
LCRL: Certified Policy Synthesis
via Logically-Constrained Reinforcement

Learning

Mohammadhosein Hasanbeig1(B), Daniel Kroening2, and Alessandro Abate1

1 Computer Science Department, University of Oxford,
Oxford, UK

{hosein.hasanbeig,alessandro.abate}@cs.ox.ac.uk
2 Amazon Inc., London, UK

daniel.kroening@magd.ox.ac.uk

Abstract. LCRL is a software tool that implements model-free Rein-
forcement Learning (RL) algorithms over unknown Markov Decision
Processes (MDPs), synthesising policies that satisfy a given linear tem-
poral specification with maximal probability. LCRL leverages partially
deterministic finite-state machines known as Limit Deterministic Büchi
Automata (LDBA) to express a given linear temporal specification. A
reward function for the RL algorithm is shaped on-the-fly, based on the
structure of the LDBA. Theoretical guarantees under proper assump-
tions ensure the convergence of the RL algorithm to an optimal policy
that maximises the satisfaction probability. We present case studies to
demonstrate the applicability, ease of use, scalability and performance
of LCRL. Owing to the LDBA-guided exploration and LCRL model-free
architecture, we observe robust performance, which also scales well when
compared to standard RL approaches (whenever applicable to LTL spec-
ifications). Full instructions on how to execute all the case studies in this
paper are provided on a GitHub page that accompanies the LCRL distri-
bution www.github.com/grockious/lcrl.

Keywords: Model-Free Reinforcement Learning · Policy Synthesis ·
Linear Temporal Logic · Limit Deterministic Büchi Automata

1 Introduction

Markov Decision Processes (MDPs) are extensively used for problems in which an
agent needs to control a process by selecting actions that are allowed at the pro-
cess’ states and that affect state transitions. Decision making problems in MDPs
are equivalent to resolving action non-determinism, and result in policy synthe-
sis problems. Policies are synthesised to maximise expected long-term rewards

This work is in part supported by the HiClass project (113213), a partnership between
the Aerospace Technology Institute (ATI), Department for Business, Energy and Indus-
trial Strategy (BEIS) and Innovate UK.

c© Springer Nature Switzerland AG 2022
E. Ábrahám and M. Paolieri (Eds.): QEST 2022, LNCS 13479, pp. 217–231, 2022.
https://doi.org/10.1007/978-3-031-16336-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16336-4_11&domain=pdf
www.github.com/grockious/lcrl
https://doi.org/10.1007/978-3-031-16336-4_11

218 M. Hasanbeig et al.

obtained from the process. This paper introduces a new software tool, LCRL, which
performs policy synthesis for unknown MDPs when the goal is that of maximising
the probability to abide by a task (or constraint) that is specified using Linear Tem-
poral Logic (LTL). LTL is a formal, high-level, and intuitive language to describe
complex tasks [9]. In particular, unlike static (space-dependent) rewards, LTL can
describe time-dependent and complex non-Markovian tasks that can be derived
from natural languages [16,36,46]. Any LTL specification can be translated effi-
ciently into a Limit-Deterministic Büchi Automaton (LDBA), which allows LCRL
to automatically shape a reward function for the task that is later employed by
the RL learner for optimal policy synthesis. LCRL is implemented in Python, the
de facto standard programming language for machine learning applications.

1.1 Related Work

There exists a few tools that solve control (policy) synthesis in a model-free fash-
ion, but not under full LTL specifications. One exception is the work in [6] which
proposes an interleaved reward and discounting mechanism. However, the reward
shaping dependence on the discounting mechanism can make the reward sparse
and small, which might negatively affect convergence. The work in [17] puts
forward a tool for an average-reward scheme based on earlier theoretical work.
Other model-free approaches with available code-bases are either (1) focused on
fragments of LTL and classes of regular languages (namely finite-horizon specs)
or (2) cannot deal with unknown black-box MDPs. The proposed approach in
[29,30] presents a model-free RL solution but for regular specifications that are
expressed as deterministic finite-state machines. The work in [10,11] takes a set
of LTLf/LDLf formulae interpreted over finite traces as constraints, and then
finds a policy that maximises an external reward function. The VSRL software
tool [12–14,28] solves a control synthesis problem whilst maintaining a set of
safety constraints during learning.

1.2 Contributions

The LCRL software tool has the architecture presented in Fig. 1, and presents
the following features:

– LCRL leverages model-free RL algorithms, employing only traces of the sys-
tem (assumed to be an unknown MDP) to formally synthesise optimal policies
that satisfy a given LTL specification with maximal probability. LCRL finds such
policies by learning over a set of traces extracted from the MDP under LTL-
guided exploration. This efficient, guided exploration is owed to reward shap-
ing based on the automaton [18–21,23,26]. The guided exploration enables the
algorithm to focus only on relevant parts of the state/action spaces, as opposed
to traditional Dynamic Programming (DP) solutions, where the Bellman itera-
tion is exhaustively applied over the whole state/action spaces [5]. Under stan-
dard RL convergence assumptions, the LCRL output is an optimal policy whose
traces satisfy the given LTL specification with maximal probability.

