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Preface

This volume contains the papers presented at the 19th International Conference on
Quantitative Evaluation of SysTems (QEST 2022), hosted within CONFEST 2022 and
held as a hybrid event, both online and in-person, during September 12–16, 2022. The
event was co-located with CONCUR, FORMATS, FMICS, and other workshops.

The QEST conference series has a long and rich history, as can be seen at www.qest.
org. Most recently, QEST was held in Paris (France, virtually), Vienna (Austria,
virtually), Glasgow (UK), Beijing (China), and Berlin (Germany). Further information
on QEST 2022 can be found on the conference webpage at www.qest.org/qest2022.

The 36 members of the international Program Committee (PC) helped to provide at
least three reviews for each of the 44 submitted contributions. Based on the reviews and
PC discussions, 19 high-quality papers (three of them as tool papers) were accepted to
be presented during the conference. The overall acceptance rate for the conference was
43%. The contributions were organized into seven thematic sessions, covering the
following topics on the verification and evaluation of systems: Program Analysis;
Parameter Synthesis; Markovian Agents and Population Models; Dynamical Systems;
Tools; Applications; and Automata Theory and Applications.

These contributions appear as papers in the ensuing proceedings. The program
chairs plan to edit a special issue of the journal ACM TOMACS, where the authors of
selected papers will be invited to contribute significantly extended versions of their
manuscripts containing new results.

Best Paper awards were presented according to QEST policies and tradition. The
Artifact Evaluation process introduced in 2021 was adopted also for this edition of
QEST: a total of 14 submissions participated in the artifact evaluation (artifact sub-
missions were mandatory only for tool papers), eight of which were found to be
repeatable. A special badge marks accepted papers with a valid artifact.

A highlight of QEST 2022 was the presence of two invited speakers, Marta
Kwiatkowska and Pedro D’Argenio. A short contribution on the topics of the keynote
of Marta Kwiatkowska appears in these proceedings.

A few words of acknowledgment are due. First and foremost, we thank the authors
for entrusting their best work to QEST 2022. The review process clearly showed that
the conference was able to set a high bar for acceptance, which makes us proud. Our
thanks go to the QEST steering committee and previous conference chairs as well, for
their help and feedback on the organization process. We were particularly pleased with
the interest in the repeatability evaluation, and we thank the repeatability evaluation
committee and chairs, Arnd Hartmanns and David Safranek, for their work, and all the
authors who participated in this process. We would like to give special thanks to the
local organizing committee of CONFEST and to the steering committee of the QEST
conference series, in particular to its chair Enrico Vicario. Finally, we wish to thank all

https://www.qest.org/
https://www.qest.org/
https://www.qest.org/qest2022/


the PC members and additional reviewers for their hard work in ensuring the quality
of the contributions to QEST 2022, along with all the participants for contributing to
this memorable event.

August 2022 Erika Ábrahám
Marco Paolieri
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Robustness Guarantees for Bayesian Neural
Networks (Invited Extended

Abstract of a Keynote Speaker)

Marta Kwiatkowska

Department of Computer Science, University of Oxford, Oxford, UK
marta.kwiatkowska@cs.ox.ac.uk

http://www.cs.ox.ac.uk/people/marta.kwiatkowska/

Abstract. Bayesian neural networks (BNNs), a family of neural networks with a
probability distribution placed on their weights, have the advantage of being
able to reason about uncertainty in their predictions as well as data. Their
deployment in safety-critical applications demands rigorous robustness guar-
antees. This paper summarises recent progress in developing algorithmic
methods to ensure certifiable safety and robustness guarantees for BNNs, with
the view to support design automation for systems incorporating BNN com-
ponents.

Keywords: Bayesian neural networks • Probabilistic safety • Adversarial
robustness � Certification

1 Introduction

Neural networks (NNs) are being introduced across many domains, including robotics,
autonomous vehicles, security and healthcare, but their deployment in safety-critical
scenarios demands rigorous robustness guarantees in the presence of uncertainty, which
are lacking for NNs. Bayesian neural networks (BNNs) [6] are a family of neural
networks that place distributions over their weights, instead of viewing them as fixed
values, and can thus account for uncertainty in data and predictions. Starting with a
prior distribution and a given likelihood, the application of Bayes’ theorem results in
posterior probability distribution over the BNN weights conditional on the observed
data. This induces posterior predictive distribution on the BNN outputs, with the final
BNN prediction selected from this distribution according to Bayesian decision theory.
BNNs therefore combine the high capacity of NNs while enabling (Bayesian) proba-
bilistic reasoning, since they can be viewed as stochastic processes.

This invited paper describes recent progress in developing methods to provide
robustness guarantees for Bayesian neural networks. These include certifiable adver-
sarial training, statistical evaluation of probabilistic safety, and certified lower

This project was funded by the ERC under the European Union’s Horizon 2020 research
and innovation programme (FUN2MODEL, grant agreement No. 834115, and ELSA: European
Lighthouse on Secure and Safe AI project, grant agreement No. 101070617 under UK guarantee).
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bounding of safety probability. The discussed methods draw on probabilistic reacha-
bility analysis, sampling, statistical model checking and convex relaxation, and con-
stitute part of an effort to develop probabilistic verification and synthesis methodologies
for systems incorporating BNN components.

2 Background on Bayesian Neural Networks

A feed-forward neural network (NN) is a function f w : Rm ! R
n, parametrised by a

vector w 2 R
nw that includes all the weights of the network (for simplicity assume no

bias). We work in a supervised learning scenario, where we are given a dataset D ¼
fðxi; yiÞgnDi¼1 of pairs of inputs and ground truth labels, with xi 2 R

m, and where each
target output y 2 R

n is either a one-hot class vector for classification or a real-valued
vector for regression.

A Bayesian neural network (BNN) [6] is an NN with a distribution placed over the
network parameters w, and can thus be viewed as a stochastic process f w (vector of
random variables w associated to the weights) indexed by the input space. Note that,
for a weight vector w sampled from the distribution of w, the BNN induces a (deter-
ministic) NN f w with weights fixed to w. We employ Bayesian learning to infer the
weight parameters, starting with a prior distribution pwðwÞ over w and likelihood
pðDjwÞ ¼ QnD

i¼1 pðyijxi;wÞ, to compute the posterior distribution pwðwjDÞ of parame-
ters conditioned on data by applying the Bayes formula, i.e., pwðwjDÞ / pðDjwÞpwðwÞ.
This induces the distribution over outputs called the posterior predictive distribution
defined for an unseen point x� by pðy�jx�;DÞ ¼ R

pðy�jx�;wÞpwðwjDÞdw . The final
prediction is obtained based on Bayesian decision theory and is the value
by that minimizes the Bayesian risk of an incorrect prediction according to
the posterior predictive distribution and a loss function L, computed as
ŷ ¼ argminy

R
R

n Lðy; y�Þpðy�jx�;DÞdy�. For classification decisions, we typically work
with 0-1 loss and the optimal decision is then the class that maximises the predictive
distribution, whereas for regression ‘2 loss is used and the optimal decision the
expected value of the BNN output over the posterior distribution.

Unfortunately, the computation of the posterior distribution pwðwjDÞ over weights
cannot be computed analytically and is generally intractable [6]. Instead, approximate
inference methods have been developed for BNNs, of which Hamiltonian Monte Carlo
(HMC) [6] and Variational Inference (VI) [1] are commonly used. HMC considers
Hamiltionian dynamics to speed up the exploration, working with a Markov chain
whose invariant distribution is pwðwjDÞ; and is asymptotically correct [6]. The result of
HMC is a set of samples that approximates pwðwjDÞ. VI proceeds by finding a
Gaussian approximating distribution over the weight space qðwÞ� pwðwjDÞ, where
qðwÞ depends on some hyperparameters that are then iteratively optimized by mini-
mizing a divergence measure between qðwÞ and pwðwjDÞ, thus trading off approxi-
mation accuracy against scalability. Samples can then be efficiently extracted from
qðwÞ.

xii M. Kwiatkowska



3 Certifiable Adversarial Robustness

Though the ability of Bayesian neural networks to capture uncertainty is appealing for
safety-critical applications, they are susceptible to adversarial attacks. In [7], a prin-
cipled Bayesian approach was proposed for incorporating adversarial robustness in the
posterior inference procedure of BNNs. To this end, the robustness requirement is
formulated as the worst-case prediction over an adversarial input ball of radius e� 0
induced by a user-defined probability density function pe, and the standard
cross-entropy likelihood model was extended by marginalising the network output over
pe called robust likelihood. Further, for any e[ 0, certified lower bounds to the robust
likelihood can be computed by employing interval bound propagation techniques. This
novel adversarial training procedure adapts naturally to the main approximate inference
techniques employed for training of BNNs, including HMC and VI. An experimental
evaluation in [7] demonstrated that the robust likelihood can double the maximal safe
radius for the standard model and results in better calibrated uncertainty when pre-
dicting out-of-distribution samples.

4 Probabilistic Safety Evaluation

Safe decision making is important in autonomous scenarios, where it can benefit from
uncertainty estimates being propagated through the decision pipeline. In [5], a setting
involving an end-to-end BNN autonomous driving controller based on NVIDIA’s
PilotNet was considered, which can be viewed as a discrete-time stochastic process,
and a framework was proposed for evaluating safety of the controller’s decisions. Two
properties were considered, probabilistic safety, i.e., the probability that the controller
will maintain the safety of the car for a given time horizon, and real-time decision
confidence, i.e., the probability that the BNN is certain of a given decision. We remark
that probabilistic safety represents a probabilistic variant of the notion of safety [3]
commonly used to certify deterministic NNs. A statistical model checking framework
based on [2] is employed to evaluate robustness of these properties to changes in
weather, location and observation noise with a priori confidence interval guarantees
(using Chernoff bounds) in a simulated scenario. Here, we exploit the fact that sam-
pling BNN weights results in a deterministic NN, which can be checked using con-
ventional methods for NNs, and the proportion of sampled NNs that are safe yields a
probability estimate of BNN safety. [5] also shows how to quantify the uncertainty
of the controller’s decisions and utilise uncertainty thresholds in order to guarantee the
safety of the self-driving car with high probability. Separately, [4] study infinite-time
horizon robustness properties for BNNs.

5 Certified Bounds on Safety Probability

Probabilistic safety evaluation based on [2] can only provide guarantees in the form of
confidence intervals, which may not be sufficient for highly safety-critical systems. [8]
considered certification of (lower bounds on) the safety probability. The method is
based on observing that probabilistic safety translates into computing the probability

Robustness Guarantees for Bayesian Neural Networks xiii



that adversarial perturbations of an input cause small variations in the BNN output. For
BNNs, this involves working with posterior probability and showing that the com-
putation of probabilistic safety for BNNs is equivalent to computing the measure, w.r.t.
BNN posterior, of the set of weights for which the resulting deterministic NN is safe,
i.e., robust to adversarial perturbations. Once the set of such weights is computed,
relaxation techniques from non-linear optimisation (interval bound propagation and
linear bound propagation) are employed to check whether all the networks instantiated
by these weights are safe. This yields lower bounds on the probability for the case of
BNNs trained with VI, but the method extends to other approximate Bayesian inference
techniques. Experimental evaluation on the VCAS collision-avoidance case study
demonstrates the practicality of the method. In follow-on work, [9] consider also
synthesis of certified policies for BNNs.

6 Conclusion and Further Work

We have provided an overview of algorithmic techniques developed to ensure certified
guarantees of safety and adversarial robustness for BNNs. Certification of BNNs is
more involved than for NNs, because of the need to consider weight intervals instead of
single values, and presents significant computational challenges that have so far been
tackled using a combination of numerical, statistical and symbolic techniques. Despite
encouraging progress, much remains to be done, including upper bounding of safety,
certified bounds on decision probability, temporal logic specifications, strategy syn-
thesis and explanations for BNNs.
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Moment-Based Invariants
for Probabilistic Loops

with Non-polynomial Assignments

Andrey Kofnov1(B), Marcel Moosbrugger2, Miroslav Stankovič2,
Ezio Bartocci2, and Efstathia Bura1

1 Applied Statistics, Faculty of Mathematics and Geoinformation,
TU Wien, Vienna, Austria

andrey.kofnov@tuwien.ac.at
2 Faculty of Informatics, TU Wien, Vienna, Austria

Abstract. We present a method to automatically approximate moment-
based invariants of probabilistic programs with non-polynomial updates
of continuous state variables to accommodate more complex dynamics.
Our approach leverages polynomial chaos expansion to approximate non-
linear functional updates as sums of orthogonal polynomials. We exploit
this result to automatically estimate state-variable moments of all orders
in Prob-solvable loops with non-polynomial updates. We showcase the
accuracy of our estimation approach in several examples, such as the
turning vehicle model and the Taylor rule in monetary policy.

Keywords: Probabilistic programs · Prob-solvable loops · Polynomial
Chaos Expansion · Non-linear updates

1 Introduction

Probabilistic programs (PPs) are becoming widely employed in many areas
including AI applications, security/privacy protocols or modeling stochastic
dynamical systems. The study of the properties of these processes requires knowl-
edge of their distribution; that is, the distribution(s) of the random variable(s)
generated by executing the probabilistic program.

The characterization of many distributions can be accomplished via their
moments. In [2] the authors introduced a class of probabilistic programs, Prob-
solvable loops, for which moment-based invariants over the state variables of
the programs are automatically computed as a closed-form expression. A Prob-
solvable loop consists of an initialization section and a non-nested loop where
the variables can be updated by drawing from distributions determined by their
moments (e.g., Bernoulli, Normal) and using polynomial arithmetic. However,

Supported by the Vienna Science and Technology Fund (WWTF ICT19-018), the TU
Wien Doctoral College (SecInt), the FWF research projects LogiCS W1255-N23 and
P 30690-N35, and the ERC Consolidator Grant ARTIST 101002685.

c© Springer Nature Switzerland AG 2022
E. Ábrahám and M. Paolieri (Eds.): QEST 2022, LNCS 13479, pp. 3–25, 2022.
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4 A. Kofnov et al.

modeling complex dynamics often requires the use of non-polynomial updates,
such as in the turning vehicle example in Fig. 1. An open research question is how
to leverage the class of Prob-solvable loops to estimate moment-based invariants
as closed-form expressions for probabilistic loops with updates governed by non-
polynomial non-linear functions.

Fig. 1. On the top left a probabilistic loop modeling the behaviour of a turning vehi-
cle [25] using non-polynomial (cos, sin) updates in the loop body. On top right a
Prob-Solvable loop obtained by approximating the cos, sin functions using polynomial
chaos expansion (up to 5th degree). In the middle the expected position (x, y) com-
puted automatically from the Prob-Solvable loop as a closed-form expression in the
number of the loop iterations n. In the bottom center and right the comparison among
the true and the estimated distribution for a fixed iteration (we execute the loop for
n = 20 iterations and 8 · 105 repetitions).

At the heart of our approach is the decomposition of a random function
into a linear combination of basis functions that are orthogonal polynomials. We
accommodate non-polynomial updates of program variables to allow for more
complicated dynamics. By expressing the non-linear functionals of the updates as
sums of orthogonal polynomials, we can apply the approach in [2,3] to automat-
ically estimate the moments of all the program random variables. Our approach
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is within the framework of general polynomial chaos expansion (gPCE) [33].
As such, it converges to the truth with guaranteed recovery of the moments of
random variables with complex distributions. We focus on state variables with
continuous distributions with updates that are square-integrable functionals and
use general polynomial chaos expansion to represent them. In Fig. 1 we illustrate
our approach via the turning vehicle example, where we estimate the expected
position of a vehicle. In this example, we approximate the original cosine and
sine functions with 5th degree polynomials and obtain a Prob-solvable loop. This
enables the automatic computation of the moments in closed-form at each loop
iteration (n) using the approach proposed in [2].

Related Work. [25] proposed polynomial forms to represent distributions of state
variables. Polynomial forms are generalizations of affine forms [4] and use the
Taylor series expansion to represent functions of random variables generated in a
PP. Functions can be only approximated in a small interval around a fixed point,
otherwise high order derivatives are required to guarantee sufficient accuracy of
the approximation. As a consequence, functions with unbounded support cannot
be handled with this approach.

So-called Taylor models have been proposed in [5,19,23] for reachability anal-
ysis of (non-probabilistic) non-linear dynamical systems. Taylor models combine
polynomials and error intervals to capture the set of reachable states after some
fixed time horizon. Application of Taylor series expansions for generalized func-
tions of probabilistic distributions can also be found in [27,30].

[17] introduced trigonometric and mixed-trigonometric-polynomial moments
to obtain an exact description of the moments of uncertain states for nonlinear
autonomous and robotic systems over the planning horizon. This approach can
only handle systems encoded in PPs, where all nonlinear transformations take
standard, trigonometric, or mixed-trigonometric polynomial forms.

Polynomial chaos expansion based methods have been extensively used for
uncertainty quantification in engineering problems of solid and fluid mechanics
(e.g. [9,13,16]), computational fluid dynamics (e.g., [18]), flow through porous
media [11,12], thermal problems [15], analysis of turbulent velocity fields [6,
20], differential equations (e.g., [31,33]), and, more recently, geosciences and
meteorology (e.g., [7,10,14]).

Outline. Section 2 reviews the notion of Prob-solvable Loop and the general the-
ory of Polynomial Chaos Expansion (PCE). Section 3 presents our PCE algo-
rithm and the conditions under which it produces accurate approximations to
general random functions in probabilistic program loops. Section 4 combines
general PCE with Prob-solvable loops to automatically compute moments of
all orders of state variables. There, we also characterize the structure a proba-
bilistic program ought to have in order to be compatible with the Prob-solvable
loops approach for computation of moments. Section 5 demonstrates the accu-
racy and feasibility of our approach on different benchmarks as compared with
the state-of-the-art. We conclude in Sect. 6.
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2 Preliminaries

2.1 Prob-Solvable Loops

[2] defined the class of Prob-solvable loops for which moments of all orders of
program variables can be computed symbolically: given a Prob-solvable loop and
a program variable x, their method computes a closed-form solution for E(xk

n)
for arbitrary k ∈ N, where n denotes the nth loop iteration. Prob-solvable loops
are restricted to polynomial variable updates.

Definition 1 (Prob-solvable loops). Let m ∈ N and x1, . . . xm denote real-
valued program variables. A Prob-solvable loop with program variables x1, . . . xm

is a loop of the form
I; while(true){U},

where

– I is a sequence of initial assignments over a subset of {x1, . . . , xm}. The
initial values of xi can be drawn from a known distribution. They can also be
real constants.

– U is the loop body and is a sequence of m random updates, each of the form:

xi = Dist or xi := axi + Pi(x1, . . . xi−1)

where a ∈ R, Pi ∈ R[x1, . . . , xi−1] is a polynomial over program variables
x1, . . . , xi−1 and Dist is a distribution independent from program variables
with computable moments.

Many real-life systems exhibit non-polynomial dynamics and require more
general updates, such as, for example, trigonometric or exponential functions.
In this work, we develop a method that allows approximation of non-polynomial
assignments in probabilistic loops by polynomial assignments. In doing so, we
can use the methods for Prob-solvable loops to compute the moments for a
broader class of stochastic systems.

The programming model we use (Definition 1) is a simplified version of the
Prob-solvable model as introduced in [2]. Our approach, described in the fol-
lowing sections, is not limited to this simple fragment of the Prob-solvable and
can be used for Prob-solvable loops as originally defined as well as other more
general probabilistic loops. The only requirement is that the loops satisfy the
conditions in Sect. 3.1.

