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Abstract. We overview LN, a novel solver introduced in the LINE soft-
ware package to analyze layered queueing network (LQN) models. The
novelty of the LN solver lies in its capability to analyze LQNs with a user-
defined combination of solution paradigms, including discrete-event and
stochastic simulation, continuous-time Markov chain analysis (CTMC),
normalizing constant evaluation (NC), matrix analytic methods (MAM),
mean-field approximations (FLUID), and mean-value analysis (MVA).
Being parametric in the solver used for each LQN layer, LN as a whole
enables the efficient computation of advanced performance metrics such
as marginal and joint state probabilities, response and passage time dis-
tributions, and transient measures, leveraging individual strengths of the
supported solution paradigms. We discuss in particular recent develop-
ments added to NC, the default layer solver of LN, which significantly
improve the solution of queueing network models obtained using loose
layering of the LQN.

Keywords: Layered queueing networks · Computational algorithms ·
Class switching · Performance measures

1 Introduction

LINE1 is an open-source software package for analyzing extended queueing net-
work models [9]. The package implements several tens of solution algorithms
grouped into solvers, each embodying a specific paradigm for queueing analysis,
either simulation-based or analytical (CTMC, NC, MAM, FLUID, MVA). In
this paper, we present the LN solver available within the LINE suite version 2.0,
which adds a capability to analyze LQNs, a class of extended queueing networks
featuring simultaneous resource possession. LN is the first LQN meta-solver,
i.e., it offers the flexibility to parametrically choose any of the aforementioned
paradigms to evaluate individual layers that compose an LQN. This feature
greatly extends the scope of the original LQN solver available in the first version
of LINE [28], which was supporting the solution of each layer based on mean-field

1 http://line-solver.sf.net/.
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approximations only. The present paper is the first one to review LQN analysis
methods available in the LINE 2.0.x releases.

LINE is open sourced under a permissive BSD-3-Clause license. It is mainly
developed in MATLAB, with a few components coded in Java for computational
efficiency. A royalty-free Docker image built on the MATLAB compiler runtime
is also made available so that end users can run the tool as a service with-
out licensing costs. Some solution methods are implemented based on external
solvers that include JMT [2], LQNS [15], BuTools [19], KPC-Toolbox [12], and
Q-MAM [3]. In essence, LINE acts as an integration point for multiple queueing
analysis tools, providing a common model specification language for their joint
use along with its native solvers. For example, an LQN may be analyzed via
LQNS for a fast solution, and the result then verified using a slower simulation-
based trace-driven execution of the LN solver. This is especially useful in research
studies, to detect bugs and compare efficiency of alternative solution methods.
JMT is used to visualize models through automated model-to-model transfor-
mation and for simulation-based analysis [9]. Besides, LINE is complementary to
other efforts to broaden the availability of queueing network algorithms for per-
formance evaluation educators and practitioners, such as Octave queueing [23]
and PDQ [18]. Compared to these, LINE adds several advanced algorithms not
available in existing software packages.

Related Work. State-of-the-art solvers specific to LQNs include for example
LQNS [15] and DiffLQN [33,34]. LQNS is an established solver with a long record
of application to real-world software engineering case studies. At heart, the tool
applies to the LQN layers approximate mean-value analysis for extended queue-
ing network models [15]. LQN analysis using GreatSPN [1] is also supported via
its petrirsrvn tool.

DiffLQN is instead a solver that is based on the mean-field approximation the-
ory developed in the context of PEPA models to scalably analyze LQNs [33,34].
The mean-field fluid paradigm is particularly suited to the solution of large
models, as it becomes asymptotically exact in layers with multi-server FCFS
stations once the number of jobs and servers grows large in a fixed ratio. Subse-
quent work on mean-field approximations has further generalized the fluid solu-
tions to processor sharing (PS) stations, class switching, random environments
and response time percentiles [28], differentiated service weights [38], multi-class
FCFS approximations [9], and mixed models [30].

LN is built around the experience of these LQN solvers, integrating many of
the approximate MVA and fluid methods proven effective in the above studies.
In addition, it enables the analysis of LQNs using solution paradigms that are
uncommon for LQNs, such as continuous-time Markov chains, matrix analytic
methods, and normalizing constant evaluation techniques, all of which are not
available in existing solvers. As we show later, these paradigms are helpful in
computing several LQN metrics that are difficult or impossible to obtain with
mean-value analysis or mean-field fluid approximations.

Theoretical Contributions. In developing the LN solver, we have advanced the
theory of product-form queueing networks for models consisting of a single
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infinite-server node and m replicated queueing stations (i.e., having identical
service demands in every class). Each station offers multi-class service, accord-
ing to per-class service time distributions that are possibly load-dependent. We
shall refer to such models as homogeneous layers, since they naturally arise from
a certain LQN decomposition style known as loose layering [16, §3.2], that can
be used to analyze arbitrary LQNs. The main theoretical contributions of this
paper, are as follows:

– We develop a Gaussian quadrature method for approximating the normalizing
constants of homogeneous layers, which leads to a fast computation of their
associated performance metrics. By controlling the order of the quadrature,
these methods can trade accuracy for speed, while retaining linear worst-case
complexity in the total population size.

– We propose a method of moments algorithm for exactly solving homoge-
neous layers in linear time with respect to the total population size when
the queueing stations have a single server. We show its ability to handle
multi-class models with thousands of jobs in a few milliseconds. As opposed
to existing methods such as MoM [7] and CoMoM [6] that can theoretically
achieve linear complexity, the proposed technique is the first one that real-
izes this in concrete implementations by avoiding the use of exact arithmetic,
which introduces overheads up to about log-linear in the total population
size [6,7]. Moreover, it does so without solving systems of linear equations usu-
ally appearing in methods of moment algorithms. The result provides efficient
approximations for more complex networks with multi-server stations [11,31]
and for non-product-form models.

– We derive a related method for marginal probability computations in homo-
geneous layers featuring quadratic complexity in the total population size.
This method also does not require solving systems of linear equations.

