
Wireless Networks

Fuwei Li
Lifeng Lai
Shuguang Cui

Machine
Learning
Algorithms
Adversarial Robustness in Signal
Processing

Wireless Networks

Series Editor

Xuemin Sherman Shen, University of Waterloo, Waterloo, ON, Canada

The purpose of Springer’s Wireless Networks book series is to establish the state
of the art and set the course for future research and development in wireless
communication networks. The scope of this series includes not only all aspects
of wireless networks (including cellular networks, WiFi, sensor networks, and
vehicular networks), but related areas such as cloud computing and big data.
The series serves as a central source of references for wireless networks research
and development. It aims to publish thorough and cohesive overviews on specific
topics in wireless networks, as well as works that are larger in scope than survey
articles and that contain more detailed background information. The series also
provides coverage of advanced and timely topics worthy of monographs, contributed
volumes, textbooks and handbooks.

** Indexing: Wireless Networks is indexed in EBSCO databases and DPLB **

Fuwei Li • Lifeng Lai • Shuguang Cui

Machine Learning
Algorithms
Adversarial Robustness in Signal Processing

Fuwei Li
Department of ECE
University of California
Davis, CA, USA

Lifeng Lai
Department of ECE
University of California
Davis, CA, USA

Shuguang Cui
School of Science and Engineering &
Future Network of Intelligence Institute
The Chinese University of Hong Kong
Shenzhen, China

The work was supported in part by the National Key R&D Program of China with grant No.
2018YFB1800800, the Basic Research Project No. HZQB-KCZYZ-2021067 of Hetao Shenzhen-HK
S&T Cooperation Zone, by Shenzhen Outstanding Talents Training Fund 202002, by Guangdong
Research Projects No. 2017ZT07X152 and No. 2019CX01X104, by the Guangdong Provincial Key
Laboratory of Future Networks of Intelligence (Grant No. 2022B1212010001), and by the National
Science Foundation under Grants CCF-1717943, CNS-1824553 and ECCS-1711468.

ISSN 2366-1186 ISSN 2366-1445 (electronic)
Wireless Networks
ISBN 978-3-031-16374-6 ISBN 978-3-031-16375-3 (eBook)
https://doi.org/10.1007/978-3-031-16375-3

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

 -2016
39373 a -2016 39373 a

https://doi.org/10.1007/978-3-031-16375-3

Abstract

Machine learning has been widely used in signal processing. The success of
machine learning in signal processing relies heavily on the quality of the data.
However, the diverse data sources make it harder to get very high-quality data. What
makes it worse is that there might be a malicious adversary who can deliberately
modify the data or add poisoning data to corrupt the learning system. This imposes
a significant threat to machine learning in signal processing, for example, in
wireless communication, array signal processing, and image signal processing.
Hence, it is necessary and urgent to investigate the behavior of machine learning
algorithms in signal processing under adversarial attacks. In this book, we examine
the adversarial robustness of three commonly used machine learning algorithms in
signal processing: linear regression, LASSO-based feature selection, and principal
component analysis (PCA). Based on our theoretical analysis, we also carry out
adversarial attacks on several signal processing problems, for example, feature
selection, array signal processing, principal component analysis, wireless sensor
networks, etc.

In the first part, we study the adversarial robustness of linear regression. We
assume there is an adversary in the linear regression system, and it tries to
suppress or promote one of the regression coefficients. To obtain this goal, the
adversary adds poisoning data samples or directly modifies the feature matrix of
the original data. We derive the optimal poisoning data sample and propose an
alternating optimization method to design the optimal feature modification. We also
demonstrate the effectiveness of the attack against a wireless distributed learning
system. In the second part, we extend the linear regression to LASSO-based feature
selection and study the best strategy to modify the feature matrix or response
values to mislead the learning system to select the wrong features. We formulate
this problem as a bilevel optimization problem and use a smooth approximation
of the ell1 norm function to attain the gradient of our objective function. With
the gradient information, we employ the projected gradient method to find the
optimal attacks. We also show how this attack influences array signal processing
and weather data analysis. In the last part, we consider the adversarial robustness
of the subspace learning problem. We examine the optimal modification strategy

v

vi Abstract

under the energy constraints to delude the PCA-based subspace learning algorithm
and derive the optimal attack strategy to modify the original data to maximize the
subspace distance between the original one and the one after modification. We also
conduct our attack on a principal regression problem and demonstrate its impacts
on the subspace and the regression result.

Contents

1 Introduction . 1
1.1 Adversarial Machine Learning. 1
1.2 Adversarial Attack Against Linear Regression . 2
1.3 Adversarial Attack Against LASSO Based Feature Selection 5
1.4 Adversarial Attack Against Subspace Learning . 7

2 Optimal Feature Manipulation Attacks Against Linear Regression . . . 11
2.1 Attacking with One Adversarial Data Point . 11

2.1.1 Problem Formulation . 11
2.1.2 Attacking One Regression Coefficient . 12
2.1.3 Attacking with Small Changes of Other Regression

Coefficients . 18
2.2 Rank-One Attack Analysis . 21
2.3 Applications . 27

2.3.1 Data Poisoning Attack Against Wireless Sensor Networks . . 27
2.3.2 Adversarial Attack Against Stock Exchange Data Analysis . 30
2.3.3 Adversarial Attack Against Wine Data Analysis 36

2.4 Summary . 37

3 On the Adversarial Robustness of LASSO Based Feature Selection . . . 39
3.1 Problem Formulation . 39
3.2 Algorithm . 40
3.3 Adversarial Attacks Against Group LASSO and Sparse

Group LASSO . 46
3.3.1 Adversarial Attacks Against Group LASSO. 46
3.3.2 Adversarial Attacks Against Sparse Group LASSO. 48

3.4 Applications . 51
3.4.1 Adversarial Attack Against LASSO-Based Feature

Selection System . 51
3.4.2 Adversarial Attack Against Wireless Array Signal

Processing . 57

vii

viii Contents

3.4.3 Adversarial Attack Against Weather Data Analysis 59
3.5 Summary . 61

4 On the Adversarial Robustness of Subspace Learning 63
4.1 Problem Formulation . 63
4.2 Optimal Rank-One Adversarial Strategy . 64

4.2.1 Case with k = rank(X) . 65
4.2.2 Case with k < rank(X) . 70

4.3 Optimal Adversarial Strategy without the Rank Constraint 74
4.4 Applications . 78

4.4.1 Adversarial Attack Against Subspace Learning 79
4.4.2 Adversarial Attack Against Principal Component

Regression . 81
4.5 Summary . 82

5 Summary and Extensions . 83
5.1 Summary . 83
5.2 Extensions . 84

5.2.1 The Defence Strategy . 84

A Appendix . 87
A.1 Lasserre’s Relaxation Method . 87
A.2 Poof of the Equivalence of Problem (4.9) and Problem (4.10) 90
A.3 Proof of Theorem 4.1. 91
A.4 Proof of Theorem 4.2. 92
A.5 Proof of Theorem 4.3. 93
A.6 Proof of Theorem 4.4. 95
A.7 Connection Between Asimov Distance and PCR Problem 98

References . 101

Acronyms

DOA Direction of arrival
i.i.d. Independent and identically distributed
KKT Karush-Kuhn-Tuck
LASSO Least absolute shrinkage and selection operator
OLS Ordinary least square
PCA Principal component analysis
PCR Principal component regression
QCQP Quadratic constrained quadratic program
RMSE Root mean square error
WSNs Wireless sensor networks

ix

Chapter 1
Introduction

1.1 Adversarial Machine Learning

Machine learning is being used in various applications. Most of the existing machine
learning systems make the basic assumption that the data are from normal users
and are generated independently from the same distribution. Even though there
are algorithms designed to deal with small dense noises and large sparse outliers,
few consider the adversarial noises. These noises are intentionally created by an
adversary who has some knowledge of the machine learning system and the data.
Then, the adversary will deliberately add some carefully designed noises or directly
modify the data set in order to corrupt the learning system or mislead the learning
system to make a wrong decision. This attack is especially dangerous for some
security and safety critical applications such as medical image analysis [1] and
autonomous driving [2].

Depending on the goal of the adversary, the adversarial attacks can be divided
into three categories: evasion, poisoning, model stealing. In the evasion attack, an
adversary adds some imperceptible noises onto the original data and makes the
learning system give a wrong prediction [3–5]. Figure 1.1 demonstrates a typical
evasion attack [3]. The original picture is a panda. The adversary adds some
carefully designed noises onto it. Although it looks the same as the original panda,
the classifier will miscategorize it as a gibbon. In the poisoning attack, the adversary
attacks the learning systems by contaminating the training data. When the learning
system trains the model using the poisoned data, the model is then corrupted [6–
11]. The adversary can also do model stealing by repeatedly sending requests to the
server and then reconstruct the learning system or original training data. Model
stealing also imposes great threats to the learning system that is sensitive and
confidential [12, 13].

Depending on the adversary’s knowledge about the data samples, the learning
algorithm, and the defense strategy of the learning system, the adversary can
carry out white-box, grey-box, and black-box attacks. In the white-box attack, the

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Li et al., Machine Learning Algorithms, Wireless Networks,
https://doi.org/10.1007/978-3-031-16375-3_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16375-3_1&domain=pdf

 -2016 61494 a -2016
61494 a

https://doi.org/10.1007/978-3-031-16375-3_1

2 1 Introduction

Fig. 1.1 Demonstration of adversarial attack

adversary has the full knowledge of the machine learning system and has the ability
to observe the whole data points. After seeing the data points, the adversary can
add some carefully designed poisoning data points or directly modify the data
points so as to corrupt the learning system or leave a backdoor in this system [14].
If the adversary knows nothing about the data samples, learning algorithms, and
defense strategies, the adversary can also carry out black-box attacks, where it gains
information of the system by repeatedly sending queries to the system [15]. If the
adversary only has partial knowledge of the data samples, learning algorithms, and
defense strategies, the adversary can perform grey-box attacks, in which it uses
surrogate data samples or classifiers to mimic the original ones [16].

In this book, we will focus on the white-box poisoning attack in popular machine
learning algorithms that are widely used in signal processing applications. Currently,
most of the existing works concentrate on the deep learning based machine learning
systems and propose some effective attack strategies upon that. However, due to
the complexity of the deep learning system, we can only observe its effectiveness
through their numerical demonstrations. We do not know whether their attacks
are optimal. In addition, there is no theoretical performance guarantee for most
of the attacks against the deep learning systems. Because of the lack of theory of
deep learning, it is better to start from traditional machine learning algorithms and
gain intuitions from their behavior under adversarial attacks. Hence, in this book,
we will study the adversarial robustness of three commonly used signal procesing
algorithms, i.e., linear regression, LASSO, and PCA.

1.2 Adversarial Attack Against Linear Regression

Linear regression plays a fundamental role in signal processing and is used in a
wide spectrum of applications [17–21]. In linear regression, one assumes that there
is a simple linear relationship between the explanatory variables and the response

1.2 Adversarial Attack Against Linear Regression 3

variable. The goal of linear regression is to find out the regression coefficients
through the methods of ordinary least square (OLS):

argmin
β

: ‖y− Xβ‖2, (1.1)

where y = [y1, y2, . . . , yn]� is the response values, X = [x1, x2, . . . , xn]� ∈ R
n×m

is the feature matrix, β is the regression coefficient, m is the number of explanatory
variables, n is the number of data points, and {(xi , yi)}ni=1 is the original data points.
Having the regression coefficients learned from the data points, one can predict
the response values given the values of the explanatory variables. The regression
coefficients also help us explain the variation in the response variable that can
be attributed to the variation in the explanatory variables. They can quantify the
strength of the relationship between certain explanatory variables and the response
variable. A large magnitude of the regression coefficient usually indicates a strong
relationship, while a small valued regression coefficient means a weak relationship.
This is especially true when linear regression is accomplished by the parameter
regularized method such as ridge regression and LASSO. In addition, the sign
of the regression coefficients indicates whether the value of the response variable
increases or decreases when the value of an explanatory variable changes, which is
very important in biologic science [22], financial analysis [23], and environmental
science [24].

Since the regression coefficient is very important, our work is to investigate
the adversarial robustness of linear regression. In the considered linear regression
system, there exists an adversary who can observe the whole dataset and then inject
carefully designed poisoning data points or directly modify the original dataset
in order to manipulate the regression coefficients. The manipulated regression
coefficients can later be used by the adversary as a backdoor of this learning
system or mislead our interpretation of the linear regression model. For example, by
changing the magnitude of a regression coefficient to be small, it makes us believe
that its corresponding explanatory variable is irrelevant. Similarly, the adversary
can change the magnitude of a regression coefficient to a larger value to increase its
importance. Furthermore, changing the sign of a regression coefficient can also lead
us to misinterpret the correlation between its explanatory variable and the response
variable.

We have several contributions to the adversarial attacks against linear regression
in this book. Depending on the objective of the adversary and the way the adversary
changes the regression coefficients, we have different problem formulations. We first
consider a scenario where the adversary tries to manipulate one specific regression
coefficient by adding one carefully designed poisoning data point that has a limited
energy budget to the dataset. We show that finding the optimal attack data point is
equivalent to solve an optimization problem where the objective function is a ratio of
two quadratic functions with a quadratic inequality constraint. Even though this type
of problem is non-convex in general, our particular problem has a hidden convex
structure. With the help of this convex structure, we further convert the optimization
problem into a quadratic constrained quadratic program (QCQP). Since strong

4 1 Introduction

duality exists in this problem [25], we manage to identify its closed-form optimal
solutions from its Karush-Kuhn-Tucker (KKT) conditions.

We next consider a more sophisticated objective where the attacker aims to
change one particular regression coefficient while making others be changed as little
as possible. We show that the problem of finding the optimal attack data point is
equivalent to solving an optimization problem where the objective function is a ratio
of two fourth order multivariate polynomials with a quadratic inequality constraint.
This optimization problem is much more complicated than the optimization above.
We introduce a semidefinite relaxation method to solve this problem. The numerical
examples show that we can find the globally optimal solutions with a very low
relaxation order. Hence, the complexity of this method is low in practical problems.

Finally, we consider a more powerful adversary who can directly modify the
feature matrix. Particularly, we consider a rank-one modification attack [26], where
the attacker carefully designs a rank-one matrix and adds it to the existing data
matrix. A rank-one modification attack is general enough to capture most of the
common modifications, such as modifying one feature, deleting or adding one data
point, changing one entry of the data matrix, etc. Hence, studying the rank-one
modification provides us universal bounds on these kinds of attacks. By leveraging
the rank-one structure, we develop an alternating optimization method to find
the optimal modification matrix. We also prove that the solution obtained by the
proposed optimization method is one of the critical points of the optimization
problem.

Our study is related to several recent works on adversarial machine learning. For
example, Pimentel-Alarcón et al. studied how to add one adversarial data point in
order to maximize the error of the subspace estimated by principal component [27]
and Li et al. derived a closed-form optimal modification to the original dataset in
order to maximize the subspace distance between the original one the one after
modification [26]. These two works focused on the robustness of subspace learning
algorithms that are based on PCA. PCA is an unsupervised learning method. By
contrast, we study the robustness of linear regression, which is a supervised learning
method. Alfeld et al. studied how to manipulate the training data so as to increase
the validation or test error for the linear regression task [8, 9] and Biggio et al.
used a gradient based algorithm to design one poisoning data point with the aim of
worsening the testing error in a support vector machine (SVM) learning system
and they also proposed a heuristic approach to flip parts of the training labels
in order to achieve a similar goal [6, 28]. These works aimed to deteriorate the
performance of the made learning system on a specific data set. However, we
concentrate on the explanation of the linear regression model. By manipulating
the regression coefficient, we can mislead the interpretation of the dependency
between the features and response value. Furthermore, a series of works focused
on the adversarial robustness of deep learning networks. Kurakin et al. proposed a
gradient based method to design adversarial noise [3, 4, 29]. By adding this noise on
the test data, it made the machine learning system make the wrong prediction. By
contrast, we focus on adding or modifying training data samples to maneuver the

1.3 Adversarial Attack Against LASSO Based Feature Selection 5

regression coefficient. Biggio et al. corrupted the deep learning system by inserting
delicately designed poisoning data samples into the training data [11, 14, 30]. Due
to the complexity of deep neural networks, it is hard to know whether the designed
poisoning data samples are optimal. Nevertheless, our method is proven to be
optimal with respect to certain specific goals discussed.

In addition, there are recent works that focus on the adversarial robustness
of machine learning in various other applications. For example, Kwon et al.
proposed a gradient based method to generate adversarial audio examples [31],
Li et al. presented an ensemble method to enhance the robustness of the malware
detection system against adversarial attacks [32], and Flowers et al. demonstrated
the vulnerability of communication systems against adversarial noises [33]. These
works are limited to their specific applications. Instead, we target maneuvering the
interpretation of a general linear regression model by adding poisoning data points
or modifying the original data.

The most relevant work to ours is [34], where the authors develop a bi-level
optimization framework to design the attack matrix. Mei and Zhu [34] used the
projected gradient descent method to solve the bi-level optimization problem.
However, a general bi-level problem is known to be NP hard and solving it
depends on the convexity of the lower level problem. In addition, the convergence
of projected gradient descent for a non-convex problem is not clear. Compared
with [34], we obtain the globally optimal solution to the case for adding one
poisoning data point, and we also prove that the proposed alternating optimization
method converges to one of the critical points for the case where the attacker can
perform a rank-one modification attack. Furthermore, for the projected gradient
descent method, different datasets need different parameters, which means we must
do parameter tuning before applying this algorithm. By contrast, we provide a
closed-form solution to the case for adding one poisoning data point to attack one
of the regression coefficients, and the designed alternating optimization method for
the case of rank-one attack does not need parameter tuning. Furthermore, compared
with the projected gradient descent method, our alternating optimization method
provides smaller objective values, faster convergence rate, and more stable behavior.

1.3 Adversarial Attack Against LASSO Based Feature
Selection

Feature selection is one of the most important preprocessing steps in the vast
majority of machine learning and signal processing problems [35–37]. By per-
forming feature selection, we can discard irrelevant and redundant features while
keeping the most informative features. With the features of a smaller dimension,
we can overcome the curse of dimensionality, better interpret our model, and
speed up training and testing processes. Among a variety of feature selection
methods, LASSO is one of the most widely used [38, 39]. LASSO can perform

6 1 Introduction

feature selection and regression simultaneously by solving the following �1 norm
regularized least square problem:

argmin
β

‖y− Xβ‖2
2 + λ‖β‖1, (1.2)

where y and X are the response values and feature matrix respectively defined
similarly to that in (1.1). Due to the sparse promotion �1 norm regularizer, most
of the regression coefficients obtained by (1.2) will be zeros. The zero-valued
coefficients correspond to the features that are not chosen, while the non-zero
valued coefficients indicate the selected features. Owing to its simplicity and
efficiency, LASSO is widely applied to bio-science [40], financial analysis [41],
image processing [42], etc. Furthermore, by exploring the additional structures of
the regression coefficients, various extensions such as group LASSO [43, 44] and
sparse group LASSO [45, 46] are proposed in the literature.

Since feature selection serves as the first stage of many of the machine learning
algorithms, it is necessary and urgent to investigate its adversarial robustness.
Though some existing works examined the robustness of feature selection against
dense noise and outliers [47, 48], its behavior under the adversary attacks is
unknown. By analyzing the attack strategy of the adversary, our goal is to provide a
better understanding of the sensitivity of feature selection methods against this kind
of attack.

In the considered feature selection model, we assume that there is an adversary
who has the full knowledge of the model and can observe the whole dataset. After
inspecting the dataset, it will carefully modify the response values or the feature
matrix so as to manipulate the regression coefficients. By modifying the regression
coefficients, it will maneuver the selected features. It can select the features which
will not be selected originally by enlarging the magnitude of the corresponding
regression coefficients. Also, it can make us wrongly discard important features by
suppressing the magnitude of the corresponding regression coefficients. Moreover,
it will try to make other regression coefficients unchanged so as to minimize the
possibility of being detected by the feature selection system. In this paper, we intend
to find the best modification strategy of the adversary with the energy constraints on
the modification. By doing so, we can better understand how the response values
and feature matrix influence the selected features and the robustness of the feature
selection algorithm.

We formulate this problem as a bi-level optimization problem. The upper-level
objective is to minimize the difference between the targeted regression coefficients
and that learned from the modified dataset. The lower-level problem is just a LASSO
based feature selection problem with the modified dataset. To solve this bi-level
optimization problem, we first solve the lower-level problem. Since the LASSO
problem is a convex optimization problem, it is equivalent to its first order optimality
condition. By applying the implicit function theorem on the first order optimality
condition, we may learn the relationship between the dataset and the regression
coefficients if the first order condition is continuously differentiable around its

1.4 Adversarial Attack Against Subspace Learning 7

optimum. However, the �1 norm is not continuous at point zero. This prevents us
from directly employing the implicit function theorem on the KKT conditions.
To resolve the issue, we reformulate the LASSO problem as a linear inequality
constrained quadratic programming problem and use the interior-point method to
solve it. By utilizing the first order optimality condition from the reformulated
problem, we are able to find the gradients of our objective with respect to the
response values and feature matrix. With the gradients information, we employ
the projected gradient descent to solve this bi-level optimization problem. Similar
methods can be applied to design the attack strategy based on the group LASSO and
the sparse group LASSO.

1.4 Adversarial Attack Against Subspace Learning

Subspace learning has a wide range of applications, such as surveillance video
analysis, recommendation systems, anomaly detection, etc. [49–56]. Among a large
variety of subspace learning algorithms, principal component analysis is one of the
most widely used ones. We will assume PCA the subspace learning algorithm. PCA
computes a small number of principal components, which are orthogonal to each
other and represent the majority of the variability of the data samples, and treats
the span of these principal components as the desired low-dimensional subspace.
Furthermore, many works have proposed robust PCA that can mitigate the impact
of certain percentages of outliers and small dense random noise [57–60].

In Chap. 4 of our book, we investigate the adversarial robustness of subspace
learning algorithms. Particularly, we examine the robustness of subspace learning
algorithms against not only random noise or unintentional corrupted data as consid-
ered in existing works but also malicious data produced by powerful adversaries
who can modify the whole data set. Our study is motivated by the fact that
subspace learning and many other machine learning algorithms are increasingly
being used in safety critical and security related applications, such as autonomous
vehicle system [61], voice recognition [62], medical image processing [1], etc. In
these applications, there might exist powerful adversaries who can modify the data
with the goal of maneuvering the machine learning algorithms to make the wrong
decision or leave a backdoor in the system [14]. To ensure the security and safety of
these systems, it is crucial to understand the impact of these adversarial attacks on
the performance of machine learning algorithms.

In our problem, given the original data matrix, we learn a low-dimensional
subspace via PCA. However, there is an adversary who can observe the whole
data matrix and then carefully design a modification matrix to change the original
data. The goal of the adversary is to modify the original data so as to maximize
the subspace distance between the subspace learned from the original data and
that learned from the modified data. In our book, we use Asimov distance [63],
defined as the largest principal angle between two subspaces, to measure the
subspace distance. Asimov distance has a close relationship with the chordal 2-norm

8 1 Introduction

distance and the Finsler distance, which are used in the analysis of optimization on
manifolds [64, 65]. It is also related to the gap distance, which is used in the control
theory to describe the stability and robustness of a system [66–68]. Additionally,
it is closely connected to the projection 2-norm that is widely used in various
applications [63, 69, 70]. The projection 2-norm provides a way to measure the
discrepancy of the projections of a vector on two distinct subspaces. It is useful
in the robustness analysis of the principal component regression (PCR), as one is
actually projecting the response value vector onto the selected feature subspace in
PCR. We will provide an example to illustrate it in Sect. 4.4 using real data. As
the Asimov distance depends on the modification matrix in a complex manner, to
characterize the optimal attack strategy that maximizes the Asimov distance, we
need to solve a complicated non-convex optimization problem.

Towards this goal, we first solve the optimization problem with an additional
rank-one constraint on the modification matrix. We note that a rank-one modifica-
tion is already powerful enough to capture many common modifications such as
changing one data sample, inserting one adversarial data point, deleting one feature,
etc. Furthermore, the techniques and insights obtained from this special case are
useful for the general case without the rank-one constraint. In the rank-one attack
case, we study two different scenarios depending on whether the dimension of the
selected subspace is equal to the rank of the data matrix or not. Our study reveals
that the optimal attack strategy depends on the energy budget and the singular values
of the data matrix. Specifically, in the scenario where the dimension of the selected
subspace is the same as the rank of the data matrix, we show that the optimal rank-
one strategy depends solely on the energy budget and the smallest singular value of
the data matrix. In the scenario where the dimension of the selected subspace is less
than the rank of the original data matrix, the optimal strategy depends not only on
the energy budget but also on the kth and (k + 1)th singular values, where k is the
dimension of the selected subspace.

Relying on the insights gained from the rank-one case, we then extend our
study to the more general case where no rank constraint is imposed. Compared
with the case with the rank-one constraint, the attacker now has a higher degree of
freedom to modify the data, which makes the characterization of the optimal attack
strategy significantly more challenging. To solve this optimization problem, we first
prove that, under the basis of the principal components of the original data matrix,
the optimal attack matrix only has a few non-zero entries at particular locations.
This result greatly reduces the complexity of our problem. With the help of this
result, we then simplify our problem to an optimization problem with the objective
function being a ratio of two quadratic functions. To solve this non-convex problem,
we further convert our optimization problem to a feasibility problem and find the
closed-form solution to this problem. Our result shows that the optimal strategy
depends on the energy budget and the kth and (k + 1)th singular values of the data
matrix. Our analysis shows that, compared with the optimal rank-one strategy, this
strategy leads to a larger subspace distance.

Our study is related to the recent works on adversarial machine learning. For
example, Jagielski et al. studied how to change the data to manipulate the result of

1.4 Adversarial Attack Against Subspace Learning 9

the regression learning system [9]. Lai et al. investigated the optimal modification
strategy to maximize the inference errors in a multivariate estimation system [71].
In an interesting related work [27], Pimentel-Alarcón et al. studied how to design
an adversarial data sample and add it to the data matrix in order to maximize the
Asimov distance between the subspace estimated by PCA from the contaminated
data matrix and that from the original data matrix. Pimentel-Alarcón et al. [27]
focuses on the case where the original data matrix is low-rank and the dimension of
the selected subspace is equal to the rank of the data matrix. By contrast, we consider
a more powerful adversarial setting, where the data matrix is not constrained to
being low-rank, the dimension of the selected subspace does not necessarily equal
the rank of the data matrix, and the adversary can modify the whole data matrix
instead of only adding one data sample.

Chapter 2
Optimal Feature Manipulation Attacks
Against Linear Regression

2.1 Attacking with One Adversarial Data Point

In this section, we consider the scenario where the attacker can add one carefully
crafted data point to the existing dataset. We will extend the analysis to the case with
more sophisticated attacks in Sect. 2.2.

2.1.1 Problem Formulation

Consider a dataset with n data samples, {yi, xi}ni=1, where yi is the response
variable, xi ∈ R

m is the feature vector, where each component of xi represents an
explanatory variable. In this section, we consider an adversarial setup in which the
adversary first observes the whole dataset {y,X}, in which y := [y1, y2, . . . , yn]�
and X := [x1, x2, . . . , xn]�, and then carefully designs an adversarial data point,
{y0, x0}, and adds it into the existing data samples. After inserting this adversarial
data point, we have the poisoned dataset {ŷ, X̂}, where ŷ := [y0, y1, y2, . . . , yn]�,
X̂ := [x0, x1, x2, . . . , xn]�.