2.2 Polynomial Chaos Expansion

Polynomial chaos expansion recovers a random variable in terms of a linear
combination of functionals whose entries are known random variables, sometimes
called germs, or, basic variables. Let (Ω,Σ,P) be a probability space, where Ω
is the set of elementary events, Σ is a σ-algebra of subsets of Ω, and P is a
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probability measure on Σ. Suppose X is a real-valued random variable defined
on (Ω,Σ,P), such that

E(X2) =
ˆ

Ω

X2(ω)dP(ω) < ∞. (1)

The space of all random variables X satisfying (1) is denoted by L2(Ω,Σ,P).
That is, the elements of L2(Ω,Σ,P) are real-valued random variables defined on
(Ω,Σ,P) with finite second moments. If we define the inner product as

E(XY ) = (X,Y ) =
ˆ

Ω

X(ω)Y (ω)dP(ω) (2)

and norm ||X|| =
√
E(X2) =

√´
Ω

X2(ω)dP(ω), then L2(Ω,Σ,P) is a Hilbert
space; i.e., an infinite dimensional linear space of functions endowed with an
inner product and a distance metric. Elements of a Hilbert space can be uniquely
specified by their coordinates with respect to an orthonormal basis of functions,
in analogy with Cartesian coordinates in the plane. Convergence with respect
to || · || is called mean-square convergence. A particularly important feature of a
Hilbert space is that when the limit of a sequence of functions exists, it belongs
to the space.

The elements in L2(Ω,Σ,P) can be classified in two groups: basic and generic
random variables, which we want to decompose using the elements of the first
set of basic variables. [8] showed that the basic random variables that can be
used in the decomposition of other functions have finite moments of all orders
with continuous probability density functions (pdf).

The σ-algebra generated by the basic random variable Z is denoted by σ(Z).
Suppose we restrict our attention to decompositions of a random variable X =
g(Z), where g is a function with g(Z) ∈ L2(Ω, σ(Z),P) and the basic random
variable Z determines the class of orthogonal polynomials {φi(Z), i ∈ N},

〈φi(Z), φj(Z)〉 =
ˆ

Ω

φi(Z(ω))φj(Z(ω))dP(ω)

=
ˆ

φi(x)φj(x)fZ(x)dx =

{
1 i = j

0 i �= j
(3)

which is a polynomial chaos basis. If Z is normal with mean zero, the Hilbert
space L2(Ω, σ(Z),P) is called Gaussian and the related set of polynomials is rep-
resented by the family of Hermite polynomials (see, for example, [33]) defined on
the whole real line. Hermite polynomials form a basis of L2(Ω, σ(Z),P). There-
fore, every random variable X with finite second moment can be approximated
by the truncated PCE

X(d) =
d∑

i=0

ciφi(Z), (4)
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for suitable coefficients ci that depend on the random variable X. The trunca-
tion parameter d is the highest polynomial degree in the expansion. Since the
polynomials are orthogonal,

ci =
1

||φi||2 〈X,φi〉 =
1

||φi||2 〈g, φi〉 =
1

||φi||2
ˆ
R

g(x)φi(x)fZ(x)dx. (5)

The truncated PCE of X in (4) converges in mean square to X [8, Sec. 3.1]. The
first two moments of (4) are determined by

E(X(d)) = c0, (6)

Var(X(d)) =
d∑

i=1

c2i ||φi||2. (7)

Representing a random variable by a series of Hermite polynomials in a count-
able sequence of independent Gaussian random variables is known as Wiener-
Hermite polynomial chaos expansion. In applications of Wiener-Hermite PCEs,
the underlying Gaussian Hilbert space is often taken to be the space spanned by
a sequence {Zi, i ∈ N} of independent standard Gaussian basic random variables,
Zi ∼ N (0, 1). For computational purposes, the countable sequence {Zi, i ∈ N}
is restricted to a finite number k ∈ N of random variables. The Wiener-Hermite
polynomial chaos expansion converges for random variables with finite second
moment. Specifically, for any random variable X ∈ L2(Ω, σ({Zi, i ∈ N}),P), the
approximation (4) satisfies

X
(d)
k → X as d, k → ∞ (8)

in mean-square convergence. The distribution of X can be quite general; e.g.,
discrete, singularly continuous, absolutely continuous as well as of mixed type.

3 Polynomial Chaos Expansion Algorithm

3.1 Random Function Representation

In this section, we state the conditions under which the estimated polynomial is
an unbiased and consistent estimator and has exponential convergence rate.

Suppose k continuous random variables Z1, . . . , Zk are used to introduce
stochasticity in a PP, with corresponding cumulative distribution functions (cdf)
FZi

for i = 1, . . . , k. Also, suppose all k distributions have probability density
functions, and let Z = (Z1, . . . , Zk) with cdf FZ. We assume that the elements
of Z satisfy the following conditions:

(A) Zi, i = 1, . . . , k, are independent.
(B) We consider functions g such that g(Z) ∈ L2(Q, FZ), where Q is the support

of the joint distribution of Z = (Z1, . . . , Zk)1.
1 Ω is dropped from the notation as the sample space is not important in our formu-

lation.
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(C) All random variables Zi have distributions that are uniquely defined by their
moments.2

Under condition (A), the joint cdf of the components of Z is FZ =
∏k

i=1 FZi
.

To ensure the construction of unbiased estimators with optimal exponential con-
vergence rate (see [8,33]) in the context of probabilistic loops, we further intro-
duce the following assumptions:

(D) g is a function of a fixed number of basic variables (arguments) over all loop
iterations.

(E) If Z(j) = (Z1(j), . . . , Zk(j)) is the stochastic argument of g at iteration
j, then FZi(j)(x) = FZi(l)(x) for all pairs of iterations (j, l) and x in the
support of FZi

.

If Conditions (D) and (E) are not met, then the polynomial coefficients in the
PCE need be computed for each loop iteration individually to ensure optimal
convergence rate. It is straightforward to show the following proposition.

Proposition 1. If functions f and g satisfy conditions (B) and (D), and Z =
(Z1, . . . , Zk1), Y = (Y1, . . . , Yk2) satisfy conditions (A), (C) and (E) and are
mutually independent, then their sum, f(Z) + g(Y), and product, f(Z) · g(Y),
also satisfy conditions (B) and (D).

3.2 PCE Algorithm

Let Z1, . . . , Zk be independent continuous random variables, with respective cdfs
Fi, satisfying conditions (A), (B) and (C), and Z = (Z1, . . . , Zk)T with cdf
F =

∏k
i=1 Fi and support Q. The function g : R

k → R, with g ∈ L2(Q,F)
can be approximated with the truncated orthogonal polynomial expansion, as
described in Fig. 2,

g(Z) ≈ ĝ(Z) =
∑

di∈{0,...,d̄i},
i=1,...,k

c(d1, . . . , dk)zd1
1 · · · zdk

k =
L∑

j=1

cj

k∏

i=1

p̄
dji

i (zi), (9)

where

– p̄
dji

i (zi) is a polynomial of degree dji, and belongs to the set of orthogonal
polynomials with respect to FZi

that are calculated with the Gram-Schmidt
orthogonalization procedure3;

– d̄i = max
j

(dji) is the highest degree of the univariate orthogonal polynomial,

for i = 1, . . . , k;
2 Conditions that ascertain this are given in Theorem 3.4 of [8].
3 Generalized PCE typically entails using orthogonal basis polynomials specific to

the distribution of the basic variables, according to the Askey scheme of [32,33].
We opted for the most general procedure that can be used for any basic variable
distribution.
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– L =
k∏

i=1

(1 + d̄i) is the total number of multivariate orthogonal polynomials

and equals the truncation constant;
– cj are the Fourier coefficients.

Fig. 2. Illustration of PCE algorithm

The Fourier coefficients are calculated using

cj =
ˆ

Q
g(z1, . . . , zk)pdji

i (zi)dF =
ˆ

...
ˆ

Q
g(z1, ..., zk)

k∏

i=1

p̄
dji

i (zi)dFZk
...dFZ1 ,

(10)

by Fubini’s theorem.

Example 1. Returning to the Turning Vehicle model in Fig. 1, the non-
polynomial functions to approximate are g1 = cos and g2 = sin from the updates



Moment-Based Invariants for PPs with Non-polynomial Updates 11

of program variables x, y, respectively. In both cases, we only need to consider
a single basic random variable, Z ∼ N (0, 0.01) (ψ in Fig. 1).

For the approximation, we use polynomials of degree up to 5. Eq. (9) has the
following form for the two functions,

ĝ1(z) = cos(ψ) = a0 + a1ψ + ... + a5ψ
5 (11)

and
ĝ2(z) = sin(ψ) = b0 + b1ψ + ... + b5ψ

5. (12)

We compute the coefficients ai, bi in Eqs. (11)–(12) using (10) to obtain the
values shown in Fig. 1.

Complexity. Assuming the expansion is carried out up to the same polynomial
degree d for each basic variable, d̄i = d, ∀i = 1, ..., k. This implies d = k

√
L − 1.

The complexity of the scheme is O(sd2k + skdk), where O(s) is the complexity
of computing univariate integrals.

The complexity of our approximation scheme is comprised of two parts: (1)
the orthogonalization process and (2) the calculation of coefficients. Regarding
(1), we orthogonalize and normalize k sets of d basic linearly independent polyno-
mials during the Gram-Schmidt process. For degree d = 1, we need to calculate
one integral, the inner product with the previous polynomial. Additionally, we
need to compute one more integral, the norm of itself (for normalization). For
each subsequent degree d′, we must calculate d′ additional new integrals. The
computation of each integral has complexity O(s). Regarding (2), the computa-
tion of the coefficients requires calculating L = (d + 1)k integrals with k-variate
functions as integrands.

We define the approximation error to be

se(ĝ) =

√√√√
ˆ

Q
(g(z1, ..., zk) − ĝ(z1, ..., zk))2 dFZ1 . . . dFZk

(13)

since E(ĝ(Z1, ..., Zk)) = g(Z1, · · · , Zk) by construction.
The implementation of this algorithm may become challenging when the

random functions have complicated forms and the number of parametric uncer-
tainties is large. In this case, the calculation of the PCE coefficients involves
high dimensional integration, which may prove difficult and time prohibitive for
real-time applications [26].

4 Prob-Solvable Loops for General Non-polynomial
Functions

PCE4 allows incorporating non-polynomial updates into Prob-solvable loop pro-
grams and use the algorithm in [2] and exact tools, such as Polar [21], for
moment (invariant) computation. We identify two classes of programs based on
how the distributions of the random variables generated by the programs vary.
4 We provide further details about PCE computation in Appendix 2 and 3.
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4.1 Iteration-Stable Distributions of Random Arguments

Let P be an arbitrary Prob-solvable loop and suppose that a (non-basic) state vari-
able x ∈ P has a non-polynomial L2-type update g(Z), where Z = (Z1, ..., Zk)T

is a vector of (basic) continuous, independent, and identically distributed random
variables across iterations. That is, if fZj(n) is the pdf of the random variable Zj

in iteration n, then fZj(n) ≡ fZj(n′), for all iterations n, n′ and j = 1, . . . , k.
The basic random variables Z1, . . . , Zk and the update function g satisfy condi-
tions (A)–(E) in Sect. 3.1. For the class of Prob-solvable loops where all variables
with non-polynomial updates satisfy these conditions, the computation of the
Fourier coefficients in the PCE approximation (9) can be carried out as explained
in Sect. 3.2. In this case, the convergence rate is optimal.

4.2 Iteration Non-stable Distribution of Random Arguments

Let P be an arbitrary Prob-solvable loop and suppose that a state variable x ∈ P
has a non-polynomial L2-type update g(Z), where Z = (Z1, ..., Zk)T is a vector
of continuous independent but not necessarily identically distributed random
variables across iterations. For this class of Prob-solvable loops, conditions (A)–
(C) in Sect. 3.1 hold, but (D) and/or (E) may not be fulfilled. In this case, we can
ensure optimal exponential convergence by fixing the number of loop iterations.
For unbounded loops, we describe an approach converging in mean-square and
establish its convergence rate next.

Conditional Estimator Given Number of Iterations. Let N be an a priori fixed
finite integer representing the maximum iteration number. The set {1, ..., N} is
a finite sequence of iterations for the Prob-solvable loop P.

Iterations are executed sequentially for n = 1, . . . , N , which allows the esti-
mation of the final functional that determines the target state variable at each
iteration n ∈ {1, ..., N} and its set of supports. Knowing these features, we can
carry out N successive expansions. Let P (n) be a PCE of g(Z) for iteration n.
We introduce an additional program variable c that counts the loop iterations.
The variable c is initialized to 0 and incremented by 1 at the beginning of every
loop iteration. The final estimator of g(Z) can be represented as

ĝ(Z) =
N∑

n=1

P (n)

⎡

⎣
N∏

j=1,j �=n

(c − j)
n − j

⎤

⎦ . (14)

Replacing non-polynomial functions with (14) results in a program with only
polynomial-type updates and constant polynomial structure; that is, polynomi-
als with coefficients that remain constant across iterations. Moreover, the esti-
mator is unbiased with optimal exponential convergence on the set of iterations
{1, ..., N} [33].
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Unconditional Estimator. Here the iteration number is unbounded. Without
loss of generality, we consider a single basic random variable Z; that is, k = 1.
The function g(Z) is scalar valued and can be represented as a polynomial of
nested L2 functions, which depend on polynomials of the argument variable.
Each nested functional argument is expressed as a sum of orthogonal polynomials
yielding the final estimator, which is itself a polynomial.

Since PCE converges to the function it approximates in mean-square (see [8])
on the whole interval (argument’s support), PCE converges on any sub-interval
of the support of the argument in the same sense.

Let us consider a function g with sufficiently large domain, and a random
variable Z with known distribution and support. For example, g(Z) = eZ , with
Z ∼ N(μ, σ2). The domain of g and the support of Z are the real line. We can
expand g into a PCE with respect to the distribution of Z as

g(Z) =
∞∑

i=0

cipi(Z). (15)

The distribution of Z is reflected in the polynomials in (15). Specifically, pi, for
i = 0, 1, . . ., are Hermite polynomials of special type in that they are orthogonal
(orthonormal) with respect to N(μ, σ2). They also form an orthogonal basis of
the space of L2 functions. Consequently, any function in L2 can be estimated
arbitrarily closely by these polynomials. In general, any continuous distribution
with finite moments of all orders and sufficiently large support can also be used
as a model for basic variables in order to construct a basis for L2 (see [8]).

Now suppose that the distribution of the underlying variable Z is unknown
with pdf f(Z) that is continuous on its support [a, b]. Then, there exists another
basis of polynomials, {qi}∞

i=0, which are orthogonal on the support [a, b] with
respect to the pdf f(Z). Then, on the interval [a, b], g(Z) =

∑∞
i=0 kiqi(Z), and

Ef [g(Z)] = Ef

[∑M
i=0 kiqi(Z)

]
, ∀M ≥ 0.

Since [a, b] ⊂ R, the expansion
∑∞

i=0 cipi(Z) converges in mean-square to
g(Z) on [a, b]. In the limit, we have g(Z) =

∑∞
i=0 cipi(Z) on the interval [a, b].

Also, Ef (g(Z)) = Ef (
∑∞

i=0 cipi(Z)) for the true pdf f on [a, b]. In general,

though, it is not true that Ef (g(Z)) = Ef

(∑M
i=0 cipi(Z)

)
for any arbitrary

M ≥ 0 and any pdf f(Z) on [a, b], as the estimator is biased.
To capture this discrepancy, we define the approximation error as

e(M) = Ef

[

g(Z) −
M∑

i=0

cipi(Z)

]2

= Ef

[ ∞∑

i=M+1

cipi(Z)

]2

. (16)

Computation of Error Bound. Assume the true pdf fZ of Z is supported on
[a, b]. Also, assume the domain of g is R. The random function g(Z) has PCE on
the whole real line based on Hermite polynomials {pi(Z)}∞

i=0 that are orthogonal
with respect to the standard normal pdf φ. The truncated expansion estimate
of (15) with respect to a normal basic random variable is
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ĝ(Z) =
M∑

i=0

cipi(Z). (17)

We compute an upper-bound for the approximation error for our scheme in
Theorem 1.

Theorem 1. Suppose Z has density f supported on [a, b], g : R → R is in L2,
and φ denotes the standard normal pdf. Under (15) and (17),

‖g(Z) − ĝ(Z)‖2f =
ˆ b

a

(g(z) − ĝ(z))2 fZ(z)dz

≤
(

2
min (φ(a), φ(b))

+ 1
)
Varφ (g(Z)) . (18)

The upper bound in (18) depends only on the support of f , the pdf of Z,
and the function g. If Z is standard normal (f = φ), then the upper bound in
(18) equals Varφ(g(Z)). We provide the proof of Theorem 1 in Appendix 1.

Remark 1. The approximation error inequality in [22, Lemma 1],
∥∥
∥∥∥
g(Z) −

T∑

i=0

cipi(Z)

∥∥
∥∥∥

≤ ‖g(Z)(k)‖
∏k−1

i=0

√
T − i + 1

, (19)

is a special case of Theorem 1 when Z ∼ N (0, 1) and f = φ, and the polynomials

pi are Hermite. In this case, the left hand side of (19) equals
√∑∞

i=n+1 c2i .

Although Theorem 1 is restricted to distributions with bounded support, the
approximation in (17) also converges for distributions with unbounded support.

5 Evaluation

In this section, we evaluate our approach on four benchmarks from the literature.
We use our method based on PCE to approximate non-polynomial functions.
After PCE, all benchmark programs fall into the class of Prob-solvable loops.
We use the static analysis tool Polar [21] on the resulting Prob-solvable loops
to compute the moments of the program variables parameterized by the loop
iteration n. All experiments were run on a machine with 32 GB of RAM and a
2.6 GHz Intel i7 (Gen 10) processor.

Taylor Rule Model. Central banks set monetary policy by raising or lowering
their target for the federal funds rate. The Taylor rule5 is an equation intended
to describe the interest rate decisions of central banks. The rule relates the target
of the federal funds rate to the current state of the economy through the formula

it = r∗
t + πt + aπ(πt − π∗

t ) + ay(yt − ȳt),
5 It was proposed by the American economist John B. Taylor as a technique to stabilize

economic activity by setting an interest rate [29].
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Fig. 3. Probabilistic loops: (A) Taylor rule [29], (B) 2D Robotic Arm [4] (in the figure
we use the inner loop as syntax sugar to keep the program compact), (C) Rimless
Wheel Walker [28].

where it is the nominal interest rate, r∗
t is the equilibrium real interest rate,

r∗
t = r, πt is inflation rate at t, π∗

t is the short-term target inflation rate at t,
yt = log(1 + Yt), with Yt the real GDP, and ȳt = log(1 + Ȳt), with Ȳt denoting
the potential real output.

Highly-developed economies grow exponentially with a sufficiently small rate
(e.g., according to the World Bank,6 the average growth rate of the GDP in
the USA in 2001–2020 equals 1,73%). Therefore, we set the growth rate of the
potential output to 2%. Moreover, we follow [1] and model inflation as a martin-
gale process; that is, Et [πt+1] = πt. The Taylor rule model is described by the
program in Fig. 3, A.

Figure 4 illustrates the performance of our approach as a function of the
polynomial degree of our approximation. The approximations to the true first

6 https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG?locations=US.

https://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG?locations=US
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Fig. 4. The approximations and their relative errors for the Taylor rule model.

moment (in red) are plotted in the left panel and the relative errors for the
first and second moments are in the middle and the right panels, respectively,
over iteration number. The y-axis in both middle and right panels shows relative
errors calculated as rel.err = |est − true|/true. All plots show that the approx-
imation error is low and that it deteriorates as the polynomial degree increases
from 3 to 9, across iterations. The drop is sharper for the second moment.

