
An Algorithm for the Formal Reduction
of Differential Equations
as Over-Approximations

Giuseppe Squillace1(B), Mirco Tribastone1, Max Tschaikowski2,
and Andrea Vandin3,4

1 IMT School for Advanced Studies Lucca, Lucca, Italy
giuseppe.squillace@imtlucca.it

2 Aalborg University, Aalborg, Denmark
3 Sant’Anna School of Advanced Studies, Pisa, Italy

4 DTU Technical University of Denmark, Lyngby, Denmark

Abstract. Models of complex systems often consist of state variables
with structurally similar dynamics that differ in the specific values
of some parameters. Examples are multi-class epidemiological models,
chemical reaction networks describing multiple components (e.g., binding
sites) with equivalent functional behavior, and models of electric circuits
with replicated designs. In these cases, the analysis may be expensive due
to the model size. Here we consider models defined as systems of poly-
nomial ordinary differential equations (ODEs) with positive solutions.
We present an algorithm to reduce the computational cost by trans-
forming the original ODE model into one for which we can compute an
appropriate over-approximation on a smaller set of state variables. The
algorithm is based on the theory of differential inequalities and consists
of two steps. The first step computes a differential hull, which is an ODE
system providing lower and upper bounds for each state variable. The
hull is constructed such that variables with structurally similar dynam-
ics but originally different parameters may now be represented by the
same lower and upper bounds. Based on this, the second step exploits
already developed notions of exact model reduction for ODEs to lump
such variables. The algorithm is showcased on several case studies and
its results are favourably compared against CORA, a well-known tool for
reachability analysis of dynamical systems.

Keywords: Ordinary differential equations · Model reduction ·
Reachability analysis

1 Introduction

Ordinary differential equations (ODEs) are a fundamental model to describe the
behavior of dynamical systems. In many cases, they represent classes of entities
governed by structurally similar laws governed by different parameters. Such
heterogeneous parameters may encode different dynamical behavior of the same
c© Springer Nature Switzerland AG 2022
E. Ábrahám and M. Paolieri (Eds.): QEST 2022, LNCS 13479, pp. 173–191, 2022.
https://doi.org/10.1007/978-3-031-16336-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16336-4_9&domain=pdf
https://doi.org/10.1007/978-3-031-16336-4_9

174 G. Squillace et al.

underlying phenomenon, such as age- or location-dependent rates for the conta-
gion of a disease [4], class-dependent service demands in a queuing system [3], and
conformation-dependent binding affinities in protein interaction networks [13].

When there is a large degree of heterogeneity, intended as the number of
classes used in the model, the analysis becomes increasingly more complex. This
problem justifies the quest for reduction methods that simplify the description
whilst retaining some formal relationship with the original models. Here we tackle
this issue by designing an algorithm that aims to homogenize class-dependent
behavior into representative equations that suitably summarize the difference
in parameters. The idea builds on an earlier approach that yields so-called dif-
ferential hulls for heterogeneous ODE systems [27]. Differential hulls provide
lower- and upper-bounds on the original equations by relying on the theory of
differential inequalities [23,24,26] which can be traced back to the seminal work
of Müller [21]. Here, equations with different parameters are lower- and upper-
bounded with the same differential inequality by taking appropriate minimum
and maximum values across the parameters. Thus, the resulting system of differ-
ential inequalities is independent from the number of aforementioned classes and
its solution give an envelope within which the original trajectories live, effectively
constituting a formal over-approximation of the original model.

The main limitation of [27] is that no algorithm is given to build differen-
tial hulls; that is, the method requires a priori knowledge of the existence of
“equivalent” dynamical equations up to the choice of the parameters. The main
contribution of this paper is an algorithm that builds differential hulls for ODEs.

We focus on polynomial ODEs with positive solutions. This is already a
general class to which other forms of nonlinearity can be reduced [19], and it
essentially covers many dynamical models of systems where the state variables
are physical quantities such as concentration of molecules and populations of
agents. Our algorithm takes as input a tolerance ε that, informally, defines the
amount of heterogeneity allowed in the model parameters. The procedure con-
sists of two steps. First, the algorithm splits the set of parameters into blocks so
long as the difference between the values of the minimum and the maximum ele-
ments in each block is less than ε. The differential hull is then built by doubling
the number of variables in the system (e.g., from the original n to 2n), replacing
each variable with a pair of new ones representing its upper and lower bounds.
This is obtained by appropriately substituting in the equations of each pair of
new variables the original parameters with either of the extremal elements in
the block it belongs to. If the original system consisted of structurally similar
equations with different parameters (and these parameters are at most ε away),
the intended output of this first step is to have replicated equations that have the
same dynamical behavior due to the consistent choice of the parameter bounds.
Since the algorithm is agnostic to the form of the original model, the second
step performs an automated discovery of the replicated behavior. This is done
with backward differential equivalence (BDE) [5,6,8], a reduction algorithm that
exactly lumps ODE variables that have the same solution when starting from
the same initial condition. Overall, the procedure returns a reduced differential
hull that still bounds the original dynamics while using fewer than 2n variables.

