
Frontiers of Quality
Electronic Design (QED)

Ali Iranmanesh Editor

AI, IoT and Hardware Security

Frontiers of Quality Electronic Design (QED)

Ali Iranmanesh
Editor

Frontiers of Quality
Electronic Design (QED)
AI, IoT and Hardware Security

Editor
Ali Iranmanesh
Silicon Valley Polytechnic Institute
Los Altos Hills, CA, USA

ISBN 978-3-031-16343-2 ISBN 978-3-031-16344-9 (eBook)
https://doi.org/10.1007/978-3-031-16344-9

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2023
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

 -2016
39373 a -2016 39373 a

https://doi.org/10.1007/978-3-031-16344-9

Preface

This book intends to explore the latest trends in topics related to electronic design,
with emphasis on hardware security and application of AI. It is formatted as a
collection of articles, in the form of chapters, each written by one or several authors
with expertise in their field.

I was motivated to create this book through my close association with many
technical conferences, especially the events organized by the International Society
for Quality Electronic Design (ISQED), a non-profit international organization
devoted to innovation and advancement in electronic design, and engineering
education, which I founded 23 years ago. Since inception, the organization has
spanned over 30 events in various topics related to the field of electronic design,
covering topics such as IC design, IoT, Sensors, smart power grid, solar energy
technologies, and engineering education.

Successful implementation of these events has resulted in a wealth of technical
articles to the engineering community. Today, the majority of these articles are
available through ISQED proceedings and IEEE digital library, Xplore.

Last year, I approached several ISQED authors to see if there is any interest
to start a book series around the same topics, where authors can get around
conference’s page limitations and delve deeper into technical subjects, and so the
seed of this book was planted.

Initially, my goal was to cover the entire electronic design cycle, from design
concept to manufacturing, and application and, in the process, highlight use of
emerging fields such as artificial intelligence (AI) and machine learning (ML) and
their application in the design process. This turned out to be a major undertaking,
and at the end, I had to be content with a smaller set of topics, which are presented
in this book. I hope I am able to continue the task and create follow-up books to
cover a few other important topics, which were not covered in the present volume.

v

vi Preface

I would like to thank all authors for contributing to this book. Biographies of
each chapter’s authors are shown at the end of the chapter. Moreover, I would like
to acknowledge many others, who have volunteered to review the manuscripts, and
provide valuable feedback to authors.

Los Altos Hills, CA, USA Ali Iranmanesh
July 2022

Acknowledgements

Special thanks to following chapter reviewers:

Prof. Omid Kavehei, University of Sydney
Prof. Ahmedullah Aziz, University of Tennessee, Knoxville
Prof. Siddhartha Nath, University of California, San Diego
Prof. Masoud Zabihi, University of Minnesota
Prof. Xinfei Guo, University of Michigan
Prof. Bassel Soudan, College of Computing and Informatics
Prof. Divya Akella Kamakshi, University of Virginia
Prof. Alvaro Cintas Canto, Marymount University
Prof. Bhasin Shivam, Nanyang Technological University
Prof. Amin Rezaei, California State University, Long Beach
Prof. Chidhambaranathan R, Utah State University
Dr. Deepashree Sengupta, Synopsys Inc.

vii

Contents

NAND Flash Memory Devices Security Enhancement Based on
Physical Unclonable Functions . 1
Siarhei S. Zalivaka and Alexander A. Ivaniuk

ReRAM-Based Neuromorphic Computing . 43
Fabiha Nowshin and Yang Yi

Flash: A “Forgotten” Technology in VLSI Design . 67
Sunil P. Khatri, Sarma Vrudhula, Monther Abusultan, Kunal Bharathi,
Shao-Wei Chu, Cheng-Yen Lee, Kyler R. Scott, Gian Singh,
and Ankit Wagle

Nonvolatile Memory Technologies: Characteristics, Deployment,
and Research Challenges . 137
Sadhana Rai and Basavaraj Talawar

Data Analytics and Machine Learning for Coverage Closure 175
Raviv Gal, Wesam Ibraheem, Ziv Nevo, Bilal Saleh, and Avi Ziv

Cell-Aware Model Generation Using Machine Learning . 227
Pierre d’Hondt, Aymen Ladhar, Patrick Girard, and Arnaud Virazel

Neuromorphic Computing: A Path to Artificial Intelligence
Through Emulating Human Brains . 259
Noah Zins, Yan Zhang, Chunxiu Yu, and Hongyu An

AI for Cybersecurity in Distributed Automotive IoT Systems 297
Vipin Kumar Kukkala, Sooryaa Vignesh Thiruloga, and Sudeep Pasricha

Ultralow-Power Implementation of Neural Networks Using
Inverter-Based Memristive Crossbars . 327
Shaghayegh Vahdat, Mehdi Kamal, Ali Afzali-Kusha,
and Massoud Pedram

ix

x Contents

AI-Based Hardware Security Methods for Internet-of-Things
Applications . 387
Jaya Dofe and Wafi Danesh

Enabling Edge Computing Using Emerging Memory
Technologies: From Device to Architecture . 415
Arman Roohi, Shaahin Angizi, and Deliang Fan

IoT Commercial and Industrial Applications and AI-Powered IoT 465
Khaled Ahmed Nagaty

Hardware and System Security: Attacks and Countermeasures
Against Hardware Trojans . 501
Konstantinos Liakos, Georgios Georgakilas, and Fotis Plessas

FPGA Security: Security Threats from Untrusted FPGA CAD
Toolchain . 551
Sandeep Sunkavilli, Zhiming Zhang, and Qiaoyan Yu

DoS Attack Models and Mitigation Frameworks for NoC-Based SoCs 575
Mitali Sinha, Sidhartha Sankar Rout, and Sujay Deb

Defense against Security Threats with Regard to SoC Life Cycle 611
Usha Mehta and Jayesh Popat

Defect Diagnosis Techniques for Silicon Customer Returns 641
Patrick Girard, Alberto Bosio, Aymen Ladhar, and Arnaud Virazel

Index . 677

About the Authors

Monther Abusultan received his B.Sc. degree with highest honors in CE with a
minor in EE (2008) and his M.S. degree (2010) from Montana State University,
Bozeman. He received his Ph.D. degree (2017) from Texas A&M University,
College Station. He joined the Advanced Design team at Intel Oregon in 2017
where he worked on the development of Intel’s future process technology nodes,
then joined Microsoft Silicon Engineering and Solutions in 2021 to work on the
development of Microsoft’s custom microprocessors. He has published in many
areas of VLSI including low power FPGA design, GPGPUs, flash-based digital
design, logic synthesis, and optimization.

Ali Afzali-Kusha received the B.Sc. degree from the Sharif University of Tech-
nology, Tehran, Iran, in 1988, the M.Sc. degree from the University of Pittsburgh,
Pittsburgh, PA, USA, in 1991, and the Ph.D. degree from the University of
Michigan, Ann Arbor, USA, in 1994, all in electrical engineering. Dr. Afzali-
Kusha has been with the University of Tehran since 1995, where he is currently
a professor in the School of Electrical and Computer Engineering. His current
research interests include low-power high-performance design methodologies from
the physical design level to the system level, efficient hardware implementation of
neural networks, in-memory computing.

Shaahin Angizi is currently an assistant professor in the Department of Elec-
trical and Computer Engineering, New Jersey Institute of Technology (NJIT),
Newark, NJ, USA, and the director of the Advanced Circuit-to-Architecture Design
Laboratory. He completed his doctoral studies in Electrical Engineering at the
School of Electrical, Computer and Energy Engineering, Arizona State University
(ASU), Tempe, AZ in 2021. His primary research interests include ultra-low-power
in-memory computing based on volatile & non-volatile memories, in-sensor com-
puting for IoT, brain-inspired (neuromorphic) computing, and accelerator design for
deep neural networks and bioinformatics.

xi

xii About the Authors

Hongyu An is an assistant professor in Electrical and Computer Engineering at
Michigan Technological University. He obtained his doctoral degree in Electrical
Engineering at Virginia Tech. Prior to Virginia Tech, he received his B.S. and
M.S. degrees in electrical engineering at Missouri University of Science and
Technology and Shenyang University of Technology. He is the awardee of the
Bill and LaRue Blackwell Thesis/dissertation award in 2020. His research interests
include neuromorphic computing and engineering, neuromorphic electronic circuit
design for artificial intelligence systems, and artificial intelligence for robotics and
medical devices.

Kunal Bharathi received his Bachelor of Engineering degree from the PES
Institute of Technology (now PES University) in Bangalore, India, and an M.S. in
ECE from the University of Iowa. He is currently pursuing another graduate degree
at Texas A&M University in College Station, Texas. His areas of interest include
system software, networks, security, and machine learning.

Alberto Bosio received the Ph.D. in Computer Engineering from the Politecnico di
Torino, Italy in 2006. From 2007 to 2018 he was an Associate Professor at LIRMM
- University of Montpellier in France. He is now a Full Professor at the INL – Ecole
Centrale de Lyon, France. His research interests include Approximate Computing,
In-Memory Computing, Test and Diagnosis of Digital circuits and systems and
Reliability. He co-authored 1 book, 3 patents, 35 journals, and over 120 conference
papers. He is the chair of the ETTTC. He is a member of the IEEE.

Shao-Wei Chu received his B.S. degree in electrical engineering from National
Taiwan University, Taipei, Taiwan, in 2019. He is currently pursuing the Ph.D.
degree at Texas A&M University, College Station, TX, USA. His research interests
include logic synthesis, hardware and software verification, and CAD frameworks
for security (design-for-security).

Pierre d’Hondt received his Engineering degree from the Institut Supérieur de
l’Electronique et du Numérique (ISEN), Lille, France, in 2019. He is currently a
Ph.D. student at the University of Montpellier, and works with STMicroelectronics,
Crolles, France. His main focus of research lies in Characterization for Test and
Diagnosis of Digital circuits.

Wafi Danesh obtained his Master of Science degree from the South Dakota School
of Mines and Technology in 2013. He is currently in the final year of his Ph.D. in
Electrical and Computer Engineering at the University of Missouri – Kansas City.
His research focuses on the nexus of hardware security, adversarial machine learn-
ing, and IoT network security. He has extensively reviewed numerous conferences
and journals such as Elsevier Journal of Systems Architecture, GLVLSI, ICAIIC
2021, Springer Journal of Hardware and Systems Security (HASS), Elsevier DSP,
and World Forum on Internet-of-Things (WF-IoT), among others.

About the Authors xiii

Sujay Deb received MS degrees from the Indian Institute of Technology, Kharag-
pur, India, in 2007 and Ph.D. degree from Washington State University, USA,
in 2012. He is currently an associate professor in the Department of Electronics
and Communication Engineering, Indraprastha Institute of Information Technology,
Delhi, India. His broader research interests in the design of novel interconnect
architectures for multicore chips, heterogeneous system architectures. He is a
member of IEEE.

Jaya Dofe received a Master of Science and Ph.D. in Electrical and Computer
Engineering from the University of New Hampshire, New Hampshire, USA, in
2018. She is an assistant professor in the Computer Engineering Department
at California State University, Fullerton, California, USA. Before joining CSUF,
she was a faculty at Florida International University, Florida, USA. Her research
focuses on hardware security, including design obfuscation, side-channel analysis of
encryption algorithms, fault attack analysis, and emerging technologies, including
3D hardware security. She is also interested in engineering education research on
active learning and equitable pedagogy. Dr. Dofe is guest editor of the Special
Issue “3D Technology for Hardware Security: Opportunities and Challenges” of the
Electronics journal. She is a technical committee member of IEEE conferences –
ISVLSI, iSES, VDAT, VDEC. She chaired three panels for women in the engineer-
ing forum at the 7th IEEE International Symposium on Smart Electronic Systems
and was a program chair for the Workshop for Women in Hardware and Systems
Security (WISE), 2020.

Deliang Fan is currently an associate professor in the School of Electrical,
Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA. Dr.
Fan’s primary research interests include Machine Learning Circuits and Algorithms
at Edge, In-Memory Computing Circuits and Architecture, Adversarial AI Security
and Trustworthy. He has authored and co-authored around 140+ peer-reviewed
international journal/conference papers in those areas. He is the recipient of NSF
Career award, best IP paper award of DATE 2022, best paper award of GLSVLSI
2019, ISVLSI 2018 and 2017. His research works were also nominated as best paper
candidate of ASPDAC 2019, ISQED 2019.

Raviv Gal joined IBM Haifa Research Lab in 2011 and is the manager of the
Hybrid Cloud Quality Technologies department, leading projects utilizing data
analytics including machine learning for all levels in the Hybrid Cloud, including
hardware verification. Before this, Raviv worked 12 years in Marvell Israel where
he was a verification leader, responsible for integration of several methodologies
and technologies to the verification flow. He holds B.A. in Mathematics and C.S.
and M.A. in C.S. from Tel-Aviv university. Besides HW verification, data, and AI,
Raviv also likes to run, bike, and hike.

Georgios Georgakilas Circuits and Systems Lab UTH.

xiv About the Authors

Patrick Girard received a Ph.D. degree in Microelectronics from the University
of Montpellier, France, in 1992. He is currently Research Director at CNRS
(French National Center for Scientific Research) and works in the Microelectronics
Department of the Laboratory of Informatics, Robotics and Microelectronics of
Montpellier (LIRMM) – France. His research interests include all aspects of digital
testing and memory testing, with emphasis on critical constraints such as timing and
power. Reliability and fault tolerance are also part of his research activities. Patrick
Girard is a Fellow of the IEEE.

Wesam Ibraheem is the manager of the Analytics & Quality Technologies Group
at IBM Research - Haifa. He holds a B.Sc. degree in Computer Science from
the Technion – Israel Institute of Technology. Since joining IBM Research in
2006, Wesam has been involved as a manager, leader, and a developer in several
projects concerning hardware verification and analytics tools. These included: a
constraint satisfaction (CSP) engine, a pre silicon generator (IBM Genesys), a post
Silicon exerciser (IBM Treadmill), a verification analyzing and dashboarding tool
(Verification Cockpit), and more.

Alexander A. Ivaniuk received the M.Eng. degree from Belarusian State Univer-
sity of Informatics and Radioelectronics (BSUIR), Minsk, Republic of Belarus. He
also received the Ph.D. degree (1999) and the Dr.S. degree (2010) from BSUIR.
Since 2014, he is a professor in the Computer Science Department in BSUIR
and Research Fellow at SK Hynix memory solutions Eastern Europe (SKHMSE).
His areas of research interest are Design and Testing of Digital Devices and
Systems, Hardware Synthesis and Simulations, Reconfigurable Hardware Design,
and Physical Cryptography. Professor Ivaniuk is coauthor of 8 books, 50 journal
papers, 80 international conference papers, and 6 patents.

Mehdi Kamal received the B.Sc. degree from the Iran University of Science and
Technology, Tehran, Iran, in 2005, the M.Sc. degree from the Sharif University of
Technology, Tehran, in 2007, and the Ph.D. degree from the University of Tehran,
Tehran, in 2013, all in computer engineering. He was an Associate Professor with
the School of Electrical and Computer Engineering at the University of Tehran.
He is currently a research scientist at the Institute for Future of Computing at
the University of Southern California, USA. His current research interests include
approximate computing, neuromorphic computing, embedded systems design, low-
power design, and security.

Sunil P. Khatri received his B.Tech. degree from IIT Kanpur, his M.S. degree
from UT Austin, and his Ph.D. degree UC Berkeley. He is currently a Professor
of Electronics and Communication Engineering at Texas A&M University, College
Station, TX, USA. He has co-authored more than 275 peer-reviewed publications.
Among these, five received a best paper award, while seven others received best
paper nominations. His current research interests include VLSI IC/system-on-a-

About the Authors xv

chip design (including energy efficient design of custom ICs and FPGAs, variation
tolerant design, clocking), algorithm acceleration (FPGA, GPU as well as custom
IC based), and interdisciplinary extensions of these topics to other areas.

Vipin Kumar Kukkala received his B.Tech. degree in Electronics and Com-
munications Engineering from Jawaharlal Nehru Technological University, India,
in 2013 and his Ph.D. in Electrical Engineering from Colorado State University,
USA, in 2022. He is currently working as a senior high-performance computer
architect at NVIDIA. His research interests include the design of next-generation
automotive networks, security in cyber-physical systems, machine learning-based
anomaly detection, and large-scale heterogeneous system design. He has co-
authored multiple book chapters and published in several top-tier international
peer-reviewed journals and conferences.

Aymen Ladhar received the Ph.D. degree in Electrical Engineering from the
University of Sfax, Tunisia, in 2010. He is currently a test & yield engineer at STMi-
croelectronics Crolles, France where he is currently the responsible of the logic
diagnostic activity for ST products and test vehicles. His research interests include
VLSI testing, fault diagnosis, layout analysis, defect extraction and simulation.

Cheng-Yen Lee received his B.S. andM.S. degrees in ECE from the Department of
Electrical and Computer Engineering, National Yang Ming Chiao Tung University
(NYCU), Hsinchu, Taiwan, in 2017 and 2019, respectively. He is currently pursuing
his Ph.D. degree in the Department of Electrical and Computer Engineering, Texas
A&M University, College Station, Texas. His research areas focus on VLSI and
mixed-signal IC designs using emerging technologies (multi-gate devices).

Konstantinos Liakos is a research assistant at Circuits and Systems Lab UTH.

Usha Mehta a Professor and PG Coordinator (VLSI Design) at EC department,
Institute of Technology, Nirma University, Ahmedabad. She received her bachelor’s
degree in EC in 1994 and master’s and Ph.D. degree in VLSI Design in 2005 and
2011, respectively. She has more than 22 years of experience of teaching She has
guided more than six Ph.D. students and M. Tech by Research students. She has one
Patent on her credit. She has been the Principal Investigator for research projects of
ISRO and GUJCOST. She has published more than 55 research papers in the area
of VLSI Design and Testing.

Khaled Ahmed Nagaty received the Bachelor of Science degree in statistics from
Cairo University in 1982. He received the Ph.D. degree in Digital Image Processing
from Cairo University in 1999. He was Associate Professor of Computer Science in
the Faculty of Informatics & Computers at Ain Shams university in Cairo from 2007
until 2016. He is currently a professor with the faculty of Informatics & Computer
Science at the British University in Egypt in partnership with London South Bank

xvi About the Authors

University, UK since 2008. His current research interests include machine vision,
pattern recognition, distributed systems, wireless network sensors, cryptography,
tomography, biometrics, machine learning and optimization.

Ziv Nevo is a lead technical staff member in the Formal Quality Technologies
Group at IBM Research - Haifa. He holds B.Sc. and M.Sc. degrees in Computer
Science from the Technion – Israel Institute of Technology. Since joining IBM
Research in 2002, Ziv was involved as a leader, architect and developer in several
projects concerning hardware verification (static and dynamic) as well as cloud
configuration analysis and synthesis.

Fabiha Nowshin received her B.S. and M.S. degrees in electrical engineering
at Virginia Tech, Blacksburg, Virginia in 2019 and 2021, respectively. She is
currently pursuing her Ph.D. degree in electrical engineering with the Bradley
Department of Electrical and Computer Engineering (ECE) at Virginia Tech. Her
research interests include emerging memory technologies for artificial intelligence
applications as well as very large scale integrated (VLSI) circuits and system design
for neuromorphic computing.

Sudeep Pasricha received his Ph.D. in computer science from the University of
California, Irvine in 2008. He is currently a Professor at Colorado State University.
He is Director of the Embedded, High Performance, and Intelligent Computing
(EPIC) Laboratory. His research focuses on the design of innovative software
algorithms, hardware architectures, and hardware-software co-design techniques for
energy-efficient, fault-tolerant, real-time, and secure computing. He has co-authored
multiple books, book chapters, and published close to 300 research articles in peer-
reviewed journals/conferences, workshops, magazines, and books. He is a Senior
Member of the IEEE and Distinguished Member of the ACM.

Massoud Pedram obtained his B.S. degree in Electrical Engineering from the
California Institute of Technology in 1986. Subsequently, he received M.S. and
Ph.D. in Electrical Engineering and Computer Sciences from the University of
California, Berkeley in 1989 and 1991, respectively. In September 1991, he joined
the Ming Hsieh Department of Electrical Engineering of the University of Southern
California where he currently is the Charles Lee Powell Professor of Electrical
Engineering and Computer Science in the USC Viterbi School of Engineering.
His current research interests include energy-efficient computing, machine learning
hardware, superconductive electronics, and homomorphic computing.

Fotis Plessas Circuits and Systems Lab UTH.

Jayesh Popat has done his Ph.D. in the area of “Hardware Security and VLSI
Testing” under the guidance of Dr. Usha Mehta. He is currently working as a DFT
engineer Microcircuits Technology, Ahmedabad. Having knowledge and experience

About the Authors xvii

of both academia and industry, he has a total 6 years of academic experience
along with 4 years of industrial experience. He worked at different semiconductor
industries like Intel India Pvt Ltd., AMD India Pvt. Ltd, Broadcom Ltd. etc. He has
published more than 15 research papers in international journals and conferences.
His research interest in Hardware security, cryptography hardware implementation
and Design for Testability (DFT) techniques.

Sadhana Rai is a Research Scholar in the Department of Computer Science &
Engineering at National Institute of Technology Karnataka(NITK), India. Her area
of research is Hybrid Main Memories using Non-volatile memories. She works in
SPARK(Systems, Parallelization and Architecture Research at NITK) Lab, under
the supervision of Basavaraj Talawar.

Arman Roohi is currently an assistant professor with the School Computing,
University of Nebraska-Lincoln, USA. Before joining UNL in 2020, he was a
postdoctoral research fellow with UTDesign Automation Laboratory, the University
of Texas at Austin. He received the Ph.D. degree in Computer Engineering at the
University of Central Florida, Orlando, FL, USA, in 2019. His research interests
span the areas of design of cross-layer (device/ circuit/ architecture) co-design
for implementing complex machine learning tasks secure computation, including
hardware security, and the security of artificial intelligence, reconfigurable and
adaptive computer architectures, and beyond CMOS computing, with emphasis on
Spintronics.

Sidhartha Sankar Rout received the BTech degree in EEE from NIST, Odisha,
India, in 2008 and the MTech degree in ECE from IIIT Delhi, India, in 2014. He
is currently working toward the Ph.D. degree in Electronics and Communication
Engineering from Indraprastha Institute of Information Technology Delhi, New
Delhi, India. His research interests include system validation and hardware security.
He is a student member of the IEEE.

Bilal Saleh is a research scientist at the IBM research lab in Haifa. His current
role, in the Analytics & Quality Technologies group, is focused on leading the
Coverage Directed Generation (CDG) project. Previously, Bilal worked on other
projects at IBM research, including the Template Aware Coverage (TAC) project and
the Hardware-Defects Triaging project. Bilal received his B.Sc. and Ph.D. degrees
in Computer Science, from Haifa university, in 2010 and 2014. His Ph.D. thesis is
about DNA packaging and condensation inside the living cell. Particularly, it deals
with the extraction of Nucleosome’s positioning patterns along Chromosomes.

Kyler R. Scott received his B.S. and M.S. degrees in Electrical and Computer
Engineering from Texas A&M University (TAMU) in College Station, Texas.
He is currently pursuing a Ph.D. degree at TAMU. He has held internships at
Intel Corporation, where he worked on digital design verification, and Amazon

xviii About the Authors

Web Services (AWS), where he worked on physical design for machine learning
(ML) accelerators. His research interests include neuromorphic and mixed-signal
computing, ML acceleration, and ML at the edge.

Gian Singh received his B.Tech. degree in E&CE from the National Institute of
Technology (NIT-H), Hamirpur, India, in 2017. He has been pursuing a Ph.D. in
Computer Engineering at Arizona State University (ASU), USA since Fall 2018.
He has held internships at Maxlinear Inc., Qualcomm Technology Inc., and Micron
Technology Inc., where he worked in Digital CAD, RTL design, and Memory
architecture design teams. His current research interest includes the design of
artificial neurons, in-memory computing, and near memory processing enabling
high throughput and energy-efficient systems for data-intensive applications.

Mitali Sinha received the MTech degree from National Institute of Technology
Agartala, India, in 2016 and Ph.D. degree from Indraprastha Institute of Information
Technology Delhi, India, in 2022. She is currently working as a researcher in
IMEC, Belgium. Her research interests include design space optimization and
security analysis of accelerator-rich heterogeneous system-on-chips. She is a student
member of the IEEE.

Sandeep Sunkavilli is a research assistant at the University of New Hampshire.

Basavaraj Talawar is an assistant professor in the CSE Department at NITK
where he heads the SPARK (Systems, Parallelization and Architecture Research
at NITK) lab. He has a Ph.D. from the Indian Institute of Science, Bangalore. His
research interests are in the broad areas of Computer Architecture. He is a recipient
of the Visvesvaraya Young Research Fellowship from the Govt. of India and a
faculty award from IBM. His research is supported through grants from the DST,
IBM, and Intel.

Sooryaa Vignesh Thiruloga received his M.S. degree in Computer Engineering
from Colorado State University, USA in 2022. He is currently a Data Scientist
at Hewlett Packard Enterprise, USA. His research interests include the design of
scalable, efficient, lightweight deep learning architectures, and leveraging advanced
artificial intelligence techniques for anomaly detection in automotive cyber-physical
systems.

Shaghayegh Vahdat received the B.Sc., M.Sc., and Ph.D. degrees in electrical
engineering from the University of Tehran, Tehran, Iran, in 2014, 2016, and 2021,
respectively, where she is currently working as a postdoctoral fellow with the
Tehran University of Medical Sciences. She will join the School of Electrical
and Computer Engineering of the University of Tehran as an assistant professor
from Oct. 2022. Her current research interests include hardware implementation
and reliability enhancement of neural systems, mixed signal computations using

About the Authors xix

emerging non-volatile memories, and low-power high-performance design of digital
arithmetic units.

Arnaud Virazel received the Ph.D. degree in Microelectronics from the University
of Montpellier, France, in 2001. He is currently Professor at the University of
Montpellier – LIRMM (Laboratory of Informatics, Robotics and Microelectronics
of Montpellier) where he is responsible for the TEST (“Test and dependability
of microelectronic integrated Systems”) team. He has published 7 books or book
chapters, 50 journal papers, and more than 160 conference and symposium papers
spanning diverse disciplines, including DfT, reliability, power-aware and memory
testing. He is the head of the electrical engineering department (about 450 students
in B.Sc. and M.Sc. programs) at the University of Montpellier.

Sarma Vrudhula (M’85-SM’02-F’16) is Professor of Computer Science and
Engineering at Arizona State University, and the Director of the NSF I/UCRC
Center for Embedded Systems. He received the B.Math. degree from the University
of Waterloo, Waterloo, ON, Canada, and the M.S.E.E. and Ph.D. degrees in
electrical and computer engineering from the University of Southern California,
Los Angeles, CA, USA. His work spans several areas in design automation and
computer aided design for digital integrated circuits and systems, focusing on low
power circuit design, and energy management of circuits and systems.

Ankit Wagle (M’17) received the B.S. degree in Electronics and Telecommunica-
tion from the University of Pune, Maharashtra, India, in 2013, and theM.S. degree in
VLSI Design from Vellore Institute of Technology, Vellore, TN, India, in 2015. He
has been pursuing the Ph.D. degree with the School of Computing and Augmented
Intelligence (SCAI), Arizona State University, Tempe, AZ, USA since 2016. His
current research interests include new circuit architectures and design algorithms
using threshold logic gates, and their applications to the design of energy efficient
digital application-specific integrated circuits, field-programmable gate arrays, and
neural network accelerators.

Yang Yi is an associate professor in the Bradley Department of Electrical Engineer-
ing and Computer engineering at the Virginia Tech. Her research interests include
very large scale integrated (VLSI) circuits and systems, computer-aided design
(CAD), neuromorphic architecture for brain-inspired computing systems, and low-
power circuits design with advanced nano-technologies for high-speed wireless
systems.

Chunxiu Yu is an assistant professor in the Department of Biomedical Engineering
at Michigan Technological University. She received a Ph.D. degree in neurobiology
from the Weizmann Institute of Science in Israel. She joined Duke University to
study the neural mechanisms underlying reward-guided behaviors and University
of North Carolina at Chapel Hill for research on the neural signal processing

xx About the Authors

and network dynamics of visual attention. She was a research scientist in Neural
Engineering and Neural Prostheses Laboratory at Duke University. Her research
interests include neural signal processing, brain stimulation, optogenetics, brain and
behavior, and brain-machine learning.

Qiaoyan Yu is a professor at the University of New Hampshire.

Siarhei S. Zalivaka received the B.Eng. (Hons.) degree and M.Eng. degree from
Belarusian State University of Informatics and Radioelectronics (BSUIR) in 2012
and 2013, respectively. He also received his Ph.D. degree from Nanyang Techno-
logical University (NTU), Singapore, in 2018. He worked as an associate professor
at BSUIR from 2018 to 2021. From 2018, he is working as a Research Fellow at SK
hynix memory solutions Eastern Europe. His area of research interests are Hardware
Security and Trust, Reconfigurable Computing, and NAND Flash Memory Devices.
Dr. Zalivaka co-authored 1 book chapter, 8 journal and 24 conference papers, and 6
patents.

Yan Zhang is a research assistant professor in the Department of Biological
Sciences at Michigan Technological University. She received her bachelor’s degree
in pharmacy from Sichuan University and master’s degree in pharmacology from
Peking Union Medical College in China. She received a Ph.D. degree in phar-
macology and toxicology from University of Missouri-Kansas City. She worked
at the Jared Grantham Kidney Institute at Kansas University Medical Center as a
postdoctoral researcher. She received the Postdoctoral Fellowship Award from the
Polycystic Kidney Disease Foundation. Her research interests include inflammation,
dysregulated cellular signaling pathways in renal diseases, and neuromorphic
computing.

Noah Zins is a graduate student in the Electrical and Computer Engineering
Department at Michigan Technological University. He received a B.S. in Computer
Engineering and Mathematical Sciences. His current research is on neuromorphic
computing in robotics applications. His research interests include neuromorphic
computing, signal and image processing, processor architectures, robotics, and
embedded systems.

Avi Ziv is a Research Staff Member in the Hybrid Cloud Quality Technologies
Department at the IBM Research – Haifa lab. Since joining IBM in 1996, Avi
participated and led research projects that developed methodologies, technologies,
and tools for various aspects of hardware functional verification including stimuli
generation, checking, and functional coverage. In recent years, his focus is on
utilizing data analytics techniques in general and machine learning specifically in
functional verification. Avi holds a B.Sc. degree in Computer Engineering from the
Technion – Israel Institute of Technology and M.Sc. and Ph.D. degrees in Electrical
Engineering from Stanford University.

NAND Flash Memory Devices Security
Enhancement Based on Physical
Unclonable Functions

Siarhei S. Zalivaka and Alexander A. Ivaniuk

1 Multimode Physical Unclonable Function as an Entropy
Source for Generating True Random Bits

1.1 Introduction

True random number generators (TRNGs) are used in a wide range of applications
(e.g., cryptography, statistical sampling, simulation, computer games, etc.) [51].
TRNG can be implemented as a part of NAND flash memory device controller
and used to support Trusted Computing Group (TCG) standard [1]. The main
advantage of TRNGs comparing to pseudorandom number generators (PRNG) is the
uniqueness and unpredictability of their produced output values. TRNG is a device
or a part of a device that generates random numbers based on some intrinsic physical
process. One of the possible ways of extracting random data from electronic devices
is to implement physical unclonable functions (PUFs) (e.g., [50, 52]).

Nowadays physical unclonable functions (PUFs) are becoming ubiquitous cryp-
tographic primitives as an alternative to classical cryptographic algorithms in
compact digital devices [2]. Main semiconductor manufacturers actively introduce
them into their IoT solutions [3], cutting-edge field programming gate array (FPGA)
chips [4], authentication protocols [5], etc. In general, PUF can be represented as a
mapping of external inputs (challenges) to the outputs (responses). This mapping is
called challenge-response pair (CRP) set, which is unique for each integrated circuit

S. S. Zalivaka (�)
SK hynix memory solutions Eastern Europe, Minsk, Republic of Belarus
e-mail: sergey.zalivako@sk.com

A. A. Ivaniuk
Belarusian State University of Informatics and Radioelectronics, Minsk, Republic of Belarus
e-mail: ivaniuk@bsuir.by

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Iranmanesh (ed.), Frontiers of Quality Electronic Design (QED),
https://doi.org/10.1007/978-3-031-16344-9_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16344-9_1&domain=pdf

 885 52970 a 885 52970 a

mailto:sergey.zalivako@sk.com

 885
56845 a 885 56845 a

mailto:ivaniuk@bsuir.by

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-16344-9_1

2 S. S. Zalivaka and A. A. Ivaniuk

(IC) containing a PUF block even if the design and layout are the same [6]. This
can be explained by intrinsic manufacturing process variations introduced during
fabrication. Since physical properties of an IC may vary depending on temperature
or voltage, some of the PUF response values are unstable. As a result, CRP set can
be split into stable and unstable subsets and can be utilized for identification and
random number generation, respectively.

PUF designs can be based on different physical phenomena, e.g., delay val-
ues [7], threshold voltages [8], operating frequencies [9], image sensor noise
patterns [10], etc. Another subset of PUFs is utilizing memory to extract uniqueness
from IC, e.g., SRAM PUF [11], DRAM PUF [12], Butterfly PUF [13], SR-Latch
PUF [14], etc. NAND flash memory devices can be also successfully used to
implement a PUF because some intrinsic effects, e.g., threshold voltages, erase
times, bad block characteristics, program/read disturb, etc., uniquely characterize
a memory device [15].

The proposed PUF design is based on using an inverter and a D-Latch which are
controlled by enable (EN) signal. This circuit can operate in four modes, namely,
initial memory, ring oscillator, metastability, and latch modes. All these modes can
be used for different purposes, i.e., generating a unique identifier in initial memory
mode, generating random numbers in ring oscillator or metastability modes, and
storing generated ID or random value in latch mode. Thus, the proposed PUF design
supports both PUF routines in a single device. One of the main challenges in TRNG
design is consumed area and performance (rate of random bit generation). The
proposed TRNG design is compact as it consumes a latch and an inverter gate and
fast as ring oscillator mode operates on high frequency.

1.2 General Description of a Circuit

The proposed entropy source for random bit generation includes two elements,
namely, Latch D-type (LD) and Inverter (INV). As shown in Fig. 1, INV is
connected to LD and forms a negative feedback loop. The operation of this circuit
is controlled by enable (EN) signal.

Fig. 1 Entropy source circuit

NAND Flash Memory Devices Security Enhancement Based on Physical. . . 3

The proposed PUF supports four modes of operation:

1. Initial memory. This mode works only during start-up and EN=“0”. This is
equivalent to SRAM PUF as the LD can generate either stable “0” or stable “1”
or metastable value. According to SRAM PUF research [16], the output Q has a
10% chance of generating metastable value. If Q is stable, it can be used as a bit
of a unique device ID.

2. Ring oscillator (RO). If enable signal is kept as EN=“1”, the PUF will produce
a meander signal with a unique frequency Fi (i is an index of individual entropy
source) which is utilized for random bit generation similarly to RO PUF [17].

3. Metastability. Since LD is asynchronous and the value on data input (D) of LD
is unpredictable, changing EN signal value from “1” to “0” can violate timing
parameters of LD. In this case, LD may fall into a metastable state and the output
Q can be either “0” or “1”.

4. Latch. If enable signal is kept as EN=“0”, the LD stores random bit and the
output Q value is stable.

As a result, the proposed PUF design can be used to generate unique stable ID
bit (mode 1) or random bits (modes 2 and 3) or store generated ID or random bit
(mode 4).

1.3 Operation of the Entropy Source

The circuit mentioned above (see Fig. 1) can be represented on gate level as shown
in Fig. 2. The proposed circuit is named ROLD as a combination of different PUFs,
i.e., ring oscillator and Latch D-type.

Fig. 2 Gate level of the entropy source circuit

4 S. S. Zalivaka and A. A. Ivaniuk

The D-Latch component consists of basic SR-Latch circuit which has S (set),
R (reset) inputs, and two complementary data outputs QSR and nQSR. In the case
when SR-Latch is designed on NOR2 gates (NOR1 and NOR2 in Fig. 2), it has
four operation modes: Setting “1” (when S=“1” and R=“0”), Resetting “0” (when
S=“0” and R=“1”), Storing value (when S=“0” and R=“0”), and Forbidden mode
(when S=“1” and R=“1”). The transaction from Forbidden state to Storing mode
may cause generating metastable value on outputs QSR and nQSR. The D-type
Latch is designed on the base of SR-Latch in such a way to prevent the occurrence
of Forbidden mode by keeping S and R inputs in opposite values. The Storing mode
is provided by additional input EN of enable signal and two additional AND2 gates
(AND1 and AND2 in Fig. 2).

Let us describe equivalent circuits which are operating during four modes.

1.3.1 Initial Memory

When EN=“0”, the proposed circuit is equivalent to SR-Latch in storing mode
(S=“0”, R=“0”), which is shown in Fig. 3.

In this mode, AND elements (AND1 and AND2) generate constant “0” value and
can be omitted for analysis of this circuit. NOR elements (NOR1 and NOR2) operate
as inverters. Therefore, circuit in this mode operates as a bistable element as shown
in Fig. 4.

During initialization (power-up) stage, the default value v is unknown due to
manufacturing process variations (possible asymmetry of NOR gates NOR1 and
NOR2 and connection wires between them). Therefore, unique ID values can be
obtained from this PUF during power-up similarly to SRAM cells which are also
based on bistable elements [16].

Fig. 3 ROLD circuit (EN=“0”)

Fig. 4 Bistable element

NAND Flash Memory Devices Security Enhancement Based on Physical. . . 5

1.3.2 Ring Oscillator

When EN=“1”, SR-Latch switches between Setting (S=“1”, R=“0”) and Reset-
ting (S=“0”, R=“1”) modes based on the value obtained from inverter INV output
as shown in Fig. 5.

In this mode, AND1 element operates as a buffer repeating v or v values, NOR2
element works as a constant “0” value generator, AND2 and NOR1 are identical to
two inverters. This mode of operation is equivalent to the ring oscillator circuit with
three inverters as shown in Fig. 6.

Thus, meander signal (v → v → v → . . .) with unique frequency Fi appeared
on the output Q. Fi is also determined by manufacturing process variations which
make negative feedback loop delay unpredictable.

1.3.3 Metastability

Timing diagram in Fig. 7 shows three output values y0, y1, and y2 from the outputQ.
There are two possible ways how metastable state can appear on the output Q.

First, initial value y0 ∈ {v, X, v} (period of time from t0 to t1 as shown in Fig. 7) can
be either stable zero, stable one, or a metastable state (X). In this case, metastability
means the value with unknown stability, i.e., from time to time zero or one value
appears on the output Q with different nonzero probability.

The second case is more complicated as it is based on SR-Latch phe-
nomenon [18] which causes a high-frequency oscillation in addition to three values
{v,X, v} in the first case. When both inputs S and R are fed with “1” value
(forbidden state) for a short period of time and at this moment EN signal changes
from “1” to “0”, SR-Latch is trying to store forbidden state and generating damped

Fig. 5 ROLD circuit (EN=“1”)

Fig. 6 Ring oscillator

6 S. S. Zalivaka and A. A. Ivaniuk

Fig. 7 SR-Latch timing diagram depending on changing EN signal

high-frequency oscillation. Metastable oscillation also dumps to the stable zero or
one value after some time. So values y1 (time period from t2 to t3) and y2 (time
period after t4) will eventually get to stable zero or stable one value with or without
metastable oscillation. This phenomenon is based on unique voltage and timing
characteristics of SR-Latch and determined only after manufacturing.

Two mentioned scenarios of generating metastable value are shown in Fig. 8.
Possible values in the first case are shown in Fig. 8a and in second case (see

Fig. 8b). Oscillation in the second case is eventually damped to the value v or v, but
the final value Q is more uncertain comparing to the first case.

As a result, transition of EN signal from “1” (ring oscillator mode) to “0”
(latch mode) may cause high-frequency oscillation which leads to metastability state
observed on the output Q. As a result, metastability can be used to generate true
random numbers.

1.3.4 Latch

When EN signal is set into “0” value, it enables the possibility to store generated
random values after initialization or ring oscillator mode or metastability caused
oscillation. The circuit for storing N -bit unique ID (mode 1) or random number
(mode 2 or 3) is shown in Fig. 9.

Thus, the proposed entropy source can be used for both purposes, unique bits
producing and storing generated data.

NAND Flash Memory Devices Security Enhancement Based on Physical. . . 7

(a) (b)

Fig. 8 Possible output values Q. (a) Period of time from t0 to t1. (b) Period of time from t2 to t3
and after t4

Fig. 9 Multi-bit latch for storing unique ID or random value

1.4 Experimental Results

The proposed entropy source has been implemented in Nexys 4 Xininx Artix-
7 FPGA prototyping board [19], and characteristics for each mode have been
collected.

1.4.1 Initial Memory

The total number of 128 entropy sources has been synthesized and implemented
in FPGA. During E = 100 tests, each of the elements generated values shown in
Fig. 10.

The distribution of probabilities of generating “1” value (P 1
i (E)) is the following:

61 elements with P 1
i (E) = 0.0, 56 elements with P 1

i (E) = 1.0, and 11 elements

8 S. S. Zalivaka and A. A. Ivaniuk

Fig. 10 Probabilities of “1” value (P 1
i (E), E = 100) in initialization mode

with 0 < P 1
i (E) < 1. Thus, reliable, unique, and reproducible ID can be generated

using proposed method.

1.4.2 Ring Oscillator

These 128 generators have been tested in RO mode to show the uniqueness of
generated frequency value Fi (1 ≤ i ≤ 128). The simulation frequency is 350MHz
(red line in Fig. 11); individual estimated frequency values Fi for entropy sources
are shown in Fig. 11.

This experiment has been demonstrated that frequency value Fi for each
generator is unique and unpredictable for each entropy source.

1.4.3 Metastability

Also the same 128 entropy sources have been tested E = 100 times in metastability
mode (EN switches from “1” to “0”). The probabilities P 1

i (E, k) of generating “1”
value after k system clocks in RO mode (EN = ‘1’) for each element are shown in
Fig. 12.

In contrast to initialization mode, the generated values have low reproducibility
as all probabilities of generating “1” value (P 1

i (E, k)) are above 0.2 and below 0.8.
Thus, this mode is more suitable for generating true random values.

1.4.4 Latch

To estimate the quality of random values produced by entropy sources, 128 elements
have been utilized. As a result, a million 128-bit values have been generated by
changing EN signal from “1” to “0”. The duration of EN signal in “1” state is
k = 32 system clocks. Each 128-bit value has been split into four 32-bit values.
The histogram of the approximate distribution of generated four millions of 32-bit
values is shown in Fig. 13.

NAND Flash Memory Devices Security Enhancement Based on Physical. . . 9

Fig. 11 Estimated frequencies Fi in RO mode

Fig. 12 Probabilities “1” value (P 1
i (E, k), E = 100, k = 32) in metastability mode

The x-axis corresponds to the generated numerical value ranging from 0 to
≈4×109; the y-axis shows the estimated frequencies (the data is split into 100 bins)
for each value. The generated values are truly random but not uniformly distributed.
Therefore, the random sequence has to be post-processed in order to achieve
required characteristics of randomness and be compliant with NIST standard [20].

1.5 Conclusion

The multimode physical unclonable function is presented. This design can be used
for producing either stable unique ID or unpredictable random bit generation. The
proposed design occupies smaller area comparing to classical PUF designs (e.g.,
Arbiter PUF, RO PUF, SRAM PUF) and can be used as an entropy source in

10 S. S. Zalivaka and A. A. Ivaniuk

Fig. 13 Distribution of 32-bit random values (k = 32)

cryptography applications. For NAND flash memory devices, it can be utilized for
entropy generation in encryption process and also for on-drive simulation purposes.

2 Raw Read-Based Physical Unclonable Function for TLC
NAND Flash

2.1 Introduction

The increasing capacity of a single flash memory cell (SLC → MLC → TLC →
QLC) has led to reliability issues with NAND-based storages [21]. This downside
can be used for the opposite purpose, i.e., faults in blocks and pages can be utilized
as a source of uniqueness for both chip identification and true random number gen-
eration. Modern TLC NAND flash memory devices have massive error correction
code (ECC) engines which negotiate the effect of intrinsic NAND instability [22].
However, disabling ECC and scrambler modules during the read and write operation
allows extracting less stable bits and using them to generate uniformly distributed
random bits. As a result, one block of NAND can be separately used to generate
a random number sequence during the read operation. The proposed flash memory
operation is consistent with the definition of PUF, i.e., it provides a way to extract
unique randomness characteristics from the physical super-high information content
(SHIC) system [23]. Depending on the reliability of the obtained noise values, it can
be used as random values (low reliability and high uniqueness) or unique identifiers
(high reliability and high uniqueness). As a result, flash memory cells can be used

NAND Flash Memory Devices Security Enhancement Based on Physical. . . 11

as an entropy source for TRNG which does not require additional circuitry for its
implementation and random numbers can be extracted during the read operation
in the raw mode. The proposed method does not require a redesign of the existing
NAND flash controller and can be used directly from the firmware level.

2.2 Control of the Entropy Source

The proposed entropy source is controlled by a two-stage algorithm. The first
stage is enrollment, i.e., the positions of noisy bits are located during the read
operation. The second stage is generation, i.e., read noisy bits from the positions
are determined during the enrollment stage.

2.2.1 Enrollment

1. Choose a block from the reserve area.
2. Erase the whole block.
3. Write all zeros pattern to the block in the raw mode, i.e., ECC and scrambler are

disabled during this operation.
4. For every page pi (0 ≤ i ≤ P − 1), perform read operation in the raw mode R

times. P is the number of pages in the block.
5. Calculate noise characteristic (�) for each bit bj (0≤ j ≤ B) within all P pages.

If � = 0–bit bj is stable and if � is bigger, it means that the chosen bit bj is
more random. B is the number of bits in a page.

6. Bits with highest � scores should be chosen as a source of true random number
sequence.

As a result, the page can be represented as shown in Fig. 29 (the heatmap shows
� scores for each bit bj within page pi).

Note: The � scores should be stored offline to the array A containing P × B

elements.

2.2.2 Generation

1. Determine size L of a register RTRNG to store a random number.
2. Store the information about noisy bits from A with the highest � scores to the

special data structure shown in Fig. 14.
Bit p′

k : b′
l (0≤ k ≤ K−1, 0≤ l ≤ L−1) corresponds to a� scoreA[i][j] of

some bit bj from page pi . K is the number of pages chosen for random number
generation.

3. Initialize index k = 0 for cyclic iteration.
4. Read page p′

k .

12 S. S. Zalivaka and A. A. Ivaniuk

Fig. 14 The data structure
for storing noisy bits for
different pages within a block

5. Extract L bits p′
k:b

′
0 . . . p′

k:b
′
L−1 and store them to the RTRNG register.

6. Increment k by modulo K . Go to Step 4.

2.3 Experimental Results

SK hynix S72 512GB SSD drives have been tested in order to prove randomness of
the proposed PUF design.

2.3.1 Enrollment

1–3. Block 0x84 has been randomly chosen, erased, and written with zeros in the
raw mode.

4. Read operation has been repeated in the raw mode for R = 1000 times.
5. For example, the randomness of each bit can be estimated as follows:

Calculate two metrics for each bit, namely, uniformity (U) and bit flipping
rate (BFR):

U = 1 − 2 × |R1

R
− 0.5| (1)

R1 is the number of bits with the value of “1”.

NAND Flash Memory Devices Security Enhancement Based on Physical. . . 13

For example, if there were 5 read operations and the values obtained were
(1, 1, 0, 1, 0), then U = 1–2 × |3/5–0.5| = 1–2 × 0.1 = 0.8:

BFR =
∑B−2

i=0 bi ⊕ bi+1

B − 1
(2)

Based on U and BFR noise characteristic, � can be calculated for each bit
as follows:

� = α × U + β × BFR (3)

α, β—tunable parameters which determine the importance of either unifor-
mity or the bit flipping rate.

The example is summarized in Table 1.
Thus, increasing the importance of uniqueness sequence (0, 0, 0, 1, 1, 1)

can be considered more random than (1, 1, 0, 1, 0, 1). However, usually, BFR

is more important and correlated with uniqueness. Therefore, the third case is
more realistic.

6. Array A has been computed based on the information obtained in Step 5.
For example, a page with index 0x42 has been chosen to demonstrate the

uniqueness [24] of the noisy bit locations. Figure 30 shows the � scores for
the pages with index 0x42 within block 0x84 for different SSD samples.

2.3.2 Generation

1. RTRNG size is set to L = 32.
2. To estimate the number of noisy bits per page, all data has been aggregated, and

average Hamming distances between reads for all pages have been computed.
The graph for the chosen block is shown in Fig. 31.
As shown in Fig. 31, different pages have various Hamming distances (HD)

between reads. The value of HD shows the number of noisy bits per page.
Therefore, pages with a bigger value of HD are to be stored in the data structure.

For example, pages 0x120 and 0x1c5 have the highest HD among all pages
(see Fig. 31). The data structure containing these pages is shown in Fig. 15.

3. k = 0 (K = 2).
4. Read p′

0 = 0x120.

Table 1 Example of tuning α, β

Sequence U BFR �, α = 1, β = 1 �,α = 1, β = 0.1 �,α = 0.1, β = 1

1 1 0 1 0 1 0.66 0.8 1.44 0.74 0.866

0 0 0 1 1 1 0.8 0.2 1.0 0.82 0.28

14 S. S. Zalivaka and A. A. Ivaniuk

Fig. 15 Example of the data
structure for noisy bits

5. L = 32 bits are extracted from the page p′
0 on the positions 0x4, 0x7, . . . , 0x42.

RTRNG = (1, 0, . . . , 1).
6. k = 1.
4. Read p′

1 = 0x1c5.
5. L = 32 bits are extracted from the page p′

1 on the positions 0x6, 0x19, . . . , 0x51.
RTRNG = (1, 1, . . . , 0).

6. k = 0.
4. Read p′

0 = 0x120.
5. L = 32 bits are extracted from the page p′

1 on the positions 0x4, 0x7, ..., 0x42.
RTRNG = (0, 1, . . . , 1).

6. k = 0.

The sequence of 800,000 bits has been obtained from SK hynix S72 SSD
sample. The generated sequence contains 400188 zeros (50.02%) and 398812 ones
(49.98%). The experiment confirmed the hypothesis of uniform distribution of noisy
bits in TLC NAND.

2.4 Conclusion

The TLC NAND structure can be successfully utilized to extract uniqueness from
the memory device. Existing NAND-based storage is quite unreliable for the
write and read operations conducted without scrambling and ECC. Therefore, this
disadvantage can be used to generate a true random number sequence. The proposed
method is based on physical unclonable function (PUF) which is implemented using
existing firmware functions.

The presented entropy source design has the following advantages:

• It does not require additional circuitry (hardware overhead) for its implementa-
tion.

• It cannot be reproduced on the different instance of the same device even
knowing its configuration.

• It can be reconfigured using parameters L and K .

NAND Flash Memory Devices Security Enhancement Based on Physical. . . 15

• � metric can be tuned for particular requirements.
• It can generate true random numbers required for security protocols implemen-

tation using only firmware functions.

Thus, the proposed PUF-based entropy source can be utilized to enhance the
security of the memory device without additional hardware cost and using only
internal firmware commands.

3 Flash Memory Device Identification Based on Physical
Unclonable Functions

3.1 Introduction

The memory cells of NAND flash devices have quite a low reliability, which leads
to using error correction codes (ECC) with high correcting capability, e.g., BCH
or LDPC code, in the data path [25]. On the other hand, excluding ECC from the
data path creates a possibility of generating unique and unpredictable bits from the
NAND memory cells. Thus, comparing the number of bits with one value between
different pages is proposed as a source of unique and unpredictable identifiers.

The proposed ID generation method is based on the read operations, which
bypass ECC and scrambling in the data path (raw read operations). The first stage
(enrollment) includes erasing a block of NAND flash memory and writing an all-
zero pattern to all pages within the block. Then, during multiple raw read operations,
each page is characterized by an average number of ones obtained during the
read operations. The second stage (uniqueness extraction) is using page statistics
computed during enrollment to generate a sequence of page addresses (the number
of pages is equal to the doubled ID length). Then, during the final third stage (ID
generation), comparing the number of ones from the chosen pages allows generating
unique ID bits, i.e., for two compared pages, if the first page has less ones than
the second one during the raw read operation, zero is generated; otherwise, one is
generated.

3.2 ID Generation Algorithm

A page is a minimal reading unit in the NAND flash memory, and it can be
characterized by a number of bits which flip their values during the read operation.
To easier highlight flipping bits, an all-zero pattern should be programmed in the
page. Then, after multiple raw read operations (bypassing ECC and scrambling),
the average number of ones obtained during the read operation can characterize the
page. These statistics are obtained during the enrollment stage, which contains four
steps:

16 S. S. Zalivaka and A. A. Ivaniuk

1. Erase a block of memory.
2. Program in raw mode an all-zero pattern to all pages of a block.
3. Read in the raw mode each page Nr times.
4. Compute the average number of ones during Nr raw read operations.

For example, statistics for two blocks of memory with randomly chosen
addresses 0xBE0 and 0x2F0 is shown in Fig. 16 (Nr = 100).

The distribution of the average number of ones in pages p
avg
i (1≤ i ≤ Np, Np–

the number of pages in a block of memory) is unique for every block in the device.
Therefore, the subtle intrinsic difference in this distribution can be utilized to design
a NAND flash memory-based physical unclonable function. The block diagram for
a proposed PUF design for ID generation is shown in Fig. 17, which has a similar
principle as RO-PUF [17]. Instead of frequency comparison, the proposed algorithm
compares the number of ones during raw read operations.

To generate a single response bit R, it is required to compare the number of
ones during the raw read operation from two different pages pi and pj (i �= j ,
1 ≤ i, j ≤ Np), which are chosen based on challenge value C = (i, j). C is an
ordered pair of page addresses i and j which takes one of possible

(
NP

2

)
values. If

pi < pj , R = 0; otherwise, R = 1. This PUF is able to generate
(
NP

2

)
possible

response bits based on challenge value C. To generate an L-bit ID, identification
server has to generateL challenges (2L page addresses) and send them to the device.
As a result, the device produces L response bits, which uniquely identify it.

Due to intrinsic NAND instability, values pi and pj may have different values
from one read operation to another. This leads to instability of generated response

0

100

200

300

400

500

600

700

800

900

1000

0

1
9

3
8

5
7

7
6

9
5

1
1

4

1
3

3

1
5

2

1
7

1

1
9

0

2
0

9

2
2

8

2
4

7

2
6

6

2
8

5

3
0

4

3
2

3

3
4

2

3
6

1

3
8

0

3
9

9

4
1

8

4
3

7

4
5

6

4
7

5

4
9

4

5
1

3

5
3

2

5
5

1

5
7

0

A
v

er
ag

e
n
u
m

b
er

 o
f

o
n
es

Page number

0x2F0 0xBE0

Fig. 16 The average number of ones obtained during raw read operations for two blocks of
memory

NAND Flash Memory Devices Security Enhancement Based on Physical. . . 17

Fig. 17 ID generation based on NAND PUF

values R as during different read operations for the same address values i and j ,
the order of values pi and pj can be also different (pi < pj or pi > pj). Thus, to
provide a reliable identification, the subset of challenge values, which provide stable
responses, has to be found.

If the average number of ones values obtained during the enrollment stage (see
Fig. 16) are sorted, they can be separated into two groups, with lower and higher
values of p

avg
i . Sorted values are shown in Fig. 18.

As shown in Fig. 18, the higher the difference between the average number of
ones obtained for two pages p

avg
i and p

avg
j (e.g., p

avg
i > p

avg
j , i �= j), the higher

the probability to keep the order between the number of ones obtained during an
arbitrary read operation (pi > pj). It also can be confirmed based on experimental
data obtained from block 0x2F0. The data of 10-th and 100-th reads together with
average values is shown in Fig. 19.

The value of the difference between two pages pi (taken from pages with higher
p
avg
i values) and pj (taken from pages with lower pavg

i values) (pi−pj) may change
its value, but sign value (pi − pj) will be the same with a high probability for all
read operations from 1 to at least 100. Therefore, to generate L-bit identifier, L

challenges Ck = (i, j)(1 ≤ k ≤ L) should be chosen based on enrollment data.
There are multiple ways of doing this. For example, it can be done as shown in
Fig. 32 in four steps:

18 S. S. Zalivaka and A. A. Ivaniuk

0

100

200

300

400

500

600

700

800

900

1000
0

1
8

3
6

5
4

7
2

9
0

1
0
8

1
2
6

1
4
4

1
6
2

1
8
0

1
9
8

2
1
6

2
3
4

2
5
2

2
7
0

2
8
8

3
0
6

3
2
4

3
4
2

3
6
0

3
7
8

3
9
6

4
1
4

4
3
2

4
5
0

4
6
8

4
8
6

5
0
4

5
2
2

5
4
0

5
5
8

A
v
er

ag
e

n
u
m

b
er

 o
f

o
n
es

Page number

0x2F0 0xBE0

Fig. 18 The average number of ones (sorted) obtained during raw read operations for a block of
memory

0

200

400

600

800

1000

1200

0

1
8

3
6

5
4

7
2

9
0

1
0

8

1
2

6

1
4

4

1
6

2

1
8

0

1
9

8

2
1

6

2
3

4

2
5

2

2
7

0

2
8

8

3
0

6

3
2

4

3
4

2

3
6

0

3
7

8

3
9

6

4
1

4

4
3

2

4
5

0

4
6

8

4
8

6

5
0

4

5
2

2

5
4

0

5
5

8

N
u
m

b
er

 o
f

o
n
es

Page Number

0x2F010 100 Avg

Fig. 19 The number of ones obtained during 10-th, 100-th raw read operations, and the average
value

1. Sort pages by the average number of ones values obtained during raw read
operations (pavg

i) in ascending order. As a result, the sequence of page addresses
corresponding to the sorted values can be represented as A1, A2, . . . , ANp ;

2. Split sequence into two L-element subsequences, namely, Alow = (A1, A2,

. . . , AL)with a lower value of pavg
i andAhigh = (ANp−L+1, ANp−L+2, . . . , ANp)

with a higher value of p
avg
i ;

NAND Flash Memory Devices Security Enhancement Based on Physical. . . 19

3. To generate k-th bit of identifier, form an unordered pair of addresses {Ak ,
ANp−L+1+k} (1≤ k ≤ L < Np), Ak is in Alow and ANp−L+1+k is in Ahigh.
If Ak and ANp−L+1+k are chosen from Alow and Ahigh correspondingly, there
is a high probability that pAk

< pANp−L+1+k
. Therefore, the unordered pair

should be converted to the ordered pair (challenge value Ck) by some unique
characteristics.

4. Each unordered pair {Ak , ANp−L+1+k} can be converted to the challenge value
Ck = (Ak , ANp−L+1+k) or Ck = (ANp−L+1+k , Ak). This can be done based on
the unique sequences of addresses in Alow:

(a) Consider k-th element of Alow(Ak) and the next one (Ak+1).
(b) If Ak < Ak+1, unordered pair {Ak , ANp−L+1+k} is converted to Ck =

(Ak,ANp−L+1+k).
(c) Otherwise, unordered pair {Ak , ANp−L+1+k} is converted to Ck =

(ANp−L+1+k , Ak).
(d) If k = L,AL+1 element is taken from a full sequence of sorted values.

The algorithm above is given for an exemplary purpose and can be changed to
other ones in order to choose the most stable responses.

The final stage (ID generation) is to perform a raw read operation L times from
two pages each time. To generate k-th bit, values pAk

and pANp−L+1+k
are compared.

If the pair of addresses is (Ak , ANp−L+1+k) in most cases, 0 value will be generated.
If the pair of addresses is (ANp−L+1+k , Ak) in the most cases, 1 value will be
generated.

As a result, L-bit identifier can be generated using 2L raw read operations. The
set of challenges Ck = (Ak , ANp−L+1+k) or Ck = (ANp−L+1+k, Ak) can be either
stored in the device memory for better reliability or generated by choosing L pairs
from possible

(
NP

2

)
options.

3.3 Example of ID Generation

The results of the enrollment stage are shown in Fig. 16 for block 0x2F0. The
uniqueness extraction stage is completed as follows:

1. The list of page addresses sorted by p
avg
i values is formed as follows:

324, 325, 266, . . ., 1, 5, 7 (576 addresses in total);
2. To generate L = 128 bit identifier, the sequence can be split into two groups:

Alow = (A1, A2, A3, . . . , A126, A127, A128) = (324, 325, 266, . . . , 254,
301, 242)—128 addresses;

Ahigh = (A449, A450, A451, . . . , A574, A575, A576) = (30, 159, 179, . . . , 1,
5, 7)—128 addresses;

20 S. S. Zalivaka and A. A. Ivaniuk

3–4. These groups are merged into the sequence:

• The unordered pair {A1, A449} = {324, 30} is converted to C1 =
(A1, A449) = (324, 30) as A1 < A2(324 < 325);

• The unordered pair {A2, A450} = {325, 159} is converted to C2 =
(A450, A2) = (159, 325) as A2 > A3(325 > 266);

• The unordered pair {A3, A451} = {266, 179} is converted to C3 =
(A3, A451) = (266, 179) as A3 < A4(266 < 314);

• . . .

• The unordered pair {A126, A574} = {254, 1} is converted to C126 =
(A126, A574) = (254, 1) as A126 < A127(254 < 301);

• The unordered pair {A127, A575} = {301, 5} is converted to C127 =
(A575, A127) = (5, 301) as A127 > A128(301 > 242);

• The unordered pair {A128, A576} = {242, 7} is converted to C128 =
(A128, A576) = (242, 7) as A128 < A129(242 < 110).

ID generation stage is based on the sequence generated during the second stage:

• ID1 = 0 as p324 < p30;
• ID2 = 1 as p159 > p325;
• ID3 = 0 as p266 < p179;
• . . .

• ID126 = 0 as p254 < p1;
• ID127 = 1 as p5 > p301;
• ID128 = 0 as p242 < p7.

3.4 Experimental Results

3.4.1 Reliability

The 128-bit IDs were generated from two different samples (10 blocks each with
the same addresses)—total 20 IDs.

Reliability shows how stable is generated ID during T tests (repeated gen-
erations) [26]. It can be computed as follows (HD, Hamming distance; IDt , ID
generated during t-th test):

R = 1 − BER = 1 − 1

T

T∑

t=1

HD(ID, IDt) (4)

The ideal value of reliability is 1.0, i.e., that generated ID is stable and does not
change its value during repeated generations.

NAND Flash Memory Devices Security Enhancement Based on Physical. . . 21

All IDs generated in the experiment have R = 1.0 except three of them which
have 0.980, 0.989, and 0.990.

3.4.2 Uniqueness

Uniqueness shows the difference between IDs generated from different samples
(inter-die uniqueness) or different blocks within the same sample (intra-die unique-
ness) [26]. The ideal value of uniqueness is 0.5 which is the biggest distance from
both 0 (no difference) and 1 (each bit of the vector is flipped).

Intra-die uniqueness for m IDs can be computed as follows:

Uintra = 2

m(m − 1)

m−1∑

u=1

m∑

v=u+1

HD(IDu, IDv) (5)

For m = 10 IDs (each sample) Uintra = 0.502 for sample 1 and Uintra = 0.498
for sample 2.

Inter-die uniqueness for m IDs situated at the same address in different two
samples can be computed as follows:

Uinter = 1

m

m∑

i=1

HD(ID1
i , ID

2
i) (6)

Uinter = 0.518 for two identical samples (m = 10 for each sample).
Also, the algorithm has been stress tested by 10,000 erases. The ID was generated

after each erase for five times. Therefore, 50,000 IDs were generated during the test.
Only 16 of them had single bit flip, and the rest 49,984 were the same (without bit
flips).

Thus, the proposed algorithm can be used to generate a unique, reliable,
unpredictable, and unclonable ID for flash memory devices.

3.5 Conclusion

This section describes the method of generating stable unique ID based on NAND
flash memory. Produced IDs have high reliability (0.99) and uniqueness (0.502)
and also survived after erase stress testing without losing their characteristics. The
proposed method does not require additional hardware overhead in devices having
onboard flash memory. One block of memory provides more than 500 unique IDs.

22 S. S. Zalivaka and A. A. Ivaniuk

4 Design of Data Scrambler with Enhanced Physical Security

4.1 Introduction

Modern NAND flash memory devices [47] usually contain three parts, namely, host,
controller, and NAND memory cell array as shown in Fig. 20. The host usually
communicates with the device using high-speed interface and generates workload

Fig. 20 Block diagram of a NAND flash memory device

NAND Flash Memory Devices Security Enhancement Based on Physical. . . 23

Fig. 21 Typical design of a
data scrambler

for the controller. The data from the host is stored in buffer (usually DRAM) and
then encoded by error correction codes (ECC). The encoding is required because
basic reliability of NAND memory cells is quite low and this kind of memory
introduces multiple errors during read and write operations [27].

One of the important blocks in NAND flash memory device is a hardware
implementation of a scrambler (randomizer) which improves the reliability of
memory cells (see Fig. 20). This can be achieved by transforming data patterns sent
from the host to the uniformly distributed data [28]. The typical block structure of a
data scrambler is shown in Fig. 21.

The scrambler usually contains a pseudorandom number generator (PRNG)
block which is usually seeded by some value (e.g., logical block address (LBA)
or a physical page number (PPN)). This block generates a uniformly distributed
sequence S which is XORed with data sent from the host. As a result, DataS =
Data XOR S is programmed to NAND memory cells.

This way of data scrambling has a vulnerability which gives an attacker a
chance to degrade the reliability of NAND memory cells [29]. Since scrambler
processes the data using a pseudorandom number sequence, the attacker can collect
enough outputs (DataS) and restore the configuration data of the PRNG block (e.g.,
polynomial coefficients) [30]. Then, the attacker is able to build a mathematical
model of a scrambler and obtain output values for any input data patterns.

For example, if an attacker wants to program some particular data pattern (Dp)
to NAND, he/she processes this sequence using the mathematical model to obtain
Dx = (Dp XOR S) value and sends the output Dx to the device. As a result,
DataS = (Dp XOR S) XOR S = Dp will be programmed to the memory device.
Thus, the attacker is able to get any data patterns (worst-case data patterns, e.g.,
all zeros) in order to degrade NAND reliability. Since many memory devices are
manufactured with the same circuit design, the attacker can take advantage of using
the same mathematical model of a scrambler (obtained from a single device) to
degrade reliability of other devices.

The reliability of the NAND memory cells can be also degraded using the same
data pattern programming [29]. For example, if same data pattern (Data) is sent
from the host to the same LBA or PPN (the same seed value for PRNG) multiple
times, it is transformed to the same data pattern on NAND (DataS). As a result,
memory cells are programmed with the same value, and this leads to increasing of
bit error rate (BER).

24 S. S. Zalivaka and A. A. Ivaniuk

In this chapter, a modified design of the data scrambler is proposed. The use of
physical unclonable functions (PUFs) [2] as an additional data processing before
scrambling provides a way to:

1. Significantly decrease vulnerability to building a mathematical model of a
scrambler.

2. Encrypt the data without hardware costly algorithms (e.g., AES), which are not
used in mobile flash and IoT (Internet of Things) devices [49].

3. Increase the reliability of the NAND by avoiding programming the same data
patterns [29].

4. The use of PUF as an additional block for scrambler data encryption provides
additional security against cold-boot attacks [31] as PUF response for the same
challenge changes its value after each restart.

The proposed design of a data scrambler is based on adding PUF circuit to the
data path of a flash memory device. This provides enhanced security to the existing
scrambler design as it encrypts the data using unique PUF-generated key. It also
requires much smaller hardware overhead comparing to the classical encryption
algorithms (e.g., AES). Since PUF adds unique signature to the data, it becomes
much harder for an attacker to mathematically model scrambler and send worst-case
data patterns, which degrade the reliability of NAND memory cells. Furthermore,
even if the attacker managed to know the configuration of a PRNG block for a single
device, it does not give him/her the advantage for the other devices as PUF responses
are unique for every device. The presented solution has two possible options of
implementing the PUF:

1. Implementation of a PUF remains noisy which does not require hardware for
stabilization. However, NAND ECC engine has to be strengthened in order to
provide correction capability for errors brought by both NAND memory cells
and PUF response.

2. Design two separate ECC engines, a stronger one for NAND errors and a weaker
one for correcting errors added to data by PUF. According to experimental data,
the first option requires more hardware for implementation because it utilizes
NAND ECC engine with bigger correction capability.

4.2 Proposed Scrambler Circuit Operation

The usual data path of NAND flash memory device consists of ECC encoder
(decoder) and scrambler, which can be placed in different order (ECC before
scrambler and vice versa) depending on the design of a memory controller. Without
loss of generality, consider block design of a data path shown in Fig. 22.

In this case, ECC encoder is located before scrambler. Also PUF component is
added to the data path in order to provide lightweight encryption for user data. PUF
block is seeded by the same value as scrambler and generates a signature R which

NAND Flash Memory Devices Security Enhancement Based on Physical. . . 25

Fig. 22 Block diagram of the write data path including proposed scrambler design

Fig. 23 Block diagram of the read data path including proposed scrambler design

is unique for every memory device even if it has completely same design. Since
PUF output R can be noisy, optional small ECC engine (PUF ECC encoder) is
added to the design. This engine encodes host Data and converts it to DataP . The
PUF output R is XORed with encoded DataP ; encrypted data DataPR is further
processed by NAND ECC encoder block in order to get a code word DataPRE . The
encoded and encrypted data is scrambled in a standard way by XORing with PRNG-
generated value S as shown in Fig. 22. As a result, scrambled data DataPRES is to
be programmed to the NAND. PUF ECC encoder is optional block which is used to
protect data from PUF errors without modification of NAND ECC engine.

Decoding process is similar to the previously shown encoding (see Fig. 22) but
performed in the opposite order. The decoding scheme is shown in Fig. 23.

First, scrambled data Data∗
PRES �= DataPRES is read with errors as NAND-

based storage usually produces multiple errors during read operation. Then,
Data∗

PRES is descrambled using value S generated by PRNG as Data∗
PRE .

NAND ECC decoder corrects errors in Data∗
PRE and produces DataPR . Then,

DataPR is decrypted to Data∗
P using R∗ �= R value produced by PUF block. As

a result, Data∗
P will be corrupted by noise from PUF which is basically not stable.

Therefore, data sent to host is to be corrected by PUF ECC decoder as Data. In
case of omitting PUF ECC decoder block, NAND ECC Decoder should be placed
after XORing with PUF response as it has to correct both PUF and NAND noise.

Since the basic structure of the PUF can add errors to the data during decoding
stage, the capability of ECC should be enlarged. This can be done using two
techniques:

1. Enlarge the correcting capability of the NAND ECC engine.

26 S. S. Zalivaka and A. A. Ivaniuk

2. Correct data after PUF using additional small ECC engine (PUF ECC
decoder) [32] or enhancing PUF reliability [2].

Both techniques require additional hardware overhead for correcting unstable
PUF outputs. This overhead is smaller than utilization of cryptographic algorithms
(e.g., AES). The proposed design also decreases vulnerability to the same pattern
programming [29] (because PUF response R is not stable) and to changing data
pattern for every write operation. However, the presented implementation of the
scrambler is still vulnerable to machine learning modeling attacks. For example,
this issue can be addressed by adding obfuscating techniques to the challenge
generator [33].

4.3 Experimental Results

Assume that NAND ECC engine can be implemented as BCH code, additional PUF
ECC as Reed-Solomon code [34], and hardware overhead is estimated as FPGA
LUT and flip-flop units. Host transmits 1023 bits of data and PUF also generates
1023-bit response:

1. PUF is noisy, and BER (bit error rate) is 0.01, i.e., that PUF generates around 11
errors in 1023-bit response.

2. NAND produces maximum 70 errors, and this can be corrected with BCH [n =
1023, k = 323, t = 70] code.

3. NAND ECC overhead for this implementation consists of 5441 flip-flop and
17413 LUT blocks (Xilinx Artix-7 FPGA [35]).

4.3.1 Option 1

Since PUF response should not be corrected, NAND ECC correction capability
should be increased to t = 81 = 70 + 11. As a result, BCH [n = 1023, k =
213, t = 81] is to be implemented instead. Final hardware overhead for new ECC
engine is 6512 flip-flop and 20840 LUT blocks. Therefore, additional hardware cost
for PUF correction will be around 19.7%. However, the proposed approach can be
used to improve reliability against same data pattern issue because PUF response is
unpredictable.

4.3.2 Option 2

To correct errors brought by PUF responses, smaller PUF ECC engine (e.g., Reed-
Solomon [n = 1023, k = 1002, t = 11]) is to be implemented. Therefore, it
will require additional 624 flip-flop and 672 LUT blocks, which is less than 11%

NAND Flash Memory Devices Security Enhancement Based on Physical. . . 27

of additional hardware cost. Furthermore, this approach includes additional latency
overhead for PUF noise correction.

The estimation of hardware overhead is done in one of the possible ways (FPGA).
It is not restricted to other technologies of scrambler implementation (e.g., ASIC).

Real implementation of a scrambler should be a trade-off between Option 1 and
Option 2 in terms of hardware overhead and performance. Thus, the decision on
a final implementation can be made based on constraints of a particular NAND
flash memory device. Despite additional hardware cost, security and reliability
enhancements are the benefits of implementation scrambler in the proposed way.

4.4 Conclusion

This section presents a new approach to designing a scrambler in NAND flash
memory devices. The proposed design enhances physical security of data stored in
a flash memory device and also provides better reliability comparing to the existing
approaches. Scrambling algorithm has been implemented in Xilinx Artix-7 FPGA
in order to compare with existing encryption schemes as AES which is usually not
used in mobile NAND flash and/or IoT devices. In terms of hardware overhead, this
approach is at least three times more efficient than existing encryption engines.

5 Physical Unclonable Function-Based Error Detection
Algorithm for Data Integrity

5.1 Introduction

Data is usually stored in computer memory using many different representations
(e.g., binary numbers, strings, compressed formats, etc.). The attribute-value pair
format can be distinguished among the existing ones as it is widely used to represent
data (e.g., header, email, query; string, URL; metadata, data, database entries,
Internet messages, JSON objects, etc. [36]). Due to limitations of available memory
space, some of these pairs can be stored externally on another device. For example,
the general scheme of transmitting attribute-value pairs to the untrusted party is
shown in Fig. 24. The memory controller extracts the data and generates an attribute
(X) and value (Y) pair. This pair is further encoded by error correction codes (ECC)
in order to avoid data losses during transmission. As a result, the encoder generates
the value of Xe and Ye and sends it via an untrusted channel to the untrusted party
which stores the pair (Xe, Ye) until requested by the device. The data should be
sent back to the device and decoded to the original attribute-value pair (Xd = X,
Yd = Y).

28 S. S. Zalivaka and A. A. Ivaniuk

Fig. 24 General structure of data transmitting

Fig. 25 Structure of untrusted party for the attack

However, since the data is stored on the untrusted party side, an attacker can
observe and modify both the untrusted party and the channel [37]. Figure 25 shows
one of the possible attack scenario implementations.

Since the ECC engine is used to encode the data from the device, it is possible
to clone decoder and encoder blocks on the untrusted party side. Therefore, the

NAND Flash Memory Devices Security Enhancement Based on Physical. . . 29

original attribute-value pair (X, Y) can be modified by an attacker in order to reveal
the information or modify and send it back to the device to degrade performance
or data integrity. The untrusted party can operate in two modes, namely, ordinary
mode (S = “0”) when data is not modified and attack mode (S = “1”) when pair (X,
Y) is transformed to (Xm, Ym) and encoded to (Xme, Yme), which is sent back to the
device. Thus, if S = “1”, a pair (Xt , Yt) is decoded to the (Xd , Yd) �= (X, Y).

This way of data transmitting causes the following problems:

1. The attacker has access to the data sent via an untrusted channel as he can decode
it knowing the ECC algorithm.

2. The attacker also can modify X or Y value or both values at a time in order
to modify critical data on the device, degrade performance, corrupt the data
transmitted, etc.

3. Encryption can prevent these problems, but it usually requires significant mem-
ory and hardware resources to be utilized as a part of the controller.

For the problem described above, physical unclonable functions (PUFs) [2] can
be efficiently utilized to protect the data against unauthorized modification and
prove that pair (X, Y) is generated by a particular device. PUF is a hardware security
primitive which maps external input (challenge) into an output (response). This
mapping is unique, unpredictable, and unclonable for the particular chip which
has a PUF instance. In addition to hashing capability, PUF also extracts unique
intrinsic features of an integrated circuit. This property is used for making pair (X,
Y) protected against illegal access and modification.

The proposed method is based on using two PUF instances implemented on the
same circuit. The first PUF is utilized to generate a hash value (Rx) for the attribute
value (X) in order to use it as a key for masking linked value (Y). The encryption
process can be as complicated as possible, but for simplicity and for the sake of
hardware overhead reduction, the generated hash value Rx can be simply XORed
with Y . The result of encryption (Y ∗) is further hashed by second PUF instance,
and the response of the PUF is used to check whether the unique pair (X, Y) is
generated on a particular device. The PUFs utilized in this chapter should be stable
(Reliability value ≈1.0) and strong (the number of challenge-response pairs should
be exponentially large). For example, Arbiter PUF design with enhanced reliability
is a good candidate for the proposed method [38]. Using PUF for data integrity is
beneficial for the following reasons:

1. The attacker is not able to reproduce hash values generated by PUFs as he doesn’t
have access to the internals of the original device.

2. The generated response values can be used to check whether the pair (X, Y) is
generated by a particular device or never existed before.

3. The proposed algorithm is more hardware-efficient than the existing encryption
engines in terms of utilized chip area and power consumption.

4. Furthermore, encoding pair (X, Y) using PUF instances also allows detecting
errors even if they were not injected by an attacker. So it can be also utilized
instead of error detection engines.

30 S. S. Zalivaka and A. A. Ivaniuk

Points 2 and 4 provide data integrity based on PUF usage for both errors brought
by an attacker and errors caused by the noise in the channel and untrusted party.

5.2 Proposed Data Path Design

The proposed algorithm can be implemented by three modifications of the scheme
shown in Figs. 24 and 25.

A modified encoder is shown in Fig. 26.
In order to obfuscate the value of Y and the explicit connection between X and

Y , the following steps are to be completed:

1. The value of Y should be obfuscated using cryptographic salt value S produced
by salt generator. The generator can be implemented as a PUF or pseudorandom
number generator (PRNG). As a result, the value of Ys is obtained as an XOR
operation of Y and S (Ys = Y XOR S).

2. Obtain hash value RX =PUF0(X) (the response of PUF0 on challenge X).
3. Encrypt the value of Ys by XORing it with hash value RX (Y ∗ = Ys XOR RX).
4. Obtain a hash value Rc =PUF1(Ys). This value is used to prove that pair (X, Y)

is generated on this device.
5. The values (X, Y ∗, Rc) should be encoded by the same ECC engine as used in

Figs. 24 and 25 in order to obtain values (Xe, Y ∗
e , Rce).

6. The values (Xe, Y ∗
e , Rce) are to be sent via an untrusted channel to the untrusted

party. Thus, the code word is changed by adding extra hash value Rce.

The enhanced encoder requires two strong and stable PUFs and one multi-input
XOR gate in addition to the ECC engine previously used.

A modified decoder is shown in Fig. 27.

Fig. 26 Block diagram of enhanced encoder

NAND Flash Memory Devices Security Enhancement Based on Physical. . . 31

Fig. 27 Block diagram of enhanced decoder

Similarly to the encoding process, enhanced decoder utilizes two additional PUF
circuits and XOR gate. To compare received hash value Rcut with genuine Rc value,
an additional comparator is used:

1. Decode the received (Xe, Y ∗
e , Rce) values to get values of (X, Y ∗, Rc) using the

same decoding ECC engine as previously used.
2. Obtain hash value RX =PUF0(X).
3. Decrypt the value of Ys by XORing the value of Y ∗ with hash value RX (Ys =Y ∗

XOR RX).
4. Deobfuscate the value of Ys into a value of Y by XORing with salt value S.
5. Obtain hash value Rc =PUF1(Ys).
6. Compare the received hash value under test (Rcut) with the value of Rc. As

a result, flag value V is generated (V = “1” if received pair (X, Y) has been
generated (Rc = Rcut) by this device and V = “0” otherwise (Rc �= Rcut)).

The code word transmitted via an untrusted channel should be transformed from
(Xe, Ye) to (Xe, Y ∗

e , Rce).
The changes in the communication process are shown in Fig. 28.
Modified communication protocol also includes pool of shared resources which

consists of cryptographic primitives utilized by both enhanced encoder and decoder.
Since PUF0, PUF1, and salt generator are the same, the keys are consistent for
encoding and decoding processes.

As shown in Fig. 28, the attribute value (X) can be accessible by the untrusted
party, because it is encoded only by the ECC engine. This does not give an advantage
to the attacker as only the knowledge of the pair (X, Y) gives the possibility to
observe the data stored on the device side.

Salt generator should change the value of S from time to time, e.g., based on
timer (e.g., every 10min), the number of exchanged pairs (X, Y), etc. It is used to
prevent the attacker from taking advantage of functional dependency between X and
Y . If X and Y do not depend on each other, this block can be omitted.

Furthermore, an attacker will not be able to modify the message as it is
impossible to create a copy of PUFs to reproduce both encryption and encoding.
Even if an attacker modifies the data, this fact will be detected by a decoding scheme

32 S. S. Zalivaka and A. A. Ivaniuk

Fig. 28 Changed structure of data transmitting

based on the unique value of (Y ∗
e , Rce). The proposed approach also protects against

errors caused by the noise on an untrusted channel and the untrusted party side.

5.3 Example of Usage in Mobile NAND Flash Devices

The proposed algorithm can be efficiently utilized in Host-aware Performance
Booster (HPB) feature widely used in mobile flash devices [39] which is considered
the same as Host Memory Buffer (HMB) used in SSD drives [40]. The block
diagram of the proposed HPB algorithm enhancement is shown in Fig. 33.

Host stores HPB entries in the following format: LBAe, PPN∗
e , Rce. LBAe is a

logical block address encoded by ECC engine, i.e., it can be used by the host as a
plaintext. PPN∗

e is a physical page number encrypted by enhanced encoder as shown
in Fig. 26. In this case, LBAe corresponds to Xe and PPN∗

e to Y ∗
e . Rce is a hash value

of the PPN value.
The operation of a proposed modification of HPB algorithm can be described as

follows:

1. A pair (LBA, PPN) is created by controller and stored in NAND as L2P table.
2. In order to use host memory as an external cache, NAND I/F (Interface) sends

the pair (LBA, PPN) to enhanced encoder which encodes it into a triplet (LBAe,
PPN∗

e , Rce) according to the encoding algorithm shown in Fig. 26.
3. If host decides to use this HPB entry (LBAe, PPN∗

e , Rce), it sends it back to the
device.

4. Device controller decodes HPB entry (LBAe, PPN∗
e , Rce) into LBA, PPNHPB

(decoded PPN which could have been modified by host). The decoding scheme
is shown in Fig. 27.

NAND Flash Memory Devices Security Enhancement Based on Physical. . . 33

5. Enhanced decoder generates a value of V (validity of received HPB entry,
V = “1” when the entry is valid and V = “0” otherwise). LBA is also checked
in Dirty Map in order to ensure that (LBA, PPN) pair was not invalidated. Dirty
Bitmap returns a validity value VD (VD= “1” when pair (LBA, PPN) is not
invalidated and VD= “0” otherwise).

6. If both V and VD values are equal to “1”, NAND I/F uses the received value and
fetches the data by PPNHPB address. Otherwise, it has to search the LBA and
fetch the corresponding PPN from L2P table in NAND.

7. The proposed encoding and decoding algorithm provides a way to guarantee that
a pair (LBA, PPN) is created by a unique NAND flash memory device as it
utilizes PUF which is irreproducible by an attacker even if he knows the exact
design of the encryption algorithm.

5.4 Conclusion

The encoding and decoding algorithm is proposed for attribute-value data which
is transmitted via an untrusted channel. The algorithm utilizes strong and stable
PUFs to prove that the attribute-value pair received from the untrusted party was
generated by an authentic device. Furthermore, the algorithm is also used as an
error detection method which can detect errors caused by the noise in the channel.
The algorithm appends an initial code word with an additional hash value which
proves the authenticity of the sent pair.

The advantages of the algorithm are listed below:

• Protection of the transmitted data frommodifications by an attacker if the channel
is untrusted.

• Detection of the errors caused by both noise in the channel (if ECC engine cannot
correct all errors) and an attacker.

• Less additional hardware is required for the algorithm implementation compared
to the encryption engines.

The proposed method can also be used as a part of HPB (HMB) algorithms in
order to protect HPB entries and detect errors caused by the channel or injected by
the attacker. Thus, this algorithm can be used simultaneously for error detection and
security in NAND flash devices [48].

6 Conclusion

This chapter presents research results of SK hynix memory solutions Eastern
Europe in area of physical security for NAND flash memory devices. Compact
multimode PUF has been developed in order to be used as an entropy source with an
identification feature. The proposed TRNG can be used within the existing NAND

34 S. S. Zalivaka and A. A. Ivaniuk

flash controller in order to be utilized by security protocols. Randomness also has
been extracted directly from NAND flash memory by using read operations without
ECC protection [41]. NAND flash memory is also a source of unique identification
of the device which can generate more than 500 IDs utilizing only 1 block of
memory of 2 MB. Classical PUF designs have been used in order to improve key-
value pair transmission in HPB and HMB protocols [42]. Also scrambling engine
has been enhanced in order to provide more secure and reliable way of randomizing
data before sending it to the NAND memory cells [43].

Proposed solutions show the high potential of using NAND flash memory
as an entropy source for cryptography and statistical simulation applications.
Also classical PUF designs improve the security and reliability of data storage
and transmitting protocols. Thus, presented PUF-based security solutions can be
implemented in the areas with strict security and safety requirements (e.g., medical
devices [44], avionics [45], critical firmware [46], etc.).

Appendix

See Figs. 29, 30, 31, 32, and 33.

NAND Flash Memory Devices Security Enhancement Based on Physical. . . 35

F
ig

.2
9

H
ea
tm

ap
of

fli
pp

in
g
bi
ts
w
ith

in
a
si
ng

le
T
L
C
pa
ge

af
te
r
R

=
10
00

re
ad
s

36 S. S. Zalivaka and A. A. Ivaniuk

F
ig

.3
0

�
sc
or
es

fo
r
th
e
pa
ge
s
w
ith

th
e
sa
m
e
ad
dr
es
s
an
d
w
ith

in
th
e
sa
m
e
bl
oc
k
in

di
ff
er
en
ts
am

pl
es

NAND Flash Memory Devices Security Enhancement Based on Physical. . . 37

F
ig

.3
1

A
ve
ra
ge

ha
m
m
in
g
di
st
an
ce
s
be
tw

ee
n
re
ad
s
fo
r
di
ff
er
en
tp

ag
es

w
ith

in
a
bl
oc
k

38 S. S. Zalivaka and A. A. Ivaniuk

F
ig

.3
2

B
lo
ck

di
ag
ra
m

of
ch
al
le
ng
es

fo
rm

in
g
al
go
ri
th
m

fo
r
ID

ge
ne
ra
tio

n

NAND Flash Memory Devices Security Enhancement Based on Physical. . . 39

F
ig

.3
3

B
lo
ck

di
ag
ra
m

fo
r
H
PB

al
go
ri
th
m

ut
ili
zi
ng

pr
op
os
ed

en
co
di
ng

an
d
de
co
di
ng

m
et
ho
d

40 S. S. Zalivaka and A. A. Ivaniuk

References

1. Trusted Computing Group: TCG Storage Workgroup: Storage Certification Program. In:
Trusted Computing Group (2021) https://trustedcomputinggroup.org/wp-content/uploads/
Storage_Certification_Program_Rev_1_33-Published-Copy.pdf. Cited 14 Oct 2021

2. Zalivaka, S.S., et al. (2016). Design and implementation of high-quality physical Unclonable
functions for hardware-oriented cryptography. In Chang, C.-H., Potkonjak, M. (eds.) Secure
System Design and Trustable Computing, pp. 39–81. Springer, New York

3. Samsung Introduces Exynos i T100 for Secure and Reliable IoT Devices with Short-
Range Connectivity. In: Samsung (2019) . https://news.samsung.com/my/samsung-introduces-
exynos-i-t100-for-secure-and-reliable-iot-devices-with-short-range-connectivity. Cited 14
Oct 2021

4. Lu, T., Kenny, R., Atsatt, S.: Secure device manager for Intel Stratix 10 devices provides FPGA
and SoC security. In: Intel (2018). https://www.intel.com/content/dam/www/programmable/us/
en/pdfs/literature/wp/wp-01252-secure-device-manager-for-fpga-soc-security.pdf. Cited 14
Oct 2021

5. Toshiba Develops A New PUF Technology for Solid-State Authentication of IoT Equip-
ment. In: Istanbulpost (2018). https://www.istanbulpost.com.tr/toshiba-develops-a-new-puf-
technology-for-solid-state-authentication-of-iot-equipment/. Cited 14 Oct 2021

6. Chang, C.H., Zheng, Y., Zhang, L.: A retrospective and a look forward: fifteen years of physical
unclonable function advancement. IEEE Circ. and Syst. Mag. 17(3), 32–62 (2017)

7. Lee, J., et al: A technique to build a secret key in integrated circuits for identification and
authentication applications. Int. Symp. VLSI Circ. (VLSI’04), pp. 176–179 (2004)

8. Sehwag, V., Saha, T.: TV-PUF: a fast lightweight analog physical unclonable function. Int.
Symp. Nanoel. Inf. Syst. (iNIS’16), pp. 182–186 (2016)

9. Gassend, B., et al: Silicon physical random functions. In: ACM Conf. Comput. and Comm.
Secur. (CCS’02), pp. 148–160 (2002)

10. Cao, Y., et al.: CMOS image sensor based physical unclonable function for coherent sensor-
level authentication. IEEE Trans. Circuits Syst. I Regul. Pap. 62(11), 2629–2640 (2015)

11. Holcomb, D.E., Burleson, W.P., Fu, K.: Initial SRAM state as a fingerprint and source of true
random numbers for RFID tags. In: Int. Conf. RFID Secur. (RFID’07), pp. 1–2 (2007)

12. Tehranipoor, F., et al: DRAM-based intrinsic physically unclonable functions for system-level
security and authentication. IEEE Trans. Very Large Scale Integr. Circ. 25(3), 1085–1097
(2017)

13. Kumar, S.S., et al: Extended abstract: the butterfly PUF protecting IP on every FPGA. In: IEEE
Int. Worksh. on Hardw.-Orient. Secur. and Trust. (HOST’08), pp. 67–70 (2008)

14. Yamamoto, D., et al: Uniqueness enhancement of PUF responses based on the locations of
random outputting RS latches. In: Int. Worksh. Crypt. Hardw. and Emb. Syst. 2011 (CHES’11),
pp. 390–406

15. Jia, S., et al: Extracting Robust Keys from NAND Flash Physical Unclonable Functions. Int.
Conf. on Inf. Secur. (ISC’15), pp. 437–454 (2015)

16. Holcomb, D.E., Burleson, W.P., Fu, K.: Power-up SRAM state as an identifying fingerprint
and source of true random numbers. ieee T. Comp. 58(9), 1198–1210 (2009). https://doi.org/
10.1109/TC.2008.212

17. Suh, G.E., Devadas, S: Physical unclonable functions for device authentication and secret key
generation. In: ACM/IEEE Des. Autom. Conf. (DAC’07), pp. 9–14 (2007)

18. Kacprzak, T.: Analysis of oscillatory metastable operation of an RS flipflop. IEEE J. Solid
State Cir. 23(1), 260–266 (1988)

19. Digilent: Nexys 4 FPGA board reference manual. In: Digilent Inc. (2016). https://digilent.com/
reference/_media/reference/programmable-logic/nexys-4/nexys4_rm.pdf. Cited 02 Nov 2021

20. Barker, E., Kelsey, J.: Recommendation for random bit generator (RBG) constructions. In:
National Institute of Standards and Technology (NIST) (2016). https://csrc.nist.gov/CSRC/
media/Publications/sp/800-90c/draft/documents/sp800_90c_second_draft.pdf. Cited 14 Oct
2021

 13965 3822 a 13965 3822 a

https://trustedcomputinggroup.org/wp-content/uploads/Storage_Certification_Program_Rev_1_33-Published-Copy.pdf
https://trustedcomputinggroup.org/wp-content/uploads/Storage_Certification_Program_Rev_1_33-Published-Copy.pdf

 15250 10464 a 15250
10464 a

https://news.samsung.com/my/samsung-introduces-exynos-i-t100-for-secure-and-reliable-iot-devices-with-short-range-connectivity
https://news.samsung.com/my/samsung-introduces-exynos-i-t100-for-secure-and-reliable-iot-devices-with-short-range-connectivity

12158 14892 a 12158 14892 a

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01252-secure-device-manager-for-fpga-soc-security.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/wp/wp-01252-secure-device-manager-for-fpga-soc-security.pdf

 11466 19320 a 11466 19320
a

https://www.istanbulpost.com.tr/toshiba-develops-a-new-puf-technology-for-solid-state-authentication-of-iot-equipment/
https://www.istanbulpost.com.tr/toshiba-develops-a-new-puf-technology-for-solid-state-authentication-of-iot-equipment/

 29283 46994 a 29283 46994 a

https://doi.org/10.1109/TC.2008.212
https://doi.org/10.1109/TC.2008.212

27227 53635 a 27227 53635 a

https://digilent.com/reference/_media/reference/programmable-logic/nexys-4/nexys4_rm.pdf
https://digilent.com/reference/_media/reference/programmable-logic/nexys-4/nexys4_rm.pdf

 24549 56956 a 24549
56956 a

https://csrc.nist.gov/CSRC/media/Publications/sp/800-90c/draft/documents/sp800_90c_second_draft.pdf
https://csrc.nist.gov/CSRC/media/Publications/sp/800-90c/draft/documents/sp800_90c_second_draft.pdf

NAND Flash Memory Devices Security Enhancement Based on Physical. . . 41

21. Papandreou, N., et al.: Open block characterization and read voltage calibration of 3D QLC
NAND flash. In: IEEE Int. Rel. Phys. Symp. (IRPS’20), pp. 1–6 (2020)

22. Papandreou, N., et al.: Reliability of 3D NAND flash memory with a focus on read voltage
calibration from a system aspect. IEEE Non-Vol. Mem. Tech. Symp. (NVMTS’19), pp. 1–4
(2019)

23. Ruhrmair, U., Solter, J., Sehnke, F.: On the foundations of physical unclonable functions. In:
Cryptology ePrint Archive (2009). https://eprint.iacr.org/2009/277.pdf. Cited 21 Feb 2022

24. Vijayakumar, A., Patil, V.C., Kundu, S.: On testing physically unclonable functions for
uniqueness. In: IEEE Int. Symp. on Qual. El. Des. (ISQED’16), pp. 244–249 (2016)

25. Cai, Y., et al.: Error characterization, mitigation, and recovery in flash-memory-based solid-
state drives. Proc. IEEE 105(9), 1666–1704 (2017)

26. Hori, Y., et al.: Quantitative and statistical performance evaluation of arbiter physical unclon-
able functions on FPGAs. In: Int. Conf. Reconf. Comp. FPGA (ReConFig’10), pp. 298–303
(2010)

27. Micheloni, R., Crippa, L., Marelli, A.: Inside NAND Flash Memories, 582 p. Springer, New
York (2010)

28. Cha, Y., Kang, S.: Data randomization scheme for endurance enhancement and interference
mitigation of multilevel flash memory devices. ETRI J. 35(1), 166–169 (2013)

29. Cai, Y., et al.: Vulnerabilities in MLC NAND flash memory programming: experimental
analysis, exploits, and mitigation techniques. In: IEEE Int. Symp. on High-Perf. Comp. Arch.
(HPCA’17), pp. 49–60 (2017)

30. Van Zandwijk, J.P.: A mathematical approach to NAND flash-memory descrambling and
decoding. Digital Invest. 12, 41–52 (2015). https://doi.org/10.1016/j.diin.2015.01.003

31. Heninger, N.: Cold-boot attacks. In: Encyclopedia of Cryptography and Security (2011).
https://link.springer.com/referenceworkentry/10.1007/978-1-4419-5906-5_124. Cited 21 Feb
2022

32. Maes, R., Van Herrewege, A., Verbauwhede, I.: PUFKY: A fully functional PUF-based
cryptographic key generator. In: Crypt. Hardw. and Emb. Syst. (CHES’12), pp. 302–319 (2012)

33. Zalivaka, S..S., Ivaniuk, A.A., Chang, C.H.: Reliable and modeling attack resistant authentica-
tion of arbiter PUF in FPGA implementation with trinary quadruple response. IEEE Trans. Inf.
Forens. Secur. 14(4), 1109–1123 (2019)

34. Tomlinson, M., et al.: Error-Correction Coding and Decoding, 522 p. Springer, New York
(2017)

35. Xilinx: Artix-7 FPGAs Data Sheet: DC and AC Switching Characteristics. In: Xil-
inx Inc. (2021). https://www.xilinx.com/support/documentation/data_sheets/ds181_Artix_7_
Data_Sheet.pdf. Cited 11 Oct 2021

36. Amazon: What is a key-value database? In: Amazon Inc. (2019). https://aws.amazon.com/
nosql/key-value/. Cited 13 Oct 2021

37. Blahut, R.E.: Cryptography and Secure Communication, 587 p. Cambridge University Press,
Cambridge (2014)

38. Zalivaka, S..S., et al.: Multi-valued arbiters for quality enhancement of PUF responses on
FPGA implementation. In: Asia and South Pacific Des. Autom. Conf. (ASP-DAC’19), pp. 533–
538 (2019)

39. Jeong, W., et al.: Improving flash storage performance by caching address mapping table in
host memory. In: USENIX Worksh. on Hot Topics in Stor. and File Syst. (HotStorage’17),
pp. 19–24 (2017)

40. Dorgelo, J.: Host memory buffer (HMB) based SSD system. In: Proc. Flash Memory Sum-
mit (FMS’15) (2015). https://www.flashmemorysummit.com/English/Collaterals/Proceedings/
2015/20150813_FJ31_Chen_Dorgello.pdf. Cited 13 Oct 2021

41. Zalivaka, S.S., Ivaniuk, A.A.: Raw read based physically unclonable function for flash
memory. US patent application (US20210055912A1). https://patents.google.com/patent/
US20210055912A1 Cited 13 Oct 2021

42. Zalivaka, S.S., Ivaniuk, A.A.: Encoder and decoder using physically unclonable functions. US
patent (US11394529B2). https://patents.google.com/patent/US11394529B2 Cited 05 Oct 2022

 12649 6335 a 12649 6335
a

https://eprint.iacr.org/2009/277.pdf

 15902 24046 a 15902
24046 a

https://doi.org/10.1016/j.diin.2015.01.003

 -563 26260 a -563 26260 a

https://springerlink.bibliotecabuap.elogim.com/referenceworkentry/10.1007/978-1-4419-5906-5_124

 6041 37330 a 6041 37330 a

https://www.xilinx.com/support/documentation/data_sheets/ds181_Artix_7_Data_Sheet.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds181_Artix_7_Data_Sheet.pdf

25492 39544 a 25492 39544 a

https://aws.amazon.com/nosql/key-value/
https://aws.amazon.com/nosql/key-value/

 7817 51720 a 7817 51720 a

https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2015/20150813_FJ31_Chen_Dorgello.pdf
https://www.flashmemorysummit.com/English/Collaterals/Proceedings/2015/20150813_FJ31_Chen_Dorgello.pdf

 22080 55041 a 22080
55041 a

https://patents.google.com/patent/US20210055912A1
https://patents.google.com/patent/US20210055912A1

 9040 58362 a 9040 58362 a

https://patents.google.com/patent/US11394529B2

42 S. S. Zalivaka and A. A. Ivaniuk

43. Zalivaka, S.S., Ivaniuk, A.A.: Data scramblers with enhanced physical security. US patent
application (US20210326490A1). https://patents.google.com/patent/US20210326490A1
Cited 03 Nov 2021

44. Rodriguez, C.A.: Safeguard smart medical devices for enhanced patient safety. In:
Maxim Integrated (2020). https://www.maximintegrated.com/en/design/blog/safeguard-smart-
medical-devices-for-enhanced-patient-safety.html. Cited 22 Feb 2022

45. O’Neill, K., et al.: Protecting flight critical systems against security threats in commercial air
transportation. In: Dig. Avion. Syst. Conf. (DASC’16), pp. 1–7 (2016)

46. Protection against Reverse-Engineering, Counterfeiting/Cloning and Overbuilding. In: Intrin-
sic ID (2021). https://www.intrinsic-id.com/firmware-ip-protection/. Cited 22 Feb 2022

47. McIntyre, D.: Annual flash controller update. In: Proc. Flash Memory Summit 2019 (FMS’19).
https://www.flashmemorysummit.com/Proceedings2019/08-06-Tuesday/20190806_CTRL-
102A-1_McIntyre.pdf. Cited 11 Oct 2021

48. Tyson, M.: Researchers find “pattern of critical issues” in SSD encryption. In: HEXUS.net
(2018). https://hexus.net/tech/news/storage/123986-researchers-find-pattern-critical-issues-
ssd-encryption/. Cited 11 Oct 2021

49. Pickering, P.: NAND rises to the occasion in data-heavy IoT applications. In: Elec-
tronic Design (2021). https://www.electronicdesign.com/technologies/iot/article/21807634/
nand-rises-to-the-occasion-in-dataheavy-iot-applications. Cited 11 Oct 2021

50. Rajendiran, K.: Using PUFs for random number generation. In: Intrinsic ID (2021). https://
semiwiki.com/ip/intrinsic-id/303704-using-pufs-for-random-number-generation/. Cited 21
Feb 2022

51. Neustadter, D.: True random number generators for heightened security in any SoC. In: Syn-
opsys Inc (2021). https://www.synopsys.com/designware-ip/technical-bulletin/true-random-
number-generator-security-2019q3.html. Cited 21 Feb 2022

52. Intrinsic ID: Zign RNG. In: Intrinsic ID (2021). https://www.intrinsic-id.com/products/zign-
rng/. Cited 21 Feb 2022

 14552 800 a 14552 800 a

https://patents.google.com/patent/US20210326490A1

 9254
4121 a 9254 4121 a

https://www.maximintegrated.com/en/design/blog/safeguard-smart-medical-devices-for-enhanced-patient-safety.html
https://www.maximintegrated.com/en/design/blog/safeguard-smart-medical-devices-for-enhanced-patient-safety.html

 4925 9656 a 4925 9656
a

https://www.intrinsic-id.com/firmware-ip-protection/

 -563 11870 a -563 11870 a

https://www.flashmemorysummit.com/Proceedings2019/08-06-Tuesday/20190806_CTRL-102A-1_McIntyre.pdf
https://www.flashmemorysummit.com/Proceedings2019/08-06-Tuesday/20190806_CTRL-102A-1_McIntyre.pdf

 3209 15191 a 3209 15191
a

https://hexus.net/tech/news/storage/123986-researchers-find-pattern-critical-issues-ssd-encryption/
https://hexus.net/tech/news/storage/123986-researchers-find-pattern-critical-issues-ssd-encryption/

 8813 18512 a 8813
18512 a

https://www.electronicdesign.com/technologies/iot/article/21807634/nand-rises-to-the-occasion-in-dataheavy-iot-applications
https://www.electronicdesign.com/technologies/iot/article/21807634/nand-rises-to-the-occasion-in-dataheavy-iot-applications

 32220 20726 a 32220
20726 a

https://semiwiki.com/ip/intrinsic-id/303704-using-pufs-for-random-number-generation/
https://semiwiki.com/ip/intrinsic-id/303704-using-pufs-for-random-number-generation/

 6844 25153 a 6844 25153 a

https://www.synopsys.com/designware-ip/technical-bulletin/true-random-number-generator-security-2019q3.html
https://www.synopsys.com/designware-ip/technical-bulletin/true-random-number-generator-security-2019q3.html

 18215 27367 a 18215
27367 a

https://www.intrinsic-id.com/products/zign-rng/
https://www.intrinsic-id.com/products/zign-rng/

ReRAM-Based Neuromorphic
Computing

Fabiha Nowshin and Yang Yi

1 Introduction

As the complementary metal-oxide semiconductor (CMOS) continues to scale,
it is becoming increasingly difficult to meet the energy and power requirements
of processors [1]. The cost of data transmission will heavily affect the energy
requirements of the cloud and therefore Internet of Things (IoT) devices [2]. As
IoT continues to advance, it is becoming impossible to shuttle data back and
forth for computation and analysis. Edge computation is necessary in this case
to allow processing the relevant data that can be sent to the cloud [3, 4]. The
edge devices that will be developed will need to be energy and power efficient
to be able to preprocess the data before it can be transmitted [4]. Vector-matrix
multiplications are a key operation in edge computing, and they can be carried
out using resistive random access memory (ReRAM) crossbars [5]. ReRAMs are
two-terminal nonvolatile memory devices that follow the switching mechanism of
a memristor [5]. These ReRAMs are used to create accelerators for several deep
learning applications. ReRAMs are emerging nonvolatile memories (eNVM)s that
have been rigorously researched over the years and have emerged as invaluable
to in-memory computations in the development of neuromorphic hardware. The
traditional von Neumann computing system suffers from an issue known as memory
bottleneck due to the CPU and memory being separate units shared by a bus [6].
The shuttling of data back and forth leads to increased energy consumption and
latency that is worsened by CMOS scaling. ReRAM-based crossbars allow for in-
memory or near-memory computations that can tackle the issues experienced by
the von Neumann computing systems [7]. Furthermore, because of their ability

F. Nowshin (�) · Y. Yi
Virginia Tech, Blacksburg, VA, USA
e-mail: fabiha27@vt.edu; yangyi8@vt.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Iranmanesh (ed.), Frontiers of Quality Electronic Design (QED),
https://doi.org/10.1007/978-3-031-16344-9_2

43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16344-9_2&domain=pdf

 885 56845 a 885 56845
a

mailto:fabiha27@vt.edu

 7857 56845 a 7857 56845
a

mailto:yangyi8@vt.edu

 -2016
61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-16344-9_2

44 F. Nowshin and Y. Yi

to directly process analog signals, ReRAM-based accelerators will greatly benefit
edge computing and IoT devices. ReRAMs will be crucial in replacing power- and
energy-consuming analog-to-digital (ADC) and digital-to-analog (DAC) converters
[8].

The traditional memories include static random access memory (SRAM),
dynamic random access memory (DRAM), and flash. These typical memory
technologies rely on the charge storage phenomenon, where in DRAM the charges
are stored at the cell capacitor, at SRAM the charges are stored at the inverter
nodes which are cross-coupled, and in flash the floating gate of the transistor is
responsible for the charge storage [9]. The main disadvantage that arises from
technology scaling is that these stored charges tend to get lost and introduce noise
and reliability issues. Some key requirements for eNVMs are that they have to
be scalable, possess nonvolatile storage, operate on low voltage, provide a long
retention time, have high endurance, hold many synaptic strength levels, have
a simple framework, and demonstrate synaptic learning capability. The popular
eNVMs that were developed based on these properties include phase-change
random access memory (PCRAM), spin-transfer-torque magnetic random access
memory (STT-MRAM), and ReRAM that are not based on this charge storage
mechanism. Compared to its eNVM counterparts, ReRAMs have received immense
popularity in neuromorphic computing hardware due to its compatibility with
CMOS technology, scalability, low power consumption, and analog conductance
modulation properties [8–11]. Therefore, in this chapter we will focus on the use of
ReRAMs in the area of neuromorphic computing.

In this topic we will cover the basic characteristics of a memristor device
and its detailed switching mechanism. An overview of existing eNVMs will
be discussed including the differences, advantages, and disadvantages of each
technology compared to conventional memory structures. The use of ReRAMs as
neurons and synapses will be discussed in this chapter to provide readers with
more details about their use in neuromorphic computing. The process of writing
and reading from crossbars will be covered as well, along with how they can be
used to carry out in-memory computing operations. The different types of neural
networks that can be built with the help of ReRAMs will be covered in detail in this
chapter including the construction of multilayer perceptron (MLP), spiking neural
networks (SNN), convolutional neural networks (CNN), recurrent neural networks
(RNN), and in-memory computing architectures.

2 The Memristor

The memristor was developed as the fourth basic circuit element by Professor Leon
Chua from the University of Berkeley, in the year 1971 [12]. The three fundamental
circuit elements that previously existed are the resistors, capacitors, and inductors.
There are four basic variables in the field of electrical engineering which are
current, voltage, charge, and flux. As depicted in Fig. 1, the relationship between

ReRAM-Based Neuromorphic Computing 45

Fig. 1 Relationship between
the four key electrical
components

the fourth element, the memristor, can be used to explain the missing link between
the variables charge and flux. From the figure, the equation for the memristor is
given by:

dϕ = M· dq, (1)

where theM is the memristance of the device and ϕ and q are the flux and the charge
stored, respectively.

The memristor is a two-terminal nonvolatile passive device, also known as a
memory resistor. The resistance of the memristor will increase when electric charge
flows through the device in one direction and will decrease when it flows in the
other direction. When no voltage is applied, the memristor retains its previous state
of resistance which gives it the memory property. The current voltage or the I-V
characteristic curve is the most important property of a memristive device. This
curve is represented by a pinched hysteresis loop. The current and voltage are both
zero at the origin. As the frequency increases, the hysteresis loop becomes thinner,
and eventually with infinite frequency, the memristor starts to behave like a resistor,
having a linear relationship between current and voltage as portrayed in Fig. 2 [13,
14]. This specific I-V characteristic curve is essential in demonstrating the on and off
state of the memristor. The details on memristor implementation using ReRAMs are
discussed in the next section which will show how this hysteresis curve is necessary
for the switching mechanism and memory property of the device.

3 ReRAM: Implementation of the Memristor

Memristors can be implemented using resistive random access memory (ReRAM).
The typical structure of a memristor or ReRAM is a metal-insulator-metal structure,

46 F. Nowshin and Y. Yi

Fig. 2 The current voltage
characteristic curve of the
memristor

f₁

f₂

f₃ > f₂ > f₁

I

V

f₃

Fig. 3 (a) The structure of a ReRAM. (b) The operation of a ReRAM

an oxide layer sandwiched between two metal electrodes at the top and bottom as
portrayed in Fig. 3a [7]. ReRAMs have a high resistance state (HRS) and a low
resistance state (LRS). When switching from HRS to LRS, as shown in Fig. 3b, the
process is termed as the set process, and the process of switching from LRS to HRS
is termed as the reset process [7]. When the ReRAM is in the initial state, it has to
go through an electroforming process where a voltage greater than the set voltage is
necessary to allow the device to demonstrate its resistive switching property.

Two types of switching exist in ReRAMs, known as the unipolar and bipolar
switching. The switching demonstrated in Fig. 3b is the unipolar switching behavior.
In unipolar switching, the transition from HRS to LRS depends on only the
amplitude of the voltage applied. In bipolar switching, the transition depends on
both the amplitude and the polarity of the applied voltage. Compliance current on
the other hand is a current value provided by the semiconductor parameter analyzer
to prevent permanent dielectric breakdown in the set process.

ReRAMs in general can be classified into two categories, oxide-RAM (OxRAM)
and conductive bridge RAM (CBRAM) [9]. The basic structure of the OxRAM
and CBRAM are shown in Fig. 4a, b. The main difference between OxRAM and
CBRAM is that in OxRAM the filament has oxygen vacancies in the metal oxide

ReRAM-Based Neuromorphic Computing 47

Fig. 4 (a) The structure of an
OxRAM. (b) The structure of
CBRAM

layer and in CBRAM the filament has mental atoms in the oxide layer that is created
by the metal ions when they move into the solid electrolyte. While OxRAM and
CBRAM have similar characteristics, the major difference is that OxRAM has a
smaller on and off resistance ratio and higher endurance compared to CBRAM.

4 Comparison of ReRAMs with Other Memory Technologies

All the existing eNVMs including PCRAM, STT-MRAM, and ReRAM have a
similar characteristic of being a two-terminal device with a nonvolatile property.
These devices all switch from HRS to LRS to demonstrate their memory property
that is made possible by applying a voltage or current signal, for instance, at
one of the terminals of the device. The switching mechanism is different from
one device to the other [9]. In PCRAM, the switching is based on chalcogenide
materials which allow the device to switch between the crystalline phase which
is the LRS and the amorphous phase which is the HRS under the application
of an electric signal. STT-MRAM on the other hand is constructed by having a
thin tunneling insulator layer sandwiched between two ferromagnetic layers. The
parallel and antiparallel configuration demonstrate the HRS and LRS, respectively.
The ReRAM, as discussed previously, bases its switching mechanism on the
formation and the destruction of the conductive filament in the oxide layer between
the two metal electrodes.

Table 1 demonstrates the comparison between the traditional memory tech-
nologies of SRAM, DRAM, NOR, and NAND and the eNVMs, STT-MRAM,
PCRAM, and ReRAM [9]. Because of the different materials and type of switching
in the eNVMs, PCRAMs, STT-MRAMs, and ReRAMs are used in different types
of applications. STT-MRAM compared to the other eNVMs have low operating
voltage and fast read and write time as well as a longer endurance which makes it
suitable for replacing embedded DRAM or SRAM. On the other hand, PCRAM and

48 F. Nowshin and Y. Yi

Table 1 Summary of the characteristics of traditional and emerging memory technologies

SRAM DRAM NOR NAND STT-MRAM PCRAM ReRAM

Voltage <1 V <1 V >10 V >10 V <1.5 V <3 V <3 V
Read time ~1 ns ~10 ns ~50 ns ~10 μs <10 ns <10 ns <10 ns
Write time ~1 ns ~10 ns 10 μs–

1 ms
100μs–
1 ms

<10 ns ~50 ns <10 ns

Retention N/A ~64 ms >10y >10y >10y >10y >10y
Endurance >1E16 >1E16 >1E5 >1E4 >1E15 >1E9 >1E66~1E12
Energy to
write
(J/bit)

~fJ ~10 fJ ~100 pJ ~10 fJ ~0.1 pJ ~10 pJ ~0.1 pJ

Cell area >100 F2 6 F2 10 F2 <4 F2 6–50 F2 4–30 F2 4–12 F2

ReRAM can be seen as an alternative for NOR and NAND flash memories due to
their faster read and write times and low programming voltage.

5 Use of ReRAMs as Synapses

Human brains contain many neurons and synapses in the nervous system. As
depicted in Fig. 5a, the neurons are connected to many other neurons in the human
body. The synaptic weight changes based on the stimulus that passes from the
presynaptic neuron to the postsynaptic neuron [15]. Figure 5b shows that as the input
signals are applied to the dendrites of the neurons, they pass through the axon and
accumulate; when the action potential exceeds a certain threshold, a spike is fired.
The weight of the synapses is altered by the flow of signals through the neurons.
In the synapse, the amplitude of the signal sent from the presynaptic neuron to
the postsynaptic neuron can be increased or decreased which gives synapses the
property of plasticity.

The function of the synapse can be demonstrated by a ReRAM device when
developing neural networks. This is demonstrated in Fig. 5c, where if we use two
CMOS neurons to carry out the pre- and post-neuron functions, the memristor
can act as the synapse between them. The ReRAM can be used to implement the
plasticity of the synapses which is a very popular training algorithm in ReRAM-
based neuromorphic systems called spike time-dependent plasticity (STDP). This
plasticity is a crucial aspect to mimic the memory aspect of the brain. Hardware
implementations of these neural networks pose a particularly challenging problem
in this field, and it becomes nearly impossible to map large-scale neural networks
using CMOS circuitry which also adds to increased area and power consumption.
However, with ReRAMs’ compatibility property with CMOS technology and
their ability to act as synapses, this aids in simpler hardware implementation of
neuromorphic computing architectures and IoT devices.

ReRAM-Based Neuromorphic Computing 49

Fig. 5 (a) Biological neuron model. (b) Artificial neuron design. (c) Synapse design based on the
memristor

6 Use of ReRAMs as Neurons

Aside from being used as synapses, ReRAMs can also be used as neurons. Leon
Chua also predicted that there exists chaotic behavior in between regions in a
memristor and exploiting these chaotic regions would lead to the development of
devices that exhibits artificial neuronal behavior [16]. Recent research has shown
that they can be used to model some of the dynamics of the neuron [17–20]. In
ReRAM-based neurons, when pulses are applied, the devices accumulate the signal

50 F. Nowshin and Y. Yi

until the neuron generates a spike and therefore changes the conductance of the
memristor. The Hodgkin-Huxley neuron model, for instance, can be implemented
by ReRAMs [17]. Some research has also shown that cortical neurons can be
mimicked using ReRAMs. In [18] a memristor emulator is discussed that is capable
of producing spikes and demonstrates the firing mechanism of neurons. Their
proposed emulator can imitate regular spiking, fast spiking, chattering, and intrinsic
spiking.

A ReRAM-based neuron model is discussed in [19] which uses the unipolar
operation of the ReRAM to demonstrate the Carillo-Hoppensteadt model. It further
discusses neuromorphic pulse coding with the help of both ReRAM synapses and
neurons. Their developed neuron has shown to carry out coincidence detection and
pre-stimulus inhibition when pulse trains are applied. This is useful in pulse coding
that is required for STDP, a Hebbian learning mechanism used in the process of
training spiking neural networks that will be covered later in this chapter. The
ReRAM-based neuron was able to demonstrate both oscillatory and excitatory
modes, a characteristic of biological neuron.

In the year 2020, the first device to act like a neuron was developed, known as the
Mott memristor [20]. Previous implementations of neurons included second-order
elements that could demonstrate some neuromorphic properties like exhibiting peri-
odic spiking and oscillations. However, in order to fully emulate a neuron, complete
neuromorphic action potential functionality is necessary that include phasic and
periodic spiking, bursting, chaos and threshold dynamics, and oscillatory behavior.
The third-order Mott memristor combines both the resistor and the capacitor which
changes the resistance based on a change in the temperature of the device, as
depicted in Fig. 6. It essentially utilizes niobium oxide NbO2 to which when a DC
voltage is applied, the oxide switches from an insulating mode to conduction mode.
As temperature drops, the device switches to back to the insulating mode, triggering
a spiking current signal that is similar to that of a biological neuron. Two non-
monotic and Boolean logic operations were implemented using a simple network
consisting of these Mott memristors.

These developments of ReRAM-based neurons could eventually pave the way for
transistor-less neuromorphic systems. With the nanoscale property of ReRAMs, the
development of these ReRAM-based neurons could eventually lead to more brain-
like energy and power-efficient systems. Research on the different oxide materials
is still ongoing, and future work involves implementing these ReRAM devices on
large-scale systems to carry out complex operations.

7 ReRAMs in Neuromorphic Computing

A simplified structure of a von Neumann computing system is shown in Fig. 7a. The
CPU and the memory unit are separated in the structure and large amount of energy
is spent in the fetching and storing of data to and from the memory unit to the CPU
[21]. Machine learning applications rely on significant amount of data movements

ReRAM-Based Neuromorphic Computing 51

Fig. 6 (a) Circuit model of the Mott memristor. (b) Schematic of the memristor with different
materials. (c) Actual cross-section of the memristor [20]

because of shuttling weights stored in the memory. This makes it very challenging
for such applications to run on von Neumann architectures. The performance of
the system degrades due to this data transfer, and the interconnect parasitic further
contributes to the higher energy consumption of the system as technology scales.
Furthermore, because of technology scaling, Moore’s law is reaching a plateau
where computers cannot double their performance every 18 months [1]. This is
where neuromorphic computing comes in, an idea proposed by Dr. Carver Mead,
which discusses the idea of using very large-scale integrated (VLSI) circuits to
emulate biological nervous system [22].

An example of a typical neuromorphic computing architecture is shown in Fig.
7b. They have a highly parallelized structure where the input and output layers
are connected by layers of neurons [23]. They mimic the biological system where
the neurons have synaptic connections between them. As discussed in the previous
section, this is where the synaptic property of the ReRAMs can be applied and hence
can be used to build many types of neuromorphic computing architectures.

52 F. Nowshin and Y. Yi

Fig. 7 (a) Architecture of a von Neumann computing system. (b) Architecture of a neuromorphic
computing system

8 ReRAM Crossbars

Vector-matrix multiplications are a critical operation in IoT devices and edge
computing. Due to the simple and compact structure of ReRAM devices, they
can be used to integrate a high-density crossbar structure to carry out the vector-
matrix multiplication operations. In ReRAM crossbars, the device is located at
the crosspoint of two nanowires that are perpendicular to each other. In Fig. 8, a
typical ReRAM crossbar structure is demonstrated. The crossbar allows for large
amount of in-memory computation operations like vector-matrix multiplication and
reduces the area and power consumption significantly [24]. The horizontal lines
of the crossbar are the wordlines and the vertical lines are the bitlines. In neural
networks the weights can be mapped into the conductance state of the ReRAMs
in the crossbar. For a crossbar with i rows and j columns, when the input voltages
are applied to the ith row of the crossbar, the output accumulated current can be
calculated from the jth bitline as

Ij =
∑n

i=0
GijVi, (2)

where Gij is the conductance of the memristor and Vi is the voltage applied. To map
the weights into the ReRAM crossbar, the values of the conductance in the crossbar
can be written one by one [25]. For instance, from Fig. 8, to write the value G13

onto that specific ReRAM, a particular amplitude and writing pulse is applied to
the ReRAM from the horizontal top wire, and the bottom wire is set to the ground
voltage. Besides that specific ReRAM, the rest of the horizontal and vertical wires
have half of the voltage applied to them. Since there is no voltage drop across the
other devices, their conductances cannot be changed. The targeted ReRAM will
experience the change in the conductance value with the application of the input
voltage V that needs to be above the threshold of the ReRAM device. For the read
operation, if, for instance, the desired ReRAM to read the voltage from is located
at the first row and third column, a voltage of V1 is applied to the first row while

ReRAM-Based Neuromorphic Computing 53

Fig. 8 A ReRAM crossbar

all other rows and columns are grounded. The output current can be calculated from
the bitline using Eq. (2).

A major issue during the readout process of ReRAM crossbar is the problem
of sneak path current. This is when the current leaks to the neighboring unselected
ReRAM cells [25, 26]. Sneak path issue is being studied by researchers since it
leads to increased energy consumption and reduces the read margins. To solve this
problem, several access devices have been implemented with ReRAMs to form
structures such as the one transistor-one memristor (1T1R) structure, one diode-
one memristor (1D1R) structure, or one selector-one memristor (1S1R) structure.
Using transistors as a selector device is most common among ReRAMs, giving
them the 1T1R structure. They not only provide the selector function but also
allow to control the switching behavior like the compliance current adjustment in
ReRAMs. Using the 1T1R structure, each transistor can be used to select and update
each ReRAM individually. Other common two terminal selectors for high-density
crossbars include nonlinear devices, volatile switches, or rectifying diodes [27].
These configurations can be used to construct the crossbar and reduce the sneak
path issue as well as facilitate its compatibility with CMOS technology.

ReRAMs have shown promising results in being integrated with CMOS technol-
ogy in 3D configurations, leading to densely packed memory structures. Semicon-
ductor/nanowire/molecular integrated circuits (CMOL) architecture is an example
of a densely packed ReRAM crossbar array integrated with CMOS computational
units [24, 28]. In the CMOL structure, the ReRAM crossbar array is slanted to
the alignment of the CMOS neurons. The input and output of the CMOS neurons
are connected to the top and bottom nanowires respectively by the use of the
ReRAM device, as shown in Fig. 8. In simulation level, the ReRAM-based crossbar
architectures PRIME and RESPARC have shown to achieve energy savings of more
than 103 when compared to CMOS neural processor units [26]. CBRAMmemristors
integrated with CMOS neurons have been developed experimentally where these

54 F. Nowshin and Y. Yi

ReRAMs are programmed digitally [29]. There has also been an implementation
of a 3D large-scale crossbar of five layers of 100 nm crossbars [30]. CrossNets is
another popular neuromorphic architecture that uses 3D integration of neurons and
ReRAM synapses [31].

9 ReRAM-Based Spiking Neural Network

Compared to the traditional neural networks, SNNs mimic biological neuron models
more closely by transmitting spiking signals. They are the third generation of
artificial neural networks [32–34]. Similar to biological neurons, in SNNs, the
signals accumulate, and once a threshold is exceeded, a spike is fired. They are
more power and energy efficient due to the binary nature of spikes.

In SNNs, a common neuron model is the leaky integrate and fire (LIF) neuron
model [35]. This model can be described using the following differential equations:

τmem
dVi

dt
= (Vi − Vrest) + RIi − Si(t) (Vi − Vrest) (3)

τsyn
dIi

dt
= −Ii(t) + τsyn

∑

j

WijSj (t) (4)

From the equations, Vrest and Vi are the resting potential and the membrane
potential of the neurons and τ syn and τmem are the membrane time constants with
Ii and R as the synaptic current and the input resistance. The input current is an
integration of the spikes weighted together, and the Dirac delta function can be used
to describe the spike train where the spiking time of the jth neuron is tkj :

Sj (t) =
∑

k

δ
(
t − tkj

)
· tkj (5)

Since ReRAM crossbar structures can be used to compute vector-matrix multi-
plications as discussed in the previous section, the weight matrixWij can be mapped
into crossbar. In SNNs, the spike values can either be 0 or 1, and hence the output
of the crossbar is an integrated sum of the input spikes.

10 Spike Time-Dependent Plasticity

SNNs have a major issue in terms of accuracy compared to other ANNs. Training
SNNs are fairly difficult due to their spiking nature. The synapse between the two

ReRAM-Based Neuromorphic Computing 55

neurons carries the weight, and the main purpose of the training algorithm is to
update the weights during training to be used for an application. Supervised and
unsupervised learning are the two types of learning algorithms [35]. Supervised
learning is where the datasets are labeled to correctly the classify the outputs.
Unsupervised learning is where machine learning algorithms are used to group
unlabeled datasets based on the similarities and the dissimilarities between them.
Supervised backpropagation learning algorithms have been shown to be effective in
ANNs to solve complex problems [35]. But for SNNs, supervised training methods
do not exist due to their spiking nature. Backpropagation training techniques
do not necessarily work well with SNNs because the spiking events become
nondifferentiable while backpropagating and the information that was stored in
spike timings gets lost.

One option explored by researchers was to train ANNs using static input images
and then with the use of encoding to map the ANN to SNN [35–37]. Encoding
schemes have received great attention in recent years in order to convert the
inputs into spike events. There have been issues with this regarding efficiency
and loss of information, for instance, when the information is encoded to spikes,
they have values of either 0 or 1 and this may cause important information to
vanish. Among the developed encoding schemes, the two common ones are rate and
temporal encoding schemes. In rate encoding scheme, information is encoded in
the frequency of the spikes, while in temporal encoding the information is encoded
in the specific timing of the spikes [38, 39]. In all these networks, the training is
carried out on the benchmark datasets like MNIST and CIFAR-10 which means
they convert static images to spiking events. This indicates that the network is not a
full SNN and it cannot take advantage of spatiotemporal information.

A very popular unsupervised learning technique in SNNs is the Hebbian learning
rule, spike timing-dependent plasticity (STDP) [40–42]. This learning technique
was initially developed in 1940 based on the dependence between the presynaptic
and the postsynaptic spikes. The weight of the synapse increases if the presynaptic
spike appears before the postsynaptic spike, also known as long-term potentiation
(LTP), and the weight decreases if the presynaptic spike appears after the postsy-
naptic spike, also known as long-term depression (LTD) [40]. This STDP curve is
illustrated in Fig. 9. The learning function for STDP is described in the following
equation:

STDP (�t) = �w = |x| =

⎧
⎪⎨

⎪⎩

A−e
�t/

τ− ,�t < 0

A+e
−�t/

τ+ ,�t ≥ 0

(6)

where the terms A− and A+ are the constants of the potentiation and the
depression of the STDP curve for the time difference �t between the presynaptic
and the postsynaptic spikes and the terms τ+ and τ− determine the gradient of
the curve. The weight change is limited by the inequality wmax ≥ w ≥ wmin, and
the weight adaptation speed is controlled by the weight change rate σ given by the

56 F. Nowshin and Y. Yi

Fig. 9 Spike
timing-dependent plasticity
plot

following equation:

wnew =
{

wold + σ�w (wmax − wold) ,�w > 0
wold + σ�w (wold − wmin) ,�w ≤ 0

(7)

11 STDP Functionality in ReRAMs

ReRAMs have shown to implement STDP characteristics as discussed previously.
When voltage is applied on electrodes of these ReRAM devices, the conductance
level of the device changes based on the timings of the applied voltage spikes.
Recent research has shown several experimental demonstrations of this STDP
functionality in binary ReRAM devices involving material of TiOx, Al2O3/TiO2,
WOx, TaOx/Ta2O5, HfO2, and CeOx [43–48]. In this chapter we will demonstrate
the STDP results from the Pt/Al2O3/TiO2-x/Ti/Pt ReRAMs that were fabricated
in a 12 × 12 crossbar circuit to demonstrate the STDP mechanism in ReRAM-
based materials [45]. In this work the authors used three different dependencies of
weight change between the presynaptic spikes and the postsynaptic spikes to show
the STDP behavior in weight updates, as depicted in Fig. 10g, h and i. The initial
conductance value of the ReRAM was set to 33μS, and the presynaptic and the
postsynaptic pulses applied to the electrodes of the selected ReRAM are the ones
depicted in Fig. 10a, b, and c with a specific delay time of �t between them. The
memristor’s new conductance value was measured afterward and calculated. The
different pulse shape produces the different STDP curves. Using the waveform from
Fig. 10a, the STDP function was measured for the different conductance values from
G = 25 μS, 50 μS, 75 μS, and 100 μS. By changing the initial conductance value,
each ReRAM develops its own dynamic range and hence produces a different STDP

ReRAM-Based Neuromorphic Computing 57

a
0.6

0.4

0 20 40 60
t(ms)

0 20 40 60
t(ms)

0 50 100 150
t(ms)

V
ol

ta
ge

 (
V

)

V
ol

ta
ge

 (
V

)

V
ol

ta
ge

 (
V

)
V

ol
ta

ge
 (

V
)

V
ol

ta
ge

 (
V

)

V
ol

ta
ge

 (
V

)

0.2

0.0

−0.2

−0.4

0.5

100

75

50

25

0

SET

THRESHOLD

RESET

THRESHOLD

SET

THRESHOLD

RESET

THRESHOLD

SET

THRESHOLD

RESET

THRESHOLD

0.0

−0.5

−1.0

−25

−50

−75

−100

−60 −40 −20

Δt (ms) Δt (ms) Δt (ms)

Δt (ms)Δt (ms)

ΔG
 (

%
)

ΔG
 (

%
)

ΔG
 (

%
)

Δt (ms)

0 20 40

Min
Max

Min
Max

Min
Max

60

20

0

−60 −40 −20 0 20 40 60 −60 −40 −20

−20
−40
−60

−80
0 20 40 60

−60 −40 −20 0 20 40 60 −100

100

80
60
40
20

0

−50 0 50 100

−100 −50 0 50 100

0.5

0.0

−0.5

−1.0

0.5

0.0

−0.5

−1.0

−0.6

0.6Pre
Post

Pre
Post

Pre
Post0.4

0.2

0.0

−0.2

−0.4

−0.6

0.6

0.4

0.2

0.0

−0.2

−0.4

−0.6

b c

d e f

ihg

−60

−40

−20

Fig. 10 STDP implementation emulating the biological synapses in Layer 5 and Layer 4 of the
neurocortex, left and middle column respectively, and in the GABAergic synapses in the right
column. (a-c) The applied pre synaptic and post-synaptic voltage pulses. (d-f) The applied time
maxima and minima of the net voltage given as functions of the time interval between the pre and
post-synaptic pulses that are applied to the memristor. (g-i) The measured STDP window with the
red points showing the averages and the black error bars showing the standard deviations for 10
experiments for each time interval [45]

curve, as shown in Fig. 11. From the plot it can be observed that when the initial
conductance value is nearer to the minimum value, the gradient of the LTD is very
low, while when the initial conductance value is nearer to the maximum value, the
gradient of the LTP is very low.

The STDP mechanism is demonstrated in another ReRAM device of the
Ag/TiO2:Ag/Pt configuration developed in [49]. This device shows that the pulse
width that needs to be applied to carry out the STDP learning is in the order
of nanoseconds, 105 times quicker than the human brain and significantly faster
than other oxide-based memristors. This means there will be a large change in
conductance as spike times are closer to each other. Hence this specific structure
can be used to speed up neuromorphic applications. It can be seen that two different
STDP learning rules can be implemented using this device. A biomorphic action
potential-like waveform was used to obtain the asymmetric Hebbian learning rule.

58 F. Nowshin and Y. Yi

200
a b

150

100

50

0

−50

200

150

100

50

0

0

−50

−50
5050

100

13.02a

bt

ct

bG

cG

74.52

0.1469 0.1495

8.17

3.13e49.987e4

−20.8

−4.54e−5 −3.67e−5

25
G

0
 (μS)

G
0 (μS)

50
75
100

−100

ΔG
 (

%
)

ΔG
 (

%
)

−60 −40 −20 0 20 40 60
Δt (ms)

Δt (ms)

Δt >0 Δt >0

Fig. 11 (a) Experimentally measured STDP for different conductances. (b) 3D sur-face plot of
the STDP curve [45]

Meanwhile, the anti-asymmetric Hebbian learning rule was obtained by using a
waveform with a different order. Two STDP plots were obtained by injecting pre-
and post-spiking pulse pairs that were preprogrammed in different time windows
starting from 6 μs to 200 ns, demonstrating its rapidness.

A major challenge in STDP is that the synaptic weight update depends on
both the spiking of the presynaptic and the postsynaptic signals, and when using
ReRAMs, they should be adaptable to changes in conductance based on these
signals. To successfully implement the STDP functionality, ReRAMs should be able
to achieve different stable states depending on the applied signals, demonstrating
their synaptic behavior. There have been several demonstrations of STDP on
ReRAM devices, making them a suitable candidate for AI accelerators. Their ability
to mimic the memory functions as well as the biological learning capabilities of
synapses will allow ReRAMs to confront the von Neumann bottleneck problems in
neuromorphic computing systems.

12 ReRAM-Based SNN Architectures

With SNNs being the third generation of ANNs, there have been several implemen-
tations of ReRAM-based SNNs. They take advantage of both the spatiotemporal
capabilities of SNN and the synaptic properties of ReRAMs and use them as the
vector-matrix multiplication blocks in the crossbar units. One such example is the
ReRAM-based SNN architecture that exploits the computing-in-memory (CIM)
property of ReRAMs [50, 51]. The designed architecture consists of four major
parts: the inter-spike interval (ISI) encoded input layer, the fabricated memristor
crossbar array to carry out the vector-matrix multiplication, hidden stages to
transmit signals from one stage to the next, and a final output layer with a time-
to-first-spike (TTFS) decoding scheme. The overall architecture is shown in Fig.
12a. From the architecture it can be seen that the inputs applied (images shown in

ReRAM-Based Neuromorphic Computing 59

this case) are converted to spiking signals and the information is encoded in the
times between the spikes that are the ISI encoded signals. It is a temporal encoding
scheme where the inputs are encoded in two dimensions, both the timing of the
spikes and the time between the spikes. This encoding scheme is carried out by
developing input preprocessing units using CMOS 180 nm technology. The units are
based on a transconductance amplifier voltage-to-current conversion module, two
LIF neuron units to generate the spiking signals, and a charge pump-based extractor
unit. The matrix-vector multiplications are carried out in the intermediate stages
and the signal is converted back to an ISI encoded signal. In the final output stage,
the classification is done using a TTFS decoding scheme where the output from
the ReRAM crossbar is converted to a spiking signal. This is done via a current
amplifier to amplify the outgoing current from the crossbar and then feeding the
signal to an LIF neuron module to generate spikes. The outputs are then classified
based on whichever output neuron spikes first.

For the evaluation of the network, 5 × 4 images of the digits 0–9 were
used and inputted to the system, as shown in Fig. 12b. For each clock cycle of
0.5 MHz, each image is processed, and the network is able to successfully identify
all the digits. The designed ReRAM-based SNN architecture shows competitive
results compared to the state-of-the-art neuromorphic architecture with a power
consumption of 2.9 mW in evaluating images from 0–9 with an inference speed
of 2 μS. A large-scale three-layer software model is developed to test the network
against the benchmark handwritten dataset of MNIST. The software model uses the
conductance parameters and models the memristor crossbar for the vector-matrix
multiplication layers and adds the ISI and TTFS layers for the input and output
layers, respectively. Based on the simulation results, using the ISI encoding scheme
with the ReRAM crossbar provides the highest accuracy of 87%.

Another work realizes a novel SNN with ReRAM-based inhibitory synapses
to demonstrate the lateral inhibition and homeostasis [52]. The advantage is that
it can reduce the number of connections that are needed for lateral inhibition
from N2 to N and reduces the hardware complexity. The schematic of the fully
connected and convolutional SNN is shown in Fig. 13. There is an inhibitory neuron
and the ReRAM-based inhibitory synapses that were added to obtain homeostasis
and lateral inhibition. The inhibitory neurons receive spikes through the ReRAM
synapse from the excited neurons in the learning layer, and then this inhibitory
neuron sends spikes to the connected excitatory neurons to carry out the task of
lateral inhibition. Software simulations were carried out against the benchmark
MNIST dataset, and the demonstrated method shows two times higher accuracy
than unsupervised STDP-based SNNs. In these results, the nonideal characteristics
of the ReRAM devices were also considered when carrying out the simulations such
as limited resistor states, device variations, and open devices.

Although SNNs are faster and more power and energy efficient than traditional
artificial neural networks, they suffer from the memory bottleneck issue of von
Neuman computing systems. As we move into the future, the increase in the demand
for data is becoming tremendous, and with the use of ReRAMs in SNNs for CIM
operations, the issue of memory wall can be mitigated. The computations can be

60 F. Nowshin and Y. Yi

a

1111

1001

1001

1001

1111

One Clock Preprocessing Stage

Memristive

LIF Neuron Layer

P
re

pr
oc

es
si

ng
 S

ta
ge

E
nc

od
in

g
S

ta
ge

Intermediate Stage

Time to First Spike

Current Amplifier

Crossbar

Encoding Stage

V
1

V
2

V
3

V
4

V
5

I1

V1

V2

V3

V4
980

1

1 1

1

1

1 1

980

1

1 1

1

1

1 1

1

980

980

980980 980

980

1 980

980

1 980 980

9809809801

1 1

1

1

1

1

1

980980

980

980

980

980 980 980

980980

980980

980

980

980

980980980

980 980

980

Cycle

I2 I3 I4

I1 I2 I3 I4 I5

I1

I2

I3

I4

b

Input Image
Inter-spike Interval

Memristive Crossbar

V
1 G

1.1
G

1.2

G
2.2G

2.1

G
m.1

G
m.2 G

m.n

G
1.m

G
2.m

V
2

V
m

l
1

l
2

l
n

Classification using

TTFSEncoder

In
te

r-
sp

ik
e

In
te

rv
al

E
nc

od
in

g

P
os

t P
ro

ce
ss

in
g

S
ta

ge

LI
F

 N
eu

ro
n

S
ta

ge

V1

V2

V3

V4

V5

Fig. 12 (a) Architecture of the memristor-based spiking neural network. (b) Hardware simulation
setup for the architecture

done inside the memory, using these ReRAM devices as storage. With developments
in ReRAM-based SNN architectures, we can move one step closer to high-speed and
compact IoT devices.

13 Other ReRAM-Based Neural Networks

Apart from being used in SNNs, ReRAMs have also been used in other types of
neural networks like CNNs and RNNs. CNNs are mainly useful for large data
analysis in the field of computer vision and consist of alternating convolution

ReRAM-Based Neuromorphic Computing 61

Fig. 13 The schematic of the proposed (a) fully connected and (b) convolutional SNNs for lateral
inhibition and homeostasis

and pooling layers for feature extraction from images and then finally fully
connected layers for classification [53, 54]. ISAAC, PipeLayer, and AtomLayer are
some popular ReRAM-based CNN accelerators [55–57]. The initially developed
pipelined architecture ISAAC demonstrated 14.8×, 5.5×, and 7.5× improvements
in throughput, energy, and computational density compared to the DaDianNao
architecture. While ISAAC does not consider weight updates and is susceptible
to pipeline bubbles, PipeLayer uses highly pipelined execution of both training
and testing [56]. On the other hand, AtomLayer uses atomic layer computation to
carry out one network at a time to address the issues arising from the pipelined
architectures and achieves a high power efficiency of 1.1× in inference for ISAAC
and 1.6× in training for PipeLayer [57].

Another type of neural network where ReRAMs are used are RNNs. Derived
from feedforward neural networks (FNNs), RNNs contain internal loops inside
the hidden layers, giving them the recurrent connection property and allowing
the information to stay in the network for a certain time [58]. They also mimic
biological neurons more closely due to their dynamic property that allows them
to process information in both spatial and temporal domains. In [59] a ReRAM-
based processing-in-memory (PIM) architecture is designed that is able to accelerate
RNN computation. The system throughput is increased using an RNN-friendly
pipeline, and the architecture achieves a 79× higher computing efficiency compared
to GPU baselines. A hardware implementation of RNN using ReRAM crossbar
is demonstrated in [60] that uses feedforward and feedback matrices. Based on
the simulation results, it was shown that compared to CMOS implementations,
ReRAM synapses show significant improvements in terms of energy and computing
efficiency. Furthermore, using ReRAMs for RNNs showed greater improvement in
terms of speed compared to FNNs.

62 F. Nowshin and Y. Yi

14 Conclusion

In this chapter the overall structure of the ReRAM is discussed and how it can be
implemented. The ability of ReRAMs to emulate biological synapses as well as
neurons are highlighted in this chapter. With their several properties of low power
consumption, analog conductance modulation, scalability, and compatibility with
CMOS technology, ReRAMs have become a very promising technology in bio-
inspired neuromorphic applications. They can be packed into high-density crossbar
structures and used to carry out vector-matrix multiplication, a key operation in
machine learning and artificial intelligence applications.

ReRAM-based SNNs are highlighted in this chapter to demonstrate how both the
event-based spiking networks can be combined with ReRAM synapses, especially
since SNNs are the closest neural networks to the biological systems. Furthermore,
with their STDP learning capability, ReRAMs pave the way for efficient training in
SNNs, addressing the major issue of accuracy in these types of neural networks. The
use of ReRAMs has also been seen in other neural networks like CNNs and RNNs.
While ReRAMs still suffer from certain issues like sneak path current, unstable
resistance states, and reliability issues, they have great potential in replacing CMOS
circuitry and analog-to-digital and digital-to-analog converters and providing sig-
nificant improvements in power, area, and energy consumptions. Ongoing research
on ReRAMs and ReRAM-based neural networks are paving the way for efficient
neural network accelerators.

References

1. Haron, N.Z., Hamdioui, S.: Why is CMOS scaling coming to an END? In: 2008
3rd International Design and Test Workshop, pp. 98–103 (2008). https://doi.org/10.1109/
IDT.2008.4802475

2. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): a vision
architectural elements and future directions. Future Gener. Comput. Syst. 29(7), 1645–1660
(2013)

3. Yocam, E.W.: Evolution on the network edge: intelligent devices. IT Professional. 5(2), 32–36
(2003). https://doi.org/10.1109/MITP.2003.1191790

4. Li, C., et al.: Analogue signal and image processing with large memristor crossbars. Nat.
Electron. 1(1), 52–59 (2018)

5. Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circuits Theory. 18(5), 507–519
(1971). https://doi.org/10.1109/TCT.1971.1083337

6. Backus, J.: Can programming be liberated from the Von Neumann style? A functional style
and its algebra of programs. Commun. ACM. 21, 613–641 (1978)

7. Wong, H.-S.P., et al.: Metal–oxide RRAM. Proc. IEEE. 100(6), 1951–1970 (2012)
8. Upadhyay, N.K., Jiang, H., Wang, Z., Asapu, S., Xia, Q., Yang, J.J.: Emerging memory devices

for neuromorphic computing. Adv. Mater. Technol. 4(4) (2019)
9. Yu, S., Chen, P.: Emerging memory technologies: recent trends and prospects. IEEE Solid-State

Circuits Mag. 8(2), 43–56 (2016). https://doi.org/10.1109/MSSC.2016.2546199
10. Xie, Y., Zhao, J.: Emerging memory technologies. IEEE Micro. 39(1), 6–7 (2019). https://

doi.org/10.1109/MM.2019.2892165

http://doi.org/10.1109/IDT.2008.4802475
http://doi.org/10.1109/MITP.2003.1191790
http://doi.org/10.1109/TCT.1971.1083337
http://doi.org/10.1109/MSSC.2016.2546199
http://doi.org/10.1109/MM.2019.2892165

ReRAM-Based Neuromorphic Computing 63

11. Park, J.: Neuromorphic computing using emerging synaptic devices: a retrospective summary
and an outlook. Electronics. 9(9), 1414 (2020)

12. Keshmiri, V.: A Study of the Memristor Models and Applications (2014)
13. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found.

Nature. 453(7191), 80–83 (2008)
14. Williams, S.R.: How we found the missing memristor. Spectrum, IEEE. 45(12), 28–35 (2008)
15. Gerstner, W., Kistler, W.M.: Spiking Neuron Models. Cambridge Univ. Press, Cambridge

(2002)
16. Moore, S.: Memristor breakthrough: first single device to act like a neuron. IEEE Spectrum.

(2020)
17. Mehonic, A., Kenyon, A.J.: Emulating the electrical activity of the neuron using a silicon oxide

RRAM cell. Front. Neurosci. 10, 57 (2016)
18. Babacan, Y., Kaçar, F., Gürkan, K.: A spiking and bursting neuron circuit based on memristor.

Neurocomputing. 203, 86–91 (2016)
19. Nakada, K.: Neural pulse coding using ReRAM-based neuron devices. IEICE Tech. Rep.

117(415), 63–68 (2018)
20. Kumar, S., Williams, R.S., Wang, Z.: Third-order nanocircuit elements for neuromorphic

engineering. Nature. 585(3474), 518–523 (2020)
21. Zhirnov, L., Cavin, R., Gammaitoni, L.: Minimum energy of computing fundamental consid-

erations. In: ICT-Energy-Concepts Towards Zero-Power Info. and Commun. Technology, vol.
7, (2014)

22. Mead, C.: Neuromorphic electronic systems. Proc. IEEE. 78(10), 1629–1636 (1990)
23. Walczak, S., Narciso, C.: Artificial neural networks. In: Encyclopedia of Physical Science and

Technology, 3rd edn, pp. 631–645 (2003)
24. Huang, A., et al.: Memristor neural network design. In: Memristor and Memristive Neural

Networks, pp. 1–35 (2018)
25. Shevgoor, M., Muralimanohar, N., Balasubramonian, R., Jeon, Y.: Improving memristor

memory with sneak current sharing. In: 2015 33rd IEEE International Conference on Computer
Design (ICCD), pp. 549–556 (2015)

26. Camunas-Mesa, L.A., Linares-Barranco, B., Serrano-Gotarredona, T.: Neuromorphic spiking
neural networks and their memristor-CMOS hardware implementations. Materials. 12(17)
(2019)

27. Chen, Y.-C., Lin, C.-C., Hu, S.-T., Lin, C.-Y., Fowler, B., Lee, J.: A novel resistive switching
identification method through relaxation characteristics for sneak-path-constrained selectorless
RRAM application. Sci. Rep. 9(1), 1–6 (2019)

28. Likharev, K.K., Strukov, D.B.: Introducing Molecular Electronics. Springer-Verlag, New York
(2004)

29. Kim, K., et al.: A functional hybrid memristor crossbar-array/CMOS system for data storage
and neuromorphic applications. Nano Lett. 12(1), 389–395 (2011)

30. Li, C., Han, L., Jiang, H., Jang, M.-H., Lin, P., Wu, Q., et al.: Three-dimensional crossbar
arrays of self-rectifying Si/SiO2/Si memristors. Nat. Commun. 8, 719–813 (2017)

31. Likharev, K.K.: CrossNets: neuromorphic hybrid CMOS/nanoelectronic networks. Sci. Adv.
Mater. 3(3), 322–331 (2011)

32. Ghosh-Dastidar, S., Adeli, H.: Spiking neural networks. Int. J. Neural Syst. 2009, 295–308
(2009)

33. Wu, Y., Deng, L., Li, G., Zhu, J., Shi, L.: Spatio-temporal backpropagation for training high-
performance spiking neural networks. arXiv preprint arXiv:1706.02609. (2017)

34. W. Maass, “Networks of spiking neurons: the third generation of neural network models,”
1997.

35. Fouda, M., Kurdahi, F., Eltawil, A., Neftci, E.: Spiking neural networks for inference and
learning: a memristor-based design perspective. arXiv preprint arXiv:1909.01771. (2019)

36. Diehl, P.U., Neil, D., Binas, J., Cook, M., Liu, S.-C., Pfeiffer, M.: Fast-classifying high-
accuracy spiking deep networks through weight and threshold balancing. Proc. Int. Joint Conf.
Neural Netw. 2015, 2933–2940 (2015)

64 F. Nowshin and Y. Yi

37. Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., Liu, S.-C.: Conversion of continuous-valued
deep networks to efficient event-driven networks for image classification. Front. Neurosci. 11,
682 (2017)

38. Zhao, C., Wysocki, B.T., Liu, Y., Thiem, C.D., McDonald, N.R., Yi, Y.: Spike-time-dependent
encoding for neuromorphic processors. ACM J. Emerg. Technol. Comput. Syst. 12(3), 23–46
(2015)

39. Yu, Q., Tang, H., Tan, K.C., Yu, H.: A brain-inspired spiking neural network model with
temporal encoding and learning. Neurocomputing. 138, 3–13 (2014)

40. Iakymchuk, T., Rosado-Muñoz, A., Guerrero-Martínez, J.F., Bataller-Mompeán, M., Francés-
Víllora, J.V.: Simplified spiking neural network architecture and STDP learning algorithm
applied to image classification. EURASIP J. Image Video Process. 2015(1), 4 (2015)

41. Shuai, Y., Pan, X., Sun, X.: Spike-timing-dependent plasticity in memristors. In: Memristor
and memristive neural networks. IntechOpen, London (2017. [Online]. Available: https://
www.intechopen.com/chapters/56763). https://doi.org/10.5772/intechopen.69535

42. Frohlich, F.: Network Neuroscience. Academic Press, Cambridge, USA (2016)
43. Seo, K., Kim, I., Jung, S., Jo, M., Park, S., Park, J., et al.: Analog memory and spike-timing-

dependent plasticity characteristics of a nanoscale titanium oxide bilayer resistive switching
device. Nanotechnology. 22, 254023 (2011)

44. Tan, Z.-H., Yang, R., Terabe, K., Yin, X.-B., Zhang, X.-D., Guo, X.: Synaptic metaplasticity
realized in oxide memristive devices. Adv. Mater. 28(2), 377–384 (2015)

45. Prezioso, M., Merrikh-Bayat, F., Hoskins, B., Likharev, K., Strukov, D.: Self-adaptive
spike-time-dependent plasticity of metal-oxide memristors. arXiv Preprint arXiv:1505.05549.
(2015)

46. Hsieh, C.-C., et al.: A sub-1-volt analog metal oxide memristive-based synaptic device with
large conductance change for energy-efficient spike-based computing systems. Appl. Phys.
Lett. 109(22), 223501 (2016)

47. Kim, S., Choi, S., Lu, W.: Comprehensive physical model of dynamic resistive switching in an
oxide memristor. ACS Nano. 8(3), 2369–2376 (2014)

48. Matveyev, Y., et al.: Crossbar nanoscale HfO2-based electronic synapses. Nanoscale Res. Lett.
11(1), Dec (2016)

49. Yan, X., et al.: Memristor with Ag-cluster-doped TiO2 films as artificial synapse for neuroin-
spired computing. Adv. Funct. Mater. 28(1), 1705320 (2017)

50. Nowshin, F.: Spiking neural network with memristive based computing-in-memory circuits
and architecture. M.S. Thesis, Bradley Department of Electrical and Computer Engineering,
Virginia Tech, VA (2019)

51. F. Nowshin, Y. Yi, “Memristor-based deep spiking neural network with a computing-in-
memory architecture”, n 2022 23rd International Symposium on Quality Electronic Design
(ISQED), pp. 1-6. IEEE, 2022

52. Zhao, Z., et al.: A memristor-based spiking neural network with high scalability and learning
efficiency. IEEE Trans. Circuits Syst. II Exp. Briefs. 67(5), 931–935 (2020)

53. Kamencay, P., Benco, M., Mizdos, T., Radil, R.: A new method for face recognition using
convolutional neural network. Digit. Image Process. Comput. Graph. 15(4), 664–672 (2017)

54. Albawi, S., Mohammed, T.A., Al-Zawi, S.: Understanding of a convolutional neural network.
In: Engineering and Technology (ICET) 2017 International Conference on, pp. 1–6. IEEE
(2017)

55. Shafiee, A., et al.: ISAAC: a convolutional neural network accelerator with in-situ analog
arithmetic in crossbars. In: Proc. ISCA, pp. 14–26 (2016)

56. Song, L., Qian, X., Li, H., Chen, Y.: PipeLayer: a pipelined ReRAM-based accelerator for
deep learning. In: 2017 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pp. 541–552 (2017). https://doi.org/10.1109/HPCA.2017.55

57. Qiao, X., et al.: Atomlayer: a universal reram-based cnn accelerator with atomic layer
computation. In: DAC (2018)

58. Schmiduber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117
(2015)

https://www.intechopen.com/chapters/56763
http://doi.org/10.5772/intechopen.69535
http://doi.org/10.1109/HPCA.2017.55

ReRAM-Based Neuromorphic Computing 65

59. Long, Y., Na, T., Mukhopadhyay, S.: ReRAM-based processing-in-memory architecture for
recurrent neural network acceleration. IEEE Trans. Very Large Scale Integr. VLSI Syst. 26(12),
2781–2794 (2018). https://doi.org/10.1109/TVLSI.2018.2819190

60. Long, Y., Jung, E.M., Kung, J., Mukhopadhyay, S.: ReRAM crossbar based recurrent neural
network for human activity detection. In: 2016 International Joint Conference on Neural
Networks (IJCNN), pp. 939–946 (2016). https://doi.org/10.1109/IJCNN.2016.7727299

http://doi.org/10.1109/TVLSI.2018.2819190
http://doi.org/10.1109/IJCNN.2016.7727299

Flash: A “Forgotten” Technology in VLSI
Design

Sunil P. Khatri, Sarma Vrudhula, Monther Abusultan, Kunal Bharathi,
Shao-Wei Chu, Cheng-Yen Lee, Kyler R. Scott, Gian Singh, and Ankit Wagle

1 Chapter Summary

In this chapter, we begin in Sect. 2 with a background in floating gate technologies.
In Sect. 3, we describe how flash transistors can be used to realize ASIC designs
with significantly improved power, delay, and area metrics. Features such as the
ability to control speed binning, mitigation of transistor aging, and delay tuning
are quantified. In Sect. 4, we describe how flash can be used to realize both digital
and analog convolutional neural network (CNN) accelerators. Section 5 described
a flash-based processing in-memory approach, while Sect. 6 describes flash-based
analog circuit design for DACs and LDO (low drop-out) DC-DC converters.

2 Technology Overview

In this section, we present a background on flash technology that is necessary for
understanding the promise of flash—in processing in non-volatile memory (NVM),
digital and analog circuit designs, machine learning accelerators, and more. In
Sect. 2.1, we describe the structure of a basic flash transistor, and the methods used
to adjust its device threshold voltage, Vth. Next, we present a survey of existing

S. P. Khatri (�) · M. Abusultan · K. Bharathi · S.-W. Chu · C.-Y. Lee · K. R. Scott
Texas A&M University, College Station, TX, USA
e-mail: sunilkhatri@tamu.edu; abusultan@tamu.edu; kunal-bharathi@tamu.edu;
shaowei22@tamu.edu; cylee@tamu.edu; kylerrscott@tamu.edu

S. Vrudhula · G. Singh · A. Wagle
Arizona State University, Tempe, AZ, USA
e-mail: vrudhula@asu.edu; gsingh58@asu.edu; awagle1@asu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Iranmanesh (ed.), Frontiers of Quality Electronic Design (QED),
https://doi.org/10.1007/978-3-031-16344-9_3

67

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16344-9_3&domain=pdf

 885
51863 a 885 51863 a

mailto:sunilkhatri@tamu.edu

 9749 51863 a 9749 51863
a

mailto:abusultan@tamu.edu

 18176 51863 a 18176 51863 a

mailto:kunal-bharathi@tamu.edu

-2016 52970 a -2016 52970 a

mailto:shaowei22@tamu.edu

 6824 52970 a 6824 52970 a

mailto:cylee@tamu.edu

 13634 52970 a 13634
52970 a

mailto:kylerrscott@tamu.edu

 885 56845 a 885 56845 a

mailto:vrudhula@asu.edu

 8442 56845 a 8442 56845 a

mailto:gsingh58@asu.edu

 16103 56845 a 16103 56845
a

mailto:awagle1@asu.edu

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-16344-9_3

68 S. P. Khatri et al.

flash devices. Finally in Sect. 2.2, we show how “pseudo-flash” transistors can be
constructed from regular MOSFETs.

2.1 Flash Transistors

As depicted in Fig. 1, a flash transistor is a field-effect transistor (FET) with two
gates: a control gate, which is similar to the control gate of a CMOS transistor, and a
buried and uncontacted floating gate, which acts as a capacitor that can store electric
charge. By applying voltage pulses to the transistor terminals, one can program or
erase the device. This changes the voltage of the floating gate, Vfg , and is used to
set the transistor threshold voltage, Vth. During programming, electrons are forced
through the oxide and become trapped on the floating gate, thereby decreasing Vfg

and increasing Vth. The movement of electrons through the oxide is referred to
as tunneling. During erasure, electrons are removed from the floating gate, which
increases Vfg and decreases Vth. Erasure will result in a Vth that is negative. When
done correctly, programming will result in a desired Vth.

There are two primary methods for inducing electron tunneling: Fowler-
Nordheim (FN) tunneling [1] (Fig. 2a) and hot-electron injection (HEI) [2] (Fig. 2b).
In FN tunneling, erasure is achieved by driving the control gate to GND, floating the
source and drain terminals, and driving the substrate (bulk) to a voltage of 10–20V
[3–8]. For area efficiency reasons, several flash transistors share a common bulk,
so erasure is performed on all of them simultaneously. In flash memory designs,
erasure is applied to an entire block. Programming via FN tunneling is achieved by
driving the source, drain, and bulk terminals to GND while applying voltage pulses
to the control gate. Each pulse will tunnel some electrons through the oxide and onto
the floating gate, causing an increase of the transistor threshold voltage, �Vth. The
magnitude of �Vth for each voltage pulse is determined by the height and duration
of the pulse, governed by the Incremental Step Pulse Programming (ISPP) model
[9, 10]. Under the ISPP model, the device undergoes several program-verify cycles,
until the desired Vth is achieved. The Vth after Ns programming pulses is given by
Vth = V init

th + β�VppNs , where β is a material-dependent constant and �Vpp is
the pulse step increment. The ISPP can be used to achieve a very precise Vth with a

Fig. 1 Cross section of a
flash transistor

Flash: A “Forgotten” Technology in VLSI Design 69

Fig. 2 Schematic diagram of (a) FN tunneling and (b) hot-electron injection

granularity approaching �Vpp [9, 11], at the cost of increased Ns . Once electrons
are trapped in the floating gate, they remain trapped for several years [12, 13], or
until removed by an erase operation.

When using HEI, electrons can be tunneled onto the floating gate, reducing Vfg

and increasing Vth. A large gate-source voltage (Vgs) is applied. A high drain-source
voltage (Vds) is applied in pulses. Each pulse creates a high electric field, and causes
electrons to gain energy as they travel through the field. Electrons are pulled toward
the floating gate due to the high Vgs . If the energy of electrons is higher than the
barrier of the oxide, some electrons tunnel through the oxide and are trapped on
the floating gate. The amount of electrons tunneled with each pulse, and therefore
�Vth, is determined by the duration and amplitude of the Vds pulses.

Different flash technologies have been developed and have matured over the
years to suit various applications. Table 1 summarizes the technology, character-
istics, and durability of various embedded flash devices over the years. For each
device, we present technological details (such as process node, charge storage
material, additional mask layers required, and operating voltages) as well as
performance characteristics such as endurance and retention.

2.2 Pseudo-Flash Transistor

As discussed in Sect. 2.1, flash transistors need additional steps in the fabrication
flow to form a second gate for storing electrons. As a result, previous works have
proposed floating gate transistors that use a vanilla CMOS process. We call these
devices “pseudo-flash” transistors. A pseudo-flash transistor is a device created
from multiple MOSFETs. Some of these MOSFETs act as capacitors, and they
electrically isolate a node that will act as the floating gate. Like embedded flash
transistors, charge can be stored on this floating gate to choose the transistor Vth.

The works of [42–53] propose a pseudo-flash transistor shown in Fig. 3. It con-
sists of a PMOS transistor (Mfg), a poly-poly capacitor (Cg), and a MOS capacitor
(Ctun). The gate input of the PMOS transistor is coupled by two capacitors. There
is no DC path that allows electrons to escape from the node Vfg . To increase

70 S. P. Khatri et al.
Ta

bl
e

1
Su

m
m
ar
y
of

em
be
dd
ed

fla
sh

de
vi
ce
s

Te
ch
no
lo
gy

E
le
ct
ri
ca
lc
ha
ra
ct
er
is
tic

s
D
ur
ab
ili
ty

Ty
pe

R
ef

N
od
e
(n
m
)

C
ha
rg
e
st
or
ag
e
m
at
er
ia
l

E
xt
ra

m
as
ks

St
or
ag
e
le
ve
ls

V
pr
og

V
er
as
e

V
op
er
at
in
g

E
nd
ur
an
ce

R
et
en
tio

n

E
E
PR

O
M

[1
4]

25
00

Po
ly
si
lic

on
1

4
13

V
13

V
5
V

10
K

10
ye
ar
s

H
iV

E
E
PR

O
M

[1
5]

20
00

Po
ly
si
lic

on
0

2
16

V
16

V
10

V
10

K
10
00

h

C
-F
la
sh

[1
6]

18
0

Po
ly
si
lic

on
3

2
5
V

5
V

1.
8
V

1
K

10
0
ye
ar
s

C
M
O
S

[1
7]

18
0

Po
ly
si
lic

on
0

2
4.
75

V
4.
75

V
1.
8
V

1
K

10
0
ye
ar
s

E
E
PR

O
M

[1
8]

18
0

Po
ly
si
lic

on
0

2
4
V

4.
5
V

1.
8
V

10
K

N
A

M
O
N
O
S

[1
9]

18
0

N
itr
id
e

7
4

4.
5
V

4.
5
V

1.
8
V

10
0
K

10
ye
ar
s

C
M
O
S

[2
0]

13
0

Po
ly
si
lic

on
N
A

2
12

V
12

V
5
V

10
K

10
ye
ar
s

E
E
PR

O
M

[2
1]

13
0

Po
ly
si
lic

on
N
A

4
8
V

14
V

3.
3
V

10
K

10
ye
ar
s

E
m
be
dd
ed

fla
sh

[2
2]

13
0

Po
ly
si
lic

on
2

2
7
V

7
V

1.
2
V

N
A

10
ye
ar
s

SO
N
O
S

[2
3]

13
0

N
itr
id
e

0
4

5
V

5.
5
V

3
V

10
0
K

10
ye
ar
s

Sp
lit
-g
at
e

[2
4]

13
0

Po
ly
si
lic

on
N
A

2
8
V

8
V

4
V

N
A

10
ye
ar
s

1T
M
O
N
O
S

[2
5]

90
N
itr
id
e

N
A

2
PH

V
N
H
V

3.
3
V

10
0M

N
A

2T
-S
O
N
O
S

[2
6]

90
N
itr
id
e

N
A

2
7
V

8
V

3.
3
V

1
K

10
ye
ar
s

C
ha
rg
e
tr
ap
pi
ng

[2
7]

90
N
itr
id
e

N
A

2
10

V
17

V
N
A

10
0
K

N
A

eN
V
M

[2
8]

90
Po

ly
si
lic

on
0

2
8
V

8
V

3.
3
V

50
0

10
ye
ar
s

eN
V
M

[2
9]

65
Po

ly
si
lic

on
0

2
8.
8
V

8.
8
V

2.
5
V

10
K

48
6
h

Sp
lit
-g
at
e

[3
0]

65
Po

ly
si
lic

on
1

2
11

V
13

V
3.
3
V

10
K

10
ye
ar
s

SO
N
O
S
Pc
ha
nn
el

[3
1]

50
N
itr
id
e

N
A

2
12

V
12

V
1.
8
V

10
K

10
ye
ar
s

Sp
lit
-g
at
e

[3
2]

45
Po

ly
si
lic

on
N
A

2
N
A

N
A

1.
8
V

1
M

10
00

h

SG
M
O
N
O
S

[3
3]

40
N
itr
id
e

N
A

2
PH

V
N
H
V

1.
25

V
10
M

20
ye
ar
s

SO
N
O
S

[3
4]

40
N
itr
id
e

0
2

4
V

4
V

0.
6
V

10
0
K

10
ye
ar
s

Sp
lit
-g
at
e

[3
5]

40
Po

ly
si
lic

on
0

2
10
.5
V

11
.5
V

1.
1/
2.
5
V

20
0
K

10
ye
ar
s

C
ha
rg
e
tr
ap
pi
ng

[3
6]

32
Po

ly
si
lic

on
N
A

8
N
A

N
A

N
A

1M
N
A

C
ha
rg
e
tr
ap
pi
ng

[3
7]

22
H
iK

di
el
ec
tr
ic
H
fO

2
0

2
2
V

2
V

1
V

10
-1

K
10

ye
ar
s

SG
M
O
N
O
S

[3
8]

20
N
itr
id
e

N
A

8
PH

V
N
H
V

1
V

10
K

N
A

Fi
nF

E
T
eN

V
M

[3
9]

16
H
iK

di
el
ec
tr
ic

0
2

2
V

2
V

0.
8
V

N
A

10
ye
ar
s

Fi
nF

E
T
C
T
T

[4
0]

14
H
iK

di
el
ec
tr
ic
H
fO

2
N
A

2
2
V

2
V

V
D
D

10
K

10
ye
ar
s

Fi
nF

E
T
M
O
N
O
S

[4
1]

14
N
itr
id
e

3
2

PH
V

N
H
V

V
D
D

25
0
K

10
ye
ar
s

Flash: A “Forgotten” Technology in VLSI Design 71

Fig. 3 The circuit diagram of
a pseudo-flash
transistor [42–53]

Fig. 4 The circuit diagram of
a pseudo-flash
transistor [54–56]

Vfg , FN tunneling is used to remove electrons from node Vfg . By increasing the
tunneling voltage (Vtun), the electric field across the Ctun is increased, reducing
the effective oxide thickness. This results in an increased probability of electron
tunneling through the potential barrier. To decrease Vfg , HEI is used to inject
electrons into node Vfg . A large voltage is applied across the drain and source of
Mfg , creating a high electric field region between the drain and source terminals.
Electrons gain energy when passing through the high electric field region. If the
energy of electrons is higher than the barrier of the oxide, some electrons cross
into the oxide and are trapped in the node Vfg . By using these two effects, the
Vfg terminal of the pseudo-flash transistor can be set to different voltage levels,
effectively changing the Vth of Mfg .

In [54–56], three transistors are used to form a pseudo-flash transistor, as shown
in Fig. 4. Mfg is the read/program device, and M1 and M2 are the coupling device
and the tunneling device, respectively. The size of M1 needs to be larger compared
to the size of Mfg and M2 to cause a strong coupling between substrate terminal
of M1 and node Vfg . M1, M2, and Mfg block any DC path and form a node
Vfg to store electrons. FN tunneling is used for the programming to add/remove
electrons to/from node Vfg . To remove electrons, a boosted voltage is applied to
write wordline (WWL), and program wordline (PWL) is set to 0V. This creates a

72 S. P. Khatri et al.

Fig. 5 The circuit diagram of
a pseudo-flash
transistor [57–59]

large electric field across M2, resulting in a reduction in the effective oxide layer
thickness. Therefore, the probability of the electrons to exit node Vfg increases.
Similarly, to add electrons, WWL is set to 0V, and a boosted voltage is applied
to PWL causing electrons to be inserted into node Vfg . One downside of this
architecture is that it exhibits an interference problem in the unselected pseudo-flash
transistors, when the selected pseudo-flash transistors are programmed.

To avoid this issue, the works of [57–59] use five transistors to form a pseudo-
flash transistor shown in Fig. 5. Mfg is the read/program device, M1 is the coupling
device, M2 is the tunneling device, and S1 and S2 are switches. M1, M2, and Mfg

form a node Vfg to store electrons. FN tunneling is used for programming, to
add/remove electrons to/from node Vfg as well. WWL and PWL are set to high
voltage and 0V respectively to create a high electric field to remove electrons from
node Vfg . To add electrons, both WWL and PWL are set to high voltage to allow
electrons to be inserted into node Vfg . By turning on the switches, the corresponding
pseudo-flash transistors are programmed. The switches of the rest of the pseudo-
flash transistors are turned off to prevent them from being programmed.

3 ASIC Replacement

Historically, flash transistors have been used only for non-volatile memory (NVM)
applications. However, recent works demonstrate their promise for use in analog
and digital circuit designs as well. In this section, we describe two methods for
implementing digital logic using flash transistors. These methods exhibit benefits to
circuit delay, area, and power, design tunability, and security.

In Sect. 3.1, we describe one method for implementing digital logic using
flash devices, using programmable logic array (PLA) device style structures. We
demonstrate the benefits of this approach, including an ability to negate effects

Flash: A “Forgotten” Technology in VLSI Design 73

such as chip aging. Next in Sect. 3.2, we present flash threshold logic (FTL) cells, a
method for implementing standard cells that realize digital threshold logic functions
using flash transistors. We show that the use of FTL cells also significantly reduces
circuit delay, power, and area. Finally in Sect. 3.3, we present a SAT-based solution
for identifying threshold logic functions to be replaced by FTL cells in a larger
digital logic design, and we demonstrate the security benefits of using FTL cells to
protect circuit designs from IP theft.

3.1 Digital Circuit Design Using Flash Transistors

Flash transistors are primarily used for memory applications today. These appli-
cations include SD cards, USB flash drives, and SSDs. In this work, we explore
the use of flash transistors to implement digital designs [60]. Flash transistors
can be used to implement logic functions, replacing a section of a CMOS netlist.
Because their threshold voltage (Vth) can be tuned with high precision, there are
several benefits to using flash transistors in digital circuits. First, speed binning at
the factory can be controlled with precision. Second, an IC can be reprogrammed
in the field, to negate effects such as chip aging. And third, flash transistor Vth

can be tuned to multiple levels, unlike MOSFETs which only have one threshold
voltage level. This gives flash transistors the ability to encode more symbols than
a regular MOSFET, enabling the implementation of multivalued logic natively. In
this work, we evaluate digital circuit designs that have been implemented using
flash transistors and compare their performance to traditional CMOS standard cell-
based implementations. For these designs, we also demonstrate the control of speed
binning and the tuning of circuit delay, power, and energy through reprogramming
of flash transistor Vth. Our results show that, averaged over 20 circuit designs, our
flash-based designs yield an improvement of 0.84× the delay, 0.35× the power,
0.3× the energy, and 0.54× the area of the equivalent circuit implemented using a
CMOS standard cell-based design.

3.1.1 Flash-Based Digital Circuit Implementation

We present the implementation details for flash-based digital circuit designs, and
compare the proposed implementation to a standard cell-based approach. Our imple-
mentation consists of a cluster of flash transistors arranged in a NAND configuration
and programmed to implement the desired logic function. It is important to note that
our proposed structure is not a programmable structure similar to an FPGA. Rather,
we target an ASIC design flow. Unlike an FPGA, our implementation is not fully
programmable because the metalization of the design is fixed—interconnects are
hardwired and not adjustable after fabrication. We also note that the flash fabrication
process is inherently compatible with the CMOS fabrication process. In fact, it is

74 S. P. Khatri et al.

(a) (b)

Fig. 6 Converting a logic netlist into a flash-based design. (a) Logic netlist. (b) Flash-based digital
circuit

common for both flash and CMOS devices to be present on the same die, because
flash memory designs use both flash and CMOS transistors simultaneously.

Netlist Conversion As depicted in Fig. 6, we convert a logic netlist into an
equivalent (dynamic) flash-based digital circuit design. Starting with the logic
netlist, we cluster the circuit nodes into multi-input, multi-output structures, with
up to m inputs and n outputs. These clusters are shown as dotted circles in Fig. 6a.
Later in Sect. 3.1.4, we describe this conversion process in more detail.

The flash-based digital circuit implements the logic functions of each CMOS
cluster as a flash cluster (FC). FCs are shown as solid circles in Fig. 6b. Each FC
implements a function of up to m inputs and n outputs, which we refer to as Fm,n.
We choose the number of inputs (m = 6) and the number of outputs (n = 3) after
much experimentation, because we found this choice to give the best trade-off of
delay, area, power, and energy. Each FC in Fig. 6b has the same functionality and
connectivity as its corresponding cluster in Fig. 6a. We next discuss the FC design
details.

Flash Clusters (FCs) An FC is a generic circuit structure that is capable of
implementing any logic function with up to m inputs and n outputs (Fm,n).
FCs are also equipped with logic for programming the Vth of their constituent
flash transistors. As shown in Fig. 7a, an FC is driven with the signals that are
used for device programming (mode, row_select , col_select , prog_control, and
prog_pulse) as well as the signals used during normal operation (primary inputs
and primary outputs). In Fig. 8, we show the layout of a representative FC which
has 35 pull-down stacks.

Flash Logic Arrays (FLAs) The FC consists of multiple flash logic arrays
(FLAs) and an output generation circuit. An FLA is a group of pull-down stack
structures made from flash transistors arranged in a NAND configuration. Each
stack implements a logic cube of Fm,n, so that each FLA implements a group of
input cubes that correspond to an output minterm of Fm,n. There are 2n − 1 FLAs
in every FC, and only one FLA output pulls down when any input is applied to the
FC. The outputs of the FLAs are connected to the output generation circuit in the

Flash: A “Forgotten” Technology in VLSI Design 75

(a)
(b)

(c)

Fig. 7 Structure of flash clusters (FCs). (a) Flash cluster (FC). (b) Flash logic array i (FLAi). (c)
Flash logic bundle i, k (FLBi,k)

FC. Note that the FC is a dynamic circuit, so its default (precharged) output state is
2n − 1 (or <111> for n = 3). We therefore only need to implement 2n − 1 FLAs.

Flash Logic Bundles (FLBs) As shown in Fig. 7b, each FLA consists of multiple
flash logic bundles (FLBs), and as shown in Fig. 7c, each FLB consists of a
number of flash pull-down stacks which share the same output. Each pull-down
stack implements one cube of Fm,n, and is made from m flash transistors and 1
regular NMOS transistor. The flash transistors are programmed to implement cubes.
The transistor Mx,q is used for evaluation and during programming. The shared
transistor Mpch is used to precharge FLBouti,k before evaluation.

76 S. P. Khatri et al.

Fig. 8 Layout view of an FC

Table 2 Delay, power, energy, and cell area ratios of flash-based digital circuits relative to their
CMOS standard cell-based counterparts

Circuit Dmax ratio Pavg ratio Eng ratio Cell area ratio

des00 0.81× 0.34× 0.28× 0.50×
des01 0.75× 0.31× 0.24× 0.50×
des02 0.81× 0.35× 0.28× 0.59×
des03 0.74× 0.39× 0.28× 0.51×
des04 0.89× 0.38× 0.34× 0.62×
des05 0.71× 0.33× 0.23× 0.48×
des06 1.04× 0.34× 0.35× 0.58×
des07 0.83× 0.36× 0.30× 0.58×
des08 0.80× 0.35× 0.28× 0.56×
des09 0.87× 0.31× 0.27× 0.49×
des10 0.93× 0.38× 0.35× 0.54×
des11 0.87× 0.40× 0.35× 0.50×
des12 0.92× 0.38× 0.35× 0.53×
des13 0.89× 0.38× 0.34× 0.58×
des14 0.80× 0.33× 0.26× 0.51×
des15 1.01× 0.40× 0.40× 0.53×
des16 0.88× 0.34× 0.30× 0.59×
des17 0.77× 0.34× 0.27× 0.56×
des18 0.83× 0.34× 0.28× 0.55×
des19 0.69× 0.36× 0.24× 0.52×
Average 0.84× 0.35× 0.30× 0.54×

3.1.2 Flash-Based Implementation Results

In this section we present the delay, power, energy, and physical area of flash-based
digital circuits. The results we present are a comparative study over 20 randomly
generated functions (des00 to des19) implemented in both a CMOS standard cell-
based approach and our flash-based digital circuit. The FC used to implement the
logic functions was configured to have FLBs with three stacks. Table 2 shows the
delay, power, energy, and physical area ratios of these 20 randomly generated logic
functions implemented using our FC compared to a CMOS standard cell-based

Flash: A “Forgotten” Technology in VLSI Design 77

implementation. We note that the FC improves over the CMOS standard cell-based
implementation in all four metrics.

Delay The measured delay Dmax is the maximum delay of any transition seen at
any primary output of the circuit, and it accounts for the precharge delay in our flash-
based implementation. The delay of the flash-based circuits ranges from 0.69× to
1.04× of the CMOS standard cell-based circuit delay, with an average of 0.84×.

Power We also report the power dissipation (average of 0.35× of CMOS). It is well
known that dynamic designs consume more power than static CMOS designs. Yet,
our flash-based design consumes less power for several reasons. First, the number of
nodes being precharged is less than in a CMOS approach. Also, the long transistor
stacks result in smaller evaluation currents, and only one FLB pulls down during
every evaluation resulting in low switching activity. Another reason for low power
consumption is that the Ids of a flash transistor is lower than that of a MOSFET.

Energy On average, energy utilization of the flash-based approach is about 0.3×
of the CMOS approach.

Area On average, flash-based digital circuits use 0.54× of the area of CMOS-based
designs.

3.1.3 Tuning Delay, Power, and Energy

The ability to change threshold voltages after fabrication in flash-based circuits
enables adjustment of the design’s speed to compensate for circuit aging. To
demonstrate this, we perform 10,000 Monte Carlo simulations which model process
variation (W and L) with a standard deviation of 5% of the nominal value. In Fig. 9
we show histograms of the maximum delay Dmax of a CMOS design (CMOS), a

Fig. 9 Delay of CMOS and
flash-based designs (before
and after aging
compensation)

78 S. P. Khatri et al.

Fig. 10 Delay, power, and energy of the flash-based designs as Vth is shifted

flash-based design with nominal Vth (flash (nominal)), and the same flash-based
design subsequently programmed with a lower Vth (flash (fast)). The lower Vth

value was 50mV lower than the nominal Vth value. Figure 9 demonstrates that in-
field compensation of aging effects can be achieved by programming the flash-based
design to have a lower Vth to decrease its delay.

In Fig. 10, we demonstrate the ability of tuning the delay, power, and energy of
flash-based designs by shifting the Vth of flash transistors. The x-axis of the plot
indicates the Vth shift in mV, and the y-axis shows the delay, power, and energy
ratios of the flash-based design compared to the CMOS standard cell-based design
as the value of Vth is shifted. The delay, power, and energy ratios are averaged across
all of the designs listed in Table 2. Figure 10 shows that by reducing the value of
Vth, the delays of the designs decrease and the dissipated power increases,while the
energy consumption decreases. Conversely, when the value of Vth is increased, the
delay and energy increase while power decreases. These results confirm our ability
to control the circuit delay, power, and energy characteristics by tuning the Vth of
flash-based circuits.

Flash: A “Forgotten” Technology in VLSI Design 79

3.1.4 Flash-Based Design Conversion

In this section, we discuss the flow that we use to convert a CMOS digital circuit
design into an equivalent (dynamic) flash-based implementation. Figure 6 illustrates
this conversion. Starting with a technology-independent logic circuit (Fig. 6a), we
cluster the circuit nodes into multi-input, multi-output structures with up to m inputs
and n outputs (the dotted circles in Fig. 6a). We replace each logic cluster with an
FC (the solid circles in Fig. 6b), and program the FC to implement the function of
the cluster it replaced, Fm,n. As stated in Sect. 3.1.1, the FCs labeled A, B, C, D,
and E in Fig. 6b have the same connectivity as the clusters labeled A, B, C, D, and
E in the circuit in Fig. 6a.

There are several steps in the CAD flow to convert an input logic netlist. First,
the input netlist is clustered into FCs (where FCi implements F i

m,n) with the
goal of minimizing the wiring between FCs. This yields a multi-level netlist of
interconnected FCs. Next, the layout of each FC is generated. All our designs are
extremely regular in their physical layout, making them amenable to the on-the-fly
physical synthesis flow that we use. Based on the fanout load of the j th output of
FCi , additional buffers are added for that output.

FC-Based Clustering Algorithm 1 outlines our clustering strategy, given an
arbitrary logic netlist η. We first decompose η into a network of nodes with at most p
inputs. We choose p < m so that nodes can be grouped into FCs later. In particular,
we found that p = 3 yielded good results. Next η is sorted in a depth-first manner,
and placed into an array L.

Next, the logic in each FC is greedily constructed by successively grouping
nodes from L such that the resulting implementation of the grouped nodes FC∗
does not violate the input or output cardinality constraints of the FCs. The
get_next_element procedure preferentially returns nodes in the fanout of the nodes

Algorithm 1 Clustering a logic netlist into a multi-level network of FCs
η = decompose_network(η, p)
L = dfs_and_levelize_nodes(η)
FC∗ = 0
η∗ = 0
while get_next_element(L) != NIL do

FC∗ = FC∗ ∪ get_next_element(L)
if (num_input(FC∗) ≤ m) && (num_output(FC∗) ≤ n) then

continue
else

Q = remove_last_element(FC∗)
η∗ = η∗ ∪ FC∗
FC∗ = Q

end if
end while
η∗ = wiring_recovery(η∗)

80 S. P. Khatri et al.

of FC∗, in order to reduce the wiring between FCs. At every step of the construction
of the result η∗, we verify that the induced graph is acyclic.

After the clustering step is complete, the routine wiring_recovery will attempt
to reduce the wiring between FCs. This routine attempts to realize a wiring gain by
moving individual nodes in L to a different FC other than their currently assigned
FC. On average, the wiring_recovery routine is able to reduce wiring by about
9.6%.

On-the-Fly Layout Synthesis Once the multi-level netlist of FCs is generated, we
next generate the layout of each FCi ∈ η∗. First, we construct a table for all the 2n

output minterms op and their corresponding input cubes Cp = �cp,q . The set of
cubes Cp form a partition of the points in Bm, where B = {0, 1}.

This table is constructed from the truth table of F i
m,n by grouping all the

input minterms for each output minterm. Next, the input minterms for each output
minterm are minimized using Espresso [61]. The output minterm which has the
largest number of input minterms is not implemented, and is mapped to the default
output of the FC when it is precharged.

3.1.5 Performance of Our Conversion Flow

We evaluated our flash-based digital circuit design approach for larger digital
designs by implementing a set of 12 of the largest benchmarks from ISCAS89
[62], ITC99 [63], and EPFL [64] benchmark suites. We compare the delay, power,
and layout area metrics of the flash-based approach to a CMOS standard cell-based
implementation of the benchmarks in Table 3. The delay, power, and area ratios of
the flash-based designs are relative to their CMOS standard cell-based counterparts.

We observe that on average, each FC is equivalent to about 7.6 CMOS standard
cells. The FCs have an average of 5.6 inputs and 2.4 outputs, which are close to the
maximum number of inputs (6) and outputs (3).

Table 3 shows that the flash-based approach is ∼41% faster and consumes ∼65%
lower power on average, compared to a traditional CMOS standard cell-based
approach. This is a significant improvement, and results in an energy improvement
of ∼5× over the standard cell-based approach.

The key reasons for the reduced delay are:

• Flash FET gate capacitance is ∼20× lower than MOSFET gate capacitance
• CMOS standard cells have increased parasitics due to the use of both NMOS and

PMOS devices
• The use of shared diffusions in the NAND stack reduces parasitics significantly
• The FCs used to implement the benchmarks have a small number of input cubes

(5.7 on average), which reduces input capacitive loads

Flash: A “Forgotten” Technology in VLSI Design 81

Ta
bl

e
3

D
el
ay
,p
ow

er
,a
nd

ce
ll
ar
ea

ra
tio

s
of

fla
sh
-b
as
ed

di
gi
ta
lc
ir
cu
its

re
la
tiv

e
to

th
ei
r
C
M
O
S
st
an
da
rd

ce
ll-
ba
se
d
co
un

te
rp
ar
ts

C
M
O
S

Fl
as
h

Fl
as
h

Fl
as
h

Fl
as
h

B
en
ch
m
ar
k

#
St
dc
el
ls

#
FC

s
m

A
v
g

n
A

v
g

A
vg

#
cu
be
s

D
el
ay

ra
tio

Po
w
er

ra
tio

C
el
la
re
a
ra
tio

b1
7

47
,5
00

66
58

5.
61

2.
32

5.
49

0.
90

×
0.
49

×
0.
67

×
b2
0

22
,9
83

29
01

5.
60

2.
32

6.
02

0.
50

×
0.
18

×
0.
60

×
b2
1

23
,3
24

29
63

5.
62

2.
32

6.
03

0.
49

×
0.
18

×
0.
61

×
b2
2

34
,6
93

43
62

5.
61

2.
33

5.
97

0.
47

×
0.
19

×
0.
60

×
s1
32
07

28
28

46
0

5.
60

2.
38

4.
83

0.
43

×
0.
91

×
0.
67

×
s1
58
50

37
35

59
4

5.
50

2.
30

4.
90

0.
67

×
0.
62

×
0.
65

×
s3
59
32

10
,6
61

12
90

5.
24

2.
60

6.
62

0.
29

×
0.
22

×
0.
51

×
s3
84
17

10
,7
71

15
93

5.
68

2.
22

5.
04

0.
89

×
0.
43

×
0.
60

×
s3
85
84

13
,8
95

20
77

5.
59

2.
16

4.
93

0.
90

×
0.
61

×
0.
60

×
M
ul
tip

lie
r

46
,3
63

58
21

5.
67

2.
48

6.
56

0.
47

×
0.
11

×
0.
57

×
V
ot
er

22
,4
53

27
08

5.
38

2.
53

6.
10

0.
58

×
0.
14

×
0.
56

×
Sq

ua
re

38
,0
09

51
09

5.
63

2.
49

5.
61

0.
49

×
0.
16

×
0.
58

×
A
ve
ra
ge

23
,1
01

30
45

5.
56

2.
37

5.
68

0.
59

×
0.
35

×
0.
60

×
St
de
v

15
58
2.
94

20
38
.5
1

0.
13

0.
13

0.
64

0.
20

×
0.
26

×
0.
05

×

82 S. P. Khatri et al.

3.1.6 Conclusion

Flash transistors are very important for non-volatile data storage applications today,
and our work demonstrates their usefulness for the implementation of digital logic
as well. This section presented an approach for using flash transistors to implement
digital circuits by using stacks of flash transistors in a NAND configuration to
implement cubes of a logic function. The Vth of flash transistors can be tuned
with fine granularity, which yields several advantages, and we demonstrate two of
these advantages in this section. First, speed binning at the factory can be performed
with high precision. Second, an IC can be reprogrammed in the field to negate the
effects such as chip aging. We present details of the circuit topology that we use
in our flash-based approach. Our results show that, averaged over 20 digital circuit
designs, our approach yields an improvement of 0.84× the delay, 0.35× the power,
0.30× the energy, and 0.54× the area of the equivalent circuit implemented using
a CMOS standard cell-based design. When implementing a set of 12 of the largest
benchmarks from ISCAS89, ITC99, and EPFL, our approach yields an improvement
of 0.59× the delay, 0.35× the power, 0.20× the energy, and 0.60× the area versus
CMOS standard cell-based implementations.

3.2 Perceptron Hardware: Flash Threshold Logic Cells

This section describes a new design for threshold logic gates (binary perceptrons).
This new structure, called the flash threshold logic (FTL) cell [65], uses floating gate
(flash) transistors to implement the weights associated with the threshold function.

A function f : Bn → B is called a threshold function iff f (x1, x2, · · · xn) =
1 ⇔ ∑n

i=1 wixi ≥ T , where
∑

is the arithmetic sum, wi are weights and T

is a threshold. The function can be equivalently expressed as f ≡ (w · T) =
(w1, w2, · · · wn; T).

In an FTL cell, the threshold voltage of the flash transistor acts as a proxy
for the weights. An FTL cell is equivalent to a multi-input edge-triggered flip-
flop that calculates a threshold function at the clock edge. This section focuses
on the structure and properties of FTL cells. The FTL cell is designed using
40 nm technology as a standard cell, and simulations are done using layout-
extracted parasitics. Results show improvements in area (79.7%), power (61.1%),
and performance (42.5%) as compared to equivalent implementations having the
same functionality that are built using conventional static CMOS design. This
section also describes how to use FTL cells to correct post-fabrication setup and
hold timing errors.

An FTL cell of n inputs can realize any threshold function having up to n

variables. The input-output behavior of an FTL cell is equivalent to an edge-
triggered, multi-input flip-flop that computes a threshold function.

Flash: A “Forgotten” Technology in VLSI Design 83

Fig. 11 FTL cell architecture

3.2.1 Flash Threshold Logic (FTL) Cell Architecture

The architecture of an FTL cell consists of five main components (shown in Fig. 11),
namely, the left input network and right input network (LIN and RIN), a sense
amplifier (SA), an output latch (LA), and a flash transistor programming logic
(P). The LIN and RIN consist of two sets of inputs (�1, · · · , �n) and (r1, · · · , rn),
respectively, with each input connected to NMOS devices in series with a flash
transistor. In an FTL cell, �i = ri for all i. The state of the inputs and the
threshold voltages of the flash transistors control the conductivity of these two
networks. Signals are assigned to the LIN and RIN to guarantee that there is a
sufficiently large conductivity difference across all minterm pairs (mi,mj) such that
f (mi) �= f (mj). Two differential signals, N1 and N2, are used as inputs to an SR
latch in the FTL cell. The latch is set (reset) when [N1, N2] = [0, 1] ([1, 0]) and
the output Y = 1(0). In the formulation of a threshold function, the magnitudes
of the two sides of the inequality are mapped to the LIN’s conductance GL and
the RIN’s conductance GR , resulting in [N1, N2] = [0, 1] ⇔ GL > GR and
[N1, N2] = [1, 0] ⇔ GL < GR . As previously stated, the threshold voltages
of flash transistors serve as a proxy for the weights of the threshold function. The
threshold voltage of the flash transistor will be reduced to increase the corresponding
weight. This nonlinear monotonic connection is learnt using a modified perceptron
learning algorithm for a given threshold function.