LCRL: Certified Policy Synthesis 219

– LCRL is scalable owing to LTL-guided exploration, which allows LCRL to
cope and perform efficiently with MDPs whose state and action spaces are
significantly large. There exist a few LDBA construction algorithms for LTL,
but not all of resulting automata can be employed for quantitative model-
checking and probabilistic synthesis [31]. The succinctness of the construction
proposed in [39], which is used in LCRL, is another contributing factor to
LCRL scalability. The scalability of LCRL is evaluated in an array of numerical
examples and benchmarks including high-dimensional Atari 2600 games [3,7].

– LCRL is the first RL synthesis method for LTL specifications in continuous
state/action MDPs. So far no tool is available to enable RL, whether model-
based or model-free, to synthesise policies for LTL on continuous-state/action
MDPs. Alternative approaches for continuous-space MDPs [1,34,41,44] dis-
cretise the model into a finite-state MDP, or alternatively propose a DP-based
method with value function approximation [15].

– LCRL displays robustness features to hyper-parameter tuning. Specifically,
we observed that LCRL results, although problem-specific, are not significantly
affected when hyper-parameters are not tuned with care.

Fig. 1. The LCRL architecture: the inputs to the tool are the environment (MDP) -
in particular its states s and corresponding labels L(s) - as well as the LDBA gener-
ated from the user-defined LTL specification. The MDP (with state s) and the LDBA
(with state q) are synchronised on-the-fly, thus generating the pair (s, q). A reward r
is then automatically generated by LCRL, based on the environment label L(s) and the
automaton state q; actions a are selected accordingly and passed back to the environ-
ment (MDP). (Color figure online)

2 Logically-Constrained Reinforcement Learning (LCRL)

We assume the unknown environment is encompassed by an MDP, which in
this work is a discrete-time stochastic control processes defined as the tuple
M = (S,A, s0, P) over a set of continuous states S = R

n, and where A = R
m is

a set of continuous actions, and s0 ∈ S is an initial state. P : B(S) × S × A →
[0, 1] is a conditional transition kernel which assigns to any pair comprising a

220 M. Hasanbeig et al.

state s ∈ S and an action a ∈ A a probability measure P (·|s, a) on properly
measurable sets on S [4]. A finite state/action MDP is a special case in which
|S| < ∞, |A| < ∞, and P : S × A × S → [0, 1] is a transition probability
matrix assigning a conditional probability to enter sets of states in S. A variable
R(s, a) ∼ Υ (·|s, a) ∈ P(R+) is defined over the MDP M, representing the reward
obtained when action a is taken at a given state s, sampled from the reward
distribution Υ defined over the set of probability distributions P(R+) on subsets
of R+.

LCRL is a policy synthesis architecture for tasks that are expressed as specifi-
cations in LTL [18–26]. The LCRL Core in Fig. 1 is compatible with any general
RL scheme that conforms with the environment state and action spaces. Inside
the LCRL module the MDP and LDBA states are synchronised, resulting in an
on-the-fly product MDP. Intuitively, the product MDP encompasses the extra
dimension of the LDBA states, which is added to the state space of the orig-
inal MDP. The role of the added dimension is to track the sequence of labels
that have been read across episodes, and thus to act as a memory register for the
given task. This allows to evaluate the (partial) satisfaction of the corresponding
temporal property. More importantly, this synchronisation breaks down the non-
Markovian LTL specification into a set of Markovian reach-avoid components,
which facilitates the RL convergence to a policy whose traces satisfy the overall
LTL specification. In practice, no product between the MDP and LDBA is com-
puted: the LDBA simply monitors traces executed by the agents as episodes of
the RL scheme.

Remark 1. The LDBA construction inherently introduces limited form of non-
determinism, called ε-transitions, which is treated as an extra action over the
original MDP action space [39,40]. Namely, when there exists a non-deterministic
transition in an LDBA state, the MDP action space is augmented with the non-
deterministic transition predicate of the LDBA. These non-deterministic tran-
sitions are automatically handled by LCRL during the learning and appropriate
on-the-fly modifications are carried out, so that the RL agent can learn to deal
with those non-deterministic transitions in order to reach the accepting condi-
tions of the LDBA. We emphasise that the underlying assumption in LCRL is
that the MDP model is unknown (Fig. 1), and thus a single state is obtained as
output when given a state and an action as input. �

LCRL defines a reward function R for the RL Core, whose objective is to
maximise the expected discounted return [42]:

Eπ[
∞∑

n=0

γn R(sn, an)|s0 = s], (1)

where Eπ[·] denotes the expected value given that the agent follows the policy
π : S × A → [0, 1] from state s; parameter γ ∈ [0, 1] is a discount factor; and

LCRL: Certified Policy Synthesis 221

s0, a0, s1, a1... is the sequence of state/action pairs, initialised at s0 = s. This
reward is intrinsically defined over the product MDP, namely it is a function of
the MDP state (describing where the agent is in the environment) and the sate
of the automaton (encompassing partial task satisfaction). For further details on
the LCRL reward shaping, please refer to [18–21,23,26].

The discount factor γ affects the optimality of the synthesised policy and has
to be tuned with care. There is standard work in RL on state-dependent discount
factors [6,35,37,45,47], which is shown to preserve convergence and optimality
guarantees. For LCRL the learner discounts the received reward whenever it’s
positive, and leaves it un-discounted otherwise:

γ(s) =
{

η if R(s, a) > 0,
1 otherwise, (2)

where 0 < η < 1 is a constant [20,47]. Hence, (1) reduces to an expected return
that is bounded, namely

Eπ[
∞∑

n=0

γ(sn)N(sn) R(sn, π(sn))|s0 = s], 0 < γ(s) ≤ 1, (3)

where N(sn) is the number of times a positive reward has been observed at
state sn.