From the dataset, we intend to learn a linear regression model. From the poisoned
dataset, the learned model is obtained by solving

argmin
β

: ‖ŷ− X̂β‖2, (2.1)

where ‖ · ‖ denotes the �2 norm for a vector and the induced 2-norm for a matrix
throughout this chapter. Let β̂ be the optimal solution to problem (2.1). The goal of
the adversary is to minimize some objective function, f (β̂), by carefully designing
the adversarial data point. The form of f (β̂) depends on the specific goal of the
attacker. For example, the attacker can try to reduce the importance of feature i by

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Li et al., Machine Learning Algorithms, Wireless Networks,
https://doi.org/10.1007/978-3-031-16375-3_2

11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16375-3_2&domain=pdf

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-16375-3_2

12 2 Optimal Feature Manipulation Attacks Against Linear Regression

setting f (β̂) = |β̂i |, in which β̂i is the ith component of β̂. Or the attacker can try to
increase the importance of feature i by setting f (β̂) = −|β̂i |. To make the problem
meaningful, in this chapter, we impose the energy constraint on the adversarial data
point. Since one data point contains a feature vector and a response value, we put �2
norm constraint on the concatenated vector [x�0 , y0]�. With the objective f (β̂) and
the energy constraint of the adversary data point, our problem can be formulated as

min
‖[x�0 ,y0]‖≤η

: f (β̂) (2.2)

s.t. β̂ = argmin
β

: ‖ŷ− X̂β‖2,

where η is the energy budget. The objective function, f (β̂), depends on the
poisoning data point, {x0, y0}, not in a direct way, but through a lower level
optimization problem. What makes this problem even harder is the complication
of the objective function. Depending on the goal of the adversary, the objective can
be in various forms. In the following two subsections, we will discuss two important
objectives and their solutions, respectively. The methods and insights obtained from
these two cases could then be extended to cases with other objectives.

2.1.2 Attacking One Regression Coefficient

In this subsection, the goal of the adversary is to design the adversarial data point
{y0, x0} to decrease (or increase) the importance of a certain explanatory variable. If
the goal is to decrease the importance of explanatory variable i, we can set f (β̂) =
|β̂i |, and the optimization problem can be written as

min
‖[x�0 , y0]‖2≤η

: |β̂i | (2.3)

s.t. β̂ = argmin
β

: ‖ŷ− X̂β‖2.

Similarly, if the goal of the adversary is to increase the importance of the
explanatory variable i, we can set our objective as

min : −|β̂i | (2.4)

with the same constraints as in problem (2.3).
To solve the optimization problems (2.3) and (2.4), we first solve the following

two optimization problems

2.1 Attacking with One Adversarial Data Point 13

min
‖[x�0 , y0]‖≤η

: β̂i (2.5)

s.t. β̂ = min
β
: ‖ŷ− X̂β‖2, (2.6)

and

max
‖[x�0 , y0]‖≤η

: β̂i (2.7)

s.t. β̂ = min
β
: ‖ŷ− X̂β‖2. (2.8)

It is easy to check that the solutions to problems (2.3) and (2.4) can be obtained
from the solutions to problem (2.5) and (2.7). In particular, let (β̂∗i)min and (β̂∗i)max

be optimal values of problem (2.5) and (2.7) respectively. Then, if β̂i ≥ 0, we
can check that max{0, (β̂∗i)min} and max{|(β̂∗i)min|, |(β̂∗i)max|} are the solutions to
problem (2.3) and (2.4) respectively. Similar arguments can be made if β̂i < 0.

In the following, we will focus on solving the minimization problem (2.5). The
solution to the maximization problem (2.7) can be obtained by using a similar
approach. To solve this bi-level optimization problem, we can first solve the
optimization problem in the subjective. Assume X is full column rank. Problem (2.6)
is just an ordinary least squares problem, which has a simple closed-form solution:
β̂ = (X̂�X̂)−1X̂�ŷ. Substitute in X̂ = [x0,X�]� and ŷ = [y0, y�]�, and we have

β̂ = (X�X+ x0x�0)−1[x0,X�][y0, y�]�.

According to the Sherman-Morrison formula [72], we have

(X�X+ x0x�0)−1 = A− Ax0x�0 A
1+ x�0 Ax0

, (2.9)

where

A = (X�X)−1. (2.10)

The inverse of X�X+ x0x�0 always exists because 1+ x�0 Ax0 �= 0 and X�X is

invertible. Plug this inverse in the expression of β̂, we get

β̂ = β0 +
Ax0(y0 − x�0 β0)

1+ x�0 Ax0
, (2.11)

where

β0 = AX�y. (2.12)

14 2 Optimal Feature Manipulation Attacks Against Linear Regression

We can observe that β0 is the coefficient that is obtained from the clean data.
Problem (2.5) is equivalent to

min
x0,y0

: a
�x0(y0 − x�0 β0)

1+ x�0 Ax0
(2.13)

s.t. ‖[x�0 , y0]‖ ≤ η,

where a is the ith column of A. The optimization problem (2.13) is the ratio of two
quadratic functions with a quadratic constraint. To further simplify this optimization
problem, we can write our objective and subjective in a more compact form by
performing variable change: u = [x�0 , y0]�. Using this compact representation, the
optimization problem (2.13) can be written as

min
u
:

1
2u
�Hu

1+ u�
[

A 0
0 0

]
u

(2.14)

s.t. u�u ≤ η2,

in which

H =
[−aβ�0 − β0a

� a
a� 0

]
. (2.15)

(2.14) is a non-convex optimization problem. To solve this problem, we employ
the technique introduced in [73]. We first perform variable change u = z

s
by

introducing variable z and scalar s. Inserting this into problem (2.14), adding
constraint 1 to the denominator of the objective and moving it to the subjective,
we have a new optimization problem

min
z,s
: 1

2
z�Hz (2.16)

s.t. s2 + z�
[

A 0
0 0

]
z = 1, (2.17)

z�z ≤ s2η2. (2.18)

To validate the equivalence between problem (2.14) and (2.16), we only need to
check if the optimal value of problem (2.14) is less than the optimal value of
problem (2.16) when s = 0 [73]. Firstly, since H is not positive semi-definite (which
will be shown later), the optimal value of problem (2.14) is less than zero. Secondly,
when s = 0, the optimal value of problem (2.16) is zero, which is apparently
larger than the optimal value of problem (2.14). Therefore, the two problems are
equivalent.

To solve problem (2.16), we substitute s2 in Eq. (2.17) for that in Eq. (2.18) and
obtain

2.1 Attacking with One Adversarial Data Point 15

min
z
: 1

2
z�Hz (2.19)

s.t.
1

2
z�Dz ≤ η2, (2.20)

where

D = 2

(
I+ η2

[
A 0
0 0

])
. (2.21)

Notice that H is not positive semi-definite; hence problem (2.19) is not a standard
convex QCQP problem [25]. However, it is proved that strong duality holds for this
type of problem [74–76]. Hence, to solve this problem, we can start by investigating
its KKT necessary conditions. The Lagrangian of problem (2.19) is

L(z, λ) = 1

2
z�Hz+ λ

(
1

2
z�Dz− η2

)
,

where λ is the dual variable. According to the KKT conditions, we have

(H+ λD) z = 0, (2.22)

1

2
z�Dz ≤ η2, (2.23)

λ

(
1

2
z�Dz− η2

)
= 0, (2.24)

λ ≥ 0. (2.25)

By inspecting the complementary slackness condition (2.24), we consider two
cases based on the value of λ.

Case 1: λ = 0. In this case, we must have Hz = 0 according to (2.22). As a result,
the objective value of (2.19) is zero, which contradicts the fact that the
optimal value should be negative. Hence, this case is not possible.

Case 2: λ > 0. In this case, equality in (2.23) must hold based on (2.24).
According to the stationary condition (2.22), if the matrix H + λD is
full rank, we must have z = 0, for which equality in (2.23) cannot hold.
Hence, H + λD is not full-rank and we have det(H + λD) = 0. As D is
positive definite, we also have det(D−1/2HD−1/2+λI) = 0. Since λ > 0,
this equality tells us that −λ belongs to one of the negative eigenvalues
of D−1/2HD−1/2. In the following, we will show that D−1/2HD−1/2 has
one and only one negative eigenvalue.

By definition, D is a block diagonal matrix. Hence, its inverse is also block
diagonal. Let us define D−1/2 = diag{G, g}, where G = 1/

√
2(I + η2A)−1/2 and

g = 1/
√

2. Thus, we have

16 2 Optimal Feature Manipulation Attacks Against Linear Regression

D−1/2HD−1/2 =
[−ch� − hc� gc

gc� 0

]
,

where c = Ga and h = Gβ0. Define ξ as one eigenvalue of D−1/2HD−1/2, and
compute its eigenvalues by computing the characteristic polynomial:

det
(
ξI− D−1/2HD−1/2

)

= ξm−1
(
ξ2 + 2ξc�h+ c�hh�c− g2c�c− c�ch�h

)
.

Thus, the eigenvalues of D−1/2HD−1/2 are ξ = 0 ((m − 1) multiplicities) and
ξ = −c�h ± ‖c‖√g2 + h�h. Since ‖c‖√g2 + h�h > |c�h|, the eigenvalues of
D−1/2HD−1/2 satisfy: ξm+1 < 0, ξm = ξm−1 = · · · = ξ2 = 0, ξ1 > 0. Now,
it is clear that D−1/2HD−1/2 has one and only one negative eigenvalue and one
positive eigenvalue, respectively. Thus, we have λ = −ξm+1. Assume ν1 and νm+1
are two eigenvectors corresponding to eigenvalues ξ1 and ξm+1. Through simple
calculation, we have

νi = ki

[
−c�h+ ξi

c�c
c� + h�,

gc�

ξi

(
−c�h+ ξi

c�c
c+ h

)]�
, (2.26)

where i = 1, m + 1 and scalar ki is the normalization constant to guarantee the
eigenvectors to be of unit length. According to (2.22), we have

(H+ λD) z = D1/2
(
D−1/2HD−1/2 + λI

)
D1/2z = 0;

thus the solution to problem (2.19) is

z∗ = k · D−1/2νm+1. (2.27)

Since 1
2z
�Dz = η2, we have k = √2η. Having the expression of the optimal z∗, we

can then compute s according to Eq. (2.17):

s = ±
√

1− (z∗1:m)�Az∗1:m, (2.28)

where z∗1:m is the vector that comprises the first m elements of z∗. Hence, the
corresponding solution to problem (2.13) is

x∗0 = z∗1:m/s, y∗0 = z∗m+1/s. (2.29)

We now compute the optimal value of problem (2.16). Since our objective
function is 1

2 (z∗)�Hz∗, substituting z∗ in (2.27) leads to the objective value:

2.1 Attacking with One Adversarial Data Point 17

η2ν�m+1D
−1/2HD−1/2νm+1. Since ν�m+1D

−1/2HD−1/2νm+1 = ξm+1, our optimal
objective value is η2ξm+1.

Following similar analysis as above, we can find the optimal z∗ for problem (2.7),
which is z∗ = √2ηD−1/2ν1. Also, we can compute the optimal x∗0 and y∗0 according
to Eq. (2.29) and its optimal objective value, which is η2ξ1.

In summary, the optimal values for problems (2.5) and (2.7) are η2ξm+1 + (β0)i
and η2ξ1+(β0)i respectively. We have summarized the process to design the optimal
adversarial data point in Algorithm 1 with respect to objective (2.5) and the process
with respect to objective (2.7) can be obtained accordingly. Based on our optimal
values of problems (2.5) and (2.7), we can further decide the optimal values of
problems (2.3) and (2.4) as discussed at the beginning of this section. From our
analysis, we can see that the main computation is to compute A in (2.10). Hence,
the complexity of our algorithm is O(m3).

Moreover, if we use the ridge regression method in linear regression, there is only
a slight difference in the matrix A in problem (2.13) and the whole analysis remains
the same.

One may concern that the proposed adversarial data point may behave as an
outlier and can be easily detected by the learning system. We can mitigate this by a
simple repeating strategy, in which we repeat the proposed adversarial data point K

times and shrink the magnitude of these poisoning data by
√

K . This can be simply
verified by

β̂ = (X̂�X̂)−1X̂ŷ

=
(
X�X+ x0x�0

)−1
(X�y+ x0y0)

=
(

X�X+
k∑

i=1

1√
K
x0

1√
K
x�0

)−1 (
X�y

+
K∑

i=1

1√
K
x0

1√
K

y0

)

= (X̃�X̃)−1X̃�ỹ,

Algorithm 1 Optimal adversarial data point design
1: Input: the data set, {yi , xi}ni=1, energy budget η, and the index of feature to be attacked.
2: Steps:
3: compute A according to Eq. (2.10), compute β0 according to (2.12).
4: compute H and D according to (2.15) and (2.21), respectively.
5: compute the smallest eigenvalue, ξm+1, of D−1/2HD−1/2 and its corresponding eigenvector

according to (2.26).
6: design the adversarial data point, {x0, y0}, according to Eqs. (2.27), (2.28), and (2.29).
7: Output: return the optimal adversarial data point {x0, y0} and the optimal value η2ξm+1 +

(β0)i .

18 2 Optimal Feature Manipulation Attacks Against Linear Regression

where X̃ = [X�,
1√
K
x0, . . . ,

1√
K
x0

︸ ︷︷ ︸
K times

]� and ỹ = [y�,
1√
K

y0, . . . ,
1√
Ky0︸ ︷︷ ︸

K times

]�. By

shrinking the poisoning data points, it will make the detection of these points more
difficult, especially when the dataset is standardized.

We now analyze the impact of parameters, such as η, on the objective value.
Even though we have a closed-form solution to the optimal adversarial data point,
the objective is a complex function of the original dataset. Hence, it will be difficult
to analyze this for the general case. Instead, we will focus on some special cases.
In particular, we analyze how the energy budget affects the value of objective
function in the large data sample scenario. As our analysis shows, our optimal
values are η2ξ , where ξ = −c�h ± ‖c‖√g2 + h�h, c = Ga, h = Gβ0,
G = 1/

√
2(I + η2A)−1/2, g = 1/

√
2, A = (X�X)−1, and β0 is the original

regression coefficient. In the large data sample limit and the assumption that the
features are independent and standardized, we have the approximation A = I.
Recall that a is the ith column of A, a = ei . As the result, the objective value is

η2ξ = 1
2

η2

1+η2

[
−β i

0 ±
√

η2 + 1+ ||β0||2
]
. For objective (2.5) with optimal value

1
2

η2

1+η2

[
−β i

0 −
√

η2 + 1+ ||β0||2
]
, this function is monotonically decreasing with

η. For the objective (2.7) with optimal value 1
2

η2

1+η2

[
−βi

0 +
√

η2 + 1+ ||β0||2
]
, it

is a monotonically increasing function of η.

2.1.3 Attacking with Small Changes of Other Regression
Coefficients

In Sect. 2.1.2, we have discussed how to design the adversarial data points to attack
one specific regression coefficient. However, as we only focus on one particular
regression coefficient, other regression coefficients may also be changed. In this
subsection, we consider a more complex objective function, where we aim to make
the changes to other regression coefficients to be as small as possible while attacking
one of the regression coefficients.

Suppose our objective is to minimize the ith regression coefficient (the sce-
nario of maximize the ith regression coefficient can be solved using similar
approach), i.e., to minimize ‖β̂i‖2. At the same time, we would also like to
minimize the changes to the rest of the regression coefficients, i.e., to minimize

‖β−i
0 − β̂

−i‖2, where β−i
0 = [β1

0 , . . . , βi−1
0 , 0, βi+1

0 , . . . , βm
0]� and β̂

−i =
[β̂1, . . . , β̂i−1, 0, β̂i+1, β̂m]�. Combine the two objectives, we have our new objec-
tive function

f (β̂) = 1

2

∥∥∥β−i
0 − β̂

−i
∥∥∥

2 + λ

2

∥∥∥β̂i

∥∥∥
2
,

2.1 Attacking with One Adversarial Data Point 19

where λ is the trade-off parameter. The larger the λ is, the more effort will be made to
keep the ith regression coefficient small. A negative λ means the adversary attempts
to make the magnitude of the ith regression coefficient large. Again, we assume
that the attack energy budget is η. As the result, we have the following optimization
problem

min∥∥[x�0 ,y0]
∥∥≤η

: 1

2

∥∥
∥β−i

0 − β̂
−i
∥∥
∥

2 + λ

2

∥∥
∥β̂i

∥∥
∥

2
(2.30)

s.t. β̂ = argmin
β

: ‖ŷ− X̂β‖2.

As the objective function is a quadratic function with respect to β̂, we can
write it in a more compact form: 1

2 (β̂ − β−i
0)��(β̂ − β−i

0), where � =
diag(1, 1, . . . , λ, . . . , 1) and λ is at the ith coordinate. With this compact form,
our optimization problem can be written as

min∥
∥[x�0 ,y0]

∥
∥≤η

: 1

2
(β̂ − β−i

0)��(β̂ − β−i
0) (2.31)

s.t. β̂ = argmin
β

: ‖ŷ− X̂β‖2.

To solve this problem, same as in the previous subsection, we start by solving the
lower level optimization problem. Since we have the same lower level problem as in
(2.5), substitute β̂ in the objective with the expression (2.11), and we have the one
level optimization problem

min
x0,y0

: 1

2
g��g

s.t.
∥∥∥[x�0 , y0]

∥∥∥ ≤ η,

where g = Ax0(y0−x�0 β0)

1+x�0 Ax0
−b with A and β0 defined in (2.10) and (2.12) respectively

and b = β−i
0 − β0. To further simplify our problem, let us define

A1 = [A, 0], A2 =
[
A 0
0 0

]
, c =

[−β0

1

]
, z =

[
x0

y0

]
, (2.32)

where A1 ∈ R
m×(m+1) and A2 ∈ R

(m+1)×(m+1). With the new defined variables, we
can write our problem more compactly as:

20 2 Optimal Feature Manipulation Attacks Against Linear Regression

min
z
: 1

2

(
A1zc�z

1+ z�A2z
− b

)�
�

(
A1zc�z

1+ z�A2z
− b

)
(2.33)

s.t. ‖z‖ ≤ η.

Since the objective is a ratio of two quartic functions, similar to the process
we carried out from (2.14) to (2.16), we perform variable change z = w

s
by

introducing the new variable w and scalar s. Insert it into problem (2.33) and follow
the same argument we have made to transform problem (2.14) to problem (2.16),
problem (2.33) is equivalent to the following problem

min
w,s

: 1

2

(
A1wc�w− b

)�
�
(
A1wc�w− b

)
(2.34)

s.t. (s2 + w�A2w)2 = 1, (2.35)

w�w ≤ s2η2. (2.36)

According to the definition of A2, it is positive semidefinite. Hence, we have
s2 = 1 − w�A2w. Plug in the expression of s2 into (2.36), the constraints in
problem (2.34) can be simplified to w�(I + η2A2)w ≤ η2. Let U�U = I + η2A2
be the Cholesky decomposition of I + η2A2. Define H = A1U−1, e = U−�c, and
x = Uw, we can simplify problem (2.34) further as:

min
x
: 1

2

(
Hxe�x− b

)�
�
(
Hxe�x− b

)
(2.37)

s.t. x�x ≤ η2.

This is an optimization problem with a quartic objective function and with a
quadratic constraint. Recent progress in multivariate polynomial optimization has
made it possible to solve this problem using the sum of squares technology [77–80].
This method finds the globally optimal solutions by solving a sequence of convex
linear matrix inequality problems. Even though this sequence might be infinitely
long, in practice, a very short sequence is enough to guarantee its global optimality.
Hence, in this subsection, we will resort to Lasserre’s relaxation method [77].
Algorithm 2 summarizes the process to design the adversarial data point. The
complexity of Algorithm 2 is dominant by the solving of the relaxation semidefinite
problem. Hence, the computational complexity of Algorithm 2 is O(s(N)4.5), where
N is the relaxation order and s(N) = (

N+m
N

)
[81]. Numerical examples using this

method to solve our problem with real data will be provided in Sect. 2.3.
In this subsection, we put an �2 norm constraint on the adversarial data point. It

is possible to extend our work to other kinds of norm constraints, such as �1 and
�∞ norm constraints. Suppose we put �p (p = 1 or p = ∞) norm constraint on
the adversarial data sample with objective (2.30), following similar steps in this
subsection, we can obtain objective (2.34) with constraint (2.35) and the norm cone

2.2 Rank-One Attack Analysis 21

Algorithm 2 Optimal adversarial data point design while making small changes to
other regression coefficients
1: Input: the data set, {yi , xi}ni=1, energy budget η, and the index of feature to be attacked, the

trade-off parameter λ.
2: Steps:
3: compute A according to Eq. (2.10), compute β0 according to (2.12), compute A2 according

to (2.32).
4: follow the steps (2.30), (2.31), (2.33), and (2.34), and formulate our problem as a polynomial

optimization problem (2.37).
5: use Lasserre’s relaxation method to solve problem (2.37) and get the optimal solution x∗ and

optimal value p∗.
6: compute w∗ = U−1x∗, where I+ η2A2 = UU�.
7: compute s∗ = ±√1− (w∗)�A2w∗.
8: calculate the optimal solution x∗0 = w∗1:m/s∗, y∗0 = w∗m+1/s

∗.
9: Output: return the optimal adversarial data point {y∗0 , x∗0} and the optimal value p∗.

constraint ||w||p ≤ sη. When p = 1, the norm cone constraint can be transformed to
the inequalities constraints

∑m+1
i=1 ai ≤ sη and−ai ≤ wi ≤ ai for i = 1, . . . , m+1,

where ai is the auxiliary variable. When p = ∞, we can transform the norm cone
constraint to b ≤ sη and −b1 � w � b1, where b is a auxiliary variable. Both
cases lead to linear inequality constraints, which are special polynomial inequalities.
Hence, we can still use the Lasserre’s relaxation method to obtain the optimal
solution.

2.2 Rank-One Attack Analysis

In Sect. 2.1, we have discussed how to design one adversarial data point to attack
the regression coefficients. In this section, we consider a more powerful adversary
who can modify the whole dataset in order to attack the regression coefficients. In
particular, we will consider a rank-one attack on the feature matrix [26]. This type
of attack covers many practical scenarios, for example, modifying one entry of the
feature matrix, deleting one feature, changing one feature, replacing one feature,
etc. We summarize these modifications and their corresponding configurations of c
and d in Table 2.1, where cd� is the rank one modification matrix, Xi,: denotes the
ith row of the feature matrix X, X:,i represents the ith column of the feature matrix,
ei is the standard basis vector, and η is the scalar which denotes the modification

Table 2.1 Configurations of
c and d and their
corresponding modifications

Modification Configurations of c and d

Delete the ith data sample c = −ei , b = Xi,:
Delete feature i c = X�:,i , d = −ei

Add one adversarial data sample X← [X, 0], c = en+1,

d = x�n+1

Modify one entry c = η · ei , d = ej

22 2 Optimal Feature Manipulation Attacks Against Linear Regression

energy budget. Hence, the analysis of the rank-one attack provides a universal bound
for all of these kinds of modifications. Specifically, we will consider the objective
in problem (2.3) and (2.4) where the adversary attacks one particular regression
coefficient. In the following, we will first formulate our problem and then provide
our alternating optimization method to solve this problem.

In the considered rank-one attack model, the attacker will carefully design a rank-
one feature modification matrix � and add it to the original feature matrix X. As the
result, the modified feature matrix is X̂ = X+�. As � has rank one, we can write
� = cd�, where c ∈ R

n and d ∈ R
m. Similar to the previous section, we restrict the

adversary to having a limited energy budget, η. Here, we use the Frobenius norm to
measure the energy of the modification matrix. Hence, we have ‖�‖F ≤ η, where
‖ · ‖F denotes the Frobenius norm of a matrix. If the attacker’s goal is to increase
the importance of feature i, our problem can be written as

max
‖cd�‖F≤η

: |β̂i | (2.38)

s.t. β̂ = argmin
β

‖y− X̂β‖2,

X̂ = X+ cd�.

If the adversary is trying to minimize the magnitude of the ith regression coefficient,
our problem is

min
‖cd�‖F≤η

: |βi | (2.39)

s.t. β̂ = argmin
β

: ‖y− X̂β‖2,

X̂ = X+ cd�.

Similar as in Sect. 2.1.2, the solutions to problems (2.38) and (2.39) can be obtained
by the solutions to the following two problems:

max
‖cd�‖F≤η

: β̂i (2.40)

and

min
‖cd�‖F≤η

: β̂i (2.41)

with the same constraints as in (2.38) and (2.39).
We can further write the above two problems in a more unified form:

min
‖cd�‖F≤η

: e�β̂ (2.42)

2.2 Rank-One Attack Analysis 23

s.t. β̂ = argmin
β

: ‖y− X̂β‖2,

X̂ = X+ cd�.

If e = ei , in which ei is a vector with the ith entry being 1 and all other entries being
zero, problem (2.42) is equivalent to problem (2.41). If e = −ei , problem (2.42) is
equivalent to problem (2.40). Hence, in the following part, we will focus on solving
this unified problem (2.42).

To solve problem (2.42), we can first solve the lower level optimization problem
in the constraints. It admits a simple solution that β̂ = X̂†y and X̂† is the pseudo-
inverse of X̂. This pseudo-inverse can be written as X̂† = X† +G [82], where

G = 1

γ
X†nw� − γ

‖n‖2‖w‖2 + γ 2
·
(‖w‖2

γ
X†n+ v

)(‖n‖2

γ
w+ n

)�
,

(2.43)

γ = 1+ d�X†c, v = X†c, n = (X†)�d, and w = (I− XX†)c.
Since β̂ = X̂†y = (X† + G)y and X† does not depend on c and d, our problem

is equivalent to

min
c,d

: e�Gy (2.44)

s.t. ‖c · d�‖F ≤ η.

Suppose (c∗,d∗) is the optimal solution of (2.44), it is easy to see that for nonzero k,
(kc∗,d∗/k) is also a valid optimal solution. To avoid the ambiguity, it is necessary
and possible to reduce the feasible region further. Hence, we put an extra constraint
on c, where we restrict the norm of c to be less than or equal to 1. As a result, our
problem can be further written as

min
c,d

: e�Gy (2.45)

s.t. ‖c‖ ≤ 1, ‖d‖ ≤ η,

in which we use the identity ‖cd�‖F = ‖c‖‖d‖. It is clear that problem (2.44) and
problem (2.45) have the same optimal objective value.

Since G is determined by c, d, and X, different values of c and d may result in
different objective functions. Before further discussion, let us assume the singular
value decomposition of the original feature matrix is X = U�V�, where � =
[diag(σ1, σ2, · · · , σm), 0]� and σ1 ≥ σ2 ≥ · · · ≥ σm > 0. With this decomposition,
we have X† = V�†U�, where �† = [diag(σ−1

1 , σ−1
2 , · · · , σ−1

m), 0]. In (2.43), if
η ≥ σm, by letting γ → 0, we have our objective being minus infinity by setting
(c,d) = (um,−σmvm) or (c,d) = (−um, σmvm), where um and vm are the mth

24 2 Optimal Feature Manipulation Attacks Against Linear Regression

column of matrices U and V, respectively. Hence, we conclude that, when η ≥
σm, the optimal value of problem (2.45) is unbounded from below. As the result,
throughout this section, we assume η < σm. Thus, we also have γ = 1+ d�X†c ≥
1 − ‖c · d�‖‖X†‖ ≥ 1 − η

σm
> 0. We note that when η approaches σm, it does not

mean to kill all of the signals in the feature matrix but only some signals with the
energy equal to the smallest singular value of the feature matrix.