There are three modes in an FTL cell: regular, erase, and programming mode.
The Vth values of the flash transistors are set in the programming mode and erased
in the erase mode. The evaluation takes place in regular mode.

FTL Regular Mode In this mode PROG = ERASE = 0. Assume that the Vth’s
of the flash transistors have been set to appropriate values corresponding to the
weights of the threshold function, and their gates are being driven to 1 by setting
HiV to VDD, FCj to 0V, and all FTi to 0V. When CLK = 0, the circuit is reset.

84 S. P. Khatri et al.

In this phase, the nodes N5 = N6 = 0, and N1 = N2 = 1. Therefore, the output
Y remains unchanged.

Now suppose that an onset minterm is appropriately applied to LIN and RIN.
With the right Vth values, we will get GL > GR . At the start of the evaluation,
both LIN and RIN will conduct. As time progresses, the state of both N5 and N6
will transition from 0 → 1. Assuming GL > GR , N5 transitions faster than N6,
and thus N5 will enable M7 before N6 can enable M8. As a result, N1 will start
discharging before N2. Once the value of N1 falls below the Vth of M6, M6 shuts
off, thereby preventing any further discharge of N2, and turn on M3 to recharge N2
back to 1. Finally, the state [N1,N2] = [0,1] sets the SR latch, resulting in Y = 1.
Similarly, for an off-set minterm, GL < GR , and [N1, N2] = [1, 0] resulting in
Y = 0.

We introduce a new programming interface for off-chip programming, to set the
Vth values of any FTL cell. This interface uses control bits FCj to select the j th
FTL cell and control bit FTi signal to select the ith flash transistor of that FTL cell.

FTL Programming Mode (ERASE=0, PROG=1, CLK=0, FTi=0, FCj=0,
HiV=20V). The ERASE and PROG signals turn on M12 and M13 and turn off
M14. The source of the flash transistor is floating. Meanwhile, the drain and the
bulk terminals are grounded. By enabling appropriate high-voltage transistors MCj

and MTi , a path from HiV to the gates of the flash transistors is opened (through
FCj and FTi). High positive voltages are then sent using the HiV line, to inject
charge in the floating gates till the desired threshold voltage (Vth) is set.

FTL Erase Mode (ERASE=1, PROG=1, CLK=0, FTi=0, FCj=0, HiV=−20V).
The ERASE signal turns off M12. Both the source and the drain terminals of the
flash transistors are floating. The bulk is connected to the ground. High negative
pulses are applied to the gate of the flash transistor to extract the buried charge in
the floating gate, thereby erasing the flash transistor.

3.2.2 Related Work

Recently, [66] demonstrated the construction of a threshold logic gate as a standard
cell, along with the flow needed to integrate these gates into ASICs in 65 nm using
industry-standard tools. The demonstration included simultaneous improvements in
the area and power of ASICs due to the integration of the threshold gates [67].
However, their design used CMOS devices exclusively, and their gate was limited
in terms of the number of threshold functions that could be realized. This is because
each of the weights wi of the associated input xi was implemented using wi

transistors, each driven by signal xi . As a result, their circuit suffered from severe
fan-in limitations. As compared to the threshold gate presented in [66], which could
implement only 11 of the 5-input threshold functions, an FTL cell can realize all
the 117 5-input threshold functions. Furthermore, since flash transistors allow fine

Flash: A “Forgotten” Technology in VLSI Design 85

control over the programmability of the weights of an FTL cell, FTL cells are far
more robust than other threshold gates available in the literature. The increased
robustness also allows the FTL cells to scale to geometries far lower than other
(CMOS device-based) threshold gate architectures available in the literature.

3.2.3 Experimental Results

A 5-input FTL cell was designed as a standard cell layout using TSMC 40 nm
LP technology. There are a total of 117 distinct threshold functions of 5 or fewer
variables. We use the same indexing scheme for the threshold functions as used
in [68]. Each of the 117 threshold functions was implemented as an FTL cell and
then compared against a CMOS equivalent counterpart of the same functionality.
Synthesis and analysis of both the circuits were performed using Cadence Genus©,
and placement and routing was performed using Cadence Innovus©. The CMOS
equivalent counterpart used TSMC 40 nm LP standard cells. Both circuits were
simulated at 25 ◦C, and the static power analysis was performed with 20% input
switching activity. The results of this comparison are shown in Fig. 12. This figure
clearly shows that FTL cells have substantially improved area (79.5%), power
(61.1%), and delay (42.5%) characteristics as compared to their respective CMOS
equivalents, for all the 117 functions.

Experiments comparing the distributions of delays of FTL and CMOS imple-
mentations were also carried out. The results for the threshold function F115 =
[W;T] = [4, 1, 1, 1, 1; 5] are shown as an example in Fig. 13. [P, V, T] =
[T T , 0.9V, 25 ◦C] was the PVT corner setting for this experiment. For both the
FTL cell and its CMOS equivalent, 100K Monte Carlo instances were generated.
For both circuits, the function of each of the 100K FTL instances was checked
against the truth table to ensure that it was correct. Even in the presence of process
variations, the graph demonstrates the FTL cell’s delay advantage over its CMOS
counterpart. Furthermore, the difference in their standard deviation is also small.
Note that the FTL instances with large delays can be reprogrammed to further
reduce the delay. This capability is not possible for circuits built using conventional
standard cells.

Figure 14 is used to demonstrate how timing violations can be corrected on
a data path containing an FTL cell. The data path in the example consists of
combinational delay (D2D), clock-to-Q (C2Q) delay, and the setup (DFF_setup)
and hold (DFF_hold) times of a DFF. Timing violations are introduced into the
example circuit by skewing the clock for the DFF by an appropriate amount �. For
instance, Fig. 15a shows how the data launched from FTL cell X misses the target
clock edge at DFF Y and causes a setup time violation. Reducing the C2Q of FTL X
by reprogramming the flash transistors fixes this violation. Similarly, Fig. 15b shows
how the data launched at FTL X gets captured by DFF Y one cycle early, thereby
overwriting the old value at DFF Y and causing a hold time violation. This violation
can be fixed by increasing the C2Q of FTL cell X, which allows the old value at

86 S. P. Khatri et al.

Fig. 12 PPA improvements of FTL over CMOS implementations

the input of Y to retain for a longer time. Since the FTL cells are programmed post-
fabrication, the delay can also be modified after fabrication.

3.2.4 Summary

This section presented a new threshold logic cell (FTL) with integrated flash
transistors. Significant performance improvements in FTL cell area (79.7%), power
(61.1%), and performance (42.5%) have been demonstrated compared to traditional
40 nm standard cell-based designs that have the same functionality. We also showed
that FTL cells can be used for fixing setup and hold time violations post-fabrication.

Flash: A “Forgotten” Technology in VLSI Design 87

Fig. 13 Delay histogram of an FTL cell and its CMOS equivalent with 100K Monte Carlo
simulations. PV T = [T T , 0.9V, 25 ◦C]
Fig. 14 Datapath to
demonstrate post-fab timing
corrections

3.3 Input and Output Hybridization for Enhanced Security in
ASIC Circuits

ASIC circuits can be made secure against IP theft and/or malicious modification
using FTL cells. A malicious agent cannot determine the functionality of an FTL
cell without knowing its weight and threshold values, which are programmed
by the IP owner, before the IC is deployed. Hybridization is defined as the
process of identifying and replacing logic cones in ASIC circuits with FTL cells.
Candidate logic cones are identified by analyzing the circuit backward from the
primary outputs (output hybridization), and forward from the primary inputs (input
hybridization). We present a SAT-based solution to identify threshold functions for
input and output hybridization, and the corresponding weights needed to implement
the threshold function. This information is then stored in a hash table for fast lookup
during synthesis. The key in the hash table is the threshold logic function, and the
value is the weights needed to realize it. NPN equivalence is accounted for in the

88 S. P. Khatri et al.

(a)

(b)

Fig. 15 Correcting setup and hold time violations with an FTL cell after fabrication. (a)
Correcting setup time violation with an FTL cell after fabrication. C2Q of FTL cell reduced from
180 ps to 142 ps. (b) Correcting hold time violation with an FTL cell after fabrication. C2Q of FTL
cell increased from 142 ps to 180 ps

hash table. A logic cone in the ASIC circuit is checked against this hash table to
test if a function is a threshold function (and can be realized by an FTL cell). From
the various hybridization choices available, we select those that maximize security
and maximally improve delay, power, and area. We implemented our algorithms in
ABC (an open-source synthesis tool), and our approach is compatible with existing
ASIC design flows.

3.3.1 Security and Hybridization

Today, with the global nature of supply chains, IP theft and/or malicious modifica-
tion of chips is a serious concern, with revenue losses estimates in the 10s of billion

Flash: A “Forgotten” Technology in VLSI Design 89

Fig. 16 Substituting FTL cells into ASIC circuits

dollars [69]. Hybridization leverages the benefits of FTL cells and helps designers
protect their IP, both from discovery of chip function in the foundry and against
reverse engineering by end users. Hybridization replaces logic cones in the original
ASIC circuit with FTL cells. Figure 16 shows how logic cones (or “subcircuits”)
can be replaced by FTL cells. Replacing subcircuits A and B is an example of
output hybridization. Similarly, replacing subcircuits P and Q is an example of input
hybridization. This section will focus on the identification of logic cones in ASIC
circuits that are suitable candidates for hybridization. The main contributions of this
section are:

1. A SAT-based formulation to test if a function is threshold, and generation of
the corresponding threshold value and weights. Creation of a hash table [70]
with threshold function and weight information for efficiently testing if a logic
function can be replaced by an FTL cell during synthesis.

2. Input and output hybridization is an open-source tool (ABC [71]). Our approach
is designed to maximize security of the final circuit.

3. Results using a set of benchmark circuits that validate our approach.

3.3.2 Previous Work

Logic locking [72] is a well-known hardware security technique that protects against
untrusted foundries as well as malicious end users. Gates are strategically added in
the original circuit, such that the inputs to these new gates are a combination of
the original nets in the circuit and a set of key bits. The outputs of the added gates
are utilized by the circuit to generate the final circuit outputs. Without the correct
key bits, the output of this new circuit will be incorrect (output corruption). Various
attacks have been devised against logic locking (e.g., sensitization attacks [73], SAT-
based attacks [74]), and in turn, logic locking methods have evolved accordingly
[75] (SLL [73], WLL [76], SARLock [77]). However, there is always a trade-off

90 S. P. Khatri et al.

in the resilience of logic locking to the various attacks that have been developed.
For example, in SFLL [78], output corruption is quantified using a metric called
error rate (ER). High ER makes the resultant circuit resilient to removal attacks [79]
but vulnerable to SAT attacks. Similarly, low ER makes the resultant circuit
resilient to SAT attacks but vulnerable to removal attacks. Unlike logic locking,
our hybridization-based approach does not add new gates, and yields better delay,
area, and power characteristics while providing security.

3.3.3 SAT-Based Threshold Function Identification and Weight
Generation

In this section we will explore how we identify if a function is a threshold function.
If a function is threshold, we are also able to generate the corresponding weights
and the threshold value. Figure 17 provides an overview of our solution. We first
devise a circuit that encapsulates the mathematical relationship between the inputs,
weights, and threshold value. We then cast this circuit as a SAT problem, whose
solution helps us identify threshold functions.

Circuit Construction If a function is threshold, for any onset minterm, we have∑k−1
i=0 Wi∗Xi ≥ T , where k is the number of inputs to the threshold function,Wi are

weights of the threshold function and Xi are the inputs of the function. We translate
this relationship into a circuit for every minterm of a k input function. Our circuit has
2k planes (the first plane corresponds to minterm m0) as indicated in Fig. 17. Each
plane has an adder that computes the weighted sum of the input bits and weight
bits. The output of the adder, denoted as “SUM” in Fig. 17, is compared with the
threshold value “T” using a comparator. The comparator has two outputs, one to
indicate if SUM >= T (the “YES” branch) and another to indicate if SUM < T (the
“NO” branch). The two comparator outputs are then used as inputs to aMUX, whose
select line is the bit mi0. Here, mi0 is a bit that is set if the corresponding minterm
(m0) is an onset minterm, else it is unset. We call these MUX select bits as minterm-
indicator bits. The weights and threshold value are shared across all planes, since
they are independent of minterms. We can express a threshold function in terms
of its 2k minterms and set the minterm-indicator bits accordingly. For a threshold
function, with the correct weight and threshold, the output of all the MUXes will be

Fig. 17 SAT-based threshold check

Flash: A “Forgotten” Technology in VLSI Design 91

set. We perform a logical AND across the planes to check this condition. The circuit
as described in this section was expressed in Verilog, and Synopsys DC was used to
synthesize the Verilog to a gate-level description of the circuit. Next, we converted
this gate-level circuit to a SAT [80] instance which serves as a threshold function
checker and weight generator.

Tseytin Transformation and SAT Any circuit composed of logic gates can be
converted to a Boolean function in conjunctive normal form (CNF) using the Tseytin
transformation [81] (TS). Applying TS to our circuit results in a CNF Boolean
function (Fckt). We also add a clause to Fckt to force Cout (the output of Fckt)
to always be set. Next, to test if a given Boolean function Ftest is threshold, we
generate a vector V that encodes the onset and offset minterms for Ftest . If Ftest

is a k-variable function, V has 2k bits, where the ith bit is set if mi is an onset
minterm. We use V to construct clauses that force the minterm-indicator bits in Fckt

to represent Ftest , and call it F ′
ckt . In F ′

ckt the only free variables are the weights and
the threshold. Calling MiniSat [82] on F ′

ckt has two possible outcomes. If Ftest is a
threshold function, F ′

ckt is SAT, and MiniSat returns a set of weights and a threshold
value corresponding to Ftest . Otherwise Ftest is not a threshold function and F ′

ckt is
UNSAT. Therefore, we can use this method to test if a function is threshold and, if
it is, also find the weights and threshold value.

Optimizations Making repeated calls to a SAT solver is a computationally expen-
sive process. The number of threshold functions is known for five variables or
less. Therefore, we create a hash table [70] of all known five variable threshold
functions along with their corresponding weights and threshold values. This data is
generated using our SAT-based solution. Storing the data in a hash table makes the
threshold function lookups during hybridization quick, allowing us to avoid repeated
expensive calls to the SAT solver. In the next section, we will see how the SAT-
generated weights are mapped to electrical weights in a FTL cell.

3.3.4 Results

To validate hybridization as an effective security option, we tested our algorithms
on a set of benchmark circuits. Our entire suite of benchmark circuits consists of
28 combinational circuits of varying size from different sources, like ISCAS85,
ISCAS99 [83], and EPFL [64]. In this section, we present our findings on a subset
of circuits for brevity. When checking for hybridization choices, we consider all
combinations of the input negation, output negation, and input permutation for each
candidate cone. Table 4 consists of the seven large circuits from our benchmark
suite. We report a summary for the output hybridization opportunities at each of the
POs for each circuit. On average, there are approximately 791 different ways a PO
can be hybridized among these 7 circuits. While a particular PO can be hybridized in
many different ways, eventually we need to select a particular function. The choice
of this function must maximize security. In order to achieve this, we use a “MAX

92 S. P. Khatri et al.

Table 4 Output hybridization—opportunities vs security

Output hybridization

Opportunities % PO hybridized

Name # Gates PIs POs Mean Stdev Total Max reuse=1 Max reuse=3 Runtime(s)

div 57,247 128 128 967.25 143.25 123,808 100.00 100.00 17.256

log2 32,060 32 32 770 70.6 24,640 100.00 100.00 39.353

Multiplier 27,062 128 128 1130.94 197.03 144,760 100.00 100.00 78.54

sqrt 24,618 128 64 869.5 145.51 55,648 100.00 100.00 4.034

b22_C 18,450 766 757 707.53 250.45 535,600 36.46 99.60 2.837

Arbiter 11,839 256 129 619.72 42.26 79,944 100.00 100.00 0.18

C7552 7552 207 108 473.93 566.97 51,184 57.41 57.41 0.212

Average 791.27 84.84 93.86 20.34

Table 5 Output and input
hybridization opportunities

Hybridization opportunities

Output Input

Name # Gates PIs POs Mean Mean

C3540 3540 50 22 853.45 218.08

i8 3310 133 81 1139.85 90.41

C1355 1355 41 32 856 20.29

C7552 7552 207 108 473.93 20.37

C5315 5315 178 123 497.17 29.48

apex2 4523 39 3 1096 516.92

C1908 1908 33 25 400.96 27.88

Average 759.62 131.92

REUSE” constraint that limits the number of times a particular threshold function is
chosen to hybridize any PO. This may cause some of the POs to not be hybridized.
For example, consider the circuit b22_C in Table 4. When MAX REUSE=1, we are
able to only hybridize 36% of the POs, before running out of choices of threshold
functions. When we relax this constraint and allow a threshold function to be used up
to three times, we are able to hybridize over 99% of POs. Therefore, we are able to
hybridize a large fraction of POs even with a relatively lowMAXREUSE constraint.
In addition, the longest runtime of our algorithm for finding these hybridization
opportunities is just under 40s. Table 5 shows a summary of the output and input
hybridization opportunities for seven other circuits selected from our benchmark
suite. On average each PO can be hybridized 759 ways and each PI can be selected
in one of the 131 hybridizations. For all circuits, all PIs are part of some input
hybridization cone, across all the choices available for each circuit. These results
demonstrate that there are abundant hybridization opportunities at the POs and PIs
of an ASIC circuit. In addition, there is variety in the choice of threshold functions,
making it hard for an adversary to guess the functionality of an FTL cell. Therefore,
we propose hybridization as a practical method of securing circuits and protecting
against IP theft.

Flash: A “Forgotten” Technology in VLSI Design 93

3.4 Benefits of Flash-Based ASIC Design

The actual logic function realized by the ASIC approach of Sect. 3.1 or the FTL cell
of Sect. 3.2 is programmed after the circuit is manufactured. This is made possible
by the floating gate [84] transistors that are integrated alongside conventional
MOSFETs within the FTL cell. Furthermore, in contrast to several emerging
technologies [85–88], the approaches of Sects. 3.1 and 3.2 are built using mature
technologies that are currently available in the industry. These designs can be used
to tackle several problems that are currently present in the field of chip design:

1. Superior Performance: The designs of Sects. 3.1 and 3.2 deliver significantly
better area, power, and delay boosts over conventional standard cells.

2. IP Protection: Since the functionality of the approaches of Sects. 3.1 and 3.2
is programmed post-fabrication, the functionality of the ASIC that uses these
approaches cannot be reverse engineered by the foundry. This is because the
functionality of the logic cells is unknown at the time of manufacturing.

3. Correcting Timing Errors: Post-fabrication programming enables precise
speed binning, and setup (and hold) timing correction after the circuit is
manufactured. This is not possible in traditional CMOS design.

4. Mitigating Aging Effects: Aging effects such as reduction in the operating speed
of the circuit can be mitigated by reprogramming the flash-based logic cells. This
too is not possible in standard CMOS designs.

5. High Endurance: Unlike the flash transistors that are used in memories, flash
transistors used in our cells do not suffer from endurance issues, as very few
program-erase cycles (far fewer than the flash endurance limits of 1–100K)[12,
13] are needed to program our flash transistors with the correct functionality.

4 Neural Network Accelerators

Beginning in the early 2010s, deep neural networks (DNNs) have demonstrated
state-of-the-art performance in a wide range of tasks including image classification
[89], object detection [90], and text recognition [91]. Modern DNNs have significant
resource requirements, making them unsuitable for use in edge computing contexts
such as mobile and embedded devices. Consequently, there are many recent works
that attempt to reduce the resource consumption of DNNs using various strategies
like network pruning [92, 93], compact network designs [94, 95], and low-bit
quantization [96, 97]. Quantization remains the most effective technique. It involves
reducing the representation of network weights and activations to a small number of
bits, yielding a quantized neural network (QNN). A binarized neural network (BNN)
[98] is the extreme case of quantization, where network weights and activations are
binary values. BNNs can achieve up to a 58× speedup and a 32× reduction in
memory bandwidth requirements [96] on CPUs versus full-precision networks.

94 S. P. Khatri et al.

In a QNN, most computation is performed on binary values, or values with a
low bit width. This makes them ripe for acceleration using novel mixed-signal
methods. Primarily, these methods consist of using NVM devices—typically in a
crossbar array structure—as the synapses for neurons in the DNN, resulting in a
significant reduction of inference delay, power, and energy, and chip area. NVM
devices are especially useful in this context, because in addition to storing network
weight parameters, they can be used to perform some computation natively (in-
memory computation). NVM technologies that have been used as synapses include
flash transistors, resistive RAM (RRAM, also known as a memristor), phase-change
memory (PCM), and conductive-bridging RAM (CBRAM). Unlike these other
NVM technologies, flash is a well-understood, high-yielding technology, making
it very practical for use in neural network accelerators.

In this section, we present two architectures for neural network acceleration,
which are suitable for use in edge devices and which both utilize flash technology.
In Sect. 4.1 we present TULIP, a digital BNN accelerator that is able to achieve very
low power, energy, latency, and chip area. In Sect. 4.2, we present an analog QNN
accelerator that uses flash technology to achieve extremely high throughput with
extremely low power, energy, and memory requirements.

4.1 A Configurable BNN ASIC Using a Network of
Programmable Threshold Logic Standard Cells

This section presents TULIP [99], a binary neural network ASIC accelerator that
was constructed with the goal of maximizing energy efficiency per classification.
TULIP is composed of an array of processing elements called (TULIP-PEs)
which process the operations of a BNN in parallel. Each TULIP-PE contains
interconnected binary neurons, with a small local register per neuron. The binary
neurons are mixed-signal circuits that evaluate threshold functions. The unique
aspect of the binary neuron is that its functionality can be reconfigured with a change
in a single parameter. Using this property, we present algorithms for mapping
arbitrary nodes of a BNN onto the TULIP-PEs. To provide a fair comparison, we
also implement a MAC-based BNN accelerator that was recently reported and show
that TULIP is 3X more energy-efficient than the conventional design, consistently,
without any penalty in performance, area, or accuracy. Furthermore, the reported
gains in energy efficiency do not rely on standard low-power techniques such as
voltage scaling and approximate computing.

TULIP is a scalable SIMD machine, consisting of a collection of concurrently
executing TULIP-PEs. Each TULIP-PE is constructed using a collection of neurons
(FTL cells). TULIP-PEs are capable of computing a node of a BNN. The node
of a BNN is first decomposed into a network of threshold functions, which will
be explained in further detail in Sect. 4.1.1. Then, these threshold functions are
scheduled on the neurons (perceptrons) of the TULIP-PE.

Flash: A “Forgotten” Technology in VLSI Design 95

Fig. 18 TULIP flow: Each node of a BNN is decomposed into an adder tree. Each sub-node of
an adder tree is decomposed into a network of two-level threshold functions. The decomposed
network is scheduled using reverse post-order (RPO) scheduling (indicated using node numbers
with unmarked red arrows indicate 1-bit input), on a TULIP-PE built using a cluster of four
hardware neurons. (a) Binary neural network. (b) Threshold logic adder tree. (c) TULIP-PE

4.1.1 Binary Neural Network Using Binary Neurons

Figure 18 depicts the design flow and the main components of TULIP. Each node of
a BNN is first expressed as a network of threshold functions fij (Fig. 18a). For each
threshold function, the weighted sum is decomposed into a tree of adders (Fig. 18b),
such that each adder can be further decomposed as a linear iterative array that uses
binary neurons of bounded fain-in size (Fig. 18b; see insets). Note that the use of
an adder tree delivers better energy efficiency than conventional accumulators. This
is because unlike accumulators [100, 100–107] that use operators of max width for
each addition operation, each adder in the adder tree only requires a bit width that
is equal to the bit width of its operands. In Fig. 18b the labels inside the node show
the order in which that node is executed on a TULIP-PE for a threshold function
with 1023 inputs. Note that although accumulation can be implemented by using
conventional adders of varying sizes, the key difference with TULIP is that all
the operations that arise in a BNN (addition, accumulation, comparison, and max
pooling) are implemented by the same, single configurable binary neuron in TULIP.

The main processing element (TULIP-PE) of TULIP consists of a complete
network of four configurable binary neurons (see Fig. 18c). The operations of the
adder tree and all other operations of the BNN are scheduled to be performed in
TULIP-PE. Each full adder is implemented as a cascade of two binary neurons
(Fig. 18b, left inset). Larger adders are implemented using a cascade of full adders
(Fig. 18b, right inset).

The TULIP top-level structure consists of several PEs, as well as image and ker-
nel buffers (Fig. 22). TULIP is a scalable architecture. This means that throughput
can be scaled by using larger image and kernel buffers and adding PEs, without
changing the scheduling algorithm.

96 S. P. Khatri et al.

Fig. 19 The hardware neuron and its connections

4.1.2 Hardware Architecture of TULIP-PE

As shown in Fig. 18c, a TULIP-PE has four fully connected neurons N1, · · · , N4.
Each neuron has a 16-bit local register associated with it. These neurons and their
local registers are interconnected using multiplexers, as shown in Fig. 19. Each
neuron has four inputs a, b, c, and d with weights 2, 1, 1, and 1, respectively, and
a threshold T, which can be modified at runtime using control signals. The choice
of using four neurons is determined by the computation requirements. Since four is
the minimum number of neurons needed to perform all the basic operations needed
for the operations of a BNN (addition, comparison, max pooling, and RELU), it was
chosen for this architecture. For the implementation of local registers, latches were
used, as they provide low-power access to temporary data.

The following subsection provides details on how the operations are scheduled
and executed on a TULIP-PE.

4.1.3 Addition and Accumulation Operation

Consider a node p in the adder tree that adds two operands stored in R1 and R4,
using the threshold function shown in Fig. 20a bottom-right inset. The sum and carry
bits of p are generated by N2 and N3, respectively, over multiple cycles, using
the threshold function shown in Fig. 20a top-right inset. Since the bits of the sum
operation are computed using N2, the final result of p is stored in the local register
N2, i.e., R2. Figure 20a shows two 4-bit operands x and y, i.e., {x3,x2,x1,x0} and
{y3,y2,y1,y0}. The final result x + y is stored in R2.

Next, consider the adder tree nodes p, q, and r , as shown in the in Fig. 20b. r

sums the results of p and q.
The results of p and q are added together in r . Because the result of p is placed

in R2, the result of q is saved in R3 to allow operands to be read simultaneously
while computing r . r generates its sum bits on N1 and carry on N4 by reading R2

Flash: A “Forgotten” Technology in VLSI Design 97

Fig. 20 Adder, adder tree, and accumulator schedule. (a) Addition operation. (b) Adder-tree
memory management. (c) Accumulation operation to add partial sums

Fig. 21 Comparator and max pooling schedule. (a) Comparison operation. (b) Maxpooling
operation

and R3. The memory utilized by the p and q results can now be released once r is
processed. Each addition operation stores its result to a specific memory location
in the local registers so that the data in the memory is not prematurely overwritten
during RPO scheduling.

The adder tree used in this work handles additions of up to 10 bits on the TULIP-
PE. However, this range can be further extended by configuring the TULIP-PE for
accumulation. A multi-cycle addition operation can be performed to an accumulated
term stored in the local registers. Figure 20c shows the addition of an input number p
with the accumulated term q. The storage of q is alternated between the R2 and R4,
as local registers that provide the operands cannot store the results simultaneously.

4.1.4 Comparison, Batch Normalization, Max Pooling, and RELU
Operation

Comparison A multi-cycle sequential comparator can be implemented using
three-input threshold functions, as shown in Fig. 21a. Two n-bit numbers x and y

are serially delivered from LSB to MSB to the comparator that returns the result of

98 S. P. Khatri et al.

the comparison x > y. Starting with the comparison of the LSBs of both operands,
the ith cycle of the comparison compares the ith position bits of the operands. If the
ith bit of the first operand is greater than the second, it overrides the result generated
in cycle i − 1. The inset in Fig. 21a shows the logic for bitwise comparison. After
n cycles, if the output is 1, then x > y; otherwise x ≤ y. As an example, Fig. 21a
shows the schedule for a 4-bit comparison. The 4-bit inputs x and y are streamed to
the comparator either through the local registers or through the input channels.

Batch Normalization This operation performs biasing of an input value in BNNs.
For BNNs, it is realized by subtracting the value of bias from the threshold T of the
binary neuron, as described in [108]. Therefore, batch normalization in TULIP is
implemented using the comparison operation.

Max Pooling In a BNN, this operation is an OR operation on a pooling window of
layer outputs. An OR operation can be implemented using the threshold gate shown
in Fig. 21b. Each neuron in the TULIP-PEs implements one four-input OR function.
Note that local registers are not needed for this operation, because the results are
streamed out as soon as they are computed.

RELU The RELU operation in TULIP is realized by using the comparison
operation. First, the operand is compared against 0. An AND operation is then
performed using the operand and the result of the comparison operation, using
a two-input threshold function [1,1;2]. Note that although the implementation of
RELU is not as efficient as using a dedicated circuit built using standard cells,
implementing this operation on a TULIP-PE removes the need of integrating custom
hardware for special operations such as RELU.

4.1.5 Top-Level View of the Architecture

The top-level TULIP architecture is shown in Fig. 22. It is designed to achieve
high energy efficiency per operation while achieving the throughput of state-of-the-
art implementations. This architecture consists of four main types of components:
image buffers, kernel buffers, one or more processing units, and controllers. The
kernel buffer stores the BNN weights. The image buffer is a two-level standard
cell memory (SCM) named L2 and L1 that is used to send input pixels to all
processing units present in the design. The processing unit contains TULIP-PEs
which is mainly responsible for performing the convolution operation. These units
also get the appropriate weights from the kernel buffer.

Each TULIP-PE in a processing unit is used to handle one output feature map
(OFM) of the binary layers, while the MAC units are used for integer layers. Note
that although TULIP-PEs can also be used to compute integer layers, doing so
results in reduced throughput.

Flash: A “Forgotten” Technology in VLSI Design 99

Fig. 22 TULIP top-level architecture

Table 6 Reconfigurable MAC unit [106] vs TULIP-PE, for 288-input neuron evaluation

Single PE metrics YodaNN MAC (B) TULIP-PE (T) Ratio (X) (B/T)

Area (μm2) 3.54E+04 1.53E+03 23.18

Power (mW) 7.17 0.12 59.75

Cycles 17 441 0.038

Time period (ns) 2300 2300 1

Time (ns) 39 1014 0.038

4.1.6 Experimental Results

Table 6 compares a TULIP-PE against the 15-bit reconfigurable MAC unit used
in YodaNN[106], a recent ASIC-based BNN accelerator. The MAC unit used in
YodaNN can be reconfigured to support kernel sizes 3×3, 5×5, and 7×7. Note that
both the MAC unit and TULIP-PE support integer inputs and binary weights. In
large BNN architectures such as AlexNet[109], the initial layers are integer layers,
which means that the inputs are integers but the weights are binary. The remaining
layers are binary layers which means that both inputs and weights are binary.
YodaNN uses MAC units for all layers, while TULIP uses TULIP-PEs for binary
layers and simplified MACs (which support only 5×5 and 7×7 kernel windows) for
integer layers.

Since the calculation method of YodaNN and TULIP is different only in the
binary layer, the comparison of MAC and TULIP is performed in the binary layer.
That is, both modules perform a weighted sum using binary activations and binary
weights of 288 inputs, i.e., 3×3 kernel for 32 IFMs. Based on Table 6, we can see
that the TULIP-PE is 23 times smaller than a MAC unit and consumes 1/60th of the
power. However, a TULIP-PE takes 27 times longer than the MAC unit because it

100 S. P. Khatri et al.

Table 7 Comparison of YodaNN with TULIP architecture for accelerating convolution layers of
standard datasets

Conv only BinaryNet AlexNet

CIFAR10 Imagenet

Dataset YodaNN TULIP (X) YodaNN TULIP (X)

Op.(MOp) 1017 1017 (1.0) 2050 2050 (1.0)

Perf.(GOp/s) 47.6 49.5 (1.0) 72.9 79.1 (1.1)

Energy(uJ) 472.6 159.1 (3.0) 678.8 224.5 (3.0)

Time (ms) 21.4 20.6 (1.0) 28.1 25.9 (1.1)

En.Eff. (TOp/s/W) 2.2 6.4 (3.0) 3.0 9.1 (3.0)

performs addition on a bit-by-bit basis. As a result, the power delay product of PE
is 2.27X lower than the MAC unit, while also being 23X smaller.

Using an adder tree-based schedule helps TULIP deliver a better power delay
product than a traditional MAC unit. Also, since the MAC unit cannot perform
operations such as compare and maximum pooling, the data for these operations
need to be sent to other parts of the chip for further processing [106]. On the other
hand, the TULIP-PE maintains the locality of the data and can perform internal
comparison and maximum pooling operations without moving the data to other parts
of the chip, thereby saving additional energy.

To ensure that the chip area of TULIP matches that of YodaNN, TULIP
was designed with 32 simplified MAC units and 256 TULIP-PEs. As a result,
convolution in TULIP is performed in batches of 32 OFMs for integer layers and
256 OFMs for binary layers. Table 7 compares the characteristics of YodaNN
with TULIP for the convolution layers. For the convolution layers, the TULIP
architecture surpasses YodaNN by around 3X in terms of energy efficiency. This
is due to the combined use of an adder tree-based schedule, coupled with clock
gating. Increased reuse of input pixels also improves energy efficiency and increases
throughput. Note that the results show that the gains are consistent across different
neural networks.

4.1.7 Conclusion

This section demonstrates how a BNN accelerator TULIP has 3X better energy
efficiency than another current state-of-the-art architecture with the help of thresh-
old logic gates/neurons. Gains were achieved without using standard low-power
techniques such as voltage scaling and approximate computing.

Flash: A “Forgotten” Technology in VLSI Design 101

4.2 A Flash-Based Current-Mode IC to Realize Quantized
Neural Networks

This section presents a mixed-signal architecture for implementing quantized neural
networks (QNNs) using flash transistors to achieve extremely high throughput
with very low power, energy, and memory requirements [110]. Its low resource
consumption makes our design especially suited for use in edge devices. The
network weights are stored in-memory using flash transistors, and nodes perform
operations in the analog current domain. Our design can be programmed with any
QNN whose hyperparameters (the number of layers, filters, or filter size, etc.) do
not exceed the maximum provisioned in the hardware. Once the flash devices are
programmed with a trained model and the IC is given an input, our architecture
performs inference with zero access to off-chip memory. We demonstrate the
robustness of our design under current-mode nonlinearities arising from process
and voltage variations. We test validation accuracy on the ImageNet dataset, and
show that our IC suffers only 0.6% and 1.0% reduction in classification accuracy for
top-one and top-five outputs, respectively. Our implementation results in a ∼50×
reduction in latency and energy when compared to a recently published mixed-
signal ASIC implementation, with similar power characteristics. Our approach
provides layer partitioning and node sharing possibilities, which allow us to trade
off latency, power, and area among each other.

In our IC, we implement all aspects of the QNN needed for inference. Convolu-
tional (CONV), max pooling (MAXPOOL), and fully connected (FC) layers, batch
normalization, intermediate data storage, and control flow are all implemented on-
chip. At programming time, all network hyperparameters can be chosen up to the
maximum allowed. The maximum values of these hyperparameters are summarized
in Fig. 23. Note that not all layer types need be used, resulting in a highly flexible
architecture.

Each layer is comprised of circuits implementing the nodes of that layer. The
nodes in the first CONV layer accept 8-bit inputs. Nodes in all other layers accept
1-bit inputs whose values are in {−1, 1}. The nodes in all layers can be programmed
with any weight programming scheme from binary up to 9-valued, at zero additional
cost to delay, area, or power. All nodes have 1-bit outputs whose values are in
{−1, 1}.

In the rest of this section, we describe our implementation of every aspect of
a QNN. First, we discuss the designs of the FC node (Sect. 4.2.1), CONV node
(Sect. 4.2.2), and MAXPOOL node (Sect. 4.2.3). Then, we describe how batch nor-
malization is implemented (Sect. 4.2.4), and we illustrate our dataflow architecture
(Sect. 4.2.5). Finally, we present our experiments and results (Sect. 4.2.6) and our
conclusion (Sect. 4.2.7).

102 S. P. Khatri et al.

Fig. 23 Maximum architecture provisioned on-chip

(a) (b)

Fig. 24 FC and CONV node input network (IN). (a) IN and threshold blocks. (b) IN branch design
and connectivity

4.2.1 Fully Connected (FC) Node Design

Input Network (IN) The FC node accepts inputs through an input network,
consisting of two halves. We refer to these halves as the left input network (LIN)
and the right input network (RIN), as shown in Fig. 24a. Each branch in the IN is
made from one flash FET and two MOSFETs, as shown in Fig. 24b. For IN branch
i, the flash FET Vth is programmed to either 0.862V, 0.908V, 0.962V, 1.037V, or
2V according to the magnitude of weight parameter wi . These threshold voltages
are chosen such that the IDS ∝ |wi | when the FET is conducting. The LIN (RIN)
stores positive (negative) weight parameters. For a given weight wi , sign(wi) will
determine whether it is programmed to branch i of the LIN or RIN, yielding 9
weights in all. The programming of these branches is mutually exclusive; if branch
i of the LIN (RIN) is programmed with a weight wi , branch i of the RIN (LIN) will
be programmed with a weight of zero.

The FC node accepts a digital voltage input xi and its logical complement xi . If
the corresponding input is 1(−1), then xi = 1(0) and xi = 0(1). These signals are
connected as shown in Fig. 24b, which can encode an input in {−1, 1} as follows.
Recall that if weight wi > 0, it will be programmed to the LIN. Now, if xi = 1
(xi = 0), the branch current will flow to the node IIN+ (IIN−). Similarly, recall
that if weight wi < 0, it will be programmed to the RIN. Then, if xi = 1 (xi = 0),

Flash: A “Forgotten” Technology in VLSI Design 103

the branch current will flow to IIN− (IIN+). This effectively computes wixi in the
current domain, for a given branch i, with 9 possible weight values.

At IIN+ and IIN−, all branch currents are summed by Kirchhoff’s current law.
The current flowing to IIN+ (IIN−) will be

∑
wixi over all i for which wixi is

positive (negative). Both the LIN and the RIN have a number of input branches equal
to the maximum number of node inputs. To realize a node with a smaller number
of inputs than the maximum, the unused branches will simply be programmed with
zero weight.

Each LIN/RIN branch pair can be programmed with any nine-valued weight
parameter. Our experiments prove reliable node performance for weights with up
to and including nine values. However, it should be noted that we can use a larger
number of weights as well. It is known that one can choose flash Vth with very
fine precision [11, 111], and hence we could have hundreds of unique weight values
within a typical Vth range (a few hundred mV). Importantly, this choice of weights
comes at no memory cost, because the weight value is stored in the flash FET alone.
That said, our work currently uses nine weight values as described above.

Current Mirrors and Comparator Each node uses two current mirrors to convert
the differential currents from the nodes IIN+ and IIN− to a common node VCMP ,
as shown in Fig. 25. On the positive (left) side of the figure, the current IIN+ is
transferred to VCMP through a current mirror connected to VDD , so that an increase
in this current causes VCMP to increase. On the negative (right) side of the figure,
we use a two-stage current mirror, with the second stage connected to GND, so that
an increase in current IIN− causes VCMP to decrease. The left and right current
mirrors have identical scaling factors, and hence VCMP > VDD/2 when IIN+ >

IIN−, and VCMP < VDD/2 otherwise. Thus, VCMP > VDD/2 if
∑

wixi > 0
and VCMP < VDD/2 otherwise. The comparator (CMP) compares VCMP against
VREF = VDD/2, to produce the node output bit. This results in an output bit of 1
when

∑
wixi > 0, and zero otherwise. The output bit encodes a value in {−1, 1}.

Fig. 25 Neuron output
computation hardware

104 S. P. Khatri et al.

4.2.2 Convolution (CONV) Node Design

Input Network The input network (IN) of CONV nodes is exactly the same as in
FC nodes. This is because the convolution operation is also a summation

∑
wixi ,

over a portion of a 3D feature map. To realize a CONV node with a k × k kernel
and c channels, the node will have k2c inputs. In our IC, each CONV node will
implement a different filter. Our design can implement different numbers of filters,
with different filter sizes as shown in Fig. 23.

The IN design is different for the first CONV layer however, because this CONV
layer accepts 8-bit image inputs with three (RGB) channels. We accomplish this by
duplicating the IN block into 8 blocks IN0-IN7.

Current Mirrors and Comparator In a CONV node with 1-bit inputs, the current
mirror design is identical to that in the FC nodes. For a CONV node with 8-bit
inputs, the current through each block INj must have twice the magnitude of the
current of block INj−1, so that the bits of xi are given their proper significance.
To accomplish this, we duplicate current mirrors and design them to have binary-
weighted scaling factors.

4.2.3 MAXPOOL

We implement MAXPOOL as an OR operation on binary values in a feature map.
We use 9-input OR gates to accomplish MAXPOOL of a 3×3 kernel or smaller.

4.2.4 Batch Normalization

We implement batch normalization as described in [112], by changing the threshold
T used in the node output computation

∑
wixi > T . We do this with threshold

blocks T + and T −, as depicted in Fig. 24a. T + and T − are implemented with flash
transistors (as in the node IN branches in Fig. 24b), but without any MOSFETs.
Setting the Vth of the FETs in T + and T − allows for setting the node threshold to
−Max ≤ T ≤ Max, where Max is the maximum

∑
wixi value of that node.

4.2.5 Dataflow Architecture

We use a dataflow architecture to pipeline data through our chip. Our architecture
allows for a variable number of layers, for each layer type, to be programmed onto
the chip. We supply the input image to the CNN in a row-by-row manner. Each layer
produces its output feature map (OFM) pixel-by-pixel. This allows all CONV layers
to compute in parallel, because each layer can begin computing once it has enough
inputs for a single output pixel to be produced. The user can disable some number
of layers as desired. We route data around unused layers, giving the user a flexible

Flash: A “Forgotten” Technology in VLSI Design 105

choice for the number of CONV, MAXPOOL, and FC layers, up to the maximum
for each (see Fig. 23). Because layers can be disabled, some layers can receive their
data from different source layers. We use multiplexors to determine the origin of the
input data for each layer. We list below the options for input data sources for each
layer:

• The first CONV layer can only receive the input image.
• MAXPOOL layers may only receive inputs from the preceding CONV layer.
• All CONV layers after the first may receive inputs from the preceding MAX-

POOL layer or the preceding CONV layer. This allows for any and all MAX-
POOL layers to be disabled.

• All FC layers may receive inputs from any preceding layer. This allows any and
all CONV, FC, and MAXPOOL layers to be disabled, and skipped.

4.2.6 Experiment and Results

We implement our designs in a 45 nm process technology. We simulate circuit
designs using Synopsys HSPICE [113], to test node correctness and measure
performance metrics like latency, area, and power. All the CNN components
described are accounted for in our computations. For CMOS devices, we use a
45 nm PTM model card [114]. For flash devices, we use the model card derived in
[115]. Our nominal VDD = 1.2V for all HSPICE experiments. We use the Python
library TensorFlow [116] to measure the ImageNet classification accuracy of Binary
AlexNet implemented with our approach.

We first measure node output bit error rates and node latency. The simulations for
these sections are conducted in HSPICE.We then export node error rates to a Python
simulation to measure classification accuracy on ImageNet. Finally, we quantify and
compare metrics like layout area and inference latency, power, and energy, and we
also discuss variations of our design that can allow us to trade off these metrics.

Bit Error This experiment tests node performance in the presence of process and
voltage variation. We implemented our largest node (a 1-bit 9216-input FC node)
in HSPICE, and performed 18,000 Monte Carlo simulations. For each simulation,
we choose the weights and inputs of the node, such that the mean weight wmean

and the mean input xmean follow a uniform distribution. We test the entire range
of node weights and inputs by sampling the ranges of wmean and xmean equally,
with increments of 0.01. In this experiment, we select node weights from {−1, 1},
i.e., 1-bit weights, so we can compare our ImageNet classification accuracy against
that of a baseline BNN that also uses 1-bit weights. We note that performing this
experiment with 9-valued weights resulted in lower error rates, a drop of about
3.7% on average per bin.

For the Monte Carlo simulations, we model process variation by randomizing
the length (L), width (W), and threshold voltage (Vth) of all MOSFETs. For L and
W, we take the absolute value of the variation from [117], which was reported for a
65 nm process. We use the Vth variation presented in [118]. We derive our MOSFET

106 S. P. Khatri et al.

(a) (b)

Fig. 26 FC node bit error rates. (a) 9216-input FC bit error. (b) 1200-input FC latency error

average channel doping Na from the average value of recent papers ([119–122]).
For each simulation we also vary VDD , with a 10% (120mV) standard deviation.
Our CMP reference voltage VREF is assumed to be constant, being generated by
a precise bandgap voltage reference [123]. For each simulation, if the node output
is incorrect, we record this as a bit error for that

∑
wixi over all node inputs and

weights. We split the range of values for
∑

wixi into bins of width 512. In Fig. 26a,
we plot the node output error rates for each bin.

Latency Error In our design, we bound the latency of a node, thereby incurring
some error. We use our smallest, slowest nodes to measure latency and its associated
error. For Binary AlexNet this is a 1200-input 1-bit FC node. For BinaryNet, this is
a 27-input 8-bit CONV node. For both nodes, we perform 50,000 HSPICE transient
simulations. Node weights and inputs are selected as in the bit error experiment. For
each simulation, we record the

∑
wixi of the node, and the latency from the time the

node inputs arrive to the time the node output bit reaches its final value. Just before
the node inputs are applied, we precharge VCMP to VDD/2, using the CMP VREF .
We do not take the maximum latency as our clock period, but rather, we select the
clock period < maximum latency, and accept node output errors for situations when
node latency exceeds the selected clock period. This gives additional error rates per
bin, as shown in Fig. 26b. Our chosen clock period is 4.2 ns for Binary AlexNet
and 7.2 ns for BinaryNet. The latency error rates for Binary AlexNet are shown in
Fig. 26b. In general, a user can choose the clock period based on their tolerance to
reduced classification accuracy, and this can be done in real time.

CNN Classification Accuracy on ImageNet This experiment will test how much
the bit error and latency error rates impact classification accuracy of the CNN as a
whole. We use the Binary AlexNet architecture, implemented in the Larq Python
library [124]. We measure top-one and top-five validation accuracy on ImageNet.
We model total node error behavior by summing the two histograms depicted in
Fig. 26, thus adding the bit error and latency error rates. We apply error rates on

Flash: A “Forgotten” Technology in VLSI Design 107

a per-bin basis, to all nodes in the CNN. It should be noted that the two error
histograms in Fig. 26 were measured for our most error-prone node and our slowest
node respectively, and therefore give a conservative estimate for error rates of all
nodes.

Compared to the digital implementation of Binary AlexNet, our mixed-signal
implementation results in a minimal decrease in CNN classification accuracy. We
measure a 0.6% dtop in top-one accuracy (from 36.3% to 35.7%) and a 1.0% drop
in top-five accuracy (from 61.5% to 60.5%).

Latency, Power, and Layout Area In this section we present results on perfor-
mance metrics of latency, area, power, and energy of a single inference for the
Binary AlexNet and BinaryNet architectures implemented with our approach. We
compare the performance metrics of our approach against TULIP [125], a recent
BNN implementation, which had the best performance at the time it was published.
TULIP is implemented in a TSMC 40 nm LP process. In our results, we include the
contribution to latency, layout area, power, and energy of all the component circuits
described (including digital and memory blocks). We note that TULIP does not
report measurements for Binary AlexNet, but for a slightly different architecture,
proposed in [96]. These two architectures are both binarized versions of AlexNet
and are very similar, and therefore provide a fair comparison. We list TULIP
entries under the Binary AlexNet heading in Table 8 for simplicity. We implement
BinaryNet as implemented in [125], for a direct comparison.

As described in Sect. 4.2.5, for each CONV filter, we pass different values over
the node inputs to emulate the sliding of the CONV kernel over the IFM over
time. We call this modification node sharing, and use it to achieve lower power
and area requirements. In order to further reduce our power consumption, we only
allow one node per layer to fire in any given cycle. We call this modification layer
partitioning. For both CONV and FC layers, this means that only a single OFM pixel
per layer will be computed in any given clock cycle. We present three combinations
of these modifications while presenting performance metrics, in Table 8. Variation 3
uses only CONV node sharing. Variation 2, in addition, uses FC layer partitioning.
Variation 1, in addition to the modifications of Variation 2, uses CONV layer
partitioning.

We perform HSPICE simulations to measure the latency and maximum active
power of all circuits described. To compute inference latency, power, and energy,
we perform an architecture-level simulation using Python. For Binary AlexNet
and BinaryNet, we use the clock periods determined in Sect. 4.2.6. The inference
latency, power, and energy are shown in Table 8.

To estimate chip layout area, we first generate a layout design for all IN
blocks. For the digital blocks, we estimate their layout area using Synopsys Design
Compiler [113]. The chip area used by our architectures adds the layout area of
the component circuits and is shown in Table 8. If we provision the “maximum”
network of Fig. 23, our area is 27.1mm2, with a maximum power of 91mW per
classification.

108 S. P. Khatri et al.

Table 8 Chip design variations

Binary AlexNet on ImageNet

Setting/metric Variation 1 Variation 2 Variation 3 TULIP [125]

Max power 6.47mW 1.6W 48.5W Unknown

Average power 2.72mW 614mW 24.8W 2.59mW

Latency 3.07 ms 13.6μs 336 ns 165ms

Energy 8.35μJ 8.35 μJ 8.35μJ 428 μJ

Area 17.7mm2 17.7mm2 64.7mm2 1.80mm2

BinaryNet on Cifar-10

Setting/metric Variation 1 Variation 2 Variation 3 TULIP [125]

Max power 4.59mW 1.2W 20.8W Unknown

Average power 1.86mW 433mW 3.46W 6.36mW

Latency 1.99ms 8.50μs 1.07μs 28.9ms

Energy 3.71μJ 3.71μJ 3.71μJ 184μJ

Area 4.36mm2 4.36mm2 41.8mm2 1.80mm2

4.2.7 Conclusion

In this section, we present a flash-based mixed-signal architecture for accelerating
QNNs, with the goal of minimizing power, energy, and latency. We utilize flash
technology for network weight storage and node computation, which enables us to
achieve extremely low power, energy, and latency per inference. Flash also allows
for storage of many weight bits in a single transistor. We test up to nine-valued
weights, but the number of weight values used in our architecture could be increased
past the nine-valued weights we test in this paper, at no additional cost to latency,
area, power, or memory.

We implement all the circuits needed for QNN inference, to quantify classifi-
cation error as well as performance metrics like latency, area, power, and energy.
As a part of these experiments, we perform a Monte Carlo analysis to demonstrate
the robustness of our designs in the presence of process and voltage variation. We
model the performance of our chip as applied to the Binary AlexNet architecture and
demonstrate that ImageNet classification accuracy is minimally degraded (by ∼1%)
across circuit variations. We show that our chip design has ∼50× lower latency and
energy than a recent ASIC approach, for ImageNet classification. We present three
variants of our architecture to enable the trade-off between latency, area, and power.

5 CIDAN: Computing in DRAM with Artificial Neurons

This section describes a processing in-memory (PIM) architecture called CIDAN
[126]. It is composed of a new processing element called TLPE, which is built using
the FTL gate described in Sect. 3.2. A TLPE contains digital logic in addition to the

Flash: A “Forgotten” Technology in VLSI Design 109

FTL gate which enables it to compute a few non-threshold functions by a sequence
on threshold gate evaluations. CIDAN is designed on a DRAM platform with an
array of TLPE(s) integrated into its memory arrays. An evaluation on a represented
set of workloads shows that CIDAN improves upon the state of the art by 3X in
performance and 2X in energy consumption.

5.1 Introduction

The widening performance gap between the CPU and the memory has severely
constrained the throughput of the traditional von Neumann architectures. This well-
known issue is referred to as the memory wall problem in the literature. It has
been a principal reason for degraded throughput of high bandwidth applications
consisting of bulk bitwise operations such as machine learning[127], database
management[128], encryption[129], etc. Over the years different proposals have
been investigated to bridge the performance gap between CPU and memory. Several
efforts have been made to improve the data bandwidth of the off-chip memory
which resulted in memory designs such as double data rate (DDR) memory and
3D high bandwidth memory (HBM). Even with these improved bandwidth memory
architectures, a greater increment in the CPU performance hasn’t solved the memory
wall problem. To reduce the memory transfers over the channel connecting the CPU
and memory, some proposals have advocated bringing computation and memory
closer. The work presented in [130, 131] introduced larger on-chip cache memory
and added computation to the cache units. This method has limitations arising
from the limited size of the cache. Other solutions broadly classified as processing
in-memory (PIM) architectures have been proposed as well. Examples of PIM
architectures include [132–134]. These architectures are based on the fundamental
idea of using the memory to perform certain computations on the data stored in
the memory and eliminate the use of the CPU for such computations. The PIM
architectures use the high parallelism of memory to process large amounts of data
simultaneously and can improve the throughput of high bandwidth applications. The
number of data transactions over the bandwidth-limited memory channel is reduced
in PIM architectures, and this alleviates the communication bottleneck between the
memory and the processor.

This section describes a new PIM architecture called CIDAN, which is based on
DRAM with threshold logic processing elements (TLPEs) embedded in it. CIDAN
adds computation capability to the DRAM without sacrificing its area, changing its
access protocol, or violating any timing constraints.

110 S. P. Khatri et al.

5.2 Threshold Logic Processing Element (TLPE)

This section will describe the architecture of CIDAN. The reader is encouraged
to review [135] to get a better understanding of how a DRAM works and [136]
to understand what threshold functions are, and how threshold logic gates are
constructed.

The design of a TLPE is shown in Fig. 27a. It is composed of a threshold gate, two
latches (L1, L2), and four XOR gates. The threshold gate performs computations
and implements a threshold function [−2, 1, 1, 1, 1, 1;T], where T can switch
between 1 and 2. The two latches are used to store the output temporarily. The four
XOR gates at the input of the threshold gate are used to invert the signals from the
memory bank. The inverted/non-inverted inputs to the threshold gate are controlled
by the control signals C0–C3. The control signals enri and enli are used to select the
value of T and other two inputs to the threshold gate.

The threshold gate performs logic operations which are threshold functions
such as (N)AND, (N)OR in a single cycle when the required inputs (I1–I3) and
the appropriate threshold T are selected in the TLPE. The enabled inputs and
the threshold value for the logic operations are shown in Table 9. The X(N)OR
operations are non-threshold functions and are implemented in a two-cycle schedule
on the TLPE.

The implementation of the addition operation is carried as a schedule on the
TLPE and is shown in Fig. 27b. An addition operation on the ith significant bits
of the operands A and B and the previous carry bit C[i] stored in L1 is carried as
follows. The threshold gate is configured to perform a majority operation on the
input bits A[i] and B[i] and the previous carry C[i] in the first cycle and produce
output carry C[i + 1]. The carry bit C[i + 1] is stored in the latch L2 and also
fed back to the input of the threshold gate. In the second cycle, the threshold gate
is configured to perform threshold function [−2, 1, 1, 1; 1] to generate the sum bit

(a)
(b)

Fig. 27 TLPE and its schedule for basic addition operation. (a) Architecture of threshold logic
processing element (TLPE). (b) Schedule for addition operation on TLPE for 3-bits Ai , Bi , and
Ci . Outputs are Si and Ci+1

Flash: A “Forgotten” Technology in VLSI Design 111

Table 9 Basic logic
operations using threshold
logic processing element. For
demonstration, operands are
I1 and I2

Weights

Func Cycle number −2 1 1 T

NOT 1 X ∼I1 X 1

AND 1 X I1 I2 2

OR 1 X I1 I2 1

NAND 1 X ∼I1 ∼I2 1

NOR 1 X ∼I1 ∼I2 2

XOR 1 X I1 ∼I2 2

2 OP1 ∼I1 I2 2

XNOR 1 X I1 I2 2

2 OP1 ∼I1 ∼I2 2

Fig. 28 Threshold logic processing element array (TLPEA) connected to banks in a DRAMdevice

S[i+1] using the inputs C[i+1], A[i], B[i], and C[i]. Simultaneously, the L1 latch
is written with C[i + 1] stored in L2 to serve as the input carry bit for the addition
of the next significant bits of operands A[i + 1] and B[i + 1].

5.3 Top-Level Architecture of CIDAN

CIDAN is designed using the existing architecture of the DRAM chips used in
DIMMs. The TLPEs are integrated with the DRAM memory array as shown
in Fig. 28. The TLPEs form an array TLPEA interfaced with the outputs of the

112 S. P. Khatri et al.

bit line sense amplifiers (BLSA). A single TLPEA is connected to four banks with
each TLPE taking four inputs from bit lines of four different banks B1, B2, B3,
and B4. Consequently, the number of TLPEs is equal to the size of the row in the
bank (N). The output of the TLPEA is connected to the column decoder and write
driver block as shown in Fig. 28. The control signals are used to write data from
the TLPEA output instead of the other bank outputs (B1, B2, B3, and B4) when
computation is being carried out on the TLPEA.

5.4 System-Level Integration and the Controller Design

CIDAN is a DRAM-based platform and is designed to serve the dual purpose of an
accelerator and as a memory interfaced with the CPU. The computation operations
on CIDAN are encoded as assembly-level instructions and added to the CPU’s
instruction set. The CIDAN controller decodes the CIDAN-specific instructions for
computations. It generates a sequence of DRAM instructions and activates control
signals to implement operations in CIDAN. The CIDAN platform requires extra bits
to be added on the CPU-memory bus for the control signals required to operate the
TLPEA.

Table 10 lists the command sequence generated by the controller for all the
operations on CIDAN and compares it with the command sequence of prior work
architectures. The data Di and Dj for the operation are stored in the rows at
address i and j in the bank m and n, respectively. The operand data is read
and computed on the TLPEA. The generated result Dr is written back to bank o

row r . In CIDAN, the operands from different banks are read using consecutive
activation commands on two banks separated by a period specified by DRAM timing
parameter tRRD (7.5 ns), whereas, in the prior work architectures, the consecutive
activation commands are issued to the same bank separated by a period specified
by the timing parameter tRAS (35 ns). Prior work uses a sequence of AAP (82.5 ns
each) commands for logic operations. The large latency of AAP commands and the
requirement of multiple such commands degrade the throughput of the prior work.
As the complexity of the operations increases, the number of AAP commands in the
prior work increases. In contrast, the command sequence in CIDAN remains short
and nearly the same for all the operations. The PIM architectures such as GraphiDe
[137] and SIMDRAM [138] build upon ReDRAM and Ambit, respectively, perform
addition and report (7 AAP) and (6 AAP + 2 AP) commands for 1-bit addition,
respectively. Hence, the advantages of using CIDAN over the prior work increase
for complex instructions.

Flash: A “Forgotten” Technology in VLSI Design 113

Table 10 Basic functions and command sequence for CIDAN and other PIM platforms. Di =
Data in row i, Ami = Activate bank m row i, Wor = Write bank o row r , PREA = Precharge all
open banks, AAP = ACT ACT PRE a bank, AP = Activate Precharge a bank

Command sequence

Func Operation CIDAN ReDRAM [139] Ambit [132] DRISA[140]

Copy Dr ←− Di Ami Anr 1
clk cycle Wnr
PREA

AAP AAP AP AP

NOT Dr ←− Di Ami Anr 1
clk cycle Wnr
PREA

AAP AAP AAP AAP AAP

AND Dr ←− Di ∧
Dj

Ami Anj Aor
1 clk cycle
Wnr PREA

AAP AAP AAP AAP AAP
AAP AAP

AP AAP
AAP

OR Dr ←−Di ∨Dj Ami Anj Aor
1 clk cycle
Wnr PREA

AAP AAP AAP AAP AAP
AAP AAP

N/A

XOR Dr ←− Di
⊕

Dj

Ami Anj Aor
2 clk cycles
Wnr PREA

AAP AAP AAP AAP AAP
AAP AP AP
AAP AAP

N/A

ADD Dr ←− Di⊕
Dj

⊕

Cin Cout ←−
Maj(Di, Dj,
Cin)

Ami Anj Aor
2 clk cycles
Wnr PREA

N/A N/A N/A

5.5 Experimental Results

CIDAN is evaluated and compared against the prior PIM architectures, such as
ReDRAM [139] and Ambit [132] for raw performance and energy. The TLPE is
functionally verified using SPICE, and its delay, energy, and area are extracted and
scaled to the 45 nm DRAM technology using [141]. Gem5 [142] is used for system-
level simulation using these extracted values. Gem5 is integrated with Ramulator
[143]—a DRAM simulator—to run the applications and to obtain the performance
statistics for CIDAN as well as the other benchmark architectures. The simulator
DRAMPower [144] is used to evaluate the energy consumption.

For the evaluation of PIM architectures, custom benchmarks are prepared which
are composed of bulk bitwise operations NOT, AND, OR, and XOR on large bit
vectors of size 1Mb, 2Mb, and 4Mb. A memory array of size 16,384×1024×8 bits
and 8 banks is used for all the platforms to have a fair comparison. The performance
and energy of all the evaluated platforms are shown in Table 11.

Table 11 shows that ReDRAM requires about 3X more DRAM cycles than
CIDAN to compute bitwise AND, OR, and XOR for different operand sizes. These
improvements stem from the fact that CIDAN required far less internal DRAM
operations than ReDRAM and any other PIM platform. Table 11 also shows that
CIDAN’s energy consumption is nearly half the energy of ReDRAM for bulk

114 S. P. Khatri et al.

Table 11 Average latency, energy, and throughput for basic operations on PIM platforms com-
puted for input vectors of size 1MB, 2MB, and 4MB. Latency and energy are normalized to
CIDAN

Latency (CIDAN=1) Energy (CIDAN=1) Throughput (GOps/s)

Ambit ReDRAM Ambit ReDRAM Ambit ReDRAM CIDAN

NOT 2.4 1.2 1.64 0.82 94.7 189.6 227.5

AND 4.32 3.24 2.61 1.96 47.3 63.1 205.03

OR 4.32 3.24 2.61 1.96 47.3 63.1 205.03

XOR 6.54 3.19 4.12 1.94 30.7 63.1 201.8

Table 12 Latency and energy comparison for executing AES on different platforms normalized to
CIDAN

Latency (CIDAN = 1) Energy (CIDAN = 1)

ReDRAM 1.15 1.10

CPU 4.04 3.74

Table 13 Latency and energy comparison for executing Graph Matching Index problem and DNA
sequence mapping algorithm[129] on different platforms normalized to CIDAN. Graph Matching
Index problem is carried out on three datasets; facebook, amazon, dblp [145]

Latency (CIDAN =1) Energy (CIDAN = 1)

Graph matching DNA sequence Graph matching DNA sequence
Workload index mapping index mapping

ReDRAM 3.24 3.14 1.96 2.12

Ambit 4.32 4.35 2.61 2.88

bitwise operations, and is significantly better than Ambit due to the same reason.
It must be noted that the TLPEs only consume 1% of the overall DRAM chip area.

The evaluation of TLPE is also extended to several other practical applications
such as AES, Graph Matching Index problem, and DNA sequence mapping
algorithm [129]. Their latency and energy comparison against the benchmark
architectures are shown in Tables 12 and 13.

5.6 Conclusion

In this section, integration of highly reconfigurable and low-power threshold logic
processing elements (TLPEs) with DRAM is presented as PIM architecture CIDAN.
It performs binary bitwise operations such as NOT, (N)AND, (N)OR, X(N)OR, etc.,
and full adder on large bit vectors. CIDAN improves upon the equivalent prior
architectures by a factor of 3X in performance and 2X in energy consumption.
An evaluation and comparison of CIDAN with prior PIM architectures on real-
world applications such as AES encryption, graph processing operation, and DNA
sequence mapping algorithm is also presented.

Flash: A “Forgotten” Technology in VLSI Design 115

6 Flash Devices in Analog Circuits

So far, we have seen the benefits of using flash transistors in digital logic circuits
and neural network accelerators and for processing in-memory. In this section, we
discuss the use of flash devices for the design of analog and mixed-signal circuits.
The tunability of flash transistors makes them remarkably useful in analog circuits.
Designs may be tuned after fabrication, to achieve the accuracy, power consumption,
or latency that is desired by the user. Further, this tuning ability empowers the user
to overcome non-idealities including process and voltage variations. In this section,
we present two recent works that demonstrate the use of flash transistors in analog
designs. In Sect. 6.1, we describe a digital to analog converter (DAC) design which
uses flash transistors as tunable current sources, to create a current-steering DAC
that is suitable for use in edge devices. In Sect. 6.2, we present a digital low-dropout
(digital LDO) regulator that uses flash transistor subarrays for voltage regulation,
and we demonstrate the high degree of tunability that this approach achieves.

6.1 Flash-Based Digital to Analog Conversion

The applications of Internet of Things (IoT) circuits are expected to grow sig-
nificantly between 2025 and 2035. Low-power and energy-efficient chips are
necessary for IoT applications. Because IoT devices are mainly stand-alone, battery-
operated sensors and microprocessors, they benefit greatly from ultralow power
chips. Traditional digital architectures and designs may struggle to deliver the
required energy efficiency [146], limiting their utility in IoT devices. Additionally,
IoT devices typically do not benefit from the high processing speeds offered by
traditional digital designs, and instead only require moderate processing speeds,
from sub-kHz up to 100 MHz [147].

Digital to analog converters (DACs) are one crucial element of sensor-processor
interfaces that are common in IoT nodes. Traditional analog DACs struggle to
meet the ultralow power requirements of IoT devices, and thus recent works have
developed novel designs suitable for IoT chips. For example, recent contributions in
[148, 149] propose all-digital low-cost DAC designs based on dyadic digital pulse
modulation (DDPM). These DACs meet some of the requirements of IoT chips, like
low voltage and area, but because they drive a voltage output to a high-impedance
node, they would be unsuitable for driving a resistive load.

Current-steering DACs [150] offer a reliable method for driving resistive loads.
The design naturally provides a differential current output, which can be easily con-
verted to a voltage output using a load resistor. Perhaps the biggest problem faced
by current-steering DACs is the error caused by mismatch-induced nonlinearities.
Designers must make use of costly calibration hardware and large devices in order
to minimize error. The extra calibration hardware comes at a cost to power, area, and
energy, making such designs unsuitable for IoT applications. We solve this problem

116 S. P. Khatri et al.

(a) (b)

Fig. 29 (a) The proposed 12-bit DAC. (b) Flash current source

by using flash transistors which provide in-memory calibration to eliminate the need
for calibration hardware and large devices.

We present (Fig. 29a) a current-steering digital to analog converter (DAC) which
utilizes flash transistors to achieve low latency, area, and power, making it suitable
for the internet of things (IoT) and other applications with a small resource budget.
We use flash transistors to create a tunable design that is robust to non-idealities such
as process and voltage variation, and chip aging. The use of flash devices allows our
DAC to give precise and accurate output without the need for costly calibration
hardware. We demonstrate the robustness of our design under non-idealities arising
from process and voltage variations. Compared to other state-of-the-art DACs
intended for IoT, we achieve extremely high throughput and extremely low energy
per conversion while reporting competitive error and power metrics. The proposed
DAC achieves a maximum INL (DNL) of 0.96 LSB (0.71 LSB), an average INL
(DNL) of 0.25 LSB (0.08 LSB), and an ENOB of 11.90 bits

6.1.1 Design

Current Sources As depicted in Fig. 29b, our binary-weighted current sources are
implemented using flash transistors. A reference current Iref is provided as input
to a current mirror. Multiple current mirror output branches are constructed from
flash devices. By programming the flash devices and setting their Vth, the drain to
source current (Ids) can be tuned with fine precision. In our design, these current
sources can be programmed to deliver current ranging from the pA-level to the μA-
level. However, we select an LSB current of 0.5nA, and an MSB current of 1024 nA,
because we found this choice to result in the lowest error. We choose Iref = 1uA.

6.1.2 Features

Flash Devices Unlike other DAC implementations, our design utilizes flash tran-
sistors as programmable, tunable current sources. Historically, flash transistors

Flash: A “Forgotten” Technology in VLSI Design 117

have only been used for non-volatile memory (NVM) technologies, but recent
results demonstrate their promise for use in digital and analog design, due to their
programmable Vth [115]. Flash is a well-understood, high-yielding technology,
making the use of flash devices practical and reliable. The use of flash devices
naturally provides an in-memory calibration mechanism, eliminating the need for
additional calibration hardware which is a burden to other designs.

Current Steering for IoT To the best of our knowledge, this is the first current-
steering DAC implementation that is suited for IoT. We reap the benefits of IoT
DACs (extremely low power, area, and energy), as well as current-steering DACs
(differential output, high throughput, and the ability to drive a resistive load). As we
will demonstrate, we achieve extremely high energy efficiency relative to other IoT
DACs.

Resilience to Aging and Variation The tunability of flash devices enables the
mitigation of non-idealities arising from process and voltage variation. These are
flash current source mismatch, flash current source variation caused by chip aging,
and Iref variation caused by VDD variations or chip aging.

6.1.3 Performance Metrics

The proposed DAC was implemented in a 45 nm process technology and simulated
using Synopsys HSPICE [113]. For CMOS devices, we use a 45 nm PTM model
card [114]. For flash devices, we use the model card derived in [115]. Our nominal
V DD = 1.2V for all HSPICE experiments.

Error The dynamic performance of the DAC was tested to measure the Integral
Nonlinearity (INL) and Differential Nonlinearity (DNL). We tune each bit of
our DAC using a write-verify scheme, such that the current produced for bit i

approaches ILSB ∗ 2i . The two flash transistors for each bit are programmed in
unison, so they will always have the same Vth. Once the DAC is programmed, we
perform a transient analysis to measure the dynamic performance. In Fig. 30a we
plot the Integral Nonlinearity (INL) over all input codes, and in Fig. 30b we plot the
Differential Nonlinearity (DNL) over all input codes. Our maximum INL (DNL)
over all inputs is 0.96 LSB (0.71 LSB). Our average INL (DNL) over all inputs is
0.25 LSB (0.08 LSB). The output voltage swing was measured to be 600mV.

We conduct a frequency analysis of the DAC output to measure the effective
number of bits (ENOB) and spurious-free dynamic range (SFDR). The proposed
DAC is analyzed in response to a sine input with 1Hz frequency. We achieve an
ENOB of 11.90 bits and an SFDR of 84.97 dB.

118 S. P. Khatri et al.

(a)

(b)

Fig. 30 INL and DNL over all input codes. (a) INL over all input codes. (b) DNL over all input
codes

Throughput, Power, Area, and Energy We estimate the chip area of our design
using Synopsys Design Compiler, and report an area of 406μm2. The total current
through our DAC, for any input code, is Iref + I+

out + I−
out = 3.05μA. Our

nominal V DD = 1.2V, so our design therefore has a constant power draw of
3.05μA ∗ 1.2V = 3.66μW. We perform transient HSPICE simulations to measure
the latency of our DAC. We report a latency of 10 ns, which gives a throughput of
100 MSamples/s (MS/s). The total energy consumed by our DAC per conversion is
therefore 3.66μW ∗ 10 ns = 36.6 fJ.

Table 14 compares the performance metrics of our DAC to recent DACs suitable
for use in IoT devices. We leave cells in Table 14 blank if the value is not reported
by the author, or if we are unable to compute it. With comparable error metrics and
chip area, our design beats the fastest approach by 50× in throughput, and the most
energy efficient approach by ∼30× in energy per conversion. Although our power
consumption of our DAC cannot compete with micro-resonator-based designs, our
power is still at a level that is suitable for IoT applications.

Flash: A “Forgotten” Technology in VLSI Design 119

Ta
bl

e
14

C
om

pa
ri
so
n
of

ou
r
fla
sh
-b
as
ed

D
A
C
to

ot
he
r
Io
T
D
A
C
s

D
es
ig
n

R
es
ol
ut
io
n
(b
its
)

T
hr
ou
gh
pu
t(
kS

/s
)

IN
L
/D
N
L
(L
SB

)
E
N
O
B
(b
its
)

Po
w
er

(μ
W
)

E
ne
rg
y
(p
J/
S)

A
re
a
(μ

m
2
)

Fl
as
h-
ba
se
d
D
A
C
(t
hi
s
w
or
k)

12
10
0,
00
0

0.
96

/0
.7
1

11
.9
0

3.
66

0.
03
7

40
6

R
el
ax
at
io
n
[1
51

]
10

20
00

1/
1

9.
06

–
–

–

M
ic
ro
-r
es
on
at
or

[1
52

]
4

0.
64

0.
6
/1

–
0.
00
1

15
0

–

M
ic
ro
-r
es
on
at
or

[1
53

]
4

10
0

–
–

0.
27

2.
7

–

R
el
ax
at
io
n
[1
54

]
10

40
0

0.
33
/0
.2

9.
9

0.
44

1.
1

10
00

R
el
ax
at
io
n
[1
55

]
10

0.
3

2.
4/
3.
3

7.
1

–
–

–

D
D
PM

[1
49

]
12

27
2/
1

11
.3

55
20
00

50
0

D
D
PM

[1
48

]
16

–
2/
1

15
.4

–
–

20
00

120 S. P. Khatri et al.

6.1.4 Summary

In this section, we presented a digital to analog converter (DAC) which utilizes
flash transistors, resulting in a tunable design that is suitable for IoT and robust to
non-idealities such as process and voltage variation and chip aging. We implement
our design in a 45 nm process technology, and perform simulations to measure
performance metrics like INL, DNL, ENOB, throughput, power, and energy per
conversion. We report competitive error metrics and chip area, extremely high
throughput, and extremely low energy per conversion.

6.2 Pseudo-Flash-Based Digital Low-Dropout Regulator

With the rapid growth in demand for low-power Internet of Things (IoT) devices,
and the increased use of advanced fabrication processes, the power supply voltage
of VLSI ICs is decreasing. Traditional analog low-dropout (analog LDO) regulators
are not able to maintain good regulation due to the poor gain of error amplifiers
operating at low supply voltages. To address this problem, digital low-dropout
(digital LDO) regulators [161] are increasingly gaining traction. In contrast with
analog LDOs, digital LDOs can be operated at a lower supply voltage since they
do not need error amplifiers. In addition, digital LDOs don’t require large passive
components (like capacitors) for stability, and are therefore more compact than
analog LDOs. Lastly, digital LDOs are much easier to realize because most of the
circuit components in a digital LDO are designed using standard cells, while custom
circuitry is needed in analog LDOs.

Figure 31 shows a conventional digital LDO which consists of a comparator, a
digital controller, and an array of N identical PMOS transistors. The comparator
compares the difference between the output voltage (Vout) and the reference voltage
(Vref), and the digital controller implements the control algorithm which determines
the number of PMOS transistors that need to be turned on based on the output
of the comparator and the control algorithm used, so that the output load current
requirement is met.

However, a traditional digital LDO has some limitations. Since the number and
the size of the transistors in the PMOS array are fixed, a traditional digital LDO
has a predetermined current and voltage range. If it is used for different current
or voltage ranges, the performance of the digital LDO can degrade, and exhibit
unstable behavior due to the impedance mismatch of the PMOS transistors. Another
concern is that the impedance of each PMOS transistor in the array varies due to
device length, width, and threshold voltage (Vth) variations. This causes the current
provided by each PMOS transistor to be different, negatively impacting output
ripple (Vripple), output voltage overshoot/undershoot (Vshoot), output voltage (Vout),
and recovery time (trec).

Flash: A “Forgotten” Technology in VLSI Design 121

Fig. 31 A conventional
digital LDO

In this section, we propose a pseudo-flash1-based digital LDO. We use a
traditional CMOS process as described in [42–53], and hence call it a “pseudo-
flash transistor.” Using pseudo-flash PMOS transistor arrays for coarse and fine
regulation, we can achieve many significant improvements over traditional digital
LDOs, such as:

• The current range of the regulator can be adjusted (at the factory or in-field) by
adjusting the Vth of the pseudo-flash transistors.

• The resistance of each pseudo-flash transistor can be precisely tuned by adjusting
its Vth, effectively cancelling variations due to device length, width, and Vth

variations that are faced by traditional digital LDOs.
• It allows manufacturers to change the Vth of the pseudo-flash subarrays, and

hence use the same design to obtain different regulators with different electrical
specifications such as VDD , Vripple, Vout , trec, Vshoot , maximum output current
(Imax), and minimum output current (Imin). This reduces manufacturing costs
significantly.

• The threshold voltage can even be changed in the field by the user, to compensate
for temperature or aging effects.

• Although we present our results using pseudo-flash technology, one could use a
traditional flash technology as well.

6.2.1 Proposed Pseudo-Flash-Based Digital LDO

Figure 32 shows the proposed pseudo-flash-based digital LDO. It consists of two
pseudo-flash arrays, a 3-bit comparator bank, and a coarse-fine controller. The
pseudo-flash array is divided into two parts: a coarse subarray with N = 100
pseudo-flash transistors and a fine subarray with M = 5 pseudo-flash transistors.
Vfg (Vfg_c for the coarse subarray and Vfg_f for the fine subarray) is programmed
to different voltage levels to change the effective threshold voltage Vth of the

1 Although we use pseudo-flash transistors, one could use flash transistors as well.

122 S. P. Khatri et al.

Fig. 32 Schematic of
proposed pseudo-flash-based
digital LDO

subarray devices, and therefore modify the resistance of the pseudo-flash transistors.
This enables the same digital LDO circuit to be used to obtain different Imax , Imin,
Vripple, and Vshoot . The comparator bank consists of three comparators to produce
outputs Outhi , Outmid , and Outlo. The signals Outhi and Outlo of the comparator
bank form a dead zone in which we want to maintain Vout in steady state. If the load
current changes, and Vout is no longer in the dead zone, the coarse-fine controller
is enabled immediately. The remaining bit (Outmid) of the comparator bank detects
the difference between Vout and Vref and is used as a reference to regulate Vout . The
coarse-fine controller contains an inner coarse loop and a outer fine loop. The coarse
loop regulates Vout by determining the number n of transistors to turn on such that
(VDD − Iload · RC

n
) < Vref < (VDD − Iload · RC

n+1), where Iload is the load current
and RC is the resistance of each coarse pseudo-flash transistor. Once n is found, the
coarse loop sends a set signal to activate the fine loop, and we proceed to further
reduce the output voltage ripple (Vripple) by adjusting the fine part of the pseudo-
flash array. The fine controller now finds m, the number of fine transistors to turn on
such that (VDD −Iload · (RC

n
||RF

m
)) < Vref < (VDD −Iload · (RC

n
|| RF

m+1)), where RF

is the resistance of each fine pseudo-flash transistor. At this point, the coarse-fine
controller has converged, with a ripple of Iload · ((

RC

n
||RF

m
) − (

RC

n
|| RF

m+1)).

6.2.2 Coarse-Fine Controller

Figure 33a shows the state transition diagram of the finite-state machine (FSM) of
the coarse-fine controller, while Fig. 33b shows an example timing of the operation
of the FSM. When the output load current increases sufficiently, an undershoot
occurs, causing Vout to be pulled out of the dead zone. The controller now enters
the transient state of the FSM and turns on more coarse transistors to provide the
increased load current immediately. When Vout crosses Vref , the number of coarse
transistors which are turned on is recorded in the Max register. Since an incorrect
(excess) number of coarse transistors are turned on, a small overshoot occurs. Thus,
the controller turns off coarse transistors, to stabilize the Vout . Once the Vout crosses

Flash: A “Forgotten” Technology in VLSI Design 123

Fig. 33 (a) The FSM of the coarse-fine controller and (b) operation of the coarse-fine controller

Vref again, the number of transistors which are turned on is recorded in the Min
register, and the controller switches to the coarse state of the FSM. The controller
averages the value ofMax andMin to computeMean. The controller adds/subtracts
2 to Mean to create Up_Bound/Low_Bound to limit Vout within these bounds by
adjusting the number of pseudo-flash transistors. Then, the controller measures the
duration tLow for which Vout is below the Vref , and the duration tUp for which Vout

is above the Vref . If tUp is longer than tLow, it means the controller has turned on too
many transistors, and so the value of Up_Bound is decreased by 1. Otherwise, the
value of Low_Bound is increased by 1. By comparing tUp and tLow, the controller
narrows the bounds. When the difference between Up_Bound and Low_Bound is
1, it means that the controller has found the correct value for the number of coarse
transistors that need to be turned on to provide a sufficient output load current. The
controller now fixes the number of coarse transistors to the value of Low_Bound

and switches to the fine state of the FSM to further reduce Vripple. The same method
is used in the fine loop, in which the controller regulates five fine pseudo-flash
transistors, by again comparing the durations of tUp and tLow. Once the fine loop
converges as well, the controller enters steady state to keep Vout stable, and Vripple

is minimized.

6.2.3 Simulation Results

We performed experiments to show that the same pseudo-flash-based digital LDO
can be reprogrammed to achieve different Imax and Vout for different VDD .
This illustrates how the change in Vfg can be used to change the performance
characteristics of the LDO based on application requirements, using the same
LDO circuit. By changing Vfg_c, Imax and Imin can be altered. The fine subarray
determines Vripple by adjusting Vfg_f . Therefore, the proposed pseudo-flash-based
digital LDO can be operated for different VDD , Vout , Imax , and Imin by simply
modifying Vfg_c and Vfg_f . We conceive of a situation where the manufacturer

124 S. P. Khatri et al.

Fig. 34 Measured results of
Vripple under different Vfg_f

would precompute values of Vfg_c and Vfg_f , for different regulator specifications
(VDD , Vout , Imax , Imin, and Vripple). Based on the customer’s specifications, the
manufacturer would program the proposed digital LDO in the factory (or provide the
ability to the customer to do this in the field). Hence, the same design could be used
for several LDO applications, reducing design cost. Table 15a and b illustrates how
the same digital LDO design is used for several different LDO specifications with
different VDD , Vout , Imax , Imin, and Vripple. Each of the rows in these tables uses
different Vfg_c and Vfg_f values. Table 15a shows the simulation results when the
output load current changes from 20%Imax to 40%Imax , while Table 15b shows the
simulation results when the output load current changes from 40%Imax to 80%Imax .
On average, Vshoot , trec, and Vripple are 41mV, 0.21μs and 0.22mV respectively
when the output load current changes from 20%Imax to 40%Imax . When the output
load current changes from 40%Imax to 80%Imax , Vshoot , trec, and Vripple are 72mV,
0.31μs, and 0.13mV, respectively. Figure 34 shows that our proposed pseudo-
flash digital LDO achieves an improvement of up to 5× in output voltage ripple
by programming Vfg_f to different values.

Table 16 shows the comparison of the proposed pseudo-flash-based digital LDO
with prior works. The proposed pseudo-flash-based digital LDO is designed to
regulate Vout which ranges from 1.1V to 1.7V with the supply voltage operated
at 1.2–1.8V, as described in Table 15a and b. The output capacitance is set to 0.1nF

and the operating frequency is 100MHz.
Unlike other state-of-the-art approaches [156–160], our digital LDO can operate

over a large range of VDD , Imax , Imin, and Vripple. Our Vshoot values are competi-
tive, and we achieve a very low ripple while using a much smaller Cout compared
to the other approaches.

6.3 Summary

In this section, we presented a pseudo-flash-based digital LDO in which we replace
PMOS transistors by pseudo-flash transistors. Our digital LDO can be tuned to
alter a variety of specifications such as VDD , Vout , Imax , Imin, Vshoot , and Vripple

by changing the Vth of the pseudo-flash transistors. Process variations can be
effectively eliminated as well. By changing the threshold voltage (and thus the
resistance) of the flash transistors, a manufacturer can use the same design for

Flash: A “Forgotten” Technology in VLSI Design 125

Ta
bl

e
15

Si
m
ul
at
io
n
re
su
lts

w
ith

a
lo
ad

cu
rr
en
tc
ha
ng

es

(a
)
Fr
om

20
%

I m
a
x
to

40
%

I m
a
x

(b
)
Fr
om

40
%

I m
a
x
to

80
%

I m
a
x

V
D

D

(V
)

V
o
u
t

(V
)

I m
a
x

(m
A
)

I m
in

(m
A
)

V
s
h
o
o
t

(m
V
)

t r
e
c

(μ
s
)

V
r
ip

p
le

(m
V
)

V
D

D

(V
)

V
o
u
t

(V
)

I m
a
x

(m
A
)

I m
in

(m
A
)

V
s
h
o
o
t

(m
V
)

t r
e
c

(μ
s
)

V
r
ip

p
le

(m
V
)

1.
8

1.
7

10
0

1
36

0.
14

0.
23

1.
8

1.
7

10
0

1
58

0.
28

0.
13

1.
8

1.
7

1
0.
01

63
0.
58

0.
19

1.
8

1.
7

1
0.
01

12
3

0.
46

0.
18

1.
5

1.
4

90
0.
9

38
0.
15

0.
14

1.
5

1.
4

90
0.
9

62
0.
3

0.
04

1.
5

1.
4

60
0.
6

37
0.
16

0.
15

1.
5

1.
4

60
0.
6

67
0.
31

0.
07

1.
2

1.
1

58
0.
58

35
0.
13

0.
23

1.
2

1.
1

58
0.
58

57
0.
26

0.
12

1.
2

1.
1

45
0.
45

35
0.
13

0.
31

1.
2

1.
1

45
0.
45

65
0.
27

0.
21

A
ve
ra
ge

41
0.
21

0.
22

A
ve
ra
ge

72
0.
31

0.
13

126 S. P. Khatri et al.

Ta
bl

e
16

C
om

pa
ri
so
n
of

th
e
ps
eu
do
-fl
as
h-
ba
se
d
di
gi
ta
lL

D
O
w
ith

pr
io
r
w
or
ks

T
hi
s
w
or
k

[1
56

]
IS
SC

C
’2
0

[1
57

]
JS
SC

’1
7

[1
58

]
E
D
SS

C
’1
9

[1
59

]
IC
TA

’2
0

[1
60

]
T
C
A
S-
I’
19

Ty
pe

D
ig
ita

l
D
ig
ita

l
D
ig
ita

l
D
ig
ita

l
D
ig
ita

l
D
ig
ita

l

Pr
oc
es
s
(n
m
)

65
nm

28
nm

28
nm

65
nm

65
nm

65
nm

O
pe
ra
tin

g
fr
eq
ue
nc
y

10
0
M
H
z

16
8
M
H
z–
2.
0
G
H
z

N
.A
.

10
M
H
z

10
M
H
z

10
0
M
H
z

V
D

D
(V

)
1.
2

1.
5

1.
8

0.
5–

1.
0

1.
1

0.
6–

0.
8

N
.A
.

0.
6

V
o
u
t
(V

)
1.
1

1.
4

1.
7

0.
45
–0
.9
5

0.
9

0.
5–

0.
75

0.
5–

0.
95

0.
5

V
r
ip

p
le

(m
V
)

0.
14

0.
15

0.
13

N
.A
.

N
.A
.

N
.A
.

N
.A
.

N
.A

V
s
h
o
o
t
@

�
I l

o
a
d

57
m
V
@

23
m
A

67
m
V
@

36
m
A

58
m
V
@

40
m
A

11
2
m
V
@

43
0
m
A

12
0
m
V
@

18
0
m
A

90
m
V
@

15
m
A

16
.4
m
V
@

5
m
A

53
m
V
@

10
0
m
A

M
ax

cu
rr
en
t
(m

A
)

58
90

10
0

16
0–
48
0

20
0

N
.A
.

N
.A
.

10
0

C
o
u
t
(n
F)

0.
1

C
ap
-f
re
e

23
.5

0.
13

0.
05
2

1

Flash: A “Forgotten” Technology in VLSI Design 127

different specifications like maximum output current (Imax), output voltage (Vout),
ripple (Vripple), and transient recovery time (trec). We design a coarse pseudo-
flash subarray and a fine pseudo-flash subarray for voltage regulation. The coarse
pseudo-flash subarray is used to generate sufficient output current immediately, and
to stabilize the Vout when the output current load changes. The fine pseudo-flash
subarray minimizes the Vripple once the coarse pseudo-flash subarray has stabilized.
By tuning Vfg_f , our digital LDO achieves up to 5× output voltage ripple reduction.
Over a variety of LDO specifications, the Vshoot , trec, and Vripple are on average
41mV, 0.21μs, and 0.22mV (72mV, 0.31μs, and 0.13mV), respectively, when
a load current changes from 20%Imax to 40%Imax (40%Imax to 80%Imax) under
different VDD and Vout . We compare our work with several recent state-of-the-
art LDOs, and show that our approach has very competitive metrics for several
characteristics (like VDD , Vout , Imax , and Vripple), which we can implement with
the same circuit.

7 Conclusions and Future Outlook

Floating gate (flash) technology has become the ubiquitous technology for many
non-volatile memory (NVM) applications today. Flash is widely used in NVM
applications like SSDs, USB drives, SD cards, and boot ROMs, and is a high-
volume, mature, and high-yielding technology.

With the slowing of Moore’s law, CMOS technology scaling has slowed signif-
icantly, and processing variation issues have continued to plague the predictability
of CMOS designs. In the search of alternate post-CMOS technologies, research has
directed attention to exotic approaches (which include nanotube and nanoribbon
devices, molecular electronics, spintronics, photonic devices, etc.) that are highly
experimental and not mature.

In this landscape, our position is that there is an existing technology which
could be a solution, but which has been largely neglected in the design of a variety
of general-purpose circuits, both digital and analog. This overlooked technology
is flash. Not only does flash have the maturity and high yields from years of
development in the NVM space, but also provides several unique benefits over
CMOS. These benefits include in-factory and in-field performance tunability, the
ability to counteract circuit aging in the field, the control of speed binning, and
the ability to mitigate process variations by fine-grained threshold voltage control.
These advantages can improve on the performance of CMOS designs, and can also
result in completely novel applications that have not been conceived with CMOS
technologies to date.

The goal of this chapter is to demonstrate these benefits of flash, and also
to illustrate several digital and analog applications where flash can be used.
We demonstrate this via case studies that demonstrate two styles of flash-based
ASIC design (including a secure variant), flash-based convolutional neural network

128 S. P. Khatri et al.

accelerators (both analog and digital variants), flash-based in-memory computing
designs, as well as flash-based analog circuits like DACs and LDOs.

Based on our findings, we posit that the programmability, robustness, stability,
and maturity of flash give it a significant edge over the class of “emerging” post-
CMOS technologies, making flash a viable technology to eventually replace CMOS.
Doubtless, there exist fabrication challenges that need to be addressed to allow
flash to scale to smaller process node geometries, but by shining a light on flash
as a means to implement general-purpose digital and analog circuits, we hope to
generate more interest in the fabrication as well as the design communities to
conduct more research into flash—both in terms of scaling to smaller technology
nodes and also alternative design approaches that use flash technology. We hope that
this chapter will encourage further interest in this arena, allowing flash to become a
key technology for digital and analog circuits in the future.

References

1. Fowler, R.H., Nordheim, L.: Electron emission in intense electric fields. Proc. R. Soc. Lond.
Series A 119(781):173–181 (1928). https://doi.org/10.1098/rspa.1928.0091

2. Heremans, P., Bellens, R., Groeseneken, G., Maes, H.E.: Consistent model for the hot-carrier
degradation in n-channel and p-channel MOSFETs. IEEE Trans. Electron Devices 35(12),
2194–2209 (1988). https://doi.org/10.1109/16.8794

3. An, H., Kim, K., Jung, S., Yang, H., Kim, K. Song, Y.: The threshold voltage fluctuation of
one memory cell for the scaling-down NOR flash. In: 2010 2nd IEEE InternationalConference
on Network Infrastructure and Digital Content, 2010, pp. 433–436. https://doi.org/10.1109/
ICNIDC.2010.5657806

4. Hwang, J.-R., et al.: 20 nm gate bulk-finFET SONOS flash. In: IEEE International Electron
Devices Meeting, 2005. IEDM Technical Digest, pp. 154–157 (2005) https://doi.org/10.1109/
IEDM.2005.1609293

5. Kamigaichi, T., et al.: Floating gate super multi level NAND flash memory technology for
30 nm and beyond. In: 2008 IEEE International Electron Devices Meeting, pp. 1–4 (2008).
https://doi.org/10.1109/IEDM.2008.4796825

6. Lue, H.-T., et al.: Scaling feasibility study of planar thin floating gate (FG) NAND flash
devices and size effect challenges beyond 20 nm. In: 2011 International Electron Devices
Meeting, pp. 9.2.1–9.2.4 (2011). https://doi.org/10.1109/IEDM.2011.6131519

7. Sakamoto, W., et al.: Reliability improvement in planar MONOS cell for 20 nm-node multi-
level NAND Flash memory and beyond. In: 2009 IEEE International Electron Devices
Meeting (IEDM), pp. 1–4 (2009). https://doi.org/10.1109/IEDM.2009.5424211

8. Seol, K.S., et al.: A new floating gate cell structure with a silicon-nitride cap layer for sub-20
nm NAND flash memory. In: 2010 Symposium on VLSI Technology, pp. 127–128 (2010).
https://doi.org/10.1109/VLSIT.2010.5556197

9. Bez, R., Camerlenghi, E., Modelli, A., Visconti, A.: Introduction to flash memory. Proc. IEEE
91(4), 489–502 (2003). https://doi.org/10.1109/JPROC.2003.811702

10. Suh, K.-D., et al.: A 3.3 V 32Mb NAND flash memory with incremental step pulse program-
ming scheme. In: Proceedings ISSCC ’95—International Solid-State Circuits Conference, pp.
128–129 (1995). https://doi.org/10.1109/ISSCC.1995.535460

11. Jung, T.-S., et al.: A 117-mm/sup 2/ 3.3-v only 128-MB multilevel NAND flash memory for
mass storage applications. IEEE J. Solid-State Circuits 31(11), 1575–1583 (1996)

 13575 24555 a 13575
24555 a

https://doi.org/10.1098/rspa.1928.0091

 7356 27876 a 7356 27876 a

https://doi.org/10.1109/16.8794

 25964 31197 a 25964
31197 a

https://doi.org/10.1109/ICNIDC.2010.5657806
https://doi.org/10.1109/ICNIDC.2010.5657806

 25964 34518 a 25964 34518 a

https://doi.org/10.1109/IEDM.2005.1609293
https://doi.org/10.1109/IEDM.2005.1609293

 -92 38945 a -92 38945
a

https://doi.org/10.1109/IEDM.2008.4796825

12374 42266 a 12374 42266 a

https://doi.org/10.1109/IEDM.2011.6131519

12817 45587 a 12817 45587 a

https://doi.org/10.1109/IEDM.2009.5424211

 -92 48908 a -92 48908 a

https://doi.org/10.1109/VLSIT.2010.5556197

 8923 51122 a 8923 51122
a

https://doi.org/10.1109/JPROC.2003.811702

 6415
54443 a 6415 54443 a

https://doi.org/10.1109/ISSCC.1995.535460

Flash: A “Forgotten” Technology in VLSI Design 129

12. Boboila, S., Desnoyers, P.: Write endurance in flash drives: measurements and analysis. In:
Proceedings of the 8th USENIX Conference on File and Storage Technologies, FAST’10, p.
9. USENIX Association (2010)

13. Jung, D., Chae, Y.-H., Jo, H., Kim, J.-S., Lee, J.: A group-based wear-leveling algorithm
for large-capacity flash memory storage systems. In: Proceedings of the 2007 International
Conference on Compilers, Architecture, and Synthesis for Embedded Systems - CASES ’07,
p. 160, Salzburg, Austria. ACM Press (2007)

14. Cuppens, R., Hartgring, C., Verwey, J., Peek, H.: An EEPROM for microprocessors and
custom logic. In: 1984 IEEE International Solid-State Circuits Conference. Digest of
Technical Papers, volume XXVII, pp. 268–269 (1984)

15. Gogl, D., Burbach, G., Fiedler, H.L., Verbeck, M., Zimmermann, C.: A single-poly EEPROM
cell in SIMOX technology for high-temperature applications up to 250/spl deg/C. IEEE
Electron Device Lett. 18(11), 541–543 (1997)

16. Dagan, H., Teman, A., Fish, A., Pikhay, E., Dayan, V., Roizin, Y.: A low-cost low-power non-
volatile memory for RFID applications. In: 2012 IEEE International Symposium on Circuits
and Systems (ISCAS), pp. 1827–1830 (2012). ISSN: 2158-1525

17. Roizin, Y., Aloni, E., Birman, A., Dayan, V., Fenigstein, A., Nahmad, D., Pikhay, E.,
Zfira, D.: C-flash: an ultra-low power single poly logic NVM. In: 2008 Joint Non-Volatile
Semiconductor MemoryWorkshop and International Conference onMemory Technology and
Design, pp. 90–92 (2008). ISSN: 2159-4864

18. Cui, Z.-Y., Choi, M.-H., Kim, Y.-S., Lee, H.-G., Kim, K.-W., Kim, N.-S.: Single poly-
EEPROM with stacked MIM and n-well capacitor. Electron. Lett. 45(3), 185 (2009)

19. Ogura, T., Ogura, N., Kirihara, M., Park, K.T., Baba, Y., Sekine, M., Shimeno, K.: Embedded
twin MONOS flash memories with 4 ns and 15 ns fast access times. In: 2003 Symposium on
VLSI Circuits. Digest of Technical Papers (IEEE Cat. No.03CH37408), pp. 207–210, Kyoto,
Japan. Japan Soc. Appl. Phys. (2003)

20. Torricelli, F., Milani, L., Richelli, A., Colalongo, L., Pasotti, M., Kovacs-Vajna, Z.M.: Half-
MOS single-poly EEPROM cell in standard CMOS process. IEEE Trans. Electron Devices
60(6), 1892–1897 (2013)

21. Chung, C.-P., Chang-Liao, K.-S.: A highly scalable single poly-silicon embedded electrically
erasable programmable read-only memory with tungsten control gate by full CMOS process.
IEEE Electron Device Lett. 36(4), 336–338 (2015)

22. Raszka, J., Advani, M., Tiwari, V., Varisco, L., Hacobian, N.D., Mittal, A., Han, M.,
Shirdel, A., Shubat, A: Embedded flash memory for security applications in a 0.13μm
CMOS logic process. In: 2004 IEEE International Solid-State Circuits Conference (IEEE
Cat. No.04CH37519), pp. 46–512, San Francisco, CA, USA. IEEE, Piscataway (2004)

23. Cho, I.W., Lim, B.R., Kim, J., Kim, S.S., Kim, K.C., Lee, B.J., Bae, G.J., Lee, N.I., Kim,
S.H., Koh, K.W., Kang, H., Seo, M.K., Kim, S.W., Hwang, S.H., Lee, D.Y., Kim, M.C., Chae,
S.D., Seo, S.A., Kim, C.W.: Full integration and characterization of localized ONO memory
(LONOM) for embedded flash technology. In: Digest of Technical Papers. Symposium on
VLSI Technology, pp. 240–241 (2004).

24. Fang, L., Gu, J., Zhang, B., Kong, W.R., Zou, S.C.: A highly reliable 2-bits/cell split-gate flash
memory cell with a new program-disturbs immune array configuration. IEEE Trans. Electron
Devices 61(7), 2350–2356 (2014)

25. Mitani, H., Matsubara, K., Yoshida, H., Hashimoto, T., Yamakoshi, H., Abe, S., Kono, T.,
Taito, Y., Ito, T., Krafuji, T., Noguchi, K, Hidaka, H., Yamauchi, T.: 7.6 A 90 nm embedded
1T-MONOS flash macro for automotive applications with 0.07mJ/8kB rewrite energy and
endurance over 100M cycles under Tj of 175◦C. In: 2016 IEEE International Solid-State
Circuits Conference (ISSCC), pp. 140–141, San Francisco, CA, USA. IEEE, Piscataway
(2016)

26. Park, S., Kim, S., Lee, B.: Development of 2T-SONOS cell using a contamination-free
process integration for a highly reliable code storage eNVM. IEEE Trans. Electron Devices
67(3), 922–928 (2020)

130 S. P. Khatri et al.

27. Bartoli, J., Della Marca, V., Delalleau, J., Regnier, A., Niel, S., La Rosa, F., Postel-Pellerin,
J., Lalande, F.: A new non-volatile memory cell based on the flash architecture for embedded
low energy applications: ATW (asymmetrical tunnel window). In: 2014 International Semi-
conductor Conference (CAS), pp. 117–120, Sinaia. IEEE, Piscataway (2014)

28. Park, S.-K., Song, H.-M., Kim, N.-Y., Cho, I.-W., Yoo, K.-D.: Novel select gate lateral
coupling single poly ENVM for an HVCMOS process. IEEE Electron Device Lett. 35(3),
351–353 (2014)

29. Song, S., Chun, K.C., Kim, C.H.: A logic-compatible embedded flash memory featuring a
multi-story high voltage switch and a selective refresh scheme. In: 2012 Symposium on VLSI
Circuits (VLSIC), pp. 130–131 (2012). ISSN: 2158-5636

30. Chu, Y.S., Wang, Y.H., Wang, C.Y., Lee, Y.H., Kang, A.C., Ranjan, R., Chu, W.T., Ong, T.C.,
Chin, H.W., Wu, K.: Split-gate flash memory for automotive embedded applications. In: 2011
International Reliability Physics Symposium, pp. 6B.1.1–6B.1.5 (2011) ISSN: 1938-1891

31. Shukuri, S., Ajika, N., Mihara, M., Kobayashi, K., Endoh, T., Nakashima, M.: A 60 nm NOR
flash memory cell technology utilizing back bias assisted band-to-band tunneling induced
hot-electron injection (B4-flash). In: 2006 Symposium on VLSI Technology, 2006. Digest of
Technical Papers., pp. 15–16, Honolulu, HI, USA. IEEE, Piscataway (2006)

32. Lee, Y.K., Seo, B., Yu, T.K., Lee, B., Kim, E., Jeon, C., Park, W., Kim, Y., Lee, D., Lee,
H., Cho, S.: A 45-nm logic compatible 4Mb-split-gate embedded flash with 1M-cycling-
endurance. In: 2014 IEEE 6th International Memory Workshop (IMW), pp. 1–4, Taipei,
Taiwan. IEEE, Piscataway (2014)

33. Kono, T., Ito, T., Tsuruda, T., Nishiyama, T., Nagasawa, T., Ogawa, T., Kawashima, Y.,
Hidaka, H., Yamauchi, T.: 40-nm embedded split-gate MONOS (SG-MONOS) flash macros
for automotive with 160-MHz random access for code and endurance over 10 M cycles for
data at the junction temperature of 170 ◦C. IEEE J. Solid-State Circuits 49(1), 154–166 (2014)

34. Agrawal, V., Prabhakar, V., Ramkumar, K., Hinh, L., Saha, S., Samanta, S., Kapre, R.:
In-memory computing array using 40 nm multibit SONOS achieving 100 TOPS/W energy
efficiency for deep neural network edge inference accelerators. In: 2020 IEEE International
Memory Workshop (IMW), pp. 1–4 (2020). ISSN: 2573-7503

35. Luo, L.Q., Teo, Z.Q., Kong, Y.J., Deng, F.X., Liu, J.Q., Zhang, F., Cai, X.S., Tan, K.M., Lim,
K.Y., Khoo, P., Jung, S.M., Siah, S.Y., Shum, D., Wang, C.M., Xing, J.C., Liu, G.Y., Diao,
Y., Lin, G.M., Tee, L., Lemke, S.M., Ghazavi, P., Liu, X., Do, N., Pey, K.L., Shubhakar,
K.: Functionality demonstration of a high-density 2.5V self-aligned split-gate NVM cell
embedded into 40 nm CMOS logic process for automotive microcontrollers. In: 2016 IEEE
8th International Memory Workshop (IMW), pp. 1–4, Paris, France. IEEE, Piscataway (2016)

36. Tehrani, S., Pak, J., Randolph, M., Sun, Y., Haddad, S., Maayan, E., Betser, Y.: Advancement
in charge-trap flash memory technology. In: 2013 5th IEEE International Memory Workshop,
pp. 9–12 (2013). ISSN: 2159-4864

37. Viraraghavan, J., Leu, D., Jayaraman, B., Cestero, A., Kilker, R., Yin, M., Golz, J., Tummuru,
R.R., Raghavan, R., Moy, D., Kempanna, T, Khan, F., Kirihata, T., Iyer, S.: 80Kb 10 ns
read cycle logic embedded high-K charge trap multi-time-programmable memory scalable to
14 nm FIN with no added process complexity. In: 2016 IEEE Symposium on VLSI Circuits
(VLSI-Circuits), pp. 1–2, Honolulu, HI, USA. IEEE, Piscataway (2016)

38. Taito, Y., Nakano, M., Okimoto, H., Okada, D., Ito, T., Kono, T., Noguchi, K., Hidaka, H.,
Yamauchi, T.: 7.3 A 28 nm embedded SG-MONOS flash macro for automotive achieving
200MHz read operation and 2.0MB/S write throughput at Ti, of 170 ◦C. In: 2015 IEEE
International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers, pp. 1–3,
San Francisco, CA, USA. IEEE (2015)

39. Ma, S., Donato, M., Lee, S.K., Brooks, D., Wei, G.Y.: Fully-CMOS multi-level embedded
non-volatile memory devices with reliable long-term retention for efficient storage of neural
network weights. IEEE Electron Device Lett. 40(9), 1403–1406 (2019)

40. Khan, F., Han, M.S., Moy, D., Katz, R., Jiang, L., Banghart, E., Robson, N., Kirihata, T., Woo,
J.C., Iyer, S.S.: Design optimization and modeling of charge trap transistors (CTTs) in 14 nm
FinFET technologies. IEEE Electron Device Lett. 40(7), 1100–1103 (2019)

Flash: A “Forgotten” Technology in VLSI Design 131

41. Tsuda, S., Kawashima, Y., Sonoda, K., Yoshitomi, A., Mihara, T., Narumi, S., Inoue, M.,
Muranaka, S., Maruyama, T., Yamashita, T., Yamaguchi, Y., Hisamoto, D.: First demon-
stration of FinFET split-gate MONOS for high-speed and highly-reliable embedded flash in
16/14 nm-node and beyond. In: 2016 IEEE International Electron Devices Meeting (IEDM),
pp. 11.1.1–11.1.4, San Francisco, CA, USA. IEEE, Piscataway (2016)

42. Rahimi, K., Diorio, C., Hernandez, C., Brockhausen, M.D.: A simulation model for floating-
gate MOS synapse transistors. In: 2002 IEEE International Symposium on Circuits and
Systems (ISCAS), pp. II–II (2002). https://doi.org/10.1109/ISCAS.2002.1011042

43. Hasler, P., Minch, B.A., Diorio, C.: Adaptive circuits using pFET floating-gate devices. In:
Proceedings 20th Anniversary Conference on Advanced Research in VLSI, pp. 215–229
(1999). https://doi.org/10.1109/ARVLSI.1999.756050

44. Basu, A., Hasler, P.E.: A fully integrated architecture for fast and accurate programming of
floating gates over six decades of current. IEEE Trans. Very Large Scale Integr. Syst. 19(6),
953–962 (2011). https://doi.org/10.1109/TVLSI.2010.2042626

45. Srinivasan, V., Serrano, G.J., Gray, J., Hasler, P.: A precision CMOS amplifier using floating-
gates for offset cancellation. In: Proceedings of the IEEE 2005 Custom Integrated Circuits
Conference, 2005, pp. 739–742 (2005). https://doi.org/10.1109/CICC.2005.1568774

46. Hasler, P., Dugger, J.: Correlation learning rule in floating-gate pFET synapses. In: 1999
IEEE International Symposium on Circuits and Systems (ISCAS), vol. 5, pp. 387–390 (1999).
https://doi.org/10.1109/ISCAS.1999.777590

47. Bandyopadhyay, A., Serrano, G.J., Hasler, P.: Adaptive algorithm using hot-electron injection
for programming analog computational memory elements within 0.2% of accuracy Over 3.5
decades. IEEE J. Solid-State Circuits 41(9), 2107–2114 (2006). https://doi.org/10.1109/JSSC.
2006.880621

48. Hasler, P.E., et al.: Impact ionization and hot-electron injection derived consistently from
boltzmann transport. VLSI Design 1998, 454–461 (1998)

49. Serrano, G., et al.: Automatic rapid programming of large arrays of floating-gate elements. In:
2004 IEEE International Symposium on Circuits and Systems (IEEE Cat. No.04CH37512),
pp. I-I (2004). https://doi.org/10.1109/ISCAS.2004.1328209

50. Hasler, P., Basu, A., Koziol, S.: Above threshold pFET injection modeling intended for
programming floating-gate systems. In: 2007 IEEE International Symposium on Circuits and
Systems, pp. 1557–1560 (2007). https://doi.org/10.1109/ISCAS.2007.378709

51. Hasler, P., Dugger, J.: Correlation learning rule in floating-gate pFET synapses. IEEE Trans.
Circuits Syst. II: Analog Digit. Signal Process. 48(1), 65–73 (2001). https://doi.org/10.1109/
82.913188

52. Srinivasan, V., Serrano, G., Twigg, C.M., Hasler, P.: A floating-gate-based programmable
CMOS reference. IEEE Trans. Circuits Syst. I: Regul. Papers 55(11), 3448–3456 (2008).
https://doi.org/10.1109/TCSI.2008.925351

53. Hasler, J., Kim, S., Adil, F.: Scaling floating-gate devices predicting behavior for pro-
grammable and configurable circuits and systems. J. Low Power Electron. Appl. 6(13), 1–19
(2016)

54. Song, S., Kim, J., Kim, C.H.: A comparative study of single-poly embedded flash memory
disturbance, program/erase speed, endurance, and retention characteristic. IEEE Trans.
Electron Devices 61(11), 3737–3743 (2014). https://doi.org/10.1109/TED.2014.2359388

55. Raszka, J., et al.: Embedded flash memory for security applications in a 0.13μm CMOS
logic process. In: 2004 IEEE International Solid-State Circuits Conference (IEEE Cat.
No.04CH37519), vol. 1, pp. 46–512 (2004). https://doi.org/10.1109/ISSCC.2004.1332586

56. Wang, B., Nguyen, H., Ma, Y., Paulsen, R.: Highly reliable 90-nm logic multitime pro-
grammable NVM cells using novel work-function-engineered tunneling devices. IEEE Trans.
Electron Devices 54(9), 2526–2530 (2007). https://doi.org/10.1109/TED.2007.903199

57. Kim, M., et al.: A 68 parallel row access neuromorphic core with 22K multi-level synapses
based on logic-compatible embedded flash memory technology. In: 2018 IEEE International
Electron Devices Meeting (IEDM), pp. 15.4.1–15.4.4 (2018). https://doi.org/10.1109/IEDM.
2018.8614599

 13393 7442 a 13393 7442 a

https://doi.org/10.1109/ISCAS.2002.1011042

 2887 10763 a 2887 10763 a

https://doi.org/10.1109/ARVLSI.1999.756050

 6415 14084 a 6415 14084 a

https://doi.org/10.1109/TVLSI.2010.2042626

 14986 17405
a 14986 17405 a

https://doi.org/10.1109/CICC.2005.1568774

 -92
20726 a -92 20726 a

https://doi.org/10.1109/ISCAS.1999.777590

 23689 24046 a 23689
24046 a

https://doi.org/10.1109/JSSC.2006.880621
https://doi.org/10.1109/JSSC.2006.880621

 5473 30688 a 5473
30688 a

https://doi.org/10.1109/ISCAS.2004.1328209

 12375 34009 a 12375 34009 a

https://doi.org/10.1109/ISCAS.2007.378709

 25964 36223 a 25964 36223
a

https://doi.org/10.1109/82.913188
https://doi.org/10.1109/82.913188

 -92 40651 a -92 40651
a

https://doi.org/10.1109/TCSI.2008.925351

 17000 47293 a 17000
47293 a

https://doi.org/10.1109/TED.2014.2359388

 16720 50614 a 16720
50614 a

https://doi.org/10.1109/ISSCC.2004.1332586

 16530 53934 a 16530
53934 a

https://doi.org/10.1109/TED.2007.903199

 23324 57255 a 23324
57255 a

https://doi.org/10.1109/IEDM.2018.8614599
https://doi.org/10.1109/IEDM.2018.8614599

132 S. P. Khatri et al.

58. Song, S., Chun, K.C., Kim, C.H.: A logic-compatible embedded flash memory for zero-
standby power system-on-chips featuring a multi-story high voltage switch and a selective
refresh scheme. IEEE J. Solid-State Circuits 48(5), 1302–1314 (2013). https://doi.org/10.
1109/JSSC.2013.2247691

59. Song, S., Kim, J., Kim, C.H.: Program/erase speed, endurance, retention, and disturbance
characteristics of single-poly embedded flash cells. In: 2013 IEEE International Reliability
Physics Symposium (IRPS), pp. MY.4.1–MY.4.6 (2013). https://doi.org/10.1109/IRPS.2013.
6532095

60. Abusultan, M., Khatri, S.P.: A flash-based digital circuit design flow. In: 2016 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pp. 1–6 (2016). https://doi.
org/10.1145/2966986.2966990

61. Brayton, R.K., Sangiovanni-Vincentelli, A.L., McMullen, C.T., Hatchel, G.D.: Logic Mini-
mization Algorithms for VLSI Synthesis. Kluwer Academic Publishers, Norwell (1984)

62. Brglez, F., Bryan, D., Kozminksi, K.: Combinational profiles of sequential benchmark
circuits. In: IEEE International Symposium on Circuits and Systems, 1989, vol. 3, pp. 1929–
1934 (1989)

63. Corno, F., Reorda, M.S., Squillero, G.: Rt-level ITC’99 benchmarks and first ATPG results.
In: IEEE Design Test of Computers, vol 17, pp. 44–53 (2000)

64. Amarù, L., Gaillardon, P.-E., De Micheli, G.: The EPFL combinational benchmark suite. In:
Proceedings of the 24th International Workshop on Logic & Synthesis (IWLS) (2015)

65. Wagle, A., Singh, G., Yang, J., Khatri, S., Vrudhula, S.: Threshold logic in a flash. In:
2019 IEEE 37th International Conference on Computer Design (ICCD), pp. 550–558 (2019).
https://doi.org/10.1109/ICCD46524.2019.00081

66. Kulkarni, N., Yang, J., Seo, J.S., Vrudhula, S.: Reducing power, leakage, and area of standard-
cell ASICs using threshold logic flip-flops. IEEE Trans. Very Large Scale Integr. Syst. 24(9),
2873–2886 (2016)

67. Yang, J., Davis, J., Kulkarni, N., Seo, J.-S., Vrudhula, S.: Dynamic and leakage power reduc-
tion of ASICs using configurable threshold logic gates. In: 2015 IEEE Custom Integrated
Circuits Conference (CICC), pp. 1–4, San Jose, CA, USA. IEEE, Piscataway (2015)

68. Muroga, S.: Threshold Logic and Its Applications. Wiley-Interscience, New York (1971)
69. Commission on the Theft of American Intellectual Property, The National Bureau of

Asian Research (NBR) (2021). https://www.nbr.org/program/commission-on-the-theft-of-
intellectual-property/

70. Cormen, T.H., Leiserson, C.E., Rivest, R.L.. Stein, C.: Introduction to Algorithms, 3rd edn.,
pp. 253–280. Massachusetts Institute of Technology, Cambridge (2009). ISBN 978-0-262-
03384-8

71. Brayton, R., Mishchenko, A.: ABC: an academic industrial-strength verification tool. In: Proc.
CAV’10. LNCS 6174, pp. 24–40. Springer, Berlin (2010)

72. Roy, J.A., Koushanfar, F., Markov, I.L.: Ending piracy of integrated circuits. Computer
43(10), 30–38 (2010). https://doi.org/10.1109/MC.2010.284

73. Yasin, M., Rajendran, J.J., Sinanoglu, O., Karri, R.: On improving the security of logic
locking. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 35(9), 1411–1424 (2016).
https://doi.org/10.1109/TCAD.2015.2511144

74. Subramanyan, P., Ray, S., Malik, S.: Evaluating the security of logic encryption algorithms.
In: 2015 IEEE International Symposium on Hardware Oriented Security and Trust (HOST),
pp. 137–143 (2015). https://doi.org/10.1109/HST.2015.7140252

75. Dupuis, S., Flottes, M.L.: Logic locking: a survey of proposed methods and evaluation
metrics. J Electron Test 35, 273–291 (2019). https://doi.org/10.1007/s10836-019-05800-4

76. Krishnan, S., M.K.N., N.D.M.: Weighted logic locking to increase hamming distance against
key sensitization attack. In: 2019 3rd International conference on Electronics, Communication
and Aerospace Technology (ICECA), pp. 29–33 (2019). https://doi.org/10.1109/ICECA.
2019.8821880

77. Yasin, M., Mazumdar, B., Rajendran, J.J.V.,Sinanoglu, O.: SARLock: SAT attack resistant
logic locking. In: 2016 IEEE International Symposium on Hardware Oriented Security and
Trust (HOST), pp. 236–241 (2016). https://doi.org/10.1109/HST.2016.7495588

 28107 1907 a 28107 1907 a

https://doi.org/10.1109/JSSC.2013.2247691
https://doi.org/10.1109/JSSC.2013.2247691

 21624
6335 a 21624 6335 a

https://doi.org/10.1109/IRPS.2013.6532095
https://doi.org/10.1109/IRPS.2013.6532095

 30782 9656 a 30782 9656 a

https://doi.org/10.1145/2966986.2966990
https://doi.org/10.1145/2966986.2966990

 -92 24046 a -92 24046
a

https://doi.org/10.1109/ICCD46524.2019.00081

 12631 34009 a 12631 34009
a

https://www.nbr.org/program/commission-on-the-theft-of-intellectual-property/
https://www.nbr.org/program/commission-on-the-theft-of-intellectual-property/

 8453
42865 a 8453 42865 a

https://doi.org/10.1109/MC.2010.284

 -92 46186 a -92 46186 a

https://doi.org/10.1109/TCAD.2015.2511144

 7826 49507 a 7826 49507 a

https://doi.org/10.1109/HST.2015.7140252

 16881 51720 a 16881 51720 a

https://doi.org/10.1007/s10836-019-05800-4

 22906 55041 a 22906
55041 a

https://doi.org/10.1109/ICECA.2019.8821880
https://doi.org/10.1109/ICECA.2019.8821880

13569 59469 a 13569 59469 a

https://doi.org/10.1109/HST.2016.7495588

Flash: A “Forgotten” Technology in VLSI Design 133

78. Yasin, M., Sengupta, A., Nabeel, M.T., Ashraf, M., Rajendran, J., Sinanoglu, O.: Provably-
secure logic locking: from theory to practice. In: Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’17). Association for Com-
puting Machinery, New York, NY, USA, pp. 1601–1618 (2017). https://doi.org/10.1145/
3133956.3133985

79. Yasin, M., Mazumdar, B., Sinanoglu, O., Rajendran, J.: Removal attacks on logic locking and
camouflaging techniques. IEEE Trans. Emer. Topics Comput. 8(2), 517–532 (2020). https://
doi.org/10.1109/TETC.2017.2740364

80. Cook, S.A.: The complexity of theorem-proving procedures. In: IN STOC, pp 151–158.
ACM, New York (1971)

81. Tseytin, G.S.: On the complexity of derivation in propositional calculus. In: Slisenko, A.O.
(ed.) Studies in Constructive Mathematics and Mathematical Logic, Part II, Seminars in
Mathematics, pp. 115–125. Steklov Mathematical Institute (1970). Translated from Russian:
Zapiski Nauchnykh Seminarov LOMI 8, 234–259 (1968)

82. Sörensson, N., Eén, N.: MiniSat v1.13–a SAT solver with conflict-clause minimization (2005)
83. Vemuri, R., Chen, S.: Split Manufacturing of Integrated Circuits for Hardware Security and

Trust: Methods, Attacks and Defenses, 1st edn. Springer, Springer (2021)
84. Cai, Y., Haratsch, E.F., Mutlu, O., Mai, K.: Threshold voltage distribution in MLC NAND

flash memory: characterization, analysis and modeling. In: Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2013, pp. 1285–1290, Grenoble, France. IEEE
Conference Publications (2013)

85. Perricone, R., Ahmed, I., Liang, Z., Mankalale, M.G., Hu, X.S., Kim, C.H., Niemier,
M., Sapatnekar, S.S., Wang, J.-P.: Advanced spintronic memory and logic for non-volatile
processors. In: Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017,
pp. 972–977, Lausanne, Switzerland. IEEE, Piscataway (2017)

86. Yang, J., Kulkarni, N., Yu, S., Vrudhula, S.: Integration of threshold logic gates with
RRAM devices for energy efficient and robust operation. In: 2014 IEEE/ACM International
Symposium on Nanoscale Architectures (NANOARCH), pp. 39–44, Paris, France. IEEE,
Piscataway (2014)

87. Gupta, P., Jha, N.K.: An algorithm for nanopipelining of RTD-based circuits and architec-
tures. IEEE Trans. Nanotechnol. 4(2), 159–167 (2005)

88. Berezowski, K.S., Vrudhula, S.B.K.: Automatic design of binary and multiple-valued logic
gates on RTD series. In: 8th Euromicro Conference on Digital System Design (DSD’05), pp.
139–143, Porto, Portugal. IEEE, Piscataway (2005)

89. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convolutional
neural networks. In: NIPS’2012 (2012).

90. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object
detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2014)

91. Jaderberg, M., Vedaldi, A., Zisserman, A.: Deep features for text spotting. In: Computer
Vision—ECCV 2014. Springer, Cham (2014)

92. Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both weights and connections for efficient
neural networks. In: NIPS (2015)

93. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural networks with
pruning, trained quantization and Huffman coding. In: International Conference on Learning
Representations (2016)

94. Howard, A., et al.: Searching for MobileNetV3. In: The IEEE International Conference on
Computer Vision (ICCV) (2019)

95. Sandler, M., et al.: MobileNetV2: inverted residuals and linear bottlenecks. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (2018)

96. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-Net: imagenet classifcation using
binary convolutional neural networks. In: European Conference on Computer Vision, pp.
525–542. Springer, Berlin (2016)

 25964 3014 a 25964 3014
a

https://doi.org/10.1145/3133956.3133985
https://doi.org/10.1145/3133956.3133985

 32220
6335 a 32220 6335 a

https://doi.org/10.1109/TETC.2017.2740364
https://doi.org/10.1109/TETC.2017.2740364

134 S. P. Khatri et al.

97. Zhou, S., et al.: DoReFa-net: training low bitwidth convolutional neural networks with low
bitwidth gradients (2016). arXiv preprint arXiv:1606.06160

98. Hubara, I., et al.: Binarized neural networks. In: Advances in Neural Information Processing
Systems (2016)

99. Wagle, A., Khatri, S., Vrudhula, S.: A configurable BNN ASIC using a network of
programmable threshold logic standard cells. In: 2020 IEEE 38th International Conference
on Computer Design (ICCD), pp. 433–440 (2020). https://doi.org/10.1109/ICCD50377.2020.
00079

100. Umuroglu, Y., Fraser, N.J., Gambardella, G., Blott, M., Leong, P., Jahre, M., Vissers, K.:
FINN: a framework for fast, scalable binarized neural network inference. In: Proceedings of
the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp.
65–74, Monterey California USA. ACM, New York (2017)

101. Anderson, A.G., Berg, C.P.: The high-dimensional geometry of binary neural networks
(2017). CoRR, abs/1705.07199

102. Li, Y., Liu, Z., Liu, W., Jiang, Y., Wang, Y., Goh, W.L., Yu, H., Ren, F.: A 34-FPS 698-
GOP/s/W binarized deep neural network-based natural scene text interpretation accelerator
for mobile edge computing. IEEE Trans. Ind. Electron. 66(9), 7407–7416 (2019)

103. Sun, X., Yin, S., Peng, X., Liu, R., Seo, J.S., Yu, S.: XNOR-RRAM: a scalable and parallel
resistive synaptic architecture for binary neural networks. In: 2018 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pp. 1423–1428, Dresden, Germany. IEEE,
Piscataway (2018)

104. Geng, T., Wang, T., Wu, C., Yang, C., Song, S.L., Li, A., Herbordt, M.: LP-BNN: ultra-low-
latency BNN inference with layer parallelism. In: 2019 IEEE 30th International Conference
on Application-Specific Systems, Architectures and Processors (ASAP), pp. 9–16, New York,
NY, USA. IEEE (2019)

105. Al Bahou, A., Karunaratne, G., Andri, R., Cavigelli, L., Benini, L.: XNORBIN: a 95
TOp/s/W hardware accelerator for binary convolutional neural networks. In: 2018 IEEE
Symposium in Low-Power and High-Speed Chips (COOL CHIPS), pp. 1–3, Yokohama.
IEEE, Piscataway (2018)

106. Andri, R., Cavigelli, L., Rossi, D., Benini, L.: YodaNN: an architecture for ultralow power
binary-weight CNN acceleration. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.
37(1), 48–60 (2018)

107. Nakahara, H., Yonekawa, H., Sasao, T., Iwamoto, H., Motomura, M.: A memory-based real-
ization of a binarized deep convolutional neural network. In: 2016 International Conference
on Field-Programmable Technology (FPT), pp. 277–280, Xi’an, China. IEEE, Piscataway
(2016)

108. Simons, T., Lee, D.J.: A review of binarized neural networks. Electronics 8(6), 661 (2019)
109. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-net: imagenet classification using

binary convolutional neural networks. In: Bastian Leibe, Jiri Matas, Nicu Sebe, and Max
Welling, editors, Computer Vision—ECCV 2016, Lecture Notes in Computer Science, pp.
525–542. Springer, Cham (2016)

110. Scott, K.R., Lee, C.-Y., Khatri, S.P., Vrudhula, S.: A flash-based current-mode IC to
realize quantized neural networks. In: Design, Automation & Test in Europe Conference &
Exhibition (DATE) (2022)

111. Bez, R., Camerlenghi, E., Modelli, A., Visconti, A.: Introduction to flash memory. Proc. IEEE
91(4), 489–502 (2003)

112. Simmons, T., Lee, D.: A review of binarized neural networks. Electronics 8(6), 661 (2019)
113. Synopsys website. http://www.synopsys.com/
114. PTM website. http://ptm.asu.edu/
115. Abusultan, M., Khatri, S.P.: Implementing low power digital circuits using flash devices. In:

2016 IEEE 34th International Conference on Computer Design (ICCD), pp. 109–116 (2016).
https://doi.org/10.1109/ICCD.2016.7753268

116. TensorFlow website. https://www.tensorflow.org/

 19011
6335 a 19011 6335 a

https://doi.org/10.1109/ICCD50377.2020.00079
https://doi.org/10.1109/ICCD50377.2020.00079

 7095 51720 a 7095 51720 a

http://www.synopsys.com/

 5422
52827 a 5422 52827 a

http://ptm.asu.edu/

 -92 56148 a -92 56148 a

https://doi.org/10.1109/ICCD.2016.7753268

 7946 57255 a 7946 57255 a

https://www.tensorflow.org/

Flash: A “Forgotten” Technology in VLSI Design 135

117. Zhao, W., et al.: Rigorous extraction of process variations for 65 nm CMOS design. In: Proc.
of the European Solid State Device Research Conf. (2007)

118. Bernstein, K., Pearson, D.J., Rohrer, N.J., et al.: High-performance CMOS variability in the
65-nm regime and beyond. In: IBM J. Res. Dev. 50(4/5), 433–449 (2006)

119. Rezali, F.A.M., et al.: Scaling impact on design performance metric of sub-micron CMOS
devices incorporated with halo. 2015 IEEE Regional Symposium on Micro and Nanoelec-
tronics (RSM) pp. 1–4 (2015)

120. Ali, N., et al.: TCAD analysis of variation in channel doping concentration on 45 nm double-
gate MOSFET parameters. In: 2015 Annual IEEE India Conference (INDICON), New Delhi,
pp. 1–6 (2015)

121. Lemoigne, P., Quenette, V., Juge, A., Rideau, D.: Monitoring variability of channel doping
profile in the 45 nm node MOSFET through reverse engineering of electrical back-bias effect.
In: 2009 Proceedings of the European Solid State Device Research Conference, pp. 383–386
(2009)

122. Nayfeh, H.M., et al.: Impact of lateral asymmetric channel doping on 45-nm-technology N-
type SOI MOSFETs. IEEE Trans. Electron. Devices 56, 3097–3105 (2009)

123. Kok, C.-W., Tam, W.-S.: Bandgap voltage reference. In: CMOS Voltage References: An
Analytical and Practical Perspective, pp. 71–101. IEEE, Piscataway (2013)

124. Geiger, L., Team, P.: Larq: an open-source library for training binarized neural networks. J.
Open Source Softw. 5(45), 1746 (2020)

125. Wagle, A., Khatri, S., Vrudhula, S.: A configurable BNN ASIC using a network of
programmable threshold logic standard cells. In: 2020 IEEE 38th International Conference
on Computer Design (ICCD), pp. 433–440 (2020)

126. Singh, G., Wagle, A., Vrudhula, S., Khatri, S.: CIDAN: computing in DRAM with artificial
neurons. In: 2021 IEEE 39th International Conference on Computer Design (ICCD), pp. 349–
356 (2021). https://doi.org/10.1109/ICCD53106.2021.00062

127. Angizi, S., et al.: Accelerating deep neural networks in processing-in-memory platforms:
analog or digital approach? In: ISVLSI’19

128. Li, Y., et al.: BitWeaving: fast scans for main memory data processing. In: SIGMOD’13
129. Myers, G.: A fast bit-vector algorithm for approximate string matching based on dynamic

programming. In: JACM’99
130. Fujiki, D., et al.: Duality cache for data parallel acceleration. In: ISCA’19
131. Eckert, C., et al.: Neural cache: bit-serial in-cache acceleration of deep neural networks. In:

ISCA’18
132. Seshadri, V., et al.: Ambit: in-memory accelerator for bulk bitwise operations using commod-

ity DRAM technology. In: MICRO’17
133. He, M., et al.: Newton: a DRAM-maker’s accelerator-in-memory (AiM) architecture for

machine learning. In: MICRO’20
134. Yin, S., et al.: Vesti: energy-efficient in-memory computing accelerator for deep neural

networks. In: TVLSI’20
135. Jacob, B., et al.: Memory Systems: Cache, DRAM, Disk. MK Publishers (2008)
136. Wagle, A., et al.: Threshold logic in a flash. In: ICCD’19
137. Angizi, S., et al.: GraphiDe: a graph processing accelerator leveraging in-DRAM-computing.

In: GLSVLSI’19 (2019)
138. Hajinazar, N., et al.: SIMDRAM: a framework for bit-serial SIMD processing using DRAM.

In: ASPLOS’21
139. Angizi, S., et al.: ReDRAM: a reconfigurable processing-in-DRAM platform for accelerating

bulk bit-wise operations. In: ICCAD’19
140. Li, S., et al.: DRISA: a DRAM-based reconfigurable in-situ accelerator. In: IEEE/ACM

MICRO’17
141. Kim, Y., et al.: Assessing merged DRAM/logic technology. In: ISCAS’96
142. Binkert, N., et al.: The gem5 simulator. In: SIGARCH’11
143. Kim, Y., et al.: Ramulator: a fast and extensible DRAM simulator. IEEE Comp. Arch. Lett.

15(1), 45–49 (2015)

 4533 27367 a 4533 27367 a

https://doi.org/10.1109/ICCD53106.2021.00062

136 S. P. Khatri et al.

144. Chandrasekar, K., et al.: DRAMPower: open-source DRAM power and energy estimation
tool. http://www.drampower.info/

145. Stanford Large Network Datasets (2021). https://snap.stanford.edu/data/
146. Frank, D.J.: Power-constrained CMOS scaling limits. IBM J. Res. Dev. 46(2–3), 235–244

(2002). https://doi.org/10.1147/rd.462.0235
147. Blaauw, D., et al.: IoT design space challenges: circuits and systems. In: 2014 Symposium on

VLSI Technology (VLSI-Technology): Digest of Technical Papers, pp. 1–2 (2014). https://
doi.org/10.1109/VLSIT.2014.6894411

148. Crovetti, P.S.: All-digital high resolution D/A conversion by dyadic digital pulse modulation.
IEEE Trans. Circuits Syst. I: Regul. Pap. 64(3), 573–584 (2017). https://doi.org/10.1109/
TCSI.2016.2614231

149. Aiello, O., Crovetti, P.S., Alioto, M.: Fully synthesizable low-area digital-to-analog converter
with graceful degradation and dynamic power-resolution scaling. IEEE Trans. Circuits Syst.
I: Regul. Pap. 66(8), 2865–2875 (2019). https://doi.org/10.1109/TCSI.2019.2903464

150. Razavi, B.: The current-steering DAC [a circuit for all seasons]. IEEE Solid-State Circuits
Mag. 10(1), 11–15 (2018). https://doi.org/10.1109/MSSC.2017.2771102

151. Crovetti, P.S., Rubino, R., Musolino, F.: Relaxation digital-to-analog converter with fore-
ground digital self-calibration. In: 2020 IEEE International Symposium on Circuits and
Systems (ISCAS), pp. 1–5 (2020). https://doi.org/10.1109/ISCAS45731.2020.9180696

152. Ahmed, S., Zou, X., Jaber, N., Younis, M.I., Fariborzi, H.: A low power micro-
electromechanical resonator-based digital to analog converter. J. Microelectromech. Syst.
29(3), 320–328 (2020). https://doi.org/10.1109/JMEMS.2020.2988790

153. Ahmed, S., Zou, X., Fariborzi, H.: A micro-resonator based digital to analog converter for
ultralow power applications. In: 2019 20th International Conference on Solid-State Sensors,
Actuators and Microsystems & Eurosensors XXXIII (TRANSDUCERS & EUROSENSORS
XXXIII), pp. 821–824 (2019). https://doi.org/10.1109/TRANSDUCERS.2019.8808759

154. Rubino, R., Crovetti, P.S., Aiello, O.: Design of relaxation digital-to-analog converters for
internet of things applications in 40 nm CMOS. 2019 IEEE Asia Pacific Conference on
Circuits and Systems (APCCAS), pp. 13–16 (2019). https://doi.org/10.1109/APCCAS47518.
2019.8953168

155. Crovetti, P.S., Rubino, R., Musolino, F.: Relaxation digital–to–analogue converter. Electron.
Lett. 55(12), 685–688 (2019)

156. Oh, J., Park, J.-E., Hwang, Y.-H., Jeong, D.-K.: 25.2 A 480mA output-capacitor-free
synthesizable digital LDO using CMP-triggered oscillator and droop detector with 99.99%
current efficiency, 1.3 ns response time, and 9.8A/mm2 current density. In: 2020 IEEE
International Solid-State Circuits Conference—(ISSCC), pp. 382–384 (2020). https://doi.org/
10.1109/ISSCC19947.2020.9063018

157. Lee, Y.-J., et al.: A 200-mA digital low drop-out regulator with coarse-fine dual loop in mobile
application processor. IEEE J. Solid-State Circuits 52(1), 64–76 (2017). https://doi.org/10.
1109/JSSC.2016.2614308

158. Shi, J., Zhao, B., Wang, B.: A coarse-fine dual loop digital low dropout regulator with fast
transient response. In: 2019 IEEE International Conference on Electron Devices and Solid-
State Circuits (EDSSC), pp. 1–3 (2019). https://doi.org/10.1109/EDSSC.2019.8754116

159. Chen, R., Zhou, S., Wu, Z., Li, B., Huang, M.: A fast response digital low-dropout
regulator based on enhanced analog assisted loop. In: 2020 IEEE International Conference
on Integrated Circuits, Technologies and Applications (ICTA), pp. 55–56 (2020). https://doi.
org/10.1109/ICTA50426.2020.9332011

160. Cai, G., Zhan, C., Lu, Y.: A fast-transient-response fully-integrated digital LDO with adaptive
current step size control. IEEE Trans. Circuits Syst. I: Regul. Pap. 66(9), 3610–3619 (2019).
https://doi.org/10.1109/TCSI.2019.2917558

161. Akram, M.A., Hwang, I.-C., Ha, S.: Architectural advancement of digital low-dropout
regulators. IEEE Access 8, 137838–137855 (2020). https://doi.org/10.1109/ACCESS.2020.
3012467

 1842 800 a 1842 800 a

http://www.drampower.info/

 15716 1907 a 15716 1907
a

https://snap.stanford.edu/data/

 2887 4121 a 2887 4121 a

https://doi.org/10.1147/rd.462.0235

 32220 6335 a 32220 6335
a

https://doi.org/10.1109/VLSIT.2014.6894411
https://doi.org/10.1109/VLSIT.2014.6894411

 25964
9656 a 25964 9656 a

https://doi.org/10.1109/TCSI.2016.2614231
https://doi.org/10.1109/TCSI.2016.2614231

15246 14084 a 15246 14084 a

https://doi.org/10.1109/TCSI.2019.2903464

 10178 16298 a 10178 16298
a

https://doi.org/10.1109/MSSC.2017.2771102

 13080 19619 a 13080 19619
a

https://doi.org/10.1109/ISCAS45731.2020.9180696

 8923 22940 a 8923 22940 a

https://doi.org/10.1109/JMEMS.2020.2988790

 11588 27367 a 11588
27367 a

https://doi.org/10.1109/TRANSDUCERS.2019.8808759

 19716 30688 a 19716
30688 a

https://doi.org/10.1109/APCCAS47518.2019.8953168
https://doi.org/10.1109/APCCAS47518.2019.8953168

29283 38437 a 29283 38437 a

https://doi.org/10.1109/ISSCC19947.2020.9063018
https://doi.org/10.1109/ISSCC19947.2020.9063018

 28107 41758
a 28107 41758 a

https://doi.org/10.1109/JSSC.2016.2614308
https://doi.org/10.1109/JSSC.2016.2614308

 15302 46186 a 15302 46186 a

https://doi.org/10.1109/EDSSC.2019.8754116

 30782 49507 a 30782 49507
a

https://doi.org/10.1109/ICTA50426.2020.9332011
https://doi.org/10.1109/ICTA50426.2020.9332011

 -92 53934 a -92 53934 a

https://doi.org/10.1109/TCSI.2019.2917558

20093 56148 a 20093 56148 a

https://doi.org/10.1109/ACCESS.2020.3012467
https://doi.org/10.1109/ACCESS.2020.3012467

Nonvolatile Memory Technologies:
Characteristics, Deployment,
and Research Challenges

Sadhana Rai and Basavaraj Talawar

1 Introduction

Memory plays a prominent role in any computing system, be it a handheld device
or a super computing system; it is essential for storing the data and information
needed by the central processing unit. Memory plays a significant role in power
consumption, reliability, and deciding the application performance [46]. Since its
inception, dynamic random access memory (DRAM) has been used as memory in
almost all computing devices. However, new technologies like artificial intelligence
(AI), deep learning (DL), and cloud computing demand large memory footprints
with low power consumption and good performance. It is expected that data
generation rate doubles every 3 years [17]. There is a necessity to build large
memories with excellent performance and low power consumption in order to
satisfy the demands of the emerging applications. Though DRAM has excellent
properties as a memory device, it fails to provide good density and has high static
power consumption. It is estimated that DRAM consumes nearly 30–50 percent of
the total power consumption of the system [68]. Building large memories requires
more memory cells, but technologies like DRAM and SRAM are facing issues when
they are scaled down 10 nm or below [77]. These limitations of existing memory
devices have led to exploring alternative technologies. New memory technologies
should integrate high-performance features similar to DRAM/SRAM: scalability,
persistence, and cost-effectiveness similar to existing flash. Emerging nonvolatile
memory (NVM) devices are excellent candidates as they provide persistence similar
to secondary storage devices and access latencies comparable to DRAM. Another
advantage of these NVM devices is that they exhibit low leakage power as they

S. Rai (�) · B. Talawar
SPARK Lab, Department of Computer Science and Engineering, National Institute of Technology
Karnataka (NITK), Surathkal, India
e-mail: sadhana.197cs002@nitk.edu.in; basavaraj@nitk.edu.in

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Iranmanesh (ed.), Frontiers of Quality Electronic Design (QED),
https://doi.org/10.1007/978-3-031-16344-9_4

137

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16344-9_4&domain=pdf

 885
56845 a 885 56845 a

mailto:sadhana.197cs002@nitk.edu.in

 13146 56845 a 13146 56845 a

mailto:basavaraj@nitk.edu.in

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-16344-9_4

138 S. Rai and B. Talawar

do not require a constant refresh. NVMs such as NAND flash are used these
days extensively along with other nonvolatile memories, phase change memory
(PCM), spin-transfer torque random access memory (STT-RAM), resistive random
access memory (ReRAM), and carbon nanotube random access memory (N-RAM).
NVM devices are not a new invention, and they have been used even in early
supercomputers such as Cray EL92. Still, the only difference now and then is
that they were not energy efficient, targeted only specific workloads, and were
limited [68]. Emerging NVM devices are often known as storage class memory
devices as they exhibit characteristics of both memory and storage. There is a
possibility of a paradigm shift in the memory hierarchy with the advent of these
devices. A two-tier hierarchy that currently persists between the slow nonvolatile
devices and fast memory devices may be merged as a single hierarchy [8]. However,
there are several challenges to using these NVM devices at different levels in the
memory hierarchy. This chapter discusses emerging NVM technologies and their
characteristics, advantages, pitfalls, deployment, and other issues.

2 Characteristics of NVM Devices

Devices such as PCM, ReRAM, STT-MRAM, FeRAM, and NRAM are emerging;
while some of them are still in prototype, few are commercially available. These
devices have features in common such as byte addressability; nonvolatility, low
leakage power, and access latency much lower than existing NVM devices (flash).
Some of the devices exhibit multilevel cell (MLC), which means that a single cell
can store multiple bits, which helps to improve the density of the device. In the
subsequent subsections, we discuss the characteristics of these devices.

2.1 Flash Storage Devices

Before we discuss the modern NVM technologies in detail, we will throw light on its
predecessor, i.e., flash memory technology. Flash memory was invented in the 1900s
and it uses floating gates (FG); they can be NAND-based or NOR-based [3]. They do
not have mechanical moving parts and allow random access. In addition to this, they
also have excellent density and are cost-effective. Pertaining to these advantages,
they soon replaced the existing hard disk drive (HDD)-based storage devices. Flash-
based storage devices reduced the speed gap between memory and storage by three
orders of magnitude compared to HDD [5]. Three types of operations are performed
on flash devices (read, write, and erase), while most other memory devices have only
read and write operations. Erase operations are required because writes can only
change the bit from one to zero, but it is impossible to perform reverse functions;
hence, it is necessary to have erase operations. However, these operations are
slower than write operations [46]. Another problem of flash-based storage devices

Nonvolatile Memory Technologies: Characteristics, Deployment, and Research. . . 139

is that they have limited endurance, which means that after a certain number of
write operations, cells become physically unfit for use. Though flash devices had
advantages over HDD, the access latency is still slower when compared to DRAM.
Hence, if a better technology is available, it can replace flash; that is where NVM
devices show up – while providing all the features of flash base storage they have
added advantage of access latencies close to DRAM [27].

2.2 Phase Change Memory (PCM)

This type of memory device has been studied since the 1960s, ever since the
inception of the ovonic threshold switching (OTS) phenomenon that was measured
by Ovshinsky [23]. PCM devices are constructed using phase change materials that
can exist in two states amorphous or crystalline. The switching between the states is
achieved by heating the materials either by applying electrical current/voltage pulse
(T. [35]). Chalcogenide alloys such as Ge2Sb2Te5 (GST) are widely used phase
change materials to construct PCM devices. The SET operation stores 1 in the cell;
this is achieved by heating GST materials above the heating temperature (300 ◦C)
and below the melting temperature (600

◦
C) over some time period; this changes

the state to crystalline, thereby storing the information 1. GST is heated above
the melting point and quenched quickly; this leads to high resistance amorphous
states, thereby storing the value 0. There is a huge difference between crystalline
and amorphous state; this can be utilized to store multiple bits in one cell; hence,
they are known as multilevel cell (MLC), while many other devices can store only
a single bit per cell and are known as single bit cell (SLC) [20, 76]. The data stored
in the cell can be read by applying an electrical bias without altering the data. PCM
has several advantages like good scalability, reliability, and low device-to-device
variation; all these features promote PCM to be an excellent candidate for memory
devices [23]. PCM is studied extensively in most of the research works carried
out recently. One reason for this could be the commercial availability of devices
based on PCM technology. 3D XPoint, a product of Intel and Micron, is one of the
commercially available products [24]. Figure 1 depicts the cell structure of PCM.

2.3 Resistive Random Access Memory (ReRAM/RRAM)

Resistive RAMs have been studied and researched since around the 1960s. However,
these devices started gaining prominence in the early 2000s and were studied
extensively between 2005 and 2015 [13]. The unique property of this device is
that it uses the change in the material’s resistance to store the information. The
memory cell of RRAM consists of an insulator sandwiched between two metal
electrodes. Data is stored by applying an external electrical voltage across the cells,
which changes the state of the cell from a high resistance state to a low resistance

140 S. Rai and B. Talawar

Fig. 1 Structure of PCM cell
Top Electrode

Phase Change Material

Bottom Electrode

Dielectric

Programming

Region

Heater

Fig. 2 Structure of ReRAM
cell [77]

Top Electrode

Vdd

Bottom Electrode

Metal Oxide

state and vice versa. The transition from high resistance to low resistance results
in storing the value 0, and vice versa results in storing 1. The biggest challenge in
the design of these devices is choosing the electrode. Metal oxide metal structures
are widely used as electrodes because of the ease of fabrication [77]. Figure 2
shows the cell structure of ReRAM. Significant advantages of ReRAM are ease
of fabrication, simple structure, data retention, and compatibility with existing
CMOS technology which make it one of the strong candidates for digital memory.
Limitation of uniformity on wide device characteristics is a major hindrance for
large-scale manufacture [77].

Nonvolatile Memory Technologies: Characteristics, Deployment, and Research. . . 141

2.4 Ferro-Electric Random Access Memory (FeRAM)

FeRAM comprises one transistor-one capacitor structure (1T1C), more like a
DRAM cell structure. The major difference is in the capacitor structure, which is
made of ferro-electric-based layers, making it nonvolatile. The most commonly used
ferroelectric material is PZT (lead zirconate titanate) [3]. The polarization of the
ferroelectric capacitor achieves data storage. In FeRAM devices the gate dielectric
is substituted with ferroelectric polarization [37]. Unlike flash devices they do not
require high voltages for performing write operations [3]. Conventional 1T1C-based
FeRAM devices provided high performance but they suffered from destructive reads
due to device-to-device interference. To solve this issue, there was a necessity to
design separate read-write paths. 1T1T cell-based FeRAM devices are developed to
avoid destructive reads. 1T1T-based FeRAM cell is fabricated on a plastic substrate
using a ferroelectric memory transistor (MT) and a control transistor (CT). A single-
walled carbon nanotube (SWNT) was inkjet printed and used as a semiconducting
channel between two transistors. Omega-shaped ferroelectric gate was fabricated
by incorporating organic poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-
TrFE)) layer on top of SWNT. The 1T1T cell structure separated read-write paths,
thus avoiding destructive reads [37]. Apart from changing the cell structure, some
techniques change the methods of reading such as an electro-optic method, acoustic
reading, photovoltaic reading, and pyroelectric reading [30]. Usage of hafnium
oxide (HfO2)-based ferroelectrics has brought tremendous improvement in the
FeRAM-based structures, and being one of the mature technologies, FeRAM is in
the race to be in the future NVM-based memory device. Figure 3 depicts the basic
cell structure of FeRAM.

Fig. 3 Structure of FeRAM
cell [44]

Bit
Line

Word Line

Ferroelectric
Layer

n
pn

142 S. Rai and B. Talawar

Fig. 4 Structure of NRAM
cell [26]

SL

BL

WL

D S

NRAM CELL

CNT Fabric

2.5 Carbon Nanotube Random Access Memory (NRAM)

The memory cell of a NRAM consists of carbon nanotubes (CNT) interconnected
in the form of a matrix. These CNTs are sandwiched between a pair of electrodes
that are bound to be semiconductor fab friendly. Application of positive bias
voltage on the bottom electrode while keeping the top grounded, the CNTs are
in contact with each other; this reduces the resistance of the cell and represents
1. Similarly, by reversing the direction of applied voltage, the CNTs are forced
to be separated, and the resistance of the cell increases, representing 0. The Van
der Waals force effect keeps the CNTs in contact to be connected and those apart
to remain separated until an external voltage is applied; this makes the device
nonvolatile. The storage element is integrated into the back end of the line (BEOL)
and, depending on applications, can be in a one transistor-one resistor (1T1R) or
cross-point configuration [25, 26, 54]. The structure of NRAM cell is depicted in
Fig. 4.

2.6 Spin-Transfer Torque RAM (STT-RAM)

It is one of the unique kinds of NVM which combines the cost and capacity benefits
of DRAM and the speed of SRAM. The cell of STT-RAM consists of a transistor
and a magnetic tunnel junction (MTJ). An MTJ contains a pair of ferromagnetic
layers and a tunnel oxide layer sandwiched between them. Out of the two magnetic
layers, one has a fixed magnetic orientation (known as the reference layer). At the
same time, the other has a free magnetic orientation (also known as the free layer).
The free layer is used to store the information and is relatively thin so that it can
be switched quickly. When both the ferromagnetic layers are parallel, they follow

Nonvolatile Memory Technologies: Characteristics, Deployment, and Research. . . 143

Fig. 5 Structure of 1 T-1MTJ
STT-RAM cell

Source Line(SL)

Free

Oxide

Reference

Word Line

Bit Line(BL)

Table 1 Comparison of device properties on NVM technologies [19]

Device PCM STT-RAM ReRAM FeRAM NRAM

Cell element 1 T(D) 1R 1(2)T1R 1 T(D), 1R 1T1C/2T1C 1T1R/1 T-1CNT
Cell size (F2) 4–20 6–20 <4(3D) 30 <6(2D)
Endurance 107 105 105 1015 >1012

Retention >10 Y >10 Y >10 Y > 10 Y >10 Y
Multilevel cell (MLC) Yes Yes Yes Yes Yes

low resistance, and it is used to store zero. When anti-parallel, they exhibit high
resistance, thereby storing value one [6, 40]. The data is read by applying voltage
and detecting the current flow. Figure 5 shows the cell structure of the STT-RAM
cell. Several free layers are connected to the bitline, while access transistors are
connected to the source line. Due to the high switching current of magnetic tunnel
junction (MTJ), write operations consume high energy. In addition, since the MOS
device determines this switching current, this plays a role in determining the density
of memory [78]. STT-RAM is mostly used as a substitute for SRAM-based cache.

Table 1 displays the comparison of the device properties of different technolo-
gies. All these devices have good retention time and simple cell structure. In the
subsequent sections, we will discuss about the possible interactions of these NVM
devices at different levels of memory organization. In addition, we highlight the
various issues faced by them while integrating them and also the possible solutions.
However, some of the NVM devices are not explored much and there are very few
evidences of their usage in memory. Hence, most of our discussions are limited to
usage of widely used NVM devices such as PCM, ReRAM, and STT-MRAM, and
in few sections we have discussed about FeRAM based on availability of resources.

144 S. Rai and B. Talawar

3 Deployment of Nonvolatile Memories in Computing
System

NVM devices provide potential benefits both in terms of performance and power.
This makes them suitable to be used at different levels of the memory hierarchy, such
as cache, memory subsystem, or secondary storage devices. It was also believed
that these devices could emerge as universal memory, replacing both DRAM and
secondary storage devices [23]. However, it is not ideal for replacing the existing
DRAM with NVM devices because of the limited endurance and differential read-
write latencies [23]. It is not easy to fit all the NVM devices in the common level
of memory hierarchy [64]. This section will discuss the possibilities and challenges
of using NVM devices at different levels of the memory hierarchy. NVM devices
are still not able to completely replace either of these because they cannot satisfy
the cost benefits of NAND and performance benefits of DRAM [35]. It has been
an active area of research for several years, and several researchers have explored
the suitable position for these emerging devices in the memory hierarchy; as a
result, several outcomes have been observed. Another challenge in integrating new
technology is its adaptability to existing hardware and software. When a new
memory device is added, it often requires changing the operating system and the file
system interfaces, thereby changing the behavior of existing applications; hence, it
is necessary to consider all these factors before bringing the change in the hierarchy.

3.1 Deploying NVM Devices as Processor Cache

SRAM is used as cache memory because of the performance benefits it provides.
The challenge SRAM is facing is its high static energy consumption, and it has low
density because its cell is made up of six transistors. Another major drawback of
SRAM is that it has very high leakage power. Energy consumption is a significant
issue in the modern era, and an alternative device is required. As we know, cache
memories are used to improve performance; it is highly recommended that a
device that stands as an alternative to SRAM should have excellent performance.
Nonvolatile memory devices can be fabricated using CMOS technology, and this
makes it possible to integrate directly with the processors [71]. Some of the
NVM devices can be fabricated without per cell access transistors. A recent work
integrated ReRAM into an architecture, which supports many-core CPU and a large
number of in-order multi-threaded cores. They have incorporated a 3D ReRAM into
the last-level cache of all tiles of the core; this creates a monolithic architecture. The
advantage of such a design is that the area is utilized [71] efficiently. STT-RAM
is another device that has emerged as an alternative to SRAM, thereby changing
cache memory. The qualities such as high density, low leakage power, and access
performance similar to SRAM have attracted STT-RAM to be used as a candidate in
cache memory. The improved density of STT-RAM can help store more data in the

Nonvolatile Memory Technologies: Characteristics, Deployment, and Research. . . 145

Total Area
100

90
SRAM

STT-MRAM
SOT-MRAM

80

70

60

50

40

30

20

10

0

16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB 16MB 32MB
Capacity

A
re

a(
m

m
2)

Fig. 6 Comparison of area efficiency of SRAM and NVM devices [32]

same area of SRAM; this helps to improve the cache hit ratio. Another advantage
of this substitution is that STT-RAM has a low leakage current. Replacing SRAM
will help improve energy consumption [64]. Though STT-RAM supports multiple-
bit storage, write disturbance between two bits reduces performance and energy
efficiency [40]. STT-RAM is studied widely as an alternative to existing SRAM-
based caches among all the existing NVM devices. Spin-orbit torque magnetic
random access memory (SOT-MRAM) is also a MRAM-based memory device,
which is being experimented recently. It is expected to overcome the drawback
of high write latency and energy of STT-MRAM. However, we will not discuss
SOT-MRAM in detail in this chapter. Figures 6 and 7 depict the area efficiency
and leakage power of SRAM with STT-RAM- and SOT-MRAM-based devices;
these results are obtained by experiments which were conducted in our lab by our
colleagues. In both the cases, NVM-based caches prove to be more efficient as the
capacity increases. This clearly indicates that NVM devices are better option for
large capacity caches. Figures 6 and 7 shows the comparison of SRAM,STT-MRAM
and SOT-MRAM.

3.2 Integrating NVM as Main Memory

As mentioned earlier, a memory device should be capable of delivering data
and instructions with speed comparable to that of processors. Since most of the
NVM devices have access latencies similar to that of DRAM, it was believed that
conventional memory devices could be replaced with NVMs. NVM devices like
PCM, STT-RAM, ReRAM, and NRAM have been studied as alternatives to DRAM.
Features such as low power consumption, byte address ability, and low access

146 S. Rai and B. Talawar

Total Leakage Power
21000
20000
19000
18000
17000
16000
15000
14000
13000
12000
11000
10000

9000
8000
7000
6000
5000
4000
3000
2000
1000

0

SRAM
STT-MRAM
SOT-MRAM

16KB 32KB 64KB 128KB 256KB 512KB 1MB 2MB 4MB 8MB 16MB 32MB
Capacity

L
ea

ka
g

e
P

o
w

er
 (

m
W

)

Fig. 7 Comparison of leakage power of SRAM and NVM devices [32]

latencies (compared to HDD) attract them to be excellent memory candidates.
However, to replace DRAM, a memory device in almost all computing devices for
several decades, the new devices should provide comparable features in terms of
speed, cost, energy, and density. NVM devices have been integrated as memory
components in different ways. This subsection discusses the possibilities, problems,
and challenges faced when using NVMs as memory devices.

3.2.1 Replacing Conventional Memory Devices with NVM

Latest applications like big data, cloud computing, and deep learning require huge
memory footprints with optimized energy consumption. DRAM is facing scalability
issues, and the static energy consumption of DRAM increases with the increase
in the size of the device. To compromise these issues, NVMs can be treated as
alternative devices. Experiments were conducted by Gamati’e et al. [24] to study
the impact of using ReRAM and PCM at different levels of the memory hierarchy.
This study revealed that ReRAM was ideal for being used as a memory device as it
consumes less energy with little compromise in performance.

At the same time, PCM was considered more suitable to be a storage device
rather than a memory. Recent PCM-based devices are modified to improvise write
latency and endurance issues, making them suitable for use as memory devices.
Figure 8 shows the conventional DRAM-based memory and NVM-based memory
organization. Replacing DRAM with NVM-based memories may help for low-
frequency and high energy-efficient processors, but it may not be a good idea to
be used in high-performance computing systems because of the prolonged write
operations [15]. DRAM can provide excellent performance, while NVM devices
can provide excellent capacity to combine the performance benefits of DRAM and

Nonvolatile Memory Technologies: Characteristics, Deployment, and Research. . . 147

Fig. 8 Conventional
DRAM-based memory and
NVM-based memory
architectures [15]

PROCESSOR PROCESSOR

DRAM

STORAGE STORAGE

NVM

capacity benefits of NVM; a new architecture was proposed by integrating both
the technologies, that is, hybrid memory. This kind of architecture was initially
proposed by Qureshi et al. [52]. Thereafter, this architecture has been widely studied
and researched, and various modifications to this are being developed.

3.2.2 Integrating NVM and DRAM as Hybrid Memories

The major setbacks for replacing conventional DRAM-based memory with NVMs
were:

1. Disparity in read-write latency: The reason for this is that devices like PCM store
the information by changing the resistance of the cell, especially by heating; this
makes writes slow. The content of the cell can be read by checking the resistance,
and this generally takes less time [5].

2. High dynamic energy consumption: NVM devices do not require refresh and have
low leakage current compared to DRAM. They have high dynamic energy con-
sumption; this is because write operations in most NVM are usually performed
by changing the resistance, which consumes more energy.

3. Limited endurance: Most of the NVM devices have comparatively low endurance
compared to DRAM. The reason for this could be due to the materials used
to build the memory device and the way how read and write operations are
performed.

The benefit of hybrid memory is that we can increase the capacity of memory
(NVM) without compromising performance (DRAM). NVMs are integrated with
DRAM to form memory hierarchy in cache/hierarchical organization or flat/parallel
organization. Figure 9 depicts two different ways of organizing hybrid memories.

Cache/hierarchical organization Here conventional DRAM acts as a cache and
NVM devices are used as memory components. Similar to the cache memory here,
DRAM will hold the data that is frequently in use (hot data), while NVM contains

148 S. Rai and B. Talawar

PROCESSOR PROCESSOR

LLCLLC

DRAM

DRAM

Single Address Space
NVM

NVM

Fig. 9 Hybrid memory architectures

the data that is used rarely often, which is termed cold data. The challenge in
implementing this architecture is that we need some hardware to manage tags;
DRAM memory is hidden from the operating system’s perspective, which reduces
the overall size of the memory. The advantage of this design is that it does not
require any modification to the existing software.

Flat/parallel organization Both DRAM and NVM share a common address space,
unlike a hierarchical organization. Flat/parallel organization increases the overall
capacity, as both memory spaces are visible to the operating system. If capacity is
the primary requirement, it is better to utilize this organization. However, we should
be careful about data placement because of the slow access latencies of the NVM
devices. Generally, capacity-intensive applications benefit from flat organization
[38].

Hierarchical architectures can be more beneficial for applications that exhibit
good data locality [31]. A study of different heterogeneous memory architectures
[10] showed that cache misses do consume the bandwidth and have an impact on
bandwidth utilization. Hence, cache-based architectures are ideal for those systems
with a good cache hit ratio. The study also revealed that though cache hit rates
are high, maintaining sufficiently high bandwidth between the chosen memories
is essential for effective resource utilization. Hence, cache-based architectures are
more suitable if the cache hit rates are high and energy and bandwidth ratios between
stacked and on-chip DRAM are at least four times [10].

3.3 Deploying NVM as Storage

This subsection discusses the characteristics that make NVMs suitable as storage
devices and the challenges in deploying them. Currently, NAND flash devices are

Nonvolatile Memory Technologies: Characteristics, Deployment, and Research. . . 149

being used as secondary storage devices in place of traditional HDD due to their
significant I/O performance [68]. An ideal storage media is expected to have good
density and low cost and be nonvolatile. NVM devices like PCM aim to provide
good density compared to NAND flash. It is observed that NAND flash is not cost-
effective with a density below 20 nm; in contrast, PCM devices are forecasted to
be stable below the 5 nm node, which makes PCM an ideal storage media. Another
feature that helps to increase the density of the NVM device is its ability to store
multi-bits [5]. Subsequently, access times of NVMs are far better than hard disk
drives. It is also possible that NVMs can be exclusively used as storage devices
in large-scale HPC systems to store global data that all the nodes in the network
can access; this can help manage unstructured datasets [68]. Experiments were
carried out by Bahn and Cho [5] to analyze the impact of adapting NVM devices
like PCM and STT-RAM as storage media. These experiments revealed that due to
the challenges faced with increasing memory size, it is ideal for building systems
with limited memory and huge storage with NVM devices without compromising
performance. Such designs would be suitable for memory-intensive applications.
Another advantage of using NVM in storage media is their endurance compared to
existing flash-based storage media; devices like PCM can sustain 1000x times more
writing than existing storage devices. NRAM also has a density that is much higher
than DRAM and consumes less power when compared to flash; these characteristics
make it suitable for storage [26]. Although ReRAM also emerged as an alternative
to existing storage media, it could not cope with NAND flash storage, and now
it is kept away from storage. However, it has found good implications in machine
learning-based applications [13]. All NVM devices possess the quality for replacing
flash-based storage devices. Most of the research work is carried out by utilizing
them as memory device alternatives to DRAM rather than as storage devices.

4 Challenges in Adopting NVM Devices at Different Levels
of Memory

In the previous sections, we discussed the use of NVM devices at different
levels of memory hierarchy. To replace or to integrate NVM with conventional
devices, several modifications are required. In this section we discuss the different
problems and possible solutions which we come across at different levels of memory
hierarchy.

4.1 Design Issues in Utilizing NVM as Cache

SRAM is facing challenges with power consumption and areal density; hence, it is
necessary to find an alternative to this technology. NVM devices have good density

150 S. Rai and B. Talawar

and low leakage current as mentioned earlier, and they can be an alternative to
SRAM-based memories. Among all NVMs, STT-RAM has emerged alternative to
SRAM due to its excellent density, which is near four times more enormous than
SRAM, and low leakage current [56]. Besides these advantages, the costly NVM
writes in terms of energy and time are major setbacks in adopting them directly
as caches. Hence, several modifications are suggested in terms of write intensity
reduction techniques and write latency reduction techniques to overcome costly
write operations in NVMs. Modifications to the replacement policies in last-level
caches are often adopted to solve the issues related to costly writes. However, the
straightforward approach is to place read-intensive blocks in NVM part of the cache;
they should be handled intelligently such that the hit ratio of upper-level caches is
well maintained without affecting the performance [64]. Previous works have shown
that rather than replacing existing caches with NVM-based caches, it is ideal to use
both in the form of a hybrid cache.

4.1.1 Management of Hybrid Caches

Apart from good density and leakage, current STT-RAM also has good endurance
and good read performance [42]. Nevertheless, it is not ideal to replace SRAM with
NVMs because they consume high write energy and have long write latencies. To
mitigate the drawbacks of individual devices, they are integrated and used as hybrid
caches. These designs have several challenges; we discuss the issues and possible
solutions in the subsequent sections.

4.1.2 Challenges in Adopting Hybrid Caches

1. Handling Writes in Hybrid Cache: Unlike a monolithic cache, a hybrid cache
comprising SRAM and NVM has differential write latencies. Since writes are
costly in NVM, we need to handle them with care. Migration is often applied by
monitoring the read-write operations, directing read-intensive blocks to NVM,
and retaining write-intensive blocks in SRAM. Some counters are used to keep
track of these operations, and generally, based on threshold values, migrations are
triggered. These counters should be designed to be optimal in terms of space and
time. We should also take care of demand writes, i.e., when a new block is loaded
from memory to cache, write-intensive blocks should be loaded to SRAM and
read-intensive to NVM-based cache. Next, care should be taken while handling
thrashing blocks; these blocks keep hopping between the two layers and may
degrade the performance [42].

2. Modified cache replacement policies: Existing cache replacement policies are
designed for monolithic caches. However, these policies may not be efficient
when adapted directly to hybrid caches because of the disparity in read-write
latencies of the two technologies. All the replacement policies concentrate on
reducing writes being performed on NVM devices and directing the reads to

Nonvolatile Memory Technologies: Characteristics, Deployment, and Research. . . 151

NVM as reads are cheaper and nondestructive in those devices. Care should be
taken when performing demand writes as well, such that a new block brought to
cache from memory should be loaded to hybrid cache and that write-intensive
blocks are placed in SRAM.

3. Data placement and migration: Data placing is challenging in a hybrid cache
because there is a difference in read and write latencies in SRAM and NVM.
When a new block is loaded, rather than just placing an analysis about past usage
in some part of the cache, type of requests on the block are often considered
to make intelligent placement decisions. Placement and migration decisions
based on thrashing information also help in minimizing energy consumption and
improving performance by reducing the number of LLC misses [42].

4. Modification in eviction policies: In monolithic caches, when a block from the
last-level cache is evicted, it will be placed in the next level of the memory
hierarchy. Sometimes there is a possibility that the same block may be needed
shortly; in such cases again, the block has to be loaded from memory. One
advantage of a hybrid cache is that the capacity of NVM is much larger than
SRAM. Hence, rather than evicting the blocks directly to the next level, some of
the blocks which are used frequently can be placed in an NVM-based cache if
they are read-intensive because writes are costly in NVM. When evicting blocks,
preferences will usually be given for clean blocks in the case of hybrid caches;
preferences should be shown for NVM caches because writes in NVM are more
costly in terms of energy and time. Several modifications are suggested for the
existing cache eviction policies so that both energy and performance are not
compromised.

4.2 Challenges in Adapting NVM as a Candidate for Hybrid
Memories

The most common architecture discussed and researched in the past years is hybrid
memory architecture. Despite the advantages the NVM devices provide, they are
not good candidates for replacing DRAM-based memories, at least in the near
future, unless and until the write energy and endurance of the NVMs are improvised.
Hybrid memories are pretty famous, and they are studied heavily around the globe
to be utilized in full-fledged forms in the upcoming computers. However, before
adopting these in real-world systems, modifications are required in several areas of
the current memories.

1. Data placement and migration: Since there is inequality in writing energy
consumption and time compared to reading, data placement in hybrid memories
is challenging. Hence, most hybrid memory architectures observe static data
placement and migration. Access patterns may observe tremendous change
during application execution, resulting in poor performance. The reason for this
could be more writes being performed in NVM devices. Migration is applied

152 S. Rai and B. Talawar

in hybrid memories to balance the number of writes being performed and
improve energy and performance. Migration is performed by monitoring the
access patterns of applications through profiling and memory tracing activity.
During this process, data objects which are used extensively, termed hot objects,
will be directed toward fast memory (DRAM). In turn, objects experiencing less
access, termed as cold objects, will be brought to slow but large NVM. The
challenge in data migration is to identify the most appropriate candidates for
the memory device. A good migration technique should place data such that
energy and performance are well optimized. Migrations can be either active or
passive in the case of dynamic; migration is performed by scrutinizing the access
pattern of applications, whereas passive migrations are triggered when DRAM is
full [80]. Apart from identifying the candidates for migration, other challenges
are selecting the right proportion for migration, known as the granularity of
migration. In most cases, if the migration is performed with the involvement of
the operating system, then the granularity of migration will be a page. However,
sometimes, it may not be necessary to migrate an entire page because the only
portion of the page may be accessed frequently. It may not be ideal for fixing
to a common granularity because different applications would benefit from
different sizes. An application that exhibits random memory access behavior
would benefit from small fragments, while stream-based applications would
incur more benefit from large sizes. Hence, rather than fixing static granularity, it
is always beneficial to choose dynamic granularity, which changes based on the
application behavior [55]. Once the candidates for migration are chosen, and the
migration granularity is fixed, the next challenge is when to trigger the migration.
The most common approach is to trigger migration based on threshold values;
proper analysis should be performed before fixing the threshold. In addition, the
good idea is to modify the threshold value based on the application behavior
dynamically. Several types of research are conducted to perform migration in
a DRAM-NVM-based hybrid; however, there is a scope for improving these
techniques.

2. Handling page replacement in hybrid memory: A page fault occurs if the page
requested by the processor is not available in the memory devices. In such a
case, pages should be loaded from secondary storage media. If the memory
device does not have sufficient space, then a page from memory should be
migrated to secondary storage, creating space for the new page. Identifying the
candidate for replacement is a challenging task. Well-known techniques like
least recently used (LRU), least frequently used (LFU), first in-first out (FIFO),
and round-robin are often used to identify the victim page for a replacement.
However, these techniques are ideal for conventional monolithic-based memory
designs and cannot be used directly on hybrid memories. In this regard, several
modifications are suggested making the replacement techniques suitable for
hybrid memories considering the property of the devices. Page replacement
techniques can be broadly classified as LRU-based techniques and clock-based
techniques. LRU-based techniques use the LRU queue and classify the pages as
most recently used and least recently used. Pages that are not used recently are

Nonvolatile Memory Technologies: Characteristics, Deployment, and Research. . . 153

considered victims for replacement; this technique is widely accepted, but it has
some computational drawbacks, such as shifting in the LRU queue to mark the
recency of access on every access page. Another major problem with the LRU
queue is that it does not keep track of the type of access, but this information
is essential in the case of hybrid memories. Rather than just keeping track of
recency of access, other information such as the number of writes and reads
performed on a page are also essential when using page replacement in hybrid
memories. Several modifications are applied to LRU-based techniques to make
them suitable for hybrid memories. Application pattern prediction aware LRU
(APP-LRU), maintain high hit ratio LRU (MHR-LRU), and double LRU are
a few LRU-based techniques that are modified suitably to work with DRAM-
NVM-based hybrid memories. Another category of page replacement algorithms
is clock based; in these techniques, pointers are used similar to the hands of the
clock, hence the name. If a page is accessed recently, but the pointer points to it,
indicating it has a victim for replacement, a bit called reference bit is checked;
if the value is one, then it will survive the replacement making some other page
a victim. Comparatively, these techniques take less time for computation. Once
again, even existing clock-based techniques cannot be used directly on hybrid
memories. Hence, several modifications are suggested for the primary clock
algorithm making it suitable for hybrid memories. Some of the prominent clock-
based algorithms which were developed to satisfy the demands of hybrid memory
are clock with dirty bits and write frequency (Clock-DWF), clock for page
cache in hybrid memory architecture (Clock-HM), migration optimized page
replacement algorithm (M-Clock), adaptive classification clock (AC-Clock), and
tendency-aware page replacement policy (TA-Clock). These techniques show
that both LRU-based and clock-based techniques require some modifications
before applying them in hybrid memories with differential read-write properties.

3. Impact of hybrid memory on cache design: In Sect. 4.1, we discussed how
to use nonvolatile devices as hybrid caches and the challenges faced when
using them. If our design choice is to adopt NVM devices in the memory
hierarchy keeping the cache intact, certain modifications are required in the
cache for performance reasons. One of the areas of cache designs that have
several modifications observed due to the adaptation of hybrid memory is the
cache replacement policy. In monolithic DRAM-based memories, eviction of the
block was straightforward. However, in the case of hybrid memories, a cache
block belonging to NVM should be given more priority, and it should be made
to stay for a longer duration because fetching a block from NVM is costly
compared to DRAM. Retaining blocks from NVMmay affect the DRAM blocks
because if most of the space is occupied by NVM, there may be significantly
less space for DRAM blocks, and giving priority recklessly to NVM blocks
may increase thrashing DRAM cache blocks and poor utilization of cache as
well. Hence, it is necessary to redesign cache replacement policies for hybrid
memories, considering the impact on performance and power consumption.
Several modifications are suggested making them suitable for DRAM-NVM-
based hybrid memories. Some of the prominent cache replacement policies

154 S. Rai and B. Talawar

designed exclusively for hybrid memories consisting of DRAM and NVM
are hybrid memory-aware partition in shared last-level cache (HAP), dynamic
adaptive replacement policy in shared last-level cache of DRAM/PCM hybrid
memory for big data storage (DARP), miss penalty-aware cache replacement
policy (MALRU), victim-aware cache replacement policy for improving NVM
lifetime (VAIL), and reuse distance-based victim cache; many more techniques
might exist as well. All these techniques ensure that the hit ratios of both
the devices are well maintained, and the overall system’s performance remains
unaffected to a major extent.

4. Power and performance trade-offs in hybrid memory: Power plays a vital role in
modern systems, which work with huge memory footprints. NVM devices are
introduced as a substitute to DRAM because of their low power consumption
and ability to support the huge size. However, the setback for these devices
is their dynamic energy consumption, primarily because of the high energy
consumption for performing write operations. Hence, care should be taken such
that power and performance are well balanced. The only way to reduce the
dynamic energy consumption of NVM devices is by controlling the number of
writes being performed on the device. Some of the techniques which can reduce
energy consumption are migration, as already discussed in the previous section,
which can help in reducing dynamic memory consumption. Another approach is
following intelligent data placement; these techniques ensure that write-intensive
data gets placed in DRAM and read-intensive data in NVM. Even following
good wear-leveling techniques can enhance the lifetime and dynamic energy
consumption. Despite all these techniques, there is still scope for improvement
as different applications exhibit different access patterns. Most of the research
is directed to one common research that can be carried out to increase the
performance while not trading much with the energy.

4.3 Challenges in Adopting NVM as Storage Media

The invention of NVM devices is a boon to memory technology; nevertheless,
replacing traditional devices with these new design choices is not easy and often
requires modification in several aspects of a memory hierarchy. One major challenge
is a modification to the operating system. Adapting NVMs as storage requires
some alterations to the existing software, which was developed for HDDs. Some
modifications in memory management are also required as the access time of storage
becomes closer to that of DRAM [5]. Most designs use it as persistent memory
instead of separate storage media.

Nonvolatile Memory Technologies: Characteristics, Deployment, and Research. . . 155

4.3.1 Changes to the Operating System

Unlike traditional HDD and SDD, current NVM technologies are byte-addressable,
indicating that it is possible to target the actual byte rather than accessing data
blocks. However, to exploit this advantage, it is necessary to modify the operating
system so that we can explore all the benefits of these NVM devices. The challenge
is to build the new OS without affecting the existing applications. Generally,
operating systems provide data abstractions depending on the type of hardware for
which they have been designed. The data storage and access behavior would change
with NVM designs; this attracts some modifications to the operating system. Some
of the significant changes that are required to work with the new NVM devices are:

1. NVM devices have access latencies comparable with DRAM, while the existing
APIs may have latencies longer than access time.

2. Processors can directly access NVM devices with load and store instructions.
There is a necessity to redesign system calls to persistent data by allowing
programs to work directly on persistent data, and also pointers to persistent data
should be designed such that they have a long lifetime similar to the objects they
are pointing [8]. Generally, operating system working with conventional hard
disk-based storage media makes use of a buffer to accumulate the data and then
performwrites to the HDD after certain time limits; in addition, while performing
reads, look-ahead read was performed by reading multiple pages ahead of time,
but this had a poor impact when NVM devices were used as storage. Even though
there is a massive difference in the performance gaps of HDDs and NVM, there
was no significant improvement because of the presence of buffers. Hence, when
using NVM devices as storage, buffers must be redesigned. Another feature
that was adopted by most operating systems is the read-ahead feature, but this
can enhance performance only when there is sequential access. However, this
did not improve the performance when the STT-RAM and PCM were used as
storage media because they can perform faster reads than traditional HDDs. Also,
colossal software stack overhead was observed while using NVMs as storage
devices. Several kinds of research are currently being carried out such that the
operating system supports the use of NVM devices with ease. Also, there were
a few suggestions to use NVM devices as a universal memory replacing both
memory and storage; however, this could not be achieved proficiently due to a
few drawbacks of NVM devices.

4.3.2 Modifications in the File System

Several file systems exist that have been used and are comfortable with underlying
storage media, such as hard disk drives. However, when HDDs or SSDs are replaced
with emerging NVM devices such as PCM, ReRAM, etc., the existing file systems
may not provide good performance. Some designs have adopted NVMs as a cache

156 S. Rai and B. Talawar

between memory and secondary storage media to bridge the performance gap.
In traditional storage media, maintaining consistency of data synchronization was
essential, but this adds additional overhead; hence, NVM caches are used to hold
the dirty pages. Another advantage of using these caches is holding the journal-
ling information. HasFS file system was proposed recently to handle file system
consistency problems. In this case, metadata is stored in DRAM while actual data is
stored in NVM. This file system achieved good performance as it avoided costly
access to storage media. Some modifications are suggested to the existing file
system to adapt them suitably to the NVM devices [41]. Other than this, file systems
such as BPFS, PMFS, and NOVA were also designed and developed to support
NVM-based storage media. These systems avoid page cache and block-based I/O
software stack. All these file systems follow direct memory access via load-store
accesses. When used on NVM devices, conventional file systems need an extra
block transition layer that adds additional cost in terms of performance and space.
Researches were carried out to study the impact of file systems on commercially
available 3D XPoint-based NVMs; this revealed that read performance was good
when using either traditional file systems or NVM-aware file systems. However,
write performances were optimal with NVM-based file systems when compared
to traditional file systems [83]. Some of the factors that may help improve the
performance of the file systems are as follows: If the file systems use journaling,
some may experience degradation in performance if the directory width is increased.
Increasing the number of threads may lead to performance degradation; hence, there
should be control over the number of threads. Access granularity has a significant
impact on performance; the smaller the granularity, the larger the latency [58]. All
these facts must be considered while designing new file systems for NVM-based
devices.

5 Current Research Challenges

Though storage class memories have emerged as alternatives for existing mem-
ory/storage devices, they have certain pitfalls such as high write energy consump-
tion, limited endurance, and long write latency, and some of them also suffer from
security issues. Hence, various studies have been conducted to overcome these
drawbacks; this section gives insights into the possible enhancements and solutions
which are provided to solve these issues.

5.1 Lifetime Improvement

NVM devices have limited endurance when compared to existing memory devices.
This subsection will discuss the different methodologies proposed for improving the
lifetime of NVM devices. Nonvolatile memory devices are being used in deep neural

Nonvolatile Memory Technologies: Characteristics, Deployment, and Research. . . 157

networks because of the capacity it provides them. However, there are challenges
to adopting them; weights in the neural networks need to be updated periodically,
which may affect the endurance of a few cells of the NVM. The lifetime of the NVM
cells can be improved by embracing techniques such as wear-leveling, fault-tolerant,
and write reduction techniques. Wear-leveling techniques focus on distributing
writes evenly among all rows so that few rows do not suffer from endurance limits.
To prolong the lifetime of the NVM devices, techniques such as data comparison
write, flip-and-write, and dead write bypassing techniques are applied [15].

5.1.1 Wear-Leveling Techniques

Due to the varying behaviors of applications, it is possible that the NVM may
be written several times in certain cells, which might affect the endurance. Wear-
leveling techniques help balance the writes performed on the rows so that all of
them get a balanced number of writes. These techniques can be either proactive or
reactive; in the former approach, the wear leveling is always active, while in the
latter, they are activated when the number of writes reaches some threshold [60].
Most of the techniques try to balance the writes by keeping track of the number of
writes and swapping more frequently written rows with less used ones so that all
rows have a uniform distribution of writes. The challenging task here is to optimize
the number of counters used to keep track of the number of writes performed.

Wear leveling in NVMs at memory hierarchy Age-aware row swapping is one of
the techniques which aim to balance the writes in deep learning applications. Rows
that are written several times during training have the possibility of being written
in the future as well; such rows are identified and swapped with less frequently
written rows. Registers are used to keep track of writes since the number of writes
performed on cells is common to a row; the number of counters depends on rows,
significantly reducing the number of counters [12].

Wear-leveling in NVMs at cache hierarchy Write variations in the cache can be
either inter-set or intra-set. If there is write variation among sets, it is known as inter-
set variation, while variations across ways are known as intra-set variations. Since
data caches are written heavily than instruction caches, logically reorganizing can
be helpful to balance the writes when NVMs are used as caches [60]. When NVMs
are used as caches, static window write restriction (SWWR) and dynamic window
write restriction techniques are applied to evenly distribute writes by partitioning
the cache into windows and restricting the writes to certain windows after they have
reached the threshold [1].

158 S. Rai and B. Talawar

5.1.2 Write Reduction Techniques

Wear-leveling techniques try to balance the writes by distributing them evenly
among all locations, whereas write reduction techniques concentrate on reducing
the write operations themselves. Writes are more costly in NVM than reading oper-
ations in terms of energy and latency. Reducing write operations will significantly
impact the lifetime of NVMs due to the limitations in endurance. Several approaches
have been proposed to reduce writes in NVM, thereby enhancing performance.
One of the popular write reduction techniques is flip-and-write: in this case, before
performing a write operation, existing data and data to be written are compared.
If more than N/2 bits are different, the flip operation is performed, and the flip
bit is set. After this operation, only the bits that need to be updated are written.
This operation was able to reduce write, thereby increasing both performance and
endurance [18]. Another method that was adopted was two-stage write: in this case,
all 0 s are written together, and all 1 s are written together, performing the writes in
two stages. Flip-and-write was also adopted if more than N/2 bits had the value 1 to
be written. The advantage of this approach is that 0 s are written faster. Flip-mirror
rotate is yet another approach that concentrates on reducing the writes in nonvolatile
memories. Though the flip-and-write approach reduced the writes, it may not be
efficient if less than N/2 bits require updates. Adaptive flip-write combines flip and
write with compression techniques by dynamically adapting data width. The second
method applied in this technique is performing a mirroring operation before writing.
This will further reduce the number of bits to be written [48]. In devices like PCM,
standard write units followed were 4, 8, or 16 bits; hence, to complete one cache
block write, several series of writes were necessary; this increases the latency for
write operations and impacts the performance. In some applications generally, for
data structure alignment, multiple 0 s might be appended; such data is known as
zero-extended values. Min-WU (minimize write units) tries to reduce the number
of write units by applying data coding techniques. Another approach this method
follows is by encapsulating more bits in write operations such that the number
of serial writes required to complete one cache write is lowered. Employing this
method helps in reducing the time consumed for writing operations.

5.1.3 Error Correction

Another method to improve the lifetime of NVM devices is the development of
error correction techniques. These techniques focus on improving reliability as well
as limited endurance. Nonvolatile memories suffer from permanent and transient
failures due to manufacturing defects, decreased feature size, or multi-bit storage.
Sometimes they may suffer from hard error, which means the cell is damaged
permanently and cannot be used in the future. At the same time, transient errors can
be rectified by reprogramming the cell. If these errors are not corrected, they may
affect the reliability of the applications. Irrespective of the type of NVM technology,
they may become victims of these errors. Conventional error correction codes were

Nonvolatile Memory Technologies: Characteristics, Deployment, and Research. . . 159

not effective when applied to NVMs because of the memory overhead; hence, there
was a necessity to build robust error correction techniques. This was an active area
of research for several years. Hard error correction techniques can be generalized to
different technologies; however, soft error correction techniques need to be modified
as per the underlying NVM. In conventional technologies, hard errors were mainly
caused due to manufacturing defects; however, in NVM devices, excessive writes
may cause hard errors [66]. The most common methods that are followed to reduce
hard errors are dynamically replicated memory (DRM), error-correcting pointers
(ECP), SAFER, FREE-p, Pay-As-you-go, and Zombie. The major challenge in
these techniques is to implement these with minimal overhead. ECP emerged as
an excellent alternative to ECC; this technique used pointers to point to the failed
cell and save the correct values. The advantage of this approach is that it uses a fixed
number of pointers to address the problem in a given block. The major drawback
of this approach is that it uses a fixed number of ECPs for the entire memory;
however, some of these may remain unutilized. If a page contains weak rows (i.e.,
rows that experience many failures), then using 6 ECP may not be sufficient, and
this may result in failure of the page even though several rows exist on the page that
is still viable for use. Pay-As-you-go and zombie are ECP-based techniques that
are improvised with added latency cost [67]. To overcome the drawback of limited
pointer availability of ECP, another major technique was proposed for handling hard
errors in single-bit, multi-bit, and triple-bit cells, which is error-correcting strings.
In this approach, variable-length offsets are used instead of fixed-length pointers;
this enhances the ability to handle more errors. Compared to ECP, this method can
correct more errors with less overhead because it uses offsets in error correction.

5.2 Multilevel Cell

Most of the NVM devices support multi-bit storage per cell called multilevel cell
(MLC); this subsection details this property. NVM devices exhibit multiple resistive
states; this can be exploited to store multiple bits. The advantage of MLC is that
it provides high density. Several types of research are carried out to reduce the
physical dimensions of NVM devices so that density can be improved. However,
this requires modifications to the fabrication methodology; an alternative to this is
MLC, i.e., store multiple bits in an individual cell without reducing its physical
dimensions. Devices like PCM, ReRAM, STT-RAM, and NRAM have the potential
to store multiple bits per cell, but this is possible by varying multiple high resistance
and low resistance instead of single high resistance and low resistance. However, to
achieve this, a proper control over different resistance levels is essential; otherwise,
the device may suffer from resistance variability as well as reliability issues [77].
Multilevel storage in NVM devices can be achieved in many ways and will be
discussed in the subsequent subsections.

160 S. Rai and B. Talawar

5.2.1 Multilevel Cell Property in PCM

PCM supports multiple-bit storage in a single cell. The huge disparity in resistance
between the crystalline and amorphous states helps in intermediate resistance states.
However, it is challenging to store multiple bits because of the reliability issues. The
major hindrance to this problem is resistance drift and variability. The resistance
drift problem also decreases the retention power of the cell. It is observed that if
the write latency is longer, then such writes have a longer retention time, whereas
smaller latency writes have less retention time. Hence, a small trade-off between
performance and retention time is essential while dealing with MLC, because
MLC is more vulnerable to resistance drifts than SLC. Hence, before adopting
this property, there is a necessity to make suitable adaptations so that reliability
will not affect the performance. Hot data blocks can survive low retention as they
get accessed and updated frequently, whereas, cold data blocks should experience
long latency writes. Techniques like region retention monitor (RRM) can be used
to monitor the number of access being performed on the data blocks and set
appropriate write latency [79]. Another approach that is followed for improving the
retention time of short-latency writes is quick and dirty write (QnD). This technique
can be applied if the applications experience heavy write operations only during
certain periods. Short-latency writes are performed when the memory controller
has too many writes to handle. In the duration where the memory controller is
idle or performing no write operations, long latency writes are issued, once again
thereby refreshing the short-latency writes [81]. There is always a trade-off between
latency and retention time in MLC of PCM; hence, there should be intelligent
techniques to deal with these issues. Multi-level PCM cells are more suitable to
be used in storage media [53]. MLC support for PCM is proved in 1T1R array, but
there are limitations due to the difficulty in scaling transistors and other problems
regarding read-write verification. To solve this issue, MLC in PCM is supported
by using ovonic threshold switch (OTS)-based cross-point array. OTS-based PCM
cross-point array does not use transistor and is free from read-write verification
problem, but the challenge is to manage unselected cells while selected cells are
programmed, because there are no transistors to select a particular group of cells.
Tight distribution of memory window can help in solving this issue. Methods like
open loop programming are used to avoid read-write verification problem. Another
major issue even in OTS-based MLC is threshold voltage (vt) drift. To solve this
issue, optimized programming methods can be used [27]. Tremendous research is
underway to solve the issues in MLC which can provide promising results in the
future.

5.2.2 Multilevel Cell Property in ReRAM

Multiple bits can be stored in ReRAM either by controlling the reset voltage,
changing the compliance current, or altering the pulse width of the program/erase
operation. From the experiments, it was evident that ReRAM can support up to

Nonvolatile Memory Technologies: Characteristics, Deployment, and Research. . . 161

eight resistance states in a single cell [77]. ReRAMs constructed using oxides can
also support MLC property. In most cases, MLC operations are validated at device,
while operations at circuit and system level were less explored. When using oxide-
based ReRAM, a huge variation is observed in MLCs concerning HRS and LRS;
to handle this multiple-step programming can be helpful. By varying the voltage
during a ReSET operation, multiple bits can be stored, and a recent work tried
to terminate the reset operation by itself to obtain different high resistance states.
The advantage of this approach is that it can achieve MLC without read-verify [4].
Another issue faced by MLC in ReRAM is retention failure; sudden transitions may
change the state of the cell from low resistance to high resistance, known as LRS
retention failure, and vice versa, known as HRS retention failure. Reprogramming
the cell may resume the normal state. A proper analysis of materials, resistance
allocation schemes, and programming strategies can help in making decisions
regarding retention failures [74].

5.2.3 Multilevel Cell Property of STT-RAM

Multi-level cell support is possible in STT-RAM if the magnetic tunnel junctions
support four or more resistance levels. The major problem for support of MLC
is reliability and performance. These can be affected by process variations in the
design of MTJs and MOS and due to the thermal fluctuations during the switching
process [78]. Though MLCs support good density compared to single-level cells
(SLC), they suffer from read and write disturbance issues. The challenge is to
explore the advantage of MLC by solving these issues. Two popular designs which
support MLC in STT-RAM are serial and parallel designs. In serial design, a small
and a large MTJ are placed vertically above the other. Small MTJ is referred to
as soft bit and large MTJ as hard bit. Writing hard bits of the MLC consumes
more energy. It may also disturb the value stored in the corresponding soft bit line;
hence, some modification is required to mitigate this problem before utilizing MLC.
Techniques like word-splitting schemes are used to reduce the costly writes to the
hard region [15], and one-step writes are proposed by Zhao et al. [82] instead of
two-step writes to improve the lifetime of MLCs.

5.2.4 Multilevel Cell of FeRAM

Compared to other NVM devices, multi-bit storage in FeRAM is not explored much
yet; however, there are few shreds of evidence supporting multi-bit storage capacity.
Many shreds of evidence show multi-bit storage capacity in ferro electric-based
field-effect transistors (FeFET) [22]. Multi-bit cells in ferro electric-based devices
can be realized by using very thin films of ferroelectric oxides [7]. In the recent
work carried out by Kim et al. [37], a FeRAM cell structure was developed by
substituting 1T1C by 1T1T structure; this structure could perform nondestructive

162 S. Rai and B. Talawar

reads as well supported data storage up to 5 bits per cell. In the future, we can
expect more innovation in this regard.

