
An Automated Quantitative Information
Flow Analysis for Concurrent Programs

Khayyam Salehi1(B) , Ali A. Noroozi2 , Sepehr Amir-Mohammadian3 ,
and Mohammadsadegh Mohagheghi4

1 Department of Computer Science, Shahrekord University, Shahrekord, Iran
kh.salehi@sku.ac.ir

2 Department of Computer Science, University of Tabriz, Tabriz, Iran
noroozi@tabrizu.ac.ir

3 Department of Computer Science, University of the Pacific, Stockton, CA, USA
samirmohammadian@pacific.edu

4 Department of Computer Science, Vali-e-Asr University of Rafsanjan,
Rafsanjan, Iran

mohagheghi@vru.ac.ir

Abstract. Quantitative information flow is a rigorous approach for eval-
uating the security of a system. It is used to quantify the amount of secret
information leaked to the public outputs. In this paper, we propose an
automated approach for quantitative information flow analysis of con-
current programs. Markovian processes are used to model the behavior
of these programs. To this end, we assume that the attacker is capa-
ble of observing the internal behavior of the program and propose an
equivalence relation, back-bisimulation, to capture the attacker’s view
of the program behavior. A partition refinement algorithm is developed
to construct the back-bisimulation quotient of the program model and
then a quantification method is proposed for computing the informa-
tion leakage using the quotient. Finally, an anonymous protocol, dining
cryptographers, is analyzed as a case study to show applicability and
scalability of the proposed approach.

Keywords: Information leakage · protocol security · quantitative
information flow · confidentiality · Markovian Processes

1 Introduction

Secure information flow is a rigorous technique for evaluating security of a sys-
tem. A system satisfies confidentiality requirements if it does not leak any secret
information to its public outputs. However, imposing no leakage policy is too
restrictive and in practice the security policy of the system tends to permit
minor leakages. For example, a password checking program leaks information
about what the password is not when it shows a message indicating that user
has entered a wrong password. Quantitative information flow has been a well-
established attempt to overcome this deficiency. Given a system with secret
c© Springer Nature Switzerland AG 2022
E. Ábrahám and M. Paolieri (Eds.): QEST 2022, LNCS 13479, pp. 43–63, 2022.
https://doi.org/10.1007/978-3-031-16336-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16336-4_3&domain=pdf
http://orcid.org/0000-0002-3379-798X
http://orcid.org/0000-0003-1173-079X
http://orcid.org/0000-0002-2301-4283
http://orcid.org/0000-0001-8059-3691
https://doi.org/10.1007/978-3-031-16336-4_3

44 K. Salehi et al.

(high confidentiality) inputs and public (low confidentiality) outputs, quanti-
tative information flow addresses the problem of measuring the amount of infor-
mation leakage, i.e., the amount of information that an attacker can deduce
about the secret inputs by observing the outputs. Quantitative information
flow is widely used in analyzing timing attacks [23,24], differential privacy [1],
anonymity protocols [13,25,29,30], and cryptographic algorithms [18,19].

Assume a program with a secret input and a public output. Furthermore,
assume an attacker that executes the program and observes the public output.
A common approach for measuring the amount of leaked information is to use
the notion of uncertainty [31]. Before executing the program, the attacker has an
initial uncertainty about the secret, which is determined by her prior knowledge
of the secret. After executing the program and observing the output, she may
infer information about the secret and thus her uncertainty may be reduced. This
yields the following intuitive definition of the information leakage [31]: leaked
information = initial uncertainty - remaining uncertainty.

In this paper, a practical and automated formal approach is proposed to
quantify the information leakage of terminating concurrent programs. The app-
roach considers leakages in intermediate states of the program executions and
effect of the scheduling policy.

We assume the program has a secret input h, a public output l, and zero
or more neutral variables. Neutral variables specify temporary and/or auxiliary
components of the runtime program configuration that do not belong to a certain
confidentiality level by nature, e.g., the stack pointer and loop indexes. h is fixed
and does not change during program executions. This is the case in any analysis
in the context of confidentiality that assumes data integrity to be out of scope,
e.g., [2,7]. We also assume that the public and neutral variables have single
initial values. Furthermore, a probabilistic attacker is supposed, who has the
full knowledge of source code of the concurrent program and is able to choose a
scheduler and execute the program under the control of that scheduler. She can
observe sequences of values of l during the executions, called execution traces.
We also assume that the attacker can execute the program an arbitrary number
of times and can then guess the value of h in a single attempt. This is called
one-try guessing model [31].

In order to model the concurrent program, Markov decision processes
(MDPs) are used. MDPs provide a powerful state transition system, capable
of modeling probabilistic and nondeterministic behaviors [28]. The scheduler is
assumed to be probabilistic, resolving nondeterminism in the MDP and induc-
ing a Markov chain (MC). States of an MC contain values of h, l, and possible
neutral variables. For computing the leakage, however, MC should capture the
attacker’s view of the program. The attacker, while executing the program and
observing the execution traces, does not know the exact value of h in each step.
She can only guess a set of possible values based on the executed program state-
ments and the observed traces. She also cannot distinguish those executions of
MC that have the same trace. In this regard, we define an equivalence relation
for a given MC, called back-bisimulation, to specify these requirements of the

An Automated Quantitative Information Flow Analysis 45

threat model. Back-bisimulation induces a quotient which models the attacker’s
view of the program. A partition-refinement algorithm is proposed to compute
the back-bisimulation quotient.

Each state of the back-bisimulation quotient contains a secret distribution,
which shows possible values of h in that state, and thus is a determiner of the
attacker’s uncertainty about h. Each execution trace of the quotient shows a
reduction of the attacker’s uncertainty from the initial state to the final state
of the trace. Therefore, secret distribution in the initial state of the quotient
determines the attacker’s initial uncertainty and secret distributions in the final
states determine the remaining uncertainty. In the literature, uncertainty is mea-
sured based on the notion of entropy. The entropy of h expresses the diffi-
culty for an attacker to discover its value. Based on the program model and
the attacker’s observational power, various definitions of entropy have been pro-
posed. As Smith [31] shows, in the context of one-try guessing model, uncertainty
about a random variable should be defined in terms of Renyi’s min-entropy. This
yields that the information leakage is computed as the difference of the Renyi’s
min-entropy of h in the initial state of the quotient and the expected value of
the Renyi’s min-entropy of h in the final states of the quotient.

We also show a subclass of MCs, called Markov chains with pseudoback-
bisimilar states, in which back-bisimulation cannot correctly construct the
attacker’s view of the program behavior. Using back-bisimulation to handle this
situation is considered a potential future work. Briefly, our contributions include

– proposing back-bisimulation equivalence, in order to capture the attacker’s
observation of the program,

– developing an algorithm to compute back-bisimulation quotient of an MC,
– proposing a method to compute the leakage of a concurrent program from

the back-bisimulation quotient, and
– analyzing the dining cryptographers problem.