Turning Vehicle Model. The Turning vehicle model is described by the pro-
gram in Fig. 1. The model was introduced in [25] and depicts the position of
a vehicle, as follows. The state variables are (x, y, v, ψ), where (x, y) is the
vehicle’s position with velocity v and yaw angle ψ. The vehicle’s velocity is
stabilized around v0 = 10 m/s. The dynamics are modelled by the equations
x(t + 1) = x(t) + τv cos(ψ(t)), y(t + 1) = y(t) + τv sin(ψ(t)), v(t + 1) =
v(t) + τ(K(v(t) − v0) + w1(t + 1)), and ψ(t + 1) = ψ(t) + w2(t + 1). The distur-
bances w1 and w2 have distributions w1 ∼ U [−0.1, 0.1], w2 ∼ N(0, 0.1). More-
over, as in [25], we set K = −0.5. Initially, the state variables are distributed as:
x(0) ∼ U [−0.1, 0.1], y(0) ∼ U [−0.5,−0.3], v(0) ∼ U [6.5, 8.0], ψ(0) ∼ N(0, 0.01).
We allow all normally distributed parameters take values over the entire real
line, in contrast to [25] who could not accommodate distributions with infinite
support and required the normal variables to take values over finite intervals.

This program requires the approximation of trigonometric functions for the
computation of the location of the vehicle at time t. We used PCEs of degree
3, 5 and 9, built on a basic standard normal random variable, to estimate the
dynamics of x and y, the first and second coordinates of the vehicle’s location. For
all three PCEs for sin, the Prob-solvable loops tool estimates the first moment
of y to be the same, namely −2/5. We report the value of the first moment of
x in Table 1. The polynomial form of [25] can not be applied to approximate
any moments of x and y. We see that our PCE based estimate is very close to
the “true” first moment of x, with the 9th degree PCE being the closest, as
expected.

Rimless Wheel Walker. The Rimless wheel walker [25,28] is a system that
describes a human walking. The system models a rotating wheel consisting of
ns spokes, each of length L, connected at a single point. The angle between
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Table 1. Evaluation of our approach on 4 benchmarks. Poly form = the interval for
the target as reported in [25]; Sim = target approximated through 106 samples; Deg.
= maximum degrees used for the approximation of the non-linear functions; Result =
result of our method per degree; Runtime = execution time of our method in seconds
(time of PCE + time of Polar).

consecutive spokes is θ = 2π/ns. We set L = 1 and θ = π/6. The Rimless wheel
walker is modeled by the program in Fig. 3, C. For more details we refer to [25].

Robotic Arm Model. Proposed and studied in [4,24,25], this system models
the position of a 2D robotic arm. The arm moves through translations and rota-
tions. Moreover, at every step, errors in movement are modeled with probabilistic
noise. The Robotic arm model is described by the program in Fig. 3, B.

The Rimless wheel walker and the Robotic arm model are the only two bench-
marks from [25] containing non-polynomial updates. In [25], polynomial forms of
degree 2 were used to compute bounding intervals for E(xn) (for fixed n) for the
Rimless wheel walker and the Robotic arm model. Their tool does not support
the approximation of logarithms (required for the Taylor rule model) and distri-
butions with unbounded support (required for the Turning vehicle model). To
facilitate comparison to polynomial forms, our set of benchmarks is augmented
with a version of the Turning vehicle model using truncated normal distribu-
tions instead of normal distributions with unbounded support (Turning vehicle
model (trunc.) in Table 1). We note that the technique in [25] supports more
general probabilistic loops than Prob-solvable loops. However, as already men-
tioned in Sect. 2.1, we emphasize that our results in Sects. 2.2–4 are not limited to
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Prob-solvable loops and can be applied to approximate non-linear dynamics for
more general probabilistic loops.

Table 1 summarizes the evaluation of our approach on these four benchmarks
and of the technique based on polynomial forms of [25] on the directly compa-
rable Turning vehicle model (trunc.), Rimless wheel walker and the Robotic arm
models. Our results illustrate that our method is able to accurately approxi-
mate general non-linear dynamics for challenging programs. Specifically, for the
Rimless wheel walker model, our first moment estimate is reached upon with a
first degree approximation, is close to the truth up to the fourth decimal and
falls in the interval estimate of the polynomial forms technique. For the Robotic
arm model, our results lie outside the interval predicted by the polynomial forms
technique, yet are closer to the simulation (“truth”) calculated with 106 samples.
Moreover, our simulation agrees with the estimation provided in [25].

Our experiments also demonstrate that our method provides suitable approx-
imations in a fraction of the time required by the technique based on polynomial
forms. While polynomial forms additionally provide an error interval, they need
to be computed on an iteration-by-iteration basis. In contrast, our method based
on PCE and Prob-solvable loops computes an expression for the target parame-
terized by the loop iteration n ∈ N (cf. Fig. 1). As a result, increasing the target
iteration does not increase the runtime of our approach.

Both Robotic arm and Rimless wheel walker models contain no stochastic
accumulation: each basic random variable is iteration-stable and can be esti-
mated using the scheme in Sect. 4.1. Therefore, for these two benchmarks, our
estimation converges exponentially to the true values. On the other hand, the
Taylor rule model and the Turning vehicle model contain stochasticity accumula-
tion, which leads to the instability of the distributions of basic random variables.
We apply the scheme in Sect. 4.2 for these two examples.

6 Conclusion

We present an approach to compute the moments of the distribution of ran-
dom outputs in probabilistic loops with non-linear, non-polynomial updates. Our
method is based on polynomial chaos expansion to approximate non-polynomial
general functional assignments. The approximations produced by our technique
have optimal exponential convergence when the parameters of the general non-
polynomial functions have distributions that are stable across all iterations.
We derived an upper bound on the approximation error for the case of unsta-
ble parameter distributions. Our methods can accommodate non-linear, non-
polynomial updates in classes of probabilistic loops amenable to automated
moment computation, such as the class of Prob-solvable loops. Moreover, our
techniques can be used for moment approximation for uncertainty quantification
in more general probabilistic loops. Our experiments demonstrate the ability of
our methods to characterize non-polynomial behavior in stochastic models from
various domains via their moments, with high accuracy and in a fraction of the
time required by other state-of-the-art tools.
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Appendix 1. Proof of Theorem 1

Proof (Theorem 1). Since f(z) = 0 ∀z /∈ [a, b],

∥
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= A + B + C + D (20)

Since f(z) − φ(z) ≤ φ(z) + f(z), D satisfies
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)2

dz,

with (1 + Φ(b) − Φ(a)) < 2. Now,

1 ≤ φ(z)
min (φ(a), φ(b))

∀z ∈ [a, b] ,
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and hence
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By (21) and (15), (20) satisfies
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since Varφ(g(Z)) =
∑∞

i=1 c2i . In consequence, the error (16) can be upper
bounded by (18).

Appendix 2. Computation Algorithm in Detail

We let D ∈ Z
L×k be the matrix with each row j = 1, . . . , L containing the

degrees of Zi (in column i) of the corresponding polynomial in (9). For example,
the first row corresponds to the constant polynomial (1), and the last row to
p̄d̄1
1 (z1) . . . p̄d̄k

k (zk). That is,

D = (dji)j=1,...,L, i=1,...,k =

Z1 Z2 Z3 ... Zk⎛

⎜⎜
⎝

⎞

⎟⎟
⎠

0 0 0 0 0
0 0 0 0 1
...

...
...

. . .
...

d̄1 d̄2 d̄3 · · · d̄k

The computer implementation of the algorithm computes cj in (10) for each j
combination (row) of degrees of the corresponding polynomials.
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We apply the above described computation to the following example. Suppose
that X has a truncated normal distribution with parameters μ = 2, σ = 0.1, and
is supported over [1, 3], and that Y is uniformly distributed over [1, 2]. We expand
g(x, y) = log(x + y) along X and Y , as follows. We choose the relevant highest
degrees of expansion to be d̄X = 2 and d̄Y = 2. The pdf of Y is fY (y) ≡ 1, and

of X is fX(x) = e− (x−2)2

0.02 /0.1α
√

2π, where the truncation multiplier α equals
3́

1

e− (x−2)2

0.02 dx/0.1
√

2π.

The two sets of polynomials, {pi} = {1, x, x2} and {qi} = {1, y, y2}, are
linearly independent. Applying the Gram-Schmidt procedure to orthogonalize
and normalize them, we obtain p̄0(x) = 1, p̄1(x) = 10x−20, p̄2(x) = 70.71067x2−
282.84271x + 282.13561, and q̄0(y) = 1, q̄1(y) = 3.4641y − 5.19615, q̄2(y) =
13.41641y2 − 40.24922y + 29.06888. In this case, L = (1 + d̄X) ∗ (1 + d̄Y ) = 9,
and D has 9 rows and 2 columns,

D = (dji) =

X Y
⎛

⎜⎜
⎜⎜⎜⎜⎜
⎜⎜⎜⎜
⎝

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎟⎟⎟⎟
⎠

0 0 ← c1 = 1.2489233
0 1 ← c2 = 0.0828874
0 2 ← c3 = −0.0030768
1 0 ← c4 = 0.0287925
1 1 ← c5 = −0.0023918
1 2 ← c6 = 0.0001778
2 0 ← c7 = −0.0005907
2 1 ← c8 = 0.0000981
2 2 ← c9 = −0.0000109

Iterating through the rows of matrix D and choosing the relevant combination
of degrees of polynomials for each variable, we calculate the Fourier coefficients

cj =
ˆ 3

1

ˆ 2

1

log(x + y)p̄dj1(x)q̄dj2(y)fX(x)fY (y)dydx.

The final estimator can be derived by summing up the products of each coefficient
and the relevant combination of polynomials:

log(x + y) ≈ ĝ(x, y) =
9∑

j=1

cj p̄dj1(x)q̄dj2(y) ≈

− 0.01038x2y2 + 0.05517x2y − 0.10031x2

+ 0.06538xy2 − 0.37513xy + 0.86515x

− 0.13042y2 + 0.93998y − 0.59927.

The estimation error is

se(ĝ) =

√√√√√

3ˆ

1

2ˆ

1

(log(x + y)) − ĝ(x, y))2 fX(x)fY (y)dydx ≈ 0.000151895
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Appendix 3. PCEs of Exponential and Trigonometric
Functions

Table 2 lists examples of functions of up to three random arguments approxi-
mated by PCE’s of different degrees and, correspondingly, number of coefficients.
We use TruncNormal

(
μ, σ2, [a, b]

)
to denote the truncated normal distribution

with expectation μ and standard deviation σ on the (finite or infinite) interval
[a, b], and TruncGamma (θ, k, [a, b]) for the truncated gamma distribution on
the (finite or infinite) interval [a, b], a, b > 0, with shape parameter k and scale
parameter θ. The approximation error in (13) is reported in the last column. The
results confirm (8) in practice: the error decreases as the degree or, equivalently,
the number of components in the approximation of the polynomial increases.

Table 2. Approximations of 5 non-linear functions using PCE.

Function Random Variables Degree / #coefficients Error

f(x1, x2) = ξe−x1 + (ξ − ξ2

2 )ex2−x1

ξ = 0.3

x1 ∼ Normal(0, 1),

x2 ∼ Normal(2, 0.01)

1 / 4

2 / 9

3 / 16

4 / 25

5 / 36

3.076846

1.696078

0.825399

0.363869

0.270419

f(x1, x2) = 0.3ex1−x2 + 0.6e−x2
x1 ∼ TruncNormal(4, 1, [3, 5]),

x2 ∼ TruncNormal(2, 0.01, [0, 4])

1 / 4

2 / 9

3 / 16

4 / 25

5 / 36

0.343870

0.057076

0.007112

0.000709

0.000059

f(x1, x2) = ex1x2
x1 ∼ TruncNormal(4, 1, [3, 5])

x2 ∼ TruncGamma(3, 1, [0.5, 1])

1 / 4

2 / 9

3 / 16

4 / 25

5 / 36

5.745048

1.035060

0.142816

0.016118

0.001543

f(x1, x2, x3) = 0.3ex1−x2+

0.6ex2−x3 + 0.1ex3−x1

x1 ∼ TruncNormal(4, 1, [3, 5])

x2 ∼ TruncGamma(3, 1, [0.5, 1])

x3 ∼ U [4, 8]

1 / 8

2 / 27

3 / 64

1.637981

0.303096

0.066869

f(x1) = ψcos(x1) + (1 − ψ)sin(x1)

ψ = 0.3
x1 ∼ Normal(0, 1)

1 / 2

2 / 3

3 / 4

4 / 5

5 / 6

0.222627

0.181681

0.054450

0.039815

0.009115
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Probabilistic Loops. arXiv (2022). https://doi.org/10.48550/arXiv.2204.07185
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Abstract. We present an algorithmic approach to estimate the value
distributions of random variables of probabilistic loops whose statistical
moments are (partially) known. Based on these moments, we apply two
statistical methods, Maximum Entropy and Gram-Charlier series, to esti-
mate the distributions of the loop’s random variables. We measure the
accuracy of our distribution estimation by comparing the resulting dis-
tributions using exact and estimated moments of the probabilistic loop,
and performing statistical tests. We evaluate our method on several prob-
abilistic loops with polynomial updates over random variables drawing
from common probability distributions, including examples implementing
financial and biological models. For this, we leverage symbolic approaches
to compute exact higher-order moments of loops as well as use sampling-
based techniques to estimate moments from loop executions. Our exper-
imental results provide practical evidence of the accuracy of our method
for estimating distributions of probabilistic loop outputs.

Keywords: Probabilistic Loops · Distribution Estimation ·
Quantitative Evaluation

1 Introduction

Probabilistic programs (PPs) are programs with primitives to draw from prob-
ability distributions. As such, PPs do not produce a single output but rather a
probability distribution over outputs. In consequence, PPs provide a powerful
framework to model system behavior involving uncertainties.

Many machine and statistical learning techniques leverage PPs for represent-
ing and updating data-driven AI systems [17]. Quantifying and modelling distri-
butions arising from PPs, and thus formally capturing PP behavior, is challeng-
ing. In this work, we address this challenge and provide an algorithmic approach
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to effectively estimate the probability distributions of random variables generated
by PPs, focusing on PPs with unbounded loops.

While sampling-based techniques are standard statistical approaches to
approximate probability distributions in PPs, see e.g. [19], they cannot be
applied to infinite-state PPs with potentially unbounded loops. More recently,
static program analysis was combined with statistical techniques to infer higher-
order statistical moments of random program variables in PPs with restricted
loops and polynomial updates [2,30]. Our work complements these techniques
with an algorithmic approach to compute the distributions of random variables
in PPs with unbounded loops for which (some) higher-order moments are known
(see Algorithm 1). Moreover, we assess the quality of our estimation via formal
statistical tests.

Our method can be applied to any PP for which some moments are known.
We provide an algorithmic solution to the so-called finite-moment problem [14,
23], as follows: using a finite number of statistical moments of a PP random
variable, compute the probability density function (pdf) of the variable to capture
the probability of the random variable taking values within a particular range. In
full generality, the finite-moment problem is ill-posed and there is no single best
technique available to solve it [11]. We tackle the finite-moment problem for PPs
by focusing on two statistical methods, the Gram-Charlier expansion [18] and
Maximum Entropy [5,26], in order to estimate the distribution of PP variables.
Our approach is further complemented by statistical goodness-of-fit tests for
assessing the accuracy of our estimated pdfs, such as the chi-square [34] and
Kolmogorov-Smirnov [29] tests.

Motivating Example. We motivate our work with the Vasicek model in
finance [37], which describes the evolution of interest rates. This model is defined
by the stochastic differential equation,

drt = a(b − rt) dt + σ dWt (1)

where Wt is a Wiener process (standard Brownian motion) [31] modeling the con-
tinuous inflow of randomness into the system, σ is the standard deviation rep-
resenting the amplitude of the randomness inflow, b is the long term mean level
around which paths evolve in the long term, a is the speed of reversion specifying
the velocity at which such trajectories will regroup around b in time. We encode (1)
as a PP in Fig. 1, using program constants a, b, σ, as described above and variables
r, w to respectively capture the randomness (rt) and Wiener process (Wt) of the
Vasicek model. The PP of Fig. 1 has polynomial loop updates over random vari-
ables r, w drawn from a normal distribution with zero mean and unit variance. This
PP satisfies the programming model of [2,30], so that higher-order moments of this
PP can be computed using [2,30]. Based on the first- and second-order moments
of r in the Vasicek model PP, we estimate the distribution of the random variable r
using Maximum Entropy and Gram-Charlier expansion (see Sect. 3.1). Data gen-
erated by executing the PP repeatedly, at loop iteration 100, are summarized in
the histogram in the right panel of Fig. 1, giving a rough estimate of the distribu-
tion of r. The black and red lines are kernel density estimates [35] of the pdf of
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a := 0.5
b := 0.2
σ := 0.2
w := 0
r := 2
while true do

w := Normal(0, 1)
r := (1 − a)r + ab + σw

end while

Fig. 1. The Vasicek model (1) describing the evolution of interest rates, modeled as a
PP in the left panel. The estimated distributions of r are plotted in the right panel.
The (normalized) histogram plots the 1000 sampled x-values generated by running the
PP 1000 times at iteration n = 100. The kernel density estimates of the Maximum
Entropy (black dash-dotted line) and Gram-Charlier (red solid line) pdf estimations
follow closely the sampled data based histogram, showcasing that both estimates are
effectively estimating the true (sampled) distributions of r (blue histogram). (Color
figure online)

r using Maximum Entropy and Gram-Charlier expansion, respectively. Both pdf
estimates closely track the histogram, a proxy for the true distribution of r. The
close match between our estimated pdfs and the true distribution of r is also sup-
ported by the chi-square and Kolmogorov-Smirnov test results (see Sect. 3.2).

Remark 1. To discretize the Vasicek model (1), we set the time step to 1, so
that dt = 1, drt = rt+1 − rt, and dWt = Wt+1 − Wt = N (0, 1). This leads
to rt+1 = (1 − a)rt + ab + σN (0, 1), from which the program of Fig. 1 can be
constructed.

Related Works. Kernel density estimation is combined with a constrained
minimization problem for an (Hausdorff) instance of the finite-moment prob-
lem in [1]. This approach is further extended in [14]. This nonparametric esti-
mation method requires constant tuning of the bandwidth parameters, which
increase with the number of moments, and is seen to often perform poorly [26].
Along similar lines, the approach of [23] employs spline-based non-parametric
density estimation using piecewise polynomial functions to recover target dis-
tributions. This method is improved in [11] to an adaptive algorithm dealing
with non-equidistant grids. This method, though, assumes a smooth transition
at the boundaries of sub-intervals that needs to be checked repeatedly during
the reconstruction process [26]. Our work complements these approaches by a
tailored algorithmic method to effectively estimate distributions arising from
PPs that uses higher-order moments of these PPs in combination with Max-
imum Entropy and Gram-Charlier expansion. To the best of our knowledge,
these statistical methods have not yet been used and evaluated in the setting of
probabilistic loops.
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Our work is related to emerging efforts in estimating probabilistic distribu-
tions/densities in PP, as in [15,16,20,21]. The provided automation, supported
by the tools (λ)PSI [15,16], AQUA [21], and DICE [20], yield symbolic frame-
works to compute exact (posterior) densities for PPs with bounded loops. Also
focusing on bounded loops, sampling-based techniques to approximate the distri-
butions resulting from PPs are exploited in [4,9,10,32]. In contrast, our approach
is not restricted to bounded loops but focuses on density estimation for PPs with
unbounded loops.

