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Abstract. We propose a simulation-based technique for the verification
of structural parameters in Ordinary Differential Equations. This tech-
nique is an adaptation of Statistical Model Checking, often used to verify
the validity of biological models, to the setting of Ordinary Differential
Equations systems. The aim of our technique is to search the param-
eter space for the parameter values that induce solutions that best fit
experimental data under variability, with any metrics of choice. To do
so, we discretize the parameter space and use statistical model check-
ing to grade each individual parameter value w.r.t experimental data.
Contrary to other existing methods, we provide statistical guarantees
regarding our results that take into account the unavoidable approxi-
mation errors introduced through the numerical resolution of the ODE
system performed while simulating. In order to show the potential of
our technique, we present its application to two case studies taken from
the literature, one relative to the growth of a jellyfish population, and
another concerning a prey-predator model.

Keywords: Statistical Model Checking · ODE models · structural
parameters

1 Introduction

All scientific branches share the common concept of modeling. When a scientist
studies a real-life system, the first step he or she goes through is to build a model
that gathers all the existing knowledge of the target system. This model is then
used as a proxy of the system it represents in order to analyze it, perform sim-
ulation or predictions. In several fields, such as Biology, Chemistry, Physics or
Engineering, models do not represent a single system but are instead an abstrac-
tion for a family of systems that share common traits but might exhibit some
internal variability. This internal variability can either be left out by considering
that the model represents the “average” individual in the family, or taken into
account inside of the model through the use of non-determinism, probabilities
or parametricity.
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When considering parametric models, scientists have to go through a phase
of parameterization, which consists in confronting the model with experimental
observations of the (family of) system(s) it represents in order to find the param-
eter values that best fit this (family of) system(s). In most cases, parameteriza-
tion techniques are deterministic [21,24]. They lead to deterministic parameter
values that best fit the experimental data, i.e. producing the best fit for the
“average” individual. In this paper, we instead focus on a technique that allows
to select parameter values that best fit under variability, i.e. that produce the
best probabilistic fit for the whole family.

Parameterization, or parameter synthesis has been the topic of many works
in the context of probabilistic systems [6,9–11,13]. Symbolic techniques such as
parametric model checking [1,5] are often difficult to use in practice because
they require automata-based models while real-life models are often expressed
either with computer programs or with differential equation models. Statistical
Model Checking (SMC) [14], on the other hand, is a simulation-based tech-
nique that allows to estimate, with formal guarantees, the probability that a
given (probabilistic) model satisfies a given property. Because it is simulation-
based, it can be applied to any stochastic model for which simulations can be
performed. SMC has been successfully applied to perform parameterization of
real-life models expressed using several formalisms such as parametric Markov
chains [2], parametric Python programs [20], or even parametric Ordinary Dif-
ferential Equation systems (ODEs) [15]. Unfortunately, the formal guarantees
obtained through SMC are linked to the simulation space (i.e. the produced
traces) and not to the original model itself. When the model consists in sets
of ODEs, as in [15], numerical resolution methods are used in order to solve
the ODEs and perform simulations, which means that the formal guarantees
obtained through SMC cannot apply to the original ODE model.

In this paper, our main contribution is to bridge the gap between the original
ODE model and the results of the parameterization procedure by combining the
statistical guarantees of SMC with the global approximation error of standard
numerical resolution methods. As in [15], we consider ODE models with struc-
tural parameters. We assume that these models represent families of real-life
systems that need to match some experimental data through simulation. We
build on the logic proposed in [15] to express our properties of interest and also
consider expected reward properties that might be of interest in practice. We
use SMC to grade parameter values by estimating the expectation of a given
reward function for these values while taking internal variability into account.
Contrarily to what is done in [15], the accuracy of this estimation is guaranteed
w.r.t. the original ODE model.

To illustrate our results, we perform the parameterization of two state-of-the-
art models taken from the literature using our technique. In this context, and
because modelers are often interested by this information in practice, we propose
a global evaluation of the parameter space that allows us to get a complete
picture of the adequacy of the parameter values w.r.t. the given experimental
data. This choice is done by interest only, since our results are generic and could
be applied to any search technique, such as the local ones performed in [15].



End-to-End Statistical Model Checking for Parametric ODE Models 87

Intuition. To give an intuition of our contribution, we provide an informal
summary of the method we present in this paper. Recall that, given a dataset
relative to an experiment and a parametric ODE system, the objective is to find
a solution to a parametric ODE system (i.e. parameter values) that satisfies a
property ϕ w.r.t. the dataset, which is, given a distance δ > 0, “the solution
stays in a tunnel of radius δ around the experimental data”; we also want to
acquire statistical guarantees on said result. The main issue is that we can only
simulate our model by solving the ODE system using numerical resolution meth-
ods. Hence, we cannot directly verify whether exact solutions (z) of the system
satisfy ϕ and instead have to rely on approximate solutions (y). We therefore
proceed as follows: we start by discretizing the set of parameter values into a
grid; we then evaluate each point of this grid using the procedure detailed below;
finally, we use the resulting scores to select the “best” parameter values w.r.t ϕ.
The score of a given parameter value λ is computed as follows, and illustrated
in Figs. 1 and 2 in the context of the case study presented in Sect. 4.1.

1. We set the parameter value to λ. By a careful study of the ODE system,
we give a bound on the distance ε between exact (z) and approximate (y)
solutions. We emphasize that this bound depends on (1) the chosen resolution
technique and (2) the chosen integration step. We show that this distance is
uniformly stable w.r.t. internal variability around λ, but also that it can be
uniformly bounded on the global set of solutions (i.e. independently of λ).

2. We propose two new properties ϕ1 and ϕ2 that will be verified on the approxi-
mate solutions y, and depend on the above distance. This amounts to changing
the size of the tunnel around the experimental dataset. We compute (estima-
tions of) the respective probabilities p1 and p2 and prove that the probability
p that z satisfies ϕ lies between p1 and p2.

3. We provide statistical guarantees of our estimation, i.e. a confidence interval
for our estimation of p, and use this estimation as the score for parameter
value λ.
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Fig. 1. Tunnels corresponding to the prop-
erties ϕ, ϕ1, ϕ2 and accepted simulations.

0 10 20 30 40
0

2

4

6

8

days

d
en

si
ty

cm
−2

)

ϕ
ϕ1
ϕ2

ϕ1-accepted sim.
ϕ2-accepted sim.
rejected sim.

Fig. 2. ϕ-accepted, ϕ2-accepted and
rejected solutions.

It is worth noting that the underlying theory is generic: the integration
method as well as the statistical estimation method can be chosen arbitrarily as
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long as they provide the usual guarantees. In this paper, we use Runge-Kutta
and Monte-Carlo for the sake of example.

