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1 Multimode Physical Unclonable Function as an Entropy
Source for Generating True Random Bits

1.1 Introduction

True random number generators (TRNGs) are used in a wide range of applications
(e.g., cryptography, statistical sampling, simulation, computer games, etc.) [51].
TRNG can be implemented as a part of NAND flash memory device controller
and used to support Trusted Computing Group (TCG) standard [1]. The main
advantage of TRNGs comparing to pseudorandom number generators (PRNG) is the
uniqueness and unpredictability of their produced output values. TRNG is a device
or a part of a device that generates random numbers based on some intrinsic physical
process. One of the possible ways of extracting random data from electronic devices
is to implement physical unclonable functions (PUFs) (e.g., [50, 52]).

Nowadays physical unclonable functions (PUFs) are becoming ubiquitous cryp-
tographic primitives as an alternative to classical cryptographic algorithms in
compact digital devices [2]. Main semiconductor manufacturers actively introduce
them into their IoT solutions [3], cutting-edge field programming gate array (FPGA)
chips [4], authentication protocols [5], etc. In general, PUF can be represented as a
mapping of external inputs (challenges) to the outputs (responses). This mapping is
called challenge-response pair (CRP) set, which is unique for each integrated circuit
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(IC) containing a PUF block even if the design and layout are the same [6]. This
can be explained by intrinsic manufacturing process variations introduced during
fabrication. Since physical properties of an IC may vary depending on temperature
or voltage, some of the PUF response values are unstable. As a result, CRP set can
be split into stable and unstable subsets and can be utilized for identification and
random number generation, respectively.

PUF designs can be based on different physical phenomena, e.g., delay val-
ues [7], threshold voltages [8], operating frequencies [9], image sensor noise
patterns [10], etc. Another subset of PUFs is utilizing memory to extract uniqueness
from IC, e.g., SRAM PUF [11], DRAM PUF [12], Butterfly PUF [13], SR-Latch
PUF [14], etc. NAND flash memory devices can be also successfully used to
implement a PUF because some intrinsic effects, e.g., threshold voltages, erase
times, bad block characteristics, program/read disturb, etc., uniquely characterize
a memory device [15].

The proposed PUF design is based on using an inverter and a D-Latch which are
controlled by enable (EN ) signal. This circuit can operate in four modes, namely,
initial memory, ring oscillator, metastability, and latch modes. All these modes can
be used for different purposes, i.e., generating a unique identifier in initial memory
mode, generating random numbers in ring oscillator or metastability modes, and
storing generated ID or random value in latch mode. Thus, the proposed PUF design
supports both PUF routines in a single device. One of the main challenges in TRNG
design is consumed area and performance (rate of random bit generation). The
proposed TRNG design is compact as it consumes a latch and an inverter gate and
fast as ring oscillator mode operates on high frequency.

1.2 General Description of a Circuit

The proposed entropy source for random bit generation includes two elements,
namely, Latch D-type (LD) and Inverter (INV). As shown in Fig. 1, INV is
connected to LD and forms a negative feedback loop. The operation of this circuit
is controlled by enable (EN ) signal.

Fig. 1 Entropy source circuit
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The proposed PUF supports four modes of operation:

1. Initial memory. This mode works only during start-up and EN=“0”. This is
equivalent to SRAM PUF as the LD can generate either stable “0” or stable “1”
or metastable value. According to SRAM PUF research [16], the output Q has a
10% chance of generating metastable value. If Q is stable, it can be used as a bit
of a unique device ID.

2. Ring oscillator (RO). If enable signal is kept as EN=“1”, the PUF will produce
a meander signal with a unique frequency Fi (i is an index of individual entropy
source) which is utilized for random bit generation similarly to RO PUF [17].

3. Metastability. Since LD is asynchronous and the value on data input (D) of LD
is unpredictable, changing EN signal value from “1” to “0” can violate timing
parameters of LD. In this case, LD may fall into a metastable state and the output
Q can be either “0” or “1”.

4. Latch. If enable signal is kept as EN=“0”, the LD stores random bit and the
output Q value is stable.

As a result, the proposed PUF design can be used to generate unique stable ID
bit (mode 1) or random bits (modes 2 and 3) or store generated ID or random bit
(mode 4).

1.3 Operation of the Entropy Source

The circuit mentioned above (see Fig. 1) can be represented on gate level as shown
in Fig. 2. The proposed circuit is named ROLD as a combination of different PUFs,
i.e., ring oscillator and Latch D-type.

Fig. 2 Gate level of the entropy source circuit
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The D-Latch component consists of basic SR-Latch circuit which has S (set),
R (reset) inputs, and two complementary data outputs QSR and nQSR. In the case
when SR-Latch is designed on NOR2 gates (NOR1 and NOR2 in Fig. 2), it has
four operation modes: Setting “1” (when S=“1” and R=“0”), Resetting “0” (when
S=“0” and R=“1”), Storing value (when S=“0” and R=“0”), and Forbidden mode
(when S=“1” and R=“1”). The transaction from Forbidden state to Storing mode
may cause generating metastable value on outputs QSR and nQSR. The D-type
Latch is designed on the base of SR-Latch in such a way to prevent the occurrence
of Forbidden mode by keeping S and R inputs in opposite values. The Storing mode
is provided by additional input EN of enable signal and two additional AND2 gates
(AND1 and AND2 in Fig. 2).

Let us describe equivalent circuits which are operating during four modes.

1.3.1 Initial Memory

When EN=“0”, the proposed circuit is equivalent to SR-Latch in storing mode
(S=“0”, R=“0”), which is shown in Fig. 3.

In this mode, AND elements (AND1 and AND2) generate constant “0” value and
can be omitted for analysis of this circuit. NOR elements (NOR1 and NOR2) operate
as inverters. Therefore, circuit in this mode operates as a bistable element as shown
in Fig. 4.

During initialization (power-up) stage, the default value v is unknown due to
manufacturing process variations (possible asymmetry of NOR gates NOR1 and
NOR2 and connection wires between them). Therefore, unique ID values can be
obtained from this PUF during power-up similarly to SRAM cells which are also
based on bistable elements [16].

Fig. 3 ROLD circuit (EN=“0”)

Fig. 4 Bistable element
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1.3.2 Ring Oscillator

When EN=“1”, SR-Latch switches between Setting (S=“1”, R=“0”) and Reset-
ting (S=“0”, R=“1”) modes based on the value obtained from inverter INV output
as shown in Fig. 5.

In this mode, AND1 element operates as a buffer repeating v or v values, NOR2
element works as a constant “0” value generator, AND2 and NOR1 are identical to
two inverters. This mode of operation is equivalent to the ring oscillator circuit with
three inverters as shown in Fig. 6.

