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1 Introduction

Modern vehicles consist of several distributed processing elements called electronic
control units (ECUs) that communicate using an in-vehicle network. Each ECU
runs various mixed-criticality real-time applications that range from advanced
vehicle control to entertainment. Each ECU takes input from different sensors or
information from other ECUs to control or actuate different components in the
vehicle. Additionally, some of the ECUs in the cars connect to various external
systems such as OEM servers to receive over-the-air (OTA) updates via the Internet,
other vehicles to communicate traffic information, etc. These unique characteristics
of automotive systems make them one of the best examples of a complex distributed
time-critical cyber-physical IoT system.

The number of ECUs along with the complexity of software running on these
ECUs has been steadily increasing in emerging vehicles. This is mainly driven
by the need to support state-of-the-art advanced driver assistance system (ADAS)
features such as collision warning, lane keep assist, parking assist, blind spot
warning, etc. These advancements have resulted in an increase in the complexity of
the in-vehicle network, which is the backbone over which huge volumes of hetero-
geneous sensor data and safety-critical real-time decisions and control commands
are communicated. Moreover, the state-of-the-art ADAS solutions are increasingly
communicating with various external systems using advanced communication
standards such as 5G technology and Vehicle-to-X (V2X) [1]. This increased
interaction with external systems makes modern vehicles highly vulnerable to
various cybersecurity attacks that can have catastrophic consequences. Several
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cyberattacks on multiple vehicles have been demonstrated in [2–4] showing various
approaches to gain access to the in-vehicle network and take control of the vehicle
via malicious messages. As connected and autonomous vehicles are becoming
increasingly ubiquitous, the problem of security in automotive systems will be
further aggravated. Thus, it is highly essential to prevent unauthorized access of
vehicular networks from external attackers to ensure the security of automotive
systems.

Traditional computer networks use firewalls as a defense mechanism to protect
the network from various unauthorized accesses. However, no firewall is flawless
and no network can be impenetrable. Therefore, there is a need for an active
monitoring system that scans the network to detect cyberattacks manifesting in the
system. An intrusion detection system (IDS) actively monitors network traffic and
triggers alerts when malicious behavior or known attack signatures are detected. The
IDS acts as the last line of defense in distributed automotive IoT systems.

General IDSs can be classified into two categories: (i) signature-based and (ii)
anomaly-based. The signature-based IDSs observe for traces of any known attack
signatures, while the anomaly-based IDSs observe for any deviation from the known
normal system behavior to indicate the presence of an attacker. Signature-based
IDS typically have fewer false alarms (false positives) and faster detection times
but can only detect pre-modeled attack patterns that were observed previously.
On the other hand, anomaly-based IDS can detect both previously observed and
novel attack patterns, while they can suffer from high false alarms and relatively
longer detection times when designed sub-optimally. An efficient IDS needs to be
robust, lightweight, and scalable with diverse system sizes. In addition, a practical
IDS needs to be able to detect a large spectrum of attacks with high confidence in
detection. A low false-positive rate is also important because in time-critical systems
such as automotive systems, recovery from a false positive can be very expensive.

With the increasing adoption of deep learning and artificial intelligence (AI) in
emerging vehicles in an attempt to move toward achieving complete autonomy,
their power can be leveraged to develop an effective anomaly-based IDS to detect
cyberattacks. The large availability of data and the increasing computational power
of ECUs further bolsters the case for an AI-based IDS to detect cyberattacks that are
active over the in-vehicle networks. The ability of AI to learn the highly complex
features in the data that are hard to capture with traditional techniques gives AI-
based IDS a unique edge over other techniques. Moreover, the ability of AI to
operate on heterogeneous data can provide an AI-based IDS the ability to detect
both known and unknown cyberattacks. Thus, AI-based IDS can be a promising
solution for the problem of automotive cybersecurity.

In this chapter, we provide an overview of a novel AI-based vehicle IDS
cybersecurity framework called INDRA [33] that actively monitors messages in the
controller area network (CAN) (a popular in-vehicle network protocol) bus to detect
cyberattacks. During the offline phase, INDRA uses advanced deep learning models
to learn the normal system behavior in an unsupervised fashion. At runtime, the
INDRA framework leverages the knowledge of previously learned normal system
behavior, to monitor and detect various cyberattacks. INDRA aims to maximize
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detection accuracy and minimize false-positive rate while incurring a very low
overhead on the ECUs. The key contributions of the INDRA framework are as
follows:

• A gated recurrent unit (GRU)-based recurrent autoencoder network to learn the
latent representation of normal system behavior during the offline phase.

• A metric called intrusion score (IS), to quantify the deviation from normal system
behavior.

• A thorough analysis toward the selection of thresholds for this intrusion score
metric.

• A comprehensive analysis that demonstrates the effectiveness of INDRA for
vehicle cybersecurity, with superior results compared to the best known state-
of-the-art prior works in the area.

2 Related Work

Various techniques have been proposed to design IDS for securing time-critical
distributed automotive IoT systems. These works attempt to detect various types
of cyberattacks by monitoring the network traffic.

Signature-based IDS reckon on detecting known and pre-modeled attack sig-
natures. In [5], the authors used a language theory-based model to derive attack
signatures. However, this technique fails to detect intrusions when it misses the
packets transmitted during the early stages of an attack. The authors in [6] used
transition matrices to detect intrusions in a CAN bus-based system. This technique
achieves a low false-positive rate for trivial attacks but failed to detect more realistic
attacks such as replay attacks. In [7], the authors identify prominent attack patterns
such as a sudden increase in the message frequency and missing messages to
detect intrusions. The authors in [8] proposed a specification-based approach that
analyzes the behavior of the system and compare it with the predefined attack
patterns to detect intrusions. However, their system can only detect predefined
attack patterns and fails to detect unknown attacks. The authors in [9] proposed an
IDS technique using the Myers algorithm [10] under the map-reduce framework.
In [11], the authors use a time-frequency analysis of CAN messages to detect
multiple intrusions. A rule-based regular operating mode region is derived in [12]
by analyzing the message frequency at design time. This region is observed for
deviations at runtime to detect intrusions. The authors in [13] proposed a technique
that uses the fingerprints of the sender ECU’s clock skew and the messages to
detect intrusions by observing for variations in the clock-skew at runtime. A formal
analysis for clock-skew-based IDS is presented in [14] and evaluated on a real
vehicle. In [15], a memory heat map is used to characterize the memory behavior
of the operating system to detect intrusions. An entropy-based IDS is proposed in
[16] that observes for change in system entropy to detect intrusions. However, this
technique fails to detect small scale attacks where the change in entropy is minimal.
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In summary, signature-based techniques offer a quick solution to the intrusion
detection problem with low false-positive rates but cannot detect more complex
and novel cyberattacks. Moreover, modeling signatures of every possible attack is
impractical.