We illustrate the application of the above methods to LN and exemplify the
other features of the solvers through case studies. In particular, we demonstrate
the ability of LN, as a meta-solver, to study performance metrics that cannot
be easily analyzed with other LQN solvers, for example integrated models of
queueing and caching.

The rest of the paper is organized as follows. Section 2 describes the model-
ing formalism supported by the LN solver. The overall solution approach and
advanced features unique to LN are discussed in Sect. 3. Section 4 elaborates
novel solution algorithms offered by the solver. Some case studies are presented
in Sect. 5 to illustrate the distinguishing features of LN. Finally, Sect. 6 is ded-
icated to the conclusions. Proofs of the solution algorithms are given in the
Appendix together with an overview of the software architecture of LN.

2 LQN Formalism

LINE offers exact, approximate, asymptotic and simulation-based analysis of
open, closed, and mixed multi-class queueing network models. In these models,
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Fig. 1. Example of an LQN model.

jobs are probabilistically routed across a set of nodes, usually queueing sta-
tions, where they receive service, typically subject to contention by other jobs.
Each job belongs to a class, i.e., a type that defines its service, routing, and
arrival characteristics at each node. LINE also supports extensions commonly
required in applications such as class switching, non-exponential service times,
load dependence, and priorities. The problem is to obtain station and system per-
formance measures such as average queue lengths, utilizations, response times,
and throughputs/arrival rates.

Among the most feature-rich extended queueing network models is the class
of layered queueing networks (LQNs), which has found broad application in soft-
ware performance engineering [15]. We point the reader to [35] for a comprehen-
sive introduction to LQNs and discuss here only the essential concepts. In an LQN,
job visits to the system are modeled as directed acyclic graphs that invoke entries
exposed by tasks running on host processors. A workflow of one or more activities
(i.e., service phases) is executed at each invocation of an entry. This workflow is
called the activity graph bound to the entry. Within it, an activity may issue a
synchronous call to an entry, while keeping a server in the task blocked, leading
to simultaneous resource possession. Asynchronous calls are also possible, which
behave similarly to job movements in ordinary queueing networks.

Figure 1 shows an example that contains all the basic elements of LQN mod-
els: tasks, host processors, entries, and activities. Tasks are depicted as stacked
parallelograms and their multiplicities are indicated within curly brackets. A task
runs on a single processor (e.g., P1), which is represented by a circle. Specific
services provided by a task are called entries and drawn as smaller parallelo-
grams inside that task. Each rectangle denotes a particular activity performed
during the execution of an entry. The number between square brackets specifies
the service demand of the activity (e.g., 1.6 for activity A1). Workloads in LQNs
are generated by a special task termed the reference task, e.g., tasks T1 and T2
in Fig. 1 which model two classes of users with 3 and 2 jobs each and both call
entry E3 of task T3.

Extensive prior work in the area has shown that an LQN can be accurately
solved by iteratively evaluating a collection of ordinary mixed queueing networks,
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obtained via decomposition, until reaching a fixed-point solution. Each decom-
posed sub-model conceptually represents a layer of the client-server system being
modeled [29]. These models interact, in the sense that the outputs parameters of
one model (e.g., its response times) may form the input parameters of another
model (e.g., its service times). In LINE, a collection of interactive models is
referred to as an ensemble, which is not restricted to LQNs and can encompass
other formalisms such as caching models [17]. For this reason, LN may be seen as
a general-purpose layered stochastic network solver.

3 LQN Decomposition and Iterative Solution

This section describes the algorithmic methods underpinning the LN solver. We
particularly focus on the strategy to divide a given LQN model into multiple lay-
ers and the default, though customizable, solution paradigm applied to analyzing
each resultant layer.

3.1 Layering Strategy

Prior art has extensively investigated layering strategies, i.e., methods for gen-
erating a decomposition of an LQN model into an ensemble of ordinary queue-
ing networks on which solution algorithms can be instantiated. In the current
release, the LN solver adopts loose layering [16, §3.2], which ensures that each
layer includes replicated queueing stations (i.e., an LQN task or host processor)
coupled with an infinite-server node to model the inter-request times of clients.
An exception to this rule is that identical replicas of the queueing station are
also generated by LN in the same layer. For example, the model in Fig. 1 fea-
tures under the loose layering style 4 layers: T1→ P1, T2→P2, T3→P3, and
(T1,T2)→T3, where → indicates a client-server relationship.

The rationale for choosing loose layering as the default strategy is that, for
a total of m queueing stations, many queueing network analysis methods are
computationally more efficient in solving m small models with a single (possi-
bly replicated) queueing station rather than a monolithic model comprising m
queueing stations. For example, a CTMC solver may be fairly scalable for single
queueing systems, but easily incurs exponential state space explosion for queue-
ing networks. A drawback of loose layering is that heterogeneous load balancing
or fork/join sections are challenging to model as the participating queueing sta-
tions may be scattered across different layers.

Solutions of interactive models in an ensemble are reconciled through fixed-
point iterations until performance metrics across the layers are consistent within
a predefined numerical tolerance. To this end, the LQNS solver adopts an “eleva-
tor” algorithm whereby the graph that describes the client-server relationships
is traversed top down and bottom up in an alternate fashion after topological
sorting, thus cyclically inverting the order in which the layers are analyzed [16].
The same algorithm is implemented in LN to iterate over all the models within
an ensemble.
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Fig. 2. A layer of the LQN model with replication m = 2 and multiplicity c = 3.

3.2 Homogeneous Layers

Let us introduce the notation for individual LQN layers obtained by LN through
loose layering. These are closed queueing networks with m identical c-server
queues and a delay (i.e., infinite-server) node. Jobs in class r have service demand
Dr at the multi-server station and think time Zr at the infinite-server station.

Service distributions are assumed to be of phase type in LN. They include
special cases such as the Disabled distribution, which allows users to forbid
the routing of a class to a station for debugging purposes, and the Immediate
distribution, which characterizes negligible processing that takes zero time. The
handling of the latter is solver-dependent. For example, LINE’s CTMC solver
applies stochastic complementation to remove the corresponding transitions in
an exact fashion [25].