For any state s ∈ S and any action a ∈ A, LCRL assigns a quantitative action-
value Q : S×A → R, which is initialised with an arbitrary and finite value over
all state-action pairs. As the agent starts learning, the action-value Q(s, a) is
updated by a linear combination between the current Q(s, a) and the target
value:

R(s, a) + γ max
a′∈A

Q(s′, a′),

with the weight factors 1 − μ and μ respectively, where μ is the learning rate.
An optimal stationary Markov policy synthesised by LCRL on the product

MDP that maximises the expected return, is guaranteed to induce a finite-
memory policy on the original MDP that maximises the probability of satisfying
the given LTL specification [20]. Of course, in finite-state and -action MDPs, the
set of stationary deterministic policies is finite and thus after a finite number
of learning steps RL converges to an optimal policy. However, when function
approximators are used in RL to tackle extensive or even infinite-state (or -
action) MDPs, such theoretical guarantees are valid only asymptotically [21,24].

2.1 Installation

LCRL can be set up by the pip package manager as easy as:

pip install lcrl

This allows to readily import LCRL as a package into any Python project

>>> import lcrl

222 M. Hasanbeig et al.

Table 1. List of hyper-parameters and features that can be externally selected

Hyper-parameter Default Value Description

algorithm ‘ql’

RL algorithm underlying LCRL Core, selected between (cf. Table 2):

- ‘ql’: Q-learning,

- ‘nfq’: Neural Fitted Q-iteration,

- ‘ddpg’: Deep Deterministic Policy Gradient

episode num 2500 number of learning episodes

iteration num max 4000 max number of iterations/steps within each episode

discount factor 0.95 discounting coefficient η as in (2)

learning rate 0.9 learning rate parameter μ

epsilon 0.1 value for epsilon-greedy exploration (= 0 for fully greedy)

test true run of closed-loop simulations to test the generated policy

save dir ‘./results’ directory address for saving the results

average window -1
number of episodes for moving-average window for plots

(default value -1 for 30% of episode num)

and employ its modules. Alternatively, the provided setup file found within the
distribution package will automatically install all the required dependencies. The
installation setup has been tested successfully on Ubuntu 18.04.1, macOS 11.6.5,
and Windows 11.

2.2 Input Interface

LCRL training module lcrl.src.train inputs two main objects (cf. Fig. 1): an
MDP black-box object that generates training episodes; and an LDBA object;
as well as learning hyper-parameters1 that are listed in Table 1.

MDP: An MDP is an object with internal attributes that are a priori unknown
to the agent, namely the state space, the transition kernel, and the labelling
function (respectively denoted by S, P , and L). The states and their labels
are observable upon reaching. To formalise the agent-MDP interface we adopt
a scheme that is widely accepted in the RL literature [7]. In this scheme the
learning agent can invoke the following methods from any state of the MDP:

– reset(): this resets the MDP to its initial state. This allows the agent to
start a new learning episode whenever necessary.

– step(action): the MDP step function takes an action (the yellow signal in
Fig. 1) as input, and outputs a new state, i.e. the black signal in Fig. 1.

A number of well-known MDP environments (e.g., the stochastic grid-world)
are embedded as classes within LCRL, and can be found within the module
lcrl.src.environments. Most of these classes can easily set up an MDP object.
However, note that the state signal output by the step function needs to be fed
1 These parameters are called hyper-parameters since their values are used to control

the learning process. This is unlike other parameters, such as weights and biases in
neural networks, which are set and updated automatically during the learning phase.

LCRL: Certified Policy Synthesis 223

to a labelling function state label(state), which outputs a list of labels (in
string format) for its input state (in Fig. 1, the black output signal from the
MDP is fed to the blue box, or labelling function, which outputs the set of label).
For example, state label(state) = [‘safe’, ‘room1’]. The labelling func-
tion state label(state) can then be positioned outside of the MDP class, or
it can be an internal method in the MDP class. The built-in MDP classes in
lcrl.src.environments module have an empty state label(state) method
that are ready to be overridden at the instance level:

1 # create a SlipperyGrid object
2 gridworld_1 = SlipperyGrid()
3

4 # "state_label" function outputs the label of input state
5 # (input: state, output: string label)
6 def state_label(self, state):
7 # defines the labelling image
8 labels = np.empty([gridworld_1.shape[0], gridworld_1.shape[1]], dtype=object)
9 labels[0:40, 0:40] = ’safe’

10 labels[25:33, 7:15] = ’unsafe’
11 labels[7:15, 25:33] = ’unsafe’
12 labels[15:25, 15:25] = ’goal1’
13 labels[33:40, 0:7] = ’goal2’
14 # returns the label associated with input state
15 return labels[state[0], state[1]]
16

17 # now override the step function
18 SlipperyGrid.state_label = state_label.__get__(gridworld_1, SlipperyGrid)

Listing 1.1. Example of state label(state) specification in the MDP object
lcrl.src.environments.gridworld 1.

