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Abstract. Predictive maintenance as one of the most prominent data-driven
approaches enables companies to not only maximize the reliability of produc-
tion processes but also to improve their efficiency. This is especially valuable in
today’s volatile environment. Nevertheless, companies still struggle to implement
digital technologies to track and improve their manufacturing processes, which
includes data driven decision support systems. Based on practitioner interviews
we identified the lack of guidance as a root cause. Additionally, literature reveals
a shortcoming of methods especially suited for the needs of the manufacturing
industry. This study contributes to this field by answering the question of how a
procedural method can look like to guide practitioners to build decision support
systems for effective interventions in manufacturing. Applying a design science
research approach, the manuscript presents a seven-step procedural method to
build decision support systems in manufacturing. The approach was designed and
field tested at the example of a predictive maintenance model for a spring pro-
duction process. The findings indicate that the incorporation of all stakeholders
and the uncovering and use of implicit process knowledge in humans is of utmost
importance for success.

Keywords: Decision support systems · Predictive maintenance · Data-driven
applications · Data mining · Industry 4.0

1 Introduction

The importance of managing manufacturing volatility has become ever more present
due to recent events such as the COVID-19 pandemic and the Ukraine war. Despite
them being external events, the ability to deal with internal disruptions and disturbances
has become more important as well [1, 2]. According to Heil [3] and Peukert et al. [4]
externally caused disruptions account for less than 30%of all disruptions.Hence, internal
disruptions are important. These are, for example machine failures, quality defects, or
personnel failures [4]. To cope with such internal events, two approaches are suitable:
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reactive or preventive [4]. The first approach describes measures reacting to an already
occurred event, while the latter describes measures that will prevent disruptions from
occurring [4]. Of particular importance are cyber-physical solutions, which are expected
to “significantly contribute to the better transparency and to the more robust functioning
of supply chains” [1]. This is due to their ability to quickly and reliably unveil potential
events, while at the same time reducing potential negative consequences [1].

“Oneof themost prominent data-driven approaches formonitoring industrial systems
aiming to maximize reliability and efficiency” is Predictive Maintenance (PdM) [5].
PdM “consists of assets or systems monitoring to predict trends, behavior patterns, and
correlations by statistical or machine learning models aimed at developing prognostic
methods for fault detection and diagnosis” [5]. Introducing PdMcan reducemaintenance
costs by up to 30% and at the same time reduce breakdowns by up to 75% [6, 7]. Bunzel
[8] even states that 50% of the preventive maintenance costs are a waste. PdM can
increase efficiency significantly, as maintenance accounts for a total of 15–60% of the
total costs of manufacturing operations [9, 10]. Establishing a ratio: Mobley [10] states
that “the U.S. industry spends more than $200 billion each year on maintenance”. As a
result, PdM 1) can reduce machine breakdowns, which in turn reduces the possibilities
of internal disturbances and 2) has the potential to reduce manufacturing costs [10, 11].
Therefore, PdM is one potential solution to solve the trade-off between cost efficiency
and increase in robustness. As a result, the study focuses on this particular measure.

Despite a variety of use cases of data-driven improvements, companies are far from
implementing such approaches [5]. Interviews with practitioners from three different
companies reveal that one reason is the lack of a “roadmap” or “user manual” that guides
an implementation. These statements show that current approaches lack amanufacturing
focus and are too complex to apply.

Hence, we want to answer the research question of “how can a procedural method
look like to guide practitioners to build decision support systems for effective interven-
tions in manufacturing?” We do so by following the design science research (DSR)
approach from Hevner [12]. The practical contributions include both the procedural
method and insights about the role of humans. Additionally, scientifical contributions
include the necessary steps to implement data-driven improvements in a manufacturing
environment, and the importance of implicit human knowledge.

The remainder of this article is structured as follows: After the introduction, related
literature on data-driven improvement approaches and PdM is discussed. Subsequently,
the research methodology and the artifact development are introduced. Afterwards,
the field testing is described. Lastly, we briefly discuss the theoretical and practical
implications of this paper, as well as its limitations and possible future research.