We now outline the mapping between LQN abstractions and product-form
models. Under loose layering, a layer l consists of a queueing network with m
identical queueing stations, modeling servers in that layer, and a single infinite-
server station, modeling the clients. Thus, m denotes the replication factor of
the server. We shall refer to such a queueing network as a homogeneous model.
The number of servers in the queueing stations is equal to the multiplicity c
of the task or host processor acting as servers in that layer. Figure 2 gives the
model of a layer for the LQN where T3 acts as server.

Clients issuing synchronous calls to layer l are represented as jobs initialized
in a reference class at the delay. Subsequently, these jobs cycle between the
delay and the queues, switching class to represent the specific tasks, entries, and
activities that the clients visit (or invoke) during execution. Parameters such as
think times and service demands are iteratively updated as per the method of
layers [29]. For example, if certain sections of the client workflow require access
to another layer l′ �= l, the corresponding residence times are modeled as think
times that already incorporate the queueing contention in layer l′. Moreover,
the probability of a client executing a particular entry is set proportional to the
last throughput of this entry. Unlike LQNS, LN updates routing probabilities
at each iteration, because not all solution paradigms are visit-based.

Clients that send asynchronous calls to layer l are instead represented as open
Poisson arrival streams. Coexistence of open and closed classes therefore gives
rise to mixed models, which can be reduced to closed ones by demand scaling [5].

Service classes are mapped to a set of R chains, obtained by computing the
strongly connected components of the routing matrix. Each chain j represents
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a client task to the layer, and has an associated number of jobs Nj that are
initialized at the infinite-server station, starting in the chain reference class.
Note that this does not loses information as it is possible to exactly recover the
per-class performance metrics from the per-chain ones [5,36].

For ease of presentation, since a multi-chain model can always be reduced
to a corresponding multi-class model with R classes, one per chain, we shall use
the terms “chain” and “class” interchangeably.

3.3 Performance Metrics

Performance metric computation is solver-dependent. We focus here on the
default solver used by LN, which is LINE’s normalizing constant (NC) solver.
We assume for simplicity that scheduling leads to product-form models and
single-server stations (c = 1). Approximations to handle other cases, such as
multi-class FCFS, are discussed later in the paper.

Let N = (N1, . . . , NR) be the population vector for a layer, |N | =
∑R

r=1 Nr,
and recall that G(m,N) is the normalizing constant of the state probabilities
for the associated product-form model, which consists of m identical queueing
stations and an infinite-server node. Denote by 1r a row vector of all zeros with
a one in the r-th dimension. We may exploit the following relations for the mean
class-r throughput Xr(N) and for the mean class-r queue length Qr(N) at any
of the identical queueing stations:

Xr(N) =
G(m,N − 1r)

G(m,N)
Qr(N) = Dr

G(m + 1, N − 1r)
G(m,N)

The system throughput Xr(N) is assumed to be computed at a reference station
for which we set the mean number of visits of class r to unity. Little’s law may
then be combined with the previous relations to obtain other metrics such as
mean response times and resource utilizations [14,22].

Before discussing the novel algorithms integrated in LN to compute these
metrics, we remark that specific simplifications arise in evaluating normalizing
constants for homogeneous layers due to the structure of the product-form solu-
tions. At first, if either Zr = 0 ∧ Dr = 0 or Nr = 0 holds for a class r, then this
class can be removed from the model as it does not contribute to the normalizing
constant. Define RD as the set of remaining classes for which Dr = 0. We note
that the contribution of such classes to G(m,N) is given exactly by a factor∏

s∈RD
ZNs
s /Ns!. Hence, every model can be reduced without loss of generality

to one where all classes have Dr > 0, which we will assume throughout.

3.4 Advanced LN Features

We now briefly overview advanced features and LQN extensions supported by
LN, which are to the best of our knowledge unique to this solver.

Caching Layers. We have made an extension to the LQN formalism, enabling the
inclusion of cache nodes. When visiting a cache, a job reads an item according to
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some probability, resulting in either a cache hit or a cache miss. The subsequent
processing activities can depend on whether the read outcome was a hit or
miss. Cache reads also activate a replacement policy (e.g., random replacement,
FIFO, LRU) to evict infrequently used items. The LN solver features the ability
to define caches in an LQN using specialized tasks and entries named CacheTask

and ItemEntry, which capture the data access requirements of jobs traversing the
LQN. More details can be found in [17] and in Sect. 5.

Multi-chain Joint and Marginal Probabilities. The LN solver allows the com-
putation of joint and marginal state probabilities in each layer, leveraging the
ability of the NC solver to evaluate normalizing constants. This makes it possible
to obtain probabilistic measures, which may be useful for example in parameter
inference and buffer overflow analysis.

Multi-chain Transient Analysis. With the FLUID solver, one can compute tran-
sient metrics and passage time distributions in each layer. This solver performs
mean-field approximations for PS nodes based on the theory presented in [28].
As mentioned before, FCFS stations are also treated as PS nodes with service
demands corrected through a hybrid M/G/k-diffusion approximation [9].

Response Time Distributions. Recently, we have demonstrated the possibility to
couple LN with mixture density networks (MDNs) for response time distribution
analysis [27]. The MDN-based approach considerably increases the precision of
computing response time percentiles for LQNs compared to analytical approxi-
mations, which are notoriously difficult for multi-chain networks.

4 Novel Algorithms

LN’s default layer solver, NC, implements state-of-the-art exact and approxi-
mate methods for normalizing constant analysis of mixed queueing networks.
Historically, such methods were replaced in the early years of performance eval-
uation by exact and approximate MVA algorithms to overcome intrinsic numer-
ical instabilities arising from the use of normalizing constants. However, recently
developed techniques for computing normalizing constants exhibit superior com-
plexity to their corresponding MVA counterparts, prompting a reconsideration
of these methods, as we discuss throughout.

Particularly in the context of loose layering, we show that the normalizing
constant numerical instabilities can be circumvented through appropriate scal-
ings or log-sum-exp approximations [4], and propose several exact and asymp-
totic solution methods for queueing networks, that are not available in the tra-
ditional MVA framework.