5.3 Accelerators

Some previous works have used NVMs to perform computations rather than using
them only for storage. This subsection will provide details about the use of NVMs as
accelerators. Research has shown that PCM [11], STT-RAM [69, 70], and ReRAM
[28, 39] are capable of performing operations and computations in addition to their
capability of storing data. When devices are capable of performing some kind of
computing, then they can be used as accelerators in memory which is sometimes
referred as in-memory computing. ReRAM is said to exhibit crossbar array structure
which makes it an excellent candidate for processing matrix-vector multiplication.
The crossbar structure of ReRAM cell is shown in Fig. 10. Owing to this nature of
ReRAM, it is used as accelerator in many researches [14, 36, 51]. There are also
evidences where ReRAM is being used to perform computations in neural network
as well as convolution neural networks (CNN); more details about this can be found
in studies by Chi et al. [16] and Shafiee et al. [59]. There were problems associated
with training and weight updating when ReRAM was used for CNN computation;
to overcome this drawback, Song et al. [61] developed networks utilizing the
advantage of intra-level parallelism, thereby creating architectures which could
enhance performance of CNN at both the stages of training and inference. Apart
from neural network, ReRAMs are also used as accelerators in Boltzmann machine
[9]. In addition, ReRAM-based accelerators are used in graph algorithms especially
for performing sparse matrix-vector multiplication [62]. A more detailed survey of
using ReRAM in neural networks as accelerators can be found in a study by Mittal
[45]. Other than ReRAM, recently PCM-based devices are being explored as well.
There are few evidences of PCM usage in accelerators that can be explored [34,
57, 63]. Conductance drift is a major hindrance for usage of PCM as an accelerator

Fig. 10 Crossbar structure of
ReRAM cells [33]

Wordline

Cell

B
itl

in
e

Nonvolatile Memory Technologies: Characteristics, Deployment, and Research. . . 163

time-dependent amplification can help to mitigate this issue. Despite this challenge
PCM is a good candidate as an accelerator.

5.4 Security

This subsection will give details about how to handle the issues related to security
in NVM devices. The major drawback of the NVM device is the limited endurance;
attackers take this as an advantage and write the NVM cell several times, thus
making them weak. To avoid this problem, there is a necessity to develop techniques
to enhance the security of NVM devices. Another property of NVM-based systems
is their long retention time; an attacker with physical access to the system can
readily scan the main memory content and extract all valuable information from
the main memory. This vulnerability can be addressed by memory encryption using
a dedicated AES engine, but it comes with extra concerns. First is that it should
be fast enough during encryption and provide an instant response when unlocked.
Second, it should be energy-efficient considering the limited battery life. Hence,
a new alternative of AES, AIM, has been introduced by Xie et al. [73] for fast
and energy-efficient NVM encryption that will encrypt the whole/part memory only
when it is required. AIM leverages the nondestructive read in NVMs for performing
efficient XOR operations, which dominate AES. AIM utilizes the intrinsic logic
operation capability of NVMs to implement the AES task and provide a bandwidth-
intensive encryption application by doing the AES procedure in place. Mao et al.
[43] explored the wear-leveling attack in NVMs such as PCM and ReRAM. The
attacker can wear out NVMs using the row buffer hit latency. Latency can reveal
LAs (logical addresses) mapped to the same physical row. Thus, an attacker can
discover a group of LAs mapped to a specific physical row and keep detecting
it using latency. The attacker can then figure out the new LA mapped (for wear
leveling) to the same physical address written last, therefore cracking the protection
of wear leveling. To solve this attack, intra-row swap (IRS) was introduced, which
would hide the wear-leveling details. The basic idea is to enable an additional intra-
row block swap when a new logical address is remapped to the memory row. It
is observed that the cells of NVM devices have varying endurance. Some of the
attackers use this; they try to write all the rows of the device uniformly several
times, which may make a few rows weak and finally affect the device. These attacks
are known as uniform address attacks (UAA). These kinds of attacks will impact
the wear-leveling schemes as well. To avoid such attacks, techniques like MAX-
WE have been employed. This technique tries to maximize the endurance of weak
cells and protects UAA [75]. In deep learning applications, security can be breached
by the optimizer as it repeatedly updates the common location, thereby affecting the
cell’s endurance. As the training phase incurs more writes it can be victim of such
attacks. Generally, attacks are carried out in two steps: localization and targeting.
In the first step, rows that are to be targeted are identified, and in the second step,
these rows are written several times, hampering the endurance and thereby affecting

164 S. Rai and B. Talawar

the security. Techniques like random age-aware row swapping are used to confuse
the attackers by randomizing the rows to be swapped because following a typical
pattern for swapping may attract attackers to perform easy attacks [12]. Security
is also an essential factor to consider in applications. Though several software-
based approaches exist to ensure application security, hardware-based security can
also be used. The random switching mechanism used in ReRAM devices is less
vulnerable to data attacks compared to conventional devices. ReRAM devices are
used in key authentication and generation. However, the use of NVM devices to
enhance security is still under research, and much progress is expected in the near
future [77].

6 Application of NVM Devices in IoT and AI

In the previous sections, we have discussed the different NVM devices and how
they can be integrated to different levels of memory hierarchy. In this subsection
we will shed some light on how NVM devices have changed the way of processing
in emerging fields like artificial intelligence (AI), big data, and Internet of Things
(IoT). Initially, IoT was not able to process complex information; however, with
the improvement of processors in IoT devices, they can now process complex
information, including AI. When such complex information can be processed in
IoT devices, they are referred to as AIoT. However, these IoT devices are generally
battery-based devices where power consumption is an essential factor. Most of the
time, IoT devices operate on standby mode; in such cases, it is hard to satisfy the
needs only with DRAM-based devices due to their power consumption.

Nevertheless, it is not a good idea to completely replace DRAM with NVM
devices because of the issues discussed previously; hence, hybrid architectures are
adopted. By adopting specific changes to exploit the best of power and performance,
NVM-based hybrid memories can satisfy the need for enormous memory with low
power consumption [65]. In the previous sections, we discussed how NVM could be
used as cache devices. In the processors meant for processing AI applications, NVM
devices like STT-RAM are used as caches. The advantage of using NVM as cache
in AIoT-based devices is that they enhance the performance with reduced power
consumption, which is essential for those systems. Despite these advantages, long
write latencies of STT-RAM may hamper the performance; to avoid this, certain
modifications are essential for the existing SRAM-based policies. Techniques like
adaptive nonvolatile cache prefetch (ANCP) are developed to handle the issues
faced by STTRAM devices. Prefetching techniques generally increase the writes
performed on the cache, which may adversely affect performance. To avoid this,
stream-based prefetching was adopted in ANCP, which improved the performance
slightly [47]. In-memory computing is often used in edge computing to reduce the
time spent in exchange of information between processing elements and storage.
Most of the AI edge devices perform multiply and accumulate (MAC) operation.
NVM devices like PCM-, ReRAM-, and MRAM-based memories like STT-MRAM

Nonvolatile Memory Technologies: Characteristics, Deployment, and Research. . . 165

Fig. 11 Analysis of power
consumption Total Power consumed

0.35

0.3

0.25

0.2

0.15

0.1

DRAM STTRAM RRAM PCM

0.05

0

have been used as they can provide precise results with low energy consumption
and improved performance. Figure 11 depicts the total power consumed by various
memory devices for a common application program. From the figure it is evident
that NVM devices have very low power consumption compared to DRAM, giving
the proof that they can be right candidates for devices which have constraints on
power consumption. However, this is an active area of research, and many solutions
can be explored.

7 Simulators

Generally, computer architecture research uses various simulation tools to analyze
the performance and power consumption and check the system’s behavioral changes
with new modifications and adoptions. Rather than making changes directly in
the hardware device, it is advisable to use simulators. This section details about
the different simulators used and how one can use them in their research. Since
most of the NVM devices are still prototype devices, simulators are used to
analyze the behavior of NVM devices. A plethora of simulation tools are currently
available, and we should choose the tool that satisfies our requirements accordingly.
Simulators can be broadly classified as functional simulators, timing simulators,
and integrated timing and functional simulators based on the simulation detail.
Functional simulators are more like an emulator; they try to imitate the behavior
of ISAs, but they do not work at the micro-architectural level. However, they
will give us the details regarding the program’s behavior. Timing simulators give
the details at the micro-architectural level. These simulators will be able to give
details performance of memory systems, time taken by a program for execution,
etc. Functional simulators can be either cycle level simulators or event-driven

166 S. Rai and B. Talawar

simulators. Cycle level simulators imitate the processor’s behavior in each cycle, but
they cannot give the minute-level details associated with the hardware. On the other
hand, event-driven simulators try to simulate the behavior of the system based on the
events [2]. Depending on the type of research we are involved in, we should choose
the appropriate simulators. However, another category of simulators is memory
simulators, which can be used to simulate the behavior of access to memory devices.
Given below is the list of simulators that are widely used in the study of NVM
devices.

1. NVMain: This simulator was developed to study the behavior of emerging
NVM devices along with the support for existing DRAM. While simulators
like DRAMSim can be used to evaluate the behavior of DRAM-based memory,
NVMain will allow us to simulate the behavior of emerging NVM devices. This
has built-in config files for NVM devices like PCM, STT-RAM, ReRAM, and
DRAM. One can also modify the simulator; add new config files to support other
types of NVM provided we have well-defined data sheet. It uses the memory
traces of the applications as input and provides details with respect how the
reads and writes are distributed in various levels of memory such as channels,
ranks, and banks giving performance details as well as power details. It also has
support for simulating the behavior of hybrid memories that combine DRAM and
NVM. If we are interested in simulation of benchmark programs, then it can be
integrated with other simulators. Though it is integrated with many simulators,
most of the researches have used it by integrating gem5. More details about the
simulator and its usage can be found in a study by Poremba and Xie [49].

2. Gem5: A modular platform for computer -system architecture research,
encompassing system-level architecture as well as processor micro-architecture.
Though it was initially developed for academic purpose, now it is being used by
both academic and industry experts for computer design research. It is an open-
source architectural-level simulator which supports simulation in full system
mode and system emulation mode. It has well-supported documentation and
tutorial that help the beginners to gain insights into the simulator. More details
of the simulator can be found in https://www.gem5.org. Though early versions
of gem5 did not support NVM simulation, latest versions do have.

3. NVSim: This a circuit-level simulator which can be used to analyze the behavior
of emerging nonvolatile memory devices. It supports devices such as PCM,
ReRAM, STT-RAM, and legacy NAND Flash. It can be used to optimize the
design metrics or to evaluate the performance, area, or energy of the NVM
devices [21]. Unlike gem5 and NVMain, this simulator can be used only to
analyze the changes in the circuit level. Suppose we want to analyze the impact of
changing the cell size on area efficiency, power, and other factors; then it would
be the ideal choice.

4. DESTINY: This enables to study the behavior of both conventional and emerging
nonvolatile memory devices in 2D as well as 3D. 3D stacking helps to improve
the density as well as flexibility in power of the devices. This simulator is an

 14289 40358 a 14289
40358 a

https://www.gem5.org

Nonvolatile Memory Technologies: Characteristics, Deployment, and Research. . . 167

ideal tool for those researchers who want to make a detailed study of the devices
in 3D [50].

5. NVM Streaker: This simulator can be used for simulation of big data applications
especially using Spark-based applications. To compensate the time consumption
observed in simulation of big data applications while using NVM, this simulator
utilizes DRAM-based accesses and modifies it suitably to adapt to the NVM. This
simulator provides good performance for big data applications in NVM devices
[29].

6. VANS: Validated cycle accurate NVRAM simulator (VANS) helps to simulate the
nonvolatile memory systems. It can integrate with other full system simulators
like gem5 as well. It is an architectural-level simulator which can be used to
simulate the performance and experiment with different architecture designs
associated with NVM devices. Though it is experimented with optane, it is said
to support other NVM devices as well [72]. This is just a list of simulators that
are widely used by researches; however, there are many more simulators which
are not listed here. Readers need not restrict yourself to use only these simulators;
you can always explore the available list and choose as per your requirement. We
have given the list by integrating the simulators which are widely used in our
reference materials.

8 Conclusions and Future Scope

Throughout the chapter, we have discussed how NVM devices are bringing the
paradigm shift in memory organization. However, specific issues need to be
addressed before putting these NVM devices to full-fledged use. ReRAM devices
are facing issues with reliability; hence, there is a necessity to develop techniques
to detect the operation failure of the device. Though ReRAM has good endurance,
it is not able to reach up to the level of DRAM [77]. Multi-bit storage capacity is an
added advantage for all nonvolatile memory devices, but the challenge is handling
writes and making them more reliable. Hence, there is a scope for developing
techniques that can improvise this facility of NVM devices. Nevertheless, another
challenge is that most enhancements and progress are limited to individuals or a
few nonvolatile memory devices. Devices like NRAM are still not explored much;
hence, there is scope for improving these devices. Most of the NVM devices support
multi-level storage capacity, which helps to enhance the density without changing
the physical dimensions. However, this adds complications; many types of research
are carried out in this regard, yet it remains an active area of research. The major
drawback of the FeRAM device is the destructive reads. To enhance this property,
recently, a cell structure with 1T1T was proposed by Kim et al. [37], and this
has opened up several kinds of research with FeRAM-based devices. Once again,
MLC in ReRAM has much scope for improvising as it is in the early stages of
development [4]. Ultimately, there is no doubt that future computing devices will all
have NVM-based devices either in the form of cache, memory, or storage.

168 S. Rai and B. Talawar

References

1. Agarwal, S., Kapoor, H.K.: Improving the lifetime of non-volatile cache by write restriction.
IEEE Trans. Comput. 68(9), 1297–1312 (2019). https://doi.org/10.1109/TC.2019.2892424

2. Akram, A., Sawalha, L.: A survey of computer architecture simulation techniques and tools.
IEEE Access. 7, 78120–78145 (2019). https://doi.org/10.1109/ACCESS.2019.2917698

3. Aswathy, N., Sivamangai, N.: Future nonvolatile memory technologies: challenges and appli-
cations. In: 2021 2nd International Conference on Advances in Computing, Communication,
Embedded and Secure Systems (ACCESS), pp. 308–312 (2021). https://doi.org/10.1109/
ACCESS51619.2021.9563288

4. Aziza, H., Hamdioui, S., Fieback, M., Taouil, M., Moreau, M.: Density enhancement of
RRAMS using a reset write termination for MLC operation. In: 2021 Design, Automation Test
in Europe Conference Exhibition (DATE), pp. 1877–1880 (2021). https://doi.org/10.23919/
DATE51398.2021.9473967

5. Bahn, H., Cho, K.: Implications of NVM based storage on memory subsystem management.
Appl. Sci. 10(3) (2020). Retrieved from https://www.mdpi.com/2076-3417/10/3/999, https://
doi.org/10.3390/app10030999

6. Banerjee, W.: Challenges and applications of emerging nonvolatile memory devices. Electron-
ics 9(6) (2020). Retrieved from https://www.mdpi.com/2079-9292/9/6/1029, https://doi.org/
10.3390/electronics9061029

7. Baudry, L., Lukyanchuk, I., Vinokur, V.M.: Ferroelectric symmetry-protected multibit memory
cell. Sci. Rep. 7(1), 42196 (2017, February 08). Retrieved from https://doi.org/10.1038/
srep42196

8. Bittman, D., Alvaro, P., Mehra, P., Long, D.D.E., Miller, E.L.: Twizzler: a data-centric OS
for non-volatile memory. In: 2020 USENIX Annual Technical Conference (USENIX ATC 20)
(2020, July)

9. Bojnordi, M.N., Ipek, E.: Memristive Boltzmann machine: a hardware accelerator for
combinatorial optimization and deep learning. In: 2016 IEEE International Symposium on
High Performance Computer Architecture (HPCA), pp. 1–13 (2016, March). https://doi.org/
10.1109/HPCA.2016.7446049

10. Bolotin, E., Nellans, D., Villa, O., O’Connor, M., Ramirez, A., Keckler, S.W.: Designing
efficient heterogeneous memory architectures. IEEE Micro. 35(4), 60–68 (2015)

11. Burr, G.W., Shelby, R.M., Sidler, S., di Nolfo, C., Jang, J., Boybat, I., et al.: Experimental
demonstration and tolerancing of a large-scale neural network (165 000 synapses) using phase-
change memory as the synaptic weight element. IEEE Trans. Electron Devices. 62(11), 3498–
3507 (2015, Nov). https://doi.org/10.1109/TED.2015.2439635

12. Cai, Y., Lin, Y., Xia, L., Chen, X., Han, S., Wang, Y., Yang, H.: Long live time: improving
lifetime and security for NVM-based training-in-memory systems. IEEE Trans. Comput.
Aided Design Integr. Circuits Syst. 39(12), 4707–4720 (2020). https://doi.org/10.1109/
TCAD.2020.2977079

13. Chen, Y.: RERAM: history, status, and future. IEEE Trans. Electron Devices. 67(4), 1420–1433
(2020). https://doi.org/10.1109/TED.2019.2961505

14. Chen, Z., Gao, B., Zhou, Z., Huang, P., Li, H., Ma, W., . . . Chen, H.: Optimized learning
scheme for grayscale image recognition in a rram based analog neuromorphic system. In: 2015
IEEE International Electron Devices Meeting (IEDM), pp. 17.7.1–17.7.4 (2015, December)
https://doi.org/10.1109/IEDM.2015.7409722

15. Chen, X., Wang, J., Zhou, J.: Promoting MLC STT-ram for the future persistent memory
system. In: 2017 IEEE 15th International Conference on Dependable, Autonomic and Secure
Computing, 15th International Conference on Pervasive Intelligence and Computing, 3rd
International Conference on Big Data Intelligence and Computing and Cyber Science and
Technology Congress (DASC/PICOM/ Datacom/ Cyberscitech), pp. 1180–1185 (2017). https:/
/doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.189

http://doi.org/10.1109/TC.2019.2892424
http://doi.org/10.1109/ACCESS.2019.2917698
http://doi.org/10.1109/ACCESS51619.2021.9563288
http://doi.org/10.23919/DATE51398.2021.9473967
https://www.mdpi.com/2076-3417/10/3/999
http://doi.org/10.3390/app10030999
https://www.mdpi.com/2079-9292/9/6/1029
http://doi.org/10.3390/electronics9061029
http://doi.org/10.1038/srep42196
http://doi.org/10.1109/HPCA.2016.7446049
http://doi.org/10.1109/TED.2015.2439635
http://doi.org/10.1109/TCAD.2020.2977079
http://doi.org/10.1109/TED.2019.2961505
http://doi.org/10.1109/IEDM.2015.7409722
http://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.189

Nonvolatile Memory Technologies: Characteristics, Deployment, and Research. . . 169

16. Chi, P., Li, S., Xu, C., Zhang, T., Zhao, J., Liu, Y., . . . Xie, Y.: Prime: a novel processing-
in-memory architecture for neural network computation in RERAM-based main memory. In:
Proceedings of the 43rd International Symposium on Computer Architecture, pp. 27–39. IEEE
Press, Piscataway (2016). Retrieved from https://doi.org/10.1109/ISCA.2016.13

17. Chiu, C.-H., Huang, C.-W., Hsieh, Y.-H., Chen, J.-Y., Chang, C.-F., Chu, Y.-H., Wu, W.-W.:
In-situ tem observation of multilevel storage behavior in low power FERAM device. Nano
Energy 34, 103–110 (2017). Retrieved from https://www.sciencedirect.com/science/article/pii/
S2211285517300794, https://doi.org/10.1016/j.nanoen.2017.02.008

18. Cho, S., Lee, H.: Flip-n-write: a simple deterministic technique to improve pram write perfor-
mance, energy and endurance. In: 2009 42nd Annual IEEE/ACM International Symposium on
Microarchitecture (Micro), pp. 347–357 (2009).

19. Daulby, T., Savanth, A., Weddell, A.S., Merrett, G.V.: Comparing NVM technologies through
the lens of intermittent computation. In: Proceedings of the 8th International Workshop on
Energy Harvesting and Energy-Neutral Sensing Systems, pp. 77–78. Association for Comput-
ing Machinery, New York (2020). Retrieved from https://doi.org/10.1145/3417308.3430268

20. Ding, K., Chen, B., Chen, Y., Wang, J., Shen, X., Rao, F.: Recipe for ultrafast and persistent
phase-change memory materials. NPG Asia Mater. 12(1), 63 (2020, September 25). Retrieved
from https://doi.org/10.1038/s41427-020-00246-z

21. Dong, X., Xu, C., Xie, Y., Jouppi, N.P.: NVSIM: a circuit-level performance, energy, and area
model for emerging nonvolatile memory. IEEE Trans. Comp-Aid. Des. Integr. Circuits Syst.
31(7), 994–1007 (2012). https://doi.org/10.1109/TCAD.2012.2185930

22. Fey, D., Reuben, J., Slesazeck, S.: Comparative study of usefulness of FEFET, FTJ and
RERAM technology for ternary arithmetic. In: 2021 28th IEEE International Conference
on Electronics, Circuits, and Systems (ICECS), pp. 1–6 (2021). https://doi.org/10.1109/
ICECS53924.2021.9665635

23. Fong, S.W., Neumann, C.M., Wong, H.-S.P.: Phase-change memory—towards a storage-class
memory. IEEE Trans. Electron Devices. 64(11), 4374–4385 (2017). https://doi.org/10.1109/
TED.2017.2746342

24. Gamatié, A., Nocua, A., Weloli, J.W., Sassatelli, G., Torres, L., Novo, D., Robert, M.:
Emerging NVM Technologies in Main Memory for Energy-Efficient HPC: an Empirical Study
(2019, May). Retrieved from https://hal-lirmm.ccsd.cnrs.fr/lirmm-02135043 (working paper or
preprint)

25. Gilmer, D.C., Rueckes, T., Cleveland, L., Viviani, D.: Nram status and prospects. In: 2017
IEEE International Conference on IC Design and Technology (ICICDT), pp. 1–4 (2017, May).
https://doi.org/10.1109/ICICDT.2017.7993504

26. Gilmer, D. C., Rueckes, T., Cleveland, L.: NRAM: a disruptive carbon-nanotube resistance-
change memory. Nanotechnology 29(13), 134003 (2018, February). Retrieved from https://
doi.org/10.1088/1361-6528/aaaacb

27. Gong, N.: Multi level cell (MLC) in 3D crosspoint phase change memory array. Sci. China Inf.
Sci. 64, 166401 (2021). https://doi.org/10.1007/s11432-021-3184-5

28. Hu, M., Li, H., Wu, Q., Rose, G. S.: Hardware realization of BSB recall function using mem-
ristor crossbar arrays. In: Proceedings of the 49th Annual Design Automation Conference, pp.
498–503. ACM, New York (2012). Retrieved from https://doi.org/10.1145/2228360.2228448

29. Hu, D., Lv, F., Wang, C., Cui, H.-M., Wang, L., Liu, Y., Feng, X.-B.: NVM streaker: a fast and
reconfigurable performance simulator for non-volatile memory-based memory architecture. J.
Supercomput. 74(8), 3875–3903 (2018, August 01). Retrieved from https://doi.org/10.1007/
s11227-018-2438-y

30. Iuga, A., Lindfors-Vrejoiu, I., Boni, G.: Ultrafast nondestructive pyroelectric reading
of feram memories. Infr. Phys. Technol. 116, 103766 (2021). Retrieved from https://
www.sciencedirect.com/science/article/pii/S1350449521001389, https://doi.org/10.1016/
j.infrared.2021.103766

31. Jin, H., Chen, D., Liu, H., Liao, X., Guo, R., Zhang, Y.: Miss penalty aware cache replacement
for hybrid memory systems. IEEE Trans. Comp-Aid. Des. Integr. Circuits Syst. 39(12), 4669–
4682 (2020). https://doi.org/10.1109/TCAD.2020.2966482

http://doi.org/10.1109/ISCA.2016.13
https://www.sciencedirect.com/science/article/pii/S2211285517300794
http://doi.org/10.1016/j.nanoen.2017.02.008
http://doi.org/10.1145/3417308.3430268
http://doi.org/10.1038/s41427-020-00246-z
http://doi.org/10.1109/TCAD.2012.2185930
http://doi.org/10.1109/ICECS53924.2021.9665635
http://doi.org/10.1109/TED.2017.2746342
https://hal-lirmm.ccsd.cnrs.fr/lirmm-02135043
http://doi.org/10.1109/ICICDT.2017.7993504
http://doi.org/10.1088/1361-6528/aaaacb
http://doi.org/10.1007/s11432-021-3184-5
http://doi.org/10.1145/2228360.2228448
http://doi.org/10.1007/s11227-018-2438-y
https://www.sciencedirect.com/science/article/pii/S1350449521001389
http://doi.org/10.1016/j.infrared.2021.103766
http://doi.org/10.1109/TCAD.2020.2966482

170 S. Rai and B. Talawar

32. Kallinatha, H.D., Talawar, B.: Comparative analysis of non-volatile memory on-chip caches
(2022)

33. Kamath, A.K., Monis, L., Karthik, A.T., Talawar, B.: Storage class memory: principles,
problems, and possibilities. arXiv (2019). Retrieved from https://arxiv.org/abs/1909.12221,
https://doi.org/10.48550/ARXIV.1909.12221

34. Kariyappa, S., Tsai, H., Spoon, K., Ambrogio, S., Narayanan, P., Mackin, C., et al.:
Noise-resilient DNN: tolerating noise in PCM-based AI accelerators via noise-aware
training. IEEE Trans. Electron Devices. 68(9), 4356–4362 (2021). https://doi.org/10.1109/
TED.2021.3089987

35. Kim, T., Lee, S.: Evolution of phase-change memory for the storage class memory and
beyond. IEEE Trans. Electron Devices. 67(4), 1394–1406 (2020). https://doi.org/10.1109/
TED.2020.2964640

36. Kim, Y., Zhang, Y., Li, P.: A reconfigurable digital neuromorphic processor with memristive
synaptic crossbar for cognitive computing. J. Emerg. Technol. Comput. Syst. 11(4), 38:1–38
(2015, April). Retrieved from http://doi.acm.org/10.1145/2700234

37. Kim, S., Sun, J., Choi, Y., Lim, D.U., Kang, J., Cho, J.H.: Carbon nanotube fer-
roelectric random access memory cell based on omega-shaped ferroelectric gate. Car-
bon 162, 195–200 (2020). Retrieved from https://www.sciencedirect.com/science/article/pii/
S0008622320301901, https://doi.org/10.1016/j.carbon.2020.02.044

38. Kokolis, A., Skarlatos, D., Torrellas, J.: PageSeer: using page walks to trigger page swaps
in hybrid memory systems. In: 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pp. 596–608 (2019)

39. Li, B., Shan, Y., Hu, M., Wang, Y., Chen, Y., Yang, H.: Memristor-based approximated
computation. In: Proceedings of the 2013 International Symposium on Low Power Electronics
and Design, pp. 242–247. IEEE Press, Piscataway (2013). Retrieved from http://dl.acm.org/
citation.cfm?id=2648668.2648729

40. Liang, Y.-P., Chen, S.-H., Chang, Y.-H., Liu, Y.-F., Wei, H.-W., Shih, W.-K.: A cache
consolidation design of MLC STT-ram for energy efficiency enhancement on cyber-physical
systems. SIGAPP Appl. Comput. Rev. 21(1), 37–49 (2021). Retrieved from https://doi.org/
10.1145/3477133.3477136

41. Liu, Y., Li, H., Lu, Y., Chen, Z., Xiao, N., Zhao, M.: HASFS: optimizing file system
consistency mechanism on NVM-based hybrid storage architecture. Clust. Comput. 23(4),
2501–2515 (2020, December 01). Retrieved from https://doi.org/10.1007/s10586-019-03023-
y

42. Luo, J.-Y., Cheng, H.-Y., Lin, I.-C., Chang, D.-W.: Tap: reducing the energy of asymmetric
hybrid last-level cache via thrashing aware placement and migration. IEEE Trans. Comput.
68(12), 1704–1719 (2019). https://doi.org/10.1109/TC.2019.2917208

43. Mao, H., Zhang, X., Sun, G., Shu, J.: Protect nonvolatile memory from wear-out attack
based on timing difference of row buffer hit/miss. In: Design, Automation Test in Europe
Conference Exhibition (DATE), 2017, pp. 1623–1626 (2017, March). https://doi.org/10.23919/
DATE.2017.7927251

44. Meena, J.S., Sze, S.M., Chand, U., Tseng, T.-Y.: Overview of emerging nonvolatile memory
technologies. Nanoscale Res. Lett. 9(1), 526 (2014, September 25). Retrieved from https://
doi.org/10.1186/1556-276X-9-526

45. Mittal, S.: A survey of ReRam-based architectures for processing in-memory and neural net-
works. Mach. Learn. Knowl. Extr. 1(1), 75–114 (2018). Retrieved from http://www.mdpi.com/
2504-4990/1/1/5, https://doi.org/10.3390/make1010005

46. Mittal, S., Vetter, J.S.: A survey of software techniques for using non-volatile memories for
storage and main memory systems. IEEE Trans. Parallel Distrib. Syst. 27(5), 1537–1550
(2016). https://doi.org/10.1109/TPDS.2015.2442980

47. Ni, M., Chen, L., Hao, X., Sun, H., Liu, C., Zhang, Z., . . . Pan, L.: A novel prefetching
scheme for non-volatile cache in the AIOT processor. In: 2020 5th International Conference on
Universal Village (UV), pp. 1–7 (2020). https://doi.org/10.1109/UV50937.2020.9426214

https://arxiv.org/abs/1909.12221
http://doi.org/10.48550/ARXIV.1909.12221
http://doi.org/10.1109/TED.2021.3089987
http://doi.org/10.1109/TED.2020.2964640
http://doi.acm.org/10.1145/2700234
https://www.sciencedirect.com/science/article/pii/S0008622320301901
http://doi.org/10.1016/j.carbon.2020.02.044
http://dl.acm.org/citation.cfm?id=2648668.2648729
http://doi.org/10.1145/3477133.3477136
http://doi.org/10.1007/s10586-019-03023-y
http://doi.org/10.1109/TC.2019.2917208
http://doi.org/10.23919/DATE.2017.7927251
http://doi.org/10.1186/1556-276X-9-526
http://www.mdpi.com/2504-4990/1/1/5
http://doi.org/10.3390/make1010005
http://doi.org/10.1109/TPDS.2015.2442980
http://doi.org/10.1109/UV50937.2020.9426214

Nonvolatile Memory Technologies: Characteristics, Deployment, and Research. . . 171

48. Palangappa, P.M., Mohanram, K.: Flip-mirror-rotate: an architecture for bit-write reduction
and wear leveling in non-volatile memories. In: Proceedings of the 25th Edition on Great Lakes
Symposium on VLSI, pp. 221–224. Association for Computing Machinery, New York (2015).
Retrieved from https://doi.org/10.1145/2742060.2742110

49. Poremba, M., Xie, Y.: NV Main: an architectural-level main memory simulator for emerging
non-volatile memories. In: 2012 IEEE Computer Society Annual Symposium on VLSI, pp.
392–397 (2012). https://doi.org/10.1109/ISVLSI.2012.82

50. Poremba, M., Mittal, S., Li, D., Vetter, J.S., Xie, Y.: Destiny: a tool for modeling emerging
3D NVM and EDRAM caches. In: 2015 Design, Automation Test in Europe Conference
Exhibition (DATE), pp. 1543–1546 (2015). https://doi.org/10.7873/DATE.2015.0733

51. Prezioso, M., Merrikh-Bayat, F., Hoskins, B.D., Adam, G.C., Likharev, K.K., Strukov,
D.B.: Training and operation of an integrated neuromorphic network based on metal-oxide
memristors. Nature 521(61) (2015). Retrieved from https://doi.org/10.1038/nature14441

52. Qureshi, M.K., Srinivasan, V., Rivers, J.A.: Scalable high performance main memory system
using phase-change memory technology. SIGARCH Comput. Archit. News 37(3), 24–33
(2009, June). Retrieved from https://doi.org/10.1145/1555815.1555760

53. Rashidi, S., Jalili, M., Sarbazi-Azad, H.: A survey on PCM lifetime enhancement schemes.
ACM Comput. Surv. 52(4) (2019, August). Retrieved from https://doi.org/10.1145/3332257

54. Rosendale, G., Viviani, D., Manning, M., Henry Huang, X.M., Rueckes, T., Wen, S.J., Wong,
R.: Storage element scaling impact on CNT memory retention and on/off window. In: 2014
IEEE 6th International Memory Workshop (IMW), pp. 1–3 (2014, May). https://doi.org/
10.1109/IMW.2014.6849391

55. Ryoo, J.H., John, L.K., Basu, A.: A case for granularity aware page migration. In: Proceedings
of the 2018 International Conference on Supercomputing, pp. 352–362 (2018). Association for
Computing Machinery, New York. Retrieved from https://doi.org/10.1145/3205289.3208064

56. Samavatian, M.H., Arjomand, M., Bashizade, R., Sarbazi-Azad, H.: Architecting the last-level
cache for Gpus using STT-ram technology. ACM Trans. Des. Autom. Electron. Syst. 20(4)
(2015, September). Retrieved from https://doi.org/10.1145/2764905

57. Sebastian, A., Boybat, I., Dazzi, M., Giannopoulos, I., Jonnalagadda, V., Joshi, V., . . .

Eleftheriou, E.: Computational memory-based inference and training of deep neural networks.
In: 2019 Symposium on VLSI Technology, pp. T168–T169 (2019). https://doi.org/10.23919/
VLSIT.2019.8776518

58. Sehgal, P., Basu, S., Srinivasan, K., Voruganti, K.: An empirical study of file systems on
NVM. In: 2015 31st Symposium on Mass Storage Systems and Technologies (MSST), pp.
1–14 (2015). https://doi.org/10.1109/MSST.2015.7208283

59. Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Strachan, J.P., Hu, M., . . .

Srikumar, V.: Isaac: a convolutional neural network accelerator with in-situ analog arithmetic in
crossbars. In: Proceedings of the 43rd International Symposium on Computer Architecture, pp.
14–26 (2016). IEEE Press, Piscataway. Retrieved from https://doi.org/10.1109/ISCA.2016.12

60. Sivakumar, S., Abdul Khader, T., Jose, J.: Improving lifetime of non-volatile memory caches
by logical partitioning. In Proceedings of the 2021 on Great Lakes Symposium on VLSI, pp.
123–128 (2021). Association for Computing Machinery, New York. Retrieved from https://
doi.org/10.1145/3453688.3461488

61. Song, L., Qian, X., Li, H., Chen, Y.: Pipelayer: a pipelined reram-based accelerator for
deep learning. In: 2017 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pp. 541–552 (2017, February). https://doi.org/10.1109/HPCA.2017.55

62. Song, L., Zhuo, Y., Qian, X., Li, H., Chen, Y.: Graphr: accelerating graph processing using
ReRam. In: 2018 IEEE International Symposium on High Performance Computer Architecture
(HPCA), pp. 531–543 (2018, February). https://doi.org/10.1109/HPCA.2018.00052

63. Spoon, K., Ambrogio, S., Narayanan, P., Tsai, H., Mackin, C., Chen, A., . . . Burr,
G.W.: Accelerating deep neural networks with analog memory devices. In: 2020
IEEE International Memory Workshop (IMW), pp. 1–4 (2020). https://doi.org/10.1109/
IMW48823.2020.9108149

http://doi.org/10.1145/2742060.2742110
http://doi.org/10.1109/ISVLSI.2012.82
http://doi.org/10.7873/DATE.2015.0733
http://doi.org/10.1038/nature14441
http://doi.org/10.1145/1555815.1555760
http://doi.org/10.1145/3332257
http://doi.org/10.1109/IMW.2014.6849391
http://doi.org/10.1145/3205289.3208064
http://doi.org/10.1145/2764905
http://doi.org/10.23919/VLSIT.2019.8776518
http://doi.org/10.1109/MSST.2015.7208283
http://doi.org/10.1109/ISCA.2016.12
http://doi.org/10.1145/3453688.3461488
http://doi.org/10.1109/HPCA.2017.55
http://doi.org/10.1109/HPCA.2018.00052
http://doi.org/10.1109/IMW48823.2020.9108149

172 S. Rai and B. Talawar

64. Sun, G., Zhao, J., Poremba, M., Xu, C., Xie, Y.: Memory that never forgets: emerging
nonvolatile memory and the implication for architecture design. Natl. Sci. Rev. 5(4), 577–592
(2017, August). Retrieved from https://doi.org/10.1093/nsr/nwx082

65. Sun, H., Chen, L., Hao, X., Liu, C., Ni, M.: An energy-efficient and fast scheme for hybrid
storage class memory in an AIoT terminal system. Electronics 9(6) (2020). Retrieved from
https://www.mdpi.com/2079-9292/9/6/1013, https://doi.org/10.3390/electronics9061013

66. Swami, S., Mohanram, K.: Reliable nonvolatile memories: techniques and measures. IEEE
Design Test. 34(3), 31–41 (2017). https://doi.org/10.1109/MDAT.2017.2682252

67. Swami, S., Palangappa, P.M., Mohanram, K.: ECS: error-correcting strings for lifetime
improvements in nonvolatile memories. ACM Trans. Archit. Code Optim. 14(4) (2017,
December). Retrieved from https://doi.org/10.1145/3151083

68. Vetter, J.S., Mittal, S.: Opportunities for nonvolatile memory systems in extreme-scale high-
performance computing. Comput. Sci. Eng. 17(2), 73–82 (2015). https://doi.org/10.1109/
MCSE.2015.4

69. Vincent, A.F., Larroque, J., Zhao, W.S., Romdhane, N.B., Bichler, O., Gamrat, C., . . .

Querlioz, D.: Spin-transfer torque magnetic memory as a stochastic Memristive synapse. In:
2014 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1074–1077 (2014,
June). https://doi.org/10.1109/ISCAS.2014.6865325

70. Vincent, A.F., Larroque, J., Locatelli, N., Ben Romdhane, N., Bichler, O., Gamrat, C., et al.:
Spin-transfer torque magnetic memory as a stochastic memristive synapse for neuromorphic
systems. IEEE Trans. Biomed. Circ. Syst. 9(2), 166–174 (2015, April). https://doi.org/10.1109/
TBCAS.2015.2414423

71. Walden, C., Singh, D., Jagasivamani, M., Li, S., Kang, L., Asnaashari, M., . . . Yeung, D.:
Monolithically integrating non-volatile main memory over the last-level cache. ACM Trans.
Archit. Code Optim. 18(4) (2021, July). Retrieved from https://doi.org/10.1145/3462632

72. Wang, Z., Liu, X., Yang, J., Michailidis, T., Swanson, S., Zhao, J.: Characterizing and
modeling non-volatile memory systems. In: 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (Micro), pp. 496–508 (2020). https://doi.org/10.1109/
MICRO50266.2020.00049

73. Xie, M., Li, S., Glova, A.O., Hu, J., Wang, Y., Xie, Y.: Aim: fast and energy-efficient AES in-
memory implementation for emerging nonvolatile main memory. In: 2018 Design, Automation
Test in Europe Conference Exhibition (DATE), pp. 625–628 (2018, March). https://doi.org/
10.23919/DATE.2018.8342085

74. Xu, C., Niu, D., Muralimanohar, N., Jouppi, N.P., Xie, Y.: Understanding the trade-offs in
multi-level cell ReRam memory design. In: 2013 50th ACM/EDAC/IEEE Design Automation
Conference (DAC), pp. 1–6 (2013)

75. Xu, J., Feng, D., Hua, Y., Huang, F., Zhou, W., Tong, W., Liu, J.: An efficient spare-line
replacement scheme to enhance nvm security. In: 2019 56th ACM/IEEE Design Automation
Conference (DAC), pp. 1–6 (2019)

76. Xue, C.J., Sun, G., Zhang, Y., Yang, J.J., Chen, Y., Li, H.: Emerging non-volatile memories:
opportunities and challenges. In: 2011 Proceedings of the Ninth IEEE/ACM/IFIP International
Conference on Hardware/Software Codesign and System Synthesis (Codes+ISSS), pp. 325–
334 (2011). https://doi.org/10.1145/2039370.2039420

77. Zahoor, F., Azni Zulkifli, T.Z., Khanday, F.A.: Resistive random access memory (RRAM):
an overview of materials, switching mechanism, performance, multilevel cell (MLC) storage,
modeling, and applications. Nanoscale Res. Lett. 15(1), 90 (2020, April 22). Retrieved from
https://doi.org/10.1186/s11671-020-03299-9

78. Zhang, Y., Zhang, L., Wen, W., Sun, G., Chen, Y.: Multi-level cell STT-ram: is it realistic or just
a dream? In: 2012 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pp. 526–532 (2012)

79. Zhang, M., Zhang, L., Jiang, L., Liu, Z., & Chong, F.T. Balancing performance and lifetime
of MLC PCM by using a region retention monitor. In: 2017 IEEE International Symposium
on High Performance Computer Architecture (HPCA), pp. 385–396 (2017a). https://doi.org/
10.1109/HPCA.2017.45

http://doi.org/10.1093/nsr/nwx082
https://www.mdpi.com/2079-9292/9/6/1013
http://doi.org/10.3390/electronics9061013
http://doi.org/10.1109/MDAT.2017.2682252
http://doi.org/10.1145/3151083
http://doi.org/10.1109/MCSE.2015.4
http://doi.org/10.1109/ISCAS.2014.6865325
http://doi.org/10.1109/TBCAS.2015.2414423
http://doi.org/10.1145/3462632
http://doi.org/10.1109/MICRO50266.2020.00049
http://doi.org/10.23919/DATE.2018.8342085
http://doi.org/10.1145/2039370.2039420
http://doi.org/10.1186/s11671-020-03299-9
http://doi.org/10.1109/HPCA.2017.45

Nonvolatile Memory Technologies: Characteristics, Deployment, and Research. . . 173

80. Zhang, Z., Fu, Y., Hu, G.: Dualstack: a high efficient dynamic page scheduling scheme in
hybrid main memory. In: 2017 International Conference on Networking, Architecture, and
Storage (NAS), pp. 1–6 (2017b)

81. Zhang, M., Zhang, L., Jiang, L., Chong, F.T., Liu, Z.: Quickand-dirty: an architecture for high-
performance temporary short writes in MLC PCM. IEEE Trans. Comput. 68(9), 1365–1375
(2019). https://doi.org/10.1109/TC.2019.2900036

82. Zhao, W., Tong, W., Feng, D., Liu, J., Xu, J., Wei, X., . . . Liu, B.: OSwrite: improving the
lifetime of MLC STT-ram with one-step write (2020)

83. Zhu, G., Han, J., Lee, S., Son, Y.: An empirical evaluation of NVM-aware file systems on intel
Optane DC persistent memory modules. In: 2021 International Conference on Information Net-
working (ICOIN), pp. 559–564 (2021). https://doi.org/10.1109/ICOIN50884.2021.9333911

http://doi.org/10.1109/TC.2019.2900036
http://doi.org/10.1109/ICOIN50884.2021.9333911

Data Analytics and Machine Learning for
Coverage Closure

Raviv Gal, Wesam Ibraheem, Ziv Nevo, Bilal Saleh, and Avi Ziv

1 Introduction

Verification in general and specifically functional verification are, without a doubt,
some of the most important and labor-intensive parts of a hardware design cycle.
Some market estimations claim that verification costs reach 50%–70% of the overall
design development effort [14]. Simply stated, the goal of functional verification is
to answer the question: “Does the proposed design meet its specification?”

Many methodologies, technologies, and tools have been developed to address
the ever-increasing complexity of modern hardware systems and their stringent
requirements for reliability [46]. Today, functional verification is a highly automated
process that comprises random stimuli generators and sophisticated checkers. The
random stimuli generators feed the Design Under Verification (DUV) with high-
quality stimuli. Then, sophisticated checkers verify that the DUV behaves as
expected. Verification teams utilize large compute farms to simulate, or emulate,
large numbers of tests. The use of advanced random test generators can increase
the quality of generated tests, but it cannot detect cases in which some areas of the
design are not exercised, while others are verified repeatedly.

Test coverage analysis is the main technique for checking and showing that the
verification has been thorough [35]. The idea is to create, in a systematic fashion,
a large and comprehensive list of coverage events and check that each such event
occurred (i.e., was hit or was covered) during the verification process. Coverage
analysis can help monitor the quality of verification and can direct the stimuli
generators, whether manually or automatically, to generate test that cover parts of
the design that have not been adequately verified. Coverage metrics, and specifically

R. Gal · W. Ibraheem · Z. Nevo · B. Saleh · A. Ziv (�)
IBM Research, Haifa, Haifa, Israel
e-mail: ravivg@il.ibm.com; wesam@il.ibm.com; nevo@il.ibm.com; bilal@il.ibm.com;
aziv@il.ibm.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Iranmanesh (ed.), Frontiers of Quality Electronic Design (QED),
https://doi.org/10.1007/978-3-031-16344-9_5

175

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16344-9_5&domain=pdf

 885 55738 a 885 55738
a

mailto:ravivg@il.ibm.com

 8688 55738 a 8688 55738 a

mailto:wesam@il.ibm.com

 16742 55738 a 16742 55738 a

mailto:nevo@il.ibm.com

 23970 55738 a 23970 55738 a

mailto:bilal@il.ibm.com

-2016 56845 a -2016 56845 a

mailto:aziv@il.ibm.com

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-16344-9_5

176 R. Gal et al.

functional coverage, have evolved to become a standard for monitoring the state of
the verification process and its progress. Specifically, coverage is used to ensure the
completeness of the verification process by directing the verification efforts toward
unexplored areas of the design. Coverage is also used to improve the utilization of
simulation resources [37].

For coverage to fulfill its role in the verification process and produce the needed
information to monitor its state and progress, three main aspects need to be handled:
coverage events, coverage data, and coverage analysis. First, the “right” coverage
events need to be defined and implemented. Coverage events should cover all the
blocks and functions in the DUV. They should focus on risky aspects of the design,
such as new functions or complex blocks, and ensure that every corner-case or near
corner-case scenario occurs often enough during verification. That said, if there are
too many coverage events, it is not always feasible to ensure that almost all the
events are covered during the verification process. Building a coverage plan and
defining the right coverage events is beyond the scope of this chapter. These topics
are part of the coverage-driven verification (CDV) methodology, a well-established
verification methodology. The interested reader can find more on CDV in textbooks,
such as [7, 37, 46] and research papers, such as [11, 28].

The second aspect is creating, transferring, and processing the coverage data.
A complex DUV can contain tens or hundreds of thousands of coverage events.
During the verification of such a DUV, thousands to millions of simulations are
executed daily. This means that a massive amount of coverage data is continuously
being produced. Verification environments need to effectively process and store this
data to allow the required analyses. This aspect, which is mostly an engineering
challenge, is also not in the scope of this chapter. We discuss this issue in Sect. 3
when we introduce Template Aware Coverage (TAC).

This chapter focuses on the third aspect of coverage, namely, coverage analysis
and closure automation. The goal of coverage analysis is to extract concise and
useful information out of the vast amount of coverage data produced during
the verification process. Coverage analysis covers the three main facets of data
analysis: descriptive, predictive, and prescriptive analysis [38]. Coverage analysis
information can be used by the verification team to answer questions ranging
from specific corner-case scenarios, such as “Did we fill the overflow buffer in
the DUV?”, to generic questions on the state of verification, such as “Have we
stressed the cache coherency mechanism enough?”. The analysis can also help the
verification team see the progress of verification and predict whether they will meet
their goals for the next milestone. The outcome of the coverage analysis can also
be fed back directly to the verification process. For example, coverage analysis
can identify the test-cases or test-templates (i.e., the specification to the stimuli
generator) that contribute most to the verification of a risky function and increase
their execution frequency.

Data Analytics and Machine Learning for Coverage Closure 177

This chapter summarizes more than two decades of research on coverage
analysis conducted at IBM Research. It showcases state-of-the-art coverage analysis
techniques that are used in IBM and elsewhere in the electronic design industry.
We illustrate how coverage analysis can simplify the work of the verification team
and improve the efficiency and quality of the coverage process, and through it
the entire verification process. Special attention is given to the coverage closure
process. Coverage closure is the process of advancing coverage goals in general,
and specifically coverage levels [37]. The importance of coverage in determining
whether verification goals have been reached means that coverage status is an
important criterion for many project milestones, such as tape-outs. The verification
team can spend significant time and effort on coverage closure. To achieve coverage
closure, the verification team needs to analyze the uncovered events and understand
whether these events can be hit and if so what is needed to hit them. Only then can
they write or modify tests or test-templates (the input to the random generator) that
hit the uncovered events or improve the probability of hitting them.

The chapter proceeds with the increasing complexity of the analysis method
used, from descriptive to prescriptive analysis. Section 2 focuses on the descriptive
analysis of coverage data, that is, the process of extracting useful information out
of the coverage data collected during the verification process and presenting it to
the users. The section begins with a quick overview of basic types of coverage
reports. It then moves to techniques that utilize the structure of coverage models,
allow navigation in the coverage space, can zoom in to focus on specific areas, and
zoom out to see the entire picture in that space [3].

The navigation and zooming capabilities provide users with the means to identify
areas in the coverage space, and thus in the DUV, which require attention. But
finding such areas requires time and expertise from the verification team. In the
second part of Sect. 2, we deal with advanced coverage analysis techniques that are
used to identify large areas of uncovered events or lightly covered events. These
hole analysis techniques [4] exploit the structure of cross-product coverage models
to identify such areas. The last part of Sect. 2 describes a machine learning-based
algorithm that is used to identify structures among the coverage events when the
coverage events are individually defined [4].

Most coverage tools maintain a single database that summarizes the coverage
data of all the passing test-cases. Such coverage repositories can provide information
about what is covered and using the analysis techniques presented in Sect. 2 identify
areas that need attention. But they cannot answer queries regarding why certain
events are covered, that is, which test-cases or test-templates cover them. In Sect. 3,
we present Template Aware Coverage (TAC) [16]. TAC maintains a matrix with
the test-templates as its rows and the coverage events as its columns. Each entry
in the matrix contains the probability that a test-case generated from a given test-
template hits a given event. With such a matrix, queries that relate events and test-
templates, such as “Does a given test-template hit the events it is supposed to hit?”,

178 R. Gal et al.

can be answered. The section describes many potential use-cases for TAC. Due to
the challenges in maintaining the very large TAC matrix, we provide some details
of its actual implementation.

Section 4 moves from descriptive to prescriptive analysis. It deals with the holy
grail of coverage closure, namely, automatic closing of the coverage feedback loop
from coverage data to stimuli generation. Even when the best coverage information
is available, the verification team still needs to invest a significant amount of time
and effort to translate this information into actions that improve the coverage
state. Section 4 describes several techniques that can (partially) close this loop
automatically.

The first part of the section shows how the TAC data can be used to create
regression suites that address various needs of the verification team; these needs
range from a small suite ensuring that deposited versions of the design are alive
for continuous integration and continuous delivery (CI/CD) to regression suites that
improve the hit rate for hard-to-hit events that are not hit often enough. The section
provides the information about the coverage criteria for each use-case and describes
the various algorithms used to create the regression suites [16].

The second part of the section deals with coverage-directed generation (CDG),
where the goal is more ambitious. Namely, CDG is focused on creating new test-
cases or test-templates that hit previously uncovered coverage events. Over the
years, CDG has received significant attention in the hardware verification research
community. We provide a short overview of the main techniques and methods that
have been proposed in the past. We focus on two newer techniques for CDG. The
first uses optimization techniques for noisy functions to achieve the CDG goal [21].
The second technique uses machine learning to improve the quality of data-driven
CDG solutions [18].

2 Descriptive Coverage Analysis

The goal of descriptive coverage analysis, as its name suggests, is to extract simple,
concise, and useful information out of the coverage data and present it to users.
In many cases, descriptive coverage analysis exploits the structure of coverage
models to improve the quality of the analysis and help users adapt the analysis
and resulting reports to their needs. In this section, we focus on cross-product
coverage [24, 37].

Any cross-product functional coverage model is based on a schema that com-
prises the following: a semantic description (story) of what needs to be covered, a
list of the attributes mentioned in the story, a set of all the possible values for each
attribute, and an optional set of partitions for each attribute. A coverage event is a
point in the multidimensional space defined by the cross-product of the attributes.

Data Analytics and Machine Learning for Coverage Closure 179

Table 1 Floating-point
schema attributes

Attribute Values Size

Instr fadd, fadds, fsub, fmul, fdiv, fmadd, 54

fmsub, fres, frsqrte, fabs, fneg, fsel, . . .

±0, ±∞,

Result ±Norm, ±MinNorm, ±MaxNorm, 18

±DeNorm,±MinDeNorm,

±MaxDeNorm, SNaN, QNaN

Round mode ToNearest, To0, To+∞, To−∞ 4

Round occur True, False 2

Usually, not all the points in the coverage space are legal or interesting. The coverage
model is the intersection of the legal and interesting subspaces.

The following is an example of a simple cross-product functional coverage model
taken from the floating-point domain. We use this model throughout this section
to demonstrate the various analysis techniques presented. This model is part of a
generic floating-point verification plan, and it has been used in the verification of
many floating-point units in IBM processors [1]. The semantic description of the
schema is: test that all instructions produce all possible target results in the various
rounding modes supported by the processor, both when rounding did and did not
occur. Table 1 shows the attributes and their values of the coverage schema. The
schema consists of four attributes—Instr, Result, Round Mode, and Round Occur—
each with the possible values shown. The Size column indicates the number of
possible values for each attribute.

Each attribute of a schema may be partitioned into one or more disjoint
sets of semantically similar values. This provides a convenient way for users to
conceptualize their model and for analysis tools to report on coverage data. For
example, the instruction attribute is partitioned into arithmetic and non-arithmetic
instructions, and the resulting attribute is partitioned according to its sign.

In the coverage process, it is critical to define a coverage model that contains
only the legal and interesting events of the schema. This is because not all events in
the coverage space of the schema are legal. For example, the results of executing a
floating-point absolute value instruction can never be negative. It is imperative that
illegal events be disregarded when doing coverage analysis; otherwise, the coverage
information will be skewed.

Generally speaking, descriptive coverage reports can be divided into two types:
status reports and progress reports. Status reports present the state or status of
coverage at a given point in time (usually, the present). In most cases, these reports
present information about coverage events or groups of coverage events in a tabular
form. The information can include items such as the hit count of the events and the
first and last time they were covered. Table 2 shows a simple coverage status report
for a few events in the floating-point schema.

180 R. Gal et al.

Table 2 Coverage data Attributes Coverage data

Instr Res RM RO Count First Last

fadd +0 To0 False 4 08/04 08/30

fadd +0 To0 True 0 – –

fadd +0 To+∞ False 1 08/04 08/04

fadd +0 To+∞ True 0 – –

fadd +0 To−∞ False 3 07/28 08/30

fadd +0 To−∞ True 0 – –

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 20000 40000 60000 80000 100000 120000 140000 160000

ta
sk

s

tests

INTERDEPENDENCY MODEL COVERAGE

Fig. 1 Coverage progress

Progress reports play an important role in presenting the coverage picture
because they show changes in a given coverage measure over time.1 They can reveal
trends in the coverage progress, and thus in the progress of the entire verification
process. This can help identify when the progress slows down and the verification
process runs out of steam. Figure 1 shows the coverage progress of a model for
the execution pipelines of a superscalar processor. The figure shows the number
of events covered as a function of the number of tests executed. We can see that
after about 20,000 tests, the coverage progress started to slow down, but corrective
actions taken by the verification team helped renew the progress and almost doubled
the number of covered events.

In addition to monitoring the coverage progress, progress reports can help the
verification team in several other ways. Looking at the coverage levels backward

1 Time can be measured by clock time, number of tests, number of cycles, etc.

Data Analytics and Machine Learning for Coverage Closure 181

from the current time can reveal how long it takes to cover all the covered events
and detect aged-out events, namely, events that have been covered in the past but
have not been covered for a long time [5]. Moreover, analysis of the time series data
used in progress reports can be used as the source for predictive analysis and help
provide predictions such as when coverage will converge and at what level [25].

This section and the rest of the chapter focus on status reports.

2.1 Coverage Views

The basic status report of Table 2 is somewhat misleading. Our simple floating-
point coverage model contains thousands of coverage events. Viewing such a large
number of events and extracting useful information out of it is almost impossible.
While most coverage tools provide filtering capabilities that are similar to the
capabilities of spreadsheets, these capabilities are not sufficient to provide a brief
summary of the coverage status or help the verification team focus on the arithmetic
instructions.

A coverage tool should allow users to focus on certain aspects of the coverage
data, such as certain attributes, specific values of attributes, and coverage during a
given time interval. Moreover, the tool should allow the users to rapidly shift their
focus. To do this, the coverage tool must provide a simple way to define views
into the coverage data that allow users to concentrate on the specific aspects of the
model in which they are interested while ignoring those areas they are not. These
views provide useful coverage reports that address the needs of the users. Next, we
describe three basic operations that take advantage of the semantics and structure
of cross-product coverage models. These operations enable users to fit the coverage
status reports to their current needs and perform efficient analysis of the coverage
data. These operations are:

• Selecting out a subset of the coverage events that satisfy some criteria based on
specific attribute values or value combinations, or on the coverage data itself.

• Projecting the coverage model onto a subset of its attributes so that some
attributes are essentially ignored.

• Grouping together the coverage data of related attribute values that belong to an
attribute partition.

Applying these operations to a coverage model, either individually or in com-
binations, produces a new coverage model that is, in some sense, a subset of the
model. We call the resulting coverage model a coverage view on the model. It is both
smaller and more focused than the original coverage model, and therefore simpler
to analyze. The coverage view does not in any way alter the coverage data that has
been accumulated for each event in the schema. It simply acts as an overlay or filter
that is applied to the coverage data when performing analysis.

182 R. Gal et al.

2.1.1 Selections

The most straightforward way to reduce the number of events that need to be
analyzed is to focus on a selected set of events or, conversely, to filter out unwanted
ones. This is not only a practical approach to take, but a logical one as well, since
the set of events that are of interest changes according to the verification effort
that is being performed. For example, when the focus of the verification team is
on simple arithmetic instructions, they select fadd, fsub, etc. But when the focus
shifts to instructions that require complex algorithms, they change the selection to
fsqrt, fres, etc.

Selections are expressed as queries over the coverage model. Formally, we write
this as σ(pred), where pred is a logical expression over the attributes of the
schema. For example, the selection σ(Instr ∈ Arith

∧
RoundOccur = true)

defines a coverage view that contains only arithmetic instructions with inexact
results. Coverage reports using this view will display only those events that have
this combination of attribute values. No other events will appear in the report.

The selection noted above selects events that have some desired attribute values.
Equally important, and often more so, are selections based on the coverage data
itself. Such selections filter out events based upon their hit count or when they were
first or last covered. For example, the query σ(count = 0

∨
last < 08/01) defines

a coverage view that contains only those events that have never been covered or
have not been covered recently. We call selections involving coverage data dynamic
selections, since the set of events they define changes as coverage progresses.

From a methodology perspective, dynamic selections are crucial not just for
defining coverage views but in the coverage analysis itself. All selections, whether
dynamic or static, reduce the size of the coverage space, thereby making it easier
to analyze. Dynamic selections have the additional benefit that the information
they extract is directly relevant to coverage analysis. Knowing, for example, which
events have not been covered, or which events have been covered a disproportionate
number of times, is the essence of coverage analysis. This information is also what
is explicitly obtained from dynamic selections.

Dynamic selections are often combined with selections of attribute values.
This enables us to look for holes or other such coverage-related constraints,
within a restricted set of events. The selection, σ(count < 5

∧
(Instr ∈

{f add, f sub}∧Result ∈ Positive) for example, finds all lightly covered
combinations of fadd or fsub with positive results.

2.1.2 Projections

The purpose of projection is to answer such questions as “Have all instructions
been covered?” and “What is the coverage data for all combinations of results and
rounding modes in the coverage model?” Looking at the coverage data of individual
events is far too cumbersome and error-prone to effectively answer such questions.
A better approach is to project the coverage schema onto a subset of its attributes.

Data Analytics and Machine Learning for Coverage Closure 183

Table 3 Projected coverage
data

Attributes Coverage data

Instr Result Count First Last Density

fabs +0 3 08/02 08/11 1/4

fabs +∞ 0 – – 0/4

fadd +0 18 07/14 08/30 3/4

fadd −0 5 08/11 08/11 2/4

fadd +∞ 0 – – 0/8

Formally, this is expressed as π(A1, ..., Ak), where Ai is the name of some attribute
in the schema.

In Table 3, we show the partial results of projecting the floating-point coverage
model defined earlier in the section onto the attributes Instr and Result.
Every event in this projected coverage view corresponds to a number of reflected
events in the original model. For example, the event <fadd,+0> corresponds
to all reflected events whose Instr is fadd and whose Result is +0, that
is, to <fadd,+0,To0,false>, <fadd,+0,To+∞,false>, and so on. The
coverage count of each projected event is equal to the sum of the counts of all its
reflected events. The first and last times a projected event was covered is the earliest
and latest times of any of these reflected events, respectively.

Projections essentially control the granularity of the coverage information
presented. Clearly there is some loss of information when we look at events in a
projected model. The fact that <fabs,+0> has been covered three times tells us
nothing about which events were actually covered and which were not. But looking
at the data at this scale gives a better overall picture of the coverage. With projection,
we can zoom in or zoom out to whatever level of detail is needed.

The last column in Table 3 shows the density of a projected event; this is equal
to the ratio of reflected events covered to the total number of reflected events of the
projected event. Density gives an indication of the distribution of coverage for the
projected event. A low density, even for events with high coverage counts, means
that coverage is not evenly distributed among the reflected events and many reflected
events are not covered. If we look at the event <fadd,+0>, we see that its count
is 18 and its density is 3/4. This means that of the four legal events with fadd and
+0 in the pre-projected coverage model, 3 were covered a total of 18 times. The
dynamic selection, σ(count = 0

∧
Instr = f add

∧
Result = +0) applied to the

original coverage model, can be used to find the missing non-covered event.
More expressive coverage views can be built by combining projections with

selections. We use selection to focus on particular events, and then projection to
coalesce their coverage data. For example, the coverage view π(Instr)◦σ(Instr ∈
Arith

∧
Result = +0) projects the model onto the single attribute dimension

Instr, but only considers events with Arith instructions and +0 results when
computing the coverage data of each instruction (we use ◦ to show the composition
of two operations). Similarly, we can combine projections with dynamic selections
to look at coverage data in a more compact form. This enables us to define coverage

184 R. Gal et al.

views like σ(count = 0) ◦ π(Instr), which computes the set of instructions that
have not been covered at all, and the coverage view σ(density < 1.0) ◦ π(Instr),
which computes the set of instructions that are not fully covered.

As long as the selection criteria involve only projected attributes, the order of the
selection and projection operations does not matter. This situation changes, however,
for dynamic selections. Consider the two coverage views, σ(count < 5)◦π(Instr)

and π(Instr) ◦ σ(count < 5). Both views select events that were covered less than
five times, and both views project onto the single attribute Instr. They differ only
in the order in which the operations are invoked. This difference, however, has a
critical effect on the semantics of the views defined. The first view generates a list
of all lightly covered instructions. In contrast, the second view generates a list of
all instructions that have at least one reflected event that was lightly covered. If the
fadd instruction, for example, was covered many times, but one of its reflected
events, say <fadd,+0,To0,false>, was only covered twice, then the projected
event fadd will appear in the second view, but not in the first. The ability to
express queries based upon the coverage data of events, either before or after they
are projected, is yet another powerful feature of coverage analysis.

2.1.3 Groupings

Another technique for defining a smaller functional coverage view is to group the
coverage data of semantically related events, such as the instruction type (arithmetic
and non-arithmetic) and the sign of the result. We can use these partitions to create a
coverage view that looks collectively at related events in the model. This is formally
expressed as λ(A1.P1, A2.P2, ..., An.Pn) where Pi is a partition on attribute Ai ,
defined in the coverage schema. Note that not all attributes in the schema need to
be partitioned. Like projections, using partitions to analyze coverage information
allows us to analyze clusters of events rather than individual ones, thereby raising
the level of abstraction at which we look at the data. Another benefit is that attribute
values that are partitioned together are frequently tested together, so that patterns of
coverage activity are likely to be present throughout the entire group.

In Table 4, we show the partial results obtained for the coverage view
π(Instr, Result)◦λ(Instr.T ype,Result.Sign), which groups and projects events
according to the Instr and Result attributes. For the grouping operation,
the partitions Type and Sign are used for the instr and result attributes,
respectively. As we can see, individual events are grouped according to their
instruction type and according to the sign of the result.

The algorithm for computing the coverage data for a grouped event is the same
as for a projected event. The count, first, and last time an event was covered is equal
to the sum, earliest, and latest values, respectively, of all of its reflected events. Its
density is the ratio of covered events to the total number of reflected events. As
seen in this example, grouping can be combined with other operations to create
a coverage view. In particular, it can be used with projections to focus on specific

Data Analytics and Machine Learning for Coverage Closure 185

Table 4 Partitioned
coverage data

Attributes Coverage data

Instr Res Count First Last Density

Arith Pos 1922 07/11 08/30 621/712

Arith Neg 1337 07/11 09/04 473/684

Arith NaN 194 08/04 08/17 88/144

NonArith Pos 542 07/11 08/30 168/192

attributes, and with selections to focus on certain attribute values or certain coverage
data statistics.

2.2 Hole Analysis: Automatic Descriptive Coverage Analysis

One of the main activities of the verification team during coverage closure is
to identify large and meaningful coverage holes that indicate weaknesses in the
definition and execution of the verification plan. The coverage views presented
earlier provide a means for finding such holes, but using coverage views to find
such holes often requires time and expertise. Hole analysis [4, 32] is a technique
to automatically detect and report such large holes. The main idea of the hole
analysis technique is to group together sets of uncovered events that share some
commonality, thus allowing the coverage tool to provide shorter, more meaningful,
and actionable coverage reports to the user.

To illustrate the importance of hole analysis, consider a model with just two
integer attributes, X and Y, each capable of taking on values between 0 and 9.
Figure 2a shows the individual uncovered events in the model after 70% of the
events are covered. The two meaningful holes that exist in the coverage data,
indicated by arrows in the figure, are not immediately obvious. One hole occurs
whenever Y equals 2, and a second hole exists when both attributes have values 6,
7, and 8. These holes are, however, readily seen in Fig. 2b, which shows the coverage
of the model in a 2D plot, with covered events marked as black squares. Such plots
provide a convenient way to present holes that are clustered along ordered values in
models with a small number of attributes. The challenge for automatic holes analysis
is to discover more complex holes in arbitrarily large models and to present these
holes in such a way that their root cause can be more easily discerned. Note that the
diagonal lines are explained later in Sect. 2.2.2.

Meaningful holes can be automatically discovered between uncovered events that
have some similarity. Next, in Sects. 2.2.1 and 2.2.2, we describe two algorithms
for finding such holes. The first looks for holes where all the possible values of
one or more attributes have not been covered for some specific values of the other
attributes. The second algorithm aggregates close uncovered events and holes to
form larger, more meaningful holes.

186 R. Gal et al.

Fig. 2 Coverage hole example. (a) List of uncovered events. (b) Hole visualization

2.2.1 Algorithm for Projected Holes

Of special interest are those cases where all the possible values of one (or more)
attributes were not covered for some specific values of the other attributes. An
example of this is the value 2 for the Y attribute in Fig. 2. We call this a projected
hole and mark it < ∗, 2 >, where the ∗ sign indicates a wild card.

A coverage model of n attributes can be viewed as a set of coverage events or
points in an n-dimensional space. A projected subspace of dimension 1 contains
events that lie on a line parallel to the axis in the hyperspace. In other words, a
projected hole of dimension 1 corresponds to a set of events whose attributes all
have fixed values, except a single attribute that has a wild card. A projected subspace
of dimension 2 describes events that lie on a plane parallel to the axis and so on. A
projected subspace of a higher dimension subsumes all contained subspaces of a
lower dimension. For example, the subspace p =< ∗, ∗, x3, . . . xn > of dimension
2 contains all the events described by the subspace q =< ∗, x2, x3, . . . xn >. In
such a case, we say that p is the ancestor of q and that q is the descendant of p

in dimension 2. We denote by Sv the set of dimensions of subspace v that are not
fixed (i.e., their value is ∗). sv is the attribute with the smallest index in Sv . For
example, for the subspace p above, Sp = {1, 2} and sp = 1. In Algorithm 1,
which describes the projected holes algorithm, descendants (v, s) denote all the
direct descendants of subspace v in dimension s. That is, it refers to all the subspaces
that are created by replacing the ∗ in the sth dimension of v with a specific value
for that dimension. Similarly, descendants (v, Sv) denote all direct descendants of
v in all possible dimensions. Holes of higher dimension are larger and, in general,
more meaningful than the holes of lower dimension they subsume. Therefore, it is
desirable to report holes of the highest possible dimension and leave the subsumed
holes out of the report.

The skeleton of the algorithm for finding projected holes is shown in Algorithm 1.
The algorithm is based on the double traversal of all the possible subspaces in the
coverage space, first in increasing and then in decreasing order of dimension. In the

Data Analytics and Machine Learning for Coverage Closure 187

Algorithm 1 Algorithm for projected holes
procedure HOLEPROJECTION

// Mark covered subspaces
for i = 0 to n − 1 do

for all subspace v with dimension i do
if v is marked covered then

Mark all direct ancestors of v as covered
//Mark and report holes
for i = n downto 0 do

for all subspace v with dimension i do
if v is not marked (as subsumed hole or covered) then

Report v as hole
recursively mark all descendants of v as subsumed holes

first phase, the algorithm marks all the subspaces that are covered; that is, at least
one event in the subspace is covered. This is done by marking all the ancestors of a
covered space, starting with the covered events themselves (subspaces of dimension
0). During the second phase, the algorithm traverses all the subspaces in decreasing
order of dimensions. For each subspace, if it is not marked as covered or as a
subsumed hole, the algorithm reports it as a hole and recursively marks all its
descendants as subsumed holes because they are subsumed by this hole.

The complexity of the algorithm described here is exponential to the number of
dimensions (attributes) in the coverage model. The performance of the algorithm
can be significantly improved by applying pruning techniques, both during the
construction of the projected subspaces graph and while traversing the graph to
report the holes.

2.2.2 Algorithm for Aggregated Holes

A simple metric for similarity is the rectilinear distance between two holes. This
corresponds to the number of attributes on which the two differ. The distance will
be one for holes that differ in only one attribute, two for holes that differ in two
attributes, and so on, up to the number of attributes in the coverage space. We
aggregate together any two holes whose rectilinear distance is one. Thus, the two
uncovered events <0,2> and <0,3> from Fig. 2a can be aggregated into the single
hole <0,{2,3}>, and similarly for other such events.

Rectilinear distances can be computed on aggregated holes as well. Again, the
distance between any two holes is equal to the number of differing attributes,
but now the comparison is done for aggregated sets as well as atomic values.
The process can be applied iteratively until no more new aggregated holes are
discovered. Figure 3 shows how the five events <0,2>, <0,3>, <7,2>, <7,3>,
and <7,4> can be aggregated together until only the holes <{0,7},{2,3}> of size 4
and <7,{2,3,4}> of size 3 remain. This technique is similar to Karnaugh binary
mapping [30] and is useful for much the same reasons. As in Karnaugh binary

188 R. Gal et al.

Fig. 3 Aggregated hole
calculation

Table 5 Coverage hole
report

Round Round Hole

Instr Result mode occur size

fadd ∗ ∗ ∗ 152

+DeNorm

Square Roots +MaxDeNorm ∗ ∗ 72

+MinDeNorm

Estimates ∗ ∗ True 144

mapping, holes may intersect. This is fine because every hole provides a different
view of the uncovered events, each with different functional meaning and potential
action. The aggregated holes of Fig. 3 are marked by left and right diagonal lines
in Fig. 2b. When the values of a given attribute are ordinal, the aggregation rule
of rectilinear distance equals one, which can be replaced with a stricter rule of
rectilinear distance equals one, and then the distance in the changed attribute is also
one. In this case, the events < 0, 2 > and < 7, 2 > are not aggregated, as in Fig. 3.
Using the stricter rule increases the chances that the aggregated hole has semantic
meaning.

The projection holes and aggregated holes algorithms can be combined. The
order in which the aggregations are applied with respect to the marking phase of
the projection algorithm affects the reported holes. If we do not mark subsumed
holes immediately, but defer that marking until after aggregation, those holes may
be aggregated to form different and more meaningful holes, at least from the size
aspect.

Table 5 shows some of the holes found in the floating-point model when the
model was implemented as part of the floating-point verification plan in an IBM
project. The first hole indicates that none of the events related to the fadd instruction
were covered. The hole was caused by a bug in the specification to the test generator
that omitted the fadd instruction from the list of instructions that needed to be
generated. The next two holes show two groups of events that are impossible to hit.
The first points to square root instructions (fsqrt, fsqrts, frsqrte) with denormalized
results, while the second points to estimation instructions (fres, frsqrte) with inexact
results. Both holes are covered by restrictions that eluded the developer of the model.
After their detection, the two holes were converted to restrictions.

Data Analytics and Machine Learning for Coverage Closure 189

2.3 Machine Learning-Based Discovery of Coverage Model
Structure

Earlier, we showed how the inherent structure of coverage models can be used
to improve the analysis of the coverage space. Specifically, we showed how hole
analysis can find large uncovered holes in cross-product coverage models. In many
cases, coverage models are defined as a set of individual coverage events without an
explicit structure. In such cases, a manual search for large coverage holes is needed.
This search involves scanning a list of uncovered events to find sets of closely related
events. This is a tedious and time-consuming task.

Machine learning techniques have proven effective in many classification and
clustering problems. Therefore, applying such techniques can improve the efficiency
and quality of finding coverage holes, and reduce the manual effort involved in this
task. Next, we describe a clustering-based technique that finds large coverage holes
in verification environments in which coverage models do not have an explicit struc-
ture, such as cross-product. The proposed technique exploits the relations between
the names of the coverage events. For example, event reg_msr_data_read is
close to event reg_pcr_data_write, but not to event instr_add_flush.

To find large coverage holes, this technique combines a classic clustering
technique with domain-specific optimizations and uses it to map individually
defined coverage events to cross-product spaces. Then, it uses cross-product hole
analysis techniques, such as the ones described earlier in the section, to find large
coverage holes in these spaces. The analysis comprises three main steps. In the
first step, it clusters all the coverage events and maps the clusters into cross-product
spaces. The second step applies domain-specific optimizations to improve the cross-
products created, by cleaning imperfections left by the clustering algorithm. Finally,
in the third step, a standard cross-product hole analysis is performed and the holes
are reported to the user. The first two steps of the analysis need to be repeated
only when major changes in the coverage definition occur, which is infrequent.
Therefore, complex and time-consuming computations can be used. The following
is a brief description of the first two steps in the analysis. Amore detailed description
can be found in [20].

2.3.1 Clustering Events into Cross-Products

The first step in the analysis is to cluster all the coverage events based on their
names. This clustering begins by breaking each coverage event name into words. In
the example here, the names of coverage events are in the form of w1_w2_..._wn,
where each wi is a word. However, breaking the names of events into words can
work with any other naming convention, such as a capital first letter (camel case).
The words of all the events are used as the features for the clustering algorithm. This
technique is common to many document clustering techniques [39], and indeed a
classic clustering technique is used here. The one major difference is that we add the

190 R. Gal et al.

index of each word to the word. The reason is that events sharing the same word in
the same location are much more likely to be related than events that share the same
word in different locations. That is, the event reg_msr_read is more likely to be
related to the event reg_pcr_write than to the event set_data_reg_to_0.
To address this, the index of the word in the event’s name is added to every word
feature. Practically, each word in the event is used with two indices: a positive index
from the start of the name and a negative index from the end. This helps to relate
events that share the last word, second to last word, and so on.

Once features are extracted, a clustering algorithm is used. There are many avail-
able clustering algorithms. Some, like the Latent Dirichlet Allocation (LDA) [6]
algorithm, are designed for the task of document clustering, while others, like K-
means [29], are general-purpose clustering algorithms. The performance of the
clustering algorithm, both in terms of the quality of its results and its runtime,
strongly depends on the actual algorithm used and the values of its hyperparameters.
Specifically, the two most important hyperparameters are the number of clusters and
the features used.

For the discovery of coverage model problem, it turns out that these factors have
a negligent effect on the quality of the overall results of the algorithm [20]. The
reason for this is the domain-specific optimizations that follow the clustering phase
and are explained later. These optimizations allow the algorithm to fix imperfections
in the initial clustering and identify the correct cross-product models. In fact, the
results in [20] show that a combination of the simple K-means algorithm [29] with
nonnegative matrix factorization (NMF) [34] that significantly reduces the number
of features from thousands to 30 dramatically speeds up the clustering execution
time while having no impact on the quality of the cross-product models found.

After the clusters are formed, the next step extracts the cross-product structure
out of each cluster. Algorithm 2 describes this step and Fig. 4 provides an example of
its application. The first step in the algorithm is to create, for each possible location,
the set of all words that appear in that location with the number of times each word
appears in the location. For example, the cluster of the events in Fig. 4a yields the
ten location sets in Fig. 4b. Note that because we mark locations both from the start
and from the end, the number of sets is twice the length of the longest events.

The location sets are used to find anchor locations. Anchors are locations that
have a single word in them, and that word appears in all the events in the cluster.
In the example, location 1 with the set {reg (6)} and location −2 with the set
{data (6)} are anchors. Location 5 with the set {rmw (2)} is not an anchor
because the word rmw does not appear in all the events. The underlined locations in
Fig. 4b mark the anchors in the example cluster.

After the anchors are identified, all the locations between the anchors are
considered the dimensions or attributes of the cross-product space. This includes
the locations before the first anchor, if it is not in location 1, and the locations after
the last anchor, if it is not in the last location. The dimensions of the cross-product
in the example are shown in Fig. 4c. In the general case, dimensions may include
several words and have a different number of words in each event. For example, the
first dimension in the example includes two words for the second and last events and

Data Analytics and Machine Learning for Coverage Closure 191

Fig. 4 Extracting cross-product example. (a) Events in the cluster. (b) Location sets. (c) Initial
cross-product dimensions. (d) Cross-product dimensions after removing redundant second dimen-
sion. (e) Cross-product dimensions after removing redundant second dimension

one word for the other events. This dimension semantically corresponds to two real
dimensions. In the next subsection, we show how to reveal these real dimensions.

2.3.2 Improving the Cross-Product Quality

After forming the initial cross-products, the algorithm improves their quality by
increasing their size, and increasing the number of dimensions in the clusters. The
technique also improves their density, which is defined as the ratio between the
number of events in the cross-product and the size of the cross-product space. The

192 R. Gal et al.

Algorithm 2 Extract cross-product from a cluster
procedure EXTRACTCROSSPRODUCT(cluster)

// Build location sets
Clear all location sets Li

for all event e in the cluster do
for all location i in e with word wi do

Add wi to Li and increase its count
// Identify anchors
for all locations Li do

if Li has one word with count equals to the cluster size then
Mark Li as an anchor

// Extract dimensions
Sort anchor locations in increasing order, first positives then negatives
Make gaps between anchors attributes

improvement process can be divided into two main steps. The first step adds events
to the cross-products and combines similar cross-products to overcome deficiencies
of the clustering algorithm described in the previous section. The second step
utilizes domain knowledge on cross-product coverage to apply heuristics that
increase the number of dimensions and improve the density of the models.

The clustering and mapping to cross-product algorithm leaves behind some dirt
in the form of: outlier events, orphan events that should belong to a cross-product but
are not clustered with it, and several clusters that should belong to the same cross-
product. The reason for this dirt is that the distance measure used by the clustering
algorithm does not exactly match the distance needed for the cross-products.

The cleaning step consists of two substeps: adding orphan events to cross-
products and combining similar cross-products. The cleaning process continues
until convergence. To find orphan events, the algorithm compares all the events
in the unit to the pattern of each cross-product. If an event matches the pattern
exactly or almost exactly, it is added to that cross-product. An event almost matches
a pattern if it matches all the anchors and differs in at most one dimension. In this
case, the dimension value of the event is added to the cross-product dimension. For
example, when event reg_ir_data_read that is not part of the initial cluster in
Fig. 4a is compared against its cross-product pattern, it matches the two anchors and
the second dimension, but not the first dimension. In this case, the event is added to
the cross-product and the first dimension is updated to include the value ir.

To combine close clusters, the algorithm compares the patterns of each pair
of clusters. If the two patterns differ in just one location, either an anchor or a
dimension, it combines the two clusters into a larger cluster. In this comparison,
patterns are equal in a dimension if they have the same values in the dimension or
if the values in one pattern are a subset of the values in the second dimension. Note
that if two patterns that differ in a single anchor are combined, the anchor becomes
an attribute in the combined pattern.

The second part of the improvements is specific to cross-product coverage
models. These heuristics were developed to improve the quality of the cross-

Data Analytics and Machine Learning for Coverage Closure 193

products after examining the results of many real-life models. The heuristics
improve the quality of the cross-product by adding more dimensions to the cross-
products on the one hand and by removing redundant dimensions on the other hand.
The resulting cross-product can have more dimensions, may be denser, or both.
The process repeats the two steps of breaking dimensions and removing redundant
dimensions until convergence is reached for each cross-product.

Dimensions in the cross-products found in the previous steps can span multiple
words. For example, the first dimension in Fig. 4c is from location 2 to location −3
in the events, and it spans one to two words. In such cases, breaking the long attribute
into two or more smaller attributes can improve the quality of the cross-product.
In the example, the first attribute comprises two separate semantic meanings. The
first word in the attribute (location 2) is the name of a register (ir, msr, pcr),
and the second word is an indicator of whether or not the data access is atomic.
Understanding the semantic of each word is hard. However, if breaking a dimension
into two or more dimensions results in a dense cross-product, then, in most cases,
this break is semantically correct and improves the quality of the cross-product.

For each single breaking point, the heuristics check the ratio between the number
of values in the dimension and the size of the cross-product of the broken dimension.
If the ratio is high enough (≥ 50% in the current implementation), the algorithm
performs the break. In the example, the number of values in the first dimension is
3. Breaking it into two attributes (location 2 with values {ir, msr, pcr} and
locations 3–−3 with values {atomic, φ}). The size of the original dimension
equals 50% of the product of the sizes of the new attributes (3 · 2 = 6), so the
algorithm performs the break. The resulting dimensions appear in Fig. 4d.

Removing redundant dimensions from the cross-product reduces the size of the
cross-product space, thus improving its density. A dimension d is redundant if a
projection of the n dimensional space into the n − 1 dimension space that does not
include d leaves any point in the new space with at most one event associated with
it. The implementation uses a simpler form of a pair-wise redundancy: dimension
d1 is redundant with respect to dimension d2 if considering the value pairs for all
the events, the values in dimension d1 partition the values in dimension d2.

In the cross-product in Fig. 4d and the events in Fig. 4a, the pair of values
for dimensions 2 and 3 are (atomic, rmw), (φ, read), (φ, write).
Therefore, the second dimension partitions the third dimension into (atomic,
{rmw}), (φ, {read, write}), which makes it redundant. Figure 4e shows
the dimensions after removing the redundant dimension.

After completing all the improvements, a final cleanup removes cross-products
that are either too large (more than one million events) or too sparse (less than
10% density). Any cross-products that have just one dimension are also removed.
Therefore, the final set of cross-products does not cover all the events in the unit the
algorithm started with.

194 R. Gal et al.

2.3.3 Usage Results

The clustering analysis technique is incorporated into the coverage reports that are
produced by the Verification Cockpit (VC) [2], a platform for a holistic centralized
data model for the arsenal of verification tools used in a modern verification process.
The clustering analysis results are part of the coverage status reports, and they
are used regularly by all major hardware design and verification projects in IBM.
The units on which the clustering technique is used contain anywhere from several
thousands to tens of thousands of events. The analysis is able to map between 25%
and 60% of the events in each unit to clusters. The analysis found many large
clusters (30%–60% of the clusters) that contain more than 100 events as well as
several (about 5%) clusters with more than 1000 events. Hole analysis and compact
hole reports are extremely important for these clusters because of the difficulty in
looking at all the events and manually identifying the holes in these clusters.

Figures 5 and 6 show the clustering analysis results for the load-store unit (LSU)
of a high-end processor core. Figure 5 shows a summary of the clusters found in
that unit and the status of each cluster in terms of covered and uncovered events. For
example, the first cluster, lX_xi_threadX_syn_matchX_syn_mismatchX_X,
has a space of 1024 events, out of which 640 are defined. Of these 640 events, 320
(or 50%) are covered.

Figure 6 shows snippets of a report for the LSU cluster lX_bias_lX_req_id_dX.
The cluster contains events for requests from two sources to two caches. Figure 6a
shows the definition of this four-dimensional cross-product space. The first
dimension (V1) contains the sources, the second dimension (V2) is the caches,
the third dimension (V4) is the response, and the last dimension (VM1) contains the
request id. Figure 6b shows the events defined in this cross-product. All the events
with source ls or with response roi are defined, or, in other words, requests from
ic cannot have response norm or rej. This leaves 424 events in the model out of
the 636 events in the cross-product space.

Figure 6c shows the holes found in that cluster. The cluster contains one simple
and large hole: there are no requests from ic. This representation of the hole is
much shorter and easier to understand than the partial list of events that appears in
Fig. 6d. Figure 6d shows that all the events in the hole are not covered at the unit
level (as expected), but they are covered at the core level.

Fig. 5 List of clusters for the LSU

Data Analytics and Machine Learning for Coverage Closure 195

(a)

(b)

(c)

(d)

Fig. 6 Details of lX_bias_lX_req_id_dX cluster. (a) Space definition. (b) Defined events.
(c) Hole description. (d) Events in the hole

Since the introduction of the clustering analysis to the users, the analysis and
the holes it identified have helped to simplify and improve the coverage closure
work. In addition, some of the holes identified by the analysis led to the discovery
of a number of problems in the verification environment and in the test templates
of several units. For example, they helped identify missing events that should have
been defined.

196 R. Gal et al.

3 Template Aware Coverage

The analysis described in the previous section does not include information about
the relations between test-templates and coverage, and thus cannot provide answers
to questions such as “What is the best test-template to hit a given coverage event?”
and “Does a given test-template achieve its coverage goals?” The common practice
in verification environments is that when the simulation of a test-case completes
successfully, its coverage results are submitted to the coverage engine. The coverage
engine accumulates the results into a unified database that provides the data for the
coverage status and progress reports. Due to the large number of test-cases, which
can reach millions of tests a day, the coverage engine aggregates the coverage of all
test-cases together, regardless of the test-template from which they originated. We
call this approach template blind, because the information about the test-template is
forgotten or lost.

Template Aware Coverage (TAC) [16] maintains a hit matrix H , with the test-
templates as its rows and the coverage events as its columns. Each entry in the
matrix contains the number of times a given test-template hit a given event. Given
the hit matrix and the total number of test-cases successfully simulated for each
test-template W = (wi), we define P , the hit-probability matrix, as pi,j = hi,j /wi .
With such a matrix, the questions above and other queries that relate events and
test-templates can be answered.

There are two main approaches for accumulating the coverage data. The simplest
and most common approach is to accumulate all data from the beginning of the
project (or the last reset). The second approach looks only at fresh coverage data.
To accomplish this, it accumulates coverage within a rolling window of, say, the
last 2 weeks. TAC is designed to support the latter approach, which fits the IBM
coverage methodology [40].

Based on the rolling window approach, the cumulative TAC matrix is defined as
the matrix resulting from summing up the last K daily TAC matrices (e.g., 28 days).
Figure 7 illustrates the daily update process, where the newest daily matrix is added
to the current cumulative matrix, and the oldest daily matrix (from 28 days ago) is,
first, subtracted from the current cumulative matrix, and then permanently deleted
from the disk to save storage.

The next section describes how TAC data can be used in some potential use-
cases. Due to the unique challenges in handling the big data involved, we briefly
describe the implementation.

3.1 TAC Use-Cases and Queries

Understanding the relationship between coverage and test templates is an important
layer in understanding the state and progress of the verification process. These
relations can be used, for example, to show descriptive information such as “does

Data Analytics and Machine Learning for Coverage Closure 197

Fig. 7 The incremental update of the cumulative TAC matrix

a test template achieve its target verification goal?” To this end, the first and most
basic type of TAC usage is the generation of descriptive reports that explore the
relation between coverage and test templates. Some of these queries and reports are
described below. In Sect. 4, we show how TAC data can be used to prescribe test
policies that help achieve predefined coverage goals. These include items such as
which test-templates to run and how many times to run each template.

3.1.1 Best Test-Templates to Hit an Event

The most basic TAC query is about the best test-template to hit an event. This query
is used when a verification engineer decides to improve the coverage of a specific
event. To achieve this goal, the engineer can run a TAC query to get a full list of
test-templates that hit the event of interest.

Table 6 shows an example of such a report. By default, the table is sorted by the
hit probability, from best to worst. With this information in hand, the verification
engineer first tries to better understand the conditions for hitting the event, as
given in the test-templates. Based on this information, the engineer can decide, for
example, to allocate more simulation resources to the top three test-templates to
increase the coverage of the event. Note that the test count and the cycle columns
presented in the table refer to the number of times the test-template was run and its
total number of simulation cycles. These statistics can give some confidence about
the reliability of the data. Because the probability presented is empirical, the number
of runs is a good indicator for the confidence in the data.

198 R. Gal et al.

Table 6 Sample TAC report
listing test-templates that hit a
given coverage event

Test template Test count Cycles Hit probability

1 Template1 384 24,823,452 0.828125

2 Template2 355 22,521,283 0.811268

3 Template3 398 39,382,138 0.809045

4 Template4 386 22,052,294 0.803109

5 Template5 357 21,831,271 0.792717

6 Template6 388 24,735,940 0.786082

7 Template7 389 24,705,637 0.766067

Table 7 Sample TAC report listing test-templates that partially cover a given coverage model
consisting of 156 events

Test Test count Cycles Hit events % Hit events Mean hit probability

1 Template1 2400 117,241,582 80.77 126 0.114391

2 Template2 2403 118,006,467 76.92 120 0.11444

3 Template3 390 23,579,020 75.64 118 0.131114

4 Template4 363 21,658,257 75 117 0.112012

5 Template5 386 23,653,018 74.36 116 0.129866

6 Template6 367 21,477,811 73.72 115 0.065867

7 Template7 333 20,296,061 73.08 114 0.10882

8 Template8 343 16,684,543 71.15 111 0.127177

9 Template9 335 19,523,881 71.15 111 0.063261

10 Template10 380 19,410,258 70.51 110 0.11164

3.1.2 Best Test-Templates to Hit a Coverage Model

A straightforward extension of the previous use-case is to improve the coverage
of a set of events, or a coverage model. The TAC data offers the verification
team additional information they can use. They can start with a listing of the test-
templates that cover (fully or partially) this coverage model. Table 7 shows, as
an example, the per test-template coverage report of an arbitrary coverage model
that consists of 156 events. This report tells us that T emplate1 hits the maximum
number of events in this coverage model (126 out of 156). It also shows the per
test-template average hit probability in this coverage model (excluding the non-
hit events). This report provides a lot of information to its users. For example,
drilling down to each test-template can show the detailed list of the events hit by
each test-template. Nevertheless, deeper analysis is required to decide which test-
templates should be run to improve the coverage of this coverage model. This topic
is discussed in Sect. 4.1.

Data Analytics and Machine Learning for Coverage Closure 199

Table 8 An example of a
TAC report displaying a list
of events hit by a given
test-template. This
test-template was run 20
times

Event Hit probability Test hits

1 Event1 1 20

2 Event2 0.9 18

3 Event3 0.9 18

4 Event4 0.9 18

5 Event5 0.8 16

6 Event6 0.7 14

Table 9 An example of a TAC report displaying a list of coverage-models partially covered by a
given test-template

Coverage model Number of events Hit events Hit events %

1 CovModel1 190 95 50

2 CovModel2 26 7 26.92

3 CovModel3 1535 280 18.24

4 CovModel4 159 27 16.98

5 CovModel5 156 17 10.9

6 CovModel6 1960 140 7.14

7 CovModel7 16 1 6.25

3.1.3 Coverage of a Test-Template

In this use-case, we shift our focus to the test-template. Specifically, we would like to
explore the performance of a given test-template, to answer questions such as “Is it
achieving its coverage goals?” and “What is its contribution to the overall coverage
state?” To answer these questions, the verification engineer starts by examining the
list of events that were hit by the test-template. Table 8 shows an example report
including 6 events that were hit by a given test-template that was run 20 times. From
such a report, the verification engineer can read the probability of her test-template
hitting each of the events, as well as the actual number of hits. From this information,
she can learn whether the test-template is hitting the events it is supposed to hit,
hence whether it is doing its job or not.

An important extension of this report is the report showing all the coverage
models that were covered fully, or partially, by a given test-template. Table 9
exemplifies such a report. Each row in this report presents the name of the coverage
model, the number of events belonging to it, how many of these events were hit by
the test-template, and the percentage of hit events.

3.1.4 Uniquely Hit Events

A uniquely hit event is an event hit by test-cases generated from a single test-
template. That is, no other test-template hits it. Test-templates responsible for

200 R. Gal et al.

uniquely hit events offer a unique contribution to the coverage, reflecting the fact
that they exercise singular scenarios or areas in the code.

Using TAC data, we can create a report of these uniquely hit events along with
the test-templates that hit them. Table 10 exemplifies such a report. Note that a
single test-template may hit many uniquely hit events, like T emplate3 in Table 10.
This observation takes us to the next report, which lists all test-templates that hit
uniquely hit events. An example of such a report is presented in Table 11. It is worth
mentioning that this set of test-templates is the minimum necessary set to ensure
that all the uniquely hit events are covered in the DUV.

Table 10 An example report of TAC listing the uniquely-hit events along with the test-templates
that hit them

Event Test template Test hits Test runs Hit probability

1 Event1 Template4 2 36,802 0.000054

2 Event2 Template65 2 79,916 0.000025

3 Event3 Template3 1 116,599 0.000009

4 Event4 Template12 2 36,802 0.000054

5 Event5 Template23 1 36,802 0.000027

6 Event6 Template27 3 79,916 0.000038

7 Event7 Template9 9 71,264 0.000126

8 Event8 Template3 2 35,652 0.000056

9 Event9 Template11 2 131,517 0.000015

Table 11 An example report of TAC listing the test-templates that hit uniquely-hit events

Test template Test count Cycles Uniquely hit events

1 Template1 14,820 623,538,730 42

2 Template2 3253 39,943,270 38

3 Template3 14,770 382,130,326 32

4 Template4 68,520 1,284,360,421 17

5 Template5 7737 110,414,380 10

6 Template6 79,916 2,007,702,100 10

7 Template7 322 6,717,904 10

8 Template8 36,802 1,783,010,147 8

9 Template9 2618 105,486,836 5

10 Template10 460 3,353,615 3

11 Template11 128,384 2,620,074,221 3

12 Template12 73,897 3,821,274,928 2

The query for uniquely hit events can be easily extended to determine whether a
set of test-templates has a unique contribution to coverage. This is done by summing

Data Analytics and Machine Learning for Coverage Closure 201

the rows corresponding to the test-templates in the hit matrix into one row, and
checking whether it has a unique contribution.

3.1.5 Aged-Out Events

Since coverage is tracked on a daily basis, the coverage monitoring system can
detect changes in the coverage trends and alert the verification team about these
changes. One important trend is related to aged-out events [5]. These are events that
were previously hit, but have not been hit in the last L (e.g., 14) days. Aged-out
events are important because they indicate that something changed in the model or
that the relevant test-templates are no longer running. Aged-out events or events that
are about to age-out can be detected and reported using standard coverage reports.
With TAC, the verification team can take the next step and find out which test-
template hit (or best hit) these events last and take corrective actions. For example,
if a test-template that previously hit an aged-out event is no longer running, it can
be scheduled with increased priority. If the test-templates that last hit the event are
still running but not hitting the event, a further investigation is needed to determine
which changes in the DUV, the drivers, or the test-template caused the test-templates
to stop hitting the event and why.

3.2 Implementation

3.2.1 Data Structures

At the heart of TAC lies the coverage hit matrix, which contains the hit counts
of each test-template for each coverage event defined in the verification model. In
large verification projects, there may be thousands of test-templates, and hundreds
of thousands of coverage events. Keeping such matrices in memory is impractical,
and storing them on disk would yield long processing and querying time. Most of the
test-templates are written to target specific areas or features in the DUV. Therefore,
it is reasonable to think of using some kind of sparse matrix representation (i.e.,
a matrix that holds the non-zero elements only). Empirically, the sparsity of
these matrices, as measured in the verification environments of IBM’s high-end
processors, ranges from 65% to 85%. Here, sparsity is defined as the number of
zero-valued elements in the matrix divided by the total number of elements in the
matrix.

A suitable sparse matrix representation that fits our requirements is the Coordi-
nate List (a.k.a. COO) representation [10]. The COO stores an ordered list of <row,
column, value> tuples for each non-zero element of the matrix (see Fig. 8). The
list is kept sorted according to the row-major order format. That is, consecutive
elements of a row reside next to each other. As we shall see next, this representation
is efficient for matrix construction, addition, and subtraction. The row-major order is

202 R. Gal et al.

Fig. 8 An example of a
regular matrix representation
and a COO sparse matrix
representation

also efficient for template-based queries that are based on rows of the matrix, such
as the events covered by the test-template in Sect. 3.1.3. For event-based queries,
such as the best template to hit an event as in Sect. 3.1.1, the transposed matrix is
also kept in COO representation.

To allow quick access to the rows of the hit matrix, an index file that points to
the beginning and end of each row in the matrix is kept alongside the matrix. This
index allows an O(1) random-access operation to rows of the matrix as well as an
efficient row-iterator interface. Creating the index requires a single pass over the
matrix cells.

3.2.2 Sparse Matrix Operations

Big matrices pose a technical challenge because it is impractical to hold the entire
matrix in memory. One way to overcome this hurdle is to keep the matrices on
disk and only load a small portion of it to memory. This, in turn, creates the need
to implement matrix operations and queries in such a way that minimizes disk
access. Efficiently implementing the operations needed to create and maintain the
cumulative hit matrix of TAC (i.e., construction, transposition, addition, subtraction)
is based on merging two or more COO matrices residing on disk into a single
COO matrix. The merge is performed using a minimum priority queue to prioritize
reading from the input matrices. Specifically, the queue is filled with at least one
cell from each input matrix, and then, the following is repeated until the queue is
empty: remove the cell with the minimal key from the queue, add the removed cell
to the output matrix, and refill the queue with cells from the input matrix that the
last removed cell came from. To improve efficiency, the reading of input matrices
and the writing of the output matrix are done in chunks.

Given the merge operation, the daily matrix is constructed from a stream of
unordered cells by collecting a manageable number of cells, converting them into a
COO in memory, and storing the COO in a temporary file. Once all the incoming
data is handled, all the temporary files are merged into the final COO matrix.

Transposing a matrix is done by breaking the matrix into chunks that can be
handled in memory, transposing each chunk, converting the transposed chunk into
a COO, and storing the transposed chunk in a temporary file. Once the entire input
matrix is handled, all the temporary files are merged, similar to the construction
operation.

Adding and subtracting two matrices is simply a merge of the two matrices.
This merge must handle the case when the minimal entries in the matrices have the
same index. In this case, the two entries are consumed and their values are added

Data Analytics and Machine Learning for Coverage Closure 203

Fig. 9 Sparse matrix addition operation

or subtracted. Figure 9 shows an example of a sparse matrix addition. The input
matrices are Matrix1 and Matrix2, with only the non-zero elements showing. The
figure shows how the entries for index (1, 5) in the two matrices are combined in
the resulting matrix.

3.2.3 Performance

In a verification environment with thousands of test-templates and hundreds of
thousands of coverage events, the cumulative sparse TAC matrix produced can still
be very large (e.g., 10GB on disk in binary format). But, with the help of the index
file, querying such a matrix takes only few seconds or a fraction of a second, instead
of several minutes without the index file.

It is noteworthy that the matrix operations and the index creation are performed
offline. This is done during the phase of preparing the cumulative TAC matrix. The
random-access operation is used during the phase of serving the descriptive and
prescriptive coverage reports. Table 12 shows the approximate time measurements
for the offline operations when performed on a cumulative TAC matrix with 17k
test-templates and 135k events, 82% sparsity, and 11 GB size on disk.

204 R. Gal et al.

Table 12 Time
measurements of matrix
operations

Operation Time measurement (mins)

Add 21

Subtract 25

Transpose 16

Create Index 6

4 Automatic Coverage Closure

The previous two sections discuss extracting information out of coverage data, and
providing the verification team with a handful of descriptive analytics techniques.
This section deals with the holy grail of coverage closure, namely, automatic closing
of the coverage feedback loop from coverage data to stimuli generation. From a data
analytics point of view, this means providing predictive and prescriptive analytics
that predict how coverage will improve given the test policy we plan to run, and
furthermore suggesting new policies and test-templates that can improve future
coverage.

It is worthwhile looking at how coverage closure is done manually by the
verification team. There can be multiple reasons for a coverage hole, or a set of
events that are never hit: the events may be impossible to hit under the design and
environment limitations, hence should be removed; a driver that is too restricted
may need to be fixed; a test-template may be missing to exercise the underlying
functionality related to these coverage events; and last, it may be a bug in the
implementation of the coverage. We now focus our discussion on the third problem,
and suggest ways for dealing with it automatically.

Consider a verification expert with the task of thoroughly covering a set of
coverage events; some of them are lightly hit, while the rest are never hit. There
is a known hidden assumption in the way a task is defined, which is that the events
are related and hence can be handled together. This property of the likelihood of
events is well known. A coverage model for the different fill level of a buffer is
an example of this likelihood. A test that hits a buffer-almost-full event is clearly a
good starting point for hitting a buffer-full event. A cross-product coverage model
also defines a useful metric for measuring the distance between events. Events that
differ in a single attribute can be considered close to each other; this is referred to
as the Manhattan distance.

Using the likelihood property, our verification expert starts by looking for a test-
template that hits the lightly hit events. If this test was not used in the regression to
generate enough test instances, she will run it more times, and see if this is enough
to hit all the target events. If not, she will look for a way to improve it, or write a
new test-template that will increase the probability of hitting the target events.

We describe automatic coverage closure using two approaches. These approaches
mimic and automate similar actions taken by experts. The first approach for
improving coverage is to optimize the utilization of the existing inventory of test-
templates. Given the limited resources for simulation, the verification team cannot

Data Analytics and Machine Learning for Coverage Closure 205

run each test-template an infinite number of times, hence exhausting its overall
potential. We can use TAC data to suggest an optimized policy that minimizes
simulation runs while maximizing coverage. This approach is discussed in Sect. 4.1.

A second, and in a sense more ambitious approach, is to use analytics to suggest
new test-templates that will improve the coverage by hitting events that are not
hit (or very rarely hit) by the current test-templates. This approach is discussed in
Sects. 4.2–4.3.

4.1 Coverage-Based Regression

We describe here the approach, techniques, and use-cases for optimizing the use of
the existing inventory of test-templates to improve the coverage state. In addition to
providing a deeper analysis of the coverage state, TAC data, presented in Sect. 3 can
also be used to create efficient coverage-based regression suites [9]. There are many
different uses for regression suites, each with its own requirements. The most trivial
prescriptive policy is the answer to the query about the best test-template t to hit
an event. This is an example of prescriptive analytics, with straightforward action
following: running t more times may improve the coverage of the event.

A test policy T P = ((t, w)i), or regression suite, is defined by the list of
test-templates t from which we will generate test instances, the weights w, which
indicate how many times to run each test-template. For simplicity, we will use
T P = (wi).

To validate a new model under CI/CD methodology, an ideal regression suite
would be a light one (given limited budget) that targets a wide coverage, but with
limited guarantee that each event is hit. To minimize the use of resources while
achieving a similar coverage goal, again we target wide coverage, but this time we
would like to ensure a high probability for hitting each event, even at the cost of large
regression suite. We can also target a subset of the events, whether representing a
feature in the design on which the verification team is focusing, or events that are
lightly hit. We define lightly hit events as events that were hit less than a given
threshold, for example, 100.

Next, we formally define the problem of finding an optimized policy as two
optimization problems and discuss the methods to solve it.

4.1.1 Finding an Optimized Test Policy

We define two optimization problems that suit different verification goals and yield
different policies. We follow [16] and [9] and use the TAC hit matrix. We denote the
probability that a test instance, generated from test template i, will hit event j by
pi,j (computed by TAC matrix); for a given test policy, we denote the probability
of hitting event j by Pj . Pj can be computed by looking at the probability that the
event j was never hit, giving Pj = 1 − ∏

i (1 − pi,j)
wi . For the following two

206 R. Gal et al.

definitions, we assume that events that were not hit by any test are omitted, as the
probability for hitting event j , Pj = 0 for them.

Definition 1 (Optimized Test Policy–Strict) Find a test policy T P = (wi) that
minimizes the number of simulation runs, with probability � of covering each
event:

min
T P

∑
wi (1)

s.t.∀jPj = 1 −
∏

i

(1 − pi,j)
wi ≥ � (2)

∀i wi ≥ 0, wi ∈ N (3)

This is an integer programming problem. Because the resulting {wi} are large, it
can be relaxed to the real domain with rounding of the final solution. We can further
use common techniques [9] to transform it into a linear programming (LP) problem.
Applying the log operation to both sides of Eq. 2, we get

∑

i

wi · log(1 − pi,j) ≤ log(1 − �) (4)

Definition 2 (Optimized Test Policy–Average) Find a test policy T P = (wi)

that minimizes the number of simulation runs, with an average probability � of
covering all events:

min
T P

∑
wi (5)

s.t.
1

|E|
∑

j

Pj ≥ � (6)

∀i wi ≥ 0, wi ∈ N (7)

This is a nonlinear problem. The “log trick” used to transform the strict problem
to linear cannot work here, due to the summation over the events.

The two problems model different verification goals. The strict problem models
the goal of hitting every event with a high probability. Here we are ready to invest
many test runs to cover the most hard-to-hit events (i.e., events with a low hit
probability). This results in large test policy solutions due to the many runs needed
to target these hard-to-hit events. The average problem, on the other hand, allows us
to leave some of these hard events not covered, leading to smaller solutions.

To solve the strict policy problem, we can use linear programming algorithms
and commercial solvers like [27]. For the average algorithm, we suggest the greedy
algorithm described in Algorithm 3, which can be thought of as a probabilistic
version of the set-cover problem greedy algorithm. At each step, the algorithm

Data Analytics and Machine Learning for Coverage Closure 207

computes the potential contribution of each test-template to the average hit prob-
ability of all the events, and chooses the test-template that gives the maximal added
value. It is important to note that the marginal potential contribution of a test-
template decreases as its weight in the policy increases. Furthermore, the potential
contribution of any test-template needs to be computed at each iteration, since the
current policy (wi) is updated on each iteration. The complexity of the greedy
algorithm is |w| · |E| · |T |. Practically, for big TAC matrices, finding a policy for
a strict solution is efficient (less than 1 min), while for the average problem, very
large policy computations can take several hours.

We suggest two more practical improvements to the greedy algorithm. First, we
add the size parameter, which allows us to limit the size of the returned policy.
Second, we saw that in many cases, the same test-template is selected for a few
consecutive times. Hence, after we find the best test to improve our policy average
probability, we add it K times instead of one. Although this may impact the output
policy, it can dramatically improve performance. In our solution, we use K = 10.
This factor reduces the runtime of the algorithm by almost a factor of 10, and while
it increases the number of times most tests are used in the policy, for most tests and
for the entire policy size, the change is relatively small.

We are now ready to map verification goals, which are described by coverage
goals, as optimization problems, to find optimized test policies.

4.1.2 Mapping Verification Goals to TAC-Optimized Test Policies

Light Regression for a New Model Building a new model is a task frequently
done during the verification cycle. A new model includes bug fixes, alongside new
features in the design and in the test bench. As CI/CD (continuous integration and
continuous deployment) methodology becomes common practice, the frequency
of releasing a new model can reach several times a day. When building a new
model, it is important to quickly confirm that it is not broken and can be used
by the entire team. This can be achieved by covering events from all features and
coverage models; no specific event is important. The proper regression suite for
this task includes the entire coverage space, with a relatively low value for average
hit probability (e.g., 50%), and is based on the average algorithm. The resulting
regression suite should contain a small number of test instances (this can also be
a parameter for the average algorithm), so it can be executed quickly and provide
immediate feedback on broken models. An improvement to this policy can look at
the areas of the design that were modified from the last stable model, and allocate
part of the CI/CD testing budget to it. Using TAC for this goal requires mapping
the design changes into the coverage space. Once this mapping is provided, we may
again create another light regression, using the average problem with relatively low
value for average hit probability (e.g., 50%).

Wide Regression When approaching a major milestone, it is important to ensure
that everything that was verified still works. A common way to achieve this is by re-

208 R. Gal et al.

Algorithm 3 Greedy algorithm for optimized test policy (average problem, Defini-
tion 2)

procedure FINDOPTAVGPOLICY(T ,E,�)

// Inputs: A test templates set for selection T, target events E, target average probability ψ

// Output: A test policy w = (w1, ..., w|T |), average probability avgP and policy size tpSize

// Initialization
w = (0)
for each event j do

Pj = 0

avgP = 0
tpSize = 0

// Execution
while (avgP < �) do

for each testi do
di =∑j pi,j (1 − Pj)

k = argmax(di)

// Update policy
wk = wk + 1
for each eventj do

// update Pj assuming we run test k

Pj = 1 − (1 − Pj)(1 − pk,j)

// Update average probability and policy size
avgP = 1

|E|
∑

j Pj

tpSize+ = 1

Return W, avgP, tpSize

hitting all coverage events that were hit in the past. For this goal, we use a regression
suite based on the entire coverage space, along with all the test-templates. To ensure
high coverage, we use the strict optimization policy of Definition 1 with a high hit
probability threshold � (e.g., 90%).

This policy raises questions regarding the test-templates that are left aside; this
may be more than half of the test-templates. Are these test-templates needed or
are they redundant given the selected policy? We claim that the answer is complex
since not all the information is given by the coverage. For example, test-templates
that found bugs, or are easy to debug, may still be valuable. Nevertheless, the data
provided by the optimization engine is a valuable input for the decision to remove
redundancy from the regression.

Optimized Policy to Verify a Feature Following a bug fix, it is important to run
a thorough regression on the feature related to the bug. The proper regression suite
is based on the coverage models related to the feature, uses the strict optimization
policy, and has a high hit probability (e.g., 90%).

Data Analytics and Machine Learning for Coverage Closure 209

Covering Hard-to-Hit Events Hard-to-hit events are events that were rarely hit.
Our definition for hard-to-hit events is events that have been hit less than 100 times
in the last 2 weeks. This means that not enough exploration was done surrounding
these events and there is a higher probability of unexposed bugs there. Therefore, it
is important to hit hard-to-hit events more often. To do that, one needs to create
a regression suite that focuses specifically on these hard-to-hit events. This can
be achieved by selecting these events as the coverage goal and using the strict
optimization policy.

Note that there can be several reasons for events to be lightly hit. We may have
a good test-template for the event (i.e., hitting it with high probability) that was
not run enough times. However, it may also be that the best test-template to hit
these events did run many times, but hit the event with very low probability. Many
events of the second type will yield a very big optimized policy that is sometimes
not feasible for the team to run. In this case, the verification team has to improve
the test suite, either by improving an existing test-template or by writing a new one.
From our experience, the latter is almost always the case.

A TAC-optimized policy can still help the team save valuable time. Instead of
the strict algorithm, we use the average algorithm to create a policy with a given
budget of test runs. This policy will be biased toward the easier hard-to-hit events.
Covering these events in a sufficient way, within a limited budget, means that the
verification team can focus on the events that are hardest to hit. Figure 10 shows the
impact of using this policy for the core-level verification of a high-end processor.
It can be seen that within 12 days of running this policy, the number of lightly hit
events was reduced by over 25%.

Usage results show that using the hard-to-hit policy not only improves the
coverage of the target events, it usually hit events that were never hit before. This
is a result of the likelihood property of events described in Sect. 4. Running more
test-templates that hit lightly hit events can also increase the probability of hitting
their close neighbor events. This property lies at the heart of our CDG solution
described in Sect. 4.2. Furthermore, this policy has already found many bugs; some
declared by the team as quality bugs. This is an indication of the quality of the
coverage, since this policy steers the generation to exercise areas in the design that
were lightly tested.

4.2 Coverage-Directed Generation

So far, we discussed methods to optimize test-template selection and scheduling
to advance coverage goals. None of these methods modified the test-templates
themselves, and their impact is thus inherently limited. If all existing test-templates
have zero probability of hitting a given coverage event, changing test-template
scheduling alone will not help. Coverage-directed generation (CDG) [44] is a
generic name used for a multitude of techniques that create tests or test-templates
for hitting uncovered events.

210 R. Gal et al.

Fig. 10 The impact of running TAC hard-to-hit policy, on the core-level verification of high-end
processor

Over the last decades, CDG has received a lot of attention in both academia
and industry, due to its huge potential to preserve verification resources. Early
CDG papers showed encouraging results; however, none of them matured into an
industrial solution. This is due to scalability issues, usage complexity, and having
DUV-specific components that limit the generality of the solution. In general,
approaches for CDG can be classified into two main categories: model-based CDG
[36, 44] and data-driven CDG [12, 42, 43, 45].

In model-based CDG, a model of the DUV is used to generate test instances
or test-templates. Reference [36] uses a formal architecture model, while [44] uses
a micro-architecture model. Both techniques failed to scale due to the limitations
of formal methods. In addition, these techniques require the model definition to be
relatively accurate in order to hit hard events, making its definition a complex task
that requires high maintenance during a project’s lifetime.

In data-driven CDG, the system discovers and learns the complex relations
between the test-template parameters and the coverage events. Reference [45] uses
Markov chains to capture the relationship, where the chain is design and domain
specific. Reference [42] uses a genetic algorithm approach to generate new test
instances. One major problem with this method is how it handles the validity
of the evolutionary tests. Reference [12] uses Bayesian networks to guide the
input generation. While the network weights are learned automatically, the network
topology is DUV-specific and requires domain knowledge.

Fuzzing techniques are another option that originated in the software testing
realm. Reference [33] suggests using this to mutate existing test instances. This
technique requires changes in the DUV and has limitations regarding the validity of
the tests created.

In the rest of this section, we describe a recent field-proven approach first
described in [21], called AS-CDG, which casts the CDG problem as an optimization

Data Analytics and Machine Learning for Coverage Closure 211

Fig. 11 Representing a test-template as a test-template vector

problem. This approach assumes that for a given group of coverage events, a
candidate test template was already chosen, e.g., using the methods described in
Sect. 4.1. Furthermore, it assumes the candidate test-template has a set of parameters
or directives that may affect its probability of hitting the target coverage events.
Finally, it assumes that each parameter is a set of value-weight pairs. When the
random stimuli generator needs to make a random decision related to a given
parameter, it uses the weights as a distribution function for selecting random values.
AS-CDG attempts to find the weights that maximize the probability of hitting
the target coverage events. By modifying only weights, the test validity is easily
ensured.

We first formally define the problem of tuning test-template parameters to
maximize their probability of hitting target events. We then describe two techniques,
namely, random sampling and optimization, which AS-CDG uses to solve this
parameter-tuning problem. Finally, Sect. 4.3 presents utilization of machine learning
algorithms to further improve the overall flow.

4.2.1 Problem Definition

We assume each test-template t comprises a set of parameters {p1, p2, . . . , pk}.
Each parameter pi can be assigned with a set of values {vi,1, . . . , vi,mi

}, and each
value vi,j is associated with a weight wi,j that corresponds to the probability
of choosing this value. The weights of all values of a given parameter define a
distribution space; they are all nonnegative and their sum is 1.

The optimization process in AS-CDG starts from a given test-template torig , and
modifies only its weights to produce mutant test-templates. We can therefore think
of any test-template generated in this process as a vector of weights, as demonstrated
in Fig. 11. Note that the sum of each parameter’s weights is 1. Thus, the objective of
the optimization process is to find the weight vector that maximizes the probability
of hitting target events.

212 R. Gal et al.

Let C = {c1, . . . , cm} be the set of coverage events for the DUV. Running θ(t),
a test-instance generated from some test-template t , produces a coverage vector
s(θ(t)) = {s1, s2, . . . , sm}, sj ∈ {0, 1}, where sj indicates whether event cj was
hit by θ(t). Generating a test instance from a test-template involves many random
choices, using the distributions defined by the weights. Hence, the outcome of two
test instances, s(θ1(t)) and s(θ2(t)), may not be equal. To this end, e(t), the expected
value of hitting the events, and eN(t), the empirical expectation of N test instances
generated from t , are given by

e(t) = E[s(θ(t))]

eN(t) = 1

N

N∑

i=1

s(θi(t))

While ∀j, sj ∈ {0, 1}, the vectors e(t) and eN(t) contain real values in the
interval [0, 1], where the j -th values are the probability and estimated probability
of the event cj being hit by a test instance generated from template t . Clearly,
e(t) cannot be directly observed or calculated and so we must rely on its sampled
estimation, eN(t). This estimation is subject to sampling noise, which may depend
on the number of samples N or the specific template t , and may even change from
one coverage event to another.

Consider a single target event cj for which we would like to maximize the
probability of it being hit. The goal of AS-CDG would be to find the test template
tmax
j that is a variant of torig and maximizes the probability of hitting cj . That is,

tmax
j = argmax

t
ej (t) (8)

As mentioned before, ej (t) is unknown. We therefore try to maximize its sampled
estimation eN

j (t). Of course, we must ensure that sampling noise does not disturb
the optimization process and does not distort our results.

4.2.2 Approximated Target Function

Noise is not the only hurdle the optimization procedure will have to overcome.
Because our target events are exactly those events that were not yet hit (or were
very rarely hit), it is likely that most variants of our original test template torig will
also have nearly zero probability of hitting these events. In other words, for most
variants, eN

j (t) is likely to be very small or even zero.
This means that any search or optimization technique is doomed to aimlessly

wander in a mostly “flat” landscape. The presence of sampling noise makes this
hurdle even worse. Weak signals suffer from an unfavorable signal-to-noise ratio,
which can divert search algorithms from the right direction.

Data Analytics and Machine Learning for Coverage Closure 213

To overcome this problem, AS-CDG defines an approximated target that provides
a stronger signal. This approximated target is based on the coverage of events that
are in strong correlation with the target events (a.k.a. neighbor events) and that are
easier to hit. The idea, which mimics the work of verification experts, is that by
improving the probability of hitting these neighbors, we exercise the relevant area
in the DUV. This, in turn, increases the probability of hitting the target event itself.
Once again, this is a result of the likelihood property of events described in Sect. 4.

There are many possible ways to automatically find the neighbors of a coverage
event. For example, in [45], the natural order of buffer utilization is used to learn
how to fill a buffer. Reference [12] exploits the structure of a cross-product coverage.
In [19], formal methods are used to find a set of neighboring events with positive
and negative information regarding the probability of a test hitting the target event.

The above methods provide a set of relevant coverage events {cj1 , . . . , cjn} that
include both target events and neighboring events. The methods may also provide
coefficients {a1, . . . , an} for the set of events, indicating the importance of each
event in improving the probability of hitting the target events. For example, when
trying to hit a buffer-full event, the events describing the buffer’s fill level may have
larger coefficients assigned to events that indicate the buffer is fuller. The goal of
the optimization process is to find the test template tmax that is a variant of torig and
maximizes the approximated target function. That is,

tmax = argmax
t

[
n∑

k=1

ak · eN
jk

(t)

]

(9)

Note that using a larger set of more-easily hit coverage events can also help us
in selecting torig , as the available hit statistics are now much more significant. This
makes the techniques described in Sect. 4.1 more reliable.

4.2.3 Random Sample

A lightweight search technique performs a random sample of the parameter settings
and measures the statistical estimate for the approximated target on each sampling
point. In the random sampling process, we create J random test-templates that
uniformly span the weights defined in torig . We then generate and simulate N test
instances from each template. The coverage obtained from the simulations is then
used to estimate the probabilities of hitting each event cji

by each template t , and to
calculate the approximated target function according to Eq. 9.

The random sample requires J × N simulations, and while its probability of
hitting the actual target events is low, it serves two purposes. First, the results of
this step can be used to perform sensitivity analysis on the relevant parameters, to
check if there are parameters that do not affect the relevant coverage events or have
a minimal effect. Then, such parameters can be removed if the number of relevant
parameters is too high.

214 R. Gal et al.

A second purpose of the random sample is to find a good starting point for the
subsequent optimization step. Specifically, the optimization step can begin with the
test-template that reaches the highest target-function value. This good starting point
can save the optimization algorithm many iterations of wandering in an almost flat
area reached by a random start. This makes the investment of J × N simulations
worthy.

Moreover, as shown in [21], the random sampling itself, which uses weights
that were not considered by the verification team, often improves the hits of lightly
hit neighboring events. In some cases, it even hits some never-hit target events.
Figure 14 shows such a case.

4.2.4 Optimization

At the heart of AS-CDG lies an optimization algorithm that searches for test-
templates to maximize the probability of hitting each of the target events. While
casting CDG as an optimization problem is natural, there are two main challenges
that complicate the use of optimization techniques for CDG. The first challenge
is the nature of the objective function. As explained earlier, we do not have
direct access to the objective function. Instead, we must rely on an estimate of
the function obtained from simulations. Therefore, commonly used optimization
methods that rely on first-order derivatives (gradient methods) and second-order
derivatives (Hessian methods) of the objective function cannot be applied. To
address this challenge, we rely on derivative-free optimization (DFO) methods [8].
These methods require only samples of the objective function itself, without the
need to calculate its derivatives. However, this leads to the second challenge, which
is the unknown dynamic noise in the observed objective value. To solve both
challenges, the implicit filtering algorithm can be used. This is a DFO algorithm,
known to work well on noisy target functions. Indeed, it was proven to be efficient
in CDG settings [17].

Algorithm 4 describes the implicit filtering algorithm. The algorithm starts with
t0, the best random sample from the random sampling step. At each iteration of
the algorithm, it selects n random directions and samples the objective function at
points with distance h (a.k.a. step-size or stencil) from the current center in each of
the selected directions. If the best value of these samples is better than the value at
the center, the center is moved to that point and the process repeats. Otherwise, when
the best result is at the center, the distance h is halved and the process repeats. This
is done to reduce the possibility of overshooting the maximum. The algorithm stops
when a stopping criterion is met. The stopping criterion is usually a combination
of the number of iterations, the current stencil value, and the hit probability of the
target event.

The implicit filtering algorithm has several hyperparameters: n, the number of
directions used in each iteration; h, the initial stencil; and the stopping criteria. Each
of these hyperparameters can affect the convergence rate of the algorithm in terms
of iterations and number of samples.

Data Analytics and Machine Learning for Coverage Closure 215

Algorithm 4 Implicit filtering algorithm
procedure IF(n,N, h, t0, stopping criteria)

repeat
best ← TN(t0)

next_center ← t0
D ← vector of n random directions
for each direction d in D do

t ← (t0 + d × h)
if TN(t) > best then

best ← TN(t)

next_center ← t

if next_center == t0 then
h ← h/2

t0 ← next_center
until stopping criteria is met
return t0

When dealing with dynamic noise, we make two small modifications to the base
algorithm. First, we use another hyperparameter N , the number of test instances to
create from each test template. Increasing N reduces the effective noise and thus can
lead to a faster convergence. On the other hand, increasing N increases the number
of simulations needed per iteration. It is also a common practice to resample the
center point in each iteration, even though it was sampled in the previous iteration.
This resampling is used to reduce the effect of extremely high noise.

At each iteration of the implicit filtering algorithm, it creates n+1 test-templates,
one for each of the n random directions and one for the center. Each of these
templates is simulated N times, and the empirical expectation eN(t) for each of
the events is calculated. This result is used to calculate an estimation for the
approximated target, which is in turn used to calculate the starting point for the
next iteration. The output of the algorithm is the best template found in the last
iteration. Figure 12 shows how the optimization algorithm interacts with an existing
simulation environment.

Figure 13 shows the maximal value of the target function per optimization
iteration. The data refers to an optimization process that was applied to a group
of coverage events in an L3 cache unit of a high-end processor. It can be seen that
the optimization process makes gradual progress toward a local maximum value.
The peak at iteration 10 is the result of sampling noise. As desired, the optimization
algorithm was able to absorb this disturbance and get back on its track.

4.2.5 Combining Random Sampling and Optimization

As mentioned before, random sampling is a relatively low-cost, low-precision tech-
nique. Nevertheless, AS-CDG applies random sampling as a preliminary stage to
the high-cost, high-precision optimization process, as this brings many advantages.

216 R. Gal et al.

Fig. 12 Optimization flow – the two bottom stages are part of the existing simulation environment

Fig. 13 Optimization progress

The main advantage is providing a good starting point for the optimization process,
to significantly increase its chances of converging to a higher local maximum.

Figure 14 shows the results of applying the overall AS-CDG flow to an L3 cache
unit of a high-end processor. The table shows hit counts and hit rates at the various
phases for a given family of coverage events. The approximated target function has
set identical coefficients for all events. The color coding follows a convention where
an event with a hit count smaller than 100 is considered lightly hit and is colored in
orange. In addition, events with a hit rate smaller than 1% are also considered lightly

Data Analytics and Machine Learning for Coverage Closure 217

Fig. 14 Hit statistics for a family of events in an L3 cache unit of a high-end processor

hit. Never-hit results are colored in red. All other results (i.e., well-hit events) are
colored in green.

The first two columns after the event name column show hit counts and hit rates
before AS-CDG was applied. These are the results of applying mainstream unit
simulation for several weeks, utilizing multiple test-templates. Using simulation
statistics from TAC and expert advice, a test-template torig was selected, with
parameters that should best hit the family of events at hand. Then, random sampling
was applied, producing 210 test templates; each was simulated 100 times. This gives
the numbers in the third and fourth columns. The next two columns show hit counts
and hit rates after running the optimization phase. The starting point for this phase is
the best test-template from the sampling phase (i.e., the one with the highest score
for the target function). Finally, the last two columns show the results of running
the best test-template from the optimization phase multiple times. Adding such best
test-templates to the daily regression should be very beneficial.

These results show that the suggested flow improves the hit counts and hit rates
for both families of events. Moreover, each phase improves upon its predecessor.
Starting with 5 well-hit events and 11 never-hit events (looking at hit counts),
sampling phase alone, using just 21,000 simulations, was able to turn 7 uncovered
events into well-hit events and 3 uncovered events into lightly hit events. The
optimization phase was able to then turn the 3 lightly hit events into well-hit
events and the remaining uncovered event into a lightly hit event, using just 30,000
simulations. Finally, the best test-template shows significantly better hit rates.

218 R. Gal et al.

Algorithm 5 Event after event implicit filtering (EE-IF)

1: Use random sampling, T = [t�1 , . . . , t�M] and compute, E = [e�
1 , . . . , e�

M]
2: Set I to the events that are not hit above the threshold τ

3: while I �= ∅ do
4: Find e, the event in I with the highest probability in E.
5: Use implicit filtering to improve the hit probability of e to above τ

6: Augment the test-templates used in the implicit filtering to the matrices T and E

7: Remove from I all the events that are hit above the threshold τ

4.3 CDG for Large Sets of Events

In the previous section, we showed how DFO algorithms can be used to hit
previously uncovered or lightly covered events. We also showed that the implicit
filtering algorithm (Algorithm 4) nicely covers single events or small groups of
related events. Often, during coverage closure, the verification team is required
to improve the coverage of larger sets of events that are not necessarily related.
In this section, we extend the implicit filtering CDG algorithm to handle large
sets of coverage events and show how machine learning can be used to improve
the performance of the implicit filtering algorithm specifically, and DFO search
algorithms in general. Note that we slightly change the basic search problem here
from finding the optimal test-template that maximizes the probability of hitting the
target event to finding a test-template that hits the target event with a probability
greater than a given threshold τ . This modification can be easily achieved by
changing the stopping conditions in line 14 of Algorithm 4.

4.3.1 Event After Event Implicit Filtering for Multiple Targets

The simplest method for covering multiple unrelated events is to apply the implicit
filtering algorithm to each of these events serially. Algorithm 5 provides some
small improvement to this naive approach. Specifically, the algorithm keeps all the
coverage results of all test-templates T used throughout its iterations in a matrix E.
The algorithm uses these results to remove any event covered above the threshold
τ from the list of remaining target events I, even if they are not targeted by the
implicit filtering algorithm.

At each iteration of the algorithm, it selects from I, the set of remaining targets
the event with the maximal probability and applies the implicit filtering algorithm
to it. The implicit filtering algorithm starts its search from the test-template that
best hits this event so far and searches for a test-template that hits the event with
probability greater than τ . After the implicit filtering algorithm finishes, all events
that are hit with probability greater than τ are removed from I, and the algorithm
continues until I is empty.

In line 4, the algorithm selects the remaining target with the highest hit
probability as the next event to improve. This is a greedy approach that attempts to

Data Analytics and Machine Learning for Coverage Closure 219

eliminate the easy targets first. This approach can be replaced with other approaches,
such as randomly selecting the next event or selecting the events from the most
difficult to the easiest. Our experimental results show that the greedy approach
works best.

Within the optimization process, the algorithm collects a relatively large amount
of simulation data that is added to T and E, but it uses this data very lightly. In the
next section, we discuss how to use this data to learn more about the search space
and speed up the implicit filtering algorithm.

4.3.2 Machine Learning Accelerated Implicit Filtering

To benefit from the collected data and reduce the number of simulations needed,
we can replace the DUV simulation with a machine learning model that captures
the relation between test-templates and the coverage. To this end, machine learning
techniques, such as deep neural networks (DNNs) [15], can be used to build and
train DNN models on the collected data to help cover new target events.

Building and training such a model presents many challenges. First, training
an accurate model requires many data samples. Therefore, such a solution may
not be more effective than optimizing the DUV directly. In addition, the flow of
the verification information is from test-templates to coverage, while the flow of
a generative CDG is in the other direction from coverage to test-templates. This
challenge can be handled using machine learning techniques that work in both
directions such as Bayesian networks [12], and using generative methods such
as generative adversary networks (GAN) [23]. Another alternative is to construct
the ML model in the CDG flow from coverage to test-templates, instead of the
verification flow direction. The final challenge is the need to handle previously
uncovered events. This can be handled using approximated targets (see Sect. 4.2.2)
or by exploiting the structure of the coverage model [13]. The machine learning
literature describes several techniques for one-class classification [31], but these
techniques cannot handle the large number of missing labels in CDG. It is due
to these challenges that generative (or direct) CDG never became a common
practice, although it received considerable attention in the research community (e.g.,
[12, 26]).

We have a different approach for using machine learning models with CDG.
Instead of using the machine learning model as the main ingredient of the CDG
system, the machine learning model is used as a helper for the DFO search
algorithm. Specifically, we show how a DNN trained on the T and E matrices
collected during the execution of Algorithm 5 can help the implicit filtering
algorithm progress faster and use fewer simulations. A detailed description of the
method can be found in [18].

The DNN can help the search algorithm in two ways. First, if the DNN model is
highly accurate, it can directly provide a test-template that hits the target event well
enough by finding the test-template that maximizes the probability of hitting the
event in the model. This can be done, for example, using gradient decent methods.

220 R. Gal et al.

Algorithm 6 DNN accelerated search algorithm (EE-DNN-IF)

1: Use random sampling, T = [t�1 , . . . , t�M] and compute, E = [e�
1 , . . . , e�

M]
2: Set I to the events that are not hit above the threshold τ

3: while I �= ∅ do
4: Train the DNN using T and E

5: Find e, the event in I with the highest probability in E.
6: Using the DNN, find the test-template tDNNbest that maximizes the probability of hitting e

7: Simulate tDNNbest
8: if The hit probability of e by tDNNbest ≤ τ then
9: Use the modified implicit filtering to improve the hit probability of e until it is above τ

10: Augment the test-templates used for the matrices T and E

11: Remove from I all the events that are hit above the threshold τ

Because of the small amount of data available for training the model, we don’t
expect this to work very well. Still, the cost of adding this predicted test-template is
small compared to the number of simulations required by the search algorithm, so
using this test-template can be beneficial.

The second method in which the DNN model can help the implicit filtering
algorithm is by helping it select its search candidate in each iteration. Here, the
DNN model replaces the random selection of the k direction used by the implicit
filtering algorithm with a set of the best directions predicted by the model, out of a
much larger set of random directions. It is easy to show that if the DNN model is
even slightly better than random, this method for selecting the direction speeds up
the implicit filtering and causes it to require fewer simulations to reach its target.
To address the case when the DNN model is worse than random, some of the k

directions (say half) are selected randomly. This guarantees that the implicit filtering
algorithm converges, although at a slower pace, even with a bad DNN.

Algorithm 6 shows the accelerated algorithm. The emphasized lines in the
algorithm are the changes from Algorithm 5 that use the DNN model. Specifically,
in line 4 the DNN model is trained in each iteration of the algorithm. In lines 6–7,
the optimal test-template is obtained from the model and simulated. If the simulation
results are good, the call to the implicit filtering algorithm is skipped. Otherwise, in
line 8, the modified implicit filtering that uses the DNN model to select directions
is used.

In many aspects, the proposed method resembles active learning [41] techniques.
In both cases, the model is used to generate the next data points that will be used
to improve its quality. The main difference between the methods is that in active
learning, the main goal of the generated data points is to explore the input space
to improve the quality of the model. In our method, the goal of the generated test-
templates is to exploit the model for our coverage goals, and the exploration aspect
is merely an important side effect.

Data Analytics and Machine Learning for Coverage Closure 221

4.3.3 Experimental Results

To test the ability of the accelerated search algorithm in Algorithm 6 to improve the
performance of the EE-IF algorithm (Algorithm 5), we deployed an experimental
environment that used an abstract high-level model of a simple in-order processor
called NorthStar. The coverage model used in the experiment was a cross-product
of the state of several pipe stages in the two arithmetic units of the processor. The
coverage model contained 185 legal events. The goal of CDG was to hit each of
these events with a probability of at least 0.25.

The experiment measured the number of events left uncovered as a function
of the number of test-templates used. It compared between four different CDG
algorithms:

1. Random—Generate random tests to cover events
2. EE-IF—Use the event after events implicit filtering (Algorithm 5)
3. EE-DNN—Use the DNN to eliminate events one after the other without implicit

filtering, that is, Algorithm 6 without the if block in line 8
4. EE-IF-DNN—Use the DNN accelerated search algorithm (Algorithm 6)

Figure 15 shows the experiment results. The results are the average of five runs
of each algorithm. The results show that the EE-IF-DNN algorithm outperforms the
other algorithms. It covers all the events with about half the number of test-templates
needed by the EE-IF algorithm, while the other two algorithms leave many events
uncovered. This indicates that the DNN model is able to assist the implicit filtering
algorithm in its search. The results also show that when a small number of test-
templates are used, the DNN alone in the EE-DNN algorithm is better than EE-IF.
But when more test-templates are used, the progress of the DNN slows significantly
while EE-IF continues to progress and starts to perform better than the DNN. This is
caused by the limited ability of the DNN to find good test-templates for hard-to-hit
events. Note that the addition of the DNN have a negligent affect on the runtime of
the algorithm because the simulation time is much longer than the time it takes to
train the DNN.

Reference [22] shows that a surrogate DNN can be used as an accelerator. This
is the case not just for the implicit filtering algorithm but also when using other
stateless DFO algorithms, such as simulated annealing (SA), genetic algorithms
(GA), and particle swarm (PS).

5 Conclusions

Coverage is one of the main measures for the quality of the verification process
because it points the design and verification teams to areas in the design that are
not verified thoroughly. Therefore, coverage closure, or the process of advancing
coverage goals, plays a major role in the verification process. To achieve coverage
closure, the verification team must first analyze the coverage data to understand

222 R. Gal et al.

Fig. 15 Comparing the different algorithms, starting from the same initial 100 random test-
templates

the coverage picture and identify weaknesses in it. Then, it needs to close holes
identified by the coverage analysis.

The vast amount of coverage data produced by the verification process calls
for the use of data science techniques to help the verification team in achieving
its coverage closure goals. In this chapter, we presented several techniques and
tools that utilize data science methods for coverage closure goals. In the first part
of the chapter, we focused on descriptive analysis that helps extracting concise
information out of the coverage data when the coverage space is structured. We also
showed how machine learning clustering technique combined with domain-specific
optimizations can be used to find structure in coverage models when this structure
is not explicitly defined. In the second part of the chapter, we used statistics,
optimization techniques, and machine learning to exploit the relation between test-
templates and coverage to help closing coverage holes.

All the tools and techniques described in this chapter are integrated in the IBM
verification process and are used in the verification of all IBM processor systems.
Many of these techniques are also used in many other places. For example, the cross-
product analysis techniques described in Sect. 2 are integral part of most coverage
analysis and visualization tools and tools that exploit the relations between test-
templates and coverage start to emerge.

While data science methods already play an essential role in the coverage closure
process, they can still do a lot more. Coverage-directed generation (CDG) is one
area where more data analytics and machine learning can help improving the overall
results. Despite the recent advancements in CDG techniques, they are still far from

Data Analytics and Machine Learning for Coverage Closure 223

reaching their potential. Several aspects of the CDG process can be improved to
increase its capabilities. These include enhancing the capabilities of CDG engine by
introducing new analysis and learning techniques that better explore the relations
between test-templates and coverage and helping identifying whether event is not
hit due to missing test or is impossible to hit, adapting verification environments
to better utilize CDG, and making the use of CDG user friendlier. In addition, data
analytics and machine learning techniques can be used to improve the definition of
coverage plans and coverage models.

References

1. Aharoni, M., Asaf, S., Fournier, L., Koyfman, A., Nagel, R.: FPgen - a deep-knowledge
test generator for floating point verification. In: Proceedings of the 8th High-Level Design
Validation and Test Workshop, pp. 17–22 (2003)

2. Arar, M., et al.: The verification cockpit - creating the dream playground for data analytics
over the verification process. In: Proceedings of the 11th Haifa Verification Conference, pp.
104–119 (2015)

3. Asaf, S., Marcus, E., Ziv, A.: Defining coverage views to improve functional coverage analysis.
In: Proceedings of the 41st Design Automation Conference, pp. 41–44 (2004)

4. Azatchi, H., Fournier, L., Marcus, E., Ur, S., Ziv, A., Zohar, K.: Advanced analysis techniques
for cross-product coverage. IEEE Trans. Comput. 55(11), 1367–1379 (2006)

5. Birnbaum, A., Fournier, L., Mittermaier, S., Ziv, A.: Reverse coverage analysis. In: K. Eder,
J. Lourenço, O. Shehory (eds.) Hardware and Software: Verification and Testing, pp. 190–202.
Springer, Berlin, Heidelberg (2012)

6. Blei, D., Ng, A., Jordan, M.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022
(2003)

7. Carter, H.B., Hemmady, S.G.: Metric Driven Design Verification: An Engineer’s and Execu-
tive’s Guide to First Pass Success. Springer (2007)

8. Conn, A., Scheinberg, K., Vicente, L.: Introduction to Derivative-Free Optimization. SIAM,
Philadelphia (2009)

9. Copty, S., Fine, S., Ur, S., Yom-Tov, E., Ziv, A.: A probabilistic alternative to regression suites.
Theor. Comput. Sci. 404(3), 219–234 (2008)

10. Duff, I.S., Erisman, A.M., Reid, J.K.: Direct Methods for Sparse Matrices. Oxford University
Press, USA (1986)

11. Elakkiya, C., Murty, N., Babu, C., Jalan, G.: Functional coverage - driven uvm based jtag
verification. In: 2017 IEEE International Conference on Computational Intelligence and
Computing Research (ICCIC), pp. 1–7 (2017). https://doi.org/10.1109/ICCIC.2017.8524556

12. Fine, S., Ziv, A.: Coverage directed test generation for functional verification using Bayesian
networks. In: Proceedings of the 40th Design Automation Conference, pp. 286–291 (2003)

13. Fine, S., Fournier, L., Ziv, A.: Using bayesian networks and virtual coverage to hit hard-to-
reach events. Int. J. Softw. Tools Tech. Trans. 11(4), 291–305 (2009)

14. Foster, H.: The 2020 wilson research group functional verification study part 8 IC/ASIC
resource trends. https://blogs.sw.siemens.com/verificationhorizons/2021/01/06/part-8-the-
2020-wilson-research-group-functional-verification-study

15. Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning, vol. 1. Springer
Series in Statistics. Springer, Berlin (2001)

16. Gal, R., Kermany, E., Saleh, B., A.Ziv, Behm, M.L., Hickerson, B.G.: Template aware
coverage: Taking coverage analysis to the next level. In: Proceedings of the 54th Design
Automation Conference, pp. 36:1–36:6 (2017)

 17338 44455 a 17338 44455 a

https://doi.org/10.1109/ICCIC.2017.8524556

 7066
51097 a 7066 51097 a

https://blogs.sw.siemens.com/verificationhorizons/2021/01/06/part-8-the-2020-wilson-research-group-functional-verification-study
https://blogs.sw.siemens.com/verificationhorizons/2021/01/06/part-8-the-2020-wilson-research-group-functional-verification-study

224 R. Gal et al.

17. Gal, R., Haber, E., Irwin, B., Saleh, B., Ziv, A.: How to catch a lion in the desert: on the solution
of the coverage directed generation (CDG) problem. Optim. Eng. (2020)

18. Gal, R., Haber, E., Ziv, A.: Using dnns and smart sampling for coverage closure acceleration.
In: Proceedings of the 2020 ACM/IEEE Workshop on Machine Learning for CAD, pp. 15–20
(2020). https://doi.org/10.1145/3380446.3430627

19. Gal, R., Kermany, H., Ivrii, A., Nevo, Z., Ziv, A.: Late breaking results: Friends - finding related
interesting events via neighbor detection. In: Proceedings of the 57th Design Automation
Conference (2020)

20. Gal, R., Simchoni, G., Ziv, A.: Using machine learning clustering to find large coverage holes.
In: 2020 ACM/IEEE 2nd Workshop on Machine Learning for CAD (MLCAD), pp. 139–144
(2020). https://doi.org/10.1145/3380446.3430621

21. Gal, R., Haber, E., Ibraheem, W., Irwin, B., Nevo, Z., Ziv, A.: Automatic scalable system for
the coverage-directed generation (CDG) problem. In: Proceedings of the Design, Automation
and Test in Europe Conference (2021)

22. Gal, R., Haber, E., Irwin, B., Mouallem, M., Saleh, B., Ziv, A.: Using deep neural networks
and derivative free optimization to accelerate coverage closure. In: Proceedings of the 2021
ACM/IEEE Workshop on Machine Learning for CAD (2021)

23. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016)
24. Grinwald, R., Harel, E., Orgad, M., Ur, S., Ziv, A.: User defined coverage - a tool supported

methodology for design verification. In: Proceedings of the 35th Design Automation
Conference, pp. 158–165 (1998)

25. Hajjar, A., Chen, T., Munn, I., Andrews, A., Bjorkman, M.: High quality behavioral verification
using statistical stopping criteria. In: Proceedings of the 2001 Design, Automation and Test in
Europe Conference, pp. 411–418 (2001)

26. Hsiou-Wen, H., Eder, K.: Test directive generation for functional coverage closure using
inductive logic programming. In: Proceedings of the High-Level Design Validation and Test
Workshop, pp. 11–18 (2006)

27. IBM—ILOG: https://www.ibm.com/products/ilog-cplex-optimization-studio. [Online;
accessed 5-August-2015]

28. Imková, M., Kotásek, Z.: Automation and optimization of coverage-driven verification. In:
2015 Euromicro Conference on Digital System Design, pp. 87–94 (2015). https://doi.org/10.
1109/DSD.2015.34

29. James, G., Witten, D., Hastie, T., Tibshirani, R.: An Introduction to Statistical Learning with
Applications in R. Springer Text in Statistics. Springer (2013)

30. Karnaugh, M.: The map method for synthesis of combinational logic circuits. Trans. Am. Inst.
Electr. Eng. 72(9), 593–599 (1953)

31. Khan, S.S., Madden, M.G.: A survey of recent trends in one class classification. In: Coyle, L.,
Freyne, J. (eds.) Artificial Intelligence and Cognitive Science, pp. 188–197. Springer, Berlin,
Heidelberg (2010)

32. Lachish, O., Marcus, E., Ur, S., Ziv, A.: Hole analysis for functional coverage data. In:
Proceedings of the 39th Design Automation Conference, pp. 807–812 (2002)

33. Laeufer, K., Koenig, J., Kim, D., Bachrach, J., Sen, K.: RFUZZ: coverage-directed fuzz testing
of RTL on fpgas. In: Proceedings of the International Conference on Computer-Aided Design,
pp. 1–8 (2018)

34. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Leen, T.K.,
Dietterich, T.G., Tresp, V. (eds.) Advances in Neural Information Processing Systems, vol. 13,
pp. 556–562. MIT Press (2001)

35. Marick, B.: The Craft of Software Testing, Subsystem Testing Including Object-Based and
Object-Oriented Testing. Prentice-Hall (1985)

36. Mishra, P., Dutt, N.: Automatic functional test program generation for pipelined processors
using model checking. In: Seventh Annual IEEE International Workshop on High-Level
Design Validation and Test, pp. 99–103 (2002)

37. Piziali, A.: Functional Verification Coverage Measurement and Analysis. Springer (2004)
38. Pyne, S., Rao, B.P., Rao, S.: Big Data Analytics Methods and Applications. Springer (2016)

 2520 4121 a 2520 4121
a

https://doi.org/10.1145/3380446.3430627

 2520 10763 a 2520 10763
a

https://doi.org/10.1145/3380446.3430621

 6283 29581 a 6283 29581
a

https://www.ibm.com/products/ilog-cplex-optimization-studio

 28107 32902 a 28107 32902
a

https://doi.org/10.1109/DSD.2015.34
https://doi.org/10.1109/DSD.2015.34

Data Analytics and Machine Learning for Coverage Closure 225

39. Reddy, C.K., Aggarwal, C.C.: Data Clustering. Chapman and Hall/CRC (2016)
40. Schubert, K.D., Roesner, W., Ludden, J.M., Jackson, J., Buchert, J., Paruthi, V., Behm, M.,

Ziv, A., Schumann, J., Meissner, C., Koesters, J., Hsu, J., Brock, B.: Functional verification of
the IBM POWER7 microprocessor and POWER7 multiprocessor systems. IBM J. Res. Dev.
55(3), 308–324 (2011)

41. Settles, B.: Active learning literature survey. Computer sciences technical report 1648,
University of Wisconsin–Madison (2009)

42. Smith, J., Bartley, M., Fogarty, T.: Microprocessor design verification by two-phase evolution
of variable length tests. In: Proceedings of the 1997 IEEE Conference on Evolutionary
Computation, pp. 453–458 (1997)

43. Tasiran, S., Fallah, F., Chinnery, D.G., Weber, S.J., Keutzer, K.: A functional validation
technique: biased-random simulation guided by observability-based coverage. In: Proceedings
of the 2001 International Conference on Computer Design, pp. 82–88 (2001)

44. Ur, S., Yadin, Y.: Micro-architecture coverage directed generation of test programs. In:
Proceedings of the 36th Design Automation Conference, pp. 175–180 (1999)

45. Wagner, I., Bertacco, V., Austin, T.: Microprocessor verification via feedback-adjusted Markov
models. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 26(6), 1126–1138 (2007)

46. Wile, B., Goss, J.C., Roesner, W.: Comprehensive Functional Verification - The Complete
Industry Cycle. Elsevier (2005)

Cell-Aware Model Generation Using
Machine Learning

Pierre d’Hondt, Aymen Ladhar, Patrick Girard, and Arnaud Virazel

1 Introduction

Digital integrated circuits (ICs) are commonly synthesized with predefined libraries
of standard cells of various nature and complexity. As the semiconductor industry
moves to increasingly smaller geometries, new types of manufacturing defects
appear and need to be targeted by industrial test flows. Conventional fault models
like stuck-at, transition, and layout-aware (e.g., bridging) fault models are becoming
less effective for ensuring desired test and diagnosis quality levels. Indeed, these
fault models only consider faults at the boundary of library cells. However, an
increasing number of defects in circuits fabricated with the most recent manufac-
turing technologies occur within the logic cell structures. They are called intra-cell
or cell internal defects [1–3]. These defects are only covered fortuitously with
conventional fault models, and hence not surprisingly, these defects are found to
be the root cause of a significant fraction of test escape [4].

Cell-aware (CAs) test and diagnosis have been proposed recently to target
those subtle defects in ICs requiring highest product quality [5–9]. The realistic
assumption under this concept is that the excitation of a defect inside a cell is

P. d’Hondt (�)
STMicroelectronics, LIRMM, University of Montpellier / CNRS, Montpellier, France
e-mail: pierre.dhondt@st.com

A. Ladhar
STMicroelectronics, Crolles, France
e-mail: aymen.ladhar@st.com

P. Girard · A. Virazel
LIRMM, University of Montpellier / CNRS, Montpellier, France
e-mail: patrick.girard@lirmm.fr; arnaud.virazel@lirmm.fr

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Iranmanesh (ed.), Frontiers of Quality Electronic Design (QED),
https://doi.org/10.1007/978-3-031-16344-9_6

227

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16344-9_6&domain=pdf

 885 49096 a 885 49096 a

mailto:pierre.dhondt@st.com

 885 52970 a 885 52970 a

mailto:aymen.ladhar@st.com

 885 56845 a 885 56845 a

mailto:patrick.girard@lirmm.fr

 10506 56845 a 10506 56845 a

mailto:arnaud.virazel@lirmm.fr

 -2016 61494 a -2016
61494 a

https://doi.org/10.1007/978-3-031-16344-9_6

228 P. d’Hondt et al.

highly correlated with the logic values at the input pins of the cell [10, 11]. A
preliminary step when performing CA test and diagnosis is to characterize each
standard cell of a given library with respect to all possible cell internal defects.
Analog (SPICE) simulations are performed to identify which cell internal defects
are detected by which cell patterns. The simulation results are encoded in a cell
internal-fault dictionary or CA model (also referred to as CA fault model or CA test
model in the literature) [12, 13].

One bottleneck of CA model generation is that it requires extensive computa-
tional efforts to characterize all standard cells of a library [14, 15]. Typically, the
generation time of cell-aware models for few hundreds of cells may reach up to
several months considering a single SPICE license. Reducing the generation runtime
of CA models and easing the characterization process are therefore mandatory to
swiftly deploy the CA methodology on industrial ICs and make it a standard in the
qualification process of silicon products [16]. To this end, machine learning (ML)
can be used to drastically accelerate the CA model generation flow.

This chapter presents a comprehensive flow experimented on industrial cell
libraries and preliminary introduced in [17]. The flow is based on a learning method
that uses existing CA models of various standard cells developed using different
technologies to predict CA models for new standard cells independently of the
technology. This is the first work to address this problem since previous works
on ML focused on cell library characterization without defect injection [18–20].
Experiments performed on a standard cell population of reasonable size (about two
thousand cells from different technology nodes and transistor sizes) show that the
generation time of CA models can be reduced by more than 99% (a few hours
instead of almost 3 months when CA models are generated using a single SPICE
license). Part of these results are extracted from [17] in which the proposed flow has
been experimented on combinational cells of industrial libraries.

The remainder of this chapter is organized as follows. Section 2 gives some
background on standard cell characterization, first for design purpose and then
for test and diagnosis purposes. The last part of the section explains why using
ML for cell characterization can help in reducing the generation time of CA
models. Section 3 presents the ML-based CA model generation flow and details
the two main steps of the flow, namely, the generation of training data and the
generation of new data. Section 4 shows how cell transistor netlists and cell internal
defects are represented and manipulated by the proposed methodology. Section 5
presents experimental results gathered on industrial cell libraries and proposes a
performance comparison with a simulation-based approach. Section 6 presents the
hybrid CAmodel generation flow developed for an industrial usage of the ML-based
methodology. Section 7 summarizes the contribution and concludes the chapter.

Cell-Aware Model Generation Using Machine Learning 229

2 Background on Standard Cell Characterization

2.1 Standard Cell Characterization for Design Purpose

Digital circuit designers use predefined standard cells to synthesize circuits with
various sizes and complexities [21–27]. As the simulation of a full circuit design can
take a huge amount of time, designers rely on standard cell characterization, a pro-
cess that produces simple models of functionality, timing, and power consumption
at the cell level. The (simplified) design and characterization flow for a standard cell
is summarized in Fig. 1. It starts with the functional specification, which describes
the logical function of the cell (AND, flip-flop, etc.) using a hardware description
language (HDL). The next step defines the cell’s transistors and their connections in
a SPICE netlist. This netlist is known as the cell’s schematic or structure. The layout
describes the physical implementation of the cell on silicon, using several layers and
materials (metal, polysilicon, etc.) [28], and is designed from the SPICE netlist. A
parasitic extraction is then performed on the obtained layout, in order to specify the
parasitic resistors and capacitors introduced in the physical implementation. The
parasitic components are appended to the SPICE transistors netlist in the detailed
standard parasitic format (DSPF).

Cell characterization for design purpose uses the generated cell descriptions
(also called cell views) to perform electrical simulations of standard cells and
extract the power and delay information, as well as the identification of timing
constraints (setup and hold times). Typically, cell characterization requires the
definition of global parameters such as process, voltage, and temperature, known
as PVT corners, and global constraints such as wire loads and time limits for
transitions. The cell schematic and layout are iteratively modified until quality

Fig. 1 Schematized process of standard cell creation and characterization

230 P. d’Hondt et al.

and constraint requirements are met in terms of functionality, timing, and power
consumption.

Once done, data describing every aspect (transition time, internal power, capac-
itance, sequential cells constraints, etc.) of the cell are written to dedicated files,
known as cell models. Using electrical simulations considering different values of
the global parameters, cell models are created to determine the behavior of standard
cells in every condition that may occur during the lifetime of the circuit.

2.2 Cell Internal Defect Universe

The first step of a standard cell characterization process for test and diagnosis
purpose (i.e., CA model generation) is to extract all potential and realistic defects
within each cell to be able to simulate their effect in a defective cell [29–33].

Figure 2 presents an example of internal defects that may occur at the cell level.
These defects can be classified into two main categories:

• Transistor defects, which are defects occurring at the transistor ports (source,
drain, gate, and bulk). These defects can be modeled as short or open defects at
the transistor ports. As illustrated in Fig. 2a, for a CMOS transistor, six short
(gate-drain, source-drain, gate-source, and each port to bulk) and three open
defects (gate, source, and drain) can be identified. These nine defects are added
to the potential defects list for every transistor in the standard cell.

• Inter-transistor defects, which are defects occurring at the interconnexion
between two different transistors. These defects can also be modeled as short
or open defects between two internal nodes. Their existence is bound to the
actual layout of the cell (e.g., two close polygons may be defectively shorted), so
inter-transistors defects require layout extraction to be identified.

Figure 3 presents an example of inter-transistor defects and their locations on the
cell layout. There are two possible solutions to extract inter-transistor defects. The
first one consists in reading the layout database of each standard cell and creating
a SPICE transistor netlist in the DSPF format including parasitic elements like
resistors and capacitors. These elements represent the list of inter-transistor defects
to be considered during the characterization. A parasitic capacitor exists between
two polygons that are supposed not to be connected. Consequently, the location of
a potential short defect and a defective resistor can become an open defect. Even if
this method is easy to apply, its main drawbacks are the huge number of parasitic
elements listed by the DSPF netlist (on average, 61 times the number of transistors
in the cell) and the fact that some of these parasitic elements cannot be considered as
realistic defect locations (e.g., the distance between two nets may be large enough
to ensure non-defective manufacturing but still described by a small value parasitic
capacitor, some layers are not sensitive to open defects but still described with their
own resistors, etc.). In addition, several parasitic elements are equivalent, and there
is no solution to recognize them without characterization (e.g., a single physical net

Cell-Aware Model Generation Using Machine Learning 231

Fig. 2 (a) Illustration of the six short defects and three open defects that can affect a CMOS
transistor’s ports, (b) example of cell internal defects in a simple structure made of various
transistors

M1 shorts

M2 shorts

PO shorts

Single CO Single Via1

Single CO

Fig. 3 Example of inter-transistor defects

is described by several serial resistors and any defect on one of these resistors is
equivalent to a defect on the whole net).

To address these limitations, a second method based on design rule checking
(DRC) can be used. This solution allows the localization of neighbored internal nets
as well as the localization of potential open defects that can be identified for the

232 P. d’Hondt et al.

Fig. 4 Conventional cell-aware model generation flow

cell characterization. The DRC-based method limits the number of potential defect
locations to 4.3 times the number of transistors in the cell, on average.

2.3 Standard Cell Characterization for Test and Diagnosis
Purpose

A typical CA model generation flow, as shown in Fig. 4, has as input a SPICE netlist
representation of a standard cell which is usually derived from a layout description,
e.g., a GDSII file. This DSPF cell netlist is then used by an electrical simulator to
simulate each potential defect against an exhaustive set of stimuli. Those stimuli
include static (one vector) and dynamic (two vectors) input patterns of the cell
(called cell patterns in the sequel). Once the simulation is completed, all cell internal
defects are classified into defect equivalence classes with their detection information
(required input values for each defect within each cell) and are synthetized into a
CA model. As standard cells may have more than ten inputs, and thousands of cells
with different complexities are usually used for a given technology, the generation
time of CA models for complete standard cell libraries of a given technology may
reach up to several months, thus drastically increasing the library characterization
process cost.

Once the CA model of a given standard cell is generated, it can be used either for
automatic test pattern generation (ATPG) or for fault diagnosis:

• ATPG usage. Using the CA models, which is a dictionary mapping cell patterns
to the cell internal faults they detect, an ATPG tool identifies for each cell in
the CUT the minimum set of stimuli detecting all cell internal defects. Then,
it generates test patterns exercising this test stimuli at the input pins of the cell
under test and ensures the fault propagation to an observation point.

• Fault diagnosis. A diagnostic tool extracts the failing and passing logic values at
the input pins of the defective cell. This information is then matched with the CA
model of the defective cell in order to identify the suspect internal defect.

Cell-Aware Model Generation Using Machine Learning 233

2.4 Cell-Aware Model Generation: A Machine-Learning
Friendly Process

Machine learning can be used to significantly accelerate the CA model generation
process. The motivation behind the use of ML is the result of several observations
made while performing comparisons between several CA models coming from
different standard cell libraries and technologies:

• Several cell internal defects, such as stuck-open defects, are independent of the
technology and transistor size [34, 35].

• For the same function, two cell-internal structures are usually quite similar for
two different technologies.

• Detection tables for static and dynamic defects, in the form of binary matrices
describing the detection patterns for each cell internal defect, are ML friendly.

• CA models may change with respect to test conditions and PVT corners. In fact,
CA model generation for the same cell with different test conditions may exhibit
slight differences. Few defects can be of different types (i.e., static or dynamic) or
may have different detection patterns. Since CAmodels are generated for specific
test conditions and can be used with different ones, it may lead to inaccurate
characterization. This inaccuracy is usually allowed in the industry since it is
marginal. This indicates that we can also tolerate few error percentages in the
ML-based prediction.

• Very simple CA models are used to emulate short and open defects, for which
resistance values are often identical for all technologies.

• A large database of CA models is usually available and can be used to train a ML
algorithm.

All these observations intuitively indicate that CA model generation through ML
is possible. However, the first challenging task is to be able to describe cell transistor
netlist as well as corresponding cell internal defects in a uniform (standardized)
manner, so that a ML algorithm can learn and infer from data irrespective of
their incoming library and technology. Indeed, similar cells (e.g., cells with same
logic function, same number of inputs, and same number of transistors) may
be described differently in transistor-level (SPICE) netlists of various libraries
(e.g., a transistor label does not always correspond to the same transistor in two
similar cells coming from two different libraries). It is therefore mandatory to
standardize the description of cells and corresponding defects for the ML-based
defect characterization methodology. Heuristic solutions developed to this purpose
are described in Sect. 4. The second challenging task is to find a way to represent all
these information/input data so that they can be ML friendly. A matrix description
of cells and corresponding defects is used to this purpose.

234 P. d’Hondt et al.

3 Learning-Based Cell-Aware Model Generation Flow

The learning-based CA model generation flow initially introduced in [17] is used to
predict the behavior of a cell (combinational or sequential) when affected by intra-
cell defects. The flow is presented in Fig. 5. It is based on supervised learning that
takes a set of input data and known responses (labeled data) used as training data,
trains a model to classify those data, and then uses this model to predict (infer) the
class of new data.

Figure 5 depicts the two main steps of the supervised learning process used for
ML-based CA model generation. A random forest classifier is used for predicting
the class of each new data instance. This choice comes from the results obtained
after experimenting several learning algorithms (k-NN, support vector machine,
random forest, linear, ridge, etc.) and observing their inference accuracies.

The first main step of the CA model generation flow consists in generating
a random forest model and to train it by using the training dataset. A random
forest classifier is composed of several decision tree classifiers, which are models
predicting class of samples by applying simple decision rules. During training, a
decision tree tries to classify data samples, and its decision rules are modified until
it reaches a given quality criterion. Then, the forest averages the responses of all
trees and outputs the class of the data sample.

The second main step consists in using the random forest classifier to make
prediction (or inference) when a new data instance has to be evaluated. Prediction
for a new data instance amounts to answer the question: “Does this stimulus detects
this defect affecting this cell?” Answering this question allows obtaining a new CA
model for a given standard cell.

3.1 Generation of Training Data

Training data are made of various and numerous CA models formerly generated
by relying to brute-force electrical defect simulations. For each cell (combinational

Fig. 5 Generic view of the ML-based CA model generation flow

Cell-Aware Model Generation Using Machine Learning 235

Fig. 6 CA matrix creation flow

or sequential) in a library, the CA model is transformed into a so-called CA matrix
and filled in with meaningful information. Cells with the same number of inputs
and having the same number of transistors are grouped together to form the training
dataset.

The CA matrix creation flow is depicted in Fig. 6. The flow starts by rewriting
the CA model so that it can be ML friendly. To this end, the CA model file is parsed
and its content is organized into a matrix which contains numbers and categories
of certain values (more details are given later on). Then, it identifies the activation
conditions of each transistor inside the cell with respect to input stimuli. Once the
activation conditions for each transistor have been identified, transistor renaming is
done. This is a critical step in this flow since it allows the usage of the training data
across different libraries and technologies. Finally, the CA matrix is created with the
above information.

Table 1 shows an example of a training dataset for a combinational NAND2 cell.
It is composed of four types of information:

• Cell patterns and responses. This gives the values applied on inputs (A, B) of
the cell as well as the cell response on output Z. As can be seen, the test pattern
sequence provides all the possible input stimuli that can be applied to the cell.
These stimuli must also be efficient to detect sequence-dependent defects like
stuck-open defects. For this reason, a four-valued logic algebra made of 0, 1, R,
and F is used to represent input stimuli in the CA matrix. R (resp. F) represents a
rising (resp. falling) transition from 0 to 1 (resp. from 1 to 0).

• Transistor switching activity. This indicates the activation conditions of each
transistor in the cell schematic. Each transistor can be in the following state:
active (1), passive (0), switching to active state (R), or switching to passive state
(F).

• Defect description. This gives information about defect locations inside the cell
transistor schematic. This part contains a column for each transistor’s ports. In
Table 1, “N1_D” stands for the drain port of the NMOS transistor named N1 and
“N1_S” for its source port. In these columns, a “1” (resp. “0”) indicates that the
port is concerned (resp. non-concerned) by the described defect. For example,
D15 is a short between the drain and the source of transistor N1, so columns
“N1_D” and “N1_S” contain a one, while other columns are filled with zeros.
The name and type of each defect are also given in this description. The matrix
also includes rows describing the cell with no defects (“free”). This is presented
in more detail in Sect. 4.4.

236 P. d’Hondt et al.

Ta
bl

e
1

E
xa
m
pl
e
of

tr
ai
ni
ng

da
ta
se
tf
or

a
N
A
N
D
2
ce
ll

C
el
li
np
ut
s
an
d
re
sp
on
se
s

T
ra
ns
is
to
r
sw

itc
hi
ng

ac
tiv

ity
D
ef
ec
td

es
cr
ip
tio

n
A
bo
ut

de
fe
ct

D
ef
ec
td

et
ec
tio

n
A

B
Z

N
0

N
1

P0
..

.
N
1_
D

N
1_
G

N
1_
S

..
.

N
am

e
Ty

pe
fZ

0
0

1
0

0
1

..
.

0
0

0
..

.
Fr
ee

Fr
ee

0
0

1
1

0
1

1
..

.
0

0
0

..
.

Fr
ee

Fr
ee

0
0

F
1

0
F

1
..

.
0

0
0

..
.

Fr
ee

Fr
ee

0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

0
1

1
0

1
1

..
.

1
0

1
..

.
D
15

Sh
or
t

1
1

1
0

1
1

0
..

.
1

0
1

..
.

D
15

Sh
or
t

0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

Cell-Aware Model Generation Using Machine Learning 237

Fig. 7 Block-level representation of a scan flip-flop example

• Defect detection. This is the class of the data sample (the output of the ML
classifier). A value “1” (“0”) means that the defect is detected (undetected) by
the cell pattern.

The first three types of information constitute the inputs of the ML algorithm.
In order to illustrate the various steps of the CA matrix creation flow in the case

of sequential cells, let us consider the block-level representation of a scan flip-flop
as depicted in Fig. 7. It consists of three main blocks (MUX, MASTER latch, and
SLAVE latch) plus two transmission gates. It has four inputs (D, TI, TE, CLK), one
virtual input (Q-), and one output (Q). The virtual input represents the value loaded
in the flip-flop before applying the test stimulus.

Table 2 shows an example of a training dataset for the scan flip-flop shown in
Fig. 7. It is composed of four types of information:

• Cell inputs and outputs. This gives the values applied on inputs (D, CLK, TE, TI,
Q-) of the cell as well as the cell response on output Q. The test pattern sequence
provides all the possible input stimuli that can be applied to the cell. For the
sake of readability, they are represented partially in Table 2. These stimuli must
also be efficient to detect sequence depending defects like stuck-open defects.
For this reason, a six-valued logic algebra made of 0, 1, R, F, P, and A is used
to represent input stimuli in the CA matrix. R (resp. F) represents a rising (resp.
falling) transition from 0 to 1 (resp. from 1 to 0). P (resp. A) represents a pulse
010 (resp. anti-pulse 101) and is used for the input clock signal of the cell.

• Transistor switching activity. This indicates the activation conditions of each
transistor (e.g., N0, N1, etc. for NMOS transistors, and P0, P1, etc. for PMOS
transistors) in the cell schematic. Each transistor can be in one of the following
states: active (1), passive (0), switching to active state (R), switching to passive
state (F), pulsing (P), or anti-pulsing (A).

• Defect description. This gives information about all defect locations in the cell
transistor schematic. In Table 2, “N1_D” stands for “defect on the drain of
transistor N1,” “N1_G” stands for “defect on the gate of transistor N1,” and so
on. The name and type of each defect are also given in this description.

• Defect detection. This is the class of the data sample (the output of the ML
classifier). A value “1” (“0”) means that the defect is detected (undetected) by
the input pattern at the corresponding output of the cell.

238 P. d’Hondt et al.

Ta
bl

e
2

E
xa
m
pl
e
of

tr
ai
ni
ng

da
ta
se
tf
or

a
sc
an

fli
p-
flo

p
w
ith

a
no
n-
in
ve
rt
in
g
ou
tp
ut
.T

he
ce
ll
ha
s
fo
ur

ph
ys
ic
al
in
pu
tp

in
s:
da
ta
(D

),
cl
oc
k
(C
L
K
),
te
st
en
ab
le

(T
E
),
te
st
in
pu
t(
T
I)
,a
nd

a
vi
rt
ua
li
np
ut

(Q
-)
w
hi
ch

co
rr
es
po
nd

to
th
e
pr
ev
io
us

st
at
e
of

th
e
ou
tp
ut

pi
n
(Q

)

C
el
li
np
ut
s
an
d
ou
tp
ut
s

T
ra
ns
is
to
r
sw

itc
hi
ng

ac
tiv

ity
D
ef
ec
td

es
cr
ip
tio

n
A
bo
ut

de
fe
ct

D
ef
ec
td

et
ec
tio

n
D

C
L
K

T
E

T
I

Q
-

Q
N
0

N
1

..
.

P0
P1

..
.

N
1_
D

N
1_
G

N
1_
S

..
.

P3
_D

P3
_G

P3
_S

na
m
e

ty
pe

fZ

0
P

0
0

0
0

P
0

..
.

P
1

..
.

0
0

0
..

.
0

0
0

Fr
ee

Fr
ee

0
R

P
0

1
0

R
P

R
..

.
P

F
..

.
0

0
0

..
.

0
0

0
Fr
ee

Fr
ee

0
0

P
0

F
1

0
P

0
..

.
P

1
..

.
0

0
0

..
.

0
0

0
Fr
ee

Fr
ee

0
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

0
P

0
1

0
0

P
0

..
.

P
1

..
.

1
0

1
..

.
0

0
0

D
15

Sh
or
t

1
F

P
0

1
1

F
P

F
..

.
P

R
..

.
0

0
0

..
.

0
0

1
D
47

O
pe
n

1
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

Cell-Aware Model Generation Using Machine Learning 239

As for combinational cells, the first three types of information are used as inputs
for the ML algorithm.

3.2 Generation of New Data

New data represent the cells to be characterized and are obtained for each standard
cell from the cell description, corresponding list of defects, and cell patterns. The
format of a new data instance is similar to that of the training data, except that the
class (label) of the new data instance is missing. The ML classifier is used to predict
that class. As for training data, new data are grouped together according to their
number of cell inputs and transistors, so that inference can be done at the same time
for cells with the same number of inputs and transistors.

4 Cell and Defect Representation in the Cell-Aware Matrix

This section details the various steps required to represent a standard cell in a
CA matrix. The starting point of this process is a transistor-level (SPICE) netlist
of the standard cell. The CA matrix must be accurate enough to clearly identify
each transistor and each net of the cell transistor schematic. This description also
associates each transistor with its sensitization patterns and reports the output
response for each cell pattern. For this reason, the cell description process requires
several successive operations that are detailed below. Note that this process is
applied to all cells in a library to be characterized.

4.1 Identification of Active, Passive, and Pulsing Transistors

The first step consists in identifying active and passive transistors in the cell netlist
with respect to an input stimulus. To this purpose, a single golden (defect-free)
electrical simulation of the cell to be characterized is first performed. By monitoring
the voltage of cell’s transistors gates, active and passive transistors are identified for
each input stimulus (cell pattern). An active NMOS (resp. PMOS) transistor is a
transistor with a logic-1 (resp. logic-0) value measured on its gate port. A passive
NMOS (resp. PMOS) transistor is a transistor with a logic-0 (resp. logic-1) value
measured on its gate port. Note that for sequential cells, an active NMOS (resp.
PMOS) transistor is a transistor with a logic-1 (resp. logic-0) value appearing on its
gate port during application of the test pattern whose duration is one clock cycle. A
passive NMOS (resp. PMOS) transistor is a transistor with a logic-0 (resp. logic-
1) value appearing on its gate port during application of the test pattern. Clock
signal-controlled transistors can be pulsing (resp. anti-pulsing), which means a 0–

240 P. d’Hondt et al.

Fig. 8 Example of a AND2 cell: (a) cell transistor schematic and (b) partial CA matrix
representation

1-0 (resp. 1–0-1) sequence appears on the transistor gate port during application of
the test pattern. Note also that a Verilog simulation, with a CDL (circuit description
language) netlist that should be written using NMOS and PMOS primitives, can
replace the single defect-free electrical simulation. This simulation also provides
the cell output value. With this information, each cell pattern can be associated with
the list of active transistors in the cell. After this step, the CA matrix contains the
following columns:

• Cell input and response columns. They contain all input stimuli (cell patterns)
that can be applied to the cell and the corresponding responses.

• Transistor switching activity columns. They contain six possible values indicating
if the transistor is active (1), passive (0), switching from an active state to a
passive one (F), switching from a passive state to an active one (R), pulsing
(P), and anti-pulsing (A). Note that “P” and “A” are only used for sequential
cells. Since PMOS and NMOS transistors are activated in opposite way, the “-”
character is used before the PMOS values.

Figure 8 shows (a) the transistor schematic of a six-transistor AND2 cell and (b)
a partial representation of the CA matrix of the cell. Columns A and B list all the
possible input stimuli for this cell. For each stimulus, active and passive information
about each transistor of the cell is entered in the CA matrix. For example, AB = 00
leads to two active PMOS transistors and two passive NMOS transistors in the
NAND2 block and one passive PMOS transistor and one active NMOS transistor
in the output inverter.

Figure 9a presents the transistor schematic of a LATCH such as the ones used
inside the scan flip-flop depicted in Fig. 7. In the partial representation of the CA
matrix of the latch (Fig. 9b), columns D and CLK list all the possible input stimuli
for this structure.

Cell-Aware Model Generation Using Machine Learning 241

Fig. 9 Example of a LATCH structure: (a) cell transistor schematic and (b) partial CA matrix
representation

4.2 Renaming of Transistors

In the CA model generation flow, the goal is to train a ML algorithm using this
representation of standard cells coming from different libraries and technologies.
However, this matrix representation is dependent on the transistor names and the
order they are defined in the SPICE netlist. Two standard cells having the same
schematic may have different transistor naming, and the order of transistors in the
SPICE netlist may differ as well. This is because standard cell libraries are created
several months or years apart, by different teams, with sometimes new guidelines
in terms of best practices. Without an accurate naming convention of each cell
transistor in the CA matrix, any ML algorithm will fail to predict the behavior of
the cell in presence of a defect. To mitigate this issue, a second step consisting in
renaming all cell transistors independently of their initial names and order in the
input SPICE netlist is required. The algorithm developed to this purpose is detailed
in the following.

In order to ensure that the CA matrix is unique for a given cell and that the CA
matrices of two cells having the same structure have identical transistor switching
activity columns (i.e., they have the same transistor names irrespective of their
incoming library and technology), a transistor renaming procedure is required. The
first step consists in sorting the transistors of a standard cell in an algorithmic
way that only depends on the cell’s transistor structure. A transistor structure is
a virtual SPICE netlist without specification of the connections between transistor
gates, i.e., only source and drain connections between transistors are listed. Once
the transistors are sorted, they are consistently and unambiguously renamed. The
transistor-renaming algorithm consists of the following two steps: determination of
branch equations and sorting of branch equations.

242 P. d’Hondt et al.

Fig. 10 Example schematic

4.2.1 Determination of Branch Equations

The transistor structure of a standard cell is composed of one or more branches.
A branch is a group of transistors connected by their drain and source ports. The
entry (or gate) of each branch is the set of transistor gates and its exit (or drain)
is the connection net between the NMOS and PMOS transistors, which drives the
gate of the next branch. A branch’s source is connected to a power and/or a ground
net. A branch equation is a Boolean-like equation describing how the transistors
of the branch are connected, using Boolean and (symbolized by “&”) for serial
transistors or serial groups of transistors and Boolean or (symbolized by “|’) for
parallel transistors or parallel groups of transistors.

Sequential cells and complex combinational cells tend to integrate transmission
gates in their structures. A transmission gate is a transistor configuration acting as a
relay that can conduct or block depending on the control signal. It is composed of
one PMOS and one NMOS transistors in parallel (i.e., sharing drain and source), and
the control signal applied to the gate of the NMOS transistor is the opposite (i.e.,
NOT-ed) of the signal applied to the gate of the PMOS transistor. A transmission
gate directly connects the exit of a branch to the entry of another branch. As such, a
transmission gate is considered as an autonomous branch of the transistor structure.
The entry of such a branch is the set of transistor gates plus the exit of the previous
branch, and the exit is the entry of the following branch.

Figure 10 shows an example of transistors structure. It is composed of three
branches, namely, α, β, and γ. The two-transistor output inverter is the simplest
branch whose input is net Y and output is net Z (branch γ). The inverter creates
two paths between the branch output and the power nets, so its branch equation is
(Ninv!Pinv). The equation of the left-most branch α (PMOS branch driving net X) is
(P4|(P1&(P2|P3))). In order not to rely on any name present in the SPICE netlist, the
branch equations are anonymized, i.e., a NMOS is described by “1n” and a PMOS
by “1p.” The anonymized equation of the PMOS branch driving net X in Fig. 10 is
therefore (1p|(1p&(1p|1p))). These two branches are separated by the β branch, i.e.,
a transmission gate composed of N5 and P5, which is anonymized as “1t.”

Cell-Aware Model Generation Using Machine Learning 243

Table 3 Branch equations for the schematic of Fig. 10

Level Number of transistors Anonymized equation Comment

1 2 (1n|1p) Branch α inverter
2 2 1 t Branch β transmission gate
3 4 (1p|(1p&(1p|1p))) Branch γ PMOS structure

4.2.2 Sorting of Branch Equations

Once all the branch equations for the considered cell have been determined, they are
sorted by using the following deterministic criteria:

• Level of each branch. It is defined in ascending order with respect to the cell
output (level 1 branches drive the cell output, level 2 branches drive the gates of
transistors in level 1 branches, and so on and so forth).

• Number of transistors in each branch – in ascending order.
• Anonymized branch equation – in alphabetical order.

Table 3 reports all the branch equations of the schematic in Fig. 10 sorted
according to the above criteria.

4.3 Identification of Parallel Transistors

Because of parallel transistors, the identification of branch equations is not enough
to unambiguously rename all transistors. Specifically, two or more parallel transis-
tors in a branch share the same drain and source, making their identification quite
difficult. For example, transistors P2 and P3 in Fig. 10 can be either represented as
“P2|P3” or “P3|P2,” thus leading to a confusing situation. A solution to solve this
problem consists in sorting transistors inside their branch according to their activity
with respect to the input stimuli. The algorithm developed to this purpose proceeds
as follows. For each transistor, an activity value is computed. This value summarizes
the states of the transistor (active, passive, pulsing) for all possible stimuli applied to
the cell. The input stimuli range from (0 . . . ,0) to (1 . . . ,1) for combinational cells
and from (P,0 . . . ,0) to (P,1 . . . ,1) for sequential cells. For each of these stimuli,
the transistor is either active (1), passive (0), pulsing (P), or anti-pulsing (A). The
activity value is defined as a word made of 0, 1, P, and A, in which the first symbol
corresponds to the state of the transistor when the first stimulus is applied, second
symbol for second stimulus, and so on for the whole stimuli range.

To compute the activity values, one needs to know whether the transistor is
active or passive for each input stimulus. This information is already available in
the CA matrix as described in Sect. 3. To illustrate this process, activity values for
the transistors of the AND2 cell given in Fig. 8 are listed in Table 4.

244 P. d’Hondt et al.

Table 4 Activity values for the AND2 cell in Fig. 8

Old names
A B Comments Px Py N10 N11 Pinv Ninv

0 0 First stimulus 1 1 0 0 0 1
0 1 1 0 0 1 0 1
1 0 0 1 1 0 0 1
1 1 Last stimulus 0 0 1 1 1 0
Activity value 1100 1010 0011 0101 0001 1110

↓ Renaming ↓
P2 P1 N0 N1 P0 N2

Table 5 Activity values for the LATCH structure in Fig. 9

Level 1 2
Number of transistors 2 4

Branch extraction and sorting (left to right) Anonymized equation (1n|1p) (1n&1n|1p&1p)

Activity value within branches CLK D N3 P3 N4 N5 P4 P5
P 0 0 1 P 1 P 0
P 1 1 0 P 0 P 1
Activity value 01 10 PP 01 PP 01

Renaming of transistors ↓ Renaming ↓
N1 P1 N3 N2 P3 P2

Finally, transistors of each branch are sorted by their activity values (alphabetical
order) to give the final description of the cell in the CA matrix. For the AND2 cell
in Fig. 8, the renaming process is illustrated in Table 4.

The whole transistor renaming process for the transistors of the LATCH structure
presented in Fig. 9 is summarized in Table 5, starting with the structure branch
extraction and sorting, the computation of activity values, and then the renaming
process itself.

4.4 Defect Representation in the Cell-Aware Matrix

To describe cell internal defects in a standardized and ML-friendly manner, the CA
matrix contains a set of categorical columns representing the cell transistors’ ports.
Cell internal defects are classified into:

• Intra-transistor defects. These defects affect transistor ports (source, drain, gate,
and bulk) and can be either an open defect or a short. In order to describe these
defects, all transistor ports are listed as a column in the CA matrix (cf. Table 1).
For an open defect, a value “1” indicates that this transistor port is affected by the
defect, “0” otherwise. For a short, a value “1” on two-transistor ports indicates
that a short exists between these two ports, “0” otherwise.

Cell-Aware Model Generation Using Machine Learning 245

Table 6 Example of defect columns for the AND2 presented in Fig. 8

Py_S Py_D Px_S Px_D . . . N10_S N10_D N11_S N11_D Comment

0 0 0 0 . . . 1 1 0 0 Source-drain

short on N10
1 0 1 0 . . . 1 0 0 1 net0 and VDD

short

• Inter-transistor defects. These defects affect a connection(s) between at least two
different transistors. Though these defects are not considered in this work, the
matrix representation is flexible enough to represent them. For these defects, the
same representation mechanism as for intra-transistor defects is used.

Table 6 is an example of defect description in the CA matrix of the AND2
cell in Fig. 8. The row with red cells describes the intra-transistor short defect
between drain and source ports of transistor N10 (newly N0). The row with purple
cells describes the inter-transistor short defect between VDD at PMOS sources and
“net0” (net0 connects N10-source and N11-drain).

5 Validation on Industrial Cell Libraries

The ML-based CA model generation flow has been implemented in a Python
program. The ML algorithms were taken from the publicly available Python module
called scikit-learn [35]. A dataset composed of 1712 combinational standard cells
coming from standard cell libraries developed using three technologies – C40 (446
cells), 28SOI (825 cells), and C28 (441 cells) – was assembled. Another dataset
composed of 219 sequential cells coming from the same libraries and technologies –
C40 (27 cells), 28SOI (108 cells), and C28 (84 cells) – was also used for validation.
All these cells already had a CA model generated by a commercial tool. The CA
matrix was generated for each cell. The flow was experimented in two different
ways. First, the ML model was trained and evaluated using cells belonging to the
same technology. Second, the model was trained on one technology and evaluated
on another one. Combinational and sequential cells were considered separately. Part
of these results are extracted from [17].

5.1 Predicting Defect Behavior on the Same Technology

5.1.1 Combinational Standard Cells

The ML model was first trained on cells of the 28SOI standard cell library. Cells
were grouped according to their number of transistors and inputs. For m cells

246 P. d’Hondt et al.

Table 7 Average prediction accuracy for combinational cells in the
same technology

available in a given group, the ML model was trained over m-1 cells and its
prediction accuracy was evaluated on the m-th cell. A loop ensured that each cell is
used as the m-th cell. On average, a group contains 8.6 cells. All possible open and
short defects (static and dynamic) were considered for each cell. Results presented
in Table 7 report the prediction accuracy for open defects. Results achieved for short
defects are similar.

Table 7 presents the prediction accuracy achieved for open defects. For the sake
of conciseness, only results for cells with less than 7 inputs and 48 transistors are
reported, although experiments have been done on cells with up to 8 inputs and 112
transistors. Non-empty boxes report the average prediction accuracy obtained for a
group of cells. Empty boxes mean that there is zero or one cell available and that
the group cannot be evaluated. A green background indicates that the maximum
prediction accuracy in this group is 100%, i.e., the ML model can perfectly predict
the defective behavior of at least one cell. In contrast, white background indicates
that no cell was perfectly predicted in that group (all prediction accuracies are less
than 100%). For example, let us consider the circled box in Table 7 that corresponds
to 24 cells having 4 inputs and 24 transistors: (i) 15 cells are perfectly predicted
(100% accuracy), which leads to a green background, (ii) the prediction accuracy for
the 9 remaining cells ranges from 99.82% to 99.99%, and (iii) the average prediction
accuracy over all 24 cells is 99.97%.

Cell-Aware Model Generation Using Machine Learning 247

Table 8 Average prediction
accuracy for sequential cells
in the same technology

Number of inputs
Prediction accuracy (%) 4 5 6 7

Number of transistors 32 100
34
36
38
40 100
42 100
44 100
46 100
48 100 100
50 100
52 100

5.1.2 Sequential Standard Cells

For these experiments, the ML model was trained on a group of sequential standard
cells coming from C40 standard cell libraries. Cells were grouped according to their
number of transistors and inputs. As for combinational cells, for m cells available in
a given group, the ML model was trained over m-1 cells and the prediction accuracy
was evaluated on the m-th cell. A loop ensured that each cell is used as the m-th cell.
On average, a group contains 4.5 cells. All possible open and short defects (static
and dynamic) in each cell were considered. Results in Table 8 report the prediction
accuracy for short defects. Results achieved for open defects are similar.

Results are reported according to the number of transistors and number of inputs
of each cell. Non-empty boxes report the average prediction accuracy obtained for a
group of sequential cells. Empty boxes mean that there is zero or one cell available
and that the group cannot be evaluated. As can be seen in Table 8, the maximum
prediction accuracy (100%) was always obtained for each group, i.e., the ML model
can perfectly predict the defective behavior of all cells in each group. This means
that the CA model generated by ML fit the real behavior achieved with electrical
simulations.

The above cell category with good prediction score has been analyzed manually
to identify why it led to good results. The analysis showed that all these cells have
at least one cell in the training dataset with the same transistors structure or a very
similar one.

These results show that the ML model can accurately predict the behavior of
a sequential cell affected by a given defect. The goal of the next subsection is to
leverage on existing CA models to generate CA models for a new technology.

248 P. d’Hondt et al.

Table 9 Average prediction accuracy for combinational cells in differ-
ent technologies

5.2 Predicting Defect Behavior on Another Technology

5.2.1 Combinational Standard Cells

Another set of experiments was conducted on combinational standard cells belong-
ing to two different technologies. Evaluation was slightly different compared to the
previous one. Here, the ML model was trained over all available cells of a given
technology and the evaluation was done on one cell of another technology. A loop
was used to allow all cells of the second technology to be evaluated. Cells were
grouped according to their number of inputs and transistors. Table 9 shows the
prediction accuracy achieved on open defects of the C28 cells after training on
the 28SOI cells. Results are averaged over all cells in each group (same number
of inputs and number of transistors). The average prediction accuracies are globally
lower compared to those of Table 7. After investigation, it appears that the behavior
of most of the cells (68% of cells) is accurately predicted (accuracy >97%), while
accuracy for few cells is quite low. This phenomenon is discussed in Sect. 5.2.2.

To verify the efficiency of the ML-based CA model generation method when
different transistor sizes are considered, the ML model was trained over the 28SOI
standard cells and used to predict the behavior of C40 cells. Table 10 shows the

Cell-Aware Model Generation Using Machine Learning 249

Table 10 Average prediction accuracy for combinational cells using
different transistor sizes

prediction accuracy achieved on open defects of the C40 cells after training on the
28SOI cells. Results are averaged over all cells in each group (same number of
inputs and transistors). This time, 80% of cells are accurately predicted (accuracy
>97%), proving that the ML-based characterization methodology could be used to
generate CA models for a (large) part of combinational cells of a new technology.

5.2.2 Analysis and Discussion

A first analysis was done on cells for which the defect characterization methodology
gives excellent prediction accuracy as well as those for which the prediction
accuracy was quite low. Then, the limitations of the CA model generation method
were investigated. After running several experiments on different configurations
using one fault model at a time, the following behaviors were noticed:

• Accuracy for most of the cells is excellent, i.e., more than 97% prediction
accuracy for 70% of cells. In this case, the CA model generated by ML fit the
real behavior achieved with electrical simulations.

• Accuracy for few cells (30%) is quite low and the ML prediction is not accurate.

250 P. d’Hondt et al.

A

B

A

B

N0

N1

N0

N1

N2 N2

N3

Z Z

N3

Fig. 11 Typical transistor configurations leading to good prediction

For the first cell category with good prediction score, cells have been analyzed
manually to identify why they led to good results. The analysis showed that all these
cells had at least one cell in the training dataset with the same transistor structure
or a very similar one. The difference between very similar cells is always the same
and is presented in Fig. 11. More precisely, cells giving good results are always
composed of one of the configurations presented in Fig. 11, and at least one cell of
the training dataset contains the other configuration. The difference between these
two transistor configurations is the presence or absence of the red net. The logic
function of these configurations is the same. These configurations are mostly found
in high-drive cells.

For the second cell category – cells leading to poor prediction accuracy – the
manual analysis showed that they have (i) new logic functions that do not appear in
the cells of the training dataset or (ii) a transistor configuration which is completely
new when compared to cells in the training dataset.

5.2.3 Sequential Standard Cells

We also conducted experiments on sequential cells belonging to two different
technologies. As for combinational cells, the ML model was trained over all
available sequential standard cells of a given technology and the evaluation was
done on one cell of another technology. Cells were grouped according to their
number of inputs and transistors. Table 11 shows the prediction accuracy achieved
on short defects of the 28SOI cells after training on the C28 cells. Results are
averaged over all cells in each group.

Similarly, we conducted experiments to analyze the efficiency of our method
when different transistor sizes are considered. This time, we trained the ML
model over the C40 standard cells and used it to predict the behavior of more
technologically advanced 28SOI cells. Table 12 shows the prediction accuracy
achieved on short defects.

In the above two scenarios, the average prediction accuracies are globally
very low (around 50%), indicating that our method needs good training dataset

Cell-Aware Model Generation Using Machine Learning 251

Table 11 Average prediction
accuracy for sequential cells
different technologies

Number of inputs
Prediction accuracy (%) 4 5 6 7

Number of transistors 32 53
34 50
36 50 54
38 50 51
40 50
42 50
44
46
48
50
52

Table 12 Average prediction
accuracy for sequential cells
with different transistor sizes

Number of inputs
Prediction accuracy (%) 4 5 6 7

Number of transistors 32
34
36
38 50
40 50
42 48 50
44 50
46 48
48 48 57
50
52 58

representative of every type of standard cells and transistor structures. Indeed,
investigations showed that in most cases, functionally equivalent sequential cells
in libraries from different technologies were designed differently and hence do not
have neither the same transistor structure nor a very similar one (as discussed in
Sect. 5.2.2). A manual analysis showed that they have (i) new logic functions that do
not appear in the cells of the training dataset or (ii) a transistor configuration which
is completely new when compared to cells in the training dataset. Considering the
main property of our learning method for CA model generation, which is based on
the recognition and use of identical structures, it is not surprising to get such low-
quality results. Adding more cells and thus more known structures to the training
database should help to increase the prediction accuracy.