LDBA: An LDBA object is an instance of the lcrl.src.automata.ldba class.
This class is structured according to the automaton construction in [39], and it
encompasses modifications dealing with non-determinism, as per Remark 1. The
LDBA initial state is numbered as 0, or can alternatively be specified using the
class attribute initial automaton state once an LDBA object is created. The
LDBA non-accepting sink state is numbered as −1. Finally, the set of accepting
sets, on which we elaborate further below, has to be specified at the instance level
by configuring accepting sets (Listing 1.2 line 1). The key interface methods
for the LDBA object are:

– accepting frontier function(state): this automatically updates an inter-
nal attribute of an LDBA class called accepting sets. This is a list of
accepting sets of the LDBA, e.g. F = {F1, ..., Ff}. For instance, if the set
of LDBA accepting sets is F = {{3, 4}, {5, 6}} then this attribute is a list
of corresponding state numbers accepting sets = [[3,4],[5,6]]. As dis-
cussed above, the accepting sets has to be specified once the LDBA class is
instanced (Listing 1.2 line 1). The main role of the accepting frontier function
is to determine if an accepting set can be reached, so that a corresponding
reward is given to the agent (cf. red signal in Fig. 1). Once an accepting
set is visited it will be temporarily removed from the accepting sets until
the agent visits all the accepting sets within accepting sets. After that,

224 M. Hasanbeig et al.

accepting sets is reset to the original list. To set up an LDBA class in LCRL
the user needs to specify accepting sets for the LDBA. LCRL then automati-
cally shapes the reward function and calls the accepting frontier function
whenever necessary. Further details on the accepting frontier function
and the accepting sets can be found in [18–21,23,26].

– step(label): LDBA step function takes a label set, i.e. the blue signal in
Fig. 1, as input and outputs a new LDBA state. The label set is delivered to
the step function by LCRL. The step method is empty by default and has to
be specified manually after the LDBA class is instanced (Listing 1.2 line 5).

– reset(): this method resets the state and accepting sets to their initial
assignments. This corresponds to the agent starting a new learning episode.

1 goal1_or_goal2 = LDBA(accepting_sets=[[1, 2]])
2

3 # "step" function for the automaton transitions
4 # (input: label, output: automaton_state, non-accepting sink state is "-1")
5 def step(self, label):
6 # state 0
7 if self.automaton_state == 0:
8 if ’epsilon_1’ in label:
9 self.automaton_state = 1

10 elif ’epsilon_2’ in label:
11 self.automaton_state = 2
12 elif ’unsafe’ in label:
13 self.automaton_state = -1 # non-accepting sink state
14 else:
15 self.automaton_state = 0
16 # state 1
17 elif self.automaton_state == 1:
18 if ’goal1’ in label and ’unsafe’ not in label:
19 self.automaton_state = 1
20 else:
21 self.automaton_state = -1 # non-accepting sink state
22 # state 2
23 elif self.automaton_state == 2:
24 if ’goal2’ in label and ’unsafe’ not in label:
25 self.automaton_state = 2
26 else:
27 self.automaton_state = -1 # non-accepting sink state
28 # step function returns the new automaton state
29 return self.automaton_state
30

31

32 # now override the step function
33 LDBA.step = step.__get__(goal1_or_goal2, LDBA)

Listing 1.2. Example of the specification of the step(label) method in the LDBA
object lcrl.automata.goal1 or goal2 for the LTL specification (♦�goal1∨♦�goal2)∧
�¬unsafe. The non-accepting sink state is numbered as −1.

If the automaton happens to have ε-transitions, e.g. Fig. 2, they have to
distinguishable, e.g. numbered. For instance, there exist two ε-transitions in the
LDBA in Fig. 2 and each is marked by an integer. Furthermore, the LDBA class
has an attribute called epsilon transitions, which is a dictionary to specify
which states in the automaton contain ε-transitions. In Fig. 2, only state 0

LCRL: Certified Policy Synthesis 225

Fig. 2. LDBA for the LTL specification (♦�goal1 ∨ ♦�goal2) ∧ �¬unsafe.

has outgoing ε-transitions and thus, the attribute epsilon transitions in the
LDBA object goal1 or goal2 has to be set to

goal1 or goal2.epsilon transitions = {0:[‘epsilon 0’, ‘epsilon 1’]}

2.3 Output Interface

LCRL provides the results of learning and testing as .pkl files. Tests are closed-
loop simulations where we apply the learned policy over the MDP and observe
the results. For any selected learning algorithm, the learned model is saved as
learned model.pkl and test results as test results.pkl. The instruction on
how to load these files is also displayed at the end of training for ease of re-
loading data and for post-processing. Depending on the chosen learning algo-
rithm, LCRL generates a number of plots to visualise the learning progress and
the testing results. These plots are saved in the save dir directory. The user has
the additional option to export a generated animation of the testing progress,
LCRL prompts this option to the user following the completion of the test. Dur-
ing the learning phase, LCRL displays the progress in real-time and allows the
user to stop the learning task (in an any-time fashion) and save the generated
outcomes.

3 Experimental Evaluation

We apply LCRL on a number of case studies highlighting its features, performance
and robustness across various environment domains and tasks. All the experi-
ments are run on a standard machine, with an Intel Core i5 CPU at 2.5 GHz
and with 20 GB of RAM. The experiments are listed in Table 2 and discussed
next.