Our Contributions. The main contribution of this paper is the develop-
ment of an algorithmic approach to estimate distributions arising from PPs
with unbounded loops (Algorithm 1), allowing thus to estimate the functional
behaviour of probabilistic loops. We employ two formal techniques from math-
ematical statistics, Maximum Entropy (ME) and Gram-Charlier (GC) expan-
sion, to estimate the distributions of PP variables (Sect. 3.1). We use symbolic
approaches to compute exact moments of loop variables as symbolic expressions
parameterized by the loop counter. Further, we apply statistical tests to assess
the adequacy of the estimated distributions of PP variables (Sect. 3.2). We eval-
uate our approach on a number of benchmarks and demonstrate the accuracy of
our proposed estimation approach (Sect. 4).

Paper Outline. The rest of the paper is organized as follows. Section 2 intro-
duces the necessary prerequisites from probability theory, statistics, and prob-
abilistic programs. In Sect. 3, we introduce the (adjusted) methods we use to
estimate the distributions of program variables from their moments. We report
on our practical findings in Sect. 4 and conclude the paper in Sect. 5.

2 Preliminaries

This section reviews relevant terminology from statistics and probabilistic pro-
grams; for further details we refer to [12,30]. Throughout the paper, N denotes
the set of natural numbers. To facilitate readability, we sometimes write exp[t] to
denote the exponential function et, where t is an arbitrary expression/argument.

2.1 PPs and Moments of Random Variables

The result of a PP is not a single output but rather multiple values with differ-
ent probabilities according to the distribution of the random variables the PP
encodes. Different execution paths in a PP are typically selected by draws from
commonly used distributions that are fully characterized by their moments, such
as the uniform or normal. Yet, since output values of PPs are results of multiple
operations, distributions arising from the random variables the PPs encode are
most often not common.
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The study of distributions is a much explored topic in statistics. Many distri-
butions are fully characterized by their moments and most well known distribu-
tions (for example the normal, the Poisson and the uniform) fall in this category.

Definition 1 (Moments). Let X be a random variable, c ∈ R and k ∈ N. We
write Momk[c,X] to denote the kth moment about c of X, which is defined as

Momk[c,X] = E((X − c)k). (2)

In this paper we consider raw moments about c = 0. We note, however, that we
can move between moments of X with different centers, c and d, using

E
(
(X − d)k

)
=

k∑

i=0

(
k

i

)
E

(
(X − c)i

)
(c − d)k−i. (3)

Moments of Probabilistic Loops. Moments of program variables of proba-
bilistic loops can be approximated by sampling; that is, by executing the loops for
an arbitrary but fixed number of iterations (see, e.g. [19,39]). Alternatively, for
restricted classes of probabilistic loops with polynomial updates, symbolic meth-
ods from algorithmic combinatorics can be used to compute the exact (higher-
order) moments of random program variables x by expressing these moments
as closed-form expressions over loop iterations and some initial values [2,30].
That is, [2,30] derive the expected value of the kth moment of variable x at loop
iteration n, denoted as E(xk(n)), in closed form, where xk(n) specifies the value
of xk at loop iteration n, and k, n ∈ N.

2.2 From Moments to Distributions

Given a finite set of moments of a random variable x, its distribution can be esti-
mated using various statistical approaches. Here, we focus on maximum entropy
and Gram-Charlier expansion.

Maximum Entropy (ME). The Maximum Entropy (ME) distribution estima-
tion method is based on the maximization of constraints describing the Shannon
information entropy [5,8,26]. Specifically, in order to estimate the unknown dis-
tribution f of a PP variable x in our setting, we maximize the Shannon entropy
H of f , defined by

H[f ] = −
∫ u

l

f(x) ln(f(x))dx, (4)

subject to its given moments E(xi) =
∫

xif(x)dx [3,33]. The ME approximation
fME(x) of the target probability density function (pdf) takes the form

fME(x) = exp

⎡

⎣−
N∑

j=0

ξjx
j

⎤

⎦ , (5)
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where the Lagrange’s multipliers ξj , with j = 0, 1, . . . ,m, can be obtained from
the first m ∈ N moments, {E(x),E(x2), . . . ,E(xm)}. To this end, the following
system of m + 1 nonlinear equations is solved,

∫
u

l

xi exp

⎡

⎣−
m∑

j=0

ξjx
j

⎤

⎦ dx = E(xi). (6)

Gram-Charlier Expansion. The Gram-Charlier series approximates the pdf
f of a PP variable x in terms of its cumulants and using a known distribution
ψ [6,18]. As an alternative to moments, cumulants of a distribution are defined
using the cumulant-generating function, which equals the natural logarithm of
the characteristic function, K(t) = ln

(
E(eitx)

)
. In what follows, we denote by

κm the mth cumulant of f , the unknown target distribution to be approximated.
The relationship between moments and cumulants can be obtained by extracting
coefficients from the expansion. To be precise, we can express the mth cumulant
κm in terms of the first m moments [7] as

κm = (−1)m+1 det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

E(x) 1 0 0 0 . . . 0
E(x2) E(x) 1 0 0 . . . 0
E(x3) E(x2)

(
2
1

)
E(x) 1 0 . . . 0

E(x4) E(x3)
(
3
1

)
E(x2)

(
3
2

)
E(x) 1 . . . 0

...
...

...
...

...
. . .

...

E(xm−1) E(xm−2) . . . . . . . . .
. . . 1

E(xm) E(xm−1) . . . . . . . . . . . .
(
m−1
m−2

)
E(x)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(7)
where det(·) stands for determinant. The first cumulant κ1 of the random vari-
able x is the mean μ = E(x); the second cumulant κ2 of f is the variance σ2, and
the third cumulant κ3 is the same as the third central moment1. Higher-order
cumulants of f , however, are in general not equal to higher moments. Using the
cumulants κm computed from exact moments of x together with the cumulants
of the known distribution ψ, the pdf f of a random variable x can approximated
by the Gram-Charlier (type-)A expansion fGC(x), as in [24], and given by

fGC(x) = ψ(x)
∞∑

m=0

1
m!σm

Bm(0, 0, κ3, . . . , κm)Hem

(
x − μ

σ

)
, (8)

where ψ is the normal pdf with mean μ = κ1 and variance σ2 = κ2, and Bm and
Hem are respectively the Bell and Hermite polynomials [6]. Derivation details
of (8) can be found in [38].

1 The ith central moment of x is defined as E
(
(x − E(x))i

)
.
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Algorithm 1. Effective Distribution Estimation
Input: Probabilistic loop P with program variable(s) x;

set M of exact moments of x for loop iteration n of P
Output: Estimated distributions fME and fGC of x, with respective accuracy

AME and AGC

Parameters: Loop iteration n ∈ N; number of executions e ∈ N of P
Initialization:

1: Choose a subset of exact moments SM = {E(x),E(x2), . . . ,E(x|SM|)} ⊂ M
2: Collect SampleData by sampling e many P variable values at the nth loop

iteration

Distribution Estimation:
3: Compute fME using SM and ME as in (5)
4: Compute fGC using SM and GC as in (9)

χ2 Test:
5: Split SampleData into bins and compute observed frequencies Oi

6: Calculate expected frequencies EME,i and EGC,i from fME and fGC, as
in (11)

7: Compute χ2 test statistics for fME and fGC as in (12) and compare them to
the critical value CVχ2

K-S Test:
8: Calculate the empirical cdf FSample of SampleData and cdfs FME, FGC using

fME and fGC

9: Compute K-S test statistics D∗
ME, D∗

GC of fME and fGC as in (13) and
compare to the critical value CVK-S

Pdf Accuracy Evaluation:
10: If χ2

ME < CVχ2 or D∗
ME < CVK-S then AME ← NOT REJECTED

else AME ← REJECTED
11: If χ2

GC < CVχ2 or D∗
GC < CVK-S then AGC ← NOT REJECTED

else AGC ← REJECTED

3 Effective Estimation of Distributions for Probabilistic
Loops

We present our estimation approach for the pdf of a random variable x in a
probabilistic loop P, provided the first M statistical moments of x are known.
We use Maximum Entropy (ME) and Gram-Charlier A (GC) expansion (lines 1–
4 of Algorithm 1). We assess the accuracy of our pdf estimates by conducting
statistical tests over our distribution estimates (lines 5–11 of Algorithm 1). Our
approach is summarized in Algorithm 1 and detailed next.
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3.1 Distribution Estimation

Given a variable x of a probabilistic loop P, we use a subset SM ⊂ M of
its exact moments for estimating the distribution of x through ME and GC
expansion. For this, we adjust ME and GC expansion to compute the esti-
mated distributions fGC and fME of f , the pdf of x, respectively. We use the
set SM = {E(x),E(x2), . . . ,E(x|SM|)} of exact moments of x. For ME, we derive
the Lagrange multipliers ξj , for j = 0, 1, . . . , |SM| in the ME approximation (5),
where |SM| denotes the cardinality of SM . For GC expansion, we truncate the
GC expansion (8) based on |SM | moments, and estimate the pdf of x with

fGC(x) = ψ(x)
|SM|∑

m=0

1
m!σm

Bm(0, 0, κ3, . . . , κm)Hem

(
x − μ

σ

)
. (9)

The cumulants κm of the pdf of x in (9) are computed from the moments in
SM. The fGC(x) estimate of the pdf of a PP variable x can be computed even
when the moments of x are parametric; i.e., their closed-form functional repre-
sentations depend on the loop iteration n and/or other symbolic values. This is
especially useful in the analysis of (probabilistic) loops, as it allows us to encom-
pass all loop iterations in a single symbolic estimate using the GC expansion.

Example 1. We use the PP in Fig. 1 to illustrate our approach. The set M in
Algorithm 1 contains the exact first two moments of r for an arbitrary loop
iteration n. These two moments can be expressed as functions of loop iteration n
of the PP (see Sect. 4),

E(r(n)) = 2−n(2n + 9)/5,

E(r2(n)) = 7/75 + (18)2−n/25 + (239)2−2n/75.
(10)

As a result, we set SM = M = {E(r(n)),E(r2(n))} for loop iteration n (line 1 of
Algorithm 1). These functions yield exact moments of r for concrete values of the
loop iteration n, by only instantiating the above expressions with the respective
values of n. For example, at loop iteration n = 100, the two exact moments of r
are E(r(100)) = 0.20 and E(r2(100)) = 0.0933̄.

ME Estimation of the pdf of r. Given (10), we solve the system (6) of nonlinear
equations to obtain the respective Lagrange multipliers ξj , j = 0, 1, 2. For solv-
ing (6), we assume that the support of the target pdf of r is a subset of [l, u],
where l and u are known scalars and apply the Levenberg–Marquardt numer-
ical minimization algorithm [27,28]. Once the optimal multipliers for (6) are
computed, the ME estimate is fME(r) = exp

[−(ξ0 + ξ1r + ξ2r
2)

]
. Specifically,

fME(r) = exp[0.171658 + 3.749999 r + 9.374997 r2] at loop iteration n = 100.
As seen from Fig. 1, this estimate is closely approximating the true (sampled)
distribution of r.
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GC Estimation of the pdf of r. Given the first two exact moments of r in (10), we
apply (7) in order to compute the corresponding cumulants. Using the normal
distribution with mean μ = κ1 = E(r) and variance σ2 = κ2 = E(r2) − E

2(r)
in (9), the GC estimate of the pdf of r is fGC(r) = (1/

√
2πκ2) exp

[ −
(r − κ1)2/2κ2

]
. By expressing κ1 and κ2 in terms of exact moments, κ1 = E(r)

and κ2 = E(r2)−E
2(r), and using (10), the GC estimate is further expressed as

a function of n by

fGC(r(n)) =
η exp

[
− (r(n)− 2n+9

5·2n )2
36·2−n

25 − 2·(2n+9)2

22n·25 + 478
22n·75+

14
75

]

β
(

18·2−n

25 − 2−2n(2n+9)2

25 + 239·2−2n

75 + 7
75

)1/2
,

where η = 2251799813685248 and β = 5644425081792261. In particular, for loop
iteration n = 100, the obtained fGC(r) = 1.7275 exp[−9.3750(r − 0.2)2] closely
approximates the true (sampled) distribution of r, as evidenced in Fig. 1.

3.2 Assessing Accuracy of Estimated Distributions

To evaluate the accuracy of the estimated pdfs fME and fGC of the PP vari-
able x, we would, ideally, compare them to the true underlying pdf of x. This
comparison, however, is not possible in general, as the true distribution of x aris-
ing from an (unbounded) probabilistic loop is unknown and frequently complex.
To overcome this obstacle, we execute the probabilistic loop e times to sample
the distribution of x and use the collected SampleData as proxy of the underly-
ing probability distribution of x (line 2 of Algorithm 1). For this, we carry out a
Monte-Carlo “experiment” [19], by executing P a large number of times (e) and
collect the value of x at loop iteration n in SampleData

2. Based on SampleData,
we evaluate the accuracy of our ME and GC expansion estimations using two sta-
tistical tests, namely the chi-square (χ2) [34] and the Kolmogorov-Smirnov [29]
goodness-of-fit tests, as described next.

Chi-Square (χ2) Goodness-of-Fit Test. The chi-square (χ2) goodness-of-
fit test is used to detect statistically significant differences between observed
and expected frequencies [36]. The expected frequencies are computed under
the assumption the sample comes from a specific distribution. We use the χ2

goodness-of-fit test to compare fME and fGC with the “true” (sampled) empirical
distribution of x that is based on the sampled data, SampleData (lines 5–7 of
Algorithm 1).

We partition our SampleData into k ∈ N non-overlapping intervals Ik (also
called bins), such that SampleData ⊂ ⋃k

i=1 Ii. Let Oi = |Ii| denote the number
of samples, or observed data frequency of x, in the ith interval Ii, with i ∈
{1, . . . , k}, and let li and ui respectively denote the lower and upper bounds

2 in our experiments, we use e = 1000 and n = 100, see Sect. 4.
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of Ii. We compute the expected frequencies3 in Ii, denoted as EME,i and EGC,i,
from fME and fGC as

EME,i = |SampleData| ∗ ∫ ui

li
fME(x)dx,

EGC,i = |SampleData| ∗ ∫ ui

li
fGC(x)dx.

(11)

where |SampleData| denotes the number of elements (points) in SampleData.
The resulting chi-square goodness-of-fit test statistics are

χ2
ME =

∑k
i=1(Oi − EME,i)2/EME,i,

χ2
GC =

∑k
i=1(Oi − EGC,i)2/EGC,i.

(12)

If the values in (12) exceed the chi-square critical value CVχ2 = χ2
1−α,k−1, where

α is the statistical significance level (parameter) and k−1 the degrees of freedom,
the hypothesis that the ME or GC estimated distributions, respectively, are
the same as the “true” distribution of SampleData is rejected (lines 10–11 of
Algorithm 1). Otherwise, there is not enough evidence to support the claim that
the distributions differ significantly.

Example 2. We set k = 15 and α = 0.05, so that CVχ2 = χ2
1−α,k−1 = 23.685.

Figure 2 shows observed frequencies from SampleData, as well as the expected
frequencies from the fME and fGC pdfs of Example 1, where SampleData are
collected while sampling the PP of Fig. 1 for e = 1000 times at the n = 100th loop
iteration. The test statistic values of (12) are χ2

ME = 17.4018 and χ2
GC = 17.4017.

Since both are smaller than CVχ2 , we conclude that both fME and fGC are
accurate estimates of the pdf of r. This result is also supported by the close
agreement of the plotted frequencies in Fig. 2.

Kolmogorov-Smirnov (K-S) Test. The Kolmogorov-Smirnov (K-S) test [29]
compares two cumulative distribution functions (cdfs). We compute the cdfs FME

and FGC of the estimated pdfs fME and fGC, respectively. We also compute the
(empirical) cdf FSample of SampleData, and let

D∗
ME = maxx(|FME(x) − FSample(x)|),

D∗
GC = maxx(|FGC(x) − FSample(x)|) (13)

denote the K-S test statistics D∗
ME and D∗

GC, respectively. To assess the distance
of FME and FGC from FSample with K-S, we compare D∗

ME and D∗
GC to the

K-S test critical value CVK-S =
√−(1/|SampleData|) ln (α/2), where α is the

statistical significance level. The K-S test rejects the claim that the compared
distributions are the same if D∗

· < CVK−S (lines 10–11 of Algorithm 1).

3 Alternatively, these frequencies can also be obtained from the cumulative distribution
function (cdf) of x.
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Fig. 2. Observed frequencies (blue) of the SampleData of Fig. 1, in alignment with
the expected frequencies obtained from the fME (orange) and fGC (yellow) estimated
distributions of the PP of Fig. 1. (Color figure online)

Example 3. We set α = 0.05, so that CVK-S = 0.0608. We compute the K-S
test statistics for the ME and GC estimated distributions of Example 1, to
obtain D∗

ME = 0.03602307 and D∗
GC = 0.03602304. Since both test statistics are

smaller than the critical value, we conclude that both fME and fGC are close to
the underlying distribution of r.

4 Experimental Evaluation

In this section we report on our experimental results towards estimating dis-
tributions of probabilistic loop variables using Algorithm 1. We describe our
benchmark set and present our practical findings using these benchmarks. We
also report additional results on evaluating the precision of higher-order moments
of loop variables.

Benchmarks. We use four challenging examples of unbounded probabilistic
loops from state-of-the-art approaches on quantitative analysis of PPs [2,13,25];
these benchmarks are the first four entries of the first column of Table 1. In
addition, we also crafted three new examples, listed in the last three entries of
the first column of Table 1, as follows: (i) line 5 of Table 1 specifies a PP loop
approximating a uniform distribution; (ii) line 6 of Table 1 refers to the Vasicek
model of Fig. 1; and (iii) the last line of Table 1 lists an example encoding a
piece-wise deterministic process (PDP) modeling gene circuits based on [22]. In
particular, the PDP model can be used to estimate the distribution of protein x
and the mRNA levels y in a gene; our PP encoding of this PDP model is given
in Fig. 3.
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k1 := 4, k2 := 40, y := 0
x := 0, a := 0.2, b := 4, s := 0
h := 0.6, f := 0.1, ρ := 0.5
while true do

if s = 0 then
s = 1 [ f ] 0

else
s = 0 [ h ] 1

end if
k := k2 ∗ s + k1 ∗ (1 − s)
y := (1 − ρ)y + k
x := (1 − a)x + by

end while

Fig. 3. A PDP model for gene circuits, modeled as a PP in the left, representing
a gene controlled by a two-valued, probabilistically updated variable s ∈ {0, 1}. We
respectively denote with k0 and k1 the gene transcription rates in states s = 0 and s = 1,
and let b the translation rate of protein x production in the gene. Further, ρ controls the
mRNA level y and a denotes the protein degradation rate. The (normalized) histogram
of sampled data of the resulting PP, with execution time/sample size e = 1000 and
loop iteration n = 100 is given on the right, together with the ME and GC expansion
estimates of the pdf of x using the first 3 moments of x.

Experimental Setup. All our seven examples in Table 1 implement polynomial
loop updates and fall in the class of probabilistic loops supported by [30]. As
such, for each example of Table 1, exact higher-order moments of random loop
variables can be computed using the algorithmic approach of [30]. Here we use
the Polar tool of [30] to derive a finite set M of exact higher-order moments for
each PP in Table 1, and we set SM = M in Algorithm 1. Further, we generate
our sampled data (SampleData) by executing each PP e = 1000 times at loop
iteration n = 100. For assessing the adequacy of estimated distributions, we set
the statistical significance level α = 0.05 for both the K-S and chi-square tests.
For the latter, we use k = 15 bins. The critical test values for the chi-square and
K-S tests are respectively CVχ2 = 23.685 and CVK-S = 0.0608. All our numerical
computations are conducted in Matlab.