4.1 Solving Homogeneous Layers with the CoMoM Algorithm

Recall that mixed queueing network models can be mapped with suitable trans-
formation to a model consisting only of closed classes [5, §8.2.3]. On this basis,
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LN analyzes layers by default using the NC solver, which implements the Class-
oriented Method of Moments (CoMoM) algorithm proposed in [6]. For a model
with N jobs belonging to a fixed number of R classes, CoMoM implementations
require approximately log-quadratic time and log-linear space in |N | to obtain
an exact solution, thus being more scalable than the exact MVA algorithms. The
latter have a time and space complexity of O(|N |R). Moreover, contrary to other
moment-based methods, CoMoM can avoid degeneracies when the model con-
sists of one or more replicated queueing stations, as in the case of loose layering.
An equivalent result is not currently available for MVA. Among the complica-
tions, it is worth noting that MVA expressions such as the celebrated arrival
theorem are bi-linear in their defining terms, mean queue lengths and mean
throughputs, yielding systems of non-linear equations that are not as tractable
as CoMoM’s linear matrix recurrence relation.

Enhancements. LN evolves CoMoM by developing explicit solutions to its system
of linear equations for homogeneous models. Such solutions are applicable to
models with an arbitrary number of classes R. For a vector v with d dimensions,
let |v| =

∑d
i=1 vi and define diag(v) as a diagonal matrix with the elements of v

placed on the main diagonal. We give the following exact result.

Theorem 1. Consider a product-form queueing network model with R classes,
having m identical single-server queueing stations with service demand Dr > 0
in class r and an infinite-server node with think time Zr in class r. Define the
collection of normalizing constants

g(m,N) =
[
G(m,N) G(m,N − 11) · · · G(m,N − 1R−1)

]
.

and the basis
Λ(N) =

[
g(m + 1, N) g(m,N)

]T

Then the following matrix recurrence relation holds

Λ(N) = (F 1,R + N−1
R F 2,R)Λ(N − 1R) (1)

in which

F 1,R =
[
DRE1,1 0

0 0

]

F 2,R =
[
mDRS ZRS
mDRI ZRI

]

S = −m−1

[ −|Ñ | − m Z̃T

−diag(D̃)−1Ñ diag(D̃)−1 diag(Z̃)

]

where E1,1 is of order R with a single nonzero entry in position (1, 1), Ñ =
(N1, . . . , NR−1)T , D̃ = (D1, . . . , DR−1)T , Z̃ = (Z1, . . . , ZR−1)T , I is the identity
matrix of order R, and 0 is the zero matrix of order R.

A proof of the theorem is in the Appendix A. Note in particular that the knowl-
edge of Λ(N) and Λ(N − 1R) is sufficient to determine the expression of all the
mean performance metrics introduced in Sect. 3.3.

Termination conditions for the matrix recurrence relation (1) are obtained
noting that G(·, 0) = 1 and, whenever any element of N is negative, G(·, N) = 0.
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Table 1. Relative error and runtime upon computing logG(m,N) exactly.

Classes Total jobs Method Runtime [s]

8 40 Convolution 0.0033

8 40 CoMoM (original) 0.0047

8 40 CoMoM (enhanced) 0.0014

8 400 Convolution 1.4201

8 400 CoMoM (original) 1.1433

8 400 CoMoM (enhanced) 0.0016

8 4000 Convolution Memory exhausted

8 4000 CoMoM (original) Timeout

8 4000 CoMoM (enhanced) 0.0017

8 106 Convolution Memory exhausted

8 106 CoMoM (original) Timeout

8 106 CoMoM (enhanced) 0.2591

Numerical Stabilization. In principle, to prevent floating-point range exceptions,
the proposed solution can either be computed using exact or multi-precision
arithmetic. In practice, we have observed that scaling at each step the vector
Λ(N) so that |Λ(N)| = 1, and removing the effect of such scaling only in the final
result, is sufficient to sanitize numerical problems in practical uses, except for
negligible numerical fluctuations. This makes the theoretical and implementation
complexity identical and, empirically, much faster than using exact arithmetic.

To illustrate this, we consider a challenging model with R = 8 classes, where
m = 1, Zr = r and Dr = 10−r, r = 1, . . . , R. Jobs are split equally across the
classes. The exponential spacing of the demands and the large population make
the analysis numerically challenging. We set a timeout of 10 s to solve a model.
The original CoMoM leverages exact arithmetic in Java, whereas the enhanced
method implements in MATLAB the recursion we have proposed in Theorem 1
using standard floating-point arithmetic. Table 1 shows numerical results, which
corroborate the high scalability of the enhanced CoMoM for homogeneous mod-
els. Results are obtained on an AMD Ryzen 7 2700X Processor with 64 GB of
RAM. Note that at population |N | = 4000 convolution becomes unviable due
to excessive memory requirements, but since the normalizing constant reaches
order 10−602 it would have anyway exceeded the floating-point range during
execution. Scaling methods for Convolution have been proposed in [21], however
it is not difficult in our experience to generate examples of large models where
this technique still cannot prevent floating-point range exceptions. Instead, the
enhanced CoMoM can also solve the largest model with 106 jobs, agreeing within
the first 11 digits of log G(m,N) with the results of the logistic expansion (LE)
proposed in [8], which is asymptotically exact. We have also observed in all
cases that at least the first 6-digits of the mean per-class throughputs com-
puted by the enhanced CoMoM were identical to the ones obtained by the AQL
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approximate MVA method [37]. As no other exact method can reach this model
scale, it is difficult to rigorously verify exactness, yet the result suggests no, or
at least negligible, presence of error accumulation.

4.2 Solving Homogeneous Layers with Gaussian Quadratures

As illustrated in the last numerical example, the CoMoM method has slightly
increasing time requirements to analyze a single layer as the population grows.
This also occurs as R increases, since the CoMoM basis has 2R elements. While
tens or hundreds of milliseconds may be negligible for a single model, LQNs are
solved iteratively and can feature many layers, hence solution times compound
quickly. In large models, it is therefore useful to trade accuracy for speed. LN uses
to this aim quadrature methods for integral forms of the normalizing constant.