The minecraft environment [2] requires solving challenging low-level con-
trol tasks (minecraft-tX), and features many sequential goals. For instance, in

226 M. Hasanbeig et al.

Fig. 3. (a) Synthesised policy by LCRL in minecraft-t3; (b) cart-pole experiment [43];
(c) pacman-lrg - the white square on the left is labelled as food 1 (f1) and the one on
the right as food 2 (f2), the state of being caught by a ghost is labelled as (g) and the
rest of the state space is labelled as neutral (n). (Color figure online)

minecraft-t3 (Fig. 3a) the agent is tasked with collecting three items sequen-
tially and to reach a final checkpoint, which is encoded as the following LTL
specification: ♦(wood∧♦(grass∧♦(iron∧♦(craft table)))), where ♦ is the known
eventually temporal operator.

The mars-rover problems are realistic robotic benchmarks taken from [21],
where the environment features continuous state and action spaces.

The known cart-pole experiment (Fig. 3b) [8,24,43] has a task that is
expressed by the LTL specification �♦y ∧ �♦g ∧ �¬u, namely, starting the
pole in upright position, the goal is to prevent it from falling over (�¬u, namely
always not u) by moving the cart, whilst in particular alternating between the
yellow (y) and green (g) regions (�♦y ∧ �♦g), while avoiding the red (unsafe)
parts of the track (�¬u).

The robot-surve example [38] has the task to repeatedly visit two regions
(A and B) in sequence, while avoiding multiple obstacles (C) on the way: �♦A∧
�♦B ∧ �¬C.

Environments slp-easy and slp-hard are inspired by the widely used
stochastic MDPs in [42, Chapter 6]: the goal in slp-easy is to reach a par-
ticular region of the state space, whereas the goal in slp-hard is to visit four
distinct regions sequentially in a given order.

The frozen-lake benchmarks are adopted from the OpenAI Gym [7]: the
first three are reachability problems, whereas the last three require sequential
visits of four regions, in the presence of unsafe regions to be always avoided.

Finally, pacman-sml and pacman-lrg are inspired by the well-known Atari
game Pacman, and are initialised in a tricky configuration (pacman-lrg as in
Fig. 3c), which is likely for the agent to be caught: in order to win the game, the
agent has to collect the available tokens (food sources) without being caught by
moving ghosts. Formally, the agent is required to choose between one of the two
available foods and then find the other one (♦[(f1 ∧ ♦f2) ∨ (f2 ∧ ♦f1)]), while

LCRL: Certified Policy Synthesis 227

Table 2. Learning results with LCRL. MDP state and action space cardinalities are
|S| and |A|, the number of automaton states in LDBA is denoted by |Q|, the optimal
action value function in the initial state is denoted by “LCRL maxa Q(s0, a)”, which rep-
resents the LCRL estimation of the maximum satisfaction probability. For each exper-
iment, the reported result includes the mean and the standard error of ten learning
trials with LCRL. This probability is also calculated by the PRISM model checker [33]
and, whenever the MDP model can be processed by PRISM, it is reported in column
“max sat. prob. at s0”. The closer “LCRL maxa Q(s0, a)” and “max sat. prob. at

s0” the better. Note that for continuous-state-action MDPs the maximum satisfaction
probability cannot be precisely computed by model checking tools, unless abstraction
approximation techniques are applied, hence “n/a”. Furthermore, if the MDP state (or
action) space is large enough, e.g. pacman, the model checkers tools cannot parse the
model and the model checking process times out, i.e. “t/o”. The column “LCRL conv.

ep.” presents the episode number in which LCRL converged. Finally, “wall clocktime”
presents the average elapsed real time needed for LCRL to converge on a test machine.
The rest of the columns provide the values of the hyper-parameters, as described in
Table 1.

experiment
MDP LDBA LCRL maxa max sat.

alg.
episode iteration discount learning wall clock

|S|, |A| |Q| Q(s0, a) prob. at s0 num num max factor
∗

rate
†

time�(min)