Let h denote our objective h(c,d) = e�Gy, plug in the expression of G, and we
have

h(c,d) = 1

‖n‖2‖w‖2 + γ 2

(
γ e�X†nw�y− γ e�vn�y

− ‖w‖2e�X†nn�y− ‖n‖2e�vw�y
)
. (2.46)

We need to optimize h(c,d) over c and d with the constraint ‖c‖ ≤ 1 and ‖d‖ ≤ η.
However, h(c,d) is a ratio of two quartic functions, which is known to be a hard
non-convex problem in general. To solve this problem, similar to [34], we can use
the projected gradient descent method. However, it is hard to choose a proper step-
size and its convergence is not clear when the projected gradient descent is applied
to a non-convex problem. In the following, we provide an alternating optimization
algorithm with provable convergence.

The enabling observation of our approach is that even though the optimization
problem is a complex non-convex problem, for a fixed c, h is a ratio of two
quadratic functions with respect to d. Similarly, for a fixed d, h is a ratio of two
quadratic functions with respect to c. A ratio of two quadratic functions admits
a hidden convex structure [83]. Inspired by this, we decompose our optimization
variables into c and d, and then use alternating optimization algorithm described in
Algorithm 3 to sequentially optimize c and d.

Algorithm 3 Optimal rank-one attack matrix design via the alternating optimization
algorithm
1: Input: data set {yi , xi}ni=1 and energy budget η.
2: Initialize: randomly initialize c0 and d0, set number of iterations k = 0.
3: compute G according to (2.43).
4: plug in the expression of G into (2.45), and obtain our objective, h(c,d), as in (2.46).
5: Do
6: update ck by solving: ck = argmin

‖c‖≤1
: h(c,dk−1),

7: update dk by solving: dk = argmin
‖d‖≤η

: h(ck,d),

8: set k = k + 1,
9: While convergence conditions are not meet.

10: compute the modification matrix � = ck(dk)�.
11: Output: return the modification matrix, �.

2.2 Rank-One Attack Analysis 25

The core of this algorithm is to solve the following two problems

ck = argmin
‖c‖≤1

: h(c,dk−1), (2.47)

and

dk = argmin
‖d‖≤η

: h(ck,d). (2.48)

For a fixed d, the objective of problem (2.47) becomes h(c,d) = h1(c)/h2(c),
where we omit the superscript of d,

h1(c) = c�
[
e�X†nny�(I− XX†)− n�yne�X†

− e�X†nn�y(I− XX†)− ‖n‖2(X†)�ey�(I− XX†)
]
c

+ [e�X†n(I− XX†)y− n�y(X†)�e
]�c, (2.49)

and

h2(c) =c�
[‖n‖2(I− XX†)+ nn�

]
c+ 2n�c+ 1. (2.50)

Hence, problem (2.47) can be written as:

min
c
: h1(c)

h2(c)
(2.51)

s.t. ‖c‖ ≤ 1, (2.52)

where the forms of hi(c) = c�Aic + 2b�i c + li , i = 1, 2 and Ai , bi and li can
be derived from (2.49) and (2.50). The objective of this problem is the ration of
two quadratic functions. Even though it is non-convex, it has certain hidden convex
structures. The following theorem characterizes its optimal solution by solving a
semidefinite programming [83].

Theorem 2.1 ([83]) If there exists μ > 0 such that

[
A2 b2

b�2 l2

]
+ μ

[
I 0
0 −1

]
 0, (2.53)

the optimal value of problem (2.51) is equivalent to the following optimal value

max
α, ν≥0

: α (2.54)

s.t.

[
A1 b1

b�1 l1

]
� α

[
A2 b2

b�2 l2

]
− ν

[
I 0
0 −1

]

26 2 Optimal Feature Manipulation Attacks Against Linear Regression

Proof Please see [83] for detail. ��
We now show that our problem (2.51) satisfies condition (2.53). As the result, we

can find the solution to problem (2.51) by solving problem (2.54).
To prove the left hand side of (2.53) is positive definite, we can show the

following two inequalities are true according to Schur complement condition for
positive definite matrix

l2 − μ > 0, (2.55)

A2 + μI− 1

1− μ
b2b�2 0, (2.56)

where l2 = 1. Plug in the expression of A2, the left hand of inequality (2.56) can be
written as

A2 + μI− 1

1− μ
b2b�2

= ‖n‖2(I− XX†)+ μI− μ

1− μ
nn�.

Since I − XX† is a projection matrix, it is positive semi-definite. So, we only need
to prove

μI− μ

1− μ
nn� 0. (2.57)

Since nn� is rank-one and its non-zero eigenvalue is ‖n‖2, it equals to proving
‖n‖2/(1 − μ) < 1. To guarantee this inequality, we only need to make sure
μ < 1 − ‖n‖2. Since ‖X†‖ ≤ 1/σm and ‖d‖ ≤ η, we get ‖n‖2 = ‖(X†)�d‖2 ≤
‖X†‖2‖d‖2 ≤ η2/σ 2

m < 1. By choosing 0 < μ < 1 − ‖n‖2 < 1, we can ensure
(2.55) and (2.56) are both satisfied, and hence inequality (2.53) is satisfied.

From Theorem 2.1, we know the optimal value of (2.51) is equivalent to the
optimal value of problem (2.54). Problem (2.54) is a semidefinite programming
problem, which is convex and can be easily solved by modern tools such as [84]
and [85]. We now discuss how to find the optimal c which achieves this value.
Suppose the optimal solution of problem (2.54) is (α∗, ν∗). Since, h2(c) > 0,
we have h1(c) ≥ α∗h2(c) for any feasible c. Hence, we can compute the optimal
solution of problem (2.51) by solving

argmin
c

: h1(c)− α∗h2(c) (2.58)

s.t. ‖c‖2 ≤ 1 (2.59)

This problem is just a trust region problem. There are several existing methods to
solve it efficiently. In this chapter, we employ the method described in [86].

2.3 Applications 27

Now, we turn to solve problem (2.48). Since (2.48) and (2.47) have similar
structure, we can employ the methods described in Theorem 2.1 and (2.58) to find
its optimal value and optimal solution for problem (2.48).

Until now, we have fully described how to solve the intermediate problems in the
alternating optimization method. The following theorem shows that the proposed
alternating optimization algorithm will converge. Suppose the generated sequence
of solution is {ck, dk}, k = 0, 1, · · · , and we have the following corollary:

Corollary 2.1 The sequence {ck, dk} admits a limit point {c̄ , d̄} and we have

lim
k→∞h(ck,dk) = h(c̄, d̄). (2.60)

Furthermore, every limit point is a critical point, which means

∇h(c̄, d̄)�
[
c− c̄
d− d̄

]
≥ 0, (2.61)

for any ‖c‖ ≤ 1 and ‖d‖ ≤ η.

Proof We first give the proof of (2.60). Since the sequence {ck,dk} lies in the
compact set, {(c,d) | ‖c‖ ≤ 1, ‖d‖ ≤ η}, and according to the Bolzano-Weierstrass
Theorem [87], {ck,dk}must have limit points. Hence, there is a subsequence of {hk}
which converges to h(c̄, d̄). As the objective is a continuous function with respect to
c and d, the compactness of the constraint also implies the sequence of the objective
value, {hk}, is bounded from below. In addition, {hk} is a non-increasing sequence,
which indicates that the sequence of the function value must converge. In summary,
the sequence {hk} must converge to h(c̄, d̄). For the rest of the proof, please refer to
Corollary 2 of [88]. ��

2.3 Applications

In this section, we first demonstrate an adversarial attack against a linear regression
system in wireless sensor networks (WSNs). Then, we carry out adversarial attacks
on the stock exchange and wine data analysis problems.

2.3.1 Data Poisoning Attack Against Wireless Sensor Networks

Wireless sensor networks are known to be very vulnerable to a variety of attacks,
such as DoS and eavesdropping attacks [89]. In this subsection, we will use a
demonstrating experiment to show that wireless sensor networks can be easily
manipulated by only one node using our method provided in this chapter. In this

28 2 Optimal Feature Manipulation Attacks Against Linear Regression

sensor network, assume a master node collects all the data recorded by each node
in the sensor network. Then, the master node does linear regression with all the
collected data and analyzes the importance of the features. There is a node controlled
by the adversary and the adversary has the ability to access all the data. After
observing the whole data, it will generate some adversarial data and send them to
the master node to manipulate the results obtained by the linear regression system.

Suppose there are K nodes and node k has collected nk data, {yk
i , xk

i }nk

i=1, where
yk
i is the response variable and xk

i ∈ Rm is the feature vector. Assume the master

node totally collected n = ∑K
i=1 nk data. After collecting the data, the master

node will perform linear regression and assess the importance of each feature.
Suppose the collect feature matrix is X = [X1,X2, . . . ,XK]� ∈ R

n×m, and the

response vector is y = [y�1 , y�2 , . . . , y�K]�, where Xi = [xi
1
�
, xi

2
�
, . . . , xi

nk

�] and
yi = [yi

1, y
i
2, . . . , y

i
nk
]�. For demonstrating purpose, we will use synthetic data to

illustrate how to manipulate the regression results by only control one node in the
WSNs. In this experiment, we assume there are 20 normal sensor nodes each node
will have at least one records. The number of feature of each record is m = 7.
We randomly generate the feature matrix X ∈ R

100×10 with each entrie being
independent and identically distributed (i.i.d.) according to a Gaussian distribution
with zero mean and variance 0.1. The response vector is synthesize by y = Xβ + e,
where each entry of e is i.i.d. according to Gaussian distribution with zero mean
and variance 0.1. We first generate β with each element i.i.d. according to Gaussian
distribution with zero mean and unit variance. Then, we randomly choose one entry
of β and let its value be zero to indicate its corresponding feature is not important.
While, the adversary is trying to maximize the magnitude of this feature to make the
master node believe this feature is important.

With the collected data, the master node will do linear regression with the feature
matrix X and response vector y and analyze the importance of each feature. Assume
there is a node controlled by the adversary, who generates one record of the data
to maneuver the regression coefficient. We set the energy budget η = 1 and follow
Algorithm 1 to design our optimal poisoning data sample. For comparison, we also
carry out an exhaustive search algorithm. In this algorithm, we randomly generate
the adversarial data sample with each entry of the feature vector as well as the
response value being i.i.d. according to Gaussian distribution with zero mean and
unit variance. Then, we normalize its energy to be η. We repeat this attack 10,000
times and retain the data sample that results in the smallest objective value.

Figure 2.1 demonstrates the original regression coefficient, the modified coef-
ficients with our algorithm, and the random attack algorithm. We can see from
the figure that the magnitude of the third regression coefficient obtained from
the original data is very, and our attack successfully makes its magnitude very
large. This figure also demonstrates that our proposed algorithm leads to a larger
magnitude of the third regression coefficient than the exhaustive search.

Figure 2.2 shows the original data points (in blue), the optimal adversarial data
point (in red), and the adversarial data points after the 10 times repeating strategy
(in green) in this experiment. In this figure, the x-axis and y-axis are two features

2.3 Applications 29

-1

-0.5

0

0.5

1

1.5

2

2.5

co
ef

fic
ie

nt

1 2 3 4 5 6 7

feature index

 giro

opt

rand

Fig. 2.1 The regression coefficients before and after attacking the third regression coefficient with
objective (2.4)

feature 1

fe
at

ur
e

2

feature 1

fe
at

ur
e

3

feature 1

fe
at

ur
e

4

feature 1

fe
at

ur
e

5

feature 1

fe
at

ur
e

6

feature 1

fe
at

ur
e

7

feature 1

feature 2

fe
at

ur
e

3

feature 2

fe
at

ur
e

4

feature 2

fe
at

ur
e

5

feature 2

fe
at

ur
e

6

feature 2

fe
at

ur
e

7

feature 2 feature 3

fe
at

ur
e

4

feature 3

fe
at

ur
e

5

feature 3

fe
at

ur
e

6

feature 3

fe
at

ur
e

7

feature 3 feature 4

fe
at

ur
e

5

feature 4

fe
at

ur
e

6

feature 4

fe
at

ur
e

7

feature 4 feature 5

fe
at

ur
e

6

feature 5

fe
at

ur
e

7

feature 5 feature 6

fe
at

ur
e

7

feature 6 feature 7

Fig. 2.2 The scatter plot of the original data, the designed poisoning data, and the poisoning data
after the repeating strategy

30 2 Optimal Feature Manipulation Attacks Against Linear Regression

that are specified by their corresponding axes labels (including the response value).
The blue circle represents the original data, the solid red dot denotes the data
point designed by our proposed method in Algorithm 1, and the solid green circle
indicates our proposed poisoning data after 10 times of repeating. The figure
demonstrates that the proposed adversarial data point may behave as an outlier.
However, after our simple repeating strategy, the adversarial data points act just
like normal data points. Hence, our repeating strategy can mitigate the adversarial
data point being detected by the regression system.

In summary, this experiment demonstrates that WSNs can be easily attacked
by the adverasary. Corrupting only one node will greatly influence the regression
system. Using the proposed repeating strategy in this chapter can further make the
detection system hard to recognize this attack.

2.3.2 Adversarial Attack Against Stock Exchange Data
Analysis

In this subsection, we will carry out our attack against the stock exchange analysis
system. In this system, we use seven international indexes to predict the returns of
the Istanbul Stock Exchange [90]. The data set contains 536 data samples, which are
the records of the returns of Istanbul Stock Exchange with seven other international
indexes starting from Jun. 5, 2009 to Feb. 22, 2011.

2.3.2.1 Attacking One Specific Regression Coefficient

In this experiment, we attack the fourth regression coefficient of the Istanbul Stock
Exchange dataset and try to make its magnitude large by solving problem (2.4). We
use two strategies to attack this coefficient with a fixed energy budget η = 0.2.
The first strategy is the one proposed in this chapter. As a comparison, we also use
a random strategy to approximate the exhaustive search algorithm. In the random
strategy, we randomly generate the adversarial data point with each entry being i.i.d.
generated from a standard normal distribution. Then, we normalize its energy to be
η. We repeat this random attack 10,000 times and select the one with the smallest
objective value. Hence, the random strategy is an approximation of the exhaustive
search algorithm.

Figure 2.3 shows the regression coefficients before and after our attack. The x-
axis denotes the index of the regression coefficients and the y-axis indicates the
value of the regression coefficients. In this figure, the ‘orig’ denotes the original
regression coefficient, ‘opt’ represents the regression coefficient after attacking by
our proposed optimal attack strategy, and ‘rand’ indicates the regression coefficient
after attacking by the random attack strategy. From the figure we can see that
our proposed adversarial attack strategy is much more efficient than the random

2.3 Applications 31

0

0.5

1

co
ef

fic
ie

nt

1 2 3 4 5 6 7
feature index

orig

opt

rand

Fig. 2.3 The regression coefficients before and after attacking the fourth regression coefficient
with objective (2.4)

attack strategy. One can also observe that by only adding one adversarial example,
designed by the approach characterized in this chapter, one can dramatically change
the value of a regression coefficient and hence change the importance of that
explanatory variable.

2.3.2.2 Attacking Without Changing Untargeted Regression Coefficients

From the numerical examples in the previous subsection, we can see the untargeted
regression coefficients may change greatly while attacking one specific regression
coefficient with an adversarial data point. For example, as demonstrated in Fig. 2.3,
the sixth and seventh regression coefficients change significantly when we attack
the fourth regression coefficient. To mitigate the undesirable changes of untargeted
regression coefficients, we need more sophisticated attacking strategies. In this
subsection, we will test different strategies with a more general objective function
as demonstrated in Sect. 2.1.3. We also use the same data set as described in
the previous subsection. We first try to attack the fourth regression coefficient to
increase its importance while making only small changes to the rest of the regression
coefficients. To accomplish this task, we aim to solve problem (2.30) with λ = −1.
Given the energy budget, firstly, we use our semidefinite relaxation based algorithm
to solve problem (2.37), and then follow Algorithm 2 to find the adversarial data
point. For comparison, we also carry out the random attack strategy, in which
we randomly generate the data point with each entry being i.i.d. according to the
standard normal distribution. Then, we normalize its energy being η and add it to
the original data points. We repeat these random attacks 10,000 times and select the
one with the smallest objective value. The third strategy is the projected gradient

32 2 Optimal Feature Manipulation Attacks Against Linear Regression

0 0.5 1 1.5 2
-5

-4

-3

-2

-1

0

grad-avg
grad-min
rand
poly

(a)

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
grad-avg

grad-min

rand

poly

(b)

0 0.5 1 1.5 2
0

1

2

3

4

5
grad-avg
grad-min
rand
poly

(c)

Fig. 2.4 Attack the fourth regression coefficient with objective (2.30) and λ = −1 under different
energy budgets

-2

-1.5

-1

-0.5

0

0.5

1

1.5

co
ef

fic
ie

nt

1 2 3 4 5 6 7
feature index

orig

grad

rand

poly

Fig. 2.5 The regression coefficients before and after different kinds of strategies that attack the
fourth regression coefficient with energy budget η = 1

descent based strategy, where we use the projected gradient descent algorithm to
solve (2.37) and follow similar steps of Algorithm 2 to find the adversarial data
point. Projected gradient descent works much like the gradient descent except with
an additional operation that projects the result of each step onto the feasible set
after moving in the direction of negative gradient [91]. In our experiment, we use
diminishing step-size, 1/(t + 1). Since the projected gradient descent algorithm
depends on the initial points heavily, given the energy budget, we repeat it 100 times
with different random initial points and treat the average of its objective values as
the objective value of this algorithm. Also, among the 100 times attacks, we record
the one with the smallest objective value.

Figure 2.4 shows the objective values under different energy budgets with
different attacking strategies and Fig. 2.5 demonstrates the regression coefficients
after one of the attacks of different strategies with η = 1. In these figures, ‘orig’
is the original regression coefficient, ‘rand’ means the random strategy, ‘poly’

2.3 Applications 33

0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2
grad-avg
grad-min
rand
poly

(a)

0 0.5 1 1.5 2
0

0.05

0.1

0.15
grad-avg
grad-min
rand
poly

(b)

0 0.5 1 1.5 2
0

0.05

0.1

0.15
grad-avg
grad-min
rand
poly

(c)

Fig. 2.6 Attack the sixth regression coefficient with objective (2.30) and λ = 1 under different
energy budgets

indicates our semidefinite relaxation strategy, ‘grad-avg’ is the average objective
value of the 100 times attacks based on the projected gradient descent algorithm,
and ‘grad-min’ is the one with the smallest objective value among the 100 times
attacks based on the projected gradient descent algorithm. From these two figures,
we can see our semidefinite relaxation based strategy performs much better than the
other two strategies. Among the 100 times attacks based on the projected gradient
descent, the minimal one can achieve similar objective values as our proposed
attacks based on the semidefinite relaxation. In addition, in our experiment, our
semidefinite relaxation method with relaxation order 2 or 3 can always lead to
globally optimal solutions. Hence, the computational complexity of this method is
still low. Figure 2.5 also shows our relaxation based method leads to the largest
magnitude of the fourth regression coefficient while keeping other regression
coefficients almost unchanged.

In the second experiment, we attack the sixth regression coefficient and attempt
to make its magnitude small while keeping the change of the rest of the coefficients
to be small. So, we set λ = 1 in problem (2.30) to achieve this goal. The settings
of each strategy are similar to the ones in the first experiment. Figure 2.6 shows
the objective values with different strategies under different energy budgets and
Fig. 2.7 demonstrates the regression coefficients after one of the attacks of those
strategies respectively with energy budget η = 1. From Fig. 2.6 we know the
projected gradient descent based strategy and the semidefinite relaxation based
strategy achieve much lower objective values compared to the random attack
strategy. Specifically, when the energy budget is smaller than 0.7, both of the two
strategies behave similarly. However, when the energy budget is larger than 0.7,
the projected gradient descent based strategy leads to larger objective values as
the energy budget grows. This is because the projected gradient descent algorithm
tends to find solutions at the boundary of the feasible set. Only some attacks with
good initialization can lead to the global minimum. By contrast, our semidefinite
relaxation based strategy can find the globally optimal solutions with relaxation
order 2 or 3. Thus, it gives the best performance among the three strategies.
Figure 2.7 also demonstrates our relaxation based method achieves the global

34 2 Optimal Feature Manipulation Attacks Against Linear Regression

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

co
ef

fic
ie

nt

1 2 3 4 5 6 7
feature index

orig

grad

rand

poly

Fig. 2.7 The regression coefficients after different kinds of strategies that attack the sixth
regression coefficient with energy budget η = 1

optimum when η = 1 as it leads the sixth regression coefficient to zero and other
regression coefficients to be unchanged.

2.3.2.3 Rank-One Feature Matrix Attack

In this subsection, we carry out different rank-one attack strategies on the Istanbul
Stock Exchange dataset. Our goal is to minimize the magnitude of the fourth
regression coefficient with objective (2.41). We compare two strategies: the pro-
jected gradient descent based strategy discussed in Sect. 2.3.2.2 and our proposed
alternating optimization based strategy. For the projected gradient descent based
strategies, we use different step sizes: 1/(1 + t), 10/(1 + t), and 100/(1 + t). As
our analysis shows, when the energy budget is larger than the smallest singular
value, our objective can be minus infinity. Hence, in our experiment, we vary the
energy budget from 0 to the smallest singular value, which is 0.053. Given a certain
energy budget, we set all the algorithms with the same randomly initialized point
and run these algorithms until they stop with the same convergence condition: two
consecutive function values change too small or it reaches the maximal allowable
iterations. We repeat this process 100 times and record their average objective
values.

Figure 2.8a shows the averaged run times and Fig. 2.8b illustrates objective
values of the four algorithms, where ‘GD-1’, ‘GD-10’ and ‘GD-100’ stand for the
projected gradient descent with stepsizes 1/(1 + t), 10/(1 + t), and 100/(1 + t),
respectively, and ‘AO’ denotes the proposed alternating optimization method. We
carry out this experiment on a PC with four Intel E3 CPUs. All the four algorithms
have the same convergence condition: the absolute value of the difference of two

2.3 Applications 35

0.2 0.4 0.6 0.8 1
/

m

0

5

10

15

20

25

ru
n

tim
e

(s
)

GD-1

GD-10

GD-100

AO

(a)

0.2 0.4 0.6 0.8 1
/

m

-2

-1.5

-1

-0.5

0

ob
je

ct
iv

e
va

lu
e

GD-1

GD-10

GD-100

AO

(b)

Fig. 2.8 The averaged run times (a) and the objective values (b) of the projected gradient descent
and the proposed alternating optimization method with different stepsizes

0 50 100 150 200
iteration

-20

-15

-10

-5

0

ob
je

ct
iv

e
va

lu
e

10 -3

GD

AO

(a)

0 20 40 60 80
iteration

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

ob
je

ct
iv

e
va

lu
e

GD

AO

(b)

0 50 100 150 200 250 300
iteration

-0.15

-0.1

-0.05

0

0.05

0.1

ob
je

ct
iv

e
va

lu
e

GD

AO

(c)

Fig. 2.9 The evolution of function values as the iteration increases with one typical run of
projected gradient descent and alternating optimization algorithm

consecutive objective values is less than 10−5. Figure 2.8a shows that, as the energy
budget increases, the run times of the alternating optimization, GD-1, and GD-10
increase. However, as the energy budget increases, the run times of GD-100 first
decrease and then increase. This is due to the fact that a larger stepsize will result in a
faster convergence rate while it may cause oscillation. Figure 2.8b shows that when
the energy budget increases, the objectives decrease for both of these algorithms.
Furthermore, the proposed alternating optimization based algorithm provides much
smaller objective values, especially when the energy budget approaches the smallest
singular value. When the energy budget approaches the smallest singular value,
the gradient descent based algorithm becomes very unstable. This is due to the
fact that when the energy budget is large, the objective is very sensitive to the
energy budget. So, a small stepsize may result in significant objective value change.
This phenomena can be observed in Fig. 2.9, where it depicts the evolution of the
objective values of ‘AO’ and ‘GD-100’ with the energy budget being η/σm = 0.5
(subfigure (a)), η/σm = 0.9 (subfigure (b)) and η/σm = 0.95 (subfigure (c)),
respectively, and σm is the smallest singular value of the original feature matrix.
From this figure we can see the alternating optimization based algorithm converges
very fast while the projected gradient descent based algorithm becomes unstable

36 2 Optimal Feature Manipulation Attacks Against Linear Regression

when the energy budget is large. This is due to the fact that the objective of
our alternating optimization based algorithm is guaranteed to be monotonically
decreasing.

2.3.3 Adversarial Attack Against Wine Data Analysis

In this subsection, we demonstrate how our attack impacts the quality of a regression
task using the wine dataset [92].

In this experiment, we test our rank-one attack strategy on the wine dataset [92],
which includes 11 chemical analysis of the red wine and its corresponding quality
(ranging from 3 to 8). In this dataset, we have 1599 data samples and we randomly
choose 80% of the data as the training set and the rest as the test data. We use linear
regression to learn the regression coefficients on the training data and then use these
regression coefficients on the test data to predict the quality of the test data. We use
the root mean square error (RMSE) to measure the goodness of predicting both on
the training data and test data. We use the rank-one attack strategy proposed in this
chapter on the training data with the target of maximizing the eighth regression
coefficient (corresponding to the density feature). We carry out the attack with
different energy budgets ranging from 0 to the smallest singular value of the feature
matrix of training data.

Figure 2.10a illustrates the original regression coefficients without attack. The
magnitude of the eighth regression coefficient is very small. It reveals that the
eighth feature is not important compared to other features. Figure 2.10b shows
the RMSE on the training data and test data using different energy budget with
and without attacking the eighth regression coefficient. ‘train-orig’ and ‘test-orig’
represent the RMSE on the training and test data without attacking the training data.

-1

-0.5

0

0.5

1

1.5

co
ef

fic
ie

nt

2 4 6 8 10
feature index

(a)

0 0.2 0.4 0.6 0.8 1
/

m

0

5

10

15

20

25

30

35

R
M

S
E

train-orig

test-orig

 idom-niart
test-modi

(b)

Fig. 2.10 The regression coefficient of the original data set (a) and the RMSE on the training and
test data set with different energy budgets (b)

2.4 Summary 37

‘train-modi’ and ‘test-modi’ denote the RMSE on the training and test data when
we conduct our rank-one attacking on the training dataset. This figure demonstrates
that, even though the RMSE on the attacked training data is low, the model based
on the attacked features performs extremely badly on the test data. It illustrates that
attacking the regression coefficient not only misleads the interpretation of the model
but also has a significant impact on the performance of the model.

2.4 Summary

In this chapter, we have investigated the adversarial robustness of linear regression
problems. Particularly, we have derived the closed-form solution when we attack
one specific regression coefficient with a limited energy budget. Furthermore, we
have considered a more complex objective where we attack one of the regres-
sion coefficients while trying to keep the rest of the regression coefficients to
be unchanged. We have formulated this problem as a multivariate polynomial
optimization problem and introduced the semidefinite relaxation method to solve it.
Finally, we have investigated a more powerful adversary who can make a rank-one
modification on the feature matrix. To take the advantage of the rank-one structure,
we have proposed an alternating optimization algorithm to solve this problem.
The numerical examples demonstrated that our proposed closed-form solution and
the semidefinite relaxation based strategies can find the globally optimal solutions
and the alternating optimization based strategy provides better solutions, faster
convergence, and more stable behavior compared to the projected gradient descent
based strategy. We should also note that the solutions are “optimal” under the
specific objectives mentioned in the chapter. Clearly, if the goal of the attacker is
changed, then the optimal attack strategy will be different.