Outline. In Sect. 2, we introduce required preliminaries and notations for the
rest of the paper. In Sect. 3, we state the main result of the paper, i.e. we com-
pute the approximation error for ODE solutions, show that this error is uniformly
stable, and provide the statistical guarantees for the estimation of the probabil-
ities. In Sect. 4, we illustrate our approach on two case studies taken from the
literature. Finally, we conclude in Sect. 5 and give perspectives for future work.

2 Background and Notations

In this section, we present the basic notations and definitions that will be used
throughout the paper. More precisely, we recall the definition of an ODE, and
present the logic used in the paper. Finally, we extend this logic by introducing
reward functions.

2.1 ODE Preliminaries

First, we consider an evolution problem described by an Ordinary Differential
Equation (ODE) of the form

dz

dt
(t) = f

(
z(t),λ

)
, t > 0. (1)

In Eq. (1), the unknown function z is defined in R
+ with values in R

n; λ ∈ R
m is a

vector of parameters; f is a function defined on R
n×R

m with values in R
n, whose

regularity will be detailed below; n, m are positive integers. In the following, we
write zi(t), 1 ≤ i ≤ n, for the projection of z(t) on its ith component. As
mentioned in our introduction, Eq. (1) can model various real-world problems
arising in life sciences. Our goal is to study some properties of the trajectories
determined by Eq. (1), by developing an innovative model-checking framework
suitable for the continuous dynamics of ODEs.

Here and for the rest of the paper, we fix an initial condition z0 ∈ R
n. Stan-

dard results of the theory of differential equations (see for instance [18]) ensure
that, for any value of the parameter λ ∈ R

m, the Cauchy problem determined
by Eq. (1) and the initial value z(0) = z0 admits a unique solution, provided f
is C1 on R

n × R
m; we denote by zλ(t) the corresponding trajectory, which we

assume to be defined on [0, T ] with T > 0. If the context is sufficiently clear,
we may write z(t) for short. As before, we write zλ

i (t) (resp. zi(t)), 1 ≤ i ≤ n,
for the projection on its ith component. We assume that the component λj of
the parameter vector λ ∈ R

m (1 ≤ j ≤ m) satisfies λj ∈ [Lλ
j , Uλ

j ], with real
coefficients Lλ

j < Uλ
j and we consider the compact sets W and INIT defined by

W =
m∏

j=0

[Lλ
j , Uλ

j ] (2) INIT = {z0} × W. (3)

For λ ∈ W , we consider the Euclidean norm defined by ‖λ‖ =
(∑m

j=1 |λj |2
)1/2

.
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We assume that the trajectories of Eq. (1) starting from z0 admit a rectan-
gular invariant region, uniform w.r.t. the parameter λ, that is zi(t,λ) ∈ [Li, Ui]
for t ∈ [0, T ], with real coefficients Li < Ui, for all λ ∈ W and for 1 ≤ i ≤ n.
The global invariant region for z is written V =

∏n
i=0[Li, Ui].

Finally, we write TRAJ for the set of all potential trajectories of the solutions
to our ODE system. Formally, TRAJ = {zλ(t) | λ ∈ W}.

It is well-known that Eq. (1) determines time continuous trajectories, which
moreover depend continuously on a variation of the initial condition z0 and of
the parameter λ ∈ W (see for instance [18]). In Sect. 3, we will be interested in
the variation of those trajectories under a variation of the parameter λ ∈ W. We
now move to the description of the properties for our models.

2.2 Bounded Linear Time Logic

As explained in the introduction, our aim is to find the parameter values that
allow our model to best fit some given experimental data. In the following, we
therefore assume that we are given a finite set of experimental observations that
correspond to a finite set of time points and a tolerance value δ > 01. We write

T = {0 = t0, t1, . . . , tN = T} (4)

for a set of time points and assume that we have a finite set of observations Ot
i =

{ot
i,1, . . . , o

t
i,k} for each of them and for each coordinate i. We assume, in practice,

that T indeed includes all the time points where experimental observations are
available. Remark nonetheless that T is not necessarily limited to this set, as we
could have Ot = ∅ for a number of t ∈ T . In practice, since T = {t0, . . . tN} is
finite, we abuse notations and substitute it, when convenient, with the integer
set T = {0, . . . N}.

We start by recalling the logic defined in [15], which allows to express our
properties of interest, i.e. that a given solution agrees with the experimental
observations available at given time points. This logic is a slightly modified
version of Bounded LTL, where atomic propositions are of the form (i, l, u) with
Li ≤ l ≤ u ≤ Ui, where Li and Ui are the boundaries of the set V defined above.
The intuition is that, for q ∈ T , z satisfies the atomic proposition (i, l, u) at
time point q if and only if l ≤ zi(q) ≤ u. Since there is a finite number of time
points and a finite number of observations, we only consider the finite number
of atomic propositions where 1 ≤ i ≤ n and l, u ∈ ∪q∈T (Oq

i ∪ Oq
i − δ ∪ Oq

i + δ).
We also allow l, u = +∞,−∞ to account for timepoints q where Oq = ∅.

The rest of the logic is defined as usual:

– every atomic proposition and the constants true, false are BLTL formulas,
– the negation and conjunction of BLTL formulas are BLTL formulas,
– if Ψ and Ψ ′ are BLTL formulas, then ΨUqΨ ′ and ΨU≤qΨ ′ are BLTL formulas

for any positive integer q ∈ T ,
– if Ψ is a BLTL formula, then XΨ is a BLTL formula.
1 Note that the method does not depend on the value of δ. We assume its value is

provided by the user.
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The interpretation of ΨU≤qΨ ′ is standard, i.e. Ψ ′ must happen before q time
points have elapsed, while the interpretation of ΨUqΨ ′ is that Ψ must hold for
exactly q time points before Ψ ′ holds. The interpretation of XΨ is standard as
well, i.e. XΨ ⇔ trueU1Ψ . We invite the interested reader to consult [15] for the
formal semantics of this logic.

Given a BLTL formula Ψ , we define models(Ψ) = {z ∈ TRAJ | z, 0 |= Ψ}.
Recall that the properties we want our models to verify are the following: the

traces of the model need to agree with the given experimental data. One way to
rephrase this property is as follows: at all time points where experimental data
is available, the trace of our model needs to be between the lower and upper
values taken from the experimental data with a given tolerance δ > 0. This is
easily expressed in BLTL as the property

Ψ∗ =
∧

1≤i≤m

ψ0
i ∧ X

(
ψ1

i ∧ X (ψ2
i ∧ · · · ∧ XψN

i ) . . .
)

(5)

where ψq
i = (i,min(Oq

i )−δ,max(Oq
i )+δ). Since our aim is to consider variability

on the ODE models of interest, we may use statements of the form P≥p(Ψ∗),
whose interpretation is expressed as follows: “the probability that a trajectory
in TRAJ is in models(Ψ∗) is greater than p”. In this regard, we need to define a
probability measure P over TRAJ.