A simple expression for the normalizing constant is given by the McKenna-
Mitra integral form [24]. This is in general a multidimensional integral, with one
dimension for each queueing station in the model. Thus, in a homogeneous model
for a layer one would expect a m-dimensional integral. We show however that in
homogeneous models this integral form takes the following simpler expression.

Theorem 2. Under the same assumptions of Theorem 1, the normalizing con-
stant of state probabilities for the queueing network model admits the following
integral form

G(m,N) =
1

(m − 1)!
∏R

r=1 Nr!

∫ +∞

u=0

e−uum−1
R∏

r=1

(Zr + Dru)Nrdu (2)

A proof is given in Appendix C. The main difficulty associated with evaluating
G(m,N) directly is that (2) is prone to numerical difficulties. This is because
quadratures do not operate directly in the log domain and are therefore numer-
ically sensitive to the magnitude of the factors under the integration sign, one
being an exponentially decaying function (e−u), the other being a polynomial of
high order |N |+m−1. A novel strategy developed in the NC solver to evaluate (2)
is to use Gaussian quadrature methods coupled with the log-sum-exp trick [4].
We have implemented both Gauss-Legendre and Gauss-Laguerre quadratures for
(2), finding them empirically better suited at evaluating normalizing constants
than MATLAB’s default integral method and overall the best evaluation methods
unless job populations are asymptotically large. We point to Appendix B for a
brief introduction of both Gauss-Legendre and Gauss-Laguerre quadratures.

Generally, Gauss-Laguerre quadrature enables increasingly precise evalua-
tions of (2) for growing values of its order K, however it also faces numerical
difficulties for large number of jobs N , for which the quadrature weights and
the integrand can display vastly different magnitudes. In such cases, we evaluate
instead log G(m,N) in the quadrature summation by applying to the expression
the log-sum-exp method, using in particular the implementation described in [4].
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Numerical Example. We consider the same models considered for CoMoM and
numerically evaluate the integral form (2). MATLAB’s integral method is run
with an absolute tolerance of 10−12. Node and weights for the Gaussian quadra-
tures are precomputed offline: due to numerical instability we can reach for the
Gauss-Laguerre method up to order 300, while for Gauss-Legendre we could pre-
compute weights up to order 20000 in the range u ∈ [0, 106]. We also include in
the test the LE asymptotic expansion implemented in NC, which is a scalable
method for models with few stations and many classes. The method applies a
Laplace’s approximation to the simplex integral form for the normalizing con-
stant in [8]. Asymptotically the LE results are tight to the exact solutions.

Table 2. Relative error and runtime upon approximating logG(m,N).

Classes Total jobs Method Rel. error [%] Runtime [s]

8 40 MATLAB’s integral 0.0000 0.0006

8 40 Gauss-Legendre 0.0000 0.0004

8 40 Gauss-Laguerre 0.0000 0.0010

8 40 Logistic expansion -0.1249 0.0012

8 400 MATLAB’s integral 0.0144 0.0005

8 400 Gauss-Legendre -0.0001 0.0006

8 400 Gauss-Laguerre -0.0001 0.0010

8 400 Logistic expansion 0.0033 0.0013

8 4000 MATLAB’s integral Unstable 0.0008

8 4000 Gauss-Legendre -0.0006 0.0021

8 4000 Gauss-Laguerre -0.0006 0.0010

8 4000 Logistic expansion 0.0003 0.0013

8 106 MATLAB’s integral Unstable 0.0008

8 106 Gauss-Legendre -0.0592 0.0095

8 106 Gauss-Laguerre 0.2508 0.0011

8 106 Logistic expansion 0.0000 0.0013

The results are given in Table 2. Overall, we see that Gauss-Legendre is typ-
ically sufficient except in large asymptotic models where LE solutions are closer
to optimal. The lower performance of Gauss-Laguerre is interpreted as being due
to the restriction of using up to 300 nodes and weights in the interpolation due
to numerical instability in their computation. Since Gauss-Legendre quadratures
of order K = 2n−1 are exact for polynomials up to order n, and the normalizing
constant is itself the integral of a polynomial of order n = |N |+m− 1, it is pos-
sible to use the K = 2|N |+2m−3 order as a threshold for when the quadrature
will cease to be exact and switch afterwards to LE. For example, with Gaus-
sian integration of order n = 300 and m = 1 the solution would switch to LE
for |N | ≥ 6000. Note that, on top of this, approximation errors are incurred in
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Table 2 by the log-sum-exp trick used for numerical stabilization, which explains
why small errors are incurred by Gauss-Legendre and Gauss-Laguerre also in
cases where the quadrature should be exact. Another source of errors is that
Gauss-Legendre requires a finite interval and has therefore been truncated to
the range u ∈ [0, 106], whereas the normalizing constant integral is defined in
the range u ∈ [0,∞].

Summarizing, the numerical analysis reveals that a combination of Gauss-
Legendre quadrature, for models with tens or hundreds of jobs, and LE, for
larger models, provides an effective way to approximate homogeneous layers.

4.3 Computing Marginal Probabilities in Homogeneous Layers

Using normalizing constants instead of MVA simplifies the calculation of proba-
bilistic measures on each layer, as illustrated in this section. Thanks to loose lay-
ering, specialized results can be derived to allow simple computation of marginal
probabilities in a layer. We focus here in particular on the marginal probability
πN (m,n) that n jobs are queueing or receiving services at any of the m identical
queueing stations. This is also equal to the probability that πN (m, |N | −n) jobs
are waiting at the infinite server station.

Computing πN (m,n) is in general a difficult problem, since with R classes
there is a combinatorially-large number of job mixes that result in the same total
job population n at the m queueing nodes. In this case, NC leverages a novel
result, developed in the next theorem, which obtains marginal probabilities in
O(|N |2) time and O(|N |) space in homogeneous layers. For m = 1, this improves
over MVA methods that require instead O(|N |R) time and space, while matching
the complexity of CoMoM’s extension to marginal probabilities [6, §VII], but
without requiring the solution of a system of linear equations as CoMoM does for
marginal probabilities. Another novelty is that, unlike CoMoM, the expression
below applies also to homogeneous models with m > 1.