Chapter 3
On the Adversarial Robustness of
LASSO Based Feature Selection

3.1 Problem Formulation

In this section we provide the problem formulation of adversarial attack against the
ordinary LASSO based feature selection.

Given the data set {(yk
0 , xk

0)}nk=1, where n is the number of data samples, yk
0 is

the response value of data sample k, xk
0 ∈ R

m denotes the feature vector of data
sample k, and each element of xk

0 is called a feature of the data sample. Through
the data samples, we attempt to learn a sparse representation of the response values
from the features. The LASSO algorithm learns a sparse regression coefficient, β0,
by solving

β0 = argmin
β

‖y0 − X0β‖2
2 + λ‖β‖1, (3.1)

where the response vector y0 = [y1
0 , y2

0 , . . . , yn
0]�, the feature matrix X0 =

[x1
0, x

2
0, . . . , x

n
0]�, ‖ · ‖1 denotes the �1 norm, and λ is the trade-off parameter to

determine the relative goodness of fitting and sparsity of β0 [38]. The locations of
the non-zero elements of the sparse regression coefficients indicate the correspond-
ing selected features.

In this chapter, we assume that there is an adversary who is trying to manipulate
the learned regression coefficients and thus maneuver the selected features by
carefully modifying the response values or the feature matrix. We denote the
modified response value vector as y and denote the modified feature matrix as X.
Further, we assume that the adversary’s modification is constrained by the �p norm
(p ≥ 1). This means we have ‖y − y0‖p ≤ ηy , and ‖X − X0‖p ≤ ηx , where ηy is
the energy budget for the modification of the response values, and ηx is the energy
budget for the modification of the feature matrix. For a vector, ‖ · ‖p denotes the �p

norm of the vector; for a matrix, ‖ · ‖p denotes the �p norm of the vectorization of
the matrix. As a result, the manipulated regression coefficients, β̂, are learned from

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Li et al., Machine Learning Algorithms, Wireless Networks,
https://doi.org/10.1007/978-3-031-16375-3_3

39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16375-3_3&domain=pdf

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-16375-3_3

40 3 On the Adversarial Robustness of LASSO Based Feature Selection

the modified data set (y,X) by solving the following LASSO problem

β̂ = argmin
β

‖y− Xβ‖2
2 + λ‖β‖1. (3.2)

The goal of the adversary is to suppress or promote some of the regression
coefficients while keeping the change of the remaining coefficients to be minimum.
If it wants to suppress the ith regression coefficient, we minimize si · β̂2

i , where
si > 0 is the predefined weight parameter. If it aims to promote the ith regression
coefficient, we minimize ei · β̂2

i , where ei < 0 is the weight parameter. To make
the changes to the ith regression coefficient as small as possible, we minimize
μi · (β̂i − βi

0)
2, where μi > 0 is a user defined parameter to measure how much

effort we put on keeping the ith regression coefficients intact. Moreover, we denote
the set of indices of coefficients which are suppressed, promoted, and not changed
as S, E, and U , respectively. In summary, the objective of the adversary is:

min
β̂

1

2
(β̂ − ν)�H(β̂ − ν), (3.3)

where νi = βi
0 if i ∈ U , otherwise νi = 0, H = diag(h), diag(h) is the diagonal

matrix with its diagonal elements being h, and hi = μi for i ∈ U , hi = si for i ∈ S

and hi = ei for i ∈ E.
Considering the energy constraints of the adversary and the fact that β̂ is a

function of y and X, we need to solve the following bi-level optimization problem
to obtain the optimal attack strategy.

min
y∈Cy ,X∈Cx

f (y,X) (3.4)

s.t. β̂ = argmin
β

‖y− Xβ‖2
2 + λ‖β‖1, (3.5)

where

Cy =
{
y | ‖y− y0‖p ≤ ηy

}
,

Cx =
{
X | ‖X− X0‖p ≤ ηx

}
,

and f (y,X) = 1
2 (β̂ − ν)�H(β̂ − ν).

3.2 Algorithm

In this section, we investigate problem (3.4) and present our projected gradient
descent method to solve this problem.

3.2 Algorithm 41

In problem (3.4), the objective is a function of β̂. However, the relationship
between (y,X) and β̂ is determined by the lower-level optimization problem. This
makes our objective a very complicated function of (y,X) and in general (3.4) is not
convex. To illustrate this, we consider a simplified version of this problem in which
we have scalar y and x. In this case, our problem can be written as

min
x∈Cx , y∈Cy

hβ̂,

s.t. β̂ = argmin
β

(y − xβ)2 + λ|β|.

The solution to the lower-level optimization problem is β̂ = sgn(y/x)(y/x −
λ/(2x2))+, where sgn(·) is the sign function and (·)+ takes the positive part of
the argument. Hence, our problem can be simplified as

min
x∈Cx , y∈Cy

h[(y/x − λ/(2x2))+]2.

It is easy to verify that this problem is not convex. To solve this bi-level optimization
problem, we need to first solve the lower-level optimization problem to determine
the dependence between (y,X) and β̂. Then, we can use the gradient descent
method to solve this bi-level optimization problem. Since the lower-level problem
is convex [38], it can be represented by its first order optimality condition. The
corresponding first order optimality condition with respect to the lower-level
optimization problem is:

0 ∈ 2X�(Xβ − y)+ λ∂‖β‖1, (3.6)

when β = β̂, where ∂‖ · ‖1 is the subgradient of the �1 norm. We denote the right
hand of (3.6) as q(β, y,X).

If q(β, y,X) is a continuously differentiable function and its Jacobian matrix
with respect to β is invertible, the first order condition defines a one-to-one mapping
from (y,X) to β, and by the implicit function theorem [93], we can calculate the
gradient of β with respect to y and X. Unfortunately, in our case, q(β, y,X) is not
differentiable at the point with βi = 0. Moreover, (3.5) does not always determine
a single valued mapping from (y,X) to β. For example, when λ ≥ ‖X�y‖∞, we
always have β = 0.

To circumvent these difficulties, we transform the lower-level optimization
problem to the following equivalent linear inequality constrained quadratic pro-
gramming [94]:

argmin
β,u

‖y− Xβ‖2
2 + λ

m∑

i=1

ui (3.7)

s.t. − ui ≤ βi ≤ ui, i = 1, 2, . . . , m, (3.8)

42 3 On the Adversarial Robustness of LASSO Based Feature Selection

where u = [u1, u2, . . . , um]�. Following [94], we can apply the interior-point
method to solve (3.7). In particular, we solve the penalized problem:

argmin
β,u

‖y− Xβ‖2
2 + λ

m∑

i=1

ui + 1

t
�(β,u), (3.9)

where �(β,u) = −∑m
i=1 log(u2

i − β2
i) is the penalty function for the constraints

of (3.7) and t is the penalty parameter. Solution of problem (3.9) converges to (3.2)
if we follow the central path as t varies from 0 to ∞, where the central path is
defined as the set of solution to (3.9) for different t > 0 [25].

Instead of using the first order optimality condition of (3.6), we utilize the first
order optimality condition of (3.9), which are

2X�(Xβ − y)+ 1

t
∇β� = 0, (3.10)

λ1− 1

t
∇u� = 0, (3.11)

where

∇β� =
⎡

⎢
⎣

2β1/(u
2
1 − β2

1),
...

2βm/(u2
m − β2

m)

⎤

⎥
⎦

and

∇u� =
⎡

⎢
⎣

2u1/(u
2
1 − β2

1)
...

2um/(u2
m − β2

m)

⎤

⎥
⎦ .

Let us denote the first order optimality condition as g(y,X,β,u) = 0. According
to the implicit function theorem, the derivative of β with respect to y can be
computed as

∇yβ = −[J−1]1:m∇yg, (3.12)

where [J−1]1:m denotes the first m rows of J−1
1:m, J = [∇βg,∇ug] is the Jacobian

matrix of g(y,X,β,u) with respect to β and u,

∇yg =
[−2X�

0

]
, (3.13)

3.2 Algorithm 43

∇βg =
[

2X�X+ D1

D2

]
, (3.14)

∇ug =
[
D2

D1

]
, (3.15)

with

D1 = 1

t
diag

(
2(u2

1 + β2
1)/(u2

1 − β2
1)2, . . . , 2(u2

m + β2
m)/(u2

m − β2
m)2),

D2 = 1

t
diag

(− 4u1β1/(u
2
1 − β2

1)2, . . . ,−4umβm/(u2
m − β2

m)2).

Also, according to (3.10) and (3.11), and the implicit function theorem, the
derivative of β with respect to X can be calculated as

∇Xβ = −[J−1]1:m∇Xg, (3.16)

where ∇Xg ∈ R
2m×(mn) with

∂gi

∂Xkl

=
{

2δli(Xβ − y)k + 2Xkiβl, if i ≤ m

0, if i > m
(3.17)

with δli being the Kronecker delta function

δli =
{

1, if i = l,

0, if i �= l,

and (Xβ − y)k being the kth element of the vector (Xβ − y).
To calculate the gradient of β with respect to y and X, we first need to find the

inverse of the Jacobian matrix. The Jacobian matrix is a 2× 2 block matrix,

J =
[

2X�X+ D1 D2

D2 D1

]
.

This block structure makes the inverse of J admit a simple form [95]:

J−1 =
[
J̃11 J̃12

J̃21 J̃22

]
, (3.18)

where J̃11 = (2X�X+2D)−1 with D = 1/t ·diag
(
1/(u2

1+β2
1), . . . , 1/(u2

m+β2
m)
)
,

J̃12 = −J̃11D2D
−1
1 , J̃21 = −D−1

1 D2J̃11, and J̃22 = D−1
1 + D−1

1 D2J̃11D2D
−1
1 . With

44 3 On the Adversarial Robustness of LASSO Based Feature Selection

this explicit expression of the Jacobian matrix and note that the elements from m+1
to 2m are zero both for ∇yg and ∇Xg, we have

∇yβ =
(
X�X+ D

)−1X�, (3.19)

and

∂β

∂Xkl

=
[

∂β1

∂Xkl

,
∂β2

∂Xkl

, . . . ,
∂βm

∂Xkl

]�
, (3.20)

with

∂βi

∂Xkl

=
∑

j

−(X�X+ D)−1
ij

∂gj

∂Xkl

.

Using the chain rule, we have the gradient of f with respect to y and X:

∇yf (y,X) = ∇yβ
�H(β − ν)

∣∣
∣
β=β̂

(3.21)

and

∂f (y,X)

∂Xkl

= (β − ν)�H ∂β

∂Xkl

∣∣∣
β=β̂

. (3.22)

Now, we know the gradients of our objective function (3.4). With the help of this
gradient information, we can use a variety of gradient based optimization methods.
Since our problem is a constrained optimization problem, we resort to the projected
gradient descent method. We have summarized it in Algorithm 4. The main concept

Algorithm 4 The projected gradient descent algorithm

1: Input: data set {(yi
0, x

i
0)}ni=1, trade off parameter λ in (3.1), energy budget ηy , ηx , �p norm,

and step-size parameter γk .
2: solve β0 via (3.1), set up feature sets S, E, U and their corresponding parameters s, e, μ; use

those parameters to define the objective function f (y,X) in (3.4).
3: Initialize set the number of iterations k = 0 and randomly initialize yk = y0, Xk = X0.
4: Do
5: solve β̂ according to (3.9),
6: compute the gradients: ∇yf (yk,Xk) according to (3.21) and ∇Xf (yk,Xk) according to (3.22),
7: update:

yk+1 = ProjCy

(
yk − γk∇yf (yk,Xk)

)
,

8: update:
Xk+1 = ProjCx

(
Xk − γk∇Xf (yk,Xk)

)
,

9: set k = k + 1,
10: While convergence conditions are not met.
11: Output: yk,Xk .

3.2 Algorithm 45

of the projected gradient descent algorithm is that we first take a gradient step,
project it onto the feasible set, and then take an αt step toward the projected point.
In this algorithm, ProjCy

(·) and ProjCx
(·) represent the projection operators that

project a point onto the feasible set Cy and Cx , respectively. Cy and Cx are �p balls
with radius ηy and ηx respectively. In the following, we will discuss the expressions
of the projection onto three commonly used �p norm balls, where p = 1, 2,∞, with
unit radius and its center being the origin. We denote the projection onto the unit �p

norm ball as ProjB�p
(·).

Case 1 Project onto the �1 unit norm ball. ProjB�1
(x) = z∗, where z∗ is the solution

to the following convex problem

z∗ = argmin
z

‖z− x‖2

s.t. ‖z‖1 ≤ 1.

Here x is the point to be projected. It can be efficiently solved via its dual with
complexity O(m) [96].

Case 2 Project onto the �2 unit norm ball. In this case, we have a very simple
closed-form solution

ProjB�2
(x) = x/ max{1, ‖x‖2}. (3.23)

Case 3 Project onto the �∞ unit norm ball. In this case, we also have a very simple
closed-form solution:

ProjB�∞ (x) = z∗, (3.24)

where z∗ = [z∗1, . . . , z∗m]� and

z∗i =

⎧
⎪⎪⎨

⎪⎪⎩

−1, if xi ≤ −1,

xi, if |xi | < 1,

1, if xi ≥ 1.

With these expressions of the projection, we can easily obtain the expressions of
ProjCy

(·) and ProjCx
(·) by simply performing a geometric translation.

46 3 On the Adversarial Robustness of LASSO Based Feature Selection

3.3 Adversarial Attacks Against Group LASSO and Sparse
Group LASSO

In this section, we will extend the method developed in Sect. 3.2 to design an optimal
attack strategy towards two other popular LASSO based feature selection methods:
group LASSO and sparse group LASSO. We also note that recent Bayesian based
sparse learning methods obtain superior performance by incorporating the sparse
and group sparse properties [97–99]. However, in this chapter, we will focus on the
LASSO based methods.

3.3.1 Adversarial Attacks Against Group LASSO

Many of the sparse signals such as speech signal [100], frequency hopping
spectrum [98], and functional brain network [101, 102], possess additional group
structures. Specifically, these features are divided by groups and the features in
the same group either contribute to the target simultaneously or not. To select the
most useful features, it is better to exploit these additional structures [45]. The
group LASSO imposes a group-wise sparsity structure, i.e., only a few groups have
nonzero entries. This group-wise sparsity guides us to select better features, such as
in splice site detection [103] and hyperspectral image classification [42]. The group-
wise sparsity structure can be promoted by solving the following group LASSO
problem:

min
β

∥∥∥
∥∥
y−

L∑

l=1

Xlβ l

∥∥∥
∥∥

2

2

+ λ

L∑

l=1

√
pl‖β l‖2. (3.25)

Here the feature matrix X is divided into L groups, each of which Xl ∈
R

n×pl ,
∑L

l=1 pl = m, and β = [β�1 ,β�2 , . . . ,β�L]�. The regularization term
λ
∑L

l=1
√

pl‖β l‖2 is used to promote the group-wise sparse structure, and λ is the
penalty parameter to control the sparsity level and goodness of fitting.

Considering our attack target and the energy budget constraints for modifying the
response values and the feature matrix, the design of optimal feature manipulation
attacks for the group LASSO can be cast as a bi-level optimization:

min
y∈Cy ,X∈Cx

1

2
(β̂ − ν)�H(β̂ − ν)

s.t. β̂ = argmin
β

∥∥
∥∥∥
y−

L∑

l=1

Xlβ l

∥∥
∥∥∥

2

2

+ λ

L∑

l=1

√
pl‖β l‖2, (3.26)

where ν and H are defined the same as in problem (3.3).

3.3 Adversarial Attacks Against Group LASSO and Sparse Group LASSO 47

To solve this bi-level optimization problem, we also first consider the lower-level
group LASSO problem. The group LASSO is a convex optimization problem, which
is equivalent to the following quadratic programming with conic constraints:

argmin
β,α

∥
∥∥∥∥
y−

L∑

l=1

Xlβ l

∥
∥∥∥∥

2

2

+
L∑

l=1

λlαl (3.27)

s.t. ‖β l‖2 ≤ αl, l = 1, 2, . . . , L,

where λl = λ
√

pl and α = [α1, α2, . . . , αL]�. To solve this problem, we can
utilize the similar interior-point method we have employed for the ordinary LASSO
problem in Sect. 3.2. In particular, we solve a series of the minimization problems:
min ft , as t gradually grows, where

ft =
∥∥
∥∥∥
y−

L∑

l=1

Xlβ l

∥∥
∥∥∥

2

2

+
L∑

l=1

λlαl − 1/t

L∑

l=1

log(α2
l − ‖β l‖2

2).

Since this interior-point objective ft is a convex function, the minimization problem
is equal to its first order optimality condition:

∇β l
ft = X�l

(
L∑

l=1

Xlβ l − y

)

+ 1

t

1

α2
l − ‖β l‖2

2

β l = 0,

∂ft

∂αl

= λl − 2

t

αl

α2
l − ‖β l‖2

2

= 0, for l = 1, 2, . . . , L.

To derive the gradients of β with respect to y and X, we can apply the implicit
function theorem on the first order optimality condition. First, we need to compute
the Jacobian matrix of the function on the left of the first order optimality condition.
The derivative of ∇βft with respect to β and α can be computed by

∇βj
∇βi

ft =
⎧
⎨

⎩

2X�i Xj , for i �= j,

2X�i Xj + 1
t

(α2
i −β�i βi)I+2βiβ

�
i

(α2
i −β�i βi)

2 , for i = j,

∂

∂αj

∇βi
ft =

⎧
⎨

⎩

0, for i �= j,

−4
t

αiβi

(α2
i −‖βi‖2

2)
2 , for i = j.

The derivative of ∇αft with respect to β and α can be computed as

48 3 On the Adversarial Robustness of LASSO Based Feature Selection

∇βj
∇αi

ft =
⎧
⎨

⎩

0, for i �= j,

−4
t

αiβi

(α2
i −‖βi‖2

2)
2 for i = j,

∂2ft

∂αi∂αj

=
⎧
⎨

⎩

0, for i �= j,

2
t

α2
i +β�i βi

(α2
i −‖βi‖2

2)
2 , for i = j.

Hence, the Jacobian matrix is

J =
[∇β∇βft ∇α∇βft

∇β∇αft ∇α∇αft

]
.

Let g = [∇βf�t ,∇αf�t]�. Then we have

∇yg = [−2X, 0]�,

and

∂gk

∂Xij

=
{

2
[
δkj (Xβ − y)i +Xikyj

]
, for 1 ≤ k ≤ m,

0, otherwise.

As a result, the derivatives of β with respect to y and X is the first m rows of
−J−1∇yg and −J−1∇Xg, respectively. With this gradient information and using the
chain rule, we can obtain the gradients of our objective with respect to the response
values and feature matrix. Then, we can use the projected gradient descent method
described in Algorithm 4 to design our attack strategy.

3.3.2 Adversarial Attacks Against Sparse Group LASSO

Sparse group LASSO combines the ordinary and the group LASSO and exploit the
sparsity and group sparsity jointly. It gives better performance when the features
are formed in a group manner and only few features contribute to the response
value within a group. By combining these two properties, sparse group LASSO
promotes the group-wise sparsity as well as the sparsity within each group. By
taking advantage of these two kinds of sparsities, sparse group LASSO helps us
select more accurate features, and it has been used in climate prediction [104],
heterogeneous feature representations [105], change-points estimation [46], etc. The
sparse group LASSO problem tries to solve the following convex problem:

min
β

‖y−
L∑

l=1

Xlβ l‖2
2 + λ1

L∑

l=1

√
pl‖β l‖2 + λ2‖β‖1. (3.28)

3.3 Adversarial Attacks Against Group LASSO and Sparse Group LASSO 49

Similar to problem (3.25), we assume the regression coefficients are divided into L

groups and each group β l ∈ R
pl . In the above objective, the first term is the ordinary

least square to measure the goodness of fitting, the second term promotes the group-
wise sparsity, and the third term encourages the sparsity within each group.

Taking objective (3.3) into account, the design of optimal attack strategy against
sparse group LASSO can be formulated as solving a bi-level optimization problem:

min
y∈Cy ,X∈Cx

1

2
(β̂ − ν)�H(β̂ − ν) (3.29)

s.t. β̂ = argmin
β

‖y−
L∑

l=1

Xlβ l‖2
2

+ λ1

L∑

l=1

√
pl‖β l‖2 + λ2‖β‖1.

To solve this bi-level optimization problem, as in the previous subsection, we
can transform the lower-level problem into a quadratic programming with conic and
linear inequality constraints by introducing the new variables αl for l = 1, 2, . . . , L

and ui for i = 1, 2, . . . , m as follows:

argmin
β,α,u

‖y−
L∑

l=1

Xlβ l‖2
2 +

L∑

l=1

λ̃lαl + λ2

m∑

i=1

ui (3.30)

s.t. ‖β‖2 ≤ αl, l = 1, 2, . . . , L, (3.31)

− ui ≤ βi ≤ ui, i = 1, 2, . . . , m, (3.32)

where λ̃l = λ1
√

p
l
. We use the similar interior-point method to solve this

optimization problem. Thus, we use penalty functions for the constraints and have
the new objective with a certain penalty parameter t :

ht =‖y−
L∑

l=1

Xlβ l‖2
2 +

L∑

l=1

λ̃lαl + λ2

m∑

i=1

ui

− 1/t

L∑

l=1

log(α2
l − ‖β l‖2

2)− 1/t

m∑

i=1

log(u2
i − β2

i).

The corresponding first order optimality condition is

50 3 On the Adversarial Robustness of LASSO Based Feature Selection

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇β l
ht = 2X�l (Xβ − y)+ 1/t · 2βl

α2
l −‖β l‖2

2

+ 2β l

t
· diag

(
1/
(
(u1

l)
2 − (β1

l

)2
,

. . . , 1/
(
(u

pl

l)2 − (β
pl

l)2
)) = 0,

for l = 1, 2, . . . , L,

∂ht

∂αl
= λ̃l − 1/t · 2αl

α2
l −‖β l‖2

2
= 0, for l = 1, 2, . . . , L,

∂ht

∂ui
= λ2 − 1/t · 2ui

u2
i−β2

i

= 0, for i = 1, 2, · · · ,m,

where β = [β�1 ,β�2 , . . . ,β�L]�, u = [u�1 ,u�2 , . . . ,u�L]�, β l = [β1
l , β2

l , . . . , β
pl

l]�,
ul = [u1

l , u
2
l , . . . , u

pl

l]�. To use the implicit function theorem to obtain the gradient
information, we need to compute the Jacobian matrix of the function on the left of
the first order optimality condition. The Jacobian matrix is

J =
⎡

⎣
∇β∇βht ∇α∇βht ∇u∇βht

∇β∇αht ∇α∇αht ∇u∇αht

∇β∇uht ∇α∇uht ∇u∇uht

⎤

⎦ ,

where

∇β∇βht = 2X�X+ E1,1 + D1,1,

in which

E1,1 =1

t
diag

(
(α2

1 − β�1 β1)I+ 2β1β
�
1

(α2
1 − β�1 β1)

2
, . . . ,

(α2
L − β�LβL)I+ 2βLβ�L

(α2
L − β�LβL)2

)
,

D1,1 =2/t · diag
(
(u2

1 + β2
1)/(u2

1 − β2
1)2, . . . , (u2

m + β2
m)/(u2

m − β2
m)2
)

,

∂

∂αj

∇βi
ht =

⎧
⎨

⎩

0, for i �= j,

−4
t

αiβi

(α2
i −‖βi‖2

2)
2 , for i = j,

∇u∇βht = diag

(
− 4/t · β1u1

(u2
1 − β2

1)2
, . . . ,−4/t · βmum

(u2
m − β2

m)2

)
,

∂2ft

∂αi∂αj

=
⎧
⎨

⎩

0, for i �= j,

2
t

α2
i +β�i βi

(α2
i −‖βi‖2

2)
2 , for i = j,

∇u∇αht = 0,

3.4 Applications 51

and

∇u∇uht =diag
(

2(u2
1 + β2

1)/(u2
1 − β2

1)2, . . . , 2(u2
m + β2

m)/(u2
m − β2

m)2
)
.

Let q � [∇βh�t ,∇αh�t ,∇uh
�
t]�, then we have

∇yq = [−2X, 0]�

and

∂qk

∂Xij

=
{

2
[
δkj (Xβ − y)i +Xikyj

]
, for 1 ≤ k ≤ m,

0, otherwise.

Then we have the derivative of β with respect to y being

∇yβ = −[J−1]1:m∇yq.

and the partial derivative of βk with respect to Xi,j is

∂βk

∂Xi,j

=
m∑

l=1

−(J−1)k,l

∂ql

∂Xi,j

.

Having the gradients of β with respect to y and X, combining the gradients of
our objective with respect to β and using the chain rule, we can get the full gradients
of our objective with respect to y and X. With these gradients information, we can
then employ the projected gradient descent described in Algorithm 4 to find our
modification strategy.

3.4 Applications

In this section, we carry out numerical experiments to demonstrate the results
obtained in this chapter and apply our attack to some real applications.

3.4.1 Adversarial Attack Against LASSO-Based Feature
Selection System

In the first numerical example, we test our algorithm on a synthetic data set. Firstly,
we generate a 30 × 50 feature matrix X0. Each entry of the feature matrix is i.i.d.
generated from a standard normal distribution. Then, we generate the response

52 3 On the Adversarial Robustness of LASSO Based Feature Selection

0 2 4 6 8 10
-1.5

-1

-0.5

0

0.5

ob
je

ct
iv

e
va

lu
e

Fig. 3.1 The objective value changes with the energy budget

values, y0, through the model y0 = X0v+ n, where v is the sparse vector in which
only ten randomly selected positions are non-zero and each of the non-zero entry is
i.i.d. drawn from the standard normal distribution; n is the noise vector where each
entry is i.i.d. generated according to a normal distribution with zero mean and 0.1
variance. The generated dataset has Frobenius norm 38.60 of the feature matrix and
�2 norm 19.26 of the response vector. Then, we set the LASSO trade-off parameter
λ = 2 and use (3.7) to estimate the regression coefficients β0. We randomly select
one regression coefficient as the desired coefficient to be boosted and another one
as the coefficient to be suppressed. In addition, we set the suppressed parameter
si = 1 for i ∈ S, set boosted parameter ei = −1 for i ∈ E, and set the unchanged
parameter μi = 5 for i ∈ U . We set the step-size parameter γk = min(ρ, ρK0/k)

in Algorithm 4, where ρ = 1 and K0 = 100.
In the first experiment, we set ηx = 0, which means that we do not modify the

feature matrix and impose �2 norm constraint on the modification of the response
values. Then, we vary the energy budget, ηy , to see how the energy budget influences
our objective value. Figure 3.1 illustrates that the objective value decreases as the
energy budget increases, which is expected as a larger energy budget provides a
larger feasible region, and thus lower objective value. Figure 3.2 demonstrates the
recovered regression coefficients when ηy = 5 along with the original regression
coefficients. In the figure, ‘orig’ denotes the original regression coefficients, ‘modi’
represents the regression coefficients after our attack, ‘min’ is the regression
coefficient we want to suppress, and ‘max’ denotes the regression coefficient we
want to promote. As the figure demonstrates, we have successfully suppressed and
promoted the corresponding coefficients while keeping other regression coefficients
almost unchanged.