Algorithmic Reduction of Over-Approximations 175

We use case studies from engineering, biology, biochemistry, organic chem-
istry, and epidemiology to compare against our method against CORA [1], a
state-of-the-art tool for over-approximation/reachability analysis. The compar-
ison is justified by the fact that the proposed approach can be tied to over-
approximation. Indeed, the first step of our algorithm splits the parameters into
blocks where the difference between the maximum and the minimum is less than
ε. Afterwards, the algorithm substitutes each parameter with the maximum or
the minimum of the block it belongs to. These extremal elements of each block
define the admissible parameter values that over-approximation techniques such
as CORA take into account to compute the reachable sets. The investigation
reveals that CORA computes in general tighter bounds than the proposed app-
roach, but at higher time and space requirements.

Further Related Work. Many common over-approximation techniques rely on
Lyapunov-like functions [12,20] known from stability theory of ODEs. However,
the automatic computation of Lyapunov-like functions remains a challenging
task in case of nonlinearity [14]. Instead, approaches such as CORA or Flow∗

approximate the nonlinear model by a multivariate polynomial or an affine sys-
tem, see [2,10] and references therein. The research on approximate quotients
of ODE systems, instead, can be traced to the 1960s [17] where the authors
over-approximated the dynamics of mono-molecular reaction networks. Li and
Rabitz extend this approximate lumping to general CRNs [18], but an explicit
error bound was not given. In a similar vein, approximate quotients in ecology
have been studied from the point of view of finding a reduced ODE system whose
derivatives are as close as possible (in norm) to the derivatives of the original
ODE system [15]. This is also exploited in ε-BDE [9], a reduction technique
that is based on a partition-refinement algorithm of BDE [6] and aims to lump
ODE variables with nearby trajectories, essentially by relaxing the requirement
of exact symmetry imposed by the BDE approach used in this paper. Using a
case study from [9], we show that our method can provide bounds for larger
differences in the model parameters than ε-BDE.

2 Background

Backward Differential Equivalence. Let us consider a polynomial ODE system
composed of a set of variables V = {x1, ..., xn}. The dynamics of variable xi is
in the form ẋi = qi, 1 ≤ xi ≤ n, where qi is a multivariate polynomial over V.
We say that qi is in normal form when each monomial xα ≡ ∏

xi∈V x
αxi
i , where

α ∈ N
V
0 is a multi-index, appears in qi at most once. In this way, we can define

c(qi, x
α) as the coefficient of the monomial xα in a normal form polynomial qi.

The notion of BDE [6,9] relates variables that have the same solutions at all
time points if they start from the same initial conditions. In the polynomial ODE
systems that we consider, this technique makes pairwise comparisons between
the coefficients of any two variables in the same equivalence class.

176 G. Squillace et al.

Definition 1 (Backward differential equivalence (BDE)). Fix a polyno-
mial ODE, a partition H of V and write xi ∼B

H xj if all coefficients of the
following polynomial are zero,

qH
i,j := (qi − qj)

[
xH′,1

/
xH′ , . . . , xH′,|H′|

/
xH′ :H ′ ∈H]

i.e., when ∑

α∈NV
0

|c(qH
i,j , x

α)| = 0. (1)

A partition H is a BDE if H = V/(∼B∗
H ∩ ∼H).

Following the definition, a partition is a BDE partition if the differences
between the coefficients on the same monomials are zero for any two variables
in the same block.

Differential Hulls. We use the notation x ≤ y for the vectors x = (x1, ..., xn) and
y = (y1, ..., yn) in R if and only if xi ≤ yi for all 1 ≤ i ≤ n. The strict inequality,
x < y, is defined similarly. The differential hull is a vector field with 2n variables
that provides upper and lower bounds for the dynamics of the original ODE
system defined on the set of variables V = {x1, ..., xn}.

Definition 2 (Differential Hull [27]). We call (g1, ..., gn, g1, ..., gn) : R2n
>0 −→

R
2n a differential hull of the polynomial ODE system (q1, ..., qn) : Rn

>0 −→ R
n

when, for all 1 ≤ i ≤ n gi, gi are polynomials and for any x ≤ x ≤ x,

xi = xi =⇒ gi(x, x) ≤ qi(x) and xi = xi =⇒ qi(x) ≤ gi(x, x)

The previous definition is very general because the only condition a differ-
ential hull should satisfy is that it should over-approximate the dynamics of a
polynomial vector field q.

Theorem 1. Let g be a differential hull of q. Then, if the solution of the poly-
nomial ODE system (ẋ, ẋ) = g(x, x) subject to 0 < x(0) ≤ x(0) ≤ x(0) exists
and is positive on [0;T], where T > 0, then the solution of ẋ = q(x) exists on
[0;T] as well and satisfies x(t) ≤ x(t) ≤ x(t) for all 0 ≤ t ≤ T .