2 Research Background

All major countries with a strong manufacturing industry have identified the integration
of digital technology into manufacturing processes as important for future competitive-
ness. InGermany the concept is called Industry 4.0 [13], China initiated China 2025 [14],
and in the USA, the National Institute of Standards and Technology has coined the term
smart manufacturing [15]. Although the concepts differ, all promote the use of modern
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IT technologies and data in manufacturing [16], with one of the key technologies being
big data analysis [17]. Despite the announcement a decade ago (e.g., 2011 in Germany)
[13], companies still struggle to implement the technologies [5].

Big data analytics refers to a set of data with high volume and complex structure that
cannot be handled by traditional methods of data processing [17]. It aims to transform
data into meaningful and usable information [18]. Four levels of analytic capabilities
are apparent: descriptive, diagnostic, predictive, and prescriptive [19–22]. Descriptive
answers the question of “what happened”. At this first level of data analytics, no root-
causes analysis is conducted [22]. Diagnostic addresses the question of “why did it
happen” and identifies root-causes [22]. Predictive addresses the question of “what will
happen” and seeks to predict potential future outcomes based on drivers of observed
phenomena [22]. Prescriptive addresses the question of “what should be done” combin-
ing results of the previous stages [22]. We aim to develop a procedural method for stage
three (prescriptive), since PdM can be of great value for companies (see Sect. 1) and
companies so far struggle to make use of data, resulting in stage 4 being out of scope
for a significant number of companies.

A literature review reveals many approaches for data mining and exploitation (i.e.,
[23–33]). One of themost famous is theCross Industry Standard Process forDataMining
(CRISP-DM) [34]. It is industry-independent consisting of six iterative phases: business
understanding, data understanding, data preparation, modeling, evaluation, and deploy-
ment [25, 34]. It emphasizes the following aspects as essential to succeed with big data
projects: understanding the business problems, a well-planned project map, adoption
of innovative visualization techniques, top management involvement, and a data-driven
decision making culture [22]. Another approach is the Data Value Chain, a framework
to manage data holistically from capture to decision making [31]. The chain provides
a framework to examine how to bring disparate data together in an organized fashion
and create valuable information that can inform decision making at the enterprise level
[31]. The flexible analytics framework (FlexAnalytics) proposes several potential data-
analytics placement strategies. It is applicable for data pre-processing, runtime data anal-
ysis and visualization, as well as for large scale data transfer [33]. Another well-known
method is “Sample, Explore, Modify, Model and Assess” (SEMMA), which focuses to
integrate data mining tools [35]. However, the lack of integration into organizational
management results in a decreased importance [35].

To assess the suitability of existingmethods, we derived literature-based criteria (i.e.,
[36]) and from practitioners (see Fig. 1). On the one hand, the assessment reveals that
all analyzed approaches strive for general validity. Consequently, they fail to address
the specific needs of the manufacturing industry. An example for this shortcoming is the
CRISP-DM approach: Several attempts to increase the approach were undertaken [35].
One of the most acknowledged (i.e., Analytics Solutions Unified Method for Data Min-
ing/Predictive Analytics (ASUM-DM)), developed by IBM, however, is not open source
available [35, 37]. To still categorize ASUM-DMwe used the works fromMockenhaupt
[30] and Angée et al. [29]. On the other hand, existing solutions are complex, expensive,
and too comprehensive for a simple bottom-up approach and not adapted for and tested
in manufacturing companies. We found, for example, that process understanding is not
considered as starting point of data-based decision making and process optimization.
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However, the involvement of human operators is considered key (i.e., research stream
Human-In-The-Loop [38]) [39]. As a result, a procedural method that is suited for the
manufacturing industry describing interactions between humans and non-human agents
is lacking [39].