In the second experiment, we also attack the response values. We fix the energy
budget ηy = 5 and test different �p norm constraints on the modification of

3.4 Applications 53

-2

-1

0

1

2

3

co
ef

fic
ie

nt

1 10 20 30 40 50
feature index

orig

modi

min

max

Fig. 3.2 The original regression coefficients and the regression coefficients after our attacks

3020101

3020101

3020101

-10

0

10

-10

0

10

-10

0

10

Fig. 3.3 The original response values and the modified response values with different attack
constraints

the response values as p = 1, 2,∞. Figure 3.3 shows the original and modified
response values under different �p norm constraints. The x-axis denotes the index
of each response value and the y-axis denotes the value of the response vector.
The blue line demonstrates the original response values and the red line is the

54 3 On the Adversarial Robustness of LASSO Based Feature Selection

modified response values with different attack constraints. From top to bottom are
the modified response values with �1, �2, and �∞ norm constraints, respectively.
From the figure, we can see that the �1 norm constraint provides the smallest
modification on the response values and the �∞ norm constraint provides the most
significant modification, which results in objective value 0.0095 with the �1 norm
constraint, objective value−0.4199 with the �2 norm constraint, and objective value
−2.8813 with the �∞ norm constraint. That is because with the same radius, �1 norm
ball is contained in the �2 norm ball and �2 norm ball belongs to the �∞ norm ball.

In the third experiment, we compare the modifications on the response values
and on the feature matrix with the �1 constraints. First, we only attack the response
values with ηy = 5, which results in objective value 0.0095. Second, we only attack
the feature matrix with the same energy budget ηx = 5, which results in objective
value −0.0969. Finally, we attack both the response values and the feature matrix
with ηy = 5 and ηx = 5, which results in objective value −0.2291. These results
indicate that both the modifications of the response values and feature matrix are
effective.

In the fourth experiment, we explore the minimal energy required to suppress
one regression coefficient. In this experiment, we try to make one of the non-
zero coefficient to be zero while keeping other regression coefficients unchanged.
Hence, we set si = 1 for i ∈ S and ui = 5 for i ∈ U . Firstly, we set ηx = 0
and only change the response values. The minimal required ηy under the �2 norm
constraint to make the regression coefficient zero is recorded. Secondly, we fix
ηy = 0 and only modify the feature matrix to make one regression coefficient
zero. We record the minimal energy budget required for the modification of the
feature matrix in terms of the Frobenius norm. Table 3.1 presents the minimal
energy budgets to suppress one regression coefficient. The first row is the feature
index that we want to suppress. The second row denotes the coefficients before
modification. The third row shows the minimal energy budget when we only modify
the response values. The forth row indicates the minimal energy budget when we
only modify the feature matrix. We can see from the table that the energy required
to suppress the coefficient depends on the original magnitude of the coefficient.
When suppressing a coefficient with a larger magnitude it requires more energy and
vice versa. When we only modify the response vector, we need the energy that is
about 60 (ηy/‖y‖2 = 11.5/19.26 ≈ 0.60) and 9 (ηy/‖y‖2 = 1.8/19.26 ≈ 0.09)
percent of the �2 norm of the response vector to successfully make the largest
coefficient (the 11th coefficient) and the smallest coefficient (the 17th coefficient)
be zero, respectively. When only modifying the feature matrix, we need the energy
that approximates to 12 (4.5/38.6 ≈ 0.12) and 1 (0.5/38.6 ≈ 0.01) percent of the
Frobenius norm of the feature matrix to successfully make the largest and smallest
coefficient be zero, respectively. This also indicates that a small perturbation of
the feature matrix can suppress one regression coefficient, while a relatively larger
modification of the response values is needed to suppress the same regression
coefficient.

In the fifth experiment, we explore the minimal energy needed to promote one
of the regression coefficients. We try different energy budgets to promote one of the

3.4 Applications 55

Table 3.1 Minimal energy to
suppress one regression
coefficient

Index 4 11 17 26 27 33 34 47

β̂i 0.9 2.1 −0.3 1.5 0.6 0.5 −1.5 −1.1

ηy 5.7 11.5 1.8 7.5 2.8 2.6 7.5 6.2

ηx 1.5 4.5 0.5 2.3 1.0 1.0 2.4 1.8

Table 3.2 Minimal energy to
promote one regression
coefficient

Index 1 2 28 29 30 44 48 50

ηy 4.1 4.2 4.7 4.0 4.6 4.3 4.8 3.3

ηx 1.4 1.2 1.6 1.2 1.4 1.2 1.5 1.4

regression coefficients while keeping others unchanged. So, we set ui = 5 for i ∈ U

and ei = −1 for i ∈ E. We record the minimal energy used to make the magnitude
of one of the regression coefficients at least 0.5. The regression coefficients that
we want to promote are chosen randomly among the 42 zero-valued coefficients.
We randomly select 8 coefficients and Table 3.2 records the minimal energy. The
first row indicates the feature index that we choose. The second row presents the
minimal energy needed when we only modify the response vector under the �2
norm constraint. The third row shows the minimal energy needed when we only
modify the feature matrix under the Frobenius norm. This table shows we need
similar energy to promote different regression coefficients. The reason is that the
original regression coefficients that we try to promote are zero-valued and we set
the same magnitude, 0.5, for coefficients we try to promote. In summary, when
we only modify the response values, the average minimal energy is about 22% of
the �2 norm of the response vector. When we only modify the feature matrix, the
average minimal energy is about 3% of the Frobenius norm of the feature matrix.
This indicates that similar to the fourth experiment, we can promote one of the
regression coefficients easily by modifying the feature matrix, and relatively more
considerable energy is needed to modify the response values to achieve the same
goal.

We now test our attack strategy using real datasets. In this task, we use the
spectral intensity of the gasoline to predict its octane rating [106]. It consists of 60
samples of gasoline at 401 wavelength and their octane ratings. Figure 3.4 provides
an overview of the data samples. In this figure, the octane axis indicates the octane
rating of each sample and the z-axis denotes the spectral intensities at different
wavelengths. From the figure we can see that there are very high correlations among
different wavelengths. When strong correlation exists among features, the learned
regression coefficients are not stable and will not reveal the true important features.
Thus, in the testing phase, it will result in large errors. For example, there are two
perfect correlated features. Then, the two corresponding regression coefficients can
be any values as long as the difference of the two coefficients remains constant.
Suppose the two regression coefficients are infinite large. In the testing phase, a
small perturbation on one of the features will result in a huge error. Thus, we use
the LASSO method to complete the regression task. We randomly choose 80% of
the data samples as our training data and the rest as our test data. We do cross-

56 3 On the Adversarial Robustness of LASSO Based Feature Selection

Fig. 3.4 Overview of the
octane data set

1 100 200 300 400
feature index

-15

-10

-5

0

5

10

co
ef

fic
ie

nt

orig

modi

Fig. 3.5 The regression coefficients before and after our attack

validation on the training data to decide the trade-off parameter in LASSO, and it
gives λ = 0.5. Using this parameter, we compute the regression coefficients. Using
this regression coefficients on the test data set, we have r2 = 0.979. Here, r2 is
the r-squared value and is defined as r2 = 1 − ‖y − ŷ‖2

2/‖y − ȳ‖2
2, where y is

the ground truth response value, ȳ is the mean value of the response value with each
element being the mean of y, and ŷ is the predicted response value. A larger r2 value
indicates better regression coefficients. The blue line in Fig. 3.5 shows the original
regression coefficient. From this figure, we can see that there are several important
features.

3.4 Applications 57

For this dataset, the Frobenius norm of the feature matrix is 20.02 and the �2 norm
of the response vector is 11.75. In the next step, we modify the response values and
the feature matrix with the energy budget ηy = 5 and ηx = 5 to suppress the 154th
and 163th regression coefficients, keep the 232th and 369th regression coefficients
unchanged, and promote the rest of the regression coefficients. In our algorithm, we
set si = 1 for i ∈ S, ei = −1 for i ∈ E, μi = 50 for i ∈ U , and step-size parameter
γk = min(5, 5 × 100/k). The red-dashed line in Fig. 3.5 shows the regression
coefficients after our attacks. From the figure, we can see that we successfully
promote two regression coefficients that were zero-valued before the attack. We
also suppress the 154th and 163th regression coefficients and make the 232th and
369th regression coefficients change very little. Using this regression coefficients on
the test data set, we got the r-squared value 0.694. Hence, by changing the response
values and the feature matrix, we can easily make the system choose the wrong
features.

3.4.2 Adversarial Attack Against Wireless Array Signal
Processing

In this subsection, we will employ our attack strategy on a wireless array signal
processing problem: the direction of arrival (DOA) estimation. In the DOA problem,
we try to find the directions of the sources from the received signals of an array
of sensors [107, 108]. Consider a setup where the sensors are linearly located
and equally spaced with half of the wavelength. Hence, the measurements of the
nth sensor are

∑K
k=1 ej2πnfkxk , where K is the number of sources and fk ∈

(−π/2, π/2] is the arrival angle of the kth source. Furthermore, we assume that
the number of input sources is limited. If we divide the arrival of angle equally into
N grids and assume the sources are located on the grids, the DOA can be modeled
as a linear signal acquisition system:

y = Ax+ e,

where y ∈ C
N is the measurements of the sensors, A ∈ C

N×M , An,m = ej2πn m−1
M ,

x ∈ C
M is the sparse source vector where only the locations that have targets are

non-zero , and e ∈ C
N is the noise vector. We can first recover the sparse signal

x, and then the arrival angles can be derived from the locations of the non-zero
components of x. Further, we can solve the following LASSO problem to recover x:

argmin
x

: ‖y− Ax‖2
2 + λ‖x‖1, (3.33)

where the �1 norm of x is defined as

58 3 On the Adversarial Robustness of LASSO Based Feature Selection

0

0.5

1

1.5

2

2.5

co
ef

fic
ie

nt

1 10 20 30 40 50
feature index

orig

modi

min

max

Fig. 3.6 The magnitude of the coefficients before and after attacks

‖x‖1 =
N∑

i=1

√
(xR

i)2 + (xI
i)2, (3.34)

and xR
i and xI

i are the real and imaginary parts of xi , respectively. Problem (3.33)
is actually a group LASSO problem if we separate its real and imaginary parts and
we reformulate it as:

argmin
xR,xI

‖ỹ− Ãx̃‖2
2 + λ

N∑

i=1

√
(xR

i)2 + (xI
i)2, (3.35)

where ỹ = [(yR)�, (yI)�]�, yR and yI are the real and imaginary parts of y
respectively, x̃ = [(xR)�, (xI)�]�,

Ã =
[

AR AI

−AI AR

]
, (3.36)

and AR and AI are the real and imaginary parts of A respectively.
Since DOA is very important in military applications, in this numerical example,

we demonstrate the vulnerability of DOA estimation using group LASSO. In this
experiment, we assume that there are N = 30 sensors, K = 4 sources, and the
sources are located in the possible M = 50 locations. The locations of the 4 sources
are randomly chosen; for the real part and imaginary part of each signal, they
are i.i.d. drawn from a standard normal distribution. The noise is i.i.d. distributed
according to the standard Gaussian distribution with zero mean and 0.1 standard
deviation. In our experiment, the �2 norm of y is 152.70, where the �2 norm of the

3.4 Applications 59

1 5 10 15 20 25 30
-6

-4

-2

0

2

4

6

orig

modi

(a)

1 5 10 15 20 25 30
-6

-4

-2

0

2

4

6

orig

modi

(b)

Fig. 3.7 The real and the imaginary part of the observed signal before and after attacks

complex vector y is defined as ‖y‖2 =
√∑m

i=1(y
I
i)2 + (yR

i)2. To make our attack
more practical, we only attack the measurement signal, y. Thus, the attack process
can be seen as a procedure to inject some adversarial noises into our measurements.
In this attack, we set the energy of ηy = 1.5 with �∞ norm constraint and set λ = 4.
We try to suppress the source on the (47)th grid with arrival of angle 306◦ and boost
the coefficient on the (50)th grid that originally does not have a source target. In our
experiment, we set si = 20 for i ∈ S, ei = −1 for i ∈ E, μi = 20 for i ∈ U , and
step-size parameter γk = min(1, 100/k).

Figure 3.6 shows the magnitude of the original regression coefficients and the
regression coefficients after attack. Here, ‘orig’ denotes the original regression coef-
ficients, ‘modi’ represents the regression coefficients after attack, ‘min’ and ‘max’
indicate the coefficients we want to supperss and boost after attack, respectively.
The non-zero coefficients exactly indicate the directions of arrival of our generated
target sources. The figure demonstrates that we successfully suppressed the (47)th
coefficient and boost the (50)th coefficient while keeping others almost unchanged,
which successfully make the receiver believe there is no target on the (47)th grid
and there is a counterfeit target on the (50)th grid. Figure 3.7 shows the real and
imaginary part of the measurements before and after our attacks. Subfigure (a)
represents the real part of the observed signal and subfigure (b) the imaginary part
of the observed signal before and after attacks.

This figure reveals that, when we deliberately manipulate the regression coeffi-
cients in this example, the modified measurements just seem to have been perturbed
by the normal noises. Hence, it is hard to detect this kind of attack.

3.4.3 Adversarial Attack Against Weather Data Analysis

In this subsection, we will use the NCEP/NCAR Reanalysis 1 dataset [109] to
demonstrate our attack strategy against the sparse group LASSO based feature

60 3 On the Adversarial Robustness of LASSO Based Feature Selection

selection. The dataset consists of the monthly mean of temperature, sea level
pressure, precipitation, relative humidity, horizontal wind speed, and vertical wind
speed from 1948 to present (871 months) on the globe in a 2.5◦×2.5◦ resolution. For
demonstration purpose, we coarse the resolution to 10◦ × 10◦ and we get 403 valid
ocean locations. This task aims to analyze the dependencies between the records on
the ocean and the records on certain land. Notably, we consider the relationship
between the records on the ocean and the temperature of Brazil. Moreover, we
follow [104] to remove the seasonality and the trend in the data that may dominate
the signal.

We use the data from Jan. 1984 to Dec. 2007 as the training data and the data from
Jan. 2008 to Dec. 2017 as the test data. Hence, we have 720 training samples and
120 test samples. We use the sparse group LASSO algorithm to find the coefficients
and then use these coefficients to predict the temperature of Brazil. The regression
coefficients are grouped by their locations. So, each group has six coefficients.
We use root mean square error and r-square value to measure the goodness of the
regression coefficients. In this experiment, the Frobenius norm of the feature matrix
is 1393.70 and the �2 norm of the response vector is 24.84. We set λ1 = λ2 = N/20,
si = 1 for i ∈ S, ei = −1 for i ∈ E, μi = 20 for i ∈ U and γk = min(1, 100/k).
Our attack strategy is to use energy budgets ηy = 0.2 and ηx = 0.2 with the �∞
constraints to suppress the coefficients in group 173 and boost the coefficients in
group 83 while keeping others unchanged.

Figure 3.8 depicts the coefficients before and after our attacks. Subfigure (a)
represents the regression coefficients before and after attacks. Here, ‘orig’ denotes
the original regression coefficients, ‘modi’ represents the regression coefficients
after Attack, ‘min’ and ‘max’ indicate the coefficients we want to suppress and
boost after attack, respectively. The group coefficients that we try to maximize
corresponding to the feature indices from 493 to 498 and subfigure (b) shows the
coefficients in this group before and after the attack. The group coefficients we want
to minimize corresponding to the feature indices from 1033 to 1038 and subfigure
(c) demonstrates the coefficients in this group before and after attacks. From the
figure we can see, without attack, we can find the most representative coefficients
in group 173 with coordinate 40W, 20S, which is located on the ocean near the
land of Brazil. After our attack, as demonstrated, we successfully suppressed the
coefficients in group 173 and boosted the coefficients in group 83. By doing so,
it gives us the incorrect explanation of the temperature in Brazil. Further, we get
r2 = 0.55 and RMSE = 0.53 without attack on the test data. After attack, we get
r2 = 0.37 and RMSE = 0.62 on the test data. In summary, by attacking the training
data, we can manipulate the interpretation of the relationship between the features
and the response value and also worsen the prediction results.

3.5 Summary 61

-0.2

-0.1

0

0.1

0.2

0.3

0.4

co
ef

fic
ie

nt

1 498 1038 1500 2000 2418
feature index

orig

modi

min

max

(a)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

co
ef

fic
ie

nt

493 494 495 496 497 498
feature index

orig

modi

(b)

-0.2

-0.1

0

0.1

0.2

0.3

0.4

co
ef

fic
ie

nt

1033 1034 1035 1036 1037 1038
feature index

orig

modi

(c)

Fig. 3.8 The regression coefficients before and after attacks

3.5 Summary

In this chapter, we have investigated the adversarial robustness of the LASSO based
feature selection algorithms, including ordinary LASSO, group LASSO and sparse
group LASSO. We have provided an approach to mitigate the non-differentiability
of the �1 norm based feature selection methods and have designed an algorithm to
obtain the optimal attack strategy. The numerical examples on synthetic data and
real data have shown that feature selection based on LASSO and its variants are
very vulnerable to adversarial attacks.

Chapter 4
On the Adversarial Robustness of
Subspace Learning

4.1 Problem Formulation

In this section, we introduce the problem formulation. Given a data matrix X =
[x1, x2, · · · , xn] with each xi ∈ R

d , our goal is to learn a low-dimension subspace
via PCA. In the data matrix X, we assume that all the preprocessing steps (such as
data centering and standardization) have been done. In this chapter, we consider an
adversarial setup in which an adversary will first observe X and then carefully design
a modification (attack) matrix �X to change X to X̂ = X+�X. We denote function
gk(·) as the PCA operation that computes the k leading principal components.
Furthermore, let X = span(gk(X)) be a k-dimensional subspace learned from X
and X̂ = span(gk(X̂)) a k-dimensional subspace learned from the modified data
matrix X̂. The goal of the adversary is to design the modification matrix �X so as to
make the distance between X and X̂ as large as possible. To measure such a distance,
we use the largest principal angle between X and X̂ as defined below [63].

Definition 4.1 Let X and X̂ be two k-dimensional subspaces in R
d . The principal

angles {θi}ki=1 are defined recursively:

cos(θi) = max
ui∈X,vi∈X̂

u�i vi

s.t. ‖ui‖ = ‖vi‖ = 1,

u�j ui = v�j vi = 0,∀ j = 1, 2, · · · , i − 1.

In this chapter, we will use ‖ · ‖ to denote the �2 norm and θ
(
gk(X), gk(X̂)

)
or

simply θ to denote the Asimov distance between the subspace X estimated from X
and the subspace X̂ estimated from X̂. Given an orthonormal basis UX of X and
an orthonormal basis U

X̂
of X̂, {cos(θ1), · · · , cos(θk)} are the singular values of

U�
X
U
X̂

[63]. Hence, the Asimov distance is determined by the smallest singular

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Li et al., Machine Learning Algorithms, Wireless Networks,
https://doi.org/10.1007/978-3-031-16375-3_4

63

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16375-3_4&domain=pdf

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-16375-3_4

64 4 On the Adversarial Robustness of Subspace Learning

value of U�
X
U
X̂

. It is easy to see that, if no constraint is imposed on �X, X̂ can
be arbitrary and θ can be easily made to be π/2. Therefore, we impose an energy
constraint on �X. In particular, we assume that the energy of �X is less than or
equal to η. In this chapter, we use the Frobenius norm ‖�X‖F to measure the energy.
Hence, the goal of this attacker is to solve the following optimization problem:

max
�X∈Rd×n

: θ
(
gk(X), gk(X̂)

)
(4.1)

s.t. X̂ = X+�X,

‖�X‖F ≤ η.

Even though (4.1) is a complicated non-convex optimization problem, we will
fully characterize the optimal solution to (4.1) for any given η. This characterization
will enable us to investigate the impact of this optimal attack with respect to the
energy budget η.

Note that we consider a very powerful adversary model that has access to the
whole dataset and can modify all data points. For security analysis, it is desirable
to consider the worst case scenario with a powerful adversary. Furthermore, our
analysis provides a universal upper bound on the maximum subspace distance
incurred by any bounded energy perturbation.

4.2 Optimal Rank-One Adversarial Strategy

In this section, we will solve (4.1) for the special case where the modification matrix
�X is limited to being rank-one. The techniques and insights obtained from this
special case will be useful for the general case considered in Sect. 4.3.

With this additional rank-one constraint, �X can be written as ab� for some
a ∈ R

d and b ∈ R
n, and the optimization problem (4.1) becomes

max
a∈Rd ,b∈Rn

: θ
(
gk(X), gk(X̂)

)
(4.2)

s.t. X̂ = X+�X,

�X = ab�,

‖�X‖F ≤ η.

It is easy to see that, for any feasible solution (ã, b̃) with ||b̃|| �= 1, we can construct
another feasible solution (||b̃||ã, b̃/||b̃||) that gives the same objective function
value. Hence, without loss of optimality, we will fix the norm of b to be 1 throughout
this section.

4.2 Optimal Rank-One Adversarial Strategy 65

Based on the value of k, i.e., the dimension of the subspace we select, we will
first present the solution to the case when k = rank(X), and then generalize the
result to the case when k < rank(X).

4.2.1 Case with k = rank(X)

In this subsection, we consider the case when the dimension of the subspace selected
is equal to the rank of the data matrix. In this case, the span of X equals the span of
gk(X). Furthermore, we divide this case into two scenarios where the data matrix is
full-rank and the data matrix is low-rank.

4.2.1.1 Full-Rank Case

In the full column rank case, rank(X) = n, where n ≤ d. This case arises when
the number of samples is limited, for example, at the beginning of online PCA.
In this case, the span of X̂ is equal to the span of gk(X̂), and hence we can write
θ
(
gk(X), gk(X̂)

)
as θ(X, X̂). In the following, we first find the expression of θ(X, X̂)

for any given X̂ = X+abT . Using this expression, we then characterize the optimal
attack matrix �X.

Suppose the compact SVD of X is X = U�V� = UW, where � =
diag(σ1, σ2, · · · , σn). One set of orthonormal bases for the column space of X is
U. We can also use SVD to find a set of orthonormal bases Ũ of span(X̂).

Since X̂ = X+ ab�, Ũ can be directly expressed as a function of U [110]:

Ũ = U+ (αUw+ βs)w�,

where

au⊥ = (I− UU�)a, s = au⊥/‖au⊥‖,
w̃ = −W−�b, w = w̃/‖w̃‖,
ω = (1− a�Uw̃)/‖au⊥‖, g = [w̃, ω]�,

α = |ω|/‖g‖ − 1, β = −sign(ω)‖w̃‖/‖g‖,

and W−� = (W−1)�. Hence, we have U�Ũ = U�
(
U+ (αUw+ βs)w�

) = I +
αww�. The singular values of I+αww� are {1, 1, · · · , 1+αw�w}. Since w�w =
1, 1 + α = |ω|/‖g‖, the smallest singular value of U�Ũ is cos(θ) = |ω|/‖g‖. Our
objective is to maximize θ , which is equivalent to minimizing the smallest singular
value of U�Ũ. Hence, the optimization problem (4.2) is simplified as

66 4 On the Adversarial Robustness of Subspace Learning

min
a,b

: |ω|/‖g‖

s.t. ‖ab�‖F = ‖a‖‖b‖ ≤ η,

where we use the identity ‖a‖‖b‖ = ‖a · b�‖F. Expanding the objective function,
we have

|ω|
‖g‖ =

|1+ a�u W−�b|
‖[‖au⊥‖W−�b, 1+ a�u W−�b]‖ , (4.3)

where au = U�a.
Since W = �V�, we have W−�b = �−1V�b. As V is a unitary matrix,

changing the coordinate b ⇐ V�b does not result in the change of the constraint.
The value a�u W−�b in the original coordinate is the same as a�u �−1b in the new
coordinate. In the following, we will use this new coordinate system and the cost
function in (4.3) can be written as

|ω|
‖g‖ =

|1+ a�u �−1b|
‖[‖au⊥‖�−1b, 1+ a�u �−1b]‖ . (4.4)

The objective function (4.4) is zero if and only if the numerator is zero. Using
the matrix norm inequality [72], we have

|a�u �−1b| ≤ ‖au‖‖b‖‖�−1‖2 = 1

σn

‖au‖‖b‖
(a)≤ 1

σn

‖a‖‖b‖ = 1

σ n

‖ab�‖F
(b)≤ η

σ n

,

where ‖�−1‖2 is the induced 2-norm of matrix �−1, in (a) we use ‖au‖ ≤ ‖a‖, and
(b) is due to the energy constraint. From the inequalities, we conclude that when
η < σn, we can not make the numerator to be zero. We now consider two different
cases depending on whether we can make the numerator to be zero or not.

Case 1 When η > σn, if we set

au = [0, 0, · · · ,−σn]�, b = [0, 0, · · · , 1]�,

and any ‖au⊥‖2 = â2 with 0 < â2 < η2 − σ 2
n , the numerator will be zero. Since

a = Uau+ (I−UU�)au⊥ , the attacker can make the Asimov distance to be π/2 by
setting:

a = −σnun + âuq, b = vn, (4.5)

where uq is any vector orthogonal to the column space of X and 0 < â2 < η2− σ 2
n .

4.2 Optimal Rank-One Adversarial Strategy 67

Case 2 When η ≤ σn, the value of 1+ a�u �−1b can not reach zero. In this case, it
is easy to check that minimizing (4.4) is equivalent to maximizing

‖au⊥‖2‖�−1b‖2

(1+ a�u �−1b)2
. (4.6)

As ‖b‖ = 1, ‖�−1b‖2 is maximized when b = [0, 0, · · · , 1]�. Furthermore, for
any fixed norm of au, (1+a�u �−1b)2 is minimized when au = [0, 0, · · · ,−‖au‖]�,
b = [0, 0, · · · , 1]�. Hence, for fixed norms of au, au⊥ , the objective function (4.6)
is maximized when

au = [0, 0, · · · ,−‖au‖]�, b = [0, 0, · · · , 1]�. (4.7)

Let c = ‖au⊥‖, h = ‖au‖. Using the optimal form of au and b in (4.7), the objective
function (4.6) can be simplified to

max
c,h

: c2/σ 2
n

(1− h/σn)2

s.t. (c2 + h2) ≤ η2, (4.8)

It is easy to check that the objective function is maximized when c2 + h2 = η2.
Hence, we have c2 = η2−h2. Inserting this value of c into the objective function and
setting the derivative with respect to h to be 0, we get a unique solution h = η2/σn.

At this value of h, the second derivative is −2σ 2
n

(σ 2
n−η2)3 , which is negative. It indicates

that h = η2/σn is indeed the maximum point. Hence, c = ±η
√

1− η2/σ 2
n . This

implies that the optimal solution to problem (4.2) for Case 2 is

a = −η2/σnun ± η

√
1− η2/σ 2

nuq, b = vn.

Summarizing the discussion above, we have the following proposition regarding
the optimal value of problem (4.2) in the full-rank case.

Proposition 4.1 In the full rank case, the optimal value of (4.2) is

θ∗ =
{

π/2, if η > σn

arcsin (η/σn), if η ≤ σn

.