3 Computing Differential Hulls

Algorithm 1 takes as input a tolerance value ε > 0 and a polynomial ODE
system O, given by ẋi = qi(x) with 1 ≤ i ≤ n. Line 2 sorts all coefficients
{(i, α, c(qi, x

α)) ∈ O | 1 ≤ i ≤ n, α ∈ N
n
0} of O in increasing order and splits

them into blocks whose members are within distance ε. More in detail, we start
from the minimum parameter and add the next one in the same block until the
difference between the first and last inserted is not greater than ε. Blocks are
collected in the resulting partition, P . Lines 4–5 define two new equations xi and
xi, respectively the lower and upper bound of xi. In lines 6–11, the algorithm

Algorithmic Reduction of Over-Approximations 177

Algorithm 1. computeDifferentialHull
Require: An ODE system O, a tolerance ε .
1: DHull = {}
2: P = groupParameters(O,ε)
3: for each xi in O do
4: ẋi = []
5: ẋi = []
6: for each monomial M in O do
7: M = upperBound(M ,P ,xi)
8: M = lowerBound(M ,P ,xi)
9: append(ẋi,M)

10: append(ẋi,M)
11: end for
12: add(DHull,ẋi)
13: add(DHull,ẋi)
14: end for
15: return DHull

considers the monomials M in equation xi. It computes the lower and upper
bound for each of them and appends these results to ẋ and ẋ, respectively.

The procedure to compute the upper bound is shown in Algorithm 2. It
requires a monomial M , the coefficients partition P already calculated by Algo-
rithm 1, and variable xi. In lines 2–3, the procedure retrieves the coefficient and
the variables associated with the monomial M . In lines 4–8, the algorithm substi-
tutes the original parameter of the monomial. If the coefficient of the monomial
p is positive, the computation picks the maximum parameter in the block p
belongs to (line 5), otherwise the minimum (line 7). In lines 9–15, the method
takes care of the variables xj . The idea is similar. The method picks the upper
or lower bound of xj depending on the value of p. The first condition in line
10 represents the case where the variable xj is the same variable as ẋi. We are
computing ẋi and we find xj equals to xi in qi, in this case, since the variable
defines itself, the algorithm will pick xj no matter what is the value of p.

We omit the algorithm for the lower bound, called in line 9 of Algorithm 1,
because it is similar to Algorithm 2. In lines 12–13 Algorithm 1 composes the
new equations to the differential hull and returns it.

Theorem 2. The time and space complexity of Algorithm 1 and Algorithm 2 is
polynomial in the size of the ODE model.

Running Example. Let us take the simple polynomial ODE system:

ẋ1 = −k2x1, ẋ2 = k1x1 − k3x2, ẋ3 = k2x1 − k3x3

with k1 = 1.0, k2 = 1.1, and k3 = 1.2 and initial conditions all equal to 1.
We now consider the application of the Algorithm 1 with a tolerance parame-

ter ε = 0.2. In the first step, the procedure splits the parameters in a single block

178 G. Squillace et al.

Algorithm 2. upperBound
Require: A monomial M , the parameters partition P , variable ẋi.
1: M = {}
2: (·, ·, p) = getParameter(M)
3: V = getVariables(M)
4: if p > 0 then
5: add(M ,getMax(p,P))
6: else
7: add(M ,getMin(p,P))
8: end if
9: for each xj in V do

10: if xj == xi or p > 0 then
11: add(M ,xj)
12: else
13: add(M ,xj)
14: end if
15: end for
16: return M

B1 where the tolerance is exactly 0.2, corresponding to the difference k3 − k1.
We now discuss the detailed process to compute the upper bound ẋ2. In line 6,
Algorithm 1 considers every monomial in the dynamics ẋ2 of ODE system O.
For the first term k1x1, since k1 is positive, line 5 of Algorithm 2 picks k3, the
maximum parameter for this block. Similarly, in line 11, the maximum value
that x1 could assume is x1, which is the upper bound of x1. In this way, the
algorithm provides the first term k3x1 of ẋ2. The computation proceeds with
the maximization of the second terms −k3x2. Since −k3 is negative, the algo-
rithm takes the parameter k1. Moreover, we fall in the case where the condition
xj == xi in line 10 is true; for this reason Algorithm 2 replaces x2 with x2 rather
than x2. Summing up all the steps, the algorithm computes the upper bound of
ẋ2 with the equation ẋ2 = k3x1 − k1x2. The lower bound is computed similarly
and, for this reason, is omitted.

Overall, the differential hull for the system reads:

ẋ1 = −k3x1 ẋ2 = k1x1 − k3x2 ẋ3 = k1x1 − k3x3

ẋ1 = −k1x1 ẋ2 = k3x1 − k1x2 ẋ3 = k3x1 − k1x3

In Fig. 1 (left), we plot both the dynamics of the differential hull and the
original system when all initial conditions are equal to 1. Every trajectory xi

falls in a band bounded by the two equations xi and xi. Importantly, we notice
that, due to the choice of initial conditions, the solutions for x2 and x3 coincide,
and so do the solutions for x2 and x3. This is due to the fact that the partition
of variables

{{x1}, {x1}, {x2, x3}, {x2, x3}
}

satisfies the BDE criterion in Eq. 1.
This gives the following BDE-reduced differential hull where variables x2 and x2

are taken as the representatives of their respective blocks.