Theorem 3. Under the same assumptions of Theorem 1, let πN (m, k) be the
marginal probability that the m queueing stations have k resident jobs in total,
k = 0, . . . , |N |. Define the following basis of unnormalized probabilities:

Π(N) = G(m,N)
[
πN (m, |N |), . . . , πN (m, 0)

]T

with Π(0) = (0, . . . , 0, 1)T . Then G(m,N) = |Π(N)| and the following exact
recurrence relation holds

Π(N) = N−1
R TRΠ(N − 1R) (3)

where

TR =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ZR (|N | + m − 1)Dr 0 · · · 0
0 ZR (|N | + m − 2)Dr · · · 0
...

...
...

. . .
...

0 0 0 ZR (m − 1)Dr

0 0 0 0 ZR

⎤

⎥
⎥
⎥
⎥
⎥
⎦
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A proof of the result is given in Appendix D. While the result is exact, this little
says about its numerical stability. We have verified with numerical examples,
using the load-dependent convolution algorithm, that the formulas in Theorem 3
match numerically the exact solutions, while avoiding exponential time and space
requirements as the number of classes grows. In the tests we observe that the
method is applicable using floating-point arithmetic only to models with up
to, approximately, |N | = 500 jobs, provided that, without loss of generality [21],
demands are rescaled beforehand to Dr = 1, r = 1, . . . , R. Larger models require
instead the use of exact or multi-precision arithmetic to prevent floating-point
range exceptions, which heightens complexity by a log-linear factor in both time
and space [7].

4.4 Multi-server Nodes, Load-Dependence and Multi-class FCFS

We here briefly discuss other strategies used in LN to accelerate the evalu-
ation and cope with extended features. In cases where the scheduling policy
does not yield a product-form, suitable approximations are coupled with the
proposed algorithms to approximate the solution. In particular, first-come first-
served (FCFS) multi-class stations are mapped to PS stations with demands
iteratively adjusted with an interpolation that depends on a hybrid M/G/k-
diffusion approximation, as proposed in [9]. We point to the original paper for
results showing high accuracy.
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Fig. 3. Some meta-solver capabilities of LINE in analyzing LQN models.

Seidmann’s approximation is used by default in NC to approximate FCFS
and PS stations with multiple servers [31]. This is a simple method that replaces
a c-server station with demands Dr with a sub-network consisting of a single-
server queueing station having demands Dr/c and infinite server station having
demands Dr(c − 1)/c. Under this transformation, as in the original system, a
class-r job can traverse the two stations in Dr time overall when these are found
both empty upon arrival. Moreover, the new infinite server station delay can be
exactly aggregated within the pre-existing infinite server think time, so that the
model retains overall the same number of stations.
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Load-dependent modeling methods are also available in LINE to evaluate
individual layers, which rely on the exact normalizing constant methods recently
proposed in [11]. In essence, the latter factorize the normalizing constant of a
load-dependent model into solving a single-server queueing network and scaling
the resultant mean performance metrics by the normalizing constant of a related
load-dependent model defined on a reduced state space. The work shows that
this can be done either exactly or approximately, based on mean-value analysis
(RD method) or a novel integral form of the normalizing constant (Norlund-Rice
form). Although these methods may also be applicable to multi-server station
analysis, Seidmann’s approximation often suffices to achieve good accuracy while
retaining the benefit of reducing the problem to a simple single-server model on
which the CoMoM and Gaussian integration methods both apply.

5 Case Studies

5.1 Meta-solver Capabilities

The most distinctive feature of the LN solver is the meta-solver capability. Differ-
ent solution paradigms can be used throughout individual iterations and across
layers. Moreover, once the iteration has reached a fixed-point, multiple paradigms
can be applied to obtain the metrics of interest. We here focus on the latter case.

We illustrate this feature on the example shown in Fig. 1, which describes a
scenario where two job classes T1 and T2 require services from a server T3. There
are 3 and 2 jobs for class1 and class2 respectively, and T3 is a FCFS service
station with multiplicity c = 2. We consider transient analysis, for which LINE
provides multiple solver options. Figure 3a shows the transient average queue
length for the two job classes, representing T1 and T2 as clients, for the layer
where T3 is modeled as a server. The plot shows a tight matching between the
figures given by both CTMC and FLUID solvers. We can observe that the system
reaches steady-state at around t = 16. In the figure, FLUID solver looks very
accurate for this non-saturated single queue scenario but the accuracy depends
on load and number of servers.

We also show meta-solver capabilities on steady-state probabilities. Figure 3b
displays the joint steady-state probabilities calculated by NC and CTMC solvers
for the whole state space at T3, given the service demand of A3 as 50. The results
from both solvers are almost the same, but the speed of NC solver is much faster.
In this example, the calculation of each probability takes CTMC solver around
4 s while the NC solver takes less than 50 ms.

Beyond joint probabilities, LINE allows us to compute response time per-
centiles with the FLUID and CTMC solvers. In the model, the operations of
T3 are executed by the processor P3, here we use both solvers the obtain the
response time distribution at the layer where T3 acts as client to P3. Results
are shown in Fig. 3c, demonstrating agreement of the solutions.
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Fig. 4. Example of a multi-formalism model containing a caching layer (middle task)

5.2 Multi-formalism Capabilities

LINE can analyze, analytically or via simulation, models with integrated queue-
ing and caching formalisms. LN can therefore also solve LQNs with caching,
such as the three-layer model in Fig. 4. The host processors P1, Pc, P2 adopt
the processor sharing scheduling policy. The number of users is represented by
the multiplicity of the task T1 and the number of jobs is represented by the
multiplicity of the task T2 and the cache task CT. As per Sect. 3.4, a cache task
is a novel LQN element introduced by LN to describe data item reads from a
cache, with different activities occurring based on whether a cache hit or a cache
miss occurred. This is modeled by means of state-dependent class-switching.