minecraft-t1 100, 5 3 0.991 ± 0.009 1 ‘ql’ 500 4000 0.95 0.9 0.1

minecraft-t2 100, 5 3 0.991 ± 0.009 1 ‘ql’ 500 4000 0.95 0.9 0.1

minecraft-t3 100, 5 5 0.993 ± 0.007 1 ‘ql’ 1500 4000 0.95 0.9 0.25

minecraft-t4 100, 5 3 0.991 ± 0.009 1 ‘ql’ 500 4000 0.95 0.9 0.1

minecraft-t5 100, 5 3 0.995 ± 0.005 1 ‘ql’ 500 4000 0.95 0.9 0.1

minecraft-t6 100, 5 4 0.995 ± 0.005 1 ‘ql’ 1500 4000 0.95 0.9 0.25

minecraft-t7 100, 5 5 0.993 ± 0.007 1 ‘ql’ 1500 4000 0.95 0.9 0.5

mars-rover-1 ∞, 5 3 0.991 ± 0.002 n/a ‘nfq’ 50 3000 0.9 0.01 550

mars-rover-2 ∞, 5 3 0.992 ± 0.006 n/a ‘nfq’ 50 3000 0.9 0.01 540

mars-rover-3 ∞, ∞ 3 n/a n/a ‘ddpg’ 1000 18000 0.99 0.05 14

mars-rover-4 ∞, ∞ 3 n/a n/a ‘ddpg’ 1000 18000 0.99 0.05 12

cart-pole ∞, ∞ 4 n/a n/a ‘ddpg’ 100 10000 0.99 0.02 1

robot-surve 25, 4 3 0.994 ± 0.006 1 ‘ql’ 500 1000 0.95 0.9 0.1

slp-easy-sml 120, 4 2 0.974 ± 0.026 1 ‘ql’ 300 1000 0.99 0.9 0.1

slp-easy-med 400, 4 2 0.990 ± 0.010 1 ‘ql’ 1500 1000 0.99 0.9 0.25

slp-easy-lrg 1600, 4 2 0.970 ± 0.030 1 ‘ql’ 2000 1000 0.99 0.9 2

slp-hard-sml 120, 4 5 0.947 ± 0.039 1 ‘ql’ 500 1000 0.99 0.9 1

slp-hard-med 400, 4 5 0.989 ± 0.010 1 ‘ql’ 4000 2100 0.99 0.9 5

slp-hard-lrg 1600, 4 5 0.980 ± 0.016 1 ‘ql’ 6000 3500 0.99 0.9 9

frozen-lake-1 120, 4 3 0.949 ± 0.050 0.9983 ‘ql’ 400 2000 0.99 0.9 0.1

frozen-lake-2 400, 4 3 0.971 ± 0.024 0.9982 ‘ql’ 2000 2000 0.99 0.9 0.5

frozen-lake-3 1600, 4 3 0.969 ± 0.019 0.9720 ‘ql’ 5000 4000 0.99 0.9 1

frozen-lake-4 120, 4 6 0.846 ± 0.135 0.9728 ‘ql’ 2000 2000 0.99 0.9 1

frozen-lake-5 400, 4 6 0.735 ± 0.235 0.9722 ‘ql’ 7000 4000 0.99 0.9 2.5

frozen-lake-6 1600, 4 6 0.947 ± 0.011 0.9467 ‘ql’ 5000 5000 0.99 0.9 9

pacman-sml 729,000, 5 6 0.290 ± 0.035 t/o‡ ‘ql’ 80e3 4000 0.95 0.9 1600

pacman-lrg 4,251,000, 5 6 0.282 ± 0.049 t/o‡ ‘ql’ 180e3 4000 0.95 0.9 3700
∗ coefficient η in (2) † learning rate μ ‡ timed out: too large for model-checking
tools � on a machine running macOS 11.6.5 with Intel Core i5 CPU at 2.5 GHz and
with 20 GB of RAM

avoiding the ghosts (�¬g). We thus feed to the agent a conjunction of these
associations, as the following LTL specification: ♦[(f1 ∧♦f2)∨ (f2 ∧♦f1)]∧�¬g.
Standard QL fails to find a policy generating satisfying traces for this experiment.

228 M. Hasanbeig et al.

Table 3. Robustness of LCRL performance against hyper-parameter tuning, for the
frozen-lake-1 experiment. Maximum probability of satisfaction is 99.83% as calcu-
lated by PRISM (cf. Table 2). The reported values are the percentages of times that
execution of LCRL final policy produced traces that satisfied the LTL property. Statis-
tics are taken over 10 trainings and 100 testing for each training, namely 1000 trials
for each hyper-parameter configuration.

η

μ
0.2 0.4 0.6 0.8 0.99

0.2 92.5 ± 7.5% 96.7 ± 3.2% 91.3 ± 8.7% 98.8 ± 1.1% 94.7 ± 5.29%

0.4 98.6 ± 1.4% 89.5 ± 10.5% 94.5 ± 5.5% 94.5 ± 5.5% 99.2 ± 0.74%

0.6 99.0 ± 0.83% 94.5 ± 5.5% 93.3 ± 6.7% 96.4 ± 3.59% 93.3 ± 6.7%

0.8 95.8 ± 4.2% 99.5 ± 0.49% 99.5 ± 0.49% 96.9 ± 3.09% 97.7 ± 2.2%

0.99 88.9 ± 11.09% 98.4 ± 1.55% 97.1 ± 2.31% 96.1 ± 3.73% 95.2 ± 4.79%

overall avg. 95.676 ± 4.268%

We emphasise that the two tasks in cart-pole and robot-surve are not co-safe,
namely require possibly infinite traces as witnesses.

Additionally, we have evaluated the LCRL robustness to RL key hyper-
parameter tuning, i.e. discount factor η and learning rate μ, by training the
LCRL agent for 10 times and testing its final policy for 100 times. The evaluation
results and an overall rate of satisfying the given LTL specifications are reported
for the frozen-lake-1 experiments in Table 3. The statistics are taken across
10 × 100 tests, which results in 1000 trials for each hyper-parameter configura-
tion.

4 Conclusions and Extensions

This paper presented LCRL, a new software tool for policy synthesis with RL
under LTL and omega-regular specifications. There is a plethora of extensions
that we are planning to explore. In the short term, we intend to: (1) directly
interface LCRL with automata synthesis tools such as OWL [32]; (2) link LCRL with
other model checking tools such as PRISM [33] and Storm [27]; and (3) embed
more RL algorithms for policy synthesis, so that we can tackle policy synthesis
problems for more challenging environments. In the longer term, we plan to
extend LCRL such that (1) it will be able to handle other forms of temporal
logic, e.g., signal temporal logic; and (2) it will have a graphical user-interface
for the ease of interaction.