On the other hand, an anomaly-based IDS aims to learn the normal system
behavior in an offline phase and observe for any deviation from the learned normal
behavior to detect intrusions (as anomalies) at runtime. In [17], a sensor-based IDS
was proposed, where the attack detection sensors are used to monitor various system
events to observe for any deviations from the normal behavior. This approach is
not only expensive but also suffers from poor detection rates. A one-class support
vector machine (OCSVM)-based IDSwas proposed in [18]. However, this technique
suffers from poor detection latency and has high tuning overhead. The authors in
[19] used four different nearest neighbor classifiers to distinguish between a normal
and an attack-induced payloads in CAN bus. A decision tree-based detection model
is proposed in [20] that monitors the physical features of the vehicle to detect
intrusions. However, this model is not realistic and suffers from high detection
latencies. A hidden Markov model (HMM)-based technique was proposed in [21]
that monitors the temporal relationships between messages to detect intrusions. In
[22], a deep neural network-based approach was proposed to monitor the message
payloads in the in-vehicle network. This approach is tuned for a low priority tire
pressure monitoring system (TPMS), which makes it hard to adapt to high priority
safety-critical powertrain applications. The authors in [23] proposed a long short-
term memory (LSTM)-based IDS for multi-message ID detection. Due to the high
complexity of the model architecture, this technique incurs high overhead on the
ECUs. The authors in [24] use an LSTM-based IDS to detect insertion and dropping
attacks (explained later in Sect. 4.3). An LSTM-based predictor model is proposed
in [25] that predicts the next time step message value at a bit level granularity and
examines for large variations in loss to detect intrusions. A recurrent neural network
(RNN)-based IDS was proposed in [26] that learns the normal patterns in CAN
messages in the in-vehicle network. A hybrid IDS to detect anomalies in time-series
data was proposed in [27], which utilizes a specification-based system in the first
stage and an RNN-based model in the second stage to detect anomalies. However,
none of these techniques provides a holistic system-level cybersecurity solution that
is lightweight, scalable, and reliable to detect multiple types of cyberattacks for
in-vehicle networks.

This chapter describes a novel lightweight recurrent autoencoder-based IDS
framework called INDRA [33] that utilizes gated recurrent units (GRUs) to monitor
messages at a signal level granularity to detect various types of attacks more
effectively and successfully than the state of the art. Table 1 summarizes some of
the state-of-the-art IDS works’ performance under different metrics and shows how
INDRA fills the existing research gap. The INDRA framework aims at improving
multiple performance metrics compared to the state-of-the art IDS works that target
a subset of performance metrics. A detailed analysis of each metric and evaluation
results are presented later in Sect. 6.
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Table 1 Comparison between INDRA[33] framework and state-of-the-art IDS works

IDS performance
Technique Lightweight Low false -positive rate High accuracy Fast inference

PLSTM [25] X � X X
RepNet [26] � X X �
CANet [23] X � � X
INDRA � � � �

3 Background on Sequence Learning

The availability of increased computing power from GPUs and custom accelerators
led to training neural networks with many hidden layers (known as deep neural
networks) that resulted in the creation of powerful models for solving difficult
problems in many domains. One such problem is detecting intrusions in the dis-
tributed automotive IoT systems, specifically in the in-vehicle network that connects
them. In an in-vehicle network, the communication between ECUs happens in a
timely manner. Hence, there exist temporal relationships between the messages,
which is crucial to exploit, in order to detect intrusions. However, this cannot be
achieved using traditional feedforward neural networks as the output of any input
is independent of the other inputs. One of the solutions is to use sequence models
as they are more appropriate and are designed to handle sequences and time-series
data.

3.1 Sequence Models

A sequence model can be thought of as a function which ensures that the current
output is dependent not only on the current input but also on the previous inputs.
Recurrent neural network (RNN) is one of the first sequence models which was
introduced in [28]. In recent years, improved sequence models such as long short-
term memory (LSTM) and gated recurrent unit (GRU) have also been developed.

3.1.1 Recurrent Neural Network (RNN)

An RNN is a type of artificial neural network that takes sequential data (such as
sequence or time-series data) as the input and learns the relationship in the data.
RNNs achieve this by using the hidden states, which allows learned information to
persist over time steps. Moreover, the hidden states also enable the RNN to connect
previous information to current inputs. An RNN cell with feedback is shown in Fig.
1a, and an RNN unrolled in time is shown in Fig. 1b.
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Fig. 1 (a) A single RNN cell
and (b) RNN unit unrolled in
time, where f is the RNN cell,
x is the input, and h
represents hidden states [33]

The output of an RNN cell at a time step t (ht) is a function of both the input at
time step t (xt) and the previous time step output (ht − 1):

ht = f (Wxt + Uht−1 + b) (1)

where W, U represent the weight matrices, b is a bias term, and f is a nonlinear
activation function (such as a sigmoid or tanh). One of the limitations of RNNs
is that they are very hard to train. As RNNs and other sequence models deal with
sequence or time-series inputs, backpropagation happens through various time sam-
ples (known as backpropagation through time (BPTT)). During the BPTT process,
the feedback loop in RNNs causes the errors to shrink or grow rapidly (resulting
in vanishing or exploding gradients respectively), destroying the information in
backpropagation. This problem of vanishing gradients hampers the RNNs from
learning long-term dependencies. This problem was solved with the introduction
of additional states and gates in the RNN cell to remember long-term dependencies,
which led to the introduction of long short-term memory networks [29].

3.1.2 Long Short-Term Memory (LSTM) Networks

LSTMs are improved RNNs that use cell state and the hidden state information
along with several gates to remember long-term dependencies in the input sequence.
The cell state can be visualized as a transport highway that carries relevant
information throughout the processing of a sequence. The cell state accommodates
the information from earlier time steps, which can be used in the later time steps,
thereby reducing the effects of short-term memory. The information in the cell state
is modified using various gates, which helps the network decide which information
needs to be retained and which information to forget.