252 P. d’Hondt et al.

5.2.4 Controlled Experiments

In an attempt to check the above hypothesis, “controlled experiments” were
performed by considering three scan flip-flops (SDFPQ cells) coming from three
different technologies (C40, 28SOI, C28). The SPICE description of each cell was
manually modified so as to get the same schematic for all of them. This was done
by removing some buffers and duplicate transistors, which were initially inserted in
the cell descriptions for driving strength purpose. After modification, each flip-flop
contained 5 inputs, was made of 32 transistors, and can be affected by the same
intra-transistor defects. The physical layouts of the modified cells have not been
made identical and carefully modified to the minimum in an attempt to keep the
technological specificities of each cell. Therefore, the list of potential inter-transistor
defect locations is different for each cell. A CA model has been generated for each
modified flip-flop, using the simulation-based flow implemented by a commercial
tool.

Three types of experiments were performed. First, the ML model was trained by
considering all short defects of the C28 SDPFQ cell, and its prediction accuracy was
successively evaluated over all short defects (576) of the C40 SDPFQ cell and over
all short defects (928) of the 28SOI SDPFQ cell. The same procedure was done
for open defects (the C40 SDPFQ cell and the 28SOI SDPFQ cell each contain
387 open defects). Next, the ML model was trained by considering all short defects
of the 28SOI SDPFQ cell, and its prediction accuracy was successively evaluated
over all short defects of the C40 SDPFQ cell and over all short defects (1016) of
the C28 SDPFQ cell. Again, the same procedure was done for open defects (the
C28 SDPFQ cell contains 394 open defects). Finally, the ML model was trained by
considering all short defects of the C40 SDPFQ cell, and its prediction accuracy
was successively evaluated over all short defects of the 28SOI SDPFQ cell and over
all short defects of the C28 SDPFQ cell. The same procedure was done for open
defects.

To visualize the efficiency of the ML-based characterization method, a confusion
matrix was generated in which each row of the matrix represents the instances in a
predicted class (defects that are predicted by the ML algorithm to be detected/not
detected by a given cell pattern), while each column represents the instances in
an actual class (defects that are actually detected/not detected by a given input
pattern). By this way, the confusion matrix reports the number of true positives,
false positives, false negatives, and true negatives.

Results are reported in Table 13 for the three types of experiments. The confusion
matrix can be found at the center of the table (green- and red-headed columns),
this time represented using only a horizontal axis. For example, let us consider the
first experiment, when the ML model is trained by considering all defects of the
C28 SDPFQ cell, and the prediction accuracy is evaluated over all defects of the
28SOI SDPFQ cell (third row in Table 13). The number of true positives, false
positives, false negatives, and true negatives is 442, 23, 40, and 423, respectively,
thus leading to a prediction accuracy of 93%. From the overall results reported in
Table 13, this time it appears that the prediction accuracy achieved with the ML-

Cell-Aware Model Generation Using Machine Learning 253

Table 13 Results of the controlled experiments

Train Predict Defect type True P False P False N True N Accuracy

C28
C40

short 248 40 52 236 84%
open 215 8 2 162 97%

28SOI
short 442 23 40 423 93%
open 215 2 2 168 98%

28SOI
C40

short 252 36 59 229 83%
open 215 8 2 162 97%

C28
short 483 27 77 429 89%
open 221 2 3 168 98%

C40
28SOI

short 416 49 153 310 78%
open 215 2 8 162 97%

C28
short 446 64 182 324 75%
open 221 2 9 162 97%

based method ranges from 75 to 98%, thus clearly demonstrating its efficiency.
As for combinational cells, one or more structural patterns have been identified in
functionally equivalent cells from various libraries, so that the ML algorithm can
exploit them efficiently for training and inference purpose.

6 Hybrid Flow for CA Model Generation

Considering the above analysis, it appears that the ML-based CA model generation
flow cannot be used for all cells in a standard cell library to be characterized. A
mixed solution, which consists in combining ML-based CA model generation and
conventional (simulation-based) CA model generation, should be preferably used.
This is illustrated in the following.

The hybrid flow for accelerating the CA model generation is sketched in Fig. 12.
Typically, when the CA model for a new cell is needed, the first step consists in
checking whether the ML-based generation will lead to high-quality CA models.
This is done by analyzing the structure of the new cell and check whether the
training dataset contains a cell with identical or similar structure (as discussed in
Sect. 5.2.2). If the ML algorithm is expected to give good results, the new cell is
prepared (representation in a CAmatrix) and submitted to the trained ML algorithm.
The output information is then parsed to the desired file format. Conversely, if the
ML algorithm is expected to give poor prediction results, the standard generation
flow presented in Fig. 4 is used to obtain the CA model. A feedback loop uses this
new simulated CA model to supplement the training datasets and improve the ML
algorithm for further prediction.

The experiments performed to estimate the improvement in CAmodel generation
time achieved with the hybrid flow in Fig. 12 are described in the following.

254 P. d’Hondt et al.

Fig. 12 Hybrid flow for CA model generation

6.1 Runtime Saving for Combinational Cells

For these experiments, the random forest model was first trained on 28SOI combina-
tional standard cells, and CA models were then generated for a subgroup of the C40
combinational standard cell libraries. A subgroup is composed of cells representing
all the cell functions available in C40 libraries. In these experiments, this subgroup
contained 409 cells: 118 (29%) have a cell with an identical structure in the training
dataset, 87 (21%) have a cell with an equivalent structure (as explained in Sect.
5.2.2) in the training dataset, and 204 (50%) have no identical or equivalent structure
in the training dataset (a simulation-based generation is thus needed). For these 204
cells, the generation time was calculated and found to be equal to ~172 days (~
5.7 months) considering a single SPICE license. Using the ML-based CA model
generation for the 118+ 87= 205 (50%) remaining cells requires 21,947 seconds (~
6 h), again considering a single SPICE license. Considering that a simulation-based
generation for these 205 cells would require ~78 days, we can estimate the reduction
in generation time to 99.7%. Now, when considering the whole C40 subgroup
composed of 409 cells, the hybrid generation flow would require ~172 days + ~6 h,
compared with ~172 days + ~78 days = ~250 days using only the simulation-
based generation. This represents a reduction in generation time of about 38%. After
investigating results of these experiments, it appears that the ML-based CA model
generation works well for about 80% of cells of the C40 subgroup. Surprisingly, the
structural analysis revealed that only 50% (205 cells) could be evaluated using the
ML-based generation part of the flow. This shows that there is still room for further
improvement of the structural analysis in the flow and hence better performance of
the ML-based CA model generation process.

6.2 Runtime Saving for Sequential Cells

In these experiments, the goal was to (re-)generate CA models for the 27 C40
sequential standard cells in an efficient manner. To achieve this goal, the number

Cell-Aware Model Generation Using Machine Learning 255

of CA models obtained by the simulation-based flow had to be minimized. The
lowest achievable number of simulation-based CA models is given by one cell per
training group (same number of inputs and transistors), plus the number of cells
that are alone in their training group (and thus cannot go through the ML-based
flow). In these experiments, 13 cells had to go through the simulation-based flow
(9 groups + 4 individual cells). The simulation-based generation flow for those 13
cells took ~4.1 h. The ML-based generation flow for the remaining 14 cells took
~35 s. By comparison, the simulation-based model generation for these 14 cells
would take ~4.2 h. The ML-based flow thus provides a runtime reduction of 99.8%
for the cells it can handle. Now, if we consider the whole C40 group composed of
27 cells, the hybrid generation flow would require ~4.1 h + ~35 s, compared with
~4.1 h + ~4.2 h = 8.3 h by using only the simulation-based generation flow. This
represents a reduction in generation time of about 51%.

It is worth mentioning that most of the runtime in the hybrid flow is taken by
the simulation-based flow. Therefore, as long as new CA models generated by
simulation are added to the database, the ML-based flow can use them and then
handle more and more cells, further reducing the generation runtime.

7 Discussion and Conclusion

A novel approach based on machine learning was presented in this chapter to
generate CA models. The main goal is to speed up the characterization process of
standard cell libraries for test and diagnosis purpose, which usually resort to SPICE
simulations and hence is very time-consuming. The methodology is based on the
recognition of identical structural patterns between cells already characterized by
simulation and those to be characterized by machine learning.

Experiments done on both combinational and sequential cells from industrial
libraries demonstrate the accuracy and performance of the method when predicting
defect behavior has to be done on the same technology. In this case, the generation
runtime of CA models can be significantly reduced for experimented cells having
other cells with similar structure in the training dataset.

In order to deal with functionally equivalent cells having different internal
structures, a hybrid flow combining learning-based and simulation-based CA model
generation can be used. Experiments carried out on a subset of cells from an
industrial library have shown that the generation time of CA models can be reduced
by more than 50%.

Experiments reported in this chapter have been carried out on a small size of
standard cell population. Considering that more than 10,000 cells have usually to
be characterized for a given technology, the hybrid flow described in this chapter
is expected to provide even better results, especially owing to the reinforcement
training that uses simulation generated models for supplementing the training
datasets and hence reduce the number of electrical simulations.

256 P. d’Hondt et al.

References

1. Ladhar, A., Masmoudi, M., Bouzaida, L.: Efficient and accurate method for intra-gate defect
diagnoses in nanometer technology. In: Proceedings of IEEE/ACM Design Automation and
Test in Europe (2009)

2. Sun, Z., Bosio, A., Dilillo, L., Girard, P., Virazel, A., Auvray, E.: Effect-cause intra-cell
diagnosis at transistor level. In: Proceedings of IEEE International Symposium on Quality
Electronic Design (2013)

3. Hapke, F., Reese, M., Rivers, J., Over, A., et al.: Cell-aware production test results from a 32-
nm notebook processor. In: Proceedings of International Test Conference (2012, November)

4. Gao, Z., Hu, M.-C., Swenton, J., Magali, S., Huisken, J., Goosens, K., Marinissen, E.J.:
Optimization of cell-aware ATPG results by manipulating library cells’ defect detection
matrices. In: Proceedings of IEEE International Test Conference in Asia (ITC-Asia) (2019)

5. Amyeen, E., Nayak, D., Venkataraman, S.: Improving precision using mixed-level fault
diagnosis. In: Proceedings of International Test Conference (2006, October)

6. Tang, H., Jain, A., Pillai, S.K.: Using cell aware diagnostic patterns to improve diagnosis
resolution for cell internal defects. In: Proceedings of Asian Test Symposium, pp. 231–236
(2017, November)

7. Fan, X., Sharma, M., Cheng, W.-T., Reddy, S.M.: Diagnosis of cell internal defects with multi-
cycle test patterns. In: Proceedings of Asian Test Symposium (2012, November)

8. Archer, B., Schuermyer, C.: Cell-aware test for lower DPPM and faster silicon diagnosis. In:
Proceedings of Synopsys User Group (SNUG) (2017, March)

9. Feldman, N.: Accelerating silicon diagnosis using a cell-aware flow. In: Proceedings of
Synopsys User Group (SNUG) (2017, March)

10. Hapke, F., et al.: Cell-aware test. IEEE Trans. Comput-Aid. Des. 33(9), 13–16 (2014)
11. Maxwell, P., Hapke, F., Tang, H.: Cell-aware diagnosis: defective inmates exposed in their

cells. In: IEEE European Test Symposium (2016)
12. Hapke, F., Krenz-Baath, R., Glowatz, A., Schloeffel, J., Weseloh, P., Wittke, M., Kassab,

M., Schuermyer, C.W.: Cell-aware fault model creation and pattern generation. US Patent
12/718,799 (2010)

13. Mhamdi, S., Girard, P., Virazel, A., Bosio, A., Ladhar, A.: A learning-based cell-aware
diagnosis flow for industrial customer returns. In: Proceedings of IEEE International Test
Conference (2020)

14. Lorenzelli, F., Gao, Z., Swenton, J., Magali, S., Marinissen, E.J.: Speeding up cell-aware
library characterization by preceding simulation with structural analysis. In: Proceedings of
IEEE European Test Symposium (2021)

15. Gao, Z., Malagi, S., Chun Hu, M., Swenton, J., Baert, R., Huisken, J., Chehab, B., Goossens,
K., Marinissen, E.J., Application of cell-aware test on an advanced 3nm CMOS technology
library. In: Proceedings of IEEE International Test Conference (2019)

16. Guo, R., Archer, B., Chau, K., Cai, X.: Efficient cell-aware defect characterization for multi-bit
cells. In: Proceedings of IEEE International Test Conference in Asia (2018)

17. d’Hondt, P., Ladhar, A., Girard, P., Virazel, A.: A learning-based methodology for accelerating
cell-aware model generation. In: Proceedings of IEEE/ACM Design Automation and Test in
Europe (2021)

18. Nanometer Library Characterization: Challenges and Solutions, Webinar. Silvaco (2019,
March)

19. Improving Library Characterization with Machine Learning, White Paper. Mentor, A Siemens
Business (2018)

20. Unified Library Characterization Tool Leverages Machine Learning in the Cloud, White Paper.
Cadence (2018)

21. Poornima, H.S., Chethana, K.S.: Standard Cell Library design and characterization using 45nm
technology. IOSR J. VLSI Signal Process. (IOSR-JVSP). 4, 29–33 (2014)

Cell-Aware Model Generation Using Machine Learning 257

22. Rabaey, J., et al.: Digital Integrated Circuit – A Design Perspective. 2nd ed., Prentice Hall
(2003)

23. bin Bahari Tambek, A., bin Mohd Noor Beg, A.R., Rais Ahmad, M.: Standard Cell Library
development. In: Proceedings of the 11th International Conference onMicroelectronics (1999),
pp. 22–24

24. Weste, N.H.E., Harris, D., Banerjee, A.: CMOS VLSI Design: A Circuits and Systems
Perspective. Wesley (1993)

25. Shoji, M.: CMOS Digital Circuit Technology. Prentice Hall (1988). ISBN 978-0131388505
26. Naga Lavanya, M., Pradeep, M.: Design and characterization of an ASIC standard cell

library industry–academia chip collaborative project. In: Microelectronics, Electromagnetics
and Telecommunications (2018)

27. H. Tang et al., Diagnosing cell internal defects using analog simulation-based fault models. In:
Proceedings of Asian Test Symposium, pp. 318–323 (2014)

28. Clein, D.: CMOS IC LAYOUT concepts, methodologies, and tools. ISBN 978-0750671941
29. Hapke, F., Krenz-Baath, R., Glowatz, A., Schloeffel, J., Hashempour, H., Eichenberger, S.,

et al.: Defect-oriented cell-aware ATPG and fault simulation for industrial cell libraries and
designs. In: Proceedings of IEEE International Test Conference (2009, November)

30. Goncalves, F.M., Teixeira, I.C., Teixeira, J.P.: Integrated approach for circuit and fault
extraction of VLSI circuits. In: Proceedings of EEE International Symposium on Defect and
Fault Tolerance in VLSI Systems (1996, November)

31. Goncalves, F.M., Teixeira, I.C., Teixeira, J.P.: Realistic fault extraction for high-quality design
and test of VLSI systems. In: Proceedings of IEEE International Symposium on Defect and
Fault Tolerance in VLSI Systems (1997, October)

32. Stanojevic, Z., Walker, D.M.: Fed–x - a fast bridging fault extractor. In: Proceedings of IEEE
International Test Conference (2001, November)

33. Venkataraman, S., Drummonds, S.D.: A Technique for logic fault diagnosis of interconnect
open defect. In: Proceedings of IEEE VLSI Test Symposium (2000)

34. Li, C.-M., McCluskey, E.J.: Diagnosis of resistive-open and struck-open defects in digital
CMOs ICs. IEEE Trans. CAD Integr. Circuits Syst. 24(11), 1748–1759 (2005)

35. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12(Oct),
2825–2830 (2011)

Neuromorphic Computing: A Path
to Artificial Intelligence Through
Emulating Human Brains

Noah Zins, Yan Zhang , Chunxiu Yu, and Hongyu An

1 Introduction

The human brain is regarded as the most intelligent and computationally efficient
machine [1]. The human brain is constructed with billions of neurons that are
connected through trillions of synapses, also known as neural junctions transmitting
electric nerve impulses between two neurons. Each neuron can communicate with
an average of more than ten thousand other neurons forming a complicated network,
normally referred to as a biological neural network. The topology of the biological
neural networks is dynamic and adjustable in accordance with different exterior
stimuli which are captured by different sensory organs. The change in the neural
networks is caused by modifying the connecting strength among neurons. The
connecting strength is designated as synaptic plasticity. The intricate and dynamic
biological neural network is widely believed to be the source of intelligence [2, 3].

The extraordinary intelligence of the biological neural systems motivates sci-
entists to think about whether the intelligence can be recreated artificially. This
thought leads to a birth of a new discipline: artificial intelligence (AI) [4]. AI
aims to build a machine or a system that has the cognition and intelligence of
humans or even outperforms them. These intelligent machines/systems are expected

N. Zins · H. An (�)
Department of Electrical and Computer Engineering, Michigan Technological University,
Houghton, MI, USA
e-mail: nwzins@mtu.edu; hongyua@mtu.edu

Y. Zhang
Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
e-mail: yzhang49@mtu.edu

C. Yu
Department of Biomedical Engineering, Michigan Technological University, Houghton, MI, USA
e-mail: chunxiuy@mtu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Iranmanesh (ed.), Frontiers of Quality Electronic Design (QED),
https://doi.org/10.1007/978-3-031-16344-9_7

259

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16344-9_7&domain=pdf
https://orcid.org/0000-0002-1742-8703

 885 49096 a 885 49096 a

mailto:nwzins@mtu.edu

 7972 49096 a 7972 49096 a

mailto:hongyua@mtu.edu

 885 52970
a 885 52970 a

mailto:yzhang49@mtu.edu

 885 56845 a 885 56845
a

mailto:chunxiuy@mtu.edu

 -2016 61494 a -2016
61494 a

https://doi.org/10.1007/978-3-031-16344-9_7

260 N. Zins et al.

to perceive the surroundings, make decisions, and conduct actions to accomplish the
goals in complicated environments. The essential purposes of developing artificial
intelligence can be summarized as liberating humans from tedious and dangerous
work, understanding the functions of human brains and explaining why and how we
have intelligence, and even creating advanced intelligence to handle the challenges
beyond our capabilities. Nowadays, AI has been widely used in social media, web
searching, and online store and services and is part of our daily life. AI systems will
cause a fundamental change in society.

Therefore, numerous approaches have been studied for AI implementation since
the last century. Alan Turing originally introduced the idea of creating and eval-
uating intelligent machines in the article: Computing Machinery and Intelligence
[5], where he first introduced the idea of creating intelligent machines and how
to evaluate whether this machine has intelligence. Later, this method is named as
Turing test. In Turing test, the intelligence of a machine is measured in a scenario
in which a human interacts with another entity. During the interaction, the entity
will not show at the sight of the human. If the human in Turing test is unable to
distinguish this entity as a machine or human, then it says that the machine has the
intelligence. The underlying rationale of the Turing test is that the machine must
have the substantial intelligence to handle all difficult questions being asked so that
it can camouflage itself as a human. Passing the Turing test requires the intelligent
machine to have an incredibly deep understanding and insight into human society
and the natural world so that it is able to answer the challenging, even very trick,
questions appropriately.

One of the essential purposes of developing artificial intelligence is to liberate
humans from laborious or dangerous work. Whether the AI systems can accomplish
the tasks that originally only can be handled by humans is an important indicator
of evaluating the capabilities of AI systems. These tasks include natural language
processing, games, etc. ELIZA, developed by Joseph Weizenbaum, was one of the
famous natural language processing programs that attempted to pass the Turing
test [6]. In the game field, which is traditionally dominated by human players, the
supercomputer Deep Blue developed by IBM defeated the chess world champion,
Gary Kasparov, in 1997 [7]. The defeat of the machines to human players in chess
is widely considered a big achievement of AI, demonstrating their computational
capability far more performing than human brains.

Nowadays, the most successful approach to AI is deep learning (DL) [8–10].
The idea of DL stems from artificial neural networks (ANNs) proposed by Warren
in 1943. ANNs are initially used as a computational model to emulate biological
neural networks [11]. In McCulloch andWalter Pitts’s model, the threshold function
was used for modeling biological neurons. The most important improvement of
DL is a replacement of these threshold functions with the differential nonlinear
functions, such as the sigmoid function. In this way, the gradient descent algorithms
become applicable for training ANNs. The training process is generally to adjust
the weights of ANNs with massive high-dimensional data being used for inference
and classification. This is the basic mechanism of these training processes. The
underlying mechanism of these training processes is to map the data into the high-

Neuromorphic Computing: A Path to Artificial Intelligence Through Emulating. . . 261

Table 1 Comparison of deep learning and neuromorphic systems

Features Deep learning/von Neumann
computational platform

Neuromorphic system

Information representation Binary signals in square
waves

Spikes

Operating frequency High frequency Low frequency
Architecture Centralized von Neumann

architecture
Distributed non-von
Neumann architecture

Basic modules Arithmetical modules and
memory

Electronic neurons and
synapses

Neural network models CNN, RNN, etc. Spiking neural networks

dimensional space for inference and classification. The study exhibits that deeper
layers of the ANNs lead to a much higher training/inference accuracy. This is the
reason why the phrase deep learning is named. Recently, big data and powerful
computational machines, e.g., GPU, boost the deployment of DL on a variety of
tasks. For example, the recommendation systems are used by YouTube and Amazon.
The voice assistance systems are on mobile devices, such as Siri [12] and Alexa [13].
There are also intelligent recognition and navigation algorithms on autonomous
vehicles in Tesla [14, 15]. In addition is the overwhelming victory against human
players in strategic games, such as the Go game [16]. However, accompanying the
countless achievements, shortcomings emerge, such as overfitting, long training
time, dependence on massive data, extremely high-power consumption, and low
immunity to adversarial attack. In order to resolve these issues, scientists again
have begun to seek possible solutions and inspirations in biological neural systems.

Neuromorphic computing is the approach that stays on track of realizing artificial
intelligence through the emulation of biological neural systems [17]. One of the
advantages of neuromorphic computing against deep learning is it aims to build
the neural structure physically. The physical building of a biological neural system
involves designing electronic neurons and synapses at the microscopic level and
non-centralized architecture at the macroscopic level. This unique attempt means
neuromorphic computing essentially aims to reinvent computing machines that are
fundamentally different from the current digital computer. In digital computers, the
algorithms and calculations are performed by arithmetic circuits. Moreover, the data
is encoded into binary numbers by analog-to-digital converters. In neuromorphic
systems, the computations are performed through electronic neurons and synapses.
In an addition, neuromorphic systems convert the exterior stimuli into discrete
spike trains. These spiking signals are generated with the voltage potential between
the membrane of the neurons [1]. The reinventions from basic computation units
to decentralized architecture are inherently more suitable for the demands of
ANNs. Table 1 particularizes the differences between deep learning associated with
conventional computational platforms and neuromorphic systems.

262 N. Zins et al.

This chapter introduces the fundamentals of neuromorphic computing includ-
ing biological neural networks, spiking neural networks, electronic neurons and
synapses, and state-of-the-art neuromorphic chips. This chapter is organized as
follows: Section 2 introduces the basics of biological neural systems; Sect. 3
presents the models of neural systems; Sect. 4 expresses the designs of electronic
neurons and synapses; Sect. 5 discusses the state-of-the-art neuromorphic chips; and
Sect. 6 summarizes the challenges and opportunities of neuromorphic computing.

2 Biological Neural System

The basic organs forming biological neural systems will be introduced in this
section, covering neurons and synapses. In addition, associative memory learning,
which widely exists in animals, will be discussed at both cellular and behavior levels
in this section.

2.1 Neurons and Synapses

The studies of the neural system can trace back hundreds of years ago. In 1899,
Santiago Cajal first discovered and determined the basic signal processing cell in
brains: neurons [1, 18]. His drawings of neuron structure are shown in Fig. 1a.
He observed that the neurons are tree-like structures with a number of branches
connecting with each other to form a complicated network, as shown in Fig. 1b.
There are more than 100 billion neurons within an individual human brain. A
typical neuron consists of four central parts: dendrites, soma, axon, and synapses,
as depicted in Fig. 1c [1, 18].

There are more than ten thousand dendrites within a single neuron and their
function is to connect and receive signals from other neurons [1]. Due to a large
number of dendrites, each neuron is able to communicate with thousands of other
neurons at the same time. The communication signals among the neurons are
electrical spikes, as illustrated in Fig. 1d. The spiking signals received by the
dendrites are integrated/summed into the soma, the body of the neuron (see Fig. 1c).
If the integrated value exceeds a specific voltage, the soma generates a sequence of
electrical spiking signals to the axon. This behavior is referred to as neuron firing.

The mechanisms of electrical signal generation/propagation within the neurons
are fundamentally different from the current flowing in conductors. The spiking
signals are generated due to the opening of Na ions (Na+) channel, resulting in
Na+ ion transport from the outside to the inside of the neuron membrane. In 1939,
Hodgkin and Huxley recorded the spiking signal propagating along the axon of the
cat [1], which is depicted in Fig. 1d. The magnitude of the spiking signals is at
millivolt-level with up to 10-millisecond duration [1, 18]. The spikes propagating
on the axons of neurons are named membrane potential, as illustrated in Fig. 2. The

Neuromorphic Computing: A Path to Artificial Intelligence Through Emulating. . . 263

membrane potential (Vm) can be described by the following equation:

Vm = Vin − Vout, (1)

where Vin is the voltage on the inside of the neuron and the Vout is the voltage on its
outside [1].

When these spiking signals travel along the axon and reach the end of an
axon, they convey to other neurons through the synapse. A synapse acts as a
connecting organ between neurons. The neuron sending or generating spikes is
referred to as a presynaptic neuron, whereas the neuron receiving spikes from
the synapse is called a postsynaptic neuron. The presynaptic and postsynaptic
neurons are not physically connected, and there is a space between the presynaptic
neuron and postsynaptic called the synaptic cleft. The transfer of spikes is achieved
through a biochemical reaction. When the presynaptic neuron fires, the neuron
releases chemical messengers, known as neurotransmitters, into the synapse cleft,
as illustrated in Fig. 3 [1]. The neurotransmitters diffuse from a presynaptic end
to a postsynaptic end. After that, they bind to their receptors expressed on the
postsynaptic cell. Neurotransmitters cross the synaptic cleft (4–40 nm) to interact
with their receptor at the postsynaptic neuron, resulting in a time delay between
the membrane potentials (spikes) of the presynaptic neuron and the postsynaptic
neuron. The signals propagated through the synapses can be either attenuated or
amplified, which is referred to as the plasticity of synapses [1]. Synaptic plasticity
has been widely believed as a critical feature for memory and other functions of
human brains [1]. The synaptic plasticity which represents the connection strength
between neurons determines the magnitude of the membrane potential (spikes)
stimulated at the postsynaptic neurons. An excitatory synapse will excite a larger
membrane potential at the postsynaptic neuron; in contrast, the inhibitory synapses

(a) (b) (c)

Dendrites

Synapse
Synapse

Axon

Soma
(cell body)

(d)

+40

0

−70

Fig. 1 The neuron structure and spiking membrane potential in neural systems: (a) the hand
drawing of the neural network by Santiago Cajal [19, 20]; (b) image of a motor neuron [1]; (c)
the illustration of a typical neuron includes four critical parts: soma, dendrites, axon, and synapse
[1]; (d) the membrane potential measured [1]

264 N. Zins et al.

Fig. 2 Illustration of membrane potential propagation on the axon

Fig. 3 Spiking signal propagation across the synapse

reduce the probability of generating a membrane potential at postsynaptic neurons
[1], as illustrated in Fig. 3.

The change of the synaptic connection is widely believed to be responsible for
the memory and learning of neural systems. For instance, habituation is one of
the implicit memories that can be interpreted and explained using the plasticity of
synapses. Habituation is a phenomenon wherein an animal is capable of memorizing
unharmful stimuli and consequently presents less responsiveness to these repetitive
exterior stimuli, such as the noisy sound that repeatedly appears in its surroundings.
The phenomena of habituation are prevalently existing in animals and have been
experimentally tested in Aplysia. A tactile stimulus is repeatedly applied to the
siphon of the Aplysia, and the shrink of gill indicates the neuronal response. As
the number of stimuli increases, the signal magnitude of neuronal response reduces.
This experiment indicates that the Aplysia habituate the stimulus after repeatedly
receiving exterior stimulus. These experiments yield the definition of habituation.
The smaller response is due to fewer released neurotransmitters or fewer receptors
expressed in the postsynaptic neurons under the repetitive stimulus.

Neuromorphic Computing: A Path to Artificial Intelligence Through Emulating. . . 265

Fig. 4 Behavior-level associative memory learning experiment on the physiology of digestion of
dogs

2.2 Associative Memory Learning

Associative memory is a ubiquitous self-learning method that animals have. In
associative memory learning, the neural systems of the animals remember the
causality of two concurrent events. Unlike the prevailing deep learning that relies on
a large amount of labeled data. Associative memory enables the animals to correlate
two events that occur at the same time, thereby memorizing the relationship between
them [1]. As the classic Pavlov’s experiment presented, dogs can learn the sound of
whistles as a sign of food; people can remember a word representing an object
[1, 21]. The neuromorphic system which emulates associative memory learning
will learn based on its own experience and perception. Moreover, the rebuilding
of associative memory is not only to reveal a way of designing a self-learning
neuromorphic system but also to help with understanding the learning/memory
mechanism of a nervous system [22].

Associative learning is first studied by Ivan Pavlov through a series of exper-
iments on dogs [1]. Originally, dogs salivated only when presented with food
and show no salivation response to whistle sound. Then, the food was offered
accompanied by whistle sound to the dogs [1]. After this process was repeated
multiple times, the dogs started to exhibit a salivation reaction when they heard
a whistle sound alone, as illustrated in Fig. 4. These experiments demonstrate a
learning phenomenon that salivation from the sight of food can also be stimulated
by other different stimuli, e.g., the sound of whistles. This learning phenomenon is
named associative memory. Typically, two types of signal pathways are involved
in associative memory. In Pavlov’s experiment, the visual perception (seeing
food) which unconditionally stimulates the salivation response is an unconditional
stimulus (US) signal pathway, whereas the auditory perception (sound from the
whistles) is referred to as a conditional stimulus (CS) because it cannot evoke
salivation reaction without learning.

266 N. Zins et al.

Fig. 5 Different parts of the brain process different stimuli [1]. (a) Positron Emission Tomography
(PET) image of looking at words. (b) Positron Emission Tomography (PET) image of listening at
words

Aforementioned, there are two signal pathways involved in associative memory
learning for processing different signals. In the neural system, e.g., human brains,
the function of the signal is not determined by the signal itself but by its pathway and
the processing regions in the brain [3]. In a nervous system, the shapes and durations
of spiking signals share the same shape and duration independent of sensory stimuli
such as light or sound [1].

This fact leads to a reasonable question: if the spiking signals are stereotyped
reflecting limited properties of the stimulus, how do the neural signals carry and
convey particular information? Studies on the nervous system reveal that distinct
sensation signals are routed and processed in different regions of the brain and that
signals are distinguished by their pathway rather than their particular magnitudes or
shapes [1]. Positron emission tomography (PET) is a powerful tool to reveal brain
activities, as shown in Fig. 5 [1]. Visual pathways which are activated by cells in
the retina in response to light are completely different from the auditory sensory
pathways activated by ear sensory cells stimulated by sound.

After preprocessing at different regions, output signals from different regions
will be integrated during associative memory learning [1]. For instance, Fig. 6
depicts how signals are converged in the brain of rats. The captured somatosensory
and auditory signals are processed in the auditory and somatosensory thalamus,
respectively, which are different regions in rat brains. After that, the output spiking
signals from these two regions converge together at lateral nucleus, as illustrated in
Fig. 6. The auditory somatosensory cortex is at the conditional signal pathway.

Originally, the rat ignores a neutral tone since the signal pathway from the lateral
nucleus is at the conditional signal pathway and cannot stimulate a fear response.
Nevertheless, when the tone is presented with an electric shock, the rat learns to
correlate the neural stimulus of tone with the noxious stimulus of the electric shock.
After the concurrent events are repeated multiple times, the tone alone will stimulate
a fear response as well. This experiment indicates some changes happen when the
tone and shock are converged at the lateral nucleus region of the rat.

The studies on Aplysia reveal the cellular mechanism of how the blocked uncon-
ditional signal pathway becomes unblocked during associative memory learning:

Neuromorphic Computing: A Path to Artificial Intelligence Through Emulating. . . 267

Neutal Tone
Stimulus

Stimulus

Brain

Tone
signals

signals
Shock

Noxious Shock

Neural Networks at
Auditory Thalamus

Neural Networks at

Auditory &

Somatosensory Thalamus

Somatosensory
Cortex

Unconditional Pathway

Conditional Pathway

Lateral
Nucleus

Central

Fear Response

Nucleus

Fig. 6 Associative memory learning in mouse brain

the signal pathway is modified through the change of synaptic transmission. Dr.
Kandel studied associative memory learning at the cellular level using Aplysia and
discovered synaptic transmission change. Dr. Kandel won the Nobel Prize in 2000
because of this work [1]. During the learning process, the synaptic connection
between the sensory and response neurons is enhanced, increasing the received
signals of response neurons [1]. In the Aplysia experiment, the gill motor is typically
unresponsive to the siphon stimulation. However, by applying a shock to the
tail, an unconditional stimulus, and touching the siphon (CS) simultaneously and
repeatedly, the gill motor neuron became more responsive to inputs from the siphon
sensory neuron (CS). As depicted in Fig. 7, the stimulus from the US and CS
are paired and overlapped with each other in the time that is considered a trigger
condition of associative memory learning at the cellular level [1]. The increased
magnitude of the gill motor response results from a stronger synaptic connection
induced between the sensory neuron of the siphon and the motor neuron of the gill
during the associative learning process. This cellular association learning behavior
comes from the increment of connection strength between the sensory neuron
and response neuron. The strong connection strength comes from higher synaptic
transmission [1].

The observation of associative memory learning raises the question: How
does the neural system correlate two initially unrelated events? Investigations on
associative memory at the cellular level reveal that the changes in synaptic weight
play a critical role in associative memory [1]. The weight of a synapse, which refers
to the amount of the chemical neurotransmitters, reflects the connection strength
between two neurons. With the increase of the connecting strength between neurons,
the relationship between two concurrent stimuli is memorized [1]. The studies on
Aplysia reveal the mechanism of associative memory at the cell level results from
the synaptic plasticity and signal pathway modification [1]. The associative memory
learning in Aplysia involves two signal pathways from the sensory and response
neurons. These two signal pathways are marked in blue and red, respectively, in
Fig. 7 [1]. Normally, the gill motor is unresponsive to the siphon stimulation of
the siphon before learning. However, by applying a shock to the tail and touching
the siphon simultaneously and repeatedly, the gill motor neuron became more

268 N. Zins et al.

Aplysia

Tail

Conditional Stimulus (CS) Unpaid Stimulation

Siphon (CS)
Tail (US)

Paired Stimulation

Siphon (CS)

Tail (US)
5 Min

5 Min

2 mV

50 ms

5 mV

2 mV

50 ms

5 mV

Cell responese

Before training After training Before trainir After training

Siphon sensory
neuron

Siphon sensory
neuron

Gill motor
received signal

Gill motor
received signal

Conditional Stimulus (CS)

Unconditional
Stimulus (US) Unconditional

Stimulus (US)

Gill

(a)

(c) (d)

(b)

Tactile
Stimulus

Siphon

Siphon
Synapse

Sensory
Response

Neuron
NeuronTail

Gill

Sensory Response
Neuron NeuronTail

Sensory Neuron

Siphon

Synapse
Sensory Neuron

Shelf

Fig. 7 (a) Image of Aplysia (b), the experimental setup, (c) touching and shocking stimulate
the Aplysia siphon and tail, respectively. Under unpaired stimulation, the received signal of the
response neuron (gill motor neuron) is nearly identical before and after training (d) and a greater
magnitude of the received signal at the gill motor neuron is measured [1]

responsive to the stimulus coming from the siphon. The stimulus from the US and
CS are paired, as illustrated in Fig. 7d [1]. The larger magnitude of the gill motor
response results from a stronger synaptic connection induced between the sensory
neuron of the siphon and the motor neuron of the gill. This cellular association
learning behavior comes from the strengthening synaptic connection between the
sensory and response neurons. The strong connection strength comes from higher
synaptic transmission [1].

3 Modeling Neural System

In order to build a neuromorphic system, the biological neural system should be first
accurately modeled, including the neurons and synapses. The neuron models are the
sets of mathematical equations that are able to describe the biochemistry behaviors
of the biological neurons. These behaviors should mainly express the threshold-
based firing behavior and integration feature of the neurons. These neuron models
need to balance biological plausibility and computational complexity.

The basic function of a biological neuron can be simplified into two steps,
integrating received spikes from other neurons and generating other spike streams
once the integrated voltage crosses the specific threshold voltage. When a neuron
is generating a spike scream, it is referred to as the neuron firing. The accumulated
charge at the body (soma) of a neuron is named excitatory postsynaptic potential
(EPSP). Figure 8 illustrates the phenomena of EPSP. If the accumulated charges
reach a specific threshold, the soma of the neuron launches the spiking signals on the
axon, as shown in Fig. 8. These spikes will be conveyed to other neurons through the

Neuromorphic Computing: A Path to Artificial Intelligence Through Emulating. . . 269

Fig. 8 Illustration of the neuron firing

Fig. 9 Leaky integrate and
fire model

synapses forming the biological neural networks. In this section, we will introduce
four typical neuron models: Hodgkin-Huxley neuron model, leaky integrate and fire
model, Izhikevich model, and McCulloch-Pitts model.

3.1 Leaky Integrate and Fire Neuron Model

The leaky integrate and fire (LIF) neuron model, proposed by Louis Lapicque in
1907, can be used to represent charge accumulation and fire behavior [23, 24]. As
illustrated in Fig. 8, a typical LIF model consists of an RC circuit and a switch.
Figure 9 illustrates the circuitry of a LIF model. The current input stimulates the
received spikes from other neurons. The charges will be accumulated within the
capacitor resulting in an increment of voltage (Vc) across the capacitor. Once the
voltage Vc exceeds the threshold value (Vth), the switch will be closed and the
capacitor discharges to the ground generating a spike signal.

Thus, the discharging of the capacitor can be described by the following
equation:

RC
dVm

dt
= −Vm + RI(t) (2)

where Vm is membrane potential, R is the membrane resistance, C is the membrane
capacitance, and I is input current. The model equation is valid for input current

270 N. Zins et al.

until a threshold Vth is reached, where the membrane potential is Vreset. The biggest
advantage of the LIF model is its simplicity and feasibility for circuit implementa-
tion. Meanwhile, the disadvantage is it omits neuronal adaptation features. In order
to resolve this limitation, several variants of the LIF models are developed, i.e.,
the exponential integrate and fire model, the adaptive exponential integrate and fire
model, and so on. However, the disadvantage of the LIF neuron is that it does not
contain neuronal adaptation, so it cannot describe an experimentally measured spike
train in response to constant input current [25]. For constant input, the minimum
input to reach the threshold is Ith = Vth / Rm. Assuming a reset to zero, the firing
frequency thus can be calculated with:

f (I) =
{
0, I ≤ Ith[
tref − RmCm log

(
1 − Vth

IRm

)]−1
, I > Ith

(3)

where tref is a refractory period that the neuron will not fire resulting in limiting the
firing frequency of a neuron.

3.2 Hodgkin-Huxley Neuron Model

The Hodgkin-Huxley neuron model was first introduced by Alan Hodgkin and
Andrew Huxley in 1952 [26]. Hodgkin-Huxley neurons precisely describe the ionic
mechanisms of the initiation and propagation of action potentials in the axons of
squid giants. The flow of charges, including K+, Na+, etc., that forms membrane
potential in the axons is modeled using the circuits in Hodgkin-Huxley neuron
model, as illustrated in Fig. 10.

The relationship between the flow of ionic currents across the cell membrane and
the membrane voltage can be described using the following set of equations:

Fig. 10 Equivalent circuit
diagram of the
Hodgkin–Huxley model

Neuromorphic Computing: A Path to Artificial Intelligence Through Emulating. . . 271

Cm

dV

dt
= gKn4 (Vk − V) + gNam

3h (VNa − V) + gl (Vl − V) + I (t), (4)

dn

dt
= αn (1 − n) − βnn, (5)

dm

dt
= αm (1 − m) − βmm, (6)

dh

dt
= αh (1 − h) − βhh, (7)

where Cm is the membrane capacitance (Cm = τm/R, where R is the membrane
resistance, τm is the timescale); V is the membrane potential; gK and gNa are
maximal values of the K+ and Na+ channel conductance, respectively; gl is the
leak conductance; n, m, and h are functions to describe K+ channel activation, Na+
channel activation, and Na+ channel inactivation, respectively; Vk, VNa, and Vl are
K+, Na+, and leaky channel reversal potential; I is the time-dependent input current;
and αi and β i (i= n,m, h) are rate constants for associate channel depend on voltage
value, which can be determined by:

αn(V) = 0.01 (10 + Vreset − V)

exp
(
10+Vreset−V

10

)
− 1

, (8)

βn(V) = 0.125 exp

(
Vrest − V

80

)

, (9)

αm(V) = 0.1 (25 + Vrest − V)

exp
(
25+Vreset−V

10

)
− 1

, (10)

βm(V) = 4 exp

(
Vrest − V

18

)

, (11)

αh(V) = 0.07 exp

(
Vrest − V

20

)

, (12)

βh(V) = 1

exp
(
30+Vrest−V

10

)
+ 1

, (13)

where Vrest is the resting potential and Vrest − V denotes the negative depolarization.

272 N. Zins et al.

Although the Hodgkin-Huxley (H–H) model accurately describes the membrane
potential on the axon of neurons, it fails to accurately respond to the stochastic
current injection that comes from the isolated nature of ion pathways. Moreover, the
Hodgkin-Huxley model specifies the ion channel activities in detail, but it exhibits
an advanced computational cost than the other neuron models such as the LIF
model.

3.3 Izhikevich Neuron Model

Izhikevich neuron model balances the complexity and biological plausibility [27].
It also has the capability of implementing a variety of firing patterns of distinct
neurons. With adjustable parameters, the Izhikevich neuron model is capable of
producing a wide range of firing patterns, such as intrinsically bursting, chattering,
resonator, and thalamocortical firing. In Izhikevich neurons describe the membrane
potential of neurons with equations:

dV

dt
= 0.04V 2 + 5V + 140 − u + I (t), (14)

du

dt
= a (bV − u) , (15)

if V ≥ 30 mV, then

{
V ← c

u ← u + d ′
}

(16)

where V is the membrane potential, u is the membrane recovery variable, and a, b,
c, and d are scalar parameters. With different combinations of these parameters,
the Izhikevich neuron model can represent various neuron firing patterns [27].
Specifically, the parameter a expresses the timescale of the recovery variable u. The
parameter b influences the sensitivity of the recovery variable u to the subthreshold
fluctuations of the membrane potential v. The parameter c describes the after-spike
reset value of the membrane potential v. The parameter d defines the after-spike
reset of the recovery variable u.

3.4 McCulloch-Pitts Neuron Model

Another simple neuron model is the McCulloch-Pitts model which simply simulates
the neurons as threshold functions in 1943 [11]. The equations expression is simply
as:

Neuromorphic Computing: A Path to Artificial Intelligence Through Emulating. . . 273

yj = f

(
N∑

i=0

wi,j xi

)

, (17)

where yj and xi are the output and input of the neuron j, f represents a threshold
function, N is the total inputs of neuron j, and wi, j is the synaptic weight connecting
neuron i and neuron j. Equation (17) indicates that the outputs of McCulloch-
Pitts models are either one or zeros. Therefore, the McCulloch-Pitts neuron model
typically is used to implement the Boolean logic. Theoretically, the McCulloch-
Pitts models can be used for implementing arbitrary logic with stacking layers.
The McCulloch-Pitts model omits other considerable features of biological neural
systems, such as the relationship between integrated input and the firing rate of
the output. In realistic neural systems, the firing rate of a neuron generally is
proportional to the input stimulus. For example, the duration of a muscle neuron
depends on the intensity of the muscle stretch which means a more intensive stretch
stimulates a spiking signal with a higher firing rate [1, 28].

3.5 Neural Coding

As previously introduced, the communication among neurons is in a form of spikes
that are the voltage potentials between the inner and outer membranes of the
neurons. Thus, a reasonable hypothesis is that the information from one neuron
to another neuron is encoded into these spikes. Several neural coding paradigms
have been proposed and studied, including rate coding, temporal coding, etc. Neural
coding characterizes pristine exterior analog data into neural responses.

One of the most prevalent neural coding schemes is rate coding, which is built
upon the observation that the neural firing rate is proportional to the input intensity.
This relationship dates back to the work of Adrian that revealed the firing rate of
stretch receptor neurons in the muscles is higher when the applied force on muscle
is larger [29]. The rate coding is typically defined by a temporal average of spike
count in a specific period, as shown in Fig. 11a, governed by the equation:

v = nsp(T)

T
, (18)

where nsp is the number of spikes and T is the time window of measuring time
and v is the average firing rate of a single neuron in units of Hertz. Besides the
relationship between firing rate and input intensity, a number of studies exhibit that
precise spike timing also plays an important role in modifying synaptic plasticity.
For instance, the modifications of synapse plasticity depend not only on spike rates
(rate encoding) but also on the precise arrival timing of presynaptic and postsynaptic
neurons, expressed with spike timing-dependent plasticity (STDP). In order to
accurately model the timing characteristic of the neurons, temporal encoding is

274 N. Zins et al.

Sampling Window

(a) (b) (c)

Sampling Window Sampling Window

T T

X

t t t

X1 X2

T

Fig. 11 (a) Rate coding, (b) time-to-first-spike latency coding, and (c) inter-spike-interval tempo-
ral coding

proposed [30]. Two types of temporal encoding are prominent, as illustrated in
Fig. 11, namely, time-to-first-spike (TTFS) latency encoding [31] and inter-spike-
interval (ISI) encoding [32]. In TTFS, the input signal is encoded in the measure
of the timing interval between the sampling start point and the timing of the spike,
as illustrated in Fig. 11. Thereby, in each sampling period, only one input can be
encoded. On the contrary, the ISI encoding encodes the input signal into the internal
time between spikes. The ISI code is capable of carrying more information within a
sampling period compared to the TTFS latency code, as illustrated Fig. 11.

The rate and temporal encoding schemes only exhibit the mechanism of commu-
nication among neurons in the format of spikes but do not describe the activity of a
group of neurons. In biological neural systems, a group of neurons can simultane-
ously respond to the same input stimulus with same the firing pattern group [33–35].
This implies that the exterior stimulus can be encoded and represented by the firing
pattern of a group of neurons with a particular topology. This encoding scheme
is referred to as population encoding. Population encoding represents stimuli with
the joint activities of a number of neurons. The population coding can reach a
much faster response time than other encoding paradigms, e.g., rate and temporal
encoding. The group of neurons can almost instantaneously reflect the change of the
stimulus [36]. The different firing patterns are influenced by the threshold voltage,
connection topology, synaptic strength, etc. When the external input exceeds the
threshold voltage, the group of neurons, marked as red and solid cycles, will fire
resulting in different output responses. The population activity of N neurons in a
small-time interval �t is defined by the number of spikes nact (t; t + �t), which is
described by the following equation:

A(t) = lim
�t→0

1

�t

nact (t; t + �t)

N
, (19)

where activity A(t) describes the population average activity (firing) of the neurons
[37].

Neuromorphic Computing: A Path to Artificial Intelligence Through Emulating. . . 275

4 Silicon Brain

As aforementioned, neuromorphic computing aims to recreate the neural systems
physically, which naturally involves the implementation of neurons and synapses. In
this section, the implementations of electronic neurons and synapses using CMOS
(complementary metal-oxide-semiconductor) technology and memristors will be
highlighted.

4.1 Electronic Neurons

Hardware implementations of electronic neurons typically contain several
approaches such as CMOS technology [38–43], emerging devices [44–49], etc.
Typically, the CMOS circuits are used for implementing complementary and
symmetrical pairs of p-type and n-type MOSFETs for logic functions and memories
in digital systems. But in neuromorphic systems, computing units are electronic
neurons that have different functions rather than Boolean algebra. Therefore, the
electronic neurons mainly realize the generation of spiking signals, threshold
function, and other biological plausible features, such as different firing patterns
and refractory periods of realistic biologically neurons. These implementations
typically are built upon the aforementioned mathematic neuron models. One of the
typical examples is a large family of integrate and fire neuron models.

The pioneer in neuromorphic computing, Carver Mead, first proposed a simple
circuit implementing the firing of neurons with CMOS, namely, Axon-Hillock
circuits [17, 39, 50]. The Axon-Hillock circuit [17, 39, 50] is a simple example of
implementing the behaviors of integration, threshold firing, and refractory periods.
The typical design of the Axon-Hillock circuit is illustrated in Fig. 12. The Axon-
Hillock circuit generates a sequence of spikes when the membrane voltage (Vmem)

Fig. 12 The schematic of the
Axon-Hillock circuit [17, 39,
50]

276 N. Zins et al.

Table 2 Neuron models and designs

Neuron model Description Implementation

Hodgkin-Huxley Model
[26]

Computationally complex but accurately
models the ion channels of neurons and the
propagation mechanism of membrane potential

[59, 60]

Leaky integrate and fire
model [61, 62]

Simple for implementation [63–65]

Izhikevich model [27] Mathematical neuron model with high
flexibility for implementing different firing
behaviors. Balance the realistic and the
computational efficiency

[58, 66]

crosses a voltage threshold. The specific value of the voltage threshold can be design
by transistor sizes. The capacitance Cmem in the circuit simulates the membrane of
a biological neuron. With no inputs, the membrane voltage will be drawn to the
ground. While if the input is provided (Iin), the charges will be accumulated within
the membrane capacitance (Cmem) resulting in an increment of the volage of (Vmem)
accordingly. A threshold voltage (Vth) is set for measuring whether the membrane
potential is larger than the expected value using a simple transconductance amplifier.
A spike (action potential) is produced with if Vmem exceeds Vth, which is determined
by the amplifier switching threshold [17, 39, 50]. After that, Vout changes from 0 to
Vdd turning on the reset transistor. Consequently, the membrane capacitor (Cmem) is
discharged repeating another firing cycle (charging and discharging of Cmem).

Although the typical Integrate and Fire (I&F) neuron circuits require far fewer
transistors and parameters than the biophysically realistic models, they omit a large
number of behaviors of biological neurons that exhibit the computational properties
of neural systems [27, 51–53].

An acceptable compromise design between the computational complexity and
hardware feasibility is the generalized I&F models [54, 55]. It has the capabil-
ity of emulating numerous classic behaviors of biological neurons, meanwhile
achievable due to relatively simple designs compared to H–H-based models. The
generalized I&F models balance the hardware simplicity and biological plausibility
[56–58]. The design generalized I&F models significantly reduce the transistor
count, power consumption, and design area. It implements refractory period and
spike frequency adaptation, which are essential properties of realistic neurons for
producing resonances and oscillatory behaviors often emphasized in more complex
models [56–58]. Table 2 summarizes the typical implementations of the classic
neuron models.

Neuromorphic Computing: A Path to Artificial Intelligence Through Emulating. . . 277

Fig. 13 Relationships among
the four basic circuit variables

4.2 Memristive Synapses

The synaptic plasticity can be implemented with an emerging device memristor. In
1971, Leon Chua first introduced the mathematical theory of memristor [67]. The
mathematical model of the memristor is initially an additional circuit component
equivalent to the status of resistors, capacitors, and inductors. In the circuit theory,
four basic circuit variables exist, namely, current i, voltage v, charge q, and flux ϕ.
The mathematical relationship among them is illustrated in Fig. 13. For instance,
resistances demonstrate the positive and linear relationship between the voltage and
the current. Similarly, the relationships between voltage and charge and current and
flux are expressed with the capacitance and the inductance, respectively. But the
relationship between the flux and electric charge was missing originally in the chart
(Fig. 13). Thus, Leon Chua predicted that there should be another basic circuital
element expressing the relationship between the flux and electric charge. He named
this hypothetical element the memristor.

After almost four decades, HP labs found the memristor in 2008 [68]. The scien-
tists in HP Labs fabricate a nano device with a metal/dielectric/metal configuration
(Pt/TaOx/Pt). Figure 14 exhibits a crossbar structure of the nano device that can be
accessed through the nano wires. The resistance of this device can be changed by
applying voltages at its two terminals, which perfectly match the most important
characteristics of memristors that show a nonlinear and butterfly-shaped current-
voltage switching [67–70]. Another name for this metal/dielectric/metal device is
resistive RAM (RRAM) in the memory field [71–73]. In a memristor or RRAM, the
insulator layer is usually fabricated with a resistive switching material [74, 75]. The
adjustable resistance of memristors is caused by the construction/deconstruction

278 N. Zins et al.

Fig. 14 The memristors from HP labs: (a) microscope image of a memristor fabricated by HP
Labs. (b) The memristor cell is located at the cross-point of the crossbar structure with a 40-
nanometer cube of titanium dioxide (TiO2) in two layers. The lower layer is traditional of titanium
dioxide with a 2:1 oxygen-titanium ratio

processes of the conductive filaments in their oxide layer. Figure 15 illustrates
four typical stages of the resistive changes of a memristor. With the exterior
voltage/current applied to the terminals of memristors, their resistances gradually
change between their low resistance state (LRS) and high resistance state (HRS).
The decrease of resistance is caused by the conductive filament (CF) formed within
their oxide layers. At the initial state shown in Fig. 15, the atomic structure of the
oxide layers is intact. The bonding among oxygen ions and metal atoms in the
metal dioxides is stable. However, this bonding is breakable with external high
electrical fields. Some oxygen ions in the metal oxide escape from the constraint
of the bonding force under applied electrical fields, as shown in Fig. 15 [71].
Consequently, the oxygen vacancies or metal precipitates form the conductive
filaments. The conductive filaments reduce the resistance of memristors by some
alternative current pathways. The TEM (transmission electron microscopy) images
demonstrate these conductive filaments (Fig. 15). Moreover, these oxygen ions can
migrate back into the oxide to refill the oxygen vacancy and re-oxidize the metal
precipitates if an opposite voltage is applied. Then, the resistances of memristors
restore to their initial high value.

The recoverable resistive switching of the MIM materials has been observed and
studied for many years; no one connects this particular phenomenon of resistors to
the concept of memristor until HP Labs successfully found a connection [69]. A
short history of memristor exploration is summarized in Table 3.

Another important benefit of memristive synapses is that they can be produced
vertically forming a three-dimensional integrated circuit (3D-IC). The current
neuromorphic systems are limited to two-dimensional (2D) structures suffering a
long signal transportation distance, low energy efficiency, and high design area [43,
81–83]. The novel neuromorphic systems fabricated with 3D-IC offer vertical signal
propagation paths, resulting in a significant reduction of the design area and power

Neuromorphic Computing: A Path to Artificial Intelligence Through Emulating. . . 279

Fig. 15 Illustration of the switching mechanism of a memristor. The memristor has two states
(HRS and LRS) marked as ① and ③ and two transition states (set and reset processes) marked as
② and ④, respectively [76]

Table 3 Historical introduction to memristors

Year Memristor discovery milestones

1967 In a silicon oxide thin film with gold ions injected, J. G. Simmons and R. R.
Verderber discovered a stress-strain resistance shifting phenomenon [77]

1968 In a metal oxide thin film, F. Argall observed a resistance shifting behavior [78]
1971 The notion of memristor was foreseen by the Leon Chua, which is a similar

mathematical attempt by Constantine A. Balanis [79]. In his paper, his assumption
was that there might be another relationship between charge and flux [67]

1998 Bhagwat Swaroop, William West, Gregory Martinez, Michael Kozicki, and Lex
Akers showed how to improve the robustness of an artificial synapse by using a
programmable resistance device [80]

2008 Dmitri et al. HP Labs published an article in Nature introducing a relationship
between the two-terminal resistance switching characteristic of TaOx [68]

2008 Leon Chua, Stan Williams, Greg Snider, Wolfgang Porod, Massimiliano Di Ventra,
Rainer Waser, and Blaise Mouttet talked about the theoretical foundations of
utilizing memristor for RRAM and neuromorphic architectures on memristive
systems [70]

consumption. Two fabrication technologies stack memristors (RRAM) into three-
dimensional space: horizontal RRAM (H-RRAM) and vertical RRAM (V-RRAM)
depicted in Fig. 16.

Both design paradigms demonstrate a 4F2/n device size, where n is the number
of vertical layers and F is the minimal fabrication feather [84]. Two types of
3D integration technologies can be used for integrating other transistor-based
neurons and supportive circuitry into the 3D memristor-based synapse array. One

280 N. Zins et al.

Fig. 16 Two types of state-of-the-art 3D memristor structures: (a) horizontal integration; (b)
vertical integration. (Note: MIV stands for monolithic inter-tier via)

Table 4 The low-temperature transistors [87]

3D device FinFET
Epi-like Si
NWFET

Epi-like
Si UTB

SOI-Si
UTB

Poly-Si/Ge
FinFET

IGZO
OSFET

Thermal budget (◦C) <400 <400 <400 <650 <400 <500
I_on/I_off >107 >5 × 105 >5 × 105 >107 >107 >1021

is more traditional, mature, and closer to the commercialization level: TSV-based
3D integration technology [85, 86]. The second one is a more emerging monolithic
3D technology that sequentially fabricates the transistors in a single wafer at a low
process temperature.

For the TSV-based 3D integration technology, power delivery is one of the
challenges. As multiple dies are stacked together with small footprints, delivering
current to all circuitry located at different vertical layers while meeting the power
noise and thermal constraints becomes more and more challenging. This is mainly
because the number of TSVs available for power distribution networks is limited.
Currently, another state-of-the-art 3D-IC technology with no TSVs delivers a
transformative impact on the silicon industry, which is referred to as monolithic
3D integration. With no TSVs, the monolithic 3D integration directly fabricates the
memristors on the top of silicon wafers with nanoscale monolithic inter-tier vias
(MIVs). MIVs are much smaller than the traditional TSVs. The main challenge
for the monolithic 3D integration technology is the low-temperature fabrication
constraint for the upper layers. In order to protect the former fabricated devices
in lower layers, the higher layers need to be fabricated at a lower temperature. Thus,
the conventional CMOS transistor is not applicable for monolithic 3D technology
since they are fabricated more than 1000 ◦C.

Several low-temperature transistors have been investigated as the candidates to
meet lower temperature fabrication processes, including fin field-effect transistors
(FinFETs) [87], carbon nanotube FETs [88], etc. Table 4 summarizes the parameters
of these transistors [87]. Furthermore, the functional chip combining monolithic 3D
integration technology, memristor, and CNTFETs has been fabricated recently by
Stanford, which is demonstrated in Fig. 17 [89].

Neuromorphic Computing: A Path to Artificial Intelligence Through Emulating. . . 281

Fig. 17 3D chip integrated with RRAM and CNFET logics fabricated by Stanford [89]

5 Neuromorphic Chips

Nowadays, neuromorphic systems are not just a concept living in the articles but
the actual intelligent chips. In this section, several neuromorphic chips and their
applications will be introduced, including Loihi chips, TrueNorth, etc. Due to the
incomparable ultra-high energy efficiency and fast response, these neuromorphic
chips have been applied to many applications, including robotics, speech and image
recognition, edge computing, etc.

5.1 Loihi Chips

Loihi chips developed by Intel Labs are one of the top-tier neuromorphic chips
for research purposes [90, 91]. Unlike conventional GPUs and CPUs under von
Neumann architecture operating digital data, Loihi chips are specifically designed
for neuromorphic computing and asynchronous SNNs. To date, two generations of
Loihi chips have been released. The first generation of Loihi chip was revealed in
2017 [90, 91], namely, Loihi-1. Loihi-1 chips consist of 130,000 electronic neurons
and 130 million synapses that are located in 128 neuromorphic cores. The advanced
14 nm process of Intel renders the area of the Loihi-1 chip as small as 60 mm2.
Loihi-1 chips implement the digital leaky and fire neurons, which are partitioned
on 128 cores. At each core, the communication among neurons is organized in a
mesh configuration. The synapses in Loihi-1 chips are fully configurable and further
support weight sharing and compression features. The plasticity of synapses can
be manipulated with various biologically plausible learning rules, such as Hebbian
rules, STDP, and reward-modulated rules. The firing behavior of neurons in Loihi

282 N. Zins et al.

chips is implemented when received spikes accumulate to a threshold value in a
certain time; the neurons will fire off their own spikes to its connected neurons.

Loihi-1 chips are offered with several neuromorphic platforms providing distinct
interfaces for integrating the Loihi-1 chip with other computer systems or field-
programmable gate array (FPGA) devices. Kapoho bay includes 1–2 Loihi chips
with a USB interface. The USB interface enables the Loihi chip to conveniently
communicate with computer systems. Nahuku is a 32-chip Loihi board with a
standard FPGA mezzanine card (FMC) connector. The FMC connector allows the
Nahuku system to communicate with the Arria FPGA development board. Pohoiki
Spring is a large-scale Loihi chip with 100 million neurons equipped as a server for
remote access.

The second generation of the Loihi chips, namely, Loihi-2, was introduced in
late 2021. Loihi-2 is fabricated in Intel 4 process, previously referred to as 7 nm
technology. Powered by this advanced technology, the area of the Loihi-2 reduces
to 31 mm2 from 60 mm2 of the first-generation Loihi chips. Unlike the rigid neuron
models in the last generation of Loihi chips, Loihi-2 realizes fully programmable
neuron models. In Loihi-2, the specific behavior of the neurons can be programmed
with microcode instructions. The microcode instructions support basic bitwise and
math operations. Loihi-2 chip is dedicatedly designed for neuromorphic computing
and edge devices with parallel computations achieving high computational and
energy efficiency. Two developing platforms, which are Oheo Gulch and Kapoho
Point, scale Loihi-2 to a large number of neurons and synapses. Kapoho Point is a 4
by 4 inch development board equipped with eight Loihi-2 chips. These eight Loihi-
2 chips include 8.4 million neurons and 960 million synapses. The comparison
between the two generations of Loihi chips is summarized in Table 5.

Recently, Intel Labs also develop a neuromorphic software framework, namely,
Lava. Lava supports state-of-the-art neuromorphic algorithms, such as SLAYER
[92]. Lava is extensible and user-friendly to third-party development frameworks,
including robotic operating system (ROS) [93], TensorFlow, PyTorch [94], Nengo
[95], Brain [96], etc. These third-party frameworks enable the developers to apply
Loihi-2 chips to a range of applications.

The most prominent application of Loihi chips is the realization of olfactory
function [97]. In [97], an online training algorithm for identifying the smell of
samples is deployed in the first generation of Loihi neuromorphic system. Each
inference cycle only requires 2.75 ms and 0.43 mJ energy [97]. Additionally, the

Table 5 Introduction to Loihi-1 and Loihi-2 chips

Features Loihi-1 Loihi-2

Technology Intel 14 nm Intel 4 (7 nm)
Die area 60 mm2 31 mm2

Max # neurons/chip 128,000 1 million
Max # synapses/chip 128 million 120 million
Neuron model Generalized digital LIF Fully programmable

Neuromorphic Computing: A Path to Artificial Intelligence Through Emulating. . . 283

inference/training time is not affected by the scale of the problem and data due to
the computational parallelism of Loihi chips. The colocalization of memory and
computing units further minimizes the demand for energy for data transfer.

5.2 Dynamic Neuromorphic Asynchronous Processors

Dynamic neuromorphic asynchronous processors (DYNAPs) are developed by
SynSense and ETH Zurich. The family of DYNAP includes several chip models:
Dynap-CNN, DYNAP-SE1, and DYNAP-SE2, as illustrated in Fig. 18.

Dynap-CNN chip is a configurable and digital neuromorphic chip specifically
designed for spiking convolutional neural networks (SCNN). Dynap-CNN chip can
constitute more than one million ReLU (rectified linear unit) spiking neurons. It
includes four cores, which comprise 256 neurons. It has hierarchical asynchronous
routers and implements SRAM (static random access memory) and CAM (content
addressable memory) connected with routers across the cores. The asynchronous
communication router design allows a single neuron being able to communicate
with more than 230 K neurons. Each Dynap-CNN chip has one through adap-
tive exponential integrate-and-fire neurons (AdExp-I&F) and 65 K configurable
synapses. Dynap-CNN chips support a large range of CNN layers including ReLU,
pooling, padding, etc. Additionally, several network models, e.g., ResNet, LeNet,
Inception, etc., have been incorporated into Dynap-CNN chips. Dynap-CNN chips
are fabricated in the 22 nm advanced process occupying a 12mm2 area. The
low-amplitude spiking signals significantly reduce the power consumption of the
Dynap-CNN chip. The low latency and high energy efficiency render the Dynap-
CNN chips ideal candidates for the low power and low latency event-driven
applications, such as surveillance, medical applications, etc. For instance, The
Dynap-CNN development kit offers the interface of dynamic vision sensors (DVS)
that can process event streams from DVS in real time.

The Dynap-SE chips consist of four cores, as illustrated in Fig. 18b. Each neural
processor core has 16 × 16 analog neurons and 64 programmable synapses. The
analog neurons (AdExp-I&F) in DYNAP-SE directly emulate the firing biological

Fig. 18 Die photos of Dynap-CNN, DYNAP-SE1, and DYNAP-SE2

284 N. Zins et al.

behavior of neurons. The DYNAP-SE chips use traditional SRAM and CAM [98,
99]. The CAM and SRAM of the DYNAP-SE chips are organized into small
blocks placed on the vicinity of the neuron and synapse arrays. This computing-
in-memory architecture extremely minimizes power consumption and memory
bandwidth requirement compared to the traditional von Neumann architecture.
Additionally, DYNAP-SE utilizes the subthreshold technology that reduces the core
supply voltage of DYNAPs as small as 1.3 V leading to an outperformed energy
efficiency.

The communications among neurons yield classic asynchronous address-event
representation (AER) protocol. Through AER protocol, the generated spikes can
be routed one core within one core, further among cores, and even multiple chips.
The distinct levels of routing are implemented with mesh and hierarchical routing
methods. The mesh routing has low bandwidth usage but high latency, while the
hierarchical routing has low latency but high bandwidth. Therefore, the DYNAP
trade off these two routing methods. The routing levels are characterized into three
categories: Levels 1, 2, and 3. The generated spikes in Level 1 are only routed within
the single core. In Level 2, the spikes can be sent to other cores, but still within the
same chip. In Level 3, the spikes can be transferred to other chips leading to a large-
scale neuromorphic system. This capability significantly enhances the scalability of
DYNAP-SE chips. Moreover, the AER protocol also enables the communication
between the DYNAP-SE chip and other neuromorphic sensors such as DVS.

DYNAP-SE2 development kit also integrates several supportive circuitries that
preprocess the external analog signals, such as amplifying, filtering, neural encod-
ing, etc. The recurrent and feedback connections supported by DYNAP-SE chips
meet the requirements of the rich dynamics and memory characteristics. DYNAP-
SE2 integrates numerous advanced features of brain dynamics, such as spike
frequency adaptation, synaptic delay, homeostasis, short-term plasticity, etc. Due
to the intrinsic similarity of semiconductor physics and biological dynamics, many
complex models, e.g., the AdExp-I&F neuron, ion channel conductance could
be implemented simply with several transistors and capacitors. The wearable
healthcare devices need 24/7 monitoring of physiological signals that drained the
battery shortly. The ultra-low latency and power consumption of DYNAP-SE2 can
provide the desired energy efficiency and real-time processing capability. In [100],
an ECG anomaly detection algorithm is proposed and prototyped on DYNAP-SE1.
The algorithm transformed the ECG recordings into an event stream. Additionally,
the study of iEEG [101] signal of epilepsy patients demonstrates that the DYNAP-
SE2 chip can identify particular features in intracranial human data. Table 6
summarizes the specifications of two generations of NYNAP chips [98].

5.3 TrueNorth Chips

In 2014, IBM released a neuromorphic chip, TrueNorth, which has 4096 neu-
rosynaptic cores. These neurosynaptic cores consist of 256 million synapses and

Neuromorphic Computing: A Path to Artificial Intelligence Through Emulating. . . 285

Table 6 DYNAP chips

Features DYNAP-SE1 DYNAP-SE2

Technology 180 nm 180 nm
Die area 44 mm2 99 mm2

Number of cores 4 4
Number of analog
parameters

25 70

Number of neurons 256 256/64
Type of synapses AMPA, NMDA, GABAA, GABAB AMPA, NMDA, GABAA,

GABAB
Number of
synapses

64 64/256

Neuron model AdExp-I&F AdExp-I&F

Fig. 19 (a) The neurosynaptic core of TrueNorth. (b) TrueNorth neuromorphic system with 16
chips, photo courtesy of IBM [81]

1 million electronic neurons. TrueNorth utilizes 28 nm process technology and
occupies an area of 4.3 cm2. The mesh communication configuration renders the
TrueNorth chips a significant capability of fan-in and fan-out.

Figure 19a illustrates the layout of an individual neuromorphic core of TrueNorth
chips marked by several modules, such as the scheduler, controller, SRAM, and
router. The SRAM stores the data of each neuron. The scheduler buffers incoming
spike signals mimicking the delay of axons in biological neurons. The controller
ordinates and manages the overall operations of the core. With the digital neurons
and synapses, TrueNorth achieves a 20 mW/cm2 power density, whereas a typical
CPU is 50–100 W/cm2. In the a real-time object detection tasks, TrueNorth chips
consume merely 65 mW [102]. TrueNorth systems also utilize an asynchronous
event-driven communication protocol for maximizing energy efficiency.

286 N. Zins et al.

Fig. 20 Neurogrid development kit with 16 neurocores [103]

5.4 Neurogrid Chips

Neurogrid is a digital and analog mix multichip system developed by Stanford
University in 2014 [103] that integrates 16 neurocores, as illustrated in Fig. 20a.
These neurocores are fabricated using 180 nm technology on a 168 mm2 die. The
16 neurocores are integrated on a 6.5 × 7.5 in2 board in a tree routing network.
With 16 neurocores, Neurogrid system is capable to simulate up to 65,536 silicon
neurons [103], up to 1 M neurons with 16 neurocores in total. Neurogrid is a
system specifically designed for simulating large-scale biological neural networks.
The electron neurons in Neurogrid chips emulate the biochemistry behaviors of
biological neurons.

Specifically, it models the soma, dendrites, synapses, and axons [103]. The
individual neurocore consumes ∼150 mW resulting in the whole Neurogrid with
16 neurocores merely consuming an average of ~3 W of power.

5.5 BrainScaleS Project

A multichip design methodology is inevitable for achieving an excessively large
scale of neurons. However, the high-degree network structure requires an unusu-
ally high communication bandwidth among the neuromorphic chips. BrainScaleS
addresses this challenge by using wafer-scale integration.

The BrainScaleS project is developed collaboratively by the University of
Heidelberg. The hardware of the BrainScaleS project utilizes wafer-scale analog
silicon circuits [104]. A total of 384 neuromorphic cores are placed on a 20 cm
diameter silicon wafer [105], as shown in Fig. 21. Each chip fabricates 512 AdExp-

Neuromorphic Computing: A Path to Artificial Intelligence Through Emulating. . . 287

(a)

10 mm

Layer 1
routing

synapse
array
neuron
block

(b) (c)

Fig. 21 (a) Photograph of the HICANN die [106]; (b) silicon wafer and aluminum back panel and
a silicon wafer with 48 reticles; (c) assembled BrainScaleS module [106]

I&F neurons and 128,000 synapses. The wafers are assembled by integrating an
uncut silicon chip, as depicted in Fig. 21c. Neuromorphic chips are fabricated with
a 180 nm process. A neuromorphic chip is 5 × 10 mm2 in size. Therefore, each
silicon wafer consists of 49 million synapses and 200 K neurons. The single wafer
module consumes roughly 1 kW power. Due to the large size of the wafer modules,
BrainScaleS project is typically only remotely accessible [107].

5.6 Human Brain Project

The neuromorphic chips from the BrainScaleS project are applied to Human Brain
Project (HBP) as a large-scale server [108–110]. The computational platforms in
HBP are built upon EBRAINS research infrastructure [111], which consists of
SpiNNaker and BrainScaleS. The SpiNNaker machine developed by Manchester
and the BrainScaleS machine in the University of Heidelberg implements analog
electronic models of more than 1 billion synapses and 4 million neurons on multiple
wafers chips. With the outperformed computational resources, HPB empowers the
studies on neuroscience, cognitive computing, and other real-world applications
worldwide. Several tasks are addressed particularly by HPB. One of the outstanding
achievements of HBP is training the dexterous robot hands to perform vision-based
object reorientation [112]. The anthropomorphic dexterous hand of a shadow robot
is equipped with 129 sensors and 24 joints and 20 degrees of freedom for mimicking
the movements of human hands. Additionally, over 100 proprioception sensors in
the dexterous hand will collect substantial data for reinforcement training. With the
cutting-edge computational infrastructure of HBP, the humanoid hand can be trained
for manipulating a block from an initial configuration to a goal configuration using
vision alone, as illustrated in Fig. 22. The dexterous hand is integrated with the HBP
neurorobotics simulation platform.

288 N. Zins et al.

Fig. 22 The rolling of a block from an initial configuration (A) to a goal configuration (E) with
only vision input using neuromorphic computing

6 Challenges and Opportunities

Nowadays, the most promising AI approach is deep learning which is built upon
massive data and deep ANNs. Although deep learning has demonstrated its excellent
competencies in cognition tasks, the excessive demands on large-scale data and
computational resources limit its feasibility and practicality [113]. The present
studies reveal that the larger datasets allow a higher learning accuracy [114,
115] resulting in an inevasible demand for excessively large datasets. The scale
of datasets is nearly linearly increasing over the years [115, 116], whereas the
neural networks are scaling accordingly, at a double rate every year [115, 116].
On the contrary, the increment of computational capabilities of the traditional
computational platforms, such as GPU and CPU, are far behind these fierce climbing
demands [114]. Thus, a more efficient computational platform is vital for future AI
development.

Neuromorphic computing emulates the physical structure of neural systems
using an approach of software and hardware co-design that potentially can offer a
more efficient and reliable AI [117, 118]. In the software, neuromorphic systems
emulate the spiking-based information representation methods forming an SNN
system. The operating frequency, which is a firing rate in neural systems, is
significantly lower than the modern computer, which leads to an enhancement of
energy efficiency [90, 91, 102, 119]. Digital computers are designed for Boolean
algebra and are organized in von Neumann architecture. In a von Neumann
computer system, the CPUs and memory are at different locations and are connected
by a high-speed bus, as illustrated in Fig. 23b [114–116, 120]. This separation
between CPUs and memory results in a back-and-forth transfer of data. The frequent
data transfer ultimately becomes too costly and infeasible in terms of energy
consumption and latency. The issue becomes more severe for ANNs because of
their excessive amounts of data.

Neuromorphic Computing: A Path to Artificial Intelligence Through Emulating. . . 289

Auditory
Sensation

Vision

Touch
Sensation

Olfaction

Encoding
Encoding DecodingBus

Memory

Arithmetic
Logic Unit

ADC DAC

Neurons

Synapses

(a) Brain Computing Architecture (b) Von Nermann Architecture

(d) Digital Signal in Computer(c) Spiking Signal in Brain

Fig. 23 Comparison between the computational paradigm of the brain and von Neumann
computers

On the contrary, neural systems utilize an essentially distinct computing
paradigm from digital computers. The computing units (neurons) and memory
units (synapses) in human brains are placed adjacently (see Fig. 23a) forming a
distributed network structure. The proximity of neurons and synapses leverages the
data transferring efficiency. The data in neural systems is represented in spikes rather
than square waveforms. The sensory organs, e.g., eyes, ears, etc., are responsible
for the transformation between analog signals and spiking signals, which is referred
to as neural coding. The firing rate of these spiking signals is as low as the level
of kilohertz, which further minimizes the power consumption of neural systems.
Thus, the current studies of the neuromorphic system aim to build a neuromorphic
chip with brain-like architecture [49, 121], which operates spiking neural networks,
expecting an extra-power efficiency for edge computing and real-time systems
[92, 122].

Another fascinating capability of the neural system in animals is that they can
memorize the events occurring at the same time. This capability of memorization is
referred to as associative memory learning. Associative memory learning dissevers
the dependency on the massive datasets. Building numerous large scales of datasets
is a time-consuming and financially expensive task. In some scenarios, the data is
even unobtainable, such as underwater robots. The co-design with novel hardware
(silicon neurons and non-von Neumann architecture) and software (SNN and
associative memory learning) will offer a promising design strategy for efficient
artificial intelligence implementation. More and more applications prefer local
data processing due to security and energy concerns. Other applications may have
a life and death issue that extremely relies on fast response, e.g., autonomous
cars. However, the current autonomous navigation of self-driving vehicles requires

290 N. Zins et al.

sending data to a remote server to process. This approach excessively relies on stable
communication that is usually interfered. In addition, some specific applications
have no access to powerful servers, for instance, the spaceships operating on the
moon or Mars.

Furthermore, besides these advantages of neuromorphic systems that are actively
under study, the brains have much more remarkable capabilities that currently still
are not thoroughly studied yet, such as the mechanism of memory, decision-making,
robustness to noise scenarios, etc. Thus, to further draw the benefits of biological
neural systems and thrust the potential of neuromorphic systems, several aspects
can be explored in the future.

Since the information is represented in spikes instead of square waves in the
neural systems, the first step for any neuromorphic system is to transform the
exterior signal into spike screams. In biological neural systems, the transformation
is realized by sensory organs, e.g., eyes, ears, etc. Currently, many specifically
designed neuromorphic sensors can implement similar tasks for these organs. For
example, dynamic vision sensors (DVS) [123–126] can convert visual data into
spike screams. The spike screams of DVS are triggered by the motion of the object.
Each pixel inside a DVS generates spiking signals independently in response to
the motion of objects and keeps rest otherwise. The resting mode of DVS leads to
high energy efficiency compared to the traditional cameras, which are always in an
active state. In addition, the DVS has an excessive capability of dealing with the
motion blur than traditional frame cameras since it can reconstruct images from the
spike screams [127, 128]. Another biological sensor is the silicon cochlea dynamic
audio sensor (DAS) which emulates the function of the hearing [129–132]. In a
conventional audio system, the sound is first transformed into digital data with
ADCs and then processed using Fourier transform, bandpass filtering, etc. This
transformation process converts continuous analog signals (audio data) into discrete
binary data. However, in DAS, the analog audio signals are encoded, in parallel,
into trains of spikes events. Analogously, besides audio and visual signaling, more
sensations, such as skin and posture sensations, should be explored and encoded into
spikes for neuromorphic systems. These aspects are uncultivated research fields.

Moreover, the current studies of deep learning and ANNs merely process differ-
ent signals with distinct neural networks independently without a fusion/associative
learning like what happens in the neural systems. In human brains, the captured
signals are processed at different regions in parallel significantly enhancing compu-
tation efficiency and cognitive capabilities.

In addition, what we can learn from emulating the human brain is not only
how to build an efficient artificial system but also how our brains work including
the possible explanation for neurological diseases, optical illusions, visual agnosia,
and Parkinson’s disease [1]. For instance, recent studies indicate that synapse loss
highly causes Alzheimer’s disease [133]. Thus, the emulation of human brains by
neuromorphic systems offers a platform for exploring the mechanism of diseases.

Neuromorphic Computing: A Path to Artificial Intelligence Through Emulating. . . 291

References

1. Kandel, E.R., Schwartz, J.H., Jessell, T.M., Siegelbaum, S.A., Hudspeth, A.: Principles of
Neural Science. McGraw-Hill, New York (2000)

2. Baird, E., Srinivasan, M.V., Zhang, S., Cowling, A.: Visual control of flight speed in
honeybees. J. Exp. Biol. 208(20), 3895–3905 (2005)

3. Kern, R., Boeddeker, N., Dittmar, L., Egelhaaf, M.: Blowfly flight characteristics are shaped
by environmental features and controlled by optic flow information. J. Exp. Biol. 215(14),
2501–2514 (2012)

4. Haenlein, M., Kaplan, A.: A brief history of artificial intelligence: on the past, present, and
future of artificial intelligence. Calif. Manag. Rev. 61(4), 5–14 (2019)

5. A. M. Turing, Computing machinery and intelligence,“ in Parsing the Turing Test: Springer,
Dordrecht 2009, pp. 23–65

6. Weizenbaum, J.: ELIZA—a computer program for the study of natural language communi-
cation between man and machine. Commun. ACM. 9(1), 36–45 (1966)

7. Campbell, M., Hoane Jr., A.J., Hsu, F.-H.: Deep blue. Artif. Intell. 134(1–2), 57–83 (2002)
8. Goodfellow, I., Yoshua, B., Aaron, C.: Deep Learning, p. 785 (2016). https://doi.org/10.1016/

B978-0-12-391420-0.09987-X
9. Bengio, Y., Goodfellow, I., Courville, A.: Deep Learning. MIT Press, Cambridge, MA (2017)
10. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information

Processing Systems, pp. 2672–2680 (2014)
11. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull.

Math. Biophys. 5(4), 115–133 (1943)
12. Aron, J.: How innovative is Apple’s new voice assistant, Siri? ed: Elsevier (2011)
13. Hoy, M.B.: Alexa, Siri, Cortana, and more: an introduction to voice assistants. Med. Ref.

Serv. Q. 37(1), 81–88 (2018)
14. Greenblatt, N.A.: Self-driving cars and the law. IEEE Spectr. 53(2), 46–51 (2016)
15. Pedrycz, W., Chen, S.-M.: Deep Learning : Algorithms and Applications. Springer, Cham

(2020)
16. Gibney, E.: Google AI algorithm masters ancient game of Go. Nat. News. 529(7587), 445

(2016)
17. Mead, C.: Neuromorphic electronic systems. Proc. IEEE. 78(10), 1629–1636 (1990)
18. Soediono, B.: The handbook of brain theory and neural networks. J. Chem. Inf. Model. 53,

719–725 (1989). https://doi.org/10.1017/CBO9781107415324.004
19. y Cajal, S.R.: Comparative Study of the Sensory Areas of the Human Cortex, Clark

University, Worcester (1899)
20. Bear, M.F., Connors, B.W., Paradiso, M.A.: Neuroscience. Lippincott Williams & Wilkins,

Philadelphia (2007)
21. P. I. Pavlov, ”Conditioned reflexes: an investigation of the physiological activity of the

cerebral cortex,“ Ann. Neurosci., vol. 17, no. 3, p. 136, Jul 2010, doi: https://doi.org/10.5214/
ans.0972-7531.1017309

22. H. An, An, Q., Yi, Y.: Realizing behavior level associative memory learning through three-
dimensional Memristor-based neuromorphic circuits. In: IEEE Transactions on Emerging
Topics in Computational Intelligence (2019)

23. Brunel, N., Van Rossum, M.C.: Lapicque’s 1907 paper: from frogs to integrate-and-fire. Biol.
Cybern. 97(5), 337–339 (2007)

24. Orhan, E.: The Leaky Integrate-and-Fire Neuron Model, pp. 1–6 (2012)
25. Fuortes, M., Mantegazzini, F.: Interpretation of the repetitive firing of nerve cells. J. Gen.

Physiol. 45(6), 1163–1179 (1962)
26. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its

application to conduction and excitation in nerve. Bull. Math. Biol. 52, 25–71 (1990). https:/
/doi.org/10.1007/BF02459568

http://doi.org/10.1016/B978-0-12-391420-0.09987-X
http://doi.org/10.1017/CBO9781107415324.004
http://doi.org/10.5214/ans.0972-7531.1017309
http://doi.org/10.1007/BF02459568

292 N. Zins et al.

27. Izhikevich, E.M.: Simple model of spiking neurons. IEEE Trans. Neural Netw. 14, 1569–1572
(2003). https://doi.org/10.1109/TNN.2003.820440

28. Darian-Smith, I., Johnson, K., Dykes, R.: “Cold” fiber population innervating palmar and
digital skin of the monkey: responses to cooling pulses. J. Neurophysiol. 36(2), 325–346
(1973)

29. Adrian, E.D.: The impulses produced by sensory nerve endings: part I. J. Physiol. 61(1), 49–
72 (1926)

30. Panzeri, S., Brunel, N., Logothetis, N.K., Kayser, C.: Sensory neural codes using mul-
tiplexed temporal scales. Trends Neurosci. 33, 111–120 (2010). https://doi.org/10.1016/
j.tins.2009.12.001

31. Zhao, C., Yi, Y., Li, J., Fu, X., Liu, L.: Interspike-interval-based analog spike-time-dependent
encoder for neuromorphic processors. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 25,
2193–2205 (2017). https://doi.org/10.1109/TVLSI.2017.2683260

32. Zhao, C., et al.: Energy efficient temporal spatial information processing circuits based on
STDP and spike iteration. IEEE Trans. Circuits Syst. II. 67(10), 1715–1719 (2019)

33. Averbeck, B.B., Latham, P.E., Pouget, A.: Neural correlations, population coding and
computation. Nat. Rev. Neurosci. 7(5), 358–366 (2006)

34. Pasupathy, A., Connor, C.E.: Population coding of shape in area V4. Nat. Neurosci. 5(12),
1332–1338 (2002)

35. Panzeri, S., Macke, J.H., Gross, J., Kayser, C.: Neural population coding: combining insights
from microscopic and mass signals. Trends Cogn. Sci. 19(3), 162–172 (2015)

36. Pouget, A., Dayan, P., Zemel, R.: Information processing with population codes. Nat. Rev.
Neurosci. 1(2), 125–132 (2000)

37. Gerstner, W., Kistler, W.M.: Spiking Neuron Models: Single Neurons, Populations, Plasticity.
Cambridge University Press, Cambridge (2002)

38. Liu, J.-H., Wang, C.-Y., An, Y.-Y.: A Survey of neuromorphic vision system: biological
nervous systems realized on silicon. In: 2009 International Conference on Industrial Mecha-
tronics and Automation, IEEE, pp. 154–157 (2009)

39. Indiveri, G., et al.: Neuromorphic silicon neuron circuits (in English). Front. Neurosci.,
Review 5 (2011, May 31) https://doi.org/10.3389/fnins.2011.00073

40. Poon, C.S., Zhou, K.: Neuromorphic silicon neurons and large-scale neural networks:
challenges and opportunities. Front. Neurosci. 5, 2009–2011 (2011). https://doi.org/10.3389/
fnins.2011.00108

41. Ahmed, M.R., Sujatha, B.K.: A review on methods, issues and challenges in neuromorphic
engineering. In: 2015 International Conference on Communications and Signal Processing
(ICCSP), pp. 899–903 (2015). https://doi.org/10.1109/ICCSP.2015.7322626

42. Schuman, C.D., Ridge, O., Disney, A.: Dynamic adaptive neural network arrays: a
neuromorphic architecture. In: Proceedings of the Workshop on Machine Learning in
High-Performance Computing Environments – MLHPC’15, pp. 1–4 (2015). https://doi.org/
10.1145/2834892.2834895

43. Yi, Y., et al.: FPGA based spike-time dependent encoder and reservoir design in neuromorphic
computing processors. Microprocess. Microsyst. 46, 175–183 (2016). https://doi.org/10.1016/
j.micpro.2016.03.009

44. Sun, J.: CMOS and Memristor Technologies for Neuromorphic Computing Applications
(2015)

45. Babacan, Y., Kaçar, F., Gürkan, K.: A spiking and bursting neuron circuit based on memristor.
Neurocomputing. 203, 86–91 (2016). https://doi.org/10.1016/j.neucom.2016.03.060

46. An, H., Ehsan, M.A., Zhou, Z., Shen, F., Yi, Y.: Monolithic 3D neuromorphic computing
system with hybrid CMOS and memristor-based synapses and neurons. Integr. VLSI J.
(2017)

47. An, H., Al-Mamun, M.S., Orlowski, M., Yi, Y.: A three-dimensional (3D)Memristive Spiking
Neural Network (M-SNN) system. In: International Symposium on Quality Electronic Design
(2021)

http://doi.org/10.1109/TNN.2003.820440
http://doi.org/10.1016/j.tins.2009.12.001
http://doi.org/10.1109/TVLSI.2017.2683260
http://doi.org/10.3389/fnins.2011.00073
http://doi.org/10.3389/fnins.2011.00108
http://doi.org/10.1109/ICCSP.2015.7322626
http://doi.org/10.1145/2834892.2834895
http://doi.org/10.1016/j.micpro.2016.03.009
http://doi.org/10.1016/j.neucom.2016.03.060

Neuromorphic Computing: A Path to Artificial Intelligence Through Emulating. . . 293

48. An, H., Ha, D.S., Yi, Y.: Powering next-generation industry 4.0 by a self-learning and low-
power neuromorphic system. In: Proceedings of the 7th ACM International Conference on
Nanoscale Computing and Communication, pp. 1–6 (2020)

49. An, H.: Powering Next-Generation Artificial Intelligence by Designing Three-Dimensional
High-Performance Neuromorphic Computing System with Memristors. Virginia Tech (2020)

50. Mead, C.: How we created neuromorphic engineering. Nat. Electron. 3(7), 434–435 (2020)
51. Izhikevich, E.M.: Dynamical systems in neuroscience computational neuroscience. Dyn. Syst.

25, 227–256 (2007). https://doi.org/10.1017/S0143385704000173
52. Izhikevich, E.M.: Which model to use for cortical spiking neurons? IEEE Trans. Neural Netw.

15(5), 1063–1070 (2004)
53. Brette, R., Gerstner, W.: Adaptive exponential integrate-and-fire model as an effective

description of neuronal activity. J. Neurophysiol. 94(5), 3637–3642 (2005)
54. Jolivet, R., Lewis, T.J., Gerstner, W.: Generalized integrate-and-fire models of neuronal

activity approximate spike trains of a detailed model to a high degree of accuracy. J.
Neurophysiol. 92(2), 959–976 (2004)

55. Livi, P., Indiveri, G.: A current-mode conductance-based silicon neuron for address-event
neuromorphic systems. In: 2009 IEEE international symposium on circuits and systems,
IEEE, pp. 2898–2901 (2009)

56. Wijekoon, J.H.B., Dudek, P.: Compact silicon neuron circuit with spiking and bursting
behaviour. Neural Netw. 21, 524–534 (2008). https://doi.org/10.1016/j.neunet.2007.12.037

57. Van Schaik, A., Jin, C., McEwan, A., Hamilton, T.J., Mihalas, S., Niebur, E.: A log-
domain implementation of the Mihalas-Niebur neuron model. In: Proceedings of 2010 IEEE
International Symposium on Circuits and Systems, IEEE, pp. 4249–4252 (2010)

58. Schaik, V., Jin, C., McEwan, A., Hamilton, T.J.: A log-domain implementation of the
Izhikevich neuron model. In: ISCAS 2010–2010 IEEE International Symposium on Circuits
and Systems: Nano-Bio Circuit Fabrics and Systems, pp. 4253–4256 (2010). doi: https://
doi.org/10.1109/ISCAS.2010.5537564

59. Ma, Q., Haider, M.R., Shrestha, V.L., Massoud, Y.: Bursting Hodgkin–Huxley model-based
ultra-low-power neuromimetic silicon neuron. Analog Integr. Circ. Sig. Process. 73(1), 329–
337 (2012)

60. Yu, T., Sejnowski, T.J., Cauwenberghs, G.: Biophysical neural spiking, bursting, and
excitability dynamics in reconfigurable analog VLSI. IEEE Trans. Biomed. Circuits Syst.
5(5), 420–429 (2011)

61. Abbott, L.F.: Lapicque’s introduction of the integrate-and-fire model neuron (1907). Brain
Res. Bull. 50, 303–304 (1999). https://doi.org/10.1016/S0361-9230(99)00161-6

62. Stein, R.B.: A theoretical analysis of neuronal variability. Biophys. J. 5(2), 173 (1965)
63. Rozenberg, M., Schneegans, O., Stoliar, P.: An ultra-compact leaky-integrate-and-fire model

for building spiking neural networks. Sci. Rep. 9(1), 1–7 (2019)
64. Chatterjee, D., Kottantharayil, A.: A CMOS compatible bulk FinFET-based ultra low energy

leaky integrate and fire neuron for spiking neural networks. IEEE Electron Device Lett. 40(8),
1301–1304 (2019)

65. Dutta, S., Kumar, V., Shukla, A., Mohapatra, N.R., Ganguly, U.: Leaky integrate and fire
neuron by charge-discharge dynamics in floating-body MOSFET. Sci. Rep. 7(1), 1–7 (2017)

66. Demirkol, A.Ş., Özoğuz, S.: A low power real time izhikevich neuron with synchronous
network behavior. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi. 12(24), 39–52 (2013)

67. Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circuit Theory. 18(5), 507–519
(1971)

68. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found (in
English). Nature. 453(7191), 80–83 (2008). https://doi.org/10.1038/nature06932

69. Williams, S.R.: How we found the missing memristor. Spectrum IEEE. 45(12), 28–35 (2008)
70. Keshmiri, V.: A Study of the Memristor Models and Applications (2014)
71. Wong, H.S.P., et al.: Metal-oxide RRAM. Proc. IEEE. 100, 1951–1970 (2012). https://doi.org/

10.1109/JPROC.2012.2190369

http://doi.org/10.1017/S0143385704000173
http://doi.org/10.1016/j.neunet.2007.12.037
http://doi.org/10.1109/ISCAS.2010.5537564
http://doi.org/10.1016/S0361-9230(99)00161-6
http://doi.org/10.1038/nature06932
http://doi.org/10.1109/JPROC.2012.2190369

294 N. Zins et al.

72. Strukov, D.B., Borghetti, J.L., Williams, R.S.: Coupled ionic and electronic transport model
of thin-film semiconductor memristive behavior (in English). Small. 5(9), 1058–1063 (2009).
https://doi.org/10.1002/smll.200801323

73. Jo, S.H., Chang, T., Ebong, I., Bhadviya, B.B., Mazumder, P., Lu, W.: Nanoscale memristor
device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010)

74. Stefanovich, G., Pergament, A., Stefanovich, D.: Electrical switching and Mott transition in
VO2. J. Phys. Condens. Matter. 12(41), 8837 (2000)

75. Honig, J., Reed, T.: Electrical properties of Ti 2 O 3 single crystals. Phys. Rev. 174(3), 1020
(1968)

76. Chen, J.Y., et al.: Dynamic evolution of conducting nanofilament in resistive switching
memories. Nano Lett. 13(8), 3671–3677 (2013). https://doi.org/10.1021/nl4015638

77. Simmons, J., Verderber, R.: New conduction and reversible memory phenomena in thin
insulating films. Proc. R. Soc. London, Ser. A. 301(1464), 77–102 (1967)

78. Argall, F.: Switching phenomena in titanium oxide thin films. Solid State Electron. 11, 535–
541 (1968). https://doi.org/10.1016/0038-1101(68)90092-0

79. Balanis, C.A.: Advanced Engineering Electromagnetics. John Wiley & Sons, New York
(2012)

80. Swaroop, B., West, W., Martinez, G., Kozicki, M., Akers, L.: Programmable current mode
Hebbian learning neural network using programmable metallization cell. In: ISCAS’98.
Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.
98CH36187), vol. 3, IEEE, pp. 33–36 (1998)

81. Akopyan, F., et al.: True north: design and tool flow of a 65 mW 1 million neuron
programmable neurosynaptic chip (in English). IEEE Trans. Comput-Aided Des. Integr.
Circuits Syst. 34(10), 1537–1557 (2015). https://doi.org/10.1109/tcad.2015.2474396

82. An, H., Ehsan, M.A., Zhou, Z., Yi, Y.: Electrical Modeling and Analysis of 3D Neuromorphic
IC with Monolithic Inter-tier Vias.

83. Yi, Y., Li, P., Sarin, V., Shi, W.: Impedance extraction for 3-D structures with multiple
dielectrics using preconditioned boundary element method. In: 2007 IEEE/ACM International
Conference on Computer-Aided Design, IEEE, pp. 7–10 (2007)

84. Xu, C., Niu, D., Yu, S., Xie, Y.: Modeling and design analysis of 3D vertical resistive
memory—a low cost cross-point architecture. In: 2014 19th Asia and South Pacific Design
Automation Conference (ASP-DAC), IEEE, pp. 825–830 (2014)

85. Yi, Y., Li, P., Sarin, V., Shi, W.: A preconditioned hierarchical algorithm for impedance
extraction of three-dimensional structures with multiple dielectrics. IEEE Trans. Comput-
Aided Des. Integr. Circuits Syst. 27(11), 1918–1927 (2008)

86. Yi, Y., Zhou, Y., Fu, X., Shen, F.: Modeling differential through-silicon-vias (TSVs) with
voltage dependent and nonlinear capacitance. Cyber J. 3(6), 234–241 (2013)

87. Yang, C.-C., et al.: Footprint-efficient and power-saving monolithic IoT 3D+ IC con-
structed by BEOL-compatible sub-10nm high aspect ratio (AR>7) single-grained Si
FinFETs with record high Ion of 0.38 mA/μm and steep-swing of 65 mV/dec. and
I<inf>on</inf>/I<inf>off</inf> ratio of 8,” pp. 9.1.1–9.1.4 (2016). https://doi.org/10.1109/
iedm.2016.7838379

88. Shulaker, M.M., et al.: Monolithic 3D integration of logic and memory: Carbon nanotube
FETs, resistive RAM, and silicon FETs. In: Electron Devices Meeting (IEDM), 2014 IEEE
International, IEEE, pp. 27.4.1–27.4.4 (2014). https://doi.org/10.1109/IEDM.2014.7047120

89. Shulaker, M.M., et al.: Three-dimensional integration of nanotechnologies for computing
and data storage on a single chip. Nature. 547(7661), 74–78 (2017). https://doi.org/10.1038/
nature22994

90. Davies, M., et al.: Advancing neuromorphic computing with Loihi: a survey of results and
outlook. Proc. IEEE. 109, 911–934 (2021)

91. Davies, M., et al.: Loihi: a neuromorphic manycore processor with on-chip learning. IEEE
Micro. 38(1), 82–99 (2018)

92. Shrestha, S.B., Orchard, G.: Slayer: Spike layer error reassignment in time, arXiv preprint
arXiv:1810.08646 (2018)

http://doi.org/10.1002/smll.200801323
http://doi.org/10.1021/nl4015638
http://doi.org/10.1016/0038-1101(68)90092-0
http://doi.org/10.1109/tcad.2015.2474396
http://doi.org/10.1109/iedm.2016.7838379
http://doi.org/10.1109/IEDM.2014.7047120
http://doi.org/10.1038/nature22994

Neuromorphic Computing: A Path to Artificial Intelligence Through Emulating. . . 295

93. DiLuoffo, V., Michalson, W.R., Sunar, B.: Robot operating system 2: the need for a holistic
security approach to robotic architectures. Int. J. Adv. Robot. Syst. 15(3), 1729881418770011
(2018)

94. Rao, D., McMahan, B.: Natural Language Processing with PyTorch: Build Intelligent
Language Applications Using Deep Learning, 1st ed. O’Reilly Media, Beijing, p. 1 online
resource [Online] (2019). Available: http://proquest.safaribooksonline.com/9781491978221

95. Bekolay, T., et al.: Nengo: a python tool for building large-scale functional brain models.
Front. Neuroinform. 7, 48 (2014)

96. Goodman, D.F., Brette, R.: The brian simulator. Front. Neurosci. 3, 26 (2009)
97. Imam, N., Cleland, T.A.: Rapid online learning and robust recall in a neuromorphic olfactory

circuit. Nat. Mach. Intell. 2(3), 181–191 (2020)
98. Moradi, S., Qiao, N., Stefanini, F., Indiveri, G.: A scalable multicore architecture with hetero-

geneous memory structures for dynamic neuromorphic asynchronous processors (DYNAPs).
IEEE Trans. Biomed. Circuits Syst. 12(1), 106–122 (2017)

99. Thakur, C.S., et al.: Large-scale neuromorphic spiking Array processors: a quest to mimic
the brain (in English). Front. Neurosci., Review. 12(891) (2018). https://doi.org/10.3389/
fnins.2018.00891

100. Bauer, F.C., Muir, D.R., Indiveri, G.: Real-time ultra-low power ECG anomaly detection using
an event-driven neuromorphic processor. IEEE Trans. Biomed. Circuits Syst. 13(6), 1575–
1582 (2019)

101. Sharifshazileh, M., Burelo, K., Sarnthein, J., Indiveri, G.: An electronic neuromorphic system
for real-time detection of high frequency oscillations (HFO) in intracranial EEG. Nat.
Commun. 12(1), 1–14 (2021)

102. Akopyan, F., et al.: TrueNorth: design and tool flow of a 65 mW 1 million neuron
programmable neurosynaptic chip. IEEE Trans. Comput-Aided Des. Integr. Circuits Syst.
34(10), 1537–1557 (2015). https://doi.org/10.1109/TCAD.2015.2474396

103. Benjamin, B., et al.: Neurogrid: a mixed-analog-digital multichip system for large-scale
neural simulations (in English). Proc. IEEE. 102(5), 699–716 (2014). https://doi.org/10.1109/
Jproc.2014.2313565

104. Models, P., Circuits, N., Project, H.B.: Physical Models of Neural Circuits in BrainScaleS and
the Human Brain Project Status and Plans

105. Meier, K.: A mixed-signal universal neuromorphic computing system. In: 2015 IEEE
International Electron Devices Meeting (IEDM), IEEE, pp. 4.6.1–4.6.4 (2015)

106. Schemmel, J., Bruderle, D., Grubl, A., Hock, M., Meier, K., Millner, S.: A wafer-scale
neuromorphic hardware system for large-scale neural modeling. In: Circuits and Systems
(ISCAS), Proceedings of 2010 IEEE International Symposium on, IEEE, pp. 1947–1950
(2010)

107. Appukuttan, S., Bologna, L., Migliore, M., Schürmann, F., Davison, A.: EBRAINS Live
Papers-Interactive resource sheets for computational studies in neuroscience (2021)

108. Markram, H.: The human brain project. Sci. Am. 306(6), 50–55 (2012)
109. Calimera, A., Macii, E., Poncino, M.: The human brain project and neuromorphic computing.

Funct. Neurol. 28, 191–196 (2013). https://doi.org/10.11138/FNeur/2013.28.3.191
110. Peppicelli, D., et al.: Human Brain Project. Neurorobotics Platform Specification, pp. 1–79

(2015)
111. Schirner, M., et al.: Brain Modelling as a Service: The Virtual Brain on EBRAINS, arXiv

preprint arXiv:2102.05888 (2021)
112. Andrychowicz, O.M., et al.: Learning dexterous in-hand manipulation. Int. J. Robot. Res.

39(1), 3–20 (2020)
113. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align

and translate, arXiv preprint arXiv:1409.0473 (2014)
114. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional

transformers for language understanding, arXiv preprint arXiv:1810.04805 (2018)
115. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning. MIT Press, Cambridge,

MA (2016)

http://proquest.safaribooksonline.com/9781491978221
http://doi.org/10.3389/fnins.2018.00891
http://doi.org/10.1109/TCAD.2015.2474396
http://doi.org/10.1109/Jproc.2014.2313565
http://doi.org/10.11138/FNeur/2013.28.3.191

296 N. Zins et al.

116. Sun, C., Shrivastava, A., Singh, S., Gupta, A.: Revisiting unreasonable effectiveness of data in
deep learning era. In: Proceedings of the IEEE International Conference on Computer Vision,
vol. 2017-Octob, pp. 843–852 (2017). https://doi.org/10.1109/ICCV.2017.97

117. Deng, L., Tang, H., Roy, K.: Understanding and bridging the gap between neuromorphic
computing and machine learning. Front. Comput. Neurosci. 15 (2021)

118. Roy, K., Jaiswal, A., Panda, P.: Towards spike-based machine intelligence with neuromorphic
computing. Nature. 575(7784), 607–617 (2019)

119. Arthur, I.J., Dada, P.: Algorithm Prototyping, Development, and Deployment for TrueNorth:
The Caffe Tea Case Study (2015)

120. Sze, V., Chen, Y.-H., Yang, T.-J., Emer, J.S.: Efficient processing of deep neural networks: a
tutorial and survey. Proc. IEEE. 105(12), 2295–2329 (2017)

121. An, H., Zhou, Z., Yi, Y.: Opportunities and challenges on nanoscale 3D neuromorphic
computing system. In: Electromagnetic Compatibility & Signal/Power Integrity (EMCSI),
2017 IEEE International Symposium on, IEEE, pp. 416–421 (2017)

122. Severa, W., Vineyard, C.M., Dellana, R., Verzi, S.J., Aimone, J.B.: Training deep neural
networks for binary communication with the Whetstone method. Nat. Mach. Intell. 1(2), 86
(2019)

123. Drazen, D., Lichtsteiner, P., Häfliger, P., Delbrück, T., Jensen, A.: Toward real-time particle
tracking using an event-based dynamic vision sensor. Exp. Fluids. 51(5), 1465 (2011)

124. Delbruck, T., Lang, M.: Robotic goalie with 3 ms reaction time at 4% CPU load using event-
based dynamic vision sensor. Front. Neurosci. 7, 223 (2013)

125. Blum, H., Dietmüller, A., Milde, M., Conradt, J., Indiveri, G., Sandamirskaya, Y.: A
neuromorphic controller for a robotic vehicle equipped with a dynamic vision sensor. Robot.
Sci. Syst. 2017 (2017)

126. Dominguez-Morales, M.J., Jimenez-Fernandez, A., Jiménez-Moreno, G., Conde, C., Cabello,
E., Linares-Barranco, A.: Bio-inspired stereo vision calibration for dynamic vision sensors.
IEEE Access. 7, 138415–138425 (2019)

127. Choi, S.-Y., Kim, J.-S., Seo, J.-H.: A study on the reduction of power consumption and the
improvement of motion blur for OLED displays. J. Korean Inst. IIIum. Electr. Install. Eng.
30(3), 1–8 (2016)

128. Chen, G., et al.: Neuromorphic vision based multivehicle detection and tracking for intelligent
transportation system. J. Adv. Transport. 2018, 4815383 (2018)

129. Anumula, J., Neil, D., Delbruck, T., Liu, S.-C.: Feature representations for neuromorphic
audio spike streams. Front. Neurosci. 12, 23 (2018)

130. Liu, S.C., Delbruck, T.: Neuromorphic sensory systems. Curr. Opin. Neurobiol. 20, 288–295
(2010). https://doi.org/10.1016/j.conb.2010.03.007

131. Richter, C., et al.: Musculoskeletal robots: scalability in neural control. IEEE Robot. Autom.
Mag. 23, 128–137 (2016). https://doi.org/10.1109/MRA.2016.2535081

132. Vanarse, A., Osseiran, A., Rassau, A.: A review of current neuromorphic approaches for
vision, auditory, and olfactory sensors. Front. Neurosci. 10, 115 (2016)

133. Sheng, M., Sabatini, B.L., Südhof, T.C.: Synapses and Alzheimer’s disease. Cold Spring
Harb. Perspect. Biol. 4(5), a005777 (2012)

http://doi.org/10.1109/ICCV.2017.97
http://doi.org/10.1016/j.conb.2010.03.007
http://doi.org/10.1109/MRA.2016.2535081

AI for Cybersecurity in Distributed
Automotive IoT Systems

Vipin Kumar Kukkala, Sooryaa Vignesh Thiruloga, and Sudeep Pasricha

1 Introduction

Modern vehicles consist of several distributed processing elements called electronic
control units (ECUs) that communicate using an in-vehicle network. Each ECU
runs various mixed-criticality real-time applications that range from advanced
vehicle control to entertainment. Each ECU takes input from different sensors or
information from other ECUs to control or actuate different components in the
vehicle. Additionally, some of the ECUs in the cars connect to various external
systems such as OEM servers to receive over-the-air (OTA) updates via the Internet,
other vehicles to communicate traffic information, etc. These unique characteristics
of automotive systems make them one of the best examples of a complex distributed
time-critical cyber-physical IoT system.

The number of ECUs along with the complexity of software running on these
ECUs has been steadily increasing in emerging vehicles. This is mainly driven
by the need to support state-of-the-art advanced driver assistance system (ADAS)
features such as collision warning, lane keep assist, parking assist, blind spot
warning, etc. These advancements have resulted in an increase in the complexity of
the in-vehicle network, which is the backbone over which huge volumes of hetero-
geneous sensor data and safety-critical real-time decisions and control commands
are communicated. Moreover, the state-of-the-art ADAS solutions are increasingly
communicating with various external systems using advanced communication
standards such as 5G technology and Vehicle-to-X (V2X) [1]. This increased
interaction with external systems makes modern vehicles highly vulnerable to
various cybersecurity attacks that can have catastrophic consequences. Several

V. K. Kukkala · S. V. Thiruloga · S. Pasricha (�)
Department of Electrical and Computer Engineering, Colorado State University,
Fort Collins, CO, USA
e-mail: vipin.kukkala@colostate.edu; sooryaa@colostate.edu; sudeep.pasricha@colostate.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Iranmanesh (ed.), Frontiers of Quality Electronic Design (QED),
https://doi.org/10.1007/978-3-031-16344-9_8

297

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16344-9_8&domain=pdf

 885 56845 a 885 56845 a

mailto:vipin.kukkala@colostate.edu

 12336 56845 a 12336
56845 a

mailto:sooryaa@colostate.edu

 21565 56845 a 21565 56845
a

mailto:sudeep.pasricha@colostate.edu

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-16344-9_8

298 V. K. Kukkala et al.

cyberattacks on multiple vehicles have been demonstrated in [2–4] showing various
approaches to gain access to the in-vehicle network and take control of the vehicle
via malicious messages. As connected and autonomous vehicles are becoming
increasingly ubiquitous, the problem of security in automotive systems will be
further aggravated. Thus, it is highly essential to prevent unauthorized access of
vehicular networks from external attackers to ensure the security of automotive
systems.

Traditional computer networks use firewalls as a defense mechanism to protect
the network from various unauthorized accesses. However, no firewall is flawless
and no network can be impenetrable. Therefore, there is a need for an active
monitoring system that scans the network to detect cyberattacks manifesting in the
system. An intrusion detection system (IDS) actively monitors network traffic and
triggers alerts when malicious behavior or known attack signatures are detected. The
IDS acts as the last line of defense in distributed automotive IoT systems.

General IDSs can be classified into two categories: (i) signature-based and (ii)
anomaly-based. The signature-based IDSs observe for traces of any known attack
signatures, while the anomaly-based IDSs observe for any deviation from the known
normal system behavior to indicate the presence of an attacker. Signature-based
IDS typically have fewer false alarms (false positives) and faster detection times
but can only detect pre-modeled attack patterns that were observed previously.
On the other hand, anomaly-based IDS can detect both previously observed and
novel attack patterns, while they can suffer from high false alarms and relatively
longer detection times when designed sub-optimally. An efficient IDS needs to be
robust, lightweight, and scalable with diverse system sizes. In addition, a practical
IDS needs to be able to detect a large spectrum of attacks with high confidence in
detection. A low false-positive rate is also important because in time-critical systems
such as automotive systems, recovery from a false positive can be very expensive.

With the increasing adoption of deep learning and artificial intelligence (AI) in
emerging vehicles in an attempt to move toward achieving complete autonomy,
their power can be leveraged to develop an effective anomaly-based IDS to detect
cyberattacks. The large availability of data and the increasing computational power
of ECUs further bolsters the case for an AI-based IDS to detect cyberattacks that are
active over the in-vehicle networks. The ability of AI to learn the highly complex
features in the data that are hard to capture with traditional techniques gives AI-
based IDS a unique edge over other techniques. Moreover, the ability of AI to
operate on heterogeneous data can provide an AI-based IDS the ability to detect
both known and unknown cyberattacks. Thus, AI-based IDS can be a promising
solution for the problem of automotive cybersecurity.

In this chapter, we provide an overview of a novel AI-based vehicle IDS
cybersecurity framework called INDRA [33] that actively monitors messages in the
controller area network (CAN) (a popular in-vehicle network protocol) bus to detect
cyberattacks. During the offline phase, INDRA uses advanced deep learning models
to learn the normal system behavior in an unsupervised fashion. At runtime, the
INDRA framework leverages the knowledge of previously learned normal system
behavior, to monitor and detect various cyberattacks. INDRA aims to maximize

AI for Cybersecurity in Distributed Automotive IoT Systems 299

detection accuracy and minimize false-positive rate while incurring a very low
overhead on the ECUs. The key contributions of the INDRA framework are as
follows:

• A gated recurrent unit (GRU)-based recurrent autoencoder network to learn the
latent representation of normal system behavior during the offline phase.

• A metric called intrusion score (IS), to quantify the deviation from normal system
behavior.

• A thorough analysis toward the selection of thresholds for this intrusion score
metric.

• A comprehensive analysis that demonstrates the effectiveness of INDRA for
vehicle cybersecurity, with superior results compared to the best known state-
of-the-art prior works in the area.

2 Related Work

Various techniques have been proposed to design IDS for securing time-critical
distributed automotive IoT systems. These works attempt to detect various types
of cyberattacks by monitoring the network traffic.

Signature-based IDS reckon on detecting known and pre-modeled attack sig-
natures. In [5], the authors used a language theory-based model to derive attack
signatures. However, this technique fails to detect intrusions when it misses the
packets transmitted during the early stages of an attack. The authors in [6] used
transition matrices to detect intrusions in a CAN bus-based system. This technique
achieves a low false-positive rate for trivial attacks but failed to detect more realistic
attacks such as replay attacks. In [7], the authors identify prominent attack patterns
such as a sudden increase in the message frequency and missing messages to
detect intrusions. The authors in [8] proposed a specification-based approach that
analyzes the behavior of the system and compare it with the predefined attack
patterns to detect intrusions. However, their system can only detect predefined
attack patterns and fails to detect unknown attacks. The authors in [9] proposed an
IDS technique using the Myers algorithm [10] under the map-reduce framework.
In [11], the authors use a time-frequency analysis of CAN messages to detect
multiple intrusions. A rule-based regular operating mode region is derived in [12]
by analyzing the message frequency at design time. This region is observed for
deviations at runtime to detect intrusions. The authors in [13] proposed a technique
that uses the fingerprints of the sender ECU’s clock skew and the messages to
detect intrusions by observing for variations in the clock-skew at runtime. A formal
analysis for clock-skew-based IDS is presented in [14] and evaluated on a real
vehicle. In [15], a memory heat map is used to characterize the memory behavior
of the operating system to detect intrusions. An entropy-based IDS is proposed in
[16] that observes for change in system entropy to detect intrusions. However, this
technique fails to detect small scale attacks where the change in entropy is minimal.

300 V. K. Kukkala et al.

In summary, signature-based techniques offer a quick solution to the intrusion
detection problem with low false-positive rates but cannot detect more complex
and novel cyberattacks. Moreover, modeling signatures of every possible attack is
impractical.

On the other hand, an anomaly-based IDS aims to learn the normal system
behavior in an offline phase and observe for any deviation from the learned normal
behavior to detect intrusions (as anomalies) at runtime. In [17], a sensor-based IDS
was proposed, where the attack detection sensors are used to monitor various system
events to observe for any deviations from the normal behavior. This approach is
not only expensive but also suffers from poor detection rates. A one-class support
vector machine (OCSVM)-based IDSwas proposed in [18]. However, this technique
suffers from poor detection latency and has high tuning overhead. The authors in
[19] used four different nearest neighbor classifiers to distinguish between a normal
and an attack-induced payloads in CAN bus. A decision tree-based detection model
is proposed in [20] that monitors the physical features of the vehicle to detect
intrusions. However, this model is not realistic and suffers from high detection
latencies. A hidden Markov model (HMM)-based technique was proposed in [21]
that monitors the temporal relationships between messages to detect intrusions. In
[22], a deep neural network-based approach was proposed to monitor the message
payloads in the in-vehicle network. This approach is tuned for a low priority tire
pressure monitoring system (TPMS), which makes it hard to adapt to high priority
safety-critical powertrain applications. The authors in [23] proposed a long short-
term memory (LSTM)-based IDS for multi-message ID detection. Due to the high
complexity of the model architecture, this technique incurs high overhead on the
ECUs. The authors in [24] use an LSTM-based IDS to detect insertion and dropping
attacks (explained later in Sect. 4.3). An LSTM-based predictor model is proposed
in [25] that predicts the next time step message value at a bit level granularity and
examines for large variations in loss to detect intrusions. A recurrent neural network
(RNN)-based IDS was proposed in [26] that learns the normal patterns in CAN
messages in the in-vehicle network. A hybrid IDS to detect anomalies in time-series
data was proposed in [27], which utilizes a specification-based system in the first
stage and an RNN-based model in the second stage to detect anomalies. However,
none of these techniques provides a holistic system-level cybersecurity solution that
is lightweight, scalable, and reliable to detect multiple types of cyberattacks for
in-vehicle networks.

This chapter describes a novel lightweight recurrent autoencoder-based IDS
framework called INDRA [33] that utilizes gated recurrent units (GRUs) to monitor
messages at a signal level granularity to detect various types of attacks more
effectively and successfully than the state of the art. Table 1 summarizes some of
the state-of-the-art IDS works’ performance under different metrics and shows how
INDRA fills the existing research gap. The INDRA framework aims at improving
multiple performance metrics compared to the state-of-the art IDS works that target
a subset of performance metrics. A detailed analysis of each metric and evaluation
results are presented later in Sect. 6.

AI for Cybersecurity in Distributed Automotive IoT Systems 301

Table 1 Comparison between INDRA[33] framework and state-of-the-art IDS works

IDS performance
Technique Lightweight Low false -positive rate High accuracy Fast inference

PLSTM [25] X � X X
RepNet [26] � X X �
CANet [23] X � � X
INDRA � � � �

3 Background on Sequence Learning

The availability of increased computing power from GPUs and custom accelerators
led to training neural networks with many hidden layers (known as deep neural
networks) that resulted in the creation of powerful models for solving difficult
problems in many domains. One such problem is detecting intrusions in the dis-
tributed automotive IoT systems, specifically in the in-vehicle network that connects
them. In an in-vehicle network, the communication between ECUs happens in a
timely manner. Hence, there exist temporal relationships between the messages,
which is crucial to exploit, in order to detect intrusions. However, this cannot be
achieved using traditional feedforward neural networks as the output of any input
is independent of the other inputs. One of the solutions is to use sequence models
as they are more appropriate and are designed to handle sequences and time-series
data.

3.1 Sequence Models

A sequence model can be thought of as a function which ensures that the current
output is dependent not only on the current input but also on the previous inputs.
Recurrent neural network (RNN) is one of the first sequence models which was
introduced in [28]. In recent years, improved sequence models such as long short-
term memory (LSTM) and gated recurrent unit (GRU) have also been developed.

3.1.1 Recurrent Neural Network (RNN)

An RNN is a type of artificial neural network that takes sequential data (such as
sequence or time-series data) as the input and learns the relationship in the data.
RNNs achieve this by using the hidden states, which allows learned information to
persist over time steps. Moreover, the hidden states also enable the RNN to connect
previous information to current inputs. An RNN cell with feedback is shown in Fig.
1a, and an RNN unrolled in time is shown in Fig. 1b.

302 V. K. Kukkala et al.

Fig. 1 (a) A single RNN cell
and (b) RNN unit unrolled in
time, where f is the RNN cell,
x is the input, and h
represents hidden states [33]

The output of an RNN cell at a time step t (ht) is a function of both the input at
time step t (xt) and the previous time step output (ht − 1):

ht = f (Wxt + Uht−1 + b) (1)

where W, U represent the weight matrices, b is a bias term, and f is a nonlinear
activation function (such as a sigmoid or tanh). One of the limitations of RNNs
is that they are very hard to train. As RNNs and other sequence models deal with
sequence or time-series inputs, backpropagation happens through various time sam-
ples (known as backpropagation through time (BPTT)). During the BPTT process,
the feedback loop in RNNs causes the errors to shrink or grow rapidly (resulting
in vanishing or exploding gradients respectively), destroying the information in
backpropagation. This problem of vanishing gradients hampers the RNNs from
learning long-term dependencies. This problem was solved with the introduction
of additional states and gates in the RNN cell to remember long-term dependencies,
which led to the introduction of long short-term memory networks [29].

3.1.2 Long Short-Term Memory (LSTM) Networks

LSTMs are improved RNNs that use cell state and the hidden state information
along with several gates to remember long-term dependencies in the input sequence.
The cell state can be visualized as a transport highway that carries relevant
information throughout the processing of a sequence. The cell state accommodates
the information from earlier time steps, which can be used in the later time steps,
thereby reducing the effects of short-term memory. The information in the cell state
is modified using various gates, which helps the network decide which information
needs to be retained and which information to forget.

An LSTM cell consists of three gates: (i) forget gate (ft), (ii) input gate (it), and
(iii) output gate (ot), as shown in Fig. 2a. The forget gate is a binary gate that controls
which information to retain from the previous cell state (ct−1). The input gate is
responsible for adding relevant information to the current cell state (ct). Lastly, the
output gate controls the output layer, which uses information from the forget and
input gates to produce an appropriate output. An unrolled LSTM unit is shown in
Fig. 2b.

AI for Cybersecurity in Distributed Automotive IoT Systems 303

Fig. 2 (a) A single LSTM cell with different gates and (b) LSTM unit unrolled in time, where f
is an LSTM cell, x is input, c is cell state, and h is the hidden state [33]

Fig. 3 (a) A single GRU cell with different gates and (b) GRU unit unrolled in time, where f is a
GRU cell, x is input, and h represents hidden states [33]

The combination of the abovementioned different gates, along with the cell
and hidden states, enables LSTMs to learn long-term dependencies in sequences.
However, they are not computationally efficient as the addition of multiple gates
increased the complexity of the sequence path (more than in RNNs) and also require
more memory at runtime. Additionally, training LSTMs is compute-intensive even
with advanced training methods such as truncated backpropagation. To overcome
these limitations, a simpler recurrent neural network called gated recurrent unit
(GRU) network was introduced in [30] that can be trained faster than LSTMs
and also remembers dependencies in long sequences with relatively low memory
overhead while solving the vanishing gradient problem.

3.1.3 Gated Recurrent Unit (GRU)

A GRU cell uses an alternate route for gating information by combining the input
and forget gate of the LSTM into a solitary update gate. GRUs furthermore combine
the hidden and cell states, as shown in Fig. 3a, b.

A GRU cell consists of two gates: (i) reset gate and (ii) update gate. The reset
gate combines new input with past memory, while the update gate selects the
amount of relevant data that should be held. This enables the GRU cell to control
the data stream like an LSTM by uncovering its hidden layer contents. Moreover,

304 V. K. Kukkala et al.

GRUs achieve this using fewer gates and states, which makes them computationally
more efficient with low memory overhead compared to the LSTMs. As real-time
automotive ECUs are highly resource-constrained distributed embedded systems
with stringent energy and power budgets, it is crucial to employ low overhead
models for inferencing tasks. This makes the GRU-based networks an ideal fit
for inference in automotive systems. Moreover, GRUs are relatively new and less
explored and have a lot of potential to offer compared to its predecessors RNNs and
LSTMs. Hence, in this chapter, a lightweight GRU-based IDS framework called
INDRA is presented (explained in detail in Sect. 5).

The sequence models can be trained using both supervised and unsupervised
learning approaches. Due to the large volume of automotive network data in a
vehicle, labeling the data can become very tedious. Additionally, the variability
in the messages between different vehicle models from the same manufacturer
and the proprietary nature of this information makes it furthermore challenging to
accurately label messages. The accessibility to automotive network data via onboard
diagnostics (OBD-II) facilitates the collection of large amounts of unlabeled data.
Thus, the IDS in INDRA uses GRUs in an unsupervised learning setting.

3.2 Autoencoders

An autoencoder is an unsupervised learning algorithm that tries to reconstruct the
input by learning the latent input features. Autoencoders achieve this by encoding
the input data (x) toward a hidden layer and finally decoding it to produce a

reconstruction
∼
x (as shown in Fig. 4). The encoding produced at the hidden layer is

called an embedding. The layers that create this embedding are called the encoder,
and the layers that utilize the embedding and reconstruct the original input are
called the decoder. When training the autoencoders, the encoder tries to learn a
nonlinear mapping of the inputs, while the decoder tries to learn the nonlinear
mapping of the embedding to the inputs. Both encoder and decoder achieve this
with the help of nonlinear activation functions, such as tanh and rectified linear unit
(ReLU). Moreover, the autoencoder network tries to recreate the input as accurately
as possible by selectively extracting the key features from the inputs with a goal
of minimizing reconstruction error. The most commonly used loss functions in
autoencoders are mean squared error (MSE) and Kullback-Leibler (KL) divergence.

Since the autoencoders aim to reconstruct the input by learning the underlying
distribution of the input data, it makes them an excellent choice to learn and
reconstruct highly correlated time-series data efficiently by learning the temporal
relations between signals. Thus, the INDRA framework uses lightweight GRUs in
an autoencoder to learn latent representations of CAN messages in an unsupervised
learning setting.

AI for Cybersecurity in Distributed Automotive IoT Systems 305

Fig. 4 Autoencoders [33]

4 Definitions and Problem Formulation

4.1 System Model

The INDRA framework considers a generic distributed automotive system consisting
of multiple ECUs connected using a CAN-based in-vehicle network, as shown in
Fig. 5. Each ECU runs a set of hard real-time automotive applications that have strict
timing and deadline constraints. Additionally, each ECU also executes intrusion
detection applications that monitors and detects intrusions in the in-vehicle network.
INDRA employs a distributed IDS approach, where the intrusion applications are
collocated with real-time automotive applications as opposed to a centralized IDS
approach where a single central ECU handles all intrusion detection tasks. This
design decision is driven by the following reasons:

• A centralized IDS approach is particularly prone to single-point failures, which
can fully open up the system to the attacker.

• In some extreme scenarios such as during a distributed denial-of-service (DDoS)
or flooding attack (explained in Sect. 4.3), the in-vehicle network can get highly
congested and the centralized IDS might not be able to communicate with the
victim ECUs.

• If an attacker succeeds in fooling the centralized IDS ECU, attacks can go
undetected by the other ECUs, compromising the entire system. However, with
a distributed IDS approach, fooling multiple ECUs is required which is much
harder. Even if one of the ECUs is compromised, the attack can still be detected
by the decentralized intelligence.

• In a distributed IDS approach, ECUs can stop accepting suspicious messages as
soon as an intrusion is detected without waiting for a centralized system to notify
them, resulting in faster detection times.

• In a distributed IDS approach, the computation load of intrusion detection is
split among the ECUs, and the monitoring can be limited to only the required
messages. This facilitates multiple ECUs to monitor a subset of messages
independently, with very lower overhead.

306 V. K. Kukkala et al.

Fig. 5 Overview of the system model considered in INDRA [33]

Many prior works, such as in [5, 12], consider a distributed IDS approach for
these reasons. Moreover, with automotive ECUs becoming increasingly powerful,
the collocation of IDS applications with real-time automotive applications in a
distributed manner is feasible, provided the overhead from the IDS is minimal. The
INDRA framework is not only lightweight but also highly scalable and achieves
superior intrusion detection performance, as discussed in Sect. 6.

An efficient IDS design should have low susceptibility to noise, low cost, and
a low power/energy footprint. Additionally, INDRA considers the following design
objectives in the development process of the IDS:

• Lightweight: Intrusion detection tasks can incur additional overhead on the
ECUs, which could result in poor application performance or missed deadlines
for real-time applications. This can have catastrophic consequences in some
cases. Thus, it is important to have a lightweight IDS that incurs very minimal
overhead on the system.

• Few false positives: This is a highly desired quality in any kind of IDS (even
outside of the automotive domain), as handling false positives can become
expensive very quickly. An efficient IDS needs to have few false positives or
false alarms.

• High attack coverage: Attack coverage is the range of attacks an IDS can detect.
A good IDS needs to be able to detect more than one type of attack. A high attack
coverage for IDS will make the system resilient to multiple attack surfaces.

• Scalability: This is a crucial requirement as the numbers of ECUs, software, and
network complexity have been increasing in the emerging vehicles. A practical
IDS should be highly scalable and be able to support various system sizes.

AI for Cybersecurity in Distributed Automotive IoT Systems 307

Fig. 6 Standard CAN frame format [33]

Fig. 7 Real-world CAN message with signal information [33]

4.2 Communication Model

A brief overview of the vehicle communication model that was considered in
INDRA is presented in this subsection. The INDRA framework mainly focuses
on detecting intrusions in a CAN bus-based automotive system. Controller area
network (CAN) is the de facto industry standard in-vehicle network protocol for
modern-day automotive systems. CAN is a low-cost, lightweight event-triggered
communication protocol that transmits messages in the form of CAN frames. The
structure of a standard CAN frame is shown in Fig. 6, and the length of each
field (in bits) is shown on the top. The standard CAN frame consists of header,
payload, and trailer segments. The header segment consists of information such as
the message identifier (ID) and the length of the message. The actual data that needs
to be transmitted is in the payload segment. Lastly, the information in the trailer
segment is mainly used for error checking at the receiver. A variation of the standard
CAN, called CAN-extended or CAN 2.0B, is also becoming increasingly common
in modern vehicles. CAN extended consists of a 29-bit identifier compared to 11-bit
identifier in the CAN standard, allowing for more number of unique message IDs.

The IDS design in INDRA focuses on monitoring the payload segment of the
message and observe for anomalies to detect intrusions. This is mainly because an
attacker needs to modify the message payload to accomplish a malicious activity. An
attacker could also target the header or trailer segments, but it would result in the
message getting rejected at the receiver. The payload segment consists of multiple
data entities called signals. An example real-world CAN message with multiple
signals is shown in Fig. 7 [31]. Each signal has a fixed length (in bits), an associated
data type, and a start bit that specifies its starting location in the 64-bit payload
segment of the CAN message.

308 V. K. Kukkala et al.

The INDRA framework focuses on monitoring individual signals within message
payloads to observe for anomalies and detect intrusions. The neural network model
in the INDRA framework is trained to learn the temporal dependencies between
the messages at a signal level during training and observes for deviations during
the deployment (at runtime) to detect intrusions in the in-vehicle network. This
signal level monitoring would not only give the capability to detect the presence
of an intruder but also helps in identifying the signal within the message that is
being targeted during an attack. This information can be crucial in understanding
the intentions of the attacker, which can be used for developing countermeasures.
The signal level monitoring mechanism in INDRA is discussed in detail in Sect. 5.2.
Note: Even though the INDRA framework mainly focuses on detecting intrusions
by monitoring CAN messages, this approach can be extended to be used with
other in-vehicle network protocols as the framework is agnostic to the underlying
communication protocol.

4.3 Attack Model

The INDRA framework aims to protect the vehicle from various types of cyberat-
tacks that are listed below. These are some of the most commonly seen and hard to
detect automotive attack patterns that have been widely considered in literature to
evaluate IDS models.

1. Flooding attack: This is the most common and easy to launch attack and requires
little to no knowledge about the system. In this attack, the attacker floods the in-
vehicle network with a random or specific message and prevents the other ECUs
from communicating. This is also known as the denial-of-service (DoS) attack.
These attacks are generally detected and prevented by the bridges and gateways
in the in-vehicle network and often do not reach the last line of defense (the IDS).
However, it is important to consider these attacks in the IDS evaluation as they
can have a severe impact on the system when handled incorrectly.

2. Plateau attack: In this attack, an attacker overwrites a signal value with a constant
value over a period of time. The attack severity depends on the magnitude of the
change in signal value and the attack duration. Large changes in magnitude of
the signal values are easier to detect compared to shorter changes.

3. Continuous attack: In this attack, an attacker slowly overwrites the signal value
until some target value is achieved and tries to avoid the triggering of IDS. This
attack is hard to detect and can be sensitive to the IDS parameters (discussed in
Sect. 5.2).

4. Suppress attack: In this attack, the attacker suppresses the signal value(s) by
either disabling the communication controller or by powering off the target ECU.
These attacks can be easily detected, when the message transmissions are shut
down for long durations, but are harder to detect for shorter durations.

AI for Cybersecurity in Distributed Automotive IoT Systems 309

5. Playback attack: In this attack, the attacker replays a valid series of message
transmissions from the past trying to trick the IDS. This attack is hard to detect
if the IDS does not have the ability to capture the temporal relationships between
messages.

Moreover, the INDRA framework assumes that the attacker can gain access to the
vehicle using the most common attack vectors, which include connecting to V2X
systems that communicate with the outside world (e.g., infotainment and connected
ADAS systems), connecting to the OBD-II port, probing into the in-vehicle bus, and
replacing an existing ECU. Furthermore, the INDRA framework assumes that the
attacker has access to the bus parameters (such as BAUD rate, parity, flow control,
etc.) that can help in gaining access to the in-vehicle network.

Problem objective The goal of INDRA is to implement a lightweight IDS that
can detect various types of cyberattacks (mentioned earlier) in a CAN bus-based
distributed automotive system, with a high detection accuracy and low false-positive
rate, and while maintaining a large attack coverage.

5 INDRA Framework Overview

The INDRA framework aims to achieve a signal level anomaly-based IDS for
monitoring CAN messages in automotive embedded systems. An overview of the
INDRA framework is shown in Fig. 8. At a high level, the INDRA framework
consists of design-time and runtime phases. At design time, INDRA uses trusted
CAN message data to train a recurrent autoencoder-based model to learn the normal
operating behavior of the system. At runtime, the trained recurrent autoencoder
model is used for observing deviations from normal behavior (inference) and detect
intrusions based on the deviation computed using the proposed intrusion score
metric (detection). The following subsections describe these steps in more detail.

5.1 Recurrent Autoencoder

Recurrent autoencoders are powerful neural networks that are designed to behave
like an autoencoder network but handle time-series or sequence data inputs.
They can be visualized similar to the regular feed-forward neural network-based
autoencoders, except with the neurons being either RNN, LSTM, or GRU cells
(discussed in Sect. 3). Similar to regular autoencoders, the recurrent autoencoders
consist of an encoder and a decoder stage. The encoder is responsible for generating
a latent representation of the input sequence data in an n-dimensional space. The
decoder uses the generated latent representation from the encoder and tries to
reconstruct the input with minimal reconstruction error. In this section, a lightweight
recurrent autoencoder model that is customized for the design of IDS to detect

310 V. K. Kukkala et al.

Fig. 8 Overview of INDRA framework [33]

intrusions in the in-vehicle network data is presented. The details related to the
recurrent autoencoder model architecture and the different stages involved in its
training are discussed in the subsequent subsections.

5.1.1 Model Architecture

The proposed recurrent autoencoder model architecture in INDRA with the dimen-
sions (input, output) of each layer is illustrated in Fig. 9. The model consists of a
linear layer at the input, GRU-based encoder, GRU-based decoder, and a final linear
layer before the output. The time-series CAN message data with signal level values
with f features (where f is the number of signals in that particular message) is given
as the input to the first linear layer. The output of the first linear layer is passed
to the GRU-based encoder to generate the latent representation of the time-series
signal inputs. This latent representation is referred to as a message context vector
(MCV). The MCV captures the context of different signals in the input message
data in the form of a vector, hence the name. Each MCV can be thought of as a
point in an n-dimensional space that contains the context of the series of signal
values given as input. The MCV is given as the input to a GRU-based decoder,
which feeds its output as an input to the final linear layer. The linear layer at the end
produces the reconstructed input time-series that represents the CAN message data
with individual signal level values. Mean square error (MSE) loss function is used to
compute the loss between the input and the reconstructed input. The model weights
are updated using backpropagation through time (BPTT). The INDRA framework
builds a recurrent autoencoder model for each message ID.

AI for Cybersecurity in Distributed Automotive IoT Systems 311

Fig. 9 Recurrent
autoencoder network
architecture in INDRA (f is
number of features, i.e.,
number of signals in the input
CAN message, MCV is
message context vector) [33]

Fig. 10 Illustration of rolling
window-based approach [33]

5.1.2 Training Procedure

The first step of the training process is preprocessing the input CAN message data.
Each sample in the dataset consists of a message ID and corresponding values of
the signals within that message ID. The signal values are scaled between 0 and
1 for each signal type, as the range of signal values can be very large in some
cases. Using unscaled signal values as inputs can result in an extremely slow or very
unstable training process. Moreover, scaling the signal values also helps in avoiding
the problem of exploding gradients.

The final preprocessed data is split into training data (85%) and validation data
(15%) and is prepared for training using a rolling window-based approach. This
involves selecting a window of fixed size and rolling it to the right by one-time
sample every time step. A rolling window size of three samples for three time steps
(t = 1, 2, 3) is illustrated in Fig. 10, where the term S

j
i represents the ith signal

value at jth sample. The elements in the rolling window are collectively called as a
subsequence and the subsequence length is equal to the size of the rolling window.
As each subsequence consists of a set of signal values over time, the recurrent
autoencoder model in INDRA tries to learn the existing temporal relationships
between the series of signal values. These signal level temporal relationships play
a crucial role in identifying more complex cyberattacks such as continuous and
playback (as discussed in Sect. 4.3). The process of training using subsequences
is carried out iteratively until the end of the sequence in training data.

Each iteration in the training step consists of a forward pass and a backward
pass using BPTT to update the weights and biases of the neurons (discussed in
Sect. 3) based on the error value. At the end of the training, the model’s learning
is evaluated (forward pass only) using the validation data, which was not seen by
the model during the training. By the end of validation, the model has seen the

312 V. K. Kukkala et al.

complete dataset once and this is known as an epoch. The model is trained for
multiple epochs until the model reaches convergence. Moreover, the process of
training and validation using subsequences is sped up by training the input data
in groups of subsequences known as mini-batches. Each mini-batch consists of
multiple consecutive subsequences that are given as input to the model in parallel.
The size of each mini-batch is commonly referred to as batch size, and it is a
common practice to choose the batch size as a power of two. Lastly, to control
the rate of update of parameters during backpropagation, a learning rate needs to be
specified to the model. The hyperparameters such as subsequence size, batch size,
learning rate, etc., that are chosen in the INDRA are presented later in Sect. 6.1.

5.2 Inference and Detection

At runtime, the trained model is set to evaluation mode, where only the forward
passes occur and the weights and biases are not updated. In this phase, the
trained model is tested under multiple attack scenarios (mentioned in Sect. 4.3),
by simulating appropriate attack conditions in the CAN message dataset.

Every data sample that is given as the input to the model gets reconstructed at
the output, and the reconstruction loss is fed to the detection module to compute
a metric called intrusion score (IS). The IS helps in identifying whether a signal is
normal or malicious. The IS metric is computed at a signal level to predict the signal
that is under attack. The IS metric is computed at every iteration during inference,
as a squared error to estimate the prediction deviation from the input signal value,
as shown below:

ISi =
((

S
j
i − Ŝ

j
i

)2
)

∀i ∈ [1,m] (2)

where, Sj
i represents ith signal value of the jth sample, Ŝj

i denotes its reconstruction,
and m is the number of signals in the message. The predicted value would have
a large deviation from the input signal value (i.e., large IS value), when the
input signal pattern is not seen during the training phase, and a minimal IS value
otherwise. This is the basis for the detection step in INDRA.

Additionally, the INDRA framework combines the signal level IS information
into a message-level IS, by taking the maximum IS of the signals in that message as
shown in Eq. (3). This is mainly to facilitate the lack of signal level intrusion label
information in the dataset.

MIS = max (IS1, IS2 . . . , ISm) (3)

To get adequate detection accuracy, an intrusion threshold (IT) needs to be
selected for flagging messages appropriately. INDRA explores multiple choices for
IT, using the best model from the training process. The best model is the model with

AI for Cybersecurity in Distributed Automotive IoT Systems 313

Fig. 11 Snapshot of INDRA IDS checking a message with three signals under a plateau attack,
where (a) shows the signal comparisons and (b) shows IS for signals and IS for the message and
intrusion flag [33]

the lowest validation running loss during the training process. Using the best model,
multiple metrics such as maximum, mean, median, and 99.99%, 99.9%, 99%, and
90% validation loss across all iterations are logged as the choices for the IT. The
detailed analysis on selection of IT is presented in Sect. 6.2.

A snapshot of INDRA IDS working in an environment with cyberattacks is
illustrated in Fig. 11a, b, with a plateau attack on a message with three signals,
between time 0 and 50. The highlighted area in red represents the attack interval.

314 V. K. Kukkala et al.

Figure 11a shows the input (true) vs INDRA IDS predicted signal value comparisons
for three signals. It can be observed that for most of the time, the reconstruction is
close for almost all signals except during the attack interval. Signal 3 is subjected to
a plateau attack where the attacker held a constant value until the end of attack
interval as shown in the third subplot of Fig. 11a (note that this resulted in a
larger difference between the IDS predicted and actual input signal values in the
third subplot, compared to signals 1 and 2). Figure 11b shows the different signal
intrusion scores for the three signals in the message. The dotted black line represents
the intrusion threshold (IT). As mentioned earlier, the maximum of signal intrusion
scores is chosen as message intrusion score (MIS), which in this case is the IS of
signal 3. It can be clearly seen in Fig. 11b that the intrusion score of signal 3 is
above the IT, for the entire duration of the attack interval, highlighting the ability
of INDRA to detect such attacks. The value of IT (equal to 0.002) in Fig. 11b is
computed using the method discussed in Sect. 6.2. Note: This IT value is specific to
the example case shown in Fig. 11 and is not a representation of the IT value used
for the remaining experiments. Section 6.2 describes the selection of IT value in the
INDRA framework.

6 Experiments

6.1 Experimental Setup

To evaluate the performance of the INDRA framework, an analysis for the selection
of intrusion threshold (IT) is presented. Using the selected IT, two variants of
the INDRA framework (INDRA-LED and INDRA-LD) are compared against the
baseline INDRA framework. The former variant removes the end linear layer before
the output and essentially has only the GRU to decode the context vector. The
term LED implies the (L) linear layer, (E) encoder GRU, and (D) decoder GRU.
The latter variation replaces the GRU and the linear layer at the decoder with a
series of linear layers (LD implies linear decoder). These variants were studied
mainly to understand the importance of different layers in the network. However, the
encoder portion of the network remained unchanged in the variants as a sequence
model is needed to generate an encoding of the time-series data. The study in
INDRA explored other variants, but they are not included in the discussion as their
performance was inferior compared to the LED and LD variants.

Subsequently, the best variant of the INDRA framework is compared with three
prior works: predictor LSTM (PLSTM [25]), replicator neural network (RepNet
[26]), and CANet [23]. The first comparison work (PLSTM) employs an LSTM-
based network that is trained to predict the signal values in the next message
transmission. PLSTM achieves this by taking the 64-bit CAN message payload as
the input and learns to predict the next signal values in the message at a bit-level
granularity by minimizing the prediction error. A log loss or binary cross-entropy

AI for Cybersecurity in Distributed Automotive IoT Systems 315

loss function is used to measure the bit level deviations between the real next signal
values and the predicted next signal values. At runtime, PLSTM uses the calculated
prediction loss value to decide whether a particular message is malicious or not.
The second comparison work (RepNet) uses a series of RNN layers to increase
the dimensionality of the input data and reconstruct the signal values by reducing
back to the original dimensionality. RepNet achieves this by minimizing the mean
squared error (MSE) between the input and the reconstructed signal values. During
runtime, large deviations between the input signal and the reconstructed signal
values are used to detect intrusions. Lastly, the third comparison work (CANet)
unifies multiple LSTMs and linear layers in an autoencoder architecture and adapts
a quadratic loss function to minimize the signal reconstruction error. Details related
to all experiments conducted with the INDRA variants and comparison works are
discussed in further subsections.

To evaluate the INDRA framework with its variants and against prior works, an
open-source dataset called SynCAN, developed by ETAS and Robert Bosch GmbH
[23] is used. The dataset consists of CAN message data for ten different message
IDs that were modeled based on the real-world CAN message data. The dataset
comes with both training and test data with multiple attacks, as discussed in Sect.
4.3. Each row in the dataset consists of a timestamp, message ID, and individual
signal values. Additionally, the test data consists of a label column with either 0 or 1
values indicating normal or malicious messages, respectively. The label information
is available on a per message basis and does not indicate which signal within the
message is subjected to the cyberattack. This label information is used to evaluate
the INDRA IDS over several metrics such as detection accuracy and false-positive
rate (discussed in detail in the next subsections). Moreover, to simulate a more
realistic attack scenario in the in-vehicle networks, the test data has normal CAN
traffic between the attack injections. Note: The training phase does not use any
label information, as INDRA learns the patterns in the input data in an unsupervised
manner.

All the machine learning-based frameworks including INDRA and its variants,
and comparison works are implemented using PyTorch 1.4. Additionally, several
experiments were conducted to select the best performing model hyperparameters
(including number of layers, hidden unit sizes, and activation functions). The final
recurrent autoencoder model presented in Sect. 5.1 was trained using the SynCAN
dataset by splitting 85% of train data for training and the remaining for validation.
The validation data is primarily used to evaluate the performance of the trained
model at the end of every epoch. The model was trained for 500 epochs, using a
rolling window approach (as discussed in Sect. 5.1.2) with the subsequence size
of 20 messages and the batch size of 128. An early stopping mechanism was
employed during the training phase that monitors the validation loss across epochs
and stops the training process if there is no improvement after ten (patience) epochs.
A learning rate of 1e-4 is chosen, and tanh activations are applied after each linear
and GRU layers. Lastly, an ADAM optimizer with the mean squared error (MSE)
loss criterion is used for back propagation. During testing, the trained model is
evaluated using multiple test data inputs to simulate various attack scenarios. The

316 V. K. Kukkala et al.

intrusion threshold is computed based on the intrusion score metric (as described in
Sect. 5.2), which was used in determining a message as malicious or normal. Various
performance metrics such as detection accuracy, false positives, etc. are computed to
quantify the performance of INDRA. All the simulations are run on an AMD Ryzen
9 3900X server with an Nvidia GeForce RTX 2080Ti GPU.

Before looking at the experimental results, the following terminologies are
defined in the context of IDS:

• True positive (TP): when an IDS detects an actual malicious message as
malicious.

• False negative (FN): when an IDS detects an actual malicious message as normal.
• False positive (FP): when an IDS detects a normal message as malicious (aka

false alarm).
• True negative (TN): when an IDS detects an actual normal message as normal.

The INDRA framework focuses on two key performance metrics: (i) detection
accuracy, which is the measure of an IDS ability to detect intrusions correctly, and
(ii) false-positive rate, also known as false alarm rate. These metrics are calculated
using Eqs. (4) and (5):

Detection Accuracy = TP + TN

TP + FN + FP + TN
(4)

False Positive Rate = FP

FP + TN
(5)

6.2 Intrusion Threshold Selection

A comprehensive analysis for the selection of intrusion threshold (IT) by consid-
ering various options such as max, median, mean, and different quantile bins of
validation loss of the final model is presented in this subsection. The reconstruction
error of the model for the normal messages should be much smaller than the error
for malicious messages. Hence, several candidate options for the IT are explored to
achieve this goal that would work across multiple attack and no-attack scenarios.
In some scenarios, having a large IT value can make it harder for the model to
detect the attacks that change the input pattern minimally (e.g., continuous attack).
In contrast, having a small threshold value can potentially trigger multiple false
alarms, which is highly undesirable in time-critical systems. Thus, it is crucial to
select an appropriate IT value to optimize the performance of the model.

AI for Cybersecurity in Distributed Automotive IoT Systems 317

Fig. 12 Comparison of (a) detection accuracy and (b) false-positive rate for various candidate
options of intrusion threshold (IT) as a function of validation loss under different attack scenarios.
(% refers to percentile not percentage) [33]

Figure 12a, b illustrates the detection accuracy and false-positive rate, respec-
tively, for various candidate options to calculate IT, under different attack scenarios.
From the results in Fig. 12a, b, it can be seen that selecting higher validation loss
as the IT can result in a high detection accuracy and low false alarm rate. However,
choosing a very high value (such as “max” or “99.99 percentile”) can sometimes

318 V. K. Kukkala et al.

result in missing small variations in the input patterns that are caused by more
sophisticated attacks. Moreover, the INDRA IDS performance is very similar when
maximum or 99.99 percentile of validation loss of the final model is selected as
the IT. But, in order to capture the attacks that produce small deviations, a slightly
smaller IT is selected that would still perform similar to max and 99.99 percentile
thresholds under various cyberattack scenarios. Hence, INDRA chooses the 99.9th
percentile value of the validation loss as the value of the intrusion threshold (IT).
The same IT value is used for the remainder of the experiments discussed in the
next subsections.

6.3 Comparison of INDRA Variants

After selecting the intrusion threshold using the methodology presented in previous
subsection, the performance of INDRA framework is evaluated with two other
variants: INDRA-LED and INDRA-LD. The motivation behind evaluating different
variants of INDRA is to analyze the impact of different layer types in the recurrent
autoencoder model on the performance metrics discussed in Sect. 6.1.

The detection accuracy of INDRA and its variants is illustrated in Fig. 13a under
different attacks and for a no-attack scenario (normal). It can be observed that
INDRA outperforms the two variants and has high detection accuracy in normal
and every attack scenario. The high detection accuracy of INDRA is achieved due to
its monitoring capability at a signal level unlike the prior works that monitor at the
message level.

Figure 13b shows the false-positive rate or false alarm rate of INDRA and other
variants under different attack scenarios. It is evident that INDRA has the lowest
false-positive rate and highest detection accuracy compared to the other variants.
Moreover, INDRA-LED is the second best-performing model after INDRA, which
leverages the power of GRU-based decoder to reconstruct the original signal values
from the MCV. Figure 13a, b clearly shows that the lack of GRU layers in the
decoder of INDRA-LD resulted in a significant performance degradation. Thus,
INDRA is chosen as the candidate model for subsequent experiments.

6.4 Comparison with Prior Works

In this subsection, a comparison of the INDRA framework with PLSTM [25],
RepNet [26], and CANet [23], which are some of the best known prior works in the
IDS area, is presented. Figure 14a, b shows the detection accuracy and false-positive
rate, respectively, for the various techniques under different attack scenarios.

From Fig. 14a, b, it is evident that INDRA achieves a high detection accuracy for
each attack scenario and also has low positive rates for most scenarios. The ability to
monitor signal level variations along with the more cautious selection of intrusion

AI for Cybersecurity in Distributed Automotive IoT Systems 319

Fig. 13 Comparison of (a) detection accuracy and (b) false-positive rate for INDRA and its
variants INDRA-LED and INDRA-LD under different attack scenarios [33]

threshold gives INDRA an advantage over comparison works. Both PLSTM and
RepNet use the maximum validation loss in the final model as the threshold to detect
intrusions in the system, while CANet uses an interval-based monitoring to detect
cyberattacks. The larger threshold value helped PLSTM to achieve slightly lower
false-positive rates for few scenarios, but it hurt the ability of both PLSTM and

320 V. K. Kukkala et al.

Fig. 14 Comparison of (a) detection accuracy and (b) false-positive rate of INDRA [33] and the
prior works PLSTM [25], RepNet [26], and CANet [23]

RepNet to detect cyberattacks that produce small variations in the input data. This
is because the deviations produced by some of the complex attacks are small and
the attacks go undetected due to the large thresholds. Moreover, the interval-based
monitoring in CANet struggles with finding an optimal threshold value. Lastly, the
false-positive rates of INDRA are still significantly low with the maximum of 2.5%

AI for Cybersecurity in Distributed Automotive IoT Systems 321

Table 2 Memory footprint
comparison between INDRA
framework and the prior
works PLSTM [25], REPNET
[26], and CANET [23]

Framework Memory footprint (KB)

PLSTM [25] 13,417
RepNet [26] 55
CANet [23] 8718
INDRA 443

Note: Data in this table is adapted from
[33]

for plateau attacks. It is important to note that the y-axis in Fig. 14b has a much
smaller scale than in Fig. 14a and the magnitude of the false positive rate is very
small.

6.5 IDS Overhead Analysis

In this subsection, a detailed analysis of the INDRA IDS overhead is presented.
The overhead is quantified in terms of both memory footprint and time taken to
process an incoming message, i.e., inference time. The former metric is important
as the resource-constrained automotive ECUs have limited available memory, and
it is crucial to have a low memory overhead to avoid interference with real-
time automotive applications. The inference time not only provides important
information about the time taken to detect the attacks but also can be used to
compute the utilization overhead on the ECU. Thus, the abovementioned two
metrics are used to analyze the overhead and quantify the lightweight nature of
INDRA IDS.

To accurately capture the overhead of the INDRA framework and the prior works,
they are implemented on an ARM Cortex-A57 CPU on a Jetson TX2 board, which
has similar specifications to the state-of-the-art multi-core ECUs. The memory
footprint of the INDRA framework and the comparison works mentioned in the
previous subsections are shown in Table 2. It is clear that the INDRA framework
has a low memory footprint compared to the comparison works, except for the
RepNet [26]. However, it is important to observe that even though the INDRA
framework has slightly higher memory footprint compared to RepNet [26], INDRA
outperforms all prior works including RepNet [26] in every performance metric
under different cyberattack scenarios, as shown in Fig. 14. Even though the heavier
(high memory footprint) models can provide the ability to capture a large variety
of details about the system behavior, they are not an ideal choice for resource-
constrained automotive embedded systems. On the other hand, a much lighter model
such as RepNet cannot capture crucial details about the system behavior due to
limited parameters and therefore suffers from performance issues.

In order to understand the inference overhead, different IDS frameworks are
benchmarked on an ARM Cortex-A57 CPU. In this experiment, different system
configurations are considered to encompass a wide variety of state-of-the-art ECU

322 V. K. Kukkala et al.

Table 3 Inference time comparisons between INDRA framework and the prior works PLSTM
[25], REPNET [26], and CANET [23] using single-core and dual-core configurations

Average inference time (μs)
Framework Single-core ARM Cortex A57 CPU Dual-core ARM Cortex A57 CPU

PLSTM [25] 681.18 644.76
RepNet [26] 19.46 21.46
CANet [23] 395.63 378.72
INDRA 80.35 72.91

Note: Data in this table is adapted from [33]

hardware in vehicles. Based on the available hardware resources on the Jetson TX2,
two different system configurations are selected. The first configuration utilizes only
one CPU core (single core), while the second configuration uses two CPU cores
(dual core).

Each framework is run ten times for two different CPU configurations, and
the average inference time (in μs) is computed, as shown in Table 3. From the
results in Table 3, it can be seen that INDRA has significantly faster inference
times compared to the prior works (excluding RepNet) under all configurations.
This is partly associated with the lower memory footprint of the INDRA IDS. As
mentioned earlier, even though RepNet has a lower inference time, it has the worst
performance out of all frameworks, as shown in Fig. 14. The large inference times
for the better performing frameworks can impact the real-time performance of the
control systems in the vehicle and can result in missing of critical deadlines, which
can be catastrophic. These inference times can be further improved by employing
a dedicated deep learning accelerator (DLA) compared to the above presented
configurations.

Thus, from Fig. 14 and Tables 2 and 3, it is evident that INDRA achieves a clear
balance of having superior intrusion detection performance while maintaining low
memory footprint and fast inference times, making it a powerful and lightweight
IDS solution.

6.6 Scalability Results

In this subsection, a scalability analysis of the INDRA IDS is presented by studying
the system performance using the ECU utilization metric as a function of increasing
system complexity (number of ECUs and messages).

Each ECU has a real-time utilization (URT) and an IDS utilization (UIDS) from
running real-time and IDS applications, respectively. The IDS overhead (UIDS) is
analyzed as a measure of the compute efficiency of the IDS. Since the safety-critical
messages monitored by the IDS are periodic in nature, the intrusion detection task
can be modeled as a periodic application with a period that is same as the message
period [32]. Thus, monitoring an ith messagemi results in an induced IDS utilization

AI for Cybersecurity in Distributed Automotive IoT Systems 323

(UIDS,mi
) at an ECU and can be computed as:

UIDS,mi
=
(

TIDS

Pmi

)

(6)

where TIDS and Pmi indicate the time taken by the IDS to process one message
(inference time) and the period of the monitored message, respectively. Moreover,
the sum of all IDS utilizations as a result of monitoring different messages is the
overall IDS utilization at that ECU (UIDS) and is given by:

UIDS =
∑n

i=1
UIDS,mi

(7)

To evaluate the scalability of INDRA, six different system sizes are studied.
Moreover, a pool of commonly used message periods {1, 5, 10, 15, 20, 25, 30, 45,
50, 100} (all periods in ms) in automotive systems are uniformly assigned to various
messages in the system. These messages are evenly distributed among different
ECUs in each system configuration and the IDS utilization is computed using Eqs.
(6) and (7). To analyze the worst case overhead, a pessimistic scenario consisting of
only a single core per each ECU in the system is considered in this experiment.

The average ECU utilization under various system sizes is illustrated in Fig. 15.
The system size is denoted by {p, q}, where p is the number of ECUs and q is
the number of messages in the system. Additionally, a very pessimistic estimate
of 50% real-time ECU utilization for real-time automotive applications is assumed
(“RT Util,” as shown in the dotted bars) for all system configurations. The overhead
incurred by the IDS executing on the ECUs is represented by the solid bars on
top of the dotted bars, and the red horizontal dotted line represents the 100% ECU
utilization mark. It is important to avoid exceeding the 100% ECU utilization under
any scenario, as it could induce undesired latencies that could result in missing
deadlines for time-critical automotive applications, which can be catastrophic. From
the results in Fig. 15, it is evident that the prior works PLSTM and CANet incur
heavy overhead on the ECUs while RepNet and INDRA have a very minimal
overhead that scales favorably with increasing system sizes. Thus, from the results
in this section (Figs. 14 and 15; Tables 2 and 3), it is apparent that not only does
INDRA achieve superior performance in terms of both detection accuracy and low
false-positive rate for intrusion detection than state-of-the-art prior works, but it is
also lightweight and scalable.

7 Conclusion

In this chapter, a novel recurrent autoencoder-based lightweight intrusion detection
system framework called INDRA for distributed automotive embedded systems was
presented. The INDRA framework uses the proposed metric called the intrusion
score (IS) to quantify the deviation of the prediction signal from the actual input
signal. Moreover, a thorough analysis of the intrusion threshold selection process

324 V. K. Kukkala et al.

Fig. 15 Scalability results of the INDRA [33] IDS for different system sizes compared to the prior
works PLSTM [25], RepNet [26], and CANet [23]

and the comparison of INDRA with the best known prior works in this area is
presented in this chapter. The promising results of INDRA indicate a compelling
potential for being adapted to enhance cybersecurity in emerging automotive
platforms. Our ongoing work is exploring newer and more powerful algorithms [34–
36] for intrusion detection in automotive embedded systems.

Acknowledgments This research is supported by a grant from NSF (CNS-2132385).

References

1. Kukkala, V., Tunnell, J., Pasricha, S.: Advanced driver assistance systems: a path toward
autonomous vehicles. IEEE Consum. Electron. 7(5), 18–25 (2018)

2. Koscher, K., et al.: Experimental security analysis of a modern automobile. In: IEEE SP (2010)
3. Valasek, C., et al.: Remote exploitation of an unaltered passenger vehicle. https://ioactive.com/

pdfs/IOActive_Remote_Car_Hacking.pdf (2015)
4. Izosimov, V., et al.: Security-aware development of cyber-physical systems illustrated with

automotive case study. In: IEEE/ACM DATE (2016)
5. Studnia, I., et al.: A language-based intrusion detection approach for automotive embedded

network. In: IEEE PRISDC (2015)
6. Marchetti, M., et al.: Anomaly detection of CAN bus messages through analysis of ID

sequences. In: IEEE IV (2017)
7. Hoppe, T., et al.: Security threats to automotive CAN networks- practical examples and selected

short-term countermeasures. In: RESS (2011)
8. Larson, U.E., et al.: An approach to specification-based attack detection for in-vehicle

networks. In: IEEE IV (2008)

https://ioactive.com/pdfs/IOActive_Remote_Car_Hacking.pdf%20

AI for Cybersecurity in Distributed Automotive IoT Systems 325

9. Aldwairi, M., et al.: Pattern matching of signature-based IDS using Myers algorithm under
MapReduce framework. In: EURASIP (2017)

10. Myers, E.W.: An O(ND) difference algorithm and its variations. In: Algorithmica (1986)
11. Hoppe, T., et al.: Applying intrusion detection to automotive IT-early insights and remaining

challenges. In: JIAS (2009)
12. Waszecki, P. et al.: Automotive electrical and electronic architecture security via distributed

in-vehicle traffic monitoring. In: IEEE TCAD (2017)
13. Cho, K.T., et al.: Fingerprinting electronic control units for vehicle intrusion detection. In:

USENIX (2016)
14. Ying, X., et al.: Shape of the Cloak: formal analysis of clock skew-based intrusion detection

system in controller area networks. In: IEEE TIFS (2019)
15. Yoon, M.K., et al.: Memory heat map: anomaly detection in real-time embedded systems using

memory behavior. In: IEEE/ACM/EDAC DAC (2015)
16. Müter, M., et al.: Entropy-based anomaly detection for in-vehicle networks. In: IEEE IV

(2011)
17. Müter, M., et al.: A structured approach to anomaly detection for in-vehicle networks. In:

ICIAS (2010)
18. Taylor, A., Japkowicz, N., Leblanc, S.: Frequency-based anomaly detection for the automotive

CAN bus. In: Proceedings of WCICSS (2015)
19. Martinelli, F., et al.: Car hacking identification through fuzzy logic algorithms. In: FUZZ-IEEE

(2017)
20. Vuong, T.P., et al.: Performance evaluation of cyber-physical intrusion detection on a robotic

vehicle. In: IEEE CIT/IUCC/DASC/PICOM (2015)
21. Levi, M., Allouche, Y., et al.: Advanced analytics for connected cars cyber security [Online].

Available: https://arxiv.org/abs/1711.01939 (2017)
22. Kang, M.-J., et al.: A novel intrusion detection method using deep neural network for in-vehicle

network security. In: IEEE, VTC Spring (2016)
23. Hanselmann, M., et al.: CANet: an unsupervised intrusion detection system for high dimen-

sional CAN bus data: In: IEEE Access (2020)
24. Loukas, G., et al.: Cloud-based cyber-physical intrusion detection for vehicles using deep

learning. In: IEEE Access (2018)
25. Taylor, A., et al.: Anomaly detection in automobile control network data with long short-term

memory networks. In: IEEE DSAA (2016)
26. Weber, M., et al.: Online detection of anomalies in vehicle signals using replicator neural

networks. In: ESCAR (2018)
27. Weber, M., et al.: Embedded hybrid anomaly detection for automotive can communication. In:

Embedded Real Time Software and Systems (2018) [Online]. Available: https://hal.archives-
ouvertes.fr/hal-01716805

28. Schmidhuber, J.: Habilitation thesis: system modeling and optimization (1993)
29. Hochreiter, S., et al.: Gradient flow in recurrent nets: the difficulty of learning long-term

dependencies. In: IEEE Press (2001)
30. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical

machine translation. In: EMNLP (2014)
31. DiDomenico, G., et al.: Colorado State University EcoCAR 3 final technical report. In: SAE,

WCX (2019)
32. Kukkala, V., Pasricha, S., Bradley, T.H.: SEDAN: Security-aware design of time-critical

automotive networks. IEEE Trans. Veh. Technol. (TVT) 69(8), 9017–9030 (2020, August)
33. Kukkala, V.K., Thiruloga, S.V., Pasricha, S.: INDRA: intrusion detection using recurrent

autoencoders in automotive embedded systems. IEEE Trans. Comput-Aid. Des. Integr. Circuits
Syst. (TCAD) 39(11) (2020, November)

34. Thiruloga, S.V., Kukkala, V.K., Pasricha, S.: TENET: temporal CNN with attention for
anomaly detection in automotive cyber-physical systems. In: IEEE/ACM Asia & South Pacific
Design Automation Conference (ASPDAC) (2022, January)

https://arxiv.org/abs/1711.01939
https://hal.archives-ouvertes.fr/hal-01716805

326 V. K. Kukkala et al.

35. Kukkala, V.K, Thiruloga, S.V., Pasricha, S.: LATTE: LSTM self-attention based anomaly
detection in embedded automotive platforms. In: ACM Transactions on Embedded Computing
Systems (TECS) (2021)

36. Kukkala, V.K., Thiruloga, S.V., Pasricha, S.: Roadmap for cybersecurity in autonomous
vehicles. In: IEEE Consumer Electronics (2022)

Ultralow-Power Implementation
of Neural Networks Using Inverter-Based
Memristive Crossbars

Shaghayegh Vahdat, Mehdi Kamal, Ali Afzali-Kusha, and Massoud Pedram

1 Introduction

Data-intensive application domains of neural networks (NNs), such as image
classification, have highlighted the inefficiency of traditional Von Neumann-based
computing architectures due to their memory wall bottleneck [1]. Furthermore, per-
forming matrix-vector multiplication (MVM) operations, as the main computation
part of NNs, using digital platforms such as CPUs (GPUs) may not enjoy fully
from efficient computation parallelism (suffering from high-energy consumption)
[2]. To overcome the memory wall bottleneck, one may perform, for example,
computations in memory [3] or maximize data reuse [4]. In the case of the MVM
operations, approximate computing paradigm may be used as another approach for
reducing the energy consumption of the required computations [5, 6].

Analog computing is an emerging approach utilized for the implementation of
NNs offering significant reductions in the energy consumption as well as large
improvements in the computation speed compared to those of the digital ones. As
an example, the fabricated memristive-based NN of reference [7] led to 30× and
110× better speed and energy consumption, respectively, compared to those of the
GPU platform for the MNIST benchmark [8]. Switched-capacitor matrix multipliers
[9], multiple input floating gate MOS (MIFGMOS) transistors [10], and memristive
crossbars [11] are examples of elements utilized in the analog implementation of

S. Vahdat · M. Kamal (�) · A. Afzali-Kusha
School of Electrical and Computer Engineering, College of Engineering, University of Tehran,
Tehran, Iran
e-mail: vahdat_s@ut.ac.ir; mehdikamal@ut.ac.ir; afzali@ut.ac.ir

M. Pedram
Department of Electrical and Computer Engineering, University of Southern California, Los
Angeles, CA, USA
e-mail: pedram@usc.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Iranmanesh (ed.), Frontiers of Quality Electronic Design (QED),
https://doi.org/10.1007/978-3-031-16344-9_9

327

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16344-9_9&domain=pdf

 885
51863 a 885 51863 a

mailto:vahdat_s@ut.ac.ir

 8183 51863
a 8183 51863 a

mailto:mehdikamal@ut.ac.ir

 16811 51863 a 16811 51863 a

mailto:afzali@ut.ac.ir

 885 56845 a 885 56845 a

mailto:pedram@usc.edu

 -2016 61494 a -2016
61494 a

https://doi.org/10.1007/978-3-031-16344-9_9

328 S. Vahdat et al.

NNs. These analog implementations, however, suffer from a number of limitations.
More specifically, when utilizing MIFGMOS transistors, the number of inputs of
neurons is limited by the number of the floating gates (e.g., nine in [10]). In the
structure of a switched-capacitor matrix multiplier [9], inputs should be applied to
the multiplier serially which degrades its speed efficacy. In the memristive crossbars,
weights of the neurons are determined based on the resistance of the memristors.
It is, however, possible that the resistance of the actual memristor differs from
the design value, which can have a destructive effect on the output of the MVM
operation. Compared to the other analog realizations of NNs, memristive structures
can performMVM operations with a higher speed since the MVM operation of each
layer is performed in parallel using memristors. In addition, they can be fabricated
more densely which leads to a lower area occupation [26]. In this chapter, we deal
with the hardware implementation of memristive NNs.

Operational amplifiers (Op-Amps) and current buffers [11–16] on the one hand
and inverters [17–25] on the other hand are two available choices for hardware
implementation of memristive NNs. Between these two options, employing invert-
ers in the structure of the neurons results in a considerable reduction in the power
consumption compared to the Op-Amp option. As another advantage, although
the required activation function of the neurons (i.e., tangent hyperbolic function)
can be easily generated using the VTC of the inverters, generating the same
function (the tangent hyperbolic or sigmoid) requires additional circuit components
in other memristive structures (see, e.g., [14–16, 27]). Efficient implementation of
the activation functions further improves the energy efficacy of the NNs providing
the ability to realize ultralow-power implementations of NNs using inverter-based
memristive (IM) neurons. In other words, employing inverters and memristors in
the structure of artificial neurons leads to an ultralow-power implementation of NNs
compared to the digital ASIC counterparts (i.e., 5000× smaller power consumption
[11]) or Op-Amp-based implementations (i.e., 800× smaller power consumption
[11]). The implementation is highly desirable for applications where low-power
consumption and high speed are the key design drivers (i.e., internet of things (IoT)
smart sensors [19]).

To connect the IM-NNs to the digital realm, input and output interfaces are
required to produce digital inputs for the NN from the analog input signals and
digital signals from the analog outputs of the NN. The existing analog-to-digital
and digital-to-analog converters (ADCs and DACs) consume considerably larger
power compared to the memristive crossbars. As an example, the employed DACs
(ADCs) in the RENO structure [28], which is a memristor-based neuromorphic
accelerator, consume 7200× (5300×) higher power compared to those of the
memristor crossbar. To fully benefit from the low-power consumption of memristive
implementations of NNs, especially, the IM implementations, it is important to
employ low power ADCs and DACs.

Regarding the modeling of these networks, it should be noted that the mathemat-
ical equations describing the functionality of an IM neuron are very different from
those of the other memristive implementations in which Op-Amps or current buffers
are utilized. This implies that the design (proper network training) and analysis of

Ultralow-Power Implementation of Neural Networks Using Inverter-Based. . . 329

IM-NNs require the use of mathematical model with high accuracy. Finally, it should
be noted that the design of IM-NNs faces some challenges which if not tackled
properly, the network would suffer from non-negligible accuracy degradation. The
sources of the degradations include the non-idealities of memristors, the non-
idealities of the transistors, and the loading effect of the memristive crossbars
causing inverter/buffer VTC (voltage transfer characteristic) variations. They cause
the output voltage of the IM-NNs become different than the expected value,
degrading the accuracy of the NNs. To take full advantage of the IM-NN benefits,
the impact of these undesired yet real-life non-idealities should be minimized.
Additionally, the loading effect of the memristive crossbars should be considered
in the training phase of the NNs.

Based on the above explanations, the topics covered in this chapter are outlined
in the following:

• Prior work about implementation and reliability enhancement of memristive NNs
• Mathematical model of IM neurons and state-of-the-art training methods for IM-

NNs
• Low-power memristive DACs and ADCs which can be employed as the input

and output interfaces of IM-NNs
• Variation mitigation approaches for reducing the impacts of non-idealities (i.e.,

memristors conductance variations as well as inverters VTC variations) on the
accuracy of the IM-NNs

• Analysis of the strengths and weaknesses of the considered training methods and
the variation mitigation approaches

• Discussion of the open problems in the utilization of IM-NNs

The rest of the chapter includes a review of the general structure of artificial
NNs (ANNs), their implementation using memristive crossbars, and their reliability
enhancement (Sect. 2). Next, the mathematical model of IM-NNs as well as the
effects of circuit elements non-idealities on the NN outputs are presented (Sect. 3).
After this part, the input and output interfaces for connecting IM-NNs to the digital
realm are described (Sect. 4). In addition, different training methods as well as
variation mitigation approaches for IM-NNs are explained as the subsequent topics
(Sects. 5 and 6) where their efficacies are dealt with afterward (Sect. 7).

2 Literature Review

2.1 Memristor

Due to the emergence of nonvolatile memories such as memristors, new implemen-
tations of NNs have been proposed. The memristor was theoretically proposed in
1971 [29] and fabricated in 2008 [30]. Resistive random-access memories (RRAMs)
or memristors consist of a metal oxide layer sandwiched between two metal

330 S. Vahdat et al.

Fig. 1 The structure of the
(a) write circuit, (b) pulse
generator, and (c) tristate
decoder [21]

electrodes called top and bottom electrodes [31]. By applying voltage or current
pulses to the memristor, the oxygen ions move in the lattice, and oxygen vacancies
appear which lead to the generation of conductive filaments (CFs) [32]. The applied
voltage or current pulses may result in the formation or disruption of conductive
filaments which give rise to the memristor conductance increase or decrease.

Programming the memristors can be performed using open-loop or closed-
loop processes. In the open-loop process, the characteristic of the memristor is
mathematically modeled, and based on the desired conductance change, the number
of voltage pulses is estimated. In the closed-loop process, voltage pulses are applied
to the memristor, and the resistance of the memristor is measured. This procedure
is repeated until achieving the desired resistance value with an acceptable error.
Although the programming accuracy of closed-loop approach is higher than the
open-loop one, its power consumption is also higher. In addition, the lifetime of the
memristors is degraded due to more writings.

As an example, the hardware implementation of an open-loop programming
process [21], which consists of row/column tristate decoder and pulse generator
units, is depicted in Fig. 1a. The circuit implementation of the pulse generator
unit having one input (two outputs) called Dir (VRow and VCol) is shown in
Fig. 1b. Based on the value of Dir signal, the difference between VRow and VCol
which is applied across the considered memristor becomes almost Vddw or –Vddw
increasing or decreasing the memristor conductance. Here, Vddw should be larger
than the write threshold voltage of the memristors.

The circuit implementation of the row/column tristate decoder unit, which exerts
the write voltage across the corresponding memristor, is depicted in Fig. 1c. This
unit consists of an address decoder which converters the row/column address bits to

Ultralow-Power Implementation of Neural Networks Using Inverter-Based. . . 331

the controlling signals of the pass transistors. Based on the address bits, one of the
pass transistors connected to the corresponding row or column becomes activated
and passes VRow or VCol voltage to the considered row or column.

2.2 Memristive Neuron Circuit

A feed forward ANN is composed of some neurons in several layers. In each layer,
the sum of weighted inputs of each neuron is added by the bias to which the
activation function is applied to generate the neuron output. Let us assume an ANN
with L layers where the number of inputs of the lth layer is Nl and xl

i (y
l
j) represents

the ith input (jth output) of the lth layer. Therefore, yl
j can be obtained from

yl
j = f

(
net lj

)
= f

⎛

⎝
Nl
∑

i=1

wl
j,i × xl

i + wbl
j

⎞

⎠ , (1)

where the weights (biases) are denoted by wl
j,i (wbl

j) and f represents the activation

function. In addition, xl
j = yl−1

j because the outputs of the (l − 1)st layer are

the inputs of the lth layer. To clarify the notations better, the structure of a fully
connected two-layer ANN is depicted in Fig. 2a. In this figure, n, p, and q denote
the number of inputs, hidden neurons, and outputs, respectively.

The nonvolatility, high access speed, low power consumption, and high layout
density make memristors a very good candidate for realizing analog NNs [26].
More specifically, the MVM operation of NNs can be implemented using a
memristor crossbar. As an example, a current-based memristive crossbar composed
of memristors and Op-Amps is depicted in Fig. 2b. In this structure, the negative
input terminal of each Op-Amp becomes a virtual ground, and its input current is
almost zero. This means that the current that passes through each memristor (i.e.,
R+

j,i) is equal to the weighted input (i.e., x+
i × σ+

j,i where σ+
j,i = 1/R+

j,i) which
should finally pass through R1. Consequently, the negative output voltage of the
neuron can be obtained from

y−
j = f1

(

−R1 ×
n∑

i=1

(
xi

+

Rj,i
+ + xi

−

Rj,i
−
))

, (2)

where

f1(Z) =
⎧
⎨

⎩

VDD if Z > VDD

Z if |Z| ≤ VDD

− VDD if Z < −VDD

, (3)

332 S. Vahdat et al.

(a)

(b)

x1
1

xi
1

xn
1

w1,1
1

wj,1
1

wp,1
1

w1,i
1

wj,i
1

wp,i
1

w1,n
1

wj,n
1

wp,n
1

w1,1
2

wk,1
2

wq,1
2

wk,j
2

wq,j
2

w1,j
2

w1,p
2

wk,p
2

wq,p
2

xj
2=yj

1=f(netj
1) yk

2=f(netk
2)b1

1

bj
1

bp
1

b1
2

bk
2

bq
2

N 12

N k2

N q2N p1

N 11

N j1

x1

Rj1

Rm1

R11

Rj1

Rm1

R11
+

+

-

+

-

-

+
x1

-

xi

Rji

Rmi

R1i

Rji

Rmi

R1i
+

+

-

+

-

-

+
xi

-

xn

Rjn

Rmn

R1n

Rjn

Rmn

R1n
+

+

-

+

-

-

+
xn

-

Y1
+Y1

-

Yj
+Yj

-

Ym
+Ym

-

+
-

R1

+
-

R2

R2

Fig. 2 (a) A general two-layer ANN. (b) Implementation of MVM operation using current-based
memristor crossbars [33]

and VDD (−VDD) represents the positive (negative) voltage sources of the Op-Amp.
Furthermore, the positive output voltage can be calculated as y+

j = −y−
j . Therefore,

the output voltage of the neuron is equal to the sum of weighted inputs which
is passed through a symmetric saturating linear transfer function. Furthermore,
other activation functions such as sigmoid, tangent hyperbolic, and rectified linear
unit (ReLU) may be implemented using dedicated hardware such as the ones
presented in [16, 27, 34]. To implement tangent hyperbolic activation functions
without requiring Op-Amps in the structure of the neuron, one may employ inverters
which lead to a voltage-based neuron design. In this case, the VTC of the inverter
implements the required activation function where the input voltage of the inverter
is equal to the sum of weighted inputs. The details of the hardware implementation,
mathematical model, and training procedure of IM-NNs will be explained in the rest
of this chapter.

2.3 Memristor Non-idealities

After introducing the hardware implementation of memristive NNs, it is required
to study the effect of memristors non-idealities on the accuracy of the NN. More
specifically, since the actual conductance values of the memristors may differ from
the desired values, considerable degradation in the NN accuracy may occur. As
examples, the results of [34, 35] revealed that the accuracy of two-layer current-

Ultralow-Power Implementation of Neural Networks Using Inverter-Based. . . 333

based memristive NNs for the MNIST dataset may degrade from 98.3% and 96% in
the ideal condition to about 39.7% and 56% when considering 30% variations for
the conductance of the memristors.

To deal with the non-ideality issues of memristors, in the first step, it is required
to study the sources of non-idealities. First, note that the reliability issues of
memristors may be divided into static and dynamic categories [31]. Static issues
may be caused by defects (fabrication yield) or process variations [31]. As examples,
the resistance of a memristor may stick to a minimum or maximum value which is
called stuck at faults (SAFs). Based on the reported values in [31], it may occur
for 16% of the memristors in a crossbar fabricated with a yield of 84%. Also
the thickness of a memristor may differ from its desired value which may cause
larger resistance variations on the lower resistance levels of the memristors [36]
(e.g., 6% variations for the lowest resistance state versus 0.1% variations for the
highest resistance state [39]). To handle SAFs, one may train the network assuming
constant values for the weights mapped on the defected cells [12] or make use
of redundant memristors to implement important weights having strong impacts
on the NN accuracy [37]. The improvement of the fabrication yield (i.e., 99.8%
device yield of [38]) would considerably reduce the concern on SAFs. To mitigate
thickness variation issues, one may parallelize memristors with high resistances to
implement lower resistance values [36] or retrain the network and adjust higher
resistance values to compensate the variation effects of lower resistance memristors
(after fabricating the device) [39].

When it comes to dynamic reliability issues of memristive crossbars, examples
include the conductance drift of the memristors [13], endurance limitations [40], and
the IR-drop [41]. As a specific example for the conductance drift, the work of [43]
reports a 2% variation on the memristor resistance value compared to its initial state
resistance caused by a voltage of 0.1 V applied to the memristor for 1 s. To overcome
the conductance drift issues, one may employ error correction approaches [42] or
encode (decode) the weights (MVM outputs) where the error due to the memristor
non-idealities can be mitigated [43]. Writing memristors many times would degrade
the lifetime and endurance of memristors. To manage this issue, one may only
update the weights of the neurons which have higher impacts on the outputs of
the NN [40]. This approach has the advantage of smaller number of writings on the
memristors which increases the lifetime of the memristors while also reducing the
power consumption of the weight updating phase. As the next issue, voltage drops
caused by the resistance of the wires may have impact on the voltage of the crossbar
nodes during the inference phase or may affect the resistance of the programmed
memristors during the weight-updating phase owing to not receiving the desired
programming voltage. As an example, a 0.2 V voltage drop in the programming
phase caused by the wire resistance can change the resistance of the programmed
memristor from 900 KΩ (the desired value) to 200 KΩ (the actual value) [41].
To overcome this issue, one may consider the voltage drop of the wires during the
weight update and training phases [41]. Furthermore, programming procedure of the
memristors may also be erroneous (both of open-loop and closed-loop programming
approaches) with respect to the desired conductance value. The results reveal that the

334 S. Vahdat et al.

writing error induced by the programming process follows Gaussian distributions
which can be reduced by increasing the number of writing iterations at the price of
increased power consumption [38].

3 Mathematical Analysis

In this section, first, the output voltage of an IM neuron based on the circuit
characteristics is mathematically modeled. Next, the effect of circuit elements non-
idealities on the output voltage of an IM neuron is mathematically modeled. Finally,
the presented mathematical analysis is used to determine the factors which have the
highest impact on the output voltage of the neuron. This helps us to improve the
resiliency of IM neurons with respect to the non-idealities of circuit elements.

3.1 Circuit Model of an IM Neuron

In IM neurons, the multiplication and addition operations can be implemented using
memristive crossbars, and the activation functions can be generated using inverters.
More specifically, the weights and biases of the neurons can be mapped to the
conductance values of the memristors, while the VTCs of inverters generate the
activation functions. In the memristive-based neurons, the positive and negative
weights should be implemented using memristors noting that the conductance of
the memristors is always positive. To have the capability of implementing positive
and negative weights in IM neurons, the authors of [11] proposed to apply the inputs
of each neuron in differential form (see Fig. 3a). As shown in Fig. 3a, the neuron has
two outputs, called negative and positive outputs, denoted by y−

j and y+
j , which are

applied to the neurons of the next layer as their negative and positive inputs. In this
neuron, the netj voltage is equal to the weighted sum of the inputs, while the VTC of
the inverter and buffer (two consecutive inverters) generate the activation functions
for the negative and positive outputs, respectively. To further clarify it, one may find
the value of netj by writing the Kirchhoff’s current law (KCL) equation for the input
node of the negative inverter (the left-side inverter of Fig. 3a) as

netj

(
n∑

i=1

(
1

Rj,i
+ + 1

Rj,i
−
)

+ 1

Rbj
+ + 1

Rbj
−

)

=
n∑

i=1

(
xi

+

Rj,i
+ + xi

−

Rj,i
−
)

+ VDD

Rbj
+ − VDD

Rbj
− ,

(4)

which can be rewritten as

netj =
n∑

i=1

(

xi
+ × σj,i

+

γj

+ xi
− × σj,i

−

γj

)

+ VDD ×
(

σbj
+ − σbj

−

γj

)

, (5)

Ultralow-Power Implementation of Neural Networks Using Inverter-Based. . . 335

(a) (b)

x1
+ VDD -VDD

netj

Mj,1
+ Mj,1

- Mj,n
+ Mj,n

- Mbj
+ Mbj

-

yj
+yj

-x1
- xn

+ xn
-

Weights Biases

-0.2 -0.1 0 0.1 0.2
-0.25
-0.15
-0.05
0.05
0.15
0.25 Real

Fi�ed

V o
ut

 (V
)

Vin (V)

Fig. 3 (a) An inverter-based memristive neuron [22]. (b) The VTC curve of an inverter and the
tangent hyperbolic function fitted to this VTC

where σ
+/−
j,i represents the conductance of the memristors and γj =

∑n
i=1

(
σj,i

+ + σj,i
−)+ σbj

+ + σbj
−. Considering positive and negative weights

(biases) for each neuron denoted by wj, i
+/− (wbj+/−), one may find the netj value

similar to Eq. (1) as

netj =
n∑

i=1

(
wj,i

+ × xi
+ + wj,i

− × xi
−)+ VDD ×

(
wb+

j − wb−
j

)
. (6)

By comparing Eqs. (5) and (6), it can be inferred that the positive and negative
weights and biases of an IM neuron can be found as the following:

wj,i
+/− = σ

+/−
j,i

γj

, (7)

wbj
+/− = σb

+/−
j

γj

. (8)

To model the activation function of the neurons, the VTC curve of an ideal
inverter can be extracted using HSPICE simulations and then fitted to a tangent
hyperbolic function (i.e., a + b × tanh (d × (x − c)) [11]). Therefore, the positive
and negative outputs of an IM neuron can be calculated as

y
+/−
j = f

+/−
j

(
netj

) = a
+/−
j + b

+/−
j × tanh

(
d

+/−
j ×

(
netj − c

+/−
j

))
, (9)

where a
+/−
j , b+/−

j , c+/−
j , and d

+/−
j are the VTC-fitting coefficients of the inverter

and buffer of the jth neuron. To find the VTC coefficients of an inverter, one
may extract the VTC of the inverter in the considered technology using HSPICE
simulations and then fit it to a tangent hyperbolic function (i.e., using MATLAB
simulations) by minimizing the fitting error across the entire range of the inputs. As

336 S. Vahdat et al.

Fig. 4 Circuit diagram of a
two-layer IM-NN with six
inputs, three hidden neurons,
and three outputs

x1
1+

x1
1-

x6
1+

x6
1-

VDD
-VDD

net1
1 net2

1 net3
1

net2
2 net3

2

VDD
-VDD

net1
2

y1
2

y2
2

y3
2

shown in Fig. 3b, the fitted curve can model the behavior of the inverter VTC with
a low error in both high and low slope regions of the VTC.

In an IM-NN, the negative (positive) output of each neuron is applied as the
negative (positive) input of the next layer. As an example, the structure of a two-
layer IM-NN with six inputs, three hidden neurons, and three outputs is depicted
in Fig. 4 where the black circles represent the memristors. For this network, two
inverters are utilized in the structure of the hidden neurons, while the output neurons
have only one inverter.

3.2 Effects of Non-idealities on the Outputs of IM Neurons

The outputs of IM neurons may change due to the conductance variations of the
memristors as well as the characteristic variations of the inverters. More specifically,
the difference between the desired and actual conductance values of the memristors
leads to variations in the weights and biases of the neuron giving rise to variations
in the net and output voltage of the neuron (see Eqs. (5), (6), (7), (8), and (9)). In
addition, the VTC coefficients of the inverters may change due to the parameter
variations of the transistors including width, length, and threshold voltage or the
variations in the supply voltages leading to the variations in the neuron output
voltage (see Eq. (9)). As an example, the distribution of the VTC coefficients of
an inverter in a 90-nm technology is depicted in Fig. 5. The results are based on
assuming Gaussian random variations for the transistor parameters and the voltage
sources. As the figure shows, the standard deviations of coefficients a and b are
larger when variations are applied to the voltage sources compared to the parameter

Ultralow-Power Implementation of Neural Networks Using Inverter-Based. . . 337

37 40 43 46 48
0
5

10
15
20

-0.03 -0.01 0.01
0

5

10

15

-0.2485 -0.248 -0.2475
0
5

10
15
20

-0.9 -0.6 -0.3 00
0
5

10
15
20

Pr
ob

ab
ili

ty
 (%

)

(a)
a (V)

Pr
ob

ab
ili

ty
 (%

)

b (V)

Pr
ob

ab
ili

ty
 (%

)

c (V)

Pr
ob

ab
ili

ty
 (%

)

d (V-1)

μ=-5.2×10-4

σ= 1.6×10-4
μ=-0.248
σ= 1.9×10-4

μ= 38.5
σ= 1.85

μ=-0.022
σ= 81×10-4

×10-3

-0.28 -0.26 -0.24 -0.22 -0.2
0
5

10
15
20

-0.03 -0.02 -0.01 0 0.01 0.02 0.03
0

5

10

15

Pr
ob

ab
ili

ty
 (%

)

a (V)

Pr
ob

ab
ili

ty
 (%

)

b (V)
-0.04 -0.02 0

0

5

10

15

Pr
ob

ab
ili

ty
 (%

)

c (V)
32 34 36 38 40

0
5

10
15
20

Pr
ob

ab
ili

ty
 (%

)

d (V-1)

μ=-1.5×10-4

σ= 86×10-4
μ=-0.248
σ= 89×10-4

μ= 35.2
σ= 0.96

μ=-0.02
σ= 85×10-4

(b)

Fig. 5 The distribution of VTC coefficients of an inverter considering 5% variations for the (a)
transistors characteristics and (b) voltage sources [22]

variations. In other words, these coefficients are highly dependent on the value of
voltage sources. The dependency of the coefficient d on the characteristic variations
of the transistors, however, is higher than its dependency to the variations of voltage
sources.

To evaluate the non-ideality effects of each circuit element, the sensitivity of
the neuron output voltage to the conductance variations of the memristors, and the
variations of VTC coefficients are expressed analytically in the rest of this section.

3.2.1 Variations of the Activation Functions Coefficients

In this section, the sensitivity of the negative output of an IM neuron with respect
to the variations of the inverter VTC coefficients is analyzed. The formulation can
be simply extended to the positive output of the neuron and the VTC coefficients
of the buffers. As the negative output of the neuron can be found using Eq. (9), its
sensitivity with respect to the variations of activation functions coefficients may be
written as [22]

∂
(
y−)

∂
(
a−) = 1, (10)

∂
(
y−)

∂
(
b−) = tanh

(
d− × (net − c−)) , (11)

∂
(
y−)

∂
(
c−) = −b−d− ×

(
1 − tanh2

(
d− × (net − c−))) = −b− × d− × v−,

(12)

∂
(
y−)

∂
(
d−) = b− × (net − c−)× v−, (13)

338 S. Vahdat et al.

Fig. 6 The output voltage
(y−) and parameter v− of an
inverter based on Net−

-0.25 -0.15 -0.05 0.05 0.15 0.25
-0.5

0

0.5

1

Netj

Va
lu

e

yj
-

νj
-

y-

v-

Net-

where v− = (1 − tanh2(d− × (net − c−))). The parameter v− determines whether
the inverter is operating in its high- or low-gain regions. The output voltage (y−) and
parameter v− of an inverter based on the Net− (=net − c−) voltage of that inverter
are plotted in Fig. 6 where the VTC of the inverter was assumed to be modeled
by b− × tanh (d− × Net−). As is observed from the figure, if v− is around 0
(1), it means that the inverter operates in its low (high)-gain region. Assume that,
however, the VTC of the inverter is horizontally shifted by c−

0 making its VTC curve
as b− × tanh

(
d− × (Net− − c−

0

))
instead of b− × tanh (d− × Net−). In this case,

the Net− values that are near c−
0 exist in the high-gain region of the inverter, while

in the case where the VTC function is b− × tanh (d− × Net−), the Net− values that
are around “0” exist in the high-gain region of the inverter. Thus, the parameter v−
shows the operating region of the inverter independent of the VTC shift.