References

1. Abate, A., Prandini, M., Lygeros, J., Sastry, S.: Probabilistic reachability and
safety for controlled discrete time stochastic hybrid systems. Automatica 44(11),
2724–2734 (2008)

LCRL: Certified Policy Synthesis 229

2. Andreas, J., Klein, D., Levine, S.: Modular multitask reinforcement learning with
policy sketches. In: ICML, vol. 70, pp. 166–175 (2017)

3. Bellemare, M.G., Naddaf, Y., Veness, J., Bowling, M.: The Arcade learning envi-
ronment: an evaluation platform for general agents. JAIR 47, 253–279 (2013)

4. Bertsekas, D.P., Shreve, S.: Stochastic Optimal Control: The Discrete-Time Case.
Athena Scientific (2004)

5. Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-dynamic Programming, vol. 1. Athena Sci-
entific (1996)

6. Bozkurt, A.K., Wang, Y., Zavlanos, M.M., Pajic, M.: Control synthesis from lin-
ear temporal logic specifications using model-free reinforcement learning. arXiv
preprint:1909.07299 (2019)

7. Brockman, G., et al.: OpenAI gym. arXiv preprint:1606.01540 (2016)
8. Cai, M., Hasanbeig, M., Xiao, S., Abate, A., Kan, Z.: Modular deep reinforcement

learning for continuous motion planning with temporal logic. IEEE Robot. Aut.
Lett. 6(4), 7973–7980 (2021). https://doi.org/10.1109/LRA.2021.3101544

9. Clarke Jr, E.M., Grumberg, O., Kroening, D., Peled, D., Veith, H.: Model Checking.
MIT Press, London (2018)

10. De Giacomo, G., Iocchi, L., Favorito, M., Patrizi, F.: Foundations for restrain-
ing bolts: Reinforcement learning with LTLf/LDLf restraining specifications. In:
ICAPS, vol. 29, pp. 128–136 (2019)

11. Favorito, M.: Reinforcement learning framework for temporal goals. https://github.
com/whitemech/temprl (2020)

12. Fulton, N.: Verifiably safe autonomy for cyber-physical systems. Ph.D. thesis,
Carnegie Mellon University Pittsburgh (2018)

13. Fulton, N., Platzer, A.: Safe reinforcement learning via formal methods: Toward
safe control through proof and learning. In: Proceedings of the AAAI Conference
on Artificial Intelligence (2018)

14. Fulton, N., Platzer, A.: Verifiably safe off-model reinforcement learning. In:
TACAS, pp. 413–430 (2019)

15. Gordon, G.J.: Stable function approximation in dynamic programming. In: Pro-
ceedings of the Twelfth International Conference on Machine Learning, pp. 261–
268. Elsevier (1995)

16. Gunter, E.: From natural language to linear temporal logic: Aspects of specifying
embedded systems in LTL. In: Workshop on Software Engineering for Embedded
Systems: From Requirements to Implementation (2003)

17. Hahn, E.M., Perez, M., Schewe, S., Somenzi, F., Trivedi, A., Wojtczak, D.:
Mungojerrie: reinforcement learning of linear-time objectives. arXiv preprint
arXiv:2106.09161 (2021)

18. Hasanbeig, M.: Safe and certified reinforcement learning with logical constraints.
Ph.D. thesis, University of Oxford (2020)

19. Hasanbeig, M., Abate, A., Kroening, D.: Logically-constrained reinforcement learn-
ing. arXiv preprint:1801.08099 (2018)

20. Hasanbeig, M., Abate, A., Kroening, D.: Certified reinforcement learning with logic
guidance. arXiv preprint:1902.00778 (2019)

21. Hasanbeig, M., Abate, A., Kroening, D.: Logically-constrained neural fitted Q-
iteration. In: AAMAS. pp. 2012–2014. International Foundation for Autonomous
Agents and Multiagent Systems (2019)

22. Hasanbeig, M., Abate, A., Kroening, D.: Cautious reinforcement learning with
logical constraints. In: AAMAS. International Foundation for Autonomous Agents
and Multiagent Systems (2020)

https://doi.org/10.1109/LRA.2021.3101544
https://github.com/whitemech/temprl
https://github.com/whitemech/temprl
http://arxiv.org/abs/2106.09161

230 M. Hasanbeig et al.

23. Hasanbeig, M., Kantaros, Y., Abate, A., Kroening, D., Pappas, G.J., Lee, I.: Rein-
forcement learning for temporal logic control synthesis with probabilistic satisfac-
tion guarantees. In: Proceedings of the 58th Conference on Decision and Control,
pp. 5338–5343. IEEE (2019)

24. Hasanbeig, M., Kroening, D., Abate, A.: Deep reinforcement learning with tempo-
ral logics. In: Bertrand, N., Jansen, N. (eds.) FORMATS 2020. LNCS, vol. 12288,
pp. 1–22. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57628-8 1

25. Hasanbeig, M., Kroening, D., Abate, A.: Towards verifiable and safe model-free
reinforcement learning. In: Proceedings of Workshop on Artificial Intelligence and
Formal Verification, Logics, Automata and Synthesis (OVERLAY), pp. 1–10. Ital-
ian Association for Artificial Intelligence (2020)