We start by noticing that each parameter value λ completely determines
the trajectory zλ ∈ TRAJ, since the initial condition z0 ∈ R

n has been fixed.
As a consequence, TRAJ can be completely identified with INIT (see Eq. (3)).
Formally, we define Models(Ψ) ⊆ INIT as the set

{(z0,λ) ∈ INIT | zλ(t) ∈ models(Ψ)} (6)

and consider the Σ-algebra B generated by the m-dimensional open intervals of
INIT. As expected, it is shown in [15] that B is an adequate support to prove
the measurability of Models(Ψ) for any BLTL formula Ψ .

In the following, we will consider a number of probability distributions P
λ

on B (one for each parameter value λ), and use these probability distributions
to evaluate whether our ODE model meets a specification of the form P

λ
≥p(Ψ).

This will amount to checking whether P
λ(Models(Ψ)) ≥ p. We will refer to the

formulas such as P
λ
≥p(Ψ) as PBLTL formulas.

In our context, each parameter value λ in W will give rise to a probability
distribution P

λ taking into account internal variability. This probability distri-
bution will be used for evaluating the model against the property Ψ∗, which will
yield a score grade(λ) that represents the adequacy of parameter value λ w.r.t.
the given experimental data while taking into account internal variability.

However, it might happen that many of the values λ in INIT have a maximal
score grade(λ) = 1, i.e. satisfy the PBLTL property P

λ
≥1(Ψ

∗). This could be the
case for example if all the traces generated using P

λ satisfy the property Ψ∗. In
this case, we will need to consider more complex properties to filter those values
and rank them. To this purpose, we introduce the notion of reward function.
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2.3 Reward Function

The purpose of statistical model checking in general, and Monte-Carlo in par-
ticular, which will be presented in detail in Sect. 3.2, is to estimate with formal
guarantees the expected value of a given function on a measurable set. In the
context of model checking, this procedure is used to estimate the probability
that a given model satisfies a property. To do this, each sample of the system is
checked against the property and a Boolean reward is computed accordingly (i.e.
1 if the property is satisfied and 0 otherwise). Statistical model checking then
amounts to estimating the expected value of this particular reward function on
the measurable set of traces of the model at hand.

In our case, this boils down to defining a reward function rΨ∗ : TRAJ → {0, 1}
that evaluates to 1 if the trajectory satisfies Ψ∗ and 0 otherwise. Statistical model
checking will then compute an estimation of the expected value of rΨ∗ on the set
of traces TRAJ under the probability distribution P

λ , which in the end will be
an estimation of the measure of Models(Ψ∗) for the parameter value λ. Remark
that this construction would work for any other BLTL property Ψ .

In order to grade the parameter values in a more discriminating way, we
allow the use of non-Boolean reward functions. This will allow expressing more
powerful properties than those that can be defined using the BLTL logic. For
instance, one can use those reward functions in order to measure the number
of time points for which the current trace does not agree with the given exper-
imental data, or to measure the cumulative distance between the trace and the
experimental data at all time points.

In the following, we will therefore consider a given reward function r :
TRAJ → R and use statistical model checking to estimate its expected value
on the trajectories of our model under a given probability distribution P. When
convenient, we will identify a given BLTL property Ψ with its associated reward
function obtained through the above construction rΨ .

3 Global Statistical Guarantees

In this section, we state our main result, which provides statistical guarantees
on the verification of specific properties. Namely, given a property Ψ (resp. the
corresponding reward function rΨ ) on the trajectories of Eq. (1), we will establish
confidence intervals regarding the estimation of the probability of satisfaction of
that property (resp. the expected value of rΨ ), which shall be computed using
approximate solutions to Eq. (1), as well as a bound on the errors w.r.t. the exact
probability corresponding to the exact solutions to Eq. (1).

We start by recalling how ODE numerical resolution methods work, and
we propose a definition for the approximation errors introduced in the process.
Next, we introduce a method for estimating the probability p that exact solu-
tions of our ODE system satisfy a given property Ψ using an estimator p̂ that
takes the approximation error into account. Finally, we explain how those results
along with their statistical guarantees can be extended to the estimation of the
expected values of given reward functions.



92 D. Julien et al.

3.1 Approximation Method for the Numerical Integration
of the ODE

We recall that an approximation method, which determines the approximate
solution yλ to the ODE induced by parameter λ, can be written

yλ(0) = z0, yλ(τj+1) = yλ(τj) + h Φ
(
τj , y

λ(τj),λ, h
)
, 0 ≤ j < J, (7)

where Φ is a continuous function defined in [0, T ] × R
n × W × R with values in

R
n, τj are the discrete points of definition of yλ , and h ∈ R. Intuitively, those

methods compute each point thanks to the previous one. In this paper, we use
the well-known Runge-Kutta 4 method, which is a standard method for ODE
resolution.

For the sake of simplicity, we focus in the following on the theoretical study
of 1-dimensional systems (n = 1), but our method can be adapted to larger
systems (n ≥ 2) as shown in our second case study presented in Sect. 4.2, mostly
by adapting the definition of distance introduced below.

As explained in Sect. 2, we consider a set γ of observation data samples,
recorded at (N + 1) time points forming a set T (see Eq. (4)) with values in
R

n (N > 0). We start by defining a notion of distance between functions that
will, in the end, allow us to compare the solutions of our ODE model with the
given experimental data. Given any two functions y, ỹ in the set FT = {g : I →
R | T ⊆ I}, where I denotes an interval included in R, we consider the distance
d defined by

d(y, ỹ) = max
t∈T

|y(t) − ỹ(t)| . (8)

Note that d is rigorously only a pseudo-distance, since two functions y and ỹ
defined on [0, T ], that are distinct on [0, T ], might coincide on the finite set T ,
thus could satisfy d(y, ỹ) = 0. Nevertheless, since our purpose is to measure the
distance to the dataset γ, we do not need to distinguish such two functions.
Moreover, one may use any (pseudo-)distance of their choice, since all norms are
equivalent in the finite-dimensional space R (Rn in the general setting). In the
rest of the paper, we will abuse notations and use d to compare a given function
y ∈ FT to γ, even though γ is only defined on T and not on a continuous
subinterval of R.

In most ODE resolution methods, the approximation error depends on an
integration step. We therefore introduce a discretization Dh of the time interval
[0, T ], which we assume, for simplicity, to admit a constant step h > 0:

Dh = {0 = τ0, τ1, τ2, . . . , τJ = T}, (9)

with J > 0 and τj+1 − τj = h for all 0 ≤ j < J .
For each parameter value λ ∈ W, the chosen approximation method will

compute an approximate solution to the ODE, which we denote yλ . Recall that
the initial condition z0 ∈ R (Rn in the general setting) has been fixed and that
for any λ ∈ W, the exact solution to Eq. (1) such that z(0) = z0 is written zλ .