1.1 Paper Outline

The paper proceeds as follows. Section 2 provides a core background on some
basics, information theory, Markovian models and probabilistic schedulers.
Section 3 presents the proposed approach. It starts with introducing the pro-
gram and threat models. It then formally defines back-bisimulation and discusses
how to compute the program leakage. Finally, it describes how to construct the
attacker’s view of the program model, the back-bisimulation quotient. Section 4
concludes the paper and proposes future work. Finally, the case study and related
work are discussed in Appendix A and Appendix B, respectively.

2 Background

In this section, we provide preliminary concepts and notations required for the
proposed approach.

46 K. Salehi et al.

2.1 Basics

A probability distribution Pr over a set X is a function Pr : X → [0, 1], such
that

∑
x∈X Pr(x) = 1. We denote the set of all probability distributions over X

by D(X).
Let S be a set and R an equivalence relation on S. For s ∈ S, [s]R denotes

the equivalence class of s under R, i.e., [s]R = {s′ ∈ S | sRs′}. Note that
for s′ ∈ [s]R we have [s′]R = [s]R. The set [s]R is often referred to as the R-
equivalence class of s. The quotient space of S under R, denoted by S/R =
{[s]R | s ∈ S}, is the set consisting of all R-equivalence classes. A partition for
S is a set Π = {B1, . . . , Bk} such that Bi �= ∅ (for 0 < i ≤ k), Bi ∩ Bj = ∅

(for 0 < i < j ≤ k) and S = ∪0<i≤kBi. Bi ∈ Π is called a block. C ⊆ S is a
superblock of Π if C = Bi1 ∪ · · · ∪ Bil

for some Bi1 , . . . , Bil
∈ Π. Note that for

equivalence relation R on S, the quotient space S/R is a partition for S.

2.2 Information Theory

Let X denote a random variable with the finite set of values X . Vulnerability [31]
of X is defined as Vul(X) = max

x∈X
Pr(X = x). Vulnerability is defined as the

highest probability of correctly guessing the value of the variable in just a single
attempt. In order to quantify information leaks, we convert this probability into
bits using Renyi’s min-entropy [31].

Definition 1. The Renyi’s min-entropy of a random variable X is given by
H∞(X) = − log2 Vul(X).

2.3 Markovian Models

We use Markov decision processes (MDPs) to model operational semantics of
concurrent programs. MDPs are state transition systems that permit both prob-
abilistic and nondeterministic choices [28]. In any state of an MDP, a nonde-
terministic choice between probability distributions exists. Once a probability
distribution is chosen nondeterministically, the next state is selected in a proba-
bilistic manner. Nondeterminism is used to model concurrency between threads
by means of interleaving, i.e., all possible choices of the threads are considered.
Formally,

Definition 2. A Markov decision process (MDP) is defined as a tuple
M = (S,Act ,P, ζ,AP , V) where,

– S is a set of states,
– Act is a set of actions,
– P : S → (Act → (S → [0, 1])) is a transition probability function such that

for all states s ∈ S and actions α ∈ Act ,
∑

s′∈SP(s)(α)(s′) ∈ {0, 1},
– ζ : S → [0, 1] is an initial distribution such that

∑
s∈Sζ(s) = 1.

– AP is a set of atomic propositions,
– V : S → AP is a labeling function.

An Automated Quantitative Information Flow Analysis 47

Atomic propositions represent simple known facts about the states. The
function V labels each state with atomic propositions. An MDP M is called
finite if S, Act , and AP are finite. An action α is enabled in state s iff∑

s′∈SP(s)(α)(s′) = 1. Let Act(s) denote the set of enabled actions in s. Each
state s′ for which P(s)(α)(s′) > 0 is called an α-successor of s. The set of α-
successors of s is denoted by Succ(s, α). The set of successors of s is defined
as Succ(s) = ∪

α∈Act(s)
Succ(s, α). The set of successors of a set of states S is

defined as Succ(S) = ∪
s∈S

Succ(s). The set of predecessors of s is defined as

Pre(s) = {s′ ∈ S | s ∈ Succ(s′)}. The set of labels that are associated with the
predecessors of s is defined as PreLabels(s) = {V (s′) | s′ ∈ Pre(s), s′ �= s}.

MDP Semantics. The intuitive operational behavior of an MDP M is as fol-
lows. At the beginning, an initial state s0 is probabilistically chosen such that
ζ(s0) > 0. Assuming that M is in state s, first a nondeterministic choice between
the enabled actions needs to be resolved. Suppose action α ∈ Act(s) is selected.
Then, one of the α-successors of s is selected probabilistically according to the
transition function P. That is, with probability P(s)(α)(s′) the next state is s′.

Initial and Final States. The states s with ζ(s) > 0 are considered as the
initial states. The set of initial states of M is denoted by Init(M). To ensure
M is non-blocking, we include a self-loop to each state s that has no successor,
i.e., P(s)(τ)(s′) = 1. The distinguished action label τ is used to show that
the self-loop’s action is not of further interest. Then, a state s is called final if
Succ(s) = {s}. In the literature, these states are called absorbing [3]. We call
them final, because in our program model they show termination of the program.
The set of final states of M is denoted by final(M).

Execution Paths. Alternating sequences of states that may arise by resolving
both nondeterministic and probabilistic choices in an arbitrary MDP M are
called (execution) paths. More precisely, a finite path fragment σ̂ of M is a
finite state sequence s0s1 . . . sn such that si ∈ Succ(si−1) for all 0 < i ≤ n.
A path σ is an infinite state sequence s0s1 . . . sn−1s

ω
n such that s0 ∈ Init(M),

si ∈ Succ(si−1) for all 0 < i ≤ n, ω denotes infinite iteration, and sn ∈ final(M),
i.e., sω

n denotes the infinite iteration over sn. The final state of σ, i.e. sn, is given
by final(σ). The set of execution paths of M is denoted by Paths(M). The set of
finite path fragments starting in s and ending in s′ is denoted by PathFrags(s, s′).

Traces and Trace Fragments. A trace of an execution path is the sequence of
atomic propositions of the states of the path. Formally, the trace of a finite path
fragment σ̂ = s0s1 . . . sn is defined as T̂ = trace(σ̂) = V (s0)V (s1) . . . V (sn). For
a path σ = s0s1 . . ., trace�i(σ) is defined as the prefix of trace(σ) up to index
i, i.e., trace�i(σ) = V (s0)V (s1) . . . V (si). Let Paths(T) be the set of paths that
have the trace T , i.e., Paths(T) = {σ ∈ Paths(M) | trace(σ) = T}. We define
final(Paths(T)) to denote the set of final states that result from the trace T , i.e.,
final(Paths(T)) = {final(σ) | σ ∈ Paths(T)}.

MDPs are suitable for modeling concurrent programs, but since they contain
nondeterministic choices, they are too abstract to implement. We need to resolve

48 K. Salehi et al.

these nondeterministic choices into probabilistic ones. The result is a Markov
chain, which does not contain action and nondeterminism.

Definition 3. A (discrete-time) Markov chain (MC) is a tuple M =
(S,P, ζ, AP, V) where,

– S is a set of states,
– P : S × S → [0, 1] is a transition probability function such that for all states

s ∈ S,
∑

s′∈SP(s, s′) = 1,
– ζ : S → [0, 1] is an initial distribution such that

∑
s∈Sζ(s) = 1,

– AP is a set of atomic propositions,
– V : S → AP is a labeling function.