An LSTM cell consists of three gates: (i) forget gate (ft), (ii) input gate (it), and
(iii) output gate (ot), as shown in Fig. 2a. The forget gate is a binary gate that controls
which information to retain from the previous cell state (ct−1). The input gate is
responsible for adding relevant information to the current cell state (ct). Lastly, the
output gate controls the output layer, which uses information from the forget and
input gates to produce an appropriate output. An unrolled LSTM unit is shown in
Fig. 2b.
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Fig. 2 (a) A single LSTM cell with different gates and (b) LSTM unit unrolled in time, where f
is an LSTM cell, x is input, c is cell state, and h is the hidden state [33]

Fig. 3 (a) A single GRU cell with different gates and (b) GRU unit unrolled in time, where f is a
GRU cell, x is input, and h represents hidden states [33]

The combination of the abovementioned different gates, along with the cell
and hidden states, enables LSTMs to learn long-term dependencies in sequences.
However, they are not computationally efficient as the addition of multiple gates
increased the complexity of the sequence path (more than in RNNs) and also require
more memory at runtime. Additionally, training LSTMs is compute-intensive even
with advanced training methods such as truncated backpropagation. To overcome
these limitations, a simpler recurrent neural network called gated recurrent unit
(GRU) network was introduced in [30] that can be trained faster than LSTMs
and also remembers dependencies in long sequences with relatively low memory
overhead while solving the vanishing gradient problem.

3.1.3 Gated Recurrent Unit (GRU)

A GRU cell uses an alternate route for gating information by combining the input
and forget gate of the LSTM into a solitary update gate. GRUs furthermore combine
the hidden and cell states, as shown in Fig. 3a, b.

A GRU cell consists of two gates: (i) reset gate and (ii) update gate. The reset
gate combines new input with past memory, while the update gate selects the
amount of relevant data that should be held. This enables the GRU cell to control
the data stream like an LSTM by uncovering its hidden layer contents. Moreover,
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GRUs achieve this using fewer gates and states, which makes them computationally
more efficient with low memory overhead compared to the LSTMs. As real-time
automotive ECUs are highly resource-constrained distributed embedded systems
with stringent energy and power budgets, it is crucial to employ low overhead
models for inferencing tasks. This makes the GRU-based networks an ideal fit
for inference in automotive systems. Moreover, GRUs are relatively new and less
explored and have a lot of potential to offer compared to its predecessors RNNs and
LSTMs. Hence, in this chapter, a lightweight GRU-based IDS framework called
INDRA is presented (explained in detail in Sect. 5).

The sequence models can be trained using both supervised and unsupervised
learning approaches. Due to the large volume of automotive network data in a
vehicle, labeling the data can become very tedious. Additionally, the variability
in the messages between different vehicle models from the same manufacturer
and the proprietary nature of this information makes it furthermore challenging to
accurately label messages. The accessibility to automotive network data via onboard
diagnostics (OBD-II) facilitates the collection of large amounts of unlabeled data.
Thus, the IDS in INDRA uses GRUs in an unsupervised learning setting.

3.2 Autoencoders

An autoencoder is an unsupervised learning algorithm that tries to reconstruct the
input by learning the latent input features. Autoencoders achieve this by encoding
the input data (x) toward a hidden layer and finally decoding it to produce a

reconstruction
∼
x (as shown in Fig. 4). The encoding produced at the hidden layer is

called an embedding. The layers that create this embedding are called the encoder,
and the layers that utilize the embedding and reconstruct the original input are
called the decoder. When training the autoencoders, the encoder tries to learn a
nonlinear mapping of the inputs, while the decoder tries to learn the nonlinear
mapping of the embedding to the inputs. Both encoder and decoder achieve this
with the help of nonlinear activation functions, such as tanh and rectified linear unit
(ReLU). Moreover, the autoencoder network tries to recreate the input as accurately
as possible by selectively extracting the key features from the inputs with a goal
of minimizing reconstruction error. The most commonly used loss functions in
autoencoders are mean squared error (MSE) and Kullback-Leibler (KL) divergence.

Since the autoencoders aim to reconstruct the input by learning the underlying
distribution of the input data, it makes them an excellent choice to learn and
reconstruct highly correlated time-series data efficiently by learning the temporal
relations between signals. Thus, the INDRA framework uses lightweight GRUs in
an autoencoder to learn latent representations of CAN messages in an unsupervised
learning setting.
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Fig. 4 Autoencoders [33]

4 Definitions and Problem Formulation

4.1 System Model

The INDRA framework considers a generic distributed automotive system consisting
of multiple ECUs connected using a CAN-based in-vehicle network, as shown in
Fig. 5. Each ECU runs a set of hard real-time automotive applications that have strict
timing and deadline constraints. Additionally, each ECU also executes intrusion
detection applications that monitors and detects intrusions in the in-vehicle network.
INDRA employs a distributed IDS approach, where the intrusion applications are
collocated with real-time automotive applications as opposed to a centralized IDS
approach where a single central ECU handles all intrusion detection tasks. This
design decision is driven by the following reasons:

• A centralized IDS approach is particularly prone to single-point failures, which
can fully open up the system to the attacker.

• In some extreme scenarios such as during a distributed denial-of-service (DDoS)
or flooding attack (explained in Sect. 4.3), the in-vehicle network can get highly
congested and the centralized IDS might not be able to communicate with the
victim ECUs.

• If an attacker succeeds in fooling the centralized IDS ECU, attacks can go
undetected by the other ECUs, compromising the entire system. However, with
a distributed IDS approach, fooling multiple ECUs is required which is much
harder. Even if one of the ECUs is compromised, the attack can still be detected
by the decentralized intelligence.

• In a distributed IDS approach, ECUs can stop accepting suspicious messages as
soon as an intrusion is detected without waiting for a centralized system to notify
them, resulting in faster detection times.

• In a distributed IDS approach, the computation load of intrusion detection is
split among the ECUs, and the monitoring can be limited to only the required
messages. This facilitates multiple ECUs to monitor a subset of messages
independently, with very lower overhead.
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Fig. 5 Overview of the system model considered in INDRA [33]

Many prior works, such as in [5, 12], consider a distributed IDS approach for
these reasons. Moreover, with automotive ECUs becoming increasingly powerful,
the collocation of IDS applications with real-time automotive applications in a
distributed manner is feasible, provided the overhead from the IDS is minimal. The
INDRA framework is not only lightweight but also highly scalable and achieves
superior intrusion detection performance, as discussed in Sect. 6.