Thus, meander signal (v → v → v → . . .) with unique frequency Fi appeared
on the output Q. Fi is also determined by manufacturing process variations which
make negative feedback loop delay unpredictable.

1.3.3 Metastability

Timing diagram in Fig. 7 shows three output values y0, y1, and y2 from the outputQ.
There are two possible ways how metastable state can appear on the output Q.

First, initial value y0 ∈ {v, X, v} (period of time from t0 to t1 as shown in Fig. 7) can
be either stable zero, stable one, or a metastable state (X). In this case, metastability
means the value with unknown stability, i.e., from time to time zero or one value
appears on the output Q with different nonzero probability.

The second case is more complicated as it is based on SR-Latch phe-
nomenon [18] which causes a high-frequency oscillation in addition to three values
{v,X, v} in the first case. When both inputs S and R are fed with “1” value
(forbidden state) for a short period of time and at this moment EN signal changes
from “1” to “0”, SR-Latch is trying to store forbidden state and generating damped

Fig. 5 ROLD circuit (EN=“1”)

Fig. 6 Ring oscillator
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Fig. 7 SR-Latch timing diagram depending on changing EN signal

high-frequency oscillation. Metastable oscillation also dumps to the stable zero or
one value after some time. So values y1 (time period from t2 to t3) and y2 (time
period after t4) will eventually get to stable zero or stable one value with or without
metastable oscillation. This phenomenon is based on unique voltage and timing
characteristics of SR-Latch and determined only after manufacturing.

Two mentioned scenarios of generating metastable value are shown in Fig. 8.
Possible values in the first case are shown in Fig. 8a and in second case (see

Fig. 8b). Oscillation in the second case is eventually damped to the value v or v, but
the final value Q is more uncertain comparing to the first case.

As a result, transition of EN signal from “1” (ring oscillator mode) to “0”
(latch mode) may cause high-frequency oscillation which leads to metastability state
observed on the output Q. As a result, metastability can be used to generate true
random numbers.

1.3.4 Latch

When EN signal is set into “0” value, it enables the possibility to store generated
random values after initialization or ring oscillator mode or metastability caused
oscillation. The circuit for storing N -bit unique ID (mode 1) or random number
(mode 2 or 3) is shown in Fig. 9.

Thus, the proposed entropy source can be used for both purposes, unique bits
producing and storing generated data.
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(a) (b)

Fig. 8 Possible output values Q. (a) Period of time from t0 to t1. (b) Period of time from t2 to t3
and after t4

Fig. 9 Multi-bit latch for storing unique ID or random value

1.4 Experimental Results

The proposed entropy source has been implemented in Nexys 4 Xininx Artix-
7 FPGA prototyping board [19], and characteristics for each mode have been
collected.

1.4.1 Initial Memory

The total number of 128 entropy sources has been synthesized and implemented
in FPGA. During E = 100 tests, each of the elements generated values shown in
Fig. 10.

The distribution of probabilities of generating “1” value (P 1
i (E)) is the following:

61 elements with P 1
i (E) = 0.0, 56 elements with P 1

i (E) = 1.0, and 11 elements
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Fig. 10 Probabilities of “1” value (P 1
i (E), E = 100) in initialization mode

with 0 < P 1
i (E) < 1. Thus, reliable, unique, and reproducible ID can be generated

using proposed method.

1.4.2 Ring Oscillator

These 128 generators have been tested in RO mode to show the uniqueness of
generated frequency value Fi (1 ≤ i ≤ 128). The simulation frequency is 350MHz
(red line in Fig. 11); individual estimated frequency values Fi for entropy sources
are shown in Fig. 11.

This experiment has been demonstrated that frequency value Fi for each
generator is unique and unpredictable for each entropy source.

1.4.3 Metastability

Also the same 128 entropy sources have been tested E = 100 times in metastability
mode (EN switches from “1” to “0”). The probabilities P 1

i (E, k) of generating “1”
value after k system clocks in RO mode (EN = ‘1’) for each element are shown in
Fig. 12.

In contrast to initialization mode, the generated values have low reproducibility
as all probabilities of generating “1” value (P 1

i (E, k)) are above 0.2 and below 0.8.
Thus, this mode is more suitable for generating true random values.

1.4.4 Latch

To estimate the quality of random values produced by entropy sources, 128 elements
have been utilized. As a result, a million 128-bit values have been generated by
changing EN signal from “1” to “0”. The duration of EN signal in “1” state is
k = 32 system clocks. Each 128-bit value has been split into four 32-bit values.
The histogram of the approximate distribution of generated four millions of 32-bit
values is shown in Fig. 13.
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Fig. 11 Estimated frequencies Fi in RO mode

Fig. 12 Probabilities “1” value (P 1
i (E, k), E = 100, k = 32) in metastability mode

The x-axis corresponds to the generated numerical value ranging from 0 to
≈4×109; the y-axis shows the estimated frequencies (the data is split into 100 bins)
for each value. The generated values are truly random but not uniformly distributed.
Therefore, the random sequence has to be post-processed in order to achieve
required characteristics of randomness and be compliant with NIST standard [20].

1.5 Conclusion

The multimode physical unclonable function is presented. This design can be used
for producing either stable unique ID or unpredictable random bit generation. The
proposed design occupies smaller area comparing to classical PUF designs (e.g.,
Arbiter PUF, RO PUF, SRAM PUF) and can be used as an entropy source in
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Fig. 13 Distribution of 32-bit random values (k = 32)

cryptography applications. For NAND flash memory devices, it can be utilized for
entropy generation in encryption process and also for on-drive simulation purposes.

2 Raw Read-Based Physical Unclonable Function for TLC
NAND Flash

2.1 Introduction

The increasing capacity of a single flash memory cell (SLC → MLC → TLC →
QLC) has led to reliability issues with NAND-based storages [21]. This downside
can be used for the opposite purpose, i.e., faults in blocks and pages can be utilized
as a source of uniqueness for both chip identification and true random number gen-
eration. Modern TLC NAND flash memory devices have massive error correction
code (ECC) engines which negotiate the effect of intrinsic NAND instability [22].
However, disabling ECC and scrambler modules during the read and write operation
allows extracting less stable bits and using them to generate uniformly distributed
random bits. As a result, one block of NAND can be separately used to generate
a random number sequence during the read operation. The proposed flash memory
operation is consistent with the definition of PUF, i.e., it provides a way to extract
unique randomness characteristics from the physical super-high information content
(SHIC) system [23]. Depending on the reliability of the obtained noise values, it can
be used as random values (low reliability and high uniqueness) or unique identifiers
(high reliability and high uniqueness). As a result, flash memory cells can be used
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as an entropy source for TRNG which does not require additional circuitry for its
implementation and random numbers can be extracted during the read operation
in the raw mode. The proposed method does not require a redesign of the existing
NAND flash controller and can be used directly from the firmware level.