The function P determines for each state s the probability P(s, s′) of a single
transition from s to s′. Note that for all states s ∈ S,

∑
s′∈SP(s, s′) = 1.

Reachability Probabilities. We define the probability of reaching a state s
from an initial state in an MC M as Pr(s) =

∑
Pr(σ̂)

σ̂∈PathFrags(s0,s)
s0∈Init(M)

, where

Pr(σ̂ = s0s1 . . . sn) =

⎧
⎨

⎩

ζ(s0) if n = 0,
ζ(s0).

∏

0≤i<n

P(si, si+1) otherwise.

Trace Probabilities. The occurrence probability of a trace T is defined as

Pr(T) =
∑

σ∈Paths(T)

Pr(σ), where Pr(σ = s0s1 . . . sω
n) = Pr(σ̂ = s0s1 . . . sn).

DAG Structure of Program Models. We assumed that the programs always
terminate and states indicate the current values of the variables and the pro-
gram counter. This implies that Markovian models of every terminating program
takes the form of a directed acyclic graph (DAG), modulo self-loops in final states.
Therefore, reachability probabilities coincide with long-run probabilities [3]. Ini-
tial states of the program are represented as roots of the DAG, and final states
as leaves. Each state of a Markovian model is located at a level equal to the least
distance of that state from an initial state. Level of state s is denoted by level(s).

2.4 Probabilistic Schedulers

A probabilistic scheduler implements the scheduling policy of a concurrent pro-
gram. It determines the order and probability of execution of threads. When
a probabilistic scheduler is applied to a concurrent program, nondeterministic
choices are replaced by probabilistic ones. As we modeled concurrency between
threads using nondeterminism in MDP, the scheduler is used to resolve the possi-
ble nondeterminism in MDP. For demonstration purposes, it suffices to consider
a simple but important subclass of schedulers called memoryless probabilistic
schedulers. Given a state s, a memoryless probabilistic scheduler returns a prob-
ability for each action α ∈ Act(s). This random choice is independent of what

An Automated Quantitative Information Flow Analysis 49

has happened in the history, i.e., which path led to the current state. This is
why it is called memoryless1. Formally,

Definition 4. Let M = (S,Act ,P, ζ, AP, V) be an MDP. A memoryless
probabilistic scheduler for M is a function δ : S → D(Act), such that
δ(s) ∈ D(Act(s)) for all s ∈ S.

As all nondeterministic choices in an MDP M are resolved by a scheduler δ,
a Markov chain Mδ is induced. Formally,

Definition 5. Let M = (S,Act ,P, ζ, AP, V) be an MDP and δ : S → D(Act)
be a memoryless probabilistic scheduler on M. The MC of M induced by δ is
given by Mδ = (S,Pδ, ζ, AP, V) where Pδ(s, s′) =

∑

α∈Act(s)

δ(s)(α).P(s)(α)(s′)

3 The Proposed Approach

Suppose a concurrent program P, running under control of a scheduling policy
δ. The proposed approach proceeds in three steps: (1) defining an MDP rep-
resenting P and applying δ to the MDP to resolve the nondeterminism in the
MDP (Sect. 3.1), (2) constructing a back-bisimulation quotient (Sect. 3.2), and
(3) computing the leakage (Sect. 3.3). Finally, an algorithm for computing the
back-bisimulation quotient is presented (Sect. 3.4).

3.1 The Program and Threat Models

It is assumed P has a secret input variable h and a public output variable l and
h has a fixed ue during the program executions. If the program has several secret
variables, they can be encoded (e.g. concatenated) into one secret variable. The
same is done for public and neutral variables. Possible values of l and h are
denoted by Val l and Valh.

The attacker has a prior knowledge of the secret, which is modeled as a
prior probability distribution over the possible values of h, i.e. Pr(h). Here,
the attacker is assumed to be probabilistic, i.e., she knows size of the secret, in
addition to some accurate constraints about the values of h. For instance, the
attacker could know that h is 2 bits long, its value is not 1, the probability that
its value is 2 is 0.6, and the probability that its value is 3 is thrice the probability
that it is 0. The prior distribution encoding these constraints is Pr(h) = {0 	→
0.1, 2 	→ 0.6, 3 	→ 0.3}2. A special case of the probabilistic attacker is ignorant [6],
who has no prior information about the value of h except its size. Thus, the
ignorant attacker’s initial knowledge is a uniform prior distribution on h.

1 A rather general notion of schedulers is to let them use the full history of execution
to make decisions. Here, this general definition is not needed and only makes the
program model unnecessarily complex.

2 Only elements with a positive probability are shown.

50 K. Salehi et al.

Fig. 1. MP1: MDP of the program P1, with α denoting l:=h/2, β denoting l:=h mod
2, γ denoting l:=1, and τ denoting termination of the program

Define an MDP Representing P. Operational semantics of the concurrent
program P is represented by an MDP MP = (S,Act ,P, ζ,Val l, V). Each state
s ∈ S is a tuple 〈l, h, n, pc〉, where l, h, and n are values of the public, secret,
and neutral variables, respectively, and pc is the program counter. Actions Act
are program statements of P. The function P defines probabilities of transitions
between states. Atomic propositions are Val l and the function V labels each
state with value of l in that state. In fact, a state label is what an attacker
observes in a state and traces of MP are the sequences of public values that are
valid during the execution.

The initial distribution ζ is determined by the prior knowledge of the attacker
Pr(h), i.e., ζ(s) = Pr(h = h) for all s ∈ Init(MP), where s = 〈., h, ., .〉.
Example 1 (Program P1). Consider the following program, where h is a 2-bit
random variable and || denotes the concurrency of the executions:

l:=0; if h=3 then l:=1 else (l:=h/2 || l:=h mod 2) (P1)

The attacker’s prior knowledge is the size of h, yielding a uniform distribution
on h, i.e., Pr(h) = {0 	→ 1

4 , 1 	→ 1
4 , 2 	→ 1

4 , 3 	→ 1
4}. The MDP MP1 of the

program is shown in Fig. 1. The initial distribution ζ is determined by Pr(h),
i.e., ζ = {s0 	→ 1

4 , s4 	→ 1
4 , s7 	→ 1

4 , s10 	→ 1
4}. Each state is labeled by the

value of l in that state. Each transition is labeled by an action (a program
statement) and a probability. For instance, the transition from s0 to s1 has the
action α : l:=h/2 and the probability P(s0)(α)(s1) = 1; Or the transition from
s0 to s2 has the label β : l:=h mod 2 and the probability P(s0)(β)(s2) = 1.

Resolve the Nondeterminism in the MDP. The scheduling policy is repre-
sented by a memoryless probabilistic scheduler δ. As the MDP MP is run under
the control of the scheduler δ, all nondeterministic transitions are resolved and
an MC MP

δ = (S,Pδ, ζ,Val l, V) is produced.