An efficient IDS design should have low susceptibility to noise, low cost, and
a low power/energy footprint. Additionally, INDRA considers the following design
objectives in the development process of the IDS:

• Lightweight: Intrusion detection tasks can incur additional overhead on the
ECUs, which could result in poor application performance or missed deadlines
for real-time applications. This can have catastrophic consequences in some
cases. Thus, it is important to have a lightweight IDS that incurs very minimal
overhead on the system.

• Few false positives: This is a highly desired quality in any kind of IDS (even
outside of the automotive domain), as handling false positives can become
expensive very quickly. An efficient IDS needs to have few false positives or
false alarms.

• High attack coverage: Attack coverage is the range of attacks an IDS can detect.
A good IDS needs to be able to detect more than one type of attack. A high attack
coverage for IDS will make the system resilient to multiple attack surfaces.

• Scalability: This is a crucial requirement as the numbers of ECUs, software, and
network complexity have been increasing in the emerging vehicles. A practical
IDS should be highly scalable and be able to support various system sizes.
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Fig. 6 Standard CAN frame format [33]

Fig. 7 Real-world CAN message with signal information [33]

4.2 Communication Model

A brief overview of the vehicle communication model that was considered in
INDRA is presented in this subsection. The INDRA framework mainly focuses
on detecting intrusions in a CAN bus-based automotive system. Controller area
network (CAN) is the de facto industry standard in-vehicle network protocol for
modern-day automotive systems. CAN is a low-cost, lightweight event-triggered
communication protocol that transmits messages in the form of CAN frames. The
structure of a standard CAN frame is shown in Fig. 6, and the length of each
field (in bits) is shown on the top. The standard CAN frame consists of header,
payload, and trailer segments. The header segment consists of information such as
the message identifier (ID) and the length of the message. The actual data that needs
to be transmitted is in the payload segment. Lastly, the information in the trailer
segment is mainly used for error checking at the receiver. A variation of the standard
CAN, called CAN-extended or CAN 2.0B, is also becoming increasingly common
in modern vehicles. CAN extended consists of a 29-bit identifier compared to 11-bit
identifier in the CAN standard, allowing for more number of unique message IDs.

The IDS design in INDRA focuses on monitoring the payload segment of the
message and observe for anomalies to detect intrusions. This is mainly because an
attacker needs to modify the message payload to accomplish a malicious activity. An
attacker could also target the header or trailer segments, but it would result in the
message getting rejected at the receiver. The payload segment consists of multiple
data entities called signals. An example real-world CAN message with multiple
signals is shown in Fig. 7 [31]. Each signal has a fixed length (in bits), an associated
data type, and a start bit that specifies its starting location in the 64-bit payload
segment of the CAN message.
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The INDRA framework focuses on monitoring individual signals within message
payloads to observe for anomalies and detect intrusions. The neural network model
in the INDRA framework is trained to learn the temporal dependencies between
the messages at a signal level during training and observes for deviations during
the deployment (at runtime) to detect intrusions in the in-vehicle network. This
signal level monitoring would not only give the capability to detect the presence
of an intruder but also helps in identifying the signal within the message that is
being targeted during an attack. This information can be crucial in understanding
the intentions of the attacker, which can be used for developing countermeasures.
The signal level monitoring mechanism in INDRA is discussed in detail in Sect. 5.2.
Note: Even though the INDRA framework mainly focuses on detecting intrusions
by monitoring CAN messages, this approach can be extended to be used with
other in-vehicle network protocols as the framework is agnostic to the underlying
communication protocol.

4.3 Attack Model

The INDRA framework aims to protect the vehicle from various types of cyberat-
tacks that are listed below. These are some of the most commonly seen and hard to
detect automotive attack patterns that have been widely considered in literature to
evaluate IDS models.

1. Flooding attack: This is the most common and easy to launch attack and requires
little to no knowledge about the system. In this attack, the attacker floods the in-
vehicle network with a random or specific message and prevents the other ECUs
from communicating. This is also known as the denial-of-service (DoS) attack.
These attacks are generally detected and prevented by the bridges and gateways
in the in-vehicle network and often do not reach the last line of defense (the IDS).
However, it is important to consider these attacks in the IDS evaluation as they
can have a severe impact on the system when handled incorrectly.

2. Plateau attack: In this attack, an attacker overwrites a signal value with a constant
value over a period of time. The attack severity depends on the magnitude of the
change in signal value and the attack duration. Large changes in magnitude of
the signal values are easier to detect compared to shorter changes.

3. Continuous attack: In this attack, an attacker slowly overwrites the signal value
until some target value is achieved and tries to avoid the triggering of IDS. This
attack is hard to detect and can be sensitive to the IDS parameters (discussed in
Sect. 5.2).

4. Suppress attack: In this attack, the attacker suppresses the signal value(s) by
either disabling the communication controller or by powering off the target ECU.
These attacks can be easily detected, when the message transmissions are shut
down for long durations, but are harder to detect for shorter durations.
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5. Playback attack: In this attack, the attacker replays a valid series of message
transmissions from the past trying to trick the IDS. This attack is hard to detect
if the IDS does not have the ability to capture the temporal relationships between
messages.

Moreover, the INDRA framework assumes that the attacker can gain access to the
vehicle using the most common attack vectors, which include connecting to V2X
systems that communicate with the outside world (e.g., infotainment and connected
ADAS systems), connecting to the OBD-II port, probing into the in-vehicle bus, and
replacing an existing ECU. Furthermore, the INDRA framework assumes that the
attacker has access to the bus parameters (such as BAUD rate, parity, flow control,
etc.) that can help in gaining access to the in-vehicle network.

Problem objective The goal of INDRA is to implement a lightweight IDS that
can detect various types of cyberattacks (mentioned earlier) in a CAN bus-based
distributed automotive system, with a high detection accuracy and low false-positive
rate, and while maintaining a large attack coverage.

5 INDRA Framework Overview

The INDRA framework aims to achieve a signal level anomaly-based IDS for
monitoring CAN messages in automotive embedded systems. An overview of the
INDRA framework is shown in Fig. 8. At a high level, the INDRA framework
consists of design-time and runtime phases. At design time, INDRA uses trusted
CAN message data to train a recurrent autoencoder-based model to learn the normal
operating behavior of the system. At runtime, the trained recurrent autoencoder
model is used for observing deviations from normal behavior (inference) and detect
intrusions based on the deviation computed using the proposed intrusion score
metric (detection). The following subsections describe these steps in more detail.