68 4 On the Adversarial Robustness of Subspace Learning

4.2.1.2 Low-Rank Case

We now consider the case where X is not full rank. Let k < min(d, n) be the rank
of X. In this subsection, with a slight abuse of notation, we write the full SVD of X
as X = U�V�. The optimal attack matrix could be found by solving

max
a∈Rd ,b∈Rn

: θ
(
X, gk(X̂)

)
(4.9)

s.t. X̂ = X+ ab�,

‖a‖‖b‖ ≤ η.

We can further simplify this optimization problem as

max
a∈Rk+1,b∈Rk+1

: θ
(
�̃, gk(Y)

)
(4.10)

s.t. Y = �̃ + ab�,

‖a‖‖b‖ ≤ η,

where �̃ = diag(σ1, σ2, · · · , σk, 0) and {σ1, σ2, · · · , σk} are singular values of
X. Detailed proof of the equivalence between (4.9) and (4.10) can be found in
Appendix A.2. Here, we describe the main idea of the proof. The primary step
of the simplification is to left multiply the unitary matrix U� and right multiply
the unitary matrix V on both X and X̂. Note that multiplying a unitary matrix
does not change the column space and its singular values. In addition, a rank-one
modification can only add at most one principal component orthogonal to its original
column subspace. Hence, by changing the coordinates, a and b are k+1 dimensional
vectors.

To solve problem (4.10), we divide it into two cases based on the value of the
energy budget.

Case 1 When η > σk , it is simple to verify that the solution a = [0, 0, · · · , η]�,
b = [0, 0, · · · , 1]� leads to the maximal Asimov distance, which is π/2.

Case 2 When η ≤ σk , the following theorem characterizes the form of optimal a
and b.

Theorem 4.1 There exists an optimal solution to problem (4.10) in the following
form

a = [0, · · · , 0, ak, ak+1]�,b = [0, 0, · · · , 0, 1, 0]�, (4.11)

with a2
k + a2

k+1 = η2.

Proof Please see Appendix A.3. ��

4.2 Optimal Rank-One Adversarial Strategy 69

In the following, we will find the optimal values of ak and ak+1. Since ‖a‖2 = η2

and a is in the form of (4.11), we can write a = η[0, 0, · · · , cos(α), sin(α)]�, where
α ∈ [0, 2π). To compute the k leading principal components of Y, we can perform
the eigenvalue decomposition of YY�,

YY� =
[
�2

k−1 0
0 cc�

]
,

where c = [σk + η cos α, η sin(α)]�, �k−1 = diag(σ1, σ2, · · · , σk−1). Suppose the
compact SVD of YY� is YY� = Û�̂V̂�, where

Û =
[
Ik−1 0
0 z

]
,

and z ∈ R
2 is the eigenvector of cc� corresponding to its nonzero eigenvalue. Since

one orthonormal basis of span(�̃) is [Ik, 0]�, the Asimov distance is determined by
the singular values of

[
Ik
0

]�
·
[
Ik−1 0
0 z

]
=
[
Ik−1 0
0 z1

]
.

Hence, the Asimov distance is arccos(|z1|). Since c is the eigenvector of cc�
corresponding to its nonzero eigenvalue, we have |z1| = |c1|‖c‖ . Our objective function
is reduced to

min
α∈[0,2π)

: |σk + η cos(α)|
‖[σk + η cos(α), η sin(α)]‖ . (4.12)

It is simple to show that the optimal solution to (4.12) is

α∗ = arccos(−η/σk) (4.13)

or

α∗ = 2π − arccos(−η/σk). (4.14)

Substitute the optimal solution of α∗ in (4.13) or (4.14) into the objective
of problem (4.12), we have sin(θ∗) = η/σk. Hence, the optimal solution to
problem (4.10) is

a =
[

0, 0, · · · ,−η2/σk,±η

√
1− η2/σ 2

k

]�
,

b = [0, 0, · · · , 0, 1, 0]�,

70 4 On the Adversarial Robustness of Subspace Learning

which indicates that the optimal solution to problem (4.9) is

a = −η2/σkuk ± η

√
1− η2/σ 2

k uq, b = vk,

where uq is any vector orthogonal to the column space of X. The corresponding
optimal subspace distance is θ∗ = arcsin(η/σk). In summary, we have

Proposition 4.2 The optimal Asimov distance in the low-rank case is

θ∗ =
{

π/2, if η > σk

arcsin (η/σk), if η ≤ σk

. (4.15)

The result is similar to the full column rank case characterized in Proposition 4.1.

4.2.2 Case with k < rank(X)

In this section, we consider the more practical but much more challenging case with
k < rank(X).

Given the data matrix X ∈ R
d×n, without loss of generality, we assume d ≤ n

and rank(X) = d. Assume the full SVD of X is X = U�V�, where U ∈ R
d×d ,

� ∈ R
d×n, V ∈ R

n×n, and the singular values of X are {σ1, σ2, · · · , σk, · · · , σd}.
Recall that we denote gk(·) as the PCA operation that computes the k leading
principal components. In this scenario, as the original data matrix is not low-rank,
we will perform PCA both on the original data matrix and on the modified data
matrix. Hence, the optimal rank-one modification matrix can be found by solving
the following optimization problem

max
a∈Rd ,b∈Rn

: θ
(
gk(X), gk(X̂)

)
(4.16)

s.t. X̂ = X+ ab�,

‖ab�‖F ≤ η.

By diagonalizing the data matrix and using similar arguments in Appendix A.2, (4.16)
can be further simplified as

max
a∈Rd ,b∈Rn

: θ
(
gk(�), gk(Y)

)
(4.17)

s.t. Y = � + ab�,

‖ab�‖F ≤ η,

4.2 Optimal Rank-One Adversarial Strategy 71

where gk(�) = [Ik, 0]� ∈ R
d×k . Here we also perform variable change a⇐ U�a

and b ⇐ V�b. To solve this optimization problem, we divide it into two cases
depending on the energy budget and the difference between σk and σk+1.

Case 1 When η≥ σk−σk+1, we have one simple solution a= [0,0,· · ·,0, η,0,· · ·,0]�,
where η is in the (k + 1)th coordinate, and b = [0, 0, · · · , 0, 1, 0, · · · , 0]�, where
element 1 is in the (k + 1)th coordinate. Clearly, this setting of a and b leads to the
maximal subspace distance, which is π/2.

Case 2 When η < σk − σk+1, the following theorem gives the form of the optimal
solution.

Theorem 4.2 The optimal solution to problem (4.17) should be in the form of

a = [0, 0, · · · , ak, ak+1, 0, · · · , 0]�, (4.18)

b = [0, 0, · · · , bk, bk+1, 0, · · · , 0]�, (4.19)

where a2
k + a2

k+1 = η2 and b2
k + b2

k+1 = 1.

Proof Please see Appendix A.4 for details. ��
As the optimal solution of a and b is in the form of (4.18) and (4.19), we

can parametrize a and b with parameters α and β using a = η[0, 0, · · · , cos(α),

sin(α), 0, · · · , 0]� and b = [0, 0, · · · , cos(β), sin(β), 0, · · · , 0]� respectively.
As a result, the modified data matrix Y can be written as

Y =
⎡

⎣
�1 0 0 0
0 �2 0 0
0 0 �3 0

⎤

⎦ ,

where �1 = diag(σ1, σ2, · · · , σk−1), �3 = diag(σk+2, · · · , σd), and

�2 =
[
σk + η cos(α) cos(β) η cos(α) sin(β)

η sin(α) cos(β) σk+1 + η sin(α) sin(β)

]
. (4.20)

Since Y has the pseudo block diagonal form, the singular values and principal
components of Y are determined by the SVD of �1, �2, and �3. For notation
convenience, we denote �2 = D + ηāb̄�, where D = diag(σk, σk+1), ā =
[cos α, sin α]�, and b̄ = [cos β, sin β]�. Let ξ1 and ξ2 be the two singular values of
�2 and denote their corresponding left singular vectors as

W = [w1 w2] =
[

cos ϕ − sin ϕ

sin ϕ cos ϕ

]
. (4.21)

72 4 On the Adversarial Robustness of Subspace Learning

The following lemma characterizes the form of the k-dimensional subspace learned
by PCA from Y.

Lemma 4.1

gk(Y) =
⎡

⎣
Ik−1 0
0 w1

0 0

⎤

⎦ .

Proof According to the perturbation theory [111], the singular values of �2 must
satisfy

ξ2 < σk, ξ1 > σk+1.

It indicates that ξ1 > σk , ξ2 > σk and ξ1 < σk+1, ξ2 < σk+1 will not happen.
Hence, we will select the eigenvector corresponding to singular value ξ1 as one of
the leading k principal components, which completes the proof. ��

Since one set of orthonormal bases for gk(�) is [Ik, 0]�, the subspace distance
θ
(
gk(�), gk(Y)

)
is determined by the singular values of

⎡

⎣
Ik

0

⎤

⎦

�

·
⎡

⎣
Ik−1 0
0 w1

0 0

⎤

⎦ = diag (1, 1, · · · , cos ϕ) .

Hence, the subspace distance is arccos(| cos ϕ|) and our optimization problem can
be equivalently formulated as

min
α∈[0,2π),β∈[0,2π)

| cos ϕ|. (4.22)

Let Z = �2�
�
2 , we can compute W through eigenvalue decomposition of Z.

According to the equality �2�
�
2 =W · diag(ξ2

1 , ξ2
2) ·W�, we have

Z =
[
Z1,1 Z1,2

Z2,1 Z2,2

]

=
[
ξ2

1 cos2 ϕ + ξ2
2 sin2 ϕ (ξ2

1 − ξ2
2) cos ϕ sin ϕ

(ξ2
1 − ξ2

2) cos ϕ sin ϕ ξ2
1 sin2 ϕ + ξ2

2 cos2 ϕ

]
.

From this equation, we obtain

{
cos(2ϕ)(ξ2

1 − ξ2
2) = Z1,1 − Z2,2

sin(2ϕ)(ξ2
1 − ξ2

2) = Z1,2 + Z2,1
.

4.2 Optimal Rank-One Adversarial Strategy 73

Then we can compute ϕ through

ϕ = 0.5atan2(ay, ax), (4.23)

where atan2(·, ·) is the four-quadrant inverse tangent function, ax = Z1,1 − Z2,2,
and ay = Z1,2 + Z2,1. In our case, the specific expressions of ax and ay are

⎧
⎨

⎩
ax = σ 2

k − σ 2
k+1 + 2σkη cos(α) cos(β)− 2σk+1η sin(α) sin(β)+ η2 cos(2α),

ay = 2η
(
σk sin(α) cos(β)+ σk+1 cos(α) sin(β)+ η cos(α) sin(α)

)
.

(4.24)

Let us write ax and ay as a function of α and β: ax = ax(α, β) and ay =
ay(α, β). To further restrict the domains of α and β, we analyze the properties
of the angle ϕ in (4.23) as a function of α and β. First, we have ax(α, β) =
ax(π+α, π+β) and ay(α, β) = ay(π+α, π+β). So ϕ(α, β) = ϕ(π+α, π+β).
This property indicates that we only need to consider the function value in the
domain α ∈ [0, π], β ∈ [−π, π]. Second, ax(α, β) = ax(π − α, π − β) and
ay(α, β) = −ay(π − α, π − β), and then we have ϕ(α, β) = −ϕ(π − α, π − β).
Since cos(ϕ) is an even function, we only need to consider the function with domain
α ∈ [0, π/2], β ∈ [−π, π]. Note that �2 is in the form of (4.20), the variance in
the direction of ek is vk = cos(α)2 + σ 2

k + 2 cos(α) cos(β), and the variance in
the direction of ek+1 is vk+1 = sin(α)2 + σ 2

k+1 + 2 sin(α) sin(β). To maximize the
subspace distance, we should make vk small and make vk+1 large. Apparently, the
sign of cos(α) cos(β) should be negative and the sign of sin(α) sin(β) should be
positive. Hence, the optimal α and β should satisfy α ∈ [0, π/2] and β ∈ [π/2, π].
As a result, the optimization problem (4.22) can be written as

min
α∈[0,π/2],β∈[π/2,π] : | cos (ϕ(α, β)) |. (4.25)

The following theorem characterizes the optimal solution to problem (4.25).

Theorem 4.3 The optimal solution to problem (4.25) is

⎧
⎪⎪⎨

⎪⎪⎩

α∗ = arccos

(√
σ 2

k−σ 2
k+1+η2−√H

2(σ 2
k−σ 2

k+1)

)
,

β∗ = arccos

(
−
√

σ 2
k−σ 2

k+1+η2+√H

2(σ 2
k−σ 2

k+1)

)
,

(4.26)

where H = σ 4
k + σ 4

k+1 + η4 − 2σ 2
k σ 2

k+1 − 2σ 2
k η2 − 2σ 2

k+1η
2.

Proof Please see Appendix A.5. ��
Accordingly, the optimal solution to problem (4.16) is

74 4 On the Adversarial Robustness of Subspace Learning

a∗ = η cos(α∗)uk + η sin(α∗)uk+1, (4.27)

b∗ = cos(β∗)vk + sin(β∗)vk+1. (4.28)

Furthermore, the optimal subspace distance θ∗ can be computed according to (4.24)
and (4.23). Moreover, according to the properties of the function ϕ(α, β) we have
discussed before, there are other three optimal solutions

(−α∗,−β∗), (π − α∗, π − β∗), (α∗ − π, β∗ − π),

which lead to the same optimal objective value.

4.3 Optimal Adversarial Strategy without the Rank
Constraint

Using the insights gained from Sect. 4.2, we now characterize the optimal attack
strategy in the general case without the rank-one constraint by solving (4.1). We
will directly consider the general case with k ≤ rank(X).

Following the similar transformation from (4.9) to (4.10), we can simplify the
optimization problem (4.1) as

max
B∈Rd×n

: θ
(
gk(�), gk(Y)

)
(4.29)

s.t. Y = � + B,

‖B‖F ≤ η,

where without loss of generality we assume d ≤ n, the full SVD of the data matrix
is X = U�V�, the singular values of the data matrix are {σ1, σ2, · · · , σd}, and
B = U��XV. To identify the optimal modification matrix B in problem (4.29), we
divide it into two cases.

Case 1 When η ≥ σk−σk+1√
2

, by setting bk,k = −η/
√

2, bk+1,k+1 = η/
√

2, and all

other entries of B to zero, where bi,j is the element in the ith row and j th column
of B, it will lead to the maximal subspace distance, π/2.

Case 2 When η <
σk−σk+1√

2
, the following theorem states the form of the optimal B.

Theorem 4.4 The optimal B to problem (4.29) has only four possible non-zero
entries: bk,k, bk,k+1, bk+1,k and bk+1,k+1.

Proof Please see Appendix A.6. ��

4.3 Optimal Adversarial Strategy without the Rank Constraint 75

This characterization reduces the complexity of problem (4.29). Using this optimal
form of B and following similar steps leading to (4.23), we can write the subspace
distance as

θ = 0.5
∣∣atan2(by, bx)

∣∣ , (4.30)

where

by = 2
(
(bk,k + σk)bk+1,k + (bk+1,k+1 + σk+1)bk,k+1

)
,

bx = (bk,k + σk)
2 + b2

k,k+1 − (bk+1,k+1 + σk+1)
2 − b2

k+1,k.

It is easy to see that we can change the sign of by by changing the signs of bk,k+1
and bk+1,k . We also have bx > 0, as

bx

‖[bk,k + σk, bk,k+1]‖ + ‖[bk+1,k+1 + σk+1, bk+1,k]‖
= ‖[bk,k + σk, bk,k+1]‖ − ‖[bk+1,k+1 + σk+1, bk+1,k]‖
≥ σk − σk+1 − ‖[bk,k, bk,k+1]‖ − ‖[bk+1,k, bk+1,k+1]‖
≥ σk − σk+1 −

√
2η > 0.

Using these two facts and the fact that atan2(by, bx) is an odd function of by when
bx > 0, we know that maximizing θ in (4.30) is equivalent to maximizing by/bx .
Hence, our optimization problem can be written as

max
u
: u�A1u

u�A2u
(4.31)

s.t. ‖u− σ‖2 ≤ η2,

where u � b̄ + σ with b̄ = [bk,k, bk+1,k, bk,k+1, bk+1,k+1]� and σ =
[σk, 0, 0, σk+1]�,

A1 =

⎡

⎢⎢
⎣

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤

⎥⎥
⎦ , and A2 =

⎡

⎢⎢
⎣

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎤

⎥⎥
⎦ .

The objective function is the ratio of two quadratic functions. It is a non-convex
problem in general. In the following, we transform this problem into a feasibility
problem and obtain the closed-form solution analytically.

Let λ denote the value of the objective function in (4.31). We can rewrite the
optimization problem (4.31) as

76 4 On the Adversarial Robustness of Subspace Learning

max
λ,u

: λ

s.t.
u�A1u
u�A2u

= λ, (4.32)

‖u− σ‖2 ≤ η2.

The first constraint can be written as u�(A1 − λA2)u = 0, where

[
Q 0
0 Q

]
� A1 − λA2 =

⎡

⎢⎢
⎣

−λ 1 0 0
1 λ 0 0
0 0 −λ 1
0 0 1 λ

⎤

⎥⎥
⎦ .

To further simplify the constraint, we perform eigenvalue decomposition on Q =
P�P�, where � = diag(

√
λ2 + 1,−√λ2 + 1) and

P = t

[
1 −(

√
λ2 + 1+ λ)√

λ2 + 1+ λ 1

]
, (4.33)

with t = 1/

√
(
√

λ2 + 1+ λ)2 + 1.

We further perform variable change v � diag(P�,P�)u. Thus, the con-
straint (4.32) is equivalent to v��v = 0, which indicates v2

1 + v2
3 = v2

2 + v2
4.

With this, the optimization problem is simplified as

max
λ,v

: λ (4.34)

s.t. v2
1 + v2

3 = v2
2 + v2

4, (4.35)

‖v− σ̄‖2 ≤ η2, (4.36)

where σ̄ = diag(P�,P�)σ = [p1,1σk, p1,2σk, p2,1σk+1, p2,2σk+1]�. Note that
p1,2 = −p2,1 and p2,2 = p1,1, we have σ̄ = [p1,1σk, −p2,1σk, p2,1σk+1, p1,1σk+1]�.

Now, problem (4.34) can be solved by checking the feasibility of (4.35)
and (4.36) given a particular λ. Given λ, the feasibility of problem (4.34) is
equivalent to the feasibility of

min
v2

1+v2
3=v2

2+v2
4

‖v− σ̄‖2 ≤ η2. (4.37)

Note that σ̄ depends on λ, we denote the left hand side of inequality (4.37) as
f (v, λ) = ‖v− σ̄‖2 and parametrize v as

v1 = r cos(α), v2 = r cos(β), v3 = r sin(α), v4 = r sin(β). (4.38)

4.3 Optimal Adversarial Strategy without the Rank Constraint 77

It is easy to verify that the minimum point of f (v, λ) in terms of v is obtained at the
following stationary point

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r = 1
2

(√
p2

1,1σ
2
k + p2

2,1σ
2
k+1 +

√
p2

2,1σ
2
k + p2

1,1σ
2
k+1

)
,

cos(α) = p1,1σk/

√
p2

1,1σ
2
k + p2

2,1σ
2
k+1,

sin(α) = p2,1σk+1/

√
p2

1,1σ
2
k + p2

2,1σ
2
k+1,

cos(β) = −p2,1σk/

√
p2

1,1σ
2
k+1 + p2

2,1σ
2
k ,

sin(β) = p1,1σk+1/

√
p2

1,1σ
2
k+1 + p2

2,1σ
2
k .

(4.39)

Plug the optimal r , α, β of (4.39) into f (v, λ), and we have

f (λ) � min
v2

1+v2
3=v2

2+v2
4

f (v, λ)

= (σ 2
k + σ 2

k+1)/2

−
√

p2
1,1σ

2
k + p2

2,1σ
2
k+1

√
p2

2,1σ
2
k + p2

1,1σ
2
k+1.

According to inequality (4.37), inequality f (λ) ≤ η2 now is equivalent to

√
p2

1,1σ
2
k + p2

2,1σ
2
k+1

√
p2

2,1σ
2
k + p2

1,1σ
2
k+1

≥ (σ 2
k + σ 2

k+1)/2− η2. (4.40)

Denote the right hand of the above inequality as c � (σ 2
k + σ 2

k+1)/2 − η2. Since

η < (σk − σk+1)/
√

2, we have c > σkσk+1. Furthermore, we notice that p2
1,1 =

1− p2
2,1. Plug it into inequality (4.40), and we have

p4
2,1 − p2

2,1 +
c2 − σ 2

k σ 2
k+1

(σ 2
k − σ 2

k+1)
2
≤ 0. (4.41)

Let

w �
c2 − σ 2

k σ 2
k+1

(σ 2
k − σ 2

k+1)
2
, (4.42)

and since σkσk+1 < c ≤ (σ 2
k + σ 2

k+1)/2, we have 0 < w ≤ (σ 2
k+σ 2

k+1)
2/4−σ 2

k σ 2
k+1

(σ 2
k−σ 2

k+1)
2 =

1/4. Denote the left hand of inequality (4.41) as h(p2,1), and we have

hmin = h(1/
√

2) = −1/4+ w ≤ 0,

h(1) = w > 0.

78 4 On the Adversarial Robustness of Subspace Learning

Moreover, since 1/
√

2 < p2,1 < 1, we must have

p2,1 ≤ pH
2,1, (4.43)

where pH
2,1 =

√
(1+√1− 4w)/2 is the largest root of h(p2,1) = 0. Pluging the

expressions of p2,1 and pH
2,1 into (4.43), we can get

√
λ2 + 1+ λ

√
(
√

λ2 + 1+ λ)2 + 1
≤
√

1+√1− 4w

2
.

Simplifying this inequality leads to λ ≤ e2−1
2e

, where

e =
√

1+√1− 4w

1−√1− 4w
. (4.44)

Thus we can conclude that

λmax = e2 − 1

2e
. (4.45)

Accordingly, the optimal subspace distance in (4.1) is

θ∗ = atan(λmax)/2. (4.46)

In summary, given energy budget η, we first compute w according to (4.42) and
compute e according to (4.44), from which we can get λmax and θ∗ using (4.45)
and (4.46). Having obtained the optimal λmax, we can compute P in (4.33) and
compute v using (4.39) and (4.38), and sequentially compute u and b̄. Finally,
if the optimal solution of problem (4.29) is B∗ with non-zero entries b̄∗ =
[b∗k,k, b

∗
k+1,k, b

∗
k,k+1, b

∗
k+1,k+1]�, we also have another paired feasible optimal

solution with non-zero entries being [b∗k,k,−b∗k+1,k,−b∗k,k+1, b
∗
k+1,k+1]�, which

leads to the same optimal value. Accordingly, the optimal solution to problem (4.1)
is �X∗ = UB∗V�.

4.4 Applications

In this section, we provide numerical examples to illustrate the results obtained in
this chapter. We will also apply the results to principal component regression [112]
to illustrate potential applications in practice.

4.4 Applications 79

4.4.1 Adversarial Attack Against Subspace Learning

In this subsection, we will carry out our adversarial attack against PCA-based
subspace learning algorithm using synthesized dataset.

In the first experiment, we employ different attack strategies in a low-rank data
matrix. In this simulation, we set d = 5, n = 5, and k = 3. We generate the original
data matrix as X = AB�, where A ∈ R

d×k , B ∈ R
n×k , and each entry of A and B

is i.i.d. generated according to a standard normal distribution. First, we conduct our
optimal rank-one attack strategy. In this strategy, we use the result from the analysis
of the optimal rank-one modification matrix to design a,b and add the attack matrix
�X = ab� to the original data matrix X. We then perform SVD on X̂ and select
the k leading principal components. Finally, we compute the distance between the
selected subspace and the original subspace. We also conduct a test using a random
rank-one attack strategy, in which we randomly generate a,b with each entry of
a,b being i.i.d. generated according to the standard normal distribution. Then we
normalize the energy of ab�to be η2. For each η, we repeatedly generate 100,000
pairs of a and b and compute their corresponding subspace distances. In addition, we
compare it with the strategy where the modification matrix is free of rank constraint.
Although our analysis is deliberately designed for general data matrices, we set the
(k + 1)th singular value to be zero so that it can be applied to the low-rank data
matrix. We design the modification matrix �X according to our analysis in this
chapter and calculate the subspace distance between the original subspace and that
after modification. Moreover, we conduct another random attack strategy in which
we randomly generate the modification matrix without any rank constraint. Each
entry of the modification matrix is i.i.d. generated according to a standard normal
distribution. After that, we normalize its Frobenius norm equal to η. We repeat this
attack 100,000 times for each η and record its corresponding subspace distance.
Furthermore, we also compare it with the strategy described in [27], which adds one
adversarial data sample into the data set.

Figure 4.1 demonstrates the subspace distances obtained by the five strategies. In
this figure, r1-opt represents the rank-one optimal attack obtained in this chapter,

Fig. 4.1 Subspace distances
with different attack strategies
on a low-rank data matrix
over different energy budgets

0 0.5 1
0

/4

/2
r1-opt
r1-rnd
wr-opt
wr-rnd
ad-pca

80 4 On the Adversarial Robustness of Subspace Learning

r1-rnd represents the maximal subspace distance obtained among the 100,000 times
random rank-one attacks, wr-opt stands for our optimal attack without the rank
constraint, wr-rnd is the maximal subspace distance among the 100,000 random
attacks without the rank constraint, and ad-pca is the algorithm described in [27].
The x axis is the ratio between η and the smallest singular value of the original
data matrix. From the figure, we can see our optimal strategies are much better
than the ad-pca strategy. It is because our strategies can modify the data matrix and
thus have higher degree of freedom to manipulate the data. The optimal strategies
designed in this chapter also have a larger subspace distance compared with their
corresponding random attack strategies. In the region where η/σk ∈ [0, 1/

√
2],

both of our two optimal strategies provide the same subspace distances, which can
be verified by setting σk+1 = 0, computing θ∗ in Eq. (4.46) and comparing it with
the value in Eq. (4.15). When η/σk > 1/

√
2, the optimal attack without the rank

constraint leads to the largest subspace distance, π/2, which is much larger than the
distance obtained by the optimal rank-one attack strategy. That means, without the
rank constraint, it indeed provides a larger subspace distance.

In the second numerical experiment, we test these strategies except the ad-pca in
the general data matrix in which the data matrix is not low-rank. In this experiment,
we set d = 5, n = 5, and k = 3. We randomly generate the data matrix X ∈
R

d×n with each entry i.i.d generated according to a standard normal distribution.
We also design the optimal rank-one attack matrix and the optimal modification
matrix without the rank constraint according to the analysis provided in this chapter.
In addition, we do random attacks 100,000 times using the randomly generated
modification matrix with the rank-one constraint and without the rank constraint,
respectively.

Figure 4.2 shows the subspace distances obtained through different strategies
over different energy budgets. In this figure, the x axis is the ratio between η and
σk−σk+1. We demonstrate the maximal subspace distances achieved by the 100,000
times random attacks for the two random attack strategies. As the figure shows,
both random strategies have smaller subspace distances than their optimal strategies.

Fig. 4.2 Subspace distances
achieved by using different
attack strategies under
different energy budgets

0 0.5 1
0

/4

/2
r1-opt
r1-rnd
wr-opt
wr-rnd

4.4 Applications 81

Unlike, the low-rank case, the strategy without the rank constraint provides larger
subspace distances consistently over all the energy budgets.

