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Abstract. Developments in Machine Learning (ML) in the last years resulted
in taking as granted their usage and their necessity clear in areas such as manu-
facturing and quality control. Such areas include case specific requirements and
restrictions that require the human expert’s knowledge and effort to apply the
ML algorithms efficiently. This paper proposes a framework architecture that
utilizes Automated Machine Learning (AutoML) to minimize human interven-
tion while constructing and maintaining ML models for quality control. The data
analyst gives the setting for multiple configurations while designing predictive
quality models which are automatically optimized and maintained. Moreover,
experiments are conducted to test the framework in both the performance of the
prediction models and the time needed to construct the models.

Keywords: Machine learning · Automated machine learning · Quality control ·
Predictive quality

1 Introduction

Quality of products and processes have increasingly concerned the manufacturing firms
because negative consequences do not show up until the product is actually produced or
worse, until the customer returns it [1, 2]. Predictive quality moves beyond traditional
quality evaluation methods towards extracting useful insights from various data sources
with the use of Machine Learning (ML) in an Industry 4.0 context [1]. Even though
well-known methodologies like the Cross-Industry Standard Process for Data Mining
(CRISP-DM) [3] can be applied, their generic approach does not consider domain-
specific requirements in manufacturing quality procedures [4]. This limitation requires
the data analyst and the production expert to work alongside the AutoML pipeline.

In this paper, we propose the use of AutoML in methodologies similar to CRISP-
DM that can facilitate their implementation in a predictive quality context. Despite the
fact that extensive research for ML in manufacturing has already been conducted [5,
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6], highlighting advantages, challenges and applications, research on AutoML in the
manufacturing quality function is still in preliminary stages [4, 7–9]. However, AutoML
has the potential to reduce time-consuming tasks of constructing ML models for quality
procedures, allowing the data analyst to devotemore time on data integration and deploy-
ment. In this way, the human intervention inMLmodel configuration is minimized since
the algorithms are automatically updated and optimized based on new data.

The rest of the paper is organized as follows. Section 2 outlines the theoretical
background on AutoML. Section 3 presents our proposed approach for AutoML in
predictive quality. Section 4 describes the implementation of the proposed approach in a
real-life scenario of white goods production. Section 5 concludes the paper and presents
our plans for future work.

2 Theoretical Background on Automated Machine Learning

AutoML aims to simplify and automate the whole ML pipeline, giving the opportu-
nity to domain experts to utilize ML without deep knowledge about the technologies
and the need of a data analyst [10]. The most fundamental concept of AutoML is the
Hyper Parameter Optimization (HPO) problem where hyperparameters are automati-
cally tunned for ML systems to optimize their performance [10] for problems such as
classification, regression and time series forecasting. As of today, further developments
to the field of AutoML added additional capabilities to the AutoML pipeline: Data
Preparation, Feature Engineering, Model Generation and Model Evaluation [11].

The Data Preparation and Feature Engineering steps are associated with the avail-
able data used for theMLalgorithms. The former includes actions for collecting, cleaning
and augmenting the data, with the latter includes actions for extracting, selecting and
constructing features. In the Model Generation step, a search is executed with the goal
of finding the best performing model for the predictions, such as k-nearest neighbors
(KNN) [12], Support Vector Machines (SVM) [13], Neural Networks (NN), etc. The
Model Evaluation step is responsible for evaluating the generated models based on pre-
defined metrics and runs in parallel to the Model Generation step. The evaluation of the
generatedmodels is used for optimization of existingmodels and the construction of new
models. The search procedure of AutoML terminates based on predefined restrictions,
such as the performance of the models or the time passed.

From a technical perspective, AutoML attracted a lot of research interest resulting
in several AutoML frameworks, such as: Autokeras [14], FEDOT [15] and TPOT [16].
Additionally, research focusing on benchmarking several AutoML frameworks [17, 18]
concludes that they do not outperform humans yet but give promising results.

3 The Proposed Approach for Automated Machine Learning
in Predictive Quality

The proposed approach focuses on the development of dynamic ML algorithms using
AutoML to minimize human intervention in model configuration. The proposed app-
roach is divided into two phases: the Design phase and the Runtime phase, as depicted
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in Fig. 1. In a nutshell the Data analyst based on technical and case specific knowledge
designs the ML models used for the predictions which are then used by the Quality
Expert for predictions and are automatically updated when new data are available for
training. Compared with the traditional process of creating and maintaining ML models
for quality control, the Data Analyst would spend valuable time constructing models.
Even though the data preprocessing algorithms may exist, the HPO and fine tuning of
the models would have been performed via trial and error from the Data Analyst.