2.2 Control of the Entropy Source

The proposed entropy source is controlled by a two-stage algorithm. The first
stage is enrollment, i.e., the positions of noisy bits are located during the read
operation. The second stage is generation, i.e., read noisy bits from the positions
are determined during the enrollment stage.

2.2.1 Enrollment

1. Choose a block from the reserve area.
2. Erase the whole block.
3. Write all zeros pattern to the block in the raw mode, i.e., ECC and scrambler are

disabled during this operation.
4. For every page pi (0 ≤ i ≤ P − 1), perform read operation in the raw mode R

times. P is the number of pages in the block.
5. Calculate noise characteristic (�) for each bit bj (0≤ j ≤ B) within all P pages.

If � = 0–bit bj is stable and if � is bigger, it means that the chosen bit bj is
more random. B is the number of bits in a page.

6. Bits with highest � scores should be chosen as a source of true random number
sequence.

As a result, the page can be represented as shown in Fig. 29 (the heatmap shows
� scores for each bit bj within page pi).

Note: The � scores should be stored offline to the array A containing P × B

elements.

2.2.2 Generation

1. Determine size L of a register RTRNG to store a random number.
2. Store the information about noisy bits from A with the highest � scores to the

special data structure shown in Fig. 14.
Bit p′

k : b′
l (0≤ k ≤ K−1, 0≤ l ≤ L−1) corresponds to a� scoreA[i][j ] of

some bit bj from page pi . K is the number of pages chosen for random number
generation.

3. Initialize index k = 0 for cyclic iteration.
4. Read page p′

k .
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Fig. 14 The data structure
for storing noisy bits for
different pages within a block

5. Extract L bits p′
k:b

′
0 . . . p′

k:b
′
L−1 and store them to the RTRNG register.

6. Increment k by modulo K . Go to Step 4.

2.3 Experimental Results

SK hynix S72 512GB SSD drives have been tested in order to prove randomness of
the proposed PUF design.

2.3.1 Enrollment

1–3. Block 0x84 has been randomly chosen, erased, and written with zeros in the
raw mode.

4. Read operation has been repeated in the raw mode for R = 1000 times.
5. For example, the randomness of each bit can be estimated as follows:

Calculate two metrics for each bit, namely, uniformity (U ) and bit flipping
rate (BFR):

U = 1 − 2 × |R1

R
− 0.5| (1)

R1 is the number of bits with the value of “1”.
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For example, if there were 5 read operations and the values obtained were
(1, 1, 0, 1, 0), then U = 1–2 × |3/5–0.5| = 1–2 × 0.1 = 0.8:

BFR =
∑B−2

i=0 bi ⊕ bi+1

B − 1
(2)

Based on U and BFR noise characteristic, � can be calculated for each bit
as follows:

� = α × U + β × BFR (3)

α, β—tunable parameters which determine the importance of either unifor-
mity or the bit flipping rate.

The example is summarized in Table 1.
Thus, increasing the importance of uniqueness sequence (0, 0, 0, 1, 1, 1)

can be considered more random than (1, 1, 0, 1, 0, 1). However, usually, BFR

is more important and correlated with uniqueness. Therefore, the third case is
more realistic.

6. Array A has been computed based on the information obtained in Step 5.
For example, a page with index 0x42 has been chosen to demonstrate the

uniqueness [24] of the noisy bit locations. Figure 30 shows the � scores for
the pages with index 0x42 within block 0x84 for different SSD samples.

2.3.2 Generation

1. RTRNG size is set to L = 32.
2. To estimate the number of noisy bits per page, all data has been aggregated, and

average Hamming distances between reads for all pages have been computed.
The graph for the chosen block is shown in Fig. 31.
As shown in Fig. 31, different pages have various Hamming distances (HD)

between reads. The value of HD shows the number of noisy bits per page.
Therefore, pages with a bigger value of HD are to be stored in the data structure.

For example, pages 0x120 and 0x1c5 have the highest HD among all pages
(see Fig. 31). The data structure containing these pages is shown in Fig. 15.

3. k = 0 (K = 2).
4. Read p′

0 = 0x120.

Table 1 Example of tuning α, β

Sequence U BFR �, α = 1, β = 1 �,α = 1, β = 0.1 �,α = 0.1, β = 1

1 1 0 1 0 1 0.66 0.8 1.44 0.74 0.866

0 0 0 1 1 1 0.8 0.2 1.0 0.82 0.28
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Fig. 15 Example of the data
structure for noisy bits

5. L = 32 bits are extracted from the page p′
0 on the positions 0x4, 0x7, . . . , 0x42.

RTRNG = (1, 0, . . . , 1).
6. k = 1.
4. Read p′

1 = 0x1c5.
5. L = 32 bits are extracted from the page p′

1 on the positions 0x6, 0x19, . . . , 0x51.
RTRNG = (1, 1, . . . , 0).

6. k = 0.
4. Read p′

0 = 0x120.
5. L = 32 bits are extracted from the page p′

1 on the positions 0x4, 0x7, ..., 0x42.
RTRNG = (0, 1, . . . , 1).

6. k = 0.

The sequence of 800,000 bits has been obtained from SK hynix S72 SSD
sample. The generated sequence contains 400188 zeros (50.02%) and 398812 ones
(49.98%). The experiment confirmed the hypothesis of uniform distribution of noisy
bits in TLC NAND.

2.4 Conclusion

The TLC NAND structure can be successfully utilized to extract uniqueness from
the memory device. Existing NAND-based storage is quite unreliable for the
write and read operations conducted without scrambling and ECC. Therefore, this
disadvantage can be used to generate a true random number sequence. The proposed
method is based on physical unclonable function (PUF) which is implemented using
existing firmware functions.

The presented entropy source design has the following advantages:

• It does not require additional circuitry (hardware overhead) for its implementa-
tion.

• It cannot be reproduced on the different instance of the same device even
knowing its configuration.

• It can be reconfigured using parameters L and K .
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• � metric can be tuned for particular requirements.
• It can generate true random numbers required for security protocols implemen-

tation using only firmware functions.

Thus, the proposed PUF-based entropy source can be utilized to enhance the
security of the memory device without additional hardware cost and using only
internal firmware commands.