4.4.2 Adversarial Attack Against Principal Component
Regression

In this subsection, we use real data to illustrate the results obtained in this chapter.
In particular, we illustrate the impact of the adversarial attack on PCR, which

is widely used in statistical learning, especially when collinearity exists in the
data. Ordinary regression will increase the standard error of the coefficients when
there are high correlations or even collinearities between features. This happens
particularly when the number of features is much larger than the number of data
samples. PCR deals with this issue by performing PCA on the feature matrix
and only selecting the leading k principal components as the predictors, and thus
dramatically decreases the number of predictors. The regression process of PCR can
be seen as projecting the response values onto the subspace spanned by the leading k

principal components. So, the accuracy of the subspace will significantly influence
the regression results. Appendix A.7 provides an example of how the change of
the subspace will influence the result of PCR. More details of PCR can be found
in [112].

In this experiment, our task is to use the gasoline spectral intensity to predict its
octane rating. We use the gasoline spectral data set [106], which comprises spectral
intensities of 60 samples of gasoline at 401 wavelengths and their octane ratings.
Figure 3.4 shows the spectral intensities of the data set. This figure indicates that the
correlation of intensity among different wavelengths is very high. To complete the
regression task, we can use PCR.

In this experiment, we randomly select 80% of the data as the training set and the
remaining 20% as the test set. We choose 4 principal components as our predictors
and perform regression based on these principal components. We also record the
r-squared values both in the training phase and the test phase. The r-squared value is

defined as r2 = 1− ‖y−ŷ‖2

‖y−ȳ‖2 , where r2 is the r-squared value, y is the response values,

ŷ is the predicted values, ‖y − ȳ‖2 represents the total variance of the response
values, and ȳ = mean(y) · 1 stands for the mean vector of the response values. R-
squared value measures how well the model fits the data and larger r-squared value
indicates better regression. Firstly, we perform regular PCR without attack and let
na-train and na-test denote the r-squared values of the training and test, respectively.
We then attack the feature matrix using the optimal rank-one strategy proposed in
this chapter with different energies and denote r1-train and r1-test as its r-squared
values in the training and test processes. Finally, we also carry out the optimal attack
without the rank constraint and denote wr-train, wr-test as the r-squared values in
the training and test procedures.

82 4 On the Adversarial Robustness of Subspace Learning

Fig. 4.3 R-squared values
with different attack strategies
over different energy budgets

0 0.5 1
0.2

0.4

0.6

0.8

1

na-train
na-test
r1-train
r1-test
wr-train
wr-test

Figure 4.3 illustrates the r-squared values with different attack strategies under
different energy budgets. As shown in this figure, with the increase of the energy
budget, r-squared values of training and test decrease for both attack strategies. This
figure also indicates that the strategy with no rank constraint is more efficient than
the rank-one strategy considering its smaller r-squared values. Furthermore, the r-
squared value of the strategy without the rank constraint has a tremendous drop at
the point η/(σ4 − σ5) = 1/

√
2, which is consistent with our analysis that beyond

this particular point, the maximal subspace distance is π/2.

4.5 Summary

In this chapter, we have investigated the adversarial robustness of the subspace
learning problem. We have characterized the optimal rank-one adversarial modi-
fication strategy and the optimal strategy without the rank constraint to modify the
data. Our analysis has shown that both of the two strategies depend on the singular
values of the data matrix and the adversary’s energy budget. We have also performed
numerical simulations and investigated the impact of this attack on PCR. Both the
numerical experiments and the PCR application illustrate that adversarial attacks
degrade the performance of subspace learning significantly.

Chapter 5
Summary and Extensions

5.1 Summary

In our book, we have carried out theoretical analyses of the adversarial robustness
of some machine learning algorithms in signal processing, and focused on charac-
terizing optimal attack strategies. By investigating the optimal attack strategies, our
book has provided a clear view of the robustness of the linear regression, LASSO
based feature selection, and subspace learning under adversarial attacks.

In Chap. 2, we have investigated how to manipulate the coefficients obtained
via linear regression by adding carefully designed poisoning data points to the
dataset or modifying the original data points. Given the energy budget, we first
provided the closed-form solution of the optimal poisoning data point when our
target is modifying one designated regression coefficient. We then extended the
analysis to a more challenging scenario where the attacker aims to change one
particular regression coefficient while making others to be changed as small as
possible. For this scenario, we introduced a semidefinite relaxation method to design
the best attack scheme. Finally, we studied a more powerful adversary who can
perform a rank-one modification on the feature matrix. We proposed an alternating
optimization method to find the optimal rank-one modification matrix. Numerical
examples were provided to illustrate the analytical results obtained in this paper.

In Chap. 3, we have investigated the adversarial robustness of feature selection
based on LASSO. In the considered model, a malicious adversary can observe the
whole dataset and then carefully modify the response values or the feature matrix to
manipulate the selected features. We formulated the modification strategy of the
adversary as a bi-level optimization problem. Due to the difficulty of the non-
differentiability of the �1 norm at the zero point, we reformulated the �1 norm
regularizer as linear inequality constraints. We employed the interior-point method
to solve this reformulated LASSO problem and obtained the gradient information.
Then we used the projected gradient descent method to design the modification
strategy. In addition, we demonstrated that this method could be extended to other

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Li et al., Machine Learning Algorithms, Wireless Networks,
https://doi.org/10.1007/978-3-031-16375-3_5

83

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16375-3_5&domain=pdf

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-16375-3_5

84 5 Summary and Extensions

�1 based feature selection methods, such as group LASSO and sparse group LASSO.
Numerical examples with synthetic and real data illustrated that our method is
efficient and effective.

In Chap. 4, we have studied the adversarial robustness of subspace learning
problems. We considered a more powerful adversary who can first observe the
data matrix and then intentionally modify the whole data matrix, which is different
from the assumptions made in existing works on robust subspace learning where
data samples are contaminated by gross sparse outliers or small dense noises. We
first characterized the optimal rank-one attack strategy that maximizes the subspace
distance between the subspace learned from the original data matrix and that learned
from the modified data matrix. We then generalized the study to the scenario without
the rank constraint and characterized the corresponding optimal attack strategy.
Besides, our analysis showed that the optimal strategies depend on the singular
values of the original data matrix and the adversary’s energy budget. Finally, we
have provided numerical experiments and practical applications to demonstrate the
efficiency of the attack strategies.

5.2 Extensions

5.2.1 The Defence Strategy

One possible extension of this topic discussed in this book is to study the defense
strategy against our attacks. If we consider the defense strategy, one possible
problem formulation is

β̂ = argmin
β

�def (X̂, ŷ,β) (5.1)

s.t. X̂, ŷ = argmin
X∈Cx , y∈Cy

�adv(X, y), (5.2)

where �def (·) is the objective of the defender , �adv(·) is the objective of the
adversary, and Cx and Cy are the modification constraints of the feature matrix and
response values, respectively. We should also note that �adv(·) may also depend
on the defense strategy, which will then render the problem as a competing game
between the defender and attacker. With an appropriately designed loss function of
the defender, solving this optimization problem leads to the best defense strategy
under the optimal attack strategy. The complexity of this problem depends on the
forms of �def (·), �adv(·) and their relationship. In some special cases, we can
analyze this problem. For example, Chap. 2 solved this problem when �def (·) is the
MSE loss function and �adv(·) is the objective of manipulating one of the regression
coefficients. When �def (·) = −�adv(·), it is a minmax problem and Jagielski et
al. studied this problem when �def (·) = −�adv(·) and �def (·) equals to the MSE

5.2 Extensions 85

loss function [9]. Generally, this problem is very complicated as the upper-level and
lower-level optimization problems are interconnected. Hence, how to design �def (·)
and solve (5.1) efficiently are potential future research topics.

Appendix A
Appendix

A.1 Lasserre’s Relaxation Method

In this section, we briefly introduce Lasserre’s relaxation method and use this
method to solve problem (2.37). Lasserre’s relaxation method is dedicated to
solving the multivariate polynomial optimization problems. A general multivariate
polynomial optimization problem contains a multivariate polynomial objective
function, p(x) : Rn → R, and some constraints defined by polynomial inequalities,
gi(x) ≥ 0, i = 1, 2, . . . , r:

min : p(x) (A.1)

s.t. gi(x) ≥ 0, i = 1, 2, . . . , r. (A.2)

Clearly, our optimization problem (2.37) can be viewed a multivariate polynomial
optimization problem, since in (2.37) the objective function is a fourth order
multivariate polynomial and the constraint is a quadratic polynomial.

To proceed, let us explain more details about the problem. The polynomial in the
objective, p(x), can be written as:

p(x) =
∑

α

pαxα, (A.3)

where α ∈ N
n,

xα =
n∏

i=1

xαi

i , (A.4)

and |α| = ∑
i αi . Suppose the order of the objective function is m0, we have

|α| ≤ m0. Define pα = {pα} ∈ R
s(m0) as the coefficients of the polynomial

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Li et al., Machine Learning Algorithms, Wireless Networks,
https://doi.org/10.1007/978-3-031-16375-3

87

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-16375-3

88 A Appendix

basis {1, x1, x2, . . . , xn, x
2
1 , x1x2, . . . , x

m0
n }. Hence, the dimension of the basis is

s(m0) =
(
n+m0
m0

)
. Instead of directly solving problem (A.1), Lasserre’s relaxation

method [77] first converts it into the following equivalent problem

min
μ∈P(K)

:
∫

p(x) d(μ(x)), (A.5)

where K is the semialgebraic set defined by the inequalities: K = {x | gi(x) ≥
0, i = 1, 2, . . . , r}, and P(K) is the set of all probability measures supported on K.

To see that problem (A.1) and (A.5) are equivalent, suppose the optimal values
of (A.1) and (A.5) are p∗0 and p∗, respectively. Since p(x) ≥ p∗0 , we have p∗ ≥ p∗0 .
Conversely, suppose the optimal solution of (A.1) is x∗, μ = δx∗ is a feasible
solution to (A.5). Hence, we also have p∗ ≤ p∗0 . Thus, the two problems are
equivalent.

With the help of this reformulation, finding the global optimal points for (A.1)
is equivalent to finding the optimal distribution of (A.5). Since

∫
p(x) dμ(x) =∑

α pα

∫
xα dμ(x), the objective function of (A.5) is just p�α yα , where yα = {yα}

and yα =
∫
xα dμ(x). So, finding the optimal probability is identical to finding the

optimal yα under the constraint that yα is a valid moment sequence with respect to
some probability measure on K. The solution to this problem is fully characterized
by the K-moment problem in case K is compact. Let us give more notations for the
convenience of introducing this method.

Given an s(2m) length vector, yα = {yα}, with its first element y0,...,0 = 1. The
s(m) dimensional moment matrix Mm(y) is constructed as follows: the first row and
columns is defined as Mm(1, k) = yαk

and Mm(k, 1) = yαk
for k = 1, 2, . . . , s(m)

and Mm(i, j) = yαi+αj
for i, j = 2, . . . , s(m). For instance, when n = 2,m = 2,

Mm(y) =

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎣

1 y10 y01 y20 y11 y02

y10 y20 y11 y30 y21 y12

y01 y11 y02 y21 y12 y03

y20 y30 y21 y40 y31 y22

y11 y21 y12 y31 y22 y13

y02 y12 y03 y22 y13 y04

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎦

.

Moreover, Mm(y) defines a bi-linear form, 〈· , ·〉, on two polynomials

〈p, q〉y = 〈p,Mm(y)q〉 =
∑

α

(pq)αyα =
∫

p(x)q(x) dμ(x).

So, if yα is a sequence of moments of some probability measure, we have

〈q, q〉y =
∫

q(x)2 d(μ(x)) ≥ 0.

A Appendix 89

Thus, we have Mm(y) � 0. Let p(x) be a multivariate polynomial with coefficient
vector pβ = {pβ}, and define the localizing matrix Mm(py) as

Mm(py)(i, j) =
∑

β

pβyαi+αj+β.

For example, with

M1(y) =
⎡

⎣
1 y10 y01

y10 y20 y11

y01 y11 y02

⎤

⎦ and p(x) = a − x2
1 − x2

2 ,

we have

M1(py) =
⎡

⎣
a − y20 − y02 ay10 − y30 − y12 ay01 − y21 − y03

ay10 − y30 − y12 ay20 − y40 − y22 ay11 − y31 − y13

ay01 − y21 − y03 ay11 − y31 − y13 ay01 − y22 − y04

⎤

⎦ .

Also, if p(x) ≥ 0, by definition, we have Mm(py) � 0.
Further, we make the following assumption on the semialgebraic set K.

Assumption 1 The set K is compact and there exists a real-valued polynomial
u(x): Rn → R such that {u(x) ≥ 0} is compact and

u(x) = u0(x)+
r∑

k=1

gi(x)ui(x) f or all x ∈ R
n, (A.6)

where the polynomial ui(x) is the sum of squares for i = 0, 1, . . . , r .

Assumption 1 is satisfied in many cases. For example, this assumption is satisfied
when there is only one inequality constraint that is compact, which is the case in our
problem (2.37).

With the help of the notations and Assumption 1, we have the main result. Let
wi = �mi/2�, where mi, i = 1, 2, . . . , r, is the order of gi(x) and m0 is the order
of the objective, with N ≥ max{wi} for i = 0, 1, . . . , r . Consider the following
semidefinite programming

min :
∑

α

pαyα (A.7)

s.t. MN(y) � 0,

MN−wi
(giy) � 0, i = 1, 2, . . . , r,

where N is called the relaxation order. Lasserre [77] shows that as N approaches
infinity, the solution of (A.7) converges to the solution of (A.5). However, the

90 A Appendix

dimension of the semidefinite programming (A.7) grows rapidly as N increases and
infinite N makes solving problem (A.7) infeasible. Fortunately, in practice, a small
N is enough to get a very good approximation of problem (A.5) [77]. Furthermore,
a small N is usually sufficient to get the global optimal solutions and the sufficient
rank condition, rankMN(y) = rankMN−wmax(y), where wmax = max{wi}, i =
0, 1, . . . , r , assures the global optimality. Therefore, after we solving problem (A.7)
we are ready to check whether we reach the global optimality. Besides, Henrion and
Lasserre developed a systematic way to extract all the optimal solutions in case the
rank condition is satisfied [113]. Since our problem (2.37) is just a special case of
multivariate polynomial optimization, with the help of this relaxation method, we
can solve problem (2.37).

A.2 Poof of the Equivalence of Problem (4.9) and
Problem (4.10)

Before giving the proof, we first examine the unitary invariant property of the
Asimov distance, which is helpful in our subsequent proof.

Proposition A.1 Let P and T be unitary matrices, and then for the Asimov distance
function θ(·, ·), we have

θ
(
X1, gk(X2)

) = θ
(
PX1T�, gk(PX2T�)

)
.

Proof First, we show θ(X1,X2) = θ(PX1T�,PX2T�). Suppose the thin QR
decompositions of X1 and X2 are X1 = Q1R1, X2 = Q2R2, and then the
subspace distance between the two subspaces spanned by the columns of X1 and
X2 is determined by the singular values of Q�1 Q2. Since (PQ1)

�(PQ2) = Q�1 Q2
and right multiplying an unitary matrix does not change the singular values and the
column subspace of a matrix, we have θ(X1,X2) = θ(PX1T�,PX2T�).

Second, suppose the full SVD of X2 is X2 = U2�2V�2 , where U2 =
[u21,u22, · · · ,u2d]. Then

Pgk(X2) = P[u21,u22, · · · ,u2k] = gk(PX2),

which can be verified by checking that PU2�2V�2 is a valid SVD of PX2. It
completes the proof. ��
With the help of this proposition, let P = U�, T = V�, right multiply P and left
multiply T� on both X and X̂, and we can simplify problem (4.9) as the following

A Appendix 91

max
a∈Rd ,b∈Rn

: θ(�, gk(Ỹ)) (A.8)

s.t. Ỹ = � + ab�,

‖a‖‖b‖ ≤ η,

where we assume n > d, � = [diag(σ1, σ2, · · · , σk, 0), 0] ∈ R
d×n. Also, from

problem (4.9) to problem (A.8), we do variable change a⇐ U�a,b⇐ V�b.
To further simplify this optimization problem, we split a and b into a =

[a�1 , a�2]�,b = [b�1 ,b�2]�, where a1 ∈ R
k , a2 ∈ R

d−k , b1 ∈ R
k , and b2 ∈ R

n−k . In
addition, utilizing the Householder transformation [72], we construct an orthogonal
matrix

M1 =
[
Ik 0
0 H1

]
, (A.9)

where

M�
1 M1 = I, H1 = I− 2

uu�

‖u‖2 ,

u = a2 − s1‖a2‖ · e1, e1 = [1, 0, · · · , 0]� ∈ R
d−k,

H�1 a2 = s1‖a2‖ · e1, s1 = ±1.

Similarly, we can construct another Householder transformation matrix H2 for b2
and the corresponding orthogonal matrix M2 = diag(Ik,H2). Left multiplying M�

1
and right multiplying M2 on Ỹ, we have

M�
1 ỸM2 =

[
�̃ 0
0 0

]
+
⎡

⎣
a1

s1‖a2‖
0

⎤

⎦
[
b�1 s2‖b2‖ 0

]
,

where s2 = ±1.
Let a � [a�1 , s1‖a2‖]� and b � [b�1 , s2‖b2‖]�. Utilizing Proposition A.1, it is

clear that problem (4.10) and problem (A.8) are equivalent.

A.3 Proof of Theorem 4.1

The proof follows similar steps to those in [27]. In problem (4.10), �̃ is a diagonal
matrix with diagonal elements {σ1, σ2, · · · , σk, 0}. The subspace spanned by gk(Y)

is a k-dimensional subspace in R
k+1. We denote this subspace as Q, denote P as the

subspace spanned by �̃ and further denote their intersection as T = P ∩ Q. Note

92 A Appendix

that P is not equal to Q (otherwise the Asimov distance will be zero), so we have
dim(P ∪ Q) = k + 1. Since dim(P) + dim(Q) − dim(T) = dim(P ∪ Q), we have
dim(T) = k − 1. Let T be an orthonormal basis of T. Let [T,p] be an orthonormal
basis of P and let [T,q] be an orthonormal basis of Q. By the definition of Asimov
distance, the subspace distance between P and Q is the angle between p and q.

Firstly, it is easy to see that ak+1 �= 0. Otherwise, Q will be equal to P, which
means that their Asimov distance is zero.

Secondly, it is easy to see q ∈ span[T,p, ek+1], where ek+1 is an ordinary basis
vector that only has element 1 in the (k+1)th coordinate. Since T is orthogonal to q,
we have q ∈ span[p, ek+1]. It is easy to see that the larger variance in the direction
of p is, the closer p and q will be. Then we should select p as the direction with the
smallest variance in X. Since we are assuming that σ1 ≥ σ2 ≥ · · · ≥ σk , p should
be ek .

Thirdly, for a fixed direction of a, let â be the projection of a onto span[ek, ek+1].
Clearly, q will be closer to a as â grows. As a result, the angle between q and p
will be larger. This also implies that the length of a should be maximized: ‖a‖ = η.
Hence, the Asimov distance is maximized when a = â and ‖a‖ = η, implying that
a only has nonzero elements in its kth and k + 1th coordinates.

Finally, for a fixed a in the form of (4.11), the projected variance of Y on the
direction of ek is v1 =∑i �=k(akbi)

2 + (akbk + σk)
2 = a2

k + σ 2
k + 2akbkσk and the

projected variance of Y on the direction of ek+1 is v2 = ∑
i (ak+1bi)

2 = a2
k+1. To

maximize the Asimov distance, we need to make v1 small and v2 large. Apparently,
for fixed a, v1 is minimized when bk = −sign(ak), which implies bi = 0,∀i �= k.
To avoid the sign ambiguity, we set bk = 1.

A.4 Proof of Theorem 4.2

This proof follows similar steps in the proof of the low-rank case. Denote P as the
subspace spanned by gk(�) and Q as the subspace spanned by gk(Y), and denote
their intersection as T = P ∩ Q. We further denote T as an orthonormal basis of
T, [T,p] as an orthonormal basis of P, and [T,q] as an orthonormal basis of Q.
From the definition of Asimov distance, the subspace distance between P and Q is
the subspace distance between the span of p and the span of q.

First, it is apparent that q ∈ span[T,p, ek+1, ek+2, · · · , ed]. Since q ⊥ T, we
have q ∈ span[p, e], where e ∈ span[ek+1, · · · , ed]. It is easy to see that the
subspace distance between the span of q and the span of p will be large if the
variance of � in the span of p is large and the variance of � in the span of q
is small. So we should select p as the direction in span[e1, · · · , ek] that has the
smallest variance of � and select e as the direction among span[ek+1, · · · , en] that
has the largest variance of �. Since e ∈ span[e1, e2, · · · , ed] and σ1 ≥ σ2 ≥
· · · ≥ σk ≥ σk+1 ≥ · · · ≥ σd , p should be ek and e should be ek+1. So, we
have q ∈ span[ek, ek+1].

A Appendix 93

Second, for a fixed direction of a, let â be the projection of a onto span[ek, ek+1].
It is easy to see that q will be closer to a as â grows, and as a result, the angle
between q and p will be larger. This implies the length of a should be maximized,
which indicates ‖a‖ = η and the distance is maximized when a = â. It also indicates
ai = 0 if i �= k, k + 1.

Finally, for a fixed a in the form of (4.18), the projected variance of Y in the
direction of ek is vk = ∑

i �=k(akbi)
2 + (akbk + σk)

2 = a2
k + σ 2

k + 2akbkσk and

the projected variance of Y in the direction of ek+1 is vk+1 = ∑i �=k+1(ak+1bi)
2 +

(σk+1+ak+1bk+1)
2 = a2

k+1+σ 2
k+1+2ak+1bk+1. To maximize the Asimov distance,

we should make vk small and make vk+1 large. With the constraint that ‖b‖ = 1,
we should have b2

k + b2
k+1 = 1, which implies bi = 0 for all i �= k and i �= (k + 1).

As shown above, the optimal a and b should be in the form of (4.18) and (4.19),
which completes our proof.

A.5 Proof of Theorem 4.3

The optimal solution to problem (4.25) either locates at the boundary or the
stationary points.

We first characterize the stationary points. At the stationary points, the value
(α∗, β∗) satisfies the necessary conditions

{
∂
∂α
| cos ϕ(α, β)|α=α∗,β=β∗ = 0,

∂
∂β
| cos ϕ(α, β)|α=α∗,β=β∗ = 0.

(A.10)

Since sin ϕ∗ �= 0, we have

{
∂
∂α

ϕ(α, β)|α=α∗,β=β∗ = 0,

∂
∂β

ϕ(α, β)|α=α∗,β=β∗ = 0,
(A.11)

in which

∂ϕ

∂α
= η

a2
x + a2

y

(
η(3σ 2

k+1 − σ 2
k + η2)+ 2η(σ 2

k − σ 2
k+1) cos2(α)

+ 2η(σ 2
k − σ 2

k+1) cos2(β)+ σk(σ
2
k − σ 2

k+1 + 3η2) cos(α) cos(β)

+ σk+1(σ
2
k+1 − σ 2

k + 3η2) sin(α) sin(β)
)
,

∂ϕ

∂β
= η

a2
x + a2

y

(
σk(σ

2
k+1 + η2 − σ 2

k) sin(α) sin(β)

+ σk+1(σ
2
k + η2 − σ 2

k+1) cos(α) cos(β)+ 2ησkσk+1

)
.

94 A Appendix

Eliminating sin(α) sin(β) from (A.11), we have

C cos2(α)+D cos(α) cos(β)+ C cos2(β)+ F = 0, (A.12)

where

C = 2ησk(σ
2
k − σ 2

k+1)(σ
2
k+1 + η2 − σ 2

k),

D = (σ 2
k − σ 2

k+1)
(
−(σ 2

k − σ 2
k+1)

2 − 2η2(σ 2
k + σ 2

k+1)+ 3η4
)

,

and

F = ησk

(
σ 4

k + σ 4
k+1 + η4 − 2σ 2

k σ 2
k+1 − 2σ 2

k η2 − 2σ 2
k+1η

2
)

.

Further, we rewrite the first equation of (A.11) as

c

√
(1− cos2(α))(1− cos2(β))+ d cos(α) cos(β)+ e = 0, (A.13)

where c = σk(σ
2
k+1 + η2 − σ 2

k), d = σk+1(σ
2
k + η2 − σ 2

k+1), and e = 2ησkσk+1.

Combining (A.12) and (A.13) and eliminating cos2(α) and cos2(β), we have

(c2 − d2) cos(α)2 cos(β)2 +
(

Dc2

C
− 2de

)
cos(α) cos(β)+ c2F

C
+ c2 − e2 = 0.

The left side of the equation is a quadratic function with respect to r =
cos(α) cos(β). The two roots are:

r1 = − σkη

σ 2
k − σ 2

k+1

, r2 = −σk

2

(
1

η
+ η

σ 2
k − σ 2

k+1

)

.

Note that η ∈ [0, σk−σk+1), so we have r1 ∈ (− σk

σk+σk+1
, 0], r2 ∈ (−∞,− σk

σk−σk+1
).

Since | cos(α) cos(β)| ≤ 1, σk

σk+σk+1
< 1, and σk

σk−σk+1
> 1, we should only retain

the first root r1. Substitute cos(α) cos(β) = r1 = − ησk

σ 2
k−σ 2

k+1
into (A.12), and we

have C cos4(α)+ (Dr1 + F) cos2(α)+ Cr2
1 = 0. The left side of the equation is a

quadratic function with respect to s = cos2(α), so we can easily find its roots. Let
us denote s1 and s2 as the two roots:

s1 =
σ 2

k − σ 2
k+1 + η2 −√H

2(σ 2
k − σ 2

k+1)
, s2 =

σ 2
k − σ 2

k+1 + η2 +√H

2(σ 2
k − σ 2

k+1)
,

A Appendix 95

where H = σ 4
k + σ 4

k+1 + η4 − 2σ 2
k σ 2

k+1 − 2σ 2
k η2 − 2σ 2

k+1η
2. We need to check

that H is positive. Viewing H as a function of η and taking derivative, we have
H ′(η) = 2η(2η2 − 2(σ 2

k + σ 2
k+1)) < 0. Since η2 ∈ [0, (σk − σk+1)

2), we have
H(η) ∈ (0, (σ 2

k − σ 2
k+1)

2].
As cos(α)2 ≤ 1, we need to check whether s1, s2 ∈ [0, 1].
Firstly, as H is a decreasing function of η in the considered range, s1 is a

increasing function of η. Therefore, we have min(s1) = s1(η)|η=0 = 0 and
max(s1) = s1(η)|η=σk−σk+1 = σk

σk+σk+1
< 1. Hence, s1 is a valid solution.

Secondly, it is easy to check that s2 is a decreasing function of η. So, we have
max(s2) = s2(η)|η=0 = 1 and min(s2) = s2(η)|η=σk−σk+1 = σk

σk+σk+1
< 1, which

means s2 is also a valid solution. Hence, we have two stationary points

⎧
⎪⎨

⎪⎩

cos2(α) = σ 2
k−σ 2

k+1+η2±√H

2(σ 2
k−σ 2

k+1)
,

cos2(β) = σ 2
k−σ 2

k+1+η2∓√H

2(σ 2
k−σ 2

k+1)
.