Experimental Results on Distribution Estimation. Table 1 summarizes
our experimental results on estimating the distributions of our benchmark pro-
grams. The first column of Table 1 names the benchmark. The second column
specifies the random variable of the benchmark for which |SM | moments are
derived in order to estimate the distribution of the respective variable. The
number |SM | of moments used is given in column 3 of Table 1. Columns 4–5
respectively give the resulting chi-square test values for the ME and GC expan-
sion estimations of the pdf of the respective PP variable of the benchmark. In
addition to the chi-square test values, columns 4–5 also indicate the adequacy
of our estimated distribution (as in lines 10–11 of Algorithm 1): we use ✓ to
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Table 1. Accuracy of the ME and GC expansion pdf estimates for benchmarks PPs,
assessed with the chi-square and K-S statistical tests.

Program Var |SM| χ2
ME χ2

GC D∗
ME D∗

GC

StutteringP [2] s 2 18.6432 ✓ 16.7943 ✓ 0.0181 ✓ 0.0213 ✓

Square [2] y 2 36.9009 ✗ 39.1309 ✗ 0.0586 ✓ 0.0566 ✓

Binomial [13] x 2 27.4661 ✗ 27.4574 ✗ 0.0598 ✓ 0.0597 ✓

Random Walk 1D [25] x 2 18.6709 ✓ 18.7068 ✓ 0.0264 ✓ 0.0263 ✓

Uniform(0,1) u 6 16.3485 ✓ 105.276 ✗ 0.0214 ✓ 0.0658 ✗

Vasicek Model r 2 17.4018 ✓ 17.4017 ✓ 0.0360 ✓ 0.0360 ✓

PDP Model x 3 64.4182 ✓ 65.9500 ✓ 0.0403 ✓ 0.0393 ✓

specify that the estimated pdf is an accurate estimate of the true distribution,
and write ✗ otherwise. The results reported in columns 6–7 of Table 1 are as in
columns 4–5, yet by using the K-S test instead of the chi-square test.

Table 1 indicates that our approach in Algorithm 1, based on GC expansion
and ME, for distribution estimation yields accurate estimates for pdfs of con-
tinuous random variables, as assessed by the chi-square test and the K-S test;
the benchmarks of StutteringP, Random Walk 1D, Vasicek Model, and
PDP Model fall in this category. For estimating the pmf of discrete random
variables, as in the Square and Binomial programs, the K-S test infers our
method be accurate, but the chi-square test does not. The GC expansion (see
Sect. 3.1) expresses a distribution as a series of Gaussian terms. When estimat-
ing pdfs of random variables whose distributions are markedly different from
the normal, this GC expansion is not adequate. This occurs in the Uniform
example, where the PP implements a uniform distribution. In contrast, the ME
based pdf estimation is accurate, as affirmed by both the chi-square and the K-S
test.

Precision Evaluation of Higher-Order Moments of PP Variables. In
addition to effectively estimating distributions of a PP variable x, in our exper-
iments we were also interested to compare the higher-order moments of the
estimated pdfs of x against the exact moments of x. That is, we were interested
to see how the estimated moments we compute from the |SM | exact moments of
x differ from their respective, exact higher-order moments.

For this evaluation setting, we use the loop iteration n = 100 as before and
apply the following setting: we compute the higher-order moments M ′

ME and
M ′

GC of the estimated distributions fME and fGC, and compare them with the
set SM of exact moments of x. In the sequel, we let E(xi)ME and E(xi)GC denote
the ith estimated moment of x computed from fME and fGC, and write E(xi)
for the ith exact moment of x from SM (as in Algorithm 1). For comparing
moments, we compute the absolute estimate error for the ith moment of x as
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Table 2. Precision evaluation of higher-order moments using |SM | exact moments.

Program Var |SM| Moment Exact Moment AESample (RESample) AEME (REME) AEGC (REGC)

StutteringP
1 210 5.69 × 10−2(0.027%) 8.08 × 10−5(0.00003%) 4.71 × 10−5(0.00002%)

s 2 2 4.4405 × 104 2.39 × 101(0.053%) 1.75 × 10−2(0.00003%) 1.75 × 10−2(0.00003%)
3 9.4536 × 106 6.78 × 103(0.0.072%) 9.21 × 101(0.000974%) 9.25 × 101(0.000978%)
4 2.0260 × 109 1.48 × 106(0.073%) 7.38 × 104(0.00364%) 7.42 × 104(0.00366%)
5 4.3705 × 1011 2.17 × 108(0.050%) 3.82 × 107(0.00873%) 3.83 × 107(0.00876%)
6 9.4884 × 1013 5.51 × 109(0.0058%) 1.60 × 1010(0.0168%) 1.60 × 1010(0.0168%)
7 2.0729 × 1016 2.10 × 1013(0.101%) 5.88 × 1012(0.0284%) 5.90 × 1012(0.0285%)
8 4.5570 × 1018 1.12 × 1016(0.245%) 1.99 × 1015(0.0438%) 2.00 × 1015(0.0439%)

Square
1 10100 1.66 × 101(0.16%) 1.11 × 100(0.011%) 7.97 × 10−3(0.00007%)

y 2 2 1.0602 × 108 2.31 × 105(0.22%) 2.30 × 103(0.00217%) 1.64 × 102(0.00015%)
3 1.1544 × 1012 1.27 × 109(0.11%) 1.26 × 107(0.0011%) 2.39 × 109(0.2072%)
4 1.3012 × 1016 2.98 × 1013(0.23%) 1.99 × 1012(0.0153%) 9.79 × 1013(0.7581%)
5 1.5157 × 1020 1.32 × 1018(0.87%) 8.83 × 1016(0.0583%) 2.61 × 1018(1.7505%)

Binomial
1 50 2.95 × 10−1(0.59%) 5.19 × 10−5(0.000051%) 3.16 × 10−3(0.0063%)

x 2 2 2525 2.82 × 101(1.12%) 2.74 × 10−3(0.000108%) 1.87 × 10−1(0.0074%)
3 128750 2.04 × 103(1.59%) 1.43 × 10−1(0.000111%) 1.22 × 101(0.0095%)
4 6.6268 × 106 1.32 × 105(2.00%) 3.66 × 100(0.000055%) 8.22 × 102(0.0125%)
5 3.4421 × 108 8.08 × 106(2.35%) 5.52 × 102(0.000160%) 5.53 × 104(0.0161%)
6 1.8038 × 1010 4.67 × 108(2.64%) 1.20 × 105(0.000664%) 3.66 × 106(0.0203%)
7 9.5354 × 1011 2.74 × 1010(2.87%) 1.51 × 107(0.001587%) 2.38 × 108(0.0250%)
8 5.0830 × 1013 1.54 × 1012(3.04%) 1.54 × 109(0.0030363%) 1.51 × 1010(0.0298%)

RandomWalk1D
1 20 1.57 × 10−1(0.79%) 1.83 × 10−6(0.000009%) 4.44 × 10−3(0.022%)

x 2 2 4.2933 × 102 6.78 × 100(1.58%) 6.76 × 10−5(0.00001%) 1.90 × 10−1(0.0044%)
3 9.7516 × 103 2.45 × 102(2.51%) 8.40 × 100(0.09%) 5.61 × 10−1(0.0057%)
4 2.3230 × 105 8.38 × 103(3.61%) 6.48 × 102(0.28%) 3.54 × 102(0.15%)
5 5.7681 × 106 2.79 × 105(4.48%) 3.37 × 104(0.58%) 2.32 × 104(0.40%)
6 1.4858 × 108 9.19 × 106(6.19%) 1.48 × 106(0.98%) 1.12 × 106(0.75%)
7 3.9565 × 109 3.03 × 108(7.66%) 5.94 × 107(1.48%) 4.72 × 107(1.18%)
8 1.0857 × 1011 1.01 × 1010(9.26%) 2.26 × 109(2.04%) 1.85 × 109(1.67%)

Uniform(0,1)
1 0.5 5.92 × 10−3(1.18%) 1.47 × 10−9(3 × 10−7%) 3.28 × 10−2(7.03%)

u 6 2 0.333333 4.94 × 10−3(1.48%) 1.66 × 10−5(0.00499%) 3.40 × 10−2(11.36%)
3 0.25 4.57 × 10−3(1.83%) 2.50 × 10−5(0.00998%) 3.46 × 10−2(16.06%)
4 0.20 4.57 × 10−3(2.28%) 3.33 × 10−5(0.0166%) 3.43 × 10−2(20.69%)
5 0.166667 4.66 × 10−3(2.80%) 4.18 × 10−5(0.0249%) 3.35 × 10−2(25.18%)
6 0.142857 4.74 × 10−3(3.32%) 4.99 × 10−5(0.0349%) 3.25 × 10−2(29.51%)
7 0.125 4.76 × 10−3(3.81%) 5.82 × 10−5(0.00465%) 3.15 × 10−2(33.65%)
8 0.1111111 4.73 × 10−3(4.25%) 6.66 × 10−5(0.00599%) 3.04 × 10−2(37.60%)

Vasicek Model
1 0.20 2.16 × 10−3(1.08%) 6.63 × 10−11(3.32 × 10−8%) 1.40 × 10−8(7.00 × 10−6%)

r 2 2 0.0933 5.91 × 10−3(6.33%) 9.67 × 10−11(1.04 × 10−7%) 2.15 × 10−8(2.31 × 10−5%)
3 0.0400 3.13 × 10−3(7.83%) 2.00 × 10−8(5.00 × 10−5%) 3.32 × 10−8(8.30 × 10−5%)
4 0.0229 2.54 × 10−3(11.09%) 4.02 × 10−8(1.75 × 10−4%) 5.11 × 10−8(2.23 × 10−4%)
5 0.0131 1.83 × 10−3(13.93%) 7.11 × 10−8(5.42 × 10−4%) 7.89 × 10−8(6.01 × 10−4%)
6 0.0087 1.61 × 10−3(18.46%) 1.15 × 10−7(1.32 × 10−3%) 1.22 × 10−7(1.39 × 10−3%)
7 0.0059 1.40 × 10−3(23.49%) 1.83 × 10−7(3.07 × 10−3%) 1.88 × 10−7(3.16 × 10−3%)
8 0.0044 1.33 × 10−3(29.86%) 2.86 × 10−7(6.43 × 10−3%) 2.91 × 10−7(6.53 × 10−3%)

PDP Model
1 1.1885 × 103 1.60 × 101(1.35%) 2.84 × 10−1(0.024%) 5.74 × 100(0.48%)

x 3 2 1.4767 × 106 3.93 × 104(2.66%) 3.95 × 102(0.027%) 1.16 × 104(0.78%)
3 1.8981 × 109 7.37 × 107(3.88%) 3.19 × 106(0.168%) 2.35 × 107(1.23%)
4 2.5058 × 1012 1.28 × 1011(5.01%) 1.64 × 1010 (0.650%) 4.85 × 1010(1.90%)
5 3.3804 × 1015 2.04 × 1014(6.03%) 4.97 × 1013(1.450%) 1.00 × 1014(2.87%)

the difference between the respective estimated (either from M ′
ME or M ′

GC) and
exact moments (from SM ), i.e.

AEME = |E(xi)ME − E(xi)|,
AEGC = |E(xi)GC − E(xi)|. (14)
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In addition, we also compare the exact moments of x against its respective
moments obtained from sampling the PP (from SampleData in Algorithm 1).
We write E(xi)Sample to denote the ith higher-order moment of x obtained from
SampleData. As such, the absolute sample error between the sampled and exact
moments of x is derived by

AESample = |E(xi)Sample − E(xi)|. (15)

The respective relative errors REME and REGC of the ME and GC estimation,
as well as the relative error RESample based on sampled data, are computed as

REME = |E(xi)ME−E(xi)|
E(xi) ,

REGC = |E(xi)GC−E(xi)|
E(xi) ,

RESample = |E(xi)Sample−E(xi)|
E(xi) .

(16)

Table 2 summarizes our experiments on evaluating the precision of sampled and
estimated moments against exact moments, for each PP in Table 1. Columns 1–
3 of Table 2 correspond to columns 1–3 of Table 1. Column 4 lists the order of
the moment of the random variable in column 2: for each ith moment, we give
its exact value (column 5), as well as its absolute (14) and relative estimate
errors (16) (in parentheses) using SampleData (column 6), ME (column 7) and
GC expansion (column 8).

Table 2 gives practical evidence of the accuracy of estimating the pdf, and
hence moments, using Algorithm 1. The absolute and relative errors listed in
Table 2 show that we gain higher precision when computing moments from the
estimated pdfs using ME and/or GC expansion when compared to the moments
calculated using sampled data. The accuracy of moments calculated from sam-
pled data depends on the quality of the sampling process, which in turn depends
on the number of samples (e) and number of loop iterations (n). Our results in
Table 2 indicate that computing moments from estimated pdfs provides a more
accurate alternative to estimating moments by sampling.

5 Conclusion

We present an algorithmic approach to estimate the distribution of the ran-
dom variables of a PP using a finite number of its moments. Our estimates are
based on Maximum Entropy and Gram-Charlier expansion. The accuracy of our
estimation is assessed with the chi-square and Kolmogorov-Smirnov statistical
tests. Our evaluation combines static analysis methods for the computation of
exact moments of a PP random variable x with the aforementioned statistical
techniques to produce estimates of the distribution of x. Extending our app-
roach to support probabilistic inference and quantify the loss of precision in the
estimation are future research directions.
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probabilistic loops, pp. 1–25. arXiv preprint arXiv:2204.07185 (2022)

31. Mörters, P., Peres, Y.: Brownian Motion. Cambridge University Press, Cambridge
(2010)

32. Narayanan, P., Carette, J., Romano, W., Shan, C., Zinkov, R.: Probabilistic infer-
ence by program transformation in Hakaru (system description). In: Kiselyov, O.,
King, A. (eds.) FLOPS 2016. LNCS, vol. 9613, pp. 62–79. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-29604-3 5

33. O’Hagan, A., Forster, J.J.: Kendall’s Advanced Theory of Statistics, Volume 2B:
Bayesian Inference. Arnold (2004)

34. Ross, S.M.: Introduction to Probability and Statistics for Engineers and Scientists.
Academic Press (2020)

35. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman
& Hall/CRC (1998)

36. Snedecor, G.W., Cochran, G.W.: Statistical Methods. Iowa State University Press
(1989)

37. Vasicek, O.: An equilibrium characterization of the term structure. J. Financ. Econ.
5(2), 177–188 (1977)

38. Wallace, D.L.: Asymptotic approximations to distributions. Ann. Math. Stat.
29(3), 635–654 (1958)

39. Younes, H.L., Simmons, R.G.: Statistical probabilistic model checking with a focus
on time-bounded properties. Inf. Comput. 204(9), 1368–1409 (2006)

https://doi.org/10.1007/978-3-030-88885-5_16
https://doi.org/10.1007/978-3-030-88885-5_16
https://doi.org/10.1007/978-3-030-17465-1_8
https://doi.org/10.1007/978-3-030-17465-1_8
http://arxiv.org/abs/2204.07185
https://doi.org/10.1007/978-3-319-29604-3_5


An Automated Quantitative Information
Flow Analysis for Concurrent Programs

Khayyam Salehi1(B) , Ali A. Noroozi2 , Sepehr Amir-Mohammadian3 ,
and Mohammadsadegh Mohagheghi4

1 Department of Computer Science, Shahrekord University, Shahrekord, Iran
kh.salehi@sku.ac.ir

2 Department of Computer Science, University of Tabriz, Tabriz, Iran
noroozi@tabrizu.ac.ir

3 Department of Computer Science, University of the Pacific, Stockton, CA, USA
samirmohammadian@pacific.edu

4 Department of Computer Science, Vali-e-Asr University of Rafsanjan,
Rafsanjan, Iran

mohagheghi@vru.ac.ir

Abstract. Quantitative information flow is a rigorous approach for eval-
uating the security of a system. It is used to quantify the amount of secret
information leaked to the public outputs. In this paper, we propose an
automated approach for quantitative information flow analysis of con-
current programs. Markovian processes are used to model the behavior
of these programs. To this end, we assume that the attacker is capa-
ble of observing the internal behavior of the program and propose an
equivalence relation, back-bisimulation, to capture the attacker’s view
of the program behavior. A partition refinement algorithm is developed
to construct the back-bisimulation quotient of the program model and
then a quantification method is proposed for computing the informa-
tion leakage using the quotient. Finally, an anonymous protocol, dining
cryptographers, is analyzed as a case study to show applicability and
scalability of the proposed approach.

Keywords: Information leakage · protocol security · quantitative
information flow · confidentiality · Markovian Processes

1 Introduction

Secure information flow is a rigorous technique for evaluating security of a sys-
tem. A system satisfies confidentiality requirements if it does not leak any secret
information to its public outputs. However, imposing no leakage policy is too
restrictive and in practice the security policy of the system tends to permit
minor leakages. For example, a password checking program leaks information
about what the password is not when it shows a message indicating that user
has entered a wrong password. Quantitative information flow has been a well-
established attempt to overcome this deficiency. Given a system with secret
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(high confidentiality) inputs and public (low confidentiality) outputs, quanti-
tative information flow addresses the problem of measuring the amount of infor-
mation leakage, i.e., the amount of information that an attacker can deduce
about the secret inputs by observing the outputs. Quantitative information
flow is widely used in analyzing timing attacks [23,24], differential privacy [1],
anonymity protocols [13,25,29,30], and cryptographic algorithms [18,19].

Assume a program with a secret input and a public output. Furthermore,
assume an attacker that executes the program and observes the public output.
A common approach for measuring the amount of leaked information is to use
the notion of uncertainty [31]. Before executing the program, the attacker has an
initial uncertainty about the secret, which is determined by her prior knowledge
of the secret. After executing the program and observing the output, she may
infer information about the secret and thus her uncertainty may be reduced. This
yields the following intuitive definition of the information leakage [31]: leaked
information = initial uncertainty - remaining uncertainty.

In this paper, a practical and automated formal approach is proposed to
quantify the information leakage of terminating concurrent programs. The app-
roach considers leakages in intermediate states of the program executions and
effect of the scheduling policy.

We assume the program has a secret input h, a public output l, and zero
or more neutral variables. Neutral variables specify temporary and/or auxiliary
components of the runtime program configuration that do not belong to a certain
confidentiality level by nature, e.g., the stack pointer and loop indexes. h is fixed
and does not change during program executions. This is the case in any analysis
in the context of confidentiality that assumes data integrity to be out of scope,
e.g., [2,7]. We also assume that the public and neutral variables have single
initial values. Furthermore, a probabilistic attacker is supposed, who has the
full knowledge of source code of the concurrent program and is able to choose a
scheduler and execute the program under the control of that scheduler. She can
observe sequences of values of l during the executions, called execution traces.
We also assume that the attacker can execute the program an arbitrary number
of times and can then guess the value of h in a single attempt. This is called
one-try guessing model [31].

In order to model the concurrent program, Markov decision processes
(MDPs) are used. MDPs provide a powerful state transition system, capable
of modeling probabilistic and nondeterministic behaviors [28]. The scheduler is
assumed to be probabilistic, resolving nondeterminism in the MDP and induc-
ing a Markov chain (MC). States of an MC contain values of h, l, and possible
neutral variables. For computing the leakage, however, MC should capture the
attacker’s view of the program. The attacker, while executing the program and
observing the execution traces, does not know the exact value of h in each step.
She can only guess a set of possible values based on the executed program state-
ments and the observed traces. She also cannot distinguish those executions of
MC that have the same trace. In this regard, we define an equivalence relation
for a given MC, called back-bisimulation, to specify these requirements of the
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threat model. Back-bisimulation induces a quotient which models the attacker’s
view of the program. A partition-refinement algorithm is proposed to compute
the back-bisimulation quotient.