Example 2 (MC of P1). We choose the scheduler to be uniform. The uniform
scheduler, denoted by the function uni, picks each thread with the same proba-
bility. This yields the definition of the scheduler as follows:

An Automated Quantitative Information Flow Analysis 51

uni(s0) = uni(s4) = uni(s7) = {α �→ 1

2
, β �→ 1

2
}, uni(s10) = {γ �→ 1},

uni(s1) = uni(s5) = uni(s13) = {β �→ 1}, uni(s2) = uni(s8) = uni(s11) = {α �→ 1},

uni(s3) = uni(s6) = uni(s9) = uni(s12) = uni(s14) = uni(s15) = {τ �→ 1}.

The MC MP1
uni of the program P1 running under control of the uniform scheduler is

depicted in Fig. 2. In this Figure, transitions are labeled by the transition probability.

Fig. 2. MP1
uni: MC of the program P1 with the uniform scheduler

3.2 The Attacker’s View of the Program: Back-Bisimulation
Quotient

In order to measure the amount of information the attacker can deduce about
h, we need to construct the attacker’s view of the program. First, the attacker
can distinguish a final state from a non-final one by observing termination of
the program. Second, she cannot discriminate between those paths that have
the same trace. For instance, in MP1

uni (Fig. 2) the attacker only observes the
traces {〈0, 0, 0ω〉, 〈0, 0, 1ω〉, 〈0, 1, 0ω〉, 〈0, 1ω〉}, whereas there are seven different
execution paths. The implication is that she cannot distinguish those final states
that have the same public values and result from the same traces. Third, she does
not know secret values in the final states, but may guess the value of h based on
a probability distribution that she can compute according to the possible values
of h in each final state. These three requirements are captured by an equivalence
relation, called back-bisimulation, denoted by ∼b.

Definition 6. Let MP
δ be an MC. A back-bisimulation for MP

δ is a binary
relation R on S such that for all s1 R s2, the following three conditions hold:
(1) V (s1) = V (s2), (2) if s′

1 ∈ Pre(s1), then there exists s′
2 ∈ Pre(s2) with

s′
1 R s′

2, (3) if s′
2 ∈ Pre(s2), then there exists s′

1 ∈ Pre(s1) with s′
1 R s′

2.
States s1 and s2 are back-bisimilar, denoted by s1 ∼b s2, if there exists a

back-bisimulation R for MP
δ with s1 R s2.

Condition (1) requires that the states s1 and s2 have the same public values.
According to condition (2), every incoming transition of s1 must be matched by
an incoming transition of s2; the reverse is assured by condition (3).

52 K. Salehi et al.

Theorem 1. Back-bisimulation is an equivalence relation.3

As ∼b is an equivalence relation, it induces a set of equivalence classes on the
state space of an MC. Given MC MP

δ, a quotient space MP
δ/ ∼b captures the

attacker’s view of the program P. The MC MP
δ/ ∼b aggregates same-trace paths

of MP
δ into one path.

Fig. 3. MP1
uni/ ∼b: back-bisimulation quotient of MP1

uni

Definition 7. For MC MP
δ = (S,Pδ, ζ,Val l, V) and back-bisimulation ∼b, the

back-bisimulation quotient MP
δ/ ∼b is defined by MP

δ/ ∼b where
MP

δ/ ∼b= (S/ ∼b,P′
δ, s

b
init,Val l, V,Pr(h))

– S/ ∼b is the quotient space of S under ∼b,
– P′

δ : (S/ ∼b) × (S/ ∼b) → [0, 1] is a probability transition function between
equivalence classes of S/ ∼b such that ∀ sb, tb ∈ S/ ∼b . P′

δ(s
b, tb) =∑

s∈sb, t∈tb

Pr(s) ∗ Pδ(s, t), where Pr(s) is the probability of reaching to s in

MC MP
δ,

– sb
init = Init(MP

δ),
– V ([s]∼b

) = V (s),
– Pr(h) is a mapping from each quotient state sb to Pr(hsb), where Pr(hsb)

is the probability distribution of h in the state sb and is computed, for all
h ∈ Valh, as

Pr(hsb = h) =

∑

si∈sb, si=〈.,h,.,.〉
Pr(si)

Pr(sb)
,

where Pr(sb) is the reachability probability of sb in MP
δ/ ∼b.

The public variable has a single initial value. Thus, all of the initial states
of MP

δ have the same public value and form a single equivalence class sb
init.

Each state sb is labeled with a probability distribution Pr(hsb) which shows the
probabilities of possible values of h in that state.
3 The proofs of the theorems have been omitted due to meet the page limit.

An Automated Quantitative Information Flow Analysis 53

Example 3 (Back-bisimulation quotient of P1). The back-bisimulation quotient
MP1

uni/ ∼b is depicted in Fig. 3. Each state of MP1
uni/ ∼b is an equivalence class,

containing related states of MP1
uni:

sb
0 = {s0, s4, s7, s10}, sb

1 = {s1, s2, s5, s8}, sb
2 = {s3}, sb

3 = {s6, s9},

sb
4 = {s15}, sb

5 = {s12, s14}, sb
6 = {s11, s13}.

States are labeled with the value of l, together with the distribution of h:

Pr(hsb
0
) = {0 �→ 1

4
, 1 �→ 1

4
, 2 �→ 1

4
, 3 �→ 1

4
}, Pr(hsb

3
) = {1 �→ 1

2
, 2 �→ 1

2
},

Pr(hsb
1
) = {0 �→ 1

2
, 1 �→ 1

4
, 2 �→ 1

4
}, Pr(hsb

5
) = {1 �→ 1

2
, 2 �→ 1

2
},

Pr(hsb
2
) = {0 �→ 1}, Pr(hsb

4
) = {3 �→ 1}, Pr(hsb

6
) = {1 �→ 1

2
, 2 �→ 1

2
}.

The back-bisimulation quotient can be automatically constructed from the
MC. This will be discussed in Sect. 3.4. After constructing the quotient, the next
step is to compute the program leakage from the back-bisimulation quotient.

3.3 Measuring the Leakage Using Back-Bisimulation Quotient

Let MP
δ/ ∼b= (S/ ∼b,P′

δ, s
b
init,Val l, V,Pr(h)) be the attacker’s view of the

program P running with the scheduler δ. In each state sb of MP
δ/ ∼b, the secret

distribution Pr(hsb) determines the attacker’s uncertainty about h. Depending
on the program statements that are chosen and executed by the scheduler, and
the public values observed by the attacker, the distribution of h changes from
state to state along each trace of MP

δ/ ∼b. In fact, MP
δ/ ∼b transforms a priori

distribution of h in the initial state sb
init to posterior distributions in the final

states final(MP
δ/ ∼b).

The attacker’s uncertainty about h in a state sb with the secret distribution
Pr(hsb) is measured by H∞(hsb). Thus, the initial uncertainty is measured by
H∞(hsb

init
).

Since there might be more than one final state with different reachability
probabilities and the MC can seen as a discrete probability distribution over
all of its final states, the remaining uncertainty is defined as the expectation of
uncertainties in all final states:

∑

sb
f ∈final(MP

δ/∼b)

Pr(sb
f)H∞(hsb

f
), where Pr(sb

f) is

the probability of reaching sb
f from the initial state sb

init. It now follows that the
leakage of the concurrent program P running under control of the scheduler δ is
computed as L(Pδ) = H∞(hsb

init
) − ∑

sb
f ∈final(MP

δ/∼b)
Pr(sb

f).H∞(hsb
f
).