For the sake of measuring the approximation error between yλ and zλ , we
use a finer notion of distance than the one proposed above. Indeed, standard res-
olution methods provide guarantees that depend on the integration step in the
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sense that choosing a finer integration step enhances the quality of the approx-
imation. Our aim here is to be able to take advantage of this fact, which could
not be captured if we used the distance d from Eq. (8).

Definition 1 (Global approximation error). Let h > 0 be the integration
step of the chosen resolution method. The global approximation error εh(λ)
between the approximate solution yλ and the exact solution zλ is defined as
follows:

εh(λ) = max
τ∈Dh

∣
∣zλ(τ) − yλ(τ)

∣
∣ . (10)

In the rest of the paper, we make two important assumptions on the approxima-
tion method. First, we assume that the set T of time points given by Eq. (4), at
which the observation data γ are recorded, satisfies T ⊂ Dh. This assumption is
quite natural as there are a finite number of experimental data, therefore a suffi-
ciently small h can always be chosen accordingly. Our second assumption is that
the approximation method is convergent, which guarantees that for all λ ∈ W,
the global approximation error εh(λ) converges to 0 when h gets smaller. This
latter assumption is directly satisfied for usual approximation methods (such as,
e.g., Runge-Kutta; see for instance [3]).

3.2 Monte-Carlo Method

We now move to our main result, i.e. providing an estimation of the probability
that the original ODE system, with a given parameter value λ∗, agrees with
the experimental data with statistical guarantees. For the sake of simplicity, we
focus in this section on standard BLTL properties as introduced in Sect. 2.2. We
then show in Sect. 3.3 how these results can be extended to reward functions.

Let λ∗ ∈ W be a parameter value. In order to take the internal variability
of our system into account, we will consider that λ∗ can slightly vary. In order
to do this, we set a constant ρ > 0 and define the open ball

B(λ∗, ρ) = {λ ∈ R
m | ‖λ − λ∗‖ < ρ}, (11)

where ‖·‖ is the Euclidean norm defined in Sect. 2.1.
We start by recalling the Monte Carlo procedure for estimation. This pro-

cedure aims at taking advantage of the Central Limit Theorem and the Law of
Large Numbers. In order to estimate the probability that our system (where λ
can vary inside of B(λ∗, ρ)) satisfies the given BLTL property Ψ∗ (see Eq. (5)),
we will generate a set of n samples of values for λ inside of B(λ∗, ρ), and use
these values to provide n solutions to the ODE system. Each solution will be
evaluated, yielding a score of 1 if it satisfies Ψ∗ and 0 otherwise. Informally, the
Central Limit Theorem (Theorem 1) states that the mean value of the samples
p̂ is a good estimator for the probability p that our system (i.e. the ODE sys-
tem, where the parameter value is set to λ∗, with internal variability) satisfies
Ψ∗. Moreover, it also provides a confidence interval that solely depends on the
number of samples—provided this number is large enough—and the variance of
the initial distribution.
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Theorem 1 (Central Limit Theorem [19]). Let X1,X2, . . . be a sequence of
independent and identically distributed random variables of mean μ and variance
σ2. Then, the distribution of

∑n
i=1 Xi−nμ

σ
√

n
tends to the standard normal distribu-

tion as n → ∞. That is, for any a ∈ R,

lim
n→∞

P

(∑n
i=1 Xi − nμ

σ
√

n
≤ a

)
=

1√
2π

∫ a

−∞
e−x2/2dx.

Because we cannot evaluate the exact solutions of the ODE system but
instead have to rely on approximate solutions, we will define two auxiliary prop-
erties ϕε

1 and ϕε
2 (not expressed in BLTL) that take into account the global

approximation error defined above, use the Monte Carlo procedure to estimate
two probabilities p̂ε

1 and p̂ε
2 using those properties and the approximate solutions,

and finally propose an estimation of p̂ that relies on p̂ε
1 and p̂ε

2. We will finally
use p̂ in order to rate the chosen (central) parameter value λ∗.

Let T be a set of time points as described earlier. Let γ be the set of exper-
imental data and δ > 0 be a precision (tolerance) w.r.t. γ. Let λ∗ ∈ W
be a parameter value, let ρ > 0 be a variability setting. Consider the ball
Bλ∗ = B(λ∗, ρ) and let P

λ∗
be the uniform distribution on this ball.

Given a function g ∈ FT , we write ϕ(g) := d(g, γ) ≤ δ the property that
means “the distance between g and γ is less than δ”. Note that this property
can easily be written in BLTL (see Eq. (5) above). For convenience, if yλ is an
approximate solution to Eq. (1) induced by the parameter λ ∈ Bλ∗ , we will
identify ϕ(λ) to ϕ(yλ).

Given ε > 0, we introduce the properties:

ϕ(zλ) := d(zλ , γ) ≤ δ,

ϕε
1(y

λ) := d(yλ , γ) + ε ≤ δ, ϕε
2(y

λ) := d(yλ , γ) − ε ≤ δ.

The translation of ϕ in BLTL is the property of interest Ψ∗ defined in Eq. (5).
Our aim is to provide an estimation p̂ for P

λ∗
(Ψ∗). For convenience, we write P

for P
λ∗

in the rest of this section.
In order to do that, we show in Lemma 1 that for a small enough integration

step h, we have εh(λ) ≤ ε for all λ ∈ Bλ∗ , and therefore

ϕε
1(y

λ) ⇒ ϕ(zλ) ⇒ ϕε
2(y

λ). (12)

Lemma 1. Let (hi)i∈N ∈ R
+ be a sequence of integration steps, such that

lim
i→∞

hi = 0. Then for all ε > 0, there exists i∗ > 0 such that

εhi
(λ) < ε, ∀i ≥ i∗,∀λ ∈ Bλ∗ . (13)

In other words, the global error εh(λ) can be uniformly bounded in the closure
Bλ∗ of the open ball Bλ∗ . The proof of this lemma is given in Appendix A, along
with a method to compute hi∗ .

Now, we define the probabilities

p = P
(
ϕ(zλ∗)

)
, pε

1 = P
(
ϕε
1(yλ∗)

)
, pε

2 = P
(
ϕε
2(yλ∗)

)
. (14)
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Note that p, p1, p2 implicitly depend on δ. However, we omit this dependence in
order to lighten our notations. Next, it is straightforward that

pε
1 ≤ p ≤ pε

2, ∀ε > 0. (15)

Estimators p̂ε
1, p̂ε

2 of the probabilities pε
1 and pε

2 respectively can be determined
using the Monte-Carlo procedure, involving a precision α and a risk θ. Our
main result, given in Theorem 2 below, establishes a statistical guarantee on the
probability p of interest with respect to these estimators p̂ε

1, p̂ε
2.