[33]

[24]

Method / FrameworkSource / Paper

[25]

[25]

[26]

[27]

[28]

[29], [30]

[31]

[32]

[23]

Fig. 1. Comparison of data mining approaches

3 Research Approach

We opted for a DSR approach to design a procedural method that provides guidance to
build decision support systems for effective interventions in operations. DSR originates
from information systems (IS) research [40] and is well established in the field [41–43].
It supports the development of a “well-tested, well-understood and well-documented
innovative generic design that has been field tested to establish pragmatic validity” [44].
The approach is well suited for operations management research as well [44]. For this
particular study it is suited, as we intend to develop a generic method (see [45] for
different types of artifacts), which is applicable to data-driven improvements.

Various processes and guidelines to conductDSRexist [41, 43].While the framework
from Hevner et al. [46] is the most cited by IS researchers [47], the three cycle view
from Hevner [12] provides a more detailed and improved version [48], which is why
we rely on this version. It is divided into three cycles: relevance cycle, rigor cycle, and
design cycle [12].

The DSR process starts with the relevance cycle by providing the “problem space”
[46]. In this study, the application context is motivated by problem owners (POs) from
three companies (i.e., two industrial companies andone smart factory solutions provider).
The authors conducted interviews of about one hour each with a different number of
participants (see Table 1). Based on the POs’ statements, and supported by related
literature, the research team derived requirements for an artifact: 1) proper guidance to
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implement PdM, 2) include context aware information [49] also considering the human
role, and 3) include a quality and maturity assessment of collected data.

The rigor cycle provides “past knowledge to the research project to ensure its innova-
tion” [12]. The knowledge base for the conceptual development of this study is provided
in Sect. 2. Its findings led to a first procedural method, which was evaluated by POs
during the design cycle. Eventually, the results of the conducted DSR are added as
contribution to the scientific community [12], which closes the rigor cycle.

Table 1. Overview of empirical data

Purpose Data item Duration Source Date

Problem statement
and understanding

Interviews with
three companies
with problem
owners

1 h each CEO, COO, IT,
Head of Operations

01.2018–03.2018

Evaluation Workshop with
operations
management from
case study company
to discuss, and
concretize use-case
and project
plan/procedural
method

8 h CEO, IT, Head of
Operations

01.2018–03.2018

Evaluation Interview with case
study company

2 h Head of Operations,
Operators

Field testing Shadowing (process
immersion: global
view)

8 h Head of Operations,
Operators

03.2018–04.2018

Field testing Shadowing (process
immersion: material
flow)

8 h Head of Operations,
Operators

Field testing Shadowing (process
immersion: machine
control)

8 h Head of Operations,
Operators

Field testing Data list (process
and machine data)

– Head of Operations,
Manufacturing IT

Field testing Machine and
process data,
documentation of
operator´s actions

– Machine and
process data

(continued)
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Table 1. (continued)

Purpose Data item Duration Source Date

Field testing Analytic results – Machine and
process data

04.2018–05.2018

Field testing 7 workshops
(various iterations to
optimize model,
extend data volume,
variables and
increase robustness
of model)

4 h each Head of Operations,
Manufacturing IT,
Operators

06.2018–12.2018

Evaluation and
finalization

Final interview with
problem owners
from case study
company

1 h Head of Operations 01.2019

Evaluation Final meeting with
problem owners
from all three
companies

2 h Head of Operations, 06.2019

The design cycle represents the core of DSR, aiming to develop the artifact and
rigorously evaluate it, “until a satisfactory design is achieved” [12]. The first procedural
method was evaluated and refined with POs during an eight-hour workshop. Afterwards,
it was transferred to the field testing (i.e., relevance cycle). It was applied to a specific
use-case of PdM by conducting an interview, a series of workshops, and utilizing com-
pany data (see Sect. 5). To ensure the completeness of the artifact, the outcome of the
application of the procedural method and the method itself were validated with the
POs (final interview and meeting). We stimulated a guided discussion a) to validate the
procedural method and b) about success factors in each step. Based on the predefined
requirements, the artifact was approved (i.e., giving proper guidance, including sufficient
context aware information, and assessing the quality and maturity of data). Additionally,
the POs highlighted the importance of implicit knowledge of humans in all steps of the
method (e.g., step 7: the capability to visually assess the cutting burr quality). Moreover,
the solution provider representatives stated that the artifact is suited for other use cases,
and that they will incorporate it in their service offerings.