Notice that for measuring the leakage of P, we computed min-entropy of ini-
tial and final states, and did not consider min-entropy of intermediate states.
This is not in contrast with our assumption of taking into account the interme-
diate values of l along the execution paths. This is because in MP

δ/ ∼b distri-
butions of h in the final states result from values of l and distributions of h in
the intermediate states. Thus, when computing the remaining uncertainty from
the final distributions, the intermediate values of l are automatically taken into

54 K. Salehi et al.

account. The final distributions of h also result from the program statements
which are chosen by the scheduler. Therefore, the effect of the scheduler choices
is considered, as well.

Moreover, in the literature, the remaining uncertainty is usually measured
by the conditional entropy H∞(h|l), but we measure it by the non-conditional
entropy H∞(h). These entropies are identical in our program model, because in
MP

δ/ ∼b the entropy H∞(h) is computed from final states that result from traces
observed by the attacker. This is exactly the same as the conditional entropy
H∞(h|l).
Example 4 (Back-bisimulation quotient of P1 is a distribution transformer.). In
the initial state sb

0 of MP1
uni/ ∼b, the distribution of h is Pr(hsb

0
) = {0 	→ 1

4 , 1 	→
1
4 , 2 	→ 1

4 , 3 	→ 1
4}. This means that before executing the program, the attacker

only knows that the value of h belongs to the set {0, 1, 2, 3} and if she guesses
the value of h, then the likelihood of her being successful is 1

4 . Therefore, Pr(hsb
0
)

determines the attacker’s initial uncertainty about h. Now consider the final state
sb
3, in which the distribution of h is Pr(hsb

3
) = {1 	→ 1

2 , 2 	→ 1
2}. In this state, the

attacker knows that the value of h belongs to {1, 2}, and thus her uncertainty
about h is reduced. This means that after executing the program and observing
the trace 〈0, 1, 0ω〉, if the attacker guesses the value of h, then the likelihood of
her being successful is 1

2 . These considerations imply that the back-bisimulation
quotient is a distribution transformer.

Example 5 (Information leakage of P1). The initial uncertainty is quantified as
the Renyi’s min-entropy of h in the initial state sb

0, i.e., H∞(hsb
0
) = − log2

1
4 =

2 (bits).
The remaining uncertainty is quantified as the Renyi’s min-entropy of h in

the final states. There are four final states with different reachability probabili-
ties: sb

2, sb
5, sb

3, sb
4. Consequently, the remaining uncertainty is quantified as the

expectation of the Renyi’s min-entropy of h in these states:
∑

sb∈{sb
2,sb

5,sb
3,sb

4}
Pr(sb).H∞(hsb) = − 1

4
∗ log2 1 − 1

4
∗ log2

1
2

− 1
4

∗ log2
1
2

− 1
4

∗ log2 1 = 0.5 (bits),

where Pr(sb) denotes the probability of reaching sb from the initial state sb
0.

Finally, the leakage of the program P1 running with the uniform scheduler is
computed as L(P1uni) = 2 − 0.5 = 1.5 (bits).

The following section formally defines the back-bisimulation equivalence and
explains how to compute the back-bisimulation quotient.

3.4 Computing Back-Bisimulation Quotient

In this section, we discuss how to compute the back-bisimulation quotient.
Before that, we first explain a subclass of MCs, called Markov chains with

An Automated Quantitative Information Flow Analysis 55

pseudoback-bisimilar states, in which back-bisimulation cannot correctly con-
struct the attacker’s view of the program behavior.

Pseudoback-Bisimilar States. In order to compute the states of a back-
bisimulation quotient, we need to aggregate back-bisimilar states into one equiv-
alence class. For that, we define Back-bisimulation signature, which is defined as
a kind of fingerprint for states of a back-bisimulation equivalence class.

Definition 8. The back-bisimulation signature of a state s is defined as

sig∼b
(s) = { (

V (s), [s′]∼b

) | ∃s′ ∈ Pre(s) }.

It asserts that two states that have the same public value and their predecessors
belong to the same equivalence class, have the same signature.

Definition 9. Let MP
δ be an MC. Two states s1, s2 ∈ S are pseudoback-

bisimilar iff (1) V (s1) = V (s2), (2) level(s1) = level(s2), (3) sig∼b
(s1) �=

sig∼b
(s2), (4) PreLabels(s1) ∩ PreLabels(s2) �= ∅. An MC that contains some

pseudoback-bisimilar states is denoted by MCp and an MC with no pseudoback-
bisimilar state is denoted by MCn.

Stated in words, two states are pseudoback-bisimilar if they have the same
label, are at the same level (distance from an initial state), and have different
signatures, but intersecting pre-labels. In an MCn, states at the same level and
with the same label, either have no intersecting pre-labels or have the same
pre-labels.

Example 6 (An example MCp). Consider the following program:

l:=0;
if h=1 then l:=1; l:=2; l:=3; l:=4; l:=5
else (l:=1 || l:=2); l:=3; (l:=4 || l:=5) (P2)

where Valh ∈ {0, 1} and Pr(h) = {0 	→ 1
2 , 1 	→ 1

2}. A uniform scheduler is
selected for both parallel operators. The MC MP2

uni is shown in Fig. 4a.
In MP2

uni, states s8 and s9 are pseudoback-bisimilar. They both have the label
3, are at the level 3, and have different signatures:

sig∼b
(s8) =

{(
3, {s5, s7}

)
,
(
3, {s3}

)}
, sig∼b

(s9) =
{(

3, {s5, s7}
)}

,

but intersecting pre-labels: preLabels(s8) = {2, 1}, preLabels(s9) = {2}.

Back-bisimulation captures the attacker’s view for all programs that do not
contain pseudoback-bisimilar states, i.e., those final states that have the same
public values and result from the same trace are indistinguishable and fall into
the same ∼b-equivalence class. Formally,

Theorem 2. Let MP
δ be an MCn. For all paths σ1, σ2 ∈ Paths(MP

δ) with
σ1 = s0,1s1,1 . . . sn−1,1(sn,1)ω, σ2 = s0,2s1,2 . . . sn−1,2(sn,2)ω, and n ≥ 0 it holds
that sn,1 ∼b sn,2 iff trace(σ1) = trace(σ2).

56 K. Salehi et al.

Fig. 4. MP2
uni and MP2

uni/ ∼b

Theorem 2 argues that same-trace final states are back-bisimilar. A similar
argument can be made for non-final states.

Theorem 3. Let MP
δ be an MCn. For all paths σ1, σ2 ∈ Paths(MP

δ) with
σ1 = s0,1s1,1 . . . sn−1,1(sn,1)ω, σ2 = s0,2s1,2 . . . sm−1,2(sm,2)ω, n,m > 0, and
0 ≤ i < min(n,m) it holds that si,1 ∼b si,2 iff trace�i(σ1) = trace�i(σ2).