(A.14)

Since there are two sets of solutions in (A.14), we should determine which one is
better. The variance of Y in the direction of ek is vk = cos2(α)+σ 2

k+2 cos(α) cos(β)

and the variance of Y in the direction of ek+1 is vk+1 = sin2(α) + σ 2
k+1 +

2 sin(α) sin(β). Both of the two sets of solutions in (A.14) lead to cos(α) cos(β) =
− ησk

σ 2
k−σ 2

k+1
and sin(α) sin(β) = ησk+1

σ 2
k−σ 2

k+1
. For fixed cos(α) cos(β) and sin(α) sin(β),

the smaller cos2(α) is, the smaller vk will be, and the larger the subspace distance
will be. Hence, we conclude the stationary point that satisfies

⎧
⎪⎨

⎪⎩

cos2(α∗) = σ 2
k−σ 2

k+1+η2−√H

2(σ 2
k−σ 2

k+1)

cos2(β∗) = σ 2
k−σ 2

k+1+η2+√H

2(σ 2
k−σ 2

k+1)

(A.15)

leads to a larger subspace distance.
Finally, it is easy to compute the objective values of problem (4.25) at the

boundary points. Comparing these values with the objective values induced by the
point in Eq. (A.15), we can readily conclude the point in Eq. (A.15) gives a larger
objective value. In summary, given that α ∈ [0, π/2] and β ∈ [π/2, π], the optimal
α and β are shown in (4.26).

A.6 Proof of Theorem 4.4

The proof has two main steps. In the first step, we show that non-zero entries of B
are in the kth and (k+1)th rows. In the second step, we will further prove the entries
except in the kth and (k + 1)th columns should be zero.

96 A Appendix

In the first step, we follow similar proof procedures in Theorem 4.2. We use P

to denote the subspace spanned by gk(�) and Q to denote the subspace spanned by
gk(Y). We also use T to represent the intersection of the two subspaces and further
denote T as one set of orthonormal bases of T, [T,p] as one set of orthonormal
bases of P and [T,q] as one set of orthonormal bases of Q. So, the subspace distance
between P and Q is the subspace distance between the subspace spanned by p and
that spanned by q. Following the same arguments in Theorem 4.2, by setting all the
entries of B to be zero except the kth and (k+1)th rows, we can guarantee achieving
the maximal subspace distance and further we have q ∈ span[ek, ek+1] and p = ek .

In the second step, since the non-zero elements of B only locate in the
kth and (k + 1)th rows and q ∈ span[ek, ek+1], it indicates q is the direc-
tion with the maximal variance on the span of ek and ek+1. Assuming q =
[0, · · · , cos(γ), sin(γ), · · · , 0]� with cos(γ) and sin(γ) being in the kth and
(k + 1)th coordinates respectively and according to the definition of principal
components, we can find γ by solving the optimization problem

argmax
γ

: q�YY�q. (A.16)

Plug q = [0, · · · , cos(γ), sin(γ), · · · , 0]� into the objective function, and we have

q� YY� q =
[

cos(γ)

sin(γ)

]� [
bx1

1
2by

1
2by bx2

] [
cos(γ)

sin(γ)

]
, (A.17)

where bx1 = ‖bk+ekσk‖2, bx2 = ‖bk+1+ek+1σk+1‖2, by = 2(bk+ekσk)
�(bk+1+

ek+1σk+1), with bk and bk+1 being the transpose of the kth and (k+ 1)th rows of B
respectively and ek ∈ R

n, ek+1 ∈ R
n being the standard bases.

We can solve (A.17) by computing the first principal component of the middle
matrix of the right hand of (A.17). Using the result from Eq. (4.23), we have γ =
0.5atan2(by, bx), where bx = bx1−bx2. Since the subspace distance is the distance
between q and ek , it is apparent that the subspace distance is |γ |. To maximize |γ |,
we first determine the sign of by or bx . We have

bx

‖bk + ekσk‖ + ‖bk+1 + ek+1σk+1‖
= ‖bk + ekσk‖ − ‖bk+1 + ek+1σk+1‖
≥ σk − ‖bk‖ − σk+1 − ‖bk+1‖
≥ σk − σk+1 −

√
2η (A.18)

> 0, (A.19)

A Appendix 97

where inequality (A.18) is the result of the energy constraint that η ≥ ‖B‖F =√‖bk‖2 + ‖bk+1‖2 ≥ 1√
2
(‖bk‖ + ‖bk+1‖), and inequality (A.19) is due to the

assumption that η <
σk−σk+1√

2
. In summary, bx is positive. Using the property of

atan2 function, when bx > 0, maximizing |γ | is equivalent to maximizing |by/bx |.
Thus, we can formulate our problem as

max
bk,bk+1

: |by/bx | (A.20)

s.t. ‖[bk,bk+1]‖F ≤ η.

In the objective function,

by = 2
(
b�1 b2 + (bk,k + σk)bk+1,k + bk,k+1(bk+1,k+1 + σk+1)

)
,

bx = ‖b1‖2 − ‖b2‖2 + (bk,k + σk)
2 + b2

k,k+1 − b2
k+1,k − (bk+1,k+1 + σk+1)

2,

where b1 = [bk,1, bk,2, · · · , bk,k−1, bk,k+2, · · · , bk,n]� and b2 = [bk+1,1, bk+1,2,

· · · , bk+1,k−1, bk+1,k+2, · · · , bk+1,n]� which are the vectors obtained by deleting
the kth and (k + 1)th elements of bk and bk+1 respectively. We can change the sign
of by/bx by changing the signs of b1, bk+1,k , and bk,k+1. Since both of the values
by/bx and −by/bx are obtainable, we can remove the absolute value operation.
Thus, our objective can be further simplified to maximize by/bx . To complete the
proof of Theorem 4.4, we should further demonstrate that when the optimality of
our objective function is obtained, b1 and b2 should be vectors with all their entries
being zero. To prove that, we examine the objective function further

by ≤ 2
(‖b1‖‖b2‖ + (bk,k + σk)bk+1,k + bk,k+1(bk+1,k+1 + σk+1)

)
(A.21)

≤ 2
(
(bk,k + σk)bk+1,k +

√
b2
k,k+1 + ‖b1‖2(

√
b2
k+1,k+1 + ‖b2‖2 + σk+1)

)
,

(A.22)

bx ≥ (bk,k + σk)
2 + b2

k,k+1 + ‖b1‖2 − b2
k+1,k − (

√
b2
k+1,k+1 + ‖b2‖2 + σk+1)

2.

(A.23)

Inequality (A.21) implies that the optimal value is determined by the norms of b1
and b2 instead of their specific values. Inequality (A.22) is true as

√
b2
k,k+1 + ‖b1‖2(

√
b2
k+1,k+1 + ‖b2‖2 + σk+1)

=
√

b2
k,k+1 + ‖b1‖2

√
b2
k+1,k+1 + ‖b2‖2 + σk+1

√
b2
k,k+1 + ‖b1‖2

≥ bk,k+1bk+1,k+1 + ‖b1‖‖b2‖ + σk+1bk,k+1

= ‖b1‖‖b2‖ + bk,k+1(bk+1,k+1 + σk+1).

98 A Appendix

Inequality (A.23) is due to−(

√
b2
k+1,k+1 + ‖b2‖2+σk+1)

2 ≤ −‖b2‖2−(bk+1,k+1+
σk+1)

2. The equalities in (A.22) and (A.23) hold when ‖b1‖ = 0 and ‖b2‖ = 0.
This means that, for any feasible solution (b1,b2, bk,k, bk,k+1, bk+1,k, bk+1,k+1)

in (A.20), there is another corresponding feasible solution (0, 0, bk,k,√
b2
k,k+1 + ‖b1‖2, bk+1,k,

√
b2
k+1,k+1 + ‖b2‖2), which has a larger objective value.

In conclusion, b1 and b2 should be zero vectors when the optimality of (A.20) is
obtained. This completes our proof.

A.7 Connection Between Asimov Distance and PCR Problem

We first illustrate a connection between the Asimov distance and the projection 2-
norm. We then use this connection to establish a connection between the Asimov
distance and the PCR problem.

To see the relationship between the Asimov distance and the projection 2-
norm, assume X be the k-dimensional subspace learned from the original data
matrix and X̂ be the k-dimensional subspace learned from the modified data matrix.
Furthermore, let P ∈ R

n×n be the orthogonal projection onto X and P̂ ∈ R
n×n

be the orthogonal projection onto X̂. Then, the Asimov distance between X and X̂,
denoted as θ(X, X̂), can also be computed as:

sin θ = ‖P− P̂‖2,

where ‖ · ‖2 is the induced 2-norm. Detailed proof can be found in Chapter 2.5
of [63].

Using results in this section and the aforementioned relationship between
Asimov distance and projection 2-norm, we can perform further analysis on the
PCR problem. In particular, let r1 = ‖y− y1‖ denote the residual after PCR, where
y is the response vector and y1 = Py is the projection of y onto the selected k-
dimensional subspace according to the original feature matrix. Denote r2 = ‖y−y2‖
as the residual of PCR after we modify the feature matrix, where y2 = P̂y is the
projection of y onto the selected k-dimensional subspace after we modify the feature
matrix. The following inequality shows that the difference of the two residuals can
be bounded by the product of the norm of y and the projection 2-norm:

|r1 − r2| =
∣∣‖y− y1‖ − ‖y− y2‖

∣∣

= ∣∣‖y− Py‖ − ‖y− P̂y‖∣∣
≤ ‖(P− P̂)y‖
≤ ‖P− P̂‖2‖y‖
= ‖y‖ sin θ.

A Appendix 99

As our analysis shows, θ depends on the energy budget and the singular values of
the original feature matrix. Hence, given the energy budget and the original data
points, we can establish the largest possible change of the residual compared with
the original residual.

References

1. S.G. Finlayson, J.D. Bowers, J. Ito, J.L. Zittrain, A.L. Beam, I.S. Kohane, Science 363(6433),
1287 (2019)

2. A.E. Sallab, M. Abdou, E. Perot, S. Yogamani, Electron. Imag. 2017(19), 70 (2017)
3. I.J. Goodfellow, J. Shlens, C. Szegedy, in Proceedings of International Conference on

Learning Representations, San Diego (2015)
4. A. Kurakin, I.J. Goodfellow, S. Bengio, in Proceedings of International Conference on

Learning Representations, Toulon (2017)
5. I. Goodfellow, P. McDaniel, N. Papernot, Commun. ACM 61(7), 56 (2018)
6. B. Biggio, B. Nelson, P. Laskov, in Proceedings of International Conference on Machine

Learning, Edinburgh (2012), pp. 1807–1814
7. T. Gu, K. Liu, B. Dolan-Gavitt, S. Garg, IEEE Access 7, 47230 (2019)
8. S. Alfeld, X. Zhu, P. Barford, in Proceedings of AAAI Conference on Artificial Intelligence,

Phoenix (2016), pp. 1452–1458
9. M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, B. Li, in Proceedings of IEEE

Symposium on Security and Privacy, San Francisco (2018), pp. 19–35
10. H. Xiao, B. Biggio, G. Brown, G. Fumera, C. Eckert, F. Roli, in Proceedings of International

Conference on Machine Learning, Lille (2015), pp. 1689–1698
11. A. Shafahi, W.R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras, T. Goldstein, in

Proceedings of Conference on Neural Information Processing Systems, Montréal (2018),
pp. 6106–6116

12. L. Lyu, X. He, F. Wu, L. Sun, arXiv:2105.10909 (2021)
13. X. He, L. Lyu, L. Sun, Q. Xu, in Proceedings of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies (2021), pp. 2006–
2012

14. X. Chen, C. Liu, B. Li, K. Lu, D. Song, arXiv:1712.05526 (2017)
15. N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z.B. Celik, A. Swami, in Proceedings of

ACM on Asia Conference on Computer and Communications Security, Abu Dhabi (2017),
pp. 506–519

16. D. Meng, H. Chen, in Proceedings of ACM SIGSAC Conference on Computer and Communi-
cations Security, Dallas (2017), pp. 135–147

17. X. Yan, X. Su, Linear Regression Analysis: Theory and Computing (World Scientific,
Singapore, 2009)

18. G. Papageorgiou, P. Bouboulis, S. Theodoridis, IEEE Trans. Signal Process. 63(15), 3872
(2015)

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Li et al., Machine Learning Algorithms, Wireless Networks,
https://doi.org/10.1007/978-3-031-16375-3

101

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-16375-3

102 References

19. X. Jiang, W. Zeng, H.C. So, A.M. Zoubir, T. Kirubarajan, IEEE Trans. Signal Process. 64(7),
1714 (2016)

20. J. Chien, J. Chen, IEEE Trans. Signal Process. 57(2), 565 (2009)
21. T. Gustafsson, B.D. Rao, IEEE Trans. Signal Process. 50(1), 151 (2002)
22. J.H. McDonald, Handbook of Biological Statistics (Sparky House Publishing, Baltimore,

2009)
23. O.E. Barndorff-Nielsen, N. Shephard, Econometrica 72(3), 885 (2004)
24. C.J. ter Braak, S. Juggins, in Proceedings of International Diatom Symposium, Renesse

(1993), pp. 485–502
25. S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge,

2004)
26. F. Li, L. Lai, S. Cui, IEEE Trans. Signal Process. 68, 1470 (2020)
27. D.L. Pimentel-Alarcón, A. Biswas, C.R. Solís-Lemus, in Proceedings of IEEE International

Symposium on Information Theory, Aachen (2017), pp. 2363–2367. https://doi.org/10.1109/
ISIT.2017.8006952

28. B. Biggio, B. Nelson, P. Laskov, in Proceedings of Asian Conference on Machine Learning,
Taoyuan (2011), pp. 97–112

29. S.M. Moosavi-Dezfooli, A. Fawzi, P. Frossard, in Proceedings of Conference on Computer
Vision and Pattern Recognition (CVPR), Las Vegas (2016), pp. 2574–2582

30. B. Biggio, A. Demontis, A. Paudice, V. Wongrassamee, E.C. Lupu, F. Roli, in Proceedings of
ACM Workshop on Artificial Intelligence and Security, Dallas (2017), pp. 27–38

31. H. Kwon, Y. Kim, H. Yoon, D. Choi, IEEE Trans. Inf. Forensics Secur. 15, 526 (2019)
32. D. Li, Q. Li, IEEE Trans. Inf. Forensics Secur. 15, 3886 (2020)
33. B. Flowers, R.M. Buehrer, W.C. Headley, IEEE Trans. Inf. Forensics Secur. 15, 1102 (2019)
34. S. Mei, X. Zhu, in Proceedings of AAAI Conference on Artificial Intelligence, Austin (2015),

pp. 2871–2877
35. M. Dash, H. Liu, Intell. Data Anal. 1(3), 131 (1997)
36. F.D. Mandanas, C.L. Kotropoulos, IEEE Trans. Signal Process. 68, 1034 (2020)
37. C. Furlanello, S. Merler, G. Jurman, IEEE Transa. Signal Process. 54(6), 2436 (2006)
38. R. Tibshirani, J. R. Stat. Soc. Ser. B 58(1), 267 (1996)
39. M. Tan, I.W. Tsang, L. Wang, IEEE Trans. Signal Process. 63(3), 727 (2015)
40. L.M. Butcher, S. Beck, Methods 72, 21 (2015)
41. Y. Zhang, F. Ma, Y. Wang, J. Empirical Financ. 54, 97 (2019)
42. D. Yang, W. Bao, IEEE Geosci. Remote Sens. Lett. 14(12), 2438 (2017)
43. M. Yuan, Y. Lin, J. R. Stat. Soc. Ser. B 68(1), 49 (2006)
44. X. Lv, G. Bi, C. Wan, IEEE Trans. Signal Process. 59(4), 1371 (2011)
45. N. Simon, J. Friedman, T. Hastie, R. Tibshirani, J. Comput. Graph. Stat. 22(2), 231 (2013)
46. B. Zhang, J. Geng, L. Lai, IEEE Trans. Signal Process. 63(9), 2209 (2015)
47. J. Jeong, C. Kim, Commun. Stat. Appl. Methods 25(2), 235 (2018)
48. P.L. Loh, M.J. Wainwright, in Advances in Neural Information Processing Systems, Granada

(2011), pp. 2726–2734
49. Y. Li, W. Dai, J. Zou, H. Xiong, Y.F. Zheng, IEEE Trans. Signal Process. 65(19), 5062 (2017).

https://doi.org/10.1109/TSP.2017.2721905
50. J. Xin, N. Zheng, A. Sano, IEEE Trans. Signal Process. 59(1), 145 (2011). https://doi.org/10.

1109/TSP.2010.2084998
51. Y. Shen, M. Mardani, G.B. Giannakis, IEEE Trans. Signal Process. 65(15), 4004 (2017).

https://doi.org/10.1109/TSP.2017.2701333
52. H. Guo, C. Qiu, N. Vaswani, IEEE Trans. Signal Process. 62(16), 4284 (2014)
53. R. Otazo, E.J. Candès, D.K. Sodickson, Magnet. Resonan. Med. 73(3), 1125 (2015)
54. Y. Koren, R. Bell, C. Volinsky, Computer 42(8), 30 (2009)
55. M. Mardani, G. Mateos, G.B. Giannakis, IEEE J. Sel. Top. Signal Process. 7(1), 50 (2012)
56. H. Guo, N. Vaswani, in Proceedings of IEEE Statistical Signal Processing Workshop, Palma

de Mallorca (2016), pp. 1–5
57. E.J. Candès, X. Li, Y. Ma, J. Wright, J. ACM 58(3), 11 (2011)

 25964 14084 a 25964
14084 a

https://doi.org/10.1109/ISIT.2017.8006952
https://doi.org/10.1109/ISIT.2017.8006952

 -92 46186 a -92 46186 a

https://doi.org/10.1109/TSP.2017.2721905

 28107 47293 a 28107 47293 a

https://doi.org/10.1109/TSP.2010.2084998
https://doi.org/10.1109/TSP.2010.2084998

 -92 50614 a -92 50614
a

https://doi.org/10.1109/TSP.2017.2701333

References 103

58. D. Hsu, S.M. Kakade, T. Zhang, IEEE Trans. Inf. Theory 57(11), 7221 (2011)
59. C. Qiu, N. Vaswani, B. Lois, L. Hogben, IEEE Trans. Inf. Theory 60(8), 5007 (2014)
60. Y. Chen, H. Xu, C. Caramanis, S. Sanghavi, in Proceedings of International Conference on

Machine Learning, Bellevue (2011), pp. 873–880
61. K. Eykholt, I. Evtimov, E. Fernandes, B. Li, A. Rahmati, C. Xiao, A. Prakash, T. Kohno,

D. Song, in Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, Salt Lake City (2018), pp. 1625–1634

62. N. Carlini, P. Mishra, T. Vaidya, Y. Zhang, M. Sherr, C. Shields, D. Wagner, W. Zhou, in
Proceedings of USENIX Security Symposium, Austin (2016), pp. 513–530

63. G.H. Golub, C.F. Van Loan, Matrix Computations (The Johns Hopkins University Press,
Baltimore, 2013)

64. A. Edelman, T.A. Arias, S.T. Smith, SIAM J. Matrix Anal. Appl. 20(2), 303 (1998)
65. A. Weinstein, J. Eur. Math. Soc. 2(1), 53 (2000)
66. T.T. Georgiou, M.C. Smith, IEEE Trans. Autom. Control 35(6), 673 (1990)
67. G. Vinnicombe, IEEE Trans. Autom. Control 38(9), 1371 (1993)
68. L. Qui, E. Davison, Syst. Control Lett. 18(1), 9 (1992)
69. C. He, J.M. Moura, IEEE Trans. Signal Process. 45(6), 1591 (1997). https://doi.org/10.1109/

78.600001
70. P.A. Absil, A. Edelman, P. Koev, Linear Algebra Appl. 414(1), 288 (2006)
71. L. Lai, E. Bayraktar, IEEE Trans. Inf. Theory 66(8), 5097 (2020)
72. R.A. Horn, C.R. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, 2012)
73. A. Beck, M. Teboulle, J. Convex Anal. 17(3), 789 (2010)
74. R.J. Stern, H. Wolkowicz, SIAM J. Optim. 5(2), 286 (1995)
75. A. Ben-Tal, M. Teboulle, Math. Program. 72(1), 51 (1996)
76. Y. Ye, S. Zhang, SIAM J. Optim. 14(1), 245 (2003)
77. J.B. Lasserre, SIAM J. Optim. 11(3), 796 (2001)
78. M. Laurent, Emerging Applications of Algebraic Geometry (Springer, Berlin 2009), pp. 157–

270
79. T. Weisser, J.B. Lasserre, K.C. Toh, Math. Program. Comput. 10(1), 1 (2018)
80. M.J. Wainwright, M.I. Jordan, IEEE Trans. Signal Process. 54(6), 2099 (2006)
81. L. Porkolab, L. Khachiyan, J. Global Optim. 10(4), 351 (1997)
82. K.B. Petersen, M.S. Pedersen, Technical University of Denmark (2008)
83. A. Beck, M. Teboulle, Math. Program. 118(1), 13 (2009)
84. F. Rendl, The program can be found at ftp://orion. uwaterloo. ca/pub/henry/teaching/co769g

(1994)
85. J. Lofberg, in Proceedings of International Conference on Robotics and Automation, New

Orleans (2004), pp. 284–289
86. A. Beck, A. Ben-Tal, M. Teboulle, SIAM J. Matrix Anal. Appl. 28(2), 425 (2006)
87. R.G. Bartle, D.R. Sherbert, Introduction to Real Analysis (Wiley, New York, 2000)
88. L. Grippo, M. Sciandrone, Oper. Res. Lett. 26(3), 127 (2000)
89. B. Bhushan, G. Sahoo, Wireless Pers. Commun. 98(2), 2037 (2018)
90. O. Akbilgic, H. Bozdogan, M.E. Balaban, Stat. Comput. 24(3), 365 (2014)
91. N. Parikh, S. Boyd, Found. Trends Optim. 1(3), 127 (2014)
92. D. Dua, C. Graff, UCI machine learning repository (2017). http://archive.ics.uci.edu/ml
93. A.L. Dontchev, R.T. Rockafellar, Springer Monographs in Mathematics. vol. 208 (Springer,

Berlin, 2009)
94. S.J. Kim, K. Koh, M. Lustig, S. Boyd, D. Gorinevsky, IEEE J. Sel. Topics Signal Process.

1(4), 606 (2007)
95. T.T. Lu, S.H. Shiou, Comput. Math. Appl. 43(1–2), 119 (2002)
96. L. Condat, Math. Program. 158(1–2), 575 (2015)
97. S. Liu, Y.D. Zhang, T. Shan, S. Qin, M.G. Amin, in Compressive Sensing V: From Diverse

Modalities to Big Data Analytics, vol. 9857 (International Society for Optics and Photonics,
Bellingham, 2016), p. 98570N

98. S. Liu, Y.D. Zhang, T. Shan, R. Tao, IEEE Trans. Signal Process. 66(8), 2153 (2018)

 25964 17405
a 25964 17405 a

https://doi.org/10.1109/78.600001
https://doi.org/10.1109/78.600001
http://doi.org:ftp://orion

 22304 47293 a 22304 47293 a

http://archive.ics.uci.edu/ml

104 References

99. J. Fang, Y. Shen, H. Li, P. Wang, IEEE Trans. Signal Process. 63(2), 360 (2014)
100. P.Y. Chen, I.W. Selesnick, IEEE Trans. Signal Process. 62(13), 3464 (2014)
101. Q. Zhao, W.X. Li, X. Jiang, J. Lv, J. Lu, T. Liu, Brain Imag. Behavior 12(3), 758 (2018)
102. J. Ziniel, P. Schniter, IEEE Trans. Signal Process. 61(21), 5270 (2013)
103. V. Roth, B. Fischer, in Proceedings of International Conference on Machine Learning,

Helsinki (2008), pp. 848–855
104. S. Chatterjee, K. Steinhaeuser, A. Banerjee, S. Chatterjee, A. Ganguly, in Proceedings of

SIAM International Conference on Data Mining, Anaheim (2012), pp. 47–58
105. L. Zhao, Q. Hu, W. Wang, IEEE Trans. Multimedia 17(11), 1936 (2015)
106. J.H. Kalivas, Chemometr. Intell. Lab. Syst. 37(2), 255 (1997)
107. P. Stoica, K.C. Sharman, IEEE Trans. Acoust. Speech Signal Process. 38(7), 1132 (1990)
108. T.J. Shan, M. Wax, T. Kailath, IEEE Trans. Acoust. Speech Signal Process. 33(4), 806 (1985)
109. E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha,

G. White, J. Woollen, et al., Bullet. Am. Meteorol. Soc. 77(3), 437 (1996)
110. R. Zimmermann, Math. Comput. 90(328), 671 (2020)
111. R.C. Thompson, Linear Algebra Appl. 13(1–2), 69 (1976)
112. J.E. Jackson, A User’S Guide to Principal Components, vol. 587 (Wiley, Hoboken, 2005)
113. D. Henrion, J.B. Lasserre, Positive Polynomials in Control (Springer, Berlin, 2005), pp. 293–

310

	Contents
	1 Introduction
	1.1 Adversarial Machine Learning
	1.2 Adversarial Attack Against Linear Regression
	1.3 Adversarial Attack Against LASSO Based Feature Selection
	1.4 Adversarial Attack Against Subspace Learning

	2 Optimal Feature Manipulation Attacks Against Linear Regression
	2.1 Attacking with One Adversarial Data Point
	2.1.1 Problem Formulation
	2.1.2 Attacking One Regression Coefficient
	2.1.3 Attacking with Small Changes of Other Regression Coefficients

	2.2 Rank-One Attack Analysis
	2.3 Applications
	2.3.1 Data Poisoning Attack Against Wireless Sensor Networks
	2.3.2 Adversarial Attack Against Stock Exchange Data Analysis
	2.3.2.1 Attacking One Specific Regression Coefficient
	2.3.2.2 Attacking Without Changing Untargeted Regression Coefficients
	2.3.2.3 Rank-One Feature Matrix Attack

	2.3.3 Adversarial Attack Against Wine Data Analysis

	2.4 Summary

	3 On the Adversarial Robustness of LASSO Based Feature Selection
	3.1 Problem Formulation
	3.2 Algorithm
	3.3 Adversarial Attacks Against Group LASSO and Sparse Group LASSO
	3.3.1 Adversarial Attacks Against Group LASSO
	3.3.2 Adversarial Attacks Against Sparse Group LASSO

	3.4 Applications
	3.4.1 Adversarial Attack Against LASSO-Based Feature Selection System
	3.4.2 Adversarial Attack Against Wireless Array Signal Processing
	3.4.3 Adversarial Attack Against Weather Data Analysis

	3.5 Summary

	4 On the Adversarial Robustness of Subspace Learning
	4.1 Problem Formulation
	4.2 Optimal Rank-One Adversarial Strategy
	4.2.1 Case with k=rank(X)
	4.2.1.1 Full-Rank Case
	4.2.1.2 Low-Rank Case

	4.2.2 Case with k<rank(X)

	4.3 Optimal Adversarial Strategy without the Rank Constraint
	4.4 Applications
	4.4.1 Adversarial Attack Against Subspace Learning
	4.4.2 Adversarial Attack Against Principal Component Regression

	4.5 Summary

	5 Summary and Extensions
	5.1 Summary
	5.2 Extensions
	5.2.1 The Defence Strategy

	A Appendix
	A.1 Lasserre's Relaxation Method
	A.2 Poof of the Equivalence of Problem (4.9) and Problem (4.10)
	A.3 Proof of Theorem 4.1
	A.4 Proof of Theorem 4.2
	A.5 Proof of Theorem 4.3
	A.6 Proof of Theorem 4.4
	A.7 Connection Between Asimov Distance and PCR Problem

	References