4 Development of the Artifact

The development of the artifact followed two phases: First, we searched the literature for
existing methods and models to implement data-driven solutions. Based on this knowl-
edge and the goal to develop a procedural method that is applicable and understandable
for practitioners, we derived the first artifact. The design cycle was further enriched
by the initial interviews with POs. Second, we evaluated and refined the first artifact
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during an eight-hour workshop with POs and based on an interview with one PO and
manufacturing experts (i.e., operators). The outcomewas the definition of the procedural
method, which was at the same time the project plan. It comprises seven major steps and
incorporates iterative elements (see Fig. 2).

Step 1: Establishing a sound process understanding
The interviews revealed the establishment of a thorough understanding of the underly-
ing process as an essential precondition of all optimization efforts in the manufacturing
industry. It ensures the analysis of the original problem without premature conclusions
and that the right data is gathered. Consequently, it is important that not only manufac-
turing experts (e.g., process engineers) develop a thorough process understanding, but all
stakeholders. This includes, for example machine operators, data-scientists, IT-experts,
and project managers.

Step 2: Identification and classification of available data
The second step of the procedural method intends to identify and classify the data, which
is available in the current configuration of the production equipment. The following
information have been proven to be relevant: object that is described by data (e.g., torque
of axis a); group to which the object belongs (e.g., process quality, material); type of
data (e.g., boolean, string, array); availability (e.g., yes, yes under certain circumstances,
no); frequency of measurement (e.g., every 1 ms, 5 ms, 1 s); type of measurement device
(e.g., sensor, camera system, manual input). The resulting output of step two is a list of
available data that can be used for further analysis.

Step 3: Understanding quality-critical factors
During step three, two aspects are relevant: 1) Identifying factors that have the potential
to influence the quality of the produced part, and 2) determining if and which data
is available within the current configuration of the production equipment to describe
manifestations of the identified potential factors. The following example describes this:
The incorrect fastening of screws (i.e., overtightened or not tight enough) can result in
a substandard product quality. To describe the manifestation of the fastened screw, the
torque used to fasten the screws would be an appropriate metric, which can be tracked by
sensors. The output of step three is a list with quality-critical factors and its data sources
to describe the manifestation.

Step 4: Formulation of hypotheses
The fourth step combines the collected knowledge from the previous steps to formulate
admissible hypotheses. A hypothesis needs to clearly state two aspects: 1) the influence
of a certain element of a machine on the output quality of a product and 2) the metric to
measure deviations from the ideal manifestation.

Step 5: Data collection, verification, and complementation
Step five is composed of collecting the data with which the hypotheses in step four were
formulated. Subsequently, it is necessary to validate if the collected data describes the
causal relationship from the hypothesis. Additionally, the right frequency to collect the
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data has to be determined (e.g., every 1 ms). Finally, the causal relationship has to be
analyzed for moderating effects (e.g., temperature and vibrations).
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Fig. 2. Procedural method

Step 6: Visualization & analysis
In order to assess the data and identify trends and anomalies, time series graphs can be
applied. IT tools can support the handling of greater data amounts during this step. If no
insights are generated, an iteration of step five is necessary. Such an iteration can lead to
the collection of different data or frequencies. If an iteration of step five does not result
in insights, a reanalysis of the hypotheses (i.e., step 4) has to be undertaken.

Step 7: Prediction
The last step of the procedural method is the definition of thresholds that allow to predict
the transition from a desired to an undesired condition of a machine. As a result, the
previous steps 1–6 enable the project team to predict the optimal point in time tomaintain
the machine or change a tool. It is recommended that many different systems settings
are tested to validate the prediction model.