ẋ1 = −k3x1, ẋ1 = −k1x1, ẋ2 = k1x1 − k3x2, ẋ2 = k3x1 − k1x2.

Algorithmic Reduction of Over-Approximations 179

Fig. 1. (left) Over-approximation by means of differential hulls for the running exam-
ple. (right) CORA over-approximation of the running example.

It is important to notice that the bounds computed over-approximate not
only the dynamics for the parameters under study. Indeed, any set of parameters
giving rise to the same differential hull will be over-approximated by the hull.
Specifically, the following can be shown.

Theorem 3. Let O be an ODE system over variables x1, . . . , xn and let P be the
partition as computed by Algorithm 1 and Algorithm 2. Assume that all blocks
of P have common signs (i.e., for any B ∈ P and (·, ·, p1), (·, ·, p2) ∈ B, it holds
that p1 ·p2 ≥ 0). Then, an ODE system O′ over x1, . . . , xn gives rise to the same
differential hull as O when

– O′ has no more monomials than O, that is, if (j, β, ·)
∈ B for each B ∈ P ,
then c(q′

j , x
β) = 0 and;

– the parameters of O′ yield the same minima and maxima over partition P ,
i.e., for all (j, β, ·) ∈ B and all B ∈ P we have that

min{c(qi, x
α) | (i, α, ·) ∈ B} ≤ c(q′

j , x
β) ≤ max{c(qi, x

α) | (i, α, ·) ∈ B},

where c(q′
j , x

β) denotes the coefficient of monomial xβ in q′
j of O′.

Remark 1. The assumption on P having blocks with common signs can be always
enforced by means of a prepartitioning. This being said, we wish to point out that
all models considered in the evaluation section did not require a prepartitioning,
i.e., Theorem 3 could be applied directly.

The foregoing result ties differential hulls to reachability analysis, where an
amount of perturbation is considered among the grouped parameter. This jus-
tifies the comparison against CORA in the next section. For completeness, we
next show the application of CORA to our running example.

CORA requires choosing how to represent the reachability set and the amount
of perturbation in the parameters. In this case, we decided to represent the sets
with the zonotopes. We set up the parameters to their average values, that is 1.1,

180 G. Squillace et al.

allowing an amount of perturbation equal to 0.1. In this way, we consider the
following range of uncertainty [1.0; 1.2], that represent the set of all the possible
parameters considered by the differential hull. In Fig. 1 (right) we show the bounds
computed by CORA. In this example, the two techniques provide almost the same
bounds. In the next section, we will present several models from different fields to
compare the bounds provided by our approach and the ones by CORA. It can be
noted that the two techniques provide almost identical bounds. We will see in the
next section that CORA tends to give better bounds compared to our approach,
while requiring significantly more time and space.

4 Case Studies

In this section, we consider a number of case studies. The CORA implementa-
tion was carried out in Matlab, while the BDE reductions of Algorithm 1 were
performed by invoking ERODE [7].

4.1 SIR Model

The SIR model describes the spread of an infection in a population composed
of three main actors: infected (I), susceptible (S), and the recovered individuals
(R) [16]. The infected individuals are the ones that could infect the susceptibles;
the recovered obtained a permanent immunization from infection because they
already got the disease. The model has two types of parameters: β, the infection
rate, and γ, the recovery rate. In this context, we consider the following multiclass
SIR model of individuals with class-specific infection and recovery rates:

Ṡi =
N∑

j=1

−Siβi,jIj , İi = −γiIi +
N∑

j=1

Siβi,jIj , Ṙi = γiIi,

where the parameters βi,j represent cross-class infection rates. For consistency
across all number of classes, the parameters were chosen using the same level of
heterogeneity, as follows:

θSIR = |max
i,j

βi,j − min
i,j

βi,j | + |max
i

γi − min
i

γi| = 0.2

All parameter values and the initial conditions are provided in the Appendix.
We computed the differential hull running our algorithm with the tolerance

ε equal to θSIR, then we reduced it with BDE. The reduced differential hull is
an SIR model where all the lower and the upper bounds for each class collapse
into one, so that the reduction achieved by BDE is:

{{S1, ..., SN}, {S1, ..., SN},
{I1, ..., IN}, {I1, ..., IN}, {R1, ..., RN}, {R1, ..., RN}}

.
In Fig. 2, we show the comparison between CORA and differential hulls for

the SIR model with two different classes; the bounds computed considering an
higher number of classes are similar. CORA has tighter bounds, but it is more
time consuming. Indeed, Table 1, which lists the CORA runtimes, shows a fast

Algorithmic Reduction of Over-Approximations 181

increase with respect to the number of classes, issuing out of memory errors for
8. Our algorithm instead required less than 1 s in all cases. This is an expected
result because, as stated in Theorem 2, the cost of the algorithm is polynomial
and is based on the substitution of parameters and variables.

Fig. 2. Bounds of the infected individuals computed by our algorithm against CORA.