Based on Eqs. (12) and (13), one may reduce the sensitivity of the neuron
output to the variations of coefficients c and d by decreasing v− or forcing the
inverter to operate in the low-gain regions of its VTC. The parameter v− depends on
Net−(=net − c−) and d−. The diagram of the parameter v− versus Net− is plotted in
Fig. 7a considering different values for the coefficient d−. As shown in this figure,
the value of v− is small for large |Net−| values, and the slope of the v− curve
depends on the value of d−. Therefore, similar to Fig. 7b, the value of v− can be
approximated as

v−
app ≈ fapp

(
Net−

) =
{
1 − |Net−|

ε− if
∣
∣Net−

∣
∣ ≤ ε−

0 Otherwise
, (14)

where fapp is the mathematical representation of a triangular function with the slope
of 1/ε− and crosses the curve of v− at v− = 0.5 (see Fig. 7b). It should be noted
that v− = 0.5 occurs when Net− = 0.88/d−. Therefore, the value of v−

app should be
equal to 0.5 when Net− = 0.88/d−, which leads to

0.5 = 1 −
∣
∣0.88/d−∣∣

ε− . (15)

Consequently, one may find ε− as

Ultralow-Power Implementation of Neural Networks Using Inverter-Based. . . 339

1 0 5 0 0 5 10

5

1
d =5 d =15

ν=0.5

(b)

0

d =1 d =5 d =10 d =15 d =30

(a)

-1 -0.5 0.5 10

0.5

1

0

d =1- d =5- d =10- d =15- d =30-

Net-

v
-

-ɛ -

-1 -0.5 0.5 10

0.5

1

0
Net -

v
-

d =5- d =15-

v =0.5-

ɛ -

Fig. 7 (a) The value of v− versus Net− (d− as the running parameter). (b) The exact and
approximate values of v− for the cases where d− = 5 or d− = 15 [22]

ε− =
∣
∣
∣
∣
1.76

d−

∣
∣
∣
∣ , (16)

which shows that the slope of v− is proportional to d− value (see Eqs. (14) and (16)).
In other words, v− becomes almost zero for larger ranges of Net− values when d−
is large.

To have a comparison between the sensitivity of the neuron outputs to different
VTC coefficients, recall that ∂(y−)/∂(b−) = tanh (d− × (net − c−)) which is never
greater than 1. The sensitivity of the neuron output to the variations of coefficient
a−, therefore, is greater than that of the coefficient b− (see Eqs. (10) and (11)).
Additionally, the sensitivity of the neuron output to the variations of coefficient d−
depends on Net− × v−. It is obvious that for small |Net−| values, this sensitivity
becomes small. When |Net−| is large (i.e., |Net−| > ε−), however, the value of v−
becomes small (see Eq. (14)). Therefore, the amount of ∂(y−)/∂(d−) becomes small
for small or large |Net−| values. Furthermore, ∂(y−)/∂(c−) depends on d− which is
large due to the large VTC slope of the inverters (d− ≈ 30 in [11] and d− ≈ 15
in [25]). It is expected that the negative output of an IM neuron has the highest
(lowest) sensitivity to the variations of the coefficient c− (d−). The abovementioned
equations and explanations are valid for the positive output of the neuron (y+) and
its corresponding activation function coefficients (a+, b+, c+, d+).

3.2.2 IM Neuron Output Sensitivity to the Conductance Variation
of Memristors

To calculate the sensitivity of the neuron output (i.e., y−
j) to the conductance

variations of its memristors (i.e., the variations of σ+
j,k), one may use Eq. (9) to

obtain

340 S. Vahdat et al.

∂
(

y−
j

)

∂
(
σ+

j,k

) =
∂
(
y−
j

)

∂
(
netj

) × ∂
(
netj

)

∂
(
σ+

j,k

) = b−
j × d−

j × v−
j × ∂

(
netj

)

∂
(
σ+

j,k

) . (17)

Additionally, based on Eq. (5), ∂
(
netj

)
/∂
(
σ+

j,k

)
can be obtained as

∂
(
netj

)

∂
(
σ+

j,k

) =
n∑

i=1

⎛

⎝x+
i ×

∂
(
w+

j,i

)

∂
(
σ+

j,k

) + x−
i ×

∂
(
w−

j,i

)

∂
(
σ+

j,k

)

⎞

⎠+ VDD ×
⎛

⎝
∂
(
wb+

j

)

∂
(
σ+

j,k

) −
∂
(
wb−

j

)

∂
(
σ+

j,k

)

⎞

⎠ ,

(18)

where

∂
(
w+

j,k

)

∂
(
σ+

j,k

) = γj − σ+
j,k

(
γj

)2 = 1 − w+
j,k

γj

, (19)

and for the other weights or biases of the neuron (i �= k)

∂
(
w

+/−
j,i

)

∂
(
σ+

j,k

) = −σ
+/−
j,i

(
γj

)2 = −w
+/−
j,i

γj

,
∂
(
wb

+/−
j

)

∂
(
σ+

j,k

) = −σb
+/−
j

(
γj

)2 = −wb
+/−
j

γj

.

(20)

Substituting Eqs. (19) and (20) in Eq. (18) leads to

∂
(
netj

)

∂
(
σ+

j,k

) = x+
k

γj

− 1

γj

×
⎛

⎝

∑n
i=1

(
x+
i × w+

j,i + x−
i × w−

j,i

)
+

VDD ×
(
wb+

j − wb−
j

)

⎞

⎠ = x+
k − netj

γj

,

(21)

which can be used to rewrite Eq. (17) as

∂
(
y−
j

)

∂
(
σ+

j,k

) = b−
j × d−

j × v−
j × x+

k − netj

γj

. (22)

Using a similar approach, the sensitivity of the positive output with respect to the
memristor conductance variations can be obtained.

As mentioned previously, the output voltage of an inverter has the highest sensi-
tivity to the variations of the coefficient c− compared to the other VTC coefficients.
Comparing Eqs. (12) and (22) shows that both sensitivities are proportional to

b−
j ×d−

j ×v−
j . However, ∂

(
y−
j

)
/∂
(
σ+

j,k

)
inversely depends on γ j which is equal to

Ultralow-Power Implementation of Neural Networks Using Inverter-Based. . . 341

the sum of the conductance values of the memristors connected to the corresponding
neuron. It is, therefore, expected that γ j becomes large which leads to a smaller
sensitivity with respect to σ+

j,k compared to c−
j . This means that the output of an

IM neuron is frequently more sensitive to the VTC variations of inverters or buffers
compared to the conductance variations of memristors.

3.2.3 IM-NN Primary Output Sensitivity to Characteristic Variations
of Circuit Elements

The sensitivity of the NN output (e.g., the jth output of the NN denoted by yL
j) to

the variations of the VTC coefficients (e.g., the VTC coefficients of the tth buffer of
the lth layer denoted by coef l

t
+
where coef can be each of coefficients a, b, c, d)

may be obtained from

∂
(
yL
j

)

∂
(
coef l

t
+) =

∂
(
yL
j

)

∂
(
netLj

) ×
∂
(
netLj

)

∂
(
coef l

t
+) , (23)

where

∂
(
netLj

)

∂
(
coef l

t
+) =

NL
∑

i=1

⎛

⎝wL
j,i

+ ×
∂
(
yL−1
i

+)

∂
(
coef l

t
+) + wL

j,i

− ×
∂
(
yL−1
i

−)

∂
(
coef l

t
+)

⎞

⎠ . (24)

In the next step, ∂
(
yL−1
i

+)
/∂
(
coef l

t
+)

and ∂
(
yL−1
i

−)
/∂
(
coef l

t
+)

are

found. Similar to Eq. (24), these may be calculated recursively by substituting L

with L − 1 until reaching ∂
(
yl
t
+)

/∂
(
coef l

t
+)

, which is calculated based on Eqs.

(10), (11), (12), and (13). Note that ∂
(
yl
t
−)

/∂
(
coef l

t
+)

is zero. As an example,

for an IM-NN with two hidden layers (L = 3), ∂
(
y3
j

)
/∂
(
coef 1

t

+)
may be found

from

∂
(
y3
j

)

∂
(
coef 1

t
+) =

∂
(
y3
j

)

∂
(
net3j

) ×
N3
∑

i=1

⎛

⎝w3
j,i

+ ×
∂
(
y2
i

+)

∂
(
coef 1

t
+) + w3

j,i

− ×
∂
(
y2
i

−)

∂
(
coef 1

t
+)

⎞

⎠ ,

(25)

where

∂
(
y2
i

+/−)

∂
(
coef 1

t
+) =

∂
(
y2
i

+/−)

∂
(
net2i

) × w2
i,t

+ ×
∂
(
y1
t

+)

∂
(
coef 1

t
+) (26)

342 S. Vahdat et al.

and ∂
(
y1
t

+)
/∂
(
coef 1

t

+)
may be calculated using Eqs. (10), (11), (12), and (13).

Similarly, the sensitivity of the NN outputs (i.e., yL
j) to the conductance variation

of the memristors (i.e., σ l
k,t

+
) is found from

∂
(
yL
j

)

∂
(
σ l

k,t

+) =
∂
(
yL
j

)

∂
(
netLj

) ×
NL
∑

i=1

⎛

⎝wL
j,i

+ ×
∂
(
yL−1
i

+)

∂
(
σ l

k,t

+) + wL
j,i

− ×
∂
(
yL−1
i

−)

∂
(
σ l

k,t

+)

⎞

⎠ ,

(27)

where ∂
(
yL−1
i

+/−)
/∂
(
σ l

k,t

+)
may be recursively calculated using Eq. (27) by

substituting L with L − 1 until achieving ∂
(
yl
k

+/−)
/∂
(
σ l

k,t

+)
which is calculated

using Eq. (22).

3.3 Inductions Drawn from the Above Analysis

One may draw the following inductions from the above analysis regarding the IM-
NN output sensitivity to the parameter variations:

1. The output voltage of an IM neuron has the highest sensitivity to the horizontal
shift of the inverter and buffer VTCs (i.e., variations of coefficients c+/−).

2. The output voltage of an IM neuron with large γ value has low sensitivity to the
conductance variations of the memristors.

3. The output voltage of an IM neuron has lower sensitivity to the conductance
variations of memristors compared to the variations of VTC coefficients.

4. The sensitivity of an IM neuron output to the non-idealities of circuit elements
can be mitigated by lowering d+/−, which occurs when the VTC slopes of the
inverters and buffers are reduced, or by decreasing v+/− values which occurs
when the inverters and buffers are forced to operate in the low gain regions of
their VTCs.

4 Input/Output Interfaces

To connect IM-NNs to the digital part of the system, digital-to-analog and analog-to-
digital converters (DACs and ADCs) are required which consume considerably large
power consumption compared to that of the memristive crossbars. The authors of
[19] proposed memristive implementations for DAC and ADC which can be utilized
as the input and output interfaces for IM-NNs. The structure of the mentioned ADC
and DAC will be explained next.

Ultralow-Power Implementation of Neural Networks Using Inverter-Based. . . 343

(a) (b)

Dn-1

Dn-2

Dn-3

D0

net3 net2 net1 net0

y3 y2 y1 y0

Fig. 8 The circuit implementation of a memristive (a) DAC and (b) ADC modified from [19]

4.1 Memristive DAC

The circuit implementation of a memristive DAC is depicted in Fig. 8a where RLoad
represents the equivalent loading resistance connected to the output node of the
DAC. Since the DAC is utilized as the input interface of IM-NNs, RLoad may be
determined by the equivalent resistance of the memristive crossbar. Writing the KCL
equation for the A0 node (in Fig. 8a) leads to

n−1∑

i=0

VDi
− VA0

2n−1−iR
= VA0

RLoad
, (28)

which can be rewritten as

n−1∑

i=0

VDi

2n−1−iR
−

n−1∑

i=0

VA0

2n−1−iR
= VA0

RLoad
. (29)

Accordingly, VA0 can be calculated as

VA0 =
∑n−1

i=0
VDi

2n−1−iR

1
RLoad

+∑n−1
i=0

1
2n−1−iR

. (30)

344 S. Vahdat et al.

Assuming that RLoad is very large, one may find the ideal value of VA0 as

VA0ideal =
∑n−1

i=0
VDi

2n−1−iR
∑n−1

i=0
1

2n−1−iR

, (31)

which can be rewritten as

VA0ideal =
∑n−1

i=0

(
2iVDi

)

2n − 1
. (32)

Based on Eqs. (30) and (31) , the DAC error caused by the output load can be
calculated as

Error = VA0ideal − VA0

VA0ideal
=

1
RLoad

1
RLoad

+∑n−1
i=0

1
2n−1−iR

. (33)

Let us assume that the input error tolerance of the NN is α. This puts a constraint
on the value of R as shown below

1
RLoad

1
RLoad

+∑n−1
i=0

1
2n−1−iR

< α. (34)

which may be rewritten as

R <
α (2n − 1)

(1 − α) 2n−1Rload, (35)

which shows that the maximum acceptable value for R is a function of the tolerable
error (i.e., α), the input bit width of the DAC (i.e., n), and its output load (i.e., Rload).

4.2 Memristive ADC

In a memristive ADC, first, the most significant bit (MSB) of the output is generated
where the other bits are produced one after another from the most significant to the
least significant bit (LSB). This makes the value of the ith bit dependent on other
output bits with higher significances. Next, we explain the functionality of this
structure. Assume that the voltage sources are Vdd and −Vdd where each output
with the voltage of −Vdd (Vdd) represents logical 0 (1). In addition, the analog
input is in the range of [−Vdd,Vdd]. In an n-bit memristive ADC, the input with
the value of −Vdd (Vdd) should be converted to 0 (2n − 1) implying that the MSB of
ADC output for the inputs with negative (positive) values is 0 (1). Assume that an
inverter can be employed as a comparator whose output becomes logically 1 (0) if

Ultralow-Power Implementation of Neural Networks Using Inverter-Based. . . 345

its input is negative (positive). The MSB of the ADC output, thus, can be generated
by applying the analog input to two consecutive inverters as shown in Fig. 8b which
shows the circuit implementation of a 4-bit memristive ADC. In this figure, the
black circles show the memristors, and the numbers written beside them represent
their corresponding weights. In other words, the resistance of the memristor with the
weight of 2k is equal to 2(n − k)R where n represents the resolution of the ADC. The
other bits of the output can be generated by subtracting the impact of the outputs
with higher positions from the analog input. As an example, assume that the input
voltage is equal to Vdd which should be converted to (1111)2. In this case, y3 and V3
(see Fig. 8b) become −Vdd and Vdd as the analog input is greater than 0. In addition,
net2 can be found from

net2 = x

R
+ y3

2R
= Vdd

R
− Vdd

2R
= Vdd

2R
, (36)

which is greater than 0 and leads to y2 = − Vdd and V2 = Vdd. Similarly, net1 can
be obtained from

net1 = x

R
+ y3

2R
+ y2

4R
= Vdd

R
− Vdd

2R
− Vdd

4R
= Vdd

4R
, (37)

which leads to V1 = − y1 = Vdd and

net0 = x

R
+ y3

2R
+ y2

4R
+ y1

8R
= Vdd

R
− Vdd

2R
− Vdd

4R
− Vdd

8R
= Vdd

8R
, (38)

which results in V0 = − y0 = Vdd.

5 Training of IM-NNs

In this section, PHAX [11], RIM [25], LATIM [23], and ERIM [18] methods, which
are recent work focusing on offline training of IM-NNs using back-propagation
method, and OCTAN [21], which is an on-chip training method, are discussed.

5.1 PHAX1

The conductance range of the memristors is limited, a fact that should be considered
during the training phase. To address this limitation, in the PHAX method, a
continuously differentiable weight mapping function (denoted by g1) is employed

1 Physical characteristics aware ex situ training.

346 S. Vahdat et al.

to determine the conductance of the memristors (here as an example, the ith positive
conductance of the jthneuron) as [11]

σj,i
+ = g1

(
θj,i

+) = σmin + σmax − σmin

1 + e−θj,i
+ , (39)

where σmax and σmin represent the maximum and the minimum conductance values
of the memristors and θ j, i

+ is the training variable. Based on Eqs. (7) and (39), the
positive weight of the neuron is calculated from

wj,i
+ = g

(
θj,i

+) = g2
(
g1
(
θj,i

+)) , (40)

where

g2
(
σj,i

+) = σj,i
+

∑n
p=1

(
σ+

j,p + σ−
j,p

)
+ σb+

j + σb−
j

. (41)

The parameters θ are updated after each training iteration where the conductance
of the memristors is determined based on Eq. (39) and the weights are updated based
on Eq. (40). Assuming that J represents the cost function of the training phase, the
positive and negative θ variables of the output layer (Lth layer) are updated as

�θk,j
L = −α

(
∂J

∂yL
k

)

×
(

∂yL
k

∂netLk

)

×
⎛

⎝
∂
(∑

q∈(L−1) g
(
θk,q

L
)
yq

L−1
)

∂θk,j
L

⎞

⎠ ,

(42)

and for the hidden layers as

�θj,i
l = −α

(
∂yl

j

∂net lj

) ⎡

⎣
∑

k∈(l+1)

δkg
(
θk,j

l+1
)
⎤

⎦×
⎛

⎝
∂
(∑

p∈(l−1) g
(
θj,p

l
)
yp

l−1
)

∂θj,i
l

⎞

⎠ ,

(43)

where α is the learning rate, L and l represent the last and the current layers, and δk
is the portion of the error of the kth output in the next layer [11].

In PHAX, the VTC curves of the inverter and buffer, extracted by HSPICE
simulations, are fitted to tangent hyperbolic functions (see Eq. (9)) where the fitting
coefficients are used to model the activation functions. The VTC coefficients of an
inverter, however, depend on the size and the output load of that inverter (caused
by the loading effect of the memristive crossbar). To demonstrate it better, the VTC
coefficients of an inverter based on its size and its output load (RM) are shown in Fig.
9. Note that, in [11], the size of transistors for an inverter of size s were considered
as (W/L)p = 2s and (W/L)n = 1.2s. To reduce the sensitivity of the VTC coefficients

Ultralow-Power Implementation of Neural Networks Using Inverter-Based. . . 347

(c)

(a) (b)

(d)

a

RM(KΩ) size

b

RM(KΩ) size

c

RM(KΩ) size

d

RM(KΩ) size

Fig. 9 The fitted coefficients (a) a, (b) b, (c) c, and (d) d of the inverter VTC versus the output
loading resistance (RM) as well as the size of the inverter [23]

with respect to the output load of the inverter, the size of all the inverters of the NN
was chosen as a constant value (i.e., 5) in the PHAX method.

5.2 RIM2

As mentioned previously, the loading effect of the memristive crossbar may change
the VTC curve of the inverters which was not considered in the PHAX method. The
VTC changes may cause large errors in the modeling of the NN outputs trained by
the method. In addition, according to Eqs. (12) and (22), the sensitivity of the output
voltage of an IM neuron to the non-idealities of circuit elements is proportional to
coefficients d+/−. The VTC slope of an inverter (S) can be approximated by the
slope of a + b × tanh ((x − c) × d) when x = c [25]. In other words, S can
be approximated by b × d. Consequently, to reduce the sensitivity of the VTC
coefficients to the loading effect of the memristors as well as decreasing the effects
of the circuit elements non-idealities on the output voltage of IM neurons, adding
a grounded resistor to the output node of each inverter was proposed in [25]. To
explain this further, assume that the output node of an inverter is connected to a
memristive crossbar with an equivalent resistance of RM and a grounded resistor
with the resistance of R. The VTC slope of this inverter may be defined as

2 Resistor-inverter-based memristive NN training

348 S. Vahdat et al.

Fig. 10 The coefficient d of
the (a) inverter- and (b)
buffer-fitted VTC curves in
the nominal condition versus
the memristors loading
resistance for PHAX and
RIM methods. (c) The VTC
curve of the inverter based on
the resistance of the grounded
resistor (R) [25]

(a) (b)

(c)

102 103 1040
20
40

RM(KΩ)

d

RIM PHAX
d=19.8

d=11.1

d=14.1

d=34.9

102 103 1040

200

400

RM(KΩ)

d

RIM PHAX
d=280

d=41.9d=26.1

d=85.2

-0.2 -0.1 0 0.1 0.2
-0.2
-0.1

0
0.1
0.2

Vin (V)

Vn
 (V

)

R=5KΩ
R=10KΩ
R=20KΩ
R=50KΩ
R=200KΩ

S = Vout (Vin = VIH) − Vout (Vin = VIL)

VIH − VIL

. (44)

In addition, S, approximated by the small signal gain of the inverter when the
NMOS and PMOS transistors are in the saturation mode, may be calculated from

S ≈ (gmn + gmp

)×
(
ro,n

∥
∥ro,p

∥
∥RM

∥
∥
∥R
)

, (45)

where gmn (gmp) and ro, n (ro, p) are the small signal parameters of the NMOS
(PMOS) transistor [25]. Based on Eq. (45), it can be inferred that by adding the
grounded resistor; the sensitivity of the VTC slope to the loading effect of the
memristors is reduced as this slope is proportional to ro, n‖ro, p‖RM‖R instead
of ro, n‖ro, p‖RM . It is, therefore, expected that when RM decreases, the value of
the coefficient d decreases with a lower rate compared to the case in which the
grounded resistor is not utilized. In Fig. 10, the parameter d versus RM is depicted
for an inverter and a buffer. In the RIM method, the resistance of the grounded
resistor (R) is equal to 50 KΩ . As shown in this figure, the sensitivity of d to the
loading effect of the memristive crossbar is reduced in the RIMmethod compared to
PHAX. In addition, the VTC curve of an inverter versus R is plotted in the Fig. 10c
demonstrating the dependency between the characteristic of the inverters and their
equivalent output resistance. As shown in this figure, the VTC slope of the inverter
decreases when R reduces. Thus, by adding the grounded resistor (R), the coefficient
d of the inverters and buffers can be reduced, leading to a lower sensitivity for the
neuron outputs to the non-idealities of circuit elements.

Furthermore, the results of [25] revealed that by adding the grounded resistor, the
effects of process variations on the VTC of the inverters decreased. The VTC curves
of 1000 inverters are plotted in Fig. 11a. For this figure, random variations with a

Ultralow-Power Implementation of Neural Networks Using Inverter-Based. . . 349

Fig. 11 (a) VTC curves of
1000 inverters under 10%
variation condition and their
modeling error for the (b)
PHAX and (c) RIM methods
[25]

(a) (b) (c)

-0.2 0 0.2
-0.2

0
0.2

Vin (V)

Vn
 (V

)

-0.2 0 0.2
-0.4
-0.2

0
0.2
0.4

Vin (V)

Er
ro

r (
V)

-0.2 0 0.2-0.4
-0.2

0
0.2
0.4

Vin (V)

Er
ro

r (
V)

Gaussian distribution and a variability (σ /μ) of 10% were applied to the threshold
voltage, width, and length of the transistors. The dotted black curve shows the fitted
tangent hyperbolic function of the nominal condition. In the PHAX method, this
curve is used in the training phase to model the behavior of all inverters of the NN.
The modeling error (the difference between the fitted curve of the nominal condition
and the real output values of 1000 inverters) is shown in Fig. 11b and Fig. 11c for
the PHAX and RIM methods (with R = 50 KΩ). As is evident from the figures, the
modeling error of the VTCs due to the transistors non-idealities reduces when the
VTC slope of the inverter is reduced by the added grounded resistor.

To find proper values for the resistance of the grounded resistors in the RIM
method, it is required to study the functionality of the inverters in an IM neuron.
Since the conductance of the memristors is always positive, to have the capability
of implementing negative and positive weights, two inverters are employed in the
structure of each IM neuron. In other words, the second inverter is employed to
generate an output with the opposite sign compared to the first one which makes it
possible to produce negative weights. As the VTC of an inverter is not the same as
a negating function, it is expected that the positive and negative outputs of an IM
neuron have opposite signs with different magnitudes. Furthermore, the slope of the
activation functions is determined by the VTC slope of the negative and positive
inverters. Based on the above discussion, however, one may employ the positive
inverter as a negating function with the slope of−1, enabling us to generate negative
weights while controlling the slope of the activation function based on the VTC
slope of the negative inverter. This is the main idea behind the RIM method which
is explained in the following.

As mentioned in Sect. 3.2, lower values for coefficients d+/− lead to smaller
sensitivity of the inverter output to the variations of circuit elements which is
desirable. Based on Fig. 10c, however, using lower-resistance grounded resistors
leads to undesirable smaller output swings for the inverters. Hence, in the RIM
method, a resistor (R2) was added to the output node of the positive inverter to make
its VTC curve similar to a negating function without a significant reduction in the
inverter output swing. Since the VTC slope of an inverter may be approximated
by b × d, to implement a negating function using an inverter, the resistance of the
grounded resistor (i.e., R2) should be chosen such that b × d = − 1. In addition, a
resistor (R1) was added to the output node of the negative inverter to reduce its VTC
slope as well as control the slope of the tangent hyperbolic activation function.

Even though reducing the VTC slope of the inverters leads to lower output
variations in the case of non-idealities (see Fig. 11), it decreases the accuracy

350 S. Vahdat et al.

(a) (b)

0

0.01

0.02

0.03

1 5 10 15 20 25 30 35

Blackscholes FFT K-means Sobel

M
SE

d d

100

75

50

25A
cc

u
ra

cy
 (

%
)

Fig. 12 The (a) MSE [25] and (b) accuracy of the IM-NNs versus the coefficient d assuming no
process variation as well as no loading effect of memristive crossbar on the inverters VTC curves

of the NN in the ideal case. The MSE (accuracy) of the NNs under regression
(classification) applications versus the value of the coefficient d is plotted in Fig.
12. The results reveal that when the coefficient d increases, the accuracy (MSE) of
the NN increases (decreases). The rate of the changes, however, decreases when d is
greater than 15. It should be noted that the variations of the inverter outputs increase
when the coefficient d increases. In the RIM method, hence, a proper value for the
coefficient d is determined by considering a tradeoff between the accuracy of the
NN in the nominal case and the NN resiliency to the severe effects of variations. As
a result, the coefficient d of the negative inverter was chosen as 15.

To justify the effect of the coefficient d on the accuracy of the trained NN,
consider the VTC curves depicted in Fig. 13 assuming d = 35 similar to the PHAX
method and d = 15 similar to the RIM method. In this figure, for the sake of
illustration, it is assumed that a = c = 0 and b = − VDD = − 0.25. As shown
in this figure, to have the ability to generate different output values by the inverters
(i.e., achieving at least 90% of the inverter output swing), the swing of the net
voltage should be at least 0.08 V (0.20 V) when d is equal to 35 Eq. (15). In other
words, when d = 15, a larger range of net values should be generated to benefit
from different output values produced by the inverters. Since the outputs of the lth

layer are utilized as the inputs of the (l + 1)st layer, if the inverters of the lth layer
cannot generate large output values, the situation becomes harder for the neurons of
the (l + 1)st layer to generate large output values. In addition, in the output layer
(Lth layer) of the classification NNs, it is expected that the selected (unselected)
classes have output values ∼=VDD (∼= − VDD). Therefore, when d = 15, larger |net|
values are needed for the output layer requiring large values for the outputs of the
previous layers and their corresponding weights. This is the reason for the accuracy
degradation in IM-NNs when the VTC slope of the inverters decreases.

The flowchart of the RIM method is depicted in Fig. 14. As shown in this figure,
the sizes of all the inverters, similar to the PHAXmethod, were chosen to be 5. Then,
a grounded resistor was connected to the output node of the inverter, and the VTC
curve of the inverter was extracted, while the resistance of the grounded resistor
(R) was sweeping. Next, the value of coefficient d was plotted versus the R value.
In the next step, the resistance which led to d ≈ 15 was found and considered as

Ultralow-Power Implementation of Neural Networks Using Inverter-Based. . . 351

Fig. 13 VTC curve of
inverters with different d
coefficients

-0.2 -0.1 0 0.1 0.2
-0.2

-0.1

0

0.1

0.2

net (V)

ou
t (

V)

d=15
d=35

Δ1 =0.08V

Δ2 =0.20V

Determine the size of the inverters
of the network based on PHAX.

Sweep R (the resistance of the added
resistor to the output node of the inverter)

and extract the VTC of the inverter.

START

END

Find the R value that results in d around 15 by
plotting d of the fitted tangent hyperbolic
function versus R and choose it for R1 (the

resistor of the first inverter) value.

Find the R value that results in b×d around -1
(as it works like a negating function) and

choose it for R2.

Plot b×d versus R.

Fig. 14 The flowchart of the RIM method [25]

(a) (b)

101 102 103 1040

10

20

30

40

d

104103102101

R(KΩ)
105 10

1
10

2
10

3
10

4
10

5-10
-8
-6
-4
-2
0

bd

101 102 103 104 105

R(KΩ)

Fig. 15 (a) The coefficient d and (b) b × d values versus R [25]

the resistance of the grounded resistor connected to the output node of the negative
inverter (R1). Afterward, the value of b × d was plotted versus the value of R, and
the resistance leading to b × d ≈ − 1 was found and considered as the resistance of
the grounded resistor connected to the output node of the positive inverter (R2). As
an example, the value of d and b × d versus R is plotted in Fig. 15 where the proper
values for R1 and R2 are shown in these figures by dotted lines.

352 S. Vahdat et al.

Run one epoch of
training

Find the approximate
loading resistance of the

memristors on each inverter

START

END

Choose the proper
size for each inverter

Update the
activation
functions

Predict the VTC
parameters of each

inverter

Terminate?
No

Yes

Initialize the parameters
based on PHAX

Fig. 16 The flowchart of LATIM [23]

5.3 LATIM3

Based on the above discussion, it became clear that the VTC coefficients of an
inverter depend on the size and output load of that inverter. This dependency was not
considered in the training phase of the PHAX and RIM methods. By assuming large
sizes for the inverters (i.e., in the PHAX and RIM methods) or adding a grounded
resistor to the output node of the inverter (i.e., in the RIM method), the sensitivity
of the VTC coefficients with respect to the loading effect of the memristor crossbar
decreased. However, this dependency still exists and can degrade the accuracy of
the NN if it is not considered in the training phase of the network. In addition, by
increasing the size of the inverters, the power consumption and area occupation of
the neurons increase which are not desirable [18]. Therefore, sizes of the inverters
should be chosen properly to have low-power consumption. This also requires
modeling the output voltage of the inverters based on the sizes and output loads
of the inverters to train the NN accurately.

To achieve the abovementioned goals, in the LATIM method, the equivalent
resistance of the memristive crossbar was calculated approximately, and the sizes
of the inverters were chosen to have a high accuracy. The flowchart of the LATIM
method is shown in Fig. 16. In this method, first, the activation functions of all
the neurons are considered the same, meaning that they were extracted without
considering output loads for the inverters and assuming that the size of the inverters
is equal to that of the PHAX method (i.e., 5).

Based on the obtained VTC coefficients, the activation functions are modeled,
and one epoch of training is performed similar to the PHAX method. Next, the
theta (θ) parameters are updated, and the conductance of the memristors is obtained
based on Eq. (39). Afterward, the equivalent resistance of the memristive crossbar
is calculated approximately, and the size of each inverter is chosen based on its

3 Loading-aware offline training method for inverter-based memristive neural networks

Ultralow-Power Implementation of Neural Networks Using Inverter-Based. . . 353

ri

x1

Rj1

Rm1

R11

Rj1

Rm1

R11
+

+

-

+

-

-

+
x1

-

xi

Rji

Rmi

R1i

Rji

Rmi

R1i
+

+

-

+

-

-

+
xi

-

+
r1i
+

rji
+

r’ji
+

rmi
+

xn

Rjn

Rmn

R1n

Rjn

Rmn

R1n
+

+

-

+

-

-

+
xn

-

Y1
+Y1

-

Yj
+Yj

-

Ym
+Ym

-

Fig. 17 An inverter-based memristive crossbar with n inputs and m outputs [23]

output load. In the next step, the VTC coefficients of each inverter are predicted
using a pre-trained NN, and the activation functions of the neurons are updated. The
abovementioned steps are repeated until the termination condition is satisfied. As an
example, in [23], the number of epochs was considered as the termination condition
for the training process.

To find the equivalent resistance of the memristive crossbar based on LATIM
method, consider a crossbar with n inputs and m outputs (see Fig. 17). In this figure,
r+
i represents the equivalent output load of the ith positive inverter which can be
obtained from [23]

1

r+
i

=
m∑

j=1

1

r+
j i

=
m∑

j=1

1

R+
j i + r ′+

j i

. (46)

In addition, r ′+
j i can be calculated approximately as

1

r ′+
j i

≈ 1

R−
j i

+
∑

p �=i

(
1

R+
jp

+ 1

R−
jp

)

. (47)

Since r ′+
j i is the equivalent resistance of (2n − 1) parallel branches, in LATIM,

r ′+
j i is assumed to be considerably smaller than R+

j i and is neglected in the

calculations of Eq. (46). Therefore, r+
j i is approximated as

r+
j i ≈ R+

j i , (48)

which leads to

1

r+
i

≈
m∑

j=1

1

R+
j i

. (49)

The equivalent output load of the negative inverters (i.e., r−
i) can be approxi-

mately calculated in a similar way.

354 S. Vahdat et al.

It is worth noting that the weights and biases of an IM neuron are dependent, and
the dependence limits the ability to select the weights and biases freely to achieve
the maximum accuracy. Based on Eqs. (7) and (8), the sum of the weights and biases
of an IM neuron can be calculated as

sumj =
n∑

i=1

(
wj,i

+ + wj,i
−)+

(
b+
j + b−

j

)
=
∑n

i=1

(
σj,i

+ + σj,i
−)+ (σbj

+ + σbj
−)

γj

= 1.

(50)

This shows the dependence of the weights and biases of an IM neuron where
increasing a weight (i.e., increasing wj, i

+ by increasing σ j, i
+) results in decreasing

the other weights and biases. On the other hand, since the ratio of wj, i
+/wj, k

+ is
equal to σ+

j,i/σ
+
j,k , the maximum ratio of each two weights of the neuron equals

to σmax/σmin which is finite. This again limits our ability to select the weights
arbitrarily. Let us assume that a neuron has n inputs and σmax/σmin = k. The
maximum achievable weight occurs for the case where the conductance of the
considered memristor is equal to σmax and those of the others are σmin. In this
case, γ = ((2n + 1)σmin + σmax) and the maximum achievable weight is equal
to σmax/((2n + 1)σmin + σmax) = k/((2n + 1) + k), while the other weights and
biases are equal to 1/((2n + 1) + k). As an example, consider n = 100 and k = 50.
In this case, the maximum achievable weight is ~0.2, while the other weights and
biases are almost 0.004. This implies that having several large weights in an IM
neuron makes the other weights very small. In addition, note that the inputs of the
neurons are applied in the differential form (the positive and negative inputs have
opposite signs). Generating large |net| voltages by a neuron requires several large
inputs having the same signs with corresponding large weights. Furthermore, the
inputs with the opposite signs as well as their corresponding weights should be
small. These requirements make the generation by a neuron rather difficult. The
situation becomes worse when the neuron input swings decrease. This is due to the
fact that the inputs of a neuron are multiplied by the weights to generate the net
values. If the input swing decreases, it directly affects (reduces) the net swing. As
the outputs of the inverters are modeled with a + b × tanh (d × (x − c)) function,
the output swing of the inverter is equal to 2b. Also the outputs of the neurons of the
lth layer are applied as the inputs of the next layer ((l + 1)st layer). Therefore, if the
coefficient b of the neurons of the lth layer decreases, the input swing of the neurons
of the (l + 1)st layer decreases, too. This situation may result in lower |net| values
which lead to smaller input swings for the neurons of the next layer. Consequently,
inverters with small b coefficients or small output swings are not desirable. Based
on Fig. 9, the coefficient b is a function of the output load and the size of the inverter.
In addition, the value of b decreases when the size or the output load of the inverter
decreases. By choosing proper sizes for the inverters based on their output load,
however, one may achieve acceptable values for the coefficient b.

When the output load (RM) of an inverter with the size of s is larger than a
minimum resistance (denoted by RLs), the values of coefficients a and b can be

Ultralow-Power Implementation of Neural Networks Using Inverter-Based. . . 355

Fig. 18 (a) An inverter with
the size of s and an output
resistive load of RM /s. (b) s
inverters with the size of 1
and the output resistive load
of RM connected in parallel RMRMRM

111

RM
s

s parallel inverters

(a) (b)

s

considered constant (see Fig. 9). In addition, in this case, the value of b does not
decrease which results in a high output swing for the inverters. To assume constant
values for these coefficients, therefore, the output load of the inverter should be
larger than RLs. This limitation was used to choose proper sizes for the inverters in
the LATIM method. The behavior of an inverter with the size of s and an output
resistive load of RM/s (similar to Fig. 18a) can be approximated by s inverters
with the size of 1 (minimum-sized inverters) and the output resistive load of RM

connected in parallel (similar to Fig. 18b). Hence, RLs was approximated as RL1/s
where RL1 was defined as the resistance at which the approximation errors of
coefficients a and bwere small values (i.e., 1% and 2% of 2VDD where VDD (−VDD)
was the positive (negative) supply voltage of the inverter).

The output resistive load of the inverters was approximated based on Eq. (49). To
have high-output swings for the inverters, this resistance should not be lower than
RLs. This constraint can be expressed as

r−
i ≥ RLs−

i
= RL1

s−
i

, (51)

for the ith negative inverter with the size of s−
i and approximate output resistance

equal to r−
i . This implied that to have the lowest power consumption while achieving

acceptable output swings for the inverters, the sizes of the inverters should be chosen
as

s−
i =

⌈
RL1

r−
i

⌉

. (52)

The next step after choosing the size of inverters is predicting the VTC coefficients
of the inverters. Since the sizes of the inverters are chosen using Eq. (52), the
output loads of the inverters are higher than RLs. Consequently, constant values
were considered for modeling coefficients a and b. As can be inducted from Fig. 9,
however, the relation between the other coefficients, the output load, and the size
of the inverter should be modeled with more complexity. For this purpose, two
NNs, denoted by NNc and NNd, were trained to predict the values of coefficients
c and d based on the output load and the size of the inverters. As a summary, after

356 S. Vahdat et al.

each training iteration of the LATIM method, the conductance of the memristors
was updated, and the equivalent output resistance of the inverters was approximated
using Eq. (49). Next, the proper sizes for the inverters were chosen based on Eq.
(52), and the VTC coefficients were updated using NNc and NNd.

5.4 ERIM4

In this part, first, we review previous VTC modeling techniques and their weak-
nesses and then explain the ERIM approach for VTC modeling. The RIM method
added a grounded resistor to the output node of the inverter to reduce the sensitivity
of the VTC coefficients to the loading effect of the memristive crossbar. In other
words, it lowered the VTC modeling error by reducing the memristor loading
effect. The modeling accuracy in the LATIM method was improved by considering
an approximation of the equivalent resistance of the memristive crossbar. In this
method, the VTC coefficients, which are used to choose proper sizes for the
inverters, are predicted more accurately. The loading effect of the memristive cross-
bar may not be fully modeled by considering only the equivalent resistance, and
thus, other effects should be included. More specifically, since the inverter outputs
are connected through the memristive crossbar, the loading effect becomes also
dependent on the output voltages of other inverters of the same layer. Therefore, a
more accurate loading effect modeling approach requires both equivalent resistance
and equivalent voltage. In the ERIM method of [18], the Thevenin equivalent circuit
of the network is utilized to more accurately model the loading effect on the output
voltage of the inverters. In addition, as ERIM is an enhanced version of the RIM
method, grounded resistors are also utilized in ERIM.

To illustrate the loading effect of the network on the output voltage of the
inverters, assume that it is modeled by a Thevenin equivalent resistance and voltage
denoted by RM and VCM , respectively (see Fig. 19a). The output voltage of the
inverter for different RM values assuming VCM = − 0.05V is depicted in Fig.
19b. As was expected, the VTC slope of the inverter depends on the value of RM

(also see Eq. (47)). In addition, the output voltage of the inverter for different VCM

values assuming RM = 100KΩ is depicted in Fig. 19c which shows that the VTC
is vertically shifted due to the changes of VCM . One may approximate the output
voltage of an inverter (Vout) as [18]

Vout ≈ fn (Vin)|VCM=0 + VCM

Rt

Rt + RM

, (53)

where Rt = rp‖rn and rn (rp) represents the resistance of the NMOS (PMOS)
transistor of the inverter. The term fn (Vin)|VCM=0 generates the VTC function

4 Enhanced RIM

Ultralow-Power Implementation of Neural Networks Using Inverter-Based. . . 357

VDD

-VDD

Vin

VCM

Vout

RM

(a) (b) (c)

-0.2 -0.1 0 0.1 0.2
-0.2

0

0.2

Vin(V)

V
ou

t(V
)

RM=5KΩ

RM=10KΩ

RM=20KΩ

RM=100KΩ

RM=0.5MΩ

RM=10MΩ -0.2 -0.1 0 0.1 0.2
-0.2

0

0.2

Vin(V)

V
ou

t(V
)

VCM=-0.25V

VCM=-0.15V

VCM=-0.05V

VCM=0.05V

VCM=0.15V

VCM=0.25V

VCM = -0.05V RM =100KΩ

Fig. 19 (a) The circuit of an inverter with a resistive load and its VTC for different (b) RM values
with VCM = −0.05 V and (c) VCM values with RM = 100 K� [18]

 (a) (b)

-0.2 -0.1 0 0.1 0.2-0.2
-0.1

0
0.1
0.2

Vin(V)

Er
ro

r(
V

)

 VCM=-0.25V

VCM=-0.15V

VCM=-0.05V

VCM=0.05V

VCM=0.15V

VCM=0.25V -0.2 -0.1 0 0.1 0.2-0.2

-0.1

0

0.1

0.2

Vin(V)

Er
ro

r(
V)

VCM=-0.25V

VCM=-0.15V

VCM=-0.05V

VCM=0.05V

VCM=0.15V

VCM=0.25V

Fig. 20 The VTC approximation error of the (a) straight forward and (b) the formulation of Eq.
(53) for an inverter with size = 2 and RM = 100 K� [18]

considering only the approximate VTC slope which depends on the inverter output
load (RM) assuming VCM = 0. The term VCM

Rt

Rt+RM
generates the approximate

vertical shift of the VTC due to VCM . To demonstrate the superiority of this
modeling approach compared to the straight forward method in which Vout is
approximated with fn (Vin)|VCM=0, the modeling error of these methods (the
difference between the actual output voltage of the inverter and the one obtained
using the mathematical model) is depicted in Fig. 20.

To approximate the vertical shift (see Eq. (53)), it is required to find the output
resistance of the inverter (Rt). This resistance versus the input and output voltages of
the inverter (with the inverter size as the running parameter) is plotted in Fig. 21. The
output resistance versus the output voltage may be modeled with a simpler function
(i.e., a parabolic one). The ERIM method used As + BsVout + CsVout

2 to model the
characteristics of Fig. 21b which expresses Rt as a function of the output voltage
and the size of the inverter [18]. The values of coefficients As, Bs, and Cs versus the
size of the inverter (s) are depicted in Fig. 22. These coefficients were modeled by
the function of αρ /(βρ + s) where ρ represents the considered coefficient (i.e., αA

represents the coefficient α of the fitted curve to As).
To calculate the amount of the vertical shift of the VTC curve due to the loading

effect of the memristive crossbar (i.e., term VCM
Rt

Rt+RM
in Eq. (53)), it is also

required to find the VCM and RM . We can approximate RM using Eq. (49) (similar
to the LATIM method). The calculation of VCM requires finding the Thevenin
equivalent circuit branch connected to the output node of each inverter. Let us

358 S. Vahdat et al.

-0.2 -0.1 0 0.1 0.2
0

50

100

150

Vin

R t(K
ΩΩ

)
S=1
S=2
S=3
S=5
S=10
S=15
S=20

(a)

-0.2 -0.1 0 0.1 0.2
0

50

100

150

Vout

R t(K
Ω

)

S=1
S=2
S=3
S=5
S=10
S=15
S=20

(b)

Fig. 21 Output resistance of inverters with different sizes based on the inverter (a) input voltage
and (b) output voltage [18]

0 10 20 30 40 50
-3000

-2000

-1000

0

c s

Size

C s
(c)

0 10 20 30 40 50
0

10

20

30

s

Size

B s

(b)

0 10 20 30 40 50
0

50

100

150

Size

A s

(a)
s s s

Fig. 22 Diagram of (a) As, (b) Bs, and (c) Cs versus the size of inverter (s) [18]

consider an inverter-based memristive crossbar with t inputs and u outputs as shown
in Fig. 23a. The Thevenin equivalent circuit of each memristive branch connected
to the output node of the inverters is depicted in Fig. 23b where Fig. 19a represents
its Thevenin equivalent circuit. We can calculate RM and VCM as

RM = 1
∑u

j=1
1
rj

, (54)

and

VCM = RM

u∑

j=1

Vj

rj
. (55)

Assume that rji and Vji represent the values of rj and Vj of the ith input inverter
(i ≤ t and j ≤ u). By comparing Figs. 17 and 23, one may find that rji can be
approximated using Eq. (48) as

rji ≈ Rji. (56)

Next, it is required to find Vji which can be obtained by finding the open circuit
voltage of each branch as shown in Fig. 23c. Therefore, only the ith input (Xi) is
disconnected, and the other inputs are applied to the crossbar. In this case, the open

Ultralow-Power Implementation of Neural Networks Using Inverter-Based. . . 359

VDD

-VDD

Vin

V1

r1

V2

r2

Vu

ru

Vout

R11

Rj1

Ru1

R1i

Rji

Rui

R1t

Rjt

Rutx1 Vji xt

Y’1

Y’j

Y’u

(c)

(b)

R11

Rj1

Ru1

R1i

Rji

Rui

R1t

Rjt

Rutx1 xi xt

Y1

Yj

Yu

net1

netj

netu

(a)

Fig. 23 (a) An inverter-based memristive crossbar with t inputs and u outputs. (b) Thevenin
equivalent circuit of each memristive branch connected to the output node of each inverter. (c)
Simplified circuit of a memristive crossbar to find the approximate value of VCM [18]

circuit voltage can be calculated as [18]

Vji =
∑

k �=i

Xk × σjk

γji

, (57)

where γji = ∑
k �=i σjk . The net voltage of the jth output inverter (netj), assuming

that all inputs are applied to the crossbar, can be calculated as

netj =
t∑

k=1

Xk × σjk

γj

, (58)

where γj =∑t
k=1 σjk . As the values of Vji and netj are almost similar, in the ERIM

method, Vji is approximately calculated as

Vji ≈ netj . (59)

The Thevenin equivalent resistance of the ith inverter (RM, i) is obtained from

RM,i ≈ 1
∑u

j=1
1

Rji

, (60)

and the Thevenin equivalent voltage of the ith inverter (VCM, i) is calculated as

360 S. Vahdat et al.

Fig. 24 The values of (a) Rn
and (b) Rp versus the size of
the inverter [18]

(a) (b)

5 10 15 200

50

100

150

sn

R n (K
Ω

)

5 10 15 200

10

20

30

sp

R p (K
Ω

)

VCM,i ≈ RM,i

u∑

j=1

netj

Rji

. (61)

ERIM is an enhanced version of RIM in which the loading effect of the
memristive crossbar is considered in the training phase to increase the accuracy
of the trained NN. Therefore, similar to the RIM method, the VTC slope of the
negative and positive inverters should be controlled by adding the grounded resistors
to the output node of the inverters to have low sensitivity to the variations of the
circuit elements. Let us remind that the VTC slope of the inverter depends on the
size of the inverter and the equivalent resistance connected to the output node of
the inverter. Here, the sizes of the negative and positive inverters are denoted by
sn and sp. In addition, Rn and Rp represent the equivalent grounded resistances
connected to the output nodes of the negative and positive inverters leading to
dn ≈ 15 and bpdp ≈ − 1, respectively (see Fig. 15). The values of Rn and Rp versus
the size of the inverter (s) are plotted in Fig. 24. These resistances may be modeled
using reciprocal functions (i.e., Rn = An/(Bn + sn)) where the fitting coefficients
(i.e., An and Bn) may be extracted using HSPICE and MATLAB simulations for the
considered technology [18].

To find proper inverter sizes and the resistance of the grounded resistors (i.e., RGn

and RGp) connected to the output node of the inverters, the equivalent resistive load
of the memristive crossbar on the negative and positive inverters, which are denoted
by RMn and RMp, respectively, may be calculated using Eq. (60). In this case, the
equivalent resistance connected to the output node of the negative inverter can be
calculated as

Reqn = RMn

∥
∥
∥RGn. (62)

To have dn ≈ 15 and bpdp ≈ − 1, the resistances Req _ n and Req _ p should be
equal to Rn and Rp, respectively. In other words, the following equations should be
satisfied [18]

Rn = 1
1

RMn
+ 1

RGn

, (63)

Therefore, RMn > Rn which leads to

Ultralow-Power Implementation of Neural Networks Using Inverter-Based. . . 361

Run one epoch of
training

Find the approximate
loading effect of memristive
crossbar on each inverter

START

END

Choose the proper size
and grounded resistor for

each inverter

Update the
activation functions

Terminate?
No

Yes

Initialize the parameters
based on RIM

Fig. 25 The flowchart of the ERIM training method [18]

Rn = An

Bn + sn
< RMn. (64)

Consequently, to have the lowest possible power consumption, the minimum
inverter size that satisfy Eq. (64) can be obtained from

sn =
⌈

An

RMn

− Bn

⌉

. (65)

Finally, RGn can be found using Eqs. (63) and (64). Similar equations were
utilized to find the size and grounded resistor value of each positive inverter in the
ERIM method.

The flowchart of the ERIM training method is depicted in Fig. 25. As shown
in this chart, first, the size of the inverters and the resistance of their grounded
resistors are selected similar to the RIM method. In other words, the sizes of
all inverters are chosen as 5, and the grounded resistors are chosen such that
dn ≈ 15 and bpdp ≈ − 1. Next, one epoch of training is performed similar to the
RIM method, and the conductance of the memristors, the weights, and biases of the
neurons are determined. Afterward, the Thevenin equivalent resistance and voltage
of the memristive crossbar network on each inverter are found using Eqs. (60) and
(61). Then, the size of each inverter and its grounded resistor are chosen based on
Eqs. (65), (64), and (63). In the next steps, the activation functions are updated using
Eq. (53), and the termination condition is checked to decide whether to continue or
stop the training.

5.4.1 Implementation of Adjustable-Size Inverters

The size of the inverters of a chip cannot be changed after fabrication. Employing
small-sized inverters would lead to smaller VTC slopes for a given output resistance.
Also, as we observed in Fig. 12, the accuracy of the trained NN depends on the VTC
slope of the inverters (larger slope would provide higher accuracy). On the other
hand, utilizing large-sized inverters may increase the power consumption. To have

362 S. Vahdat et al.

Fig. 26 (a) Implementation
of an inverter with adjustable
size. (b) An example of
adjustable inverters composed
of inverters with different
sizes (modified from [18])

=

(a)

C

C

(b)

X1 X2-X1X1,X2

=

2 4

4 2 8

=

proper accuracy and power consumption, one may fabricate inverters with different
sizes in the structure of an IM-based chip. To make it possible, in [18], it was
proposed to utilize a bank of inverters with different sizes (i.e., with the sizes of
1, 2, 4, and 8) which can be connected to each other in parallel using transmission
gates (TGs). This structure may satisfy the accuracy constraint while keeping the
power consumption at the minimum possible level.

The structure of an adjustable-size inverter is depicted in Fig. 26a where two
inverters with the size of X1 and X2 − X1 are parallelized to construct an adjustable
inverter. It can be utilized in two modes. In the first mode, the control signal (i.e., C
shown in Fig. 26a) is logical “0” (or is equal to −VDD), and the TG behaves as an
off switch. The equivalent size of the adjustable inverter in this mode is equal to X1.
In addition, as the input node of the other inverter (with the size of X2 − X1) is float,
the dynamic power consumption of this inverter is negligible. In the case where a
small-sized inverter is required (with the size of X1), the power consumption reduces
as well. In the other mode where C is logical “1” (equal to VDD), the TG behaves as
an on switch, and the inverters are parallelized providing an inverter with equivalent
size of X2. The structures of two adjustable-size inverters composed of two and three
inverters with the sizes of 2, 4, and 8 are depicted in Fig. 26b. The upper inverter
can be utilized in two equivalent sizes of 2 and 6, while the bottom inverter can be
utilized in four equivalent sizes of 2, 6, 10, and 14.

One may use the inverters shown in Fig. 26b in the structure of an IM crossbar.
The structure of an IM crossbar composed of similar adjustable inverters is shown in
Fig. 27a. For the NNs trained by the ERIM method, the VTC slope of the negative
inverter is higher than the positive one which leads to the frequent use of larger sizes
for the negative inverters (see Fig. 27a). Utilizing transmission gates increases the
parasitic capacitance of the input and output nodes of the inverters which leads to
higher delays. To handle this problem, one may employ a combination of fixed and
adjustable size inverters in the structure of the crossbar, similar to the one shown
in Fig. 27b. In this structure, the neurons which require small-sized inverters are
mapped on the fixed-size inverters, while the neurons with larger-sized inverters are
mapped on adjustable-size inverters.

Ultralow-Power Implementation of Neural Networks Using Inverter-Based. . . 363

x1
+

x1
-

xn
+

xn
-

Vdd
-Vdd

(b)

Inverters
with Fixed

Sizes

Inverters with
Adjustable

Sizes

x1
+

x1
-

xn
+

xn
-

Vdd
-Vdd

Combina	on of
Inverters with
Adjustable and

Fixed Sizes

(a)

Fig. 27 The structure of a memristive crossbar composed of (a) similar adjustable size inverters,
(b) a combination of fixed- and adjustable-size inverters (see Fig. 26b for the structures of the
inverters) [18]

5.5 OCTAN5

Due to the complex mathematical model of IM neurons, the online training of
these NNs using back propagation method, which is not a hardware-friendly task,
becomes complicated. An on-chip training method, called OCTAN, updates the
conductance of each memristor in an arbitrary direction and measures the error of
the NN outputs [21]. If the error increases, the conductance of the memristor is
updated in the reverse direction. Other approaches such as stochastic least mean
squares (SLMS) [44, 45] and random weight change (RWC) [46] may also be
utilized for training the NNs. In the SLMS method, only the weights of the output
layer are updated, while the weights of the other layers are fixed random values
[21]. In the RWC method, the weights of different layers are updated with constant
values in a random direction [21]. Among the back propagation, SLMS, RWC,
and OCATAN approaches, the back propagation (SLMS) has the highest (lowest)
hardware complexity [21]. Due to the calculation of the derivative of the cost
function (i.e., mean squared error (MSE)) with respect to the weights in the back
propagation algorithm, this approach has the highest convergence speed among the
methods. In contrast, in the RWC algorithm which relies on random changing of
the weights, there is no guarantee that the random change will decrease the cost
function. Hence, it may take several iterations to find the minimum point using this
algorithm. OCTAN offers the simplicity of the RWC algorithm, while the updates in
the conductance of the memristors are performed in a direction that leads to decrease

5 On-chip training algorithm for the memristive neuromorphic circuits

364 S. Vahdat et al.

Fig. 28 (a) The overall view of OCTAN [21]. (b) The flowchart of OCTAN (modified from [21])

in the cost function in each iteration. Therefore, in comparison to RWC, it may take
fewer iterations to find the minimum MSE.

The overall view of OCTAN, which includes an IM-NN and its online training
circuit, is depicted in Fig. 28a. The training circuit includes two buffers, an error
calculator unit, write circuit unit, and the training logic. The input and target buffers
transmit the inputs and their corresponding target values one after another to the IM-
NN. Next, the error calculator unit finds the absolute difference between the outputs
of the NN and the target values and sends an error signal to the write circuit and
training logic unit. In this unit, the conductance of the memristors is changed in an
arbitrary direction (e.g., the conductance is added by +δ), and the amount of the
error for the considered sample is calculated again. If the current error is larger than
the previously calculated error, the conductance of the memristor is changed in the
opposite direction twice (added by −2δ). After updating the conductance of all the
memristors, the next training sample should be applied to the IM-NN, and the steps
are repeated until the termination condition is satisfied. The flowchart of the method
is depicted in Fig. 28b.

6 Variation Mitigation Methods

In this section, state-of-the-art methods presented for reducing the severe effects of
circuit element non-idealities on the accuracy of IM-NNs are explained. Note that
RIM and ERIM methods, which reduce the NN accuracy degradation due to the

Ultralow-Power Implementation of Neural Networks Using Inverter-Based. . . 365

non-idealities (by decreasing the VTC slope), were described in Sect. 5, and hence,
they are not discussed here.

6.1 Variation-Aware Training (VAT)

As mentioned in Sect. 3, the output voltage of an IM neuron has the highest
sensitivity to the horizontal shift of the inverter and buffer VTCs (coefficients
c−/+). In addition, the net voltage of the neuron may change due to the con-
ductance variations of the memristors (see Eq. (5)). Using Eq. (9), one may

write ∂
(
yl
j

+/−)
/∂
(
net lj

)
= −∂

(
yl
j

+/−)
/∂
(
cl
j

+/−)
. This implies that by

reducing the sensitivity of the neuron output to the variations of coefficients c+/−,
the sensitivity to the conductance variations of the memristors is also reduced.
Consequently, one may add a sensitivity term (ς) to the cost function of the training
phase in which the sensitivity of the NN outputs to the variations of coefficients
c+/− of different layers is considered when updating the NN weights [22]. Here, the
cost function (L) may be defined as

L = αJ + β.ς, (66)

where the conventional cost function is denoted by J defined as the mean squared
error (MSE) of the actual and expected NN output values for the regression
applications and modified cross-entropy function for the classification applications
[24]. Obviously, α and β determine the significance of J and ς terms during the
training phase.

To obtain the mathematical interpretation of the sensitivity term, consider an IM-
NN whose inputs and outputs are denoted by X and Y vectors with the sizes of
N1 × 1 and NO × 1 where N1 and NO represent the number of the inputs and

outputs of the NN. Furthermore, Wl
total (=

[
Wl+ ,W l−

]
where Wl+ /Wl− refers to

the positive/negative weight matrices) and WBl
total represent the weight and bias

matrices with the sizes of Nl + 1 × 2Nl and Nl + 1 × 1, respectively. The element
in the jth row and the ith column of Wl+ (Wl−) is equal to wl

j,i

+
(wl

j,i

−
), and the

element in the jth row of WBl
total is equal to VDD

(
wbl

j

+ − wbl
j

−)
. Assuming that

Y l
total (=

[
Y l+
Y l−

]

) with the size of 2Nl + 1 × 1 represents the output of the lth layer,

NET l
total with the size of N

l + 1 × 1 may be obtained from

NET l
total = Wl

total × Y l−1
total + WBl

total, (67)

where the element in the jth row ofNET l
total is equal to netj

l. Furthermore, assuming

that f l− and f l+ model the VTC curve of the inverters and buffers, Y l+/−
may be

366 S. Vahdat et al.

calculated as

Y l+/− = f l+/− (
NET l

total

)
. (68)

Assume that Al+/−
, Bl+/−

, Cl+/−
, Dl+/−

, and V l+/−
are vectors with the size of

Nl + 1 × 1 and the elements in their jth rows are equal to al
j

+/−
, bl

j

+/−
, cl

j

+/−
,

dl
j

+/−
, and vl

j

+/−
(j ≤ Nl + 1), respectively. Therefore, Y l+/−

can be calculated as

Y l+/− = Al+/− + Bl+/− ◦ tanh
(
Dl+/− ◦

(
NET l

total − Cl+/−))
, (69)

where ◦ represents the element-wise matrix multiplication. Let us define a sensitiv-
ity vector, called Sl. Here, the element in its jth row (j ≤ NO) may be calculated from
[22]

sl
j =

Nl+1
∑

t=1

⎛

⎝
∂
(
yL
j

)

∂
(
cl
t
+) +

∂
(
yL
j

)

∂
(
cl
t
−)

⎞

⎠ . (70)

In other words, sl
j represents the sensitivity of the jth output of the NN to the

variations of coefficients c+/− of the lth layer. By substituting l with L in Eq. (70),
one may find sL

j as

sL
j =

NO∑

t=1

∂
(
yL
j

)

∂
(
cL
t

−) . (71)

In the output layer of IM-NNs, only one inverter is utilized for the implementation
of each neuron, and hence, no positive inverter is employed in the output layer and

cL
t

+
is not defined. In addition, ∂

(
yL
j

)
/∂
(
cL
t

−) = −bL
j

− ×dL
j

− ×vL
j

−
when t = j

and ∂
(
yL
j

)
/∂
(
cL
t

−) = 0 when t �= j. Therefore,

sL
j = −bL

j

− × dL
j

− × vL
j

−
. (72)

Consequently, SL can be obtained from

SL = −BL ◦ DL ◦ V L. (73)

For the other layers (l < L), Sl can be found based on Eq. (70) as

Ultralow-Power Implementation of Neural Networks Using Inverter-Based. . . 367

Sl =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂
(
yL
1

)

∂
(
cl
1
+/−) + · · · + ∂

(
yL
1

)

∂
(
cl

Nl+1
+/−)

...

∂
(
yL
NO

)

∂
(
cl
1
+/−) + · · · + ∂

(
yL
NO

)

∂
(
cl

Nl+1
+/−)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (74)

where ∂
(
yL
j

)
/∂
(
cl
t
+/−) = ∂

(
yL
j

)
/∂
(
cl
t
+) + ∂

(
yL
j

)
/∂
(
cl
t
−)

. Taking into

account that hL
j = ∂

(
yL
j

)
/∂
(
netLj

)
= bL

j

−×dL
j

−×vL
j

−
, Eq. (74) can be rewritten

as

Sl = HL
total ◦

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

WL
total ×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂
(
yL−1
1

+)

∂
(
cl
1
+/−) + · · · + ∂

(
yL−1
1

+)

∂
(
cl

Nl+1
+/−)

...

∂
(
yL−1
NL

+)

∂
(
cl
1
+/−) + · · · + ∂

(
yL−1
NL

+)

∂
(
cl

Nl+1
+/−)

∂
(
yL−1
1

−)

∂
(
cl
1
+/−) + · · · + ∂

(
yL−1
1

−)

∂
(
cl

Nl+1
+/−)

...

∂
(
yL−1
NL

−)

∂
(
cl
1
+/−) + · · · + ∂

(
yL−1
NL

−)

∂
(
cl

Nl+1
+/−)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (75)

where the element in the jth row of HL
total is hL

j . Assuming that

g
l′,l
i

+ =
Nl+1
∑

t=1

⎛

⎝
∂
(
yl′
i

+)

∂
(
cl
t
+) +

∂
(
yl′
i

+)

∂
(
cl
t
−)

⎞

⎠ , (76)

and

g
l′,l
i

− =
Nl+1
∑

t=1

⎛

⎝
∂
(
yl′
i

−)

∂
(
cl
t
+) +

∂
(
yl′
i

−)

∂
(
cl
t
−)

⎞

⎠ , (77)

one may rewrite Eq. (75) as

368 S. Vahdat et al.

Sl = HL
total ◦

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

WL
total ×

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

g
L−1,l
1

+
...

g
L−1,l
NL

+

g
L−1,l
1

−
...

g
L−1,l
NL

−

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= HL
total ◦

(
WL

total × G
L−1,l
total

)
, (78)

where G
l′,l
total =

[
Gl′,l+
Gl′,l−

]

and the element in the ith row of Gl′,l+/−
(i ≤

Nl′+1) is equal to g
l′,l
i

+/−
. To find Sl based on Eq. (75), it is required to find

∂
(
yL−1
i

+)
/∂
(
cl
t
+)

which can be calculated as

∂
(
yL−1
i

+)

∂
(
cl
t
+) = hL−1

i

+ NL−1
∑

k=1

⎛

⎝wL−1
i,k

+ ×
∂
(
yL−2
k

+)

∂
(
cl
t
+) + wL−1

i,k

− ×
∂
(
yL−2
k

−)

∂
(
cl
t
+)

⎞

⎠ ,

(79)

where hL−1
i

+ = ∂
(
yL−1
i

+)
/∂
(
netL−1

i

)
. Similarly, ∂

(
yL−1
i

+/−)
/∂
(
cl
t
+/−)

may be obtained. Therefore,

g
L−1,l
i

+ = hL−1
i

+ NL−1
∑

k=1

(
wL−1

i,k

+ × g
L−2,l
k

+ + wL−1
i,k

− × g
L−2,l
k

−)
, (80)

where

g
L−2,l
k

+ =
Nl+1
∑

t=1

⎛

⎝
∂
(
yL−2
k

+)

∂
(
cl
t
+) +

∂
(
yL−2
k

+)

∂
(
cl
t
−)

⎞

⎠ , (81)

and

g
L−2,l
k

− =
Nl+1
∑

t=1

⎛

⎝
∂
(
yL−2
k

−)

∂
(
cl
t
+) +

∂
(
yL−2
k

−)

∂
(
cl
t
−)

⎞

⎠ . (82)

Consequently, GL−1,l
total can be calculated similar to Eq. (78) as

G
L−1,l
total = HL−1

total ◦
(
WL−1

total × G
L−2,l
total

)
, (83)

Ultralow-Power Implementation of Neural Networks Using Inverter-Based. . . 369

where Hl′
total =

[
Hl′+

Hl′−
]

and the element in the jth row of Hl′+/−
(j ≤ Nl′+1) is equal

to hl′
j

+/− = ∂
(
yl′
j

+/−)
/∂
(
net l

′
j

)
. Thus, Gl′,l

total can be recursively calculated as

G
l′,l
total = Hl′

total ◦
(
Wl′

total × G
l′−1,l
total

)
. (84)

The amounts of ∂
(
yl
i

+)
/∂
(
cl
t
+)

, ∂
(
yl
i

−)
/∂
(
cl
t
+)

, ∂
(
yl
i

+)
/∂
(
cl
t
−)

, and

∂
(
yl
i

−)
/∂
(
cl
t
−)

become zero for i �= t. Thus, g
l,l
i

+=∂
(
yl
i

+)
/∂
(
cl
i

+)= −
∂
(
yl
i

+)
/∂
(
net li

)=−hl
i

+
and g

l,l
i

− = ∂
(
yl
i

−)
/∂
(
cl
i

−) = −∂
(
yl
i

−)
/∂
(
net li

) =
−hl

i

−
. In other words, Gl,l

total = −Hl
total.

The procedure of calculating Sl based on Eqs. (78) and (84) is depicted in Fig.
29. These calculations are also valid when a batch of training samples (with ns
samples) is used in the training phase. In this case, X, Y, Y l′

total,H
l′
total,G

l′,l
total, and Sl

are matrices with the size ofN1 × ns,NO × ns, 2Nl′+1×ns , 2Nl′+1×ns , 2Nl′+1×ns ,
and NO × ns, respectively.

Finally, the sensitivity term (ς) used in Eq. (66) can be obtained from

ς =
L∑

l=1

NO∑

j=1

ns∑

p=1

∣
∣
∣sl

j,p

∣
∣
∣ (85)

where sl
j,p represents the sensitivity of the jth output of the NN to the variations of

coefficients of the lth layer for the pth training sample.

Fig. 29 The matrix calculations for the generation of Sl [22]

370 S. Vahdat et al.

6.2 INTERSTICE6

As mentioned in Sect. 3, the sensitivity of an IM neuron output to the conductance
variations of the memristors as well as the characteristic variations of the inverters
may be mitigated by decreasing the parameter v or forcing the inverters to operate
in the low-gain regions of their VTCs. In classification applications, the output
voltage of the NN is expected to be nearly equal to VDD (−VDD) for the selected
(unselected) classes. In other words, it is expected that the inverters of the output
layer operate in the low-gain regions of their VTCs, which results in smaller values
for v parameters (see Fig. 6) and lower sensitivity to the non-idealities of circuit
elements. In regression applications, however, the output voltage of the NN varies
in the range of [−VDD,+VDD] which may lead to larger values for the v parameters.
These facts lead us to employing an IM-based classification NN to predict the output
range of a regression application and then approximate the final output based on the
predicted range [24]. The method is called INTERSTICE.

In INTERSTICE (K), the total output range of the regression problem is
divided into 2K − 1 subranges, and a classification NN with K output classes is
trained to predict the subrange to which each applied sample belongs. To train the
classification NN, it is required to label the training samples based on their target
values (OT). The labels determine whether the sample belongs to the ith class (i.e.,
Ci = 1) or not (i.e., Ci = 0). To clarify this further, assume that [a, b] represents the
total output range of the regression problem and the classification NN has K output
classes. In this case, the labels for each sample may be calculated as

Ci =
{
1 if b−a

4K max (4i − 5, 0) ≤ OT − a < b−a
4K min (4i + 1, 4K) for 1 ≤ i ≤ K

0 Otherwise

(86)

If the sample belongs to only one class (i.e., Ci = 1 and Cj �= i = 0), it means that
the target value of the sample is in the (2i − 1)st subrange. If the sample belongs to
two consecutive classes (i.e., Ci = Ci + 1 = 1 and Cj �= (i or i + 1) = 0), it means that
the target value of the sample is positioned in the (2i)th subrange. In addition, the
output of the regression problem is approximated as

IAPX,j = a + (j × (b − a) /2K) , (87)

where j (1 ≤ j ≤ 2K − 1) represents the index of the selected subrange. The output
generator (OG) unit is responsible to generate the approximate output based on the
selected classes.

Now, assume that the total output range of the regression problem is [a, b] and
a classification NN with four output classes is utilized to predict the subrange to

6 Inverter-based memristive neural network discretization

Ultralow-Power Implementation of Neural Networks Using Inverter-Based. . . 371

Fig. 30 The ranges of the
classes and the values of the
approximated outputs for
INTERSTICE (4) method
[24]

Class 1
Class 2

Class 3

Class 4

IAPX1a bIAPX2 IAPX3 IAPX4 IAPX5 IAPX6 IAPX7

Fig. 31 The internal
structure of the (a) OG
module and (b) the TG-based
multiplexer [24]

(a) (b)

CL D
ec

od
er

MUX
Sel

OAPX

IAPX

Seli Seli

IAPX,i

OAPX

which the regression output belongs. In this case, the total output range (i.e., [a, b])
is divided into seven subranges, and the possible approximate output values can be
determined based on Eq. (87) for 1 ≤ j ≤ 7 (see Fig. 30). As an example, assume
that only the second class of the classification NN is selected (i.e., C2 = 1). This
shows that the sample belongs to the third subsection, and the OG unit should pass
IAPX3 as the approximate output value. Consider another case in which the third
and the fourht classes are selected which shows that the sample belongs to the sixth
subrange. In this case, IAPX6 should be considered as the approximate output value
(see Fig. 30).

Furthermore, the internal structure of the OG unit which consists of a decoder
and a transmission gate (TG)-based multiplexer is depicted in Fig. 31. The inputs of
this unit (CL) are the buffered outputs of the classification NN. As shown in Fig. 31a,
the decoder generates the Sel signal based on the selected classes by the classifier.
The Sel signal is then applied to the multiplexer to select and pass the appropriate
IAPX, j value to the output (OAPX).

Even though in INTERSTICE method it is expected that only one class or two
consecutive classes are selected, it is probable that in some cases the NN mistakenly
selects none of the classes or more than two classes. In these cases, however, the
OG unit should be able to select one of the IAPX, j values as the final output value.
The OG unit may use three rules to generate the final output [24]. The rules are
presented in the following (see Fig. 32).

1. When no class or all of the classes are selected (all of CLk are 0 or 1), the
midpoint of the total range ((a + b)/2) is considered as OAPX . This rule is
indicated by the symbol ♠ in Fig. 32.

2. When two nonconsecutive classes are selected by the classifier, the average of
their midpoints is considered as OAPX . This rule is denoted by the symbol ♣ in
Fig. 32.

3. When m classes are selected (2 < m < K), the decoder finds the largest chain
of consecutive selected classes. The average of the midpoints of these classes
is considered as OAPX . When none of the selected classes is consecutive, the

372 S. Vahdat et al.

0 ≤ OT < 5

0
C1=1 4 8 12 16

3 ≤ OT < 9

7 ≤ OT < 13

11 ≤ OT ≤ 16

OAPX [CL4,CL3,CL2,CL1] Sel1=CL1.CL2.CL3.CL4

Sel2=CL1.CL2.CL3

Sel3=[CL1 + CL3].CL4.[CL2 + CL3]
Sel4=[CL1 + CL4].[CL2 + CL3]

Sel5=CL1.[CL2 + CL4].[CL2 + CL3]

Sel6=CL2.CL3.CL4

Sel7=CL1.CL2.CL3.CL4

C2=1

C3=1
C4=1

OAPX

[0,0,0,0]
[0,0,0,1]
[0,0,1,0]
[0,0,1,1]
[0,1,0,0]
[0,1,0,1]
[0,1,1,0]
[0,1,1,1]

[1,0,0,0]
[1,0,0,1]
[1,0,1,0]
[1,0,1,1]
[1,1,0,0]
[1,1,0,1]
[1,1,1,0]
[1,1,1,1]

8
2
6
4

10
6
8
6

14
8

10
4

12
12
10
8

[CL4,CL3,CL2,CL1]

♠

♣

♦ ♠

♣
♣
♦

♦
♦

Fig. 32 The Sel signals values and the OAPX for the case where the number of classes is four and
the range of the target value is [0, 16] [24]

x1
1+

x1
1-

x6
1+

x6
1-

VDD
-VDD

net1
1 net2

1 net3
1

net2
2net3

2

VDD
-VDD

net1
2

Sel

OAPX

Decoder

3 5 8 10 13

MUX

Classifica�on
Network

OG module

CL1

CL2

CL3

Sel1=CL1.CL2.CL3

Sel2=CL1.CL2.CL3

Sel3=CL1 + CL3

Sel4=CL1.CL2.CL3

Sel5=CL1.CL2.CL3

Fig. 33 The circuit diagram of INTERSICE (3) for a network with six inputs and three hidden
neurons [24]

average of the midpoints of all the selected classes is considered as OAPX . This
rule is indicated by the symbol ♦ in Fig. 32.

In Fig. 33, the hardware implementation of INTERSTICE method for a two-
layer IM-NN implemented using INTERSTICE (3) method is shown. In this figure,
it is assumed that the total output range of the regression problem is [0,16] and the
final output (OAPX) is a 4-bit digital signal. The probable approximate output values
(IAPX, j) become 3, 5, 8, 10, and 13 (see Eq. (87)), and the OG module selects one
of these values based on the Sel signals which are determined by the decoder unit
based on the selected classes by the classification NN (CL signals).

Ultralow-Power Implementation of Neural Networks Using Inverter-Based. . . 373

7 Comparison of Different Training Methods

In this section, the efficacies of different training methods used for IM-NNs are
evaluated using MATLAB, Python, and HSPICE simulations under different regres-
sion and classification applications. Furthermore, the performances of different
variation mitigation methods are studied. The training procedure is performed using
MATLAB and Python (Keras and TensorFlow libraries) simulations. The electrical
parameters of the networks (e.g., delay and power) and the accuracies of the trained
NNs are measured using HSPICE simulations using a 90 nm technology and the
memristor model of [47]. The employed memristor has a maximum and minimum
conductance values of 8 μ� and 0.12 μ�, respectively [21]. In addition, the positive
and negative voltage sources of the network are considered to be 0.25 V and
−0.25 V.

7.1 Training Methods

The characteristics of the IM-NNs in the ideal condition, extracted by an in-house
simulator developed by Python programing, are reported in Table 1 where SePHAX,
SeRIM, and SeINTERSTICE represent the cases where the sensitivity term is added
to the cost function of the training phase of the PHAX, RIM, and INTERSTICE
methods, respectively. In addition, the network configuration represents the number
of inputs, hidden neurons, and outputs of the NN. The results show that by
combining VAT with other training methods, the accuracy (Acc) for classification
applications, and mean absolute error (MAE) for the regression application degrade
in the ideal condition. The value of vl+/−

(l ≤ 3), however, decreases in most
of the cases potentially leading to higher resiliency of the NN accuracy to the
non-idealities of the circuit elements. In addition, by employing the RIM method,
the maximum achievable accuracies for the MNIST and Fashion MNIST datasets
decrease compared to those of the PHAX caused by the lower VTC slope of the
inverters in the RIM method.

The MSE, delay, power, and energy consumption of the NNs (obtained by
HSPICE simulations) trained by PHAX, RIM, and INTERSTICE methods under
regression applications are given in Table 2 (extracted from [24] and [25]). In
addition, PHAX (ADC) shows the case where the inverter-based memristive ADCs
with 4-bit resolution is utilized as the output interfaces of the NNs trained by
the PHAX method. In addition, in the training phase of the PHAX (ADC) and
INTERSTICE cases, the whole conductance range of the memristors is not utilized
to reduce the loading effect of the memristive crossbar on the output voltage of the
NN. More specifically, σmax is assumed to be 1 μ� instead of 8 μ� in Eq. (39)
(used in the training phase of these cases).

The results of Table 2 reveal that the NNs trained by RIM method can generate
the outputs with lower delays compared to those of the INTERSTICE and PHAX

374 S. Vahdat et al.

Ta
bl

e
1

T
he

ch
ar
ac
te
ri
st
ic
s
of

th
e
IM

-N
N
s
tr
ai
ne
d
ba
se
d
on

PH
A
X
,R

IM
,I
N
T
E
R
ST

IC
E
,a
nd

th
ei
rc
om

bi
na
tio

n
w
ith

V
A
T
m
et
ho
d
un
de
r

di
ff
er
en
tb

en
ch
m
ar
ks

in
th
e
id
ea
lc
on
di
tio

n
[2
2]

B
en
ch
m
ar
k

T
ra
in
in
g
m
et
ho
d

N
et
w
or
k
co
nfi

gu
ra
tio

n

(
A
cc

/
M
A
E

)

tr
ai
n

(
A
cc

/
M
A
E

)

te
st

v1
−

v1
+

v2
−

v2
+

v3
−

C
al
if
or
ni
a
ho

us
in
g

PH
A
X

8-
8-
4-
1

0.
04
3

0.
05
3

0.
63

0.
17

0.
70

0.
09

0.
86

Se
PH

A
X

0.
06
0

0.
06
6

0.
15

0.
02

0.
18

0.
01

0.
89

R
IM

0.
04
7

0.
05
6

0.
78

0.
71

0.
93

0.
89

0.
83

Se
R
IM

0.
05
1

0.
05
2

0.
78

0.
70

0.
84

0.
74

0.
85

IN
T
E
R
ST

IC
E

8-
12
-8
-4

0.
04
7

0.
04
7

0.
62

0.
11

0.
54

0.
11

0.
43

Se
IN

T
E
R
ST

IC
E

0.
05
3

0.
05
4

0.
37

0.
10

0.
09

0.
01

0.
49

M
N
IS
T

PH
A
X

78
4-
30
-4
0-
10

97
.9

95
.7

0.
70

0.
13

0.
55

0.
05

0.
03

Se
PH

A
X

93
.4

93
.2

0.
66

0.
10

0.
35

0.
04

0.
04

R
IM

91
.9

92
.2

0.
65

0.
54

0.
44

0.
31

0.
13

Se
R
IM

90
.5

90
.9

0.
47

0.
38

0.
34

0.
22

0.
10

Fa
sh
io
n
M
N
IS
T

PH
A
X

78
4-
30
-4
0-
10

92
.3

87
.0

0.
71

0.
14

0.
54

0.
06

0.
06

Se
PH

A
X

86
.6

84
.6

0.
60

0.
10

0.
37

0.
05

0.
08

R
IM

85
.8

84
.2

0.
65

0.
53

0.
46

0.
34

0.
13

Se
R
IM

83
.2

82
.0

0.
46

0.
38

0.
35

0.
24

0.
14

Ultralow-Power Implementation of Neural Networks Using Inverter-Based. . . 375

Ta
bl

e
2

C
om

pa
ri
ng

th
e
de
la
y,
po
w
er
,e
ne
rg
y,
an
d
M
SE

of
th
e
N
N
s
tr
ai
ne
d
by

PH
A
X
,I
N
T
E
R
ST

IC
E
,a
nd

R
IM

ap
pr
oa
ch
es

in
th
e
co
ns
id
er
ed

re
gr
es
si
on

ap
pl
ic
at
io
ns

B
en
ch
m
ar
k

T
ra
in
in
g
m
et
ho
d

N
et
w
or
k
co
nfi

gu
ra
tio

n
D
el
ay

(n
S)

Po
w
er

(μ
W
)

E
ne
rg
y
(f
J)

M
SE

(×
10

-3
)

B
la
ck
sc
ho

le
s

PH
A
X

6
−

6
−

1
3.
9

11
.0

43
.0

4
PH

A
X
(A

D
C
)

6
−

6
−

1
15
.1

14
.8

22
3

6.
2

IN
T
E
R
ST

IC
E
(2
)

6
−

2
−

2
5.
0

4.
4

22
6.
6

IN
T
E
R
ST

IC
E
(3
)

6
−

4
−

3
5.
0

9.
1

46
4.
9

IN
T
E
R
ST

IC
E
(4
)

6
−

6
−

4
5.
3

14
.3

76
3.
3

R
IM

6
−

5
−

1
1.
6

22
.8

36
.5

3.
3

FF
T

PH
A
X

1
−

8
−

2
4.
3

10
.6

45
.5

9.
7

PH
A
X
(A

D
C
)

1
−

8
−

2
16
.2

18
.5

30
0

6.
9

IN
T
E
R
ST

IC
E
(2
)

1
−

2
−

4
6.
0

7.
6

46
9.
7

IN
T
E
R
ST

IC
E
(3
)

1
−

5
−

6
6.
4

14
.9

95
5.
5

IN
T
E
R
ST

IC
E
(4
)

1
−

6
−

8
7.
1

18
.7

13
3

4.
6

R
IM

1
−

5
−

2
2.
8

27
.4

76
.7

3.
7

K
-m

ea
ns

PH
A
X

6
−

8
−

1
2.
8

15
.6

43
.7

9
PH

A
X
(A

D
C
)

6
−

8
−

1
16
.2

21
.8

35
3

1.
6

IN
T
E
R
ST

IC
E
(2
)

6
−

3
−

2
4.
4

6.
1

27
2.
5

IN
T
E
R
ST

IC
E
(3
)

6
−

3
−

3
5.
3

7.
5

40
2.
6

IN
T
E
R
ST

IC
E
(4
)

6
−

7
−

4
4.
7

14
.1

66
1.
6

R
IM

6
−

6
−

1
1.
5

28
.1

42
.1

0.
4

So
be
l

PH
A
X

9
−

8
−

1
3.
8

10
.3

39
.2

28
.5

PH
A
X
(A

D
C
)

9
−

8
−

1
13

15
.9

20
7

18
IN

T
E
R
ST

IC
E
(2
)

9
−

6
−

2
3.
9

11
.9

46
10
.4

IN
T
E
R
ST

IC
E
(3
)

9
−

8
−

3
3.
7

15
.7

58
10
.5

IN
T
E
R
ST

IC
E
(4
)

9
−

9
−

4
4.
0

19
.1

76
12
.8

R
IM

9
−

5
−

1
1.
4

21
.4

29
.9

17
.2

376 S. Vahdat et al.

methods. Due to the added grounded resistors, however, the power consumptions of
the NNs trained by RIM method become higher than those of the ones trained by
PHAX and INTERSTICE methods.

As an example, the power consumption (delay) of the NNs trained by the RIM
method is, on average, 113% (51%) higher (lower) than that of the ones trained
by the PHAX method. Furthermore, it should be stated that the NNs trained by
INTERSTICE can generate digital outputs without requiring ADCs as the output
interfaces significantly reducing their delays and power consumptions compared to
those of the PHAX (ADC) case. As an example, the delay and power consumption of
the NNs trained by INTERSTICE are, on average, 67% and 31% smaller than those
of the PHAX (ADC) case. In addition, except for Sobel, in all of the considered
benchmarks, the MSEs of the NNs trained by the RIM method are smaller than
those of the other methods.

To compare the efficacy of different training methods in classification applica-
tions, IM-NNs were trained by the PHAX, RIM, ERIM, and LATIM methods using
Python-based simulator and the electrical parameters as well as the accuracy of the
trained NNs were obtained using HSPICE simulations ([18] and [23]). The results
are presented in Table 3 in which OE is the mean absolute difference between the
voltage of the output layer outputs extracted by Python and HSPICE simulations.
The results reveal that all of the training methods have acceptable accuracy when
the size of the NN is small (i.e., for IRIS and BCW datasets). For larger-sized
NNs (i.e., for MNIST and Fashion MNIST datasets), however, the efficacy of
the PHAX method diminishes significantly, while RIM, ERIM, and LATIM still
have acceptable accuracies. In the PHAX method, the VTCs of all the inverters
and buffers of the NN are considered to be the same without taking into account
the loading effect of the memristor crossbars. In the RIM method, the effect of
memristor crossbars on the output voltage of the inverters is reduced by adding the
grounded resistor, while in the ERIM and LATIM methods, this loading effect is
mathematically modeled to find the output voltage of the inverters with a higher
accuracy. In addition, due to the lower VTC slope of the inverters and buffers in the
RIM and ERIM methods, the accuracies of the NNs trained by these methods are
smaller than those of PHAX and LATIM in the ideal condition.

Furthermore, OE may be used as a criterion to compare the efficacy of different
training methods in modeling the behavior of the NN. In other words, smaller OE
values show that the mathematical model of the NN used in the training phase can
estimate the output voltage of the NN with a higher accuracy. The results of Table
3 show that the modeling errors of the ERIM and LATIM methods are significantly
smaller than those of PHAX and RIM as the output voltages of the inverters are
modeled with a higher accuracy in the former methods. In addition, the power
consumptions of the ERIM and LATIM methods are considerably smaller than that
of the RIM method due to the proper sizing of the inverters.

As mentioned in Subsection 5.2, in IM-NNs with smaller d coefficients (i.e.,
in the RIM and ERIM methods with d = 15 which leads to a larger transition
region in the VTC (see Fig. 13)), the net values should be varied in larger ranges
to benefit from the whole output swing of the inverters. This is translated to larger

Ultralow-Power Implementation of Neural Networks Using Inverter-Based. . . 377

Ta
bl

e
3

C
om

pa
ri
so
n
of

th
e
el
ec
tr
ic
al
pa
ra
m
et
er
s
as

w
el
la
s
th
e
ac
cu
ra
cy

of
th
e
N
N
s
tr
ai
ne
d
by

PH
A
X
,R

IM
,E

R
IM

,a
nd

L
A
T
IM

m
et
ho
ds

D
at
as
et

T
ra
in
in
g
m
et
ho
d

N
et
w
or
k
co
nfi

gu
ra
tio

n
T
ra
in

sa
m
pl
es

Te
st
sa
m
pl
es

A
cc

(%
)

O
E
(m

V
)

A
cc

(%
)

O
E
(m

V
)

D
el
ay

(n
s)

Po
w
er

(μ
W
)

E
ne
rg
y
(f
J)

IR
IS

PH
A
X

4
−

5
−

3
97
.5

7
96
.7

7
4.
0

5.
8

23
.1

R
IM

95
.8

8
96
.7

8
1.
5

30
.5

45
.8

E
R
IM

95
.8

10
96
.7

9
1.
1

9.
6

10
.5

L
A
T
IM

98
.3

8
10
0

7
3.
0

3.
7

11
.2

B
C
W

PH
A
X

10
−

5
−

2
98
.5

4
96
.3

4
3.
1

6.
2

19
.3

R
IM

97
.4

3
96
.3

3
1.
2

29
.3

35
.1

E
R
IM

97
.6

7
95
.6

7
1.
0

9.
0

9.
0

L
A
T
IM

98
.2

7
96
.3

8
1.
8

2.
8

5.
1

M
N
IS
T

PH
A
X

78
4

−
30

−4
0

−
10

28
.0

10
6

31
.7

10
7

2.
1

16
4.
7

34
5.
9

R
IM

89
.8

45
88
.9

46
1.
6

31
5.
7

50
5.
1

E
R
IM

91
.1

12
89
.2

14
1.
3

11
0.
2

14
3.
3

L
A
T
IM

93
.6

7
92
.3

8
2.
3

77
.8

39
6.
5

Fa
sh
io
n
M
N
IS
T

PH
A
X

78
4

−
30

−4
0

−
10

26
.6

26
3

24
.5

25
8

2.
1

17
4.
6

36
6.
7

R
IM

83
.0

39
82
.1

39
1.
4

30
4.
7

42
6.
6

E
R
IM

83
.6

12
82
.6

12
1.
4

10
6.
4

14
9.
0

L
A
T
IM

86
.1

9
83
.7

9
1.
9

15
8.
4

30
6.
0

378 S. Vahdat et al.

(c)

(d)

(e)

0 2 4 6 80

4

8

12

Conductance (μΩ-1)

Pr
ob

ab
ili

ty
 (%

)

0 2 4 6 80

20

40

60

Conductance (μΩ-1)

Pr
ob

ab
ili

ty
 (%

)

0 2 4 6 80

20

40

60

Conductance (μΩ-1)

Pr
ob

ab
ili

ty
 (%

)0 0.002 0.004 0.006 0.008 0.01 0.012
10

-3
10

-2
10

-1
10

0
10

1
10

2

d=35
d=15

0 0.002 0.004 0.006 0.008 0.01 0.012
10

-3

10
-2

10
-1

10
0

10
1

10
2

d=35
d=15

W1+

W1-

(a)

(b)

Pr
ob

ab
ili

ty
 (%

)
Pr

ob
ab

ili
ty

 (%
)

Fig. 34 The distributions of the (a) negative, (b) positive weights of the first layer of IM-NNs
under the MNIST benchmark for different d values. The distributions of memristor conductance
values of the NNs trained by the (c) PHAX, (d) RIM, and (e) ERIM methods for the BCW dataset
[18]

values for some of the weights. Since the sum of weights should be equal to 1,
the other weights become very small. Consequently, the conductance values of the
memristors stick to σmax or σmin during the training phase to achieve large or very
small weights. When d is large (i.e., in PHAXwhere d = 35 which leads to a smaller
transition region in the VTC), the whole output swing of the inverters can be reached
even when net voltage changes in a small range. Thus, it is not necessary to have
very large weights letting the memristors take different conductance values between
σmax and σmin. As an example, the distribution of the weights of the first layer of
the IM-NNs under the MNIST benchmark is plotted in Fig. 34a and b, showing
that the weights take larger values when d is smaller. In addition, the distribution of
the conductance values of the memristors of the NNs trained by PHAX, RIM, and
ERIM (for BCW dataset) are plotted in Fig. 34c, d, and e. The figure shows that the
memristor conductance values of the NNs trained by RIM and ERIM are frequently
equal to σmax or σmin.

It is worth noting that the delay of a path is inversely proportional to the
conductance of the memristors that convey the signal. As shown in Fig. 34, in
the RIM and ERIM methods, most of the conductance values are almost equal to
0.12 μΩ−1 (=σmin) or 8 μ�−1 (=σmax). It should be noted that the memristors
with the conductance of σmin have considerably a lower impact on the net voltage
of the inverters compared to the ones with the conductance of σmax. Therefore, the
memristors with the conductance of 8 μ�−1 are more critical for determining the

Ultralow-Power Implementation of Neural Networks Using Inverter-Based. . . 379

0

0.04

0.08

0.12

0.16

0.2

M T10 M T20 M T10 M T20 M T10 M T20 M T10 M T20

BlackScholes FFT K_means Sobel

PHAX PHAX (ADC) INTERSTICE (2) INTERSTICE (3) INTERSTICE (4) RIM

M
SE

Fig. 35 Worst-case MSE of the IM-NNs trained by different methods considering transistors and
memristors non-idealities

delay of the NNs trained by the RIM and ERIM methods. As Fig. 34 shows, the
conductance values of the memristors of the NNs trained by PHAX are frequently
in the range of [1 μΩ−1, 8 μΩ−1] conveying the fact that the net voltage of the
inverters of these NNs depends on almost all of the inputs of the neurons which
may have conductance values lower than 8 μΩ−1. Therefore, as the delay of the
NN is inversely proportional to the conductance of the memristors that affect the net
voltages of the inverters, it is expected that the delay of the NNs trained by PHAX
becomes larger than that of the RIM and ERIMmethods which is also in accordance
with the results of Tables 2 and 3.

7.2 IM-NN Accuracy in the Presence of Variations

To evaluate the effect of non-idealities on the performance of the trained NNs,
random variations with Gaussian distributions are applied to the conductance of
the memristors as well as the width, length, and threshold voltage of the transistors.
The results of 500 simulations are used to measure the mean (μMSE) and standard
deviation (σMSE) of the MSE of the networks under the considered non-idealities
scenarios. The worst case MSE of each network measured as μMSE + 3σMSE is
shown in Fig. 35. In this figure, MT10 and MT20 represent the cases where μ/σ
of the applied Gaussian random variations is equal to 10% and 20%, respectively.
The results reveal that the NNs trained by the INTERSTICE and RIM methods have
considerably higher resiliency to the variations. As an example, the worst case MSE
of the NNs trained by RIM (INTERSTICE (4)) method is, on average, 77% (69%)
and 60% (62%) smaller than those of PHAX and PHAX (ADC) under MT10 and
MT20 conditions, respectively.

The accuracies of the NNs (for classification applications) under the presence
of memristors and transistors non-idealities as well as the ideal case are plotted in
Fig. 36. The ideal or nominal case is denoted by Nom in this figure, while Mα (Tα)
represents the case where μ/σ of the applied Gaussian random variations to the

380 S. Vahdat et al.

65
70
75
80
85
90
95

100

Nom M10 M20 T5 T10 Nom M10 M20 T5 T10 Nom M10 M20 T5 T10 Nom M10 M20 T5 T10

IRIS BCW MNIST Fashion MNIST
PHAX RIM ERIM LATIM

(%
)

Fig. 36 The means of the accuracies of the NNs trained by the PHAX, RIM, ERIM, and LATIM
methods for the cases of the nominal and variation conditions for different benchmarks

conductance of the memristors (characteristics of the transistors) is equal to α%.
In addition, as the accuracies of the NNs trained by the PHAX method are small,
their results are not included in this figure. As shown in Fig. 36, when the size of
the NN is small (i.e., for IRIS and BCW datasets), the NNs trained by the LATIM
method have the highest accuracy in all of the non-ideal conditions compared to
the other training methods due to their higher accuracies in the ideal condition. For
larger-sized NNs (i.e., for MNIST and Fashion MNIST datasets), the NNs trained
by the LATIM method have the highest accuracy when considering memristors
non-idealities except for the M20 case under the Fashion MNIST dataset in which
ERIM has a better performance. In addition, larger-sized NNs trained by the ERIM
(LATIM) method have the highest (lowest) accuracy when considering transistors
non-idealities. It should be noted that based on the mathematical analysis of Sect. 3
as well as the simulation results shown in Fig. 36, memristor conductance variations
have small impacts on the output voltage as well as the accuracy of the NN. Hence,
the LATIMmethod which has a higher accuracy in the ideal condition yields a better
accuracy in the presence of memristor conductance variations (i.e., M10 and M20
conditions).

To mitigate the severe effects of the transistors non-idealities on the accuracy of
the NN, it is required to employ variation mitigation approaches such as RIM and
ERIM. As the results of Fig. 36 reveal, ERIM (LATIM) leads to the highest (lowest)
accuracy in the presence of transistors non-idealities for larger NNs. In the LATIM
method, the equivalent resistance of the memristors is calculated approximately and
used to find the output voltage of the inverters. This led to a higher accuracy of
the NN in the ideal condition compared to those of RIM and ERIM. In the latter
methods, the VTC slopes of the inverters were reduced by adding the grounded
resistors to the output node of the inverters, providing higher resiliency of the NN
outputs to the non-idealities of the circuit elements.

To evaluate the efficacy of the VATmethod in mitigating the variations, theMAEs
and accuracies of the NNs are obtained using Python simulations considering the
variations for the memristor conductance values as well as transistors parameters.
The degradations of these parameters compared to the ideal condition are plotted

Ultralow-Power Implementation of Neural Networks Using Inverter-Based. . . 381

MT5 MT10
0

20

40

60

Ac
c

Va
ria

	o
n

(%
)

PHAX
SePHAX
RIM
SeRIM

MT5 MT10
0

20

40

60

Ac
c

Va
ria

	o
n

(%
)

PHAX
SePHAX
RIM
SeRIM

MT5 MT10
0

0.05

0.1

0.15
M

AE
 V

ar
ia

	o
n

(V
) PHAX

SePHAX
RIM
SeRIM
INTERSTICE
SeINTERSTICEM

AE
 V

ar
ia

	o
n

(V
)

Ac
c

Va
ria

	o
n

(%
)

Ac
c

Va
ria

	o
n

(%
)

(a) (b) (c)

Fig. 37 (a) The MAE variation of the IM-NNs under California Housing, (b) Acc variation of the
IM-NNs under MNIST benchmark, and (c) Acc variation of the IM-NNs under Fashion MNIST
benchmark considering inverters and memristor non-idealities [22]

in Fig. 37. As shown in this figure, by combining VAT with the other methods, the
performance of the NN in the presence of variations can be improved.

7.3 Comparing Different Training Methods

The presented simulation results and mathematical analysis provide us with some
insights about the characteristics of different training methods for IM-NNs. Results
are summarized in Table 4. As seen in this table, the PHAX method has the lowest
complexity, modeling accuracy, and NN accuracy in both of the ideal and non-
ideal conditions due to considering similar coefficients for modeling the VTC of all
inverters of the NN. The VAT method has a high training complexity and a moderate
NN accuracy in the non-ideal condition due to the calculation of the sensitivity term.
As the VTC modeling used in this method is similar to PHAX, the accuracy of the
trained NN in the ideal condition is low. In the INTERSTICEmethod, the need to the
ADC as the output interfaces of the NNs is eliminated which leads to small delays
and power consumptions for the networks trained by this approach. In the presence
of non-idealities, this approach has a higher accuracy compared to that of the PHAX
method due to the utilization of a classification NN for predicting the output range
of the regression application. The VTC modeling of this method is similar to PHAX
giving rise to a low modeling accuracy. Since the difference between the output
voltage of the selected and unselected classes is large, the low modeling accuracy of
this method does not degrade the accuracy of the trained NN significantly (moderate
NN accuracy in the ideal condition). In addition, this approach has a higher training
complexity compared to that of PHAX due to the labeling process of the input data
and employing larger-sized NNs.

The NNs trained by the RIMmethod have the highest power consumptions due to
utilization of the low resistance grounded resistors in the structure of the network. In
addition, the technique has a moderate modeling accuracy as well as a moderate NN
accuracy in the ideal condition due to the suppression of the sensitivity of the VTC
coefficients to the loading effect of the memristor crossbars. Moreover, in the case
of non-idealities, the NNs trained by RIM have high accuracies due to the low VTC

382 S. Vahdat et al.

Table 4 Comparing the characteristics of different training methods for IM-NNs

Training method PHAX VAT INTERSTICE RIM LATIM ERIM

Complexity Low High Medium Low Medium High
Modeling accuracy Low Low Low Medium High High
NN accuracy (ideal condition) Low Low Medium Medium High Medium
NN accuracy (nonideal condition) Low Medium Medium High Medium High
NN delay Medium NA Low Low Medium Low
NN power consumption Medium NA Low High Low Medium

NA: Not reported in [22]

slope of the inverters mitigating the effects of non-idealities on the output voltage
of the inverters. Furthermore, the delay of the NNs trained by the RIM method is
small due to the sparse distribution of the memristors conductance values (Fig. 34).

In the LATIM method, the equivalent resistance of the memristor crossbars is
taken into account to predict the VTC coefficients of the inverter. This gives rise to
a moderate training complexity and a high modeling accuracy. Since the VTC slope
of the inverters does not reduce considerably, the NNs trained by this approach have
the highest accuracies in the ideal case and moderate accuracies in the case of non-
idealities. In addition, due to choosing proper sizes for the inverters, the NNs have
moderate delays and low power consumptions.

The training complexity and modeling accuracy of the ERIM method are the
highest among the other methods due to utilization of the Thevenin equivalent
circuit of the memristor crossbar for modeling the output voltage of the inverters.
In addition, the accuracies of the NNs trained by this method are moderate in
the ideal condition and high in the case of non-idealities due to the low VTC
slopes of the inverters. Furthermore, the delays of the NNs become small due to
the sparse distribution of the memristor conductance values. Moreover, the power
consumptions of the NNs are moderate owing to the reduction of the power overhead
of the grounded resistors using proper-sized inverters.

7.4 Opportunities for Future Research

Based on the results of Table 1, the variation mitigation approaches presented in
the literature for IM-NNs (i.e., VAT and RIM) reduce the maximum achievable NN
accuracy in the ideal condition due to the added sensitivity term or the lower VTC
slope of the inverters. In addition, the INTERSTICE method is only applicable for
regression applications. This makes the design of a variation mitigation method
that does not degrade the accuracy of the NN in the ideal condition an important
open problem. As a promising solution, one may propose a peripheral circuit
for calibrating the VTC of the inverters after the chip fabrication. The important
challenges in this case are the energy and speed overheads of the peripheral circuit

Ultralow-Power Implementation of Neural Networks Using Inverter-Based. . . 383

and its calibration accuracy which should be considered during the circuit design
phase. Moreover, the utilization of IM neurons in the structure of binary NNs
(BNNs) would be another interesting research topic which has not been considered
in the previous works. In fact, BNNs are expected to have lower vulnerability to
the variations. Furthermore, all of the previous approaches regarding IM-NNs are
implemented in the CMOS technology. It is possible that the IM-NNs offer better
performance in the presence of non-idealities in other device technologies such as
gate-all-around field-effect transistors (GAAFETs). In addition, the performances of
the IM neurons in the presence of non-idealities in the other NN structures such as
convolutional NNs (CNNs) and recurrent NNs (RNN) have not been investigated in
any previous works. This can be an excellent research direction for future. Moreover,
developing CAD tools for mixed-signal structures would be another interesting
research topic in which the routing and placement of the transistors and memristors
in a 3D structure and their challenges are taken into account. Finally, the idea of the
VAT method and the mathematical analysis presented in Sect. 3 can be extended to
other memristive structures to improve their resiliency against non-idealities of the
circuit elements.

References

1. Huang, Z., Du, X., Chen, L., Li, Y., Liu, M., Chou, Y., Jin, L.: Convolutional neural network
based on complex networks for brain tumor image classification with a modified activation
function. IEEE Access. 8, 89281–89290 (2020)

2. Luo, Y., Yu, S.: Accelerating deep neural network in-situ training with non-volatile and volatile
memory based hybrid precision synapses. IEEE Trans. Comput. 69(8), 1113–1127 (2020)

3. Si, X., Chen, J.J., Tu, Y.N., Huang, W.H., Wang, J.H., Chiu, Y.C., Wei, W.C., Wu, S.Y., Sun, X.,
Liu, R., Yu, S., Liu, R.S., Hsieh, C.C., Tang, K.T., Li, Q., Chang, M.F.: 24.5 A twin-8T SRAM
computation-in-memory macro for multiple-bit CNN-based machine learning. In: Proceedings
of IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, CA, USA, pp.
396–398 (2019)

4. Chen, Y., Krishna, T., Emer, J.S., Sze, V.: Eyeriss: an energy-efficient reconfigurable accel-
erator for deep convolutional neural networks. IEEE J. Solid-State Circuits. 52(1), 127–138
(2017)

5. Vahdat, S., Kamal, M., Afzali-Kusha, A., Pedram, M.: TOSAM: an energy-efficient truncation-
and rounding-based scalable approximate multiplier. IEEE Trans. Very Large Scale Integr.
VLSI Syst. 27(5), 1161–1173 (2019)

6. Vahdat, S., Kamal, M., Afzali-Kusha, A., Pedram, M.: LETAM: a low energy truncation-based
approximate multiplier. Comput. Electr. Eng. 63, 1–17 (2017)

7. Yao, P., Wu, H., Gao, B., Tang, J., Zhang, Q., Zhang, W., Yang, J.J., Qian, H.: Fully hardware-
implemented memristor convolutional neural network. Nature. 577, 641–646 (2020)

8. LeCun, Y.: The MNIST database of handwritten digits. http://yann.lecun.com/exdb/mnist/
9. Lee, E.H., Wong, S.S.: Analysis and design of a passive switched-capacitor matrix multiplier

for approximate computing. IEEE J. Solid-State Circuits. 52(1), 261–271 (2017)
10. Tripathi, A., Arabizadeh, M., Khandelwal, S., Thakur, C.S.: Analog neuromorphic system

based on multi input floating gate MOS neuron model. In: Proceedings of IEEE International
Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, pp. 1–5 (2019)

http://yann.lecun.com/exdb/mnist/

384 S. Vahdat et al.

11. Ansari, M., Fayyazi, A., Banagozar, A., Maleki, M.A., Kamal, M., Afzali-Kusha, A., Pedram,
M.: PHAX: physical characteristics aware Ex-Situ training framework for inverter-based
memristive neuromorphic circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
37(8), 1602–1613 (2018)

12. Yeo, I., Chu, M., Gi, S., Hwang, H., Lee, B.: Stuck-at-fault tolerant schemes for memristor
crossbar array-based neural networks. IEEE Trans. Electron Devices. 66(7), 2937–2945 (2019)

13. Chen, J., Pan, W.Q., Li, Y., Kuang, R., He, Y.H., Lin, C.Y., Duan, N., Feng, G.R., Zheng, H.X.,
Chang, T.C., Sze, S.M., Miao, X.S.: High-precision symmetric weight update of memristor
by gate voltage ramping method for convolutional neural network accelerator. IEEE Electron
Device Lett. 41(3), 353–356 (2020)

14. Krestinskaya, O., Salama, K.N., James, A.P.: Learning in memristive neural network architec-
tures using analog backpropagation circuits. IEEE Trans. Circuits Syst. I Regul. Pap. 66(2),
719–732 (2019)

15. Krestinskaya, O., James, A.P.: Binary weighted memristive analog deep neural network for
near-sensor edge processing. In: Proceedings of 18th International Conference on Nanotech-
nology (IEEE-NANO), Cork, Ireland, pp. 1–4 (2018)

16. Khodabandehloo, G., Mirhassani, M., Ahmadi, M.: Analog implementation of a novel
resistive-type sigmoidal neuron. IEEE Trans. Very Large Scale Integr. VLSI Syst. 20(4), 750–
754 (2012)

17. Hasan, R., Taha, T.M., Yakopcic, C.: A fast training method for memristor crossbar based
multi-layer neural networks. Analog Integr. Circ. Sig. Process. 93(3), 443–454 (2017)

18. Vahdat, S., Kamal, M., Afzali-Kusha, A., Pedram, M.: Loading-aware reliability improvement
of ultra-low power memristive neural networks. IEEE Trans. Circuits Syst. I Regul. Pap. 68(8),
3411–3421 (2021)

19. Fayyazi, A., Ansari, M., Kamal, M., Afzali-Kusha, A., Pedram, M.: An ultra low-power
memristive neuromorphic circuit for internet of things smart sensors. IEEE Internet Things
J. 5(2), 1011–1022 (2018)

20. BanaGozar, A., Maleki, M.A., Kamal, M., Afzali-Kusha, A., Pedram, M.: Robust neuromor-
phic computing in the presence of process variation. In: proceedings of Design, Automation &
Test in Europe Conference & Exhibition (DATE), Lausanne, pp. 440–445 (2017)

21. Ansari, M., Fayyazi, A., Kamal, M., Afzali-Kusha, A., Pedram, M.: OCTAN: an on-chip
training algorithm for memristive neuromorphic circuits. IEEE Trans. Circuits Syst. I Regul.
Pap. 66(12), 4687–4698 (2019)

22. Vahdat, S., Kamal, M., Afzali-Kusha, A., Pedram, M.: Reliability enhancement of inverter-
based Memristor crossbar neural networks using mathematical analysis of circuit non-
idealities. IEEE Trans. Circuits Syst. I Regul. Pap. 68(10), 4310–4323 (2021)

23. Vahdat, S., Kamal, M., Afzali-Kusha, A., Pedram, M.: LATIM: loading-aware offline training
method for inverter-based memristive neural networks. IEEE Trans. Circuits Syst. II Express
Briefs. 68(10), 3346–3350 (2021)

24. Vahdat, S., Kamal, M., Afzali-Kusha, A., Pedram, M.: INTERSTICE: inverter-based memris-
tive neural networks discretization for function approximation applications. IEEE Trans. Very
Large Scale Integr. VLSI Syst. 28(7), 1578–1588 (2020)

25. Vahdat, S., Kamal, M., Afzali-Kusha, A., Pedram, M.: Offline training improvement of
inverter-based memristive neural networks using inverter voltage characteristic smoothing.
IEEE Trans. Circuits Syst. II Express Briefs. 67(12), 3442–3446 (2020)

26. Chen, X., Jiang, J., Zhu, J., Tsui, C.: A high-throughput and energy-efficient RRAM-
based convolutional neural network using data encoding and dynamic quantization. In: in
Proceedings of 23rd Asia and South Pacific Design Automation Conference (ASP-DAC), Jeju,
pp. 123–128 (2018)

27. Shakiba, F.M., Zhou, M.: Novel analog implementation of a hyperbolic tangent neuron in
artificial neural networks. IEEE Trans. Ind. Electron. 68(11), 10856–10867 (2020). https://
doi.org/10.1109/TIE.2020.3034856

28. Liu, X., et al.: RENO: a high-efficient reconfigurable neuromorphic computing accelerator
design. In: Proceedings of the 52nd ACM/EDAC/IEEE Design Automation Conference (DAC),
pp. 1–6 (2015)

http://doi.org/10.1109/TIE.2020.3034856

Ultralow-Power Implementation of Neural Networks Using Inverter-Based. . . 385

29. Chua, L.: Memristor-the missing circuit element. IEEE Trans. Circuits Theory. 18(5), 507–519
(1971)

30. Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found.
Nature. 453(7191), 80–83 (2008)

31. Li, B., Yan, B., Liu, C., Li, H.H.: Build reliable and efficient neuromorphic design with
memristor technology. In: Proceedings of the 24th Asia and South Pacific Design Automation
Conference, pp. 224–229 (2019)

32. Pouyan, P., Amat, E., Hamdioui, S., Rubio, A.: RRAM variability and its mitigation schemes.
In: Proceedings of 26th International Workshop on Power and Timing Modeling, Optimization
and Simulation (PATMOS), pp. 141–146 (2016)

33. Hasan, R., Taha, T.M., Yakopcic, C.: On-chip training of memristor crossbar based multi-layer
neural networks. Microelectron. J. 66, 31–40 (2017)

34. Pham, K.V., Nguyen, T.V., Tram, S.B., Nam, H.K., Lee, M.J., Choi, B.J., Truong, S.N., Min,
K.S.: Memristor binarized neural networks. J. Semicond. Technol. Sci. 18(5), 568–577 (2018)

35. Pham, K.V., Tran, S.B., Nguyen, T.V., Min, K.S.: Asymmetrical training scheme of binary-
memristor-crossbar-based neural networks for energy-efficient edge-computing nanoscale
systems. Micromachines. 10(2), 141–154 (2019)

36. Rajendran, J., Karri, R., Rose, G.S.: Improving tolerance to variations in memristor-based
applications using parallel memristors. IEEE Trans. Comput. 64(3), 733–746 (2015)

37. Liu, C., Hu, M., Strachan, J.P., Li, H.: Rescuing memristor-based neuromorphic design
with high defects. In: Proceedings of 54th ACM/EDAC/IEEE Design Automation Conference
(DAC), Austin, TX, pp. 1–6 (2017)

38. Li, C., Hu, M., Li, Y., Jiang, H., Ge, N., Montgomery, E., Zhang, J., Song, W., Davila, N.,
Graves, C.E., Li, Z., Strachan, J.P., Lin, P., Wang, Z., Barnell, M., Wu, Q., Williams, R.S.,
Yang, J.J., Xia, Q.: Analogue signal and image processing with large memristor crossbars.
Nat. Electron. 1, 52–59 (2018)

39. Jin, S., Pei, S., Wang, Y.: A variation tolerant scheme for memristor crossbar based neural
network designs via two-phase weight mapping and memristor programming. Futur. Gener.
Comput. Syst. 106, 270–276 (2020)

40. Pham, K.V., Nguyen, T.V., Min, K.S.: Partial-gated memristor crossbar for fast and power-
efficient defect-tolerant training. Micromachines. 10(4), 245 (2019)

41. Liu, B., Li, H., Chen, Y., Li, X., Huang, T., Wu, Q., Bernell, M.: Reduction and IR-drop
compensations techniques for reliable neuromorphic computing systems. In: Proceedings of
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA, pp.
63–70 (2014)

42. Li, B., Wang, Y., Chen, Y., Li, H.H., Yang, H.: ICE: inline calibration for memristor
crossbar-based computing engine. In: Proceedings of Design, Automation and Test in Europe
Conference & Exhibition (DATE), Dresden, pp. 1–4 (2014)

43. Lou, Q., Gao, T., Faley, P., Niemier, M., Hu, X.S., Joshi, S.: Embedding error correction into
crossbars for reliable matrix vector multiplication using emerging devices. In: Proceedings of
the ACM/IEEE International Symposium on Low Power Electronics and Design, pp. 139–144
(2020)

44. Merkel, C., Kudithipudi, D.: A stochastic learning algorithm for neuromemristive systems. In:
Proc. 27th IEEE Int. Syst.-Chip Conf. (SOCC), Las Vegas, NV, USA, pp. 359–364 (2014)

45. Gokmen, T., Onen, M., Haensch, W.: Training deep convolutional neural networks with
resistive cross-point devices. Front. Neurosci. 11, 538 (2017)

46. Hirotsu, K., Brooke, M.A.: An analog neural network chip with randomweight change learning
algorithm. In: Proc. Int. Conf. Neural Netw. (IJCNN), Nagoya, Japan, vol. 3, pp. 3031–3034
(1993)

47. Yakopcic, C., Taha, T.M., Subramanyam, G., Pino, R.E.: Generalized memristive device SPICE
model and its application in circuit design. IEEE Trans. Comput. Des. Integr. Circuits Syst.
32(8), 1201–1214 (2013)

AI-Based Hardware Security Methods
for Internet-of-Things Applications

Jaya Dofe and Wafi Danesh

1 Introduction

The Internet is going through a new stage in which billions of smart objects, “things”
that sense and interact with the physical world, are connected in homes, industry,
hospitals, cities, and farms, to name a few. These connected objects—the Internet of
Things (IoT)—is changing the world around us, being stitched into the very fabric
of our everyday lives. IoT brings extraordinary possibilities for improvements in
various domains like smart cities and grids, healthcare, wearable devices, robotic
systems, and numerous other systems. IoT is gradually becoming an integral part
of the betterment of our personal and professional lives. While the benefits of
IoT are undeniable, it is a double-edged sword. An IoT ecosystem is constantly
subjected to changes and threats at various levels. IoT devices allocate the majority
of energy and computation resources for normal functionality, and incorporating
security features becomes extremely challenging [1]. Coupled with the short time-
to-market and fierce competition among device manufacturers, security has become
an afterthought [2] and has not been prioritized as a crucial metric.

Security and trust are paramount considerations while designing IoT systems.
Unlike security threats in the traditional Internet, which are relegated to the
digital sphere, attacks on IoT systems directly impact the physical world. IoT
systems and applications can be made more secure by utilizing cryptography to
communicate between the physical and cyber worlds. Even though conventional
cryptographic countermeasures are computationally intensive, several IoT devices

J. Dofe (�)
California State University Fullerton, California, CA, USA
e-mail: jdofe@fullerton.edu

W. Danesh
University of Missouri, Kansas City, MO, USA
e-mail: wdhv3@mail.umkc.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Iranmanesh (ed.), Frontiers of Quality Electronic Design (QED),
https://doi.org/10.1007/978-3-031-16344-9_10

387

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16344-9_10&domain=pdf

 885 52970 a 885 52970 a

mailto:jdofe@fullerton.edu

 885 56845 a 885 56845 a

mailto:wdhv3@mail.umkc.edu

 -2016 61494 a -2016
61494 a

https://doi.org/10.1007/978-3-031-16344-9_10

388 J. Dofe and W. Danesh

have incorporated lightweight embedded cryptographic cores for authentication
and information processing. IoT systems use sensors and other smart devices.
As all the applications require fundamental security, cryptography is deployed as
part of an attempt to secure them [3]. However, if the encryption algorithms are
not implemented correctly, they can compromise the applications. It is a huge
challenge that researchers have been addressing over the decades. A prominent side-
channel attack (SCA) that breaks an encryption system’s security by exploiting the
information leaked from the physical devices is a rising threat in IoT applications
[4, 5]. Current IoT studies show that adversaries can easily acquire side-channel
information, which is hard to prevent because leakages from devices are inevitable
[6]. Side channels in IoT systems may arise from timing information, sensor data,
or traffic rates between devices prevalent in our everyday lives. Due to IoT devices’
inherent characteristics and limitations, designing hardware security solutions is
complex and nontrivial. Henceforth, the future of IoT applications will rely on the
ability to safeguard hard-to-secure, resource-sparse devices effectively.

The current state of security of Internet-of-Things (IoT) devices therefore
challenges conventional security protocols. Many IoT device manufacturers pri-
oritize keeping their devices low cost and small in size, with low battery usage
and computation power, making traditional security methods unsuitable. In this
situation, end users have to trade-off between the security and performance of the
device. This trade-off is causing IoT devices to become vulnerable to side-channel
attacks. Much published research discusses IoT security and challenges[7–9]. Most
existing literature focuses on secure IoT infrastructure creation and implementation,
authentication, trust management, and attack in different IoT layers. The main focus
of this chapter is to review the hardware security techniques implemented in the face
of threats such as side-channel attacks and hardware Trojan (HT) insertions. We
dedicate a part of this chapter to studying unified countermeasures for side-channel
attacks for IoT applications. We also give an extensive overview of the machine
learning-based approaches used to develop countermeasures against hardware
attacks in IoT applications. ML algorithms generate a model from historical data,
in order to learn the underlying pattern and generalize new, unseen data. ML-
based approaches can perform prediction or classification by learning the underlying
pattern. In the context of HT detection, ML approaches learn from various circuit
characteristics and parametric data to determine if an IC design is HT infected or
not [10–13]. One of the significant advantages of ML-based HT detection is the
automation of the process of HT detection.

As a final note, we also propose a new security paradigm for IoT security,
namely, 3D integration for IoT devices. 3D integration technology provides various
advantages such as heterogeneous integration, split manufacturing, and combining
disparate technologies for the IoT platform such as MEMS sensors, RF transmitters,
energy harvesters, etc. It makes 3D integration the choice for developing secure
IoT platforms and devices. The stacked-layer architecture of 3D ICs makes them
suitable for deploying a number of security features against side-channel attacks or
HT insertion.

AI-Based Hardware Security Methods for Internet-of-Things Applications 389

The rest of this chapter is organized as follows. Section 2 presents an overview
of hardware attacks. Section 3 discusses generic countermeasures for side-channel
attacks and HT insertions. It also covers the countermeasures for these attacks in
IoT domain. The unified approaches unique to physical attacks and HT attacks are
discussed in Sect. 4. Section 5 introduces 3D technology and corresponding usage of
ML for 3D integration. We provide a detailed overview of ML-based approaches for
HT detection in general and IoT systems in particular in Sect. 6. Section 7 outlines
the details of 3D integration and the benefit of using it to secure IoT devices. Finally,
Sect. 8 concludes the paper.

2 Hardware Attacks

The emerging hardware threats arise because of the globalized IC supply chain.
There are multiple stages within the supply chain that can be manipulated by a
potential adversary to perform the attacks. These diverse hardware attacks can be
broadly classified in the following categories.

2.1 IP Piracy

IP piracy is the illicit or unlicensed use of an intellectual property (IP). The
semiconductor industry is increasingly relying on a hardware IP-based design
approach, in which reusable, pre-verified hardware modules are combined to
produce a complex system that performs as expected. An attacker can steal valuable
hardware IPs in the form of register-transfer-level (RTL) representations (“soft IP”),
gate-level designs directly implementable in hardware (“firm IP”), or the GDSII
design database (“hard IP”) and market them as legitimate IPs. Hardware IP reuse
in the design of systems-on-chip (SoCs) is a common practice in the silicon industry
because it drastically saves design time and cost. IP piracy can occur at any point
in the supply chain for integrated circuits. Designers, third-party IP (3PIP) vendors,
and SoC integrators at the design, synthesis, and verification stages could potentially
pirate the IP. Untrusted foundries may overbuild IP cores in the fabrication stage
and resell them under a different brand name to make a profit. Hardware IPs bought
from untrustworthy third-party manufacturers may contain a variety of security and
integrity flaws. An attacker inside an IP design house can purposefully implant a
malicious circuit or design alteration to undermine system security.

390 J. Dofe and W. Danesh

2.2 Reverse Engineering

The process of identifying an IC’s structure, design, and functionality is known
as reverse engineering. Different types of reverse engineering include product
teardowns, system-level analysis, process analysis, and circuit extraction. One can
use reverse engineering to (1) determine the device technology, (2) extract the gate-
level netlist, and (3) infer chip functionality. Several techniques and tools have
been developed to facilitate reverse engineering. Traditionally, it has been a legal
method for teaching, assessing, and evaluating mask work processes under the US
Semiconductor Chip Protection Act. Reverse engineering, on the other hand, is
a two-edged sword. Reverse engineering techniques could be used to pirate ICs.
Reverse engineering attacks can be carried out at many levels of abstraction in the
supply chain, depending on the attacker’s goals [14].

2.3 Counterfeiting

A counterfeit semiconductor component is an illegal forgery or imitation of the
original component. Counterfeiting is often performed by one of the many entities
in the semiconductor supply chain, including new product vendors or secondary
(recycled) IC vendors. In recent years, because of technological advances in 3D
packaging, fake ICs are hard to distinguish from real ones. Counterfeit ICs are a
serious threat to the IC supply chain. Computers, telecommunications, automotive
electronics, and military systems are all affected by counterfeiting attacks. As
counterfeiters get more sophisticated, counterfeit chips are becoming more difficult
to detect.

2.4 Hardware Trojans

Maliciously altering a circuit’s hardware is one of the most insidious ways of
attacking it. A hardware Trojan (HT) is built by embedding hidden functionality
into a hardware design discretely. This insertion can happen at any point in the IC
supply chain, and it can have catastrophic consequences for the final design. Such
Trojans can perform a wide range of functions, including denial-of-service attacks,
which provide designers with a programmable kill switch, and concealed data leaks,
exposing sensitive information. HTs pose a direct danger to the IoT, which is already
susceptible. HTs, unlike software Trojans, cannot be removed simply by updating
the firmware, making them extremely dangerous and difficult to remove. As a result,
HT detection is a critical step in ensuring the chips used in IoT are safe. The simple
structure of HT is shown in Fig. 1.

AI-Based Hardware Security Methods for Internet-of-Things Applications 391

Fig. 1 Simple example of hardware Trojan

2.5 Side-Channel Attacks

A physical attack is one of the most prominent and influential methods in the hands
of adversaries in the hardware security sector. Physical attacks are when the attacker
has physical access to the device being targeted. These threats can assist an attacker
in infiltrating the IoT. Invasive vs. noninvasive attacks and active vs. passive attacks
are the two main types of physical attacks. Invasive attacks necessitate tampering
with the target device, whereas noninvasive attacks do not. If the adversary actively
influences the device’s behavior, it’s either an active attack or a passive observation
of information leakage. The scope of side-channel attacks has shifted drastically
with the introduction of mobile devices. Initially, attackers required physical access
to the device. However, similar attacks are more common in IoT systems and can be
performed easily.

Side-channel analysis (SCA) attacks [4, 5, 15] aim to retrieve the secret key
in the cryptosystems by analyzing physical parameters like power, delay, or
electromagnetic emission of the IC that runs security-critical applications.

• Power Analysis Attacks:
Kocher et al. proposed power analysis attacks that take advantage of hardware
implementation of cryptographic algorithm [16]. Power-based SCA attacks have
been thoroughly explored. They take advantage of the correlation between the
cryptosystem’s power usage and the assumed crypto key to recover the secret
key used. Simple, differential, and correlation power analysis are three prevalent
power analysis attacks.

• Timing Attacks:
Kocher [17] developed this attack in 1996 as well. To divulge secret information,
it exploits the data-dependent execution time. Because cryptosystems use condi-
tional branches in their algorithms and performance optimization, the execution
of cryptographic system takes varying amounts of time to process different
inputs.

392 J. Dofe and W. Danesh

• Electromagnetic Side-Channel Attacks:
Electromagnetic side-channel attack [18] is also a valuable source of information
that is available whenever a system is in use. This attack does not require device
manipulation to measure side-channel leakage, and hence, it is noninvasive.
Because of the ready availability of EM probes to launch the attack, electro-
magnetic SCA is becoming more prevalent in the IoT paradigm. In contrast to
power SCA, this assault is increasingly prevalent in IoT since adversaries do not
require physical access to devices.

• Fault Attacks:
A fault attack is an attack on a physical, electronic device (e.g., smartcard, HSM,
USB token) that involves straining the device using an external means (e.g.,
voltage, light) to induce faults that cause the system to fail. An adversary can use
fault attacks to cause the device to defeat security safeguards or to retrieve secret
information by exploiting faulty outputs. A fault attack can defeat the advanced
encryption standard (AES) implementation with only a pair of fault-free and
faulty ciphertexts, according to the research [19]. Manipulation of the external
clock or power inputs, as well as the use of electromagnetic disturbances, are
two of the most popular approaches to carrying out a fault attack. This type of
attack is easy to perform as it requires only a motivated attacker with mid-level
expertise and low-cost equipment. Thus, these fault injection techniques should
be considered a severe threat to IoT systems.

3 Countermeasures Against Side-Channel Attacks and
Hardware Trojans Insertion

3.1 Generic Countermeasures for SCA

For power-based side-channel attacks, the main objective of countermeasure is
to make the power consumption of a device as independent as possible to the
intermediate values of a cryptographic algorithm. The general countermeasures
for AES include either hiding or masking the data. The goal of hiding [20, 21]
is to cover up a correlation between the power traces and the intermediate values.
Hiding deceives the power traces by randomizing power consumption in a device
or flattening the power consumption to make all operations look similar. For the
masking technique, the goal is to conceal data by adding/multiplying random
numbers to the intermediate values in the encryption process to ward off potential
attackers [21]. The challenge becomes implementing the countermeasures without
reducing the speed, increasing the power consumption, or increasing the area of the
cryptographic algorithm beyond reasonable limits.

Some of the countermeasures proposed against electromagnetic SCA include
signal strength reduction techniques like shielding or signal information reduction
using noise insertion [22]. Recently, Das et al. used white-box modeling [18] to
develop a low-overhead generic circuit-level countermeasure against electromag-

AI-Based Hardware Security Methods for Internet-of-Things Applications 393

netic side-channel attacks. An electromagnetic equalizer is proposed in [23], where
on-chip power grid impedance is adjusted to flatten the current waveform.

A common approach to protecting the cryptographic core from timing attacks is
to ensure that its behavior is never data-dependent. The sequence of cache accesses
or branches does not depend on either the key or the plaintext. Paper [24] proposed
to perform rescheduling of instructions so that each encryption round will consume
constant time independent of the cache hits and misses. Another way is to induce
noise in all events to prevent exploitation of timing information [25]. One beneficial
way to make time attacks challenging is to desynchronize the execution of sensitive
parts by using random waits, dummy instructions, jitter on clocks, etc., as much
as possible. The most cost-effective approach against FA attacks is modifying the
cryptographic device’s design to detect injected faults. Traditional fault detection
methods for cryptosystems exploit information redundancy, spatial redundancy, or
time redundancy to detect faults [26]. Survey paper [27] presented countermeasures
against fault injection attacks, including algorithmic changes, sensors and shields,
and fault detection or correction techniques.

3.2 Generic Countermeasures Against Hardware Trojan
Insertions

Existing HT detection approaches are classified as presilicon and postsilicon
detection. Presilicon detection is used to validate 3rd Party IP (3PIP) cores. It
includes functional validation, structural analysis, and formal verification. Postsil-
icon detection is further categorized into nondestructive and destructive detection
methods. Nondestructive methods include functional testing accelerated Trojan
activation followed by testing analysis on side-channel signals (e.g., power, delay,
temperature, or electromagnetic profiles) [28]. In destructive techniques, reverse-
engineering is used, which involves depackaging an IC followed by scanning
electron microscope (SEM) image reconstruction and analysis. HT detection in a
very large-scale integrated system is comparable to finding a needle in a haystack.
Hence, such methods are very high cost and time-consuming [29]. None of the
existing HT detection techniques guarantee the full coverage of HTs. Therefore, the
research [30] suggest embedding HT prevention methods during the design phase
provides a more effective potential approach as a countermeasure against HTs.

3.3 Countermeasures Against Physical Attacks in IoT

Side-channel information may arise from timing information, sensor data, or data
traffic prevalent in everyday lives. Current IoT studies show that adversaries can
easily acquire side-channel information, which is hard to detect because leakages

394 J. Dofe and W. Danesh

are inevitable; hence, tackling these attacks is of utmost importance [4–6]. The IoT
devices are intended to be small and convenient. The traditional countermeasures
against power attacks reduce the signal-to-noise ratio, which may be expensive to
implement for lightweight IoT applications. The attenuated signature AES is pro-
posed in [5] to resist power analysis attacks with reduced overhead. This approach
implements AES in a signature attenuating hardware, making the variations in
AES current highly suppressed. A false key-based AES engine that utilized wave
dynamic differential logic (WDDL) is presented in [31] as a countermeasure against
CPA attacks. The false round keys generated by the constant intermediate value are
added to the original round keys to disguise the correlation between the dynamic
power consumption profile and the actual key. As the area and power overhead of
the proposed technique is negligible compared to the unprotected AES, this method
fits IoT devices. Kai Yang et al. presented a flexible FPGA virtualization approach
[32] to prevent the FPGA-based system from timing attacks. This method’s masking
and architectural diversity make it challenging to obtain the required information to
carry out the successful timing attacks.

3.4 Countermeasures Against Hardware Trojans in IoT

In article [33], Guo et al. propose an HT detection technique that makes use of
chip temporal thermal information and self-organizing map (SOM) neural networks
to distinguish and isolate Trojan-infected chips with the Trojan-free chips. This
method detects HT with a high probability even if HT is inserted into the block,
which is best for hiding Trojans. A nonconventional approach is proposed in [34]
in which switching activities are amplified to increase Trojan visibility and detect
possible Trojans. This method guarantees the background noise does not mask
Trojan activities. An HT detection method for IoT networks is presented in which
the features of a clock tree are extracted and used as a signature to identify and
detect Trojans. We discuss ML-based approaches thoroughly in Sect. 6.

4 Unified Countermeasures for IoT

As mentioned earlier, IoT devices have a constrained power budget, and hence, it
is imperative to design unified countermeasures that can address multiple attacks
simultaneously. The paper [35] propose strategies that could be used for the design-
specific targets, specifically for lightweight IoT applications. The first method is
to use a maximum distance separable linear layer to incorporate diffusion and
fault space transformation that helps to protect against classical cryptanalysis and
differential fault attacks. The second strategy exploits modified transparency order
metrics to select from different S-box implementations that guide the adequate
refresh rate for the mask to defeat the differential power attacks with the same

AI-Based Hardware Security Methods for Internet-of-Things Applications 395

Fig. 2 Secure processor
using quantization controller
[36]

resistance. Cipher-dependent nibble-wise shuffling was proposed in their third
method to enhance the side-channel resistance.

An embedded trusted platform module is proposed in [36] to address a variety
of side-channel attacks, including power, timing, fault, and power-glitching attacks.
This work makes use of a quantized controller as shown in Fig. 2 that sits between
a security-critical core and the rest of the system. A controller uses integrated
decoupling capacitors to create uniform power and timing footprints. The inherent
implementation of the controller allows control where the computer processor
receives its power. During security-critical processes, it can switch the processor’s
power source from the main power rail to the controller’s internal storage capacitors,
invisible to attackers. This allows the power traces to become unreadable with the
proper implementation. A core design is to leverage on-demand isolation to allow
side-channel protection from a software-level decision, making the method effective
in real time to accommodate IoT design.

Recently, authors Das et al. used white-box modeling [18] to develop a low-
overhead generic circuit-level countermeasure called STELLAR—Signature aTten-
uation Embedded CRYPTOwith Low-Level metAl Routing against electromagnetic
and power side-channel attacks shown in Fig. 3. This approach utilizes the local
lower-metal layers to route the crypto core with a signature suppression circuit,
reducing the leakage reaching the top metal layer.

In research [37], authors proposed a concurrent software approach to resist the
side-channel and fault attacks. This countermeasure is generic and applicable to any
byte-size cipher. It utilizes larger data path of 32-bit or 64-bit microcontroller units
to carry out parallel byte-sliced encryption. As depicted in Fig. 4, the same data
byte D1 is cloned four times and encrypted using a fake key (KF) twice and true
key (KT) twice. This arrangement will generate the correlated algorithmic noise
to protect against SCA as both computations operate parallel on the same data but
using two different keys. The same approach helps detect the fault injection attack
because of duplicated results from both the fake and correct key computation to
detect any anomalies.

396 J. Dofe and W. Danesh

Fig. 3 Stellar technique for side-channel protection [18]

Fig. 4 Combined cand FA Countermeasure [37]

In study [28, 38], authors proposed to integrate a dynamic masking technique
with an error control code-based error deflection mechanism to thwart power
analysis and fault attacks simultaneously. This method generates the masking vector
from the intermediate state register in runtime, which changes over time. The main
working principle of this method is in Fig. 5. The technique is implemented for
AES cipher, but it could be easily extended for other ciphers. In the method,
the intermediate state value is encoded before processing and also uses dynamic
masking that changes the masking value at runtime. This arrangement fails the
power model modification according to a guessed masking vector.

An on-chip waveform measurement (OCM) technique is exploited in [39] that
protect against physical side-channel attacks. The on-chip latch comparator res-
onator senses the proximate antennas using magnetic coupling. The OCM captures
the voltage substrate waveforms when a laser hits the substrate detecting the fault
attacks. When OCM detects the antenna or laser presence, the cryptographic chip
forces are immediately halted or transitioned to a dummy state.

AI-Based Hardware Security Methods for Internet-of-Things Applications 397

Fig. 5 Dynamic masking plus error deflection method

Sensors, actuators, and data collection devices are connected through the Internet
in IoT applications. At least one data computation chip is needed to analyze
the massive amount of data and make a corresponding decision. In paper [40],
a dynamic permutation method is proposed to protect the processing unit from
hardware threats, more precisely, HT insertion and side-channel analysis attacks
simultaneously. The overview of the method is shown in Fig. 6. The incoming
data from the sensor will be changed because of dynamic permutation. Hence,
the attacker cannot successfully execute a predefined trigger condition. The cryp-
tographic module or random number generator can control the dynamicity. A new
permutation pattern will be requested if the cryptographic module detects an invalid
message. With this framework, the processing node is obfuscated with a dynamic
feature. It prevents a Trojan attack and also changes the power profile over time. As
a result, the proposed dynamic permutation makes it more difficult to retrieve the
crypto key based on the power analysis.

5 3D ICs and Machine Learning

For 2D ICs, the extreme level of scaling of transistor size, as approximately
predicted by Moore’s law, has allowed for very dense IC designs to be fabricated on
the planar structure of a single layer. However, with the limits of Moore’s law being

398 J. Dofe and W. Danesh

Fig. 6 Obfuscated processing unit with dynamic permutation for a generic IoT network

reached, the very dense integration of transistors in 2D ICs has led to degradation
in performance metrics, such as delay, power consumption, and heat dissipation. In
essence, there is a demand for an alternative paradigm to continue fabricating more
complex integrated circuits. In this context, 3D ICs performing device integration
in a 3D architecture offer an alternative paradigm for continuing the fabrication
of more complex IC designs and increasing device integration even further. 3D
integration is performed in 3D ICs by vertically stacking several layers, often with
heterogeneous functionality, and connecting them, in general, using Through Silicon
Vias (TSV), which are electrical interconnects etched into the silicon. As a result,
significant improvements are achieved, such as reductions in interconnect and wire
length, in chip area, and superior electrical performance.

As compared to the relative improvements, 3D IC fabrication gives rise to new
critical design challenges [41], such as the design of TSVs, mitigation of chip
hotspots, development of appropriate CAD tools for 3D IC, and formulation of
optimization algorithms for 3D ICs, among others. Machine learning (ML) and,
more recently, deep learning (DL) algorithms have emerged as key tools to solve
many design challenges. The use of ML in electronic design automation (EDA)
stretches back almost three decades and, in the context of 3D ICs, has been
used for inter-die variation modeling, design space exploration (DSE), placement,
and routing optimization among other purposes. In [42], Sandeep et al. used a
nonlinear regression ML technique, called multivariate adaptive regression splines
(MARS), and developed an efficient model for two-tier 3D IC designs. In this
model, input parameters extracted from the place-and-route (P & R) database
are fed to the MARS model. The developed model is integrated into a full-chip
variation-aware 3D IC physical design flow and further verified with detailed Monte
Carlo simulations on three different benchmark circuits. A 16% improvement was
obtained for critical path delay under variations.

In the context of design space exploration, several notable studies have explored
the use of ML algorithms and techniques to solve the design optimization issues

AI-Based Hardware Security Methods for Internet-of-Things Applications 399

arising in 3D ICs [43–48]. Das et al. [43] used an online ML algorithm called
STAGE to perform design space exploration for optimizing the orientation of planar
and vertical communication links in small-world (SW) network-based 3D Network-
on-Chip (NoC) architectures and improve energy efficiency. Upon experimental
verification, the optimized 3D SW NoC designs outperform their 3D MESH coun-
terparts, with an average of 35% energy-delay-product (EDP) improvement over 3D
MESH for the nine PARSEC SPLASH2 benchmarks. In [44], Sung et al. implement
a Bayesian optimization (BO) algorithm using Gaussian Process (GP) to perform
multivariate optimization in analyzing both the electrical and thermal performance
of 3D integrated systems. On average, the results show an improvement of 4.4%,
31.1%, and 6.9%, respectively, in temperature gradient, CPU time, and skew using
machine learning. A design for a 3D NoC for heterogeneous manycore platforms
is proposed by Biresh et al. [47], where an ML-based multi-objective optimization
(MOO) technique called MOO-STAGE is proposed. The MOO-STAGE algorithm
uses a supervised learning approach that uses past search experience to optimize
the DSE problem for the 3D NoC. The results show a 9.6% better Energy-Delay
Product (EDP) on average, at nearly iso-temperature conditions compared to a
thermally optimized design for 3D heterogeneous NoCs, by joint consideration of
multiple requirements (latency, throughput, temperature, and energy). Hakki et al.
[45] proposed a new BO global optimization algorithm, called Two-Stage Bayesian
Optimization (TSBO), to minimize the clock skew for 3D IC designs. Compared
with a widely used nonlinear solver (fmincon in MATLAB) and high-performance
algorithm, IMGPO, TSBO resulted in faster convergence, being 3.96 times faster
than ‘fmincon’ and 3.76 times faster than IMGPO. In [48], the author proposes
MOO-STAGE and outlines the design considerations of two 3D IC architectures,
TSV-based 3D heterogeneous manycore systems and monolithic 3D (M3D)-based
NoC, that need to be made and where MOO-STAGE can play a pivotal role in DSE.
Das et al. [46] propose using the STAGE to perform the DSE of an M3D-enabled
energy-efficient NoC architecture.

For placement and routing (P&R) optimization in 3D IC designs, some of
the notable methods [49, 50] attempt to extend 2D P&R for 3D IC designs by
performing bin-based tier partitioning. This leads to a less than optimal solution
as these methods do not account for the topology of the 3D architecture and
underlying technology used. In [51], Lu et al. uses TP-GNN, an unsupervised graph-
learning-based tier partitioning framework, to properly account for technology and
design-related parameters in 3D IC P&R. A hierarchy-aware graph transformation
algorithm is first devised to convert the original netlist (hypergraph) into an
edge-contracted clique-based graph. Afterward, graph neural networks (GNNs)
are leveraged to perform graph representation learning. The goal is to construct
a node representation that captures each node’s design characteristics related to
tier partitioning. At the final stage, the weighted k-means algorithm is used to
perform area-balanced partitioning based on the learned representation for each
cell. Experimental results with OpenPiton, a RISC-V-based multi-core system, show
27.4%, 7.7%, and 20.3% improvements in performance, wirelength, and energy-per-
cycle, respectively.

400 J. Dofe and W. Danesh

ML approaches have been used in several other notable applications for 3D
IC designs. In [52], Hyeok et al. use a two-layer feedforward neural network to
perform the optimization of the 14-nm Fully-Depleted (FD) Silicon On Insulator
(SOI) FET structures to obtain the best DC performance (on/off current ratios) with
the average errors of prediction and optimization found to be within 5% tolerance.
Subhajit et al. [53] used ML methods to perform thermal validation for 3D ICs
by implementing the obtained temperature prediction model to generate thermally
aware test schedules to reduce the test times for standard ITC’02 benchmarks.
In [54], Lang et al. propose a fast stress analysis method for runtime usage by
training an artificial neural network (ANN) offline, in a supervised manner, using
thermal data around each TSV as input and stress information around each TSV
as output. Yong et al. [55] presented a dynamic thermal management method for
3D ICs with a time-dependent power map using the tier-specific microfluidic heat
sink (MFHS) and ML-based control method. For the ML-based control method
presented, a Bayesian optimization (BO) approach was initially applied, followed
by ANN when the calculation complexity of the BO increased with more data. In
[56], Pentapati et al. use a decision tree learning model, XGBoost, to provide a more
accurate prediction of 3D parasitics for obtaining a well-optimized monolithic 3D
(M3D) IC design. As commercial EDA tools such as Compact-2D are built for 2D
ICs, for M3D IC designs, a pseudo-3D design is first implemented and then split into
two dies, which are routed independently to create the M3D design. In the pseudo-
3D design stage, accurate estimation of 3D wire parasitics is crucial for optimizing
the final M3D IC design. Experimental results show a 2.9× and 1.7× smaller root
mean square error in the resistance and capacitance predictions for the proposed
XGBoost method.

6 Securing IoT Infrastructure Using Artificial Intelligence
(AI) and Machine Learning (ML)

The expansion of IoT systems to various application domains has consequently
brought about critical security challenges. Due to the heterogeneous, low-power,
resource-constrained nature of IoT systems, conventional security measures such as
authentication, access control, network, and access security become infeasible in
deployment. Furthermore, usage of low-cost, low-power, low-latency components
such as FPGAs can enable backdoors into IoT networks through bitstream reverse
engineering and remote dynamic partial reconfiguration [57, 58]. An attacker
is therefore presented with new, multiple attack vectors to insert HT into the
deployed IoT system. Taking all of this into account, the security paradigm in IoT
systems rapidly changes as new vulnerabilities arise from IoT deployment in novel
application environments, which are termed zero-day attacks. In this context, AI/ML
approaches have been extensively used as a countermeasure for zero-day attacks,
particularly for IoT network intrusion detection [59–61]. This section provides an

AI-Based Hardware Security Methods for Internet-of-Things Applications 401

overview of the usage of AI/ML in HT detection in general and focusing on using
AI/ML techniques for HT detection in IoT networks. We also briefly discuss the
emerging area of 3D integrated IoT devices, the potential for HT insertion in said
context, and potential countermeasures against them.

6.1 Hardware Trojan Detection Using AI and ML

Over the last decade, machine learning (ML) methods have been used extensively
among HT detection approaches. Due to the increasing complexity of IC designs
and the expanding range of applications, ML approaches provide a learning-based
methodology for HT detection that can adapt to the dynamic nature of the threat
scenario. ML methods can learn patterns from high-dimensional feature spaces
and perform pertinent feature extraction to differentiate between HT-free and HT-
infected designs. In this context, the ML algorithms and approaches used for HT
detection can be categorized as follows:

• Supervised Learning

– Supervised ML approaches require historical data to train algorithms to per-
form either prediction (provide a continuous-valued output) or classification
(provide a target label). A domain expert labels the training data, and in
practice, the lack of domain expertise can be a critical bottleneck in adopting
supervised learning approaches. Among the supervised ML methods for HT
detection are artificial neural networks [62], support vector machines [10],
Bayesian classifiers [63], extreme learning machines [64], decision trees [65],
and k-nearest neighbors [66]. Supervised ML models, in general, are robust
against noise and can handle cases where only a few features are available.
However, these methods require golden designs for training and reference and
are prone to over- and under-fitting.

• Unsupervised Learning

– Unsupervised ML techniques attempt to discover the relationships between
the data points without labels for the target classes. In HT detection, the
unsupervised ML techniques used are, in general, clustering methods, where
unlabeled data points are grouped according to some user-defined criteria
[11, 29, 67, 68]. These techniques require no golden designs for training and
are scalable with the available training dataset size. As unsupervised ML
techniques are generally used for clustering, they have poor classification
performance and are sensitive to noise and the number of clusters chosen.

• Dimensionality Reduction

– Dimensionality reduction and feature selection techniques are used to select
the feature space attributes that have the most impact on the output. Often,

402 J. Dofe and W. Danesh

dimensionality reduction methods are used to reduce the dimension of the
feature space in preparation for supervised ML algorithms. Among the
dimensionality reduction and feature selection methods used for HT detection
are genetic algorithms (GA) [11], principal component analysis (PCA) [12],
and two-dimensional PCA [67]. In general, these techniques increase the
accuracy and other performance metrics for HT detection. A consequence
of this improved performance is that features of HT may be discarded as
redundant. In addition, multiple iterations of this method may be needed for
selecting the appropriate number of features for a specific case.

• Design Optimization and Model Enhancement

– The performance of ML methods can be enhanced by the use of optimization
algorithms such as adaptive iterative optimization algorithm (AIOA) [13],
multi-objective evolutionary algorithm (MOEA) [69], and particle swarm
optimization (PSO) algorithm [70], among others. HT detection is generally
used to improve the design-for-security (DFS) strategies to prevent HT
insertion in a given design. These techniques, however, are limited to simple
combinational circuits and require multiple iterations to obtain an optimum
(or near optimum) solution.

With regard to ML countermeasures for HT defense, they can be categorized
into four types: HT detection, design-for-security (DFS), bus security, and secure
architecture. We provide a brief overview of each of these countermeasures.

• HT Detection

– Methods for HT detection are used primarily for design verification to verify
the presence of malicious modifications in designed or fabricated ICs. In
three key areas, ML-based approaches for HT detection have had extensive
usage: (1) reverse engineering, (2) circuit feature analysis, and (3) side-
channel analysis. In reverse engineering, microscopic imagery of every layer
of the IC is obtained to reconstruct the original design. ML-based approaches
used in reverse engineering [29, 71, 72] have a major advantage in reducing
the total number of steps in the reverse engineering process. Circuit feature
analysis extracts functional or structural features of the IC from gate-level
netlists, which are quantified and analyzed for HT detection [10, 73–75].
These methods reduce the size of feature space and automate the process
of HT-Net classification. The perturbations in circuit parameters such as
power, path delay, temperature, and electromagnetic (EM) radiation profiles
are analyzed to distinguish an HT-infected IC from the golden IC for side-
channel analysis. ML techniques improve the side-channel analysis methods
by improving the parameters’ signal-to-noise ratio (SNR) [12, 64, 67, 76–78].

AI-Based Hardware Security Methods for Internet-of-Things Applications 403

• Design-for-Security (DFS)

– DFS techniques enable either improving the trustworthiness of IC designs or a
DFS that exploits security design strategies to enhance the trustworthiness of
IC designs or assist in HT detection, prevention, and monitoring via on-chip
modules. ML countermeasures for DFS include (1) Trojan detection assis-
tance, (2) implantation prevention, and (3) trusted library. In Trojan detection
assistance, on-chip modules are embedded in the design to either identify
anomalies due to HT or increase the sensitivity of HT detection at both design
and test time. ML techniques are integrated with these on-chip modules to
improve accuracy of HT detection [11, 62, 63, 79, 80]. Implantation prevention
techniques implement either design obfuscation or layout-filler approaches to
protect ICs/IPs from HT insertion and activation, reverse engineering, or theft.
ML methods have been incorporated in the EDA design and testing domains
[69]. In trusted library generation, a golden reference library, meaning trusted
datasets that include golden side-channel fingerprints and circuit features, or
enhanced training models for HT detection, is generated. ML techniques have
had significant usage in the construction of said golden libraries [13, 67, 81].

• Bus Security

– Bus security measures are enacted to ensure the security of on-chip com-
munication between multiple cores in a multiprocessor SoC environment.
An attacker can intercept private communication, manipulate communication
data, interrupt normal operations, and perform DoS attacks by altering
router or linker behavior. ML approaches have been used in bus security
to detect anomalous on-chip traffic behavior due to HT [82–84]. As these
ML countermeasures require a training dataset, unknown attacks may bypass
detection.

• Security Architecture

– Secure architecture countermeasures have been extensively researched to
protect a design from architectural-level HT, and ML techniques have been
incorporated into many of these approaches. ML techniques, such as one-class
artificial neural network (ANN), have been used for trust evaluation [85] and
for defending against HTs that compromise confidentiality [86]. Both of these
approaches require on-chip modules to implement the required ML technique.
Trust evaluation approaches require a golden model for reference, whereas
confidentiality protection does not have such requirements.

As can be observed, ML approaches can automate the process of HT detection
and, in general, can improve the detection accuracy. In addition to the application
of ML techniques for development of HT countermeasures in IC designs, several
deep learning (DL) approaches have been implemented in HT countermeasure
development in recent years. DL approaches are a subcategory of ML techniques,
which are implemented using neural networks with multiple layers (more specif-
ically, more than one hidden layer), allowing them to be able to extract hidden
patterns and features from both structured and unstructured data (such as images,

404 J. Dofe and W. Danesh

text, and speech). For HT detection, DL approaches have been used for advanced
image processing on IC images and information extraction from netlists among
other applications. Kulkarni and Xu [87] perform transfer learning using a ResNet
architecture with 34 layers to perform optical inspection on IC images in order
to classify them as HT infected, defective, or functioning correctly. A novel
convolutional neural network (CNN) architecture, deep Siamese CNN (DSCNN),
uses a few-shot learning approach to implement an HT detection algorithm from
IC layout images obtained from partial reverse engineering (RE) process [88]. In
[89], the authors propose using a stochastic reinforcement learning framework to
reduce test generation complexity and automate effective test vector generation. The
proposed approach considers both rare and testable signals using a combination of
Sandia Controllability/Observability Analysis Program (SCOAP) measurement and
dynamic simulation, to improve trigger coverage of suspicious regions. Yu et. al [90]
apply natural language processing (NLP) for the first time to extract features from
gate-level netlists, which are used for training long short-term memory (LSTM) and
CNN in order to perform HT detection. To perform HT detection, the authors in [91]
represent the hardware design as a graph and use, for the first time, a graph neural
network (GNN) to learn circuit behavior and generate data flow graphs (DFG) for
the register-transfer level (RTL) codes.

6.2 Hardware Trojan Detection in IoT Systems Using AI and
ML

The expansion of IoT systems to various application domains has provided attackers
with opportunities to generate new attack vectors to bypass conventional security
features such as authentication, access control, and network and access security.
Compounding this threat is the fact that the IC design cycle is geographically
distributed to reduce costs, which enables the involvement of untrusted third-party
actors. As a result, hardware security threats such as HTs have emerged as a
critical security threat. In this scenario, ML-based countermeasures for HT detection
specifically tailored to IoT systems have gained much research attention. Hossein et.
al [92] used ML classifiers for malware detection in resource-constrained embedded
systems. The classifiers were trained for real-time malware detection using data
generated from a number of real malware threats. A random forest classifier trained
using noninvasive measurements of current, voltage, and power attributes of the
IoT device was proposed to detect both covert channel attacks and power depletion
attacks [93]. Baibhab et. al [94] proposed using a deep neural network (DNN)-
based authentication method for IoT devices that uses the inherent variations in
the RF signals of an RF physically unclonable function (RF-PUF) for training. The
area of ML-based HT detection in IoT systems is an emerging research area and
continues to receive significant research focus from both the academic and industrial
communities.

AI-Based Hardware Security Methods for Internet-of-Things Applications 405

7 Leveraging 3D Integration for Hardware Security in IoT
Devices

An emerging area for IoT applications has been the integration of 3D IC technology
for IoT device construction. The fact that security is not the main functionality
of an IoT device means that an even lesser portion of its computing power is
available for security. Security measures implemented in traditional computers, such
as cryptography, present a challenge from this context when applied in IoT devices.
Further, due to the heterogeneity of devices, the power budget may not be enough
to implement sophisticated security features in IoT paradigm. Many studies have
shown that side-channels in IoT devices are easy to obtain and hard to defend
against; hence, addressing side-channel leakage is crucial. Although various threats
challenge IoT security, the root of trust starts from the hardware [95]. High-level
approaches cannot stop these attacks without trusted and authenticated IoT devices.
As many IoT devices are small in size, low in computation capabilities, and powered
by low-capacity batteries, we need to rethink the trusted environment for IoT.

Three-dimensional (3D) integration [96] is an emerging technology to ensure the
growth in transistor density and performance expected for future ICs. 3D integration
and similar forms of die-level integration provide novel design methodologies to
increase transistor density, reduce interconnect distances, and integrate additional
system components. 3D integration covers various technologies, from interposer-
based 2.5D methodology to monolithic sequential integration, but 3D stacked
die-level integration, based on microbumps and Through-Silicon Vias (TSV), is
widely seen as one of the most promising technologies for meeting future needs.
In this methodology, separate dies are fabricated using standard lithography, TSVs
are added (during or after lithography), individual dies or wafers are thinned, and
3D stacks are formed through alignment and bonding. The trend in 3D packaging
technologies is shown in Fig. 7. 3D integration has attracted significant attention to
developing diverse computing platforms such as high-performance processors, low-
power systems-on-chip (SoCs), and portable devices during the past two decades.
Recently, wireless approach has been introduced to replace TSVs with fabricated
inductive coupling links (ICLs) in each of the layers of a 3D IC, providing

Fig. 7 3D packaging technology is expected to transition from current wire bond SiP to high-
bandwidth TSV-based die stacking, and eventually to full monolithic integration

406 J. Dofe and W. Danesh

wireless 3D integration [97]. ICLs enable contactless 3D integration, wherein AC
data or power transmission between the layers is performed by electromagnetic
(EM) coupling between planar inductors fabricated in the back-end-of-line (BEOL)
interconnect layers of each die.

Low-power consumption, small form factor, and multifunctionality are required
for embedded devices in loT, and heterogeneous 3D integration can provide
these attributes. Hybrid integration technology of complementary metal-oxide–
semiconductors, microelectromechanical systems (MEMS), and photonic circuits
for optoelectronic heterogeneous integrated systems on an LSI wafer is developed
in [98]. 3D integration is not yet used in IoT devices. 3D integrated circuits (3D ICs)
include several heterogeneous layers in a stacked architecture in the chip layout and
provide a promising paradigm for secure, heterogeneous 3D integration suitable
for IoT devices. 3D technology provides various advantages such as heterogeneous
integration [99], split manufacturing [100, 101], disparate technologies for IoT like
MEMS sensors [102], and others.

3D integration provides the following benefits for their application in the IoT
paradigm. The overview of the 3D structure for IoT devices is shown in Fig. 8 [103].

Fig. 8 3D structure for IoT
devices

AI-Based Hardware Security Methods for Internet-of-Things Applications 407

1. Separate security plane using 3D stack: Sherwood et al. [104] introduce a
novel architecture using a separate control plane, stacked using 3D integration
that provides security mechanisms to protect the design from explicit and implicit
channels of information leakage. 3D will provide much higher integration,
bringing multiple CPUs, memory blocks, and cryptographic engines together.
Hence, the side-channel information will become noisy, making the attacks very
challenging. If the control (security) plane is placed in the middle stack of 3D
IC for fault prevention, it will be unlikely to inject reliable faults to carry out
successful fault attacks.

2. Shielding side-channels with 3D stacking: In this approach, authors utilize
intrinsic characteristics of 3D chip and dynamic shielding to hide the security-
related activities on the chip [105]. They propose to use a microcontroller unit
to produce complementary activity patterns, dynamically thwarting side-channel
information leakage.

3. Intrinsic power distribution network (PDN) noise to defeat SCA in 3D ICs:
In this work, the authors demonstrate that 3D PDN introduces noise to the
power profile of a crypto unit that depends on the load switching activities, PDN
topology, and crypto module deployment in the 3D chip. Using real 3D PDNs and
through-silicon-vias (TSVs) models, we performed quantitative experimentation
to exploit intrinsic noise to defeat the side-channel attacks [106, 107]. In the
method shown in Fig. 9, we divide the crypto unit into four subunits (we can use
multiple). Each subunit is driven by a local supply voltage V DDi (i = 1, 2, 3, 4).
We utilize a crossbar to connect the local VDD pins with the PDN nodes close to
four power TSVs. Due to the nonuniform switching activities in every 3D plane,
each TSV passes a unique voltage from other 3D planes to the plane carrying the
crypto unit. The effect of parasitic resistance and capacitance (RC) of the metal
wire between the power grid and the local VDD pin further increases the variance
of the four VDDs for the crypto unit.

4. Energy harvesting using solar cell: Many IoT devices will be battery operated
or self-powered. 3D integration provides an opportunity to use alternate forms of

Fig. 9 Proposed
countermeasure against CPA
attacks in 3D ICs

408 J. Dofe and W. Danesh

energy like solar, electromagnetic, thermal, and others, because of its heteroge-
neous nature.

8 Discussion

The Internet-of-Things (IoT) has radically changed how we interact with the
world around us. IoT devices have had widespread applications in many fields of
production and social living, such as healthcare, energy and industrial automation,
and military application, to name a few. While the benefits of IoT systems are
undeniable, they have disadvantages as well. Conventional security measures are
infeasible in IoT deployments due to their low-power, heterogeneous, and resource-
constrained nature. In addition, due to the geographical redistribution of the IC
design cycle and the involvement of untrusted entities in the design process,
hardware attacks in IoT systems are becoming a serious threat. The heterogeneous
nature of IoT systems introduces multiple attack vectors that an attacker can
exploit for hardware attacks, especially side-channel attacks and hardware Trojan
insertions. A great deal of research focuses on software, network, and cloud security
concerning IoT; however, hardware security in these devices has been overlooked.
In this chapter, we have discussed the existing countermeasures for individual
side-channel attacks (SCA) and HT insertions and unified hardening approaches
that benefit IoT devices because of area footprint and power constraints. Machine
learning-based hardware security countermeasures that have been extensively used
in SCA attack countermeasures and HT detection have been thoroughly discussed.
Furthermore, we proposed to use 3D integration technology for developing a
secure IoT platform. 3D integration technology provides various advantages such
as heterogeneous integration, high-performance, low-power, multifunctionality, and
small form factor integration, making it the best choice for developing secure IoT
platforms. We hope this chapter stimulates the research community in academia and
industry to further investigate the new hardware security approaches and improve
existing ones.

References

1. Ray, S., Jin, Y., Raychowdhury, A.: The changing computing paradigm with Internet of
Things: a tutorial introduction. IEEE Design Test 33(2), 76–96 (2016)

2. Bastos, D., Shackleton, M., El-Moussa, F.: Internet of Things: a survey of technologies and
security risks in smart home and city environments. In: Living in the Internet of Things:
Cybersecurity of the IoT—2018, pp. 1–7 (2018)

3. Yan, Y., Oswald, E., Tryfonas, T.: Exploring potential 6LoWPAN traffic side channels.
Cryptology ePrint Archive, Report 2017/316 (2017). https://ia.cr/2017/316

4. Workshop Report by Guru Prasadh Venkataramani and Patrick Schaumont: NSFWorkshop on
side and covert channels in computing systems (2019). https://www2.seas.gwu.edu/~guruv/
workshop-report.pdf. Accessed 5 Jan 2021

 19942 55404 a 19942
55404 a

https://ia.cr/2017/316

 21232 57618 a 21232
57618 a

https://www2.seas.gwu.edu/~guruv/workshop-report.pdf
https://www2.seas.gwu.edu/~guruv/workshop-report.pdf

AI-Based Hardware Security Methods for Internet-of-Things Applications 409

5. Das, D., Maity, S., Nasir, S.B., Ghosh, S., Raychowdhury, A., Sen, S.: High efficiency power
side-channel attack immunity using noise injection in attenuated signature domain. In: 2017
IEEE International Symposium on Hardware Oriented Security and Trust (HOST), pp. 62–67
(2017)

6. Stout, W.M.S., Urias, V.E.: Challenges to securing the Internet of Things. In: 2016 IEEE
International Carnahan Conference on Security Technology (ICCST), pp. 1–8 (2016)

7. Sicari, S., Rizzardi, A., Grieco, L., Coen-Porisini, A.: Security, privacy and trust in Internet
of Things: the road ahead. Comput. Netw. 76, 146–164 (2015)

8. Al-Omary, A., Othman, A., AlSabbagh, H.M., Al-Rizzo, H.: Survey of Hardware-Based
Security support for IoT/CPS Systems (2018)

9. Roman, R., Zhou, J., Lopez, J.: On the features and challenges of security and privacy in
distributed Internet of things. Comput. Netw. 57, 2266–2279 (2013)

10. Hasegawa, K., Oya, M., Yanagisawa, M., Togawa, N.: Hardware trojans classification for
gate-level netlists based on machine learning. In: 2016 IEEE 22nd International Symposium
on On-Line Testing and Robust System Design (IOLTS), pp. 203–206 (2016)

11. Karimian, N., Tehranipoor, F., Rahman, M.T., Kelly, S., Forte, D.: Genetic algorithm for
hardware trojan detection with ring oscillator network (ron). In: 2015 IEEE International
Symposium on Technologies for Homeland Security (HST), pp. 1–6 (2015)

12. Liu, Y., Jin, Y., Nosratinia, A., Makris, Y.: Silicon demonstration of hardware trojan design
and detection in wireless cryptographic ICS. IEEE Trans. Very Large Scale Integr. Syst.
25(4), 1506–1519 (2017)

13. Xue, M., Wang, J., Hu, A.: An enhanced classification-based golden chips-free hardware
trojan detection technique. In: 2016 IEEE Asian Hardware-Oriented Security and Trust
(AsianHOST), pp. 1–6 (2016)

14. Rostami, M., Koushanfar, F., Rajendran, J., Karri, R.: Hardware security: threat models and
metrics. In: 2013 IEEE/ACM International Conference on Computer-Aided Design (ICCAD),
pp. 819–823 (2013)

15. Das, D., Sen, S.: Electromagnetic and power side-channel analysis: advanced attacks and
low-overhead generic countermeasures through white-box approach. Cryptography 4(4), 30
(2020)

16. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Advances in Cryptology—
CRYPTO’ 99, (Berlin, Heidelberg), pp. 388–397. Springer, Berlin Heidelberg (1999)

17. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and
Other Systems. In: Advances in Cryptology—CRYPTO ’96, pp. 104–113. Springer, Berlin,
Heidelberg (1996)

18. Das, D., Nath, M., Chatterjee, B., Ghosh, S., Sen, S.: STELLAR: a generic EM side-
channel attack protection through ground-up root-cause analysis. In: 2019 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), pp. 11–20 (2019)

19. Tunstall, M., Mukhopadhyay, D., Subidh Ali, S.: Differential fault analysis of the advanced
encryption standard using a single fault, pp. 224–233 (2011)

20. Fritzke, A.: Obfuscating Against Side-Channel Power Analysis Using Hiding Techniques for
AES (2012)

21. Mangard, S., Oswald, E., Popp, T.: Power analysis attacks—revealing the secrets of smart
cards (2007)

22. Agrawal, D., Archambeault, B., Rao, J.R., Rohatgi, P.: The EM side-channel(s). In: Cryp-
tographic Hardware and Embedded Systems—CHES 2002, 4th International Workshop,
Redwood Shores, CA, USA, August 13–15, 2002, Revised Papers, vol. 2523 of Lecture Notes
in Computer Science, pp. 29–45. Springer, Berlin (2002)

23. Wang, C., Cai, Y., Wang, H., Zhou, Q.: Electromagnetic equalizer: an active countermeasure
against EM side-channel attack. In: 2018 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pp. 1–8 (2018)

24. Jayasinghe, D., Ragel, R., Elkaduwe, D.: Constant time encryption as a countermeasure
against remote cache timing attacks. In: 2012 IEEE 6th International Conference on Infor-
mation and Automation for Sustainability, pp. 129–134 (2012)

410 J. Dofe and W. Danesh

25. Ge, Q., Yarom, Y., Cock, D., Heiser, G.: A survey of microarchitectural timing attacks and
countermeasures on contemporary hardware. J. Cryptogr. Eng. 8, 1–27 (2018)

26. Mozaffari-Kermani, M., Reyhani-Masoleh, A.: Concurrent structure-independent fault detec-
tion schemes for the advanced encryption standard. IEEE Trans. Comput. 59(5), 608–622
(2010)

27. Barenghi, A., Breveglieri, L., Koren, I., Naccache, D.: Fault injection attacks on cryptographic
devices: theory, practice, and countermeasures. Proc. IEEE 100(11), 3056–3076 (2012)

28. Yu, Q., Zhang, Z., Dofe, J.: Proactive Defense Against Security Threats on IoT Hardware,
ch. 18, pp. 407–433. Wiley, London (2020)

29. Bao, C., Forte, D., Srivastava, A.: On reverse engineering-based hardware trojan detection.
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 35(1), 49–57 (2016)

30. Yu, Q., Dofe, J., Zhang, Z.: Exploiting hardware obfuscation methods to prevent and detect
hardware trojans. In: 2017 IEEE 60th International Midwest Symposium on Circuits and
Systems (MWSCAS), pp. 819–822 (2017)

31. Yu, W., Köse, S.: A lightweight masked AES implementation for securing IoT against CPA
attacks. IEEE Trans. Circuits Syst. I: Regul. Pap. 64(11), 2934–2944 (2017)

32. Yang, K., Park, J., Tehranipoor, M., Bhunia, S.: Robust timing attack countermeasure on
virtual hardware. In: 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
pp. 148–153 (2018)

33. Guo, S., Wang, J., Chen, Z., Li, Y., Lu, Z.: Securing IoT space via hardware trojan detection.
IEEE Internet Things J. 7(11), 11115–11122 (2020)

34. Jedari, E., Rashidzadeh, R.: A hardware trojan detection method for IoT sensors using side
channel activity magnifier. IEEE Internet Things J. 9(6), 4507–4517 (2021)

35. Patranabis, S., Roy, D.B., Chakraborty, A., Nagar, N., Singh, A., Mukhopadhyay, D., Ghosh,
S.: Lightweight design-for-security strategies for combined countermeasures against side
channel and fault analysis in IoT applications. J. Hardw. Syst. Secur. 3(2), 103–131 (2019)

36. Moukarzel, M., Eisenbarth, T., Sunar, B.: Leech: a side-channel evaluation platform for IoT.
In: 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS),
pp. 25–28 (2017)

37. Aerabi, E., Papadimitriou, A., Hely, D.: On a side channel and fault attack concurrent
countermeasure methodology for MCU-based byte-sliced cipher implementations. In: 2019
IEEE 25th International Symposium on On-Line Testing and Robust System Design (IOLTS),
pp. 103–108 (2019)

38. Dofe, J., Pahlevanzadeh, H., Yu, Q.: A comprehensive FPGA-based assessment on fault-
resistant AES against correlation power analysis attack. J. Electron. Test. 32(5), 611–624
(2016)

39. Nagata, M.: On-chip protection of cryptographic ICs against physical side channel attacks:
invited paper. In: 2019 IEEE 13th International Conference on ASIC (ASICON), pp. 1–4
(2019)

40. Dofe, J., Frey, J., Yu, Q.: Hardware security assurance in emerging IoT applications. In: 2016
IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2050–2053 (2016)

41. Shanthi, J., Rajaram, S., et al.: Machine learning optimization techniques for 3d IC physical
design. In: Handbook of Research on Emerging Trends and Applications of Machine
Learning, pp. 47–61. IGI Global (2020)

42. Samal, S.K., Chen, G., Lim, S.K.: Machine learning based variation modeling and optimiza-
tion for 3d ICs (2016)

43. Das, S., Doppa, J.R., Kim, D.H., Pande, P.P., Chakrabarty, K.: Optimizing 3d NoC design
for energy efficiency: a machine learning approach. In: 2015 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp. 705–712 (2015)

44. Park, S.J., Bae, B., Kim, J., Swaminathan, M.: Application of machine learning for optimiza-
tion of 3-d integrated circuits and systems. IEEE Trans. Very Large Scale Integr. Syst. 25(6),
1856–1865 (2017)

45. Torun, H.M., Swaminathan, M.: Black-box optimization of 3d integrated systems using
machine learning. In: 2017 IEEE 26th Conference on Electrical Performance of Electronic
Packaging and Systems (EPEPS), pp. 1–3 (2017)

AI-Based Hardware Security Methods for Internet-of-Things Applications 411

46. Das, S., Doppa, J.R., Pande, P.P., Chakrabarty, K.: Monolithic 3d-enabled high performance
and energy efficient network-on-chip. In: 2017 IEEE International Conference on Computer
Design (ICCD), pp. 233–240 (2017)

47. Joardar, B.K., Kim, R.G., Doppa, J.R., Pande, P.P., Marculescu, D., Marculescu, R.: Learning-
based application-agnostic 3d NoC design for heterogeneous manycore systems. IEEE Trans.
Comput. 68, 852–866 (2019)

48. Lee, D., Das, S., Kim, D.H., Doppa, J.R., Pande, P.P.: Design space exploration of 3d network-
on-chip: a sensitivity-based optimization approach. J. Emerg. Technol. Comput. Syst. 14(3),
1–26 (2018)

49. Ku, B.W., Chang, K., Lim, S.K.: Compact-2d: a physical design methodology to build
commercial-quality face-to-face-bonded 3d ICs. In: Proceedings of the 2018 International
Symposium on Physical Design, ISPD ’18, (New York, NY, USA), pp. 90–97. Association
for Computing Machinery (2018)

50. Panth, S., Samadi, K., Du, Y., Lim, S.K.: Shrunk-2-d: a physical design methodology to build
commercial-quality monolithic 3-d ICs. IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst. 36(10), 1716–1724 (2017)

51. Lu, Y.-C., Pentapati, S.S.K., Zhu, L., Samadi, K., Lim, S.K.: Tp-GNN: a graph neural
network framework for tier partitioning in monolithic 3d ICs. In: Proceedings of the 57th
ACM/EDAC/IEEE Design Automation Conference, DAC ’20. IEEE Press (2020)

52. Yun, H., Yoon, J.-S., Jeong, J., Lee, S., Choi, H.-C., Baek, R.-H.: Neural network based design
optimization of 14-nm node fully-depleted SOI FET for SoC and 3DIC applications. IEEE J.
Electron Devices Soc. 8, 1272–1280 (2020)

53. Chatterjee, S., Roy, S.K., Giri, C., Rahaman, H.: Machine learning based temperature
estimation for test scheduling of 3d ICs. In: 2020 IEEE International Test Conference India,
pp. 1–8, (2020)

54. Zhang, L., Wang, H., Tan, S.X.-D.: Fast stress analysis for runtime reliability enhancement
of 3d IC using artificial neural network. In: 2016 17th International Symposium on Quality
Electronic Design (ISQED), pp. 173–178 (2016)

55. Li, Y.-S., Yu, H., Jin, H., Sarvey, T.E., Oh, H., Bakir, M.S., Swaminathan, M. and Li,
E.-P.: Dynamic thermal management for 3-d ICs with time-dependent power map using
microchannel cooling and machine learning. IEEE Trans. Comp. Packag. Manuf. Technol.
9(7), 1244–1252, 2019.

56. Pentapati, S.S.K., Ku, B.W., Lim, S.K.: ML-based wire RC prediction in monolithic 3d
ICs with an application to full-chip optimization. In: Proceedings of the 2021 International
Symposium on Physical Design, ISPD ’21, (New York, NY, USA), pp. 75–82. Association
for Computing Machinery (2021)

57. Danesh, W., Banago, J., Rahman, M.: Turning the table: using bitstream reverse engineering
to detect FPGA trojans. J. Hardw. Syst. Secur. 5(3), 237–246 (2021)

58. Johnson, A.P., Patranabis, S., Chakraborty, R.S., Mukhopadhyay, D.: Remote dynamic
partial reconfiguration: a threat to internet-of-things and embedded security applications.
Microprocess. Microsyst. 52, 131–144 (2017)

59. Thomas, L., Bhat, S.: Machine learning and deep learning techniques for IoT-based intrusion
detection systems: a literature review. Int. J. Manag. Technol. Soc. Sci. 6(2), 296–314 (2021)

60. Asharf, J., Moustafa, N., Khurshid, H., Debie, E., Haider, W., Wahab, A.: A review of
intrusion detection systems using machine and deep learning in internet of things: challenges,
solutions and future directions. Electronics 9, 1177 (2020)

61. Tsimenidis, S., Lagkas, T., Rantos, K.: Deep learning in IoT intrusion detection. J. Netw. Syst.
Manag. 30, 1–40 (2022)

62. Liu, Y., Volanis, G., Huang, K., Makris, Y.: Concurrent hardware trojan detection in wireless
cryptographic ICs. In: 2015 IEEE International Test Conference (ITC), pp. 1–8 (2015)

63. Chen, X., Wang, L., Wang, Y., Liu, Y., Yang, H.: A general framework for hardware trojan
detection in digital circuits by statistical learning algorithms. IEEE Trans. Comput.-Aided
Design Integr.Circuits Syst. 36(10), 1633–1646 (2017)

412 J. Dofe and W. Danesh

64. Wang, S., Dong, X., Sun, K., Cui, Q., Li, D., He, C.: Hardware trojan detection based on ELM
neural network. In: 2016 First IEEE International Conference on Computer Communication
and the Internet (ICCCI), pp. 400–403 (2016)

65. Lodhi, F.K., Hasan, S.R., Hasan, O., Awwadl, F.: Power profiling of microcontroller’s
instruction set for runtime hardware trojans detection without golden circuit models. In:
Design, Automation Test in Europe Conference Exhibition (DATE), 2017, pp. 294–297
(2017)

66. Lodhi, F.K., Abbasi, I., Khalid, F., Hasan, O., Awwad, F., Hasan, S.R.: A self-learning
framework to detect the intruded integrated circuits. In: 2016 IEEE International Symposium
on Circuits and Systems (ISCAS), pp. 1702–1705 (2016)

67. Nowroz, A.N., Hu, K., Koushanfar, F., Reda, S.: Novel techniques for high-sensitivity
hardware trojan detection using thermal and power maps. IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst. 33(12), 1792–1805 (2014)

68. Cakır, B., Malik, S.: Hardware trojan detection for gate-level ICs using signal correlation
based clustering. In: 2015 Design, Automation Test in Europe Conference Exhibition (DATE),
pp. 471–476 (2015)

69. Marcelli, A., Restifo, M., Sanchez, E., Squillero, G.: An evolutionary approach to hardware
encryption and trojan-horse mitigation. In: Design, Automation Test in Europe Conference
Exhibition (DATE), 2017, pp. 1593–1598 (2017)

70. Wang, C., Zhao, S., Wang, X., Luo, M., Yang, M.: A neural network trojan detection method
based on particle swarm optimization. 2018 14th IEEE International Conference on Solid-
State and Integrated Circuit Technology (ICSICT), pp. 1–3 (2018)

71. Bao, C., Forte, D., Srivastava, A.: On application of one-class SVM to reverse engineering-
based hardware trojan detection. In: Fifteenth International Symposium on Quality Electronic
Design, pp. 47–54 (2014)

72. Li, W., Wasson, Z., Seshia, S.A.: Reverse engineering circuits using behavioral pattern
mining. In: 2012 IEEE International Symposium on Hardware-Oriented Security and Trust,
pp. 83–88 (2012)

73. Zhou, E.-R., Li, S.-Q., Chen, J.-H., Ni, L., Zhao, Z.-X., Li, J.: A novel detection method
for hardware trojan in third party ip cores. In: 2016 International Conference on Information
System and Artificial Intelligence (ISAI), pp. 528–532 (2016)

74. Hasegawa, K., Yanagisawa, M., Togawa, N.: Trojan-feature extraction at gate-level netlists
and its application to hardware-trojan detection using random forest classifier. In: 2017 IEEE
International Symposium on Circuits and Systems (ISCAS), pp. 1–4 (2017)

75. Hoque, T., Cruz, J., Chakraborty, P., Bhunia, S.: Hardware IP trust validation: learn (the
untrustworthy), and verify. In: 2018 IEEE International Test Conference (ITC), pp. 1–10
(2018)

76. Li, J., Ni, L., Chen, J., Zhou, E.: A novel hardware trojan detection based on bp neural
network. In: 2016 2nd IEEE International Conference on Computer and Communications
(ICCC), pp. 2790–2794 (2016)

77. Jap, D., He, W., Bhasin, S.: Supervised and unsupervised machine learning for side-channel
based trojan detection. In: 2016 IEEE 27th International Conference on Application-specific
Systems, Architectures and Processors (ASAP), pp. 17–24 (2016)

78. Iwase, T., Nozaki, Y., Yoshikawa, M., Kumaki, T.: Detection technique for hardware trojans
using machine learning in frequency domain. In: 2015 IEEE 4th Global Conference on
Consumer Electronics (GCCE), pp. 185–186 (2015)

79. Dong, C., He, G., Liu, X., Yang, Y., Guo, W.: A multi-layer hardware trojan protection
framework for IoT chips. IEEE Access 7, 23628–23639 (2019)

80. Shanyour, B., Tragoudas, S.: Detection of low power trojans in standard cell designs using
built-in current sensors. In: 2018 IEEE International Test Conference (ITC), pp. 1–10 (2018)

81. Liu, Y., Huang, K., Makris, Y.: Hardware trojan detection through golden chip-free statistical
side-channel fingerprinting. In: Proceedings of the 51st Annual Design Automation Confer-
ence, DAC ’14, (NewYork, NY, USA), pp. 1–6. Association for ComputingMachinery (2014)

AI-Based Hardware Security Methods for Internet-of-Things Applications 413

82. Kulkarni, A., Pino, Y., Mohsenin, T.: SVM-based real-time hardware trojan detection for
many-core platform. In: 2016 17th International Symposium on Quality Electronic Design
(ISQED), pp. 362–367 (2016)

83. Madden, K., Harkin, J., McDaid, L., Nugent, C.: Adding security to networks-on-chip using
neural networks. In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI),
pp. 1299–1306 (2018)

84. Kulkarni, A., Pino, Y., French, M., Mohsenin, T.: Real-time anomaly detection framework for
many-core router through machine-learning techniques. J. Emerg. Technol. Comput. Syst. 13,
1–22 (2016)

85. Jin, Y., Maliuk, D., Makris, Y.: Post-deployment trust evaluation in wireless cryptographic
ICs. In: 2012 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 965–
970 (2012)

86. Guha, K., Saha, D., Chakrabarti, A.: RTNA: securing SOC architectures from confidentiality
attacks at runtime using ART1 neural networks. In: 2015 19th International Symposium on
VLSI Design and Test, pp. 1–6 (2015)

87. Kulkarni, A., Xu, C.: A deep learning approach in optical inspection to detect hidden hardware
trojans and secure cybersecurity in electronics manufacturing supply chains. Front. Mech.
Eng. 7, 709924 (2021)

88. Sharma, R., Sharma, G.K., Pattanaik, M.: A few shot learning based approach for hardware
trojan detection using deep Siamese CNN. In: 2021 34th International Conference on VLSI
Design and 2021 20th International Conference on Embedded Systems (VLSID), pp. 163–
168 (2021)

89. Pan, Z., Mishra, P.: Automated test generation for hardware trojan detection using rein-
forcement learning. In: 2021 26th Asia and South Pacific Design Automation Conference
(ASP-DAC), pp. 408–413 (2021)

90. Yu, S., Gu, C., Liu, W., O’Neill, M.: Deep learning-based hardware trojan detection with
block-based netlist information extraction. IEEE Trans. Emerg. Topics Compu. (2021).

91. Yasaei, R., Yu, S.-Y., Al Faruque, M.A.: GNN4TJ: graph neural networks for hardware trojan
detection at register transfer level. In: 2021 Design, Automation Test in Europe Conference
Exhibition (DATE), pp. 1504–1509 (2021)

92. Sayadi, H., Makrani, H.M., Randive, O., PD, S.M., Rafatirad, S., Homayoun, H.: Customized
machine learning-based hardware-assisted malware detection in embedded devices. In: 2018
17th IEEE International Conference on Trust, Security and Privacy in Computing and
Communications/12th IEEE International Conference on Big Data Science and Engineering
(TrustCom/BigDataSE), pp. 1685–1688 (2018)

93. Mohammed, H., Odetola, T.A., Hasan, S.R., Stissi, S., Garlin, I., Awwad, F.: (hiadiot):
Hardware intrinsic attack detection in internet of things; leveraging power profiling. In: 2019
IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 852–
855 (2019)

94. Chatterjee, B., Das, D., Maity, S., Sen, S.: RF-PUF: Enhancing IoT security through
authentication of wireless nodes using in situ machine learning. IEEE Internet Things J. 6(1),
388–398 (2019)

95. Rostami, M., Koushanfar, F., Karri, R.: A primer on hardware security: models, methods, and
metrics. Proc. IEEE 102(8), 1283–1295 (2014)

96. Lu, J.-Q.: 3-D hyperintegration and packaging technologies for micro-nano systems. Proc.
IEEE 97(1), 18–30 (2009

97. Dofe, J., Danesh, W.: LC-physical unclonable function in wireless 3d IC for securing internet
of things devices. In: 2021 IEEE 34th International System-on-Chip Conference (SOCC),
pp. 67–70 (2021)

98. Lee, K.-W., Noriki, A., Kiyoyama, K., Fukushima, T., Tanaka, T., Koyanagi, M.: Three-
dimensional hybrid integration technology of CMOS, MEMS, and photonics circuits for
optoelectronic heterogeneous integrated systems. IEEE Trans. Electron Devices 58(3), 748–
757 (2011)

414 J. Dofe and W. Danesh

99. Dofe, J., Gu, P., Stow, D., Yu, Q., Kursun, E., Xie, Y.: Security threats and countermeasures
in three-dimensional integrated circuits, pp. 321–326 (2017)

100. Xie, Y., Bao, C., Liu, Y., Srivastava, A.: 2.5D/3D integration technologies for circuit
obfuscation. In: 2016 17th International Workshop on Microprocessor and SOC Test and
Verification (MTV), pp. 39–44 (2016)

101. Dofe, J., Yu, Q., Wang, H., Salman, E.: Hardware security threats and potential countermea-
sures in emerging 3d ICs. In: Proceedings of the 26th Edition on Great Lakes Symposium
on VLSI, GLSVLSI ’16, (New York, NY, USA), pp. 69–74. Association for Computing
Machinery (2016)

102. Wang, Z.: 3-D integration and through-silicon vias in MEMS and microsensors. J. Microelec-
tromech. Syst 24, 1211–1244 (2015)

103. Dofe, J., Nguyen, A., Nguyen, A.: Unified countermeasures against physical attacks in
internet of things—a survey. In: 2021 IEEE International Symposium on Smart Electronic
Systems (iSES), pp. 194–199 (2021)

104. J. Valamehr, T. Huffmire, C. Irvine, R. Kastner, C. Koc, T. Levin, T. Sherwood: A qualitative
security analysis of a new class of 3-D integrated crypto co-processors, vol. 6805, pp. 364–
382 (2012)

105. Gu, P., Li, S., Stow, D., Barnes, R., Liu, L., Xie, Y., Kursun, E.: Leveraging 3D technologies
for hardware security: opportunities and challenges. In: 2016 International Great Lakes
Symposium on VLSI (GLSVLSI), pp. 347–352 (2016)

106. Dofe, J., Yu, Q.: Exploiting PDN noise to thwart correlation power analysis attacks in 3D
ICs. In: 2018 ACM/IEEE International Workshop on System Level Interconnect Prediction
(SLIP), pp. 1–6 (2018)

107. Zhang, Z., Dofe, J., Yu, Q.: Improving power analysis attack resistance using intrinsic noise
in 3D ICs. Integration 73, 30–42 (2020)

Enabling Edge Computing Using
Emerging Memory Technologies: From
Device to Architecture

Arman Roohi, Shaahin Angizi, and Deliang Fan

1 Introduction and Motivations

1.1 Von-Neumann vs. Non-Von-Neumann Architectures

In the past decades, the amount of data required to be processed by computing
systems has been dramatically increasing to exascale (1018 bytes/s or flops) [1, 2].
However, the incapacity of modern computing platforms to deliver both energy-
efficient and high-performance computing solutions leads to a gap between meets
and needs [3]. Unfortunately, with current Boolean logic and Complementary Metal
Oxide Semiconductor (CMOS)-based computing platforms, such a gap will keep
widening mainly due to limitations in both devices and architectures. First, at the
device level, CMOS Boolean systems’ computing efficiency and performance are
beginning to stall due to approaching the end of Moore’s law. Because of reaching
its power wall, i.e., huge leakage power consumption limits the performance growth
when technology scales down [1, 4]. For example, the highest power efficiency of
modern CPU and GPU systems is only ∼10GFLOPS/W [5], which is challenging
to improve substantially in the predictable scaled technology node. Second, at

A. Roohi (�)
School of Computing, University of Nebraska-Lincoln, Lincoln, NE, USA
e-mail: aroohi@unl.edu

S. Angizi
Department of Electrical and Computer Engineering, New Jersey Institute of Technology,
Newark, NJ, USA
e-mail: shaahin.angizi@njit.edu

D. Fan
School of Electrical; Computer and Energy Engineering, Arizona State University, Tempe, AZ,
USA
e-mail: dfan@asu.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Iranmanesh (ed.), Frontiers of Quality Electronic Design (QED),
https://doi.org/10.1007/978-3-031-16344-9_11

415

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16344-9_11&domain=pdf

 885 46882 a 885 46882 a

mailto:aroohi@unl.edu

 885
51863 a 885 51863 a

mailto:shaahin.angizi@njit.edu

 885
56845 a 885 56845 a

mailto:dfan@asu.edu

 -2016
61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-16344-9_11

416 A. Roohi et al.

Fig. 1 (a) General von-Neumann computing architecture in CPU and GPU vs. (b) processing-in-
memory architecture [6]

the architecture level, as depicted in Fig. 1a, today’s computers are based on
Von-Neumann architecture with separate computing and memory units connecting
via buses, which leads to the memory wall issue. This bottleneck imposes long
memory access latency, limited memory bandwidth, energy-hungry data transfer,
and immense leakage power for holding data in volatile memory [6, 7]. This comes
from the fact that there is a massive number of instruction fetch and data transfer
between computing and memory units. Therefore, there is a great need to leverage
innovations from both device and architecture to build intelligent, reconfigurable,
energy-efficient, and high-performance computing platforms integrating memory
and logic to break the existing memory and power walls.

The processing-in-memory (PIM) architecture, a potentially viable way to solve
the memory wall challenge, has been well explored [8, 9]. The key concept behind
PIM, as depicted in Fig. 1b, is to embed logic units within memory to process
data by leveraging the inherent parallel computing mechanism and exploiting large
internal memory bandwidth. It could lead to remarkable savings in off-chip data
communication energy and latency. Ideally, the PIM architectures must be capable
of performing bulk bit-wise operations that are needed in many big data applications
[10–12]. Generally, at the sub-array level, a PIM holds the operand rows, e.g.,
#1 and #2 shown in Fig. 1b in two target rows of the memory. The PIM’s row
decoder simultaneously activates the target rows by receiving a particular instruction
from the CPU side. It performs the bit-wise logic function between all the bit-
cells in two rows, storing two operands. This could be achieved by modifying
memory components at Sense Amplifiers (SA) level [10, 13, 14], memory bit-
cell level [15], or even adding combinational circuits after SA [13, 14, 16, 17].
The proposals for exploiting SRAM-based [18] PIM architectures can be found
in recent literature. However, PIM in the context of main memory (DRAM-based
[9]) has drawn much more attention in recent years, mainly due to larger memory

Enabling Edge Computing Using Emerging Memory Technologies: From. . . 417

capacities and off-chip data transfer reduction as opposed to SRAM-based PIM.
However, existing DRAM-based PIM architectures have significant shortcomings,
e.g., high refresh/leakage power, multi-cycle logic operations, overwritten operand
data, operand locality, etc. The PIM architecture has become even more intriguing
when integrated with emerging nonvolatile memory (NVM) technology, such as
Phase Change Memory (PCM) [19] and resistive RAM (ReRAM) [8]. ReRAM
and PCM offer more packing density (∼ 2 − 4×) than DRAM and appear to be
competitive alternatives to DRAM. However, they suffer from slower and more
power-hungry writing operations than DRAM [19]. Magnetic RAM (MRAM)
technology in emerging NVM technologies is another promising high-performance
candidate for last-level cache and main memory due to its ultralow switching energy,
nonvolatility, superior endurance, excellent retention time, high integration density,
and compatibility with CMOS technology. Meanwhile, MRAM technology is in the
process of commercialization [20]. Hence, PIM in the context of different NVMs,
without sacrificing memory capacity, can open a new way to realize efficient PIM
paradigms [10, 17].

1.2 Normally Off Computing Systems

CMOS scaling challenges have inspired considerable advancements in reduced-
power datapath designs. Practical techniques to reduce dynamic energy consump-
tion, such as low-voltage operation, clock gating, and efficient RTL design, have
been widely successful [21, 22]. Nonetheless, an increasing number of modern
intelligent systems from many-core dies to Internet-of-Things (IoT) components,
making the standby power dissipation of such systems a critical issue, especially
under the deep-scaling impacts of CMOS process technology. For this reason, vari-
ous state-of-the-artNormally-off Computing (NoC) techniques have been developed,
which provides promising features such as zero standby power consumption during
idle time, instant wake-up time, and resilience to power failure [23–25]. Hence,
nonvolatile elements, including nonvolatile memories (NVMs) and nonvolatile
flip-flops (NV-FFs), have received increasing attention because of their utility
in designing an NoC architecture [26]. Various hardware-assisted approaches for
normally off computing have recently been promulgated [27]. For instance, in [28],
all of the conventional FFs are replaced by NV-FFs, while in [27], many small NV
memory arrays are utilized to backup and restore data. Although NV elements offer
the desirable feature of nonvolatility, their advantages are achieved at the cost of
increased write-power consumption. Hence, a comprehensive datapath synthesis
strategy is essential. In previous approaches, the roles and costs of the additional
middleware and checkpointing operations1 needed have been prominent [29, 30]. In

1 Almost all the previous checkpointing techniques suffer from data movement overhead, new
programming paradigms, and internal and external consistency.

418 A. Roohi et al.

addition to the overheads resulting from the checkpointing operations themselves,
existing approaches may suffer from leakage occurring between the checkpointing
operations made to nonvolatile backup storage [31].