5.1 Recurrent Autoencoder

Recurrent autoencoders are powerful neural networks that are designed to behave
like an autoencoder network but handle time-series or sequence data inputs.
They can be visualized similar to the regular feed-forward neural network-based
autoencoders, except with the neurons being either RNN, LSTM, or GRU cells
(discussed in Sect. 3). Similar to regular autoencoders, the recurrent autoencoders
consist of an encoder and a decoder stage. The encoder is responsible for generating
a latent representation of the input sequence data in an n-dimensional space. The
decoder uses the generated latent representation from the encoder and tries to
reconstruct the input with minimal reconstruction error. In this section, a lightweight
recurrent autoencoder model that is customized for the design of IDS to detect
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Fig. 8 Overview of INDRA framework [33]

intrusions in the in-vehicle network data is presented. The details related to the
recurrent autoencoder model architecture and the different stages involved in its
training are discussed in the subsequent subsections.

5.1.1 Model Architecture

The proposed recurrent autoencoder model architecture in INDRA with the dimen-
sions (input, output) of each layer is illustrated in Fig. 9. The model consists of a
linear layer at the input, GRU-based encoder, GRU-based decoder, and a final linear
layer before the output. The time-series CAN message data with signal level values
with f features (where f is the number of signals in that particular message) is given
as the input to the first linear layer. The output of the first linear layer is passed
to the GRU-based encoder to generate the latent representation of the time-series
signal inputs. This latent representation is referred to as a message context vector
(MCV). The MCV captures the context of different signals in the input message
data in the form of a vector, hence the name. Each MCV can be thought of as a
point in an n-dimensional space that contains the context of the series of signal
values given as input. The MCV is given as the input to a GRU-based decoder,
which feeds its output as an input to the final linear layer. The linear layer at the end
produces the reconstructed input time-series that represents the CAN message data
with individual signal level values. Mean square error (MSE) loss function is used to
compute the loss between the input and the reconstructed input. The model weights
are updated using backpropagation through time (BPTT). The INDRA framework
builds a recurrent autoencoder model for each message ID.
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Fig. 9 Recurrent
autoencoder network
architecture in INDRA (f is
number of features, i.e.,
number of signals in the input
CAN message, MCV is
message context vector) [33]

Fig. 10 Illustration of rolling
window-based approach [33]

5.1.2 Training Procedure

The first step of the training process is preprocessing the input CAN message data.
Each sample in the dataset consists of a message ID and corresponding values of
the signals within that message ID. The signal values are scaled between 0 and
1 for each signal type, as the range of signal values can be very large in some
cases. Using unscaled signal values as inputs can result in an extremely slow or very
unstable training process. Moreover, scaling the signal values also helps in avoiding
the problem of exploding gradients.

The final preprocessed data is split into training data (85%) and validation data
(15%) and is prepared for training using a rolling window-based approach. This
involves selecting a window of fixed size and rolling it to the right by one-time
sample every time step. A rolling window size of three samples for three time steps
(t = 1, 2, 3) is illustrated in Fig. 10, where the term S

j
i represents the ith signal

value at jth sample. The elements in the rolling window are collectively called as a
subsequence and the subsequence length is equal to the size of the rolling window.
As each subsequence consists of a set of signal values over time, the recurrent
autoencoder model in INDRA tries to learn the existing temporal relationships
between the series of signal values. These signal level temporal relationships play
a crucial role in identifying more complex cyberattacks such as continuous and
playback (as discussed in Sect. 4.3). The process of training using subsequences
is carried out iteratively until the end of the sequence in training data.

Each iteration in the training step consists of a forward pass and a backward
pass using BPTT to update the weights and biases of the neurons (discussed in
Sect. 3) based on the error value. At the end of the training, the model’s learning
is evaluated (forward pass only) using the validation data, which was not seen by
the model during the training. By the end of validation, the model has seen the
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complete dataset once and this is known as an epoch. The model is trained for
multiple epochs until the model reaches convergence. Moreover, the process of
training and validation using subsequences is sped up by training the input data
in groups of subsequences known as mini-batches. Each mini-batch consists of
multiple consecutive subsequences that are given as input to the model in parallel.
The size of each mini-batch is commonly referred to as batch size, and it is a
common practice to choose the batch size as a power of two. Lastly, to control
the rate of update of parameters during backpropagation, a learning rate needs to be
specified to the model. The hyperparameters such as subsequence size, batch size,
learning rate, etc., that are chosen in the INDRA are presented later in Sect. 6.1.

5.2 Inference and Detection

At runtime, the trained model is set to evaluation mode, where only the forward
passes occur and the weights and biases are not updated. In this phase, the
trained model is tested under multiple attack scenarios (mentioned in Sect. 4.3),
by simulating appropriate attack conditions in the CAN message dataset.

Every data sample that is given as the input to the model gets reconstructed at
the output, and the reconstruction loss is fed to the detection module to compute
a metric called intrusion score (IS). The IS helps in identifying whether a signal is
normal or malicious. The IS metric is computed at a signal level to predict the signal
that is under attack. The IS metric is computed at every iteration during inference,
as a squared error to estimate the prediction deviation from the input signal value,
as shown below:

ISi =
((

S
j
i − Ŝ

j
i

)2) ∀i ∈ [1,m] (2)

where, Sji represents ith signal value of the jth sample, Ŝji denotes its reconstruction,
and m is the number of signals in the message. The predicted value would have
a large deviation from the input signal value (i.e., large IS value), when the
input signal pattern is not seen during the training phase, and a minimal IS value
otherwise. This is the basis for the detection step in INDRA.

Additionally, the INDRA framework combines the signal level IS information
into a message-level IS, by taking the maximum IS of the signals in that message as
shown in Eq. (3). This is mainly to facilitate the lack of signal level intrusion label
information in the dataset.