5 Field Testing

To field test the procedural method we conducted a case study in the spring industry
(i.e., several workshops, relevant machine and process data, and documentations) (see
Fig. 3). In consultation with the company, we chose the process of welding and cutting
the wire to produce springs. The objective was to identify and develop a data-based use
case for more effective quality related operator machine interventions.

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

Involvement of all 

stakeholders & process 

modeling

Data: lag error of cutting knife, parameter of automatic correction of 

spring lengths of internal control unit, speed of wire, position of winding 

finger, motor currency, knife speed, and corresponding spring quality

a) length of spring and free cut of wire are quality-

critical factors b) no direct measurement possible, 

hence sharpness of the cutting knife as metric defined

Lag error of cutting knife and quality 

of finished spring are causally 

related; measurement of lag error

a) Analysis of data over a longer time period.

b) Documentation of machine operator activities 

and adjustments of parameters (shadowing).

Time series 

graph

Definition of thresholds: lag 

error at which the blades of 

the knifes turn blunt

Fig. 3. Application of artifact

First, we established a process understanding for the spring production process and
visualized it (step 1). Afterwards, we identified and classified available data to describe
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the process (step 2). Based on the extensive implicit knowledge of the operators the
following data were chosen: lag error of cutting knife, parameter of automatic correction
of spring lengths of internal control unit, speed of wire, position of winding finger,
motor currency, knife speed, and the corresponding spring quality. For the third step, we
identified the length of the spring and the free cut of the wire as quality-critical factors.
However, the process didn´t allow to measure the quality of the cut directly. Based on
the process understanding, the persons involved concluded that the cut depends on the
sharpness of the cutting knife, making it a quality-critical factor. This resulted in the
hypothesis that the sharpness of the knife correlates with the quality of the cut and
therefore with the quality of the burr of the spring. Nevertheless, the sharpness was not
measurable directly, but the cutting system´s drive controller monitors the lag error of
the cutting knife. The team assumed that a cut with a sharp knife shows a different time
series of the lag error than a cut with a blunt knife (step 4). To test the hypotheses of
the causal relationship between lag error of the cutting knife and the quality of the burr,
the lag error was measured over a defined time period. We tested the hypotheses with
different materials and systems stats to strengthen the traceability and generalizability
of the prediction model (step 5). Plotting the lag error of the knife over time revealed
that the graphs of the sharp and blunt knife differ (step 6). During step 7 thresholds of
the lag error at which the blades of the knifes should be renewed were defined for certain
instances. The instances were highly dependent on the input material and thresholds
were difficult to derive due to a self-adjusting control system of the machine, preventing
clearly distinguishable graphs. The implicit knowledge and visual inspection capability
of the operators (i.e., for the burr) was a vital mean.

6 Conclusion

This study yielded a seven-step proceduralmethod to guide practitioners to build decision
support systems for effective interventions in operations. We conducted interviews to
evaluate the artifact and field tested it in a spring production process.

During our study, the first step establishing a sound process understanding turned
out to be of utmost importance. That is due to the involvement of different human
stakeholders, which subsequently allows to capture the implicit knowledge of humans.
First, the management board needs to back such projects, as it displays the relevance of
such projects. This in turn leads to employee commitment. Second, the establishment of
a process understanding with all stakeholders results in less fearful employees as they
are part of the project team. Constant updates over the duration of the project ensure
the commitment. Third, the implicit knowledge of humans is a vital part of the process
understanding and needs to be extracted in all steps. Hence, the right execution of the
first step, i.e., the correct involvement of all stakeholders is key for all subsequent steps.

This study contributes to science as it is empirically grounded in the manufactur-
ing environment. Hence, addressing the specific needs of the manufacturing industry.
Additionally, our work touches on the research of human-centric smart manufacturing,
highlighting the requirement of built-in human-in-the-loop control and the knowledge
about when and how to involve human operators. The procedural method contributes to
practice, providing structured guidance to implement decision support systems.
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A limitation of this study is the evaluation and field testing in one company and with
one specific process only. However, a smaller sample allows for more in-depth research.
In future studies this limitation may be addressed by applying the procedural method to
different manufacturing processes in different companies.
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