Table 1. CORA running times for the SIR model.

Number of classes 2 4 6 8

CORA runtime 12.98 s 43.43 s 162.96 s Out of memory

4.2 Polymerization

In chemistry, polymerization is the process by which monomers react to form
longer chains. We consider next the polymerization model presented in [28] which
describes the formation of polycyclic aromatic hydrocarbons in flame combus-
tion. The underlying system of polynomial ODEs is induced by the law of mass
action [29]. Let us consider, for instance, the reaction Ai + H αi−→ Aĩ + H2. The
terms on the left side are called reagents, while those on the right are called
products. An instance of each reagent is consumed when the reaction occurs,
and one of each product is produced. The kinetic reaction rate is αi, instead.
The reaction occurs at speed αiAiH, where the variables denote the current
concentration (the current amount) of the corresponding species. Consequently,
the monomial αiAiH will appear with negative sign in the ODEs of the reagents
(Ai and H), and with positive sign in those of the products (Aĩ and H2).

182 G. Squillace et al.

Fig. 3. Bounds of the molecule H2 computed by Algorithm 1 against CORA.

Ai + H αi−→Aĩ + H2 (i, 1) (2)

Aĩ + H2
αi−→Ai + H (i, 1)

Aĩ + C2H2
βi−→AiCHCH˜ (i, 2) (3)

AiCHCH˜
βi−→Aĩ + C2H2 (i, 2)

AiCHCH˜+ C2H2
γi−→Ai+1 + H (i, 3) . . . (i + 1, 1)

Here Aĩ is an aromatic radical formed by H abstraction from Ai, and AiCHCH˜
is a radical formed by adding C2H2 to Aĩ. We enumerate the reactions (i, 1) and
their reverse versions (i, 1). The reverse reaction is a reaction where the products
became the reagents and vice versa. Since the reaction network is infinite we
restrict our analysis to truncated version of this model, where we consider the
dynamics of polymers up to length N (i.e., with i ∈ {1, ..., N}). To do this we
redirect the flux to Ai+1, when i + 1 > N to A1 in order to mimic the fact that
polymers longer than N are unstable. Similarly to the previous case study, let
us define the following level of heterogeneity:

θPoly = |max
i

αi − min
i

αi| + |max
i

βi − min
i

βi| + |max
i

γi − min
i

γi|

For the omitted parameters, the difference between the maximum and the
minimum is zero. This keeps a level of heterogeneity equal to 0.2 for each
model. For simplicity, only a part of the parameters was subject to pertur-
bation; the respective values and the initial conditions can be found in the
Appendix. We ran Algorithm 1 with ε = 0.2, obtaining the reduced differential
hull through BDE. The variables are lumped according to the following partition:

Algorithmic Reduction of Over-Approximations 183

Table 2. CORA running times of the polymerization model. Similarly to the SIR
model, the running times of differential hulls were within one second.

N 4 8 12 16

CORA runtime 69.73 s 232.90 s 671.10 s Out of memory

{{A1, ..., AN}, {A1, ..., AN}, {A1̃, ..., AÑ}, {A1̃, ..., AÑ}, {H}, {H}, {H2}, {H2},

{C2H2}, {C2H2}, {A1CHCH̃, ..., ANCHCH̃}, {A1CHCH̃, ..., ANCHCH̃}}.
It can be noted the lower and upper bounds of each molecule-family were

lumped together. Figure 3 shows the over-approximations of H2 obtained by
CORA and differential hulls. Also in this case study, the plot show the results
only for N = 2, but the results are similar also for bigger models. As shown in
Table 2, CORA provides tighter over-approximations but becomes computation-
ally challenging as the number of molecules grows.

4.3 Protein Interaction Network

We next consider a prototypical model from systems biology where molecule A
has multiple binding sites to which a molecule B can bind reversibly [11]. Since
the number of reactions grows exponentially with the number of the binding
sites, we only show the case for two binding sites. We indicate with A10 and A01

the complex obtained when A and B are bound via the first or second binding
site, respectively. We denote with A11 when A is bounded with two molecules of
B. The following reaction network describes this model:

A + B
kb1−−→ A10 A10

ku1−−→ A + B

A + B
kb2−−→ A01 A01

ku2−−→ A + B

A01 + B
kb1−−→ A11 A11

ku1−−→ B + A01

A10 + B
kb2−−→ A11 A11

ku2−−→ B + A10

The parameters kb and ku represent, respectively, the rate for binding and
unbinding of molecules B to/from A. We define the level of heterogeneity as
θProtein = |kb1 − kb2|. Without loss of generality, the heterogeneity was only
applied to the binding parameters, with the specific parameters being reported
in the Appendix. We applied our algorithm with a tolerance equal to 0.2 and
computed the reduced differential hull. The reduction computed by BDE was

{{A}, {A}, {B}, {B}, {A01, A10}, {A01, A10}, {A11}, {A11}
}

184 G. Squillace et al.

Fig. 4. Bounds of the molecule A11.

Table 3. CORA running times of the protein interaction network.