Each state of the back-bisimulation quotient contains a secret distribution,
which shows possible values of h in that state, and thus is a determiner of the
attacker’s uncertainty about h. Each execution trace of the quotient shows a
reduction of the attacker’s uncertainty from the initial state to the final state
of the trace. Therefore, secret distribution in the initial state of the quotient
determines the attacker’s initial uncertainty and secret distributions in the final
states determine the remaining uncertainty. In the literature, uncertainty is mea-
sured based on the notion of entropy. The entropy of h expresses the diffi-
culty for an attacker to discover its value. Based on the program model and
the attacker’s observational power, various definitions of entropy have been pro-
posed. As Smith [31] shows, in the context of one-try guessing model, uncertainty
about a random variable should be defined in terms of Renyi’s min-entropy. This
yields that the information leakage is computed as the difference of the Renyi’s
min-entropy of h in the initial state of the quotient and the expected value of
the Renyi’s min-entropy of h in the final states of the quotient.

We also show a subclass of MCs, called Markov chains with pseudoback-
bisimilar states, in which back-bisimulation cannot correctly construct the
attacker’s view of the program behavior. Using back-bisimulation to handle this
situation is considered a potential future work. Briefly, our contributions include

– proposing back-bisimulation equivalence, in order to capture the attacker’s
observation of the program,

– developing an algorithm to compute back-bisimulation quotient of an MC,
– proposing a method to compute the leakage of a concurrent program from

the back-bisimulation quotient, and
– analyzing the dining cryptographers problem.

1.1 Paper Outline

The paper proceeds as follows. Section 2 provides a core background on some
basics, information theory, Markovian models and probabilistic schedulers.
Section 3 presents the proposed approach. It starts with introducing the pro-
gram and threat models. It then formally defines back-bisimulation and discusses
how to compute the program leakage. Finally, it describes how to construct the
attacker’s view of the program model, the back-bisimulation quotient. Section 4
concludes the paper and proposes future work. Finally, the case study and related
work are discussed in Appendix A and Appendix B, respectively.

2 Background

In this section, we provide preliminary concepts and notations required for the
proposed approach.



46 K. Salehi et al.

2.1 Basics

A probability distribution Pr over a set X is a function Pr : X → [0, 1], such
that

∑
x∈X Pr(x) = 1. We denote the set of all probability distributions over X

by D(X ).
Let S be a set and R an equivalence relation on S. For s ∈ S, [s]R denotes

the equivalence class of s under R, i.e., [s]R = {s′ ∈ S | sRs′}. Note that
for s′ ∈ [s]R we have [s′]R = [s]R. The set [s]R is often referred to as the R-
equivalence class of s. The quotient space of S under R, denoted by S/R =
{[s]R | s ∈ S}, is the set consisting of all R-equivalence classes. A partition for
S is a set Π = {B1, . . . , Bk} such that Bi �= ∅ (for 0 < i ≤ k), Bi ∩ Bj = ∅

(for 0 < i < j ≤ k) and S = ∪0<i≤kBi. Bi ∈ Π is called a block. C ⊆ S is a
superblock of Π if C = Bi1 ∪ · · · ∪ Bil

for some Bi1 , . . . , Bil
∈ Π. Note that for

equivalence relation R on S, the quotient space S/R is a partition for S.

2.2 Information Theory

Let X denote a random variable with the finite set of values X . Vulnerability [31]
of X is defined as Vul(X) = max

x∈X
Pr(X = x). Vulnerability is defined as the

highest probability of correctly guessing the value of the variable in just a single
attempt. In order to quantify information leaks, we convert this probability into
bits using Renyi’s min-entropy [31].

Definition 1. The Renyi’s min-entropy of a random variable X is given by
H∞(X) = − log2 Vul(X).

2.3 Markovian Models

We use Markov decision processes (MDPs) to model operational semantics of
concurrent programs. MDPs are state transition systems that permit both prob-
abilistic and nondeterministic choices [28]. In any state of an MDP, a nonde-
terministic choice between probability distributions exists. Once a probability
distribution is chosen nondeterministically, the next state is selected in a proba-
bilistic manner. Nondeterminism is used to model concurrency between threads
by means of interleaving, i.e., all possible choices of the threads are considered.
Formally,

Definition 2. A Markov decision process (MDP) is defined as a tuple
M = (S,Act ,P, ζ,AP , V ) where,

– S is a set of states,
– Act is a set of actions,
– P : S → (Act → (S → [0, 1])) is a transition probability function such that

for all states s ∈ S and actions α ∈ Act ,
∑

s′∈SP(s)(α)(s′) ∈ {0, 1},
– ζ : S → [0, 1] is an initial distribution such that

∑
s∈Sζ(s) = 1.

– AP is a set of atomic propositions,
– V : S → AP is a labeling function.
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Atomic propositions represent simple known facts about the states. The
function V labels each state with atomic propositions. An MDP M is called
finite if S, Act , and AP are finite. An action α is enabled in state s iff∑

s′∈SP(s)(α)(s′) = 1. Let Act(s) denote the set of enabled actions in s. Each
state s′ for which P(s)(α)(s′) > 0 is called an α-successor of s. The set of α-
successors of s is denoted by Succ(s, α). The set of successors of s is defined
as Succ(s) = ∪

α∈Act(s)
Succ(s, α). The set of successors of a set of states S is

defined as Succ(S) = ∪
s∈S

Succ(s). The set of predecessors of s is defined as

Pre(s) = {s′ ∈ S | s ∈ Succ(s′)}. The set of labels that are associated with the
predecessors of s is defined as PreLabels(s) = {V (s′) | s′ ∈ Pre(s), s′ �= s}.

MDP Semantics. The intuitive operational behavior of an MDP M is as fol-
lows. At the beginning, an initial state s0 is probabilistically chosen such that
ζ(s0) > 0. Assuming that M is in state s, first a nondeterministic choice between
the enabled actions needs to be resolved. Suppose action α ∈ Act(s) is selected.
Then, one of the α-successors of s is selected probabilistically according to the
transition function P. That is, with probability P(s)(α)(s′) the next state is s′.

Initial and Final States. The states s with ζ(s) > 0 are considered as the
initial states. The set of initial states of M is denoted by Init(M). To ensure
M is non-blocking, we include a self-loop to each state s that has no successor,
i.e., P(s)(τ)(s′) = 1. The distinguished action label τ is used to show that
the self-loop’s action is not of further interest. Then, a state s is called final if
Succ(s) = {s}. In the literature, these states are called absorbing [3]. We call
them final, because in our program model they show termination of the program.
The set of final states of M is denoted by final(M).

Execution Paths. Alternating sequences of states that may arise by resolving
both nondeterministic and probabilistic choices in an arbitrary MDP M are
called (execution) paths. More precisely, a finite path fragment σ̂ of M is a
finite state sequence s0s1 . . . sn such that si ∈ Succ(si−1) for all 0 < i ≤ n.
A path σ is an infinite state sequence s0s1 . . . sn−1s

ω
n such that s0 ∈ Init(M),

si ∈ Succ(si−1) for all 0 < i ≤ n, ω denotes infinite iteration, and sn ∈ final(M),
i.e., sω

n denotes the infinite iteration over sn. The final state of σ, i.e. sn, is given
by final(σ). The set of execution paths of M is denoted by Paths(M). The set of
finite path fragments starting in s and ending in s′ is denoted by PathFrags(s, s′).

Traces and Trace Fragments. A trace of an execution path is the sequence of
atomic propositions of the states of the path. Formally, the trace of a finite path
fragment σ̂ = s0s1 . . . sn is defined as T̂ = trace(σ̂) = V (s0)V (s1) . . . V (sn). For
a path σ = s0s1 . . ., trace�i(σ) is defined as the prefix of trace(σ) up to index
i, i.e., trace�i(σ) = V (s0)V (s1) . . . V (si). Let Paths(T ) be the set of paths that
have the trace T , i.e., Paths(T ) = {σ ∈ Paths(M) | trace(σ) = T}. We define
final(Paths(T )) to denote the set of final states that result from the trace T , i.e.,
final(Paths(T )) = {final(σ) | σ ∈ Paths(T )}.

MDPs are suitable for modeling concurrent programs, but since they contain
nondeterministic choices, they are too abstract to implement. We need to resolve
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these nondeterministic choices into probabilistic ones. The result is a Markov
chain, which does not contain action and nondeterminism.

Definition 3. A (discrete-time) Markov chain (MC) is a tuple M =
(S,P, ζ, AP, V ) where,

– S is a set of states,
– P : S × S → [0, 1] is a transition probability function such that for all states

s ∈ S,
∑

s′∈SP(s, s′) = 1,
– ζ : S → [0, 1] is an initial distribution such that

∑
s∈Sζ(s) = 1,

– AP is a set of atomic propositions,
– V : S → AP is a labeling function.

The function P determines for each state s the probability P(s, s′) of a single
transition from s to s′. Note that for all states s ∈ S,

∑
s′∈SP(s, s′) = 1.

Reachability Probabilities. We define the probability of reaching a state s
from an initial state in an MC M as Pr(s) =

∑
Pr(σ̂)

σ̂∈PathFrags(s0,s)
s0∈Init(M)

, where

Pr(σ̂ = s0s1 . . . sn) =

⎧
⎨

⎩

ζ(s0) if n = 0,
ζ(s0).

∏

0≤i<n

P(si, si+1) otherwise.

Trace Probabilities. The occurrence probability of a trace T is defined as

Pr(T ) =
∑

σ∈Paths(T )
Pr(σ), where Pr(σ = s0s1 . . . sω

n) = Pr(σ̂ = s0s1 . . . sn).

DAG Structure of Program Models. We assumed that the programs always
terminate and states indicate the current values of the variables and the pro-
gram counter. This implies that Markovian models of every terminating program
takes the form of a directed acyclic graph (DAG), modulo self-loops in final states.
Therefore, reachability probabilities coincide with long-run probabilities [3]. Ini-
tial states of the program are represented as roots of the DAG, and final states
as leaves. Each state of a Markovian model is located at a level equal to the least
distance of that state from an initial state. Level of state s is denoted by level(s).

2.4 Probabilistic Schedulers

A probabilistic scheduler implements the scheduling policy of a concurrent pro-
gram. It determines the order and probability of execution of threads. When
a probabilistic scheduler is applied to a concurrent program, nondeterministic
choices are replaced by probabilistic ones. As we modeled concurrency between
threads using nondeterminism in MDP, the scheduler is used to resolve the possi-
ble nondeterminism in MDP. For demonstration purposes, it suffices to consider
a simple but important subclass of schedulers called memoryless probabilistic
schedulers. Given a state s, a memoryless probabilistic scheduler returns a prob-
ability for each action α ∈ Act(s). This random choice is independent of what
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has happened in the history, i.e., which path led to the current state. This is
why it is called memoryless1. Formally,

Definition 4. Let M = (S,Act ,P, ζ, AP, V ) be an MDP. A memoryless
probabilistic scheduler for M is a function δ : S → D(Act), such that
δ(s) ∈ D(Act(s)) for all s ∈ S.

As all nondeterministic choices in an MDP M are resolved by a scheduler δ,
a Markov chain Mδ is induced. Formally,

Definition 5. Let M = (S,Act ,P, ζ, AP, V ) be an MDP and δ : S → D(Act)
be a memoryless probabilistic scheduler on M. The MC of M induced by δ is
given by Mδ = (S,Pδ, ζ, AP, V ) where Pδ(s, s′) =

∑

α∈Act(s)
δ(s)(α).P(s)(α)(s′)

3 The Proposed Approach

Suppose a concurrent program P, running under control of a scheduling policy
δ. The proposed approach proceeds in three steps: (1) defining an MDP rep-
resenting P and applying δ to the MDP to resolve the nondeterminism in the
MDP (Sect. 3.1), (2) constructing a back-bisimulation quotient (Sect. 3.2), and
(3) computing the leakage (Sect. 3.3). Finally, an algorithm for computing the
back-bisimulation quotient is presented (Sect. 3.4).

3.1 The Program and Threat Models

It is assumed P has a secret input variable h and a public output variable l and
h has a fixed ue during the program executions. If the program has several secret
variables, they can be encoded (e.g. concatenated) into one secret variable. The
same is done for public and neutral variables. Possible values of l and h are
denoted by Val l and Valh.

The attacker has a prior knowledge of the secret, which is modeled as a
prior probability distribution over the possible values of h, i.e. Pr(h). Here,
the attacker is assumed to be probabilistic, i.e., she knows size of the secret, in
addition to some accurate constraints about the values of h. For instance, the
attacker could know that h is 2 bits long, its value is not 1, the probability that
its value is 2 is 0.6, and the probability that its value is 3 is thrice the probability
that it is 0. The prior distribution encoding these constraints is Pr(h) = {0 	→
0.1, 2 	→ 0.6, 3 	→ 0.3}2. A special case of the probabilistic attacker is ignorant [6],
who has no prior information about the value of h except its size. Thus, the
ignorant attacker’s initial knowledge is a uniform prior distribution on h.

1 A rather general notion of schedulers is to let them use the full history of execution
to make decisions. Here, this general definition is not needed and only makes the
program model unnecessarily complex.

2 Only elements with a positive probability are shown.
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Fig. 1. MP1: MDP of the program P1, with α denoting l:=h/2, β denoting l:=h mod
2, γ denoting l:=1, and τ denoting termination of the program

Define an MDP Representing P. Operational semantics of the concurrent
program P is represented by an MDP MP = (S,Act ,P, ζ,Val l, V ). Each state
s ∈ S is a tuple 〈l, h, n, pc〉, where l, h, and n are values of the public, secret,
and neutral variables, respectively, and pc is the program counter. Actions Act
are program statements of P. The function P defines probabilities of transitions
between states. Atomic propositions are Val l and the function V labels each
state with value of l in that state. In fact, a state label is what an attacker
observes in a state and traces of MP are the sequences of public values that are
valid during the execution.

The initial distribution ζ is determined by the prior knowledge of the attacker
Pr(h), i.e., ζ(s) = Pr(h = h) for all s ∈ Init(MP), where s = 〈., h, ., .〉.
Example 1 (Program P1). Consider the following program, where h is a 2-bit
random variable and || denotes the concurrency of the executions:

l:=0; if h=3 then l:=1 else (l:=h/2 || l:=h mod 2) (P1)

The attacker’s prior knowledge is the size of h, yielding a uniform distribution
on h, i.e., Pr(h) = {0 	→ 1

4 , 1 	→ 1
4 , 2 	→ 1

4 , 3 	→ 1
4}. The MDP MP1 of the

program is shown in Fig. 1. The initial distribution ζ is determined by Pr(h),
i.e., ζ = {s0 	→ 1

4 , s4 	→ 1
4 , s7 	→ 1

4 , s10 	→ 1
4}. Each state is labeled by the

value of l in that state. Each transition is labeled by an action (a program
statement) and a probability. For instance, the transition from s0 to s1 has the
action α : l:=h/2 and the probability P(s0)(α)(s1) = 1; Or the transition from
s0 to s2 has the label β : l:=h mod 2 and the probability P(s0)(β)(s2) = 1.

Resolve the Nondeterminism in the MDP. The scheduling policy is repre-
sented by a memoryless probabilistic scheduler δ. As the MDP MP is run under
the control of the scheduler δ, all nondeterministic transitions are resolved and
an MC MP

δ = (S,Pδ, ζ,Val l, V ) is produced.

Example 2 (MC of P1). We choose the scheduler to be uniform. The uniform
scheduler, denoted by the function uni, picks each thread with the same proba-
bility. This yields the definition of the scheduler as follows:
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uni(s0) = uni(s4) = uni(s7) = {α �→ 1

2
, β �→ 1

2
}, uni(s10) = {γ �→ 1},

uni(s1) = uni(s5) = uni(s13) = {β �→ 1}, uni(s2) = uni(s8) = uni(s11) = {α �→ 1},

uni(s3) = uni(s6) = uni(s9) = uni(s12) = uni(s14) = uni(s15) = {τ �→ 1}.

The MC MP1
uni of the program P1 running under control of the uniform scheduler is

depicted in Fig. 2. In this Figure, transitions are labeled by the transition probability.

Fig. 2. MP1
uni: MC of the program P1 with the uniform scheduler

3.2 The Attacker’s View of the Program: Back-Bisimulation
Quotient

In order to measure the amount of information the attacker can deduce about
h, we need to construct the attacker’s view of the program. First, the attacker
can distinguish a final state from a non-final one by observing termination of
the program. Second, she cannot discriminate between those paths that have
the same trace. For instance, in MP1

uni (Fig. 2) the attacker only observes the
traces {〈0, 0, 0ω〉, 〈0, 0, 1ω〉, 〈0, 1, 0ω〉, 〈0, 1ω〉}, whereas there are seven different
execution paths. The implication is that she cannot distinguish those final states
that have the same public values and result from the same traces. Third, she does
not know secret values in the final states, but may guess the value of h based on
a probability distribution that she can compute according to the possible values
of h in each final state. These three requirements are captured by an equivalence
relation, called back-bisimulation, denoted by ∼b.

Definition 6. Let MP
δ be an MC. A back-bisimulation for MP

δ is a binary
relation R on S such that for all s1 R s2, the following three conditions hold:
(1) V (s1) = V (s2), (2) if s′

1 ∈ Pre(s1), then there exists s′
2 ∈ Pre(s2) with

s′
1 R s′

2, (3) if s′
2 ∈ Pre(s2), then there exists s′

1 ∈ Pre(s1) with s′
1 R s′

2.
States s1 and s2 are back-bisimilar, denoted by s1 ∼b s2, if there exists a

back-bisimulation R for MP
δ with s1 R s2.

Condition (1) requires that the states s1 and s2 have the same public values.
According to condition (2), every incoming transition of s1 must be matched by
an incoming transition of s2; the reverse is assured by condition (3).
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Theorem 1. Back-bisimulation is an equivalence relation.3

As ∼b is an equivalence relation, it induces a set of equivalence classes on the
state space of an MC. Given MC MP

δ, a quotient space MP
δ/ ∼b captures the

attacker’s view of the program P. The MC MP
δ/ ∼b aggregates same-trace paths

of MP
δ into one path.

Fig. 3. MP1
uni/ ∼b: back-bisimulation quotient of MP1

uni

Definition 7. For MC MP
δ = (S,Pδ, ζ,Val l, V ) and back-bisimulation ∼b, the

back-bisimulation quotient MP
δ/ ∼b is defined by MP

δ/ ∼b where
MP

δ/ ∼b= (S/ ∼b,P′
δ, s

b
init,Val l, V,Pr(h))

– S/ ∼b is the quotient space of S under ∼b,
– P′

δ : (S/ ∼b) × (S/ ∼b) → [0, 1] is a probability transition function between
equivalence classes of S/ ∼b such that ∀ sb, tb ∈ S/ ∼b . P′

δ(s
b, tb) =∑

s∈sb, t∈tb

Pr(s) ∗ Pδ(s, t), where Pr(s) is the probability of reaching to s in

MC MP
δ,

– sb
init = Init(MP

δ),
– V ([s]∼b

) = V (s),
– Pr(h) is a mapping from each quotient state sb to Pr(hsb), where Pr(hsb)

is the probability distribution of h in the state sb and is computed, for all
h ∈ Valh, as

Pr(hsb = h) =

∑

si∈sb, si=〈.,h,.,.〉
Pr(si)

Pr(sb)
,

where Pr(sb) is the reachability probability of sb in MP
δ/ ∼b.

The public variable has a single initial value. Thus, all of the initial states
of MP

δ have the same public value and form a single equivalence class sb
init.