Theorem 2 (Main theorem)
Let λ∗ ∈ W, ρ > 0, δ > 0, ε > 0. For any risk ξ ∈ (0, 1), we define θ =
1−

√
1 − ξ. Then, for any precision α > 0, the probabilities pε

1 and pε
2 defined in

Eq. (14) satisfy

P
(
pε
1 ∈ [p̂ε

1 − α, p̂ε
1 + α]

)
≥ 1 − θ, P

(
pε
2 ∈ [p̂ε

2 − α, p̂ε
2 + α]

)
≥ 1 − θ, (16)

where the estimators p̂ε
1 and p̂ε

2 can each be determined after performing a number
N ′ = log(2/θ)

2α2 (and hence a total number N = 2 × log(2/θ)
2α2 ) of simulations of

Eq. (1) induced by parameter values λ sampled in Bλ∗ .
Furthermore, there exist ε0 > 0 and h0 > 0 sufficiently small such that, for

any integration step h ≤ h0 and any ε < ε0, the following statements hold:

– the probability p defined in Eq. (14) satisfies the estimation

P
(
p ∈ [p̂ε

1 − α, p̂ε
2 + α]

)
≥ 1 − ξ, (17)

– the distance between p̂ε
1 and p̂ε

2 satisfies:

P (|p̂ε
1 − p̂ε

2| ≤ 3α) ≥ 1 − ξ. (18)

We emphasize that estimations (17) and (18) imply a confidence interval of
width 5α for p and require a number of samples N = 2× log(2/θ)

2α2 . If the analysis
was performed directly on the exact solutions of the ODE, we would have a
confidence interval of width 2α and only require log(2/ξ)

2α2 samples.
The proof of Theorem 2, given in Appendix B, is divided in three main steps.

First, using the Central Limit Theorem and the Law of Large Numbers, we
determine estimators p̂ε

1 and p̂ε
2 of pε

1 and pε
2, respectively. Then, Eq. (14) and the

independence of simulations lead to the confidence interval of p. Finally, Lemma
1 guarantees that proper values of h and ε can be found, in order to control
the distance between p̂ε

1 and p̂ε
2. It is worth noting that, for some resolution

methods (such as Runge-Kutta 4 for example), a value for h can be explicitly
determined to guarantee Lemma 1 for a given ε and therefore Eq. (17). However,
the convergence speed of |p̂ε

1 − p̂ε
2| is not known in general, therefore we can only

guarantee the existence of a sufficiently small value for ε to ensure Eq. (18) but
not compute it.
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3.3 Model Checking Extension Through Reward Functions

As explained in Sect. 2.3, our method can be extended to non-Boolean reward
functions. Indeed, these functions may provide not only qualitative results—
“does the property hold?”—but also quantitative ones—“how well does the prop-
erty hold?”. In our case, this allows to distinguish the good parameters that
induce a suitable solution from the best ones that induce the solutions closest
to the data.

To use such a real-valued reward function r, some conditions are required.
First, it must be assumed that two other reward functions r1 and r2 can be
found, such that the following estimation holds for any λ ∈ Bλ∗ :

r1(λ) ≤ r(λ) ≤ r2(λ). (19)

Second, the law of the unconscious statistician must be applicable to these
lower and upper reward functions, i.e. the computation of the expected value2
must be applicable, so that estimators r̂1 and r̂2 of r1 and r2 respectively, can
be computed.

Moreover, and most importantly, the reward function must be compatible
with the global error defined in Eq. (10). Indeed, since we compute score based
on approximated solutions, said computations must take this approximation into
account to provide any significance to the resulting score. It is worth noting that
these conditions are satisfied by all the reward functions we have considered in
this work, such as the total accumulated/maximal/average distance to γ or the
number of time points where γ is not respected.

Similarly to Eq. (18), the distance between r̂1 and r̂2 must be controlled.
Depending on the order of the approximation method used to compute approxi-
mate solutions to the ODEs, this may be easy to ensure. For instance, in our case
the integration method Runge-Kutta 4 ensures that the approximation error—
and thus, the global error as defined in Eq. (10)—is of order 5: all derivatives
of the integration functions converge at most linearly w.r.t. h5, where h is the
integration step.

4 Case Studies

In this section, we apply our method to two case studies [17,22] taken from the
literature to show its potential. After presenting the studies and their results,
we will display our results and discuss them. We implemented our technique in
C++ to validate the approach. The experiments were realized on a 2.1GHz Intel
Xeon Silver 4216 processor, running g++ version 7.5.0 on Ubuntu 18.04. The
code is available at https://gitlab.com/davidjulien/smc_for_ode.git, and the
experiments can be reproduced using the right branches, i.e. compute_aurelia
to run the experiment from Sect. 4.1 and compute_prey to run the experiment
from Sect. 4.2. We used the Runge-Kutta 4 method to compute approximate
solutions, a SMC precision α = 0.05 and a risk ξ = 0.05.
2 See Eq. (27) in AppendixB.

https://gitlab.com/davidjulien/smc_for_ode.git
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First, we briefly recall the experiment. After discretizing the value space W
defined in Eq. (2) for the parameter λ, we will grade every value in order to
select the best ones w.r.t. the experimental data γ. In order to take the internal
variability of the model into account, each chosen parameter value λ∗ is associ-
ated with the open ball Bλ∗ as defined in Eq. (11). Once the SMC parameters
α and ξ, as well as a small enough value for ε are chosen, we can compute an
integration step h, as well as a required number N of samples such that The-
orem2 holds. Then, we sample N values λ ∈ Bλ∗ , compute the approximated
solutions to the induced ODEs, and compare them with the experimental data
γ. For each λ∗ ∈ W, we thus estimate the probabilities p̂ε

1 and p̂ε
2 defined in the

previous section, and use them to define grade(λ∗) = p̂ε
1+p̂ε

2
2 . In order to better

discriminate the best parameter values, we also estimate the expected value of
the reward function r : λ �→ d(zλ , γ) that measures the distance between the
ODE simulations and the experimental data.

4.1 Case Study 1: A Study on Aurelia Aurita Population
Growth [17]

In 2014, Melica et al. [17] published a paper studying the growth of Aurelia
Aurita, a species of jellyfish that is very common in Adriatic Sea. In this paper,
they compared experimental data, resulting from the culture of Aurelia Aurita
polyps, to simulation models based on the following ODE:

x′(t) = ax(t)(1 − x(t)/b) (20)

where t is time, x is the population density, a is the maximum rate of population
growth, and b is the positive equilibrium. The authors show that the dynamics
of a Aurelia Aurita polyps population can, indeed, be modeled by the density-
dependent, or Verhulst [23], ODE presented above and compute the values for
a and b that ensure the best fitting w.r.t. the experimental data. These values
are recalled in Table 1.

Table 1. Estimation of parameters of the logistic curve fitting the laboratory experi-
mental data [17].