26. Hasanbeig, M., Yogananda Jeppu, N., Abate, A., Melham, T., Kroening, D.:
DeepSynth: Program synthesis for automatic task segmentation in deep reinforce-
ment learning. In: AAAI Conference on Artificial Intelligence. Association for the
Advancement of Artificial Intelligence (2021)

27. Hensel, C., Junges, S., Katoen, J.-P., Quatmann, T., Volk, M.: The probabilistic
model checker Storm. Int. J. Softw. Tools Technol. Transfer 22, 1–22 (2021).
https://doi.org/10.1007/s10009-021-00633-z

28. Hunt, N., Fulton, N., Magliacane, S., Hoang, N., Das, S., Solar-Lezama, A.:
Verifiably safe exploration for end-to-end reinforcement learning. arXiv preprint
arXiv:2007.01223 (2020)

29. Icarte, R.T., Klassen, T., Valenzano, R., McIlraith, S.: Using reward machines
for high-level task specification and decomposition in reinforcement learning. In:
ICML, pp. 2107–2116 (2018)

30. Jothimurugan, K., Alur, R., Bastani, O.: A composable specification language for
reinforcement learning tasks. In: NeurIPS, pp. 13041–13051 (2019)

31. Kini, D., Viswanathan, M.: Optimal translation of LTL to limit deterministic
automata. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp.
113–129. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-
5 7

32. Křet́ınský, J., Meggendorfer, T., Sickert, S.: Owl: a library for ω-words, automata,
and LTL. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp.
543–550. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4 34

33. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: a. In: Gopalakrishnan, G.,
Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-22110-1 47

34. Lee, I.S., Lau, H.Y.: Adaptive state space partitioning for reinforcement learning.
Eng. Appl. Artif. Intell. 17(6), 577–588 (2004)

35. Newell, R.G., Pizer, W.A.: Discounting the distant future: how much do uncertain
rates increase valuations? J. Environ. Econ. Manag 46(1), 52–71 (2003)

36. Nikora, A.P., Balcom, G.: Automated identification of LTL patterns in natural
language requirements. In: ISSRE, pp. 185–194. IEEE (2009)

37. Pitis, S.: Rethinking the discount factor in reinforcement learning: a decision the-
oretic approach. arXiv preprint:1902.02893 (2019)

38. Sadigh, D., Kim, E.S., Coogan, S., Sastry, S.S., Seshia, S.A.: A learning based
approach to control synthesis of Markov decision processes for linear temporal
logic specifications. In: CDC, pp. 1091–1096. IEEE (2014)

39. Sickert, S., Esparza, J., Jaax, S., Křet́ınský, J.: Limit-deterministic Büchi automata
for linear temporal logic. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS,
vol. 9780, pp. 312–332. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
41540-6 17

https://doi.org/10.1007/978-3-030-57628-8_1
https://doi.org/10.1007/s10009-021-00633-z
http://arxiv.org/abs/2007.01223
https://doi.org/10.1007/978-3-662-54580-5_7
https://doi.org/10.1007/978-3-662-54580-5_7
https://doi.org/10.1007/978-3-030-01090-4_34
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-319-41540-6_17
https://doi.org/10.1007/978-3-319-41540-6_17

LCRL: Certified Policy Synthesis 231

40. Sickert, S., Křet́ınský, J.: MoChiBA: probabilistic LTL model checking using limit-
deterministic Büchi automata. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA
2016. LNCS, vol. 9938, pp. 130–137. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-46520-3 9

41. Soudjani, S.E.Z., Gevaerts, C., Abate, A.: FAUST2: Formal Abstractions of
Uncountable-STate STochastic processes. In: Baier, C., Tinelli, C. (eds.) TACAS
2015. LNCS, vol. 9035, pp. 272–286. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-46681-0 23

42. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, vol. 1. MIT
Press, Cambridge (1998)

43. Tassa, Y., et al.: Deepmind control suite. arXiv preprint:1801.00690 (2018)
44. Voronoi, G.: Nouvelles applications des paramètres continus à la théorie des formes

quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs.
Journal für die reine und angewandte Mathematik 134, 198–287 (1908)

45. Wei, Q., Guo, X.: Markov decision processes with state-dependent discount factors
and unbounded rewards/costs. Oper. Res. Lett. 39(5), 369–374 (2011)

46. Yan, R., Cheng, C.H., Chai, Y.: Formal consistency checking over specifications
in natural languages. In: Proceedings of the 2015 Design, Automation & Test in
Europe Conference & Exhibition, pp. 1677–1682. EDA Consortium (2015)

47. Yoshida, N., Uchibe, E., Doya, K.: Reinforcement learning with state-dependent
discount factor. In: ICDL, pp. 1–6. IEEE (2013)

https://doi.org/10.1007/978-3-319-46520-3_9
https://doi.org/10.1007/978-3-319-46520-3_9
https://doi.org/10.1007/978-3-662-46681-0_23
https://doi.org/10.1007/978-3-662-46681-0_23

	LCRL: Certified Policy Synthesis via Logically-Constrained Reinforcement Learning
	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Logically-Constrained Reinforcement Learning (LCRL)
	2.1 Installation
	2.2 Input Interface
	2.3 Output Interface

	3 Experimental Evaluation
	4 Conclusions and Extensions
	References