3 Flash Memory Device Identification Based on Physical
Unclonable Functions

3.1 Introduction

The memory cells of NAND flash devices have quite a low reliability, which leads
to using error correction codes (ECC) with high correcting capability, e.g., BCH
or LDPC code, in the data path [25]. On the other hand, excluding ECC from the
data path creates a possibility of generating unique and unpredictable bits from the
NAND memory cells. Thus, comparing the number of bits with one value between
different pages is proposed as a source of unique and unpredictable identifiers.

The proposed ID generation method is based on the read operations, which
bypass ECC and scrambling in the data path (raw read operations). The first stage
(enrollment) includes erasing a block of NAND flash memory and writing an all-
zero pattern to all pages within the block. Then, during multiple raw read operations,
each page is characterized by an average number of ones obtained during the
read operations. The second stage (uniqueness extraction) is using page statistics
computed during enrollment to generate a sequence of page addresses (the number
of pages is equal to the doubled ID length). Then, during the final third stage (ID
generation), comparing the number of ones from the chosen pages allows generating
unique ID bits, i.e., for two compared pages, if the first page has less ones than
the second one during the raw read operation, zero is generated; otherwise, one is
generated.

3.2 ID Generation Algorithm

A page is a minimal reading unit in the NAND flash memory, and it can be
characterized by a number of bits which flip their values during the read operation.
To easier highlight flipping bits, an all-zero pattern should be programmed in the
page. Then, after multiple raw read operations (bypassing ECC and scrambling),
the average number of ones obtained during the read operation can characterize the
page. These statistics are obtained during the enrollment stage, which contains four
steps:
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1. Erase a block of memory.
2. Program in raw mode an all-zero pattern to all pages of a block.
3. Read in the raw mode each page Nr times.
4. Compute the average number of ones during Nr raw read operations.

For example, statistics for two blocks of memory with randomly chosen
addresses 0xBE0 and 0x2F0 is shown in Fig. 16 (Nr = 100).

The distribution of the average number of ones in pages p
avg
i (1≤ i ≤ Np, Np–

the number of pages in a block of memory) is unique for every block in the device.
Therefore, the subtle intrinsic difference in this distribution can be utilized to design
a NAND flash memory-based physical unclonable function. The block diagram for
a proposed PUF design for ID generation is shown in Fig. 17, which has a similar
principle as RO-PUF [17]. Instead of frequency comparison, the proposed algorithm
compares the number of ones during raw read operations.

To generate a single response bit R, it is required to compare the number of
ones during the raw read operation from two different pages pi and pj (i �= j ,
1 ≤ i, j ≤ Np), which are chosen based on challenge value C = (i, j). C is an
ordered pair of page addresses i and j which takes one of possible

(
NP

2

)
values. If

pi < pj , R = 0; otherwise, R = 1. This PUF is able to generate
(
NP

2

)
possible

response bits based on challenge value C. To generate an L-bit ID, identification
server has to generateL challenges (2L page addresses) and send them to the device.
As a result, the device produces L response bits, which uniquely identify it.

Due to intrinsic NAND instability, values pi and pj may have different values
from one read operation to another. This leads to instability of generated response
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Fig. 17 ID generation based on NAND PUF

values R as during different read operations for the same address values i and j ,
the order of values pi and pj can be also different (pi < pj or pi > pj ). Thus, to
provide a reliable identification, the subset of challenge values, which provide stable
responses, has to be found.

If the average number of ones values obtained during the enrollment stage (see
Fig. 16) are sorted, they can be separated into two groups, with lower and higher
values of p

avg
i . Sorted values are shown in Fig. 18.

As shown in Fig. 18, the higher the difference between the average number of
ones obtained for two pages p

avg
i and p

avg
j (e.g., p

avg
i > p

avg
j , i �= j ), the higher

the probability to keep the order between the number of ones obtained during an
arbitrary read operation (pi > pj ). It also can be confirmed based on experimental
data obtained from block 0x2F0. The data of 10-th and 100-th reads together with
average values is shown in Fig. 19.

The value of the difference between two pages pi (taken from pages with higher
p
avg
i values) and pj (taken from pages with lower pavg

i values) (pi−pj ) may change
its value, but sign value (pi − pj ) will be the same with a high probability for all
read operations from 1 to at least 100. Therefore, to generate L-bit identifier, L

challenges Ck = (i, j )(1 ≤ k ≤ L) should be chosen based on enrollment data.
There are multiple ways of doing this. For example, it can be done as shown in
Fig. 32 in four steps:
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Fig. 18 The average number of ones (sorted) obtained during raw read operations for a block of
memory
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Fig. 19 The number of ones obtained during 10-th, 100-th raw read operations, and the average
value

1. Sort pages by the average number of ones values obtained during raw read
operations (pavg

i ) in ascending order. As a result, the sequence of page addresses
corresponding to the sorted values can be represented as A1, A2, . . . , ANp ;

2. Split sequence into two L-element subsequences, namely, Alow = (A1, A2,

. . . , AL)with a lower value of pavg
i andAhigh = (ANp−L+1, ANp−L+2, . . . , ANp)

with a higher value of p
avg
i ;
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3. To generate k-th bit of identifier, form an unordered pair of addresses {Ak ,
ANp−L+1+k} (1≤ k ≤ L < Np), Ak is in Alow and ANp−L+1+k is in Ahigh.
If Ak and ANp−L+1+k are chosen from Alow and Ahigh correspondingly, there
is a high probability that pAk

< pANp−L+1+k
. Therefore, the unordered pair

should be converted to the ordered pair (challenge value Ck) by some unique
characteristics.

4. Each unordered pair {Ak , ANp−L+1+k} can be converted to the challenge value
Ck = (Ak , ANp−L+1+k) or Ck = (ANp−L+1+k , Ak). This can be done based on
the unique sequences of addresses in Alow:

(a) Consider k-th element of Alow(Ak) and the next one (Ak+1).
(b) If Ak < Ak+1, unordered pair {Ak , ANp−L+1+k} is converted to Ck =

(Ak,ANp−L+1+k).
(c) Otherwise, unordered pair {Ak , ANp−L+1+k} is converted to Ck =

(ANp−L+1+k , Ak).
(d) If k = L,AL+1 element is taken from a full sequence of sorted values.

The algorithm above is given for an exemplary purpose and can be changed to
other ones in order to choose the most stable responses.

The final stage (ID generation) is to perform a raw read operation L times from
two pages each time. To generate k-th bit, values pAk

and pANp−L+1+k
are compared.

If the pair of addresses is (Ak , ANp−L+1+k) in most cases, 0 value will be generated.
If the pair of addresses is (ANp−L+1+k , Ak) in the most cases, 1 value will be
generated.