2 Emerging Magnetic RAM (MRAM) Technology

Recent experiments and fabrication of nanomagnets demonstrate the ability to
switch the magnetization using ultrasmall current-induced Spin-Transfer Torque
(STT) or spin-orbit torque (SOT) with high-speed (sub-nanosecond), long-
endurance (10 years), and less than f J/bit memory write energy (close to SRAM)
[32]. Various nanoscale spintronic devices have been explored to realize nonvolatile
storage devices for MRAM applications. They include but not limited to Magnetic
Tunnel Junction (MTJ) [33], Domain Wall Motion (DWM) device [34], SOT-MTJ
memory device [35, 36], and Skyrmions. Several companies, including IBM [37]
and Everspin [20], are developing MRAM chips for next-generation universal
NVM systems. In early 2016, Everspin announced 256Mb STT-MRAM chips
based on MTJ with interface speed similar to DRAM and was planning 1Gb
chips in the near future [20]. Toshiba and SK Hynix codeveloped a 4-Gbit STT-
MRAM chip prototype and demonstrated it at IEDM 2016 [38]. In [39], a field-free
switching SOT-MRAM on a 300mm wafer was demonstrated with reliable sub-ns
switching and CMOS-compatible processes. In [40], a SOT-MRAM achieving 60-
MHz write and 90-MHz was fabricated under a 55-nm CMOS process, and then
the first successful example of large-capacity SOT-MRAM fabrication (4 kB) on
a single wafer is shown in [40]. With the significant advancement of fabrication
technology and commercialization progress, MRAM is becoming a next-generation
universal NVM technology, with potential applications in both last-level cache and
main memory. The comparison also reveals that the latency of the STT-MRAM is
sufficient to meet the requirements of the last-level caches in the high-performance
computing domain, which operate around 100MHz clock frequency [41]. It will
significantly change the state-of-the-art memory hierarchy due to its nonvolatility,
zero leakage power in un-accessed bit-cell, high integration density (2× more
than SRAM), excellent endurance (∼1015 cycles [42]), and compatibility with the
CMOS fabrication process (back end of the line) [33].

2.1 STT-MRAM

A typical Magnetic Tunnel Junction (MTJ) structure [43, 44], as shown in Fig. 2a,
consists of two ferromagnetic layers with a tunnel barrier sandwiched between them.
Due to the Tunnel MagnetoResistance (TMR) effect [32, 44], the resistance of MTJ
is high when the magnetizations of two ferromagnetic layers are in an antiparallel
state or vice versa. The TMR ratio is defined as (RAP-RP)/RP, which may vary

Enabling Edge Computing Using Emerging Memory Technologies: From. . . 419

Fig. 2 (a) Device structure of conventional Magnetic Tunnel Junction (MTJ) in parallel and
antiparallel states, with Spin-Transfer Torque (STT) switching scheme. (b) 1T1R STT-MRAM.
(c) Biasing condition for memory operations

from 10% to 400% depending on materials and temperature. RAP and RP denote
antiparallel and parallel MTJ’s resistance, respectively. Thus, data are stored and
determined by the magnetization direction in the free layer, which can be flipped
through current-induced STT. Note that the MTJ with Perpendicular Magnetic
Anisotropy (PMA) is used in this chapter. The 1T1R memory bit-cell is widely used
in the typical MRAM design, as depicted in Fig. 2b, which is controlled by Bit Line
(BL), Word Line (WL), and Source Line (SL). The biasing conditions of memory
read/write are presented in Fig. 2c. For both memory read and write operations,
the WL is enabled, which turns on the access transistor. The corresponding WL
is activated using a Memory Row Decoder (MRD) to write data in a memory cell.
Then appropriate voltage difference (Fig. 2c) is applied to the corresponding BL and
SL using the Write Driver (WD) connected to them (the write current path is shown
in Fig. 2b), leading to MTJ resistance in High-RAP (/Low-RP). For memory read, a
sensing current (IREAD) is applied on the BL and consequently generates a sensing
voltage, which can be detected by a Sense Amplifier (SA).

For the STT-MRAM modeling in this chapter, the Non-Equilibrium Green’s
Function (NEGF) and Landau-Lifshitz-Gilbert (LLG) equation are used before the
circuit-level simulation. The magnetization dynamics of MTJ’s Free Layer-FL (m)
can be modeled as [45–47]:

dm

dt
= −|γ |m × Heff + α

(

m × dm

dt

)

+ |γ |β(m × mp × m) − |γ |βε′(m × mp) (1)

β = | h̄

2μ0e
| IcP

AMTJtFLMs

(2)

where h̄ is the reduced plank constant, γ is the gyromagnetic ratio, Ic is the charge
current flowing through MTJ, tFL is the thickness of the free layer, ε′ is the second
Spin transfer torque coefficient, and Heff is the effective magnetic field. P is the

420 A. Roohi et al.

Fig. 3 (a) The normalized magnetization switching in x-, y- and z-axis. (b) The Resistance-Area
product w.r.t the thickness of MTJ tunnel oxide (tox)

effective polarization factor, AMTJ is the cross-sectional area of MTJ, and mp is the
unit polarization direction. Figure 3a shows the normalized magnetization dynamics
of the free layer in x-, y-, and z-axis when performing the STT-MRAMwrite scheme
as described earlier.

Based on the simulation parameters listed in Table 1, the magnetization dynamic
from the LLG equation can provide the relative angle θ between the magnetization
of Pinned Layer-PL (ẑ) and Free Layer-FL (m). Therefore, the real-time conduc-
tance of MTJ (GMTJ) is given by:

GMTJ = GP + GAP
2

+ GP − GAP
2

cos θ (3)

where GP and GAP are the conductance of MTJ in parallel (θ = 0) and antiparallel
(θ = 180) configurations. Both GP and GAP are obtained from the atomistic level
simulation framework based on Non-Equilibrium Green’s Function (NEGF) [48],
while the Resistance-Area product with respect to the thickness of MTJ tunnel oxide
is shown in Fig. 3b.

2.2 SOT-MRAM

As shown in Fig. 2b, in the typical STT-MRAM design, only one access transistor
is used for both memory write and read. Due to the intrinsic device physics and
structure, this suffers several limitations, including long write latency (>10-ns), high
write current (>2 MA/cm2), and thus considerable writing power and area (due to
large transistor sizing). Moreover, shared read and write paths causing read-write
conflict; asymmetric writing of data ‘0’ and ‘1’ due to different spin polarization
factor of fixed and free ferromagnetic layers; reliability concern due to tunnel oxide
breakdown in large write voltage [3, 49].

Enabling Edge Computing Using Emerging Memory Technologies: From. . . 421

Table 1 Simulations parameters for MTJ

Parameter Value

Free layer dimension (W × L × t)FL 65 × 65 × 2 nm3

Polarization factor, P 0.4

Gilbert Damping Factor, α 0.007

Saturation Magnetization, Ms 850 kA/m

Oxide thickness, tox 1.5 nm

Resistance-Area product, RAp / T MR 10.58 � · μm2/171.2%

Supply voltage 1V

CMOS technology 45 nm

STT-MRAM cell area 48F2

Access transistor width 9F

Cell aspect Ratio 1.34

In order to address the above limitations of STT-MRAM, the recent application
of SOT has been explored to switch the adjacent MTJ free layer magnetization (i.e.,
programming MTJ resistance) much more energy efficient in I/FM/HM structure
(I: insulator, FM: ferromagnet, and HM: heavy metal) [50]. Figure 4a presents
the device structure of SOT-MTJ,2 which is an MTJ mounted on a heavy metal
substrate. When electrons flow through the nonmagnetic heavy metal substrate (in
the ±y direction) with strong spin-orbit coupling, the electrons with the reverse
direction of rotation accumulate on the opposite surfaces of HM. Thus, a pure spin
current (Is) in the ±z direction is generated, which exerts an SOT on the adjacent
FM and switches the magnetization. The relationship between the generated spin
current (Is) and the applied charge current (Ic) can be expressed as:

Is = Pshe(σ × Ic) (4)

Pshe = Is

Ic

= AFM

AHM

θsh

(

1 − sech

(
tHM

λsf

))

(5)

where Pshe is spin Hall injection efficiency. σ is the electron spin polarization,
transverse to both the spin current and charge current directions. AFM is the area of
the adjacent FM area, and AHM is the cross-sectional area of HM in the direction of
current flow. θsh is the spin Hall angle, which is defined as the ratio of generated
spin current density to the applied charge current density. tHM is the thickness
of HM substrate, and λsf is the spin-flip length. Recently, large spin Hall angle
was experimentally demonstrated in different heavy metal materials, such as Pt
[51], β-Ta [52], β-W [53], and CuBi alloys. High magnetization switching speed
(<1 ns) of SOT-MTJ is achieved mainly due to larger spin injection efficiency than
the conventional MTJ with an STT-switching scheme. Therefore, choosing a SOT-

2 Note: SOT-MTJ and SHE-MTJ are used interchangeably in this chapter book.

422 A. Roohi et al.

Fig. 4 (a) The stacking device structure of MTJ and heavy metal substrate, which uses spin-orbit
torque-induced magnetization switching scheme. (b) Bit-cell schematic of SOT-MRAM with two
access transistors (1R/1W). (c) Biasing condition for memory operations

induced switching scheme is much more efficient as the next-generation MRAM
design. Figure 4b shows the corresponding 2T1R SOT-MRAM bit-cell design with
separated write and read access transistors, correspondingly controlled by Write
Bit Line (WBL), Write Word Line (WWL), Read Bit Line (RBL), Read Word
Line (RWL), and the shared Source Line (SL). The memory read and write biasing
conditions are presented in Fig. 4c. WWL is pulled high for memory write, which
turns on the write access transistor. Then, to write ‘1’ (or ‘0’), a positive voltage
VWP (or negative voltage VWN) is applied to WBL with SL connected to ground.
For memory read, RWL is set to VDD, and the read access transistor is switched
on. A sensing current (Isense) flowing through SOT-MTJ consequently generates a
sensing voltage (Vsense) on RBL, which can be detected by the SA.

The magnetization dynamics of SOT-MTJ’s FL (m) can be also modeled by the
modified LLG equation, which can be mathematically described as:

(1 + α2)
dm

dt
= −|γ |μ0m × H − α|γ |m × m × H − m × m × Is

qNs

+ αm × Is

qNs

(6)

where α is Gilbert damping factor, γ is the gyromagnetic ratio, andμ0 is the vacuum
permeability. H is the effective field, which includes dipolar coupling, demagne-
tization, thermal noise, and anisotropy fields. Ns = MsV/μB is the number of
spins, μB is Bohr magneton, and Ms and V are the saturation magnetization and
volume of the ferromagnet, respectively. The simulation parameters are listed in
Table 2. To realize the desired 1 ns switching speed, about 130μA writing current
is required, which leads to 1V and −0.35V for VWP and VWN, respectively. The
magnetization dynamic from the LLG equation can provide the relative angle θ

between the magnetization of PL and FL. Therefore, the real-time conductance of
MTJ (GMT J) is given by the Eq. (3), where again both GP and GAP are obtained
from the atomistic level simulation framework based on Non-Equilibrium Green’s
Function (NEGF) [48]. The Resistance-Area product with respect to the thickness
of MTJ tunnel oxide is listed in Table 2.

Enabling Edge Computing Using Emerging Memory Technologies: From. . . 423

Table 2 Simulation parameters for SOT-MTJ

Parameter Value

Free layer dimension,(W × L × t)FM 60 × 40 × 2 nm3

SHM dimension, (W × L × t)HM 60 × 80 × 2 nm3

Demagnetization Factor, Dx,Dy,Dz 0.066, 0.911, 0.022

Spin flip length, λsf 1.4 nm

Spin Hall angle, θsh 0.3

Gilbert Damping Factor, α 0.007

Saturation Magnetization, Ms 850 kA/m

Oxide thickness, tox 1.2 nm

Resistance-Area product, RAp / T MR 10.58 � · μm2 / 171.2%

Supply voltage 1V

CMOS technology 45 nm

SOT-MRAM cell area 69F2

Access transistor width 4.5F

Cell aspect Ratio 1.91

3 Enabling Data-Intensive Computing Paradigm

3.1 General Processing-in-Memory Structure

The general memory organization to realize PIM in NVMs is shown in Fig. 5
[54, 55]. The main memory chip is basically divided into multiple banks. Each bank
consists of multiple memory matrices (mats). Banks within the same chip typically
share I/O and buffer, and banks in different chips work in a lock-step manner. The
mats are connected to a Global Row Decoder (GRD) and a shared Global Row
Buffer (GRB). Each mat consists of multiple computational memory sub-arrays
(i.e., PIM-enhanced sub-array) connected to a GRD and GRB.

According to the application type and physical address of operands within
memory, the PIM’s Controller (Ctrl) can configure the computational sub-arrays to
perform data-parallel inter-sub-array computations. Every two computational sub-
arrays share a Local Row Buffer (LRB) as well as a Digital Processing Unit (DPU)
to further process the data (if necessary) in specific applications, as will be discussed
later. Figure 6 gives an overview of the PIM’s acceleration steps. Assume input
tensors A and B (that can belong to various applications) are initially stored in Data
Banks of the memory. In the first step, either raw data or preprocessed data (by DPU)
are mapped into the computational sub-arrays in specific mats. In the second step,
parallel computational sub-arrays are designed to handle the computational load
employing PIM techniques, perform bulk bit-wise operations between tensors, and
generate the output. The results at this step can be considered the ultimate output in
data encryption or graph processing applications. Additionally, the generated data
can be further processed by DPU to generate the output for neural network-based
applications.

424 A. Roohi et al.

Fig. 5 The overall PIM architecture

Fig. 6 The PIM’s acceleration steps. The size of the computational sub-arrays could be tailored

3.2 Circuit-Level Exploration: Evolution of the MRAM-Based
PIM Platforms

3.2.1 Basic PIM Supporting (N)AND, (N)OR

In emerging resistive NVMs, like MRAM and ReRAM, the data are stored
in resistive states of memory cells as discussed in Sects. 2.1 and 2.2. In the
traditional NVM’s read operation, one selected memory cell will be activated and
compared with a reference resistance through memory SA to read out data value.
Therefore, firstly, the corresponding WL(/RWL) is activated using the Memory
Row Decoder (MRD) and the corresponding BL(/RBL) is connected to the SA
using the Memory Column Decoder (MCD) (the read current path is shown in

Enabling Edge Computing Using Emerging Memory Technologies: From. . . 425

Fig. 7 The idea of voltage comparison between Vsense and Vref for (a) memory read, (b) two-
input in-memory logic, and (c) three-input in-memory logic. Note that RMi and Ri denote the
equivalent resistance of the nonvolatile component and selecting transistor, wire, etc., respectively

Fig. 2b). The idea of voltage comparison for memory read is depicted in Fig. 7a,
and a single cell is addressed to generate a sense voltage (Vsense), which will
be compared with memory mode reference voltage activated by an enable signal
ENM (Vsense,P <Vref,M <Vsense,AP). Now, if the path resistance is higher (/lower)
than RM (memory reference resistance), i.e., RAP (/RP), then the SA produces
high (/low) voltage indicating logic ‘1’ (/‘0’). Note that one SA per BL(/RBL) is
considered in the whole chapter to maximize the output bandwidth.

With a careful study of this operation, new peripheral circuits are designed such
that multiple resistive memory cells (i.e., data operands) could be activated and
sensed simultaneously, leading to different parallel resistive levels at the SA side. In
this way, by carefully selecting different reference resistance levels, various Boolean
logic outputs could be intrinsically ‘read out’ based on input operand data in the
memory array.

The first idea was relatively simple [13, 56], where every two bits stored in
the identical column could be selected and sensed simultaneously, as depicted in
Fig. 8a. The MRD was modified to support the multiline enable of this function
by combining two single-line enable decoders with their outputs connected to OR
gates. To activate computing, the current path, shown in Fig. 8a for the first column,
RWL1 and RWL2 are activated by the MRD while SL1 and SL2 are grounded, and
all the other WLs and SLs are kept deactivated. The MCD/CD activates the RBL1 to
be connected to the SA. Now the sense (read) current is applied to RBL1. With that,
the equivalent resistance voltage of such parallel-connected SOT-MRAMs (m1 and
m2) and their cascaded access transistors can be compared with a specific reference
voltage generated by SA. Through selecting different reference resistances by new
enable signals (ENM,ENAND,ENOR) as shown in SA box in Fig. 8a, the SA
can perform basic memory and in-memory Boolean functions (i.e., (N)AND2 and
(N)OR2). For (N)AND2 operation,Rref is set at the midpoint ofRAP //RP (‘1’,‘0’)
and RAP //RAP (‘1’,‘1’) as shown in Fig. 7b. Thus only when both of the selected
MRAM bit-cells are in an antiparallel state (i.e., binary input: ‘1’, ‘1’), the output is
high, whereas the output is low. Similarly, for (N)OR2 operation, Rref is set at the
midpoint of RP //RP and RP //RAP . Only when the two selected MRAM bit-cells

426 A. Roohi et al.

WWL1

W
BL

1

SL1

RB
L1

RWL1

W
BL

2

RB
L2

WWL2

SL2
RWL2

M
od

ifi
ed

 R
ow

De
co

de
r(

W
/R

)

SA
Out

Vref SA
Out

Vref

Vsense
SA

Out
Vref

Vsense
Column Decoder (W/R)

EN
M

EN
AN

D

EN
O

R

Ise
ns
e

Ire
f

m1

m2

32
λ

24
λ

10λ 10λ

Layout of two
SOT-MRAM cells

Din-Intra
Din-InterD

Vwr

-Vwr

SA_out1
SA_out2

D+W
e

D.W
e

D+W
e

D.W
e

Ro
w

De
co

de
rI

RWL1

RWLnRo
w

De
co

de
rI

I

CD
M

RD

SA

WD

A

Ct
rl

XNOR2

B

(N)AND2/(N)OR2

WD

SA

Cmd

Add

Timing Ctrl

Data flow
ctrlCtrl

Command
Decoder

MRD

CLK

CLK CLK

IN+ IN-

OUT+ OUT-

SASA
IN+

IN- OUT-

OUT+
SA

IN+

IN- OUT-

OUT+ StrongARM latch

(a)

10 12 14 16 18 20 22 24 26 28 30
0

5000

10000
RAP
RP

6 7 8 9 10 11 12 13 14 15
Vsense (mV)

0

5000

10000
RAP//RAP (1,1)
RAP//RP (1,0)
RP//RP (0,0)

Vref,OR Vref,AND

Vref,M

'1''0'

'0,1'
'1,0''0,0' '1,1'

(b)

Fig. 8 (a) Presented PIM sub-array architecture based on SOT-MRAM supporting (N)AND,
(N)OR functions with peripherals [13, 56]. The layout of two adjacent SOT-MRAM cells is also
indicated. (b) Monte-Carlo simulation result of the sense voltage (Vsense) distribution

are in the parallel state (i.e., binary input: ‘0’, ‘0’), the output is low, whereas the
output is high.

To validate the sense circuit’s variation tolerance, we have performed a Monte-
Carlo simulation with 100,000 trials. A σ = 5% variation is added on the
Resistance-Area product (RAP) and a σ = 10% process variation is added on the
TMR. The simulation result of sense voltage (Vsense) distributions in Fig. 8b shows
the sense margin of in-memory computing. It will be reduced by increasing the
logic fan-in (i.e., number of parallel memory cells). It is worth pointing out that this
design does not necessarily rely on NVM technology or cell structure. As long as
the technology is based on resistive cells, i.e., PCM and ReRAM, the presented SA
can readily perform in-memory computation. Based on our experiments, leveraging
PCM and ReRAM cells (with higher ON/OFF ratio) leads to a significantly larger
read margin than SOT-MRAM, which further translates to much higher reliability
even by activating more number of rows (e.g., up to 64-row operation for PCM
[10]). Therefore, it is possible to use other emerging NVMs to achieve a better

Enabling Edge Computing Using Emerging Memory Technologies: From. . . 427

read margin. Notwithstanding, PCM and ReRAM consume more power than SOT-
MRAM if converted to the PIM platform. This is mainly because of their relatively
higher writing power, which inevitably causes overall power increase when dealing
with complex real-world applications requiring massive intermediate operand data
write-back into memory.

While the presented PIM design in Fig. 8a could implement any in-memory
Boolean logic functions based on universal NAND2/NOR2 functions, it requires
multiple cycles. The operation’s result has to be written back into the memory after
each memory cycle. Such write-back operation reduces the platform’s performance
and energy efficiency in computationally intensive big data applications and even-
tually may fade the PIM advantages. This motivated us to move forward and design
reconfigurable complete PIM platforms supporting more Boolean functions.

3.2.2 Reconfigurable Complete PIM Supporting X(N)OR

In [14, 50], an enhanced and reconfigurable PIM platform on top of the previous
design is presented. In the new design, every RBL is routed to a Modified Sense
Amplifier (MSA), as shown in Fig. 9. The new MSA consists of two sub-SAs and
three reference resistors compared to the first design with one SA in Sect. 3.2.1.
Every two bits stored in the identical column can be selected with the MRD and
sensed simultaneously, as shown in Fig. 9a. Again, the equivalent resistance of
such parallel SOT-MRAMs and their cascaded access transistors is compared with
MSA’s programmable reference. In the new design, through selecting two reference
resistances (i.e., ENAND,ENOR), two sub-SAs can operate simultaneously to
realize two basic in-memory Boolean functions, i.e., (N)AND2 and (N)OR2 at
the same time, as shown in Fig. 9b. This provides more flexibility to the PIM
to implement more complex logic functions through combining the outputs. The
X(N)OR2 logic can be realized with two sub-SA’s outputs (AND2 and NOR2 logic)
with an extra CMOS NOR2 gate after the outputs in the MSA. As depicted in
Fig. 9b, the operation of such sense circuit is determined by the control signals
(ENAND,ENM,ENOR), while the desired result is acquired by the select signal
(SEL) of the output multiplexer [14]. It is noteworthy that only one SA is used
during (N)AND2/(N)OR2/memory read operation to reduce the power consumption
of sensing. Parallel computing/read is implemented by using one SA per bit-line.

Figure 10 depicts the transient simulation result of the sense circuit under a
2 ns period clock signal (CLK), which takes the data stored in MRAM1 (m1) and
MRAM2 (m2) as inputs. When CLK is high, the sense amplifier is in the pre-charge
phase, and the output is reset to ‘0’. When CLK is low, the sense amplifier is in the
sampling phase and generates logic computation results depending on the reference
voltage configuration. Vcmp plots the comparison between sense voltage (Vsense) and
two reference voltages, i.e., Vref1 and Vref2. Again, Vref1 is set to (VAP,AP+VAP,P)/2,
and Vref2 is set to (VP,P+VAP,P)/2, for performing AND2 and OR2, respectively.

428 A. Roohi et al.

WWL1

W
BL

1

SL1

RB
L1

RWL1

W
BL

2

RB
L2

WWL2

SL2
RWL2

M
od

i�i
ed

Ro
w

 D
ec

od
er

(W
/R

)

Column Decoder (W/R)

V1 V2

m1

m2

SS

XN
O

R

V
sense

V
ref1

V
ref2SEL

l
3

EN
AN

D

I ref

EN
O

R

EN
M

I ref

R
AND

R
O

R

R
M

IW
R

IT
E

MTJ

SHM

IC
O

M
PU

TE
IC

O
M

PU
TE

(a) (b)

XN
O

R

CD

M
RD

SA

WD

A

Ct
rl

B

(N)AND2/
(N)OR2/ X(N)OR2

Fig. 9 (a) Presented in-memory processing sub-array architecture based on SOT-MRAM support-
ing (N)AND, (N)OR, X(N)OR functions [14, 50], (b) Modified Sense Amplifer with two sub-SAs
and three reference resistors

0
0.5

1

C
L

K
(V

)

0
0.5

1

In
pu

t

MRAM1 MRAM2

0
10
20
30

V
cm

p
(m

V
)

Vsense Vref1 Vref2

0
0.5

1

V
O

R
(V

)

0
0.5

1

V
A

N
D

(V
)

0 1 2 3 4 5 6
Time (ns)

0
0.5

1

V
X

O
R

(V
)

Pre-charge Pre-chargeSampling SamplingSampling

'1'

'1'

'0'

'1'

'0'

'1'

'0'

'0'

'0'

('0', '1') ('1', '1')('0', '0')

Pre-charge

Fig. 10 Transient simulation results of in-memory computing operations (i.e., AND, OR and
XOR) [50]

3.2.3 Reconfigurable PIM Supporting Two-Cycle In-Memory Addition

Aiming to provide more flexibility and reconfigurability for the PIM platforms,
a new PIM sub-array architecture based on STT-MRAM, named MRIMA, was
presented in [54]. This in-memory circuit design, as depicted in Fig. 11a, mainly
consists of Write Driver (WD), MRD, MCD, and SA (Fig. 11b) and can be adjusted
by Ctrl unit (Fig. 11b) to work in a dual mode that performs memory write/read
and bit-line computing. The presented reconfigurable SA, as depicted in Fig. 11b,
consists of two sub-SAs and totally six reference-resistance branches that can be
selected by enable bits (ENM , ENOR3, ENOR2, ENMAJ , ENAND3, ENAND2) by
the sub-array’s Ctrl to realize the memory and computation schemes as tabulated in
Table 3. Such reconfigurable SA could implement memory read and one-threshold-

Enabling Edge Computing Using Emerging Memory Technologies: From. . . 429

MCDc_addr

SA

M
R

D

MCD

VD

c_addr

r_
ad

dr

WL1

SL
1M1

M2

VD VDVD VDVD

M3
SL

2

SL
3

M
R

D
VD

AB
A+B
A +B

r_
ad

dr

WL1

SL
1M1

VD VDVD VDVD
B

L1

M2 WL2

MCD
M

R
D

SA

WD

A

C
tr

l 2-input in-memory logic

B

AND2/ NAND2
OR2/NOR2

XOR2/XNOR2

MCD

M
R

D

SA

WD

A

C
tr

l 3-input in-memory logic

Vref1

RA
ND

2

V s
en

se

Vr ef2

I ref

R
O

R2
R M

Iref

Ise
ns

e

R
M

AJ

WWL 1M
R
D

Rst

Co
m

m
an

d
De

co
de

r

Cmd

Add

Ti
m

in
g

Ct
rl Data

flow
ctrl

Rst
Maj/Min
Add/subA

SA

WL2

WL3

B

C AND3/ NAND3
OR3/ NOR3
Maj3/Min3

(EN M , EN OR3 , EN OR2 , EN MAJ , EN AND 3 , EN AND2)

RO
R 3

RA
ND

3

enable
config.

Reconfigurable SA

Modified MRD

Ctrl

Fig. 11 The MRIMA’s sub-array architecture [54]: (a) Block level scheme and STT-MRAM
realization of 2-input and 3-input in-memory logic methods, (b) Peripherals of computational sub-
arrays to support computation

Table 3 Configuration of MRIMA’s enable bits for different functions

Ops. read/NOT (N)OR2/NOR2 (N)AND2 X(N)OR2 MAJ/MIN (N)OR3 (N)AND3

ENM 1 0 0 0 0 0 0

ENOR2 0 1 0 1 0 0 0

ENAND2 0 0 1 1 0 0 0

ENOR3 0 0 0 0 0 1 0

ENAND3 0 0 0 0 0 0 1

ENMAJ 0 0 0 0 1 0 0

based logic functions on top of the discussed bit-line computing scheme by
activating one enable at a time. For instance, by setting ENAND2 to ‘1’, (N)AND2
logic can be readily implemented between operands located in the same bit-line.
Meanwhile, by activating two enables at a time, e.g., ENOR2, ENAND2, two logic
functions can be simultaneously implemented and further used to generate two-
threshold-based logic functions like X(N)OR2, as in Sect. 3.2.2. Here, we elaborate
on the main functions supported by MRIMA.

Fast Row Copy (FRC) MRIMA’s FRC mechanism needs consecutive memory
read and write operations. In the first half-cycle, the source row is activated by sub-
array’s MRD and readout to LRB (shown in Fig. 5); in the second half-cycle, the
data stored in the buffer is written back to the destination row.

Two-Input In-Memory Logic (IML2x) The computational sub-array of MRIMA
is designed to perform bulk bit-wise in-memory logic operations between two or
three operands located in the same bit-line. The IML2x is essentially the same as
the two-input PIM operation in the previous designs, where every two bits stored in
an identical column can be selected employing the MRD and sensed simultaneously,
as depicted in Fig. 11a. The equivalent resistance of such parallel-connected STT-

430 A. Roohi et al.

20 40 60 80 100 120
0

100
200 RAP RP

20 30 40 50 60
0

100
200 RAP//RAP RAP//RP RP//RP

10 15 20 25 30 35 40
0

100
200 RAP//RAP//RAP RAP//RAP//RP (RP//RP//RAP) RP//RP//RP

100 150 200 250 300
Vsense (mV)

0
100
200 RAP//RAP//RAP RAP//RAP//RP (RP//RP//RAP) RP//RP//RP

(a)

(b)

(c)

(d)

52.81 mv

5.75 mv 15.15 mv

6.31 mv

31.4 mv

Fig. 12 Monte-Carlo simulation of Vsense (with RAP/TMR=2%/5% - tox=1.5 nm) for (a) memory
read, (b) IML2x, (c) IML3x when Isense = 6.6μA, and (d) IML3x when Isense = 18μA [54]

MRAMs and their cascaded access transistors is compared with a programmable
reference by SA. Through selecting different reference resistances (RAND2, ROR2),
the SA can perform basic two-input in-memory Boolean functions (i.e., (N)AND2
and (N)OR2) in a single memory cycle.

Three-Input In-Memory Logic (IML3x) In the IML3x, every three cells located
in an identical column can be selected by MRD and sensed simultaneously to realize
three-input logic functions (i.e., (N)AND3, (N)OR3, MAJ/MIN). For instance,
consider the data organization shown in Fig. 11a, where A, B, and C operands
correspond to M1, M2, and M3 memory cells, respectively, and the computational
sub-array can perform majority function (AB + AC + BC) by setting ENMAJ to
‘1’. As shown in Fig. 7c, to perform MAJ operation, RMAJ is set at the midpoint of
RP //RP //RAP (‘0’,‘0’,‘1’) and RP //RAP //RAP (‘0’,‘1’, ‘1’). A comprehensive
study on the MRIMA’s sensing circuit’s variation tolerance is done by running the
Monte-Carlo simulation with 10,000 trials. A σ = 2% variation is added to the
RAP, and a σ = 5% process variation (typical MTJ conductance variation [3]) is
added on the TMR. The simulation result of Vsense distributions in Fig. 12 shows the
sense margin for memory read, IML2x, and IML3x. It can be seen that sense margin
gradually reduces when increasing the number of fan-ins. To avoid logic failure and
guarantee the output’s reliability, we limited the number of sensed cells to three.
Such sense margin could be even improved by either increasing the sense current or
oxide thickness (tox), but obviously by sacrificing the operation’s energy efficiency
[54].

Enabling Edge Computing Using Emerging Memory Technologies: From. . . 431

Two-Cycle In-Memory Addition In addition to the abovementioned single-cycle
logic operations, MRIMA’s sub-array can perform addition/subtraction (add/sub)
operation quite efficiently. In the full-adder Boolean logic, the carryout can be
directly produced by MAJ function (Carry in Fig. 11b) just by setting ENMAJ to
‘1’. Accordingly, a carry latch is inserted to store intermediate carry outputs used
in the summation of the next bits. Meanwhile, Sum output can be obtained by
inserting a two-input XOR gate in the reconfigurable SA, taking the latch output
and in-memory XOR2 output as the inputs. Now, assume A, B, and C operands
(in Fig. 11a), IML2x and IML3x are able to generate Sum (/Difference) based on
XOR3 and Carry (/Borrow) bits and perform parallel multi-bit addition operation.

System Integration While MRIMA is meant to be an independent, high-
performance, and energy-efficient accelerator, it needs to be exposed to
programmers and system-level libraries to utilize it. From a programmer’s
perspective, MRIMA is more of a third-party accelerator connected directly
to the memory bus or through PCI-Express lanes rather than a memory unit.
Accordingly, the programs are translated at install time to the MRIMA hardware
instruction set tabulated in Table 4. The micro and control transfer instructions
are not shown in the table. The MRIMA commands/instructions can be directly
copied/written to predefined memory-mapped address ranges. For example, defined
in the memory type range registers (MTRRs) or programmed through writing to
memory-mapped I/O regions are allocated through a simple device driver to do
initialization/cleanup for required software memory structures. Note that the first
approach can potentially bring more performance gains than the latter; accessing
MRIMA as an I/O device can incur significant overheads due to interrupts and
page faults (in the shared memory model). In contrast, a memory-mapped MRIMA
scheme can cause significant contentions in the memory bus if the processor
executes memory-intensive applications simultaneously. Choosing the scheme of
integrating MRIMA is left to system architects based on their workloads and use-
cases. In both schemes for integrating MRIMA, the commands/instructions that
MRIMA architecture accepts are similar and based on the ISA.

Table 4 The basic
instructions of MRIMA

Opcode Operation Function

FRC B ← A Copy row A to Row B

IML2x IML21 A.B AND2/NAND2

IML22 A + B OR2/NOR2

IML23 A ⊕ B XOR2/XNOR2

IML3x IML31 A.B.C AND3/NAND3

IML32 A + B + C OR3/NOR3

IML33 AB + AC + BC MAJ/MIN

432 A. Roohi et al.

Vsense

Sum
EN

M

EN
N

OR
3

EN
O

R2

EN
M

AJ

EN
AN

D
3

EN
AN

D
2

RBL

(ENM , ENOR3 , ENOR2 , ENMAJ , ENAND3 , ENAND2)

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

A B C Ca
rr

y
Su

m
M

IN

M
AJ

N
O

R
3

N
AN

D
3

A B C Ca
rr

y
Su

m
M

IN

M
AJ

N
O

R
3

N
AN

D
3

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

A B C Ca
rr

y
Su

m
M

IN

M
AJ

N
O

R
3

N
AN

D
3

MCD
M

R
D

SA

WD

A

C
tr

l 2-input in-memory logic

B

AND2/NAND2
OR2/NOR2

XOR2/XNOR2

MCD

M
R

D

SA

WD

A

C
tr

l

3-input in-memory logic

B

C

M
R

D

MCD
V1

W
B L

1

RB
L1

RWL1

M1

M2
SL1

SL2
RWL2

SA
WWL1

M
R

D

MCD
V1

W
BL

1

RB
L1

RWL1

M1

SL1

SL2
RWL2

SA
WWL1

M
R

D

MCD
V1

W
BL

1

RB
L1

RWL1

M1

M2
SL1

SL2
RWL2

SA
WWL1

M3

SL3
RWL3

T1 T2

Carry

AND3/NAND3
OR3/NOR3

XOR3/XNOR3
Maj3/Min3

Addition

PIM methods

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

A B C

Sum = XOR3

XO
R2

B
C

XN
O

R2
B

C

A B C

A=
0

A=
1

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

A B C

Sum = XOR3

XO
R2

B
C

XN
O

R2
B

C

A B C

A=
0

A=
1

Fig. 13 (a) Block level scheme of computational sub-array and SOT-MRAM realization of 2-input
and 3-input in-memory logic methods in GraphS [55], (b) Reconfigurable SA, (c) Truth table of
addition operation implementation, (d) Truth table for realizing X(N)OR2

3.2.4 Reconfigurable PIM Supporting One-Cycle In-Memory Addition

The GraphS’s reconfigurable SA3 [55], as depicted in Fig. 13b, consists of three
sub-SAs and totally six reference-resistance branches that can be selected by enable
bits (ENM , ENOR3, ENOR2, ENMAJ , ENAND3, ENAND2) by the sub-array’s
Ctrl to realize the memory and computation schemes as tabulated in Table 5. Such
reconfigurable SA could again implement memory read and one-threshold-based
logic functions only by activating one enable at a time. Meanwhile, by activating
two or three enables at a time, two or three logic functions can be simultaneously
implemented and further used to generate complex logic functions like X(N)OR3,
as explained accordingly. GraphS supports both IML2x and IML3x operations.
In IML3x, every three cells located in an identical column can be selected by
MRD and sensed simultaneously to realize three-input majority/minority functions
(MAJ/MIN) in a single sensing cycle. Consider the data organization shown in
Fig. 13a where A, B, and C operands correspond to M1, M2, and M3 memory cells,
respectively, and the computational sub-array can perform AB +AC +BC Boolean
function by setting ENMAJ to ‘1’.

Besides, with careful observation on the full-adder (FA) truth table, we realized
that in six out of eight possible input combinations, Sum output could be directly
obtained by inverted Carry signal as shown in Fig. 13c. Keep this fact in mind that
FA’s Carry can be produced by MAJ function; the presented reconfigurable SA can
implement such Sum output readily by MIN (majority-not) function. As depicted
in Fig. 13b–c, the Sum signal is directly connected to the MIN output. However,

3 A variation of this design is named PIM-Aligner [57].

Enabling Edge Computing Using Emerging Memory Technologies: From. . . 433

Table 5 Configuration of enable bits for different functions

Ops. Read (N)OR2 (N)AND2 MAJ/MIN (N)OR3 (N)AND3 Add/XNOR3/X(N)OR2

ENM 1 0 0 0 0 0 0

ENOR2 0 1 0 0 0 0 0

ENAND2 0 0 1 0 0 0 0

ENOR3 0 0 0 0 1 0 1

ENAND3 0 0 0 0 0 1 1

ENMAJ 0 0 0 1 0 0 1

for two extreme cases, i.e., (0,0,0) and (1,1,1), the MIN signal is disconnected and
Sum can be respectively implemented by NOR3 (T1:ON, T2:OFF → Sum=‘0’) and
NAND3 functions (T1:OFF, T2:ON → Sum=‘1’). This is realized by adding two
pass transistors in the MIN function path. Note that, considering the fact that Sum
output is the XOR3 function, the presented reconfigurable SA can also implement
two-input and three-input XOR functions, without imposing additional XOR gates
like previous works [9, 18, 54, 58] as shown in Fig. 13d. Now, assume A, B, and
C as input operands (in Fig. 13a), and IML3x can generate Sum(/Difference) and
Carry(/Borrow) bits in a single cycle.

3.3 Convolutional Neural Networks (CNN) Acceleration:
Analog or Digital PIM Approach?

3.3.1 CNN Terminology

CNN is a machine learning classifier that takes an image as input and then computes
the probability that image features belong to a sort of output class. Typically, a
CNN consists of several convolutional layers and pooling layers followed by Fully-
Connected layers (FC) as shown in Fig. 14. Note that it has been proven that
convolutions could equivalently implement FC layers [59, 60]. Figure 14 also shows
a visualization of the convolutional layer of CNN where each layer receives a set
of features organized in multichannel as input (Input fmaps). It applies kernels
(filters) by performing high-dimensional convolutions, i.e., Multiplication-and-
Accumulation (MAC), and then produces the features (Output fmaps) for the next
layer. The dimensions of both fmaps (input/output) and kernels are 4D (multiple 3D
structures), and a batch of input fmaps is typically processed by multiple 3D kernels.
After convolution, a nonlinear activation function, such as ReLU, will be applied to
the results. By considering the shape parameters listed in Table 6, the computation
of one convolutional layer can be defined as follows:

434 A. Roohi et al.

Fig. 14 Visualization of
inference (a.k.a. forward
propagation) in CNN

Table 6 Shape parameters of
a convolutional layer

Shape parameter Description

Input fmaps dimension W1 × H1 × C

3-D fmaps batch size (input/output) N

No. of 3D kernels K

Spatial extent of kernels Fw × Fh × C

Stride S

No. of zero padding P

Output fmaps dimension W2 × H2 × M

O[n][k][x][y] = ReLU

⎛

⎝B[k] +
Fh−1∑

i=0

Fw−1∑

j=0

C−1∑

z=0

I [n][z][Ux + i][Uy + j]W [k][z][i][j]
⎞

⎠ ,

0 ≤ n < N, 0 ≤ k < K, 0 ≤ x < W2, 0 ≤ y < H2 (7)

whereO,B, I , andW are the matrices representing output fmaps, Bias, input fmaps,
and kernels, respectively. W2/H2 dimensions can be achieved as W2 = (W1−Fw+
2P)/S + 1 and H2 = (H1 − Fh + 2P)/S + 1.

For CNN acceleration in memory, analog resistive crossbar memory, as one
of the most popular memory array structures, has drawn significant interest due
to its high memory accessing bandwidth and in situ computing capability. More
importantly, its current-mode weighted summation operation intrinsically matches
the dominant MAC in the artificial neural network, making it one of the most
promising candidates as the primary computing unit for neural network accelerator
design. For example, ISAAC [61] architecture improves throughput and energy
by 14.8× and 5.5×, respectively, relative to a well-known ASIC architecture.
PipeLayer [62] achieves the speed-up and energy saving of 42.45× and 7.17×,
respectively, compared with a GPU platform on average. However, many nonideal

Enabling Edge Computing Using Emerging Memory Technologies: From. . . 435

Fig. 15 Execution time of a
sample CNN for scene
labeling on CPU and GPU
[65]

effects, such as IR-drop (i.e., wire resistance), Stuck-At-Fault (SAF), thermal noise,
and random telegraph noise, are limiting the progress of hardware implementation
of large-scale CNNs on ReRAM crossbar-based accelerators [63]. Many recent
works have investigated such issues with either hardware or software solutions [64]
(Fig. 15).

As an alternative solution to realize massive MAC and memory operations
in CNN deployments, researchers have come up with weights and/or activations
to be quantized/binarized in the forward propagation [59]. These modifications
convert the conventional MAC operation to much simpler bulk bit-wise operations
(based addition/subtraction [66, 67] or comparison [14]) that can be accelerated in
the content of digital memories. For example, Neural Cache [18], as an SRAM-
based platform, improves inference latency by 18.3× over the state-of-the-art
multicore CPU (Xeon E5) and 7.7× over server-class GPU. DRISA [4], as a
DRAM-based platform, employs 3T1C- and 1T1C-based computing mechanisms
and achieves 7.7× speed-up and 15× better energy-efficiency over GPUs for CNN
accelerations. CMP-PIM [14] as an MRAM-based platform achieves ∼10× better
energy-efficiency compared to CNN-ReRAM accelerators. While the respective
benefits of the aforementioned acceleration-in-memory approaches (i.e., analog and
digital) are well known, it still lacks cross-technology comparison and analysis.

3.3.2 Evaluation Framework

Various data-intensive applications with distinct workload sizes and memory access
patterns are expected to benefit from processing-in-memory in both cache and main
memory levels; selecting the right design for a particular application is complex.
Besides, by choosing a PIM design, it is imperative to establish uniform evaluation
conditions to make an impartial choice between available design options. To
perform the cross-technology comparison among aforementioned PIM techniques,
we developed a comprehensive bottom-up cross-layer framework [63, 68] shown in
Fig. 16.

1. For Device level modeling, the device parameters are first extracted from dif-
ferent assessments and models. The Non-Equilibrium Green’s Function (NEGF)
and Landau-Lifshitz-Gilbert (LLG) equations are used to model STT-MRAM
and SOT-MRAMbitcell (indicated underMRAM in Fig. 16) [46]. Large numbers
of physical parameters are integrated into the compact model to achieve a good
agreement with experimental measurements. The default ReRAM and SRAM

436 A. Roohi et al.

MTJ modeling
using NEGF-LLG

(Verilog-A)D
ev

ic
e

Extracting Performance Parameters i.e. Delay, Energy, Area
(Spectre/Spice)

Ci
rc

ui
t

MATLAB-code for mapping and evaluation of different applications,
i.e., DNN, Bioinformatics, Graph processing, and Encryption

Co
nt

ro
lle

r

(S
yn

op
sy

s
 D

es
ig

n
Co

m
pi

le
r)

Parameter
settings

Application performance evaluations

MRAM

Circuit level
based on Ambit

DRAM

Circuit level based
on Neural Cache

SRAM

DRAM cell
parameters from

Rambus

ReRAM

Circuit level
based on BCNN-

ReRAM

Design & Veri�ication of a single 256x256 sub-array
(Cadence Spectre/Spice)

Circuit level based
on GraphS/STT-CiM

Default NVSim
ReRAM .cell �ile

Default NVSim
SRAM .cell �ile

Ap
pl

ic
at

io
n

Verilog-A
1T1R

digital
ReRAM

Verilog-A
1T1R STT-
/3T SOT-

MRAM

Develop PIM library for PIMA-Sim based on circuit
level data for MRAM, ReRAM and SRAMAr

ch
it

ec
tu

re

Modi�ied Cacti based on
circuit level DRAM data

Extracting Performance Parameters i.e. Delay, Energy, Area for the system w.r.t.
con�iguration �ile (.cfg)

Customized
PIM

Algorithms

PI
M

A-
SI

M

Fig. 16 The bottom-up evaluation framework developed for PIM platform evaluation

cell configurations of NVSIM [69] are considered for evaluation. Moreover,
DRAM cell parameters are taken from Rambus [70] and scaled. Rambus has been
developed to evaluate a wide variety of DRAM architectures such as a typical
55 nm DDR3 with respect to power consumption [70].

2. For Circuit level simulation, the memory sub-array with peripheral circuity (SA,
MRD, MCD, etc.) could be implemented based on a particular PIM style for each
technology on top of the device level data. For CNN acceleration, the GraphS
[55] PIM style is used for SOT-MRAM and digital ReRAM implementations;
STT-CiM [71] as the STT-MRAM design, BCNN-ReRAM [72] design for
analog ReRAM crossbar, Neural Cache [18] design for SRAM, and Ambit [9]
design for DRAM are accordingly used. The memory sub-arrays are simulated
in Cadence Spectre with 45 nm NCSU Product Development Kit (PDK) library
[73] to verify the PIM’s circuit functionality and achieve the circuit performance
parameters. The memory controller circuits for all platforms are synthesized by
Design Compiler [74] with the same 45 nm industry library.

3. For Architecture level, a PIM support evaluation tool is developed for the NVSIM
[69] named PIMA-SIM as shown in Fig. 17. NVSIM [69] was built as a circuit-
level model for NVM performance and supporting various NVM technologies
including STT-RAM, PCRAM, ReRAM, and conventional NAND Flash. The
model has been successfully validated against industrial NVM prototypes [69].
PIMA-SIM also models the timing, energy, and area of various PIM technolo-

Enabling Edge Computing Using Emerging Memory Technologies: From. . . 437

Memory Config.
(.cfg)

Memory Bit-cell
(.cell)

PIM Config
(.pim)

NVSIM

-DesignTarget: RAM
-CacheAccessMode: Normal
-Op�miza�onTarget: ReadLatency
-EnablePruning: Yes
-ProcessNode: 45
-Capacity (MB): 4
-WordWidth (bit): 512
-DeviceRoadmap: HP
-LocalWireType: LocalAggressive
-LocalWireUseLowSwing: No
-GlobalWireType: GlobalAggressive
-GlobalWireUseLowSwing: No
-Rou�ng: H-tree
-InternalSensing: true
-MemoryCellInputFile: MRAM.cell
-Temperature (K): 350
-ForceBank: 4x4, 1x4
-ForceMat: 2x2, 1x2
-ForceMuxSenseAmp: 2

-MemCellType: MRAM
-CellArea (F^2): 54
-CellAspectRa�o: 0.54
-ResistanceOn (ohm): 3000
-ResistanceOff (ohm): 6000
-ReadMode: current
-ReadVoltage (V): 0.25
-MinSenseVoltage (mV): 25
-ReadPower (uW): 30
-ResetMode: current
-ResetCurrent (uA): 80
-ResetPulse (ns): 10
-ResetEnergy (pJ): 1
-SetMode: current
-SetCurrent (uA): 80
-SetPulse (ns): 10
-SetEnergy (pJ): 1
-AccessType: CMOS
-VoltageDropAccessDevice (V): 0.15
-AccessCMOSWidth (F): 8

PIMA-SIM 1.0

/* PIM opera	on, Current Decoder parameters x n */
-Max Row Ac�va�on: 3
/*Sense Amplifier */
-Sense Amplifier Power (uW): 10
-Sense Amplifier Read Dynamic Energy (fJ): 30
-Sense Amplifier Latency (ns): 3
-Sense Amplifier Area (mm^2): 0.00001
/*Custom Sub-array-level Add-on Component parameters*/
-Subaddon component Latency (ns): 1,0,0
-Subaddon component Dynamic Energy (nJ): 0.2,0,0
-Subaddon component Leakage Power (uW): 0.1,0,0
-Subaddon component Area (um^2): 12,0,0
/*Custom MAT-level Add-on Component parameters*/
-Mataddon component Latency (ns): 0,0,0
-Mataddon component Dynamic Energy (nJ): 0,0,0
-Mataddon component Leakage Power (uW): 0,0,0
-Mataddon component Area (um^2): 0,0,0
/*Custom BANK-level Add-on Component parameters*/
-Bankaddon component Latency (ns): 0,0,0
-Bankaddon component Dynamic Energy (nJ): 0,0,0
-Bankaddon component Leakage Power (uW): 0,0,0
-Bankaddon component Area (um^2): 0,0,0

• Memory Area- Computa�onal Area (mm2)
• R/W/Compute Latency with add-ons at any memory level (ns)
• R/W/Compute Dynamic Energy with add-ons at any memory level (nJ)
• Leakage Power (W)

Fig. 17 PIMA-SIM as a PIM support evaluation tool developed to model the timing, energy, and
area of various PIM technologies

gies. This tool offers the same flexibility in memory configuration in terms
of bank/mat/subarray organization and peripheral circuitry design as NVSIM
while supporting PIM-level configurations. PIMA-SIM can be configured using
three configuration files. At the cell level, it uses NVSIM’s .cell file to save
the device-circuit level info. The architecture level uses NVSIM’s .cfg file
to configure the memory organization and optimization target. In addition, as
depicted in Fig. 17, at the PIM level, PIMA-SIM’s .pim file is designed to save
the PIM-level parameters. The PIM libraries are accordingly developed for each
platforms on top of NVSIM [69] and Cacti [75] based on device/circuit level
data. Accordingly, the performance data (i.e., latency, energy, and area) could be
extracted for different PIM platforms w.r.t. a single input memory configuration
file (.cfg).

4. For Application level simulations, a behavioral-level simulator is developed
in Matlab. It takes architecture-level results and the presented customized in-
memory algorithm for various big data applications to calculate the latency,
energy, and area that different PIM platforms spend on them. It has a map-
ping optimization framework to maximize the performance w.r.t. the available
resources.

438 A. Roohi et al.

3.3.3 Performance Analysis

Here, two different experiments under ISO-Capacity and ISO-Computation con-
straints are conducted to quantitatively compare and analyze the analog and digital
acceleration-in-memory approaches for CNNs. ISO-Capacity denotes a condition in
which all memory technologies are developed with an identical memory capacity for
a fair performance benchmarking. ISO-Computation denotes a condition in which
all PIM platforms based on various memory technologies are leveraged to realize a
similar computation.

3.3.3.1 ISO-Memory-Capacity Comparison

The performance of digital and analog PIM platforms with an ISO-memory-
capacity constraint is initially studied. A 32Mb, single bank unit based on digital
(SOT-MRAM, STT-MRAM, ReRAM, SRAM, and DRAM) and analog ReRAM
crossbar is developed with the presented bottom-up evaluation framework. Table 7
reports eleven performance parameters for each platform. The observations on this
experiment are listed below.

Area The area metric was divided into two parts: memory die area (M) and
computational area (C), which includes controller, modified decoder, SA, 8-bit ADC
for the relevant analog ReRAM crossbar, etc. In terms of memory die area, the
digital PIM platforms impose a relatively larger area than analog ReRAM crossbar
except for STT-MRAM design [71]. However, if we take the computational area into
account, the ReRAM crossbar consumes 2.5mm2, which is much larger than that
of digital counterparts, such as digital ReRAM (0.4mm2). Accordingly, a memory
to computational area ratio as M/C can be defined. The M/C ratio equals 23.53
for SOT-MRAM-based PIM, while the analog ReRAM crossbar shows a ratio of
1.33. The low M/C ratio of the ReRAM crossbar is the consequence of sizeable
peripheral circuit overhead, such as buffers and DAC/ADC, which contributes more
than 85% of the computational area [72]. Furthermore, according to the results
reported in Fig. 7, the STT-MRAM and SRAM platforms occupy the smallest and
the largest overall area, respectively, compared to other PIM counterparts.

Latency As listed in Table 7, the analog ReRAM crossbar achieves the shortest
read latency (1.48 ns) as compared with digital platforms. Still, it has the longest
write latency (20.9 ns). The SOT-MRAM platform achieves the shortest write
latency compared to other technologies and has a higher endurance (1010–1015)
compared to ReRAM-based platforms.

Energy Based on Table 7, SOT-MRAM and STT-MRAM platforms consume the
smallest write dynamic energy among all the NVM platforms due to their intrinsi-
cally low-power device operation. At the same time, SRAM achieves the smallest
read and write energy compared to all the platforms. The analog ReRAM crossbar

Enabling Edge Computing Using Emerging Memory Technologies: From. . . 439

Table 7 Per operation estimation results for different PIM designs. In the Area part, M denotes
memory die area, and C denotes computation area overhead. (iso-capacity: 32Mbit-single Bank,
Data Width: 512-bit)

Digital Analog

SOT-
Metrics MRAM† STT-MRAM‡ ReRAM† SRAM* DRAM§ ReRAM**

Nonvolatility Yes Yes Yes No No Yes

Area (mm2) M: 7.06
C: 0.3

M: 2.14
C: 0.3

M: 3.92
C: 0.4

M: 10.38
C: 0.5

M: 4.53
C: 0.04

M: 3.34 C:
2.5

Read latency
(ns)

2.85 1.90 1.65 2.9 3.4 1.48

Write latency
(ns)

2.59 5.29 19.8 2.7 3.4 20.9

Read dynamic
energy (nJ)

0.57 0.37 0.76 0.34 0.66 0.38

Write dynamic
energy (nJ)

0.66 0.67 2.9 0.38 0.66 2.7

(N)AND/(N)OR
computation
energy (nJ)

∼0.64 ∼0.46 ∼1.13 ∼0.59 ∼0.75
1.96 per MAC

Full-adder
computation
energy (nJ)

∼1.92 ∼1.59 ∼3.4 ∼1.18 ∼11.25

Leakage power
(mW)

550 410.2 362.4 5243 335.5 587.6

Endurance ∼1010 −
1015

∼1010 −
1015

∼105 −
1010

Unlimited 1015 ∼105 −
1010

Data overwritten
issue

No No No No Yes No

†
Implemented based on [55].

‡
Implemented based on [71].

∗
Implemented based on [18].

§
Implemented based on [9].

∗∗
Implemented based on [72]

achieves a close-to-SRAM read dynamic energy, consuming a considerable write
dynamic energy. Computational energy is measured based on the PIM’s capability
to perform (N)AND/(N)OR and full-adder functions for digital platforms. As seen
from Table 7, the STT-MRAM [71] and SRAM [18] PIM respectively consume
the smallest computational energy compared to different technologies to perform
various operations, where SOT-MRAM stands as the third most energy-efficient
platform. Although the DRAM PIM design based on Ambit [9] consumes 0.75 nJ
to perform (N)AND/(N)OR-based TRA mechanism, it requires over 14 memory
cycles to perform the addition operation to avoid overwriting data. It leads to
much higher energy consumption compared to other platforms. The computational

440 A. Roohi et al.

energy per MAC was reported for the analog crossbar, comparable with the addition
operation in the digital SOT-MRAM platform. The digital ReRAM and DRAM can
be observed as relatively more power-efficient platforms regarding leakage power
consumption. Moreover, the SRAM platform consumes ∼14.5× and ∼9× more
power than digital and analog ReRAM, respectively.

3.3.3.2 ISO-Computation Comparison

The performance of the digital and analog PIM platforms was further explored
for CNN acceleration. Hereby, we took the classical LeNet-5 as a simple example
to perform the handwritten digit classification task with the MNIST dataset. For
correctly mapping the target CNN into the PIM, offline training of the LeNet-
5 network was conducted with weight and activation quantization, following the
methods presented in [59]. A description model of each platform based on the data
reported in Table 7 was then employed in the application-level CNN simulator.
For fair hardware comparison, the bit-width configuration of [1:8] for [Weight:
Activation] was selected, although ReRAM crossbar-based accelerator supports
higher weight bit-width (>1 bit) with better CNN performance (i.e., classification
accuracy in the experiment). No quantization was applied in the first and last layer of
CNN, and the PIM-based accelerator also handled the full-precision computations.
For the sake of simplicity, the estimated performance results (area, energy, latency)
of convolutional layers are only reported.

Area Contrary to the approach used to report the area in Table 7, we leverage the
method presented in [14, 72] to report the results. Specifically, we consider the area
overhead due to computation by calculating the number of crossbars or sub-arrays.
Table 8 reports the area for digital and analog PIM platforms by dividing it into
the memory and logic parts. We observe that the digital ReRAM and STT-MRAM
platforms require the smallest area than other platforms, respectively, mainly due
to their single transistor cell structure. It is noteworthy that the DRAM platform
has one of the least die areas due to its single-transistor cell and owns the least
computational area under ISO-capacity constraint because of almost unchanged
peripheral circuitry (1% as listed in Table 7). However, it requires access to
multiple sub-arrays to avoid overwriting data problems and fitting the network
simultaneously, resulting in a larger area requirement compared to NVMs. As for
the analog crossbar platform, the logic part contributes ∼4× more than the memory
area. Overall, it imposes a larger area than that of other digital NVM platforms due
to matrix splitting and extra-large add-on area overhead [8].

Latency Table 8 summarizes each platform’s latency required to process the
convolutional layers of the CNN. According to the table, the SRAM platform is the
fastest, with 0.7ms latency. This mainly comes from its short read and write latency
and fast two-cycle addition scheme [18]. Besides, we observe that the SOT-MRAM
platform achieves 0.9ms latency and stands as the second-fastest platform. The

Enabling Edge Computing Using Emerging Memory Technologies: From. . . 441

Table 8 Estimated row performance of various PIMs without parallelism techniques

Digital Analog

Parameters SOT-MRAM STT-MRAM ReRAM SRAM DRAM ReRAM

Area
(mm2)
(memory
+ logic)

0.018
∼(0.0172
+ 0.0008)

∼0.012
∼(0.011
+ 0.0008)

0.0097
∼(0.009
+ 0.0007)

0.64 ∼(0.608
+ 0.032)

0.16
∼(0.158
+ 0.002)

0.06
∼(0.011
+ 0.049)

Energy
(μJ)
(write-
back+read-
based
Ops)

0.85
∼(0.31+0.54)

0.78
∼(0.25+0.53)

1.9
∼(0.75+1.15)

1.6
∼(0.42+1.18)

2.1
∼(0.8+1.3)

13.5
∼(0+13.5)

Latency (ms) 0.9 1.8 1.3 0.7 13.5 5.8

DRAM platform shows a long latency mainly due to the excessive copy operations
needed to avoid overwriting data. The analog crossbar needs 5.8ms to process the
convolutional layers.

Energy Table 8 also reports the energy consumption of different platforms. It can
be seen that SOT-MRAM- and STT-MRAM-based platforms save 15.8× and 17.3×
energy compared to the analog crossbar. In addition, the volatile digital memories
consume much smaller energy than that of the analog platform. Therefore, from
an energy-saving standpoint, digital PIM platforms could be a better choice than
analog crossbar. Note that, for PIM platforms, all operands are assumed to be stored
in memory. Unlike traditional computation, an extra intermediate data write-back
is needed, which affects the overall energy and latency. Based on this, we split the
reported energy into write-back and read-based logic operations energy. The write-
back energy involves the energy required to write the weights or inputs into PIM
plus the energy needed to write the computation results back to the memory for
computation in the next layer. The read-based operation energy involves the read
and bit-line computing energy. The analog crossbar [72] can accomplish the MAC
operation without writing back the intermediate data; that is why we omit the write-
back energy for this platform.

4 Enabling Reliable and Resilient Computing Paradigm

In this section, a power failure resilient/analysis design approach, as a cross-layer
method from device level to architectural level, is developed, as shown in Fig. 18. It
uses a nonvolatility feature in Spintronics when selectively inserted into the imple-
mentations concerning power failure/analysis resiliency and performance overhead.
In step 1 , a physics-based and compact model of novel spin-based devices is

442 A. Roohi et al.

Fig. 18 Cross-layer design exploration on spin-based designs to attain power failure and power
analysis-resilient architectures

constructed. The trade-off between write energy and retention time for various
switching energy barriers is investigated. To do so, Matlab, Verilog-A, and SPICE
models are developed, enabling straightforward integration with VLSI circuits in
SPICE-friendly platforms. In step, 2 , a dual-mode spin-based polymorphic gate
(PG) with built-in logic and memory features is efficiently designed and analyzed
using the developed Majority Gate (MG). The PGs’ libraries contain a functionally
complete set of Boolean logic gates. A standardized methodology referred to as NV-
clustering is developed for targeted insertion of PG modules as new compact means
to increase the functionality of pipeline registers 3 . In step 4 , new algorithms are
developed and added to NV-clustering to address the secure-computation demands,
specifically in the presence of power analysis attacks.

4.1 MG-Based Synthesis and Optimization Research Tool

As it can be perceived, the unifying computational mechanism underlying all of
these TMR-based devices is an accumulation-mode operation that enables the
realization of majority logic functions as basic computational building blocks
[76, 77]. Therefore, first, we developed an MG-based synthesis and optimization
research tool. In our approach, a Genetic Algorithm (GA) scheme has been used
to design logic circuit networks that are implemented by majority gates [78, 79].
GAs algorithms are one of the most popular optimization tools due to their ability to
optimize any objective function regardless of the gradient or higher derivatives of the
objective function. We develop a SHE-based Synthesis and Optimization Routine
and Tool (SORT). It produces an optimized MG-based implementation regarding
the Boolean expression. A combination of three-input and five-input MGs are
considered the primary building blocks to optimize the designs. This combination
of majority gates includes either design based on only one type of MGs (three-input
or five-input) or designs including both types of the MG. The logical functions of
three-input MG and five-input MG are expressed by Eq. (8). It represents the output
for an MG with n inputs, where n is always an odd number. The MG outputs “1” if
and only if more than (n-1)/2 of the inputs are “1” and vice versa.

Enabling Edge Computing Using Emerging Memory Technologies: From. . . 443

M(A, B, C) = AB + AC + BC

M(A, B, C, D, E) = ABC+ABD+ABE+ACD+ACE+ADE+BCD+BCE+BDE+CDE
(8)

A tree structure is used to represent the chromosomes. In this structure, the root
and the inner nodes of the tree are either a Majority or an Inverter specified with
the Maj. and Inv., respectively. The algorithm starts with a population including 500
chromosomes. So to both three- and five-input MGs, of the effects be taken into
account, a linear abstraction of fan-in as its cost function is considered, which has
been defined as below:

f (Ci) = N(m,Ci)

|m| + 1

N(r, Ci)
+ 1

Nodes(Ci)
(9)

where N(,) is a function that calculates the number of minterms in the first parame-
ter implemented by the second one,m contains the minterms to be implemented, |m|
is the size of m and has been added for scaling issues, and r is the rest of minterms
that should not be implemented. The algorithm stops when no improvement in
fitness function happens during more than 20 generations or the total number of
generations exceeds 1500. To provide experimental evidence to study how the
combination of three-input and five-input majority gates improves the performance
of traditional design methods, the presented optimization procedure is implemented
in Python, and results are illustrated in Table 9.

As shown in Fig. 19, SORT is comprised of two modules: (1) Developed Genetic
Algorithm (GA) optimization unit realizes a tree-structured Boolean expression
according to the optimization criterion. The tree structure is constructed of a
combination of inverters and MGs with varying numbers of inputs, and (2) netlist
generator develops a nodal circuit topology according to the generated tree structure
of the target Boolean expression. The SPICE circuit simulation tool leverages the
produced optimized netlist and a SHE device model to validate the functionality
and estimate power and delay metrics of the realized SHE-based Boolean logic
circuit. The netlist generator research emphasizes algorithmic subtree methods to
collapse an optimized MG graph based on the MG device libraries developed.
The netlist generator outputs a SPICE syntax compatible file that can be utilized
by the circuit simulation toolchain in conjunction with the SHE model library to
synthesize the desired Boolean circuit. Hence, this developed GA-driven research
synthesis tool is used to extract an optimized netlist for standard majority logic-
based gate libraries. Our optimization methodology for spin-based NoC circuits
is described, as shown in Fig. 20a. Spin-based components are utilized for storing
and computing, whereas CMOS-based elements are used for implementing logic
in storage elements and conducting the read operation. Required sensing scheme
is provided by PCSA, which generates both output (OUT) and invert of the output
(OUT). Hence, the intrinsic structure of the presented spin-based NoC cell includes
one MG, which provides a functionally complete unit. Thus, in our proposed

444 A. Roohi et al.

Ta
bl

e
9

O
pt
im

iz
at
io
n
of

th
re
e
st
an
da
rd

fu
nc
tio

ns

Pr
es
en
te
d
ap
pr
oa
ch

us
in
g

Fu
nc
tio

ns
Pr
ev
io
us

w
or
ks

us
in
g
3M

G
co
m
bi
na
tio

n
of

th
re
e
an
d
fiv

e
M
G
s

1.
B
C
D
+
A
B
C
+
A
B
D
+
A
C
D

M
(B

,C
,M

(D
,A
,0
))

M
(A

,B
,C
,D
,0
)

2.
A
.B
.C
+
A
B
C

M
(M

(C
,
A

,
1)

,
M

(C
,
B

,
0)

,
M

(A
,
B

,
1)

)
M

(M
(A

,
B

,
C

,
0,
0)

,
1,

M
(A

,
B

,
C

,
1,
1)

)

3.
A
.B
.C
.D

M
(M

(A
,B
,0
),
0,

M
(0
,C
,D
))

M
(0
,M

(A
,B
,0
),
0,
C
,D
)

Enabling Edge Computing Using Emerging Memory Technologies: From. . . 445

Fig. 19 Presented MG synthesis approach to realize SHE-based Boolean logic, including SHE-
MG based gate libraries

Fig. 20 (a) Schematic of the presented evolutionary approach to realize MG-based NoC circuit
and (b) operations of F1 and F2 blocks for A·B+C in technology-dependent optimization process

optimization methodology, the implementation cost of the inverter gate is equal to
zero. Our presented evolutionary approach includes two levels of optimization to
reduce the convergence time: technology-dependent optimization and performance
optimization.

4.1.1 Technology-Dependent Optimization

In the first level of the optimization, shown in Fig. 20a, GAs are utilized to optimize
the implementation of a Boolean logic expression in terms of area, delay, or power. It
leverages the spin-based device characteristics as inputs to achieve a semi-optimized
implementation. First, a transforming unit, which is Synthesis Unit 1 (SU1), decom-

446 A. Roohi et al.

poses a Boolean expression into its minterms. The generated minterm expression
is applied to a mapping and optimization unit, SU2, along with optimization
criteria and characteristics of spin-based building blocks. For instance, in a design
with three-input and five-input spin-based MGs as building blocks, first MGs are
separately implemented, and their related delay, area, and power consumption are
measured. Then, the obtained results are leveraged to define their implementation
cost within the optimization methodology. Finally, the GAs are utilized to optimize
a Boolean logic implementation based on the optimization criteria and the obtained
implementation cost of the spin-based building blocks in SU3. The mapping and
optimization unit involves three main steps: (1) Initialization: An initial set of tree-
based structures are created, in which each parent can have three or five random
children. Each of the trees is a chromosome, and the complete set is called the
initial population. The GA convergence time could be adjusted by the population
size and range of chromosome variety. Extending the population size increases
the variety of chromosomes, which is limited to some upper bounds. However,
this extension leads to an increase in the total processing time of GA. (2) Fitness
Evaluation: To evolve the population toward better solutions, the fitness of each
chromosome is evaluated. Therefore, a fitness function is defined to assign a fitness
value to the chromosomes. Herein, the fitness function is expressed by f (ti) =
N(m, ti)/(lengthof ti) + 1/N(r, ti) + 1/(numberofgate), where m is the applied
input minterms; N() is a function that calculates the number of minterms in m,
which is implemented by ti tree; and r is the remainder of the minterms that should
not be implemented. As it can be seen, the fitness function has an inverse relation
with the length of the tree, which results in producing balanced trees. It enables
performing a larger number of parallel operations at each level leading to power
and delay optimized implementations. (3) Replacement: The code generates new
offspring(s) from selected parents with a defined probability to achieve improved
solutions to the problem. The subtree has been chosen as the crossover operator,
which selects two nodes and exchanges their subtrees rooted from the selected
nodes. The mutation operation is applied to avoid the algorithm being trapped
in a local optimum. Tournament selection has been utilized to select the parents
for crossover and mutation operators. The algorithm stops when no improvement
in fitness function happens after more than 100 generations. The output of this
mapping and optimization unit is an optimized graph expression, as shown in
Fig. 20b. Figure 21a illustrates the evolutionary approach leveraged in the presented
technology-dependent optimization methodology.

4.1.2 Power and Delay Optimization

Due to the nature of spin-based devices, increasing the input current decreases
the operation’s delay at the expense of increased power consumption. As it was
mentioned earlier, AND/OR gates can be readily implemented by majority gates.
The disjunction operator (OR) has larger power consumption than the conjunction
operator (AND) due to a higher number of ON transistors that leads to the higher

Enabling Edge Computing Using Emerging Memory Technologies: From. . . 447

Fig. 21 (a) Technology-dependent optimization for F= A.B.C.D, (b) power optimization for F=
A+B+C+D, (c) area optimization for F= A·(B+CD), and (d) comparison results for designs in (b)
and (c)

input current. Since the implementation cost of an inverter is equal to zero in our
optimization methodology, disjunction operators and conjunction operators can be
replaced according to the well-known De Morgan’s law without any redundancy
cost. Hence, a third functional unit (SU3) (Fig. 20a) is added to the optimization
tool, which replaces the OR (AND) operations by AND (OR)-inverter operations
within the logic implementation to reduce power (delay). The algorithm first takes
the optimized tree obtained by SU2. Then, it executes a pre-order traversal scheme
to visit a node, check its value, and updates it recursively. All trees or subtrees with a
root labeledM3 orM5 are examined to find any leaf with value “1”. Then, it replaces
“1” with “0” and inverts all remaining leaves with the same parent. Finally, it uses
the OUT signal instead of OUT to invert the whole tree or subtree. An example of a
power-optimized implementation of (A+B+C+D) expression and its corresponding
normalized simulation results are shown in Fig. 21b,d, respectively.

4.1.3 Area Optimization

In the generated implementations, each MG node requires one PCSA. Therefore,
the number of required PCSAs for each layer depends on the number of MG nodes
existing in that layer. On the other hand, PCSAs can be shared between different
layers. Thus, the required PCSAs for implementing an NoC circuit equals the
maximum number of MG nodes utilized in any spintronic layer. However, according
to the fitness function described previously, trees with a balanced structure have a
larger fitness value. Although the balanced tree structure, e.g., shown in Design
I of Fig. 21c, provides an optimized implementation in terms of delay or power
consumption, it requires a larger number of PCSAs due to having more MG nodes

448 A. Roohi et al.

in the second layer leading to higher area overhead. Hence, for area optimization, we
have modified the fitness function to f (ti) = N(m, ti)/(lengthof ti)+1/N(r, ti)+
1/(numberofgate) + 1/(nMG + 1), where nMG is the maximum number of
PCSAs in the implemented design. The procedure leveraged a breadth-first search
technique to find the maximum number of MGs in one level. Therefore, the
optimization methodology creates an unbalanced tree with less number of MG
nodes in each layer as shown in Design II of Fig. 21c. Thus, only a single PCSA
is required to implement the A·(B+CD) Boolean expression, which results in
decreased area consumption while increasing delay, as shown in Fig. 21d. This is
caused by the increased sequential operations required to deliver the output of each
logic layer to the next one. To implement spin-based NoC cells, the three-input and
five-input SHE-MGs are defined as functional blocks, and their characteristics are
applied to the optimization tool. The presented evolutionary approach is leveraged
to implement a functionally complete set of Boolean logic gates. Power and area
optimization resulted in an identical implementation for each Boolean function,
while the delay optimization generated a different implementation.

4.2 Power Failure Resilient: NV-Clustering Design
Methodology

On top of the optimized MG-based cells, we developed a standardized methodology
to synthesize optimized NV architectures, which is referred to as NV-Clustering [80,
81]. NV-Clustering selectively collects together compatible Boolean logic functions
and state holding functions, as depicted in Fig. 22. It utilizes (1) Logic-Embedded
FFs (LE-FFs) as NV storage elements that also serve as computational elements,
(2) a methodology for utilizing the developed cells to achieve robust intermittent

Fig. 22 Optimized NV implementations using NV-Clustering methodology diagram

Enabling Edge Computing Using Emerging Memory Technologies: From. . . 449

operation, and (3) a constraint-based optimization step considering the area, power,
and delay to realize a preferred NV-enhanced datapath design.

4.2.1 Logic-Embedded FF (LE-FF) Design

The presented LE-FF is composed of a spin MG-based master latch and a CMOS-
based slave latch, as shown in Fig. 24a. An LE-FF has three different modes: store
mode, in which the write operation to NVM is performed; standby mode, in which
the power is disabled; and sense mode, in which the stored data in NVM is read.
After power-up, the data is restored into the slave latch. Therefore, due to its
nonvolatility, the entire design can be power gated without incurring vulnerability to
the datapath. It can compute operation and store value during the first cycle, whereas
the output, Q, is propagated during the second cycle. The circuit implementation of
a three-input SHE-based LE-FF is depicted in Fig. 23a. LE-FF functionality in the
presence of power failure and power-up situations is depicted in Fig. 23b, which
verifies the desired forward progress of the design’s operation while supporting the
intermittent operation.

Our proposed LE-FF has two significant features in comparison to the previously
presented NV-FF designs: (I) in addition to storing a value with nearly zero standby
power, similar to the other NV-FFs, the LE-FF design is capable of computing
rudimentary Boolean expressions intrinsically, resulting in area, complexity, and
power reduction. Figure 24b shows a two-input OR, which is connected to an NV-FF
and its equivalent implementation using LE-FF. Figure 24c summarizes all possible
Boolean expression, which can be implemented using three- and five-input LE-
FFs. Their implementation capacities might be enhanced by leveraging larger MGs.
Moreover, (II) by using LE-FFs, the implemented designs have lower sensitive time
to power failures. It is determined by the duration of signal propagation between
two NV elements, including (1) input registers and an NV-FF, (2) two NV-FFs, or

Fig. 23 Circuit-level design of proposed three-input SHE-based LE-FF and (b) transient response
for three different input ABC= “001”, “111”, and “000” in presence of power failure. Three
different modes are shown: (1) store mode, (2) standby mode, and (3) sense mode

450 A. Roohi et al.

Fig. 24 (a) Schematic of proposed MG-based LE-FF, and (b) different implementations using
NV-FF (top), and proposed LE-FF (bottom). (c) Boolean Expressions using three and five-input
MGs

Fig. 25 All three sensitive time durations for (a) NV-FF based implementation and for (b)
proposed implementation approach, in which C1(b) < C1(a)

(3) an NV-FF and output registers, in which if a power failure occurred, data will
be lost and rebooting required. Figure 25 depicts all three possible durations. The
vulnerability interval is expressed by ts = tWR + tRD + tD , where, tWR is the
write operation time for the NV element; tRD is the switching time of CMOS-based
latches, e.g., a master latch; and tC is the required time for combinational circuits
before storing into NV-FFs. In a datapath, the summation of all obtained sensitive
time is considered a design vulnerability time (DVT), implying that a design with
a smaller DVT provides higher tolerance to power failure. Hence, replacing cones
of gates and NV-FFs with LE-FFs will reduce DVT, increasing failure robustness,
which improves redundant restart efficiency. To design optimized NV architectures
using the proposed LE-FF, there is a need to develop a systematic methodology,
which incorporates all LE-FF features to design power failure-tolerant architectures.
The developed approach leverages the maximum capability of LE-FFs in terms of
replacement and implementation steps.

4.2.2 NV-Clustering Methodology

The proposed NV-Clustering methodology takes a hardware description language
(HDL) representation of a datapath and MG-based gate modules as its inputs and
produces an optimized NV-enhanced datapath. NV-Clustering was constructed in
Python, according to the control flow illustrated in Algorithm 1. Its three primary
procedures are (1) find_gate(X) that finds a gate generating the output X, (2)

Enabling Edge Computing Using Emerging Memory Technologies: From. . . 451

Algorithm 1 NV-Clustering Methodology
1: procedure MAIN()
2: Input: Hardware Description Language (HDL) code
3: Output: optimized HDL code
4: find all FFs and update FF_list
5: for FF in FF_list do
6: if size (create_cone (FF)) > 1 then
7: replace cone_gates by MG_FF
8: else
9: replace cone_gates by NV_FF
10: end if
11: update HDL code
12: end for
13: end procedure
14: procedure CREATE_CONE()
15: Input: a combinational gate, i.e. G
16: Output: list of gates connected to a FF, i.e. cone_gates
17: input_list = find_input (G) � return list of G’s input
18: for item in input_list do
19: if criterion #3 or criterion #4 is violated then
20: input_list.remove (item)
21: end if
22: end for
23: for item in input_list do
24: tmp_gate = find_gate (item) � return gate with item as its input
25: cone_gates.append (tmp_gate)
26: if check (cone_gates) then
27: create_cone (tmp_gate)
28: else
29: cone_gates.remove (tmp_gate)
30: end if
31: end for
32: return cone_gates
33: end procedure
34: procedure CHECK()
35: Input: cone of gates
36: Output: Boolean expression
37: if criterion #1 or criterion #2 is violated then
38: return FALSE
39: end if
40: return TRUE
41: end procedure

find_input(Y) that finds all the primary inputs of gate Y, and (3) check(Z)
that validates correctness according to the following circuit-level criteria regarding
gate list Z :

Criterion #1: All gates in list Z are implemented by exactly one LE-FF.
Rationale: Whereas each LE-FF requires one clock cycle for computation and
to ensure the functional correctness of the design, the list Z including a cone of
combinational logic gates and a master latch has a tight bound to occur within one

452 A. Roohi et al.

clock cycle. Hence, the use of more than one MG for complex functions could
increase the propagation delay enough to violate timing constraints. Hence, all
elements in the list should be implemented using one LE-FF.

Criterion #2: Fan-out of every gate in list Z cannot exceed one. Rationale:
Whereas LE-FFs realize sequential designs, outputs are obtained after a delay of
two clock cycles, one for computation/storing (master layer) and one for reading
(slave layer). If a computational circuit connects to more than one gate, then
two gates that are driven require output1 and output2 as their inputs without any
delay. Therefore, implementing a clockless design is permitted if the combinational
function has a fan-out of one driven into a single sequential block. In addition to the
abovementioned conditions, two more crucial considerations will be checked:

Criterion #3: An item in the input_list should not be a primary input. Rationale:
If the input port is one of the primary design inputs, it cannot be an output of a gate;
hence, it is removed from the input list.

Criterion #4: The item should not be an FF’s output. Rationale: If the FF’s output
is in the input_list, the possible cone gates contain two FFs that requires two clock
cycles instead of one, which causes a timing violation. Hence, the input is removed
from the list. Therefore, due to the timing criterion, each cone gates should include
only one FF and one (several) combinational gate(s).

If all criteria are satisfied, a cone of gates including all gates connected to an FF is
replaced by precisely one LE-FF. Otherwise, the FF is replaced by a logic-free NV-
FF. Then, the HDL code is updated based on the changes. These steps are performed
for all FFs in the candidate design. Finally, the optimized HDL code is produced.
To exemplify the functionality of the proposed methodology, the s27 circuit from
the ISCAS-89 benchmark is analyzed, as shown in Fig. 26a. The following steps are
performed:

(1) All FFs are listed, FF_list = {FF#1, FF#2, FF#3}
For FF#1:
STEP 1. create_cone (FF#1) is invoked. Next, find_input (FF#1) only

returns X1 as primary inputs and neglects the clock input. Thus, it satisfies both C3
and C4 conditions. This implies input_list = {X1}.

STEP 2. List of inputs has only one item. The find_gate (X1) function returns
INV1, in which X1 is its output. The cone_gates list is updated with INV1, thus
cone_gates = {INV1}.

STEP 3. The function check (cone_gates) returns TRUE because INV1 satisfies
criteria C1 and C2. Therefore, INV1 is retained in the cone.

STEP 4. Function create_cone (INV1) is invoked which performs all
steps 1, 2, and 3. The find_input(INV1) returns X2, after checking crite-
ria. Next, input_list is updated to {X2}. Thus, find_gate(X2) returns
OAI21 gate, which is appended in the cone_gates list as {INV1, OAI21}.
Meanwhile, check(cone_gates) is still TRUE, whereas all gates can be imple-
mented by one MG, simultaneously and each gate has fan_out of one. Thus,
create_cone(OAI21) is invoked.

STEP 5. Invoking create_cone(OAI21) implies that input_list equals
to {X3, X4, X5}. Meanwhile, X3 violates the C4 condition corresponding to the

Enabling Edge Computing Using Emerging Memory Technologies: From. . . 453

output of the FF, so it is removed from the input list. Moreover, X4 violates the C3
condition, the primary input of the circuit, thus input_list=X5. Accordingly,
find_gate(X5) returns INV2, thus the revised set of cone_gates= {INV1,
OAI21, INV2}. Since cone_gates satisfies C1 and C2 criteria, check(cone_gates)
returns TRUE. Hence, create_cone(INV2) is invoked.

STEP 6. Invocation of create_cone(INV2) generates input_list=X6. How-
ever, X6 violates criterion C3. Then cone_gates returns to the main procedure. If
its cardinality exceeds one, then the replaceable combinational gates are specified in
cone_gates while the FF is replaced by an LE-FF. Otherwise, the FF is replaced
by a conventional NV-FF. In this case, the HDL code becomes updated accordingly.

For FF#2:
STEP 1. Initially, create_cone(FF#2) is invoked, thus find_input(FF#2)

returns Y1, which satisfies criteria C3 and C4. Accordingly, input_list = {Y1}.
STEP 2. The find_gate(Y1) function returns NOR1. The cone_gates set is

updated such that cone_gates=NOR1.
STEP 3. The function check(cone_gates) returns TRUE whereas NOR1 satis-

fies criteria C1 and C2. Therefore, NOR1 is retained in the cone.
STEP 4. Function create_cone(NOR1) is invoked such that input_list={Y2,Y3}.

However, Y2 and Y2 violate criteria C2 whereas both gates fan-out of 2. Thus,
cone_gates is returned to the main procedure and because it is non-null, whereby
the FF and NOR gates become replaced by LE-FF. The HDL code is updated
accordingly.

For FF#3:
STEP 1. Procedure create_cone(FF#3) is invoked resulting in find_input

(FF#3) returning Z1. It violates criterion C2. Thus, cone_gates is returned
to the main procedure, and because of an empty list, the FF is replaced by a
conventional NV-FF. Whereas FF_list is empty, it outputs the optimized HDL code.
The optimized schematic for s27 is shown in Fig. 26b, which is discussed below.

Fig. 26 (a) s27 schematic with highlighted FFs and (b) optimized LE-FF based design

454 A. Roohi et al.

Table 10 NV-Clustering gate equivalent reduction

Gate equivalent

ISCAS 89 Circuit function Latch Baseline NV-Clustering Improvement %

s27 Logic 3 10 8 20

S298 PLD 8 119 49 59

S349 4-bit multiplier 15 161 102 36

S400 TLC 21 164 144 12

S420 Fractional multiplier 16 218 152 30

S526 TLC 21 193 83 57

S820 PLD 5 289 259 10

S838 Fractional multiplier 32 446 329 26

S1196 Logic 18 529 459 13

S1423 Logic 74 657 396 40

S15850 Logic 534 9772 8942 8

S38584 Logic 1426 19,253 12,504 35

Fig. 27 Normalized (a) area, (b) power, and (c) delay, compared to CMOS and NV-FF based
implementations

4.2.3 Simulation Results

In this section, performance characteristics, including power, delay, and area of NV-
Clustering, are elaborated on large-scale benchmark circuits. The generated LE-FF
libraries are utilized in a commercial synthesis tool, i.e., Synopsys Design Compiler,
to map the produced optimized HDL code to an LE-FF based design.

Area Analysis The gate counts and area performance of the ISCAS-89 benchmark
circuits with and without NV-Clustering are provided in Table 10 and Fig. 27a,
respectively. All building blocks, including functional and buffer components,
except FFs, are counted as gate equivalent. Whereas no gates are clustered with
an NV-FF realization, its number of gate equivalents is identical to a CMOS-only
realization. Meanwhile, NV-Clustering leverages LE-FFs, which can implement
one (or a set of) Boolean function (s). For instance, benchmark circuit s1423
has 657 gates, reduced to approximately 60% of the original number of gates,
396, in the LE-FF implementation. Figure 27a depicts the total area of ISCAS-89
circuits, including the interconnection, combinational, and sequential components
regarding these different implementations. For combinational circuits, NV-FF and

Enabling Edge Computing Using Emerging Memory Technologies: From. . . 455

CMOS implementations occupy a similar area as mentioned above. However,
from a sequential point of view, implementing NV-FFs and LE-FFs requires
additional peripheral circuits such as write and read circuits, which can incur
area overhead. Hence, the NV-FF implementation occupied the largest area among
the implementations. On the other hand, a reduction in the equivalent gate count
decreases the area of both combinational and interconnection components. Owing
to the back-end process vertical integration of spintronic devices, the area of NV
elements can be significantly reduced; hence, LE-FF implementations indicate the
least area consumption. As shown in Fig. 27a, the area overhead of ISCAS-89
benchmark circuits using LE-FF shows an average 15% area reduction over NV-
FF realization.

Power Analysis Figure 27b depicts the power consumption regarding the combi-
national blocks. Generally, our implementations illustrate an excellent amount of
power reduction for all benchmarks. However, due to the constraints in implement-
ing large logic functions using three- and five-input MGs, the differences between
the two implementations are insignificant in some benchmark circuits. Although this
issue can be readily addressed by developing larger MGs with a higher number of
inputs, increasing the number of inputs also increases the complexity of the MG.
Figure 27b depicts an average of 22% power reduction using the NV-Clustering
average for ISCAS-89 benchmark circuits.

Delay Analysis The optimized RTL Verilog HDL codes for the benchmarks are
synthesized using a Synopsys Design Compiler, and then worst-case timing paths
are obtained through applying STA on compiled netlists using Synopsys PrimeTime.
The obtained results regarding benchmarks are shown in Fig. 27c. The delay is
directly proportional to the number of combinational components. If the number
of FFs is minimal and the number of replaced combinational blocks is maximum,
then the delay is reduced to the greatest possible extent. As shown in Fig. 27c, the
delay reduction for selected ISCAS-89 benchmark using NV-Clustering exhibits an
average of 14% over NV-FF. It is worth noting that the obtained results herein are at
the gate level, and physical design parameters are not considered.

Resumption Overhead In energy harvesting systems, the power supply has a
limited capacity. On the one hand, in a CMOS-based design, if the system is
powered down, then volatile memories lose data, and up to a few milliseconds
[82] is necessary to restore information after a new power-up. Furthermore, this
charge/discharge cycle, which is an intrinsic characteristic of energy harvesting
devices, may occur hundreds of times per second. The system might consume
its entire power supply capacity to restore to the initial states. On the other
hand, although NV-FF and LE-FF implementations provide power failure-tolerant
designs, the required power consumption of write operations for nonvolatile ele-
ments remains an issue. Hence, due to the capacity limitation of power supplies
and the aforementioned issues, various conditions should be considered to choose
between CMOS-based or NV-based implementations. Two main conditions are (1)

456 A. Roohi et al.

a total number of completed operations and (2) a power failure rate. According
to the equality ConstantPowerSupply = ∑m

i ni × Pi , where m is the total
number of operations, n is the number of operation i, and P is the required power
consumption of operation i, in a low/free power failure situation, volatile CMOS-
based implementations perform more operations than nonvolatile-based designs.
However, in an environment with a high occurrence rate of power failure, CMOS’s
number of completed tasks is excessively reduced, which degrades the overall
system performance. Since the power supply capacity and power consumption of
each operation are constant, the usage of an NV approach is affordable if the
power failure rate is relatively high, which can disable CMOS-based designs’
functionalities.

Thus, there are two potential scenarios to be considered. Scenario #1 corresponds
to the case when intermittency is absent, in which power failure did not occur
during the processing interval under observation. Scenario #2 represents the case in
which intermittency is present. Considering Scenario #1, the application of MTJs
in memory device applications [43, 44], the retention time, τ = τ0exp(�/kT),
is arranged to be 10–15 years by choosing a thermal barrier, �, between 40 and
60 kT. On the other hand, the critical spin current is linearly proportional to the
thermal barrier,�. Thus, for applications that do not require retention times of years,
we investigate via simulation the reduction of the thermal barrier of nanomagnets
employing uniaxial anisotropy and other possibilities such as lowering their volume
or their saturation magnetization. This ultimately reduces the charge currents that
are required for write operations, which can result in significant energy improvement
due to the quadratic relationship between the Ohmic (I2R) losses and the input write
currents. Therefore, LE-FFs using SHE-MTJ devices with 30 kT energy barriers
are investigated to achieve retention times ranging from minutes to hours while
providing at least 50% energy reduction. Figure 28 shows the power-delay-product
(PDP) values for the two scenarios. In the intermittency-absent condition, the
obtained PDP results for CMOS-based designs are relatively lower than the other
implementations because of CMOS’s high-speed/low-power switching, whereas
in the intermittency-present scenario for various ISCAS-89, ITC-99, and MCNC
benchmark circuits, the results exhibit an average of 14%, 12%, and 4% PDP
improvements, respectively, for LE-FF (� = 40 kT)-based designs compared to
NV-FF-based implementations. Further PDP improvements can be achieved by
using low-energy barrier SHE-MTJ devices (� = 30 kT) within LE-FFs at the
cost of shorter retention times. However, in the energy-harvesting-powered IoT
devices, retention time in the range of days and hours could be sufficient to achieve
proper functionality. Thus, leveraging SHE-MTJ devices with 30 kT energy barrier
in intermittency occurred situations provides up to 12%, 48%, and 39% average
PDP improvements compared to CMOS-based designs, NV-FF-based designs, and
LE-FF-based implementations with � = 40 kT, respectively, without incurring any
area overhead. It is worth noting that the results provided herein are obtained at the
gate level, and physical design parameters are not considered within the document
space available.

Enabling Edge Computing Using Emerging Memory Technologies: From. . . 457

Fig. 28 Normalized PDP compared to NV-FF-based implementations for intermittency-absent
and intermittency-present scenarios

4.3 Power Analysis Resilient: PARC Design Methodology

Our approach [83–85] is inspired by power masking approaches as a possible
power analysis countermeasure. In this method, two completely separate units
are utilized, where the inputs are stored in registers and operate similarly with
different power profiles. The selector building block includes a true random number
generator (TRNG) that connects to a multiplexer, leveraged to enable one of the
two functional blocks. Because of the random behavior of the selector, the power
consumption of this design will change randomly. These designs suffer from area
overhead, ∼2× larger than the original design, and a narrow range in power profiles
for masking power. Moreover, implementing CMOS-based power maskable units
with reconfigurability features imposes area and power overhead. Therefore, herein,
a standardized methodology to synthesize optimized PAA-resilient architectures,
referred to as Power Analysis-Resilient Circuit (PARC), is developed. It leverages
PGMs as programmable building blocks, which offer advantages in evolvable,
intelligent, and security-critical applications. PARC determines where PGMs should
be inserted to provide robust coverage at minimal overhead. It is worth noting that
the randomizing process is performed using ultradense and energy-aware spin-based
TRNG. PARC methodology incorporates various metrics of PAA, including the
number of required samples and a correlation between the secret key and the sample
to design a PAA-tolerant circuit for small footprint IoT devices.

4.3.1 PARC Design Methodology

Figure 29 depicts the design flow of the PARC design methodology used to
synthesize power analysis-resilient circuits. The proposed approach is described in
Algorithm 2, which is developed in Python including three main procedures: (1)
Search(), (2) Insertion(), and Analyze().

First, in step 1 , hardware description language (HDL) code of a design such
as VHDL or Verilog is taken by Search procedure, which utilizes Synopsys

458 A. Roohi et al.

Fig. 29 Systematic PG
insertion methodology to
elevate the immunity of
designs in the presence of
PAA with minimal
performance overhead

Algorithm 2 PARC methodology
1: Input: Hardware Description Language (HDL) code, PGM
2: Output: Power analysis-resilient architectures HDL code
3: procedure SEARCH()
4: delay_list [] ← PrimeTime() � find delay
5: update P_path_list ← prioritize delay_list [] � sort paths based on their delays
6: end procedure
7: procedure INSERTION()
8: for i ← 1 to length (P_path_list) do
9: update (gates_list) � all gates in P_path_list [i]
10: for j ← 1 to length (gates_list) do
11: if check (design criteria) then � can be replaced
12: replace (input_list[j])
13: else
14: Break
15: end if
16: m_HDL ← update (HDL code)
17: Analyze(m_HDL)
18: end for
19: end for
20: end procedure
21: procedure ANALYZE()
22: PDP and Area ← DesignCompiler (m_HDL)
23: Y [pdpN , areaN] ← Normalize (PDP and Area)
24: Compute (ND) � calculates ND w.r.t. inserted PGMs
25: Compute (EoD) � calculates EoD based on Eq. 1
26: return EoD
27: end procedure

PrimeTime to obtain worst-case timing paths and marks all gates within these paths
as low replacement priority. Subsequently, in addition to PGMs, the prioritized
list of paths is applied to the Insertion procedure. In step 2 , a cone of gates
including combinational logic gates is selected and replaced by the PGMs using
the NV-Clustering approach presented in our previous work [80]. Then in step 3 ,
Analyze procedure takes the modified HDL code generated by step 2 and applies
it within a commercial synthesis tool, i.e., Synopsys Design Compiler and SPICE
circuit simulators. With respect to the original implementation, O, the Effectiveness
of Design (EoD) values are computed in step 4 :

YPDP = PDPM

PDPO

, YArea = AreaM

AreaO

,

EoD = ND

YPDP × YAREA

(10)

Enabling Edge Computing Using Emerging Memory Technologies: From. . . 459

Fig. 30 (a) s27 schematic from ISCAS-89 benchmark circuit and possible replacement regions,
(b) PGM-based design and EoD results for the selected regions, and (c) power traces results for
K1K2 combinations

where PDPM and AreaM are power-delay-product and area of the modified circuit,
respectively. ND is the maximum number of possible configurations of the new
design that produce the correct output. The procedure including all steps is
performed N times, calculated by Eq. (11) to maximize the EoD value. Higher
EoD values have higher PAA resiliency. It means higher EoD escalates the required
number of power profiles/traces, which is expressed by 2nk × 2nin, where nk is the
number of key bits, and nk = �√ND� and nin is the number of input bits for the
inserted building blocks.

N =
n∑

m=1

(n − m + 1) = n(n + 1)

2
(11)

where, n = number of gates in one path and m = number of the selected gate(s) to
be replaced by PGM(s). Finally, in step 5 , the optimized power analysis-resilient
HDL code is produced.

To exemplify PARC operation and functionality, circuit s27 from the ISCAS-89
benchmark is analyzed as shown in Fig. 30a. Since it has nine different paths with
a maximum of four logic gates in one path, the procedure will run ten times to
determine the optimized EoD. The selection process is performed using a CMOS-
based MUX, which chooses the proper PGM’s outputs as the final output. The
EoD results for different selected cone regions are listed in Fig. 30b. For instance,
region 1 (or 7) consists of a two-input NOR and a four-input AND_OR_Inverter22
(AOI22). Although it can generate ten different structures (maximum number of
equivalent logic realization) with an identical function, it requires four 3-input
PGMs, which impose ∼3.2× and ∼2.9×, power and area overhead, respectively,
compared to the original implementation, whereas region 4 shows the highest
EoD value, which can be implemented by four equivalent structures, including

460 A. Roohi et al.

NAND_AND, AND_NOR, OR_AND, NOR_NOR, with different power profiles.
Since ND = 4, this implementation requires two enable keys (enK1, enK2), which
are generated by TRNG, resulting in 32 different power profiles for all possible
three-input design combinations, as shown in Fig. 30c.

5 Conclusion

In this chapter book, magnetic random-access memory (MRAM) components are
studied to enable in-memory processing and gate-level pipelining essential for data-
/compute-intensive tasks and energy harvesting applications, respectively. Regard-
ing data-/compute-intensive applications, new customized in-memory computing
algorithms and mapping methods were developed to convert the crucial iteratively
used functions to bit-wise PIM-supported functions. Moreover, a generic and
comprehensive evaluation framework was also presented to analyze the performance
quantitatively. About NoC systems, the design methodology was first extended to
realize the targeted insertion PGMs within the VLSI implementations to make them
resilient against power failure. Then PARC as an extension of NV-Clustering was
developed as a power-masked synthesis method in the presence of power analysis
side-channel attack. Due to the exciting accelerator achievements and normally off
computing units’ implementations, the presented frameworks and methodologies
are promising schemes for resource-constrained edge devices.

References

1. Wang, Y., Yu, H., Ni, L., et al.: An energy-efficient nonvolatile in-memory computing
architecture for extreme learning machine by domain-wall nanowire devices. IEEE Trans.
Nanotechnol. 14(6), 998–1012 (2015)

2. Fact sheet: Big data across the federal government (2012) [Online]. Available:
3. Fong, X., Kim, Y., Yogendra, K., et al.: Spin-transfer torque devices for logic and memory:

Prospects and perspectives. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35(1), 1–22
(2016)

4. Li, S., Niu, D., Malladi, K.T., et al.: Drisa: A dram-based reconfigurable in-situ accelerator. In:
Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture,
pp. 288–301. ACM, New York (2017)

5. Li, B., Gu, P., Shan, Y., et al.: Rram-based analog approximate computing. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 34(12), 1905–1917 (2015)

6. Angizi, S.: Processing-in-memory for data-intensive applications, from device to algorithm.
Ph.D. dissertation. Arizona State University, New York (2021)

7. Cheng, M., Xia, L., Zhu, Z., et al.: Time: A training-in-memory architecture for memristor-
based deep neural networks. In: 2017 54th ACM/EDAC/IEEE Design Automation Conference
(DAC), pp. 1–6. IEEE, New York (2017)

8. Chi, P., Li, S., Xu, C., et al.: Prime: a novel processing-in-memory architecture for neural net-
work computation in reram-based main memory. In: ACM SIGARCH Computer Architecture
News, vol. 44(3), pp. 27–39. IEEE Press, New York (2016)

Enabling Edge Computing Using Emerging Memory Technologies: From. . . 461

9. Seshadri, V., Lee, D., Mullins, T., et al.: Ambit: In-memory accelerator for bulk bitwise
operations using commodity dram technology. In: 2017 50th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pp. 273–287. IEEE, New York (2017)

10. Li, S., Xu, C., Zou, Q., et al.: Pinatubo: A processing-in-memory architecture for bulk bitwise
operations in emerging non-volatile memories. In: 2016 53nd ACM/EDAC/IEEE Design
Automation Conference (DAC), pp. 1–6. IEEE, New York (2016)

11. He, Z., Angizi, S., Parveen, F., Fan, D.: Leveraging dual-mode magnetic crossbar for ultra-low
energy in-memory data encryption. In: Proceedings of the on Great Lakes Symposium on VLSI
2017, pp. 83–88 (2017)

12. Angizi, S., Roohi, A., Taheri, M., Fan, D.: Processing-in-memory acceleration of mac-based
applications using residue number system: A comparative study. In: Proceedings of the 2021
on Great Lakes Symposium on VLSI, pp. 265–270 (2021)

13. Angizi, S., He, Z., Parveen, F., Fan, D.: Imce: Energy-efficient bit-wise in-memory convolution
engine for deep neural network. In: 2018 23rd Asia and South Pacific Design Automation
Conference (ASP-DAC), pp. 111–116. IEEE, New York (2018)

14. Angizi, S., He, Z., Rakin, A.S., Fan, D.: Cmp-pim: an energy-efficient comparator-based
processing-in-memory neural network accelerator. In: Proceedings of the 55th Annual Design
Automation Conference, p. 105. ACM, New York (2018)

15. Yin, S., Jiang, Z., Seo, J.-S., Seok, M.: Xnor-sram: In-memory computing sram macro for
binary/ternary deep neural networks. IEEE J. Solid-State Circuits 55(6), 1733–1743 (2020)

16. Roohi, A., Angizi, S., Fan, D., DeMara, R.F.: Processing-in-memory acceleration of convo-
lutional neural networks for energy-effciency, and power-intermittency resilience. In: 20th
International Symposium on Quality Electronic Design (ISQED), pp. 8–13. IEEE, New York
(2019)

17. Roohi, A., Sheikhfaal, S., Angizi, S., et al.: Apgan: Approximate gan for robust low energy
learning from imprecise components. IEEE Trans. Comput. 69(3), 349–360 (2019)

18. Eckert, C., Wang, X., Wang, J., et al.: Neural cache: Bit-serial in-cache acceleration of deep
neural networks, pp. 383–396 (2018)

19. Lee, B.C., Ipek, E., Mutlu, O., Burger, D.: Architecting phase change memory as a scalable
dram alternative. In: ACM SIGARCH Computer Architecture News, vol. 37(3), pp. 2–13.
ACM, New York (2009)

20. Everspin announces sampling of the world’s first 1-gigabit mram product (2016). [Online].
https://www.everspin.com

21. Baumann, A., Jung, M., Huber, K., et al.: A mcu platform with embedded fram achieving
350na current consumption in real-time clock mode with full state retention and 6.5μs system
wakeup time. In: 2013 Symposium on VLSI Circuits (VLSIC), pp. C202–C203. IEEE, New
York (2013)

22. Chien, T.-K., Chiou, L.-Y., Lee, C.-C., et al.: An energy-efficient nonvolatile microprocessor
considering software-hardware interaction for energy harvesting applications. In: 2016 Inter-
national Symposium on VLSI Design, Automation and Test (VLSI-DAT), pp. 1–4. IEEE, New
York (2016)

23. Senni, S., Torres, L., Sassatelli, G., Gamatie, A.: Non-volatile processor based on mram for
ultra-low-power iot devices. ACM J. Emerg. Technol. Comput. Syst. (JETC) 13(2), 17 (2017)

24. Senni, S., Torres, L., Benoit, P., et al.: Normally-off computing and checkpoint/rollback for
fast, low-power, and reliable devices. IEEE Magn. Lett. 8, 1–5 (2017)

25. Prenat, G., Jabeur, K., Vanhauwaert, P., et al.: Ultra-fast and high-reliability sot-mram: From
cache replacement to normally-off computing. IEEE Trans. Multi-Scale Computing Systems
2(1), 49–60 (2016)

26. Bishnoi, R., Oboril, F., Tahoori, M.B.: Non-volatile non-shadow flip-flop using spin orbit
torque for efficient normally-off computing. In: 2016 21st Asia and South Pacific Design
Automation Conference (ASP-DAC), pp. 769–774. IEEE, New York (2016)

27. Khanna, S., Bartling, S.C., Clinton, M., et al.: An fram-based nonvolatile logic mcu soc
exhibiting 100% digital state retention at vdd = 0 v achieving zero leakage with < 400-ns
wakeup time for ulp applications. IEEE J. Solid State Circuits 49(1), 95–106 (2014)

 -563 35116 a -563
35116 a

https://www.everspin.com

462 A. Roohi et al.

28. Sakimura, N., Tsuji, Y., Nebashi, R., et al.: 10.5 a 90 nm 20mhz fully nonvolatile microcon-
troller for standby-power-critical applications. In: 2014 IEEE International Solid-State Circuits
Conference Digest of Technical Papers (ISSCC), pp. 184–185. IEEE, New York (2014)

29. Ransford, B., Sorber, J., Fu, K.: Mementos: System support for long-running computation on
rfid-scale devices. In: ACM SIGARCH Computer Architecture News, vol. 39(1), pp. 159–170.
ACM, New York (2011)

30. Lucia, B., Ransford, B.: A simpler, safer programming and execution model for intermittent
systems. ACM SIGPLAN Not. 50(6), 575–585 (2015)

31. Shi, K., Howard, D.: Challenges in sleep transistor design and implementation in low-power
designs. In: Proceedings of the 43rd annual Design Automation Conference, pp. 113–116.
ACM, New York (2006)

32. Zhao, H., Glass, B., Amiri, P.K., et al.: Sub-200 ps spin transfer torque switching in in-plane
magnetic tunnel junctions with interface perpendicular anisotropy. J. Phys. D. Appl. Phys.
45(2), 025001 (2011)

33. Rowlands, G., Rahman, T., Katine, J., et al.: Deep subnanosecond spin torque switching in
magnetic tunnel junctions with combined in-plane and perpendicular polarizers. Appl. Phys.
Lett. 98(10), 102509 (2011)

34. Roohi, A., Zand, R., DeMara, R.F.: A tunable majority gate-based full adder using current-
induced domain wall nanomagnets. IEEE Trans. Magn. 52(8), 1–7 (2016)

35. Rakin, A.S., Angizi, S., He, Z., Fan, D.: Pim-tgan: A processing-in-memory accelerator for
ternary generative adversarial networks. In: 2018 IEEE 36th International Conference on
Computer Design (ICCD), pp. 266–273. IEEE, New York (2018)

36. Roohi, A., Zand, R., Fan, D., DeMara, R.F.: Voltage-based concatenatable full adder using spin
hall effect switching. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 36(12), 2134–
2138 (2017)

37. Gallagher, W.J., Parkin, S.S.: Development of the magnetic tunnel junction mram at ibm: From
first junctions to a 16-mb mram demonstrator chip. IBM J. Res. Dev. 50(1), 5–23 (2006)

38. Chung, S.-W., Kishi, T., Park, J., et al.: 4gbit density stt-mram using perpendicular mtj realized
with compact cell structure. In: 2016 IEEE International Electron Devices Meeting (IEDM),
pp. 27–1. IEEE, New York (2016)

39. Garello, K., Yasin, F., Hody, H., et al.: Manufacturable 300mm platform solution for field-free
switching sot-mram. In: 2019 Symposium on VLSI Circuits, pp. T194–T195. IEEE, New York
(2019)

40. Natsui, M., Tamakoshi, A., Honjo, H., et al.: Dual-port field-free sot-mram achieving 90-mhz
read and 60-mhz write operations under 55-nm cmos technology and 1.2-v supply voltage. In:
2020 IEEE Symposium on VLSI Circuits, pp. 1–2. IEEE, New York (2020)

41. Sakhare, S., Perumkunnil, M., Bao, T.H., et al.: Enablement of stt-mram as last level cache
for the high performance computing domain at the 5 nm node. In: 2018 IEEE International
Electron Devices Meeting (IEDM), pp. 18–3. IEEE, New York (2018)

42. Kan, J., Park, C., Ching, C., et al.: Systematic validation of 2x nm diameter perpendicular
mtj arrays and mgo barrier for sub-10 nm embedded stt-mram with practically unlimited
endurance. In: 2016 IEEE International Electron Devices Meeting (IEDM), pp. 27–4. IEEE,
New York (2016)

43. Slaughter, J., Rizzo, N., Janesky, J., et al.: High density ST-MRAM technology. In: 2012 IEEE
International Electron Devices Meeting (IEDM), pp. 29–3. IEEE, New York (2012)

44. Slaughter, J., Nagel, K., Whig, R., et al.: Technology for reliable spin-torque mram products.
In: 2016 IEEE International Electron Devices Meeting (IEDM), pp. 21–5. IEEE, New York
(2016)

45. Donahue, M.J.: Oommf user’s guide, version 1.0. -6376 (1999)
46. Fong, X., Gupta, S.K., Mojumder, N.N., et al.: Knack: A hybrid spin-charge mixed-mode

simulator for evaluating different genres of spin-transfer torque mram bit-cells. In: 2011
International Conference on Simulation of Semiconductor Processes and Devices, pp. 51–54
(2011)

Enabling Edge Computing Using Emerging Memory Technologies: From. . . 463

47. Zand, R., Roohi, A., Fan, D., DeMara, R.F.: Energy-efficient nonvolatile reconfigurable logic
using spin hall effect-based lookup tables. IEEE Trans. Nanotechnol. 16(1), 32–43 (2016)

48. Panagopoulos, G., Augustine, C., Roy, K.: A framework for simulating hybrid mtj/cmos
circuits: Atoms to system approach. In: 2012 Design, Automation and Test in Europe
Conference and Exhibition (DATE), pp. 1443–1446. IEEE, New York (2012)

49. Huai, Y.: Spin-transfer torque mram (stt-mram): Challenges and prospects. AAPPS Bull. 18(6),
33–40 (2008)

50. He, Z., Zhang, Y., Angizi, S., Gong, B., Fan, D.: Exploring a SOT-MRAM based in-memory
computing for data processing. IEEE Trans. Multi-Scale Comput. Syst. 4(4), 676–685 (2018)

51. Liu, L., Moriyama, T., Ralph, D., Buhrman, R.: Spin-torque ferromagnetic resonance induced
by the spin hall effect. Phys. Rev. Lett. 106(3), 036601 (2011)

52. Liu, L., Pai, C.-F., Li, Y., et al.: Spin-torque switching with the giant spin hall effect of tantalum.
Science 336(6081), 555–558 (2012)

53. Pai, C.-F., Liu, L., Li, Y., et al.: Spin transfer torque devices utilizing the giant spin hall effect
of tungsten. Appl. Phys. Lett. 101(12), 122404 (2012)

54. Angizi, S., He, Z., Awad, A., Fan, D.: Mrima: An mram-based in-memory accelerator. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst. 39(5), 1123–1136 (2019)

55. Angizi, S., Sun, J., Zhang, W., Fan, D.: Graphs: A graph processing accelerator leveraging sot-
mram. In: 2019 Design, Automation and Test in Europe Conference and Exhibition (DATE),
pp. 378–383. IEEE, New York (2019)

56. Angizi, S., Fan, D.: Imc: energy-efficient in-memory convolver for accelerating binarized deep
neural network. In: Proceedings of the Neuromorphic Computing Symposium, pp. 1–8 (2017)

57. Angizi, S., Sun, J., Zhang, W., Fan, D.: Pim-aligner: a processing-in-mram platform for
biological sequence alignment. In: 2020 Design, Automation and Test in Europe Conference
and Exhibition (DATE), pp. 1265–1270. IEEE, New York (2020)

58. Angizi, S., Sun, J., Zhang, W., Fan, D.: Aligns: A processing-in-memory accelerator for dna
short read alignment leveraging sot-mram. In: 2019 56th ACM/IEEE Design Automation
Conference (DAC), pp. 1–6. IEEE, New York (2019)

59. Zhou, S., Wu, Y., Ni, Z., et al.: Dorefa-net: Training low bitwidth convolutional neural networks
with low bitwidth gradients. arXiv preprint arXiv:1606.06160 (2016)

60. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: Xnor-net: Imagenet classification using
binary convolutional neural networks. In: European Conference on Computer Vision, pp. 525–
542. Springer, Berlin (2016)

61. Shafiee, A., Nag, A., Muralimanohar, N., et al.: ISAAC: A convolutional neural network accel-
erator with in-situ analog arithmetic in crossbars. ACM SIGARCH Computer Architecture
News 44(3), 14–26 (2016)

62. Song, L., Qian, X., Li, H., Chen, Y.: Pipelayer: A pipelined reram-based accelerator for
deep learning. In: 2017 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pp. 541–552. IEEE, New York (2017)

63. Angizi, S., He, Z., Reis, D., et al.: Accelerating deep neural networks in processing-in-memory
platforms: Analog or digital approach? In: 2019 IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), pp. 197–202. IEEE, New York (2019)

64. Jain, S., Sengupta, A., Roy, K., Raghunathan, A.: RX-CAFFE: Framework for evaluating and
training deep neural networks on resistive crossbars. arXiv preprint arXiv:1809.00072 (2018)

65. Cavigelli, L., Magno, M., Benini, L.: Accelerating real-time embedded scene labeling with
convolutional networks. In: Proceedings of the 52nd Annual Design Automation Conference,
pp. 1–6 (2015)

66. Angizi, S., He, Z., Fan, D.: Dima: a depthwise cnn in-memory accelerator. In: 2018 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pp. 1–8. IEEE, New York
(2018)

464 A. Roohi et al.

67. Roohi, A., Taheri, M., Angizi, S., Fan, D.: Rnsim: Efficient deep neural network accelerator
using residue number systems. In: IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pp. 1–9. IEEE, New York (2021)

68. Reis, D., Gao, D., Angizi, S., et al.: Modeling and benchmarking computing-in-memory for
design space exploration. In: Proceedings of the 2020 on Great Lakes Symposium on VLSI
(2020), pp. 39–44

69. Dong, X., Xu, C., Xie, Y., Jouppi, N.P.: NVSIM: A circuit-level performance, energy, and area
model for emerging nonvolatile memory. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst. 31(7), 994–1007 (2012)

70. DRAM Power Model. https://www.rambus.com/energy/
71. Jain, S., Ranjan, A., Roy, K., Raghunathan, A.: Computing in memory with spin-transfer torque

magnetic RAM. IEEE Trans. Very Large Scale Integr. VLSI Syst. 26(3), 470–483 (2018)
72. Tang, T., Xia, L., Li, B., et al.: Binary convolutional neural network on rram. In: 2017 22nd

Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 782–787. IEEE, New
Your (2017)

73. (2011) Ncsu eda freepdk45. [Online]. http://www.eda.ncsu.edu/wiki/FreePDK45:Contents
74. Synopsys, Inc., Synopsys design compiler, product version 14.9.2014 (2014)
75. Chen, K., Li, S., Muralimanohar, N., et al.: CACTI-3DD: Architecture-level modeling for 3d

die-stacked dram main memory. In: Design, Automation and Test in Europe Conference and
Exhibition (DATE), 2012, pp. 33–38. IEEE, New York (2012)

76. Behin-Aein, B., Datta, D., Salahuddin, S., Datta, S.: Proposal for an all-spin logic device with
built-in memory. Nat. Nanotechnol. 5(4), 266 (2010)

77. Nikonov, D.E., Bourianoff, G.I., Ghani, T.: Proposal of a spin torque majority gate logic. IEEE
Electron Device Lett. 32(8), 1128–1130 (2011)

78. Roohi, A., Menbari, B., Shahbazi, E., Kamrani, M.: A genetic algorithm based logic optimiza-
tion for majority gate-based qca circuits in nanoelectronics. Quantum Matter 2(3), 219–224
(2013)

79. Roohi, A., Zand, R., DeMara, R.F.: Synthesis of normally-off boolean circuits: An evolutionary
optimization approach utilizing spintronic devices. In: 2018 19th International Symposium on
Quality Electronic Design (ISQED), pp. 49–54. IEEE, New York (2018)

80. Roohi, A., DeMara, R.F.: Nv-clustering: Normally-off computing using non-volatile datapaths.
IEEE Trans. Comput. 67(7), 949–959 (2018)

81. Roohi, A., DeMara, R.F.: IRC cross-layer design exploration of intermittent robust computa-
tion units for IoTs. In: 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
pp. 354–359. IEEE, New York (2019)

82. Kimura, H., Fuchikami, T., Maramoto, K., et al.: A 2.4 pj ferroelectric-based non-volatile
flip-flop with 10-year data retention capability. In: , 2014 IEEE Asian Solid-State Circuits
Conference (A-SSCC), pp. 21–24. IEEE, New York (2014)

83. Roohi, A., DeMara, R.F.: PARC: A novel design methodology for power analysis resilient
circuits using spintronics. IEEE Trans. Nanotechnol. 18, 885–889 (2019)

84. Roohi, A., DeMara, R.F., Wang, L., Köse, S.: Secure intermittent-robust computation for
energy harvesting device security and outage resilience. In: 2017 IEEE International Confer-
ence on Advanced and Trusted Computing (ATC), pp. 1–5. IEEE, New York (2017)

85. Roohi, A., Zand, R., DeMara, R.F.: Logic-encrypted synthesis for energy-harvesting-powered
spintronic-embedded datapath design. In: Proceedings of the 2018 on Great Lakes Symposium
on VLSI, pp. 9–14 (2018)

 8038 9656 a 8038 9656
a

https://www.rambus.com/energy/

 13834 16298 a 13834 16298 a

http://www.eda.ncsu.edu/wiki/FreePDK45:Contents

IoT Commercial and Industrial
Applications and AI-Powered IoT

Khaled Ahmed Nagaty

1 Introduction

Internet of Things is a disruptive technology that is commonly available and easily
accessible. It connects heterogeneous devices with each other through sending and
receiving information in different formats to reach a common goal [1]. The main
goal of IoT devices is to sense data and interact with the environment [2]. Companies
use IoT to gather information about customers to understand customers’ needs
and preferences, and in the same time IoT personalizes customer’s products and
services and customizes them to the user’s needs and preferences. Therefore, many
companies and industries in various fields in our daily lives adopt IoT because
it helps them automate processes, reduce labor costs, and “increase productivity,
save time, optimize cost, optimize human resource, predict maintenance, and
provide a lot of comfort to human life.” The IoT also reduces waste of resources
by monitoring the utilization of these resources, hence improving the quality of
products and service delivery. The IoT is composed of physical objects called things.
Sensors, software, and communication technologies connect devices and exchange
information over the Internet. The devices of IoT systems may range from ordinary
devices such as home appliances to complex sensor networks in various industries
such as weather forecast, or military. The sensors and devices in IoT systems collect
data from the environment and send the data to the cloud through the Internet.
When the data gets to the cloud, data processing could be done and finally the
information is sent to the end user, which could be another IoT device. IoT systems
are characterized by heterogeneity, dynamism, autonomy, extensiveness, privacy,
and security [2]. For heterogeneity, an IoT system may be composed of different

K. A. Nagaty (�)
The British University in Egypt, El-Sherouk City, Cairo, Egypt
e-mail: khaled.nagaty@bue.edu.eg

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Iranmanesh (ed.), Frontiers of Quality Electronic Design (QED),
https://doi.org/10.1007/978-3-031-16344-9_12

465

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16344-9_12&domain=pdf

 885
56845 a 885 56845 a

mailto:khaled.nagaty@bue.edu.eg

 -2016 61494 a -2016
61494 a

https://doi.org/10.1007/978-3-031-16344-9_12

466 K. A. Nagaty

hardware devices, network infrastructure, and processing applications, and they
need to connect and exchange information. For dynamism, IoT systems need to
keep their correct behavior independent of changes occurring in the environment.
For autonomy, IoT devices must be capable of making decisions without human
intervention. For extensiveness, as the number of devices estimated to connect to
the Internet in 2021 is 35 billion devices, an infrastructure and platform are required
to manage such large number of connections. As IoT systems are connecting to
the Internet to exchange information, this may let them vulnerable to cyberattacks
especially if these systems are collecting sensitive data such as military sensor
networks or healthcare systems. Therefore, IoT systems must guarantee privacy and
security to protect their collected data. The global market for IoT can be segmented
based on technologies, components, applications, end users, and geography. In
this chapter, we will consider the IoT market segment based on applications.
There are many applications of IoT technologies in our real lives; this is because
IoT can be customized to almost any field of applications that can produce data
about monitoring the environment, its operations, and activities. IoT applications
can be commercial or industrial. The most important commercial applications of
IoT are wearables, healthcare, traffic monitoring, hospitality, retail, maintenance
management, and digital marketing. The most important industrial applications are
manufacturing, agriculture, water supply, smart cities, financial services, energy,
supply chain, transportation, telematics, and building automation. Figure 1 shows
the IoT global market from 2018 to 2023. According to global data, IoT technology
global market reached 130 billion dollars in 2018. It is estimated to reach 318 billion
dollars in 2023, at a 20% compound annual growth rate [3].

This chapter is organized as follows: Sect. 2 is dedicated for IoT commercial
applications, Sect. 3 is dedicated for industrial IoT applications, Sect. 4 is dedicated
for IoT data analytics, Sect. 5 is dedicated for IoT security risks and threats, Sect. 6
is dedicated AI-powered IoT, and finally Sect. 7 is dedicated for conclusion.

2 IoT Commercial Applications

Commercial IoT applications improve experiences of customers, patients, and
guests in different places such as hospitals, markets, hotels, and restaurants through
more efficient monitoring of operations in smart buildings and smart offices. It
improves company’s insight into retail business and allow them to make real-
time decisions to target potential customers with appropriate messages. The most
common commercial IoT applications are the following.

IoT Commercial and Industrial Applications and AI-Powered IoT 467

Fig. 1 Forecast End-user Spending on IoT Solutions Worldwide from 2017 to 2025 (in billions of
dollars)

2.1 Healthcare

IoT healthcare systems provide flexibility and save much time than traditional
healthcare systems [4]. Families, patients, hospitals, physicians, and insurance
companies can benefit from the applications of IoT in healthcare. Lives of healthcare
providers become safer and easier, costs are reduced, and healthcare services
for patients are ultimately improved. IoT enables medical providers to detect
patients’ commitment to medical plans and provide them immediate help in case
of emergency. For instance, monitoring noncritical patients, providing assisted
ambient living (AAL) for elderly persons, and rehabilitation after physical injury
save hospital resources for patients that are more critical. Patients who live far
away from hospitals could not reach the hospital on time, so providing them
medical advice using the IoT healthcare system could be a lifesaver. However,
Internet disconnection is one of the major risks of IoT healthcare systems [5]. On
the other side, patients can learn about their health records and can communicate
with their medical providers. This section discusses the major components of IoT

468 K. A. Nagaty

IoT Healthcare
Sensors

Clinical

Wearble Implantable
Asset

Tracking Location Based
Sensors for

Legacy Devices

Non-Clinical

Fig. 2 Classification of IoT healthcare sensors. (As adapted from [6])

healthcare systems, services and applications, challenges, and opportunities. IoT
healthcare systems are composed of many components that communicate with
each other to collect and analyze data to help patients and healthcare providers.
Sensors are an important component of IoT healthcare systems. Sensors must be
recalibrated regularly to ensure their measurement efficiency. They are divided into
two categories: clinical and nonclinical sensors. The clinical sensors are divided
into wearable sensors and implantable sensors. Nonclinical sensors are divided into
asset/equipment tracking sensors, location asset sensors, and legacy device sensors.
Figure 2 shows the classification of healthcare sensors.

2.1.1 Clinical Sensors

2.1.1.1 Wearable Sensors

They are useful within healthcare for monitoring the bodies of patients and
collecting physiological and movement data. Wearable sensors are deployed on
parts of medical interest on the patient’s body.

Pulse Sensors

It reads heart pulse of a patient. The pulse sensor can be placed on the patient’s
wrist, chest, earlobe, or fingertips. Figure 3 shows a pulse sensor.

Respiratory Rate Sensors

Respiratory sensors measure respiratory rate by detecting variations in chest
movement per minute. The sensing system can be placed around the chest with a

IoT Commercial and Industrial Applications and AI-Powered IoT 469

Fig. 3 Pulse sensor

Ground

VCC

Signal

Oxygen mask Respiratory rate

Fig. 4 Respiratory rate sensor [7]

strap. Figure 4 shows a respiratory rate sensor composed of an oxygen mask and a
respiratory rate device.

Body Temperature Sensors

An accurate body temperature depends on how far the sensor position from the
human body. Infrared (IR) body temperature sensors are noncontact sensors and
can be placed close to the patient’s forehead, earlobe, or skin. Figure 5 shows a
body temperature sensor.

Blood Pressure Sensors

IoT blood pressure monitoring system (IBPMS), for example, Raspberry Pi, can
remotely monitor patient’s blood pressure [8]. The IBPMS reads the data and sends
it to both Telegram and Gmail applications [8]. Figure 6 shows blood pressure
sensor.

470 K. A. Nagaty

Fig. 5 Body temperature
sensor

Fig. 6 Blood pressure sensor

Fig. 7 Pulse oximetry sensor

Pulse Oximetry Sensors

Oxygen saturation in the patient’s blood can be measured using pulse oximeter
sensors. This noninvasive device is composed of a red light source, infrared source,
photo detectors, and a probe to transmit light through a translucent, pulsating arterial
bed, typically an earlobe or fingertip. Figure 7 shows a pulse oximetry sensor.

IoT Commercial and Industrial Applications and AI-Powered IoT 471

2.1.1.2 Implantable Sensors

These sensors are inserted into the patient’s body for diagnosis, treatment, and
long-term monitoring. Such implantable sensors allow health monitoring systems
to detect changes in the health conditions of the patients whether they are conscious
or not to provide them with immediate treatment. For example, to design better
prosthetics, implantable strain sensors can be incorporated into orthopedic prosthet-
ics to specify the forces acting on those joints. Patients with high risk of excessive
clotting or impeded blood flow implantable cardiovascular flow and pressure sensors
can provide early warning of excessive clotting or impeded flow, and implantable
neurostimulators can treat muscular and neurological damage [9].

2.1.2 Nonclinical Sensors

IoT devices can help track physician’s location and people inside hospitals, find the
nearest ambulance in case of emergency, track assets to achieve operational effi-
ciency and compliance with hygiene standards, and provide real-time information
for logistics [6].

2.2 Tourism and Hospitality

The tourism industry is highly affected by digital transformation and diffusion
of disruptive technologies such as IoT. IoT technologies help increase customers’
satisfaction in tourism and hospitality while reducing operational costs at the same
time. IoT devices provide guests with automated guest check-in, smart hotel rooms
with IoT-enabled door locks, motorized curtains, smart TVs which have positive
impact on customers’ satisfaction. IoT security and safety enable safer hotel stays
and increased peace of mind for guests. Housekeeping staff can gain from IoT hotel
systems to know when a guest room is occupied and when it is ready to be cleaned.
Maintenance department can receive quick reports on malfunctioning gadgets such
as burned-out lightbulbs or plumbing leaks to fix them as quickly as possible to
minimize costs to fix problems and increase guests’ satisfaction. The staff can detect
vacant rooms and minimize electricity by dimming lights, turning off lights and A/C
units, and tracking equipment with asset tracking systems.

2.3 Retail Industry

IoT technologies can play a fundamental role in retail industry. RFID is one of
the most common forms of IoT used in retailing [12]. Data obtained from reading
the tags attached to items and products by radio-frequency identification (RFID) is

472 K. A. Nagaty

analyzed via IoT data analytics tools which allow retailers to obtain more valuable
information on sales update and customers’ purchasing patterns. Retailers can
enhance customer experience by creating ideal shopping atmosphere using smart
self-checkout cart where customers pick an item off a shelve, scan barcode of the
item, drop it in the cart, and, when shopping is finished, pay directly on the cart. IoT
reduce costs by tracking lost carts and baskets, tracking shipments in real time to
prevent spoilage, keep products protected in transit, prevent theft or loss, adjust the
air conditioning based on how many people are coming and going, and dim light
switches when a store is less occupied. IoT retail uses sensors to monitor customer
satisfaction, food safety, and sales opportunities in real time. IoT technologies
allow retailers to have deep insight in the supply chain and track assets. Based
on customers’ behavior and demographics collected by IoT systems, customized
products can be delivered to customers and placed in the right places. IoT inventory
systems eliminate downtime at warehouse and uphold timely deliveries, and using
smart shelves, retailers can monitor stock levels and guarantee products’ availability
on shelves.

2.4 Digital Marketing

IoT technology provides marketers with more insights on customer’s usage of prod-
ucts. IoT technology finds patterns in product usage which allow digital marketers to
predict exact demand and understand the daily lifestyle of customers and may read
the customer’s mind set. This makes 100% of advertisements are aligned with the
customers’ needs, interests, behaviors, buying patterns, individual preferences, and
past purchases. Digital marketers can better understand their audience, determine
the elements affect purchasing patterns, analyze customers’ behavior in real time,
determine markets where a particular product will sell best, and target potential
customers with promotion messages and personalized advertisements. For example,
if the milk in a customer’s smart fridge in his/her smart home is about to end,
then the connected smart fridge will record for buying a new bottle of milk and
sends a purchasing order to the store. As IoT technology becomes more advanced,
it learns the customer’s behavior in consuming milk and calculate the number of
days the bottle of milk will be consumed. Such smart fridge can warn the customer
when the milk is approaching to an end through a text message to the customer’s
smartphone before sending a purchasing order to the store. As a result, advertisers
can predict when customers will replace products, which type of products they want
to accurately target potential customers, determine the type of marketing campaign,
determine potential messages that will actively engage customers, and improve
the marketing campaign. IoT in social media allows digital marketers to automate
market data gathering, creating posts with contents they are sure that the audience
will want to see and sharing them with potential customers.

IoT Commercial and Industrial Applications and AI-Powered IoT 473

3 IoT Commercial Applications

3.1 Agriculture

IoT in agriculture uses remote sensors embedded into plants and fields to collect
data about the physical properties of soil and environment to help make decisions
for increasing crop production which is essential for sustainable food security. Data
analysis helps farmers monitor their crops, organize the irrigation process, promptly
diagnose plant diseases to minimize the use of pesticides, help decision-makers to
have better insights, and develop management plans to save time and money. Using
IoT in agriculture is one step closer to smart agriculture where farms will be self-
dependent, thus making the right decisions to increase productivity [10]. IoT sensors
used in smart agriculture are classified into two categories: field and climate sensors.
The IoT agriculture system is composed of three layers: the first layer is data
collection layer that collects field data and climate data and send over the Internet to
the data analysis layer. The data analysis layer contains tools to analyze the collected
data and historic stored data to predict the parameters required for making decisions
in the upcoming days. For example, in rescheduling field irrigation, data about soil
moisture is collected from sensors inserted into the soil closer to the root zone of
the plants. Climatic data such as temperature and wind speed collected from wind
speed sensors, sunshine data, and field data is sent to a dedicated server in the cloud
to be analyzed and decision is made based on a threshold value [11]. The decision
on whether to start or stop the water pump or increase or reduce the amount of
water served to the field is sent to the water pump regulator. The framer or human
expert can override the decisions of the IoT agriculture system. Figure 8 shows IoT
agriculture sensors which can be categorized into field sensors and climate sensors.

3.1.1 Field Sensors

3.1.1.1 Soil Temperature

It is the measure of warmth in the soil, i.e., how hot or cold the soil is, the air may be
warm, but the soil may be cool. So, soil temperature is necessary because it is a very
important physical property that affects the germination of seeds and plant growth.
It controls the speed of chemical reactions and biological activities in the soil; most
soil organisms work better at warm soil temperature. Factors that influence soil
temperature are climate, season, water levels, soil color, plant cover, compost and
manure, and soil moisture. An instant-read thermometer used for cooking is used
to measure soil temperature by putting the thermometer’s probe as deep as possible
into the soil to get a precise reading of the soil temperature. Figure 9 shows a soil
temperature sensor.

474 K. A. Nagaty

IoT Agriculture

Field

Soil
Tempreature

Soil
Moisture

Humidity

UV

Index

Wind
Speed

Cloudiness

Index

Light Radiation

Climate
Sensors

Fig. 8 Classification of IoT agriculture sensors

Fig. 9 Soil temperature
sensor

3.1.1.2 Soil Moisture

Soil moisture is the water between the spaces of soil particles; it dissolves minerals
and nutrients the plants need and absorb to grow. Soil moisture controls water
exchange and heat energy between land surface and atmosphere through evaporation
and plant transpiration. Precipitation, temperature, and soil characteristics affect soil
moisture. Soil moisture sensors measure the volumetric water content at the root
zone in the soil to manage the irrigation systems to use less water. Soil moisture
is measured using tensiometers that measure soil moisture tension. Capacitive soil
moisture sensor determines the amount moisture in the soil by measuring changes in
capacitance to determine the water content of soil. Soil moisture sensors are inserted
deep in the soil at the plants’ root zone. Figure 10 shows a soil moisture sensor.

IoT Commercial and Industrial Applications and AI-Powered IoT 475

Fig. 10 Soil moisture sensor

Fig. 11 Humidity sensor

3.1.2 Climate Sensors

3.1.2.1 Humidity

Humidity sensors or hygrometers measure moisture in the air. They combine
relative humidity (RH) measurement and air temperature (T) to provide accurate
measurement of dew point and absolute humidity (AH). Relative humidity is an
important factor for comfort, it measures the ratio of moisture in the air to the highest
amount of moisture at a particular air temperature. Humid air is subject to less daily
temperature variation than dry air because humid air takes longer to heat up and
cool off. Under high humidity maximum shade temperature rarely exceeds 38 ◦C,
while under dry condition, a maximum of 54 ◦C is possible. Minute changes in
the atmosphere are monitored using humidity sensors to calculate humidity in the
air. Humidity sensors are placed in home heating, ventilating, and air conditioning
systems. In addition, they are also used in offices, cars, industrial spaces, museums,
greenhouses, and meteorology stations to forecast weather. Figure 11 shows a
humidity sensor.

3.1.2.2 Ultraviolet (UV) Index

UV index sensor provides an accurate measurement of the ultraviolet radiation index
(UVI) from sunlight. UV radiation boosts the intensity of photosynthesis processes
and facilitates the production of chlorophyll and nutrient which strengthens the

476 K. A. Nagaty

Fig. 12 Ultraviolet sensor

Fig. 13 Photo-resistor sensor

plants. UV affects the life cycle of plants as it can speed up the germination process
for starting seeds when grown indoors. UV sensors help identify risks associated
with different levels of UV exposure. UV index may be different from one place
to another; it is affected by a number of factors including time of day, cloud cover,
altitude, and more. Monitoring UV radiation in agricultural field allows farmers to
take better precautions to improve the growth of agricultural crops and increase
productivity. Figure 12 shows an ultraviolet sensor.

3.1.2.3 Light Radiation

A light sensor measures the radiant energy or illuminance that exists in a very
narrow range of frequencies basically called “light.” It outputs an electric signal
which indicates the intensity of daylight or artificial light. Illuminance decreases
as the distance from light source increases, so light sensors can be used to gauge
relative distance from the source. Photo-resistors, photodiodes, and phototransistor
are types of light sensors. Figure 13 shows a photo-resistor sensor.

3.1.2.4 Cloudiness Index

Cloudiness or cloud cover index refers to the part of the sky covered by clouds
when observed from a specific location. Sunshine duration is inversely proportion
to cloud cover, i.e., the least cloudy locales are the sunniest ones and vice versa.
Variations in daily temperature are affected by cloud cover buffering which lowers

IoT Commercial and Industrial Applications and AI-Powered IoT 477

Fig. 14 Ceilometer

the daytime high but raises the nighttime low. Growth and yields are adversely
affected by high daytime temperatures which cause pollen sterility and blossom
drop, while hot nights can reduce crop yields. Cloudiness is estimated in terms of
how many eighths of the sky are covered in cloud. This measure rates from 0 Oktas
which is complete clear sky to 8 Oktas which is completely overcast. Figure 14
shows a ceilometer.

3.2 Oil and Gas Mining

Smart personal protective equipment (PPE) embeds tracking devices, sensors, and
monitors in clothes worn by workers who may face specific hazards because of
their working environment. PPEs provide better safety and long-term cost savings
in mining fields through early prevention of health issues, hazardous situations,
or the exposure to danger zones. Data collected by these sensors and monitors is
analyzed to provide insights on any harms a worker may be susceptible to. PPE
sensors can be infused or interwoven in the fabric so that they cannot be removed
by laundering or they have built-in electronic devices. In oil and field mining, these
PPEs monitor worker’s temperature to ensure they are not overheating or developing
hypothermia and monitor air toxicity in mine fields to provide real-time safety for
the workers. Personal protective equipment includes items such as safety glasses,
gloves, earplugs, shoes, muffs, respirators, hard hats or coveralls, vests, and full
body suits.

3.2.1 Smart Pipelines

Engineers and operators of oil and gas pipelines must ensure optimal performance
of pipelines for continuous flow operations 24 × 7. We need to ensure cost-effective

478 K. A. Nagaty

maintenance of old pipelines network that covers thousands of kilometers across
international borders to mitigate risk of flow disruption. Old pipelines operate
inefficiently, are vulnerable to damages due to environmental reasons, and require
more labor to inspect each kilometer of the pipeline on regular basis that make the
cost to maintain high. IoT sensors, meters, and diagnostic devices such as lasers and
ultrasonic and acoustic sensors can contribute to networks of smart pipelines. They
collect data on pressure, flow, and compressor conditions and report movement,
corrosion, leakage, or impact to the pipelines. Data collected from pipelines are
analyzed using advanced analytical tools to enhance the existing engineering
capabilities of the operating teams and allow them to formulate maintenance and
repair options on-demand, with the help of potential risk probability and impact
calculators. Accurate and timely information allows the operating teams to be more
proactive and ensure better pipeline management.

3.2.2 Lone Worker Monitoring

IoT lone worker tracking system offers an easy way to monitor workers in hazardous
environment to ensure safety of the workers, tracking them via GPS to show where
they are and to which direction they are heading. Moreover, workers can report
emergency situations and talk to emergency professionals.

3.2.3 Safety and Security

Safety is the set of protective measures that must be taken to detect risks, assess
safety, and prevent accidents at the workplace. Safety IoT devices collect data that
is required to assess health hazards in the work field and identify, evaluate, and
prioritize risks. Safety IoT devices include systems like door locks, surveillance
cameras, smart safes, access control systems, fire alarm systems, and similar devices
mostly used to secure a location or prevent a hazard.

3.3 Wearables

IoT wearables, also known as “wearables,” is a category of network-connected
devices that can be implanted in the user’s body, embedded in clothing, tattooed
on the skin, or worn as accessories. Wearables are disruptive technologies that can
collect data, track activities, and customize experiences to users’ requirements and
desires. Wearable technologies are growing fast and expect to influence our social,
economic, and legal norms. Wearable devices track employees’ performance and
monitor their health and location inside the premises. Besides, the wearables can
also report collisions and falls, thereby improving the safety of the operations.
Fitness trackers and body-mounted sensors such as accelerometers, gyroscopes,

IoT Commercial and Industrial Applications and AI-Powered IoT 479

Fig. 15 Fitness tracker

Fig. 16 Smartwatch

magnetic sensors, and their combinations, smart jewelries and smartwatches, are
the prevailing trends in today’s wearable market.

3.3.1 Fitness Trackers

They are devices that are worn typically as wristbands to measure vital parameters
such as heart beat rate and monitor the number of steps taken each day, how long
you spent sleeping in each sleep stage, how much calories you have burned, and
how long you spent working out. Gathered data can be sent to your smartphone
to help you monitor changes over time. Some trackers have GPS to track user’s
locations during running, biking, or walking especially for old people who may
have Alzheimer’s disease. Figure 15 shows a typical fitness tracker.

.

3.3.2 Smartwatches

They are watches with computer capabilities such as calculations, translations,
digital media playing, and game playing. They have mobile operating systems
with apps similar to mobile apps that include digital maps, schedulers, calculators,
personal organizers, Wi-Fi, and Bluetooth connectivity. Figure 16 shows a typical
smart watch.

480 K. A. Nagaty

Fig. 17 Tri-axial
accelerometer

3.3.3 Accelerometers

They are devices that can measure the acceleration of an object. Figure 17 shows
a tri-axial accelerometer, which provides simultaneous measurements in three
orthogonal axes x, y, and z to analyze all vibrations being experienced by a structure.
Tri-axial accelerometers have three crystals that are placed so that each one reacts
to vibration in a different axis. The output has three signals; each one represents
the vibration for one of the three axes. In IoT, tri-axial accelerometers detect shake,
orientation, tap, double tap, tilt, fall, positioning, motion, shock, or vibration.

3.4 Smart Cities

The main components of smart cities are data collection, data exchange, data
storage, and data analysis [13]. A huge amount of information is collected daily
through millions of connected IoT devices such as sensors and meters that collect
and analyze data to better monitor and use the infrastructure and improve main-
tenance. IoT technology can develop efficient methods to minimize operational
costs of public utilities and services, manage traffic, reduce pollution, maintain
people safety and city cleanness, increase productivity, and allow quick response
to people’s needs [14]. Collected data is transmitted to the cloud through Wi-
Fi networks, 4G or 5G technologies for storage. Data is stored in the cloud in
formats that make it usable for data analysis. In the data analysis stage patterns are
extracted and inferences are obtained from the stored data to guide decision-makers.
Simple analysis for basic decision-making could be enough, while more detailed
and deep analysis for heterogeneous data is required for more complex decisions.
Smart city contains smart homes, smart schools, smart hospitals, smart power
plants, smart wastewater management, smart agriculture, smart transportation, smart
health, smart environment, smart governance, and more. IoT technology uses smart
device and sensor networks to collect and analyze data to eliminate risks, avoid
damages, and reduce costs. Traffic authorities can use this information to build
safe road strategies and predict the outcomes and efficacy of specific measures and
precautions that promote optimal safety. IoT technologies collect data and provide

IoT Commercial and Industrial Applications and AI-Powered IoT 481

Fig. 18 Smart city
components

deep insight on what drivers do to hold them accountable and encourage them to
adopt safer habits to reduce road accidents and protect them from collisions and
casualties that can happen. Figure 18 shows smart city components [13].

3.4.1 Environmental Monitoring

IoT sensors are deployed at many points in the cities to collect accurate data on
the environment to guide us on how to interact with the environment and put plans
to improve the quality of life in cities. Major applications of IoT in environmental
monitoring include weather monitoring, endangered species protection, water qual-
ity, air quality, waste monitoring, and more.

3.5 Smart Buildings

They are digitization of buildings to provide people living in buildings a safe,
efficient, comfortable, and convenient environment. Billions of devices are now
installed and connected all over the world, thus enabling smart buildings to
communicate with their owners, tenants, occupants, and maintenance teams. Smart
buildings use IoT sensors to monitor, maintain, and control everything in the
building such as lighting, humidity, occupancy, smart elevators, ventilation, shading,
security, Co2 monitoring to identify poorly ventilated areas in the building, and
more. Smart buildings use integrated systems to share, exchange information to

482 K. A. Nagaty

facilitate collaboration in order to manage resources in cooperative way to improve
building efficiency, optimize resource use, enhance security, reduce operating costs,
and monitor and troubleshoot easily. Monitoring smart building 24 × 7 registers
events such as abnormal activities, fire breakouts, or security breaches and helps
management take proper care of the building for now and in the future. To build
a smart building, the property owner should consider having a powerful wireless
networking infrastructure. Distributed antenna system is the key component of
building IoT systems as it allows emergency responders such as police or firefighters
to interact with each other in case of building fires, earthquakes, or natural disasters.
Cellular phone networks enhance the mobility of cellular devices to increase
coverage of the whole building. A data analytics software can help the management
team understand the data collected by IoT sensors and let them be more flexible to
make the right decisions in certain conditions and cost constraints.

3.6 Maintenance Management

IoT-based predictive maintenance keeps track of the operating conditions of equip-
ment and machines which make it easier and more efficient to monitor, maintain,
and optimize asset utilization for better availability and performance especially in
remote locations. Attaching IoT sensors to assets and service items excludes human
errors and unnecessary visits to remote locations, ensure accuracy and availability
of usable data, and gain better visibility into assets through real-time monitoring
and receiving automatic alerts, notifications, and reports on time between failures,
when operating conditions are out of specification, mean time to repair, and key
performance indicators. Instead of waiting for a failure, technicians and mechanics
can see equipment failures in real time during the breakdown and determine the
object’s exact location that needs maintenance; this helps technicians to predict
machine failure and identify which parts to be replaced. Technicians can receive
problem description, list of spare parts needed to fix the asset, options for repairs,
and recommended actions to take which make them effective decision-makers.
Maintenance will only be performed if it is required, thus reducing the costs of
labor and spare parts. This will empower managers to keep productivity at maximum
and the cost of repairs and downtime at minimum. Predictive maintenance reports
contain failure data, system operating conditions at the time of failure in addition
to previous repair data from the enterprise asset management (EAM). These
allow manufacturers improve the quality of their products, optimize spare parts
stocks, reduce downtime, control maintenance budgets, and increase customers’
satisfaction.

IoT Commercial and Industrial Applications and AI-Powered IoT 483

3.7 Water Supply

IoT water supply systems monitor water quality in real time, conserve water
supplies, and enable cities to function efficiently. An IoT smart water sensor tracks
water quantity in the storage reservoir to turn on the water pump to refill the reservoir
and switch off the water pump when it reaches the maximum level. IoT technology
monitors water flow across the building to optimize water distribution among tenants
and monitors water pressure to detect water leakage or wear of water pipes or
equipment to reduce water wastage and maintain acceptable water pressure [15].
IoT smart water sensors track water quality by measuring the physical and chemical
properties of the water such as temperature, pH, and turbidity [16]. Managers at
different points of water supply chain use data collected by IoT water sensors to
receive key insights into the changing conditions of water resources and equipment
and become able to take on-demand data-driven corrective measures.

3.8 Manufacturing

IoT technology automatically connects machines, tools, and sensors on floor of the
factory to provide production engineers and managers with the information they
produce to monitor equipment and track parts in real time during the assembly
and supply chain processes. With a granular visibility into the production process,
managers can make more informed and smarter decisions to ensure reliability,
compliance, and safety to optimize productivity. IoT technology provides data on
how products are used that could be fed back in real time to manufacturers who
can iteratively correct and rapidly design improvement, which improves prediction
of demand, enables faster time to market, and enhances customer satisfaction.
Implementing IoT in manufacture allows for more efficient energy saving as sensors
can help managers determine places of waste, boost equipment efficiency, predict
failures, and detect issues of compliance with quality assurance. Equipment failure
is the main reason for poor production and poor-quality products, which result in
more sales return, poor customer satisfaction, and reduced customers’ trust in the
products and finally damage the brand reputation. Moreover, repairing defective
products consumes more resources and increases the production costs. High-quality
products reduce costs and wastes, enhance customer experience, and increase
product sales. Maintenance can be done based on machine needs at an exact time not
on historical data or guessing because manufacturers may not know about machine
faults which may cause production problems.

484 K. A. Nagaty

3.9 Transportation

IoT-based transportation has improved the conventional operations of transportation
through embedding sensors, actuators, and other IoT devices. IoT devices collect
data about the environment and transmit it for predictive analysis to make decisions
within real time. A telematics device is an instrument that can be installed in a
vehicle to record accurate up-to-date real-time information about location, idling
time, tire pressure, fuel consumption that has better impact on the environment,
vehicle activity, and driver behavior including driving style, alerts for harsh
acceleration, how fast you brake, and the distance you drive. With telematics data,
the operation managers can ensure that a vehicle is on its route. The managers can
take adjustment actions if a vehicle has drifted from the optimal route based on a
specific threshold. IoT-based systems help managers to better plan for journeys,
monitor traffic congestion and vehicle’s load, react quickly to traffic accidents,
and improve safety by tracking vehicle location in case the vehicle has been
stolen. Traffic management is a main application of IoT-based transportation. Traffic
management includes smart parking, traffic lights, and smart accident assistance.
An IoT-based smart parking system sends data through web/mobile application
about free and occupied parking places. An IoT-based real-time traffic monitoring
system dynamically handles traffic signals based on traffic density. Smart accident
assistance automatically detects an accident and notify the nearest emergency unit.
IoT technology facilitates tolling and ticketing processes where modern vehicles
are equipped with IoT devices and can be sensed a kilometer away from the tolling
station, which is correctly identified, and the barrier lifted for the vehicle to pass
through. Smart vehicles are connected to the Internet and communicate with each
other to prevent collisions and allow smooth traffic. In public transport management,
IoT smart transportation can be widely used in automated ticketing and fare
collection. It helps public transport operators and transit agencies to monitor
vehicles routes, waiting times, and schedules, estimate the overall fleet performance,
and provide tools to analyze and interpret the real-time data collected over short
time periods. The IoT technology allows public transport systems to better serve its
customers and create better customer satisfaction that leads to increased ridership.
IoT devices installed in the buses of a fleet provide passengers in digital bus stops
with accurate real-time arrival information to decrease passengers’ average waiting
time. IoT technologies allow for better communication with passengers through
text messages on their mobile phones, which increases customers’ satisfaction.
Transit agencies can monitor passengers’ behavior and travel patterns and send them
personalized information on their mobile phones with updates on routes, closure of
stations re-routing of buses, or delays. Figure 19 shows a vehicle OBD II Dongle
telematics device with a vehicle GPS tracking.

IoT Commercial and Industrial Applications and AI-Powered IoT 485

Fig. 19 Telematics device

3.10 Warehouses

Smart warehousing is essential for the profitability of any business as it allows
the company to optimize its operations and stay competitive in hard competition
markets and volatile global economy. The management should adopt IoT technolo-
gies to determine the best layout and configuration of the warehouse to ensure
optimum utilization of storage space to maintain a seamless workflow at its fullest
efficiency and improve movement and fulfillment of goods through the warehouse.
IoT smart warehouse wastes no resources and provides visibility into the flow
of outgoing and incoming supply chain. Connected sensors track materials from
ordering until the shipment reaches the end customer or third-party logistics (3PL)
warehouses. IoT-based warehouse tracks the equipment and products more quickly
and accurately, thus making the movement of products faster, and tracks the quantity
and quality of goods by monitoring the temperature and location of the cargo within
the warehouse in real time, which reduces food spoilage and results in increased
profits and reduces management costs. IoT can help the warehouse management
to calculate time, infrastructure, and budget needed to scale up the warehouse
storage space using data collected by IoT devices. IoT-based warehouse collects
inventory data to forecast the workload based on seasonal changes of demand and
broadcast inventory information to warehouse managers to inform them of low
stock, displaced products, unsuitable temperature, theft, and more. IoT robots in
smart warehouses move independently and utilize sensors and cameras to help
humans pick and pack products faster. IoT devices continuously run without feeling
tired, which eliminates fatal human errors and reduces operation costs.

4 IoT Security and Privacy Issues

IoT devices connecting over the Internet are growing exponentially which causes a
wide variety of potential concerns that relate to security and privacy. Adding more
IoT devices to the Internet increases the vulnerability of connected IoT systems,
which makes security needs in the heart of any decision to adopt IoT technology.
IoT devices include surveillance cameras, drones, home appliances, smart home
devices, monitors, sensor networks that can transmit data, smart toys, routers, and

486 K. A. Nagaty

Internet gateways. There are potential drawbacks to use IoT technology because
most of these devices are developed with little attention to data protection and
access control has opened gates for the hackers and attackers to invade IoT devices.
Cyber-criminals are targeting IoT devices; file-less malware is the most obvious
attack on IoT devices. It does not rely on physical files that can be transferred and
stored on a victim machine that allows it to evade antivirus software. This means
that it leaves little evidence behind it and can only be detected by sophisticated
security applications. File-less attacks are spread via botnet that detects vulnerable
applications. Rule-based detection can be able to detect malicious execution of
commands. Machine learning techniques are now widely spread to detect file-less
malware by studying the behavior of malwares [17]. In healthcare, unapproved
access to IoT wearable devices can cause changes in the data collected by these
devices, which may put the life of a patient at risk. In smart cities, safety penetrations
IoT devices are risky and could pose risks on individuals’ safety. In agriculture,
safety attack on sensors can cause change in reading important information such
as soil humidity, temperature, and more, which affect crop production. Hackers
focused their efforts last year with the following tools.

4.1 IoT Malware

IoT malware families such as Aidra, Bashlite, and Mirai scan the ports of IoT to
locate exposed ports and acquire default credentials on these devices to launch
distributed denial-of-service (DDoS) attacks or gain access to IoT devices [18, 19].
IoT malware detection is either non-graph-based or graph-based detection methods.
Non-graph-based methods classify a binary file as malicious or benign by extracting
static features which are either high-level or low-level features. High-level features
include operation code, which is a single instruction executed by the CPU and
describes the behavior of an executable file. Strings are usually a sequence of
characters stored in ASCII or Unicode format in an executable file. Printable strings
contain valuable information such as IP address, URL, etc. to determine whether an
executable file is malicious or not [20]. Low-level features include elf (executable
and linkable format) file header which contains important information for malware
detection and grayscale image where each executable file is converted to binary
strings and combined into 8-bit vectors that represent hex value from 00 to FF
[19]. Graph-based IoTmalware detection methods include control flow graph (CFG)
which is a directed graph that represents all possible execution paths of a program.
Each block is represented by a vertex and each edge represents the control flow
between basic blocks. In [21] the control flow graph (CFG) is used to demonstrate
the differences and similarities between IoT malware and Android malware. Control
flow graph (CFG) methods achieved 99.66% in detecting IoT malware using a
dataset of 6000 malware and benign samples. Federated learning is used to detect
malware affecting IoT devices. In [22] a deep learning method is proposed to detect
the Internet of Battlefield Things (IoBT) malware and achieved 98.37% accuracy

IoT Commercial and Industrial Applications and AI-Powered IoT 487

rate and 98.59% precision rate. In [23] a framework for IoT malware detection
is proposed that employs federated learning to train and evaluate supervised and
unsupervised models without sharing critical data. This framework consists of a
client side that is deployed on the RAN SLICING Edge Nodes or in the CLOUD
SLICING Fog Nodes and a server side that is deployed in fog/cloud. The results
showed that a lot of research is required to reach satisfying results.

4.2 Encrypted Threats

It is an encryption malware that helps attackers escape the secure socket layer
(SSL) protocol and invade IoT networks with the intention of stealing data.
Ransomware is an example of encryption malware that uses encryption to encrypt
victim’s information at ransom. Attackers encrypt a user’s or organization’s critical
information so that they cannot access databases, applications, or files until a
demanded ransom is paid. If attackers received the demanded ransom, information
will be decrypted and owners can get use of it. Ransomware spreads quickly over
networks and copies itself on other servers to encrypt files and databases, thus
paralyzing entire organization. Ransomware threat is growing very fast generating
very big revenue for hackers and paralyzing entire organizations by encrypting their
critical information, thus causing a major damage [24]. IoT ransomware is capable
of paralyzing the entire network of physical devices by controlling IoT devices,
hitting on all IoT security aspects including authentication, integrity, and availability
which cause financial losses and could be life threatening. Attacks occur on real-
time IoT devices such as healthcare devices, smart vehicles, autopilots, etc. Attacks
on these IoT devices are launched from multiple devices because they do not own
user interfaces [25]. Botnet, malvertisement, or social engineering are the major
methods for ransomware penetration [26]:

(i) Botnet: In any IoT network, botnets are incubators of all IoT malware including
IoT ransomware. IoT malware penetrates the IoT network with the help of
botnets, which may cause distributed DoS attacks or flooding attacks [27].

(ii) Social engineering: An attacker deceives the IoT network by acting as autho-
rized users, to gain access to the IoT networks and steal sensitive information.

(iii) Malvertisement: Content delivery network (CDN) that appears to be benign
can broadcast malware to be installed on IoT devices.

4.3 Perception Layer

It is responsible for data acquisition, so it is also called a sensor layer. This layer is
vulnerable against many security attacks.

488 K. A. Nagaty

4.3.1 Node Capture

It is a serious attack against user authentication schemes through which an intruder
can gain an unauthorized access of the IoT network. The attacker can perform
various operations on the network such as modifying the memory content, mod-
ifying computation, or forging messages sent by the gateway to legitimate users
and gain additional knowledge by interacting with the captured slave node to reveal
cryptographic keys and try to break security. A captured node can make arbitrary
queries on behalf of the attacker such as denial-of-service (DoS) attack against
availability [28].

4.3.2 Replay Attack

It is a form of network attack where an attacker eavesdrops on a secure network
communication to intercept it. The attacker can delay valid data maliciously or
captures it and resends it to mislead the receiver as the messages or data appear
authentic. The receiver will do what the attacker wants. The IoT replay attack
reproduces a signal to control an IoT device to make spoofing and launch DoS
attack.

4.3.3 Malicious Node

An intruder can add a malicious or infected node to existing network. Most
malicious nodes can launch different attacks based on tampering, retransmission,
and discarding methods [29]. Figure 20 shows an invisible node attack launched by
malicious node C located between two legitimate nodes A and B that are indirectly
connected. The malicious node C repeats the signals and messages between A and
B to make them think they are directly connected. This way, malicious node C
impersonates node A to node B and vice versa. Figure 21 shows a stolen identity
attack launched by malicious node C which can steal authentication credentials such
as cryptographic keys from node A. If malicious node C outraces legitimate node in
updating the stolen credentials, then the credentials of the legitimate node will not
be valid anymore. If a malicious node controls the legitimate node, it can abuse the
trust relationship built with other legitimate nodes [30].

A C B
Communication Communication

Fig. 20 Invisible node attack [30]

IoT Commercial and Industrial Applications and AI-Powered IoT 489

Fig. 21 Stolen identity
attack [30]

C

A

B

C
om

m
un

ic
at
io
n

4.4 Network Layer

This is a transmission layer that performs networking and routing by handling
various networking devices. As it carries a large amount of information, it is a target
for several types of attacks which may cause network congestion. The main types
of attacks a network layer is susceptible to are authentication and integrity attacks
[31]. The most common attacks on the network layer are:

4.4.1 DDoS (Distributed Denial-of-Service) Attack

It expends network resources that make services unavailable for actual users [32].
This attack attempts to prevent users from accessing the network services such as
emails, portals, or other resources such as printers and storage devices. It floods the
network with huge number of redundant traffic to make its resources unavailable,
slowing down performance or even crashing the system [31].

4.4.2 Man-in-the-Middle Attack

In this attack, an intruder comes between the sender and receiver to intercept
exchanged communication to steal personal information or impersonate both par-
ties, which creates a real threat to confidentiality and integrity [33]. For example,
an attacker can intentionally change the temperature recorded by an IoT sensor,
malfunction a working device, and drive the whole process to failure [31].

490 K. A. Nagaty

Fig. 22 Wormhole attack
[34]

Malicious node Good node

X

Q

U V W

R

Z

Y

BEDC

A

4.4.3 Spoofing Attack

Spoofing is easily launched when security is violated on a shared IoT network where
IoT devices are sharing the same network with protected resources. When an IoT
device on a shared network is hacked, the intruder can easily get access to the
protected resources. Spoofing happens by impersonating an identity of a genuine
IoT device using fake Internet protocol (IP), MAC addresses, or both to claim to
be another genuine IoT device and gain illegal access to the IoT network. The
intruder can then launch denial-of-service attacks or man-in-the-middle attacks to
steal credential information and take control of genuine devices.

4.4.4 Wormhole Attack

It is one of the most challenging and severe internal attacks on IoT routing. It is very
effective in attacking any protocol even with encrypted traffic [34]. Wormhole attack
can insert information in wrong routes or topology information to make other nodes
in the network believe they are closer to other nodes, which may be not true and can
cause problems to the routing algorithm. Figure 22 shows a wormhole attack that
forwards data through a tunnel from a compromised node to another malicious node
at the other end of the network.

In Fig. 22 nodes X and Y are malicious nodes that formed a tunnel from X to Y to
exchange packets. X falsely advertises that to reach B, a shortest path is through X
but physically B is at far distance from node X. So, if node A wants to send a packet
to node B on the other side of the network, the packet takes more time to reach the
destination which is considered one of the wormhole attack symptoms [34].

IoT Commercial and Industrial Applications and AI-Powered IoT 491

4.4.5 Black Hole Attack or Drop Attack

It is a denial-of-service attack where an aggressive node displays itself as having
the shortest route to the destination node using its routing protocol. The malicious
node replies to the route requests before any actual node replies, thus creating a
fake route. The malicious node acts as black hole and it intercepts the packets and
discards them instead of relaying them, disrupting the communication between the
nodes of the network without their knowledge [35]. The malicious node can launch
this attack randomly or against a particular node at specific dates and times.

4.4.6 Sybil Attack

This attack is very destructive to sensor networks because a malicious node tries to
gain illegal influence on the network by creating multiple fake identities that appear
to be a real and unique identity to the outside. This malicious node can change the
information reaching other nodes, generate false reports, and send spam messages.
There are two types of Sybil attacks, namely, direct and indirect. In direct Sybil
attack, honest nodes directly influenced a Sybil node, while in the indirect Sybil
attacks, the nodes that directly communicate with Sybil nodes influence the honest
nodes.

4.4.7 Sinkhole Attack

It is a routing attack in IoT networks. An attacker compromises a node in the
network to launch attacks. This node tries to attract all the traffic from neighbor
nodes by advertising fake routing update. Examples of sinkhole attacks are selective
forwarding attack, acknowledging spoofing attack, dropping or altering routing
information, and sending bogus information to base station [36]. In Fig. 23, nodeM
launches sinkhole attack in tiny AODV. Node A sends RREQ to nodes B,C, and M.
However, node M instead of broadcasting to node E just as nodes B and C do to
node D replies back RREP to node A. Then node A will reject nodes B and C and
forward packets toM because nodes A and B are very far to node F than node M.

4.4.8 Malicious Code Injection

It is the oldest known web application attack vector; SQL injection is one of these
attacks. An attacker gains control of a working node in a network by injecting
it with a malicious code. Firstly, the attacker probes the application that can
accept untrusted data. By exploiting data input vulnerabilities such as data format,
allowed number of characters, and amount of expected data, the attacker can launch
denial-of-service attacks, resulting in loss of data integrity and loss of data, and
compromise or even shut down the whole network.

492 K. A. Nagaty

A

B

C

D

E

F

M

Fig. 23 Sinkhole in tiny AODV protocol (Teng and Zhang, [37]

4.5 Application Layer

4.5.1 Cross-Site Scripting

This is a dangerous injection attack where the attacker can change the content of the
application [38]. In cross-site scripting (XSS) attacks, malicious scripts are injected
into benign and trusted websites. The browser under attack could not know that the
injected script must not be trusted and will execute it. Accordingly, the malicious
script can gain access to cookies, session keys, or other sensitive information,
redirecting the victim to web content controlled by the attacker, or performing other
malicious operations on the victim’s machine.

Cross-site scripting (XSS) attacks occur when [39]:

1. Input data enters into a web application through untrusted sources, most fre-
quently a web request.

2. Data is within a dynamic content that is sent to a web user without being checked
for malicious content.

There are three types of cross-site scripting (XSS) attacks: stored, blind, and
reflected. In stored attacks the injected script is permanently stored on the target
servers. The victim retrieves the malicious script when it requests the information
stored on the server. Blind cross-scripting attacks occur when the attacker’s
malicious script is saved on the server. The attacker submits a feedback form that
contains the malicious script. When the server admin opens the attacker’s submitted
form, the attacker’s script is executed. Reflected attacks are sent to victims through
different routes such emails or another website. When the victim clicks on a
malicious link, browses a malicious site, or submits a specially crafted form, the
injected code transfers to the vulnerable website, which reflects the attack back to
the victim’s browser. The victim’s browser then executes the transferred malicious
code.

IoT Commercial and Industrial Applications and AI-Powered IoT 493

4.5.2 Privacy and Confidentiality

It is an important issue that must be carefully handled. Unauthorized access of
sensitive data is a serious attack. Endless IOT applications of smart health, smart
houses, smart farming, self-drive vehicles, intelligent networks, and more require
privacy [14]. Botnet attacks are another type of IOT attacks where botnets are
used to launch attacks. These attacks may include malicious activities such as data
theft, credential theft, unauthorized access, data theft, and distributed denial-of-
service (DDoS) attacks. IoT and wearable devices are always sensing, collecting,
and communicating data, which challenge the traditional social privacy and legal
norms. Privacy and data breach are both significant concerns to most businesses,
because it interrupts the work flow, activities, and network services [40]. Wearables
generate a massive amount of data that is collected and analyzed and can be shared
by several parties without its owner’s knowledge. Individuals wearing wearable
devices may not have control on these devices and could not approve or reject to
whom this data is transferred, with whom it is shared, or how long it will be retained.
This data can be sensitive such as medical, fitness, or personal health information
that can be used for marketing purposes or used by insurance companies to increase
their premiums or by employers for jobs-related issues [41].

5 IoT Data Analytics

Data analytics is an important component of IoT solution. It allows finding patterns,
conducting forecasts, and integrating machine learning algorithms and predictive
analysis and finds out insights from collected IoT data. IoT data analytics use data
analysis tools to analyze huge data volumes generated by connected IoT devices
to extract valuable information that can be used to improve processes, operations,
and services. Without data analysis the purpose of IoT systems becomes operation
automation not operation optimization. This makes data analysis processes be
done by human experts which may not be available for most organizations and
causes valuable data not to be used. IoT data analytics can detect data trends
within collected IoT data. They can highlight expectations and deviations from
normal trends or normal performance. The continuous analysis of gathered IoT data
provides the management with continuous feedback on equipment performance to
ensure that all equipment is running with high efficiency. Data analytic tools do
not replace human experts but provide them with more insight into the ways to
optimize the efficiency of equipment. Managers can put plans to cut operational
costs and maintenance costs as they have the required information to predict costly
breakdown of equipment and achieving strategic goals. Decision-makers can be
confident that their choices are based on accurate and complete information obtained
from real-time reports and alerts. Huge amount of IoT data from multiple disjoint
resources that belong to different systems may have different structures that reduce
data reconciliation and leads to inaccurate and incomplete data analysis, which is

494 K. A. Nagaty

considered a fundamental issue in IoT data analysis. Data not accessible by IoT
data analytics tools or inaccurate collected data affect the accuracy of the generated
reports.

6 AI-Powered IoT

The main role of IoT devices or sensors is to collect data. The traditional IoT pro-
cessing sends data to a cloud server for processing to extract valuable information
that helps managers have more insight into this data to make the right decisions. AI
plays an important role in fast and accurate data analysis to improve the outcomes
for users and service providers, maintain confidentiality of data and privacy, and
provide security of IoT devices from cyberattacks. AI can create a predictive model
which captures the information in your organization which can be used to examine
data in real time [42]. The following steps help build a predictive model:

• Define the business to be analyzed, scope of analysis, and the desired output.
• Predictive models intensively depend on data. Streams of data collected or

created by IoT sensors or devices that are embedded into machines are com-
municated to servers to be stored and ready for analysis.

• IoT data may be incomplete or contain noise which requires data preprocessing.
Data preprocessing include data cleaning and complete missing data. IoT devices
can aggregate and analyze data before it is transmitted to the server for ultimate
analysis and action.

However, sending data collected by IoT devices to cloud server for analysis has
issues with privacy, security, latency, storage, and efficiency. Data is vulnerable
against man-in-the-middle attack where data can be intercepted by malicious
people. So, keeping data on the IoT devices for processing improves security
and privacy. Most of the data collected by some IoT devices such as surveillance
cameras may be useless as nothing could happen most of the days which wastes
valuable storage. Therefore, embedding intelligent systems in IoT devices allows
these devices to collect data when necessary which reduces the required storage and
the amount of data to be transmitted to the cloud server. Data transmission between
IoT devices and the cloud server depends on the Internet. Latency occurs because
of slow Internet connection where a long time is required to transmit data to the
cloud server for analysis and return the output to the receiver. Edge computing is a
possible solution for latency where processing of data should take place on the edge
device. Edge devices have low memory, limited power, and low computation power;
therefore, applications that are lightweight and more computationally efficient are
required. Empowering edge devices with lightweight applications allows all data
to be processed locally on these devices. With the advent of tiny machine learning
(TinyML), it is possible to enable powerful artificial intelligence (AI) algorithms
such as image understanding, voice recognition, hand gesture recognition, pose
estimation, speech analysis, sequence analysis, and more to run efficiently on

IoT Commercial and Industrial Applications and AI-Powered IoT 495

original
network

Pruning: less number of weights
Quantization: less bits per weight

Huffman Encoding

Encode Weights

Encode Index

Cluster the Weights

Generate Code Book

Quantize the Weights
with Code Book

Retrain Code Book

Train Conncectivity

Prune Connections

Train Weights

same
accuracy

same
accuracy

same
accuracy

9x-13x
reduction

27x-31x
reduction

35x-49x
reduction

original
size

Fig. 24 The three-stage compression pipeline: pruning, quantization, and Huffman coding [43]

low-power mobile and IoT devices. TinyML is a type of machine learning that
compresses deep learning networks to embed into tiny hardware such as IoT devices
or mobile devices. TinyML algorithms are trained on desktop computers or in cloud
servers as traditional machine learning algorithms; post-training is where TinyML
starts. Deep compression is the main operation in the post-training phase. Figure
24 shows the three-stage pipeline for network deep compression: network pruning,
quantization, and Huffman encoding [43]:

• Network pruning: reduces the number of weights by 10×
• Quantization: further improves the compression rate, between 27× and 31×
• Huffman encoding: reduces more the network size by storing the data in a

maximum efficient way

The IoT devices that are powered with AI bring many benefits to businesses,
for example, formal and informal activities to control situations and implement
changes, designing and producing services specialized for customer’s needs, and
requirement and cognitive automation which automates low-level processes without
human intervention. IoT-powered AI can discover patterns hidden in collected
data which could not appear on devices or sensors, analyze it before transmitting
it to other devices, predict risks and automate preventive actions, and determine
redundant or time-consuming operations to eliminate or improve them to enhance
the efficiency of the system. Machine learning combined with AI can be used to
predict outcome and estimate parameters to improve accuracy. Fujitsu analyzes data
collected by wearable devices to ensure that safety precautions are implemented
by its workers [44]. Google analyzes the data collected by heat sensors in its data
centers to reduce costs [45]. People can communicate with IoT devices using natural
language processing which helps people to efficiently operate these devices. Robots
in manufacturing are empowered with AI-powered sensors that make them more
intelligent; self-driving vehicles are the best examples for hybrid IoT and AI as
they can predict pedestrians’ behavior and other neighboring vehicles. They can
learn from each trip and become more intelligent to make appropriate actions. For
example, they can predict weather conditions and road circumstances and learn to

496 K. A. Nagaty

become smarter to make appropriate actions. In retail industry, smart cameras can
observe customers’ behavior to predict when to reach the cashiers.

6.1 Benefits of AI-Powered IoT

Here are some of the most popular benefits of combining these two disruptive
technologies to the businesses.

6.1.1 Boosting Operational Efficiency

AI in IoT crunches the constant streams of data and detects nondeceptive patterns on
simple gauges. In addition, machine learning coupled with AI can predict the oper-
ation conditions and detect the parameters to be modified to ensure ideal outcomes.
Hence, intelligent IoT offers an insight into which processes are redundant and time-
consuming and which tasks can be fine-tuned to enhance efficiency. Google, for
example, brings the power of artificial intelligence into IoT to reduce its data center
cooling costs [46].

6.1.2 Better Risk Management

Pairing AI with IoT helps businesses to understand as well as predict a broad range
of risks and automate for the prompt response. Thereby, it allows them to better
handle financial losses, employees’ safety, and cyber threats. Fujitsu, for example,
ensures worker safety by engaging AI for analyzing data sourced from connected
wearable devices.

6.1.3 Triggering New and Enhanced Products and Services

NLP (natural language processing) is getting better at allowing people to com-
municate with devices. Undeniably, IoT and AI together can directly create new
products or enhance existing products and services by enabling the business to
rapidly process and analyze the data. Rolls Royce, for example, plans to leverage
AI technologies in the implementation of IoT-enabled airplane engine maintenance
amenities. Indeed, this approach will support to spot patterns and discover opera-
tional insights [47].

IoT Commercial and Industrial Applications and AI-Powered IoT 497

6.1.4 Increase IoT Scalability

IoT devices range from mobile devices and high-end computers to low-end sensors.
However, the most common IoT ecosystem includes low-end sensors, which offer
floods of data. AI-powered IoT ecosystem analyzes and summarizes the data from
one device before transferring it to other devices. As such, it reduces large volumes
of data to a handy level and allows connecting a large number of IoT devices. This
is called scalability.

6.1.5 Eliminates Costly Unplanned Downtime

In some sectors like offshore oil and gas and industrial manufacturing, equipment
breakdown can result in costly unplanned downtime. The predictive maintenance
with AI-enabled IoT allows you to predict the equipment failure in advance and
schedule orderly maintenance procedures. Hence, you can avoid the side effects of
downtime. Deloitte, for example, finds the following results with AI and IoT [48]:

• 20–50% reductions in their time invested in maintenance planning
• 10–20% increase in equipment availability and uptime
• 5–10% reduction in maintenance costs

6.1.6 Smart Thermostat

A user can check and manage the temperature from anywhere using an integrated
thermostat with a smartphone based on the work schedule and temperature prefer-
ences.

Overall, IoT coupled with AI technology can lead the way to the advanced level
of solutions and experience. To obtain better value from your network and transform
your business, you should integrate AI with incoming data from the IoT devices.

7 Conclusion

All IoT systems architecture use IoT sensors connected to things through a network
to collect data. Smart IoT devices can preprocess the data before transferring it to
the data center or the cloud for analysis and storage. Every IoT system is composed
of the same four components: devices, connectivity, platform, and an application.
This chapter discussed the most famous IoT commercial and industrial applications
with emphasis on the IoT devices used in each application. As many of IoT devices
and sensors are connected and communicate with their data center or cloud using
the Internet, the lack of security increases the vulnerability of these devices against
cyberattacks. Also, personal information can be leaked using the IoT sensors which

498 K. A. Nagaty

violates users’ privacy. Hence, IoT security and privacy issues are important issues
which were discussed in this chapter. Finally, the conventional integration between
AI and IoT devices was discussed where IoT devices or sensors collect data and send
it to the cloud for intelligent applications to analyze this data and send the results to
decision-makers. The next AI revolution is to embed intelligent applications in the
IoT devices that are characterized with low resources so that data processing can be
done locally. Therefore, tiny machine learning approach was discussed. Finally, the
benefits of AI-powered IoT were presented.

References

1. Costa, B., Pires, P.F., Delicato, F.C., Li, W., Zomaya, A.Y.: Design and Analysis of IoT
Applications: A Model-Driven Approach. In: 2016 IEEE 14th Intl Conf on Dependable,
Autonomic and Secure Computing, 14th Intl Conf on Pervasive Intelligence and Computing,
2nd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology
Congress(DASC/PiCom/DataCom/CyberSciTech), Auckland, New Zealand, vol. 2016, pp.
392–399. https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2016.81

2. Rusu, I.C.A.R.C.: Commercial and Industrial Internet of Things Applications with the
Raspberry Pi. Apress (2020)

3. https://www.trialog.com/en/iot-systems-and-interoperability/ (Accessed on 03/14/2022).
4. Jayashankara, M., Udmale, S.S., Pandey, A.K., Singh, R.S.: IoT-based data analytics for the

healthcare industry techniques and applications. Intell. Data-Centric Syst., 9–29 (2021)
5. Baker, S., Xiang, W., Atkinson, I.: Things for Smart Healthcare: Technologies, Challenges, and

Opportunities. IEEE Access (2018)
6. Naresh, V.S., Pericherla, S.S., Murty, P.S.R., Reddi, S.: Internet of Things in healthcare:

Architecture, applications, challenges, and solutions. Comput Syst Sci Eng. 6, 411–421 (2020)
7. Anand, G., Heuss, L.: Feasibility of breath monitoring in patients undergoing elective

colonoscopy under propofol sedation: A single-center pilot study. World J Gastrointest.
Endosc. 6 (2016). https://doi.org/10.4253/wjge.v6.i3.82

8. Hashim, N., Norddin, N., Idris, F., Yusoff, S.N.I.M., Zahari, M.: IoT blood pressure monitoring
system. Indonesian J. Elect. Eng. Comp. Sci. 19(3), 1384–1390. ISSN: 2502–4752 (2020).
https://doi.org/10.11591/ijeecs.v19.i3.pp1384-1390

9. Nelson, B.D., et al.: Wireless technologies for implantable devices. Sensors (Basel, Switzer-
land). 20(16), 4604 (2020). https://doi.org/10.3390/s20164604

10. Ratnaparkhi, S., Khan, S., Arya, C., Khapre, S., Singh, P., Diwakar, M., Shankar, A.: Smart
agriculture sensors in IOT: A review. Mater. Today: Proceed.. (In Press)

11. Sushanth, G., Sujatha, S.: IOT based smart agriculture system. IEEE (2018)
12. Caro, F., Sadr, R.: The Internet of Things (IoT) in retail: Bridging supply and demand. Business

Horizons. 62, 47–54 (2019)
13. Syed, A.S., Sierra-Sosa, D., Kumar, A., Elmaghraby, A.: IoT in smart cities: A survey

of technologies, practices and challenges. Smart Cities. 4, 429–475 (2021). https://doi.org/
10.3390/smartcities4020024

14. Raghuvanshi, A., Singh, U.K.: Internet of Things for smart cities- security issues and
challenges. Mater. Today: Proceed. https://doi.org/10.1016/j.matpr.2020.10.849

15. Natividad, J.G., Palaoag, T.D.: IoT based model for monitoring and controlling water
distribution. Int. Conf. Inform. Technol. Digit. Appl., IOP Conf. Series: Mater. Sci. Eng. 482,
012045. IOP Publishing (2019). https://doi.org/10.1088/1757-899X/482/1/012045

16. Daigavane, V.V., Gaikwad, M.A.: Water quality monitoring system based on IOT. Adv.
Wireless Mobile Commun.., ISSN 0973–6972. 10(5), 1107–1116 (2017)

http://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2016.81
https://www.trialog.com/en/iot-systems-and-interoperability/
http://doi.org/10.4253/wjge.v6.i3.82
http://doi.org/10.11591/ijeecs.v19.i3.pp1384-1390
http://doi.org/10.3390/s20164604
http://doi.org/10.3390/smartcities4020024
http://doi.org/10.1016/j.matpr.2020.10.849
http://doi.org/10.1088/1757-899X/482/1/012045

IoT Commercial and Industrial Applications and AI-Powered IoT 499

17. https://csrc.nist.gov/publications/detail/sp/800-61/rev-2/ (Accessed on 07/01/20).
18. Ngo, Q.-D., Nguyen, H.-T., Le, V.-H., Nguyen, D.-H.: A survey of IoT malware and detection

methods based on static features. 6(4), 280–286 (2020)
19. Ngo, Q.-D., Nguyen, H.-T., Le, V.-H., et al.: A survey of IoT malware and detection methods

based on static features. ICT Exp. 6(4), 280–286 (2020)
20. Plu, T.N., Hoang, L.H., Touan, N.N., Tho, N.D., Binh, N.N.: CFDVex: A novel feature

extraction method for detecting cross-architecture IoT malware. In: Proceedings of the
Tenth International Symposium on Information and Communication Technology, pp. 248–254
(2019)

21. Alasmary, H., et al.: Graph-based comparison of IoT and android malware. In: Proceedings of
International Conference on Computational Social Networks, pp. 259–272 (2018)

22. Azmoodeh, A., et al.: Robust malware detection for Internet of (Battlefield) things devices
using deep eigenspace learning. IEEE Trans. Sustain. Comput., 88–95 (2018)

23. Rey, V., Sánchez, P.M.S., Celdrán, A.H., Bovet, G.: Federated learning for malware detection
in IoT devices. Comp. Netw. 204(26), 108693 (2022)

24. https://www.trellix.com/en-us/security-awareness/ransomware/what-is-ransomware.html
(Accessed on 05/09/2022).

25. Wani, A., Sathiya, R.: Ransomware protection in IoT using software defined networking. Int.
J. Elect. Comp. Eng. 10(3), 3166–3174

26. Bertino, E.: Botnets and internet of things security. Computer. 50(2), 76–79 (2017)
27. Azmoodeh, A., Dehghantanha, A., Conti, M., Choo, K.K.R.: Detecting crypto-ransomware in

IoT networks based on energy consumption footprint. J. Ambient Intell. Human. Comput. 9(4),
1141–1152 (2018)

28. Butun, I., Osterberg, P., Song, H.: Security of the internet of things: Vulnerabilities, attacks and
countermeasures. https://arxiv.org/pdf/1910.13312.pdf

29. Li, B., Ye, R., Gao, G., Liang, R., Liu, W., Ken Cai, E.: A detection mechanism on malicious
nodes in IoT. Comp. Commun. 151(1), 51–59 (2020)

30. Jiang, J., Han, G., Zhu, C., Dong, Y., Zhang, N.: Secure localization in wireless sensor
networks: A survey. J. Commun. 6(6), 460–470 (2011)

31. Deep, S., Zheng, X., Jolfaei, A., Yu, D., Ostovari, P., Bashir, A.K.: A survey of security
and privacy issues in the Internet of Things from the layered context. https://arxiv.org/pdf/
1903.00846.pdf (Accessed on 05-19-2022).

32. Prabhakar, S.: Network security in digitalization: Attacks and defence. Int. J. Res. Comput.
Appl. Robot. 5, 46–52 (2017)

33. Conti, M., Dragoni, N., Lesyk, V.: A survey of man in the middle attacks. IEEE Commun.
Surv. Tutor.

34. Bhosale, S.D., Sonavane, S.S.: Wormhole attack detection in internet of things. Int. J. Eng.
Technol. 7(2.33), 749–751 (2018)

35. Fazeldehkordi, E., Amiri, I.S., Akanbi, O.A.: A study of blackhole attack solutions. Syngress.
(2016)

36. Kibirige, G.W., Sanga, C.: A survey on detection of sinkhole attack in wireless sensor
network. https://arxiv.org/ftp/arxiv/papers/1505/1505.01941.pdf#:~:text=Sinkhole%20attack
%20is%20a%20type,drops%20or%20altered%20 routing%20information.

37. Teng, L., Zhang, Y.: Secure routing algorithm against sinkhole attack for mobile wireless
sensor network, in computer modeling and simulation, in proceedings of 2010. ICCMS’10.
Second IEEE Int. Conf. Comp. Model. Simul. 4, 79–82 (2010)

38. Gupta, S., Gupta, B.B.: Cross-site scripting (XSS) attacks and defense mechanisms: Classifi-
cation and state-of-the-art. Int. J. Syst. Assur. Eng. Manage. 8, 512–530 (2017). https://doi.org/
10.1007/s13198-015-0376-0

39. https://owasp.org/www-community/attacks/xss/ (Accesed on 06/18/2022).
40. Tawalbeh, L.’a., Muheidat, F., Tawalbeh, M., Quwaider, M.: IoT privacy and security:

Challenges and solutions. Appl. Sci. 10, 4102 (2020). https://doi.org/10.3390/app10124102
41. Thierer, A.D.: The internet of things and wearable technology: Addressing privacy and security

concerns without derailing innovation. Richmond J. Law Technol. XXI(2) (2015)

https://csrc.nist.gov/publications/detail/sp/800-61/rev-2/
https://www.trellix.com/en-us/security-awareness/ransomware/what-is-ransomware.html
https://arxiv.org/pdf/1910.13312.pdf
https://arxiv.org/pdf/1903.00846.pdf
https://arxiv.org/ftp/arxiv/papers/1505/1505.01941.pdf%23:~:text=Sinkhole%20attack%20is%20a%20type,drops%20or%20altered%20routing%20information
http://doi.org/10.1007/s13198-015-0376-0
https://owasp.org/www-community/attacks/xss/
http://doi.org/10.3390/app10124102

500 K. A. Nagaty

42. Nelson, J.W. (editor), Jayne, F., Mary, A. H. (Co-editors): Using Predictive Analytics to
Improve Healthcare Outcomes, Wiley (2021)

43. Han, S., Mao, H., Dally, W.J., Deep compression: Compressing deep neural networks with
pruning, trained quantization and Hufman coding, 4th international conference on learning
representations, ICLR 2016, San Juan.

44. https://www.fujitsu.com/au/imagesgig5/IoT_solutions_UBIQUITOUSWARE_Digital_ Solu-
tions.pdf (Accessed on 05/06/2022).

45. https://static.googleusercontent.com/media/www.google.com/en//corporate/datacenter/dc-
best-practices-google.pdf (Accessed on 05/06/2022).

46. https://www.clariontech.com/blog/ai-and-iot-blended-what-it-is-and-why-it-matters
(Accessed on 06/18/2022).

47. https://www.rolls-royce.com/country-sites/sea/discover/2021/tapping-ai-technologies-to-
create-solutions-of-tomorrow.aspx (Accessed on 05/06/2022).

48. https://www.clariontech.com/blog/ai-and-iot-blended-what-it-is-and-why-it-matters (Accesed
on 06/18/2022).

https://www.fujitsu.com/au/imagesgig5/IoT_solutions_UBIQUITOUSWARE_Digital_Solutions.pdf
https://static.googleusercontent.com/media/www.google.com/en//corporate/datacenter/dc-best-practices-google.pdf
https://www.clariontech.com/blog/ai-and-iot-blended-what-it-is-and-why-it-matters
https://www.rolls-royce.com/country-sites/sea/discover/2021/tapping-ai-technologies-to-create-solutions-of-tomorrow.aspx
https://www.clariontech.com/blog/ai-and-iot-blended-what-it-is-and-why-it-matters

Hardware and System Security: Attacks
and Countermeasures Against Hardware
Trojans

Konstantinos Liakos, Georgios Georgakilas, and Fotis Plessas

1 Introduction

Every year, more and more innovative technology-based applications are being
developed and implemented on a professional and personal level. A significant
percentage of these applications are based on the Internet of Things (IoT) and
artificial intelligence (AI). These technologies have a lot of advantages and make our
life easier, giving us the ability to automate tasks and to have access to information
of our data from any device, anytime and from anywhere. But advantages have
disadvantages; a fault in the system can corrupt all the devices, and the devices
can increase the potential for a hacking attack both of which enhance the need for
more advanced hardware security (HS) systems.

IoT devices consist of complex sophisticated integrated circuits (ICs). These
ICs due to their continuous need and in combination with economic reasons are
outsourced from design companies for their fabrication to third-party foundry
companies. Furthermore, ICs are based on their development of intellectual property
(IP) cores from untrusted third-party vendors. These third-party companies are not
always trustworthy. All these are responsible for the insertion into ICs of powerful
hardware viruses, known as HTs. HT infection is a crucial present problem in the
world of electronics, with the potential to spread in the next years, providing a
serious threat both technologically and socially.

HTs are related to circuit modifications that occur during the design and/or
manufacturing phases. Because of the sophistication of modern circuits, HTs can
be added at any stage of IC development and stay idle until activated by a range of

K. Liakos · G. Georgakilas · F. Plessas (�)
University of Thessaly, Volos, Greece
e-mail: kliakos@e-ce.uth.gr; ggeorgakilas@e-ce.uth.gr; fplessas@e-ce.uth.gr

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Iranmanesh (ed.), Frontiers of Quality Electronic Design (QED),
https://doi.org/10.1007/978-3-031-16344-9_13

501

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16344-9_13&domain=pdf

 885
56845 a 885 56845 a

mailto:kliakos@e-ce.uth.gr

 9036 56845 a 9036 56845 a

mailto:ggeorgakilas@e-ce.uth.gr

 19265 56845 a 19265 56845 a

mailto:fplessas@e-ce.uth.gr

 -2016 61494 a -2016
61494 a

https://doi.org/10.1007/978-3-031-16344-9_13

502 K. Liakos et al.

activation mechanisms. HTs are related to unexpected IC faults, circuit damage, and
sensitive information loss regardless of encryption level [1].

As a result, establishing well-designed and efficient HS countermeasures against
HTs are critical for the development of more dependable and trustworthy integrated
circuits and IoT devices.

The question that quickly comes to mind is, who gains from the insertion of
HTs into ICs? A rival, for example, may implant an infected circuit into another
company’s electronic component to discredit it, reducing its market share, consumer
confidence, and profitability. Another HT use case is the use of HT cyber warfare to
damage military equipment and infrastructure between countries [2].

Ideally, any unwanted alteration applied to an IC should be detected by pre-
silicon verification/simulation and post-silicon testing. But the verification or
simulation phase of a circuit needs the golden model of it. This may not always be
provided, particularly for IP-based designs in which IPs would originate from third-
party manufacturers. Furthermore, a complex design is generally never suitable
for exhaustive testing. Mainly, ICs design testing at the post-silicon phase can be
provided via conventional side-channel analysis (SCA) [3–5] and logic testing (LT)
[6, 7] approaches. However, these approaches have limitations and are efficient ware
combined. Another method for the verification of the ICs design at the post-silicon
phase consists the reverse engineering (RE) [8, 9].

The development of countermeasure methods against HTs consists of a complex
and costly process, because of the stealthy nature and the wide variety of possible
HT instances that a competitor may use. Ideally, the development of countermeasure
methods against HTs must be a combination of the effectiveness against HTs
and the cost designers can afford. Specifically, these methods can be used as
countermeasures against HTs that may need extra circuitry and/or significant
adjustment to post-silicon on the test setup. As a result, the cost of the methods
against HTs is a combination of the needed area, test period, and setup charge
overhead. The key issue for the approaches against HTs is the search for solutions
to minimize this cost.

The purpose of this chapter book is to provide readers with a thorough under-
standing of what are HTs, their structure, models, and assault categories. The
chapter also refers to the techniques used as countermeasures against HTs and
demonstrates their evolution over time, through a historical review. Furthermore,
there presents an overview of artificial intelligence (AI) and, in particular, AI
terminology and definitions, tasks, and learning analyses, as well as the most
essential learning models against HTs. Finally, through this book chapter, the
readers will be able to learn how to identify an AI problem, create their dataset,
proceed to feature selection, select a learning model, and build their own AI models
against HTs.

Hardware and System Security: Attacks and Countermeasures Against. . . 503

2 IC Supply Chain

To have a thorough grasp of the issue of HTs, the difficulty of preventing its
contagion, and the challenges of detecting them, while ensuring the smooth
operation of ICs, we must first have a good understanding of the modern circuit
production chain and especially the production chain of the application-specific
integrated circuits (ASICs). ASIC production chain consists of two stages, pre- and
post-silicon stages. The pre-silicon stage is the circuit design period and consists
of four steps: register transfer level (RTL), gate-level netlist (GLN), placement and
routing (P&R), and graphic design system II (GDSII). The post-silicon stage is the
fabrication period of the circuit and consists of the SCA phase. Specifically, the
RTL phase describes the specifications that the circuit will have through the usage
of a hardware design language (HDL) like Verilog or VHDL. When IC design and
integration are completed at RTL, the design must be synthesized to a GLN. GLN is
characterized as the logic synthesis phase, and RTL is translated to GLN. The logic
synthesis phase is done via professional electronic design automation (EDA) tools,
e.g., Cadence Genus Synthesis Solution and Synopses Design Compiler NXT [10].
These tools provide the area, power, and timing analysis of the circuit. Also, the
throughput and efficiency of the designed circuit could be derived as well. The last
phase is the P&R and is known as the physical design phase where the layout level
is created via the GLN and is produced in the final GDSII of the circuit.

HT attacks are divided into four general groups for the pre-silicon stage (Fig. 1),
i.e., RTL, GLN, P&R, and GDSII, as well as, fabrication and testing/assembly for
the post-silicon stage. In the pre-silicon attacks, the attacker aims to gain full access
to the source code, design files, or compromise design tools and scripts, to develop
a modified IC representation without altering the source code, while, in post-silicon
attacks, the attacker aims to add or remove components from the designed circuit
through reverse engineering, modification of the layout geometry, or measurement
of the IC (Fig. 1).

Fig. 1 IC supply chain and HTs insertion in pre- and post-silicon stages

504 K. Liakos et al.

3 HT Structure

The typical structure of an HT has two mechanisms, triggers and payloads (Fig. 2).
Triggers are related to rare signals or events [11] and payloads with the activation
of malicious functions. The goal of an HT is to remain stealthy – to be undetectable
during design simulation or testing and to be activated under rear conditions. An
HT is activated when the rare signal or event appears and through the payload
mechanism.

4 HT Models

HTs are designed to be undetectable; their structure is consisted of a trigger and a
payload mechanism and can be implemented in all pre- and post-silicon phases of
the IC production chain. Another characteristic of HTs is their logic models. Logic
models are associated with the trigger mechanism and especially how the rare signal
or event will activate the trigger mechanism. HTs are designed to have two logic
models, a combinational or a sequential [11]. In combinational logic models, the
trigger mechanism is activated from a set of simultaneous rare signals or events
(Fig. 3a) and in sequential logic models from a series of rare events or signals (Fig.
3b).