Each state sb is labeled with a probability distribution Pr(hsb) which shows the
probabilities of possible values of h in that state.
3 The proofs of the theorems have been omitted due to meet the page limit.
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Example 3 (Back-bisimulation quotient of P1). The back-bisimulation quotient
MP1

uni/ ∼b is depicted in Fig. 3. Each state of MP1
uni/ ∼b is an equivalence class,

containing related states of MP1
uni:

sb
0 = {s0, s4, s7, s10}, sb

1 = {s1, s2, s5, s8}, sb
2 = {s3}, sb

3 = {s6, s9},

sb
4 = {s15}, sb

5 = {s12, s14}, sb
6 = {s11, s13}.

States are labeled with the value of l, together with the distribution of h:

Pr(hsb
0
) = {0 �→ 1

4
, 1 �→ 1

4
, 2 �→ 1

4
, 3 �→ 1

4
}, Pr(hsb

3
) = {1 �→ 1

2
, 2 �→ 1

2
},

Pr(hsb
1
) = {0 �→ 1

2
, 1 �→ 1

4
, 2 �→ 1

4
}, Pr(hsb

5
) = {1 �→ 1

2
, 2 �→ 1

2
},

Pr(hsb
2
) = {0 �→ 1}, Pr(hsb

4
) = {3 �→ 1}, Pr(hsb

6
) = {1 �→ 1

2
, 2 �→ 1

2
}.

The back-bisimulation quotient can be automatically constructed from the
MC. This will be discussed in Sect. 3.4. After constructing the quotient, the next
step is to compute the program leakage from the back-bisimulation quotient.

3.3 Measuring the Leakage Using Back-Bisimulation Quotient

Let MP
δ/ ∼b= (S/ ∼b,P′

δ, s
b
init,Val l, V,Pr(h)) be the attacker’s view of the

program P running with the scheduler δ. In each state sb of MP
δ/ ∼b, the secret

distribution Pr(hsb) determines the attacker’s uncertainty about h. Depending
on the program statements that are chosen and executed by the scheduler, and
the public values observed by the attacker, the distribution of h changes from
state to state along each trace of MP

δ/ ∼b. In fact, MP
δ/ ∼b transforms a priori

distribution of h in the initial state sb
init to posterior distributions in the final

states final(MP
δ/ ∼b).

The attacker’s uncertainty about h in a state sb with the secret distribution
Pr(hsb) is measured by H∞(hsb). Thus, the initial uncertainty is measured by
H∞(hsb

init
).

Since there might be more than one final state with different reachability
probabilities and the MC can seen as a discrete probability distribution over
all of its final states, the remaining uncertainty is defined as the expectation of
uncertainties in all final states:

∑

sb
f ∈final(MP

δ/∼b)
Pr(sb

f )H∞(hsb
f
), where Pr(sb

f ) is

the probability of reaching sb
f from the initial state sb

init. It now follows that the
leakage of the concurrent program P running under control of the scheduler δ is
computed as L(Pδ) = H∞(hsb

init
) − ∑

sb
f ∈final(MP

δ/∼b) Pr(s
b
f ).H∞(hsb

f
).

Notice that for measuring the leakage of P, we computed min-entropy of ini-
tial and final states, and did not consider min-entropy of intermediate states.
This is not in contrast with our assumption of taking into account the interme-
diate values of l along the execution paths. This is because in MP

δ/ ∼b distri-
butions of h in the final states result from values of l and distributions of h in
the intermediate states. Thus, when computing the remaining uncertainty from
the final distributions, the intermediate values of l are automatically taken into
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account. The final distributions of h also result from the program statements
which are chosen by the scheduler. Therefore, the effect of the scheduler choices
is considered, as well.

Moreover, in the literature, the remaining uncertainty is usually measured
by the conditional entropy H∞(h|l), but we measure it by the non-conditional
entropy H∞(h). These entropies are identical in our program model, because in
MP

δ/ ∼b the entropy H∞(h) is computed from final states that result from traces
observed by the attacker. This is exactly the same as the conditional entropy
H∞(h|l).
Example 4 (Back-bisimulation quotient of P1 is a distribution transformer.). In
the initial state sb

0 of MP1
uni/ ∼b, the distribution of h is Pr(hsb

0
) = {0 	→ 1

4 , 1 	→
1
4 , 2 	→ 1

4 , 3 	→ 1
4}. This means that before executing the program, the attacker

only knows that the value of h belongs to the set {0, 1, 2, 3} and if she guesses
the value of h, then the likelihood of her being successful is 1

4 . Therefore, Pr(hsb
0
)

determines the attacker’s initial uncertainty about h. Now consider the final state
sb
3, in which the distribution of h is Pr(hsb

3
) = {1 	→ 1

2 , 2 	→ 1
2}. In this state, the

attacker knows that the value of h belongs to {1, 2}, and thus her uncertainty
about h is reduced. This means that after executing the program and observing
the trace 〈0, 1, 0ω〉, if the attacker guesses the value of h, then the likelihood of
her being successful is 1

2 . These considerations imply that the back-bisimulation
quotient is a distribution transformer.

Example 5 (Information leakage of P1). The initial uncertainty is quantified as
the Renyi’s min-entropy of h in the initial state sb

0, i.e., H∞(hsb
0
) = − log2

1
4 =

2 (bits).
The remaining uncertainty is quantified as the Renyi’s min-entropy of h in

the final states. There are four final states with different reachability probabili-
ties: sb

2, sb
5, sb

3, sb
4. Consequently, the remaining uncertainty is quantified as the

expectation of the Renyi’s min-entropy of h in these states:
∑

sb∈{sb
2,sb

5,sb
3,sb

4}
Pr(sb).H∞(hsb) = − 1

4
∗ log2 1 − 1

4
∗ log2

1
2

− 1
4

∗ log2
1
2

− 1
4

∗ log2 1 = 0.5 (bits),

where Pr(sb) denotes the probability of reaching sb from the initial state sb
0.

Finally, the leakage of the program P1 running with the uniform scheduler is
computed as L(P1uni) = 2 − 0.5 = 1.5 (bits).

The following section formally defines the back-bisimulation equivalence and
explains how to compute the back-bisimulation quotient.

3.4 Computing Back-Bisimulation Quotient

In this section, we discuss how to compute the back-bisimulation quotient.
Before that, we first explain a subclass of MCs, called Markov chains with



An Automated Quantitative Information Flow Analysis 55

pseudoback-bisimilar states, in which back-bisimulation cannot correctly con-
struct the attacker’s view of the program behavior.

Pseudoback-Bisimilar States. In order to compute the states of a back-
bisimulation quotient, we need to aggregate back-bisimilar states into one equiv-
alence class. For that, we define Back-bisimulation signature, which is defined as
a kind of fingerprint for states of a back-bisimulation equivalence class.

Definition 8. The back-bisimulation signature of a state s is defined as

sig∼b
(s) = { (

V (s), [s′]∼b

) | ∃s′ ∈ Pre(s) }.

It asserts that two states that have the same public value and their predecessors
belong to the same equivalence class, have the same signature.

Definition 9. Let MP
δ be an MC. Two states s1, s2 ∈ S are pseudoback-

bisimilar iff (1) V (s1) = V (s2), (2) level(s1) = level(s2), (3) sig∼b
(s1) �=

sig∼b
(s2), (4) PreLabels(s1) ∩ PreLabels(s2) �= ∅. An MC that contains some

pseudoback-bisimilar states is denoted by MCp and an MC with no pseudoback-
bisimilar state is denoted by MCn.

Stated in words, two states are pseudoback-bisimilar if they have the same
label, are at the same level (distance from an initial state), and have different
signatures, but intersecting pre-labels. In an MCn, states at the same level and
with the same label, either have no intersecting pre-labels or have the same
pre-labels.

Example 6 (An example MCp). Consider the following program:

l:=0;
if h=1 then l:=1; l:=2; l:=3; l:=4; l:=5
else (l:=1 || l:=2); l:=3; (l:=4 || l:=5) (P2)

where Valh ∈ {0, 1} and Pr(h) = {0 	→ 1
2 , 1 	→ 1

2}. A uniform scheduler is
selected for both parallel operators. The MC MP2

uni is shown in Fig. 4a.
In MP2

uni, states s8 and s9 are pseudoback-bisimilar. They both have the label
3, are at the level 3, and have different signatures:

sig∼b
(s8) =

{(
3, {s5, s7}

)
,
(
3, {s3}

)}
, sig∼b

(s9) =
{(

3, {s5, s7}
)}

,

but intersecting pre-labels: preLabels(s8) = {2, 1}, preLabels(s9) = {2}.

Back-bisimulation captures the attacker’s view for all programs that do not
contain pseudoback-bisimilar states, i.e., those final states that have the same
public values and result from the same trace are indistinguishable and fall into
the same ∼b-equivalence class. Formally,

Theorem 2. Let MP
δ be an MCn. For all paths σ1, σ2 ∈ Paths(MP

δ) with
σ1 = s0,1s1,1 . . . sn−1,1(sn,1)ω, σ2 = s0,2s1,2 . . . sn−1,2(sn,2)ω, and n ≥ 0 it holds
that sn,1 ∼b sn,2 iff trace(σ1) = trace(σ2).
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Fig. 4. MP2
uni and MP2

uni/ ∼b

Theorem 2 argues that same-trace final states are back-bisimilar. A similar
argument can be made for non-final states.

Theorem 3. Let MP
δ be an MCn. For all paths σ1, σ2 ∈ Paths(MP

δ) with
σ1 = s0,1s1,1 . . . sn−1,1(sn,1)ω, σ2 = s0,2s1,2 . . . sm−1,2(sm,2)ω, n,m > 0, and
0 ≤ i < min(n,m) it holds that si,1 ∼b si,2 iff trace�i(σ1) = trace�i(σ2).

Therefore, all paths of MP
δ with the same trace form a single path in MP

δ/ ∼b.
Stated formally, let σ′ ∈ Paths(MP

δ/ ∼b), sb
f = final(σ′) ∈ final(MP

δ/ ∼b),
and T = trace(σ′). The path σ′ is the aggregation of all paths Paths(T ) ⊆
Paths(MP

δ). All final states of MP
δ that result from the trace T fall into the same

∼b-equivalence class sb
f = {sf | sf ∈ final(Paths(T ))}. For sb

f , the secret distri-
bution Pr(hsb

f
) contains probabilities of possibles values of h that the attacker

might be able to guess by observing T .
Pseudoback-bisimilar states do not fall into the same ∼b-equivalence class and

thus ∼b is not able to aggregate all paths with the same trace. For instance, in
MP2

uni/ ∼b (Fig. 4b) there are two paths sb
3s

b
7s

b
10s

b
5s

b
2(s

b
6)

ω and sb
3s

b
7s

b
10s

b
4s

b
9(s

b
12)

ω

with the same trace 〈0, 1, 2, 3, 4, 5ω〉. The attacker, after observing the trace,
cannot discriminate the value of h to be 0 or 1. But, in the attacker’s view of the
MC constructed by back-bisimulation (Fig. 4b) the value of h is distinguished
in the final states of the two paths. Furthermore, the probability of some traces
in the back-bisimulation quotient might be different from their probability in
the concrete model. For example, the probability of the trace 〈0, 1, 2, 3, 4, 5ω〉 in
MP2

uni is 5
8 , while it is 9

16 in MP2
uni/ ∼b. The implication is that back-bisimulation

cannot correctly construct the attacker’s view of an MCp. For MCps, we use the
trace-exploration-based method, introduced in [25], which computes the program
leakage directly from the MCp MP

δ.

Algorithm for Computing the Back-Bisimulation Quotient Space.
In this section, an algorithm is proposed for obtaining the back-bisimulation



An Automated Quantitative Information Flow Analysis 57

Algorithm 1. A first iterative quotienting algorithm
Input: finite MCn MP

δ with state space S
Output: back-bisimulation quotient space S/ ∼b

/* Determine the initial partition Π0 */
1: sb

init := Init(MP
δ);

2: R := {(s1, s2) | V (s1) = V (s2)};
3: Π0 = {sb

init} ∪
((

S \ Init(MP
δ)

)
/ R

)
;

4: Π := Π0;
5: Πold := {S}; // Πold contains the previous partition

/* loop until no refinement possible */
6: while Π ! = Πold do
7: Πold := Π;

/* search through the blocks of Πold to find a splitter candidate for Π */
8: for all C ∈ Πold do
9: Π := Refineb(Π, C);

10: return Π;

quotient space for a finite MCn. This algorithm is similar to Kanellakis and
Smolka’s algorithm for computing the bisimulation quotient space [20]. It relies
on a partition refinement technique, where the state space is partitioned into
blocks. It starts from an initial partition Π0 and computes successive refinements
of Π0 until a stable partition is reached. A partition is stable if no further refine-
ments are possible. The obtained partition is S/ ∼b, the largest back-bisimulation
over the input finite MCn. The essential steps are outlined in Algorithm 1. The
algorithm consists of two main parts: (a) computing the initial partition, and
(b) successively refining the partitions.

Computing the Initial Partition. Since back-bisimilar states have the same
public value, it is sensible to use this in determining the initial partition Π0.

All initial states have the same public value and have no predecessors. Con-
sequently, they form a single block sb

init = Init(MP
δ). This block will remain

unchanged during the refinements.
For the remaining states S\sb

init, each group of states with the same pub-
lic value forms a block. Same-label blocks can be obtained by the equiv-
alence relation R = {(s1, s2) | V (s1) = V (s2)}, which induces the quo-
tient spaces

(
S \ Init(MP

δ)
)

/ R. Thus, the initial partition is obtained as

Π0 = {sb
init} ∪

((
S \ Init(MP

δ)
)

/ R
)
.

Partition Refinement. Since all partitions are a refinement of the initial par-
tition Π0, each block in these partitions contains states with the same public
value. However, blocks of Π0, except sb

init, do not consider the one-step prede-
cessors of states. This is taken care of in the successive refinement steps, by the
refinement operator.
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Definition 10. Let Π be a partition for S and C be a superblock of Π. Then,

Refineb(Π, C) = ∪
B∈Π

Refineb(B, C),

where Refineb(B, C) = {B ∩Succ(C), B\Succ(C)}\{∅}. Here, C is called a split-
ter for Π, refining blocks of Π to subblocks.

Using C, Refineb(B, C) decomposes the block B into two subblocks, provided
that the subblocks are nonempty.

A key step of computing the back-bisimulation quotient space is to determine
a splitter C for a given partition Π. Algorithm 1 uses the blocks of the previous
partition Πold as splitter candidates for Π.

Theorem 4. Algorithm 1 always terminates and correctly computes the back-
bisimulation quotient space S/ ∼b.

The following theorem discusses the time complexity of Algorithm 1.

Theorem 5. The time complexity of Algorithm 1 is O(|S|.|E|), where E denotes
the set of transitions of MP

δ.

4 Conclusions and Future Work

In this paper, a quantification approach is proposed for concurrent programs.
Back-bisimulation equivalence is defined to model the attacker’s view of the pro-
gram behavior. Then a partition refinement algorithm is developed to compute
the back-bisimulation quotient of the program. The back-bisimulation quotient
is automatically constructed and contains secret distributions, which are used to
compute the information leakage of the program.

The back-bisimulation quotient contains all execution traces which the
attacker can observe during executing the program. Thus, it can be used to
compute maximal and minimal leakages that might occur during the program
executions. Furthermore, the quotient is an abstract model of the program and
the quantification analysis is done on a minimized model, most likely saving time
and space.

Back-bisimulation equivalence creates a lot of exciting opportunities for
future works. It can be used to verify any trace-equivalence-based property, such
as observational determinism [21,26,33], a widely-studied confidentiality prop-
erty of secure information flow for concurrent programs. It can also be defined
on multi-terminal binary decision diagrams (MTBDDs), in order to improve
the scalability of the quantification approach to a great extent. We aim to lift
the program-termination restriction and extend the proposed approach to non-
terminating concurrent programs. We also aim to study bounded leakage prob-
lem [25] and channel capacity [29] on the back-bisimulation quotient. Probably,
using some reductions, such as on-the-fly techniques, can improve the scalabil-
ity of the problem. Furthermore, handling programs with pseudoback-bisimilar
states using back-bisimulation is a possible future work. Another avenue to con-
sider the current work is to perform time analysis of the proposed approach, e.g.
on dining cryptographers protocol.
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A Case Study

In this section, we analyze a case study to show applicability and feasibility of
the approach.

The Dining Cryptographers Protocol. We consider the dining cryptographers
problem [11] to show how an attacker can deduce secret information through
execution observations. The dining cryptographers problem was first proposed
by David Chaum in 1988 as an example of anonymity and identity hiding [11].
In this problem, N cryptographers are sitting at a round table to have dinner
at their favorite restaurant. The waiter informs them that the meal has been
arranged to be paid by one of the cryptographers or their master. The cryptog-
raphers respect each other’s right to stay anonymous, but would like to know
whether the master is paying or not. So, they decide to take part in the following
two-stage protocol:

• Stage 1: Each cryptographer tosses a coin and only informs the cryptographer
on the right of the outcome.

• Stage 2: Each cryptographer publicly announces whether the two coins that
she can see are the same (‘agree’) or different (‘disagree’). However, if she
actually paid for the dinner, then she lies, i.e., she announces ‘disagree’ when
the coins are the same, and ‘agree’ when they are different.

Let the variable parity be exclusive-or (XOR) between all the announce-
ments. If N is odd, then an odd number of ‘agree’s (parity = 1) implies that
none of the cryptographers paid (the master paid), while an even number (parity
= 0) implies that one of the cryptographers paid. The latter is reverse for an
even N .

The payer can be either

i. one of the cryptographers, i.e., V alpayer = {c1, . . . , cN}, or
ii. the master (m, for short) or one of the cryptographers, i.e., V alpayer =

{m, c1, . . . , cN}.

Assume an attacker who tries to find out the payer’s identity. The attacker is
external, i.e., none of the cryptographers. This attacker can observe the parity
and also the announcements of the cryptographers. All observable variables are
concatenated to form a single public variable. The program model is an MCn

and we employ the proposed algorithms to compute the leakage.
The experimental results for the cases in which the coin probability is 0.5 are

shown in Table 1. In this table, N denotes the number of cryptographers. MDCN
uni

and MDCN
uni / ∼b denote the MC of the program run with a uniform scheduler and

the back-bisimulation quotient, respectively. Symbols #st and #tr denote the
number of states and transitions, respectively.

Similar results for the coin probability of 0 or 1 are shown in Table 2. As
shown in Tables 1 and 2, back-bisimulation results in impressive reductions of
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Table 1. Evaluation results for the dining cryptographers protocol with the coin prob-
ability 0.5

V alpayer N
MDCN

uni MDCN
uni / ∼b leakage

(bits)#st #tr #st #tr

{m, c1, . . . , cN}

3 380 776 26 45 0.811 (40%)

4 2165 5720 64 144 0.721 (31%)

5 11850 38772 152 420 0.65 (25%)

6 63063 246820 352 1152 0.59 (21%)

{c1, . . . , cN}

3 285 582 22 36 0

4 1732 4576 56 121 0

5 9875 32310 136 365 0

6 54054 211560 320 1125 0

the state space. For example, when the coin probability is 0.5 (Table 1) reductions
vary between 92% and 99.5%.

Consider the last three cases of Table 1, where the coin probability is 0.5 and
the payer is one of the cryptographers (V alpayer = {c1, . . . , cN}). In these cases,
the program leakage is 0. This shows that the attacker cannot identify the payer.
This is why the dining cryptographers protocol is said to be secure in the context
of anonymity.

The analysis results in Table 2 show that when the probability of the coin is
0 or 1, no matter whoever the payer is, the leakage is log2 |V alpayer|, proving
that the secret gets completely leaked and thus the attacker learns the identity
of the payer.