As a result, L-bit identifier can be generated using 2L raw read operations. The
set of challenges Ck = (Ak , ANp−L+1+k) or Ck = (ANp−L+1+k, Ak) can be either
stored in the device memory for better reliability or generated by choosing L pairs
from possible

(
NP

2

)
options.

3.3 Example of ID Generation

The results of the enrollment stage are shown in Fig. 16 for block 0x2F0. The
uniqueness extraction stage is completed as follows:

1. The list of page addresses sorted by p
avg
i values is formed as follows:

324, 325, 266, . . ., 1, 5, 7 (576 addresses in total);
2. To generate L = 128 bit identifier, the sequence can be split into two groups:

Alow = (A1, A2, A3, . . . , A126, A127, A128) = (324, 325, 266, . . . , 254,
301, 242)—128 addresses;

Ahigh = (A449, A450, A451, . . . , A574, A575, A576) = (30, 159, 179, . . . , 1,
5, 7)—128 addresses;
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3–4. These groups are merged into the sequence:

• The unordered pair {A1, A449} = {324, 30} is converted to C1 =
(A1, A449) = (324, 30) as A1 < A2(324 < 325);

• The unordered pair {A2, A450} = {325, 159} is converted to C2 =
(A450, A2) = (159, 325) as A2 > A3(325 > 266);

• The unordered pair {A3, A451} = {266, 179} is converted to C3 =
(A3, A451) = (266, 179) as A3 < A4(266 < 314);

• . . .

• The unordered pair {A126, A574} = {254, 1} is converted to C126 =
(A126, A574) = (254, 1) as A126 < A127(254 < 301);

• The unordered pair {A127, A575} = {301, 5} is converted to C127 =
(A575, A127) = (5, 301) as A127 > A128(301 > 242);

• The unordered pair {A128, A576} = {242, 7} is converted to C128 =
(A128, A576) = (242, 7) as A128 < A129(242 < 110).

ID generation stage is based on the sequence generated during the second stage:

• ID1 = 0 as p324 < p30;
• ID2 = 1 as p159 > p325;
• ID3 = 0 as p266 < p179;
• . . .

• ID126 = 0 as p254 < p1;
• ID127 = 1 as p5 > p301;
• ID128 = 0 as p242 < p7.

3.4 Experimental Results

3.4.1 Reliability

The 128-bit IDs were generated from two different samples (10 blocks each with
the same addresses)—total 20 IDs.

Reliability shows how stable is generated ID during T tests (repeated gen-
erations) [26]. It can be computed as follows (HD, Hamming distance; IDt , ID
generated during t-th test):

R = 1 − BER = 1 − 1

T

T∑

t=1

HD(ID, IDt ) (4)

The ideal value of reliability is 1.0, i.e., that generated ID is stable and does not
change its value during repeated generations.
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All IDs generated in the experiment have R = 1.0 except three of them which
have 0.980, 0.989, and 0.990.

3.4.2 Uniqueness

Uniqueness shows the difference between IDs generated from different samples
(inter-die uniqueness) or different blocks within the same sample (intra-die unique-
ness) [26]. The ideal value of uniqueness is 0.5 which is the biggest distance from
both 0 (no difference) and 1 (each bit of the vector is flipped).

Intra-die uniqueness for m IDs can be computed as follows:

Uintra = 2

m(m − 1)

m−1∑

u=1

m∑

v=u+1

HD(IDu, IDv) (5)

For m = 10 IDs (each sample) Uintra = 0.502 for sample 1 and Uintra = 0.498
for sample 2.

Inter-die uniqueness for m IDs situated at the same address in different two
samples can be computed as follows:

Uinter = 1

m

m∑

i=1

HD(ID1
i , ID

2
i ) (6)

Uinter = 0.518 for two identical samples (m = 10 for each sample).
Also, the algorithm has been stress tested by 10,000 erases. The ID was generated

after each erase for five times. Therefore, 50,000 IDs were generated during the test.
Only 16 of them had single bit flip, and the rest 49,984 were the same (without bit
flips).

Thus, the proposed algorithm can be used to generate a unique, reliable,
unpredictable, and unclonable ID for flash memory devices.

3.5 Conclusion

This section describes the method of generating stable unique ID based on NAND
flash memory. Produced IDs have high reliability (0.99) and uniqueness (0.502)
and also survived after erase stress testing without losing their characteristics. The
proposed method does not require additional hardware overhead in devices having
onboard flash memory. One block of memory provides more than 500 unique IDs.
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4 Design of Data Scrambler with Enhanced Physical Security

4.1 Introduction

Modern NAND flash memory devices [47] usually contain three parts, namely, host,
controller, and NAND memory cell array as shown in Fig. 20. The host usually
communicates with the device using high-speed interface and generates workload

Fig. 20 Block diagram of a NAND flash memory device
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Fig. 21 Typical design of a
data scrambler

for the controller. The data from the host is stored in buffer (usually DRAM) and
then encoded by error correction codes (ECC). The encoding is required because
basic reliability of NAND memory cells is quite low and this kind of memory
introduces multiple errors during read and write operations [27].

One of the important blocks in NAND flash memory device is a hardware
implementation of a scrambler (randomizer) which improves the reliability of
memory cells (see Fig. 20). This can be achieved by transforming data patterns sent
from the host to the uniformly distributed data [28]. The typical block structure of a
data scrambler is shown in Fig. 21.

The scrambler usually contains a pseudorandom number generator (PRNG)
block which is usually seeded by some value (e.g., logical block address (LBA)
or a physical page number (PPN)). This block generates a uniformly distributed
sequence S which is XORed with data sent from the host. As a result, DataS =
Data XOR S is programmed to NAND memory cells.

This way of data scrambling has a vulnerability which gives an attacker a
chance to degrade the reliability of NAND memory cells [29]. Since scrambler
processes the data using a pseudorandom number sequence, the attacker can collect
enough outputs (DataS) and restore the configuration data of the PRNG block (e.g.,
polynomial coefficients) [30]. Then, the attacker is able to build a mathematical
model of a scrambler and obtain output values for any input data patterns.

For example, if an attacker wants to program some particular data pattern (Dp)
to NAND, he/she processes this sequence using the mathematical model to obtain
Dx = (Dp XOR S) value and sends the output Dx to the device. As a result,
DataS = (Dp XOR S) XOR S = Dp will be programmed to the memory device.
Thus, the attacker is able to get any data patterns (worst-case data patterns, e.g.,
all zeros) in order to degrade NAND reliability. Since many memory devices are
manufactured with the same circuit design, the attacker can take advantage of using
the same mathematical model of a scrambler (obtained from a single device) to
degrade reliability of other devices.