In the example under study, items access probabilities obey a discrete uni-
form distribution and the cache is configured with a random replacement (RR)
strategy. Arbitrary access probability distributions may be configured in LN
and replacement strategies such as FIFO or LRU are supported. Jobs requested
from T1 retrieve the items in the cache task CT. If the required items are cached,
jobs will be processed by the hit activity with a probability of phit. Otherwise,
jobs will be transformed to the miss activity with a probability of pmiss and be
further processed by the task T2.

To solve an LQN model containing caching, LN first decomposes the entire
model into a group of layers, as illustrated in Sect. 3. For the layer without
cache nodes, the solutions are given in Sect. 4. On the other hand, for the layer
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that involves a cache node, LN additionally divides the layer into two sub-
models. In the upper sub-model, the cache node is isolated in an open model
with Poisson arrivals, as shown in Fig. 5a. In the lower sub-model, the delay and
the queueing station are contained in a closed queueing network with routing
probabilities dynamically obtained from the phit and pmiss values obtained at
the last iteration on the upper sub-model. More details can be found in [17].

For this model that combines both the queueing and caching stochastic for-
malisms, numerical results given by LINE are shown in Fig. 5. Figure 5b demon-
strates the miss probabilities against different number of items, which decrease
with the improvement of the cache capacity. Figure 5c compares the accuracy of
the throughput for cache solved by MVA and NC solver respectively. MVA ana-
lyzes caches by the fixed-point iteration method (FPI) proposed in [10], whereas
NC implements the normalizing constant asymptotics proposed in the same
paper. The solvers are both compared against an equivalent model constructed
with a JMT model using both queueing and Petri net formalisms, similar to
the validation model used in [17], but adapted to the example at hand. The
results indicate high accuracy of both MVA and NC in capturing the cache layer
throughput, which is in general a function of the cache hit ratio.

6 Conclusion

We have presented the LN solver, the first meta-solver for LQNs, introducing
new analysis methods for loose layering, in particular Gaussian integrals and a
stabilized version of the exact CoMoM [6] to efficiently analyze layers in mil-
liseconds. Case studies have shown the ability of the tool of combining several
formalisms and solution methods in LQN analysis.

Future work will focus on extending LN to broaden the support for extended
queueing models, such as fork-join networks and state-dependent queues.

Acknowledgments. LINE has been partially funded by the European Commission
grants FP7-318484 (MODAClouds), H2020-644869 (DICE), H2020-825040 (RADON),
and by the EPSRC grant EP/M009211/1 (OptiMAM).

A Proof of Theorem 1

For a homogeneous model, the CoMoM recurrence relation may be written as

AΛ(N) = BΛ(N − 1R)

where

A =
[
A1,1 A1,2

0 A2,2

]

B =
[
B1,1 0
B2,1 B2,2

]

Let 0I,J indicate a block of zeros of size I × J . Defining D̃ = (D1, . . . , DR)T , we
have

A1,1 =
[

1 −D̃T

0R−1,1 −m diag(D̃)

]

A1,2 =
[−1 01,R−1

Ñ −diag(Z̃)

]

A2,2 = NRI
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B1,1 = DRE1,1 B2,1 = mDRI B2,2 = ZRI

The inverse of the block upper triagonal matrix A is now computed as

A−1 =
[
A−1

1,1 SA−1
2,2

0R−1,1 A−1
2,2

]

with S = −A−1
1,1A1,2. Observe first that

A−1
1,1 =

[
1 −m−1eT

0R−1,1 −m−1 diag(D̃)−1

]

A−1
2,2 = N−1

R I

where eT = D̃T diag(D̃)−1 = (1, . . . , 1). Thus

S = −
[

1 −m−1eT

0R−1,1 −m−1 diag(D̃)−1

] [−1 01,R−1

Ñ −diag(Z̃)

]

= −m−1

[ −|Ñ | − m Z̃T

−diag(D̃)−1Ñ diag(D̃)−1 diag(Z̃)

]

Note that A2,2 is the only block that depends on NR. We can therefore write

A−1B = F 1,R + N−1
R F 2,R

where

F 1,R =
[
A−1

1,1 0
0 0

] [
DRE1,1 0
mDRI ZRI

]

=
[
DRE1,1 0

0 0

]

F 2,R =
[
0 S
0 I

] [
DRE1,1 0
mDRI ZRI

]

=
[
mDRS ZRS
mDRI ZRI

]

B Gaussian Quadratures

A Gauss-Laguerre quadrature of order K evaluates exponentially-weighted inte-
grals by means of the approximation

∫ ∞

x=0

e−xf(x)dx ≈
K∑

k=1

wkf(xk) (4)

where xk denotes the k-th root of the Laguerre polynomial

LK(x) =
K∑

j=0

(
K

i

)
(−1)j

j!
xj

and with weights wk = xk

(
(k + 1)2 [Lk+1 (xk)]

2
)−1

.
Gauss-Legendre methods are similar but applicable to finite ranges [a, b].

Setting a = 0 and large b they can also help evaluating the normalizing constant.
Their main benefit is that nodes and weights do not incur the same floating-
point range exceptions as observed instead for Gauss-Laguerre quadratures of
large order. We point to [20] for further details on Gauss-Legendre methods.
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C Proof of Theorem 2

For a homogeneous model with m identical single-server stations, the McKenna-
Mitra integral takes the form

G(m,N) =
1

∏R
r=1 Nr!

∫ +∞

u1=0

· · ·
∫ +∞

um=0

e−(u1+...+um)h(u1 + . . . + um)du1 · · · dum

where h(u) =
∏R

r=1 (Zr + Dru)Nr . We note that the multidimensional integral
may be interpreted as computing E[h(U1 + . . . + Um)] for the i.i.d. exponential
random variables Ui ∼ Exp(1). The result then readily follows after noting that
U1 + . . . + Um is Erlang-m distributed with density f(u) = 1

(m−1)!u
m−1e−u.