Fig. 2 Hardware Trojan structure

Hardware and System Security: Attacks and Countermeasures Against. . . 505

Fig. 3 Concept graph presenting (a) combinational and (b) sequential model logic

5 HT Attacks

The purpose of HTs is to affect the normal functioning of the infected circuit. Thus,
the HT attacks can be divided into two types of attacks: those aimed at destroying
the device, known as general-purpose processors attacks, and those aimed at leaking
sensitive information, known as cryptographic engine attacks. Cryptographic engine
attacks aim at the crypto engine of the infected circuit through various attack
mechanisms and leak encrypted information. General-purpose processor attacks aim
at the lower levels of the processor, kernel, memory, and secret keys and degrade
the system or destroy it completely. These types of HTs can be triggered under rare
signals or events and disable the safe start mechanism of the infected circuit [12,
13].

6 HT Taxonomy

There is no formal taxonomy for HTs. Each study has its taxonomy structure. Tehra-
nipoor et al. [14] presented a taxonomy of HTs based on three main characteristics
of HTs, action, activation, and, physical. Physical characteristics are considered to
be the type, size, or structure of an HT. Activation characteristics are divided into
external and internal activation mechanisms of an HT, and action characteristics are
considered the types of HT attack on the infected circuit. Karri et al. [15] developed
a taxonomy approach for HTs, based on five characteristics: abstraction level,
insertion phase, activation mechanism, effect, and localization, while Bhunia et al.
[11] developed a taxonomy approach based on trigger and payload mechanisms.

506 K. Liakos et al.

7 Challenges Against HTs

Dealing with HTs has become one of the most important problems in the science
of hardware security. Every year new studies are developed to address them. The
main reason for the difficulty in dealing with HTs is mainly a large number of
different cases of HT infections. HTs can be inserted at any stage and phase of
IC development and can attack any unit of the ICs, processors, or memory units.
Also, HTs can affect the ICs via a variety of attacks and can have different physical
layouts.

8 Structure and Purpose of the Chapter

Next it presented an overview of artificial intelligence (AI), the tasks of learning, and
the most significant types of learning models, to be able for the readers to understand
the philosophy of AI. In Sect. 3 the approaches as countermeasures against HTs, a
historical throwback, the study’s trend, and the function of each subcategory and
category with tables are presented. Section 4 presents in depth the methodology of
how an AI model is “built,” and Sect. 5 presents the conclusions of the chapter.

The main purpose of this chapter is for readers to understand the function of HT
viruses and to know the basic philosophy of machine learning, because the science
of AI is becoming more and more widespread in all research fields, including this
field. And according to the research trends, it is increasingly being applied as a
solution for dealing with HT viruses. Another aim of the chapter is for readers to
understand the main categories of countermeasures used to deal with viruses as well
as to learn the fundamental steps of AI, to be able to create their models against
HTs.

9 An Overview of Artificial Intelligence

Every year, terms such as AI, machine learning (ML), and deep learning (DL) are
increasingly mentioned in our everyday life. This happens because a technology
trend is the development and use of AI-based technologies on a professional or
personal level. As a result, the meaning of these terms has been lost. It is important
to understand that all these terms are part of the AI scientific field.

In this section, a detailed reference is made to the science of AI. Specifically,
in this section of the book, the differences between the AI, ML, and DL terms
are presented. It also details the learning tasks of AI, such as supervised and
unsupervised learning. Furthermore, a plethora of learning models and algorithms
are discussed exhaustively. The purpose of this section is for readers to be able to

Hardware and System Security: Attacks and Countermeasures Against. . . 507

distinguish the differences between the AI, ML, and DL, as well as to comprehend
how each learning model works and when their algorithms are applied.

9.1 Artificial Intelligence Term

The term AI-first was introduced in 1956 by John McCarthy through an academic
conference. McCarthy defined AI as the science of making intelligent machines. AI
can be defined as the scientific field that aims to teach machines to think without
the need for human intervention. AI consists of a broad area of computer science
and can be categorized into three main categories, AI-narrow, AI-general, and AI-
super. AI-narrow is goal-oriented and has been programmed to complete a single
task. AI-general allows machines to learn and apply their intelligence to solve any
problem by mimicking human intellect and/or behaviors, and in AI-super machines
are capable of outperforming even the best humans in terms of intelligence.

9.2 Machine Learning Term

ML term was introduced in 1959 by Samuel et al. [16], and it was defined as the
scientific field that allows machines to learn without being strictly programmed.
Specifically, ML consists of a subset of AI that uses statistical learning algorithms
for the development of smart systems. Without being explicitly programmed, ML-
based systems can learn and improve on their own. The ML algorithms can
be categorized into three main categories, supervised, unsupervised, and semi-
supervised learning.

9.3 Deep Learning Term

DL is a subset of ML techniques utilizing multiple layers of training with more
reliable performance and fastest speed. The DL technique was inspired by the way a
human brain analyzes information. DL-based systems consist of interrelated layers
for the classification or prediction of information. Figure 4 presents in brief the
differences between AI, ML, and DL.

10 Tasks of Learning

AI, ML, or DL algorithms can be categorized into three learning task categories,
supervised, unsupervised, and semi-supervised learning. The main difference is that

508 K. Liakos et al.

Fig. 4 Artificial intelligence vs machine learning vs deep learning

supervised learning uses labeled data to help in prediction, while unsupervised does
not. Semi-supervised learning uses data mixed with labeled and unlabeled examples.
However, there are some distinctions between the three techniques, as well as key
areas where one surpasses the others. In this section the differences between the
three learning tasks are presented.

10.1 Supervised Learning

Supervised learning uses datasets with labeled samples as inputs and outputs for
the development of an ML- or DL-based model. Supervised learning can be used
as a solution for two categories of problems, classification or regression. In the
classification problems, a labeled dataset is split into two sets, the training and
test set for the development of a model. The purpose is for the model to be able
to classify with high performance the samples of the test set. For example, a classic
supervised classification learning problem is the classification of original from spam
emails. Furthermore, in regression problems, the model’s purpose is to comprehend
the connection between the dataset’s dependent and independent variables using a
labeled dataset. Regression models are useful for predicting numerical values based
on various data samples, such as sales revenue estimates for a certain business.
Figure 5 presents a typical figure of supervised learning.

Hardware and System Security: Attacks and Countermeasures Against. . . 509

Fig. 5 Supervised learning

Fig. 6 Unsupervised
learning

10.2 Unsupervised Learning

Unsupervised learning uses datasets with unlabeled samples as inputs and outputs
for the development of an ML- or DL-based model. In unsupervised learning-based
models from the dataset, it derives patterns between the features, and when the
model analyzes new data, it can classify the new samples into a class, based on the
already learned feature patterns. Unsupervised learning can be used as a solution
for clustering or dimensionality reduction problems. In the clustering problems, the
aim of the model is via an unlabeled dataset to group the dataset. In dimensionality
reduction problems, the aim of the model is to convert the higher-dimension dataset
into lesser dimensions without losing information, to reduce the poor performance
which is produced from the datasets with a large number of features. Figure 6
presents a typical figure of unsupervised learning.

10.3 Semi-supervised Learning

Semi-supervised learning uses datasets with mixed samples like labeled and
unlabeled samples as inputs and outputs for the development of an ML- or DL-
based model. There is a desirable prediction problem, but the model must learn the
structures to arrange the data and produce predictions. Classification and regression
are two common semi-supervised problems. Unsupervised and semi-supervised
learning may be more tempting options because relying on domain expertise to label
data accurately for supervised learning can be time-consuming and costly. In Fig. 7
a typical figure of semi-unsupervised learning is presented.

510 K. Liakos et al.

Fig. 7 Semi-supervised
learning

Fig. 8 Artificial neural
networks models

11 Learning Models

11.1 Artificial Neural Network Models

The functionality of the human brain inspired the development of artificial neural
networks (ANNs). ANNs emulate complicated tasks like recognition, classification,
decision-making, and pattern generation [17]. The human brain is made up of
billions of neurons that communicate and process information. Based on the same
philosophy, an ANN is a simplified model of this structure. Specifically, ANNs
consist of three categories of layers: input, hidden, and output layers. Input layers
fed the dataset into the system. Hidden layers produce the learning of the model,
and the decision/prediction is given from the output layer. ANNs are supervised
models which are used to solve regression and classification problems. The most
common ANNs-based algorithms are perceptron [18], multilayer perceptron [19],
back-propagation [20], resilient back-propagation [21], and counter propagation
algorithms [22]. Also, other common ANN algorithms are radial basis function
networks [23], Kohonen networks [24], Hopfield networks [25], generalized regres-
sion networks [26], autoencoder [27], adaptive-neuro fuzzy inference systems [28],
extreme learning machines [29], and self-adaptive evolutionary extreme learning
machines [30]. In Fig. 8 a typical structure of an ANN model is presented.

11.2 Bayesian Models

Bayesian models (BM) are a type of probabilistic graphical model where the
analysis is carried out using Bayesian inference. This model belongs to the domain
of supervised learning and can be used to solve classification or regression problems.

Hardware and System Security: Attacks and Countermeasures Against. . . 511

Fig. 9 Bayesian models

Fig. 10 Clustering models

Some of the most common BM-based algorithms are the Bayesian network [31],
Bayesian belief network [32], naive Bayes [33], multinomial naive Bayes [34],
and Gaussian naive Bayes [35]. In Fig. 9 a typical figure of a Bayesian model is
presented.

11.3 Clustering Models

Clustering-based models [36] are typical applications of unsupervised learning
models. These types of models are used to find natural groupings of data, known
as clusters. Common clustering algorithms are the K-means [37], hierarchical
clustering [38], and the expectation-maximization algorithm [39]. In Fig. 10 a
typical structure of a cluster-based model is presented.

11.4 Computer Vision Models

Computer vision (CV) models aim to understand information from digital images or
videos. Automatic extraction, analysis, and interpretation of meaningful information
from a picture or sequence of images are all part of CV-based models. It entails
the creation of a theoretical and computational foundation for autonomous visual
comprehension. Some of the most common algorithms are HRNet- OCR [40],
FixEfficientNet [41], and EfficientDet [42]. In Fig. 11 a typical structure of a CV
model is presented.

512 K. Liakos et al.

Fig. 11 Computer vision
models

Fig. 12 Decision tree models

11.5 Decision Tree Models

Decision tree (DT) models are based on a tree-like architecture [43] and solve
regression or classification problems. The dataset is grouped into smaller homo-
geneous subsets, known as subpopulations, while a relative tree graph is generated
at the same time. Each branch of the tree structure represents the result of a distinct
pairwise comparison on a given property, and each internal node represents a
separate pairwise comparison on a given attribute. The leaf nodes, which follow the
path from the root to the leaf, convey the process’ ultimate prediction. Common DT-
based algorithms are regression and classification trees [44], chi-square automatic
interaction detector [45], and the iterative dichotomiser [46]. In Fig. 12 a typical
structure of a DT model is presented.

11.6 Deep Learning Models

Deep learning (DL) or deep neural networks (DNNs) [47] consist of a modern
version of ANNs. DL-based models are the new era of AI, while more and more
models are developed based on them. As in ANNs, so in DL models consist of
three categories of layers, input, multiple hidden, and output layers. The significant
difference between ANNs is the usage of multiple processing layers which can learn
complex data representations via multiple levels of abstraction. Furthermore, one
more advantage of DL-based models is that the feature extraction can be performed
by the model itself. These models can be used for supervised, unsupervised, and
semi-supervised learning. The most common DL-based algorithms are convolu-
tional neural networks [48], deep Boltzmann machines [49], deep belief networks
[50], autoencoders [51], recurrent neural networks [52], and long- and short-term
memory networks [53]. In Fig. 13 a typical structure of a DNN model is presented.

Hardware and System Security: Attacks and Countermeasures Against. . . 513

Fig. 13 Deep learning
models

Fig. 14 Dimensionality
reduction models

11.7 Dimensionality Reduction Models

Dimensionality reduction (DR)-based models convert the original higher-
dimensional dataset into a lower-dimensional representation to preserve as much
information from the original data as feasible and to reduce the poor performance
which is produced from the datasets with a large number of features. DR-based
models can be used for supervised and unsupervised learning types and usually are
applied to solve regression problems. The most common DR-based algorithms are
principal components [54], partial least squares [55], and linear discriminant [56].
In Fig. 14 a typical structure of a DR model is presented.

11.8 Ensemble Learning Models

By building a linear combination of simpler base learners, ensemble learning (EL)
models are aimed to improve the prediction performance of a particular statistical
learning or model-fitting approach. EL-based models or multiple-classifier systems
enable the hybridization of hypotheses that were not produced by the same base
learner, producing improved outcomes in the case of high variety among the single
models. Typically, the DT architecture is used in EL-based models. Common
EL-based algorithms are AdaBoost [57], boot-strap aggregating [58], boosting
technique [59], gradient boosting machines [60], and random forest [61]. In Fig.
15 a typical structure of an EL model is presented.

514 K. Liakos et al.

Fig. 15 Ensemble learning
models

Fig. 16 Generative learning
models

11.9 Generative Learning Models

Generative learning (GL) models aim to generate new synthetic samples. A
typical GL model consists of two neural networks, the generative network and
the discriminative network. The generative network learns how to produce new
synthetic samples according to the initial dataset and the discriminative network
distinguishes the generated from the initial original samples. GL-based models
mostly are used to generate new samples in art, video games, and advertising.
Common GL-based algorithms are generative adversarial networks (GANs) [62],
conditional generative adversarial networks (CGANs) [63], Wasserstein generative
adversarial networks (WGANs) [64], Wasserstein conditional generative adversarial
networks (WCGANs) [65], StyleGAN [66], and CycleGAN [67]. In Fig. 16 a typical
structure of a GL model is presented.

11.10 Instance-Based Models

Instance-based (IB) models are memory-based models that learn from the com-
parison of new cases to instances in the training dataset. These models generate
hypotheses based on the information supplied from the data. Also, IB-based models
generate regression or classification predictions only via specific instances, while
these models do not adhere to a set of abstractions. The fundamental downside
of IB-based models is that they get more complex as more data is collected.
K-nearest neighbor [68], vector quantization [69], locally weighted [70], support
vector machines [71], and self-organizing map [72] are the most common IB-based
algorithms. In Fig. 17 a typical structure of an IB model is presented.

Hardware and System Security: Attacks and Countermeasures Against. . . 515

Fig. 17 Instance-based
models

Fig. 18 Natural language
processing models

Fig. 19 Regression models

11.11 Natural Language Processing Models

Automatic summarizing of the major points in a text or document is achieved
using natural language processing (NLP) models. Also, these algorithms are used to
classify text into specified classes or categories or to organize information through
this. The most common NLP-based algorithms are BERT [73] and XLNet [74]. In
Fig. 18 a typical function of an NLP model is presented.

11.12 Regression Models

The role of a regression learning model is to produce an output result based on
known input values. Linear regression [75], logistic regression [76], ordinary least
squares regression [77], cubist [78], and locally estimated scatterplot smoothing [79]
are the most common regression-based algorithms. In Fig. 19 a typical structure of
a regression model is presented.

516 K. Liakos et al.

Fig. 20 Regularization
models

Fig. 21 Speech recognition
models

11.13 Regularization Models

Regularization models consist of an extension of regression models. The purpose of
regularization-based models is through a penalize technique to simplify complex
models to simpler performance models. Common regularization algorithms are
ridge regression [80], least absolute shrinkage and selection operator [81], and least-
angle regression [82]. In Fig. 20 a typical structure of a regularization model is
presented.

11.14 Speech Recognition Models

Speech recognition (SR) models or voice recognition models are used in speech
recognition technology to convert voice to text. SR-based models work as follows:
they break down a speech audio file into individual sounds, analyzing each sound to
find the most suitable word that matches the language and converting these sounds
into text. Most common SR-based algorithms are ContextNet [83], LiGRU[84], and
ResNet [85]. In Fig. 21 a typical function of an SR model is presented.

12 AI History Timeline

As can be observed from Fig. 22, the first algorithms were created in 1950 to
develop simple AI models to solve basic mathematical problems. Moreover, from
1950 to 1970, an increase in the development of new algorithms can be observed,
while from 1980 to 2000, there is a sharp decline. The main reason was the need
to solve increasingly complex mathematical problems, combined with the lack of
computational resources. This led to a lack of interest in this field of research.

Hardware and System Security: Attacks and Countermeasures Against. . . 517

Fig. 22 ML and DL algorithms history timeline

While it is observed that since 2014, the period in which computing resources
have increased, more sophisticated algorithms are being developed to solve more
complex problems, such as computer vision, natural language processing, and
speech recognition problems.

13 Countermeasures Against HTs

HTs can be inserted at any stage and phase of IC development, can attack any
unit of the ICs, can affect the ICs via a variety of attacks, and can have different
physical layouts. For these reasons in this book, the countermeasures against HTs
are categorized into three major categories, SCA-based approaches, ML-based and
simulation approaches, and auxiliary approaches (Fig. 23).

14 Historical Throwback

Historically, the first research attempt that mentioned and studied the existence
of HTs in ICs was presented by Agrawal et al. [86] in 2007. The authors have
developed the first detection approach based on SCA-based power analysis. In 2009,
Chakraborty et al. [87] developed the first method for HT detection based on LT. In
2012, Salmani et al. [88] proposed the first PF approach. In 2014 introduced by Bao
et al. [89], the first ML-based approach for the post-silicon stage. In 2015, Ngo et
al. [90] proposed an RM approach. Lastly, in 2016, the detection of HTs at GLN
was proposed by Hasegawa et al. [91], while in 2022 proposed “GAINESIS” [92],

518 K. Liakos et al.

Fig. 23 Categorization of countermeasures approaches against HTs

Fig. 24 Countermeasures against HTs history timeline

the first GAN-based approach for the synthesis of new generated samples for GLN.
In Fig. 24 a history timeline for countermeasures against HTs is presented.

15 Studies Trend

In Fig. 25 the popularity of each subcategory over the years can be observed.
Specifically, from 2007 to 2013, most of the studies focused on the development

Hardware and System Security: Attacks and Countermeasures Against. . . 519

Fig. 25 Countermeasures trend

of methods for the detection of HTs based on SCA power and time analysis. In
2012, the first auxiliary-based study appears. And the golden era of auxiliary-based
approaches was 2015 when the majority of these studies are developed. The first
ML-based approach was introduced in 2014. But in 2016 and 2017, there is a
sharp increase in the development of such methods. As regards the LT simulation
approaches, the first study was presented in 2009, and other such approaches have
been developed over time.

16 Side-Channel Analysis-Based Approaches

SCA-based approaches aim to secure ICs for the SCA phase of the post-silicon stage
of ICs. These approaches use techniques based on side-channel analysis features to
detect alterations of physical characteristics like area, time, and power caused by
HTs. If the original SCA values of an IC differ, then the circuit is infected. This
is because when an HT is partially or fully activated, the original infected circuit
shows more interrupting activity compared to the original normal circuit because
consumes extra power.

16.1 SCA Power Analysis-Based Approaches

The first study which mentioned the existence of HTs was presented in 2007 by
Agrawal et al. [93], and it was an SCA-based approach. Specifically, the authors
developed a method for the detection of large or small physical layout HTs based
on SCA of transient current characteristics. In the study [94], the authors proposed

520 K. Liakos et al.

an approach for HT detection via static current characteristics. They measured static
current characteristics at numerous locations over the 2D surface of the chip simulta-
neously. The outcomes revealed that this approach can effectively detect small HTs.
Furthermore, the authors of the study [95] proposed an SCA-based method via a
power supply transient signals analysis. A power supply transient analysis approach
was used to assess local power supply transient signal measurements obtained
from numerous individual power ports on the device. The power supply transient
signals for each power port were measured, and the power supply transient of each
surrounding power port was examined. Then, to decrease noise, a signal calibration
was employed, and a scatter plot analysis was designed to successfully detect an
HT. The final results showed that this technique was able to detect large physical
layout HTs. In 2011 developed by Koushanfar et al. [96] a unified framework
based on SCA leakage power. The authors also combined calibration and sensitivity
analysis techniques for the detection of HTs. This approach was able to detect with
low process overhead, large in size HTs. In the study [3], the authors proposed
a multiple-parameter SCA-based approach for the detection of HTs. They used
and combined dynamic current and maximum frequency analysis features for HTs
detection. The results showed that their approach was able to detect varying types
and sizes of HTs. In Table 1 a summary of SCA-based power analysis approaches
is presented.

Table 1 Summary of approaches in SC-based power analysis

Authors Observed features Functionality Effectiveness Benchmark

[93] Transient supply
current

Detection of HTs in
ICs, based on
side-channel
information analysis
via transient current

Large and small
HTs

RSA circuit

[94] Quiescent supply
current

Detection of HTs
based on the analysis
of a chip’s IDDQS

Small HTs N/A

[95] Transient supply
current

Detection of HTs via
sensitivity analysis
of power signal

Large HTs ISCAS 85
benchmark
circuit: C499

[96] Delay, quiescent
supply current,
transient supply
current

Detection of HTs in
ICs based on
gate-level
characterization and
multi-parameter
measurements

Large HTs ISCAS 85
benchmark
circuits: C8,
C499, C432,
C1355, C3450

[3] Transient supply
current, maximum
operating
frequency

Detection of HTs,
based on dynamic
current and
maximum operating
frequency

Varying types and
sizes of HTs

Xilinx FPGA:
Virtex-II
XC2V500

Hardware and System Security: Attacks and Countermeasures Against. . . 521

Table 2 Summary of approaches in SCA-based time analysis

Authors Observed features Functionality Effectiveness Benchmark

[97] Power, delay Detection of HTs,
based on the
analysis of power
and delay

Large and small
HTs

Xilinx FPGA
circuit: Virtex
XUP-V2Pro

[98] Transition, delay Detection of HTs
based on clock
sweeping and
delay-based
detection

Small HTs ISCAS 89:
S38417

16.2 SCA Time Analysis-Based Approaches

In 2011, Lamech et al. [97] developed an SCA-based on-time analysis features
approach. Specifically, the authors combined SCA delay and power features for the
detection of HTs. The experimental results showed that their method was able to
detect large- and small-sized HTs. In 2013, Xiao et al. [98] developed an approach
based on clock sweeping and SCA delay characteristics. They used a combination of
path delay fault patterns with a clock sweeping transition technique for the detection
of HTs in a circuit. The results demonstrated that their approach was capable of
detecting HTs of modest size. In Table 13.2 a summary of SCA-based time analysis
approaches is presented.

17 ML and Simulation-Based Approaches

The purpose of ML-based methods is to classify infected with HTs from uninfected
circuits. These types of approaches developed ML-based classifiers for the classi-
fication of HTs in different phases of ICs development. Simulated methodologies
such as logic testing techniques generate tests to activate HTs and propagate the HT
payload to principal outputs for comparison with the golden circuit. The difficulty
with these methods is coming up with effective assays to activate HTs. In this
section, are presented ML- and simulated-based approaches as countermeasures
against HTs.

522 K. Liakos et al.

17.1 Logic Testing Simulation Approaches

Previously, LT simulation approaches aim to generate effective tests aiming to
activate and discover the stealthy nature of HTs. Because of their stealthy nature,
HTs are difficult to distinguish. Randomly generated tests are not effective, therefore
LT-based simulation approaches aim to generate guided tests for HT activation
and detection. In 2009, Chakraborty et al. [7] suggested a method based on LT
simulation as a countermeasure against HTs. Specifically, they developed an LT
approach named MERO. Multiple excitations of unusual logic situations at internal
nodes were used to construct test patterns. The findings demonstrated that this
method was capable of detecting small HTs. In 2011, Waksman et al. [99] developed
an LT-based framework named FANCI. They used Boolean functional analysis
features to generate test patterns for HT activation. The findings demonstrated
that this method could detect infected circuits with a low percentage of false
positive rate. In the study [100], the authors developed an LT-based simulation
technique named VeriTrust for HT detection at the design phase based on HT trigger
inputs. VeriTrust technique consisted of a traced and a checker. The tracer parsed
verification tests to identify trigger signals containing inactive entries, while the
checker examined these signals to determine which are associated with HTs. The
findings demonstrated that this method could detect various types and sizes of HTs.
In Table 13.3 a summary of LT simulation approaches is presented.

Table 3 Summary of LT simulation approaches

Authors Observed features Functionality Effectiveness Benchmark

[7] Nodes Detection of HTs
based on test
pattern generation
and multiple
excitations of rare
logic conditions at
internal nodes

Small HTs ISCAS 85:
C2670, C3540,
C5315, C6288,
C7552
ISCAS 89:
S13207, S15850,
S35932

[99] Wires Detection of HTs
based on Boolean
functional
analysis

HTs and IPs ISCAS 89:
S15850, S35932,
S38417

[100] Netlists Identification of
HTs at the design
stage, based on
the detection of
trigger inputs

Different types
and sizes of HTs

ISCAS 89:
S15850, S35932,
S38417, S38584
Microcontrollers:
MC8051, LEON3

Hardware and System Security: Attacks and Countermeasures Against. . . 523

17.2 ML-Based Approaches

ML-based approaches aim to detect an infection with HT circuit from an uninfected
normal circuit. In these approaches models which can classify infected from normal
circuits or used as reverse engineering or side-channel analysis methods for the
detection of HTs in a circuit are developed. Specifically, for the pre-silicon stage
proposed ML-based classifiers for the classification of infected and normal circuits
at GLN phase, based on netlist, area and power analysis features. ML-based methods
that work as reverse engineering techniques andML-based methods trained via side-
channel analysis features were developed for HT detection at the post-silicon stage.

For the pre-silicon phase, in 2016, Hasegawa et al. [91] proposed an SVM-
based model for the classification of infected from normal circuits. Specifically, the
authors developed an SVM-based model for the classification of HTs at the GLN
phase of the pre-silicon stage. For the training of the model, a dataset consisted of
GLN-based features like nets and gates of the circuits was used. The results showed
that this approach was able to classify effectively the infected with HTs from normal
nets. The same group [101] proposed another ML-based model. They developed an
RF-based model which was trained via GLN-based area features, like a number
of flip-flops and multiplexors before and after for each net. The results showed
that the RF-based model was effective for the classification of the two classes. In
2018, Inoue et al. [102] proposed an SVM-based model in a combination of GLN-
based area features for the classification of HTs at the GLN phase of the pre-silicon
stage of IC development. The SVM-based model was trained via area features like
the number of logic gates and flip-flops for each net of the infected and normal
circuits. The final results proved the validity of the method. In the study [103], the
authors developed six ML-based models for the classification of HTs at the GLN
phase. Specifically, they developed and compared six ML-based models which were
trained via a dataset consisting of GLN-based area, power, and time analysis features
from infected and normal circuits. The features consisted of area features like the
number of cells, nets, ports, and power features like the number of total switching
and combinational power of each normal and infected circuits. The experimental
results showed that their GB-based model was able to classify effectively the normal
from HTs circuits.

ML-based approaches were developed for the detection of HTs at the post-silicon
stage. For the post-silicon phase in 2014, Bao et al. [89] developed an ML-based
model as a reverse engineering approach for the detection of HTs. Specifically, they
trained an SVM classifier based on high-resolution images features from golden
and infected with HTs circuit layouts. The simulation results showed that the SVM-
based classifier was able to classify the two classes efficiently. The same group in the
study [9] proposed a K-means-based clustering model. The K-means-based model
has been developed again via high-resolution images features from golden circuits
and of three types modifications based on the golden circuits which consisted of the
infected circuits. Another post-silicon detection approach was developed in 2016
by Jap et al. [104]. Specifically, the authors developed an SVM-based model for

524 K. Liakos et al.

the detection of HTs. The model was trained from a dataset consisting of SCA-
based time features like leakage from normal and infected circuits. Another study
with ML and SCA techniques was proposed by Xue et al. [105]. In this study, the
authors developed an SVM-based model for the detection of HTs at the post-silicon
stage. The model was trained via a dataset that consisted of SCA-based power
features and specifically transient power supply features of normal and infected
circuits. The experimental results showed that this method was able to detect with
effectiveness the infective from normal circuits. Wang et al. [106] proposed another
SCA-based method in combination with ML techniques for the detection of HTs
in the post-silicon phase. Specifically, they developed an ELM-based model which
was trained from a dataset consisting of dynamic power features from infected and
normal circuits. In the study [107], the authors developed an SVM-based model
for the detection of HTs via SCA power features. Specifically, they developed an
SVM-based model which was trained via a data set consisting of SCA-based power
consumption waveforms features from infected and normal circuits and given. The
experimental results proved the validity of the method. Liu et al. [108] proposed
another SCA-based in combination with an ML-based model approach for the
detection of HTs in the post-silicon phase. They developed an SVM-based model
which was trained via SCA wireless transmission power waveform features from
HT-free and infected circuits. The results showed that their method was able to
detect effectively wireless transmission power signals produced from HTs. In Table
13.4 a summary of ML-based approaches is presented.

18 Auxiliary Approaches

The purpose of the auxiliary approaches is to enhance the effectiveness of the
detection techniques against HTs for the pre-silicon or post-silicon stage. Aux-
iliary approaches can be categorized into two categories, the runtime monitoring
approaches and the prevention-facilitation approaches.

When HTs are triggered, runtime monitoring systems try to limit the catastrophic
impacts of these infections. These methods are focused on finding ostensibly
undetected attacks and their consequences from time-delayed HT activation. These
approaches develop algorithms that can use finite state machines to investigate the
behavior of signals of interest or construct and perform many functionally identical
tests to identify HT attacks. Furthermore, due to their concurrent execution on the
circuit, these approaches can identify comparable HTs or bypass HTs, simulating
software HTs. In addition, utilizing verification tests, runtime monitoring systems
can discover underutilized circuitry and mark it as a suspect. Suspicious circuitry is
then replaced by a software logic exception, allowing the system’s regular operation
to bypass the HTs.

Prevention-facilitation approaches try to enhance the difficulty of HT insertion
into ICs, primarily during the design process, or to make detection procedures
easier. Prevention-facilitation approaches use hardware security techniques like

Hardware and System Security: Attacks and Countermeasures Against. . . 525

Table 4 Summary of ML-based approaches

Authors Observed features Benchmark Algorithm Results

[91] Features extracted
from known
gate-level netlists,
like LGFi, FFi, FFo,
PI, and PO

Trust-HUB:
RS232-T1000,
RS232-T1600,
S15850-T100,
S35932-T100,
S35932-T300,
S38417-T100,
S38417-T300,
S38584-T100,
S38584-T300

SVM 80%–100% TPR

[101] Features extracted
from gate-level
netlists

Trust-HUB:
RS232-T1000,
RS232-T1200,
RS232-T1300,
RS232-T1400,
RS232-T1500,
S15850-T100,
S35932-T100,
S35932-T300,
S38417-T100,
S38417-T200,
S38417-T300,
S38584-T100

RF 74.6% F-measure

[102] Features extracted
from netlists, like
LGFi, FFi, FFo, PI,
and PO

Trust-HUB:
RS232-T1000,
RS232-T1100,
RS232-T1200,
RS232-T1300,
RS232-T1400,
RS232-T1500,
RS232-T1600

SVM Type A: 58.9%
accuracy
Type B: 69.5%
accuracy
Type C: 65.1%
accuracy

[103] Features from area,
power, and time
analysis through the
DC compiler tool

Trust-HUB: Aall
benchmarks

GB 100% F1-score

[89] High-resolution
images from IC
golden layouts

ISCAS 89:
S27, S298, S280,
S15850, S38417
ITC 99: B18

SVM 90% accuracy

[9] Trojan-free IC
golden layout images
and three types of
modifications
produced based on
these images, Trojan
addition, deletion,
and parametric

ISCAS 89:
S27, S298, S280,
S15850, S38417
ITC 99: B18

K-means Trojan-free: 99.23%
accuracy
Trojan addition: 100%
accuracy
Trojan deletion: 100%
accuracy
Trojan parametric:
98.86% accuracy

(continued)

526 K. Liakos et al.

Table 4 (continued)

Authors Observed features Benchmark Algorithm Results

[104] Features extracted
from side-channel
analysis to leakage of
the chip based
on-time samples

Xilinx FPGA circuit:
Spartan-6

SVM N/A

[105] Features extracted
from the transient
power supply
currents (IDDT) of
each simulated IC
and a Trojan-free or
Trojan-inserted
indicator

ISCAS 89: S38417,
S35932

SVM Trojan-inserted ICs
known:
100% accuracy
Trojan-inserted ICs
unknown:
98% accuracy

[106] Features from
side-channel
analysis, dynamic
power consumption

N/A ELM 90% success rate

[107] Features from
converted power
consumption
waveform into the
frequency domain

N/A SVM 72.72% accuracy

[108] Features consist of
transmission power
measurements for six
ciphertext blocks
transmitted by each
of 40 Trojan-free
circuits

Trojan-free: TSMC
microcontroller:
0.35-μm technology
Trojan-I and
Trojan-II:
Created two HTs,
which leak the secret
key of a wireless
cryptographic IC
consisting of an
advanced encryption
standard (AES) core
and an
ultra-wideband
(UWB) transmitter
(TX)

SVM 0/10 FP and 0/80 FN

obfuscation, layout-filler, and path-delay fingerprinting to enhance the detection
of HTs. The obfuscation technique alters the circuit’s transition mode, allowing
it to function in two separate modes: regular and obfuscated. The regular model
generates the circuit’s expected output, but the obfuscated mode causes the circuit
to fail in specific input patterns. The usage of this technique makes it more difficult
to install a malicious circuit into a system. Layout-filler approaches are used to
limit the insertion of extra components by filling the vacant areas in a circuit with

Hardware and System Security: Attacks and Countermeasures Against. . . 527

filler cells. These solutions, however, are incapable of preventing the malicious
conversion of a transistor set or the addition of a circuit that does not require
additional layout space. Another method for detecting HTs is to use synthesis
algorithms based on the path-delay fingerprint. These techniques improve the HT
detection probability by minimizing the maximum delay and shortest path of the
circuits.

18.1 Runtime Monitoring Approaches

In 2015, Ngo et al. [90] proposed a runtime monitoring method for the detection
of HTs. Specifically, they developed an assertion approach for identifying and
validating high-level important behavioral invariants through an integrated circuit
and hardware property checker. The findings showed that this method could detect
HTs in circuits with different system overhead and adjust the protection levels
accordingly. In the study [109], the authors developed a general methodology based
on runtime monitors for the identification and detection of HT attacks through
burst mode communication. They developed a runtime monitor technique based
on an examination of susceptible routes. The statistical and experimental analysis
revealed that this strategy had a minimal area and power overhead when compared
to previous monitor methods and could be employed without the need for additional
IP module information. Furthermore, the authors in the study [110] developed three
low-overhead runtime approaches based on power/thermal features of infected and
normal circuits for the detection of HTs. The first approach was a sensor-based
approach based on thermal features produced from the thermal sensors. In the
second approach, a filter known as the Kalman filter for the tracking of circuits’
thermal profile was used. The third approach combined the Kalman filter with
leakage power features of the circuits to track the thermal profiles. The simulation
results verified that all the approaches were able to detect HTs effectively. In Table
13.5 the summary of RM approaches is presented.

18.2 Prevention and Facilitation Approaches

An obfuscation-based technique was developed by Kamali et al. [111]. The
authors developed an obfuscation-based method via embedded key features for
the protection of ICs against HT attacks. The simulation results demonstrated that
their technology could successfully safeguard ICs. The same group in the study
[112] proposed again an obfuscation-based method for the defense of IP-piracy
and reverse engineering approaches via the replacement of parts of logic design
with programmable logic routing blocks. In 2012, Salmani et al. [88] developed an
improving HT detection technique based on an analysis of the transition generation
time and dummy flip-flop insertion. Specifically, the authors developed a method

528 K. Liakos et al.

Table 5 Summary of RM approaches

Authors Observed features Functionality Benchmark

[90] Critical behavioral
invariants

Configurable security
monitor

Microcontroller
circuit: LEON3

[109] Handshaking protocol
features

Configurable security
monitor

Trust-HUB:
AES-T100,
AES-T1000,
AES-T1100,
AES-T1200,
AES-T1300,
AES-T1400,
AES-T1500,
AES-T200,
AES-T2000,
AES-T2100,
AES-T300,
AES-T400,
AES-T500,
AES-T600,
AES-T700,
AES-T800, AES-T900

[110] Thermal and power
profiles

Variant-based parallel
execution

Trust-HUB:
AES-T1700,
BasicRSA-T200,
MC8051-T300,
MC8051-T400,
MC8051-T600,
RS232-T400,
RS232-T900,
S38417-T300,
PIC16F84-T100,
PIC16F84-T200

based on dummy multiplexors to be able to remove rare trigger conditions, reduce
transition generation time, and increase the activity of HTs for the detection of HTs.
In the study [113], the authors proposed a layout-filler based on a dummy circuit
insertion technique against HT attacks. This technique is identified and replaced
the unused resources of a circuit with dummy logic cells. Experimental results
showed that the proposed study was effective for field programmable gate arrays
(FPGAs) with no cost on power or performance. In 2014, Nejat et al. [114] proposed
an approach for enhancing HT detection based on a combination technique of an
effective test-vector selection scheme with a path-delay fingerprinting. The basic
concept behind this procedure was to test the circuit at a gamma of frequencies.
Each path was examined at a clock cycle with a period equal to the path’s delay.
According to the results, this technique improves the detection of HTs with low area
overhead. The same group in the study [115] developed a path-delay fingerprinting-
based approach for HT detection. Specifically, they developed a logic-level synthesis

Hardware and System Security: Attacks and Countermeasures Against. . . 529

Table 6 Summary of PF approaches

Authors Observed features Functionality Benchmark

[111] Several embedded
key numbers

Obfuscation ISCAS 85:
C2670, C3540,
C5315, C6288,
C7552

[112] Fully programmable
logic and routing
blocks

Obfuscation ISCAS 85:
C432, C499, C880,
C1355, C1908,
C2670, C3540,
C5315, C7552

[88] Features based on
average clock cycles
per transition

Dummy circuit
insertion

ISCAS 89: S38417

[113] Low-level dummy
logics (LLDLs)

Layout filler Xilinx FPGA circuit:
Virtex-II

[114] Features based on
path-delay
fingerprinting

Improvement of HT
detection based on
path-delay
fingerprinting and an
effective test-vector
selection scheme

ISCAS 89:
S713, S1423, S5378,
S13207, S35932

[115] Features based on
path-delay
fingerprinting

Enhance HTs
detection based on
the improvement of
the path-delay
fingerprinting
technique via a
logic-level synthesis
retiming algorithm

ISCAS 89:
S208, S344, S1196,
S1238, S1494,
S9234, S13207,
S38417

retiming algorithm that shortened for each node of a circuit the connection paths
to minimize the communication delay. The results showed that the shorted paths
improve the detection of HTs. In Table 13.6 the summary of PF approaches is
presented.

19 Build Your Model Against HTs

This section outlines the processes required for the development of an ML- or DL-
based model. In particular, all of the critical steps required to develop an ML- or
DL-based model are presented and analyzed. The significance of the dataset is
mentioned as well as the actions required to prepare it before usage. In addition,
examples from datasets that were used for the development of ML-based models
against HTs are provided. Also, the significance of the features contained in a
dataset, as studies and the features based on for the development of models against

530 K. Liakos et al.

Fig. 26 Steps for the development of an ML- or DL-based model

HTs, are mentioned. Furthermore, the most essential ML-based algorithms which
were utilized for the development of ML-based models against HTs are presented.
GL-based algorithms for the generation of synthetic datasets are also presented in
the case there is an imbalance problem with the dataset. Finally, all the necessary
metrics for the evaluation of the ML-based algorithms are mentioned. The goal
of this section is to inform readers about the ML-based models that have been
developed as countermeasures against HTs and to enable them to develop their
models.

It must be mentioned that developing a model based on the principles of ML
or DL is a costly process in both time and computing power. Depending on the
problem, the size of the dataset, the size, type, and quantity of features contained
in the dataset as well as the algorithms and the set of parameters that will be
used and combined for the development of the new ML- or DL-based model, time
and computing power can vary significantly from model to model. Until today,
ML-based models need significantly more time for training and testing than the
DL-based models. The reason is that ML-based algorithms for the development of
a model are built to use the central processing unit (CPU) and not the graphics
processing unit (GPU). On the other, DL-based algorithms can use either CPU or
GPU for the training and evaluation of the development model. In Fig. 26 the steps
for the development of an ML- or DL-based model are presented.

19.1 Dataset

Every year more and moreML-/DL-based approaches are developed as countermea-
sures against HTs. These approaches are aimed at classifying or detecting circuits
infected with HTs from normal uninfected circuits. Also, some approaches are used
to enhance the classification or detection methods. The development of these types

Hardware and System Security: Attacks and Countermeasures Against. . . 531

of approaches needs a quality dataset that will contain a sufficient number of quality
samples and features to be able to train the ML-/DL-based model more efficiently.

Dataset can be divided into three categories: structured, unstructured, and semi-
structured. Structured data is data that follows a pre-defined data model and is
thus easy to analyze. Structured data is presented in a tabular format, including
relationships between rows and columns. Excel files and SQL databases are
common examples of structured data. Each of them has sortable organized rows
and columns. Unstructured data is information that lacks a predefined data model or
is not organized in a specific way. Common examples of unstructured data include
text, images, video, or audio files. Semi-structured data is a type of structured data
that does not follow the rules of structured data. However, tags or other markers
are used to distinguish semantic pieces and enforce hierarchies of records and fields
inside the data. Examples of semi-structured data include JSON and XML files.

The dataset plays a significant role in the creation of a robust ML- or DL-based
model. Specifically, the dataset before being used for the development of a model
must be cleared from unnecessary values and organized. For example, the dataset
must be checked for consistency, cleared of zeros and/or unspecified values, and
labeled where needed. An unreliable dataset like a dataset with imbalanced samples
per class leads to the development of unreliable models. A type of unreliable model
is a model that was taught to overclassify a class compared with another class. Due
to the lack of samples for a class, the model has learned to underclassify this class
compared with the other one.

It should be noted that each sample or feature provides a quantifiable piece of
data that may be analyzed. The features which are included in a dataset can vary
widely depending on the problem which is analyzed. The basic building elements
of a dataset are features. The quality of the features in a dataset has a significant
influence on the quality of the insights gained during model construction. For the
development of a model, the developer needs to understand the goals of the project
and select the appropriate feature values for the training of the model. Feature
selection and feature engineering are two strategies for increasing the quality of
a dataset’s features. These techniques require extensive user experience for proper
application. For the creation of the model, the features which will be used must
be scaled. Scale techniques alter features by scaling them to a certain range. The
most common scale methods are standard and min-max scale methods. The standard
scaler assumes that data within each feature is normally distributed and scales it so
that the distribution is centered around 0 with a standard deviation of 1. Centering
and scaling are performed individually on each feature by computing the necessary
statistics on the training set samples. The min-max scaler scales and translates each
feature separately such that it is inside the training set’s defined range, e.g., between
zero and one. If there are negative values, this scaler reduces the data to a range of
-1 to 1. Below are presented datasets that were built and used for the training of
models as countermeasures against HTs.

It should be noted that, in the case of HT challenges, the datasets typically consist
of two classes, the class with the infected and the class with the noninfected circuits,
and most studies for the development of an ML-based model against HTs used

532 K. Liakos et al.

circuits from a free access benchmark suit named as Trust-HUB [116, 117]. The
study [89] was the first study that proposed an SVM-based model for the detection
of HTs based on the reverse engineering (RE) method. For the development of the
SVM-based model, a dataset consisting of two classes was used. The first class
consisted of high-resolution images of golden circuits and the second class with
images from three types of modifications based on the golden circuits and were
used as infections. For the classification of free and infected circuits at the GLN
phase, Hasegawa et al. [101] proposed an RF-based classification model. The dataset
consisted of area features from free and infected circuits. Also, the same group [91]
proposed an SVM-based classifier developed based on a dataset consisting of free
and infected circuit area features like gates, nets, etc. In the study [103], authors
developed and compared six ML-based classifiers for the classification of infected
and normal circuits at GLN.

19.2 Training of Our ML- and DL-Based Models

The next step in the development of an ML-based model includes the selection of
a suitable ML-based algorithm for the training of the model. For the development
of an ML-based model, there is often more than one algorithm that can be used.
The most important criterion for selecting the most suitable algorithm for its model
is the type of problem to be addressed. According to this criterion, more than one
algorithm which is indicated as a solution for the problem can be chosen. Another
criterion consists of the structure of the dataset which will be used for the training
and evaluation of the model. According to the features of the dataset, there may
be a need to choose other types of algorithms. Also, it is significant to know the
complexity and the speed of each algorithm, because each algorithm needs specific
computing power, according to the parameters used for the development of a model.
There is a case where the model cannot be built due to a lack of computer power. It
should be noted that using more sophisticated algorithms does not always result in
the best outcomes.

One of the most crucial steps in the development of machine learning models
is the training step. Each training phase involves updating the weights and biases.
Training a model simply entails learning/determining good values for all of the
weights and biases based on the samples in our dataset. In supervised learning,
a model can be developed based on labeled data samples, but in unsupervised
ML, inferences from unlabeled data can be attempted. For training, a set of
hyperparameters is utilized, and the weights must be updated to get better outcomes
from cycle to cycle. As the number of training steps increases, more accurate
outcomes may be expected. The typical procedure is to train the model with the
default parameters of each algorithm and then depending on the problem and the
data that are used, we make changes to the parameters in order to optimize the
model. According to Section 3, the most common algorithms for the training of
ML-based models as countermeasures against HTs are presented.

Hardware and System Security: Attacks and Countermeasures Against. . . 533

Fig. 27 GB-based algorithm

19.2.1 Gradient-Boosting Algorithm

Gradient boosting (GB) [60], models are components of ensemble learning algo-
rithms that rely on a group choice using inefficient prediction models known as
decision trees. During the boosting step, each new tree is based on a modified
version of the original dataset. To begin, GB constructs a decision tree and assigns
equal weight to each observation. Following the initial tree evaluation, the weights
for easy-to-classify observations fall, while the weights for difficult-to-classify data
increase. The next tree develops on the weighted data, seeking to improve on
the predictions of the first tree. The new model is a cross between the first and
second trees. The classification error is computed, and a third tree is constructed
to predict the corrected residuals. This procedure is repeated for a certain number
of iterations until convergence is achieved. The final ensemble model’s forecast is
the weighted sum of all previous model iterations’ projections. The most common
hyperparameters for the training of GB-based models are learning rate, number of
estimators, max features, and max tree depth. A number of estimators consist of the
total number of sequential trees to be modeled. Max tree depth parameter controls
the depth of the individual trees. And max features parameter is the number of
features that will be used for the best split of the model. In Fig. 27 a typical structure
of a GB algorithm is presented.

19.2.2 K-Nearest Neighbor Algorithm

The K-nearest neighbor (KNN) [68] is a kind of IB learning that may be used to
solve supervised regression and classification problems in a straightforward manner.
The KNN algorithm is predicated on the premise that similar entities occur in
close proximity. In other words, similar things are close to one another. KNN is
based on the concept of similarity (also known as distance, proximity, or closeness)
in calculating the space between graph nodes. There are several techniques for
estimating distance, and depending on the situation, one approach may be preferred.
The KNN algorithm is initially loaded with the training dataset, which is commonly
referred to as x, and their goal values, which are referred to as y. Goal values y needs
to be classified from the model. The distance between the sample whose goal value
is intended to categorize is then computed for each data sample, and k is initialized
to a desirable number of neighbors. The query example’s index and distance are then
added to an ordered list of indices and distances, and the list is sorted in ascending

534 K. Liakos et al.

Fig. 28 KNN-based
algorithm

order (from smaller to bigger), with the distance as the order criterion. Finally, the
first k elements from the sorted list are chosen, and the labels of the chosen k entries
are obtained. As a result, the form of the k labels may be returned. Some of the most
often used hyperparameters for the training of a KNN-based model are leaf size,
the number of neighbors, and weight metrics. Leaf size parameter is the maximum
number of points a node can hold. The number of neighbors is used to return indices
of and distances to the neighbors of each point. Using a training set, the weights
parameter is utilized to approximate the ideal degree of effect of various attributes.
Relevant characteristics are given a high weight value when successfully applied,
while irrelevant features are given a weight value near zero. In Fig. 28 a typical
structure of a KNN algorithm is presented.

19.2.3 Multilayer Perceptron Algorithm

ANNs are built based on the human brain. Based on the philosophy of ANNs,
the algorithm multilayer perceptron (MLP) consists of a feedforward ANN that
generates a set of outputs from a set of inputs. Specifically, an MLP [19] is
a neural network that links numerous layers in a directed graph, which means
that the signal path between nodes is only one way. Each node, aside from the
input nodes, has a nonlinear activation function. MLP is frequently utilized for
supervised learning tasks. Common hyperparameters for an MLP model are hidden
layer sizes, solver, activation, max iterations alpha, and learning rate. Hidden layer
size is used for the creation of the hidden layers. The hidden layers are produced
according to the size value. Furthermore, the hidden layer merely generates layers
of mathematical functions, each of which is designed to create an output particular
to an intended outcome. The solver parameter represents a stochastic gradient
descent-based optimizer for optimizing the computation graph’s parameters. An
activation hyperparameter consists of an activation function that describes how
the weighted sum of the input is converted into an output from a network layer
node or nodes. An iteration is the number of times a batch of data is processed
by the algorithm. In the context of neural networks, this refers to the forward and
backward passes. As a result, each time you run a batch of data through the ANN,
you complete an iteration. The alpha parameter is a regularization term, also known
as a penalty term, that limits the size of the weights to prevent overfitting. Increasing
alpha may reduce high variance by promoting lower weights, which results in
a decision boundary plot with fewer curvatures. The learning rate, in particular,

Hardware and System Security: Attacks and Countermeasures Against. . . 535

Fig. 29 MLP-based
algorithm

Fig. 30 RF-based algorithm

is an adjustable hyperparameter used in neural network training that has a tiny
positive value, typically in the range of 0.0 to 1.0. The learning rate determines how
quickly the model adapts to a new situation. It could be the model’s most essential
hyperparameter. In Fig. 29 a typical structure of an MLP algorithm is presented.

19.2.4 Random Forest Algorithm

A random forest (RF) is a collection of DTs. The main notion behind this strategy is
that combining several learning models improves the overall output. To accomplish
the precision and reliability of the prediction, RF constructs numerous decision trees
and blends them. In this approach, it eliminates overfitting by generating random
subsets of the features, constructing smaller trees from these subsets and combining
them to improve overall performance. RF assigns a sample to the class with the
most “votes” in each subtree. While developing the trees, RF makes the model more
random. When splitting a node, it scans for the best element from a random group of
characteristics rather than looking for the most significant feature. As a result, there
is a wide range of possibilities, which leads to a more comprehensive model. Some
of the most common hyperparameters for the training of an RF-based model are
max features, the number of estimators, min sample leaf, and max depth. The max
feature parameter specifies the maximum number of features that RF is permitted
to attempt in a single tree. For example, if the total number of variables is 100,
only 10 of them can be used in a single tree. The number of estimators refers to the
number of trees that are built before computing the maximum voting or prediction
averages. A larger number of trees improves performance but necessitates more
computing power. The min sample leaf parameter specifies the minimal number of
samples that must be present at a leaf node. The maximum depth parameter reflects
the maximum depth of each tree in the forest. The more splits there are in the tree,
the more information it collects about the data. In Fig. 30 a typical structure of an
RF algorithm is presented.

536 K. Liakos et al.

19.2.5 Support Vector Machine Algorithm

Support vector machine (SVM) is a binary problem-solving method. SVMs use
the kernel technique dot product to turn the input feature space into a higher-
dimensional feature space. The sample distance of each dataset to a specific dividing
hyperplane may be calculated. Margin is defined as the shortest distance between
the samples and the hyperplane. A hyperplane, or dividing curve between various
classes, can be used to divide the altered data. The best hyperplane optimizes the
profit margin. Its purpose is to categorize a fresh sample by calculating its distance
from the hyperplane. SVMs, which are based on global optimization, deal with
overfitting difficulties that arise in high-dimensional spaces, making them interest-
ing in a variety of applications [118, 119]. Most used SVM algorithms include the
support vector regression [120], least-squares SVM [121], and successive projection
algorithm-SVM [122]. In other terms, an SVM is a linear separator that focuses on
building the biggest feasible margin in a hyperplane. Its purpose is to categorize a
fresh sample by calculating its distance from the hyperplane. The hyperplane is a
single line that divides two classes in a two-dimensional feature space. An SVM
cannot linearly classify data in a multi- dimensional feature space if the data are
nonlinearly separable. It employs the kernel method in this situation. The basic
idea is that the new multidimensional feature space may contain a linear decision
boundary that was not linear in the original feature space. Commonly used SVM
hyperparameters are C, gamma, and kernel. The C parameter informs the SVM
optimizer how much you don’t want to misclassify each training example. When
C is big, the optimization will choose a smaller-margin hyperplane if it performs a
better job of properly categorizing all of the training points. The gamma parameter
specifies how far the influence of a single training example extends, with low values
suggesting “far” and high values indicating “close.” The gamma parameters may
be thought of as the inverse of the model’s radius of effect for samples selected as
support vectors. A kernel function is a way of taking data as input and transforming
it into the needed form for processing. The term “kernel” is chosen because the
collection of mathematical functions utilized in SVM provides a window through
which data can be manipulated. In Fig. 31 a typical structure of an SVM algorithm
is presented.

Fig. 31 SVM-based
algorithm

Hardware and System Security: Attacks and Countermeasures Against. . . 537

19.2.6 GAN Algorithm

GL algorithms aim to generate new synthetic samples, and they can be applied as a
solution for the imbalanced datasets. This section is mentioned GL-based algorithms
which can be used for the synthesis of new samples for database cases such as
normal and infected circuits. For the development of GL-based models, as many
models as the number of classes that are contained in the dataset must be developed.
Then, depending on the algorithm which will be used, there may be a need to apply
some clustering algorithms. With the use of the clustering algorithms, the user will
be able to cluster each given class into sub-classes to be able to use the class label
as an extra feature.

GANs are based on CNNs and consist of a complex DL algorithm. GANs
were designed and introduced by Goodfellow et al. [62] in 2014. GAN algorithms
consisted of two models which are trained simultaneously by an adversarial process.
The two models are a generator (“the artist”) and the discriminator (“the art critic”).
The purpose of the generator is to learn and to create samples that look real
like the training samples. On the other hand, the discriminator aims to learn and
to distinguish the real from the fake samples. During the training, the generator
becomes better and can synthesize samples that look real, while the discriminator
becomes better at distinguishing them from the real samples. The process finishes
when the discriminator can no longer distinguish real samples from fakes.

19.2.7 CGAN Algorithm

Another GL-based algorithm for the synthesis of new samples is the CGANs [63].
CGANs are close to the philosophy of the GANs. The only difference is that CGAN
uses an extra feature for the training of the model which is the class labels.

19.2.8 WGAN Algorithm

WGANs were developed by Arjovsky et al. [64] in 2017. WGANs are based on the
main idea of GANs with the difference that for the synthesis of generated samples,
WGANs use as an extra feature the Wasserstein distance. An improved version
of WGANs is the algorithm WCGANs. Specifically, WCGANs were developed
in 2018 by Qin et al. [65]. WGANs have the same function as WGANs with the
difference that for the synthesis of new generated samples, they use as an extra
feature the label of the classes, from the training set.

Common hyperparameters for the training of a GL-based model are learning
rate, data dimensional, activation, kernels, optimizers, layer dense, and according to
the algorithm the class labels of the dataset. Learning rate controls how efficiently
the algorithm descends the gradient descent by evaluating each tree’s contribution
to the ultimate outcome. Data dimensional is the number of features that will be
considered to determine the optimal split. The activation hyperparameter consists

538 K. Liakos et al.

of an activation function that defines how the weighted sum of the input is turned
into an output from a node or nodes in a network layer. Kernels are used in
convolutional layers to extract features. They are essentially filters that are applied to
the input data. They are implemented as matrices, with the kernel “moving” above
the input data and the dot product between the kernel and the sub-region of the
input matrix below it being calculated at each step, with the result being a matrix
of the dot products. Optimizers are algorithms or methods that are used to change
the neural network’s attributes such as weights and learning rate to reduce losses.
By minimizing the function, optimizers are used to solve optimization problems.
Layer dense in any neural network is deeply connected to the layer before it, which
indicates that the neurons in the layer are connected to every neuron in the layer
before it. In artificial neural network networks, this is the most widely utilized layer.

19.3 Evaluation

Once it was completed – the steps of data collection and preparation and trained the
model – it is time for the evaluation of the model. For the evaluation of the model, a
test set which mainly consisted of 20% of the total dataset is used, and the samples
of this set are unknown to the model. For example, in the case of HT classification,
the test set consisted of unknown infected and free circuits features which the model
will process for the first time and needs to classify.

19.3.1 Metrics for Classification ML-Based Algorithms

According to the ML-based methods presented, the problem of HTs consisted of a
classification problem. In this section the metrics which are used for the evaluation
of a classification model are presented.

To evaluate the performance of ML classification, algorithms used specific
metrics: accuracy, precision, recall or sensitivity, specificity, 1-specificity, and F1
score. These metrics for their evaluation need four values: true positive (TP), false
positive (FP), true negative (TN), and false negative (FN) values. TP and TN values
consist of the correct predictions for the positive and the negative class, while FP
and FN values consist of the error predictions for the positive and negative classes,
respectively. According to each study, TP values can be used to indicate the infected
circuits or the normal circuits, respectively.

Accuracy is defined as the number of correct predictions divided by the total
number of predictions (1). Accuracy consists of the simplest of metrics and is not the
best metric for the evaluation of a model. For example, when the dataset consisted
of imbalanced classes, the model will be highly accurate which is wrong, because
the model will predict all samples as the most frequent class. Therefore, the users
need to look at class-specific performance metrics.

Hardware and System Security: Attacks and Countermeasures Against. . . 539

Accuracy = (TP + TN) / (TP + TN + FP + FN) (1)

Precision consists of one of these metrics and is defined as the total number of
TP values divided by the total number of all positive values (2).

Precision = TP/ (TP + FP) (2)

On the other hand, recall or sensitivity is defined as the total number of TP values
divided by the total number of TP and FN values (3). Recall can be characterized as
the true positive rate (TPR).

Recall = TP/ (TP + FN) (3)

Specificity is defined as the total number of TN values divided by the total
number of TN and FP values (4) and can be characterized as the true negative rate
(TNR).

Specificity = TN/ (TN + FP) (4)

1-Sensitivity is defined as the total number of FP values divided by the total
number of TN and FP values (5).

1-Specificity = FP/ (TN + FP) (5)

Lastly, F1 is the harmonic mean of Precision and Recall and is defined by the
multiplication of Precision by Recall and then by number two divided by the product
of Precision and Recall (6).

F1 Score = 2
(
Precision∗Sensitivity

)
/ (Precision + Sensitivity) (6)

19.3.2 Metrics for the Evaluation of GL-Based Algorithms

As proposed in the previous chapter, the differences between the GL algorithms for
the synthesis of new samples are in use or not of extra features. For this reason, the
evaluation metrics are different between the mentioned algorithms. First, the metrics
for GANs and CGANs algorithms and next for theWasserstein-based algorithms are
introduced.

To evaluate the performance of GANs and CGANs algorithms, loss functions are
used. Specifically, GAN- and CGAN-based models use two types of loss functions
for their evaluation, a generator and a discriminator loss function. The generator
loss function evaluates how effectively the generator tricked the discriminator. For
example, the discriminator will classify the fake samples as real when the generator
performs well. On the other hand, the discriminator loss function evaluates how

540 K. Liakos et al.

well the discriminator can distinguish real from fake samples. As a result, for the
calculation of loss functions in GAN and CGAN algorithms, the minmax loss (7) is
used. Ex is the expected value for real sample instances, and Ez is the expected value
over all random inputs to the generator. D(x) is the discriminator’s estimate of the
probability that real data instance x is real. Specifically, D(x) is the output for a real
instance at the discriminator. G(z) is the output when given noise z, at the generator
(z is random noise based on a bell curve from a Gaussian distribution and produces
sample values selected by the generator). D(G(z)) is the output for a fake instance at
the discriminator.

Minmax Loss = Ex

[
log (D(x))

]+ Ez

[
log (1 − D (G(z)))

]
(7)

On the other hand, WGAN and WCGAN algorithms do not classify instances
but produce an output number with values between 0 and 1. For the evaluation of
the discriminator, the Wasserstein discriminator loss metric (8) is used and for the
generator, the Wasserstein Generator Loss metric (9). On WGANs and WCGANs,
the aim of the discriminator is to increase the output between the real and fake
instances.D(x) is the discriminator’s output for real instances,G(z) is the generator’s
output for the given noise z, and D(G(z)) is the discriminator’s output for fake
instances.

WassersteinDiscriminator Loss = D(x) − D (G(z)) (8)

Wasserstein Generator Loss = D (G(z)) (9)

19.4 Hyperparameter Tuning

Once completed, the evaluation step, according to the performance of the model
based on the aforementioned metrics, may need to optimize the model based on
a set of hyperparameters. To train a model based on ML or DL, a set of default
hyperparameters is used. If the model evaluation is not effective, combinations with
the hyperparameter sets must be made to enable optimization of the model. A classic
technique is to give each hyperparameter a list of values and then combine all the
hyperparameter values together to find the most effective evaluation result.

Hardware and System Security: Attacks and Countermeasures Against. . . 541

20 Languages, Frameworks, and Tools

The development of an ML-based or DL-based model has required the use of tools.
There is a huge gamma of tool combinations. For the development of a model, it is
important to know three basic things: the programming language, the framework,
and the environment that will be used and combined for the implementation of
the model. In the world, literature has reported a variety of combinations of
programming languages, frameworks, and development tools.

The most common programming languages for the development of ML- or
DL-based models are Python [123] and R [124]. Python is a general-purpose
programming language, which means it can be used to develop a wide range of
applications and is not specialized for any particular problem. R, on the other hand,
is a programming language as well as a free software environment for statistical
computation and graphics. It is commonly used by statisticians and data miners to
create statistical applications and do data analysis.

There is a great variety of frameworks that are differentiated according to the
user. The most common in use are, Tensorflow [125], Keras [126], and PyTorch
[127] which mostly are used for the development of DL-based models. Specifically,
TensorFlow is a free and open-source machine learning and deep learning software
library. It may be used for a variety of tasks; however, it is most commonly employed
for DNN training and inference. Keras, on the other hand, is a Tensor-Flow-based
deep learning API built-in Python. It was created to allow for quick experimentation.
It is critical to be able to get from concept to outcome as quickly as feasible
when conducting research. For ML-based models, the most usable framework is
the Scikit-Learn. Scikit-Learn is a robust library for ML in Python. It offers a set of
efficient tools for ML and statistical modeling, including classification, regression,
clustering, and dimensionality reduction, via a Python interface. OpenCV [128] is
another important framework for the construction of CV-based models. It is an open-
source library that is particularly helpful for computer vision applications such as
video analysis, CCTV footage analysis, and picture analysis.

The most usable development tools for the creation of a model are Jupyter
Notebook [129], PyCharm, and Microsoft Visual Studio Code. The Jupyter Note-
book is an open-source web tool that allows data scientists to create and share
documents that contain live code, equations, computational output, visualizations,
and other multimedia elements, as well as explanatory text. PyCharm is a Python-
integrated development environment (IDE) that provides a wide range of necessary
tools for Python developers. These tools are tightly integrated to offer a pleasant
environment for productive Python, web, and data science development. Microsoft
Visual Studio Code is a simplified code editor that supports development processes
such as debugging, task execution, and version control. It tries to give only the
tools required by a developer for a speedy code-build-debug cycle, leaving more
complicated processes to full-featured IDEs. A not-so-common tool is Spyder,
which is an open-source cross-platform IDE for scientific programming in the
Python language. Another useful tool is Anaconda [130]. Anaconda is a Python and

542 K. Liakos et al.

R programming language distribution for scientific computing, such as data science,
ML applications, large-scale data processing, and predictive analytics, to simplify
package management and deployment using virtual environments. Furthermore,
Anaconda enables the creation of virtual environments which installed all the
necessary programming languages, frameworks, and development tools.

21 Conclusions

Despite substantial research efforts over the years to build scalable and automated
security validation methodologies, there are still many hurdles to designing secure
and trustworthy ICs. There is currently no one-size-fits-all answer to HT attacks.
ICs are often built to perform multiple functions, which introduces significant
differences between them because even minor changes might affect their entire
operation. These variables significantly increase the difficulty of designing HT
prevention/detection systems that can be deployed uniformly on ICs intended for a
variety of purposes. Furthermore, the sophistication of ICs is continually increasing,
making the bulk of present HT countermeasures outdated.

Classical methodologies were established more than a decade ago, setting the
framework for meticulously planning and strategizing HT detection with SCA-
based and simulation-based techniques like LT. Despite their accuracy, these
analytical frameworks lacked scalability and generalizability across a wide range
of circuit types and sizes. The need for fresh ideas to overcome the barriers
immediately became apparent, paving the route for the ultimate adoption of ML.
However, as strong as ML might be, it should not be considered a panacea because
it comes with its own set of idiosyncrasies and issues.

The most crucial stage in developing a fundamentally robust ML model is the
creation of a training dataset that embeds the underlying variability of the queried
domain. Experts in the area would quickly consider getting data from small-sized
circuits and using it to train an ML system for detecting HTs in large-sized circuits
as wishful thinking. Furthermore, the process of feature extraction and subsequent
selection is always constrained by the art of robust dataset development, particularly
in the case of ML algorithms that lack inherent methods for reducing the side effects
of redundant or non-informative features. This area of machine learning is heavily
reliant on domain specialists, who must commit substantial time and effort to collect
and assess the features that will be used to train the ML algorithms.

Unfortunately, the bulk of previous ML-based research attempting to address
the HT detection problem failed to overcome the aforementioned limitations. The
authors presented ML algorithms trained on a tiny number of samples generated
by circuits covering a narrow range of types and sizes, unavoidably resulting in
overfitting and models that fail to compete with sophisticated opponents. Further-
more, the generalizability of these models to new circuits would be called into doubt
because it was never tested, even via subsequent studies that sought to push the
boundaries even further. Furthermore, except for one research, none of the prior

Hardware and System Security: Attacks and Countermeasures Against. . . 543

studies used industry-level software in the process of reviewing circuit designs and
extracting features/values that were as close to their printed equivalent as feasible.
Instead, they opted for open-source solutions, which include a trade-off between
financial/time cost and precision in measured feature values. Except for a few
studies that performed feature selection before training, ML was largely regarded
as a black box, with little effort expended in explaining what drives the algorithm’s
conclusions, a process that identifies feature combinations that are significant for
the classification objective. The lack of publicly accessible Trojan-free and trojan-
infected IC designs is a serious restriction in the HT detection field. Even though
Trust-Hub contains over 1000 Trojan-infected designs, they are all based on a tiny
number of Trojan-free circuits. Because adversaries already have access to the HT
detection training data, they know what degree of resistance to expect; nevertheless,
the scientific community is unable to keep up with the level of complexity observed
in HT assaults due to a lack of plentiful and easily accessible data.

The focus on GLN is a recurring theme in existing ML-based studies, most
likely due to the ease of access and feature extraction for this particular IC design
phase. Because Trojans may be injected at any point of the process, this severely
limits research into how HTs can be discovered throughout the IC production
process. Furthermore, the great majority of Trust-Hub circuit designs are “friendly”
to FPGAs, leaving the ASIC HT detection environment mostly untouched.

We believe that technological developments in the twenty-first century are
forcing the HT detection sector to rapidly evolve. However, the path is hampered
by ambiguity about how to properly use the benefits of ML, a paucity of publicly
available data, intellectual property rights, and the fact that industrial-scale IC
design is not, by definition, a conventional research area. Existing HT detection
studies have contributed significantly to publicizing the socio-economical direct
and indirect repercussions of HT insertion in devices critical to our society’s
homeostasis. Our understanding of how HTs operate has developed substantially
over the years, laying a solid basis from which we can evaluate the most recent
technical developments and seek to address the ever-growing cluster of new
challenges that lie ahead.

One of these challenges is bridging the gap between research data that is scattered
throughout multiple ID design phases. A new study must encompass the full IC
production chain, which is made up of phases with various characteristics, features
that may be retrieved, and challenges to avoid. The accumulation of study data that
comply with this approach framework will help us understand how HT works and
how it is dependent on the design phase chosen as the insertion point. Knowledge
transfer within disciplines of HT detection research, such as the combination of
techniques concentrating on various manufacturing phases, modes of operation, or
even a mix of software-oriented and hardware-only solutions, can push the frontiers
of HT prevention even farther.

The future of HT countermeasure approaches comprises meticulous and planned
procedures for the production of diversified and scalable solutions that integrate
cutting-edge AI algorithms and features extracted software specifically intended
for industrial-precision level. On the other hand, any research that uses ML should

544 K. Liakos et al.

commit a significant portion of its resources to probe the mechanisms underlying the
ML algorithm’s judgments. Such holistic approaches should prioritize explainable
AI since it is capable of condensing the information obtained by these complicated
algorithms and highlighting problems in specific design phases, features, method-
ologies, software, and production pipelines.

Robust HT countermeasures will limit socio-economic losses from malicious
hardware to a minimum, but disclosing high-order linkages between subcomponents
of the IC manufacturing chain may have a disruptive influence on how the IC
Industry is distributed internationally.

References

1. Bhunia, S., et al.: Protection against hardware trojan attacks: Towards a comprehensive
solution. IEEE Des. Test. 30(3), 6–17 (2013). https://doi.org/10.1109/MDT.2012.2196252

2. Mitra, S., Wong, H.S.P., Wong, S.: The Trojan-proof chip. IEEE Spectrum. (2015). https://
doi.org/10.1109/MSPEC.2015.7024511

3. Narasimhan, S., et al.: Hardware trojan detection by multiple-parameter side-channel analy-
sis. IEEE Trans. Comput (2013). https://doi.org/10.1109/TC.2012.200

4. Amelian, A., Borujeni, S.E.: A Side-Channel Analysis for Hardware Trojan Detection Based
on Path Delay Measurement. J. Circuits. Syst. Comput. (2018). https://doi.org/10.1142/
S0218126618501384

5. He, J., Zhao, Y., Guo, X., Jin, Y.: Hardware Trojan detection through Chip-free electromag-
netic side-channel statistical analysis. IEEE Trans. Very Large Scale Integr. Syst. (2017).
https://doi.org/10.1109/TVLSI.2017.2727985

6. Nourian, M.A., Fazeli, M., Hely, D.: Hardware Trojan detection using an advised genetic
algorithm based logic testing. J. Electron. Test. Theory Appl. (2018). https://doi.org/10.1007/
s10836-018-5739-4

7. Chakraborty, R.S., Wolff, F., Paul, S., Papachristou, C., Bhunia, S.: MERO: A statistical
approach for hardware Trojan detection (2009). https://doi.org/10.1007/978-3-642-04138-
9_28

8. Sklavos, N., Chaves, R., Di Natale, G., Regazzoni, F.: Hardware security and trust: Design
and deployment of integrated circuits in a threatened environment. 2017.

9. Bao, C., Xie, Y., Liu, Y., Srivastava, A.: Reverse engineering-based hardware trojan detection.
In: The Hardware Trojan War: Attacks, Myths, and Defenses (2017)

10. Synthesis, C., Script, E., Design, C.: Synopsys design compiler tutorial. Technology (2002)
11. Bhunia, S., Hsiao, M.S., Banga, M., Narasimhan, S.: Hardware trojan attacks: Threat

analysis and countermeasures. Proceedings of the IEEE. (2014). https://doi.org/10.1109/
JPROC.2014.2334493

12. Hicks, M., Finnicum, M., King, S.T., Martin, M.M.K., Smith, J.M.: Overcoming an untrusted
computing base: Detecting and removing malicious hardware automatically. (2010). https://
doi.org/10.1109/SP.2010.18

13. King, S.T., Tucek, J., Cozzie, A., Grier, C., Jiang, W., Zhou, Y.: Designing and implementing
malicious hardware (2008)

14. Tehranipoor, M., Koushanfar, F.: A survey of hardware trojan taxonomy and detection. IEEE
Design Test Comp. (2010). https://doi.org/10.1109/MDT.2010.7

15. Karri, R., Rajendran, J., Rosenfeld, K., Tehranipoor, M.: Trustworthy hardware: Identifying
and classifying hardware trojans. Computer (Long. Beach. Calif). (2010). https://doi.org/
10.1109/MC.2010.299

http://doi.org/10.1109/MDT.2012.2196252
http://doi.org/10.1109/MSPEC.2015.7024511
http://doi.org/10.1109/TC.2012.200
http://doi.org/10.1142/S0218126618501384
http://doi.org/10.1109/TVLSI.2017.2727985
http://doi.org/10.1007/s10836-018-5739-4
http://doi.org/10.1007/978-3-642-04138-9_28
http://doi.org/10.1109/JPROC.2014.2334493
http://doi.org/10.1109/SP.2010.18
http://doi.org/10.1109/MDT.2010.7
http://doi.org/10.1109/MC.2010.299

Hardware and System Security: Attacks and Countermeasures Against. . . 545

16. Samuel, A.L.: Some studies in machine learning using the game of checkers. IBM J. Res. Dev
(2000). https://doi.org/10.1147/rd.441.0206

17. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull.
Math. Biophys. (1943). https://doi.org/10.1007/BF02478259

18. Rosenblatt, F.: The perceptron: A probabilistic model for information storage and organiza-
tion in the brain. Psychol. Rev. (1958). https://doi.org/10.1037/h0042519

19. Pal, S.K., Mitra, S.: Multilayer perceptron, fuzzy sets, and classification. IEEE Trans. Neural
Networks. (1992). https://doi.org/10.1109/72.159058

20. Kelley, H.J.: Gradient theory of optimal flight paths. ARS J. (1960). https://doi.org/10.2514/
8.5282

21. Riedmiller, M., Braun, H.: Direct adaptive method for faster backpropagation learning: The
RPROP algorithm (1993). https://doi.org/10.1109/icnn.1993.298623

22. Hecht-Nielsen, R.: Applications of counterpropagation networks. Neural Networks (1988).
https://doi.org/10.1016/0893-6080(88)90015-9

23. Broomhead, D., Lowe, D.S.: Multivariable functional interpolation and adaptive networks.
Complex Sys. 2, 321–355 (1988)

24. Melssen, W., Wehrens, R., Buydens, L.: Supervised Kohonen networks for classifica-
tion problems. Chemom. Intell. Lab. Syst. 83(2), 99–113 (2006). https://doi.org/10.1016/
j.chemolab.2006.02.003

25. Hopfield, J.J.: Neural networks and physical systems with emergent collective computational
abilities. Proc. Natl. Acad. Sci. U. S. A. (1982). https://doi.org/10.1073/pnas.79.8.2554

26. Specht, D.F.: A general regression neural network. IEEE Trans. Neural Networks. (1991).
https://doi.org/10.1109/72.97934

27. Liou, C.Y., Cheng, W.C., Liou, J.W., Liou, D.R.: Autoencoder for words. Neurocomputing
(2014). https://doi.org/10.1016/j.neucom.2013.09.055

28. Jang, J.S.R.: ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man
Cybern. (1993). https://doi.org/10.1109/21.256541

29. Bin Huang, G., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: Theory and applications.
Neurocomputing. (2006). https://doi.org/10.1016/j.neucom.2005.12.126

30. Cao, J., Lin, Z., Bin Huang, G.: Self-adaptive evolutionary extreme learning machine. Neural
Process. Lett (2012). https://doi.org/10.1007/s11063-012-9236-y

31. Hasman, A.: Probabilistic reasoning in intelligent systems: Networks of plausible inference.
Int. J. Biomed. Comput. (1991). https://doi.org/10.1016/0020-7101(91)90056-k

32. Neapolitan, R.E.: Models for reasoning under uncertainty. Appl. Artif. Intell. (1987). https://
doi.org/10.1080/08839518708927979

33. Ligeza, A.: Artificial intelligence: A modern approach. Neurocomputing. 9(2), 215–218
(1995). https://doi.org/10.1016/0925-2312(95)90020-9

34. Ali, K., Jamali, A., Abbas, M., Ali Memon, K., Aleem Jamali, A.: Multinomial naive Bayes
classification model for sentiment analysis. IJCSNS Int. J. Comput. Sci. Netw. Secur. (2019)

35. Ontivero-Ortega, M., Lage-Castellanos, A., Valente, G., Goebel, R., Valdes-Sosa, M.: Fast
Gaussian Naïve Bayes for searchlight classification analysis. Neuroimage (2017). https://
doi.org/10.1016/j.neuroimage.2017.09.001

36. Tryon, R.C.: Communality of a variable: Formulation by cluster analysis. Psychometrika
(1957). https://doi.org/10.1007/BF02289125

37. Lloyd, S.P.: Least squares quantization in PCM. IEEE Trans. Inform. Theory. (1982). https://
doi.org/10.1109/TIT.1982.1056489

38. Johnson, S.C.: Hierarchical clustering schemes. Psychometrika (1967). https://doi.org/
10.1007/BF02289588

39. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via
the EM algorithm. J. Royal Stat. Soc., Series B. 39(1), 1–22 (1977). https://doi.org/10.1111/
j.2517-6161.1977.tb01600.x

40. Yuan, Y., Chen, X., Chen, X., Wang, J.: Segmentation transformer: Object-contextual
representations for semantic segmentation. arXiv Prepr. (2021)

http://doi.org/10.1147/rd.441.0206
http://doi.org/10.1007/BF02478259
http://doi.org/10.1037/h0042519
http://doi.org/10.1109/72.159058
http://doi.org/10.2514/8.5282
http://doi.org/10.1109/icnn.1993.298623
http://doi.org/10.1016/0893-6080(88)90015-9
http://doi.org/10.1016/j.chemolab.2006.02.003
http://doi.org/10.1073/pnas.79.8.2554
http://doi.org/10.1109/72.97934
http://doi.org/10.1016/j.neucom.2013.09.055
http://doi.org/10.1109/21.256541
http://doi.org/10.1016/j.neucom.2005.12.126
http://doi.org/10.1007/s11063-012-9236-y
http://doi.org/10.1016/0020-7101(91)90056-k
http://doi.org/10.1080/08839518708927979
http://doi.org/10.1016/0925-2312(95)90020-9
http://doi.org/10.1016/j.neuroimage.2017.09.001
http://doi.org/10.1007/BF02289125
http://doi.org/10.1109/TIT.1982.1056489
http://doi.org/10.1007/BF02289588
http://doi.org/10.1111/j.2517-6161.1977.tb01600.x

546 K. Liakos et al.

41. Touvron, H., Vedaldi, A., Douze, M., Jégou, H.: Fixing the train-test resolution discrepancy
(2019)

42. Tan, M., Pang, R., Le, Q.V.: EfficientDet: Scalable and efficient object detection (2020).
https://doi.org/10.1109/CVPR42600.2020.01079

43. Belson, W.A.: Matching and prediction on the principle of biological classification. Appl.
Stat. (1959). https://doi.org/10.2307/2985543

44. Breiman, L., Friedman, J. H., Olshen, R. A., Stone, C. J.: Classification and regression trees
(2017)

45. Kass, G.V.: An exploratory technique for investigating large quantities of categorical data.
Appl. Stat. (1980). https://doi.org/10.2307/2986296

46. Hormann, A.M.: Programs for machine learning part I. Inf. Control (1962). https://doi.org/
10.1016/S0019-9958(62)90649-6

47. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature. (2015). https://doi.org/10.1038/
nature14539

48. Milosevic, N.: Introduction to convolutional neural networks (2020)
49. Salakhutdinov, R., Hinton, G.: Deep Boltzmann machines (2009)
50. Hua, Y., Guo, J., Zhao, H.: Deep Belief Networks and deep learning (2015). https://doi.org/

10.1109/ICAIOT.2015.7111524
51. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising

autoencoders: Learning useful representations in a deep network with a local denoising
criterion. J. Mach. Learn. Res. (2010)

52. Medsker, L.R., Jain, L.C.: Recurrent neural networks design and applications. J. Chem. Inf.
Model. (2013)

53. Hochreiter, S., Schmidhuber, J.: Long short term memory. Neural computation. Neural
Comput. (1997)

54. Pearson, K.: LIII. On lines and planes of closest fit to systems of points in space. London,
Edinburgh, Dublin Philos. Mag. J. Sci. (1901). https://doi.org/10.1080/14786440109462720

55. Leguina, A.: A primer on partial least squares structural equation modeling (PLS-SEM). Int.
J. Res. Method Educ. (2015). https://doi.org/10.1080/1743727x.2015.1005806

56. Sarkar, P.: What is LDA: Linear discriminant analysis for machine learning. Knowledge Hut.
(2019)

57. Schapire, R.E.: Explaining adaboost. In: Empirical Inference: Festschrift in Honor of
Vladimir N. Vapnik (2013)

58. Breiman, L.: Bagging predictors. Mach. Learn. (1996). https://doi.org/10.1007/bf00058655
59. R. E. Schapire, “A brief introduction to boosting,” 1999.
60. Friedman, J.H.: Greedy function approximation: A gradient boosting machine. Ann. Stat.

(2001). https://doi.org/10.1214/aos/1013203451
61. Breiman, L.: Random forests. Mach. Learn (2001). https://doi.org/10.1023/

A:1010933404324
62. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM. (2020). https://

doi.org/10.1145/3422622
63. Mirza, M., Osindero, S.: Conditional Generative Adversarial Nets Mehdi. arXiv1411.1784v1

[cs.LG] 6 Nov 2014 Cond. (2018)
64. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN Martin. arXiv:1701.07875. (2017)
65. Qin, S., Jiang, T.: Improved Wasserstein conditional generative adversarial network speech

enhancement. Eurasip J. Wirel. Commun. Netw (2018). https://doi.org/10.1186/s13638-018-
1196-0

66. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial
networks (2019). https://doi.org/10.1109/CVPR.2019.00453

67. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-
consistent adversarial networks (2017). https://doi.org/10.1109/ICCV.2017.244

68. Fix, E., Hodges, J.L.: Discriminatory analysis. Nonparametric discrimination: Consistency
properties. Int. Stat. Rev./Rev. Int. Stat. 57(3), 238 (1989). https://doi.org/10.2307/1403797

http://doi.org/10.1109/CVPR42600.2020.01079
http://doi.org/10.2307/2985543
http://doi.org/10.2307/2986296
http://doi.org/10.1016/S0019-9958(62)90649-6
http://doi.org/10.1038/nature14539
http://doi.org/10.1109/ICAIOT.2015.7111524
http://doi.org/10.1080/14786440109462720
http://doi.org/10.1080/1743727x.2015.1005806
http://doi.org/10.1007/bf00058655
http://doi.org/10.1214/aos/1013203451
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1145/3422622
http://doi.org/10.1186/s13638-018-1196-0
http://doi.org/10.1109/CVPR.2019.00453
http://doi.org/10.1109/ICCV.2017.244
http://doi.org/10.2307/1403797

Hardware and System Security: Attacks and Countermeasures Against. . . 547

69. Kohonen, T.: Statistical pattern recognition Revisited. In: Advanced Neural Computers
(1990)

70. Atkeson, C.G., Moore, A.W., Schaal, S.: Locally weighted learning. Artif. Intell. Rev. (1997).
https://doi.org/10.1007/978-94-017-2053-3_2

71. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn (1995). https://doi.org/10.1023/
A:1022627411411

72. Kohonen, T.: The self-organizing map. Neurocomputing. 21(1–3), 1–6 (1998). https://doi.org/
10.1016/S0925-2312(98)00030-7

73. Devlin, J., Chang, M.-W., Lee, K., Google, K.T., Language, A.I.: BERT: Pre-training of deep
bidirectional transformers for Language understanding. Naacl-Hlt. 2019 (2018)

74. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., Le, Q. V.: XLNet: Generalized
autoregressive pretraining for language understanding (2019)

75. Park, K., Rothfeder, R., Petheram, S., Buaku, F., Ewing, R., Greene, W.H.: Linear regression.
In: Basic Quantitative Research Methods for Urban Planners (2020)

76. Cox, D.R.: The regression analysis of binary sequences. Journal of the Royal Statistical Soci-
ety, Series B. 21(1), 238–238 (1959). https://doi.org/10.1111/j.2517-6161.1959.tb00334.x

77. Hutcheson, G., Hutcheson, G.: Ordinary least-squares regression. In: The SAGE Dictionary
of Quantitative Management Research (2014)

78. Quinlan, J.R.: Learning with Continuous Classes (1992)
79. Cleveland, W.S.: Robust locally weighted regression and smoothing scatterplots. J. Am. Stat.

Assoc. (1979). https://doi.org/10.1080/01621459.1979.10481038
80. Hoerl, A.E., Kennard, R.W.: Ridge regression: Biased estimation for nonorthogonal problems.

Technometrics (1970). https://doi.org/10.1080/00401706.1970.10488634
81. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (1996).

https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
82. Efron, B., et al.: Least angle regression. Ann. Stat (2004). https://doi.org/10.1214/

009053604000000067
83. Han, W., et al.: ContextNet: Improving convolutional neural networks for automatic speech

recognition with global context. (2020). https://doi.org/10.21437/Interspeech.2020-2059
84. Ravanelli, M., Brakel, P., Omologo, M., Bengio, Y.: Light gated recurrent units for

speech recognition. IEEE Trans. Emerg. Top. Comput. Intell. (2018). https://doi.org/10.1109/
TETCI.2017.2762739

85. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2016).
https://doi.org/10.1109/CVPR.2016.90

86. Agrawal, D., Baktir, S., Karakoyunlu, D., Rohatgi, P., Sunar, B.: Trojan detection using IC
fingerprinting. Proc. – IEEE Symp. Secur. Priv., 296–310 (2007). https://doi.org/10.1109/
SP.2007.36

87. Chakraborty, R.S., Wolff, F., Paul, S., Papachristou, C., Bhunia, S.: MERO: A statistical
approach for hardware Trojan detection. Lect. Notes Comput. Sci. (including Subser. Lect.
Notes Artif. Intell. Lect. Notes Bioinformatics). 5747 LNCS, 396–410 (2009). https://doi.org/
10.1007/978-3-642-04138-9_28

88. Salmani, H., Tehranipoor, M., Plusquellic, J.: A novel technique for improving hardware
Trojan detection and reducing Trojan activation time. IEEE Trans. Very Large Scale Integr.
Syst. 20(1), 112–125 (Jan. 2012). https://doi.org/10.1109/TVLSI.2010.2093547

89. Bao, C., Forte, D., Srivastava, A.: On application of one-class SVM to reverse engineering-
based hardware Trojan detection (2014). https://doi.org/10.1109/ISQED.2014.6783305

90. Ngo, X.T., Danger, J.L., Guilley, S., Najm, Z., Emery, O.: Hardware property checker for
run-time Hardware Trojan detection. 2015 Eur. Conf. Circuit Theory Des. ECCTD. 2015,
1–4 (2015). https://doi.org/10.1109/ECCTD.2015.7300085

91. Hasegawa, K., Oya, M., Yanagisawa, M., Togawa, N.: Hardware Trojans classifica-
tion for gate-level netlists based on machine learning (2016). https://doi.org/10.1109/
IOLTS.2016.7604700

http://doi.org/10.1007/978-94-017-2053-3_2
http://doi.org/10.1023/A:1022627411411
http://doi.org/10.1016/S0925-2312(98)00030-7
http://doi.org/10.1111/j.2517-6161.1959.tb00334.x
http://doi.org/10.1080/01621459.1979.10481038
http://doi.org/10.1080/00401706.1970.10488634
http://doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://doi.org/10.1214/009053604000000067
http://doi.org/10.21437/Interspeech.2020-2059
http://doi.org/10.1109/TETCI.2017.2762739
http://doi.org/10.1109/CVPR.2016.90
http://doi.org/10.1109/SP.2007.36
http://doi.org/10.1007/978-3-642-04138-9_28
http://doi.org/10.1109/TVLSI.2010.2093547
http://doi.org/10.1109/ISQED.2014.6783305
http://doi.org/10.1109/ECCTD.2015.7300085
http://doi.org/10.1109/IOLTS.2016.7604700

548 K. Liakos et al.

92. Liakos, K.G., Georgakilas, G.K., Plessas, F.C., Kitsos, P.: GAINESIS: Generative arti-
ficial intelligence NEtlists SynthesIS. Electron. 11(2) (2022). https://doi.org/10.3390/
electronics11020245

93. Agrawal, D., Baktir, S., Karakoyunlu, D., Rohatgi, P., Sunar, B.: Trojan detection using IC
fingerprinting (2007). https://doi.org/10.1109/SP.2007.36

94. Aarestad, J., Acharyya, D., Rad, R., Plusquellic, J.: Detecting trojans through leakage current
analysis using multiple supply pad IDDQs. IEEE Trans. Inf. Forensics Secur. (2010). https://
doi.org/10.1109/TIFS.2010.2061228

95. Rad, R., Plusquellic, J., Tehranipoor, M.: A sensitivity analysis of power signal methods for
detecting hardware trojans under real process and environmental conditions. IEEE Trans. Very
Large Scale Integr. Syst. (2010). https://doi.org/10.1109/TVLSI.2009.2029117

96. Koushanfar, F., Mirhoseini, A.: A unified framework for multimodal submodular integrated
circuits trojan detection. IEEE Trans. Inf. Forensics Secur. (2011). https://doi.org/10.1109/
TIFS.2010.2096811

97. Lamech, C., Rad, R.M., Tehranipoor, M., Plusquellic, J.: An experimental analysis of power
and delay signal-to-noise requirements for detecting trojans and methods for achieving the
required detection sensitivities. IEEE Trans. Inf. Forensics Secur. (2011). https://doi.org/
10.1109/TIFS.2011.2136339

98. Xiao, K., Zhang, X., Tehranipoor, M.: A clock sweeping technique for detecting hardware
trojans impacting circuits delay. IEEE Des. Test. 30(2), 26–34 (2013). https://doi.org/10.1109/
MDAT.2013.2249555

99. Waksman, A., Suozzo, M., Sethumadhavan, S.: FANCI: Identification of stealthy malicious
logic using boolean functional analysis. (2013). https://doi.org/10.1145/2508859.2516654

100. Zhang, J., Yuan, F., Wei, L., Liu, Y., Xu, Q.: VeriTrust: Verification for hardware
trust. IEEE Trans. Comput. Des. Integr. Circuits Syst. (2015). https://doi.org/10.1109/
TCAD.2015.2422836

101. Hasegawa, K., Yanagisawa, M., Togawa, N.: Trojan-feature extraction at gate-level netlists
and its application to hardware-Trojan detection using random forest classifier (2017). https:/
/doi.org/10.1109/ISCAS.2017.8050827

102. Inoue, T., Hasegawa, K., Yanagisawa, M., Togawa, N.: Designing hardware trojans
and their detection based on a SVM-based approach. (2017). https://doi.org/10.1109/
ASICON.2017.8252600

103. Liakos, K.G., Georgakilas, G.K., Plessas, F.C.: Hardware Trojan classification at gate-level
netlists based on area and power machine learning analysis (2021). https://doi.org/10.1109/
ISVLSI51109.2021.00081

104. Jap, D., He, W., Bhasin, S.: Supervised and unsupervised machine learning for side-channel
based Trojan detection. In: Proceedings of the International Conference on Application-
Specific Systems, Architectures and Processors, vol. 2016-Novem, pp. 17–24 (2016). https://
doi.org/10.1109/ASAP.2016.7760768

105. Xue, M., Wang, J., Hux, A.: An enhanced classification-based golden chips-free hardware
Trojan detection technique. (2017). https://doi.org/10.1109/AsianHOST.2016.7835553

106. Wang, S., Dong, X., Sun, K., Cui, Q., Li, D., He, C.: Hardware Trojan detection based on
ELM neural network. 2016 1st IEEE Int. Conf. Comput. Commun. Internet, ICCCI 2016. 7,
400–403 (2016). https://doi.org/10.1109/CCI.2016.7778952

107. Iwase, T., Nozaki, Y., Yoshikawa, M., Kumaki, T.: Detection technique for hardware Trojans
using machine learning in frequency domain. 2015 IEEE 4th Glob. Conf. Consum. Electron.
GCCE 2015, 185–186 (2016). https://doi.org/10.1109/GCCE.2015.7398569

108. Liu, Y., Jin, Y., Nosratinia, A., Makris, Y.: Silicon demonstration of hardware Trojan design
and detection in wireless cryptographic ICs. IEEE Trans. Very Large Scale Integr. Syst.
(2017). https://doi.org/10.1109/TVLSI.2016.2633348

109. Khalid, F., Hasan, S.R., Hasan, O., Awwad, F.: Runtime hardware Trojan monitors through
modeling burst mode communication using formal verification. Integration. 61(October
2017), 62–76 (2018). https://doi.org/10.1016/j.vlsi.2017.11.003

http://doi.org/10.3390/electronics11020245
http://doi.org/10.1109/SP.2007.36
http://doi.org/10.1109/TIFS.2010.2061228
http://doi.org/10.1109/TVLSI.2009.2029117
http://doi.org/10.1109/TIFS.2010.2096811
http://doi.org/10.1109/TIFS.2011.2136339
http://doi.org/10.1109/MDAT.2013.2249555
http://doi.org/10.1145/2508859.2516654
http://doi.org/10.1109/TCAD.2015.2422836
http://doi.org/10.1109/ISCAS.2017.8050827
http://doi.org/10.1109/ASICON.2017.8252600
http://doi.org/10.1109/ISVLSI51109.2021.00081
http://doi.org/10.1109/ASAP.2016.7760768
http://doi.org/10.1109/AsianHOST.2016.7835553
http://doi.org/10.1109/CCI.2016.7778952
http://doi.org/10.1109/GCCE.2015.7398569
http://doi.org/10.1109/TVLSI.2016.2633348
http://doi.org/10.1016/j.vlsi.2017.11.003

Hardware and System Security: Attacks and Countermeasures Against. . . 549

110. Bao, C., Forte, D., Srivastava, A.: Temperature tracking: Toward robust run-time detection of
hardware Trojans. IEEE Trans. Comp. Des. Integr. Circuits Syst. 34(10), 1577–1585 (2015).
https://doi.org/10.1109/TCAD.2015.2424929

111. Mardani Kamali, H., Zamiri Azar, K., Gaj, K., Homayoun, H., Sasan, A.: LUT-lock: A novel
LUT-based logic obfuscation for FPGA-Bitstream and ASIC-hardware protection (2018).
https://doi.org/10.1109/ISVLSI.2018.00080

112. Kamali, H.M., Azar, K.Z., Homayoun, H., Sasan, A.: Full-lock: Hard distributions of SAT
instances for obfuscating circuits using fully configurable logic and routing blocks (2019).
https://doi.org/10.1145/3316781.3317831

113. Khaleghi, B., Ahari, A., Asadi, H., Bayat-Sarmadi, S.: FPGA-based protection scheme against
hardware trojan horse insertion using dummy logic. IEEE Embedded Systems Letters. 7(2),
46–50 (2015). https://doi.org/10.1109/LES.2015.2406791

114. Nejat, A., Shekarian, S.M.H., Saheb Zamani, M.: A study on the efficiency of hardware
Trojan detection based on path-delay fingerprinting. Microprocess. Microsyst. 38(3), 246–
252 (2014). https://doi.org/10.1016/j.micpro.2014.01.003.

115. Shekarian, S.M.H., Saheb Zamani, M.: Improving hardware Trojan detection by retiming.
Microprocess. Microsyst. (2015). https://doi.org/10.1016/j.micpro.2015.02.002

116. Salmani, H., Tehranipoor, M., Karri, R.: On design vulnerability analysis and trust bench-
marks development (2013). https://doi.org/10.1109/ICCD.2013.6657085

117. Shakya, B., He, T., Salmani, H., Forte, D., Bhunia, S., Tehranipoor, M.: Benchmarking of
hardware trojans and maliciously affected circuits. J. Hardw. Syst. Secur. (2017). https://
doi.org/10.1007/s41635-017-0001-6

118. Suykens, J.A.K., Vandewalle, J.: Least squares support vector machine classifiers. Neural
Processing Letters. 9(3), 293–300 (1999). https://doi.org/10.1023/A:1018628609742

119. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Trans. Intell.
Syst. Technol. (2011). https://doi.org/10.1145/1961189.1961199

120. Smola, A.J., Schölkopf, B.: A tutorial on support vector regression. Stat. Comp. (2004). https:/
/doi.org/10.1023/B:STCO.0000035301.49549.88

121. Suykens, J.A.K., Van Gestel, T., De Brabanter, J., De Moor, B., Vandewalle, J.: Basic methods
of least squares support vector machines. In: Least Squares Support Vector Mach., pp. 71–116
(2002)

122. Galvão, R.K.H., et al.: A variable elimination method to improve the parsimony of MLR
models using the successive projections algorithm. Chemom. Intell. Lab. Syst. (2008). https:/
/doi.org/10.1016/j.chemolab.2007.12.004

123. Van Rossum, G., Drake, F.L.: Python reference manual (2006)
124. R Core Team: R: A language and environment for statistical computing. In: R Foundation for

Statistical Computing, Vienna, Austria. 2020 (2020)
125. Abadi, M., et al.: TensorFlow: A system for large-scale machine learning (2016). https://

doi.org/10.5555/3026877.3026899
126. Chollet, F.: Keras. J. Chem. Inf. Model (2013)
127. Paszke A., et al.: PyTorch: An imperative style, high-performance deep learning library

(2019)
128. Bradski, G.: The OpenCV library. Dr. Dobb’s J. Softw, Tools (2000)
129. Kluyver, T., et al.: Jupyter notebooks—A publishing format for reproducible computational

workflows. (2016). https://doi.org/10.3233/978-1-61499-649-1-87
130. Anaconda: Anaconda Software Distribution. Computer software. Vers. 2-2.4.0. Anaconda,

Nov. 2016. Web. Anaconda Soft. Distrib. Comp. Soft. (2016)

http://doi.org/10.1109/TCAD.2015.2424929
http://doi.org/10.1109/ISVLSI.2018.00080
http://doi.org/10.1145/3316781.3317831
http://doi.org/10.1109/LES.2015.2406791
http://doi.org/10.1016/j.micpro.2014.01.003.
http://doi.org/10.1016/j.micpro.2015.02.002
http://doi.org/10.1109/ICCD.2013.6657085
http://doi.org/10.1007/s41635-017-0001-6
http://doi.org/10.1023/A:1018628609742
http://doi.org/10.1145/1961189.1961199
http://doi.org/10.1023/B:STCO.0000035301.49549.88
http://doi.org/10.1016/j.chemolab.2007.12.004
http://doi.org/10.5555/3026877.3026899
http://doi.org/10.3233/978-1-61499-649-1-87

FPGA Security: Security Threats
from Untrusted FPGA CAD Toolchain

Sandeep Sunkavilli, Zhiming Zhang, and Qiaoyan Yu

1 Introduction

Field programmable gate arrays (FPGAs) have gained popularity over the years
and slowly made their way into advanced applications like machine learning,
artificial intelligence, cloud services, military, and aerospace. Due to their flexibility
in programming, FPGAs have become prevalent in system prototyping, hardware
implementation for low-volume products, replacing obsolete components in legacy
systems, and implementing hardware security modules [1, 2].

Due to the increase in market share and features like field programmability,
FPGAs have become a target for attackers. FPGAs are subjected to traditional
security threats like Trojan insertion, side-channel analysis, reverse engineering,
and information leakage through a covert channel. The majority of research efforts
on FPGA security includes inserting hardware Trojans [3, 4], reverse engineering
intellectual property (IP) by decomposing or decrypting bitstream files [5], side-
channel analysis attacks [6, 7], and using counterfeit devices [8] to degrade system
performance. In existing literature the underlying FPGA CAD tool is considered
trusted, and the investigation is performed typically on the stand-alone system as
shown in Fig. 1. In a stand-alone system, FPGA users have physical access to the
FPGA board and design suite. The regulations implemented in the design flow are
simple.

Section 2 presents two types of FPGA CAD tools. Section 3 introduces tradi-
tional and emerging security threats in FPGA CAD tools and illustrates practical
attacks. Section 4 proposes a new security threat landscape. Section 5 concludes
this chapter and highlights future research directions.

S. Sunkavilli · Z. Zhang · Q. Yu (�)
University of New Hampshire, Durham, NH, USA
e-mail: Sandeep.Sunkavilli@unh.edu; qiaoyan.yu@unh.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Iranmanesh (ed.), Frontiers of Quality Electronic Design (QED),
https://doi.org/10.1007/978-3-031-16344-9_14

551

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16344-9_14&domain=pdf

 885
56845 a 885 56845 a

mailto:Sandeep.Sunkavilli@unh.edu

 12527 56845 a 12527 56845
a

mailto:qiaoyan.yu@unh.edu

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-16344-9_14

552 S. Sunkavilli et al.

Fig. 1 Traditional FPGA utilization model [9]

2 Commercial and Open-Source FPGA CAD Tools

FPGA is a reprogrammable device that can be programmed with a different design
from time to time. FPGA CAD tools play the most important role in FPGA
functioning. The primary job of an FPGA CAD tool is to convert a design file
written in hardware description language into a bitstream file, which configures the
FPGA. FPGA CAD tool runs three major steps with the HDL file provided by the
designer: synthesis, implementation, placement, and routing. With advancements in
FPGA CAD tools, they provide rich simulation features such as post-synthesis, and
implementation analysis, and also implement countermeasures like IP encryption,
bitstream encryption, and design isolation. FPGA CAD tools are also providing IP
modules to help designers with complex designs. Two major types of FPGA CAD
tools, open-source FPGA CAD tools (e.g., VTR and Symbiflow) and commercial
FPGA CAD tools (e.g., Xilinx ISE, Xilinx Vivado, Altera Quartus), are used in
FPGA deployment. The FPGA design flow in commercial FPGA design suites can
be found in FPGA handbooks and literature [10].

Different from commercial FPGA software, open-source FPGA CAD tools are
developed to investigate the impact of various FPGA architectures and CAD algo-
rithms on FPGA configuration. Due to their reliability and no cost, researchers and
low-income businesses prefer open-source FPGA CAD tools. VTR and Symbiflow
are the two popular and widely used open-source FPGA CAD tools. VTR [11] is an
open-source tool that generates .net, .place, and .route files as the end product. VTR
requires two input files: one is a hardware description file (Verilog), and the other is
an architecture description file (EARCH.xml). As shown in Fig. 2, VTR tool chain
is comprised of ODIN-II, ABC, and Versatile Place and Route (VPR) tools. ODIN-
II is a synthesis and elaboration tool that takes the Verilog HDL file as an input file
and synthesis netlist file. ABC takes the netlist file synthesized by ODIN as input
and perform logic optimization, technology mapping, and produces two .blif files.
The file generated by the ABC tool is the final and complete netlist file for the input
Verilog file. VPR is the final tool in the VTR tool chain. VPR performs packing,
placement, routing, and timing analysis. The information of packing, placement,
and routing is stored in .net, .place, and .route respectively.

Symbiflow is an end-to-end open-source FPGA CAD tool that can generate
programmable bitstream file for a given Verilog and architecture file. The tools
used in the Symbiflow toolchain are Yosys, ABC, VPR, nextpnr, and open FPGA
assembler as shown in Fig. 2. Yosys is similar to the ODIN-II used in VTR.

FPGA Security: Security Threats from Untrusted FPGA CAD Toolchain 553

Fig. 2 Open-source FPGA CAD flow [12]

Yosys performs synthesis and converts a Verilog file into a netlist (.eblif) file. To
perform placement and routing, Symbiflow is equipped with two different tools.
For Xilinx-7 series FPGAs, VPR is used and for Lattice iCE40 FPGAs, nextpnr
is used. Currently, Symbiflow supports only Xilinx-7 series, Lattice iCE40, and
Lattice ECP5 FPGAs. PnR tools generate .fasam file, and VPR also generates .net,
.place, and .route files in addition to fasam file. The fasam file is used to generate
the bitstream file. Symbiflow also allows performing analysis on a critical path.

3 Security Threats from FPGA CAD Tools

In existing FPGA security literature, FPGA CAD tools are typically assumed
trusted. Unfortunately, more and more attack examples [12] show that security
threats from FPGA CAD tools are practical and imperative to address. As shown
in Fig. 3a, our attack model assumes that the FPGA deployment engineers, in-
house designs, the bitstream downloading channel, and procedure are trusted. The
untrusted phase interested in this work is the FPGA configuration, especially the
design mapping, place, and route stages. The attacks originated from malicious
software mounted on top of the original FPGA design suite for SRAM FPGAs,
as shown in Fig. 3b. The FPGA design suite may not be malicious initially, but
advanced attackers could exploit the vulnerability of the FPGA design suite to
implant malicious software into the original suite through software upgrading. We
believe that the FPGA design suite will be propagated through a computer network
or retailers, so the integrity of the software may be sabotaged by advanced attackers.

554 S. Sunkavilli et al.

Fig. 3 Contaminated FPGA design suite leading to a stealthy modification on the placelist for an
FPGA device. (a) Software compromising stage and (b) malicious software add-on in the supply
chain of FPGA tools

3.1 Security Threats in Commercial FPGA CAD Tool

3.1.1 Attacks on Xilinx ISE

Figure 4 depicts the design flow for a Xilinx FPGA design suite. There are three
potential attack surfaces for maliciously implanted FPGA tools to land on. We
use Xilinx ISE 14.1 as an example in the following discussion. In the step of
mapping, an attacker could introduce additional I/O pins, exchange the existing
I/O pin connection, and modify the slew rate and the voltage level of I/O pins. As
the tampered mapping output _map.ncd* is not readable (unless the FPGA design
suite provides a program like ncd2xdl to read back the native circuit description
file), it is not easy to notice the modification performed by the malicious FPGA
software. More tampering on the FPGA configuration can be done in the step of
place and route (PAR) than in the mapping stage because all the LUTs, flip-flops,
SRAM blocks, and interconnects are specifically designated on the FPGA die. The
attack on the stage of bitstream generation is mainly for the purpose of IP piracy,

FPGA Security: Security Threats from Untrusted FPGA CAD Toolchain 555

Fig. 4 Attack surfaces on the
Xilinx FPGA design flow.
The rectangles represent the
output file from each step.
The file with the symbol of *
is an output file modified by
the malicious FPGA software

Fig. 5 An example of practical attack performed through the FPGA editor tool available in the
Xilinx ISE 14.1 design suite [10]

which is out of the scope of this chapter. Our work focuses on the first two attack
surfaces shown in Fig. 4.

We successfully modified the configuration of the target slice through the FPGA
editor tool from Xilinx. Figure 5 shows the graphic interface. In the edit mode of
the FPGA editor, we changed the logic configuration after the PAR stage and then
re-did bitstream generation. The attack can also be performed via XDL file editing
followed by the command xdl2ndc. All attack actions here can be implemented in a
malicious FPGA software implanted in the original FPGA design suite.

3.1.2 Attacks on Altera Quartus

The Altera FPGA design suite, Quartus, leaves similar back doors for attackers to
insert hardware Trojans. The security vulnerability of Quartus is in the process of

556 S. Sunkavilli et al.

Fig. 6 An example of practical attack performed through Quartus Chip Planner [10]

placement and routing Fitter, like PAR in the Xilinix ISE. Attackers can, in theory,
manipulate the entire FPGA configuration if they control Fitter or access and alter
the design file that the tool Fitter is dealing with. As shown in Fig. 6, attackers
can change buffer slew rate, I/O standard, or logic function of the design via the
Quartus built-in tool Chip Planner. The malicious changes can be done after design
compilation, and no re-compilation process is needed to save the changes. The
attacks performed through Chip Planner are stealthy because they do not disturb
the functional module in a format of the hardware description language and the
constraint settings.

3.1.3 Attack Surfaces Induced by Integrating Countermeasures
to Commercial CAD Tools

Encryption and isolation are two general categories of FPGA security countermea-
sures. Here we are going to analyze the potential risks of those techniques and
demonstrate some case studies using Xilinx Vivado. Like Xilinx ISE, Xilinx Vivado
is also an FPGA suite developed by Xilinx. Xilinx Vivado is the latest FPGA design
suite developed by Xilinx which provides all the features provided by ISE and a few
additional countermeasures at different levels of design flow.

Security Vulnerability in IP Encryption The goal of IP encryption is to protect
the design IP modules from counterfeiting and reverse engineering. The access to
the encrypted IP is based upon the access rights defined by the IP owner. Two
important files in this encryption are an encrypted IP file and a key file. Any
mismatch in the key of the CAD tool will block the user from using the IP. If

FPGA Security: Security Threats from Untrusted FPGA CAD Toolchain 557

Fig. 7 Diagram of an instantiated encrypted counter [12]

the trustworthiness of the FPGA CAD tool is not guaranteed, there is a potential
risk of key leaking. IP encryption still suffers from the risk of piracy even with a
secured key. Even though IP is encrypted, the design net and pin names are still
visible to the IP user as shown in Fig. 7. IP users could leverage this fact to trace the
signals and precisely target the critical signals. The schematic view of an encrypted
IP will also reveal the FPGA components used in the physical implementation of the
module. As seen in Fig. 7, the hidden component used in the encrypted module is a
LUT. It is also possible to find the hierarchy of the encrypted module instanced in a
design. Figure 8 shows a partially encrypted linear-feedback shift register (LFSR),
where the encrypted submodules d1, d2, d3, and d4 are described in the format
of encrypted netlist dff.vp. This example shows that we can trace the relationship
between the encrypted IPs and other submodules in the system design.

Security Vulnerability in Design Isolation Fence is a dedicated empty FPGA area
that prohibits any logic from being implemented. The purpose of the fence is to
isolate modules, thus thwarting the crosstalk attack. Figure 9a depicts an example
of fence-based isolation. Xilinx introduces a concept called Isolation Design Flow
(IDF) to physically and logically isolate modules with the fence. The fence-based
isolation requires a slight modification to the conventional FPGA design flow. As
shown in Fig. 9b, the two grey steps are added to the RTL elaboration and design
synthesis phases. The property HD.ISOLATE directs the tool to create an isolated
region. Six design rule check (DRC) rules [13] employed in Vivado can examine
provenance and violations on I/O banks, package pins, floor planning, placement,
and routing. However, the errors reported by DRC do not stop the designer from
deploying the design into the FPGA device; instead DRC only warns the designer
to be aware of the violations.

558 S. Sunkavilli et al.

Fig. 8 Hierarchical view of a partially encrypted LFSR [12]

Fig. 9 Isolation design flow (IDF) in FPGA design. (a) Fence implementation and (b) modified
floor planning in the design flow [12]

The isolation fence only prevents hardware Trojan insertion in the fence area,
but it cannot thwart malicious modification of the design due to a few limitations.
Limitation 1: Exception on global signals, trusted routing is the key for design
isolation, and global signals are exempted. In trusted routing, each input is driven
by one source, and each output only drives one load. This cannot be the case
for global signals since they have to drive more than one input. This exemption
could be exploited by attackers to disguise the interconnect for a Trojan as global
signals. Limitation 2: Exception on non-isolated modules, a non-isolated module is
not passed through the DRC check and can still communicate freely with isolated
modules. According to the IDF rules, a module without the HD.ISOLATE property
will not be protected by a fence, and thus it can be placed in any of the isolated
regions (p-blocks). In the design shown in Fig. 10a, only M1, M2, and M3 with

FPGA Security: Security Threats from Untrusted FPGA CAD Toolchain 559

Fig. 10 An example for exception on non-isolated modules. (a) Top module overview of an IDF
design, post-implementation device view for AES (b) without Trojans, with (c) a hardware Trojan
in a single isolation p-block, and with (d) a hardware Trojan in one of the three p-blocks [12]

the isolation property will be configured in the three isolated FPGA regions, p-
block1, p-block2, and p-block3, respectively. The remaining logic in the top module,
including M4, can be placed in any of the three p-blocks above. Limitation 3: no
protection mechanism at routing.

The instructions for fence implementation, isolation region creation,
HD.ISOLATE property setting, and isolation region assignment for specific
modules are stored in the constraints file. Fig. 11 illustrates a snapshot for a
constraints file, which is used in the process of synthesis and implementation.
To place a Trojan in a design, modifying the constraints file is a vital step. Any
personal/tool who has access to the constraints file can make changes to the
constraint setting, as there is no integrity check available for the constraints file.
Limitation 4: unutilized resources. The FPGA resources allocated for an isolation
region are not only used for the module to be isolated but also accessible for the
remaining logic without isolation property in the top module. As the prediction of
the size of the isolation region for the module under protection is not always precise,
there are unutilized FPGA resources available for attackers to implement hardware
Trojans.

We performed a case study in Vivado using design isolation limitations to
implement a covert channel, which aims for leaking key information from an AES
encryption module. The baseline is a top module only carrying an AES unit. The
isolation property is set to the AES unit to form an isolated region (p-block1). The
output after implementation is shown in Fig. 10b. Next, we introduced a hardware
Trojan to the top module for the purpose of leaking the secret key from the AES unit.

560 S. Sunkavilli et al.

Fig. 11 A snapshot of a constraints file in IDF [12]

As the Trojan is the circuit under protection, we did not set the isolation property
for the Trojan. Figure 10c indicates that the Trojan is successfully placed in the
isolated region for AES. The center of the white interconnection is the Trojan. We
further increased the number of p-blocks in the top module. As shown in Fig. 10d,
we can insert the Trojan to the p-block where the AES unit is located. For both cases
shown in Fig. 10c and d, no IDF DRC error is reported to disclose the occurrence
of the Trojan even though the entire IDF for the fence implementation is followed.
To assure the success of the Trojan insertion in the case study, we modified the pin
prohibit values from true to false by altering constraints shown in the last line in
Fig. 11.

3.2 Security Threats in Open-Source FPGA CAD Tool

VTR and Symbiflow are analyzed to examine unique security vulnerabilities in
open-source FPGA CAD tools. We demonstrate the potential attack surfaces that
can be used to exploit for practical attacks. The two open-source CAD design suites
are all comprised of various tools to support multistep FPGA design flow, in which
different intermediate files are generated. Our analysis indicates that the security
threats in open-source FPGA CAD tools are originated from those unprotected
intermediate files.

Maliciously modifying the intermediate files will let the attacker to insert
hardware Trojans, modify design logic, and compromise the integrity of the CAD
tool. To leverage the intermediate files to perform attacks, adversaries need to
understand the structure and the information stored in the intermediate files. The
intermediate files generated in VTR tool chain are .blif, .net, and .place files. The

FPGA Security: Security Threats from Untrusted FPGA CAD Toolchain 561

intermediate files generated in Symbiflow toolchain are .eblif which is similar to
.blif file in VTR, .net, .place, .route, and .fasam.

A Berkeley Logic Interchange Format file (.blif) describes the logic level
hierarchical circuit in a textual format. This file holds the netlist information in
textual format. Figure 12a shows an example of a .blif file for a design under
attack. The .blif file consists of four important parts: .model (the module name,
e.g., Test_M1), .inputs (all the input pins for the module), .outputs (all the output
pins), and .names (the complete list of signals involved in a particular output logic
e.g., N4).

Net file holds the information provided by FPGA architecture file and .blif file.
The file consists of block names, subblocks, instances, modes, and clocks. The
information inside the blocks is populated based on the architecture file.

A .place file holds the information of position of the blocks in FPGA fabric.
These blocks are defined in the .net file. The position of these blocks are defined
by X and Y coordinates. The X and Y coordinates can be changed and re-route the
input and output pins to the places where attacker can probe and develop covert
channels later.

3.2.1 Potential Attacks on VTR

After understanding the file format of each tool in the VTR toolchain, three potential
attack surfaces are shown in Fig. 13: .blif, .net, and .place files after ABC, Net, and
Place, respectively. Three practical attacks can be performed to alter input ports,
output ports, and logic truth tables of the FPGA design. With the help of these
attack surfaces, three potential attacks can be performed with a malicious open-
source FPGA CAD tool. The three potential attacks are attacking inputs, attacking
outputs, and attacking the logic truth table.

A .blif file can be modified to create new input and output pins and also add
new logic to the original function of the circuit. A new input pin creation attack
is successful only when the attacker changes .inputs and .names as shown in Fig.
12a. A fourth column is added to the lines 10 to 12. The VTR tool checks for the
file integrity when the .blif file is sent to VPR for packing, placement, and routing.
The attack successfully creates a new input pin as shown in Fig. 12c. We can see
that the attack introduced a new input pin (we have four blue blocks now, instead of
three) when compared with the baseline circuit before the attack shown in Fig. 12b.
The number of output pins (in red) remains the same, but their position is shifted.
A similar attack procedure can be followed on .blif to add new output pins for the
design. The same attack can be performed by tampering with the .net file by adding
a block similar to the one in Fig. 12d. The attacks via the .net file are more stealthy
than the attack via the .blif file.

Another modification on .blif is to sabotage the original logic truth table. This is
practical for an attacker who has a good understanding of the design under attack.
The truth table is defined in the .blif file under the line starting with the keyword
names. Theoretically, one can remove/add one row or revise the logic in the original

562 S. Sunkavilli et al.

Fig. 12 Implementation of the input attack on the .blif and .net files. (a) Tampered .blif file
(modified portion highlighted in red boxes), (b) graphical view of the mapped circuit before attack,
(c) graphical view of the mapped circuit after attack, and (d) equivalent modification on the .net
file [9]

table in the attack. Due to the built-in integrity check in VTR, the output of VPR will
only be accepted if the attack on the logic truth table removes some rows, instead of

FPGA Security: Security Threats from Untrusted FPGA CAD Toolchain 563

Fig. 13 Overview of attack surfaces on VTR [9]

Fig. 14 Implementation of the logic attack on .blif file. (a) Modified .blif file due to the attack on
logic description and (b) waveform showing the change on logic table leading to tampered output
[9]

adding new rows. The same baseline example used in Fig. 12a is used to implement
the attack on logic description. As shown in Fig. 14a, the logic expression on line 12
is removed. Consequently, the output of N4 is altered by the attack. The red circles
in Fig. 14b highlight the change in the outcome of the proposed attack. Another
interesting observation we notice is VTR does not have the capability to check if
the logic description is modified. Functional verification (conducted in other tools)
is necessary to detect the attack on the logic truth table.

564 S. Sunkavilli et al.

Fig. 15 Overview of attack surfaces on Symbiflow [9]

Fig. 16 Implementation of an input attack on .place file. (a) Original .place file before attack and
(b) the .place file after attack [9]

3.2.2 Potential Attacks on Symbiflow

Symbiflow has more capabilities than VTR and is capable of generating executable
bitstreams. After thoroughly examining the intermediate files generated in Symbi-
flow, as shown in Fig. 15, two attack surfaces were identified: .eblif (generated by
Yosys) and .place files (produced by the Place tool in VPR). Extended Berkely

Logic Interchange Format (.eblif) file is similar to a .blif file except for a few
structural changes. Any attack performed on the .place file in the VPR tool can also
be performed in Symbiflow since it is embedded in the Symbiflow toolchain.

The attacks implemented on the .blif file in VTR can be implemented on the .eblif
file as well since they are the same files with small structural changes. Tampering
with the .place file is a basic attack that can be realized in Symbiflow. The place
file holds the information on the position of blocks in FPGA fabric. As shown in
Fig. 16, the Y coordinates of a block N1 are changed from 104 to 124. Unlike VTR,
Symbiflow does not have a graphical view for analysis, but it can report holding and

FPGA Security: Security Threats from Untrusted FPGA CAD Toolchain 565

Table 1 Timing slack
affected by the attacks on
Symbiflow [9]

Case ID Y coordinates Holding time Setup time

Original 104 2.214 ns 2.418 ns
Attack 1 124 2.418 ns −3.011 ns
Attack 2 134 2.214 ns −3.424 ns
Attack 3 144 2.214 ns −3.631 ns
Attack 4 154 2.214 ns −3.913 ns

Table 2 Timing results for different circuits after attacking .place file [9]

Holding time Setup time
2*Circuit 2*.place file Critical Noncritical Critical Noncritical

3*S298 Normal operation 3.046 ns 1.731 ns −4.201 ns −0.464 ns
Under attack 3.046 ns 1.415 ns −4.185 ns −0.637 ns
Under attack 3.046 ns 1.371 ns −4.185 ns −0.464 ns

3*S15850 Normal operation −0.585 ns 0.75 ns −8.966 ns −3.046 ns
Under attack −0.708 ns 0.345 ns −8.966 ns −2.938 ns
Under attack −0.908 ns 0.343 ns −8.966 ns −2.923 ns

setup time for the generated bitstream. As shown in Table 1, the modified N1 block
in the .place file have a different holding and setup time. The change in holding
and setup time could be positive or negative. A negative change is difficult to detect
since the attack does not influence the worst-case delay. The attack on the place file
is further extended to two benchmark circuits s298 and s15480. The results of the
attack are shown in Table 2. The attacks have negligible impact on the critical-path
delay but could result in large changes on the noncritical paths.

3.2.3 Practical Attacks Using Open-Source FPGA CAD Tools

Two practical attacks are demonstrated one on LFSR (Linear Feedback Shift
Register) and the other on AES (Advanced Encryption Standard) crypto module
using malicious open-source FPGA CAD tools. For realizing the practical attack, it
is assumed that the CAD tool is already mounted with a malicious library.

LFSR is used to generate random numbers for cryptographic modules. In LFSR
depending on the feedback paths, random number sequences are shifted from
serially connected registers. Basic attacks demonstrated in VTR are used to perform
the practical attack on 8-bit LFSR. Post the practical attack, the generated random
numbers are confined to a limited range. This shows that with a practical attack, we
can affect the randomness of LFSR.

Figure 17 shows the schematic of the LFSR design. This 8-bit LFSR can
produce 255 different random numbers. Through the malicious tool VTR, we can
successfully implement the pin creation attack and logic attack. The pin creation
attack adds a new output pin in the .blif file for the LFSR to leak the random numbers
being generated. Post pin creation attacks, the schematic of the LFSR circuit is

566 S. Sunkavilli et al.

Fig. 17 Impact of FPGA CAD attacks on an 8-bit LFSR circuit schematic. (a) LFSR before attack
and (b) LFSR after attack [9]

Fig. 18 LFSR feedback logic described in the .blif file. Note that the attack from the FPGA CAD
tool removes Line 1, a part of the feedback loop logic [9]

changed to as shown in Fig. 17b. The new output pin, aopin, is added to manipulate
the feedback logic and leak the random numbers being generated. The logic attack
attacks the normal function of LFSR. Figure 18 shows how the logic specifying
feedback logic is modified by the malicious FPGA CAD tool.

The consequence of the practical attack on LFSR is illustrated in Fig. 19. As
shown in Fig. 19a, the dynamic range of the random numbers generated by the
tampered LFSR is significantly smaller compared to the original LFSR. Moreover,
the diversity of the random numbers due to the FPGA CAD attack is decreased
dramatically. As shown in Fig. 19b, the LFSR suffering from the FPGA CAD attack
only generates a limited number of distinct random numbers; in contrast, the LFSR
without the attack can produce evenly distributed random numbers in the range of 0
and 255.

A malicious FPGA CAD tool (Symbiflow) can also implement a covert channel
in an AES encryption module as shown in Fig. 20a. The malicious internal library
consists of a Trojan that can modulate the secret key used in the encryption module.
In this attack, the CAD tool scans the .eblif file for the AES module and then adds
Trojan logic to the .eblif file. Two more files are modified along with the .eblif file
for successful generation of Trojan-infested bitstream. The targeted FPGA board
used here is a Digilent Nexys Artix-7 FPGA board. The constraints file (.pcf) and
the make file are modified to assign all the ports to the FPGA board and to pass the
required instructions to generate the bitstream file. All the old .net, .place, .route,
.fasam, and .bit files are removed from the directory. Figure 20b shows the normal
operation of the AES encryption module. Figure 20c and d shows the information
leaked through the covert channel implemented through Symbiflow.

FPGA Security: Security Threats from Untrusted FPGA CAD Toolchain 567

Fig. 19 Impact of pin addition and logic modification attacks from the malicious VTR on the
random numbers generated by the 8-bit LFSR [9]

3.2.4 Generalized Attack Flow in Open-Source FPGA CAD Tools

Both the open-source FPGA CAD tools, VTR and Symbiflow use different inter-
faces in the process of design compilation and bitstream generation. In the security
threat analysis, we were able to abstract common steps that a typical attack will use
and summarize them in Fig. 21. In step 1, an attack performed via FPGA CAD
tools will selectively incorporate the user constraints, either ignoring the user’s
constraints or stealthily adding new constraints, so that the FPGA configuration
could be modified covertly. In step 2, attackers need to fully understand the
format of the intermediate output files (e.g., .blif) and foresee what changes on
the intermediate files can fulfill the intended attack purpose. The core attacks
on FPGAs will take place in step 3. One could modify I/O and also alter the
Boolean expressions indicated by the hardware description language. Step 4 is the
most challenging one as the success of bitstream generation requires the modified
intermediate files to be acceptable in other phases of the CAD flow. Attackers need
to collaboratively adjust the malicious modifications so that the intermediate files

568 S. Sunkavilli et al.

Fig. 20 FPGA implementing a covert channel on AES. (a) Schematic of tampered AES design,
(b) FPGA running the normal AES operation, and (c, d) FPGA running the AES with a covert
channel leaking the crypto key information at different moments [9]

are synchronized in the entire FPGA configuration flow. In an open-source FPGA
CAD tool, the fact that all the intermediate stages whose input or output files are
open for editing will introduce potential attack surfaces.

4 New Security Threat Landscape

4.1 New FPGA Utilization Model

The increase in demand for FPGAs and their ability to perform computation-
intensive tasks has forced FPGAs and their vendors to change the utilization model
as shown in Fig. 22. To increase the flexibility and to facilitate different applications

FPGA Security: Security Threats from Untrusted FPGA CAD Toolchain 569

Fig. 21 Proposed general attacks on open-source FPGA CAD tools [9]

Fig. 22 Emerging FPGA utilization model [12]

in FPGAs, FPGA CAD tools are modified to support third-party IPs and plug-ins,
which could make CAD tools vulnerable to security threats. Third-party developers
and FGPA CAD tools have made their way into the FPGA design flow to ease the
development. The ability to perform complex mathematical calculations has made
FPGAs work as accelerators in the cloud and data centers. A compromised FPGA
design could affect an entire data center or user applications.

570 S. Sunkavilli et al.

Fig. 23 Proposed new security threat landscape [12]

4.2 New FPGA Security Challenges

An accurate security threat landscape is needed to find attack surfaces and develop
countermeasures for CAD tools against those attack surfaces. As discussed earlier
there is an old FPGA use model and a New FPGA use model. In the old FPGA
utilization scenarios, physical access to the FPGA devices or CAD tools is required
to execute the attack. Attacks are often localized either in the device and design
suite vendor or in the end user. The new FPGA use model involves more entities
than the old one. Thus, more security threats could be brought into the design flow.
This trend will become severer as more and more open-source FPGA CAD tools are
employed in the design flow.

The most common attacks reported in the literature are (1) hardware Trojan
insertion to build a covert channel or modify the original function at the developer
end [3, 14], (2) counterfeit FPGA devices [8], and (3) side-channel analysis (SCA)
attacks via power consumption or thermal observation at the FPGA end user [6, 7].
Few works disclose that some FPGA CAD tools can be tampered with to facilitate
the implementation of covert channels and Trojan insertion [10, 15]. No matter
which kind of attacks mentioned above is performed, collaborative attacks are less
likely to happen because of the limited knowledge sharing among multiple sectors in
the FPGA design flow. In cloud-based FPGA computing, the physical access to the
CAD tools and FPGA devices are often prohibited; now, the new attack format could
be a synergy effort deployed in the tools and devices. As a result, the attack model
is shifted. Figure 23 summarizes the threat models induced by old and new FPGA
utilization models. As shown in Fig. 23, the attacks in the new FPGA utilization
model from the tool vendors and FPGA providers may be combined. Open-source
FPGA CAD tools are not customized for a particular FPGA chip; the architecture
information and essential characteristics of the FPGA of interest should be available
for the CAD tool.

FPGA Security: Security Threats from Untrusted FPGA CAD Toolchain 571

The accessibility of intermediate files will further facilitate the occurrence of
new attacks. For example, more counterfeit third-party accelerators [16] could
be employed in the design flow. The diverse sources of IPs will challenge the
authorized access control. The security strength provided by IP encryption will be
weakened as well. Information leaking via crosstalk and thermal covert channels
[17, 18] could be more prevalent than those in the old FPGA use model. In addition,
when we enter the era of FPGA-as-a-service, local SCA attacks are upgraded to
remote versions, such as remote power analysis [19], remote row hammer attack
[20], and remote fault attack [21].

The new FPGA utilization model urges us to expand the threat model for the
new FPGA development flow. Our summary shown in Fig. 23 may not include
all new attack examples reported in the existing literature. We hope that our work
can inspire more engineers and researchers in the FPGA security community to
enhance their knowledge and foresee the potential risks that we are facing in the new
FPGA development scenarios. On the other hand, there are new opportunities for
countermeasure design in open-source FPGA CAD tools. Various security features
could be added to the conventional design flow by modifying and extending the
vendor tools to secure FPGA systems against the new threats.

4.3 Comprehensive Summary of Attack Surfaces

Figure 24 summarizes the potential attack surfaces and the aims of possible attacks.
The open-source tools often have a transparent flow for how the user constraints
are employed in synthesis and floor planning. Some constraints defined by FPGA
users could be tampered with or simply muted such that the pre-defined protection
mechanisms are nullified. Second, more intermediate files in open-source CAD tools
(e.g., .blif, .net and .place used in VTR and Symbiflow) are readable and editable
before bitstream generation. The interfaces for third-party IP integration are more
diverse than those in the commercial tools. FPGA system developers could leverage
the interfaces to weaken the encryption on the licensed IPs or build covert channels
for information leaking. Last but not least, the loosely protected toolchain will suffer
from Trojan insertion and bitstream tampering [15, 22].

5 Conclusion and Future Research Directions

The new features in commercial FPGA CAD tools, open-source FPGA CAD tools,
and cloud-based FPGA services gradually change the traditional FPGA design and
use model. More and more entities are involved in the development flow of FPGA
systems. The newly emerged FPGA use model poses new and unique challenges
to FPGA security. This book chapter complements the existing surveys on the
attacks from FPGA developers and users by investigating the potential security

572 S. Sunkavilli et al.

Fig. 24 Attack surfaces on commercial and open-source FPGA CAD tools [12]

threats from the commercial and open-source FPGA CAD tools. A comprehensive
landscape for the new security threats is proposed in this work. Furthermore, this
work analyzes the new security vulnerabilities induced by the integration of defense
methods into the typical FPGA design flow. Several case studies are provided
accordingly to inspire researchers to reconsider the new security issues that may
occur in the deployment of countermeasures into FPGA CAD tools, especially when
we implement more FPGA applications in the new FPGA utilization model.

Acknowledgments This work is partially supported by the National Science Foundation awards
CNS-1652474 and CNS-2022279.

References

1. Hallmans, D., Sandström, K., Nolte, T., Larsson, S.: A method and industrial case: replacement
of an FPGA component in a legacy control system. In: 2015 IEEE 13th International
Conference on Industrial Informatics (INDIN), pp. 208–214 (2015)

2. Zhang, Z., Njilla, L., Kamhoua, C., Kwiat, K., Yu, Q.: Securing FPGA-based obsolete
component replacement for legacy systems. In: Proc. ISQED18, pp. 401–406 (2018)

3. Gundabolu, S., Wang, X.: On-chip data security against untrustworthy software and hardware
IPs in embedded systems. In: Proc. ISVLSI’18, pp. 644–649 (2018)

4. Zhang, J., Qu, G.: Recent attacks and defenses on FPGA-based systems. ACM Trans.
Reconfigurable Technol. Syst. 12(3), 1–24 (2019)

5. Zhang, T., Wang, J., Guo, S., Chen, Z.: A comprehensive FPGA reverse engineering tool-chain:
from bitstream to RTL code. IEEE Access. 7, 38379–38389 (2019)

6. Thoonen, M.: Hardening FPGA-based AES implementations against side channel attacks
based on power analysis. B.S. thesis, University of Twente (2019)

7. Wei, L., Luo, B., Li, Y., Liu, Y., Xu, Q.: I know what you see: power side-channel attack on
convolutional neural network accelerators. In: Proc. ACSAC’18, pp. 393–406 (2018)

FPGA Security: Security Threats from Untrusted FPGA CAD Toolchain 573

8. Dogan, H., Forte, D., Tehranipoor, M.M.: Aging analysis for recycled FPGA detection. In:
Proc. DFT’14, pp. 171–176 (2014)

9. Sunkavilli, S., Zhang, Z., Yu, Q.: Analysis of attack surfaces and practical attack examples
in open source fpga cad tools. In: 2021 22nd International Symposium on Quality Electronic
Design (ISQED), pp. 504–509 (2021a)

10. Zhang, Z., Njilla, L., Kamhoua, C.A., Yu, Q.: Thwarting security threats from malicious FPGA
tools with novel FPGA-oriented moving target defense. TVLSI. 27(3), 665–678 (2019)

11. Murray, K.E., Petelin, O., Zhong, S., Wang, J.M., Eldafrawy, M., Legault, J.-P., Sha, E.,
Graham, A.G., Wu, J., Walker, M.J.P., Zeng, H., Patros, P., Luu, J., Kent, K.B., Betz, V.:
VTR 8: high-performance CAD and customizable FPGA architecture modelling. ACM Trans.
Reconfigurable Technol. Syst. 13(2), 1–55 (2020)

12. Sunkavilli, S., Zhang, Z., Yu, Q.: New security threats on fpgas: From fpga design tools
perspective. In: 2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 278–
283 (2021b)

13. Pitaka, S.: Isolation design flow for Xilinx 7 series FPGAs or Zynq- 7000 SoCs (Vivado Tools).
In: Xilinx XAPP1222 (2020)

14. Mal-Sarkar, S., Krishna, A., Ghosh, A., Bhunia, S.: Hardware Trojan attacks in FPGA devices:
threat analysis and effective countermeasures. In: Proc. GLSVLSI’14, pp. 287–292 (2014)

15. Chakraborty, R.S., Saha, I., Palchaudhuri, A., Naik, G.K.: Hardware Trojan insertion by direct
modification of FPGA configuration bitstream. IEEE Des. Test. 30(2), 45–54 (2013)

16. Turan, F., Verbauwhede, I.: Trust in FPGA-accelerated cloud computing. CSUR. 53(6), 1–28
(2020)

17. Provelengios, G., Ramesh, C., Patil, S.B., Eguro, K., Tessier, R., Holcomb, D.: Characterization
of long wire data leakage in deep submicron FPGAs. In: Proc. FPGA’19, pp. 292–297 (2019)

18. Tian, S., Szefer, J.: Temporal thermal covert channels in cloud FPGAs. In: Proc. FPGA’19, pp.
298–303 (2019)

19. Schellenberg, F., Gnad, D.R., Moradi, A., Tahoori, M.B.: An inside job: remote power analysis
attacks on FPGAs. In: Proc. DATE’18, pp. 1111–1116 (2018)

20. Krautter, J., Gnad, D.R., Tahoori, M.B.: FPGAhammer: remote voltage fault attacks on shared
FPGAs, suitable for DFA on AES. In: TCHES, pp. 44–68 (2018)

21. Alam, M.M., Tajik, S., Ganji, F., Tehranipoor, M., Forte, D.: RAM-jam: remote temperature
and voltage fault attack on FPGAs using memory collisions. In: Proc. FDTC’19, pp. 48–55
(2019)

22. Moradi, A., Schneider, T.: Improved side-channel analysis attacks on xilinx bitstream encryp-
tion of 5, 6, and 7 series. In: Proc. COSADE’16, pp. 71–87 (2016)

DoS Attack Models and Mitigation
Frameworks for NoC-Based SoCs

Mitali Sinha, Sidhartha Sankar Rout, and Sujay Deb

1 Introduction

Increasing demand for high performance and energy efficiency have led to inte-
gration of more and more processing cores within a single System-on-Chip (SoC).
Furthermore, a surge of interest is also observed in the recent computing systems for
employing heterogeneous SoCs, which comprise of different processing elements
with varied computing abilities [1, 2]. These systems are suitable for real-time
applications in the domains like national security, traffic monitoring, autonomous
vehicles, etc. As the number of Intellectual Property (IP) blocks increases, Network-
on-Chip (NoC) has gained traction as an effective interconnection platform due to
its ability to provide high-bandwidth and low-latency communication [3]. NoCs
are typically comprised of routers that are connected to their neighbor nodes
through the wired links. Each IP block is attached to a router node through the
network interface (NI) and communicate with other on-chip modules through
the wired communication network. Besides the wired NoCs, multiple emerging
interconnection architectures like wireless NoC (WNoC) [4], Photonic NoCs [5],
etc., are also proposed to meet the needs of diverse traffic patterns and improve
system performance. Although the shared and distributed infrastructure of the NoC
provides effective data communication, it can also introduce various security threats
within the system. These security threats get even more aggravated when the third-

M. Sinha (�)
Department of Computer Science Engineering, Indraprastha Institute of Information Technology
Delhi, Delhi, India
e-mail: mitalis@iiitd.ac.in

S. S. Rout · S. Deb
Department of Electronics and Communication Engineering, Indraprastha Institute of Information
Technology Delhi, Delhi, India
e-mail: sidharthas@iiitd.ac.in; sdeb@iiitd.ac.in

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Iranmanesh (ed.), Frontiers of Quality Electronic Design (QED),
https://doi.org/10.1007/978-3-031-16344-9_15

575

 885
51863 a 885 51863 a

mailto:mitalis@iiitd.ac.in

 885 56845 a 885 56845 a

mailto:sidharthas@iiitd.ac.in

 9619 56845 a 9619 56845 a

mailto:sdeb@iiitd.ac.in

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-16344-9_15

576 M. Sinha et al.

party IP blocks are integrated together with other on-chip modules in the SoC.
This is because the lack of access to the design details of third-party IPs makes
them difficult to validate. Even with the design details, it is infeasible to perform
exhaustive explorations of millions of logic elements to detect a possible security
threat due to design flaws or any malicious modifications like Hardware Trojans
(HT). Such security threats can lead to information leakage, data alteration, system
performance degradation, and memory corruption.

A Denial-of-Service (DoS) attack on an interconnection network is an attack that
curtails a network’s ability to provide appropriate services to the legitimate on-chip
modules. A malicious IP (MIP) can trigger a DoS attack by either disrupting the
normal working of the NoC or holding the shared NoC resources. Here, we consider
flooding-based DoS attacks triggered by an MIP on the NoC. An MIP triggers a
flooding attack by injecting continuous random packets into the network resulting in
higher communication latency. As a result, it manipulates the perceived availability
of on-chip resources by other legitimate users and creates a DoS attack. For instance,
an MIP can generate a large number of useless read/write requests to the shared
memory banks located at distant nodes. This will thwart the network traffic and
degrade the performance of other benign cores. Along with the targeted victim node,
other intermediate nodes are also congested as they fall on the DoS attack path.
Consequently, when a source node tries to access the destination node residing on
the attack path, it will face higher latency due to congestion on its communication
path. As a result, the affected nodes starve for and thus degrades the overall
application performance. Therefore, it is of utmost importance to accurately detect
the DoS attacks at an early stage and prevent the system from severe performance
degradation. Once an attack is detected, the source of the attack needs to be localized
and appropriate actions need to be taken to restore the system to a healthy state.
Since the primary goal of multicore system design is to improve the performance
of the applications running on the SoC, it is imperative to address the DoS attacks
in NoCs that lead to the overall system performance degradation. This particular
chapter primarily discusses the state-of-the-art flooding-based DoS attack models
in the NoCs and the corresponding frameworks for detecting such attacks along
with the countermeasures.

A widely used approach for detecting such flooding-based DoS attacks is to
monitor the traffic pattern and distinguish the network behavior in case of an attack
and non-attack scenario. A threshold is set for the chosen network parameters based
on empirical observations, and attack scenario is flagged out in case of any threshold
violations [6]. However, during real-time operations, different applications coexist
at different times over the entire execution period. To take advantage of such varied
workload condition, a number of runtime optimization methods have been proposed
[7–9], which provide utmost performance for the applications running on the SoC.
As a result of these optimizations, a wide variation is observed in system states and
network-level activities of an SoC during its runtime. Such dynamic environment
of SoCs imposes a challenge to set appropriate thresholds for the chosen network
parameters for attack detection. Therefore, there is a need to employ efficient
techniques that will accurately distinguish the NoC traffic behavior between a DoS

DoS Attack Models and Mitigation Frameworks for NoC-Based SoCs 577

attack and a non-attack scenario. Furthermore, the inherent nature of NoCs, allowing
multiple parallel communication and resource sharing, makes it extremely difficult
to locate the source of the attack. In the cases where multiple MIPs are present
in the network, it becomes ever more difficult to distinguish attack and non-attack
scenarios, which highlights the importance for a robust MIP localization framework.

Along with the traditional wired NoCs, multiple emerging interconnection plat-
forms like WNoC and Photonic NoCs are being explored to further improve system
performance by providing long-range on-chip communication. However, an MIP
can exploit these emerging interconnection networks to introduce vulnerabilities
within the system and lead to DoS attacks. Since the long-range communication
channels are shared among multiple contenders to transfer their data, an MIP can
hold the channel unauthorizedly to introduce DoS attacks or can eavesdrop or spoof
to leak crucial information. These result in significant performance degradation or
compromising the system security. The integration of different third-party untrusted
IPs and difficulty in detecting small HT circuits on the multicore SoCs increase
the probability of unauthorized channel access. Therefore, it is imperative to
design countermeasures for such kind of DoS attacks that can disrupt the regular
communication flow and drastically degrade the system performance.

The remainder of the chapter is organized as follows. Section 2 discusses
different threat models in NoC. It provides a brief description on the existing threat
models in both wired and wireless NoCs. An overview of DoS attack detection and
localization frameworks is presented in Sect. 3. An example DoS attack detection
and localization framework for wired NoC-based SoC is discussed in Sects. 3.1 and
3.2. An example DoS attack detection framework along with countermeasures for
wireless NoC-based SoCs is presented in Sect. 4. Finally, Sect. 5 concludes the work
along with insights into the future research opportunities in this domain.

2 Threat Model

This section presents the various state-of-the-art threat models proposed for DoS
attacks in NoC-based system architectures. Firstly, the attack models in wired NoCs
are presented, followed by the attack models in wireless NoC-based systems.

2.1 Wired NoC Threat Model

The DoS attack models in wired NoCs can be broadly divided into network resource
blocking attack and bandwidth consumption attack. In case of the network resource
blocking attacks, the network services are denied by blocking or disrupting the
functionality of critical resources leading to their unavailability for the legitimate
users, whereas the aim of the bandwidth consumption attacks is to exhaust the

578 M. Sinha et al.

network bandwidth by excessive link usage leading to bandwidth reduction for the
legitimate users.

The DoS attack proposed in [10] demonstrates a network resource blocking
attack, where the critical router components of the NoC are targeted. The router
micro-architecture is modified in [10] to incorporate the control and data path of
an HT within the router’s pipeline stages and manipulate its functionality. The
“arbitration” and “allocation” stages of router micro-architectures are modified to
disrupt the crossbar traversal slots for the packets generated from (or targeted to) a
victim node. In the arbiter stage, the HT de-prioritizes the packets generated from
(or targeted to) a victim node and delay the packets at a given router. Similarly,
the requests for crossbar allocation is suppressed at the allocation stage, denying
services for the specific targeted packets, leading to a DoS attack. While the network
resource blocking attacks can create adverse situation, the bandwidth consumption
attacks are even more disruptive. The authors in [6, 11, 12] presents such attacks
where an HT-infected MIP node generates a large amount of useless and frequent
packets targeted to a Victim IP (VIP) node, creating high network congestion.
The perceived availability of the on-chip network bandwidth by other legitimate
users are manipulated, leading to a flooding-based DoS attack. For instance, a
malicious node can generate a large number of useless read/write requests to a
shared memory block residing in a distant part of the NoC. This will thwart the
network traffic and result in higher network congestion on the attack path and
significantly increase the network latency. The other on-chip IPs generating requests
for the same/nearby memory blocks face high congestion in the network and are
denied appropriate services. Hence, the domination of the malicious traffic over
the legitimate traffic disrupts regular network packet communication along with the
targeted VIP node, which results in overall system performance degradation. Such
bandwidth consumption-based DoS attacks become more hazardous in the presence
of multiple malicious nodes within the NoC. The authors in [13–15] present such
attacks, where multiple MIP nodes target single or multiple VIP nodes and create a
Distributed DoS attack (DDoS attack). Under such scenarios, the network is highly
dominated by the useless packets generated by multiple malicious nodes, which
make the legitimate traffic to starve for network bandwidth. Figure 1 shows the
various scenarios, where the malicious nodes create a bandwidth consumption-
based DoS attack. As shown in the figure, along with the targeted victim node, other
router nodes residing on the attack path also gets affected and result in extreme
performance degradation of the overall system. We consider a comprehensive threat
model that encompasses different scenarios of a flooding-based DoS attack as
follows:

Number of MIPs/TVIPs A single MIP can initiate an attack on a single TVIP
(Fig. 1a) or multiple TVIPs (Fig. 1b). Multiple MIPs can also initiate attacks on a
single TVIP or multiple TVIPs (Fig. 1c, d, respectively).

DoS Attack Models and Mitigation Frameworks for NoC-Based SoCs 579

Fig. 1 Example scenarios of multiple MIP/VIP placement

Placement of MIPs/TVIPs Different placements of MIPs/TVIPs can create differ-
ent scenarios, where the attack paths can partially or completely overlap with each
other or form a loop. Figure 1 shows a few illustrative scenario.

Coordinated and Uncoordinated Attack MultipleMIPs can cooperate and mount
a coordinated attack. For instance, in Fig. 1e, a coordinated attack is created by
exchanging frequent packets between two MIPs. In an uncoordinated attack, the
MIPs target TVIPs independently without any cooperation.

2.2 Wireless NoC Threat Model

In case of WNoC, both the network resource blocking and bandwidth consumption-
based DoS attacks are possible. Multiple existing research works highlight band-
width consumption attack [16, 17] and provide solution for it. Authors in [16]
focus on the DoS attack that is created by the excessive transfer of useless data
over wireless channel. The work in [17] highlights the occurrence of burst error
on the received data bits due to the presence of interference on the wireless
channel caused by the persistent jamming-based DoS attack. The network resource
blocking-based DoS attack in case of WNoC is shown by unauthorized holding
of the wireless channel [18, 19]. The Wireless Interfaces (WIs) on the network
share the wireless channel for data transmission and reception. While multiple WIs
access the same wireless channel to transfer their data, a malicious WI can hold the
channel unauthorizedly. This results in blocking of wireless channel for the healthy

580 M. Sinha et al.

wireless hubs (network nodes connected to the WIs) and creates DoS in the system
operation. AWI is considered to be malicious if it has an HT present inside it or it is
connected to a rogue third-party IP. Such a malignant wireless hub can either disturb
the channel access arbitration pattern or it might manipulate the channel hold time
to introduce DoS to the system [18]. The authors in [19] also highlight the DoS in
WNoC by bandwidth stealing from the healthy nodes. With regard to WNoC, this
chapter focuses on the designing of threat model for wireless channel blocking and
its countermeasures as discussed in Sect. 4.

3 DoS Attack Detection and Localization in wired
NoC-Based SoCs

The profound security threats from MIPs have triggered multiple works to address
flooding-based DoS attacks in SoCs. In [15], design guidelines were given for
mesh-based multicore systems to mitigate the effects of DoS attacks, whereas [20]
presents security verification methods for NoC micro-architectures. The authors
in [10] relies on using extra packets to perform security checks, which requires
multiple windows of checking and packet injection, further delaying network
communication. A central monitoring unit is proposed in [12] to detect unnatural
traffic conditions based on average bandwidth violations, which is computed
empirically at the design time. In [6], a DoS attack detection method is proposed
by statically profiling a defined network traffic to distinguish between the attack
and non-attack scenarios. Once an attack is detected, it is imperative to localize the
MIPs and take necessary actions to prevent any further system degradation. But the
inherent nature of NoCs, allowing multiple parallel communication and resource
sharing, makes it extremely challenging to locate the source of the attack. The
presence of multiple MIPs makes it even more onerous and signifies the need for
a robust MIP localization framework. An effort is made in [21] and [14] to localize
MIPs in NoC-based systems. However, their approaches need multiple checking
and communication between the network nodes, which will further increase the
complexity of MIP localization. Moreover, the methods proposed in [21] and [14]
rely on a single network parameter, whose threshold is set through static profiling,
to identify an MIP within the system. However, in real scenarios, a varied range of
network traffic is observed due to the dynamic nature of applications running on
complex SoCs. Hence, tuning a network parameter through static profiling might
set it to an erroneous threshold and result in an inefficient method generating
numerous false predictions. While including multiple parameters may decrease
the number of false predictions, it will substantially increase the challenge of
setting those parameters to appropriate thresholds. To address these issues, the
authors in [11, 13] proposed machine learning (ML) approach for detecting and
localizing flooding-based DoS attacks in NoC-based SoCs. By tuning multiple
network parameters to appropriate thresholds, the ML algorithms help in accurate

DoS Attack Models and Mitigation Frameworks for NoC-Based SoCs 581

MIP detection and localization. The following sections discuss such ML-based
detection and localization frameworks in detail.

3.1 Attack Detection Framework

This section describes an efficient flooding-based DoS attack framework using ML
algorithms [11] for accelerator-rich heterogeneous SoCs, which comprises of a few
general-purpose CPU cores, a number of specialized hardware accelerators, and
memory subsystems, all connected together by an NoC as shown in Fig. 2. The CPU
cores allocate the compute-intensive part of the applications onto the accelerators
and prepare the accelerator-specific data in memory. The accelerators are initiated
by the respective CPU cores through system calls (e.g., ioctl calls). Whenever a task
is completed, the accelerator informs the corresponding CPU by raising an interrupt
signal. Figure 3 shows the flow of the attack detection framework comprising of
a two-step method to detect a flooding-based DoS attack in such an accelerator-
rich heterogeneous SoC. In the first step, a first level sanity check is performed by
the CPU cores to flag a possible flooding attack based on precomputed accelerator
execution time (AET) and interrupt generation. To accurately differentiate between
an attack and a non-attack scenario, an ML-based method is employed as a second
step of detection. Once a flag is raised in the first step, the ML classifier is triggered
to perform binary classification of flooding-based DoS attack by inspecting the
current system behavior. The rationale behind employing a two-step framework is

Fig. 2 A typical heterogeneous system architecture

582 M. Sinha et al.

Fig. 3 Flow of the attack detection framework. Here, Acc Accelerator, ST Status table, Intr
Interrupt, AET Accelerator execution time

to reduce runtime computation overhead by avoiding frequent ML invocation. In the
following sections, the attack detection framework is described in detail.

3.1.1 First-Level Sanity Check

To facilitate the first-level sanity check, the CPU cores compute AET of the target
accelerator before off-loading an application kernel. Here, AET comprises of (i) an
accelerator’s computation time and (ii) average network latency. An accelerator’s
computation time is data-dependent and is estimated using linear regression as a
function of input data size, whereas the average network latency is estimated using
an analytical model given in [22]. Both the metrics are calculated at the design time
with representative input data sizes and benchmark applications. All the estimated
data are stored in a Status Table (ST) residing in an on-chip shared memory. At
runtime, whenever a CPU core initiates an accelerator, it stores the accelerator’s ID
and corresponding AET back in the ST. Consequently, the ST holds information
about the availability of an accelerator at any point of time.

As shown in Fig. 3, a CPU first enquires the ST regarding the availability of an
accelerator. If available, CPU sets a counter, Time out, to the estimated AET for each
accelerator invoked. Then, it updates ST, prepares input data, and starts execution of
the accelerator while decrementing the Time out counter at each clock cycle. In case
of unavailability of an accelerator, the application is executed locally in the CPU
core. As discussed earlier, after completing its task, an accelerator must generate
an interrupt to update the CPU, which then subsequently updates the ST. If the
CPU does not receive an interrupt signal from the accelerator within the estimated
execution time (i.e., intr! = 1 and Time out == 0), it raises a flag to indicate a
possible attack scenario. The rationale for CPU flag generation is that an accelerator
must be starving for data accesses due to network congestion, which delayed its
interrupt generation. Once a flag is raised, the second-level check is executed that
employs an ML model for accurate attack detection.

DoS Attack Models and Mitigation Frameworks for NoC-Based SoCs 583

3.1.2 Machine Learning for Attack Detection

The fundamental notion behind ML-based attack detection is to accurately distin-
guish the system behavior in an attack and non-attack scenario. To achieve this, the
system state and network statistics are used as features for training an ML classifier.
Although deploying an ML-based solution may lead to accurate attack detection,
an inefficient design may introduce computational and performance overheads. One
design approach is to have a centralized ML model in which feature data need to be
collected from all the network nodes. The other approach is to have a decentralized
method where the ML model resides in every network node and takes the decision
locally based on the feature data of that node. Such a decentralized approach results
in huge computational and/or hardware overheads due to multiple copies of ML
classifiers running simultaneously. On the other hand, a centralized approach might
incur performance overhead due to feature data collection from each network node.

The authors in [11] adopt a centralized ML-based approach to provide an
accurate and low-cost solution while using a hierarchical data collection method
to address the performance overheads. The entire network is logically divided into
multiple clusters, where a CPU acts as a cluster head and facilitates feature data
collection. The ML classifier runs on a CPU and is triggered only when there is a
flag raised by it in the first-level sanity check, indicating possible security violations.
After raising a flag, the CPU sends a broadcast message instructing the cluster heads
to start feature data aggregation. Each cluster head collects feature data from every
node belonging to that particular cluster. Once the data is collected, average feature
values are calculated at each cluster head and transferred to the CPU core running
the ML classifier. Finally, after receiving data from all the network clusters, the
average feature values are calculated for the entire network and fed to the ML model
running in the CPU core. To facilitate steady forwarding of feature data through the
likely compromised network, each node groups them into one feature packet and
prioritizes those packets to avoid any unwanted delay. A priority bit is employed to
distinguish a feature packet from the regular network packets.

The framework used two classes of features to train the ML classifiers for
attack detection: Network State Features and System State Feature. The Network
State Features capture the variation in on-chip communication behavior over the
execution period. The System State Feature captures the system’s current state to
understand the expected network load at any given time.

(1) Network State Features

Inter-Packet Interval (IPI) In a non-attack scenario, there is an appreciable time
between any two consecutive packet reception at a network node. On the contrary,
the Inter-packet Interval (IPI) time becomes very small in case of a flooding-based
DoS attack. As a result, IPI is a potential feature candidate to distinguish between
attack and non-attack traffic.

Router-Buffer Waiting Time (RWT) It refers to the time interval for which a packet
waits in the buffer of a router due to the unavailability of its output ports or

584 M. Sinha et al.

congestion at the input port of the downstream router. This waiting time significantly
increases in an attack scenario and serves as a good metric for attack detection.
Similar to IPI calculation along with a timestamp counter, RWT is computed for
incoming packets at each network router.

Packet Delivery Ratio (PDR) PDR refers to the ratio of packets received by a
destination to those generated by a source node. In comparison to a non-attack
scenario, PDR value will drastically decrease during a flooding attack as more
number of packets will get dropped before reaching the destination nodes. To
compute PDR, each source node router holds the information of the number of
packets generated along with their targeted destination nodes. With that knowledge,
and based on the number of retransmission requests, PDR is determined for each
node.

Global Average Delay (GAD) It represents the average latency incurred by the
entire on-chip communication network. In an attack scenario, the network exhibits
high congestion as compared to a non-attack scenario. This results in extended
communication latency during a flooding attack and hence drastically increase the
Global Average Delay (GAD). This signifies the use of GAD as an effective feature
to distinguish between attack and non-attack traffic. GAD is readily available from
the simulation tool, Noxim[23] employed in the experimental evaluation.

(2) System State Feature

Number of Active Accelerators (#AAcc) As discussed earlier, in an accelerator-rich
SoC, the CPU cores request from a pool of accelerators to off-load the entire or part
of its application. While multiple accelerators are assigned various tasks, the rest of
the inactive accelerators are turned off to reduce power consumption. The number of
ingress or egress packets generated in the network vastly depends upon the number
of accelerators active at a given point of time. This influences all the Network
State Features due to the increased packet density on the network. Considering
the number of active accelerators as a feature will drive the ML classifier to
set appropriate thresholds leading to better prediction of attack scenarios. As a
result, the classifier will significantly reduce the number of false positives. This
quantifies the importance of including #AAcc as a feature to accurately detect an
ongoing flooding attack. The information regarding the number of currently active
accelerators is collected from the ST and fed to the ML classifier for detection.

3.1.3 Results and Analysis

To evaluate the attack detection framework, gem5-Aladdin [1] and Noxim [23]
simulators are used. The detection framework is implemented in Noxim with the
configurations presented in Table 1. The application traces are obtained from gem5-

DoS Attack Models and Mitigation Frameworks for NoC-Based SoCs 585

Table 1 System configuration and simulation setup

Component Configuration

Processing cores 4×86 CPU cores; customized fixed-function accelerator
cores, 500MHz frequency

Memory 32KB private and 2MB shared on-chip memory; 4GB
off-chip DRAM

NoC 8X8 2D mesh, XY routing, wormhole switching,
1-cycle link latency, 3-cycle router latency

ML models KNN, RF, SVM, DT, and ANN

Table 2 Detection
performance of classifiers

ML models Accuracy F1 score Precision Recall

KNN 0.855 0.855 0.856 0.856

RF 0.974 0.970 0.970 0.971

SVM 0.638 0.621 0.631 0.630

DT 0.929 0.928 0.928 0.928

ANN 0.891 0.890 0.890 0.890

Aladdin and fed to Noxim. The MachSuite [24] and MiBench[25] benchmark suites
are used for the evaluation.

Detection Accuracy This section presents the offline detection accuracy achieved
by theML classifiers on the dataset. The detection results are presented by averaging
the outcomes of fivefold cross validation. Table 2 presents the offline accuracy
results of the ML classifiers used in the attack detection framework. It also shows the
robustness of the classifiers with regard to precision, recall, and F1-score metrics.
The F1-score metric gives the harmonic mean between the precision and recall
values, which provides a statistical measure of performance. It is observed that
the attack detection accuracy ranges from 0.63 to 0.97 for all the classifiers. A
higher value of accuracy and robustness metric represents higher performance. A
relatively low accuracy of 0.63 given by the SVM classifier suggests that the data-
space considered for training the classifier is not linearly separable. However, the
KNN model performed fairly well with an accuracy of 0.85. This indicates that the
classifier was able to cluster the data into attack and non-attack classes with regard
to the considered feature space. In the case of neural network (ANN), a detection
accuracy of 0.89 was reported. DT and RF classifiers performed extremely well
with an attack detection accuracy of 0.92 and 0.97, respectively. This is due to the
nonlinear nature of DT and RF classifiers that allow them to achieve higher accuracy
by constructing multiple linear boundaries for detection. The RF classifier performs
even better by considering a pool of decision tree outcomes and is used for further
experimental analysis.

Feature Importance Figure 4 shows the importance of all the features considered
in the evaluation of the framework in terms of prediction accuracy. Here, each
feature is taken in isolation as well as all possible combination of features, and

586 M. Sinha et al.

100

Feature

90

80

70

A
cc

ur
ac

y

#A
ac

c

IP
I

G
A

D

P
D

R

R
W

T

G
A

D
_R

W
T

G
A

D
_P

D
R

G
A

D
_I

P
I

#A
A

cc
_R

W
T

G
A

D
_#

A
A

cc

#A
A

cc
_P

D
R

##
A

A
cc

_I
P

I

P
D

R
_R

W
T

P
D

R
_I

P
I

IP
I_

R
W

T

P
D

R
_R

W
T

_G
A

D

P
D

R
_I

P
I_

R
W

T

P
D

R
_I

P
I_

G
A

D

IP
I_

#A
A

cc
_G

A
D

IP
I_

#A
A

cc
_R

W
T

IP
I_

#A
A

cc
_P

D
R

P
D

R
_G

A
D

_#
A

A
cc

P
D

R
_R

W
T

_#
A

A
cc

R
W

T
_G

A
D

_I
P

I

R
W

T
_G

A
D

_#
A

A
cc

A
ll_

(P
D

R
)

A
ll_

(R
W

T
)

A
ll_

(G
A

D
)

A
ll_

(#
A

A
cc

)

A
ll_

(I
P

I) A
ll

60

50

40

Fig. 4 Feature importance (accuracy of RF for binary classification with each feature in isolation
and in combination). We also plot the accuracy with all features at the rightmost bar of the figure
(labeled as ‘All’). Here, “All_(Feature_name)” denotes all features except “Feature_name”

Table 3 On-the-fly detection
performance of classifiers

ML models Accuracy F1 score Precision Recall

KNN 0.832 0.832 0.831 0.831

RF 0.965 0.965 0.965 0.964

SVM 0.598 0.591 0.590 0.590

DT 0.909 0.908 0.909 0.9098

ANN 0.861 0.862 0.862 0.862

the RF classifier is run that reported the best binary-classification accuracy in the
experimental evaluation. A prediction accuracy ranging from 45.25% to 76.58% is
observed while considering each feature in isolation. Although having relatively less
accuracy in isolation, a combination of multiple feature metrics to detect an attack
scenario significantly increased the overall prediction accuracy.

On-the-Fly Detection Accuracy The evaluation results provided so far have been
obtained offline by applying the detection algorithms on collected data samples.
Now, the ML classifiers are integrated within the simulation environment. The
flooding attack is simulated by increasing packet injection from a particular network
node. Whenever the flag is raised in the first-level sanity check, the ML model is
triggered that resides within the corresponding CPU node. In this case, the classifiers
are trained offline on the collected data samples while the inference is carried out at
the runtime. As a result, the ML classifiers encounter a variation in runtime network
behavior, which helps in evaluating their effectiveness to make accurate attack
detection for dynamic runtime network traffic. The on-the-fly detection accuracy
of different ML classifiers is presented in Table 3. All the classifiers show similar
results as compared to the offline detection accuracy presented in Table 2. Among all
the classifiers considered for evaluation, RF classifier provides the best performance
in terms of detection accuracy. From these observations, it can be concluded that
such an ML-based attack detection framework is suitable for a heterogeneous SoC
environment where the network traffic exhibits dynamic load behavior.

DoS Attack Models and Mitigation Frameworks for NoC-Based SoCs 587

Fig. 5 Accelerator runtime in three scenarios: (i) absence of any security mechanism, (ii) ML-
only-based detection, and (iii) two-step ML-based detection: first-level sanity check and second-
level ML detection

Performance Evaluation In this section, the impact of the attack detection
framework on the system performance is evaluated. While the framework will be
able to curtail the performance degradation of the accelerators, it might also incur
traffic overhead under non-attack scenarios. The performance degradation (i.e.,
increase in runtime) of all the accelerator cores is observed in three scenarios: (i)
absence of any security mechanism, (ii) ML-only-based detection, and (iii) two-
step ML-based detection: first-level sanity check and second-level ML detection.
In the first scenario, the system has no built-in security measures, whereas in other
scenarios, there is a security mechanism to detect a flooding attack. In the second
scenario, the ML classifier is assumed to be active after every fixed time interval
throughout the application execution time. As a result, feature data is continuously
collected at each interval from all the network nodes and fed to the ML classifier.
Figure 5 shows the increase in runtime of the accelerators in all the three scenarios
as compared to a baseline non-attack scenario. As shown in the figure, the absence
of any security mechanism significantly affects application performance leading to
an increase in accelerator runtime of up to 59.21% as compared to the baseline.
The ML-only-based method is able to accurately detect a flooding attack and
prevent the accelerators from experiencing significant performance degradation.
However, it incurs an average runtime overhead of 10.58% due to the additional
on-chip communication involved in regularly collecting feature data from all the
network nodes. On the contrary, the two-step ML-based detection framework incurs
a minimal runtime overhead of 1.84% on average, as compared to the baseline.
This is because the first-level sanity check eliminates the need for invoking the ML
classifier on regular intervals. As a result, the communication overhead incurred
in collecting the feature data for every ML invocation is drastically reduced.
Finally, the hierarchical feature data collection further minimizes the overall runtime
overhead by allowing cluster-based data aggregation as compared to collecting
data from every node as done in ML-only scenario. The first-level sanity check
prevents frequent ML invocations and reduces the system performance overhead.
However, the first-level sanity check may introduce a few false positives, which will

588 M. Sinha et al.

invoke the second-level ML detection in the non-attack scenarios. This will result
in unnecessary feature data collection and incur traffic overheads in such cases. In
the experimental evaluation, a traffic overhead of 0.31% is observed due to this
unwanted feature data collection.

3.2 Attack Localization Framework

This section presents Sniffer, an ML-based framework for localizing MIPs in case of
the flooding-based DoS attacks in NoC-based SoCs. An overview of the ML-based
MIP localization framework is presented in Fig. 6. Once a VIP detects an attack, it
initiates the localization process by inspecting the congestion status of its router’s
incoming ports. The notion behind this analysis is that the router port falling on
the attack path will exhibit high congestion in an attack scenario as compared to
a non-attack scenario. Sniffer employs a machine learning approach to accurately
distinguish the congestion status of a given router port in attack and non-attack
scenarios. If the ML model flags the status as an attack, the VIP creates a probing
packet and forwards it to the neighbor node residing in the direction of the suspected
port. Consequently, each router will inspect its incoming ports and forward the
probing packet accordingly. The local IP port at each node is also inspected, and
the Node ID is stored as an MIP if the model flags its status as an attack. In addition,
Sniffer also checks if a node is traversed before and stops the process to indicate the
presence of a loop. Hence, by traversing back in the opposite direction of the attack
path, Sniffer successfully localizes all the MIPs.

Fig. 6 Overview of the MIP localization framework

DoS Attack Models and Mitigation Frameworks for NoC-Based SoCs 589

3.2.1 Machine Learning for Localization

A fundamental step in Sniffer is to accurately determine the congestion status of
a given router port. If a router port’s congestion status is falsely classified as an
attack scenario, it may increase localization time and generate unnecessary probing
packets into the network. Hence, it is crucial to accurately distinguish the network
traffic behavior for attack and non-attack scenarios. A common approach used
in the literature, [21] and [14], is to employ a single network parameter, whose
threshold is set by static profiling, to flag anomalies in traffic behavior. However,
the heterogeneous SoCs experience varied network-level activities throughout its
execution due to various runtime optimizations [7–9] and coexistence of different
applications at different times. As a result, setting the threshold of a network
parameter through static profiling for determining a port’s congestion status will
lead to inefficient classification. Although using multiple parameters has been
shown to increase the accuracy in various scenarios [26], it will significantly
increase the complexity of the entire process. Firstly, there can be a number of
network parameters that have the potential to help in distinguishing the congestion
status of a router’s port. One needs to meticulously explore the system or network
characteristics and boil down to a set of parameters that can most accurately check
the congestion status. Secondly, while tuning a single parameter through static
profiling can be error-prone, tuning multiple parameters to achieve a single goal
would dramatically increase the complexity and make static profiling infeasible.
An ML model is able to tune multiple parameters to appropriate thresholds for
congestion detection. Therefore, it eliminates the need for onerous and error-prone
tuning of parameters by static profiling and provides a suitable solution for varied
network traffic of heterogeneous SoCs.

Features Multiple network features are meticulously selected to train the ML
model to provide accurate congestion status. These features capture the variation
in network-level activities throughout the applications’ execution period.

Buffer Waiting Time (BWT) BWT is defined as the time interval for which a flit
waits in the buffer of a network router. A flit will wait in the router buffer if its
output port is unavailable or the input port of the downstream router is congested.
Since the routers face high congestion in an attack scenario, a flit will be waiting for
a significant time interval as compared to a non-attack scenario. As a result, BWT
is a potential feature candidate to accurately detect the congestion status of a router
port.

Inter-Flit-Interval (IFI) In a non-attack scenario, a router port observes an appre-
ciable time period between reception of any two consecutive network flits. However,
in a flooding-based attack scenario, a router port residing on the attack path observes
a large number of incoming flits within a given time interval, and IFI becomes
significantly small. While BWT gives a good indication for an attack scenario, IFI
further helps to capture the cases where a large number of packets are destined for

590 M. Sinha et al.

the same output port, resulting in higher BWT in non-attack scenarios. Hence, IFI
serves as a good metric for detecting the congestion status of a given router port.

Virtual Channel Occupancy (VCO) VCO refers to the amount of virtual channel
(VC) space occupied by the incoming flits at each network router. In case of an
attack scenario, the VCs of a router on the attack path will be heavily filled due to a
large number of incoming flits. This signifies the use of VCO as an effective metric
to distinguish between attack and non-attack scenarios.

Data Collection To train the ML model, data samples are collected for both attack
and non-attack scenarios. Noxim [23], a cycle-accurate network simulator, is used to
facilitate data collection for the experimental evaluation. The simulator is operated
in two modes, namely, attack and non-attack modes. In non-attack mode, there are
no MIPs, and the system experiences regular network-level activities, while in the
attack mode, the MIPs target one or more VIPs and inject a large number of frequent
packets into the network. The higher packet generation rate of the MIPs affects
the network bandwidth and increases congestion, resulting in a flooding-based DoS
attack. Since, in a heterogeneous system, the traffic density varies depending on the
placement and type of IPs, theMLmodel is trained separately for each network node
to precisely capture its communication behavior. The models are trained offline on
the collected data samples to reduce computational overheads. In the experiments,
the evaluation is carried out on a 64-node system, while the ML models can be
further trained for localizing MIPs in larger system sizes. Multiple runs of different
benchmarks are considered, each for 20,000 cycles during data collection (details
of system configurations and benchmarks are given in Sect. 3.3). A total of 80,640
data samples are collected, 40,320 for attack and 40,320 for non-attack scenarios.

3.2.2 Algorithm for MIP Localization

Algorithm 1 describes the localization process of Sniffer. During the localization
process, one of the three scenarios is encountered at each node as follows. In the case
of a non-malicious node, only an incoming neighbor port (here, incoming neighbor
port refers to the current node’s incoming ports connected to the neighbor router
nodes) will be congested, which signifies that the node is on an attack path, whereas
an MIP will experience only a congested incoming local IP port and other incoming
neighbor ports will undergo regular network activities. However, in the case of
multiple MIPs, there may be scenarios where one of the MIPs resides on the attack
path of the other (Fig. 1d) or a loop is formed due to a coordinated attack (Fig. 1e). In
such scenarios, the MIPs will experience congestion in both incoming local IP port
and incoming neighbor port. Upon VIP triggering, the localization process starts,
and final decisions are taken at each node based on the three scenarios. The steps
involved in the MIP localization algorithm are described as follows.

DoS Attack Models and Mitigation Frameworks for NoC-Based SoCs 591

Algorithm 1: MIP localization algorithm

1 MIP[]=Null; port_attacked[]=Null
2 Upon VIP trigger:
3 do in pipeline
4 foreach in_port from N,E,S,W direction do
5 /*Perceptron check congestion in current node*/
6 if in_port == attack then
7 Mark in_port as attack

8 do in pipeline
9 foreach neighbour in N,E,S,W direction do

10 /*Perceptron check congestion for its outgoing port towards current node*/
11 if out_port == attack then
12 Mark out_port as attack

13 if prob_model(in_port , out_port)==attack then
14 port_attacked += direction

15 if local_IP _port �= attack then
16 Forward probing packet

17 else
18 if port_attacked == Null then
19 MIP += Node_ID
20 Stop & return MIP

21 else
22 if Node_ID not traversed then
23 MIP += Node_ID
24 Forward probing packet

25 else
26 Stop & return MIP

27 Reset port_attacked

28 Goto next node with probing packet & Repeat from step 3

N=North, E=East, S=South, W=West

• At a current node, its local perceptron checks the congestion status of all the
incoming router port (steps 4–7). If the incoming neighbor port is congested
(in_port == attack), it is marked as under attack (steps 6–7). At the same
time, a signal is sent to the neighbor nodes to check the congestion status of their
outgoing port toward the current node.

• All the neighbor nodes check the congestion status on the corresponding output
port by using their locally residing perceptron hardware. If any neighbor node
finds its outgoing port congested (out_port == attack), it marks it as under
attack and communicates this information back to the current node (steps 9–12).
The perceptrons’ decisions of both current and neighbor nodes for each direction
are fed to the probabilistic model, which finally declares a router port as under
attack or non-attack scenario (steps 13–14).

592 M. Sinha et al.

• If the incoming local IP port of current node undergoes regular network activities
(local_IP_port �= attack), it indicates that the node is on the attack path and
not the attacker. In such scenarios, a probing packet is forwarded to the neighbor
node in the direction of the port under attack (steps 15–16).

• If the incoming local IP port is under attack and incoming neighbor ports undergo
regular activities, then the localization process stops and current Node_ID is
flagged as the MIP (steps 18–20).

• If both the incoming local IP port and neighbor ports are under attack, the
framework first checks if the current node is already traversed. If the current node
is not traversed before, the Node ID is stored in a probing packet and forwarded
to the neighbor node in the direction of the port under attack (steps 21–24). If
the current node is traversed before, it implies that Sniffer has encountered a
complete loop due to a coordinated attack by multiple MIPs. As a result, the
localization process stops and all the Node_IDs stored in the probing packet are
flagged as MIPs (step 26).

In the case of a single MIP or multiple MIPs with no closed loop, Sniffer stops
as soon as the probing packets flag the attackers. However, in the case where a
closed loop is encountered or the attack paths overlap, Sniffer extracts all the Node
IDs inserted in the probing packet and flags them as MIPs, which were creating a
coordinated attack. In scenarios where one MIP targets multiple VIPs, the MIP will
be localized by the probing packet that takes minimum time to reach the MIP node.
When the MIP gets localized, the probing packets generated from other VIPs do
not find any router port under attack and get dropped. Once localized, the operating
system shuts down all the MIPs to prevent any further attacks and the system is
restored to allow the legitimate IPs to undergo regular network activities.

3.2.3 Walk-Through Example

This section presents the MIP localization process of Sniffer with single/multiple
MIPs/VIPs that include different scenarios as shown in Fig. 1. The localization
process is first demonstrated using a walk-through example for a singleMIP and VIP
scenario. A transaction-level representation for the walk-through example with a 16-
node system is presented in Fig. 7. Later, the working of the framework works in the
presence of multiple MIPs/VIPs is described. Sniffer is able to work in conjunction
with any existing DoS attack detection methods where a system is flagged when
experiencing a flooding attack. To illustrate the localization process, an example
flooding-based DoS attack detection method presented in [6] is considered. After a
flooding attack is mounted on the system, one or more VIPs raise a flag indicating
that the system is under attack. Whenever an attack flag is raised, Sniffer starts the
MIP localization process from the VIPs that generate the attack flag.

Single MIP and VIP Figure 7.a shows the attack path through which an MIP
(Node 12) creates a flooding attack targeting a VIP node (Node 6). Node 6 flags
the system as under flooding attack and the localization process is initiated.

DoS Attack Models and Mitigation Frameworks for NoC-Based SoCs 593

Fig. 7 A walk-through example for MIP localization by Sniffer with an example attack scenario
(Node 12 = MIP, Node 6 = VIP)

• In Step 1 (Fig. 7b), Node 6 checks if its incoming port in the north direction is
congested or not using its locally residing perceptron model. At the same time, it
also sends a signal (chk_signal) to its immediate neighbor nodes (2, 7, 10, and 3)
to start the collective decision-making on the congestion status at each port.

• In Step 2 (Fig. 7c), after completing the congestion check at north direction, the
perceptron model at Node 6 checks its incoming port at the east direction for
congestion. The local perceptrons at Node 2, Node 7, Node 10, and Node 3 also
check the congestion status of their corresponding output ports in the direction
of the received chk_signal.

• In Step 3 (Fig. 7d), Node 6 subsequently makes a congestion check at its
incoming south port while Node 2, Node 7, Node 10, and Node 3 send their
computed congestion information (cng_info) back to Node 6.

• In Step 4 (Fig. 7e), Node 6 checks its incoming port in the west direction for
determining its congestion status. It is to be noted that Sniffer employs a single
perceptron hardware at each router node for low overhead implementation. So the
perceptron at the current node starts the checking of the congestion status of the
incoming ports one after another. There is no specific rule for the order in which
the ports need to be checked. For this example case, the checks on incoming
neighbor ports are done in N-E-S-W order.

• In Step 5 (Fig. 7f), Node 6 makes a congestion check at its incoming Local IP
port to determine if Node 6 is an attacker. After receiving all the congestion

594 M. Sinha et al.

check results from its local perceptron and neighbor nodes’ perceptrons, the
probabilistic models at Node 6 take the final decision for congestion at all its
incoming ports.

• If any of the incoming port is marked as under attack, a probing packet is
generated toward the node residing at the corresponding direction. In the example
scenario, Node 6 generates a probing packet for Node 10 as shown in Fig. 7g.
Once Node 10 receives the probing packet, it performs all the steps done at Node
6 (Steps 1–5) to check the congestion status of its incoming ports. Eventually, the
incoming south port of Node 10 is found to be congested, and the probing packet
is forwarded toward Node 14.

• Similarly, steps 1–5 are repeated at Node 14 and subsequently at Node 13 to find
the direction of the probing packet, as shown in Fig. 7h and i.

• As Node 12 receives the probing packet, it starts its congestion checks by
following steps 1–5, as shown in Fig. 7j. Since Node 12 is the only attacker node
in this example case, all its incoming neighbor ports will undergo regular network
activities, and its incoming local IP port will be congested. Hence, no probing
packet is generated, Sniffer flags Node 12 as an MIP node, and the localization
process stops (as indicated in Fig. 7k).

Multiple MIPs/VIPs Figure 1b–e show scenarios where multiple MIPs/VIPs
coexist within the system. Under such scenarios, multiple MIPs can target the same
or different VIPs to create a flooding-based DoS attack. They can also mount an
effective coordinated attack where multiple MIPs form a closed loop in the network.

In the case where multiple MIPs follow different attack paths to target different
VIPs, Sniffer parallelly starts the localization process from the corresponding VIP
nodes. A probing packet starts from each VIP node and follows all the steps
described in the walk-through example (Fig. 7). Each probing packet reaches the
corresponding MIP node by backtracking and traversing through all the nodes in
the attack path. In the case where the attack paths overlap (e.g., Fig. 1c and d), the
probing packets are merged and forwarded toward the corresponding node residing
at the direction of the congested port. In the case of a closed loop formed by multiple
MIPs (Fig. 1e), whenever any one of nodes flags the presence of an attack, Sniffer
starts the localization process and follows the steps shown in the walk-through
example. However, the probing packets might keep on traversing through the nodes
in a cycle as all the nodes will always find one of their incoming ports under attack.
To overcome this situation, Sniffer stores the Node IDs of the attacker nodes in
the probing packets. Whenever it encounters a node that is traversed before, Sniffer
identifies a loop and stops the localization process. It then marks all the Node IDs
stored in the probing packets as the MIPs. Therefore, Sniffer is able to successfully
localize multiple MIPs under different MIP/VIP placements and attack scenarios.

If the DoS attack is not handled timely, the network resources will quickly
get exhausted as the malicious IPs will keep on injecting frequent useless packets
into the network. If the network gets too congested due to the malicious injection
of packets, it creates a problem for the movement of probing packets, which is

DoS Attack Models and Mitigation Frameworks for NoC-Based SoCs 595

required for communicating between the network nodes and tracing back the attack
path. Typically, such scenarios are handled by the attack detection frameworks that
are responsible for timely detection of an attack scenario within the network. For
instance, our attack detection framework (presented in Sect. 3.1) proposed a two-
level attack detection. The first-level sanity check helps in timely attack detection
as well as lowering the overhead of frequent second-level ML invocation. The
use of hierarchical trace data collection for second-level ML detection was also
introduced to reduce further network overheads and help in seamless trace data
collection. By using such mechanisms for timely attack detection, the framework
reduces the possibility of further network degradation, which is also demonstrated
by the experimental results in Sect. 3.1.3. Once an ongoing attack is detected timely,
the Sniffer localization framework can start the localization process immediately.
Since the detection framework detects the attack before the network gets completely
clogged, the probing packets are able to move into the network and successfully
localize the malicious IPs. Therefore, in this work, we assume that the probing
packets will find free network resources to traverse through the localization path.
However, in a rare worst-case scenario, where the detection framework is not able
to detect a timely attack, the network resources can get completely clogged due
to severe and prolonged attack. To handle such a situation, we propose that the
network router will drop packets residing in a virtual channel of the corresponding
port, which is requested by the probing packet. This will allow a steady forwarding
of probing packets and provide efficient MIP localization.

3.3 Results and Analysis

This section discusses the experimental setup and evaluation of the MIP localization
framework. To evaluate the performance of Sniffer, a cycle-accurate network simu-
lator, Noxim [23], is employed. The system is tested using real-world heterogeneous
benchmarks from Rodinia [27] benchmark suite. All the application-level traces
are obtained from gem5-gpu [28] and fed to Noxim, which emulates the network
communication behavior. Table 4 summarizes the simulation setup and system
configurations.

Performance of Perceptron Model The performance of perceptrons in checking
the port congestion status is evaluated in terms of true positives (TP) and true
negatives (TN), i.e., correct classification of congestion status as attack and non-
attack, respectively, and false positives (FP) and false negatives (FN), i.e., incorrect
classification of congestion status as attack and non-attack, respectively. A higher
value of TP and TN indicates that the perceptrons can more accurately classify
the congestion status, whereas a lower FP and FN represents the robustness of the
classification results. Several MIP and VIP pairs with different placements for each
benchmark application are considered. Table 5 presents the perceptron accuracy
results (average accuracy among all the network nodes) for different benchmark

596 M. Sinha et al.

Table 4 System configuration and simulation setup

Component Configuration

Topology 8X8 2D mesh, XY routing, 1-cycle link latency

Router 5 I/O ports, 1 VCs per port, 4 flit VC buffer, 32 bit flits,
wormhole switching, 3-stage router, 2 flit packet

Processing cores 8×86 OOO CPU cores; 32 GPU cores

Memory 32KB private L1 cache, 256KB L2 cache, 8 L2 caches,
2MB L3 cache; 4GB DRAM

Workloads Rodinia benchmark suite: Backprop, Gaussian, Hotspot,
Kmeans, Lud, Mummergpu

Table 5 Performance of
perceptron model

Benchmarks TP (%) FP (%) TN (%) FN (%)

Backprop 98.33 1.71 98.28 1.66

Gaussian 98.32 1.73 98.26 1.68

Hotspot 98.35 1.69 98.30 1.65

Kmeans 98.36 1.69 98.31 1.63

Lud 98.34 1.72 98.27 1.65

Mummergpu 98.35 1.66 98.33 1.64

Average 98.35 1.70 98.30 1.65

Table 6 Performance of
MIP localization

Benchmarks Localization accuracy

Backprop 96.739%

Gaussian 96.691%

Hotspot 96.773%

Kmeans 96.789%

Lud 96.722 %

Mummergpu 96.808%

Average 96.754%

applications. As shown in the table, the perceptron model is able to provide high
accuracy with an average of 98.35% and 98.30% for TP and TN values, respectively.
The FP and FN values are also very less with an average of 1.70% and 1.65%,
respectively, across all benchmarks, signifying the robustness of the model. Hence,
the perceptron models trained with carefully selected features provide high accuracy
for localizing the MIPs.

Performance of MIP Localization In this section, the performance of Sniffer in
correctly localizing MIPs within the system is evaluated. Real-world heterogeneous
benchmarks from Rodinia benchmark suite [27] with multiple test cases are run.
All the test cases comprise of different MIP and VIP pairs along with various place-
ments of MIP and VIP nodes across the network. Multiple design considerations are
included in the framework such that it provides a stable performance across different
benchmarks. The node-level training, where each perceptron at a router node is
trained on data collected from different heterogeneous benchmarks, ensures that

DoS Attack Models and Mitigation Frameworks for NoC-Based SoCs 597

Table 7 Localization time in the presence of multiple MIPs

Localization time for
each (MIP, VIP) pair Final localization

Test cases Router pairs (MIP, VIP) (cycles) time (cycles)

2 MIPs & 2 VIPs (0, 14), (23, 42) 70, 80 80

2 MIPs & 1 VIP (24, 7), (56, 7) 100, 140 140

3 MIPs & 1 VIP (29, 22), (40, 22), (62, 22) 20, 50, 70 70

1 MIP & 2 VIPs (23, 6), (23, 48) 30, dropped 30

2 MIPs (coordinated (39, 1) coordinates with (50, 100) 100
attack)a (1, 39)
a Please refer to Sect. 3.2.3

each perceptron model gets a holistic view of various possible scenarios. Along with
a carefully designed training method, the probabilistic model for collective decision-
making strategy enhances the congestion checks at each router node, which further
improves the performance of Sniffer in MIP localization. Table 6 shows the MIP
localization accuracy of Sniffer for different benchmark applications. As given in the
table, Sniffer provides high localization accuracy of 96.754% on average. It is also
evident from the table that Sniffer is able to provide a consistent performance across
the benchmarks, which makes the framework robust across different applications.

MIP Localization Time The MIP localization time of Sniffer depends on the time
taken by the probing packet to traverse through the network nodes, starting from
the node at which the localization process is initiated (VIP) to the node at which
it is stopped (MIP), and the time taken for congestion checks at each node on the
localization path. Figure 8 shows the localization time of Sniffer across various
test cases, where each test case consists of a single MIP and VIP pair. As evident
from the figure, Sniffer is able to localize the MIPs in a timely manner across all
the test cases. The worst-case localization time for a 64-node system is found to
be as low as 150 cycles in the experimental evaluation. The efficiency of Sniffer
in localizing the MIPs in a timely manner is achieved primarily by the collective
decision of perceptrons and prioritized probing packet transmission. In large system
sizes, the search space for attack localization is vast, as there are a number of
possible network nodes that can be a potential attacker. The collective decision of
perceptrons significantly decreases the search space by allowing Sniffer to make
congestion checks with high accuracy at each step of localization. Hence, Sniffer
needs to traverse only through the nodes residing on the attack path and localize the
MIPs in a timely manner. Furthermore, Sniffer forwards the probing packets with
higher priority through the attack path, which leads to a faster MIP localization.
From Fig. 8, it is observed that the time required to localize an MIP varies across
different (MIP, VIP) pairs. The variations in the localization time are primarily
due to the varied distance between each MIP and VIP pair. The localization time
increases with the increase in hop distance between the MIP and VIP nodes, as
shown in Fig. 8.

598 M. Sinha et al.

Fig. 8 MIP localization time

The localization time of Sniffer in the presence of multiple MIPs and/or VIPs
is also analyzed. In the case where multiple MIPs target different VIPs present in
the system, the time taken to localize all the MIPs is the maximum localization
time across all the MIP and VIP pairs. In the case of a coordinated attack mounted
by multiple MIPs, which forms a closed loop within the network, the localization
time will depend on the time taken to complete one iteration of the loop and the
congestion checks at the corresponding network nodes. If the system contains only
one MIP that targets different VIPs, the total localization time will correspond to
the minimum time taken by any one of the probing packets generated from all the
VIPs to reach the MIP. This is because once the MIP is localized and the system is
restored, the probing packets generated from other VIPs do not find any congestion
in the router ports and get dropped. Table 7 shows the localization time for a
(MIP, VIP) pair for each test case and the final localization time in the presence
of multiple MIPs/VIPs. Here, a few illustrative test cases are shown, where each test
case comprises of different MIP and VIP pairs.

As evident from the table, in the case of multiple MIPs targeting different VIPs,
the final localization time corresponds to the maximum of the individual localization
time of the (MIP, VIP) pairs in each test case, whereas in a single MIP and multiple
VIP case, the probing packet with minimum hop distance localizes the MIP, and the
probing packets generated from other VIPs get dropped. Lastly, under a coordinated
attack1, the final localization time of all the MIPs is found to be the time required
to check one iteration of the closed loop under attack. For instance, a test case for
two MIPs, where Node 39 and Node 1 create a coordinated attack, is shown in
Table 7. In this case, Node 1 generates a probing packet, which traverses through
the localization path to reach Node 39 and then back to Node 1. When the probing
packet reaches Node 1, one iteration of the loop is completed and both the MIPs
get localized. Hence, the final localization time is the time taken to complete one
iteration of the loop, which is found to be 100 cycles in this case. In this scenario,

DoS Attack Models and Mitigation Frameworks for NoC-Based SoCs 599

Fig. 9 Benign packets transferred in different scenarios

Node 39 will also generate a probing packet, apart from Node 1. However, the
probing packet that will complete the loop first will localize both the MIPs.

Impact on Application Performance The network traffic is analyzed to under-
stand the impact of Sniffer’s localization process on applications running on the
SoC. The number of benign packets successfully transmitted to their destination
nodes are observed in three scenarios: (i) baseline system with no attack, (ii) system
under attack with no MIP localization method, and (iii) system under attack with
Sniffer deployed. To make a fair comparison, all the three scenarios are evaluated
for the same time interval across all benchmarks. In an attack scenario with no MIP
localization, as the network gets flooded with malicious packets, the applications
experience performance degradation due to significant packet loss. This is also
evident from Fig. 9, where the number of successfully transferred benign packets
reduce to almost half as compared to the non-attack baseline scenario. However, in
the third case, due to the presence of Sniffer, the system under attack gets restored
timely and prevents further packet loss. Hence, Sniffer reduces the effect of flooding
attack and curtails system performance degradation.

4 DoS Attack Detection and Localization in WNoC-Based
SoCs

With the evolution of CMOS compatible millimeter-wave wireless interconnects
[4], WNoC is emerged as a promising interconnect solution for the multicore
systems. The use of WNoC is proved to be beneficial not only for the system
performance gain [29] but also for faster debug [30], efficient cache coherence [31],

600 M. Sinha et al.

high performance CNN acceleration [32], etc. Major WNoC architectures adopt
single wireless channel for low overhead implementation [33]. All the hubs need
to share the same channel for data transmission and reception. A Channel Access
control Mechanism (CAM) performs the task of arbitration as well as allocation of
channel among all the wireless hubs. At a particular instant, the channel is assigned
to a specific hub for a fixed amount of access time, and thereby, the interference
and contention on the wireless medium are avoided. In such a scenario, a malicious
wireless hub can attack the CAM and hold the wireless channel in an unauthorized
manner to create network resource blocking-based DoS attack as discussed in
Sect. 2.2.