The reliability of the NAND memory cells can be also degraded using the same
data pattern programming [29]. For example, if same data pattern (Data) is sent
from the host to the same LBA or PPN (the same seed value for PRNG) multiple
times, it is transformed to the same data pattern on NAND (DataS). As a result,
memory cells are programmed with the same value, and this leads to increasing of
bit error rate (BER).
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In this chapter, a modified design of the data scrambler is proposed. The use of
physical unclonable functions (PUFs) [2] as an additional data processing before
scrambling provides a way to:

1. Significantly decrease vulnerability to building a mathematical model of a
scrambler.

2. Encrypt the data without hardware costly algorithms (e.g., AES), which are not
used in mobile flash and IoT (Internet of Things) devices [49].

3. Increase the reliability of the NAND by avoiding programming the same data
patterns [29].

4. The use of PUF as an additional block for scrambler data encryption provides
additional security against cold-boot attacks [31] as PUF response for the same
challenge changes its value after each restart.

The proposed design of a data scrambler is based on adding PUF circuit to the
data path of a flash memory device. This provides enhanced security to the existing
scrambler design as it encrypts the data using unique PUF-generated key. It also
requires much smaller hardware overhead comparing to the classical encryption
algorithms (e.g., AES). Since PUF adds unique signature to the data, it becomes
much harder for an attacker to mathematically model scrambler and send worst-case
data patterns, which degrade the reliability of NAND memory cells. Furthermore,
even if the attacker managed to know the configuration of a PRNG block for a single
device, it does not give him/her the advantage for the other devices as PUF responses
are unique for every device. The presented solution has two possible options of
implementing the PUF:

1. Implementation of a PUF remains noisy which does not require hardware for
stabilization. However, NAND ECC engine has to be strengthened in order to
provide correction capability for errors brought by both NAND memory cells
and PUF response.

2. Design two separate ECC engines, a stronger one for NAND errors and a weaker
one for correcting errors added to data by PUF. According to experimental data,
the first option requires more hardware for implementation because it utilizes
NAND ECC engine with bigger correction capability.

4.2 Proposed Scrambler Circuit Operation

The usual data path of NAND flash memory device consists of ECC encoder
(decoder) and scrambler, which can be placed in different order (ECC before
scrambler and vice versa) depending on the design of a memory controller. Without
loss of generality, consider block design of a data path shown in Fig. 22.

In this case, ECC encoder is located before scrambler. Also PUF component is
added to the data path in order to provide lightweight encryption for user data. PUF
block is seeded by the same value as scrambler and generates a signature R which
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Fig. 22 Block diagram of the write data path including proposed scrambler design

Fig. 23 Block diagram of the read data path including proposed scrambler design

is unique for every memory device even if it has completely same design. Since
PUF output R can be noisy, optional small ECC engine (PUF ECC encoder) is
added to the design. This engine encodes host Data and converts it to DataP . The
PUF output R is XORed with encoded DataP ; encrypted data DataPR is further
processed by NAND ECC encoder block in order to get a code word DataPRE . The
encoded and encrypted data is scrambled in a standard way by XORing with PRNG-
generated value S as shown in Fig. 22. As a result, scrambled data DataPRES is to
be programmed to the NAND. PUF ECC encoder is optional block which is used to
protect data from PUF errors without modification of NAND ECC engine.

Decoding process is similar to the previously shown encoding (see Fig. 22) but
performed in the opposite order. The decoding scheme is shown in Fig. 23.

First, scrambled data Data∗
PRES �= DataPRES is read with errors as NAND-

based storage usually produces multiple errors during read operation. Then,
Data∗

PRES is descrambled using value S generated by PRNG as Data∗
PRE .

NAND ECC decoder corrects errors in Data∗
PRE and produces DataPR . Then,

DataPR is decrypted to Data∗
P using R∗ �= R value produced by PUF block. As

a result, Data∗
P will be corrupted by noise from PUF which is basically not stable.

Therefore, data sent to host is to be corrected by PUF ECC decoder as Data. In
case of omitting PUF ECC decoder block, NAND ECC Decoder should be placed
after XORing with PUF response as it has to correct both PUF and NAND noise.

Since the basic structure of the PUF can add errors to the data during decoding
stage, the capability of ECC should be enlarged. This can be done using two
techniques:

1. Enlarge the correcting capability of the NAND ECC engine.
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2. Correct data after PUF using additional small ECC engine (PUF ECC
decoder) [32] or enhancing PUF reliability [2].

Both techniques require additional hardware overhead for correcting unstable
PUF outputs. This overhead is smaller than utilization of cryptographic algorithms
(e.g., AES). The proposed design also decreases vulnerability to the same pattern
programming [29] (because PUF response R is not stable) and to changing data
pattern for every write operation. However, the presented implementation of the
scrambler is still vulnerable to machine learning modeling attacks. For example,
this issue can be addressed by adding obfuscating techniques to the challenge
generator [33].

4.3 Experimental Results

Assume that NAND ECC engine can be implemented as BCH code, additional PUF
ECC as Reed-Solomon code [34], and hardware overhead is estimated as FPGA
LUT and flip-flop units. Host transmits 1023 bits of data and PUF also generates
1023-bit response:

1. PUF is noisy, and BER (bit error rate) is 0.01, i.e., that PUF generates around 11
errors in 1023-bit response.

2. NAND produces maximum 70 errors, and this can be corrected with BCH [n =
1023, k = 323, t = 70] code.

3. NAND ECC overhead for this implementation consists of 5441 flip-flop and
17413 LUT blocks (Xilinx Artix-7 FPGA [35]).

4.3.1 Option 1

Since PUF response should not be corrected, NAND ECC correction capability
should be increased to t = 81 = 70 + 11. As a result, BCH [n = 1023, k =
213, t = 81] is to be implemented instead. Final hardware overhead for new ECC
engine is 6512 flip-flop and 20840 LUT blocks. Therefore, additional hardware cost
for PUF correction will be around 19.7%. However, the proposed approach can be
used to improve reliability against same data pattern issue because PUF response is
unpredictable.

4.3.2 Option 2

To correct errors brought by PUF responses, smaller PUF ECC engine (e.g., Reed-
Solomon [n = 1023, k = 1002, t = 11]) is to be implemented. Therefore, it
will require additional 624 flip-flop and 672 LUT blocks, which is less than 11%
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of additional hardware cost. Furthermore, this approach includes additional latency
overhead for PUF noise correction.