MIS = max (IS1, IS2 . . . , ISm) (3)

To get adequate detection accuracy, an intrusion threshold (IT) needs to be
selected for flagging messages appropriately. INDRA explores multiple choices for
IT, using the best model from the training process. The best model is the model with
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Fig. 11 Snapshot of INDRA IDS checking a message with three signals under a plateau attack,
where (a) shows the signal comparisons and (b) shows IS for signals and IS for the message and
intrusion flag [33]

the lowest validation running loss during the training process. Using the best model,
multiple metrics such as maximum, mean, median, and 99.99%, 99.9%, 99%, and
90% validation loss across all iterations are logged as the choices for the IT. The
detailed analysis on selection of IT is presented in Sect. 6.2.

A snapshot of INDRA IDS working in an environment with cyberattacks is
illustrated in Fig. 11a, b, with a plateau attack on a message with three signals,
between time 0 and 50. The highlighted area in red represents the attack interval.
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Figure 11a shows the input (true) vs INDRA IDS predicted signal value comparisons
for three signals. It can be observed that for most of the time, the reconstruction is
close for almost all signals except during the attack interval. Signal 3 is subjected to
a plateau attack where the attacker held a constant value until the end of attack
interval as shown in the third subplot of Fig. 11a (note that this resulted in a
larger difference between the IDS predicted and actual input signal values in the
third subplot, compared to signals 1 and 2). Figure 11b shows the different signal
intrusion scores for the three signals in the message. The dotted black line represents
the intrusion threshold (IT). As mentioned earlier, the maximum of signal intrusion
scores is chosen as message intrusion score (MIS), which in this case is the IS of
signal 3. It can be clearly seen in Fig. 11b that the intrusion score of signal 3 is
above the IT, for the entire duration of the attack interval, highlighting the ability
of INDRA to detect such attacks. The value of IT (equal to 0.002) in Fig. 11b is
computed using the method discussed in Sect. 6.2. Note: This IT value is specific to
the example case shown in Fig. 11 and is not a representation of the IT value used
for the remaining experiments. Section 6.2 describes the selection of IT value in the
INDRA framework.

6 Experiments

6.1 Experimental Setup

To evaluate the performance of the INDRA framework, an analysis for the selection
of intrusion threshold (IT) is presented. Using the selected IT, two variants of
the INDRA framework (INDRA-LED and INDRA-LD) are compared against the
baseline INDRA framework. The former variant removes the end linear layer before
the output and essentially has only the GRU to decode the context vector. The
term LED implies the (L) linear layer, (E) encoder GRU, and (D) decoder GRU.
The latter variation replaces the GRU and the linear layer at the decoder with a
series of linear layers (LD implies linear decoder). These variants were studied
mainly to understand the importance of different layers in the network. However, the
encoder portion of the network remained unchanged in the variants as a sequence
model is needed to generate an encoding of the time-series data. The study in
INDRA explored other variants, but they are not included in the discussion as their
performance was inferior compared to the LED and LD variants.

Subsequently, the best variant of the INDRA framework is compared with three
prior works: predictor LSTM (PLSTM [25]), replicator neural network (RepNet
[26]), and CANet [23]. The first comparison work (PLSTM) employs an LSTM-
based network that is trained to predict the signal values in the next message
transmission. PLSTM achieves this by taking the 64-bit CAN message payload as
the input and learns to predict the next signal values in the message at a bit-level
granularity by minimizing the prediction error. A log loss or binary cross-entropy
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loss function is used to measure the bit level deviations between the real next signal
values and the predicted next signal values. At runtime, PLSTM uses the calculated
prediction loss value to decide whether a particular message is malicious or not.
The second comparison work (RepNet) uses a series of RNN layers to increase
the dimensionality of the input data and reconstruct the signal values by reducing
back to the original dimensionality. RepNet achieves this by minimizing the mean
squared error (MSE) between the input and the reconstructed signal values. During
runtime, large deviations between the input signal and the reconstructed signal
values are used to detect intrusions. Lastly, the third comparison work (CANet)
unifies multiple LSTMs and linear layers in an autoencoder architecture and adapts
a quadratic loss function to minimize the signal reconstruction error. Details related
to all experiments conducted with the INDRA variants and comparison works are
discussed in further subsections.

To evaluate the INDRA framework with its variants and against prior works, an
open-source dataset called SynCAN, developed by ETAS and Robert Bosch GmbH
[23] is used. The dataset consists of CAN message data for ten different message
IDs that were modeled based on the real-world CAN message data. The dataset
comes with both training and test data with multiple attacks, as discussed in Sect.
4.3. Each row in the dataset consists of a timestamp, message ID, and individual
signal values. Additionally, the test data consists of a label column with either 0 or 1
values indicating normal or malicious messages, respectively. The label information
is available on a per message basis and does not indicate which signal within the
message is subjected to the cyberattack. This label information is used to evaluate
the INDRA IDS over several metrics such as detection accuracy and false-positive
rate (discussed in detail in the next subsections). Moreover, to simulate a more
realistic attack scenario in the in-vehicle networks, the test data has normal CAN
traffic between the attack injections. Note: The training phase does not use any
label information, as INDRA learns the patterns in the input data in an unsupervised
manner.

All the machine learning-based frameworks including INDRA and its variants,
and comparison works are implemented using PyTorch 1.4. Additionally, several
experiments were conducted to select the best performing model hyperparameters
(including number of layers, hidden unit sizes, and activation functions). The final
recurrent autoencoder model presented in Sect. 5.1 was trained using the SynCAN
dataset by splitting 85% of train data for training and the remaining for validation.
The validation data is primarily used to evaluate the performance of the trained
model at the end of every epoch. The model was trained for 500 epochs, using a
rolling window approach (as discussed in Sect. 5.1.2) with the subsequence size
of 20 messages and the batch size of 128. An early stopping mechanism was
employed during the training phase that monitors the validation loss across epochs
and stops the training process if there is no improvement after ten (patience) epochs.
A learning rate of 1e-4 is chosen, and tanh activations are applied after each linear
and GRU layers. Lastly, an ADAM optimizer with the mean squared error (MSE)
loss criterion is used for back propagation. During testing, the trained model is
evaluated using multiple test data inputs to simulate various attack scenarios. The



316 V. K. Kukkala et al.

intrusion threshold is computed based on the intrusion score metric (as described in
Sect. 5.2), which was used in determining a message as malicious or normal. Various
performance metrics such as detection accuracy, false positives, etc. are computed to
quantify the performance of INDRA. All the simulations are run on an AMD Ryzen
9 3900X server with an Nvidia GeForce RTX 2080Ti GPU.