D Proof of Theorem 3

Let the entries of Π(N) be indicated with π̃N (n), n = |N |, . . . , 0. A probabilistic
population constraint holds for homogeneous models with m = 1 [6, Thm. 6]

NRπ̃N (n) = ZRπ̃N−1R(n) + nDRπ̃N−1R(n − 1)

for all n = 1, . . . , |N | and where π̃N−1R(n − 1) = 0 if n = 0. With a load-
dependent queueing station (m = 1), the derivation in [6] generalizes with similar
passages to the following form

NRπ̃N (n) = ZRπ̃N−1R(n) + n
DR

μ(n)
π̃N−1R(n − 1) (5)

where μ(n) is the load-dependent scaling at the queueing station. Organizing (5)
in matrix form, we get (3)

TR =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ZR |N | DR

μ(|N |) 0 · · · 0

0 ZR (|N | − 1)
DR

μ(|N | − 1)
· · · 0

...
...

...
. . .

...

0 0 0 ZR
DR

μ(1)
0 0 0 0 ZR

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

As assumed, consider now an homogeneous layer, where there are m identical
load-independent single-server stations. The proof follows by noting that, if m >
1, the m queueing stations can be exactly replaced by a flow-equivalent server
station with identical D1,. . . , DR and [26]

μ(n) =
n

(n + m − 1)

The final expression for TR follows after plugging the above expression for μ(n).
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E Software Architecture Design

Figure 6 illustrates the key architectural elements of LINE, including the Net-

workStruct data structure, and the Network, NetworkSolver, LayeredNetwork, Ensem-

bleSolver and LayeredNetworkSolver classes.
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Fig. 6. Key architectural elements of LINE.

The Network object summarizes the model characteristics and acts as its per-
sistence layer. The object is generated by the user either through a domain-
specific language offered by LINE [9] or via model-to-model transformations
from other formats (e.g., JMT’s XML [2], PMIF [32]). Besides the model speci-
fication, a Network object can cache the model state space, its initial state, and
retain information needed for the traffic equations in state-dependent models.

Each Network object is able to synthesize via the getStruct method a Net-

workStruct data structure. The latter includes key model parameters, such as
representations of service and arrival processes, job populations, and number of
servers, among others. In addition, the data structure includes the routing table,
the associated chains, and the average number of visits that each class pays to
each node. NetworkStruct also offers indexing functions, that allow for example
to differentiate between stations, where jobs can reside, and nodes, which are
elements of the network traversed with zero service time (e.g., a fork).

The NetworkSolver object encodes a solver type, of which the aforementioned
six LINE solvers are specific instances. The main role of this class is to ensure
consistent computation of performance results, adopting identical conventions
for reporting per-class and per-chain results to the end-user. Operational rela-
tionships are also applied by this object to derive certain performance metrics
from the ones returned by the solvers, e.g. arrival rates from throughputs [14].

Each NetworkSolver object is equipped with a getAvgTable method that returns
mean performance metrics for the model in a tabular format. The method invokes
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via the runAnalyzer method one of the solution methods offered by that solver,
which operates solely on the NetworkStruct data structure. Model transformations
that alter the model topology are conducted within runAnalyzer. An example is
tagging a job class, which is used in response time distribution analysis.

The EnsembleSolver specifies the life-cycle for an iterative solution method that
works on an ensemble of Network objects. This class allows to bind a Network-

Solver to each particular Network in the ensemble, applying consistently actions
before, in-between, and after each iteration, and verifying convergence. It also
harmonizes the presentation of ensemble-level results to the end-user. Besides
LN, the Env solver is another example of EnsembleSolver, wherein iteration is
used to analyze random environments [13].

The LN solver is a special instance of EnsembleSolver, operating on an ensem-
ble consisting of the LQN layers. The LayeredNetwork class encompasses the
objects that form an LQN, such as the Entry, Task, Host, and Activity classes.

The LayeredNetwork class offers a getEnsemble method that generates, and
stores within the LayeredNetwork object, the ensemble of Network models, each
mapping to a distinct LQN layer. Similarly to Network, this class also exposes a
getStruct method that builds a static data structure of the LQN parameters.

The LN solver, implemented in the SolverLN class, is specified parametrically
in terms of any of the LINE solvers, or a custom combination thereof. For exam-
ple, the end-user may require to use LINE’s simulators on layers that include
non-Markovian service distributions (e.g., Pareto) and MVA otherwise.
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19. Horváth, G., Telek, M.: BuTools 2: a rich toolbox for Markovian performance
evaluation. In: Proceedings of VALUETOOLS, pp. 137–142. ICST (2017)

20. Johansson, F., Mezzarobba, M.: Fast and rigorous arbitrary-precision computation
of Gauss-Legendre quadrature nodes and weights. SIAM J. Sci. Comput. 40(6),
C726–C747 (2018)

21. Lam, S.S.: Dynamic scaling and growth behavior of queueing network normaliza-
tion constants. J. ACM 29(2), 492–513 (1982)

22. Lazowska, E.D., Zahorjan, J., Graham, G.S., Sevcik, K.C.: Quantitative System
Performance: Computer System Analysis Using Queueing Network Models. Pren-
tice Hall, Hoboken (1984)

23. Marzolla, M.: The octave queueing package. In: Norman, G., Sanders, W. (eds.)
QEST 2014. LNCS, vol. 8657, pp. 174–177. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-10696-0 14

24. McKenna, J., Mitra, D.: Asymptotic expansions and integral representations of
moments of queue lengths in closed Markovian networks. J. ACM 31(2), 346–360
(1984)

25. Meyer, C.D.: Stochastic complementation, uncoupling Markov chains, and the the-
ory of nearly reducible systems. SIAM Rev. 31(2), 240–272 (1989)

26. Mitra, D., McKenna, J.: Asymptotic expansions for closed Markovian networks
with state-dependent service rates. J. ACM 33(3), 568–592 (1986)

27. Niu, Z., Casale, G.: A mixture density network approach to predicting response
times in layered systems. In: Proceedings of MASCOTS, pp. 1–8. IEEE (2021)
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