Therefore, all paths of MP
δ with the same trace form a single path in MP

δ/ ∼b.
Stated formally, let σ′ ∈ Paths(MP

δ/ ∼b), sb
f = final(σ′) ∈ final(MP

δ/ ∼b),
and T = trace(σ′). The path σ′ is the aggregation of all paths Paths(T) ⊆
Paths(MP

δ). All final states of MP
δ that result from the trace T fall into the same

∼b-equivalence class sb
f = {sf | sf ∈ final(Paths(T))}. For sb

f , the secret distri-
bution Pr(hsb

f
) contains probabilities of possibles values of h that the attacker

might be able to guess by observing T .
Pseudoback-bisimilar states do not fall into the same ∼b-equivalence class and

thus ∼b is not able to aggregate all paths with the same trace. For instance, in
MP2

uni/ ∼b (Fig. 4b) there are two paths sb
3s

b
7s

b
10s

b
5s

b
2(s

b
6)

ω and sb
3s

b
7s

b
10s

b
4s

b
9(s

b
12)

ω

with the same trace 〈0, 1, 2, 3, 4, 5ω〉. The attacker, after observing the trace,
cannot discriminate the value of h to be 0 or 1. But, in the attacker’s view of the
MC constructed by back-bisimulation (Fig. 4b) the value of h is distinguished
in the final states of the two paths. Furthermore, the probability of some traces
in the back-bisimulation quotient might be different from their probability in
the concrete model. For example, the probability of the trace 〈0, 1, 2, 3, 4, 5ω〉 in
MP2

uni is 5
8 , while it is 9

16 in MP2
uni/ ∼b. The implication is that back-bisimulation

cannot correctly construct the attacker’s view of an MCp. For MCps, we use the
trace-exploration-based method, introduced in [25], which computes the program
leakage directly from the MCp MP

δ.

Algorithm for Computing the Back-Bisimulation Quotient Space.
In this section, an algorithm is proposed for obtaining the back-bisimulation

An Automated Quantitative Information Flow Analysis 57

Algorithm 1. A first iterative quotienting algorithm
Input: finite MCn MP

δ with state space S
Output: back-bisimulation quotient space S/ ∼b

/* Determine the initial partition Π0 */
1: sb

init := Init(MP
δ);

2: R := {(s1, s2) | V (s1) = V (s2)};
3: Π0 = {sb

init} ∪
((

S \ Init(MP
δ)

)
/ R

)
;

4: Π := Π0;
5: Πold := {S}; // Πold contains the previous partition

/* loop until no refinement possible */
6: while Π ! = Πold do
7: Πold := Π;

/* search through the blocks of Πold to find a splitter candidate for Π */
8: for all C ∈ Πold do
9: Π := Refineb(Π, C);

10: return Π;

quotient space for a finite MCn. This algorithm is similar to Kanellakis and
Smolka’s algorithm for computing the bisimulation quotient space [20]. It relies
on a partition refinement technique, where the state space is partitioned into
blocks. It starts from an initial partition Π0 and computes successive refinements
of Π0 until a stable partition is reached. A partition is stable if no further refine-
ments are possible. The obtained partition is S/ ∼b, the largest back-bisimulation
over the input finite MCn. The essential steps are outlined in Algorithm 1. The
algorithm consists of two main parts: (a) computing the initial partition, and
(b) successively refining the partitions.

Computing the Initial Partition. Since back-bisimilar states have the same
public value, it is sensible to use this in determining the initial partition Π0.

All initial states have the same public value and have no predecessors. Con-
sequently, they form a single block sb

init = Init(MP
δ). This block will remain

unchanged during the refinements.
For the remaining states S\sb

init, each group of states with the same pub-
lic value forms a block. Same-label blocks can be obtained by the equiv-
alence relation R = {(s1, s2) | V (s1) = V (s2)}, which induces the quo-
tient spaces

(
S \ Init(MP

δ)
)

/ R. Thus, the initial partition is obtained as

Π0 = {sb
init} ∪

((
S \ Init(MP

δ)
)

/ R
)
.

Partition Refinement. Since all partitions are a refinement of the initial par-
tition Π0, each block in these partitions contains states with the same public
value. However, blocks of Π0, except sb

init, do not consider the one-step prede-
cessors of states. This is taken care of in the successive refinement steps, by the
refinement operator.

58 K. Salehi et al.

Definition 10. Let Π be a partition for S and C be a superblock of Π. Then,

Refineb(Π, C) = ∪
B∈Π

Refineb(B, C),

where Refineb(B, C) = {B ∩Succ(C), B\Succ(C)}\{∅}. Here, C is called a split-
ter for Π, refining blocks of Π to subblocks.

Using C, Refineb(B, C) decomposes the block B into two subblocks, provided
that the subblocks are nonempty.

A key step of computing the back-bisimulation quotient space is to determine
a splitter C for a given partition Π. Algorithm 1 uses the blocks of the previous
partition Πold as splitter candidates for Π.

Theorem 4. Algorithm 1 always terminates and correctly computes the back-
bisimulation quotient space S/ ∼b.

The following theorem discusses the time complexity of Algorithm 1.

Theorem 5. The time complexity of Algorithm 1 is O(|S|.|E|), where E denotes
the set of transitions of MP

δ.

4 Conclusions and Future Work

In this paper, a quantification approach is proposed for concurrent programs.
Back-bisimulation equivalence is defined to model the attacker’s view of the pro-
gram behavior. Then a partition refinement algorithm is developed to compute
the back-bisimulation quotient of the program. The back-bisimulation quotient
is automatically constructed and contains secret distributions, which are used to
compute the information leakage of the program.

The back-bisimulation quotient contains all execution traces which the
attacker can observe during executing the program. Thus, it can be used to
compute maximal and minimal leakages that might occur during the program
executions. Furthermore, the quotient is an abstract model of the program and
the quantification analysis is done on a minimized model, most likely saving time
and space.

Back-bisimulation equivalence creates a lot of exciting opportunities for
future works. It can be used to verify any trace-equivalence-based property, such
as observational determinism [21,26,33], a widely-studied confidentiality prop-
erty of secure information flow for concurrent programs. It can also be defined
on multi-terminal binary decision diagrams (MTBDDs), in order to improve
the scalability of the quantification approach to a great extent. We aim to lift
the program-termination restriction and extend the proposed approach to non-
terminating concurrent programs. We also aim to study bounded leakage prob-
lem [25] and channel capacity [29] on the back-bisimulation quotient. Probably,
using some reductions, such as on-the-fly techniques, can improve the scalabil-
ity of the problem. Furthermore, handling programs with pseudoback-bisimilar
states using back-bisimulation is a possible future work. Another avenue to con-
sider the current work is to perform time analysis of the proposed approach, e.g.
on dining cryptographers protocol.

An Automated Quantitative Information Flow Analysis 59

A Case Study

In this section, we analyze a case study to show applicability and feasibility of
the approach.

The Dining Cryptographers Protocol. We consider the dining cryptographers
problem [11] to show how an attacker can deduce secret information through
execution observations. The dining cryptographers problem was first proposed
by David Chaum in 1988 as an example of anonymity and identity hiding [11].
In this problem, N cryptographers are sitting at a round table to have dinner
at their favorite restaurant. The waiter informs them that the meal has been
arranged to be paid by one of the cryptographers or their master. The cryptog-
raphers respect each other’s right to stay anonymous, but would like to know
whether the master is paying or not. So, they decide to take part in the following
two-stage protocol:

• Stage 1: Each cryptographer tosses a coin and only informs the cryptographer
on the right of the outcome.