Fig. 1. The architecture of the proposed approach.

3.1 Design Phase

The Design phase is executed by the data analyst, who is responsible for defining the
necessary configurations that bootstrap the analysis solving the predictive quality prob-
lem under examination by employing the available AutoML algorithms. The Design
phase consists of two components, Configuration and Algorithms Library. During the
Configuration, the data analyst must first select which of the available quality data are
required for the predictions to be carried out. After the Data Selection, if necessary, the
data analyst can apply Data Processing Algorithms from the Algorithms Library, which
may include data cleaning, data augmentation, feature extraction and feature selection.

Regarding the ML algorithms, the data analyst specifies the AutoML algorithm that
will search for the best predictive model, also found in the Algorithms Library. For
the Algorithm Selection, the data analyst can define the configuration of the selected
AutoML algorithm, e.g., construction parameters for the model, metrics for evaluation,
and termination conditions. With theModel Specifications, additional case specific con-
figurations can be made, such as model acceptance conditions and output formats, that
will be used by the Model Management process during the Runtime phase.

3.2 Runtime Phase

The Runtime phase is responsible for executing the AutoML process and the Model
Management of the constructed models. It can start either when the data analyst creates
new configurations or when new data become available for existing models.
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In the first case, after the data analyst completes the configuration for the predictive
quality problem, theConfigurations are stored for later use and theAutoMLprocess starts
searching for a model. During that process, additional data processing actions may be
executed from the AutoML algorithm at the Data Preparation and Feature Engineering
steps. After the input data transformations have been completed, the algorithm starts the
search by constructing several models followed by the evaluation and optimization of the
candidate ones. When the search step finishes, a single model is selected as the model
with the best performance. The selected model is passed to the Model Management
process, where it will be stored in the Model Warehouse or discarded based on the
acceptance conditions configured in the Design phase.

In the other case, models already used for predictions are automatically retrained
or optimized and changed based on new data that are available without any human
intervention. As soon as the new data become available, the related models are retrieved
from theModelWarehouse and are automatically forwarded to repeat the aforementioned
AutoML Process. Before the AutoML process starts using the stored Configurations, the
data selection and data processing actions are executed, feeding the AutoML process
with all the available data in the correct format. As with the previous case, after the
AutoML process is finished, the newmodel is passed to theModel Management process
where it will be compared with the existing model. If the new model performs better
and fulfills the acceptance conditions, it replaces the existing model, otherwise it gets
discarded.

In both cases theModel Management process can retrieve the corresponding model
for a prediction and pass the model to the Prediction Generation process to execute
predictions. The generated predictions are then communicated to the quality expert, in
order to support the predictive quality-related decisions.

4 Application to a White Goods Production Use Case

4.1 Use Case Description

In the Whirlpool production model, the whole white goods production is tested from
quality and safety point of view in order to ensure a high standard level of product quality
to final customers. The use case under examination deals with the microwave production
line. At the end of the production line, random inspections are made from employees
to detect defective products, which are subsequently repaired or replaced. During the
quality control, several features of the products and the tests are recorded, including
their Defect Groups which are used as categories for similar Defects. In this scenario,
we opted to predict the Defect Group of the defective products and the number of orders
found with defects for the following days. The former is a classification problem while
the latter is a Regression/Timeseries forecasting problem.

4.2 Dataset

Based on the available data sources, we constructed a Quality Control Data Model as
shown in Fig. 2. Themain entity in theQuality Control DataModel is theDefect Instance
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which maps all the entries from the data. Common attributes are used as reference fields
for other entities such as the Product, the Part and the Defect Type, which provide
further information about the Defect Instance. This Data Model gave us the ability
to better manage the available data and retrieve additional information if needed. The
experiments were performed based on a limited amount of data. The dataset consisted of
25655 entries during a span of 270 Days and included a total of 38 features from which
we extracted each entity as a Defect Instance.