The estimation of hardware overhead is done in one of the possible ways (FPGA).
It is not restricted to other technologies of scrambler implementation (e.g., ASIC).

Real implementation of a scrambler should be a trade-off between Option 1 and
Option 2 in terms of hardware overhead and performance. Thus, the decision on
a final implementation can be made based on constraints of a particular NAND
flash memory device. Despite additional hardware cost, security and reliability
enhancements are the benefits of implementation scrambler in the proposed way.

4.4 Conclusion

This section presents a new approach to designing a scrambler in NAND flash
memory devices. The proposed design enhances physical security of data stored in
a flash memory device and also provides better reliability comparing to the existing
approaches. Scrambling algorithm has been implemented in Xilinx Artix-7 FPGA
in order to compare with existing encryption schemes as AES which is usually not
used in mobile NAND flash and/or IoT devices. In terms of hardware overhead, this
approach is at least three times more efficient than existing encryption engines.

5 Physical Unclonable Function-Based Error Detection
Algorithm for Data Integrity

5.1 Introduction

Data is usually stored in computer memory using many different representations
(e.g., binary numbers, strings, compressed formats, etc.). The attribute-value pair
format can be distinguished among the existing ones as it is widely used to represent
data (e.g., header, email, query; string, URL; metadata, data, database entries,
Internet messages, JSON objects, etc. [36]). Due to limitations of available memory
space, some of these pairs can be stored externally on another device. For example,
the general scheme of transmitting attribute-value pairs to the untrusted party is
shown in Fig. 24. The memory controller extracts the data and generates an attribute
(X) and value (Y ) pair. This pair is further encoded by error correction codes (ECC)
in order to avoid data losses during transmission. As a result, the encoder generates
the value of Xe and Ye and sends it via an untrusted channel to the untrusted party
which stores the pair (Xe, Ye) until requested by the device. The data should be
sent back to the device and decoded to the original attribute-value pair (Xd = X,
Yd = Y ).
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Fig. 24 General structure of data transmitting

Fig. 25 Structure of untrusted party for the attack

However, since the data is stored on the untrusted party side, an attacker can
observe and modify both the untrusted party and the channel [37]. Figure 25 shows
one of the possible attack scenario implementations.

Since the ECC engine is used to encode the data from the device, it is possible
to clone decoder and encoder blocks on the untrusted party side. Therefore, the
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original attribute-value pair (X, Y ) can be modified by an attacker in order to reveal
the information or modify and send it back to the device to degrade performance
or data integrity. The untrusted party can operate in two modes, namely, ordinary
mode (S = “0”) when data is not modified and attack mode (S = “1”) when pair (X,
Y ) is transformed to (Xm, Ym) and encoded to (Xme, Yme), which is sent back to the
device. Thus, if S = “1”, a pair (Xt , Yt ) is decoded to the (Xd , Yd ) �= (X, Y ).

This way of data transmitting causes the following problems:

1. The attacker has access to the data sent via an untrusted channel as he can decode
it knowing the ECC algorithm.

2. The attacker also can modify X or Y value or both values at a time in order
to modify critical data on the device, degrade performance, corrupt the data
transmitted, etc.

3. Encryption can prevent these problems, but it usually requires significant mem-
ory and hardware resources to be utilized as a part of the controller.

For the problem described above, physical unclonable functions (PUFs) [2] can
be efficiently utilized to protect the data against unauthorized modification and
prove that pair (X, Y ) is generated by a particular device. PUF is a hardware security
primitive which maps external input (challenge) into an output (response). This
mapping is unique, unpredictable, and unclonable for the particular chip which
has a PUF instance. In addition to hashing capability, PUF also extracts unique
intrinsic features of an integrated circuit. This property is used for making pair (X,
Y ) protected against illegal access and modification.

The proposed method is based on using two PUF instances implemented on the
same circuit. The first PUF is utilized to generate a hash value (Rx) for the attribute
value (X) in order to use it as a key for masking linked value (Y ). The encryption
process can be as complicated as possible, but for simplicity and for the sake of
hardware overhead reduction, the generated hash value Rx can be simply XORed
with Y . The result of encryption (Y ∗) is further hashed by second PUF instance,
and the response of the PUF is used to check whether the unique pair (X, Y ) is
generated on a particular device. The PUFs utilized in this chapter should be stable
(Reliability value ≈1.0) and strong (the number of challenge-response pairs should
be exponentially large). For example, Arbiter PUF design with enhanced reliability
is a good candidate for the proposed method [38]. Using PUF for data integrity is
beneficial for the following reasons:

1. The attacker is not able to reproduce hash values generated by PUFs as he doesn’t
have access to the internals of the original device.

2. The generated response values can be used to check whether the pair (X, Y ) is
generated by a particular device or never existed before.

3. The proposed algorithm is more hardware-efficient than the existing encryption
engines in terms of utilized chip area and power consumption.

4. Furthermore, encoding pair (X, Y ) using PUF instances also allows detecting
errors even if they were not injected by an attacker. So it can be also utilized
instead of error detection engines.
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Points 2 and 4 provide data integrity based on PUF usage for both errors brought
by an attacker and errors caused by the noise in the channel and untrusted party.

5.2 Proposed Data Path Design

The proposed algorithm can be implemented by three modifications of the scheme
shown in Figs. 24 and 25.

A modified encoder is shown in Fig. 26.
In order to obfuscate the value of Y and the explicit connection between X and

Y , the following steps are to be completed:

1. The value of Y should be obfuscated using cryptographic salt value S produced
by salt generator. The generator can be implemented as a PUF or pseudorandom
number generator (PRNG). As a result, the value of Ys is obtained as an XOR
operation of Y and S (Ys = Y XOR S).

2. Obtain hash value RX =PUF0(X) (the response of PUF0 on challenge X).
3. Encrypt the value of Ys by XORing it with hash value RX (Y ∗ = Ys XOR RX).
4. Obtain a hash value Rc =PUF1(Ys). This value is used to prove that pair (X, Y )

is generated on this device.
5. The values (X, Y ∗, Rc) should be encoded by the same ECC engine as used in

Figs. 24 and 25 in order to obtain values (Xe, Y ∗
e , Rce).

6. The values (Xe, Y ∗
e , Rce) are to be sent via an untrusted channel to the untrusted

party. Thus, the code word is changed by adding extra hash value Rce.

The enhanced encoder requires two strong and stable PUFs and one multi-input
XOR gate in addition to the ECC engine previously used.

A modified decoder is shown in Fig. 27.

