.
7: find an optimistic solution

{eESS
it } ← argmin{maxt{eit} : OBJLLP ≤ βi, (5) − (20)}.

8: set ŷi = 1 − (α − β))/π.
9: add ŷi into R in ascending order

10: Step 2: Obtaining Pareto points
11: for i = 1 → |N | + 1 do

12: initialize {êt} and B̂ be a zero vector and a zero value.
13: get y from R in order.
14: for j = 1 → |N | do

15: If ŷj ≥ y then êt ← êt + eESS
jt , ∀t ∈ T and B̂ ← B̂ + πy .

16: Otherwise êt ← êt + eNone
jt , ∀t ∈ T .

17: obtain a Pareto point with (maxt {êt}, B̂).

4 Computational Experiments

To demonstrate the proposed solution algorithm for solving the MIBP model, we
consider a case study on a hypothetical grid system [6]. There are 27 households
that can switch their existing energy consumption system to a microgrid system.
We refer to an instance of the single microgrid system as baseline data [6]. By
changing three sets of data, such as (i) minimum satisfaction level, (ii) RES-
based generation potential, and (iii) energy consumption style with three levels,
such as “low,” “moderate,” and “high,” a total of 27 instances corresponding to
the households are obtained. For (i), α is set by 0.9, 0.7, and 0.5. For (ii), Gmax

t is
changed to 80%, 100%, and 120%. For (iii), energy loads of type-1 appliances are
changed to 90%, 100%, and 110% and the set of type-2 appliances used in one
household is set according to its level of (iii). Table 1 shows input data for type-2
appliances. All consumers use “aType2

1 ” and “aType2
2 ” appliances. Consumers in

a “moderate” level of (iii) additionally operate a “aType2
3 ” appliance. Consumers

in a “high” level of (iii) use all the appliance types.
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Table 1. Input data for type-2 appliances.

Type-2 appliances aType2
1 aType2

2 aType2
3 aType2

4 aType2
5

[T a, T a] [8,22] [11,21] [11,21] [11,21] [18,23]

la 3 3 3 2 2

Ea 0.8 kWh 1.1 kWh 1.6 kWh 0.9 kWh 1.4 kWh

βa 0.025 0.025 0.025 0.04 0.04

We assume that the investment cost for installing ESS and RES is $20,938.
To amortize the investment cost of the equipment, we consider the capital charge
factor for the land, assuming the interest rate of 8% and a lifetime of 5 years.
Thereby the equivalent daily cost of the investment cost is set to 14.15 ($/day).
The electricity cost and price are assumed to be constant and are set to 3.5
($/kWh) and 2.8 ($/kWh), respectively.

To validate that the capacity of ESS affects the reduction of peak demand,
we conducted experiments by changing the capacity of ESS to 1.8 kWh (small),
2.4 kWh (medium), and 3.0 kWh (large). The results can be found in Fig. 1. The
results show that the Pareto frontier obtained for a large capacity of consumption
dominates other Pareto frontiers. This means that increasing the capacity of ESS
is effective in reducing peak demand.

Fig. 1. Pareto frontiers with respect to the ESS capacity

5 Conclusions

We investigated Stackelberg-game-based modeling and optimization for reducing
peak demand for a microgrid system. In order to find the optimal solution for
optimistic consumers, we developed an exact algorithm. Computational exper-
iments show that the algorithm gets the Pareto frontier of the MIBP model
within reasonable time limits. A sensitivity analysis was conducted to validate
the effect of ESS capacity on peak demand.
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