• Stage 2: Each cryptographer publicly announces whether the two coins that
she can see are the same (‘agree’) or different (‘disagree’). However, if she
actually paid for the dinner, then she lies, i.e., she announces ‘disagree’ when
the coins are the same, and ‘agree’ when they are different.

Let the variable parity be exclusive-or (XOR) between all the announce-
ments. If N is odd, then an odd number of ‘agree’s (parity = 1) implies that
none of the cryptographers paid (the master paid), while an even number (parity
= 0) implies that one of the cryptographers paid. The latter is reverse for an
even N .

The payer can be either

i. one of the cryptographers, i.e., V alpayer = {c1, . . . , cN}, or
ii. the master (m, for short) or one of the cryptographers, i.e., V alpayer =

{m, c1, . . . , cN}.

Assume an attacker who tries to find out the payer’s identity. The attacker is
external, i.e., none of the cryptographers. This attacker can observe the parity
and also the announcements of the cryptographers. All observable variables are
concatenated to form a single public variable. The program model is an MCn

and we employ the proposed algorithms to compute the leakage.
The experimental results for the cases in which the coin probability is 0.5 are

shown in Table 1. In this table, N denotes the number of cryptographers. MDCN
uni

and MDCN
uni / ∼b denote the MC of the program run with a uniform scheduler and

the back-bisimulation quotient, respectively. Symbols #st and #tr denote the
number of states and transitions, respectively.

Similar results for the coin probability of 0 or 1 are shown in Table 2. As
shown in Tables 1 and 2, back-bisimulation results in impressive reductions of

60 K. Salehi et al.

Table 1. Evaluation results for the dining cryptographers protocol with the coin prob-
ability 0.5

V alpayer N
MDCN

uni MDCN
uni / ∼b leakage

(bits)#st #tr #st #tr

{m, c1, . . . , cN}

3 380 776 26 45 0.811 (40%)

4 2165 5720 64 144 0.721 (31%)

5 11850 38772 152 420 0.65 (25%)

6 63063 246820 352 1152 0.59 (21%)

{c1, . . . , cN}

3 285 582 22 36 0

4 1732 4576 56 121 0

5 9875 32310 136 365 0

6 54054 211560 320 1125 0

the state space. For example, when the coin probability is 0.5 (Table 1) reductions
vary between 92% and 99.5%.

Consider the last three cases of Table 1, where the coin probability is 0.5 and
the payer is one of the cryptographers (V alpayer = {c1, . . . , cN}). In these cases,
the program leakage is 0. This shows that the attacker cannot identify the payer.
This is why the dining cryptographers protocol is said to be secure in the context
of anonymity.

The analysis results in Table 2 show that when the probability of the coin is
0 or 1, no matter whoever the payer is, the leakage is log2 |V alpayer|, proving
that the secret gets completely leaked and thus the attacker learns the identity
of the payer.

B Related Work

The notion of back-simulation is similar to the notion of backward strong bisimula-
tion considered by De Nicola and Vaandrager [15]. They use a different notion than
our definition, as they only allow to move back from a state along the path rep-
resenting the history that brought one into that state. Högberg et al. [17] defined
and considered backward bisimulation minimization on tree automata, Sproston
and Donatelli [32] considered a probabilistic version of backward bisimulation and
studied the logical properties it preserves, and Cardelli et al. [9] who considered
backward bisimulation in the stochastic setting of chemical reaction networks.
None of these works use backward bisimulation in quantitative information flow.

Chen and Malacaria [12] model multi-threaded programs as state transi-
tion systems. They use Bellman’s optimality principle to determine the leakage
bounds, i.e., minimal and maximal leakage occurred during possible program
executions.

An Automated Quantitative Information Flow Analysis 61

Table 2. Evaluation results for the dining cryptographers protocol with the coin prob-
ability 0 or 1

V alpayer N
MDCN

uni MDCN
uni / ∼b leakage

(bits)#st #tr #st #tr

{m, c1, . . . , cN}

3 72 124 21 37 2 (100%)

4 235 525 47 107 2.32 (100%)

5 738 2046 103 286 2.585 (100%)

6 2254 7483 223 729 2.807 (100%)

{c1, . . . , cN}

3 54 93 20 34 1.585 (100%)

4 188 420 46 103 2 (100%)

5 615 1705 102 281 2.32 (100%)

6 1932 6414 222 723 2.585 (100%)

Phan et al. [27] propose to use symbolic execution, a verification technique
which bounds runtime behavior of the program, thus mitigating state-space
explosion problem. In state-space explosion problem, the amount of state-space
of the program model gets too huge to store in the memory, thus making the
analysis difficult. Phan et al. run symbolic execution to extract all symbolic paths
of the program. Then, paths with a direct information flow are labeled. Finally,
they use a model counting technique to count the number of inputs that follow
direct-labeled paths, to compute channel capacity, which is an upper bound of
the leakage over all possible distributions of the secret input.

Biondi et al. [8] use interval Markov chains to compute the channel capacity
of deterministic processes. They reduce the channel capacity computation to
entropy maximization, a well-known problem in Bayesian statistics.

Chothia et al. [14] have developed LeakWatch to approximate leakage of
Java programs. LeakWatch is based on probabilistic point-to-point information
leakage, in which the leakage between any given two points in the program from
secret to public variables is computed.

Chadha et al. [10] employ symbolic algorithms to quantify the precise leakage
from public to secret variables. They use Binary Decision Diagrams (BDDs) to
model the relation between the inputs and outputs of the program. To do so,
Moped [16], a symbolic model checker, is exploited to construct BDDs. Chadha
et al. have implemented their method into a tool called Moped-QLeak.

Klebanov [22] uses symbolic execution in combination with deductive veri-
fication [5] and self-composition [4] to measure residual Shannon entropy and
min-entropy of the secret input. Exploitation of deductive verification makes the
analysis immune to the state-space explosion problem, but also makes it semi-
automatic, as user-supplied invariants are needed for the analysis to proceed.