Traditional CAMs follow a token passing mechanism for the distribution of
channel access to wireless hubs in a controlled manner [29, 34]. In this method,
a token is circulated among all the existing wireless hubs and an associated WI gets
the access of the channel till the time token is with it. Most of the token passing
methods follow a fixed Round Robin arbitration and a timer-based approach [29],
where each hub gets the channel access for a predetermined fixed period of time.
For such conventional CAMs with static access pattern and time, a deviation in
arbitration or access time is clearly visible to the system, and detecting as well
as localizing a malicious hub is easy [19]. But to meet the stringent power and
performance needs of modern-day systems, a dynamic CAM is desired [35, 36].
However, a malicious hub can exploit the varying channel access pattern and time in
dynamic CAM to introduce vulnerability to the system. Moreover, such a dynamic
CAM can be controlled in a centralized [35] or decentralized manner [36]. A
centralized controller incurs significant overhead in transferring the control signals
till all the WIs. Furthermore, the whole system would malfunction, if the attacker
can intrude the centralized controller.

Decentralized method deploys simple controllers inside each of the wireless
hubs. Such a controller decides the channel access time of the corresponding
hub based on local load level [36]. Every wireless packet communication on
such network informs the source address and the channel access time of the
corresponding source WI to the remaining hubs using the broadcast capability of
the WNoC. The packet header flit as shown in Fig. 10 is modified by the controller
to embed the WI addresses and access time information. The Source WI and Access
Time in the header flit of a transmitted packet indicate who and when will get the
next access of the channel. Whenever a packet header is received by a hub, the
receiver checks for theDest WI, Source WI, and Access Time. If theDest WI matches
to its own address, then it starts receiving the payload of the packet. If the Source

Fig. 10 Packet format
transmitted over wireless
channel

DoS Attack Models and Mitigation Frameworks for NoC-Based SoCs 601

WI appears to be the address of the previous hub, then the hub interprets that it is
the next to get the access of the channel and it holds the token if the Access Time is
found to be zero.

This section particularly highlights the work done in [18] that adopts the decen-
tralized approach for wireless channel allocation, establishes a threat model for such
architecture, and finally reutilizes the same decentralized control infrastructure for
establishing the defense mechanism.

4.1 Possible Threat Model

In a decentralized CAM, if any local controller is corrupted by some means, then
the Source WI and Access Time information in packet header flit can be manipulated
to hold the channel in an unauthorized manner. Presence of a simple HT circuit can
easily be triggered to change the header flit values. Such flit manipulation can lead
to DoS or spoofing attack. These attacks would result in poor utilization of wireless
channel and would drive the victim hubs to starvation.

4.1.1 Attacks on WNoC CAM

The DoS on CAM refers to the unavailability of the wireless channel for a particular
wireless hub whenever the channel is used by another hub in an illegitimate way.
This can be done by a malicious hub by periodically changing its Access Time in the
header flit of the transmitting packets with an intention not to release the wireless
channel. The Access Time of the malignant hub would never be seen as zero, and the
next wireless hub waiting for the channel would be misguided that the previous node
has the rightful access of the channel. Another way of creating DoS is by changing
the source address of the packet being transmitted on the wireless channel during its
last access cycle. It can be done by a rough wireless hub by manipulating the Source
WI in the packet header flit as the source address of the previous hub. This would
mislead all the remaining hubs interpreting that the malicious one is the next to get
the access of the channel. This way, the malicious hub would continue to hold the
channel. In this case, since the malicious hub imitates as another hub to create the
DoS, it is called as a spoofing attack.

4.1.2 Trojan Attack Activation

Both DoS and spoofing attack scenarios can be triggered by a simple HT circuit
implanted inside the wireless hub as shown in Fig. 11. The circuit used is a
sequential Time-bomb Trojan [37]. Trojan Trigger takes the inputs from the Access
Time Register and generates the trigger signal when all bits of the register becomes
zero. Trojan Payload modifies the Load Enable (LEn) signal whenever there is a

602 M. Sinha et al.

Fig. 11 Time-bomb Trojan in the malicious hub

trigger. During the First Token Round (As discussed in Sect. 4.2.1), LEn signal in
each of the hubs gets activated to load the Access Time Register and Source WI
Register. Both these registers provide values to be updated in the corresponding
fields of packet header flit before transmission. The value in Access Time Register is
decremented based on the load release. The Trojan circuit exploits the decrement
nature of the Access Time Register to generate a Time-bomb Trigger during the
last channel access cycle of the corresponding hub in the Second Token Round.
The Payload circuit modifies the LEn to generate LEn

∗ that enables unauthorized
loading to either Access Time Register (LEnat

∗) leading to DoS attack or Source WI
Register (LEnswi

∗) leading to spoofing attack.

4.2 Security Countermeasures

The security countermeasures are established based on assigned access time and
actual access time values. The decentralized CAM adopts a ranking-based channel
allocation. Figure 12a demonstrates the architectural changes to the wireless hub
by introducing a distributed ranking-based channel access controller (DRCAC) in
WI and the security blocks such as Majority Voter and Flag Generator in network
interface (NI). The NI is assumed to be completely secured and free from attacks.
The NI also provides separate interfaces to the wired router (eNI) and to the WI
(wNI).

DoS Attack Models and Mitigation Frameworks for NoC-Based SoCs 603

Fig. 12 (a) Ranking mechanism and security architecture. (b) Ranking table. (c) Security flag
generation

4.2.1 Ranking Based CAM

For a wireless data transmission, the transceiver layer sends a request (R) to the
controller (DRCAC) for gaining the access of the channel. The controller grants (G)
the request whenever it gets the token, and the transceiver holds (H) the channel
till the time WI has the token with it. The token is circulated on the network based
on the ranking of the existing hubs. DRCAC implements the ranking mechanism
and ranking table as shown in Fig. 12a and b. During the First Token Round, each
WI broadcasts a packet with its access time value in a fixed Round Robin manner.
Access time is calculated by the local DRCAC based on the current load density
at the hub. At the end of the First Token Round, all the WIs have access time
information of all other WIs, which provides consistency of information throughout
the whole system and leads to coherent WI ranking computation. A WI Ranking
Table based on access time values is prepared by the local controller inside each of
the hubs as shown in Fig. 12b. The ranking is performed based on the descending
order of the access time values. In the Second Token Round, the token transfer
follows the ranking pattern in the ranking table. During the channel access by
a particular WI, the Source WI information is extracted from the header flit of
transmitted packet and is matched in the local ranking table to figure out who is
the next WI that will get the token. Moreover, the access time information in the

604 M. Sinha et al.

transmitted packet header indicates the amount of time remaining before the next
WI will be able to access the channel.

4.2.2 Attack Detection and Correction

Any malicious wireless hub can manipulate the Access Time or Source WI informa-
tion while transmitting a packet to hold the wireless channel in an unauthorized way
as discussed in Sect. 4.1. To deal with this, a distributed self-defense mechanism is
proposed that generates security flag based on access time of any WI as shown
in Fig. 12c. The mechanism works during runtime and takes a corrective action
whenever there is a violation between actual access duration by a WI and the
corresponding assigned access time in the ranking table. For an example case, a 64
node, 4WI, 2Dmesh NoC is considered, whose ranking table is shown in Fig. 12b. It
is assumed that WIp is a malicious hub. Whenever WIp holds the channel beyond
T1 by manipulating its Access Time, DoS security threat is detected by WIq (at
T 1 + 1 cycle) as shown in Fig. 12c. The DRCAC module in WIq requests its Flag
Generator to raise a DoS attack flag and sends the same to all other WIs over the
wired NoC paths. To make an unbiased attack detection and correction, a majority
voting mechanism is implemented in the NI module of each of the wireless hub.
The DoS attack flag is received by all other WI hubs present in the network and is
evaluated locally based on the Access Time information present in the local ranking
table. In case of a real violation, all other WIs would raise Support flags. All the flags
would travel on the wired NoC path till the NI of the malicious hub. The associated
Majority Voter module will collect all the flags and would disable the wNI if found
guilty. This leaves the node with only the wired router for data transfer and suspends
its wireless capability. In case of spoofing attack, the correction mechanism will
be same with a small difference in the detection mechanism. In this scenario, the
spoofing attack flag will be generated by WIq at T 1 + T 3 + T 4 + 1 cycle. This is
because at T 1 time, WIp would manipulate the packet source address (Source WI)
as WIs to confuse the other wireless hubs. While receiving the packet and matching
the source address, WIq would misinterpret that WIp is the next candidate to have
the token. So it would not generate the flag at T 1+1 cycle. To detect such scenarios,
the maximum possible idle time of a WI during a token round is considered. In this
case, when WIq would not get the flag within T 1 + T 3 + T 4 (maximum idle time
of WIq), it will raise a spoofing attack flag in the next cycle.

4.3 Experimental Setup and Results

The DoS and spoofing attacks discussed in this chapter degrade the system
performance drastically due to the underutilization of wireless medium. With the
proposed solution, the network blacklists the malicious WI and reconfigures the
wireless network with the available healthy wireless hubs. This helps the system

DoS Attack Models and Mitigation Frameworks for NoC-Based SoCs 605

regain its performance close to the completely healthy one. A 2D mesh WNoC of
size 8x8 nodes with 4 WIs is modeled on the network simulator Noxim [38]. An HT
is implemented by modifying the WI module. The simulation results are generated
by executing three synthetic applications and three workloads from SPLASH-2
benchmark suite [39]. Network traces for Noxim simulator is generated using a
full system simulator Graphite tool [40]. Network architecture and simulation setup
are shown in Table 8.

The experimental results are illustrated in Figs. 13 and 14. Simulations are
executed for three system architectures such as (i) baseline system with four healthy
hubs, (ii) malicious system with one attacked hub, and (iii) proposed reconfigured
system with three healthy hubs. Figure 13 represents the normalized average
wireless utilization, and Fig. 14 represents the normalized network throughput for
all the three system architectures. In case of an attacked system, the wireless channel
is captured by the malignant hub all the time leading to drastic reduction in wireless
utilization. By detecting and eliminating the malicious hub, the system regains a
considerably high wireless utilization, which is around 45% higher than the attacked
system (shown in Fig. 13). Due to the poor utilization of wireless channel, the whole
network throughput also gets affected during the attack. The proposed method
reconfigures the network with the available healthy hubs, and the wireless channel is
shared between them. This enables the system to achieve better network throughput,

Table 8 Network architecture and simulation setup

Component Configuration

Topology 8×8 2D Mesh WNoC, 4 wireless hubs, XY routing

Router 5 I/O ports, 1 I/O wireless port (for wireless hub), 8 flit
buffers, 8 flit packets, 32 bit flits

Wireless link 60 GHz carrier, 16 Gbps bandwidth

Workload SPLASH-2—Barnes, FFT, Radix

Synthetic—Random, Transpose, Butterfly

Fig. 13 Normalized average wireless utilization

606 M. Sinha et al.

Fig. 14 Normalized network throughput

which is around 11.3% larger than the attacked system. The presented technique
successfully detects the discussed DoS and spoofing attacks, and the suggested
modification shows significant improvement over the attacked system with a very
nominal hardware overhead. The associated overhead is due to the introduction of
local ranking module and the security modules. The additional circuitry designed
and synthesized in Synopsis design compiler with 65-nm technology-node occupies
only 0.0036mm2 of area with 0.13mW of power consumption, whereas the baseline
WI designed in 65-nm CMOS process acquires 0.3mm2 of area with 36.7mW of
power consumption [4]. Thus, the area and power overhead per WI is found to be
1.2% and 0.36%, respectively.

5 Conclusion and Future Work

This chapter provides an overview of the DoS attack detection and localization
frameworks for NoC-based SoCs. Along with the traditional systems with wired
NoCs, it also discusses the DoS attacks and mitigation techniques for emerging
interconnect architectures like wireless NoC-based systems. A detailed discussion
on state-of-the-art example frameworks is presented for both wired and wireless
NoC-based systems. These example frameworks mostly use sophisticated machine
learning algorithms to detect and localize malicious nodes within the system.

As a future research work, apart from the flooding-based DoS attacks through
the NoCs, the SoCs need to be prevented from DoS attacks through other shared
resources like memory subsystems, etc. Furthermore, due to the inherent nature of
NoCs, such systems can be vulnerable to other security attacks like spoofing, eaves-
dropping, packet tampering attacks, etc. Therefore, it is of the utmost importance
to develop frameworks to make a secure SoC environment that can address such
attacks and minimize application performance degradation.

DoS Attack Models and Mitigation Frameworks for NoC-Based SoCs 607

References

1. Shao, Y.S., Xi, S.L., Srinivasan, V., Wei, G.Y., Brooks, D.: Co-designing accelerators and SOC
interfaces using gem5-aladdin. In: 2016 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp. 1–12. IEEE, Piscataway (2016)

2. Sinha, M., Harsha, G.S., Bhattacharyya, P., Deb, S.: Design space optimization of shared
memory architecture in accelerator-rich systems. ACM Trans. Design Autom. Electron. Syst.
26(4), 1–31 (2021)

3. Benini, L., De Micheli, G.: Networks on chips: a new SOC paradigm. Computer 35(1), 70–78
(2002)

4. Deb, S., Chang, K., Yu, X., Sah, S.P., Cosic, M., Ganguly, A., Pande, P.P., Belzer, B., Heo,
D.: Design of an energy-efficient CMOS-compatible NoC architecture with millimeter-wave
wireless interconnects. IEEE Trans. Comput. 62(12), 2382–2396 (2012)

5. Shacham, A., Bergman, K., Carloni, L.P.: Photonic networks-on-chip for future generations of
chip multiprocessors. IEEE Trans. Comput. 57(9), 1246–1260 (2008)

6. Charles, S., Lyu, Y., Mishra, P.: Real-time detection and localization of dos attacks in NoC
based SoCs. In: 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE),
pp. 1160–1165. IEEE, Piscataway (2019)

7. Reddy, B.K., Singh, A.K., Biswas, D., Merrett, G.V., Al-Hashimi, B.M.: Inter-cluster thread-
to-core mapping and DVFS on heterogeneous multi-cores. IEEE Trans. Multi-Scale Comput.
Syst. 4(3), 369–382 (2017)

8. Iskandar, V., Salama, C., Taher, M.: Dynamic thread mapping for maximizing performance
in power-efficient multi-core systems. In: 2018 13th International Conference on Computer
Engineering and Systems (ICCES), pp. 230–235. IEEE (2018)

9. Attia, K.M., El-Hosseini, M.A., Ali, H.A.: Dynamic power management techniques in multi-
core architectures: a survey study. Ain Shams Eng. J. 8(3), 445–456 (2017)

10. JS, R., Ancajas, D.M., Chakraborty, K., Roy, S.: Runtime detection of a bandwidth denial
attack from a rogue network-on-chip. In: Proceedings of the 9th International Symposium on
Networks-on-Chip, pp. 1–8 (2015)

11. Sinha, M., Bhattacharyya, P., Rout, S.S., Prakriya, N.B., Deb, S.: Securing an accelerator-rich
system from flooding-based denial-of-service attacks. IEEE Trans. Emerg. Topics Comput.
10(2), 855–869 (2021)

12. Fiorin, L., Palermo, G., Silvano, C.: A security monitoring service for NoCs. In: Proceedings of
the 6th IEEE/ACM/IFIP international conference on Hardware/Software Codesign and System
Synthesis, pp. 197–202 (2008)

13. Sinha, M., Gupta, S., Rout, S.S., Deb, S.: Sniffer: a machine learning approach for dos attack
localization in NoC-based SoCs. IEEE J. Emerg. Sel. Topics Circuits Syst. 11(2), 278–291
(2021)

14. Charles, S., Lyu, Y., Mishra, P.: Real-time detection and localization of distributed dos attacks
in NoC-based SoCs. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 39(12), 4510–
4523 (2020)

15. Fang, D., Li, H., Han, J., Zeng, X.: Robustness analysis of mesh-based network-on-chip
architecture under flooding-based denial of service attacks. In: 2013 IEEE Eighth International
Conference on Networking, Architecture and Storage, pp. 178–186. IEEE, Piscataway (2013)

16. Ganguly, A., Ahmed, M.Y., Vidapalapati, A.: A denial-of-service resilient wireless NoC
architecture. In: Proceedings of the Great Lakes Symposium on VLSI, pp. 259–262 (2012)

17. Vashist, A., Keats, A., Dinakarrao, S.M.P., Ganguly, A.: Securing a wireless network-on-chip
against jamming-based denial-of-service and eavesdropping attacks. IEEE Trans. Very Large
Scale Integr. Syst. 27(12), 2781–2791 (2019)

18. Rout, S.S., Singh, A., Patil, S.B., Sinha, M., Deb, S.: Security threats in channel access
mechanism of wireless noc and efficient countermeasures. In: 2020 IEEE International
Symposium on Circuits and Systems (ISCAS), pp. 1–5. IEEE (2020)

608 M. Sinha et al.

19. Lebiednik, B., Abadal, S., Kwon, H, Krishna, T.: Architecting a secure wireless network-on-
chip. In: 2018 Twelfth IEEE/ACM International Symposium on Networks-on-Chip (NOCS),
pp. 1–8. IEEE, Piscataway (2018)

20. Boraten, T., DiTomaso, D., Kodi, A.K.: Secure model checkers for network-on-chip (NoC)
architectures. In: 2016 International Great Lakes Symposium on VLSI (GLSVLSI), pp. 45–
50. IEEE, Piscataway (2016)

21. Chaves, C.G., Azad, S.P., Hollstein, T., Sepúlveda, J.: Dos attack detection and path collision
localization in NoC-based MpsoC architectures. J. Low Power Electron. Appl. 9(1), 7 (2019)

22. Qian, Z., Juan, D.C., Bogdan, P., Tsui, C.Y., Marculescu, D., Marculescu, R.: A comprehensive
and accurate latency model for network-on-chip performance analysis. In: 2014 19th Asia and
South Pacific Design Automation Conference (ASP-DAC), pp. 323–328. IEEE, Piscataway
(2014)

23. Catania, V., Mineo, A., Monteleone, S., Palesi, M., Patti, D.: Noxim: an open, extensible
and cycle-accurate network on chip simulator. In: 2015 IEEE 26th International Conference
on Application-specific Systems, Architectures and Processors (ASAP), pp. 162–163. IEEE,
Piscataway (2015)

24. Reagen, B., Adolf, R., Shao, Y.S., Wei, G.Y., Brooks, D.: Machsuite: benchmarks for
accelerator design and customized architectures. In: 2014 IEEE International Symposium on
Workload Characterization (IISWC), pp. 110–119. IEEE, Piscataway (2014)

25. Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., Brown, R.B.: Mibench:
a free, commercially representative embedded benchmark suite. In: WWC-4. 2001 IEEE
International Workshop on Workload Characterization, 2001, pp. 3–14. IEEE, Piscataway
(2001)

26. Xu, W., Trappe, W., Zhang, Y., Wood, T.: The feasibility of launching and detecting jamming
attacks in wireless networks. In: Proceedings of the 6th ACM International Symposium on
Mobile Ad Hoc Networking and Computing, pp. 46–57 (2005)

27. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, S.H., Skadron, K.: Rodinia: a
benchmark suite for heterogeneous computing. In: 2009 IEEE international symposium on
workload characterization (IISWC), pp. 44–54. IEEE, Piscataway (2009)

28. Power, J., Hestness, J., Orr, M.S., Hill, M.D., Wood, D.A.: GEM5-GPU: a heterogeneous CPU-
GPU simulator. IEEE Comput. Archit. Lett. 14(1), 34–36 (2014)

29. Ganguly, A., Chang, K., Deb, S., Pande, P.P., Belzer, B., Teuscher, C.: Scalable hybrid wireless
network-on-chip architectures for multicore systems. IEEE Trans. Comput. 60(10), 1485–1502
(2010)

30. Rout, S.S., Deb, S., Basu, K.: Wind: an efficient post-silicon debug strategy for network-on-
chip. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst. 40(11), 2372–2385 (2021)

31. Franques, A., Kokolis, A., Abadal, S., Fernando, V., Misailovic, S., Torrellas, J.: Widir: a
wireless-enabled directory cache coherence protocol. In: 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA), pp. 304–317. IEEE, Piscataway (2021)

32. Sinha, M., Gade, S.H., Singh, W., Deb, S.: Data-flow aware CNN accelerator with hybrid
wireless interconnection. In: 2018 IEEE 29th International Conference on Application-specific
Systems, Architectures and Processors (ASAP), pp. 1–4. IEEE, Piscataway (2018)

33. Gade, S.H., Rout, S.S., Sinha, M., Mondal, H.K., Singh, W., Deb, S.: A utilization aware robust
channel access mechanism for wireless NoCs. In: 2018 IEEE International Symposium on
Circuits and Systems (ISCAS), pp. 1–5. IEEE, Piscataway (2018)

34. Kumar, A., Peh, L.S., Jha, N.K.: Token flow control. In: 2008 41st IEEE/ACM International
Symposium on Microarchitecture, pp. 342–353. IEEE, Piscataway (2008)

35. Palesi, M., Collotta, M., Mineo, A., Catania, V.: An efficient radio access control mechanism
for wireless network-on-chip architectures. J Low Power Electron. Appl. 5(2), 38–56 (2015)

36. Rout, S.S., Chaudhari, V.I., Patil, S.B., Deb, S.: Rcas: critical load based ranking for efficient
channel allocation in wireless NoC. In: 2019 32nd IEEE International System-on-Chip
Conference (SOCC), pp. 21–26. IEEE, Piscataway (2019)

37. Chakraborty, R.S., Narasimhan, S., Bhunia, S.: Hardware trojan: threats and emerging
solutions. In: 2009 IEEE International High Level Design Validation and Test Workshop, pp.
166–171. IEEE, Piscataway (2009)

DoS Attack Models and Mitigation Frameworks for NoC-Based SoCs 609

38. Catania, V., Mineo, A., Monteleone, S., Palesi, M., Patti, D.: Cycle-accurate network on chip
simulation with noxim. ACM Trans. Model. Comput. Simul. 27(1), 4 (2016)

39. Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A.: The splash-2 programs: characteriza-
tion and methodological considerations. ACM SIGARCH Comput. Archit. News 23(2), 24–36
(1995)

40. Miller, J.E., Kasture, H., Kurian, G., Gruenwald, C., Beckmann, N., Celio, C., Eastep, J.,
Agarwal, A.: Graphite: A distributed parallel simulator for multicores. In: HPCA-16 2010 the
Sixteenth International Symposium on High-Performance Computer Architecture, pp. 1–12.
IEEE, Piscataway (2010)

Defense against Security Threats
with Regard to SoC Life Cycle

Usha Mehta and Jayesh Popat

1 Motivation

We are accompanied by billions of computational devices (such as secured encryp-
tion devices, IoT devices, etc.) in our daily lives. They are used mainly for
collecting, monitoring, and understanding some of our private data, including sleep,
place, and network of relationships. The new study estimates that approximately
50 billion “smart” and “connected” hardware devices will be in use by 2021,
according to Cisco. These devices produce, process, and share a substantial amount
of confidential details and information (which are referred to as “security assets” or
“assets”).

System-on-chip (SoC) architecture is responsible for the main computational
tasks of these hardware devices. The SoC integrates the different components of
a hardware device, such as processing units, memory, secondary storage, and I/O
ports in a single integrated circuit. The SoC normally includes multiple secure
components and confidential information (like encryption keys, software keys,
digital rights management credentials, and config bits) that are required to be
shielded from attackers [1].

Typically, hardware systems were deemed stable, trustworthy, and confidential,
whereas software components (such as operating systems, programs, and/or user
applications) were designed and developed on top of them. But hardware systems
should no longer be regarded as trustworthy anymore nowadays since state-of-the-
art research practices [2, 3] show that hardware systems are vulnerable against
security threats. Hence, the security of the hardware system toward such threats
is utmost needed.

U. Mehta (�) · J. Popat
Institute of Technology, Nirma University, Ahmedabad, India
e-mail: usha.mehta@nirmauni.ac.in

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Iranmanesh (ed.), Frontiers of Quality Electronic Design (QED),
https://doi.org/10.1007/978-3-031-16344-9_16

611

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16344-9_16&domain=pdf

 885 56845 a 885 56845
a

mailto:usha.mehta@nirmauni.ac.in

 -2016 61494 a -2016
61494 a

https://doi.org/10.1007/978-3-031-16344-9_16

612 U. Mehta and J. Popat

Fig. 1 Hardware security threats from multiple stages of SoC life cycle

2 Security Threats with Regard to SoC Life Cycle
and Supply Chain

Several important problems are involved in securing the modern computing system.
The first problem is the highly complex architecture of the SoC. System-on-chip
(SoC) are most often built using the integration of predesigned hardware or software
blocks (also known as intellectual properties (IPs)) that are linked together by
communication protocols. The IPs are well-engineered blocks with high complexity
and power, performance, and area efficient. The on-chip communication fabric is
adding one more layer to complexity. Finally, more security-critical devices are
incorporated in the SoC architecture, and the access of such devices is controlled
by the complicated security protocols.

The protocols are developed by system architects and various SoC integration
teams, and their specifications are refined and modified during the system design
phase. It is therefore more difficult to build the on-chip security measure that
thwart the unwanted entry or evolving security measure specifications specifically
on demand of customer requirements.

Another source of the challenge is the life cycle and supply chain involved in
the development of a modern computing device. Figure 1 illustrates the SoC life
cycle, different hardware attacks, and the threats caused by attacks. However, the
fast globalization of the SoC design, manufacturing, and supply process makes
it more vulnerable to different security threats. The third-party predesigned IPs
are widely used in this process, and the demand for the IPs has reached over
2.1 billion [4]. As the technology advanced by following Moore’s law, the IPs and
SoC integration process are becoming more and more complex. So it makes the
SoC design process highly dependent on the IPs from third-party vendors for their
integrities by considering them as a black box. It concerns about overall system
security.

Defense against Security Threats with Regard to SoC Life Cycle 613

An attacker involved in the IP design may modify the design with malicious
intentions or incorporate a hidden backdoor in the design. Further, the robust IP
validation may not be ensured by small IP suppliers due to high time-to-market
pressure. Moreover, the DfT (design-for-test) and DfD (design-for-debug) structures
are incorporated during this SoC design process to ensure quality testing after
fabrication. The attacker at the design house may exploit such test and debug
interfaces or side channels like power/timing information to leak secret data from
the security-critical IPs [5].

The SoC designs have become so much complex that design houses need to work
with many parties to fulfill all the requirements of the market. Examples of different
partners are third-party IP vendors; EDA tool developers, standard cell library, and
designers. The EDA tools are used to optimize the design for power, area, and
performance. These optimizations may lead to new threats [6]. A rogue designer can
compromise the integrity of SoC design by inserting malicious hardware Trojan.
The SoC design is outsourced to an untrusted partner for DfT insertion; these
untrusted partners may reverse engineer the netlist and poses the threat of IP piracy.

Many SoC design houses have nowadays become fabless and outsourcing the
designs to overseas untrusted foundries for fabrication. This is a serious concern
in terms of design security since the foundry has full command over the entire
design. It may lead to piracy, overproduction and cloning of the design or IP blocks.
There is also a chance of implantation of a malicious hardware Trojan in the design
which is used for tampering the design to work as a backdoor or compromise
structural/functional parameters of a system.

After deployment, the hardware system is also attacked by exploiting existing
test/debug infrastructure or noninvasive side channels to leak the secret data or
magnetic field fault attacks for tampering the memory values to cause malfunction
or DoS (denial-of-service).

Considering all of the above attacks on hardware, the roots of security and trust
seem to be violated in modern computing portable devices. Hardware security refers
to the security problems related to the underlying hardware. These hardware security
and trust issues have drawn the attention of the researcher community [3, 7, 8].
The recent proposed solutions mainly focus on the information leakage from the
cryptographic engine (security-critical IPs), Trojan attacks, and counterfeit IPs.

In this book chapter, we show various threat and attack models for SoC designs
as well as their Ips, and we discuss several countermeasures approaches to address
various security vulnerabilities in them.

The outline of this chapter is as follows. Section 2 presents the source of
hardware security attacks at different stages of an SoC life cycle. Then, we review
four threat models associated with the hardware security: side-channel attack
(SCA), fault injection attacks, test infrastructure-based attacks, and hardware Trojan
(HT) insertion in Sect. 3. Finally, Section 4 will cover the defense against those
security threats, respectively.

614 U. Mehta and J. Popat

3 Sources of Attacks in SoCs

Security issues may be applied during the SoC design and production phase. Prior
to manufacturing, there are three main sources of threats: (1) design flaws, dishonest
employee, and 3rd party IP cores from an untrusted facility; (2) unreliable EDA tools
used for design and synthesis purpose; and (3) untrusted partners of the outsourced
design for DfT and DfD insertion. During and post-manufacturing, the threats may
be introduced by (1) untrusted fabrication facility and (2) invasive and side-channel
attacks after shipping of the SoC. We have listed the sources of attacks in SoCs at
different stages as follows.

3.1 Design Stage

The SoC design stage begins with outlining the specification in the natural as well as
high-level languages. Then, they are converted into RTL with hardware description
languages. Over the years, the complete SoC is designed in-house. However, the
incorporation of IP cores from different vendors and outsourcing certain modules of
the SoC to untrusted parties has become a trend in the SoC design due to the high
time-to-market pressure and the sheer complexity of SoC.

The main source of attack may come from third-party IP cores. They may
have already introduced vulnerabilities to compromise the SoC security. These
vulnerabilities cause the malfunctioning of SoC design and ultimately used for
leakage of confidential details to the attacker. These vulnerabilities may be instituted
by unreliable designers (insiders). Since they have absolute visibility and control
of the design description files, insider attacks are especially harmful. Furthermore,
the SoC IP cores may also be heisted during the design phase. Stolen intellectual
property would result in a forfeit of copyright for the IP vendor along with
illegitimate production of the design instances. In addition, it will assist to discover
known design flaws together with new means to assault the SoC.

3.2 Synthesis RTL to Layout

After completion of SoC architectural design and incorporation of IPs at RTL, the
design must be synthesized. Various EDA tools [9, 10] can be used to conduct the
synthesis procedure. While carrying out the lower abstraction level transformation,
the tools are only bounded toward execution time, area and power consumption,
and ignoring the security. During design optimization, EDA tools can introduce
unintended security flaws. For instance, when performing the optimization of the
controller architecture, the tool can add new don’t care states to the existing Finite
State Machine (FSM). The hypothesis is that the newly introduced states are not

Defense against Security Threats with Regard to SoC Life Cycle 615

approachable from any other states, and the design functionality is not influenced by
them. Recent findings, however, indicate that these vulnerabilities can be triggered
by injections of faults [6, 11]. With the condition that the newly introduced states
are linked with secured states of the design, then an attacker would be able to insert
the faults to reach to don’t care states along with secured states unauthentically.

Synthesized netlist must be translated into transistor-level netlist with the help of
a standard-cell library. More often, these two (gate and transistor-level) netlists are
outsourced to unreliable parties for activities like DFT incorporation, clock-tree syn-
thesis, or placement and routing. Those parties can introduce extra gates/transistors
to the netlist or alter the routing of the layout, resulting in the implantation of
the malicious feature. Furthermore, it is possible to produce IP infringement, fake
products, and copyright issues with the help of reverse-engineering the netlist.

3.3 Fabrication and Manufacturing

Once the layout is completed, it is submitted to an overseas fabrication facility
to manufacture the SoC. Design houses ship their design to unreliable foundries
because of the more expensive in-house manufacturing. An intruder in the fab-
rication facility may introduce harmful features within the SoC. IP infringement,
cloning, recycling, or copyright issues may take place at the untrusted fabrication
facility. The untrusted fabrication facility may not follow the terms and conditions
specified in the agreement and can overproduce the chips to generate more revenue
by supplying them illegally.

3.4 In-Field Attacks

Once the chip is shipped and functionally working in-field, there are still chances
for different kinds of attacks. Trojan can be triggered and execute its planned attack
or failure if it was introduced during the design or fabrication phase. There are
various ways to trigger malfunction by introducing the fault in the chip (such as
clock glitches, underpowering, heating or laser beam, etc.). The intruder may exploit
noninvasive side channels to observe the device characteristics (such as execution
time of operation, power consumption, EM radiation, etc.) and retrieve confidential
details. Furthermore, the adversary with advanced equipment can remove the
package and take high-quality images of the chip to perform an invasive attack to
obtain the design details which leads to cloning and infringement of IP.

Moreover, the secret keys (stored inside read-only memory) are retrieved by
probing the internal signals. Finally, the system with recycled chips is not trust-
worthy as they may have faults (might have failed in some tests).

616 U. Mehta and J. Popat

Hence, it is significant to establish the reliability of the SoC which can be
achieved through security verification and correction at each stage of the SoC life
cycle.

4 Threat Model

Various threat models that can affect the security of SoC are discussed in the present
section.

Figure 2 shows that system vulnerabilities comprise the highest percentage
of hardware as well as software vulnerabilities that endanger the SoC security
[11]. Discovering these vulnerabilities is exceptionally difficult because they are
deceptive and hidden in nature. There are mainly four classes of attacks that cause
such threat models and vulnerabilities in the SoC. They are as follows:

• Hardware Trojan attacks
• Side-channel attacks
• Fault injection attacks
• Test-infrastructure-based attacks

It is of utmost importance to defend against these attacks to ensure the security
of the SoC. In the following subsection, we presented details of the abovementioned
attacks.

4.1 Hardware Trojan Attacks

The hardware Trojans are referred to as malicious modifications made during the
design or fabrication process by the insertion of malicious circuitry. Hence, the ICs

Unkown
11%

Other
9%

Software
Only
37%

Hardware +
Software

43%

Electronic System
Vulnerabilities Hardware plus Software

Vulnerabilities

Information
Leakage

Resource
Management

Permission,
Privileges, and

Access

Buffer Error

Numeric
Errors

Crypto Errors
Code Injection

Fig. 2 Various categories of hardware and software vulnerability in an electronic system [11]

Defense against Security Threats with Regard to SoC Life Cycle 617

Wafer

Third-party

IP Tools
Std.
Cells Models

Specifications

Trusted

Untrusted

Either

Design Fab Interface Mask

Wafer
Probe

Dice and
Package

Package
Test

Deploy
and

Monitor

Fab

Offshore

Fig. 3 DARPA’s model of hardware security Threats [12]

may include hidden functions that work in rare conditions that are called “hardware
Trojan.” They are located in low controllability and observability positions [12–15].
So they are inactive most of the time and are triggered under very rare conditions
at the internal nodes. Such alteration to the functionality of the chip may lead to
disabling the entire chip, financial theft, or security vulnerabilities [12–14]. The US
Military has published evidence of such malicious Trojans in ICs recently [15–17].

In the era of complex SoC designs and short time-to-market, third-party IP cores
play a vital role in the VLSI industry. The SoC designs have become so much
complex that fabless design houses need to work with many parties to fulfill all
the requirements of the market. Examples of different partners are third-party IP
vendors, CAD tool developers, standard cell library, hardware models, and overseas
manufacturing facilities [12]. Therefore, hardware Trojans may be inserted during
any step of the SoC design and development cycle process as illustrated in Fig. 3.

Hence, there is the utmost need for detecting, preventing, or tolerating such
undesirable malicious changes in the chip. The discovery of hardware Trojan is
feasible during pre-silicon verification, physical verification, or post-silicon testing
[18].

However, pre-silicon verification is definitely not a decent decision for hardware
Trojan discovery since there is a requirement for a golden model which is
commonly not available in IP core-based SoCs. The thorough verification design
isn’t achievable too [18]. Further, the customary test and validation techniques don’t
work consistently for the detection of hardware Trojan as they are meant to check
the functional hardware only, not the additional functionality meant for harmful
activities.

After fabrication, the hardware Trojan can be detected using a destructive or
nondestructive approach. The destructive technique involves reverse engineering
of IC, while the nondestructive is carried out by verifying IC’s function with a
golden model. Destructive approaches are less recommended since the possibility
of inserting a Trojan may be in a small population of ICs and they are expensive too
[12].

618 U. Mehta and J. Popat

Fig. 4 Trojan taxonomy based on activation mechanism (trigger) and malicious effect (payload)

The attacker may embed the Trojan in the circuit so that it tends to be hard
to detect such Trojan through the post-silicon test. To achieve such a situation,
the triggering or activation of Trojan is only possible under very rare conditions.
Hence, the erroneous output is only produced under the sequence of multiple
rare conditions. The malfunctioning output node is referred to as a payload node.
Hardware Trojans are categorized by trigger and payload approaches [19, 20] as
shown in Fig. 4.

The trigger method is classified into two types: digital and analog. Digital
triggering can be done in two ways: combinational trigger or sequential trigger.
During combinational trigger, the rare triggering condition on the trigger node will
produce an erroneous output value on the payload node.

While in the case of the sequential trigger, the erroneous output value is produced
by sequentially applying rare node conditions multiple times to trigger the node
synchronously or asynchronously. While in the case of digital payload Trojans, the
circuit node may be affected and produce wrong value, or tampering in the memory
data may happened. Analog payload Trojans are in the form of pull-up resistor or
pull-down capacitor. They don’t target changing the circuit functionality. However,
they may change analog parameters of circuits like power, noise, and delay. Some
of them may focus on increasing switching activity, and hence, the aging of the
chip speeds up without modifying the functionality of the chip. The other types
of payload Trojans include information leakage and denial of service [21–24].
Information Leakage involves the leaking of confidential and sensitive information
through radio signals. The denial-of-service attack will not allow users to access
their system functionality. In [2], the author compares the hardware Trojans based on
their area overhead and activation probability. Trojans can be inserted into hardware
design using various ways as listed below:

Defense against Security Threats with Regard to SoC Life Cycle 619

Fig. 5 (a) A combinational Trojan that can be triggered using rare condition a = 1 and b = 0. (b)
A sequential Trojan that is triggered when rare condition a = 1 and b = 0 happens 2N times, where
N is the length of the counter [25]

• Rare nodes: An intelligent attacker can make the malicious circuit (Trojan) to be
activated under very rare input condition at the internal nodes [25]. So, the trojan
can remain hidden as much as possible unless specified input condition is met. As
illustrated in Fig. 5a, the combinational Trojan can be activated by applying very
rare input condition (a = 1 and b = 0). Contrarily, Fig. 1.5b depicts sequential
Trojan which is activated only if the N-bit counter goes beyond the last counting
value. So, it required to apply rare input condition (a = 1 and b = 0) 2N times to
activate the Trojan.

• Rare branches: The attacker may add Trojans in the RTL design in such a way
that it is concealed in the rare branch and concurrent assign statements. Or else
they may get detected using random constraint verification method.

• Gate misplacement: An attacker may replace the gate in the netlist which results
in variation in the design and alter the specified function of the design. Further,
this attack can cause the bit-change in the response as compared to golden
response, and it results in the security vulnerability since there may be unwanted
switching to secured states, false outputs, and DOS (denial-of-service). These
attacks have very less impact on the physical features such as area and power. So,
they are not easily identified through review of the design and random constraint
verification.

4.2 Side-Channel Attacks

These attacks are called noninvasive attacks. They are commonly performed on
data picked up from the secondary interfaces/side-channels of the crypto-device like
electromagnetic radiation, execution time, and power consumption.

These attacks are performed to gain more information about design and be able
to attack. For example, an attacker can guess some internal values or secret keys

620 U. Mehta and J. Popat

by measuring the execution time of various computations (note that “0” or “1”
bits in a register can initiate different operations) [26]. Extracting side-channel
information may require some knowledge about the internal structure of the design.
However, some of these attacks such as differential power side-channel attacks [27]
are black-box attacks. Unfortunately, side-channel analysis has a common issue,
i.e., the sensitivity of side-channel signatures is susceptible to thermal and process
variations. Therefore, the success of these attacks is determined by the quality and
precision of equipment that is used for measurement.

Power-side channel attacks use the amount of power consumption and tran-
sient/dynamic current leakage to attack the design. A device like an oscilloscope
can be used to collect power traces, and those traces are statistically analyzed
using correlation analysis to derive secret information of the design. The different
types of power analysis-based attacks include simple power analysis (SPA) [27],
differential power analysis (DPA) [27], and correlation power analysis (CPA)
[28, 29]. Therefore, it is very important to develop automated security validation
methods that can identify power side-channel leakage. We need to detect the parts of
a design that is responsible for power side-channel leakage in an automated fashion.

Two different types of EM analysis-based attacks are reported: simple elec-
tromagnetic analysis (SEMA) and differential electromagnetic analysis (DEMA).
There are certain differences between power analysis and EM analysis-based
attacks. Power analysis just uses the power dissipation of circuits, while EM analysis
essentially centers around antenna placement on the device. Usually, the attacker,
who performs the EM attacks, remains far from the device. For instance, amplitude
demodulators are available at a very long distance from the circuit and still capable
of performing the attack [30, 31].

4.3 Fault Injection Attacks

Many secured SoCs that execute specific cryptographic operations are typically
believed to work securely while they are being used, and we never care of asking
how the reliability of those operations relies on the trustworthiness of those SoCs
that execute them. Despite this belief, hardware faults that occur in the time of the
function of an SoC with crypto hardware have been seen to significantly affect the
reliability. These defective behaviors or outputs can even be essential side channels
and can significantly improve the sensitivity of a cipher to cryptanalysis. Fault
attacks against encrypted hardware systems such as smart cards pose realistic and
successful threats. Hence, we concentrate primarily here on the fault attacks on
hardware systems.

The fault injection techniques that have been developed in order to alter mali-
ciously the correct functioning of a computing device currently include variations
in the power supply voltage level, injection of irregularities in the clock signal,
radiation or electromagnetic (EM) disturbances, overheating the device, or exposing
it to intense light.

Defense against Security Threats with Regard to SoC Life Cycle 621

Change in power supply, inducing accurate timing power spikes in the power
supply or rise in temperature [32–34], will cause the transient fault to be injected.
This fault will produce a single-bit error at the beginning and a multi-bit error as the
power supply goes down further. This technique is applied to ARM9 processor IC
[35, 36] and small ASIC of crypto devices [37, 38].

Wrong data bytes are stored in the memory by the processor by forcing it to
process the next instruction in the earlier clock cycle [39, 40]. This is achieved by
tampering the circuit clock signal with the help of external clock generator.

The crypto-chip may be subjected to high-energy optical sources such as a UV
laser beam or a camera photo flash [41]. This way the chip can conduct or alter the
logic state stored in the memory. Bit flipping is also possible by inducing EM field
which causes eddy current to flow in the crypto-chip [42, 43].

For fault injection attacks, the adversary should have physical access to the
device. Setup time violations can be performed by different fault injection methods.
The main objective of the fault injection attack is to malfunction or tamper data
stored in the memory.

4.4 Test-Infrastructure-Based Attacks

Integrated circuits are tested after fabrication for manufacturing defects to ensure
high product quality. However, in current generation nanometer IC design and fabri-
cation technology, ICs are incorporated with DFT (design-for-test) infrastructure so
that it is quite easy to test the IC with high fault coverage and have diagnostic facility
after fabrication. This is true for crypto-chips as well. The scan-chain insertion,
built-in self-test, test compressors, etc. are the regular DFT features of any complex
integrated circuit. The attack makes the benefit of such available test hardware to
uncover the secret of crypto-devices.

Attack Principle
To bypass the chip’s security, the scan-chain architecture may be exploited. Many
of the scan flops contain chip’s secret data while performing encryption algorithms.
The attacker attacks the scan flops which store output from the encryption algo-
rithm’s interim operations. A scan-based attack uses the chip’s PI/PO (primary input
or output) and the SI/SO (scan in or scan out) easily accessible pins to retrieve the
private key. This attack is carried out by applying differential cryptanalysis on AES
cipher [44, 45].

There are mainly two types of test infrastructure-based attacks: (1) differential
scan attack and (2) test-mode-only attack.

Attack Assumptions
Scan attack is carried out upon consideration of the following assumptions:

• The attacker has control over SE (scan-enable) pin or can access test infrastruc-
ture (scan-chains) using JTAG.

622 U. Mehta and J. Popat

• The attacker is aware of the AES crypto algorithm.
• The execution time of the desired operation of the crypto algorithm is in the

knowledge of the attacker. Thus, he can execute only one round of AES operation
in normal mode before switching it to test mode.

• Although being aware of DFT structure (scan chains, space compaction/time
compaction) implemented in the AES circuits, the attacker cannot have knowl-
edge about detailed hardware implementation such as the number of scan-chains,
test compression ratio, etc.

• The scan chain does not include the registers holding the secret key of the AES
crypto circuit.

4.4.1 Differential Scan Attack (DSA)

This is a traditional scan-based attack. The attacker may exploit the test infras-
tructure of the AES cipher. As mentioned in Chap. 1, the scan-based AES cipher
includes the round register in the scan path. Hence, the attacker can observe the
content of the round register by changing the cipher from functional mode to test
mode. It leads to retrieval of secret keys although it is not part of the scan-chain
[44–49].

Once the crypto-chip is fabricated, the intruder can operate the cipher with
desired plaintext in mission-mode for quite a few cycles; changing it to test mode,
he can scan out the result of the round register. The round register holds the interim
output of the cipher operation. The intruder will then view the interim outputs of
the crypto-chip and evaluate differential crypt-analysis on the findings to extract the
hidden key.

The attack [44] is divided into two parts: (1) determining the scan-chain structure
by identifying the bits of the round register and (2) retrieving the secret key.

1. The procedure to identify the round register bits in the scanned out response is as
follows.

(a) Rerun step 1 by inputting other plaintext with 1-bit XOR difference than
previous plaintext and generating the scan-out response corresponding to
current plaint text. This is termed as response f2 as illustrated in Fig. 6.

(b) Calculate the XOR difference of these two responses f1 and f2. The flops
corresponding to the round register will have the value “1” in XOR difference
output.

(c) The second and third steps need to be repeated until all the round register
flops are recognized.

These steps are required to find out each word of round registers in the scan-
out response. A single-bit difference in the input plaintext changes one word as
per the MixColumn operation.

Defense against Security Threats with Regard to SoC Life Cycle 623

Fig. 6 Application of first plaintext during DSA

2. The second part of the attack is to retrieve the secrete key. The differential
property of AES cipher is exploited by the intruder. In order to perform this,
the intruder input all possible plaintext pairs with a single-bit difference in the
LSB of any byte and generating the corresponding output pairs. The intruder can
observe the unique hamming distance (HD) in just four-output-pair differences.
The unique HD means it is produced by unique SubBytes inputs.

As illustrated in Fig. 7, the four unique HDs are 9, 12, 23, and 24. Hence, to
recover the secret key, the intruder inputs every possible 128 plaintext pairs. These
pairs are having a 1-bit difference in the LSB of a specific byte in the plaintext. Next,
the intruder notices the HD in the generated round register response. The unique
SubBytes inputs are determined to form a unique HD captured in the corresponding
scan-out response pairs. As shown in Fig. 7, the SubBytes pairs are (b1, b1 XOR 1)
for unique HDs.

Hence, the two secret key bytes can be guessed by only XORing applied plaintext
with corresponding SubBytes input pair as per the architecture of AES cipher.
Continue this process to find out for all potential key bytes. In this way, it is possible
to disclose the whole secret key. In this scenario, the intruder will retrieve two
possible key byte values for each input plaintext byte. So, the intruder at the end
will have in total 216 secret keys, and each one is 128-bit long. It is needed to apply
this key with plaintext and observed the ciphertext in each case which is much
fewer computations than applying all possible key bit combinations (2128) using
brute force attack. To perform this attack, the intruder may apply 128 × 16 = 2048
plaintext in the worst-case scenario. The entire 128-bit of the secret key of AES
cipher is normally retrieved by applying a total of 544 plaintexts.

624 U. Mehta and J. Popat

Fig. 7 Hamming Distance to consider during DSA [44, 45]

The above demonstrated scan attack can be successfully mounted on more
complex scan chain structures. The authors in [45–49] further extended the attack
algorithm used in [44] to mount an attack on advanced DfT architecture with feature
like test decompression, mask decoder, and response compactors.

4.4.2 Test-Mode-Only (TMO) Attack

The mentioned DSA may be carried out if the intruder may switch the circuit
from mission to test mode and vice versa. This is why countermeasures focused on
resetting the scan chains when the circuit is shifted from the test mode to practical
mode have been established. The author [50, 51] proposed a thoroughly checked
scan assault on AES. It is known as TMO since the AES inputs are placed in the
test mode through the chip inputs and the value of the round register is observed.
This is seen in Fig. 8. The attacker is allowed to use only the highlighted blue
and green operations in this attack. This is developed to overcome the mode reset
countermeasures [52].

Attack Assumptions
Along with the assumptions of the DSA, the TMO is carried out upon consideration
of the following assumptions.

• The attack performed by considering the user key, which is embedded on-chip or
saved in memory.

• A reset can be achieved by clearing the content of the round counter which forces
to run the cipher again from the first round.

Defense against Security Threats with Regard to SoC Life Cycle 625

Fig. 8 Test-mode-only attack operations [50]

Hardware A�acks

Hardware
Trojan A�ack

Causes security
breaches, financial

the	 or malfunc�on of
IC

Fault A�ack

Used for
malfunc�oning of chip/

Tampering memory
data

Side-channel
A�ack

Requires costly source
and measuring

equipment to leak secret
of crypto-hardware

Test
infrastructure-
based A�ack

Do not require high end
equipment and aim to

retrieve secret of crypto-
hardware

Fig. 9 Implementation attacks on crypto hardware

The DSA and TMO attacks can be mounted on different DFT architecture of
AES [53–55].

Different hardware attacks and their properties are illustrated in Fig. 9. The
hardware Trojans are referred to as malicious modifications made during design
or fabrication process by insertion of malicious circuitry. This type of attack causes
the threat of security breach, financial theft, and malfunctioning of SoCs. The side-
channel attacks require the costly source and measuring equipment.

Some of the fault attacks have been deemed practically not possible due to the
highly accurate timing requirement of the fault injection and the rigid requirement
on the position of the injected fault. Some are applied after decapsulating the device

626 U. Mehta and J. Popat

package and using the expensive setup for the application of attack. They are mainly
used to malfunctioning of chip/tampering of memory data.

The scan chain is attacked to recover the secret key of crypto-devices. Compared
to earlier described attacks, the test-infrastructure-based attacks are considered as
classical attacks in literature as they retrieve the data without requiring costly
instruments, without malfunctioning the stored data, without depackaging the
device, and without the need of very precise and accurate timing to exercise attack.

5 Defense Against the Security Threats

This section will cover the different defensive techniques/countermeasures against
hardware Trojan attacks, side-channel attacks, fault injection attacks, and test-
infrastructure-based attacks.

5.1 State-of-the-Art Techniques for Hardware Trojan Detection

State-of-the-art Trojan detection methods are classified in Fig. 10. Trojan detections
approaches are categorized into two types: destructive and nondestructive [56].
Destructive approaches is very expensive and time-consuming since it requires
silicon delayering of IC, taking images of metal layers using SEM (scanning
electron microscope), combining of this different metal layer images to get final
gate-level netlist,and comparing this netlist with the golden one. An adversary
may add the Trojan in some samples of ICs as opposed to the whole populace of
fabricated ICs. Subsequently, this technique isn’t extremely viable for the detection
of Trojan in the era of nanometer technology ICs. The nondestructive approach has
five possible ways of detecting the presence of Trojan: (1) logic testing, (2) side-
channel analysis, (3) IP trust verification, (4) design-for-security (DFS), and (5)
runtime monitoring.

Fig. 10 Trojan detection techniques

Defense against Security Threats with Regard to SoC Life Cycle 627

Logic/Functional Testing After the fabrication of IC, logic testing is used to detect
Trojan instances using test patterns to detect malfunction. This is also not very useful
because testing is mainly carried out for detecting manufacturing defects and is not
intended for detecting extra malfunctioning hardware.

Side-Channel Analysis It is mainly performed to measure side-channel parameters
such as power, transient and quiescent currents, delay, and frequency. There may be
a change in such parameter value due to the presence of Trojan in IC.

IP trust verification attempts to detect the existence of Trojans at an IP level using
pre-silicon techniques.

Design-for-Security Here, extra hardware can be added during the design or test
development phase either to make the Trojan insertion very difficult or to make
Trojan detection very easy. Nevertheless, the trust verification and DFS method
are not fully capable of detecting the wide variety of Trojans. Runtime monitoring
is performed on IC during in-field operation to detect any malfunction for the
potentially undetected Trojans. They are considered as the last defense against the
Trojan attacks.

Transition Probability-Based Trojan Detection In this [57], initially the logic
probabilities on the each of the golden netlist is computed. It is then used for
calculation of transition probability of each nets. The nets which are having lowest
transition probability are considered as vulnerable nets since the attacker exploits
such low transition probability area in the netlist to insert hard-to-detect and stealthy
trojan gates. The transition probability changes with the insertion of extra malicious
Trojan gates traversing from primary input (PI) to primary output(PO) path in the
netlist. The Trojan-affected area is identified by comparing the transition probability
of golden netlist and Trojan-inserted netlist. The technique is evaluated for the
different ISCAS’85 benchmark circuits to successfully detect the hardware Trojan
insertion in low probability circuit nodes.

5.2 Countermeasures Against Side-Channel Attacks (SCA)

As mentioned in Sect. 3.2, the noninvasive side-channel attacks are performed by
analyzing execution time, electromagnetic radiation, and power consumption of
SoCs. The countermeasure against each of the side-channel attacks are discussed
as follows.

Timing SCA Countermeasures There are basically two types of countermeasures
to defend the SoC against timing-based side-channel attacks: (1) randomizing the
execution time of various operations [58] and (2) making all the operations at
constant-time [59, 60]. They will thwart the data leaks via execution time. The
first countermeasure can be achieved easily by inserting different delays into the

628 U. Mehta and J. Popat

various execution path. This is done during design stages, and the designer has
full control to add number of buffers to achieve the expected delay. When it is in
place, it is hard to perform timing-based side channel. But it does not ensure the
full security against timing-based attacks. The second countermeasure ensures full
security against timing SCA, but it is hard to implement in real-time scenario.

Power SCA countermeasures To make the power traces independent of the
inter-operational data of crypto algorithm of secured SoC, there are mainly three
countermeasures based on primitive logic cells: (1) sense-amplified-based logic
(SABL) [61], (2) wave dynamic differential logic (WDDL) [62] and (3) t-private
logic circuit [63]. The first two (SABL, WDDL) countermeasures are designed to
make the power consumption identical in every clock cycle. However, the third
(t-private logic) countermeasure uses randomization technique which make power
consumption value different in each clock cycle. The t-private logic circuit masks
each bit by t-random bits. Hence, all of the countermeasures prevent the secret-key
retrieval though power traces.

Electromagnetic (EM) SCA countermeasures There are several countermea-
sures to thwart EM-based SCA. The main countermeasure is to redesign the circuit
to optimize the linking between different component which results to the minimizing
of EM radiation. Another effective precaution is the addition of an extra layer
of insulation to the chip, which serves to protect against EM radiation. Adding
inoperable components that generate excessive EM noise-signal levels can make
it difficult to acquire sensitive data because of the noise levels being generated
in the similar frequency range. Through inserting fake function in the middle of
the stage of crypto-operation, the attacker is restricted from determining if bits
are true or fake, although after conducting EM SCA successfully. EM SCAs are
easily performed through various existing technique, and crucial data can be leaked.
Therefore, the EM SCA countermeasures are required to be applied immediately in
the early stage of design to make the SoC more secure.

5.3 Countermeasures Against Fault Injection Attacks

In this section, we have discussed the existing countermeasures toward the fault
injection attacks: duplication of critical operation, error-detection schemes, and anti-
tamper protection module.

Replication (Duplication) of Critical Operations It is a widely used counter-
measure where the same crypto-operations are being performed several times to
calculate the two outcomes [64–67]. While comparing the outcomes with each other,
it is assumed that fault is introduced if they are not the same. There are two methods
to replicate (duplicate) the crucial crypto-operations: spatial and temporal. In spatial
duplication, there are two identical hardware crypto blocks to perform desired

Defense against Security Threats with Regard to SoC Life Cycle 629

crypto-operation and recalculate the outcomes. Temporal duplication utilizes the
same hardware crypto block for the recalculation of the outcomes across successive
timestamps. While comparing spatial duplication with temporal duplication, the
former is impacting the area, and the latter is impacting the time requirements.

Error Detection Schemes (EDS) Another countermeasure against fault injection
attack relies on parity detection. Due to fault injection if parity bits are not matching,
the EDS deactivate the crucial crypto operations of the SoC. It can detect single-bit
fault injection attack, but it is not an effective countermeasure against multi-bit fault
injection attack. The area and time requirements shoot up prominently if multiple
faults are required to be detected or corrected. They have less area and time overhead
as compared to previously mentioned replication countermeasure [68–70].

Anti-Tamper Protection Module This countermeasure is used to protect against
fault injection attacks. There is a tamper-proof module which holds the crypto
hardware. The fault attacks are restricted with the help of sensors attached to the
module. If there is any physical tampering with crypto hardware is made, the sensors
will detect and alert the same. The anti-tamper module is applied to IBM-4764
crypto-processor [71].

5.4 Countermeasures Against Test-Infrastructure-Based
Attacks

Many countermeasures have been proposed in the literature, aimed to face one or
more of the test-infrastructure based attacks described in Sect. 3.4.

In this chapter, we have classified the countermeasures as follows:

1. Applicable to DSA only
2. Applicable to TMO only
3. Unified countermeasures which are applicable to DSA and TMO both

The classification of countermeasures against test infrastructure-based attacks is
shown in Fig. 11.

5.4.1 Countermeasures Against DSA Only

The five countermeasures against DSA are mentioned in the literature and discussed
as follows.

1. Masking of round register and compactor output: The attacker cannot retrieve
the secret key information by masking/unmasking round register output or by
using extended LFSR (eLFSR) as shown in Figs. 12 and 13. In this scheme,
the round register output after a round operation is masked in AES cipher and

630 U. Mehta and J. Popat

Countermeasures against Test
Infrastructure based attacks

Applicable to DSA
only

Masking of Round
Register

Noise Injection in
scan output

Scan Cell
Swapping

Decompressor
Output Swapping

On-Chip test
comparison

Scan-chain
encryption

Scan Chain
Scrambling

Modular
Eponentiation

Secure Scheme

Mode-reset
Countermeasure

Hash function
based Secure

Scheme

Secure Test
Access

Mechanism

Two-level defence
with input
corruption

Built-In Self Test

Applicable to
TMO only

Unified
Countermeasures

Fig. 11 Classification of countermeasures against test-infrastructure-based attack

then unmasked it before the next round starts as shown in Fig. 12. In the second
scheme, an extended LFSR method is used to XOR the compacted response
with pseudo-random bits as shown in Fig. 13. In both cases, an attacker cannot
retrieve the secret key-related information from scan-out data after the first round
of operation. Thus, conventional DSA is not applicable. This comes with the cost
of area overhead as well as the longest critical path [45].

2. Noise injection in scan output: This method is utilizing on-chip LFSR and TRNG
(true random number generator). The 50% scan-out bits are becoming noisy as
TRNG conceal some of the LFSR output bits and the remaining 50% bits are not
changed. This is depicted in Fig. 14. The masking needs to be applied at every
clock cycle for the attack to be successful [49].

Defense against Security Threats with Regard to SoC Life Cycle 631

Fig. 12 Masking of round
register [45]

3. Secure test access mechanism: In this method, the circuit works only in two
modes: secure and insecure. The switching from test to functional mode is
feasible during the insecure mode. However, the circuit only functions in
mission mode during the secure mode. Switching from secure mode to insecure
mode is only possible through power-off reset as illustrated in Fig. 15. Hence,
intermediate information of cipher is not observed by the attacker, and DSA
cannot be applied. The group of registers is needed, and a revision in the test
controller also required to change the starting of the test session [44].

4. Scan-chain scrambling: In scan-chain scrambling [72], the pseudo-random
choice of scan chains for loading is made with the help of LFSR. Hence, it can
easily thwart DSA. However, this countermeasure seriously impacts the device
area and increased power consumption in the functional mode of chip.

5. Mode-reset countermeasure: In this method [73], the author proposed the
modification in the chip test controller such that scan-in and scan-out operations
is are only possible after initialization reset procedure. When the test mode of
the chip is requested, the chip is fully reset, and data that is going to be scanned
out have no relation with chip- sensitive information. Hence, this can thwart
DSA very easily as it requires switching from functional to test mode to get an
intermediate state of the crypto-chip scanned out. However, this scheme requires
test controller modification as well as XOR combinational network for reset
checking.

632 U. Mehta and J. Popat

Fig. 13 Masking of response compactor output [45]

Fig. 14 Noise injection in the output [49]

Fig. 15 Secure test access mechanism [44]

5.4.2 Countermeasures Against Test-Mode-Only Attack

The three countermeasures against TMO are discussed as follows.

Defense against Security Threats with Regard to SoC Life Cycle 633

1. Scan cell swapping: In this countermeasure [52], authors propose swapping of
non-key-related flip flops with nearest key-related flip flops such that condition
1 mentioned in test-mode-only attack, for the attack to be successful, is violated.
The new distributions of KFFs are such that none of the four key bytes
are controllable through any value of the 28 combinations. For the correct
swapping to happen, the detailed analysis of decompression structure/type and
its correlation to scan cells are required. Hence, a test-mode-only attack can be
prevented. This is illustrated in Fig. 16(1).

2. Decompressor output swapping: Another way of changing the distribution of
key-related flops is done by interchanging the wires feeding data to scan chains.
Hence, automatically different scan chains will be connected to decompressor
output, which again needs the encoding condition for the key byte to break.
Similar to the previous countermeasure, the violation of condition for one key
byte occurs, and hence, the other key-byte may accidentally retrieve which
satisfies that encoding condition. Hence, post-check is required, and test-mode-
only attack cannot retrieve correct key bytes [52]. It is shown in Fig. 16(2).

3. Two-level defense with input corruption: This countermeasure [74] is applied to
basic scan chain architecture without a test compression scheme. It injects the
noise by flipping the scan input bits of vectors, and hence, the attacker cannot
categorize scan cells into words and bytes. This is done by using LFSR which
selects the location of the bit-flip of the test vector, and the newly generated bit is
XORed with shifted test vector bit. The second level of defense by using another
LFSR which counts specific continuous shift pulses without detecting capture
pulse in between and injects the extra noise on the shifted test vector. Thus, the
test-mode-only attack can be prevented. This is illustrated in Fig. 17.

5.4.3 Unified Countermeasures

The five countermeasures against both DSA and TMO are discussed as follows.

1. Built-in self-test: In this scheme, any kind of test output is not coming out from
the chip, but the signature of the output is matched with the golden signature
saved on-chip without taking it out; BIST is a countermeasure against DSA
and TMO [75]. However, the scheme required additional hardware for on-chip
pattern generation, response compactor to produce a signature, and a ROM
to store the golden signature. Besides low fault coverage, this countermeasure
compromises debug and diagnostic facilities.

2. On-chip test comparison: In this scheme, the generated test response is compared
with golden one stored on-chip. The golden response is transferred to chip in
this method using scan-out pin, and it is compared with generated test response.
Apparently, it costs the extra hardware to compare both responses.

Subsequently, the DSA and TMO is not feasible since the attacker can only
see pass/fail bit at the output [76]. Test time or test coverage is not impacted by

634 U. Mehta and J. Popat

Chain 0

Chain 1

Chain 2
Channel 0

Channel 1

Channel 2

Channel 3

Chain 3

Chain 4

D
ec

om
pr

es
so

r

Chain 5

Chain 7

Chain 6

2

1

Fig. 16 (1) Scan cell swapping and (2) decompressor output swapping [52]

Fig. 17 Two-level defense with input corruption [74]

this countermeasure. However, diagnostic and debug facilities are impacted by
the loss of observability of test response. The method is represented in Fig. 18.

3. Scan-chain encryption: In [77], the author has proposed on-chip encryp-
tion/decryption before and after response compaction and stimuli decompression
to prevent differential scan attack on the secure circuit as shown in Fig. 19.
However, the scheme required extra efforts for both input/output on-chip
encryption/decryption of test-patterns on-chip as well as off-chip. With this
solution, there is no impact on test diagnosis or debug facilities. Also, the test

Defense against Security Threats with Regard to SoC Life Cycle 635

Fig. 18 On-chip test comparison [76]

coverage is not compromised. However, this comes with the cost of large-area
overhead and test time increment.

4. Modular exponentiation-based secure scheme (ME-SS): In this scheme [54,
55], the modular exponentiation-based countermeasure against all kinds of test
infrastructure based attacks (DSA and TMO) is proposed. As shown in Fig. 20,
the ME-SS countermeasure is following the AES circuit with all types of scan
architecture be it a simple scan or a test compression-based scan architecture.
Hence, it does not disturb today’s IP core-based SoC flow and does not demand
any modification to scan architecture netlist. The countermeasure completely
thwart traditional DSA and TMO attacks with improving the area and test
time overhead nearly 87% and 88% as compared to previous published scan-
chain encryption countermeasure. However, it is not fully secure against the test
infrastructure-based attack procedure in the case of statistical analysis.

5. Hash function-based secure scheme (HSS): The HSS countermeasure [78] is
proposed to further improve the security provided by the previous ME-SS
countermeasure. It is shown that the proposed HSS countermeasure provides full
security against traditional DSA and TMO attacks in the case of the AES circuit
with response compactor (X-tolerant as well as MISR). As shown in Fig. 21,
the modular exponentiation is performed multiple times, and final HSS encoded
response is generated. The proposed HSS countermeasure with three rounds
imposes 0.36% and 23% of overhead in terms of area and test time as compared
to previously proposed ME-SS with improving the security of normal AES
circuit with X-tolerant response compactor nearly 29% in the case of statistical
analysis.

636 U. Mehta and J. Popat

Test
patterns

Chip
Scan-In

Chip
Scan-Out

Input Scan Cipher Output Scan Cipher

Test
Responses

Off-Chip Encryption Off-Chip DecryptionOn-Chip Decryption On-Chip Encryption

Original Circuit

Key Management
and Storing

Circuit-Scan-In Circuit-Scan-Out

Scan Chain

Din Din

Block
Cipher

Block
Cipher

Dout Dout
R1

R2

R1

R2

N N

Fig. 19 On-chip encryption [77]

Fig. 20 Architecture of ME-SS [54]

Fig. 21 HSS for AES with response compactor circuit [78]

6 Summary

This chapter presented threat models and corresponding attacks in the different
stages of current-generation SoC life cycle. We also outlined existing defense
approaches against the hardware Trojan attack, side-channel attack, fault injection
attack, and test-infrastructure based attacks.

Defense against Security Threats with Regard to SoC Life Cycle 637

References

1. Ray, S., Peeters, E., Tehranipoor, M.M., Bhunia, S.: System-on-chip platform security assur-
ance: architecture and validation. Proc. IEEE. 106(1), 21–37 (2018)

2. Tehranipoor, M., Koushanfar, F.: A survey of hardware Trojan taxonomy and detection. IEEE
Des. Test Comput. 27(1), 10–25 (2010)

3. Tehranipoor, M., Wang, C.: Introduction to Hardware Security and Trust. Springer Science &
Business Media, New York (2011)

4. Ramamoorthy, G.: Market share analysis: semiconductor design intellectual property,
worldwide (2012). [Online]. Available: https://www.gartner.com/doc/2403015/market-share-
analysis-semiconductordesign

5. Messmer, E.: RSA security attack demo deep-fries apple mac components (2014). [Online].
Available: http://www.networkworld.com/news/2014/022614-rsaapple-attack-279212.html

6. Nahiyan, A., Xiao, K., Yang, K., Jin, Y., Forte, D., Tehranipoor, M.: AVFSM: a framework for
identifying and mitigating vulnerabilities in FSMs. In: Proceedings of the 53rd Annual Design
Automation Conference, pp. 1–6 (2016)

7. Zhou, Y., Fang, Y., Zhang, Y.: Securing wireless sensor networks: a survey. IEEE Commun.
Surv. Tutorials. 10(3), 6–28 (2008)

8. Synopsis design compiler, https://www.synopsys.com/implementation-and-signoff/
rtlsynthesis-test.html

9. Cadence genus synthesis solution, https://www.cadence.com/content/cadence-www/global/
en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html

10. Nahiyan, A., Farahmandi, F., Mishra, P., Forte, D., Tehranipoor, M.: Security-aware FSM
design flow for identifying and mitigating vulnerabilities to fault attacks. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 38(6), 1003–1016 (2019)

11. DARPA system security integrated through hardware and firmware (SSITH), https://
www.fbo.gov/index?s=opportunity&mode=form&id=ea2550cb0c42eb91c7292377824a58b7

12. DARPA, TRUST in integrated circuits (TIC) – proposer information pamphlet (2007).
[Online]. Available: http://www.darpa.mil/MTO/solicitations/baa07-24/index.html

13. Defense science board, Task force on high performance microchip supply (2005). [Online].
Available: http://www.acq.osd.mil/dsb/reports/200502HPMSReportFinal.pdf

14. Australian Government DoD-DSTO, Towards countering the rise of the silicon trojan (2008).
[Online]. Available: https://www.semanticscholar.org/paper/Towards-Countering-the-Rise-of-
the-Silicon-Trojan-Anderson-North/9916af435dc14416b986558910b8556e3b403855

15. Adee, S.: The Hunt for the Kill Switch. IEEE Spectr. 45(5), 34–39 (2008)
16. Alkabani, Y., Koushanfar, F.: Designers Hardware Trojan Horse. HOST (2008)
17. King, S., et al.: Designing and Implementing Malicious Hardware. LEET (2008)
18. Abramovici, M., Bradley, P.: Integrated Circuit Security – New Threats and Solutions. CSIIR

Workshop (2009)
19. Banga, M., Hsiao, M.S.: A Region Based Approach for the Identification of Hardware Trojans.

HOST (2008)
20. Wolff, F., et al.: Towards Trojan-Free Trusted ICs: Problem Analysis and Detection Scheme.

DATE (2008)
21. Jin, Y., Makris, Y.: Hardware Trojan Detection Using Path Delay Fingerprint. HOST (2008)
22. Chen, Z., et al.: Hardware Trojan Designs on BASYS FPGA Board (Virginia

Tech). CSAW Embedded System Challenge (2008). [Online]. Available: https://
www.semanticscholar.org/paper/Hardware-Trojan-Designs-on-Basys-Fpga-Board-Chen-
Guo/69c85c799e9f21bd63caaa02e88fb3f572b3a609

23. Baumgarten, A., et al.: Embedded Systems Challenge (Iowa State University). CSAW Embed-
ded System Challenge (2008)

24. Jin, Y., Kupp, N.: CSAW 2008 Team Report (Yale University). CSAW Embedded System
Challenge (2008). [Online]. Available: http://www.eecs.ucf.edu/~jinyier/courses/EEE6306/
files/submit%20code/CSAW%20Report%20-%20TRELA.pdf

https://www.gartner.com/doc/2403015/market-share-analysis-semiconductordesign
http://www.networkworld.com/news/2014/022614-rsaapple-attack-279212.html
https://www.synopsys.com/implementation-and-signoff/rtlsynthesis-test.html
https://www.cadence.com/content/cadence-www/global/en_US/home/tools/digital-design-and-signoff/synthesis/genus-synthesis-solution.html
https://www.fbo.gov/index?s=opportunity&mode=form&id=ea2550cb0c42eb91c7292377824a58b7
http://www.darpa.mil/MTO/solicitations/baa07-24/index.html
http://www.acq.osd.mil/dsb/reports/200502HPMSReportFinal.pdf
https://www.semanticscholar.org/paper/Towards-Countering-the-Rise-of-the-Silicon-Trojan-Anderson-North/9916af435dc14416b986558910b8556e3b403855
https://www.semanticscholar.org/paper/Hardware-Trojan-Designs-on-Basys-Fpga-Board-Chen-Guo/69c85c799e9f21bd63caaa02e88fb3f572b3a609
http://www.eecs.ucf.edu/~jinyier/courses/EEE6306/files/submit%20code/CSAW%20Report%20-%20TRELA.pdf

638 U. Mehta and J. Popat

25. Chakraborty, R.S., Wolf, F., Papachristou, C., Bhunia, S.: MERO: a statistical approach
for hardware Trojan detection. In: International Workshop on Cryptographic Hardware and
Embedded Systems (CHES’09), pp. 369–410 (2009)

26. Dhem, J.-F., Koeune, F., Leroux, P.-A., Mestr, P., Quisquater, J.J., Willems, J.-J.: A practical
implementation of the timing attack. In: Quisquater, J., Schneier, B. (eds.) Lecture Notes in
Computer Science, vol. 1820, pp. 167–182. CARDIS (1998)

27. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Advances in Cryptology-CRYPTO
99, LNCS 1666, pp. 388–397 (1999)

28. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In:
Cryptographic Hardware and Embedded Systems -CHES 2004, pp. 16–29. Springer, Berlin
Heidelberg (2004)

29. Dofe, J., Pahlevanzadeh, H., Yu, Q.: A comprehensive FPGA-based assessment on fault-
resistant AES against correlation power analysis attack. J. Electron. Test. 32(5), 611–624
(2016)

30. Quisquater, J.-J., Samyde, D.: ElectroMagnetic analysis (EMA): measures and countermea-
sures for smart cards. In: Attali, I., Jensen, T.P. (eds.) E-smart, Lecture Notes in Computer
Science, vol. 2140, p. 200210 (2001)

31. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results. In: Ko, K., et
al. (eds.) cKKNP01, pp. 251–261 (2001)

32. Peterson, I.: Chinks in digital armor: exploiting faults to break smartcard cryptosystems. Sci.
News. 151, 7879 (1997)

33. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryptographic
protocols for faults. In: 16th Annual International Conference on Theory and Application of
Cryptographic Techniques, ser. EUROCRYPT 1997, Berlin, Heidelberg, p. 3751 (1997)

34. Skorobogatov, S.: Low temperature data remanence in static RAM. In: Computer Laboratory,
Tech. Rep. UCAM-CL-TR-536. University of Cambridge (2002)

35. Barenghi, A., Bertoni, G., Parrinello, E., Pelosi, G.: Low voltage fault attacks on the RSA
cryptosystem. In: Proc. Workshop Fault Diagnosis Tolerance Cryptogr., pp. 23–31 (2009)

36. Barenghi, A., Bertoni, G.M., Breveglieri, L., Pellicioli, M., Pelosi, G.: Low voltage fault attacks
to AES. In: Proc. Int. Symp. Hardware-Oriented Security Trust, pp. 7–12 (2010)

37. Selmane, N., Guilley, S., Danger, J.-L.: Practical setup time violation attacks on AES. In: Proc.
Eur. Dependable Comput. Conf., pp. 91–96 (2008)

38. Barenghi, A., Hocquet, C., Bol, D., Standaert, F.-X., Regazzoni, F., Koren, I.: Exploring the
feasibility of low cost fault injection attacks on sub-threshold devices through an example of a
65 nm AES implementation. In: Proc.Workshop RFID Security Privacy, pp. 48–60 (2011)

39. Kommerling, O., Kuhn, M.G.: Desig Principles for Tamper-resistant Smartcard Processors. In:
Proceedings of the USENIX Workshop on Smartcard Technology, p. 22. USENIX Association,
Berkeley, CA, USA (1999)

40. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The sorcerer’s apprentice
guide to fault attacks. Proc. IEEE. 94(2), 370382 (2006)

41. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: International Workshop
on Cryptographic Hardware and Embedded Systems-CHES 2002, p. 212 (2002)

42. Quisquater, J.-J., Samyde, D.: Eddy current for magnetic analysis with active sensor. In: Esmart
2002, Nice, France (2002)

43. Schmidt, J.-M., Hutter, M.: Optical and EM fault-attacks on CRTbased RSA: concrete results.
In: Karl, J.W., Posch, C. (eds.) Austrochip 2007, 15th Austrian Workhop on Microelectronics,
11 October 2007, Graz, Austria, Proceedings, pp. 61–67. Verlag der Technischen Universitat
Graz (2007)

44. Yang, B., Wu, K., Karri, R.: Secure scan: a design-for-test architecture for crypto chips. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst. 25(10), 2287–2293 (2006)

45. DaRolt, J., Di Natale, G., Flottes, M.L., et al.: Scan attacks and countermeasures in presence
of scan response compactors. In: 2011 16th IEEE European Test Symp., Trondheim, pp. 19–24
(2011)

Defense against Security Threats with Regard to SoC Life Cycle 639

46. Yang, B., Wu, K., Karri, R.: Scan based side channel attack on dedicated hardware implemen-
tations of Data Encryption Standard. In: Proceedings of IEEE International Test Conference,
pp. 339–344 (2004)

47. Da Rolt, J., Di Natale, G., Flottes, M.L., et al.: Are advanced DFT structures sufficient for
preventing scan-attacks? In: 2012 IEEE 30th VLSI Test Symp. (VTS), Hyatt Maui, HI, pp.
246–251 (2012)

48. Ege, B., Das, A., Gosh, S., Verbauwhede, I.: September: “differential scan attack on AES with
Xtolerant and X-masked test response compactor”. In: Digital System Design (DSD), 2012
IEEE 15th Euromicro Conference on, pp. 545–552 (2012)

49. Das, A., Ege, B., Ghosh, S., Batina, L., Verbauwhede, I.: Security analysis of industrial test
compression schemes. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 32(12), 1966–
1977 (2013)

50. Ali, S.S., Sinanoglu, O., Saeed, S.M., Karri, R.: New scan-based attack using only the
test mode. In: Very large scale integration (VLSI-SoC), 2013 IFIP/IEEE 21st international
conference on, pp. 234–239. IEEE (2013)

51. Ali, S.S., Sinanoglu, O., Saeed, S.M., Karri, R.: New scan attacks against state-of-the-art
countermeasures and DFT. In: 2014 IEEE International Symposium on Hardware-Oriented
Security and Trust (HOST), pp. 142–147 (2014)

52. Ali, S.S., Saeed, S.M., Sinanoglu, O., Karri, R.: Novel test-mode-only scan attack and
countermeasure for compression based scan architectures. IEEE Trans. Comput. Aided Des.
Integr. Circuits Syst. 34(5), 808–821 (2015)

53. Ali, S.S., Saeed, S.M., Sinanoglu, O., Karri, R.: Scan attack in presence of mode-reset
countermeasure. In: 2013 IEEE 19th International On-Line Testing Symposium (IOLTS), pp.
230–231. IEEE (2013)

54. Popat, J., Mehta, U.: A novel countermeasure against differential scan attack in AES algorithm.
In: VLSI Design And Test (VDAT) (2018)

55. Popat, J., Mehta, U.: Statistical security analysis of AES with X-tolerant response compactor
against all types of test infrastructure attacks with/without novel unified countermeasure. IET
Circuits Devices Syst. 13(8), 1117–1124 (2019)

56. Dong, C., Xu, Y., Liu, X., Zhang, F., He, G., Chen, Y.: Hardware trojans in chips: a survey for
detection and prevention. Sensors. 20(18), 5165 (2020)

57. Popat, J., Mehta, U.: Transition probabilistic approach for detection and diagnosis of Hardware
Trojan in combinational circuits. In: IEEE Annual India Conference (INDICON), pp. 1–6.
IEEE (2016)

58. Durvaux, F., Renauld, M., Standaert, F.-X., Oldenzeel, L., Veyrat-Charvillon, N.: Cryptanalysis
of the CHES 2009/2010 random delay countermeasure. In: IACR Cryptology ePrint Archive,
p. 38 (2012)

59. Jayasinghe, D., Ragel, R., Elkaduwe, D.: Constant time encryption as a countermeasure against
remote cache timing attacks. In: 2012 IEEE 6th International Conference on Information and
Automation for Sustainability, Beijing, China, pp. 129–134 (2012)

60. Barthe, G., Betarte, G., Campo, J.D., et al.: System-level non-interference of constant-time
cryptography. Part II: verified static analysis and stealth memory. J. Autom. Reasoning. 64,
1685–1729 (2020)

61. Tiri, K., Akmal, M., Verbauwhede, I.: A dynamic and differential CMOS logic with signal
independent power consumption to withstand differential power analysis on smart cards. In:
Solid-State Circuits Conference, 2002. ESSCIRC 2002. Proceedings of the 28th European, pp.
403–406 (2002)

62. Tiri, K., Verbauwhede, I.: A VLSI design flow for secure side-channel attack resistant ICs. In:
Proceedings of the Conference on Design, Automation and Test in Europe – Volume 3, DATE
‘05, pp. 58–63. IEEE Computer Society, Washington, DC, USA (2005)

63. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against probing attacks. In:
Advances in Cryptology – CRYPTO 2003, 23rdAnnual International Cryptology Conference,
Santa Barbara, California, USA, August 17–21, pp. 463–481 (2003)

640 U. Mehta and J. Popat

64. Giraud, C.: “DFA on AES”, in International Conference on Advanced Encryption Standard.
Springer, Berlin Heidelberg (2004)

65. Koren, I., Krishna, C.M.: Fault Tolerant Systems. Morgan-Kaufman, San Francisco, CA
(2007)

66. Karri, R., Wu, K., Mishra, P., Kim, Y.: Fault-based side-channel cryptanalysis tolerant Rijndael
symmetric block cipher architecture. In: Proc. IEEE Int. Symp. Defect Fault Tolerance VLSI
Syst., pp. 427–435 (2001)

67. Maistri, P., Vanhauwaert, P., Leveugle, R.: A novel double-data-rate AES architecture resistant
against fault injection. In: Proc. Workshop Fault Diagnosis Tolerance Cryptogr., pp. 54–61
(2007)

68. Bertoni, G., Breveglieri, L., Koren, I., Maistri, P., Piuri, V.: Error analysis and detection
procedures for a hardware implementation of the advanced encryption standard. IEEE Trans.
Comput. 52(4), 492–505 (2003)

69. Bertoni, G., Breveglieri, L., Koren, I., Maistri, P.: An efficient hardware-based fault diagnosis
scheme for AES: Performances and cost. In: Proc. IEEE Int. Symp. Defect Fault Tolerance
VLSI Syst., pp. 130–138 (2004)

70. Butter, A., Kao, C., Kuruts, J.: DES encryption and decryption unit with error checking, US
Patent 5 432 848 (1995)

71. IBM, Ibm 4764 pci-x Cryptographic Coprocessor Specifications. [Online]. Available: http://
www.ibm.com/security/cryptocards/pdfs/bs330.pdf

72. Hely, D., Flottes, M.-L., Bancel, F., Rouzeyre, B., Berard, N., Renovell, M.: Scan design and
secure chip. In: IOLTS, vol. 4, pp. 219–224 (2004)

73. Hely, D., Bancel, F., Flottes, M.-L., Rouzeyre, B.: Test control for secure scan designs. In: Test
Symposium, 2005. European, pp. 190–195. IEEE (2005)

74. Ali, S.S., Saeed, S.M., Sinanoglu, O., Karri, R.: New scan-based attack using only the test
mode and an input corruption countermeasure. In: IFIP/IEEE International Conference on Very
Large-Scale Integration-System on a Chip, pp. 48–68. Springer, Cham (2013)

75. Natale, G.D., Doulcier, M., Flottes, M.L., Rouzeyre, B.: Self-Test Techniques for Crypto-
Devices. IEEE Trans. Very Large Scale Integr. VLSI Syst. 18(2), 329–333 (2010)

76. Da Rolt, J., Di Natale, G., Flottes, M.L., Rouzeyre, B.: On-chip test comparison for protecting
confidential data in secure ICS. In: 2012 17th IEEE European Test Symposium (ETS), p. 1
(2012)

77. Silva, D., Mathieu, M.-L.F., Di Natale, G., Rouzeyre, B.: Preventing scan attacks on secure
circuits through scan chain encryption. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
38(3), 538–550 (2018)

78. Popat, J., Mehta, U., Upadhyay, M.: A Hash based secure scheme against scan-based attacks
on AES cipher. In: International Test Conference India (ITC India). IEEE (2020)

http://www.ibm.com/security/cryptocards/pdfs/bs330.pdf

Defect Diagnosis Techniques for Silicon
Customer Returns

Patrick Girard, Alberto Bosio, Aymen Ladhar, and Arnaud Virazel

1 Introduction

Modern electronic systems are composed of complex systems on a chip (SoCs)
which are made of various heterogeneous blocks that include memories, digital,
analog and mixed-signal parts, etc. These SoCs demand a huge amount of knowl-
edge and expertise to be designed, fabricated, and embedded on the final support
with the required levels of functionality and reliability. To guarantee their correct
behavior and hence fit a given quality level required by the application standard (e.g.,
automotive, avionic, etc.), SoCs pass through a comprehensive test flow (functional,
structural, parametric, etc.) at the end of the manufacturing process. SoCs that pass
the test flow are further used in the field by the target application.

Despite the high-quality level of the test flow used during manufacturing test,
SoCs may still fail in the field. So, in order to identify the source of failures and avoid
their reoccurrence in the next generation of products, each defective SoC (referred
to as customer return) is always returned to the manufacturer who is in charge of
analyzing the device to determine the root cause of failures. This is particularly
true for safety-critical applications. A customer return is a circuit that passed the
full manufacturing test flow but failed on the customer’s side [1]. The two main
causes of a customer return are test escape during manufacturing test and latent

P. Girard (�) · A. Virazel
LIRMM, University of Montpellier/CNRS, Montpellier, France
e-mail: Patrick.Girard@lirmm.fr; Arnaud.Virazel@lirmm.fr

A. Bosio
Univ. of Lyon, ECL, INSA Lyon, CNRS, UCBL, CPE Lyon, INL, Ecully, France
e-mail: alberto.bosio@ec-lyon.fr

A. Ladhar
STMicroelectronics, Crolles, France
e-mail: aymen.ladhar@st.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Iranmanesh (ed.), Frontiers of Quality Electronic Design (QED),
https://doi.org/10.1007/978-3-031-16344-9_17

641

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16344-9_17&domain=pdf

 885 49096 a 885 49096 a

mailto:Patrick.Girard@lirmm.fr

 10753 49096 a 10753
49096 a

mailto:Arnaud.Virazel@lirmm.fr

 885
52970 a 885 52970 a

mailto:alberto.bosio@ec-lyon.fr

 885 56845 a 885 56845 a

mailto:aymen.ladhar@st.com

 -2016
61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-16344-9_17

642 P. Girard et al.

defect mechanisms during lifetime [2]. Latent defects cause two types of failures:
(i) early-life failures that do not manifest during manufacturing test but that degrade
over time due to electrical and thermal stress during in-field use and (ii) failures
caused by wear-out mechanisms. Wear-out or aging manifesting as progressive
performance degradation is induced by various mechanisms such as negative-bias
temperature instability or hot-carrier injection. All these failures that occur in the
field are extremely critical as they may lead to catastrophic consequences.

When a customer return is detected, it is crucial to reproduce the failure
mechanism in the failure analysis lab of the manufacturer with the appropriate test
conditions (temperature and voltage) and the original test flow. In the case of test
escape, test engineers must generate new test patterns that will exhibit the failure
in the same test conditions. In the case of latent defect, the task will often succeed,
and a diagnosis program made of several routines is used to identify, step by step,
the failing part, and, finally, the suspected defect(s). Each routine consists in the
application of a diagnosis algorithm at a given hierarchy level (system, core, and
cell levels) [3].

Diagnosis is a software-based method that analyzes the applied test sequences,
the tester responses, and the circuit structure (generally with layout information) to
generate a list of candidates that represent the possible locations and types of defects
within the defective circuit. The quality of a diagnosis outcome is evaluated thanks
to two metrics: accuracy and resolution. A diagnosis is accurate if the real defect is
included in the reported list of candidates. Resolution refers to the total number of
candidates reported by the diagnosis. An accurate diagnosis with perfect resolution
(i.e., one candidate which is the real defect) is the ideal case.

Diagnosis is usually followed by physical failure analysis (PFA), a time-
consuming process for exposing the defect physically (thanks to special techniques
and tools such as acoustic microscopy, X-ray imaging, transmission electron
microscopy, photon emission microscopy, laser-induced voltage alteration, thermal
imaging, etc.) in order to characterize the failure mechanism. Due to the high cost
of PFA and its destructive nature, diagnosis accuracy and resolution are of critical
importance. In practice, it is very uncommon to perform PFA on any defect with
more than five candidates [4]. This ensures that the likelihood for identifying the
root-cause of failure is maximized when performing PFA.

With more defects inside standard cells at leading-edge technology nodes [5],
cell-aware (CA) test, which deterministically targets defect locations inside standard
cells, and CA diagnosis, which can identify the location and type of cell-internal
defects at the transistor level, are quality assessment solutions widely adopted today
in industry [6, 7]. CA diagnosis is valuable in the context of large and complex
cells such as multipliers, adders, and multi-bit sequential elements. Even when a
defect is known to be within a cell, finding defects in such a complex cell during
PFA can be challenging and time-consuming, especially if the defect is exhibited
for a specific test condition and undetected for some others. CA diagnosis shortens
the lengthy investigation process by pinpointing a small subsection of the suspected
cell. It improves results for diagnosis scenarios such as customer return analysis and
volume diagnosis applications like yield analysis [7].

Defect Diagnosis Techniques for Silicon Customer Returns 643

Unfortunately, diagnosis resolution today is typically far from ideal due to SoC
complexity. In particular, with the advent of nanometer scale technologies (i.e.,
7 nm), a high resolution (very few or one candidate) is not always achievable
by existing CA logic diagnosis tools based on conventional methods [8]. For this
reason, considerable researches have been dedicated on improving resolution by
using machine learning techniques, mainly through the extraction of features that
allow correct candidates (those that correctly represent defect locations) to be
distinguished from incorrect ones [2, 4, 9–11].

Even though they are efficient, these techniques address volume diagnosis for
yield ramp-up. This is a different problem than defect diagnosis of customer returns.
Indeed, during volume diagnosis for yield improvement, a lot of data collected
during manufacturing test and subsequent diagnosis phases are available and can be
used, such as hundreds of identical failed chips with candidates correctly identified
(good, bad). It is thus possible to use these data for failure diagnosis of a new failed
chip. On the contrary, during fault diagnosis of a customer return, only one failed
chip has to be investigated, with no information about the defective behavior of any
other similar chip used in the same conditions (application, environment, workload).
For this reason, approaches existing for volume diagnosis cannot be reused in a
straightforward manner for customer returns.

Historically, conventional approaches based on critical path tracing or fault
simulation were used in industry for defect diagnosis of customer returns. However,
with the fast development and vast application of machine learning (ML) in recent
years, ML-based techniques have been demonstrated to be quite valuable for
diagnosis. Most of these techniques are based on supervised learning, because it
naturally aligns with the common practice of training with labeled historical data
and usually performs well in industrial diagnosis tasks [12].

This chapter reviews the latest developments in the field of customer return
diagnosis based on ML. It is organized as follows. Section 2 gives some background
on test and diagnosis in the context of customer return analysis. Section 3 first
explains how customer returns are usually (re-)tested for diagnosis purpose and
what are the limitations. Next, a proposal of best practices for customer return test
pattern generation is done and discussed. Section 4 summarizes the state-of-the-art
in the field of defect diagnosis for customer returns. Both conventional approaches
and ML-based techniques are discussed. Section 5 presents some industrial case
studies performed with one of the latest ML-based diagnosis techniques. Section 6
concludes the chapter and draws some conclusions.

2 Background on Test and Fault Diagnosis

During the manufacturing process of integrated circuits (ICs), defects may occur in
the physical structure of the IC, next leading to erroneous behaviors. The role of
testing is to detect ICs affected by defects and discard them from the set of ICs sent
to the customers. Moreover, testing is also important to gather as much information

644 P. Girard et al.

Fig. 1 Short defect affecting
a logic gate

as possible and further use them during fault diagnosis, in order to understand the
root causes of the observed failures. This section provides some backgrounds on
defects, test, and fault diagnosis.

2.1 From Defects to Failures

Physical defects like shorts and opens may occur during any single step of the
fabrication process. These defects can be randomly caused by contaminations or
due to systematic process-design interactions [13]. In modern nanometer-scale
technologies, defects appear not only in the cell interconnection (inter-cell defect)
but also inside the cell itself (intra-cell defect) [14, 15]. This is caused by the reduced
circuit sizes, the use of new process technologies, new materials, and the ever-
increasing number of vias and contacts. For example, Fig. 1 depicts a short defect
affecting a 4-input AOI cell made of 48 transistors in a 32-nm STMicroelectronics
design [16].

The representation of a defect is a fault model, an anomalous physical condition
that may lead to an error. An error is the exhibition of a fault in a system that might
or might not be propagated and, in this last case, give rise to failure [17].

Figure 2 summarizes the above concepts through a simple example. The IC is
a combinational circuit composed of three gates (G1, G2, and G3), two primary
inputs (PI1 and PI2), and one primary output (PO). The circuit is affected by a defect
represented by a stuck-at-0 fault model (S@0) located at the input a of G3 (i.e., the
behavior of the defect can be modeled as a logic value always set to “0” at input a of
G3). The circuit is stimulated by the logical values applied to PIs (“00”). The applied
values lead to have “1” at input a of G3. However, because of the S@0, the value is
actually set at “0.” This situation is represented as “1/0,” where “1” is the expected
value and “0” is the wrong valued induced by the fault. Since the expected value is

Defect Diagnosis Techniques for Silicon Customer Returns 645

Fig. 2 Fault, error, and failure example

different from the wrong one, the fault is said to be sensitized, and the wrong value
is the error induced by the fault. In the example, the error is propagated through
G3 and reaches the PO. At this point, the error becomes observable and leads to a
failure. The set of applied logic values is called test vector since it can detect the
presence of the S@0 affecting input a of G3. Several fault models exist and are used
in industry. Among them, the most popular are the following:

• Stuck-at fault model [17]: The logic value of a given net appears to be stuck at a
constant logic value (“0” or “1”), referred to as stuck-at-0 or stuck-at-1.

• Transition fault model [17]: The transition from a given logic value V to the
opposite logic value V at the output of a gate is delayed. In this case, the delay
of the gate is changed and is assumed to be large enough to prevent a passing
transition from reaching any output of the circuit within the clock period. Two
types of transition fault are defined: slow-to-rise (slow transition from logic “0”
to logic “1”) and slow-to-fall (slow transition from logic “1” to logic “0”).

• Bridging fault model [17]: Usually modeled at the gate or transistor level, it
represents a short between a group of signals. The logic value of the shorted
net can be modeled as a 1-dominant (OR bridge), 0-dominant (AND bridge),
or indeterminate, depending upon the technology in which the circuit is imple-
mented.

• Cell-aware fault model [15]: It represents a defect inside a given logic cell. The
faulty behavior depends on the logic cell transistor-level structure. This fault
model has to be defined every time a new technology library is implemented.

2.2 Testing

IC testing consists in applying a set of test vectors (forming a so-called test
sequence) in order to detect the highest number of faults as possible. The test
sequence quality is measured by using to the following metrics:

646 P. Girard et al.

• Fault coverage (FC): This is the ratio between the number of detected faults and
the total number of faults. Ideally, the FC has to be equal to 1.

• Defect coverage (DC): Similar to the FC, it gives the ratio between the number
of detected defects and the total number of defects. It is important to mention
that a high FC does not automatically implies a high DC. For example, it is
demonstrated in [14, 15] that intra-cell defects cannot be detected by using test
approaches based on classical fault models such as stuck-at or transition faults.

• Test coverage (TC): This is the ratio between the number of detected faults and
the total number of detectable faults. Redundant faults are omitted by this metric.
This is the main metric used in industry to qualify a test sequence. The higher the
test coverage, the better is the quality of the test sequence.

• Test length (TL): The number of test vectors composing the test sequence. The
higher the length, the higher is the cost of test in terms of test time and test data
volume.

The test sequence is generated by using a commercial EDA tool, known as
automatic test pattern generator (ATPG). In short, an ATPG aims at generating a
test sequence that maximizes the FC while minimizing the TL. The description of
ATPG architectures and algorithms is out the scope of this chapter. The reader can
refer to [17] for detailed information.

IC testing is always executed after the manufacturing process. It allows to
quantify the quality of the manufacturing process itself through the yield defined
as

Yield = #Good

#Total

where #Good is the number of fault-free devices over the total number of manufac-
tured devices. Every time a new technology node and its manufacturing process is
used, the yield loss can be very high (yield <40%). The process of identifying yield
losses and quantifying and improving them is referred to as yield learning. Testing
and fault diagnosis play a crucial role for yield learning.

Even when the manufactured IC passes the testing phase and thus is used in the
field, testing may be still needed. This is the case of safety-critical applications, like
automotive or avionic, where all the hardware components have to be continuously
tested to ensure the correct behavior. Any IC that fails in the field can be considered
as a customer return.

2.3 Fault Diagnosis

Fault diagnosis is the process applied to a failing IC to shed light into the actual
defect and then apply corrective actions to prevent failure reoccurrence in next-
generation products. We can identify two main types of fault diagnosis depending
on the scope:

Defect Diagnosis Techniques for Silicon Customer Returns 647

Fig. 3 Heterogeneous system-on-chip. (Courtesy of Synopsys)

• High-volume fault diagnosis: It is applied for yield learning. Indeed, diagnosing
the sources of failures assists the designers in collecting valuable information
regarding the underlying failure mechanisms, in order to enhance yield through
improvement of the manufacturing process and development of new design
techniques that minimize the failure rate [2].

• Customer return fault diagnosis: It is applied on a given IC to determine the root
cause of failures that have occurred in the field. In this scenario, failures are not
easy to reproduce in the manufacturer’s lab as the real mission conditions, and
executed workload are unknown and cannot be exhaustively modeled.

In the rest of this chapter, we mainly refer to fault diagnosis of customer returns.
Fault diagnosis can be applied at different levels depending on the complexity of the
IC. Todays’ ICs are complex devices that consist of independent and heterogeneous
blocks, and each of them may comprise memory, digital circuits, analog and mixed-
signal (AMS) circuits, etc. (see Fig. 3).

The first level of fault diagnosis is thus the system level that aims at determining
the failing block. The second level of fault diagnosis is the block level. Depending
on the nature of the failing block, i.e., analog, digital, memory, etc., different fault
diagnosis techniques (as well as test sequences) have to be applied. This chapter
focuses on digital circuit blocks only. Memory and analog and mixed-signal (AMS)
fault diagnosis is beyond the scope of this chapter, but the reader can refer to [18, 19]
for more details. The third level of fault diagnosis is the cell level, called cell-aware
fault diagnosis. It consists in identifying defects within a logic cell.

The key metrics characterizing fault diagnosis performance are as follows:

648 P. Girard et al.

• Resolution: R = #C
#S defined as the ratio of identified candidates (#C), i.e.,

potential defects or faults on nets or cells, over the total number of possible
suspects (#S). The smaller the R, the better the fault diagnosis. Ideally, fault
diagnosis should provide a single suspect. The definition of suspects and
candidates depends on the fault diagnosis level. At system level, a candidate is
a block, while at digital circuit level, a candidate can be a gate, a net, or even a
transistor in the case of cell-aware faults.

• Accuracy: The fault diagnosis is accurate if the physical defect responsible for
the observed failure is indeed in the list of identified candidates. Accuracy A =
#Correct

#Diagnosis can be defined as the number of correct diagnosis (#Correct) over a
given set of experiments (#Diagnosis).

2.3.1 System-Level Fault Diagnosis

Existing effective system-level fault diagnosis techniques either apply only for
boards (PCBs) [20], or, if they apply for SoCs, then they target the digital part of the
SoC [21]. In particular, the individual blocks can be accessed and tested in isolation
so as to identify the faulty block. The problem is exacerbated when the failure occurs
during the mission (functional) mode. In this case, as the SoC operates in functional
mode, no information is logged at block level, i.e., the functional stimuli applied to
each block may be unknown. A promising solution is to use machine learning. In the
literature, machine learning techniques have been already exploited for system-level
diagnosis, but only for boards [22].

2.3.2 Digital Block-Level Fault Diagnosis

Numerous research works as and commercial tools (from EDA vendors) exist
for digital block-level fault diagnosis. Almost all existing approaches are based
on the “cause-effect” [23] or the “effect-cause” [24] paradigms. The “cause-
effect” paradigm requires a pre-computed fault dictionary that can be obtained by
simulating all targeted faults in a specific design with a given set of test vectors.
During diagnosis, a search in the fault dictionary is performed to determine a set
of candidates that can explain the observed errors. On the other hand, the “effect-
cause” diagnosis approach determines the set of candidates by using a back-tracing
algorithm [24]. This algorithm is carried out starting from each failing primary
output and traces back through circuit nets to reach primary inputs. Each traced
net is classified as a candidate. Compared to “cause-effect” diagnosis, the “effect-
cause” approach does not require any pre-computed fault dictionary and is therefore
independent of a targeted fault model. However, “effect-cause” diagnosis may
require a very high computational time proportional to the circuit complexity (e.g.,
number of gates and test vectors). Hence, the “effect-cause” approach may not be
appropriate for large designs.

Defect Diagnosis Techniques for Silicon Customer Returns 649

Irrespective of the adopted paradigm (i.e., cause-effect or effect-cause), the result
is a list of nets (e.g., connections between logic cells or flip-flops) that are declared
as candidates. Even if only one candidate is included in the list, it is often not precise
enough to isolate the defect causing the error. For example, one cell generally
contains many transistors (usually more than 100), and one net could be extended to
several metal layers. Without more accurate information of the defect location inside
a cell, PFA may fail, i.e., the root cause may not be found. Hence, it is crucial to
identify which components within a cell are more likely to be the defective ones so
as to successfully perform PFA. This shift in the diagnosis accuracy level is obtained
by applying transistor-level diagnosis inside a cell, referred to as cell-aware fault
diagnosis.

2.3.3 Cell-Aware Fault Diagnosis

Previous works on cell-aware (CA) fault diagnosis focusing on logic cells can
be classified into three approaches. The first approach converts a transistor-level
netlist into an equivalent gate-level netlist by using complex transformation rules
[25]. Therefore, any classical fault diagnosis approach can be applied on the
equivalent gate-level netlist. The main limitation of this approach is that the set
of transformation rules depends on the targeted defect, and, thereby, non-modeled
defects may not be diagnosed. The second approach is based on the “cause-effect”
paradigm [25, 26]. The transistor-level netlist of a cell is exploited, in order to
inject the targeted defects. Therefore, a defect dictionary is created by transistor-
level simulations, and the defect signatures of all the defects affecting the cells
in the library are stored in this defect dictionary. Then, during fault diagnosis,
the defect signature of all defects affecting a suspected cell is compared with the
observed failures to obtain a list of candidates inside the cell. These approaches
can be further classified depending on the “accuracy” of the injected defects and the
simulation “precision.” In [26], a large number of defects are simulated at transistor-
level using SPICE. For a given defect, different resistance values are simulated, in
order to be as accurate as possible. This approach leads to more precise results,
but it requires a huge simulation time. To reduce the simulation time and the fault
dictionary size while keeping a high resolution, authors in [25] propose to exploit
layout information, in order to consider only realistic defects. For example, for
each cell, only the realistic, potential net-bridging defects and via open defects are
extracted and then simulated. Then, the identified set of realistic defects is simulated
at transistor level. The third intra-cell fault diagnosis approach is based on the
“effect-cause” paradigm [27]. All the existing diagnosis techniques depend on the
targeted fault models or defects. In [27], the main goal is to achieve a resolution
close to the transistor level. However, instead of explicitly considering defects at
transistor level, the idea is to exploit the knowledge of the faulty behavior induced
by the defects.

Unfortunately, due to circuit complexity of today’s circuits, cell-aware fault
diagnosis resolution is usually far from ideal. For this reason, a lot of efforts has

650 P. Girard et al.

been done to improve resolution by using machine learning techniques, initially
through the extraction of features that allow correct candidates (those that correctly
represent defect locations) to be distinguished from incorrect ones [2, 11]. Even if
they are efficient, these techniques address volume diagnosis for yield improvement,
which is a different problem than fault diagnosis of customer returns (as already
mentioned and explained in Sect. 1). For this reason, these techniques cannot be
reused for fault diagnosis of customer returns.

3 Test of Customer Returns for Diagnosis Purpose

The ultimate objective of an IC test engineer in charge of a given IC product is to
reach a zero defective parts per million (DPPM) with a reasonable test cost (test
time and test data volume). To this purpose, several test sequences made of test
patterns are generated during test preparation to target all types of defects (static,
dynamic) by using different (i.e., slow or fast) test clock schemes. Note that a test
pattern can be composed of only one vector to deal with static faults, e.g., stuck-at
faults, or of two vectors (two-vector test pattern) to deal with dynamic faults, e.g.,
transition faults. These test patterns are usually generated in an incremental manner
to avoid multiple detection of the same defects and hence reduce test costs. In this
section, we first provide an example of a typical test scenario used in production
(manufacturing) industrial test. Next, we discuss some limitations of this type of
scenarios in terms of diagnosis accuracy and resolution. Finally, we suggest some
of the best test practices to be applied for custom return diagnosis.

3.1 Typical Test Scenario

When a customer return occurs and is sent back to the manufacturer, the first step
is to reproduce the failure mechanism by reusing the initial manufacturing test
program and collect the failure files to be diagnosed. Therefore, before proceeding
with fault diagnosis, it is important to understand the ATPG process as well as
its implementation into the test program. This knowledge is valuable and helps to
enhance the diagnosis process and accelerate the time needed to retrieve the silicon
failure.

Figure 4 gives an example of a multi-run ATPG flow used in industry for
screening defects in logic parts of a SoC. It can be seen that several ATPG runs
are implemented at various speeds (low-speed or at-speed) to get different test
sequences targeting different defect categories (static and dynamic) with different
fault models (stuck-at, transition, bridging, and cell-aware). The first category is
static defects, and their detection requires one-vector test patterns, called static test
patterns. The second category is dynamic defects, and their detection requires two-
vector test patterns, called dynamic test patterns. Dynamic defects do not modify

Defect Diagnosis Techniques for Silicon Customer Returns 651

Fig. 4 Example of an industrial multi-run ATPG flow

the functional behavior of the IC but rather induce some delays that prevent the IC
to operate at the desired clock frequency. With the new technologies, the incidence
of dynamic defects is continuously growing, not only during the ICs manufacturing
process but also during the IC lifetime where latent or wear-out defects may appear
due to different stress conditions (operational, functional, environmental, etc.).

The flow sketched in Fig. 4 shows four ATPG runs implemented to generate
three types of test patterns (at-speed, low-speed dynamic, and static test patterns).
The first step in this ATPG flow is to generate at-speed test patterns for dynamic
defect detection. These patterns target the detection of delay defects either at the
interconnect wires or inside cells of the logic part of the SoC. At-speed test is made
so that the PLL clock is used instead of the tester clock during the capture phase.
This is usually performed by using an on-chip clock controller (OCC). An OCC is
an added DFT logic to control internal clocks during manufacturing test. Since at-
speed testing requires two clock pulses in capture phase with the same frequency
as the internal clock, these at-speed pulses would need to be provided through
I/O pads without OCC. However, these pads are limited in terms of supported
maximum frequency. Conversely, an OCC uses an internal PLL for generating test
clock pulses and hence allows application of at-speed tests. During static testing,
the OCC ensures that only one clock pulse is generated during the capture phase.

Once the dynamic patterns are generated, the undetected dynamic defects are
targeted with a second ATPG run (see Fig. 4). In fact, it has been proven that even at

652 P. Girard et al.

low frequency, some dynamic defects can be still detected. Typically, a stuck-open
or a source/drain open defect results from a complete break between circuit nodes
that should be connected [28, 29] and has a sequential behavior that requires two-
vector test patterns to be detected. It has been demonstrated in [30] that varying the
test frequency, voltage, and temperature does not enhance the test efficiency when
such type of dynamic defects is targeted. This explains why this type of ATPG runs
(low-speed setup) is used in industrial test flows to generate low-speed dynamic test
patterns.

The third ATPG run is a preprocessing step for the fourth one. In fact, the fourth
run requires as input a list of all static defects not detected by the dynamic tests.
This information can be identified only through fault simulation. To this end, the
static faults are fault simulated with the dynamic patterns to determine the set of
undetected faults.

Finally, three test sequences are generated and then applied sequentially to the
circuit under test (CUT) to achieve a targeted test coverage. During diagnosis of
a customer return, the same test sequences can be reused to exhibit the failure
observed during mission mode.

3.2 Limitation of Manufacturing Test for Customer Returns

The goal of an ATPG as used for manufacturing test is to detect the maximum
number of faults with the minimum number of test patterns. Unfortunately, this may
not be adequate for fault diagnosis for the following main reasons:

• Distinguishing between defect candidates during fault diagnosis is achievable
only when test sequences are made of patterns that each sensitizes a limited
number of faults. Conversely, test patterns generated by conventional ATPG
sensitize as many faults as possible to avoid long test time. These two conflicting
objectives between test pattern generation for testing purpose and test pattern
generation for diagnosis purpose generally lead to poor diagnosability of test
sequences generated by an ATPG. Table 1 shows an example where the gener-
ation of a test pattern is needed to detect two defects – internal D1 and D2 –
in a NOR2 gate with A and B as inputs and Z as output. As can be seen, any
ATPG tool would only generate P1 as it can detect both defects on output Z (ZD1
and ZD2 both have a value different than the fault-free value on Z). However,
these patterns are unable to distinguish between the two defects, and hence any
diagnostic tool would report D1 and D2 as fault candidates. As can be observed,
P2 can detect only D2 and hence is able to distinguish between D1 and D2. The
same is true for P3 which is able to distinguish between D1 and D2. Therefore,
an ideal test sequence for diagnosis purpose would be made of (P2, P3).

Defect Diagnosis Techniques for Silicon Customer Returns 653

Table 1 Example of
distinguishing patterns
between defect candidates

Pattern AB Z ZD1 ZD2

P1 00 0 1 1
P2 01 0 0 1
P3 10 0 1 0
P4 11 1 1 1

• Generally, there is no full picture on how an actual defect behaves with regard
to passing patterns (patterns declared as “pass” during test application). In fact,
the purpose of a test pattern is to create a failing excitation of the defect and
ensure its propagation to an observable point. This means that the behavior of the
defect is known only for the failing patterns, and most of the time no information
is collected for the passing patterns. Let us consider again the example in Table
1. An ATPG tool will generate P1 and eventually P2 to detect and distinguish
between D1 and D2. Consequently, P3 and P4 will not be generated. However,
the knowledge of this information would be important to improve the diagnosis
accuracy since it would provide additional indications on how the defect behaves
with a complete set of test stimulus.

• Scan chain diagnosis of ICs with an embedded test compression mechanism
usually leads to low diagnostic capabilities [31]. This is the case of most ICs
nowadays. In fact, compressed test patterns and test responses are broadly used
in industry to reduce test data volume and scan input/output requirements. The
usage of these techniques can negatively impact fault diagnosis accuracy. In
fact, the defect responses are captured in scan flip-flops which are not directly
observed. This means that using typical chain test patterns is not enough
to distinguish between failing scan chains, and thus generating additionally
distinguishing patterns is needed to improve the resolution.

• Test truncation is a widely used technique in production test. Indeed, not all
the test responses of a failing CUT are collected, and this is limited to a
predefined number of failing patterns. Indeed, recording the failing patterns and
their observation points is a time-consuming step especially when the collected
failures are huge. Proceeding with test truncation can reduce the test time since
not all failing patterns are recorded. However, this procedure has a negative
impact on the diagnostic quality as exploiting only a subset of the failing patterns
to retrieve the fault candidates limits the diagnostic tool capabilities.

The abovementioned limitations of manufacturing test can prevent the successful
failure analysis of a customer return. In the following subsection, we first explain
how to adapt such a test flow for a customer return. Then, we present different
techniques to generate diagnostic patterns (also referred to as distinguishing
patterns).

654 P. Girard et al.

3.3 Best Practices for Customer Return Test Pattern
Generation

Two approaches exist to improve diagnosis quality. The first one is to improve the
efficiency of diagnostic algorithms, which is usually done by CAD vendors. The
second one is to improve the test sequence quality in such a way that more valuable
information can be collected during test [32]. In both cases, the goal is to make the
diagnostic tool easily retrieve the defect location using a minimum set of candidates.
In the rest of the section, we suggest some of the best practices to be used during test
for this purpose, as well as advice on how to generate new diagnostic test patterns
for silicon costumer returns.

Before testing a customer returns for diagnosis purpose, two modifications on
the test program must be performed. The first one is to include all test patterns
generated by the ATPG into the test program and ensure that the test does not stop
at the first failing pattern. The second one is to remove or to increase the truncation
value. Once these two modifications have been done, the test program can be started,
followed by the first run of fault diagnosis. Depending on the diagnostic results, i.e.,
in the case of low diagnostic resolution, a diagnostic pattern generation process can
be launched. In the following, some scenarios that require the generation of new
diagnostic patterns are detailed.

• Diagnostic ATPG for cell internal defects. In the case of a suspected cell internal
defect, information provided by the application of the entire failing and passing
test patterns applied at the inputs of the defective cell is crucial to efficiently find
out the cell internal defect. The best way to get this information is to generate
a so-called cell exhaustive test. This test applies all the possible combinations at
the cell inputs. These combinations can be static or dynamic. Static combinations
include logic values “0” and “1,” whereas dynamic combinations include rising
and falling transitions. By applying such type of test, all nonequivalent cell
internal defects can be distinguished. It is recommended to apply the dynamic
part of the test with different frequencies (low speed, at-speed) to get information
about the failure mechanism with respect to the clock frequency.

• Diagnostic ATPG for interconnect open defects. In the case of a suspected
interconnect open defect, it is important to generate test patterns targeting each
segment composing this interconnection and ensure a different fault propagation
through different primary outputs. Figure 5 shows a net with two metal layers
(M2 and M3) and five segments (s1 to s5). An open defect located on segment
s2 disconnects two cells (C2 and C3). To help the diagnostic tool to report the
defective location, it must be forced to select all possible fault propagation paths
during test pattern generation (C2 only, C3 only, C4 only, C2 and C3, C2 and C4,
C3 and C4, all fanout cells: C2 and C3 and C4). With this additional information,
the diagnostic tool will be able to locate the failing segment more accurately. In
this example, only an open defect on s2 can propagate through C2 and C3, and
not through C4.

Defect Diagnosis Techniques for Silicon Customer Returns 655

Fig. 5 Example of
interconnect open defect

Fig. 6 Example of bridging defects

• Diagnostic ATPG for bridging defects. In the case of a suspected bridging defect,
it is important to have the list of bridging pairs, extracted from the layout
database, to generate additional diagnostic patterns. The goal in this case is to
test an opposite value on each bridging pair separately (“0” on one net and “1” on
the other one, or vice-versa) and avoid testing several bridging pairs at the same
time. In Fig. 6, let us assume that two possible bridges (net1-net3 and net2-net4)
are reported by the diagnostic tool. A new diagnostic pattern must be generated
to distinguish between these two defects. Any ATPG tool would try to target
net1-net3 and net2-net4 with the same test pattern, which is not appropriate for
fault diagnosis. A diagnostic test pattern generation will try to test net1-net2 by
delivering an opposite value on these two nets and ensure that net2 and net4 have
the same logic value. With this additional information, a diagnostic tool will be
able to differentiate these two potential bridging defects and identify the actual
failing one.

• Diagnostic ATPG for chain defects. In the case of a scan chain failure in a design
using test compression, it is crucial to generate additional patterns that can dis-
tinguish between two or more faults. These patterns are called chain diagnostic
patterns. These patterns are not used during production (manufacturing) test but
can be generated and applied for diagnostic purpose, especially in the case of a
customer return. Figure 7 shows an example of a test program in which additional
chain diagnostic patterns are inserted. For a fault-free CUT, the flow starts by
testing the chain integrity followed by the ATPG test. In the case of a failure,

656 P. Girard et al.

Fig. 7 Example of a manufacturing test program

additional chain diagnostic patterns are used. The main drawback of using chain
diagnostic patterns, however, is the increased test time.

4 Defect Diagnosis Techniques for Customer Returns

A conventional diagnosis flow of ICs is depicted in Fig. 8. The circuit is first
designed according to specifications and supported by a large set of design and
verification tools. When the circuit design is completed and verified, the circuit
can be manufactured. After manufacturing, all parts of the circuit (logic, memory,
analog, etc.) must be tested by different methods. This step is mandatory for any
manufacturer to ensure a high quality of products before delivery to the customer. If
the test reveals an abnormal behavior (i.e., test fail), information from the ATE are
subsequently exploited during the diagnosis step to identify the source of failure and
take necessary actions to correct the design or modify the manufacturing process.
The final objective of this step is to improve the yield ramp-up. Conversely, if the
test is passed, the IC is sold and embedded in a system.

During the lifetime of the IC (e.g., in field), and especially during mission mode,
the IC may fail by providing incorrect and unexpected responses to functional
stimuli (see Fig. 8). In the case such erroneous behavior is observed, the IC is sent
back to the manufacturer and is considered as a customer return. It is then tested with

Defect Diagnosis Techniques for Silicon Customer Returns 657

Requirements

Design

Wafer

Final Product Test In-Field Mission Mode

Manufacturing

Diagnosis

Test

Test Pattern
Enhancement

Fail during
Mission Mode

Fig. 8 Diagnosis flow of integrated circuits

the test sequences initially used after manufacturing process in order to reproduce
the failure occurrence. In the case this test phase does not reveal any error, then a test
pattern enhancement step is launched to produce new test patterns able to exhibit the
erroneous behavior. Obtained test data log are then analyzed during the diagnosis
step to finally identify the source of failure.

Fault diagnosis must be able to identify the fault location and the fault type.
This information is further used to guide the failure analysis process in pinpointing
the defect on silicon and identifying the root cause of failure. For example, the root
cause may be a problem in the physical implementation process or a misalignment in
the production masks. The results of these investigations during PFA can be further
used to optimize the design and manufacturing processes and avoid reoccurrence of
the failure in next-generation products.

The next subsections give details on conventional diagnosis approaches and
advanced methods based on machine learning.

4.1 Conventional Approaches

Conventional diagnosis approaches aim at identifying the list of suspected nets and
gates (or cells) in a digital circuit. Two main paradigms can be distinguished: cause-
effect and effect-cause. The “cause-effect” paradigm needs a pre-computed fault

658 P. Girard et al.

Fig. 9 Inter-cell (left) vs intra-cell (right) diagnosis results

dictionary, which can be obtained by simulating the targeted faults in a specific
design with a set of test patterns [23]. From this fault dictionary and the set of failing
and passing test patterns obtained after test application, a diagnosis tool is able to
identify a list of suspects (i.e., fault or defect candidates). Compared to “cause-
effect” diagnosis, the “effect-cause” approach does not require any pre-computed
fault dictionary [33]. It is based on critical path tracing (CPT) and proceeds by back
tracing sensitive paths in the circuit from every failing output identified after test
application to identify the suspected faults.

For each conventional diagnosis approach, there are two levels of diagnosis:
inter-cell and intra-cell. In the case of inter-cell diagnosis, each candidate is a circuit
net (i.e., a connection between cells) or a cell. On the other hand, for intra-cell
diagnosis, each candidate is a net inside one cell. Figure 9 gives an example of
diagnosis report obtained from an inter-cell diagnosis (left part of Fig. 9) and an
intra-cell diagnosis (right part of Fig. 9).

The next subsections give details on “cause-effect” and “cause-effect” diagnosis
state-of-the-art approaches.

4.1.1 Diagnosis Using Fault Simulation

Inter-Cell Diagnosis
A typical cause-effect diagnosis method is illustrated in Fig. 10.

To build a fault dictionary, a specific fault model, such as the stuck-at fault
model or the transition fault model, is first assumed. The dictionary, which records
the responses of all test patterns for all possible faults, is generated by intensively
performing fault simulations. This dictionary is referred to as the fault dictionary.
Once the fault dictionary is built, the failure syndrome of the failing device is
examined by using the fault dictionary. The fault(s) whose test response matches
the observed failure during test application will be considered as fault candidate(s).

The time required for constructing the fault dictionary corresponds to the time
for fault simulating all test patterns for all faults considered for the circuit under
diagnosis. This is acceptable as it is done only once. During diagnosis, analyzing

Defect Diagnosis Techniques for Silicon Customer Returns 659

Fig. 10 Cause-effect
diagnosis flow

the fault dictionary to derive fault candidates is usually quite fast. However, for
practical applications, the cause-effect diagnosis approach can be limited due to
some problems.

The first one is the size of the fault dictionary since it requires a large amount of
storage capacity for recording all test responses for all faults against all test patterns.
With the increasing size of today’s design, this method thus becomes sometimes
unpractical. Some methods have been proposed to reduce the size of the fault
dictionary. The pass-fail dictionary is the simple way to reduce the size by using
a single pass/fail bit to replace the output response of the test vector [34]. However,
this solution may negatively impact the diagnosis resolution as some faults become
undistinguishable by using only pass-fail bits. Another method proposed in [35]
consists in constructing small fault dictionaries by recording only the test responses
of the failing patterns instead of recording test responses of all test patterns for all
faults. This can reduce the memory requirement without sacrificing the resolution.
Authors in [36] proposed another technique to compress the fault dictionary by
using a multiple input signature register (MISR) to generate compressed fault
signatures. However, the problem of this method is that two different test responses
may be compressed and lead to the same failing signature.

Another issue that may occur when using the cause-effect diagnosis approach
is the lack of accuracy (i.e., the real defect is not in the list of suspects). In fact,
if the defect is not modeled by the fault models used to compute the dictionary, it
cannot be identified by the diagnosis process. To solve this problem, diagnosis must
be performed using several dictionaries, one for each fault model [37].

660 P. Girard et al.

Fig. 11 Examples of transistor transformation to gate netlist

Intra-Cell Diagnosis
There are many research works focusing on intra-cell diagnosis. They can be
classified into two categories.

The first category proposes a conversion from transistor-level netlist into an
equivalent gate-level netlist, based on complex transformations rules [38–40].
Figure 11 gives some examples of these rules. Then, any classical inter-cell
diagnosis solution can be applied on the equivalent gate-level netlist. The main
limitation of this approach is that the set of transformation rules depends on the
targeted defects, so that non-modeled defects may not be diagnosed.

The second category of intra-cell diagnosis techniques is based on the “cause-
effect” paradigm. The transistor-level netlist of a cell is exploited in order to inject
the targeted defects. Therefore, a defect dictionary is generated using results from
transistor level simulations. The defect signature of all defects affecting a library
cell is stored in this defect dictionary. Then, during diagnosis, the signature of all
defects affecting a suspected cell, is compared to the observed failures to obtain a
list of candidates internal to the cell.

These approaches can be further classified depending on the accuracy of the
injected defects and the simulation precision. In [41] targeted defects are simulated
by using a switch-level simulator, thus leading to a less precise defect injection, but
this solution saves simulation time. In [6, 42] a large number of defects is simulated
at transistor level (i.e., by using SPICE simulations). For a given defect, different
sizes of resistance are simulated to be as accurate as possible. This approach leads
to more precise diagnosis results, but it requires a huge simulation time. Moreover,
the size of the defect dictionary is usually very high.

In order to reduce the simulation time and the dictionary size while keeping a
high precision, authors in [43–45] propose to exploit layout information in order to
consider only realistic defects. For example, for each cell, only the realistic potential

Defect Diagnosis Techniques for Silicon Customer Returns 661

Fig. 12 Critical path tracing
principle

bridging defects and via open defects are extracted and then simulated. By this way,
only the identified set of realistic defects is simulated at transistor-level.

4.1.2 Diagnosis Using Critical Path Tracing

Inter-Cell Diagnosis
Conversely to the cause-effect paradigm, effect-cause diagnosis approaches directly
derive the fault candidates by using a CPT algorithm as illustrated in Fig. 12, thus
avoiding the construction of any fault dictionary.

A generic effect-cause diagnosis algorithm that makes the single fault assumption
(only one fault at a time can occur in the circuit) is summarized as follows:

• Step 1. Identification of initial faulty candidates: In [46, 47], the CPT technique
is applied for logic diagnosis. In both cases, a specific fault model is considered,
the stuck-at fault model for [46] and the delay fault model for [47]. The process
of critical path tracing consists in starting from each faulty primary output and
back tracing sensitive paths up to the primary inputs of the circuit. By this way,
a number of critical paths containing logic gates and nets is obtained. If a single
fault is assumed, then the intersection of all the critical paths traced from all
failing outputs is considered as the final candidate set (that contains suspect gates
and nets). Otherwise, in the case of a multiple fault assumption, the union will be
the final candidate set.

• Step 2. Reduction of the candidate list by using passing patterns: The initial
suspect set can be reduced by using passing test patterns. To this purpose, the
same critical path tracing process is done from each fault-free output of the
circuit. By definition, the real defect cannot produce any faulty behavior when
applying passing patterns. Therefore, a candidate (suspected gate or net) will be
removed from the initial suspect set if it is contained in the set of critical paths
traced from the fault-free primary outputs.

662 P. Girard et al.

Fig. 13 Overall intra-cell diagnosis flow

Intra-Cell Diagnosis
In [48], the authors proposed an intra-cell diagnosis method based on the “effect-
cause” paradigm that aims at locating the root cause of the observed failures inside
a logic cell. It is based on a CPT algorithm this time applied at transistor level.
The main characteristic of this approach is that it exploits the analysis of the faulty
behavior induced by the actual defect. In other word, a defect is located by analyzing
the effect that it induces in the circuit. Moreover, since the complexity of a single cell
in terms of number of transistors is low, the proposed intra-cell diagnosis approach
requires a negligible computation time.

Figure 13 sketches the overall diagnosis flow proposed in [48]. First, test patterns
are applied to the circuit under diagnosis (CUD) to distinguish between the correct
circuit behavior and a faulty circuit behavior caused by defects. These defects
produce failing output responses for one or more input test patterns. Input test
patterns leading to observed faulty behavior (i.e., failing test patterns) are stored
into a file called datalog.

Then, an inter-cell fault diagnosis (i.e., logic diagnosis) algorithm exploits
datalog information to determine a list of suspected logic cells. Any available
commercial diagnosis tool can be adopted. Then, the CUD simulation determines
the local set of failing/passing patterns for each suspected logic cell reported by the
logic diagnosis tool. Finally, the intra-cell diagnosis is executed for each suspected
gate and the set of pre-determined local failing/passing test patterns. The diagnosis
result is a list of candidates at transistor level. For each suspect, a set of fault models
able to explain the observed failures is generated.

Compare with the cause-effect methodology, effect-cause approaches have sev-
eral advantages. They require less memory storage since no fault/defect dictionary

Defect Diagnosis Techniques for Silicon Customer Returns 663

has to be constructed a priori. And they do not assume any fault model. Thus, they
can be used for diagnosing more realistic faults.

4.2 Advanced Methods Based on Machine Learning

Although conventional diagnosis techniques discussed in the previous section can
achieve a good resolution, in some cases (e.g., complex cells, complex failure
mechanisms) the number of candidates may be too high to allow an efficient PFA.
This problem will be even more severe in the future with the advent of nanometer-
scale technologies (i.e., 7 nm and beyond). Consequently, improving diagnosis
efficiency at the transistor level (i.e., CA diagnosis) is mandatory. Achieving this
goal can be done by using supervised learning algorithms to determine suspected
defects. Supervised learning is now used in several classification problems where
the knowledge on some data can be used to classify a new instance of such data.
In this section, we summarize the latest developments in the field of CA diagnosis
based on supervised learning.

4.2.1 Preliminaries

Several learning-guided solutions for CA diagnosis of mission mode failures in
customer returns have been proposed recently in [16, 49–53]. All solutions are based
on a Bayesian classification method for accurately identifying defect candidates
in combinational standard cells of a customer return. Choosing one solution over
another depends on the test scenario (test sequence, test scheme, test conditions)
considered during the diagnosis phase and selected according to the types of targeted
defects and failure mechanisms.

The test scenarios in [16, 49–53] are sketched in Fig. 14. In [49, 50], two distinct
processes were developed to diagnose static and dynamic defects separately. In [49],
a basic scan testing scheme used to apply static CA test sequences is considered, so
that stuck-at faults plus static intra-cell defects are targeted during diagnosis. In
[50], a fast sequential testing scheme used to apply dynamic CA test sequences
is considered, so that transition faults plus dynamic intra-cell defects are targeted
during diagnosis. Note that [51] is just a combination of [49, 50], i.e., two testing
schemes, one static and one dynamic, and two CA diagnosis flows, one static and
one dynamic, are considered independently. The main limitation of the solutions
in [49–51] is the required a priori knowledge of the type of targeted defects in the
customer return. In other words, a test engineer needs to know what type of defects
is screening before choosing between [49] or [50].

In an attempt to deal concurrently with all types of defects that may occur in
customer returns, without any a priori knowledge of the targeted defect type, a new
implementation of the CA diagnosis flow was proposed in [16–52]. Note that [16]
is a fully extended version of [52]. Authors assume a test scenario in which two

664 P. Girard et al.

Fig. 14 Test scenarios considered in [16, 49–53]

test (static and dynamic) sequences are successively used, each one considering
an appropriate testing scheme, i.e., basic scan and fast sequential. First, a static
CA test sequence produced by a commercial cell-aware ATPG tool is applied to
the CUD. This sequence targets all cell-level stuck-at faults plus cell-internal static
defects, considering that these defects are not covered by a standard stuck-at fault
ATPG. A standard (low speed) scan-based testing scheme is used to this purpose.
Next, another option of the cell-aware ATPG is used to generate a dynamic CA test
sequence that targets cell-level transition faults plus intra-cell dynamic defects not
covered by a standard transition fault ATPG. In this case, an at-speed launch-on-
capture (LOC) scheme (also called fast sequential) is used during test application.

To construct the comprehensive flow described in [16], a new framework was
set up in which specific rules were defined to obtain a high level of diagnosis
effectiveness in terms of resolution and accuracy. The method was based on a
Gaussian naive Bayes-trained model to predict good defect candidates. This method
is summarized in the next Subsection 4.2.2.

In [53], authors proposed a new version of the CA diagnosis flow, assuming a
test scenario in which both static and dynamic defects can be diagnosed by using
a single dynamic CA test sequence applied at-speed. According to the test flow
depicted in Fig. 4, this scenario may happen when such a test sequence has been
generated to test transition faults plus cell-internal dynamic defects and also cover
the required percentage of stuck-at faults plus cell-internal static defects (or, more
generally, satisfies the test coverage specifications). Note that in this case, only one
(dynamic) datalog is generated after test application and can further be used for
diagnosis purpose. Nevertheless, both static and dynamic defects are taken into
account in this scenario. As only dynamic instance tables are manipulated, the
representation of training and new data is simplified, i.e., a single type of feature
vector is used, without no loss of information and hence without decreasing the
quality of the training and inference phases.

4.2.2 Learning-Based Cell-Aware Diagnosis Flow

Figure 15 is a general view of the learning-based CA diagnosis flow utilized in [16].
It is based on supervised learning in which a known set of input data and known

Defect Diagnosis Techniques for Silicon Customer Returns 665

Fig. 15 Generic view of the
cell-aware diagnosis flow
used in [16]

responses (labeled data) is taken and used as training data, trains a model, and then
implement a classifier based on this model to make predictions (inferences) for the
response to new data.

After investigating several ML algorithms and observing their inference accura-
cies in [49], a Bayesian classification method has been chosen for the learning and
inference phases in [16, 49–53]. So, the first step of the CA diagnosis flow consists
in generating a naive Bayes (NB) model and to train it by using a training dataset. In
this step, training data are used to improve incrementally the capability of the model
to make inference. The training dataset is divided into mutually exclusive and equal
subsets. For each subset, the model is trained on the union of all other subsets.
Some manipulations, such as grouping data by considering equivalent defects or
removing data instances of undetectable defects, are also performed during this
phase. Once the training phase is complete, the accuracy (i.e., performance) of the
model is evaluated by using a part of the dataset initially set aside. More details
about performance evaluation as done in this framework can be found in [51]. The
second main step consists in implementing the NB classifier by using a Gaussian
distribution to model the likelihood probability functions, and use this classifier to
make prediction when a new data instance has to be evaluated. The next subsections
detail the various steps of the CA diagnosis flow, which is able to deal with any type
of cell-internal defect (i.e., static and dynamic) that may occur in customer returns.

666 P. Girard et al.

Fig. 16 Example of training dataset for all defect types in a two-input cell as used in [16, 49–52]

4.2.2.1 Generation of Training Data

For each type of standard cell existing in the CUD, training data are generated during
an off-line characterization process done only once for a given cell library. These
data are extracted from CA views provided by a commercial CAD tool that contains
all characterization results for a given cell type. These results are collected in the
form of a fault dictionary that contain, for each defect within a cell, the cell input
patterns detecting (or not) this defect. An example of training dataset, as used in
[16, 49–52] and containing six instances, for example, two-input cell, is illustrated
in Fig. 16. Each instance is associated with a static defect (D1, D2, D3) or a dynamic
defect (D11, D12, D13). A 1 (0) indicates that defect Di is detectable (not detectable)
at the output of the cell when the cell-level test pattern Pj is applied at the inputs of
the cell. Cell-level test patterns (called cell-patterns in the sequel) are static (one-
input vector – P1 to P4 in Fig. 16) or dynamic (two-input vectors – P5 to P16 in
Fig. 16 in which R (F) indicates a rising (falling) transition at the cell input). For an
n-input cell, there exists 2n static cell-patterns and 2n.(2n–1) dynamic cell-patterns.

Dynamic defects can be detected by dynamic patterns, but not only. They can also
be detected by static patterns applied using a basic scan testing scheme, provided
that (i) at least one transition has been created at the cell inputs between the next-to-
last scan shift cycle and the launch cycle and (ii) the delay induced by the defect is
large enough to be detected (these are the detection conditions of a dynamic defect
modeled by a stuck-open or a gross delay fault). For this reason, the value “0.5” is
assigned to each dynamic defect (D11, D12, D13) for all related static cell patterns,
meaning that such a defect is detectable or not depending on whether or not the
above conditions are satisfied.

As only dynamic test sequences are considered in [53], the representation
of training data as done in [16, 49–52] can be simplified without any loss of
information and without reducing the quality of the training phase. This comes from
the observation that a static defect is a particular case of dynamic defect (e.g., a full
open is a resistive open with an infinite value of the resistance) and that all static cell-
patterns for a given defect are embedded in its whole set of dynamic cell-patterns.
Indeed, a dynamic defect requires a two-vector test pattern (V1V2) in which the
values of V1 and V2 have to be correctly defined for the defect to be detected. On
the contrary, only the value of V2 is significant for a static defect to be detected by

Defect Diagnosis Techniques for Silicon Customer Returns 667

Fig. 17 Example of training dataset for all defect types in a two-input cell as used in [53]

such pattern, irrespective of the value taken by V1. When looking at Fig. 16, one
can see that P1 = {00} is embedded in P6 = {0F}, P11 = {F0}, and P12 = {FF} and
the same for P2, P3 and P4. Similarly, we can see that static defect D2 is detectable
by P1 and P4, and hence by P6, P8, P10, P11, P12, and P15. So, by “compacting”
a training dataset as illustrated in Fig. 17, in which only dynamic cell-patterns are
considered, one can see that all meaningful information is still contained in this
set, while redundant (“0” and “1” values in the first four columns of Fig. 16) or
insignificant (“0.5” values in the same columns for dynamic defects) information is
removed. More generally, such compact format for training data makes so that only
one type of feature vector (dynamic) is used for both types of defects.

As the goal with training data is to provide a distinct feature vector for each data
(defect), it is crucial to be able to distinguish between static and dynamic defects
with such a new format of the training dataset. Let us consider two defects D1 and
D11 where D1 is static and detectable by {00} and D11 is dynamic and detectable by
{F0} (note that {00} is the second vector of {F0}). As can be seen in Fig. 17, these
two defects can easily be distinguished since their training data instances (or feature
vectors) are different. The consequence of using such a new format for training data
(and hence for new data as will be shown later on) is not an improved accuracy or
resolution, but rather a simplified manipulation of feature vectors.

4.2.2.2 Generation of Instance Tables

An instance table is a failure mapping file generated for each suspected cell by using
information contained in the tester datalog. It describes the behavior (pass/fail) of
the cell for each cell-pattern occurring on its inputs during test of the CUD. The
generation process of instance tables is sketched in Fig. 18. First, CA test patterns
are applied to the CUD. These test patterns are obtained from a commercial CA
test pattern-generation tool that targets intra-cell defects. Next, a datalog containing
information on the failing test patterns and corresponding failing primary outputs
is obtained. From this datalog and the circuit netlist, a logic diagnosis is carried
out (still using a commercial tool) and gives the list of suspected cells. From this

668 P. Girard et al.

Fig. 18 Generation flow of instance tables

Fig. 19 Example of static
and dynamic instance tables

list and the datalog information, one can finally generate an instance table for each
suspected cell. Note that in the case several test sequences, e.g., one static and one
dynamic, are used for diagnosis of the CUD, the generation process is repeated so
as to produce static and dynamic instance tables for all suspected cells as in the case
reported in [16].

The format of a static instance table is illustrated in Fig. 19 for a given two-
input NOR cell and two static cell-patterns. In this example, the first part of the file
gives information on how the cell is connected to other cells in the circuit, while
the second part represents, respectively, the number of patterns, the pattern status
(failing, passing), and the cell output Z with the associated fault model for which
exercising conditions are reported. These conditions reported right below each cell-
pattern in Fig. 19 represent the stimulus arriving at the cell inputs during the shift
phase (before “-”) and applied during the launch cycle (after “-”). For example,
cell-pattern 2 consists in applying a “1” on input A and B, and failing in detecting a
stuck-at 1 on Z.

Defect Diagnosis Techniques for Silicon Customer Returns 669

Fig. 20 Format of a new data instance for a two-input cell

Fig. 21 Format of a new data instance as used in [53]

4.2.2.3 Generation of New Data

New data are generated after post-processing of instance tables. They are made
of various instances, each of them being associated to one suspected cell in the
CUD, and represents a feature vector that characterizes the actual behavior of
the cell during test application. From each new data instance, one or more defect
candidates can be extracted that have to be classified as good or bad candidate with
a corresponding probability to be the root cause of failure. This classification is
done by comparing the new data instance with the training data of the corresponding
suspected cell, and identify those training data instances that match (or not) with the
new data instance.

The formats of a new data instance as used in [16, 49–52] and [53] are illustrated
in Figs. 20 and 21, respectively. This format is close to the format of a training data
instance, but has a different meaning. In each instance, the value “1” (resp. “0”) is
associated to a failing (resp. passing) cell-pattern Pi for a given defect candidate,
meaning that the candidate is actually detectable (resp. undetectable) by the cell-
pattern Pi at the output of the cell during test of the CUD, and hence can (cannot) be
the real defect. In such instance, the value “0.5” is associated to a cell-pattern for a
given defect candidate when this pattern cannot appear at the inputs of a suspected
cell during real test application with an ATE. The median value “0.5” was chosen
to avoid missing information in new data instances while not biasing the features of
these data.

4.2.2.4 Diagnosis of Defects in Sequential Cells

All the work carried out in [16, 49–53] was about diagnosis of defects occurring in
combinational standard cells of a customer returns. However, defects in SoCs may
also occur in sequential standard cells of logic blocks. In this section, we show how
the previous diagnosis flow can handle sequential cells and related defects by adding
new information to the training dataset [54].

The two main differences between a combinational cell and a sequential cell are
that (i) the latter has a clock input pin and (ii) the fact that the previous logic value
of a sequential cell output can affect the current output value of the cell. To take

670 P. Girard et al.

Fig. 22 Example of training dataset for all defect types (static and dynamic) in a sequential cell.
The pin order is clock-data-previous output

this difference into account, each cell-pattern for a sequential cell is considered as a
tuple in which the first value represents the input clock signal (pulsing or not), the
second value is associated to the main input of the cell (e.g., D), and the third value
is associated to a virtual input pin representing the previous value of the output pin
of the cell (e.g., Q). Note that in the case of sequential cells with multiple real inputs
(e.g., D flip-flop with a D, scan-in, scan-enable, and clock input signals), the cell-
pattern representation is expanded accordingly. In each tuple, the first value is either
U (i.e., pulse) or 0, depending on whether or not there is an active clock signal. The
second value can be 0, 1, R, or F. The third value can only be static (i.e., 0 or 1). An
example of training dataset for all defect types (static and dynamic) that may occur
in a sequential cell is illustrated in Fig. 22. Note that the CA views used during
the generation of training data do not contain information about cell patterns with
non-pulsing clock signals (i.e., none of the cell internal defects can be detected at the
cell output without clock pulse). Consequently, the training data do not include such
cell-patterns as can be observed in the example of Fig. 22. Note also that instance
tables of sequential cells may contain cell patterns with no transition on the main
inputs of the cell. To allow the ML algorithm understanding this information, the
solution consists in including static cell patterns (e.g., P1 to P4 in Fig. 22) in the
training data of sequential cells.

With the above representation of training data for sequential cells, one can
see that the diagnosis flow in Fig. 15 can be used in a straightforward manner
without any change. The two main steps (model training by using a training dataset,
implementation of the NB classifier to make inference) remain the same irrespective
of the type of manipulated standard cells.

5 Industrial Case Studies

The CA diagnosis flow described in Sect. 4.2.2 and targeting defects in both
combinational and sequential cells of customer returns has been implemented in
a Python program. For validation purpose, authors in [16, 49–54] have tested the
proposed flow in three different approaches:

Defect Diagnosis Techniques for Silicon Customer Returns 671

Table 2 Main features of the
silicon test chip

#cells #PIs #POs #SFF

3.8 M 97 32 17.5 k

Table 3 Average pattern count in instance tables of the first simulated case study

#passing patterns #unique passing patterns #failing patterns #unique failing patterns

43.4 24.0 15.5 8.6

• First, they performed experiments on ITC’99 benchmark circuits with defect
injection campaigns targeting combinational cells in each circuit. Various results
are reported in [16, 49–53] to show the superiority of the framework when
compared to commercial diagnosis solutions.

• Next, they considered a test chip developed and designed using STMicroelectron-
ics 28 nm FDSOI technology, and they conducted two defect injection campaigns
targeting sequential cells [54]. Results are reported in Subsection 5.1 and also
demonstrate the effectiveness of the diagnosis framework.

• Finally, they considered a customer return from STMicroelectronics and per-
formed a silicon case study with a real defect subsequently analyzed and detected
during PFA. Results are reported in Subsection 5.2.

5.1 Simulated Test Case Studies

Authors in [54] conducted experiments on a silicon test chip developed and designed
using STMicroelectronics 28 nm FDSOI technology. The test chip contains only
digital and memory blocks, as well as one PLL. The digital blocks include
3.8 million cells. Other features (number of primary inputs, primary outputs and
scan flip-flops) are given in Table 2.

A first simulated case study was done for static defects. All possible static defects
were successively injected into three scan flip-flops (SFF) of a single full-scan
digital block. This block was tested with a static CA test sequence achieving a
stuck-at + static CA fault coverage of 100%. The average numbers of passing and
failing test patterns are given in Table 3. The CA diagnosis flow was executed and
achieved good results. In fact, the accuracy was 100% for all the injected defects (the
injected defect was always identified and reported), and the resolution was 1.25.
The resolution varies between 1 and 3, and Fig. 23 shows the distribution of this
resolution with respect to the total number of simulated cases. Obviously, in most
of the cases, the number of suspects is equal to 1 (perfect resolution).

A second simulated case study with another defect injection campaign was
performed on the same test chip. All possible dynamic defects were successively
injected into three scan flip-flops of a single full-scan digital block. This time, a
dynamic CA test sequence was applied and achieved a transition + dynamic CA
fault coverage of 89.8%. The average number of failing test patterns was 7.9. Again,

672 P. Girard et al.

Fig. 23 Distribution of the
resolution with respect to the
simulated cases

CA diagnosis flow was executed and achieved good results. The accuracy was 100%
for all the injected defects. The average resolution obtained for dynamic defect
injection experiments was 1.37. Again, the resolution ranged between 1 and 3, and
in most of the case, the number of suspects was equal to 1.

5.2 Silicon Test Case Study

Next, a silicon case study was performed on a customer return designed with
a 28 nm FDSOI technology from STMicroelectronics [54]. Experiments were
performed in the following test conditions: a nominal supply voltage of 0.83 V, a
tester frequency of 10 MHz, a launch-to-capture clock speed (for the dynamic CA
test sequence application) aligned to the internal clock frequency, and a temperature
of 25 ◦C. The design process was considered as typical. The CA diagnosis flow was
experimented, and the following results were obtained. Initially, the static CA test
sequence was failing when applied at the nominal voltage. The fails were collected
in a “static” datalog. Then, a logic diagnosis reported a short list of candidates
among them a cell which a six-input SFF cell made of 56 transistors and having
a Reset, an Enable, a Test-Input and Test-Enable input pins. The cell includes
758 potential short or open defects. A static instance table was then produced for
this suspected cell and contained 5 failing and 75 passing cell-level test patterns.
This instance table was post-processed to generate the new data, and then the NB
classifier identified four suspected defects among which defect D62 (a short between
the gate and source of NMOS 19).

The above CA candidate were presented to the FA team of STMicroelectronics,
who performed a PFA in the past on this customer return. The result obtained with
the CA diagnosis flow was confirmed as defect D62 was found to be the real defect.
Figure 24 shows the layout view of the suspected cell and the suspect transistors.
Yellow circles indicate defect candidates and red mark indicates actual observed
defect.

Defect Diagnosis Techniques for Silicon Customer Returns 673

Fig. 24 GDS view of the
suspected cell and the
suspected transistors

6 Discussion and Conclusion

This chapter has identified the key challenges in cell-aware diagnosis of silicon
customer returns and has described a full methodology and subsequent results that
have emerged from pioneering research in this domain. In a comprehensive form, it
proposed a compendium of solutions existing in this field. More in detail, the chapter
has presented a framework for cell-aware diagnosis of customer returns based on
supervised learning. The flow proposes solutions for static and dynamic defects that
may appear in combinational cells or sequential cells of real circuits. A naive Bayes
classifier is used to accurately pinpoint defect candidates. Experiments on silicon
test cases have been performed to confirm the flow efficacy in terms of accuracy and
resolution.

Experimental results proved the relevance of a learning-based method to solve
the challenge of customer return diagnosis, despite the small size of the training
dataset used (only one sample for one defect class). If multiple defect sizes and test
conditions are used, this becomes even truer. In fact, multiple samples (one for each
defect size or defect size range, one for each PVT test condition) can be associated to
a given defect class, simply because the behavior of the defect differs when applying
the same set of test patterns. This method has a low impact in term of timing and
complexity. Indeed, the training dataset is obtained from characterized cell libraries
that are generated anyway for test and diagnosis purpose. So, even with large cell
libraries with a huge number of defects to be simulated (e.g., 631 cells in a library,
each with 4 to 6 inputs, 951 shorts, and 749 opens on average – typical example
of an ST library), the diagnosis framework will still be simple and time-efficiently
relevant.

It is worth noting that among other factors, the effectiveness of the framework
can be enlightened by the fact that naïve Bayes algorithm usually offers good
classification performance [55]. The NB classifier needs a small amount of training
data to estimate its parameters [56], which is the case in the proposed method, as
only one instance per class (i.e., CA defect) is available. On the other hand, other
popular ML classification algorithms, such as K-nearest neighbor (KNN) classifier
or classifiers based on a support vector machine (SVM), which estimate the class of
a new sample by analyzing the classes of similar training samples, cannot properly
work when only one sample per class is available.

674 P. Girard et al.

Acknowledgments This work has been funded by the French National Research Agency (ANR)
under the framework of the ANR-17-CE24-0014-01 EDITSoC (Electrical Diagnosis for IoT SoCs
in automotive) project.

References

1. Sumikawa, N., Drmanac, D., Wang, L.C., Abadir, M.S.: Understanding customer returns from
a test perspective. In: Proc. IEEE VLSI Test Symposium, pp. 2–7 (2011)

2. Tikkanen, R.J., Siatkowski, S., Wang, L.-C., Abadir, M.S.: Yield optimization using advanced
statistical correlation methods. In: Proc. IEEE International Test Conference (2014). https://
doi.org/10.1109/TEST.2014.7035326

3. Benabboud, Y., Bosio, A., Dilillo, L., Girard, P., Virazel, A., Riewer, O.: A comprehensive
system-on-chip logic diagnosis. In: Proc. IEEE Asian Test Symposium (2010). https://doi.org/
10.1109/ATS.2010.49

4. Xue, Y., Li, X., Blanton, R.D., Lim, C., Enamul Amyeen, M.: Diagnosis resolution improve-
ment through learning-guided physical failure analysis. In: Proc. IEEE International Test
Conference (2016). https://doi.org/10.1109/TEST.2016.7805824

5. Pateras, S.: IC test solutions for the automotive market, Mentor Graphics, White Paper (2017).
https://www.techonline.com/tech-papers/ic-test-solutions-for-the-automotive-market/

6. Hapke, F., et al.: Cell-aware test. IEEE Trans. Comput. Aided Des. 33(9), 1396–1409 (2014)
7. Maxwell, P., Hapke, F., Tang, H.: Cell-aware diagnosis: defective inmates exposed in

their cells. In: Proc. IEEE European Test Symposium (2016). https://doi.org/10.1109/
ETS.2016.7519313

8. Xue, Y., Li, X., Blanton, R.D., Lim, C.: Improving diagnostic resolution of failing ICs through
learning. IEEE Trans. Comput. Aided Des. 37(6), 1288–1297 (2018)

9. Ren, X., Martin, M., Blanton, R.D.: Improving accuracy of on-chip diagnosis via incremental
learning. In: Proc. IEEE VLSI Test Symposium, pp. 1–6 (2015)

10. Huang, Y., Yang, W., Cheng, W.: Advancements in diagnosis driven yield analysis (DDYA):
a survey of state-of-the-art scan diagnosis and yield analysis technologies. In: Proc. IEEE
European Test Symposium, pp. 1–10 (2015). https://doi.org/10.1109/ETS.2015.7138758

11. Xue, Y., Poku, O., Li, X., Blanton, R.D.: PADRE: physically- aware diagnostic resolution
enhancement. In: Proc. IEEE International Test Conference (2013). https://doi.org/10.1109/
TEST.2013.6651899

12. Pan, R., Zhang, Z., Li, X., Chakrabarty, K., Gu, X.: Unsupervised root-cause analysis for
integrated systems. In: Proc. IEEE International Test Conference (2020). https://doi.org/
10.1109/ITC44778.2020.9325268

13. Kruseman, B., Majhi, A., Hora, C., Eichenberger, S., Meirlevede, J.: Systematic defects in deep
sub-micron technologies. In: Proc. IEEE International Test Conference, pp. 290–299 (2005)

14. Hapke, F., Krenz-Baath, R., Glowatz, A., Schloeffel, J., Hashempour, H., Eichenberger, S.,
Hora, C., Adolfsson, D.: Defect-oriented cell-aware ATPG and fault simulation for industrial
cell libraries and designs. In: Proc. IEEE International Test Conference, pp. 1–2 (2009). https:/
/doi.org/10.1109/TEST.2009.5355741

15. Hapke, F., Redemund, W., Schloeffel, J., Krenz-Baath, R., Glowatz, A., Wittke, M.,
Hashempour, H., Eichenberger, S.: Defect-oriented cell-internal testing. In: Proc. IEEE
International Test Conference, paper 10.1 (2010). https://doi.org/10.1109/TEST.2010.5699229

16. Mhamdi, S., Girard, P., Virazel, A., Bosio, A., Ladhar, A.: A learning-based cell-aware
diagnosis flow for industrial customer returns. In: Proc. IEEE International Test Conference
(2020). https://doi.org/10.1109/ITC44778.2020.9325246

17. Bushnell, M., Agrawal, V.: Essentials of Electronic Testing for Digital, Memory and Mixed-
Signal VLSI Circuits. Springer (2002)., ISBN 978–0–7923-7991-1

http://doi.org/10.1109/TEST.2014.7035326
http://doi.org/10.1109/ATS.2010.49
http://doi.org/10.1109/TEST.2016.7805824
https://www.techonline.com/tech-papers/ic-test-solutions-for-the-automotive-market/
http://doi.org/10.1109/ETS.2016.7519313
http://doi.org/10.1109/ETS.2015.7138758
http://doi.org/10.1109/TEST.2013.6651899
http://doi.org/10.1109/ITC44778.2020.9325268
http://doi.org/10.1109/TEST.2009.5355741
http://doi.org/10.1109/TEST.2010.5699229
http://doi.org/10.1109/ITC44778.2020.9325246

Defect Diagnosis Techniques for Silicon Customer Returns 675

18. Ho, T.P., Faehn, E., Virazel, A., Bosio, A., Girard, P.: An effective intra-cell diagnosis flow
for industrial SRAMs. In: Proc. IEEE International Test Conference, pp. 1–8 (2018). https://
doi.org/10.1109/TEST.2018.8624799

19. Pavlidis, A., Faehn, E., Louërat, M.-M., Stratigopoulos, H.-G.: BIST-assisted analog fault
diagnosis. In: Proc. IEEE European Test Symposium, pp. 1–6 (2021). https://doi.org/10.1109/
ETS50041.2021.9465386

20. Ye, F., Zhang, Z., Chakrabarty, K., Gu, X.: Adaptive board-level functional fault diagnosis
using incremental decision trees. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35(2),
323–336 (2016)

21. Benabboud, Y., Bosio, A., Girard, P., Pravossoudovitch, S., Virazel, A., Bouzaida, L., Izaute, I.:
A case study on logic diagnosis for system-on-chip. In: Proc. IEEE International Symposium
on Quality Electronic Design, pp. 253–259 (2009)

22. Ye, F., Zhang, Z., Chakrabarty, K., Gu, X.: Board-level functional fault diagnosis using
multikernel support vector machines and incremental learning. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 33(2), 279–290 (2014)

23. Waicukauski, J.A., Lindbloom, E.: Failure diagnosis of structured VLSI. IEEE Des. Test
Comput. 6(4), 49–60 (1989)

24. Bosio, A., Girard, P., Pravossoudovitch, S., Virazel, A.: A comprehensive framework for logic
diagnosis of arbitrary defects. IEEE Trans. Comput. 59(3), 289–300 (2010)

25. Fan, X., Moore, W., Hora, C., Gronthood, G.: A novel stuck-at based method for transistor
stuck-open fault diagnosis. In: Proc. IEEE International Test Conference, pp. 386–395 (2005)

26. Hapke, F., Reese, M., Rivers, J., Over, A., Ravikumar, V., Redemund,W., Glowatz, A., Schloef-
fel, J., Rajski, J.: Cell-aware production test results from a 32-nm notebook processor. In: Proc.
IEEE International Test Conference (2012). https://doi.org/10.1109/TEST.2012.6401533

27. Sun, A., Bosio, A., Dillilo, L., Girard, P., Virazel, A., Pravossoudovitch, S., Auvray, E.: Intra-
cell defects diagnosis. J. Electron. Test. 30(5), 541–555 (2014)

28. Li, J., et al.: Diagnosis for sequence dependent chips. In: Proc VLSI Test Symposium, pp.
187–192 (2002)

29. Li, J., McCluskey, E.J.: Diagnosis of resistive-open and stuck-open defects in digital CMOS
ICs. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 24(11), 1748–1759 (2005)

30. Li, J., Tsang, C.W., McCluskey, E.J.: Testing for resistive opens and stuck opens. In: Proc.
IEEE International Test Conference, pp. 1049–1058 (2001)

31. Huang, Y., Guo, R., Cheng, W.-T., Chien-Mo Li, J.: Survey of scan chain diagnosis. IEEE Des.
Test Comput. 25(3), 240–248 (June 2008)

32. Girard, P., Landrault, C., Pravossoudovitch, S., Rodriguez, B.: A diagnostic ATPG for delay
faults based on genetic algorithms. In: Proc. IEEE International Test Conference (1996)

33. Abramovici, M., Breuer, M.A.: Fault diagnosis based on effect-cause analysis: an introduction.
In: Proc. ACM Design Automation Conference, pp. 69–76 (1980)

34. Pomeranz and Reddy: On the generation of small dictionaries for fault location. In: Proc.
IEEE/ACM International Conference on Computer-Aided Design, pp. 272–279 (1992)

35. Chess, B., Larrabee, T.: Creating small fault dictionaries [logic circuit fault diagnosis]. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst. 18(3), 346–356 (1999)

36. Tang, H., Liu, C., Cheng, W.-T., Reddy, S.M., Zou, W.: Improving performance of effect-cause
diagnosis with minimal memory overhead. In: Proc. IEEE Asian Test, pp. 281–287 (2007)

37. Wu, J., Rudnick, E.M.: Bridge fault diagnosis using stuck-at fault simulation. IEEE Trans.
Comput. Aided Des. Integr. Circuits Syst. 19(4), 489–495 (2000)

38. Fan, X., Moore, W., Hora, C., Gronthoud, G.: A novel stuck-at based method for transistor
stuck-open fault diagnosis. In: Proc. IEEE International Test Conference, pp. 378–386 (2005)

39. Fan, X., Moore, W., Hora, C., Konijnenburg, M., Gronthoud, G.: A gate-level method for
transistor-level bridging fault diagnosis. In: Proc. IEEE VLSI Test Symposium, pp. 266–271
(2006)

40. Fan, X., Moore, W.R., Hora, C., Gronthoud, G.: Extending gate-level diagnosis tools to CMOS
intra-gate faults. IET Comput. Digital Tech. 1(6), 685 (2007)

http://doi.org/10.1109/TEST.2018.8624799
http://doi.org/10.1109/ETS50041.2021.9465386
http://doi.org/10.1109/TEST.2012.6401533

676 P. Girard et al.

41. Amyeen, M., Nayak, D., Venkataraman, S.: Improving precision using mixed-level fault
diagnosis. In: Proc. IEEE International Test Conference, pp. 1–10 (2006)

42. Ladhar, A., Masmoudi, M., Bouzaida, L.: Efficient and accurate method for intra-gate defect
diagnoses in nanometer technology and volume data. In: Proc. IEEE/ACMDesign, Automation
& Test in Europe Conference & Exhibition, pp. 988–993 (2009)

43. Ladhar, A.: Extraction and diagnosis of submicron defects. PhD thesis, Tunis University
(2011)

44. Ladhar, A., Masmoudi, M., Bouzaida, L.: Extraction and simulation of potential bridging faults
and open defects affecting standard cell libraries. In: Proc. IEEE International Conference on
Signals, Circuits and Systems, pp. 1–6 (2008)

45. Ladhar, A., Masmoudi, M.: A novel algorithm to extract open defects from industrial designs.
In: Proc. IEEE International Conference on Electronics, Circuits and Systems, pp. 675–678
(2009)

46. Abramovici, M., Menon, P.R., Miller, D.T.: Critical path tracing: an alternative to fault
simulation. IEEE Des. Test Comput. 1(1), 83–93 (1984)

47. Girard, P., Landrault, C., Pravossoudovitch, S.: Delay-fault diagnosis by critical-path tracing.
IEEE Des. Test Comput. 9(4), 27–32 (1992)

48. Sun, Z., Bosio, A., Dilillo, L., Girard, P., Todri-Sanial, A., Virazel, A., Auvray, E.: Effect-cause
intra-cell diagnosis at transistor level. In: Proc. IEEE International Symposium on Quality
Electronic Design, pp. 460–467 (2013)

49. Mhandi, S., Virazel, A., Girard, P., Bosio, A., Auvray, E., Faehn, E., Ladhar, A.: Towards
improvement of mission mode failure diagnosis for system-on-chip. In: Proc. IEEE Interna-
tional on-Line Testing Symposium (2019)

50. Mhandi, S., Girard, P., Virazel, A., Bosio, A., Ladhar, A.: Cell-aware diagnosis of automotive
customer returns based on supervised learning. In: presented at IEEE Automotive Reliability
and Test Workshop (2019)

51. Mhamdi, S., Girard, P., Virazel, A., Bosio, A., Faehn, E., Ladhar, A.: Cell-aware defect
diagnosis of customer returns based on supervised learning. IEEE Trans. Device Mater. Reliab.
20(2), 329–340 (2020)

52. Mhandi, S., Girard, P., Virazel, A., Bosio, A., Ladhar, A.: Learning-based cell-aware defect
diagnosis of customer returns. In: Proc. IEEE European Test Symposium (2020)

53. Mhandi, S., Girard, P., Virazel, A., Bosio, A., Ladhar, A.: Cell-aware diagnosis of customer
returns using Bayesian inference. In: Proc. IEEE International Symposium on Quality Elec-
tronic Design (2021)

54. d’Hondt, P., Mhamdi, S., Girard, P., Virazel, A., Ladhar, A.: A comprehensive framework for
cell-aware diagnosis of customer returns. Microelectron. Reliab. J. 135, 114595 (2021)

55. Zhang, H.: The optimality of naive Bayes. In: Proc. 17th International Florida Artificial
Intelligence Research Society Conference (2004)

56. Webpage: 1.9. Naive Bayes — Scikit-Learn 0.24.1 documentation. https://scikit-learn.org/
stable/modules/naive_bayes.html

https://scikit-learn.org/stable/modules/naive_bayes.html

Index

A
Agriculture, 466, 473, 486
AI powered IoT, 465, 466, 494, 496–497
Analog Circuit Design, 67, 72, 115
Ana-log integrated circuit design, 29
Applications, 10, 43, 50, 62, 73, 115, 149, 154,

157
Artificial Intelligence (AI), 62, 137, 259–291,

298, 400–404, 494, 501, 506, 507
Attack detection, 300, 576, 580–599, 604
Attack localization, 588–595, 597
Automotive systems, 297, 298, 304, 307, 323

B
Bayesian classification, 663, 665
Biological neural networks, 261, 268, 286

C
Cell-aware models, 228
Cell-Aware test and diagnosis, 227
Cloud computing, 137, 146
Computing in-memory (CIM), 44, 52, 58, 162,

164, 426, 428
Coverage analysis, 175–179, 182, 185–188,

222
Coverage closure, 175–223
Coverage directed generation (CDG), 178,

209, 210, 218, 222
Covert channel, 404, 551, 559, 566, 568, 570
Cryptography, 10, 34, 387, 405
Customer return, 641, 642, 647, 650, 654–670
Cybersecurity, 297–324

D
Data analytics, 175–223, 472, 482, 493–494
Deep machine learning, 43, 137, 163, 260, 288,

298, 398, 403, 507, 512–513
Denial-of-Service attack (DDoS), 305, 308,

390, 486, 489, 576, 613, 619
Derivative-free optimization (DFO), 214
Diagnosis, 228, 230, 634, 641–673
Digital marketing, 466, 472

E
ECC decoding, 25, 31
ECC encoding, 24, 27, 32
Edge computing, 44, 93, 164, 282, 290,

415–460, 494
Error correction codes (ECC), 10, 15, 22, 27,

158–159, 333

F
Fault injection, 392, 393, 395, 616, 620,

628–629
Field programming gate array (FPGA), 1, 7,

26, 27, 73, 282, 394, 400, 543
Flash-based circuits, 67, 73–77, 80, 93,

115–116, 127, 149
Floating gate transistors, 69
FPGA security, 551–572

H
Hardware functional verification, 175, 563
Hardware Security (HS), 387–408, 612

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
A. Iranmanesh (ed.), Frontiers of Quality Electronic Design (QED),
https://doi.org/10.1007/978-3-031-16344-9

677

 -2016 61494 a -2016 61494 a

https://doi.org/10.1007/978-3-031-16344-9

678 Index

Hardware Trojans (HT), 388, 390–391, 393,
401–404, 501–544, 559, 570, 576, 613,
616–620

Healthcare, 387, 408, 467–468, 487
Hybrid memory, 147, 148, 153, 154

I
Industry, 84, 93, 166, 177, 210, 233, 389, 436,

471–472, 543, 617, 645, 653
In-memory processing, 428, 460
Input/Output interface, 328, 342–345, 381
Internet of Things (IoT), 23, 43, 62, 115, 116,

120, 164, 328, 465–498
Intra-cell defects, 646, 663, 667
IoT security, 388, 405, 466, 471, 485, 487

K
Key-value pair, 29, 34, 193

L
Leaky-integrate and fire neuron (LIF), 54,

269–270
Logic synthesis, 503

M
Machine learning (ML), 26, 50, 62, 67,

175–223, 227–255, 315, 397–404
Magnetic random-access memory (MRAM),

44, 460
Manufacture, 1, 22, 93, 121, 123, 124, 140,

304, 387–389, 482, 483, 502, 615, 641,
646, 647, 650, 656

Mathematical analysis, 334–342, 380, 381, 383
Memristive neural networks, 352, 370
Memristive synapse, 276–280
Migration, 150–154

N
NAND flash, 1–39
Network-on-chip (NoC), 399, 417, 575–606
Neural network accelerators, 62, 93–108, 115,

434
Neuromorphic chips, 280–288
Neuromorphic computing, 44, 50–52, 259–291
Non-idealities of circuit elements, 115–117,

120, 329, 334, 348, 370
Non-volatile memory (NVM), 67, 72, 117, 127
Normally-off computing, 417

O
Offline/Online training, 283, 363
Oil & gas mining, 477–478
Open source FPGA CAD tools, 553–569

P
Phase-change memory (PCM), 94, 138–140,

143, 146, 149, 155, 160, 162, 166, 417,
426

Physical unclonable function (PUF), 1–10, 23,
27–33

Place and route (PAR), 554
Privacy, 465, 466, 485–493

R
Resistive Random Access Memory (ReRAM),

43–62, 139–140, 144, 146, 159–161,
166, 417, 435, 438

Retail industry, 471–472

S
Scan-based attack, 621, 622
Scrambler, 10, 22–27
Security, 1–34, 73, 88–89, 163–164, 388, 403,

478, 501–542, 551–572, 602, 611–636
Side-channel attacks, 388, 391–392, 396, 403,

408, 619–620, 627–628
Silicon neurons, 290
Smart building, 466, 481–482
Smart cities, 387, 466, 480–481
Spike time dependent plasticity (STDP), 48,

55, 273
Spiking neural network, 289
Standard cell characterization, 232
Storage, 494
Spin-transfer-torque magnetic random access

memory (STT-MRAM), 44, 47, 138,
438

System-on-Chip (SoC), 575, 611, 612
System security, 389, 501–544

T
Template-aware coverage (TAC), 176, 177,

196
Testability, 404
Test and diagnostic, 653, 654
Three-dimensional integrated circuits, 278,

405
Tiny machine learning (TinyML), 494, 495
Tourism & hospitality, 471

Index 679

Transportation, 279, 466, 480, 484
True random number generator (TRNG), 1, 9,

10, 457, 630

U
Unique identification, 34

V
Variation mitigation training techniques, 329,

364–372, 380, 382

W
Wireless NoC (WNoC), 575, 577, 579–580

	Preface
	Acknowledgements
	Contents
	About the Authors
	NAND Flash Memory Devices Security Enhancement Based on Physical Unclonable Functions
	1 Multimode Physical Unclonable Function as an Entropy Source for Generating True Random Bits
	1.1 Introduction
	1.2 General Description of a Circuit
	1.3 Operation of the Entropy Source
	1.3.1 Initial Memory
	1.3.2 Ring Oscillator
	1.3.3 Metastability
	1.3.4 Latch

	1.4 Experimental Results
	1.4.1 Initial Memory
	1.4.2 Ring Oscillator
	1.4.3 Metastability
	1.4.4 Latch

	1.5 Conclusion

	2 Raw Read-Based Physical Unclonable Function for TLC NAND Flash
	2.1 Introduction
	2.2 Control of the Entropy Source
	2.2.1 Enrollment
	2.2.2 Generation

	2.3 Experimental Results
	2.3.1 Enrollment
	2.3.2 Generation

	2.4 Conclusion

	3 Flash Memory Device Identification Based on Physical Unclonable Functions
	3.1 Introduction
	3.2 ID Generation Algorithm
	3.3 Example of ID Generation
	3.4 Experimental Results
	3.4.1 Reliability
	3.4.2 Uniqueness

	3.5 Conclusion

	4 Design of Data Scrambler with Enhanced Physical Security
	4.1 Introduction
	4.2 Proposed Scrambler Circuit Operation
	4.3 Experimental Results
	4.3.1 Option 1
	4.3.2 Option 2

	4.4 Conclusion

	5 Physical Unclonable Function-Based Error Detection Algorithm for Data Integrity
	5.1 Introduction
	5.2 Proposed Data Path Design
	5.3 Example of Usage in Mobile NAND Flash Devices
	5.4 Conclusion

	6 Conclusion
	Appendix
	References

	ReRAM-Based Neuromorphic Computing
	1 Introduction
	2 The Memristor
	3 ReRAM: Implementation of the Memristor
	4 Comparison of ReRAMs with Other Memory Technologies
	5 Use of ReRAMs as Synapses
	6 Use of ReRAMs as Neurons
	7 ReRAMs in Neuromorphic Computing
	8 ReRAM Crossbars
	9 ReRAM-Based Spiking Neural Network
	10 Spike Time-Dependent Plasticity
	11 STDP Functionality in ReRAMs
	12 ReRAM-Based SNN Architectures
	13 Other ReRAM-Based Neural Networks
	14 Conclusion
	References

	Flash: A ``Forgotten'' Technology in VLSI Design
	1 Chapter Summary
	2 Technology Overview
	2.1 Flash Transistors
	2.2 Pseudo-Flash Transistor

	3 ASIC Replacement
	3.1 Digital Circuit Design Using Flash Transistors
	3.1.1 Flash-Based Digital Circuit Implementation
	3.1.2 Flash-Based Implementation Results
	3.1.3 Tuning Delay, Power, and Energy
	3.1.4 Flash-Based Design Conversion
	3.1.5 Performance of Our Conversion Flow
	3.1.6 Conclusion

	3.2 Perceptron Hardware: Flash Threshold Logic Cells
	3.2.1 Flash Threshold Logic (FTL) Cell Architecture
	3.2.2 Related Work
	3.2.3 Experimental Results
	3.2.4 Summary

	3.3 Input and Output Hybridization for Enhanced Security in ASIC Circuits
	3.3.1 Security and Hybridization
	3.3.2 Previous Work
	3.3.3 SAT-Based Threshold Function Identification and Weight Generation
	3.3.4 Results

	3.4 Benefits of Flash-Based ASIC Design

	4 Neural Network Accelerators
	4.1 A Configurable BNN ASIC Using a Network of Programmable Threshold Logic Standard Cells
	4.1.1 Binary Neural Network Using Binary Neurons
	4.1.2 Hardware Architecture of TULIP-PE
	4.1.3 Addition and Accumulation Operation
	4.1.4 Comparison, Batch Normalization, Max Pooling, and RELU Operation
	4.1.5 Top-Level View of the Architecture
	4.1.6 Experimental Results
	4.1.7 Conclusion

	4.2 A Flash-Based Current-Mode IC to Realize Quantized Neural Networks
	4.2.1 Fully Connected (FC) Node Design
	4.2.2 Convolution (CONV) Node Design
	4.2.3 MAXPOOL
	4.2.4 Batch Normalization
	4.2.5 Dataflow Architecture
	4.2.6 Experiment and Results
	4.2.7 Conclusion

	5 CIDAN: Computing in DRAM with Artificial Neurons
	5.1 Introduction
	5.2 Threshold Logic Processing Element (TLPE)
	5.3 Top-Level Architecture of CIDAN
	5.4 System-Level Integration and the Controller Design
	5.5 Experimental Results
	5.6 Conclusion

	6 Flash Devices in Analog Circuits
	6.1 Flash-Based Digital to Analog Conversion
	6.1.1 Design
	6.1.2 Features
	6.1.3 Performance Metrics
	6.1.4 Summary

	6.2 Pseudo-Flash-Based Digital Low-Dropout Regulator
	6.2.1 Proposed Pseudo-Flash-Based Digital LDO
	6.2.2 Coarse-Fine Controller
	6.2.3 Simulation Results

	6.3 Summary

	7 Conclusions and Future Outlook
	References

	Nonvolatile Memory Technologies: Characteristics, Deployment, and Research Challenges
	1 Introduction
	2 Characteristics of NVM Devices
	2.1 Flash Storage Devices
	2.2 Phase Change Memory (PCM)
	2.3 Resistive Random Access Memory (ReRAM/RRAM)
	2.4 Ferro-Electric Random Access Memory (FeRAM)
	2.5 Carbon Nanotube Random Access Memory (NRAM)
	2.6 Spin-Transfer Torque RAM (STT-RAM)

	3 Deployment of Nonvolatile Memories in Computing System
	3.1 Deploying NVM Devices as Processor Cache
	3.2 Integrating NVM as Main Memory
	3.2.1 Replacing Conventional Memory Devices with NVM
	3.2.2 Integrating NVM and DRAM as Hybrid Memories

	3.3 Deploying NVM as Storage

	4 Challenges in Adopting NVM Devices at Different Levels of Memory
	4.1 Design Issues in Utilizing NVM as Cache
	4.1.1 Management of Hybrid Caches
	4.1.2 Challenges in Adopting Hybrid Caches

	4.2 Challenges in Adapting NVM as a Candidate for Hybrid Memories
	4.3 Challenges in Adopting NVM as Storage Media
	4.3.1 Changes to the Operating System
	4.3.2 Modifications in the File System

	5 Current Research Challenges
	5.1 Lifetime Improvement
	5.1.1 Wear-Leveling Techniques
	5.1.2 Write Reduction Techniques
	5.1.3 Error Correction

	5.2 Multilevel Cell
	5.2.1 Multilevel Cell Property in PCM
	5.2.2 Multilevel Cell Property in ReRAM
	5.2.3 Multilevel Cell Property of STT-RAM
	5.2.4 Multilevel Cell of FeRAM

	5.3 Accelerators
	5.4 Security

	6 Application of NVM Devices in IoT and AI
	7 Simulators
	8 Conclusions and Future Scope
	References

	Data Analytics and Machine Learning for Coverage Closure
	1 Introduction
	2 Descriptive Coverage Analysis
	2.1 Coverage Views
	2.1.1 Selections
	2.1.2 Projections
	2.1.3 Groupings

	2.2 Hole Analysis: Automatic Descriptive Coverage Analysis
	2.2.1 Algorithm for Projected Holes
	2.2.2 Algorithm for Aggregated Holes

	2.3 Machine Learning-Based Discovery of Coverage Model Structure
	2.3.1 Clustering Events into Cross-Products
	2.3.2 Improving the Cross-Product Quality
	2.3.3 Usage Results

	3 Template Aware Coverage
	3.1 TAC Use-Cases and Queries
	3.1.1 Best Test-Templates to Hit an Event
	3.1.2 Best Test-Templates to Hit a Coverage Model
	3.1.3 Coverage of a Test-Template
	3.1.4 Uniquely Hit Events
	3.1.5 Aged-Out Events

	3.2 Implementation
	3.2.1 Data Structures
	3.2.2 Sparse Matrix Operations
	3.2.3 Performance

	4 Automatic Coverage Closure
	4.1 Coverage-Based Regression
	4.1.1 Finding an Optimized Test Policy
	4.1.2 Mapping Verification Goals to TAC-Optimized Test Policies

	4.2 Coverage-Directed Generation
	4.2.1 Problem Definition
	4.2.2 Approximated Target Function
	4.2.3 Random Sample
	4.2.4 Optimization
	4.2.5 Combining Random Sampling and Optimization

	4.3 CDG for Large Sets of Events
	4.3.1 Event After Event Implicit Filtering for Multiple Targets
	4.3.2 Machine Learning Accelerated Implicit Filtering
	4.3.3 Experimental Results

	5 Conclusions
	References

	Cell-Aware Model Generation Using Machine Learning
	1 Introduction
	2 Background on Standard Cell Characterization
	2.1 Standard Cell Characterization for Design Purpose
	2.2 Cell Internal Defect Universe
	2.3 Standard Cell Characterization for Test and Diagnosis Purpose
	2.4 Cell-Aware Model Generation: A Machine-Learning Friendly Process

	3 Learning-Based Cell-Aware Model Generation Flow
	3.1 Generation of Training Data
	3.2 Generation of New Data

	4 Cell and Defect Representation in the Cell-Aware Matrix
	4.1 Identification of Active, Passive, and Pulsing Transistors
	4.2 Renaming of Transistors
	4.2.1 Determination of Branch Equations
	4.2.2 Sorting of Branch Equations

	4.3 Identification of Parallel Transistors
	4.4 Defect Representation in the Cell-Aware Matrix

	5 Validation on Industrial Cell Libraries
	5.1 Predicting Defect Behavior on the Same Technology
	5.1.1 Combinational Standard Cells
	5.1.2 Sequential Standard Cells

	5.2 Predicting Defect Behavior on Another Technology
	5.2.1 Combinational Standard Cells
	5.2.2 Analysis and Discussion
	5.2.3 Sequential Standard Cells
	5.2.4 Controlled Experiments

	6 Hybrid Flow for CA Model Generation
	6.1 Runtime Saving for Combinational Cells
	6.2 Runtime Saving for Sequential Cells

	7 Discussion and Conclusion
	References

	Neuromorphic Computing: A Path to Artificial Intelligence Through Emulating Human Brains
	1 Introduction
	2 Biological Neural System
	2.1 Neurons and Synapses
	2.2 Associative Memory Learning

	3 Modeling Neural System
	3.1 Leaky Integrate and Fire Neuron Model
	3.2 Hodgkin-Huxley Neuron Model
	3.3 Izhikevich Neuron Model
	3.4 McCulloch-Pitts Neuron Model
	3.5 Neural Coding

	4 Silicon Brain
	4.1 Electronic Neurons
	4.2 Memristive Synapses

	5 Neuromorphic Chips
	5.1 Loihi Chips
	5.2 Dynamic Neuromorphic Asynchronous Processors
	5.3 TrueNorth Chips
	5.4 Neurogrid Chips
	5.5 BrainScaleS Project
	5.6 Human Brain Project

	6 Challenges and Opportunities
	References

	AI for Cybersecurity in Distributed Automotive IoT Systems
	1 Introduction
	2 Related Work
	3 Background on Sequence Learning
	3.1 Sequence Models
	3.1.1 Recurrent Neural Network (RNN)
	3.1.2 Long Short-Term Memory (LSTM) Networks
	3.1.3 Gated Recurrent Unit (GRU)

	3.2 Autoencoders

	4 Definitions and Problem Formulation
	4.1 System Model
	4.2 Communication Model
	4.3 Attack Model

	5 INDRA Framework Overview
	5.1 Recurrent Autoencoder
	5.1.1 Model Architecture
	5.1.2 Training Procedure

	5.2 Inference and Detection

	6 Experiments
	6.1 Experimental Setup
	6.2 Intrusion Threshold Selection
	6.3 Comparison of INDRA Variants
	6.4 Comparison with Prior Works
	6.5 IDS Overhead Analysis
	6.6 Scalability Results

	7 Conclusion
	References

	Ultralow-Power Implementation of Neural Networks Using Inverter-Based Memristive Crossbars
	1 Introduction
	2 Literature Review
	2.1 Memristor
	2.2 Memristive Neuron Circuit
	2.3 Memristor Non-idealities

	3 Mathematical Analysis
	3.1 Circuit Model of an IM Neuron
	3.2 Effects of Non-idealities on the Outputs of IM Neurons
	3.2.1 Variations of the Activation Functions Coefficients
	3.2.2 IM Neuron Output Sensitivity to the Conductance Variation of Memristors
	3.2.3 IM-NN Primary Output Sensitivity to Characteristic Variations of Circuit Elements

	3.3 Inductions Drawn from the Above Analysis

	4 Input/Output Interfaces
	4.1 Memristive DAC
	4.2 Memristive ADC

	5 Training of IM-NNs
	5.1 PHAX
	5.2 RIM
	5.3 LATIM
	5.4 ERIM
	5.4.1 Implementation of Adjustable-Size Inverters

	5.5 OCTAN

	6 Variation Mitigation Methods
	6.1 Variation-Aware Training (VAT)
	6.2 INTERSTICE

	7 Comparison of Different Training Methods
	7.1 Training Methods
	7.2 IM-NN Accuracy in the Presence of Variations
	7.3 Comparing Different Training Methods
	7.4 Opportunities for Future Research

	References

	AI-Based Hardware Security Methods for Internet-of-Things Applications
	1 Introduction
	2 Hardware Attacks
	2.1 IP Piracy
	2.2 Reverse Engineering
	2.3 Counterfeiting
	2.4 Hardware Trojans
	2.5 Side-Channel Attacks

	3 Countermeasures Against Side-Channel Attacks and Hardware Trojans Insertion
	3.1 Generic Countermeasures for SCA
	3.2 Generic Countermeasures Against Hardware Trojan Insertions
	3.3 Countermeasures Against Physical Attacks in IoT
	3.4 Countermeasures Against Hardware Trojans in IoT

	4 Unified Countermeasures for IoT
	5 3D ICs and Machine Learning
	6 Securing IoT Infrastructure Using Artificial Intelligence (AI) and Machine Learning (ML)
	6.1 Hardware Trojan Detection Using AI and ML
	6.2 Hardware Trojan Detection in IoT Systems Using AI and ML

	7 Leveraging 3D Integration for Hardware Security in IoT Devices
	8 Discussion
	References

	Enabling Edge Computing Using Emerging Memory Technologies: From Device to Architecture
	1 Introduction and Motivations
	1.1 Von-Neumann vs. Non-Von-Neumann Architectures
	1.2 Normally Off Computing Systems

	2 Emerging Magnetic RAM (MRAM) Technology
	2.1 STT-MRAM
	2.2 SOT-MRAM

	3 Enabling Data-Intensive Computing Paradigm
	3.1 General Processing-in-Memory Structure
	3.2 Circuit-Level Exploration: Evolution of the MRAM-Based PIM Platforms
	3.2.1 Basic PIM Supporting (N)AND, (N)OR
	3.2.2 Reconfigurable Complete PIM Supporting X(N)OR
	3.2.3 Reconfigurable PIM Supporting Two-Cycle In-Memory Addition
	3.2.4 Reconfigurable PIM Supporting One-Cycle In-Memory Addition

	3.3 Convolutional Neural Networks (CNN) Acceleration: Analog or Digital PIM Approach?
	3.3.1 CNN Terminology
	3.3.2 Evaluation Framework
	3.3.3 Performance Analysis

	4 Enabling Reliable and Resilient Computing Paradigm
	4.1 MG-Based Synthesis and Optimization Research Tool
	4.1.1 Technology-Dependent Optimization
	4.1.2 Power and Delay Optimization
	4.1.3 Area Optimization

	4.2 Power Failure Resilient: NV-Clustering Design Methodology
	4.2.1 Logic-Embedded FF (LE-FF) Design
	4.2.2 NV-Clustering Methodology
	4.2.3 Simulation Results

	4.3 Power Analysis Resilient: PARC Design Methodology
	4.3.1 PARC Design Methodology

	5 Conclusion
	References

	IoT Commercial and Industrial Applications and AI-Powered IoT
	1 Introduction
	2 IoT Commercial Applications
	2.1 Healthcare
	2.1.1 Clinical Sensors
	2.1.2 Nonclinical Sensors

	2.2 Tourism and Hospitality
	2.3 Retail Industry
	2.4 Digital Marketing

	3 IoT Commercial Applications
	3.1 Agriculture
	3.1.1 Field Sensors
	3.1.2 Climate Sensors

	3.2 Oil and Gas Mining
	3.2.1 Smart Pipelines
	3.2.2 Lone Worker Monitoring
	3.2.3 Safety and Security

	3.3 Wearables
	3.3.1 Fitness Trackers
	3.3.2 Smartwatches
	3.3.3 Accelerometers

	3.4 Smart Cities
	3.4.1 Environmental Monitoring

	3.5 Smart Buildings
	3.6 Maintenance Management
	3.7 Water Supply
	3.8 Manufacturing
	3.9 Transportation
	3.10 Warehouses

	4 IoT Security and Privacy Issues
	4.1 IoT Malware
	4.2 Encrypted Threats
	4.3 Perception Layer
	4.3.1 Node Capture
	4.3.2 Replay Attack
	4.3.3 Malicious Node

	4.4 Network Layer
	4.4.1 DDoS (Distributed Denial-of-Service) Attack
	4.4.2 Man-in-the-Middle Attack
	4.4.3 Spoofing Attack
	4.4.4 Wormhole Attack
	4.4.5 Black Hole Attack or Drop Attack
	4.4.6 Sybil Attack
	4.4.7 Sinkhole Attack
	4.4.8 Malicious Code Injection

	4.5 Application Layer
	4.5.1 Cross-Site Scripting
	4.5.2 Privacy and Confidentiality

	5 IoT Data Analytics
	6 AI-Powered IoT
	6.1 Benefits of AI-Powered IoT
	6.1.1 Boosting Operational Efficiency
	6.1.2 Better Risk Management
	6.1.3 Triggering New and Enhanced Products and Services
	6.1.4 Increase IoT Scalability
	6.1.5 Eliminates Costly Unplanned Downtime
	6.1.6 Smart Thermostat

	7 Conclusion
	References

	Hardware and System Security: Attacks and Countermeasures Against Hardware Trojans
	1 Introduction
	2 IC Supply Chain
	3 HT Structure
	4 HT Models
	5 HT Attacks
	6 HT Taxonomy
	7 Challenges Against HTs
	8 Structure and Purpose of the Chapter
	9 An Overview of Artificial Intelligence
	9.1 Artificial Intelligence Term
	9.2 Machine Learning Term
	9.3 Deep Learning Term

	10 Tasks of Learning
	10.1 Supervised Learning
	10.2 Unsupervised Learning
	10.3 Semi-supervised Learning

	11 Learning Models
	11.1 Artificial Neural Network Models
	11.2 Bayesian Models
	11.3 Clustering Models
	11.4 Computer Vision Models
	11.5 Decision Tree Models
	11.6 Deep Learning Models
	11.7 Dimensionality Reduction Models
	11.8 Ensemble Learning Models
	11.9 Generative Learning Models
	11.10 Instance-Based Models
	11.11 Natural Language Processing Models
	11.12 Regression Models
	11.13 Regularization Models
	11.14 Speech Recognition Models

	12 AI History Timeline
	13 Countermeasures Against HTs
	14 Historical Throwback
	15 Studies Trend
	16 Side-Channel Analysis-Based Approaches
	16.1 SCA Power Analysis-Based Approaches
	16.2 SCA Time Analysis-Based Approaches

	17 ML and Simulation-Based Approaches
	17.1 Logic Testing Simulation Approaches
	17.2 ML-Based Approaches

	18 Auxiliary Approaches
	18.1 Runtime Monitoring Approaches
	18.2 Prevention and Facilitation Approaches

	19 Build Your Model Against HTs
	19.1 Dataset
	19.2 Training of Our ML- and DL-Based Models
	19.2.1 Gradient-Boosting Algorithm
	19.2.2 K-Nearest Neighbor Algorithm
	19.2.3 Multilayer Perceptron Algorithm
	19.2.4 Random Forest Algorithm
	19.2.5 Support Vector Machine Algorithm
	19.2.6 GAN Algorithm
	19.2.7 CGAN Algorithm
	19.2.8 WGAN Algorithm

	19.3 Evaluation
	19.3.1 Metrics for Classification ML-Based Algorithms
	19.3.2 Metrics for the Evaluation of GL-Based Algorithms

	19.4 Hyperparameter Tuning

	20 Languages, Frameworks, and Tools
	21 Conclusions
	References

	FPGA Security: Security Threats from Untrusted FPGA CADToolchain
	1 Introduction
	2 Commercial and Open-Source FPGA CAD Tools
	3 Security Threats from FPGA CAD Tools
	3.1 Security Threats in Commercial FPGA CAD Tool
	3.1.1 Attacks on Xilinx ISE
	3.1.2 Attacks on Altera Quartus
	3.1.3 Attack Surfaces Induced by Integrating Countermeasures to Commercial CAD Tools

	3.2 Security Threats in Open-Source FPGA CAD Tool
	3.2.1 Potential Attacks on VTR
	3.2.2 Potential Attacks on Symbiflow
	3.2.3 Practical Attacks Using Open-Source FPGA CAD Tools
	3.2.4 Generalized Attack Flow in Open-Source FPGA CAD Tools

	4 New Security Threat Landscape
	4.1 New FPGA Utilization Model
	4.2 New FPGA Security Challenges
	4.3 Comprehensive Summary of Attack Surfaces

	5 Conclusion and Future Research Directions
	References

	DoS Attack Models and Mitigation Frameworks for NoC-Based SoCs
	1 Introduction
	2 Threat Model
	2.1 Wired NoC Threat Model
	2.2 Wireless NoC Threat Model

	3 DoS Attack Detection and Localization in wired NoC-Based SoCs
	3.1 Attack Detection Framework
	3.1.1 First-Level Sanity Check
	3.1.2 Machine Learning for Attack Detection
	3.1.3 Results and Analysis

	3.2 Attack Localization Framework
	3.2.1 Machine Learning for Localization
	3.2.2 Algorithm for MIP Localization
	3.2.3 Walk-Through Example

	3.3 Results and Analysis

	4 DoS Attack Detection and Localization in WNoC-Based SoCs
	4.1 Possible Threat Model
	4.1.1 Attacks on WNoC CAM
	4.1.2 Trojan Attack Activation

	4.2 Security Countermeasures
	4.2.1 Ranking Based CAM
	4.2.2 Attack Detection and Correction

	4.3 Experimental Setup and Results

	5 Conclusion and Future Work
	References

	Defense against Security Threats with Regard to SoC Life Cycle
	1 Motivation
	2 Security Threats with Regard to SoC Life Cycle and Supply Chain
	3 Sources of Attacks in SoCs
	3.1 Design Stage
	3.2 Synthesis RTL to Layout
	3.3 Fabrication and Manufacturing
	3.4 In-Field Attacks

	4 Threat Model
	4.1 Hardware Trojan Attacks
	4.2 Side-Channel Attacks
	4.3 Fault Injection Attacks
	4.4 Test-Infrastructure-Based Attacks
	4.4.1 Differential Scan Attack (DSA)
	4.4.2 Test-Mode-Only (TMO) Attack

	5 Defense Against the Security Threats
	5.1 State-of-the-Art Techniques for Hardware Trojan Detection
	5.2 Countermeasures Against Side-Channel Attacks (SCA)
	5.3 Countermeasures Against Fault Injection Attacks
	5.4 Countermeasures Against Test-Infrastructure-Based Attacks
	5.4.1 Countermeasures Against DSA Only
	5.4.2 Countermeasures Against Test-Mode-Only Attack
	5.4.3 Unified Countermeasures

	6 Summary
	References

	Defect Diagnosis Techniques for Silicon Customer Returns
	1 Introduction
	2 Background on Test and Fault Diagnosis
	2.1 From Defects to Failures
	2.2 Testing
	2.3 Fault Diagnosis
	2.3.1 System-Level Fault Diagnosis
	2.3.2 Digital Block-Level Fault Diagnosis
	2.3.3 Cell-Aware Fault Diagnosis

	3 Test of Customer Returns for Diagnosis Purpose
	3.1 Typical Test Scenario
	3.2 Limitation of Manufacturing Test for Customer Returns
	3.3 Best Practices for Customer Return Test Pattern Generation

	4 Defect Diagnosis Techniques for Customer Returns
	4.1 Conventional Approaches
	4.1.1 Diagnosis Using Fault Simulation
	4.1.2 Diagnosis Using Critical Path Tracing

	4.2 Advanced Methods Based on Machine Learning
	4.2.1 Preliminaries
	4.2.2 Learning-Based Cell-Aware Diagnosis Flow

	5 Industrial Case Studies
	5.1 Simulated Test Case Studies
	5.2 Silicon Test Case Study

	6 Discussion and Conclusion
	References

	Index