Before looking at the experimental results, the following terminologies are
defined in the context of IDS:

• True positive (TP): when an IDS detects an actual malicious message as
malicious.

• False negative (FN): when an IDS detects an actual malicious message as normal.
• False positive (FP): when an IDS detects a normal message as malicious (aka

false alarm).
• True negative (TN): when an IDS detects an actual normal message as normal.

The INDRA framework focuses on two key performance metrics: (i) detection
accuracy, which is the measure of an IDS ability to detect intrusions correctly, and
(ii) false-positive rate, also known as false alarm rate. These metrics are calculated
using Eqs. (4) and (5):

Detection Accuracy = TP + TN

TP + FN + FP + TN
(4)

False Positive Rate = FP

FP + TN
(5)

6.2 Intrusion Threshold Selection

A comprehensive analysis for the selection of intrusion threshold (IT) by consid-
ering various options such as max, median, mean, and different quantile bins of
validation loss of the final model is presented in this subsection. The reconstruction
error of the model for the normal messages should be much smaller than the error
for malicious messages. Hence, several candidate options for the IT are explored to
achieve this goal that would work across multiple attack and no-attack scenarios.
In some scenarios, having a large IT value can make it harder for the model to
detect the attacks that change the input pattern minimally (e.g., continuous attack).
In contrast, having a small threshold value can potentially trigger multiple false
alarms, which is highly undesirable in time-critical systems. Thus, it is crucial to
select an appropriate IT value to optimize the performance of the model.
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Fig. 12 Comparison of (a) detection accuracy and (b) false-positive rate for various candidate
options of intrusion threshold (IT) as a function of validation loss under different attack scenarios.
(% refers to percentile not percentage) [33]

Figure 12a, b illustrates the detection accuracy and false-positive rate, respec-
tively, for various candidate options to calculate IT, under different attack scenarios.
From the results in Fig. 12a, b, it can be seen that selecting higher validation loss
as the IT can result in a high detection accuracy and low false alarm rate. However,
choosing a very high value (such as “max” or “99.99 percentile”) can sometimes
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result in missing small variations in the input patterns that are caused by more
sophisticated attacks. Moreover, the INDRA IDS performance is very similar when
maximum or 99.99 percentile of validation loss of the final model is selected as
the IT. But, in order to capture the attacks that produce small deviations, a slightly
smaller IT is selected that would still perform similar to max and 99.99 percentile
thresholds under various cyberattack scenarios. Hence, INDRA chooses the 99.9th
percentile value of the validation loss as the value of the intrusion threshold (IT).
The same IT value is used for the remainder of the experiments discussed in the
next subsections.

6.3 Comparison of INDRA Variants

After selecting the intrusion threshold using the methodology presented in previous
subsection, the performance of INDRA framework is evaluated with two other
variants: INDRA-LED and INDRA-LD. The motivation behind evaluating different
variants of INDRA is to analyze the impact of different layer types in the recurrent
autoencoder model on the performance metrics discussed in Sect. 6.1.

The detection accuracy of INDRA and its variants is illustrated in Fig. 13a under
different attacks and for a no-attack scenario (normal). It can be observed that
INDRA outperforms the two variants and has high detection accuracy in normal
and every attack scenario. The high detection accuracy of INDRA is achieved due to
its monitoring capability at a signal level unlike the prior works that monitor at the
message level.

Figure 13b shows the false-positive rate or false alarm rate of INDRA and other
variants under different attack scenarios. It is evident that INDRA has the lowest
false-positive rate and highest detection accuracy compared to the other variants.
Moreover, INDRA-LED is the second best-performing model after INDRA, which
leverages the power of GRU-based decoder to reconstruct the original signal values
from the MCV. Figure 13a, b clearly shows that the lack of GRU layers in the
decoder of INDRA-LD resulted in a significant performance degradation. Thus,
INDRA is chosen as the candidate model for subsequent experiments.

6.4 Comparison with Prior Works

In this subsection, a comparison of the INDRA framework with PLSTM [25],
RepNet [26], and CANet [23], which are some of the best known prior works in the
IDS area, is presented. Figure 14a, b shows the detection accuracy and false-positive
rate, respectively, for the various techniques under different attack scenarios.

From Fig. 14a, b, it is evident that INDRA achieves a high detection accuracy for
each attack scenario and also has low positive rates for most scenarios. The ability to
monitor signal level variations along with the more cautious selection of intrusion
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Fig. 13 Comparison of (a) detection accuracy and (b) false-positive rate for INDRA and its
variants INDRA-LED and INDRA-LD under different attack scenarios [33]

threshold gives INDRA an advantage over comparison works. Both PLSTM and
RepNet use the maximum validation loss in the final model as the threshold to detect
intrusions in the system, while CANet uses an interval-based monitoring to detect
cyberattacks. The larger threshold value helped PLSTM to achieve slightly lower
false-positive rates for few scenarios, but it hurt the ability of both PLSTM and
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Fig. 14 Comparison of (a) detection accuracy and (b) false-positive rate of INDRA [33] and the
prior works PLSTM [25], RepNet [26], and CANet [23]

RepNet to detect cyberattacks that produce small variations in the input data. This
is because the deviations produced by some of the complex attacks are small and
the attacks go undetected due to the large thresholds. Moreover, the interval-based
monitoring in CANet struggles with finding an optimal threshold value. Lastly, the
false-positive rates of INDRA are still significantly low with the maximum of 2.5%
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Table 2 Memory footprint
comparison between INDRA
framework and the prior
works PLSTM [25], REPNET
[26], and CANET [23]

Framework Memory footprint (KB)

PLSTM [25] 13,417
RepNet [26] 55
CANet [23] 8718
INDRA 443

Note: Data in this table is adapted from
[33]

for plateau attacks. It is important to note that the y-axis in Fig. 14b has a much
smaller scale than in Fig. 14a and the magnitude of the false positive rate is very
small.

6.5 IDS Overhead Analysis

In this subsection, a detailed analysis of the INDRA IDS overhead is presented.
The overhead is quantified in terms of both memory footprint and time taken to
process an incoming message, i.e., inference time. The former metric is important
as the resource-constrained automotive ECUs have limited available memory, and
it is crucial to have a low memory overhead to avoid interference with real-
time automotive applications. The inference time not only provides important
information about the time taken to detect the attacks but also can be used to
compute the utilization overhead on the ECU. Thus, the abovementioned two
metrics are used to analyze the overhead and quantify the lightweight nature of
INDRA IDS.