N 2 4 6

CORA runtime 12.51 s 376.77 s Out of memory

It can be noted that all molecules with the same amount of occupied binding site
were lumped together. This yields an exponential reduction because the size of
the original model increases exponentially in N (i.e., 2N + 1), while that of the
reduced one polynomially (i.e., N +2). We report in Fig. 4 the bounds computed
with our technique and CORA; instead, Table 3 reports the computation times
of CORA.

4.4 Electrical Network

We consider a simplified (inductance free) version of a power distribution elec-
trical network enjoying a so-called H-tree topology [25]. In this setting, let us
denote with N the depth of the tree and let the resistance and the capacitance
at depth i be denoted by Ri,k and Ci,k, respectively. We consider a constant
source voltage vs equal to 2.0V. Denoting the voltage at Ci,k by vi,k, we then
obtain the following affine ODE system

v̇1,1 =
vS − v1,1

R1,1C1,1
− v1,1 − v2,1

R2,1C1,1
− v1,1 − v2,2

R2,2C1,1
, v̇i,k =

vi−1,l − vi,k

Ri,kCi,k
,

where 1 ≤ i ≤ N , k = 1, ..., 2i−1, and l = �k/2�, with �·� denoting the ceil func-
tion. As a baseline, we considered a network with depth N = 2. For the sake of

Algorithmic Reduction of Over-Approximations 185

Fig. 5. Bounds of the voltages in the second level of the H-tree.

Table 4. CORA running times of the H-tree circuit model.

N 2 4 6

CORA runtime 53.99 s 231.56 s Out of memory

simplicity, we define the associated ODE system with the following set of param-
eters P = {b2 = 1/(R2,1C1,1), b3 = 1/(R2,2C1,1), a1,1 = 1/(R1,1C1,1), a2,1 =
1/(R2,1C2,1), a2,2 = 1/(R2,2C2,2)}. We defined the following level of heterogene-
ity by

θHtree = |b2 − b3| + |a2,1 − a2,2|.
Similarly to the foregoing case studies, the differential hull was computed through
Algorithm 1 and reduced afterwards via the BDE technique. The values of
parameter and initial conditions can be found in the Appendix. The follow-
ing variables were lumped:

{{v1,1}, {v1,1}, {v2,1, v2,2}, {v2,1, v2,2}}. As expected,
the voltages of the same level are lumped together. The bounds for the volt-
ages at the second level in case of a heterogeneity equal to 0.2 can be found in
Fig. 5. We considered larger models by increasing the height N of the H-Tree.
Table 4 reports the computational times required to calculate the respective over-
approximations.

Remark 2 (ε-BDE). This model was already studied in [9], where it was reduced
through ε-BDE, an approximate version of the BDE reduction. As anticipated
earlier, we next discuss the bounds computed by the differential hull with one
guaranteed by ε-BDE. Indeed in [9] a theorem states that, under certain con-
ditions, ε-BDE assures a formal bound error between the original model and

186 G. Squillace et al.

Fig. 6. Two largest over-approximations in the n-Hexane model (these of C2
3 and C2

2 ,
respectively). CORA provided tighter bounds but required around 10 s, while the pro-
posed technique less than one second.

the reduced one. Unfortunately, the applicability of the aforementioned theorem
hinges on restrictive assumptions and allows only for small heterogeneity in the
parameters in practice. Instead, the differential hull always succeeds in comput-
ing error bounds for approximate lumpable trajectories. This case study is an
example where the hetoregeneity expressed by the parameters is too large to
apply the theorem. Instead, as we can in Fig. 5, the differential hull approach is
able to provide formal bounds.

4.5 Conversion of Light Alkanes over H-ZSM-5

Catalytic conversions of light alkanes into industrial chemicals, such as olefins,
aromatics, oxygenates, and organic nitrides, are promising candidates for tradi-
tional petroleum-based or coal-based producing routes. We consider the conver-
sion of n-alkanes over H-ZSM5, which is commonly used in converting methanol
to gasoline and diesel. In [22], the authors considered three n-alkanes: the n-
Butane, the n-Pentane, and the n-Hexane. They investigated the three different
conversions reporting the entire reaction networks for each n-alkanes.

We applied our framework to the n-Hexane conversion of H-ZSM5 for the
original parameters from [22]. The heterogeneity parameter was set to ε = 15,
while the reactions were

Algorithmic Reduction of Over-Approximations 187

C6H14
k1−→ C1 + C

2−
5 C6H14

k2−→ C2 + C
2−
4

C6H14
k3−→ C3 + C

2−
3 C6H14

k4−→ C4 + C
2−
2

C6H14
k5−→ H2 + C

2−
6 C

2−
6

k6−→ C
2−
3 + C

2−
3

C
2−
5

k7−→ C
2−
2 + C

2−
3

Similarly to before, the parameters and the initial conditions are reported in
the Appendix. Likewise, the BDE algorithm was used to reduced the differential
hull, giving rise to the following partition of the variables:

{{C6H14}, {C6H14}, {C1, C4}, {C1C4}, {C2
5}, {C

2

5}, {C2, C
2
4},

{C2, C
2

4}, {C3,H2}, {C3,H2}, {C2
3}, {C

2

3}, {C2
2}, {C

2

2}, {C2
6}, {C

2

6}
}

We compare our approach against CORA. In Fig. 6, we show the bounds com-
puted for the molecules with the largest differential hull bounds, C2

3 and C2
2 . The

CORA bounds are tighter, as expected. At the same time, CORA’s running time
is around 10 s, while our approach remains under 1 s. Unlike to the other case
studies, the computational advantage of differential hulls cannot be exploited on
larger models instances.