HD LD

b 5.35± 0.11(∗∗∗p < 0.001) 1.81± 0.08(∗∗∗p < 0.001)

x(0) 7.59± 0.21(∗∗∗p < 0.001) 0.081± 0.017(∗∗∗p < 0.001)

a 0.130± 0.033(∗∗p = 0.002) 0.137± 0.012(∗∗∗p < 0.001)

χ2 0.775 0.056

Remark 1. HD and LD represent the studies for High and Low Density, respec-
tively, which were both ran by the original authors. Here, we focused on the High
Density case.
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Fig. 3. Heatmap of the
score of the parameters.
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Fig. 5. Solution to the
ODE from Eq. (20).
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In order to illustrate our method, we applied it to the same case study,
using Eq. (20) as the ODE system. We evaluated parameter values in the ranges
a ∈ [0, 3], b ∈ [0, 9], and discretized this space with a parameter step of 0.01. We
set the internal variability of the parameters ρ = 0.005 and performed N = 874
simulations for each parameter value on the discretized space, therefore ensuring
a statistical precision of α = 0.05 and risk of ξ = 0.05.

In Fig. 3, we represent the score of the best parameter values, where the white
zones are zones where grade(λ∗) = 0. One can see that there is a small gradient
in the area where the score is positive, but this is not enough to discriminate
between the parameter values in this zone. In order to refine the result, we
present in Fig. 4 the estimation of the expected value of the reward function
r : λ �→ d(zλ , γ). Figure 4 shows a tighter area of values that induce solutions
that are very close to the data (down to 0.50 polyps on average), plotted in red,
which contains the parameter value estimated by [17]: it comforts us in saying
that our method provides tangible results. The best parameter found using our
method is the pair (a, b) = (0.19, 5.57). It induces the red curve in Fig. 5.

4.2 Case Study 2: A Prey-Predator Model for Lynx and Hares [22]

In 2010, Restrepo and Sánchez [22] published a paper describing a genetic algo-
rithm, which aimed at estimating the best parameters for prey-predator models.
The first model, which we will study in the following, is a basic prey-predator
interaction model defined by the following ODE system:

P ′ = aP − bPD, D′ = −cD + dPD (21)

where t is time, P and D are the two time-dependent variables representing the
quantity of individuals in each group: P (t) for prey and D(t) for predators; a, b,
c, d are positive constants, a and c indicating the birth rate of prey and death
rate of predators respectively, and b and d representing the rates of predation
and reproduction of predators. Note that even if the model is a standard way to
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Fig. 6. Heatmap of the
score (for c = 0.89).

Fig. 7. Heatmap of the
distance to γ (for c =
0.89).
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Fig. 8. Best solution to
Eq. (21).

describe, on first approximation, such an interaction between two populations,
its simplicity might make it imprecise – which is why other, more complex models
are studied in [22]. The best values for parameters (a, b, c, d) w.r.t. experimental
data are given in [22]: (a, b, c, d) = (0.55, 0.027, 0.83, 0.026).

Again, we applied our method to this case study, using Eq. (21) as the
ODE system. We evaluated parameter values in the ranges a ∈ [0.48, 0.68],
b ∈ [0.015; 0.04], c ∈ [0.78, 0.9], d ∈ [0.01, 0.05], and discretized this space with
a parameter step of 0.001. We set the internal variability of the parameters
ρ = 0.0005 and performed N = 874 simulations for each parameter value on the
discretized space, therefore ensuring a statistical precision of α = 0.05 and risk
of ξ = 0.05. Note that the parameter ranges have been tightened according to
the paper results, since cyclic models can be very sensitive to parameter values.

We encountered two issues with this study. First, the adequacy of the model
with the data was improvable, thus computing a fitting solution was challenging.
We had to loosen the property we verify: instead of Ψ∗, which enforces the
solution to always stay in the tunnel, we verified a property Ψ †, which allows
the solutions to step out of the tunnel a total of 5 times (for a total of 22 time
points) before rejecting them. This explains why the best solution displayed in
Fig. 8 does not perfectly fit inside of the tunnel. Remark that Ψ † can easily be
expressed in BLTL, and is therefore compatible with our theory. Second, since
system Eq. (21) involves 4 parameters, displaying the results with heatmaps is
more difficult than in case study 1 (Sect. 4.1). Nonetheless, locking a parameter
value (here, c = 0.89) allows the plot of a 3-dimensional heatmap.

Figure 6 shows a local subset of solutions fitting the data with a certain
quality. Notice that the score only goes up to 0.5; because of the internal vari-
ability we impose and the sensitivity of the model, very few simulations stayed
in the inner tunnel (corresponding to ϕε

1 in Sect. 3), yielding p̂ε
1 = 0 in most

cases. That said, Fig. 7 displays the distance for the same subset. We notice that
some solutions are, at most, at a 10 individuals distance from the data. The
subset contains our best candidate (a, b, c, d) = (0.52, 0.027, 0.89, 0.027), whose
corresponding curve is displayed in Fig. 8. We see that the general shape of the
curve is satisfying but does not perfectly fit inside of the tunnel. This may be
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explained by the fact that cyclic ODE systems like prey-predator models can be
very sensitive to the non-linear terms, i.e. bPD and dPD. Again, our goal here
was to prove the concept rather than describe a phenomenon with the upmost
precision: while this is satisfying as far as we are concerned, a more thorough
study of the parameters, along with a better quality of the data (with e.g. several
observations for each time point t, allowing for more robust data and observable
data tunnels) would help getting results closer to the actual experiments.

5 Conclusion

In this paper, we have proposed a statistical method for synthesizing the best
parameter values w.r.t. given experimental data for an ODE system with internal
variability, while providing formal statistical guarantees that for the first time (to
the best of our knowledge) take into account the approximation error introduced
through the numerical resolution of the ODEs. To do that, we discretize the
parameter space and define balls around the resulting (finite) set of parameter
values to take internal variability into account. We then use the Monte-Carlo
technique to estimate the probability that exact solutions of the ODE system
are close to the experimental data for each resulting parameter ball, and use
the result of this estimation to select the best (central) parameter values. Our
main contribution is Theorem 2 which guarantees the precision of our estimation
despite the fact that it is performed using numerical resolution techniques that
do not give us access to exact solutions of the ODE system. In contrast with
other existing works on parameter estimation for ODE systems, like [15], where
this problem is left aside, we show that the number of simulations required for a
given precision and risk of the statistical estimation is (more than) twice the one
needed when working with exact solutions. We also show that an upper bound
on the integration step of the chosen integration technique exists (and can be
computed for standard integration techniques) in order to make sure that a given
statistical precision and risk are respected.