62 K. Salehi et al.

References

1. Alvim, M.S., Andrés, M.E., Chatzikokolakis, K., Palamidessi, C.: Quantitative
information flow and applications to differential privacy. In: Aldini, A., Gorrieri,
R. (eds.) FOSAD 2011. LNCS, vol. 6858, pp. 211–230. Springer, Heidelberg (2011).
https://doi.org/10.1007/978-3-642-23082-0_8

2. Amir-Mohammadian, S.: A semantic framework for direct information flows in
hybrid-dynamic systems. In: Proceedings of the 7th ACM Cyber-Physical System
Security Workshop (CPSS 2021), pp. 5–15. Association for Computing Machinery,
June 2021

3. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

4. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
In: Proceedings of the 17th IEEE Workshop on Computer Security Foundations,
CSFW 2004, pp. 100–114. IEEE Computer Society (2004)

5. Beckert, B., Hähnle, R., Schmitt, P.H.: Verification of Object-Oriented Software.
The KeY Approach. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-69061-0

6. Biondi, F.: Markovian processes for quantitative information leakage. Ph.D. thesis,
IT University of Copenhagen (2014)

7. Biondi, F., Legay, A., Malacaria, P., Wasowski, A.: Quantifying information leakage
of randomized protocols. Theor. Comput. Sci. 597, 62–87 (2015)

8. Biondi, F., Legay, A., Nielsen, B.F., Wasowski, A.: Maximizing entropy over
Markov processes. J. Log. Algebraic Methods Program. 83(5), 384–399 (2014)

9. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Forward and backward
bisimulations for chemical reaction networks. arXiv preprint arXiv:1507.00163
(2015)

10. Chadha, R., Mathur, U., Schwoon, S.: Computing information flow using sym-
bolic model-checking. In: Raman, V., Suresh, S.P. (eds.) 34th International Con-
ference on Foundation of Software Technology and Theoretical Computer Science
(FSTTCS 2014). Leibniz International Proceedings in Informatics (LIPIcs), vol. 29,
pp. 505–516. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Ger-
many (2014)

11. Chaum, D.: The dining cryptographers problem: Unconditional sender and
recipient untraceability. J. Cryptol. 1(1), 65–75 (1988). https://doi.org/10.1007/
BF00206326

12. Chen, H., Malacaria, P.: The optimum leakage principle for analyzing multi-
threaded programs. In: Kurosawa, K. (ed.) ICITS 2009. LNCS, vol. 5973, pp.
177–193. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14496-
7_15

13. Chen, H., Malacaria, P.: Quantifying maximal loss of anonymity in protocols. In:
Proceedings of the 4th International Symposium on Information, Computer, and
Communications Security, pp. 206–217. ACM (2009)

14. Chothia, T., Kawamoto, Y., Novakovic, C.: LeakWatch: estimating information
leakage from Java programs. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014.
LNCS, vol. 8713, pp. 219–236. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11212-1_13

15. De Nicola, R., Vaandrager, F.: Three logics for branching bisimulation. J. ACM
(JACM) 42(2), 458–487 (1995)

https://doi.org/10.1007/978-3-642-23082-0_8
https://doi.org/10.1007/978-3-540-69061-0
https://doi.org/10.1007/978-3-540-69061-0
http://arxiv.org/abs/1507.00163
https://doi.org/10.1007/BF00206326
https://doi.org/10.1007/BF00206326
https://doi.org/10.1007/978-3-642-14496-7_15
https://doi.org/10.1007/978-3-642-14496-7_15
https://doi.org/10.1007/978-3-319-11212-1_13
https://doi.org/10.1007/978-3-319-11212-1_13

An Automated Quantitative Information Flow Analysis 63

16. Esparza, J., Kiefer, S., Schwoon, S.: Abstraction refinement with Craig interpola-
tion and symbolic pushdown systems. J. Satisfiability Boolean Model. Comput. 5,
27–56 (2008)

17. Högberg, J., Maletti, A., May, J.: Backward and forward bisimulation minimization
of tree automata. Theor. Comput. Sci. 410(37), 3539–3552 (2009)

18. Jurado, M., Palamidessi, C., Smith, G.: A formal information-theoretic leakage
analysis of order-revealing encryption. In: Proceedings of the 34th IEEE Workshop
on Computer Security Foundations, CSFW 2021. IEEE Computer Society (2021)

19. Jurado, M., Smith, G.: Quantifying information leakage of deterministic encryp-
tion. In: Proceedings of the 2019 ACM SIGSAC Conference on Cloud Computing
Security Workshop, pp. 129–139 (2019)

20. Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and three
problems of equivalence. Inf. Comput. 86(1), 43–68 (1990)

21. Karimpour, J., Isazadeh, A., Noroozi, A.A.: Verifying observational determinism.
In: Federrath, H., Gollmann, D. (eds.) SEC 2015. IAICT, vol. 455, pp. 82–93.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18467-8_6

22. Klebanov, V.: Precise quantitative information flow analysis - a symbolic approach.
Theor. Comput. Sci. 538, 124–139 (2014)

23. Köpf, B., Basin, D.: An information-theoretic model for adaptive side-channel
attacks. In: Proceedings of the 14th ACM Conference on Computer and Com-
munications Security, pp. 286–296. ACM (2007)

24. Köpf, B., Smith, G.: Vulnerability bounds and leakage resilience of blinded cryp-
tography under timing attacks. In: Proceedings of 23rd IEEE Computer Security
Foundations Symposium (CSF), pp. 44–56. IEEE (2010)

25. Noroozi, A.A., Karimpour, J., Isazadeh, A.: Information leakage of multi-threaded
programs. Comput. Electr. Eng. 78, 400–419 (2019)

26. Noroozi, A.A., Salehi, K., Karimpour, J., Isazadeh, A.: Secure information flow
analysis using the PRISM model checker. In: Garg, D., Kumar, N.V.N., Shyama-
sundar, R.K. (eds.) ICISS 2019. LNCS, vol. 11952, pp. 154–172. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-36945-3_9

27. Phan, Q.S., Malacaria, P., Păsăreanu, C.S., d’Amorim, M.: Quantifying informa-
tion leaks using reliability analysis. In: Proceedings of the 2014 International SPIN
Symposium on Model Checking of Software, pp. 105–108. ACM (2014)

28. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley, Hoboken (1994)

29. Salehi, K., Karimpour, J., Izadkhah, H., Isazadeh, A.: Channel capacity of concur-
rent probabilistic programs. Entropy 21(9), 885 (2019)

30. Salehi, K., Noroozi, A.A., Amir-Mohammadian, S.: Quantifying information leak-
age of probabilistic programs using the PRISM model checker. In: Emerging Secu-
rity Information, Systems and Technologies, pp. 47–52. IARIA (2021)

31. Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L.
(ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00596-1_21

32. Sproston, J., Donatelli, S.: Backward bisimulation in Markov chain model checking.
IEEE Trans. Softw. Eng. 32(8), 531–546 (2006)

33. Zdancewic, S., Myers, A.C.: Observational determinism for concurrent program
security. In: Proceedings of the 16th IEEE Computer Security Foundations Work-
shop, CSFW 2003, pp. 29–43. IEEE Computer Society (2003)

https://doi.org/10.1007/978-3-319-18467-8_6
https://doi.org/10.1007/978-3-030-36945-3_9
https://doi.org/10.1007/978-3-642-00596-1_21

	An Automated Quantitative Information Flow Analysis for Concurrent Programs
	1 Introduction
	1.1 Paper Outline

	2 Background
	2.1 Basics
	2.2 Information Theory
	2.3 Markovian Models
	2.4 Probabilistic Schedulers

	3 The Proposed Approach
	3.1 The Program and Threat Models
	3.2 The Attacker's View of the Program: Back-Bisimulation Quotient
	3.3 Measuring the Leakage Using Back-Bisimulation Quotient
	3.4 Computing Back-Bisimulation Quotient

	4 Conclusions and Future Work
	A Case Study
	B Related Work
	References