5 Conclusion

Despite major efforts, the over-approximation of nonlinear models given in
terms of ordinary differential equations (ODEs) remains computationally chal-
lenging. This work proposes an efficient algorithmic approach for the over-
approximation of nonlinear ODE models by combining results from the the-
ory of differential inequalities and nonlinear model reduction. More specifically,
by enforcing a homogeneity across model parameters in dependence on a given
numerical threshold parameter, the algorithm constructs a system of differential
inequalities that a) is guaranteed to over-approximate the original ODE sys-
tem in presence of uncertain/noisy parameters and; b) can be often reduced,
thanks to homogeneous parameters, while preserving the aforementioned over-
approximation. The applicability of the approach was demonstrated by com-
plementing the established over-approximation tool CORA on models from epi-
demiology, (bio)chemistry and electrical engineering. Future work will integrate
the approach into the software tool ERODE [7].

Acknowledgments. This work was supported in part by DFF project REDUCTO
9040-00224B, the Poul Due Jensen Grant 883901, the Villum Investigator Grant S4OS,
and the PRIN project SEDUCE 2017TWRCNB.

A Appendix

A.1 Proofs

Proof (Theorem 2). Trivial.

188 G. Squillace et al.

Proof (Theorem 3). The only nontrivial fact to be aware about is that a param-
eter block with different signs will give rise a different differential hull because of
the if-statements in algorithms upperBound and lowerBound will be evaluated
differently.

A.2 Experiments

We next report the parameter values and the initial conditions.

SIR. Here we provide the parameters and runtimes for the SIR model considered
in Sect. 4.1 (Tables 5 and 6).

Table 5. Parameters of the SIR model.

Parameters β1,1 β1,2 β2,1 β2,2 γ1 γ2

Actual values 2.46 2.45 2.53 2.55 0.5 0.6

Table 6. Initial conditions of the SIR model.

Variables S1 S2 I1 I2 R1 R2

Initial conditions 20 20 10 10 0 0

Polymerization. Here we provide the parameters and runtimes for the poly-
merization model considered in Sect. 4.2 (Tables 7 and 8).

Table 7. Parameters of the Polymerization model.

Parameters α1 α2 α1 α2 β1 β2 β2 β2 γ2 γ2

Actual values 0.55 0.60 1.95 2.00 1.5 1.6 0.01 0.01 0.25 0.25

Table 8. Initial conditions of the Polymerization model.

Variables A1 A2 A1̃ A2̃ H H2 C2H2 A1CHCH̃ A2CHCH̃

Initial conditions 1 1 1 1 1 1 1 1 1

Protein Interaction Network. Here we provide the parameters and runtimes
for the model considered in Sect. 4.3 (Tables 9 and 10).

Algorithmic Reduction of Over-Approximations 189

Table 9. Parameters of the Protein interaction network.

Parameters kb1 kb2 ku1 ku2

Actual values 20.10 19.90 0.1 0.1

Table 10. Initial conditions of the Protein interaction network.

Variables A B A10 A01 A11

Initial conditions 50 50 0 0 0

Electrical Network. Here we provide the parameters and runtimes for the
model considered in Sect. 4.4 (Tables 11 and 12).

Table 11. Parameters of the Electrical network.

Parameters b2 b3 a1,1 a2,1 a2,2

Actual values 0.56 0.66 1.12 0.40 0.50

Table 12. Initial conditions of the Electrical network.

Variables v1,1 v2,1 v2,2

Initial conditions 0.56 0.66 1.12

n-Hexane Model. Here we provide the parameters and runtimes for the model
considered in Sect. 4.5 (Tables 13 and 14).

Table 13. Parameters of the n-Hexane model.

Parameters k1 k2 k3 k4 k5 k6 k7

Actual values 17 54 42 13 32 32 14

Table 14. Initial conditions of the n-Hexane model.

Variables C6H14 C1 C2
5 C2 C2

4 C3 C2
3 C4 C2

2 H2 C2
6

Initial conditions 1 1 1 1 1 1 1 1 1 1 1

190 G. Squillace et al.

References

1. Althoff, M., Kochdumper, N.: CORA 2016 manual. TU Munich 85748 (2016)
2. Asarin, E., Dang, T., Girard, A.: Reachability analysis of nonlinear systems using

conservative approximation. In: HSCC (2003)
3. Bortolussi, L., Gast, N.: Mean field approximation of uncertain stochastic models.