Fig. 2. Quality control data model

4.3 Results

The proposed approachwas implementedwith the Python librariesAutoKeras andFedot.
Specifically, the Structured Data Regressor and the Structured Data Classifier are used
from theAutoKeras library, in order to find the best performingNeural Network (NN) for
the predictions, and the Fedot library in order to compose a chain of data-preprocessing
and ML models. In our experiments, 3 models were implemented for each algorithm as
follows: 1) an initial model trained only with the 80% of the available data, 2) a retrained
modelwhichwas the initial model retrainedwith all the available data and 3) a newmodel
that started the AutoML process from scratch with all the available data. The retrained
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and the new model were automatically trained following the proposed approach with
the configurations made by the initial model. Additionally, regarding the execution time
of the experiments that follow the values are based on configured stopping conditions,
which can be changed resulting in different values.

Predict Defect Group. Starting with the configuration, data processing algorithms
were used to select 6 features of the Defect Instances: The Date Created, the Product
Type (SKU), theDefect Source, the Station ID and the Part Family. From the first one, the
Date Created, additional features were extracted by splitting up the timestamp into the
Year, Month, Hour and Minute of the recorded defect. Two models were constructed for
this classification problem, which use Fedot and AutoKeras respectively. Themodels are
evaluated with 4 metrics: F1-macro, F1-micro, Receiver Operating Characteristic Area
Under Curve (ROC-AUC) and the execution time of the AutoML algorithms. We also
compared them with a manually constructed Decision Tree (DT) classifier, which had
performed significantly better than other classifiers tested. These results are presented
in Table 1.

Table 1. Evaluation metrics for the defect group prediction

Models Metrics

F1-macro F1-micro ROC-AUC Execution time (s)

Initial models Decision tree 0.5347 0.8331 0.8466 –

FEDOT 0.5055 0.8363 0.9023 1212.50

AutoKeras 0.4509 0.7813 0.7141 1019.81

Retrained models Decision tree 0.6052 0.8525 0.9041 –

FEDOT 0.4969 0.8368 0.9019 9.35

AutoKeras 0.4510 0.7813 0.7141 0.58

New models Decision tree 0.5170 0.8403 0.8514 –

FEDOT 0.4909 0.8277 0.8722 91.96

AutoKeras 0.4631 0.7681 0.7177 953.36

Even though the DT classifier outperformed the other models in almost all cases, the
AutoML proposedmodels with an acceptable performance, while the FEDOTmodel has
a similar performance with the DT. The models trained with all the available data per-
formed slightly better than the initial ones and the execution time for AutoML algorithms
is also acceptable, especially in the case of the retrained models. Finally, it is impor-
tant to note the significance of choosing the evaluation metric for the model acceptance
conditions, since this may affect the selection of the model.

Predict Defective orders. With data preprocessing, the Defect Instances were summed
based on the attribute Date Created to produce the needed timeseries. Two models were
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constructed by selecting two AutoML algorithms: the Fedot by configuring the problem
as timeseries, and the TimeSeriesForecaster of the AutoKeras. The performance of these
models is evaluatedwith theMean Square Error (MSE), theMeanAbsolute Error (MAE)
and the execution time of the AutoML algorithms, as shown in Table 2.

From the evaluation metrics we observe that both AutoML algorithms have per-
formed well. In the case of the initial models, the metrics values are worse due to the
inadequate data for training. As in the previous results the execution time follows the
same pattern and all the models were proposed in a reasonable amount of time.

Table 2. Table captions should be placed above the tables.

Models Metrics

MSE MAE Execution time (s)

Initial models FEDOT 0.2338 0.2017 101.88

AutoKeras 0.0402 0.1624 187.39

Retrained models FEDOT 0.1361 0.1002 0.32

AutoKeras 0.0201 0.1082 2.57

New models FEDOT 0.1391 0.0988 127.48

AutoKeras 0.0191 0.1036 11.17

5 Conclusions and Future Work

In this paper we proposed a framework for predictive quality using AutoML algorithms,
where the human supervision is decreased as existing prediction models are automati-
cally optimized based on new data. By reducing the effort needed to construct and main-
tain prediction models, the data analyst can devote more time to inspect and understand
case-specific requirements. From the experimental results we concluded that by lever-
aging AutoML algorithms, good performing models can be acquired and automatically
optimized in a reasonable amount of time.

The growing interest in the AutoML field in the last few years provides a promising
future for its development and applications. As the automated steps of AutoML are
improved, their ability to adapt or incorporate case specific requirements or restrictions
paves the way for its extensive application to predictive quality. In our future work, we
plan to examine in depth various configurations in the proposed framework, and test
more AutoML algorithms in the predictive quality context.
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