To accurately capture the overhead of the INDRA framework and the prior works,
they are implemented on an ARM Cortex-A57 CPU on a Jetson TX2 board, which
has similar specifications to the state-of-the-art multi-core ECUs. The memory
footprint of the INDRA framework and the comparison works mentioned in the
previous subsections are shown in Table 2. It is clear that the INDRA framework
has a low memory footprint compared to the comparison works, except for the
RepNet [26]. However, it is important to observe that even though the INDRA
framework has slightly higher memory footprint compared to RepNet [26], INDRA
outperforms all prior works including RepNet [26] in every performance metric
under different cyberattack scenarios, as shown in Fig. 14. Even though the heavier
(high memory footprint) models can provide the ability to capture a large variety
of details about the system behavior, they are not an ideal choice for resource-
constrained automotive embedded systems. On the other hand, a much lighter model
such as RepNet cannot capture crucial details about the system behavior due to
limited parameters and therefore suffers from performance issues.

In order to understand the inference overhead, different IDS frameworks are
benchmarked on an ARM Cortex-A57 CPU. In this experiment, different system
configurations are considered to encompass a wide variety of state-of-the-art ECU



322 V. K. Kukkala et al.

Table 3 Inference time comparisons between INDRA framework and the prior works PLSTM
[25], REPNET [26], and CANET [23] using single-core and dual-core configurations

Average inference time (µs)
Framework Single-core ARM Cortex A57 CPU Dual-core ARM Cortex A57 CPU

PLSTM [25] 681.18 644.76
RepNet [26] 19.46 21.46
CANet [23] 395.63 378.72
INDRA 80.35 72.91

Note: Data in this table is adapted from [33]

hardware in vehicles. Based on the available hardware resources on the Jetson TX2,
two different system configurations are selected. The first configuration utilizes only
one CPU core (single core), while the second configuration uses two CPU cores
(dual core).

Each framework is run ten times for two different CPU configurations, and
the average inference time (in µs) is computed, as shown in Table 3. From the
results in Table 3, it can be seen that INDRA has significantly faster inference
times compared to the prior works (excluding RepNet) under all configurations.
This is partly associated with the lower memory footprint of the INDRA IDS. As
mentioned earlier, even though RepNet has a lower inference time, it has the worst
performance out of all frameworks, as shown in Fig. 14. The large inference times
for the better performing frameworks can impact the real-time performance of the
control systems in the vehicle and can result in missing of critical deadlines, which
can be catastrophic. These inference times can be further improved by employing
a dedicated deep learning accelerator (DLA) compared to the above presented
configurations.

Thus, from Fig. 14 and Tables 2 and 3, it is evident that INDRA achieves a clear
balance of having superior intrusion detection performance while maintaining low
memory footprint and fast inference times, making it a powerful and lightweight
IDS solution.

6.6 Scalability Results

In this subsection, a scalability analysis of the INDRA IDS is presented by studying
the system performance using the ECU utilization metric as a function of increasing
system complexity (number of ECUs and messages).

Each ECU has a real-time utilization (URT) and an IDS utilization (UIDS) from
running real-time and IDS applications, respectively. The IDS overhead (UIDS) is
analyzed as a measure of the compute efficiency of the IDS. Since the safety-critical
messages monitored by the IDS are periodic in nature, the intrusion detection task
can be modeled as a periodic application with a period that is same as the message
period [32]. Thus, monitoring an ith messagemi results in an induced IDS utilization
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(UIDS,mi
) at an ECU and can be computed as:

UIDS,mi
=

(
TIDS

Pmi

)
(6)

where TIDS and Pmi indicate the time taken by the IDS to process one message
(inference time) and the period of the monitored message, respectively. Moreover,
the sum of all IDS utilizations as a result of monitoring different messages is the
overall IDS utilization at that ECU (UIDS) and is given by:

UIDS =
∑n

i=1
UIDS,mi

(7)

To evaluate the scalability of INDRA, six different system sizes are studied.
Moreover, a pool of commonly used message periods {1, 5, 10, 15, 20, 25, 30, 45,
50, 100} (all periods in ms) in automotive systems are uniformly assigned to various
messages in the system. These messages are evenly distributed among different
ECUs in each system configuration and the IDS utilization is computed using Eqs.
(6) and (7). To analyze the worst case overhead, a pessimistic scenario consisting of
only a single core per each ECU in the system is considered in this experiment.

The average ECU utilization under various system sizes is illustrated in Fig. 15.
The system size is denoted by {p, q}, where p is the number of ECUs and q is
the number of messages in the system. Additionally, a very pessimistic estimate
of 50% real-time ECU utilization for real-time automotive applications is assumed
(“RT Util,” as shown in the dotted bars) for all system configurations. The overhead
incurred by the IDS executing on the ECUs is represented by the solid bars on
top of the dotted bars, and the red horizontal dotted line represents the 100% ECU
utilization mark. It is important to avoid exceeding the 100% ECU utilization under
any scenario, as it could induce undesired latencies that could result in missing
deadlines for time-critical automotive applications, which can be catastrophic. From
the results in Fig. 15, it is evident that the prior works PLSTM and CANet incur
heavy overhead on the ECUs while RepNet and INDRA have a very minimal
overhead that scales favorably with increasing system sizes. Thus, from the results
in this section (Figs. 14 and 15; Tables 2 and 3), it is apparent that not only does
INDRA achieve superior performance in terms of both detection accuracy and low
false-positive rate for intrusion detection than state-of-the-art prior works, but it is
also lightweight and scalable.

7 Conclusion

In this chapter, a novel recurrent autoencoder-based lightweight intrusion detection
system framework called INDRA for distributed automotive embedded systems was
presented. The INDRA framework uses the proposed metric called the intrusion
score (IS) to quantify the deviation of the prediction signal from the actual input
signal. Moreover, a thorough analysis of the intrusion threshold selection process
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Fig. 15 Scalability results of the INDRA [33] IDS for different system sizes compared to the prior
works PLSTM [25], RepNet [26], and CANet [23]

and the comparison of INDRA with the best known prior works in this area is
presented in this chapter. The promising results of INDRA indicate a compelling
potential for being adapted to enhance cybersecurity in emerging automotive
platforms. Our ongoing work is exploring newer and more powerful algorithms [34–
36] for intrusion detection in automotive embedded systems.
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