Fig. 26 Block diagram of enhanced encoder
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Fig. 27 Block diagram of enhanced decoder

Similarly to the encoding process, enhanced decoder utilizes two additional PUF
circuits and XOR gate. To compare received hash value Rcut with genuine Rc value,
an additional comparator is used:

1. Decode the received (Xe, Y ∗
e , Rce) values to get values of (X, Y ∗, Rc) using the

same decoding ECC engine as previously used.
2. Obtain hash value RX =PUF0(X).
3. Decrypt the value of Ys by XORing the value of Y ∗ with hash value RX (Ys =Y ∗

XOR RX).
4. Deobfuscate the value of Ys into a value of Y by XORing with salt value S.
5. Obtain hash value Rc =PUF1(Ys).
6. Compare the received hash value under test (Rcut ) with the value of Rc. As

a result, flag value V is generated (V = “1” if received pair (X, Y ) has been
generated (Rc = Rcut ) by this device and V = “0” otherwise (Rc �= Rcut )).

The code word transmitted via an untrusted channel should be transformed from
(Xe, Ye) to (Xe, Y ∗

e , Rce).
The changes in the communication process are shown in Fig. 28.
Modified communication protocol also includes pool of shared resources which

consists of cryptographic primitives utilized by both enhanced encoder and decoder.
Since PUF0, PUF1, and salt generator are the same, the keys are consistent for
encoding and decoding processes.

As shown in Fig. 28, the attribute value (X) can be accessible by the untrusted
party, because it is encoded only by the ECC engine. This does not give an advantage
to the attacker as only the knowledge of the pair (X, Y ) gives the possibility to
observe the data stored on the device side.

Salt generator should change the value of S from time to time, e.g., based on
timer (e.g., every 10min), the number of exchanged pairs (X, Y ), etc. It is used to
prevent the attacker from taking advantage of functional dependency between X and
Y . If X and Y do not depend on each other, this block can be omitted.

Furthermore, an attacker will not be able to modify the message as it is
impossible to create a copy of PUFs to reproduce both encryption and encoding.
Even if an attacker modifies the data, this fact will be detected by a decoding scheme
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Fig. 28 Changed structure of data transmitting

based on the unique value of (Y ∗
e , Rce). The proposed approach also protects against

errors caused by the noise on an untrusted channel and the untrusted party side.

5.3 Example of Usage in Mobile NAND Flash Devices

The proposed algorithm can be efficiently utilized in Host-aware Performance
Booster (HPB) feature widely used in mobile flash devices [39] which is considered
the same as Host Memory Buffer (HMB) used in SSD drives [40]. The block
diagram of the proposed HPB algorithm enhancement is shown in Fig. 33.

Host stores HPB entries in the following format: LBAe, PPN∗
e , Rce. LBAe is a

logical block address encoded by ECC engine, i.e., it can be used by the host as a
plaintext. PPN∗

e is a physical page number encrypted by enhanced encoder as shown
in Fig. 26. In this case, LBAe corresponds to Xe and PPN∗

e to Y ∗
e . Rce is a hash value

of the PPN value.
The operation of a proposed modification of HPB algorithm can be described as

follows:

1. A pair (LBA, PPN) is created by controller and stored in NAND as L2P table.
2. In order to use host memory as an external cache, NAND I/F (Interface) sends

the pair (LBA, PPN) to enhanced encoder which encodes it into a triplet (LBAe,
PPN∗

e , Rce) according to the encoding algorithm shown in Fig. 26.
3. If host decides to use this HPB entry (LBAe, PPN∗

e , Rce), it sends it back to the
device.

4. Device controller decodes HPB entry (LBAe, PPN∗
e , Rce) into LBA, PPNHPB

(decoded PPN which could have been modified by host). The decoding scheme
is shown in Fig. 27.
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5. Enhanced decoder generates a value of V (validity of received HPB entry,
V = “1” when the entry is valid and V = “0” otherwise). LBA is also checked
in Dirty Map in order to ensure that (LBA, PPN) pair was not invalidated. Dirty
Bitmap returns a validity value VD (VD= “1” when pair (LBA, PPN) is not
invalidated and VD= “0” otherwise).

6. If both V and VD values are equal to “1”, NAND I/F uses the received value and
fetches the data by PPNHPB address. Otherwise, it has to search the LBA and
fetch the corresponding PPN from L2P table in NAND.

7. The proposed encoding and decoding algorithm provides a way to guarantee that
a pair (LBA, PPN) is created by a unique NAND flash memory device as it
utilizes PUF which is irreproducible by an attacker even if he knows the exact
design of the encryption algorithm.

5.4 Conclusion

The encoding and decoding algorithm is proposed for attribute-value data which
is transmitted via an untrusted channel. The algorithm utilizes strong and stable
PUFs to prove that the attribute-value pair received from the untrusted party was
generated by an authentic device. Furthermore, the algorithm is also used as an
error detection method which can detect errors caused by the noise in the channel.
The algorithm appends an initial code word with an additional hash value which
proves the authenticity of the sent pair.

The advantages of the algorithm are listed below:

• Protection of the transmitted data frommodifications by an attacker if the channel
is untrusted.

• Detection of the errors caused by both noise in the channel (if ECC engine cannot
correct all errors) and an attacker.

• Less additional hardware is required for the algorithm implementation compared
to the encryption engines.

The proposed method can also be used as a part of HPB (HMB) algorithms in
order to protect HPB entries and detect errors caused by the channel or injected by
the attacker. Thus, this algorithm can be used simultaneously for error detection and
security in NAND flash devices [48].

6 Conclusion

This chapter presents research results of SK hynix memory solutions Eastern
Europe in area of physical security for NAND flash memory devices. Compact
multimode PUF has been developed in order to be used as an entropy source with an
identification feature. The proposed TRNG can be used within the existing NAND
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flash controller in order to be utilized by security protocols. Randomness also has
been extracted directly from NAND flash memory by using read operations without
ECC protection [41]. NAND flash memory is also a source of unique identification
of the device which can generate more than 500 IDs utilizing only 1 block of
memory of 2 MB. Classical PUF designs have been used in order to improve key-
value pair transmission in HPB and HMB protocols [42]. Also scrambling engine
has been enhanced in order to provide more secure and reliable way of randomizing
data before sending it to the NAND memory cells [43].

Proposed solutions show the high potential of using NAND flash memory
as an entropy source for cryptography and statistical simulation applications.
Also classical PUF designs improve the security and reliability of data storage
and transmitting protocols. Thus, presented PUF-based security solutions can be
implemented in the areas with strict security and safety requirements (e.g., medical
devices [44], avionics [45], critical firmware [46], etc.).

Appendix

See Figs. 29, 30, 31, 32, and 33.
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