In: DSN, pp. 287–298 (2016)
4. Cardelli, L., et al.: Exact maximal reduction of stochastic reaction networks by

species lumping. Bioinformatics 37(15), 2175–2182 (2021)
5. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Forward and backward

bisimulations for chemical reaction networks. In: CONCUR, pp. 226–239 (2015)
6. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Symbolic computation

of differential equivalences. In: POPL, pp. 137–150 (2016)
7. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: ERODE: a tool for the

evaluation and reduction of ordinary differential equations. In: TACAS (2017)
8. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Maximal aggregation

of polynomial dynamical systems. Proc. Natl. Acad. Sci. 114(38), 10029–10034
(2017)

9. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Guaranteed error
bounds on approximate model abstractions through reachability analysis. In:
QEST, pp. 104–121 (2018)

10. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: CAV, pp. 258–263 (2013)

11. Conzelmann, H., Fey, D., Gilles, E.D.: Exact model reduction of combinatorial
reaction networks. BMC Syst. Biol. 2(1), 1–25 (2008)

12. Duggirala, P.S., Mitra, S., Viswanathan, M.: Verification of annotated models from
executions. In: EMSOFT, pp. 26:1–26:10. IEEE Press (2013)

13. Feret, J., Danos, V., Krivine, J., Harmer, R., Fontana, W.: Internal coarse-graining
of molecular systems. Proc. Natl. Acad. Sci. 106(16), 6453–6458 (2009)

14. Girard, A., Pappas, G.J.: Approximate bisimulations for nonlinear dynamical sys-
tems. In: IEEE Conference on Decision and Control and European Control Con-
ference (2005)

15. Iwasa, Y., Levin, S.A., Andreasen, V.: Aggregation in model ecosystems II. Approx-
imate aggregation. Math. Med. Biol. 6(1), 1–23 (1989)

16. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of
epidemics. Proc. R. Soc. London. Ser. A Contain. Papers. Math. Phys. Character.
115(772), 700–721 (1927)

17. Kuo, J.C.W., Wei, J.: Lumping analysis in monomolecular reaction systems. Anal-
ysis of approximately lumpable system. Indus. Eng. Chem. Fundam. 8(1), 124–133
(1969)

18. Li, G., Rabitz, H.: A general analysis of approximate lumping in chemical kinetics.
Chem. Eng. Sci. 45(4), 977–1002 (1990)

19. Liu, J., Zhan, N., Zhao, H., Zou, L.: Abstraction of elementary hybrid systems
by variable transformation. In: Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS,
vol. 9109, pp. 360–377. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
19249-9 23

20. Majumdar, R., Zamani, M.: Approximately bisimilar symbolic models for digital
control systems. In: CAV, pp. 362–377 (2012)

21. Müller, M.: Über das Fundamentaltheorem in der Theorie der gewöhnlichen Dif-
ferentialgleichungen. Mathematische Zeitschrift 26, 619–645 (1927)

https://doi.org/10.1007/978-3-319-19249-9_23
https://doi.org/10.1007/978-3-319-19249-9_23

Algorithmic Reduction of Over-Approximations 191

22. Narbeshuber, T., Vinek, H., Lercher, J.: Monomolecular conversion of light alkanes
over H-ZSM-5. J. Catal. 157(2), 388–395 (1995)

23. Ramdani, N., Meslem, N., Candau, Y.: Reachability of uncertain nonlinear systems
using a nonlinear hybridization. In: HSCC, pp. 415–428 (2008)

24. Ramdani, N., Meslem, N., Candau, Y.: Computing reachable sets for uncertain
nonlinear monotone systems. Nonlinear Anal. Hybrid Syst. 4(2), 263–278 (2010)

25. Rosenfeld, J., Friedman, E.G.: Design methodology for global resonant H-tree clock
distribution networks. IEEE Trans. VLSI Syst. 15(2), 135–148 (2007)

26. Scott, J.K., Barton, P.I.: Bounds on the reachable sets of nonlinear control systems.
Automatica 49(1), 93–100 (2013)

27. Tschaikowski, M., Tribastone, M.: Approximate reduction of heterogenous nonlin-
ear models with differential hulls. IEEE Trans. Autom. Contr. 61(4), 1099–1104
(2016)

28. Turányi, T., Tomlin, A.S.: Reduction of reaction mechanisms. In: Analysis of
Kinetic Reaction Mechanisms, pp. 183–312. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-44562-4 7

29. Voit, E.O.: Biochemical systems theory: a review. ISRN Biomath. 2013, 53 (2013)

https://doi.org/10.1007/978-3-662-44562-4_7
https://doi.org/10.1007/978-3-662-44562-4_7

	An Algorithm for the Formal Reduction of Differential Equations as Over-Approximations
	1 Introduction
	2 Background
	3 Computing Differential Hulls
	4 Case Studies
	4.1 SIR Model
	4.2 Polymerization
	4.3 Protein Interaction Network
	4.4 Electrical Network
	4.5 Conversion of Light Alkanes over H-ZSM-5

	5 Conclusion
	A Appendix
	A.1 Proofs
	A.2 Experiments

	References