One of the limitations of our work is that, in order to prove our results and
perform parameter synthesis in practice, we rely on a setting ε that represents
the maximal admissible distance between exact and approximate solutions to the
ODE system. Although it is possible, for most integration techniques3, to com-
pute an integration step that will guarantee that a given value for ε is respected,
our results only show the existence of a suitable value for ε for any statistical
setting, but do not provide any method to compute this value in practice. This is
due to our lack of guarantees on the convergence speed of the distance between
the two estimators p̂ε

1 and p̂ε
2 that appear in Eq. (17) and Eq. (18). What we

do in practice is that we set small values for ε, perform experiments and then
estimate the value of |p̂ε

1 − p̂ε
2|. If the resulting value is too large, then we start

over the experiment with a smaller value for ε.
Although the only BLTL property that we verify in this paper is the property

Ψ∗ defined in Eq. (5), we believe that our reasoning can be easily extended to
3 See Remark 2 in Appendix A, and [16].
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other BLTL property following the definition given in Sect. 2.2. This is, in our
opinion, a straightforward extension that we will address in the near future.

As said in the introduction, our results are generic and could therefore be
combined with any exploration strategy for the parameter space. The global
exploration we perform in this paper is obviously costly but yields global infor-
mation that is precious when analysing a complex system. In the future, we
plan on combining a coarse global exploration to identify interesting zones in
the parameter space with more efficient and detailed search algorithms (such as
the one from [15]) limited to those zones.

Appendices

In these appendices, we provide the complete proofs of Lemma 1 and Theorem 2.

A Proof of Lemma 1

First, we recall the definition of stability of an approximation method.

Definition 2 (Method stability). We say that the approximation method
determined by Eq. (7) is stable if there exists a constant K > 0, called stability
constant, such that, for any two sequences (yk)0≤k≤J and (ỹk)0≤k≤J defined as
yk+1 = yk + h Φ(τk, yk,λ, h) and ỹk+1 = ỹk + h Φ(τk, ỹk,λ, h) + ηk respectively,
(0 ≤ k < J), with λ ∈ W and ηk ∈ R, we have

max
0≤k≤J

|yk − ỹk| ≤ K
(
|y0 − ỹ0| +

∑

0≤k≤J

|ηk|
)
. (22)

It is well-known that if Φ is κ-Lipschitz w.r.t. y, i.e. ∀t ∈ [0, T ], ∀y, ỹ ∈ R,
∀λ ∈ W and ∀h ∈ R, |Φ(t, y,λ, h) − Φ(t, ỹ,λ, h)| ≤ κ |y − y2|, then stability is
ensured (see for instance [3] or [4]).

Now, we fix λ∗ ∈ W and λ1,λ2 ∈ Bλ∗ , and we consider the approximate
solutions yλ1 , yλ2 to Eq. (1) relative to λ1 and λ2 and starting from z0.

{
yλ1
0 = z0,

yλ1
k+1 = yλ1

k + h Φ(tk, yλ1
k ,λ1, h),

{
yλ2
0 = z0,

yλ2
k+1 = ỹk + h Φ(tk, yλ2

k ,λ2, h).

We recall that the exact solutions to Eq. (1) relative to λ1 and λ2 and starting
from z0 are denoted zλ1 and zλ2 respectively. For i ∈ {1, 2} and 0 ≤ k ≤ J , we
introduce the consistency error on yλi at step k:

εh,k(λi) = |zλi(τk) − yλi(τk)|. (23)

The consistency errors satisfy εh(λi) = max0≤k≤J εh,k(λi), for i ∈ {1, 2}, where
εh(λi) is the global approximation error (defined by Eq. (10)). The proof of
Lemma 1 can be derived from the following theorem.
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Theorem 3 (Stability with respect to consistency error). Assume that
the function Φ defined in Eq. (7) is κ1-Lipschitz w.r.t. λ and κ2-Lipschitz con-
tinuous w.r.t. y. Then the approximation method is stable w.r.t. the consistency
error, i.e. there exists K > 0 such that

∀λ1,λ2 ∈ Bλ∗ , max
0≤k≤J

|εh,k(λ1) − εh,k(λ2)| ≤ K‖λ1 − λ2‖, (24)

where ‖ · ‖ is the Euclidean norm defined in Sect. 2.1.

Proof (of Theorem 3). By assumption, Φ is κ1-Lipschitz continuous w.r.t. λ:

∀t, y, h ∈ R,∀λ1,λ2 ∈ Bλ∗ , |Φ(t, y,λ1, h) − Φ(t, y,λ2, h)| ≤ κ1 |λ1 − λ2| .

It follows that

|yλ1
k+1 − yλ2

k+1| ≤ |yλ1
k − yλ2

k | + h|Φ(tk, yλ1
k ,λ1, h) − Φ(tk, yλ2

k ,λ2, h)|
≤ |yλ1

k − yλ2
k | + h|Φ(tk, yλ1

k ,λ1, h) − Φ(tk, yλ1
k ,λ2, h)|

+ h|Φ(tk, yλ1
k ,λ2, h) − Φ(tk, yλ2

k ,λ2, h)|
≤ (1 + hκ2)|yλ1

k − yλ2
k | + hκ1‖λ1 − λ2‖,

for 0 ≤ k ≤ J . We write |yλ1
k − yλ2

k | = Δy,k and ‖λ1 − λ2‖ = Δλ , and we get

Δy,k+1 ≤ (1 + hκ2)Δy,k + hκ1Δλ . (25)

Applying the discrete Gronwall lemma (see for instance [7], VIII.2.3), we deduce

max
0≤k≤J

Δy,k ≤ eκ2T
(
Δy,0 +

∑

0≤j≤k−1

hκ1Δλ

)

which leads to
max

0≤k≤J
|yλ1

k − yλ2
k | ≤ eκ2T Tκ1‖λ1 − λ2‖,

since yλ1
0 = yλ2

0 = z0 and h J = T .
Furthermore, it is proved in [4] that if Φ is Lipschitz continuous w.r.t. λ, then

the exact solution zλ is also Lipschitz continuous w.r.t. λ that is, there exists
κ3 > 0 such that

∀λ1,λ2 ∈ Bλ∗ ,∀t ∈ [0, T ], |zλ1(t) − zλ2(t)| ≤ κ3‖λ1 − λ2‖. (26)

Finally, we have

|εh,k(λ1) − εh,k(λ2)| ≤ |zλ1(τk) − yλ1(τk) − zλ2(τk) − yλ2(τk)|
≤ |zλ1(τk) − zλ2(τk)| + |yλ1(τk) − yλ2(τk)|
≤ K‖λ1 − λ2‖,

with K = κ3 + Tκ1e
κ2T , which completes the proof of Theorem 3. ��
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It remains to show that Theorem 3 implies Lemma 1.

Proof (of Lemma 1). Let (hi)i≥0 be a sequence of discretization steps such that
limi→∞ hi = 0. Since the approximation method given by (7) is assumed to be
convergent, each function εhi

(·) defined in Eq. (23) is pointwise convergent to 0.
Furthermore, we recall that Φ is Lipschitz continuous w.r.t. λ ∈ W. Hence,

Theorem 3 implies that the functions
(
εhi

(·)
)
i≥0

defined in Eq. (23) are also
Lipschitz continuous, with uniform Lipschitz constant K:

|εhi
(λ1) − εhi

(λ2)| ≤ K ‖λ1 − λ2‖ , ∀λ1,λ2 ∈ Bλ∗ , ∀i ∈ N.

Consequently, the functions
(
εhi

(·)
)
i≥0

are uniformly equicontinuous. Hence,
Arzelà-Ascoli Theorem [8] implies that the sequence

(
εhi

(·)
)
i≥0

converges uni-
formly to 0 on Bλ∗ , thus ∀ε > 0, ∃i∗ ∈ N, ∀i ≥ i∗, ∀λ ∈ Bλ∗ , εhi

(λ) < ε, and
Lemma 1 is proved. ��
Remark 2 (Computation of a sufficiently small integration step). We emphasize
that Lemma 1 can be supplemented by an explicit choice of a sufficiently small
integration step h, provided the integration method comes with appropriate
estimates of their global error. Notably, the accuracy of the Runge-Kutta 4
method, which we use for the numerical treatment of our case studies, has been
thoroughly studied (see [16] for instance), and it is known that its inherent error
can be bounded in terms of the successive derivatives of the function f involved
in Eq. (1), up to order 4.

B Proof of Theorem 2

First Step. We begin the proof of Theorem 2 by showing how to compute an
estimator p̂ε

1 of the probability pε
1 defined in (14).

Let (λi)N be a sequence of values in the ball Bλ∗ . We write Bi the random
variable corresponding to the test “ϕε

1(λi) holds”: all the Bi are i.i.d. variables
and follow a Bernoulli’s law of parameter pε

1. We write bi the evaluation of Bi.
We introduce the transfer function g1 : Bλ∗ → {0, 1} corresponding to the test
regarding ϕε

1(λi), defined by g1(λi) = 1 if ϕε
1(λi) holds, 0 otherwise. Next, we

consider
G = E(g1(X)) =

∫

Bλ ∗
g1(x)fX(x)dx, (27)

where fX is defined by a uniform distribution, that is, fX(x) = 1
|Bλ ∗ | , x ∈

Bλ∗ . We produce a sample (x1, x2, . . . , xN ) of the variable X in Bλ∗ , and use
it to compute the Monte-Carlo estimator G. By virtue of the Law of Large
Numbers, the sample mean satisfies: gN = 1

N

∑N
i=1 g1xi. The Central Limit

Theorem states that the variable Z = gN −G
σgN

approximately follows a Standard
Normal Distribution N (0, 1); hence, for a risk θ, we can bound the error |αN | of
swapping G with gN by building confidence intervals:

P

(
|αN | ≤ χ1− θ

2

σg1√
N

)
= 1 − θ, (28)
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where χ1− θ
2

is the quantile of the Standard Normal Distribution N (0, 1) and σg1

is the variance of g1.
Since we are interested in finding pε

1 with a certain confidence, we can perform
this process after setting the desired target error α and risk θ, knowing how many
simulations must be ran using Hoeffding’s inequality [12]:

θ = P(gN /∈ [pε
1 − α, pε

1 + α]) ≤ 2 exp(−2α2N),

or equivalently N ≥ log(2/θ)
2α2 . Here, it is worth emphasizing that N can be chosen

independently of ε.
Further, the variance of gN can be expressed with the variance of g1(X):

σ2
g1

= E
(
[g1(X) − E(g1(X))]2

)
=

∫

Bλ ∗
(g1(x))2fX(x)dx − G2.

We consider i.i.d. samples, hence σ2
g1

can be estimated with the variance S2
g1

:

σ2
g1

� S2
g1

=
1
N

N∑

i=1

(g1(λi)2 − g2N ).

It follows that σg1 can be estimated with its empirical counterpart σ̂g1 =
√

S2
g1

,

which shows that the error displays a 1/
√

N convergence.
Finally, after estimating σg1 , we can find p̂ε

1 using the variance of Bernoulli’s
law σ̂2

g1
= p̂ε

1 × (1 − p̂ε
1). We conclude that the probability that ϕε

1(λ) holds is

estimated by p̂ε
1 = 1

2

(
1 ±

√
1 − 4σ̂2

g1

)
, with an error α and a risk θ, provided

we perform N ≥ log(2/θ)
2α2 simulations. It follows that

P
(
pε
1 ∈ [p̂ε

1 − α, p̂ε
1 + α]

)
≥ 1 − θ. (29)

Similarly, we determine an estimator p̂ε
2 of pε

2 by running N ≥ log(2/θ)
2α2 additional

simulations, and obtain a confidence interval satisfying

P
(
pε
2 ∈ [p̂ε

2 − α, p̂ε
2 + α]

)
≥ 1 − θ. (30)

Second Step. Now, let us show how a confidence interval for the probability p
can be derived from the confidence intervals given in (29), (30), involving the
estimators p̂ε

1 and p̂ε
2 respectively. The independence of the samples used to

determine the estimators p̂ε
1, p̂ε

2 guarantees that

P(p ∈ [p̂ε
1 − α, p̂ε

2 + α]) = P
(
{p ≥ p̂ε

1 − α}
)

× P
(
{p ≤ p̂ε

2 + α}
)
.

By virtue of (29), we have P(pε
1 ≥ p̂ε

1−α) ≥ 1−θ. Next, the estimate (15) implies
P(p ≥ p̂ε

1−α) ≥ P(pε
1 ≥ p̂ε

1−α) ≥ 1−θ. Similarly, we have P(p ≤ p̂ε
2+α) ≥ 1−θ,

and finally P(p ∈ [p̂ε
1 − α, p̂ε

2 + α]) ≥ (1 − θ)2 = 1 − ξ, since θ = 1 −
√
1 − ξ.
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Third Step. Finally, let us prove how Lemma 1 guarantees that proper values of
h and ε can be found, in order to control the distance between p̂1 and p̂2.

Indeed, the continuity of the probability measure P ensures that there exists
ε0 > 0 such that |pε

1 − pε
2| ≤ α, for ε < ε0. Next, we write

|p̂ε
1 − p̂ε

2| ≤ |p̂ε
1 − pε

1| + |p̂ε
2 − pε

2| + |pε
1 − pε

2| ,

hence we have, for ε < ε0:

P
(
|p̂ε

1 − p̂ε
2| ≤ 3α

)
≥ P(|p̂ε

1 − pε
1| ≤ α) × P(|p̂ε

2 − pε
2| ≤ α) × P(|pε

1 − pε
2| ≤ α)

≥ (1 − θ)2 × 1 = 1 − ξ.

In parallel, Lemma 1 guarantees that for h sufficiently small, the global stability
error can be uniformly bounded on Bλ∗ by ε0. The proof is complete. ��
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