B Related Work

The notion of back-simulation is similar to the notion of backward strong bisimula-
tion considered by De Nicola and Vaandrager [15]. They use a different notion than
our definition, as they only allow to move back from a state along the path rep-
resenting the history that brought one into that state. Högberg et al. [17] defined
and considered backward bisimulation minimization on tree automata, Sproston
and Donatelli [32] considered a probabilistic version of backward bisimulation and
studied the logical properties it preserves, and Cardelli et al. [9] who considered
backward bisimulation in the stochastic setting of chemical reaction networks.
None of these works use backward bisimulation in quantitative information flow.

Chen and Malacaria [12] model multi-threaded programs as state transi-
tion systems. They use Bellman’s optimality principle to determine the leakage
bounds, i.e., minimal and maximal leakage occurred during possible program
executions.
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Table 2. Evaluation results for the dining cryptographers protocol with the coin prob-
ability 0 or 1

V alpayer N
MDCN

uni MDCN
uni / ∼b leakage

(bits)#st #tr #st #tr

{m, c1, . . . , cN}

3 72 124 21 37 2 (100%)

4 235 525 47 107 2.32 (100%)

5 738 2046 103 286 2.585 (100%)

6 2254 7483 223 729 2.807 (100%)

{c1, . . . , cN}

3 54 93 20 34 1.585 (100%)

4 188 420 46 103 2 (100%)

5 615 1705 102 281 2.32 (100%)

6 1932 6414 222 723 2.585 (100%)

Phan et al. [27] propose to use symbolic execution, a verification technique
which bounds runtime behavior of the program, thus mitigating state-space
explosion problem. In state-space explosion problem, the amount of state-space
of the program model gets too huge to store in the memory, thus making the
analysis difficult. Phan et al. run symbolic execution to extract all symbolic paths
of the program. Then, paths with a direct information flow are labeled. Finally,
they use a model counting technique to count the number of inputs that follow
direct-labeled paths, to compute channel capacity, which is an upper bound of
the leakage over all possible distributions of the secret input.

Biondi et al. [8] use interval Markov chains to compute the channel capacity
of deterministic processes. They reduce the channel capacity computation to
entropy maximization, a well-known problem in Bayesian statistics.

Chothia et al. [14] have developed LeakWatch to approximate leakage of
Java programs. LeakWatch is based on probabilistic point-to-point information
leakage, in which the leakage between any given two points in the program from
secret to public variables is computed.

Chadha et al. [10] employ symbolic algorithms to quantify the precise leakage
from public to secret variables. They use Binary Decision Diagrams (BDDs) to
model the relation between the inputs and outputs of the program. To do so,
Moped [16], a symbolic model checker, is exploited to construct BDDs. Chadha
et al. have implemented their method into a tool called Moped-QLeak.

Klebanov [22] uses symbolic execution in combination with deductive veri-
fication [5] and self-composition [4] to measure residual Shannon entropy and
min-entropy of the secret input. Exploitation of deductive verification makes the
analysis immune to the state-space explosion problem, but also makes it semi-
automatic, as user-supplied invariants are needed for the analysis to proceed.
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Abstract. This paper presents an algorithm for determining the
unknown rates in the sequential processes of a Stochastic Process Alge-
bra (SPA) model, provided that the rates in the combined flat model
are given. Such a rate lifting is useful for model reverse engineering and
model repair. Technically, the algorithm works by solving systems of
nonlinear equations and – if necessary – adjusting the model’s synchro-
nisation structure without changing its transition system. This approach
exploits some structural properties of SPA systems, which are formulated
here for the first time and could be very beneficial also in other contexts.

Keywords: Stochastic Process Algebra · Structural Properties ·
Markov Chain · Model Repair · Rate Lifting

1 Introduction

Stochastic Process Algebra (SPA) is a family of formalisms widely used in the
area of quantitative modelling and evaluation. Typical members of this family
are PEPA [6], TIPP [5], EMPA [2], CASPA [10], but also the reactive modules
language of tools such as PRISM [11] and STORM [4]. Originally devised for clas-
sical performance and dependability modelling, SPA models are now frequently
used in probabilistic model checking projects.

This paper presents a solution to the following problem: Given a compo-
sitional SPA specification where the transition rates of its components are
unknown, but given all transition rates of the associated low-level, flat transition
system, find the unknown transition rates for the components of the high-level
SPA model. An alternative formulation of the same problem is for a composi-
tional SPA specification with known original transition rates in its components,
but given rate modification factors for (a subset of) the transition rates in its
flat low-level model. Here the task is to find new transition rates for the com-
ponents of the high-level SPA model, such that the resulting rates in the flat
model will be modified as desired. The first formulation is from the perspec-
tive of systems reverse engineering (to be more specific, one could call it rate
reverse engineering), whereas the second one pertains to model checking and
c© Springer Nature Switzerland AG 2022
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model repair [1,3,13]. We will refer to both variants of the problem as “rate
lifting problem”.

An algorithm that solves the rate lifting problem for SPA models with n = 2
components was presented in [15], the equation system involved being studied in
[16]. However, developing a rate lifting algorithm for a general number n ≥ 3 of
processes turns out to be a much bigger challenge, since – firstly – SPA models
with n components may have a much more complex synchronisation structure
than for n = 2, and it is the synchronisation structure which plays an essential
role during the execution of the algorithm. Secondly, components of SPA mod-
els may contain selfloops (meant to synchronise with other components), and –
related to this – the transition system underlying a compositional SPA model
is actually a flattened multi-transition system [5,6]. These two facts have to be
considered during the necessary deconstruction of a flat transition, and they
strongly contribute to the complication of the problem. So, in this paper we
develop a rate lifting algorithm for an SPA system consisting of n components,
where n is arbitrary. The algorithm will assign (new) values to the components’
transition rates and – under certain circumstances – it will change the synchro-
nisation structure of the SPA model. The latter means that the algorithm may
add actions to certain synchronisation sets and in consequence it will insert addi-
tional selfloops at some specific component states, but it will do this in such a
way that the set of reachable states and the set of transitions of the overall model
are not changed. Only the transition rates of the overall model are set/changed
as desired. Technically, the algorithm works by setting up and solving systems
of nonlinear (actually multilinear) equations.

It is quite easy to see that an arbitrary assignment of rates to the transitions
of the low-level transition system may not always be realisable by suitable rates
in the components, i.e. not every instance of the rate lifting problem has a
solution. Therefore, naturally, the algorithm presented in this paper will not
always succeed. However, it is guaranteed that the algorithm will find a solution,
if such a solution exists (see Sect. 6).

We build our algorithm based on certain structural properties of SPA sys-
tems, which can be exploited in the course of the algorithm. As an example, for
a given transition in one of the SPA components, it is necessary to identify the
partners which may or must synchronise with it. To the best of our knowledge,
these fundamental properties have not previously been addressed in the litera-
ture, which is suprising, since they could be very valuable also in other contexts.
For example, in compositional system verification, distinguishing between dif-
ferent types of neighbourhoods of processes or determining the participating set
of a transition (see Sect. 2) is the key to establishing dependence/independence
relations between processes.

2 Structural Properties of SPA

We consider a simple but fairly general class of Markovian Stochastic Process
Algebra models constructed by the following grammar:
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Definition 1 (SPA language). For a finite set of actions Act, let a ∈ Act and
A ⊆ Act. Let λ ∈ R

>0 be a transition rate. An SPA system Sys is a process of
type Comp, constructed according to the following grammar:

Comp := (Comp ||A Comp)
∣
∣ Seq

Seq := 0
∣
∣ (a, λ);Seq

∣
∣ Seq + Seq

∣
∣ V

Seq stands for sequential processes, and Comp for composed processes. V stands
for a process variable for a sequential process, which can be used to define cyclic
behaviour (including selfloops). One could add a recursion operator, the special
invisible action τ , hiding and other features, but this is not essential for our
purpose. The semantics is standard, i.e. the SPA specification is mapped to
the underlying flat transition system (an action-labelled CTMC), see e.g. [5,
6]. We assume multiway synchronisation1, i.e. the synchronisation of two a-
transitions yields another a-transition (whose rate is a function of the two partner
transitions, or – even more generally – of the two partner processes), which can
then participate in further a-synchronisations, etc.

An SPA system corresponds to a process tree whose internal nodes are labelled
by the parallel composition operator, each one parametrized by a set of synchro-
nising actions (||A, with A ⊆ Act), and whose leaves are sequential processes of
type Seq. For a specific action a ∈ Act, we write ||a as an abbreviation to express
that a belongs to the set of synchronising actions, and ||¬a that it does not.

Definition 2. Let Sys be a given SPA system.

(a) The set of all sequential processes within Sys is denoted as seqproc(Sys)
(i.e. the set of all leaves of the process tree of Sys).

(b) The set of all (sequential or composed) processes within Sys is denoted as
proc(Sys).

The set proc(Sys) equals the set of all nodes of the process tree of Sys. Obviously,
seqproc(Sys) ⊆ proc(Sys).

Let us denote all actions occurring in the syntactical specification of a sequen-
tial process P ∈ seqproc(Sys) as Act(P ). We can extend this definition to an
arbitrary process X ∈ proc(Sys) by writing Act(X) =

⋃
Act(Pi), where the

union is over those sequential processes Pi that are in the subtree of X. For
a sequential process P , the fact that a ∈ Act(P ) means that P (considered in
isolation) can actually at some point in its dynamic behaviour perform action a.
However, for a process X ∈ proc(Sys) \ seqproc(Sys), the fact that a ∈ Act(X)
does not necessarily mean that X can actually perform action a. As an example,
think of X = P ||a Q, where a ∈ Act(P ) but a �∈ Act(Q). As another example,
think of the same X where a ∈ Act(P ) and a ∈ Act(Q) but no combined state
is reachable in which both P and Q can perform action a. Therefore, we define
Actperf (X) ⊆ Act(X) to be those actions that X (considered in isolation) can
actually perform. While Act(X) is a purely syntactical concept, Actperf (X) is a
behavioural concept.
1 Unlike, e.g., the process algebra CCS which has two-way synchronisation [12].
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Fig. 1. (P1 ||{a} P2) ||{b} (P3 ||{b} (P4 ||{a} P5))

Given two proceses X,Y ∈ proc(Sys), we say that X and Y are disjoint if
and only if they do not share any part of the process tree of Sys. Inside the
disjoint processes X and/or Y , different actions (from Act(X) and Act(Y )) may
take place, among them the specific action a, say. Synchronisation on action
a between X and Y is possible if and only if the root of the smallest subtree
containing both X and Y is of type ||a. Maximal ||a-rooted subtrees are called
a-scopes, as formalized in the following definition.

Definition 3. Let a ∈ Act. An a-scope within an SPA system Sys is a subtree
rooted at a node of type ||a, provided that on all nodes on the path from that node
to the root of Sys there is no further synchronisation on action a (i.e. all nodes
on that path, including the root, are of type ||¬a).

Furthermore, as a special case, if P ∈ seqproc(Sys) and there is no a-
synchronisation on the path from P to the root of the process tree of Sys, we say
that P by itself is an a-scope.

For example, in the system shown in Fig. 1, subtrees rooted at X1 and X4 are
a-scopes, and sequential process P3 is also an a-scope. The only b-scope of this
system is at the root of the system, i.e. X2.

Note that, according to this definition, a-scopes are always maximal, i.e. an
a-scope can never be a proper subset of another a-scope. Clearly, if the root node
of Sys requires synchronisation on action a, then the whole Sys is a single a-
scope. Synchronisation via action a is impossible between two distinct a-scopes.
But even within a single a-scope, not all processes can/need to synchronise on
action a. The following definition answers the question (from the perspective of
a sequential process P ) which processes cannot/may/must synchronise with an
a-transition in process P .

Definition 4. For a ∈ Act, consider the a-transitions within process P ∈
seqproc(Sys). Let X ∈ proc(Sys) be such that P and X are disjoint (i.e. that P
is not part of X). Let r be the root of the smallest subtree that contains both P
and X.

(a) X ∈ Ncannot(Sys, P, a) iff r is of type ||¬a.
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(b) X ∈ Nmay(Sys, P, a) iff r is of type ||a but on the path2 from r to X there
exists a node of type ||¬a.

(c) X ∈ Nmust(Sys, P, a) iff r is of type ||a and on the path from r to X all
nodes are of type ||a.

Remark 1. Note that for a process X it is possible that X ∈ Nmay(Sys, P, a) or
X ∈ Nmust(Sys, P, a) even if a �∈ Actperf (X) (or even a �∈ Act(X)), which of
course means that X will never be able to synchronise on action a. Related to
this observation, note further that a process X ∈ Nmay(Sys, P, a) could actually
be forced to synchronise with P on action a (i.e. it could be that X must
synchronise with P on a, even though X /∈ Nmust(Sys, P, a)). For example, if
Sys = P ||a (Q ||¬a R) then Q ∈ Nmay(Sys, P, a) and R ∈ Nmay(Sys, P, a), but
if a /∈ Act(Q) then P always needs R as a synchronisation partner on action a.

Lemma 1. (a) The neighbourhood Ncannot(Sys, P, a) is disjoint from Nmay

(Sys, P, a) and Nmust(Sys, P, a).
(b) Every X ∈ Nmay(Sys, P, a) is a subtree of some Y ∈ Nmust(Sys, P, a).

Proof. Part (a) follows directly from the definition. Part(b): For given X, one
such node Y is the node directly below r on the path from r (as defined in
Definition 4) to X.

2.1 Moving Set and Participating Set

Given a system Sys constructed from n sequential processes P1, . . . , Pn, its global
state is a vector (s1, . . . , sn) where si is the state of Pi. We follow the convention
that the ordering of processes is given by the in-order (LNR) traversal of the
process tree of Sys. A transition t in the flat transition system of Sys is given
by

t = ((s1, . . . , sn)
a,λs−−−→ (s′

1, . . . , s
′
n))

where for at least one k ∈ {1, . . . , n} we have sk �= s′
k and where the transition

rate rate(t) = λs is a function of the rates of the transitions of the participating
processes. For such a transition t we introduce the following notation:

action(t) = a rate(t) = λs

source(t) = (s1, . . . , sn) target(t) = (s′
1, . . . , s

′
n)

sourcei(t) = si targeti(t) = s′
i

But which are actually the participating processes in the above transition t?
For an a-transition t as above, we define the moving set MS(t) as the set of
those sequential processes whose state changes, i.e. MS(t) = {Pk | sk �= s′

k}.
The complement of the moving set is called the stable set SS(t), i.e. SS(t) =
{P1, . . . , Pn} \ MS(t).

2 “Path” here means all nodes strictly between r and the root of X.
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Since processes may contain selfloops and since synchronisation on self-
loops is possible (and often used as a valuable feature to control the con-
text of a transition), the participating set PS(t) of transition t can also
include processes which participate in t in an invisible way by performing a
selfloop. Therefore PS(t) can be larger than MS(t), i.e. in general we have
MS(t) ⊆ PS(t). Processes in SS(t) which must synchronise on a with one
of the elements of MS(t) must have an a-selfloop at their current state and
must belong to PS(t). Furthermore, processes in SS(t) which may synchro-
nise on a with one of the elements of MS(t) and have an a-selfloop at their
current state may also belong to PS(t), provided that they are not in the
Ncannot-neighbourhood of one of the processes of MS(t). Altogether we get:

PS(t) = MS(t) ∪
{

Pi ∈ SS(t) |
(

∃Pj ∈ MS(t) :
(

Pi ∈ Nmust(Sys, Pj , a)

∨ (

Pi ∈ Nmay(Sys, Pj , a) ∧ (selfloop si
a,λi−−→ si exists and is enabled in source(t))

)))

∧ ( � ∃Pj ∈ MS(t) : Pi ∈ Ncannot(Sys, Pj , a)
)}

The condition “selfloop . . . is enabled in source(t)” means that the selfloop
in Pi can actually take place in the source state of transition t, i.e. it is
not blocked by any lacking synchronisation partner(s). Note that for the case
Pi ∈ Nmust(Sys, Pj , a) there obviously exists a selfloop in process Pi, but this
existence is implicit, so we do not have to write it down.

Using an example we show why the definition of PS(t) needs to be so compli-
cated, in particular why being in the may neighbourhood of a moving component
and having a selfloop is not enough to become a participating component. For
the system shown in Fig. 2, we wish to find PS(t) where t = ((1, 1, 3, 1, 2) a−→
(2, 1, 3, 1, 2)). P1 is the only moving component, and assume that there are a-
selfloops in state 1 in P2 and also in state 3 in P3, but that there are no a-selfloops
in state 1 of P4 and in state 2 of P5. P2 ∈ Nmay(Sys, P1, a) is in PS(t), since
its selfloop can take place without hindrance, whereas P3 ∈ Nmay(Sys, P1, a) is
not included in PS(t), since its selfloop, although it exists, is not enabled in the
source state of transition t (it would need P4 or P5 as a synchronisation partner).

2.2 Involved Set

In addition to the Participating Set PS(t) of a transition t, we also need to define
the Involved Set IS(t) which can be larger than PS(t), since it also contains those
processes which may synchronise on action a with one of the processes in PS(t)
(in another transition t′), and so on, inductively. Formally:

Definition 5. For a transition t with action(t) = a we define the Involved Set
IS(t) = PS(t) ∪

{

Pk ∈ seqproc(Sys) | ∃Pj ∈ IS(t) :
(

Pk ∈ Nmay(Sys, Pj , a)
)}

.



Rate Lifting for SPA 73

Fig. 2. P1 ||{a,b,c} (P2 ||{c} (P3 ||{a} (P4 ||{b,c} P5)))

So IS(t) represents the convex hull of the Nmay-neighbourhood of one of the
participating processes. That’s why after the existential quantor in the definition
we have to write Pj ∈ IS(t) instead of only Pj ∈ PS(t).

In some cases IS(t) = PS(t), but it can be easily shown by example that
IS(t) may be a strict superset of PS(t). Consider the system

Sys = (P1 ||¬a P2) ||a (P3 ||a P4)

and the transition t = ((s1, s2, s3, s4)
a,λs−−−→ (s′

1, s2, s
′
3, s4)). The moving set is

MS(t) = {P1, P3}, and there is obviously a selfloop in P4 of the form s4
a,λ4−−−→ s4,

so the participating set is PS(t) = {P1, P3, P4}. However, P2 is also (indirectly)
involved since it is possible that in some other transition P3 (and P4) will syn-

chronise on action a with P2. More concretely: The transitions s3
a,λ3−−−→ s′

3 (in

P3) and s4
a,λ4−−−→ s4 (in P4) may synchronise with s′

2
a,λ2−−−→ s′′

2 (in P2) (for some
states s′

2 and s′′
2 of P2). Therefore we get IS(t) = {P1, P2, P3, P4}. This will be

important for our rate lifting algorithm (Sect. 4), since if we didn’t take the
involvement of P2 into account, we might change some rates in P3 and/or P4

which would have side effects on other transitions. This means that we have to
set up a system of equations involving all four processes.

The following lemma establishes the connection between a transition’s
Involved Set IS(t) (a behavioural concept) and the a-scope from Definition 3,
which latter is a structural concept.

Lemma 2. For a transition t of the SPA system Sys, with action(t) = a, let r
be the root of the smallest tree containing all processes of IS(t).

(i) Then r is a node of type ||a.
(ii) There is no other node of type ||a “above” r (i.e. on the path from r to the

root of Sys).
(iii) The Involved Set IS(t) is exactly the set of all sequential processes in the

subtree rooted at r.
(iv) The Involved Set IS(t) is exactly the set of sequential processes in the a-

scope rooted at r. So, in a sense, the Involved Set and the a-scope are equal.



74 M. Siegle and A. Soltanieh

Proof. (i) Assume that r was of type ||¬a. Then no process Pl ∈ IS(t) in the
left subtree of r could synchronise (on action a) with any process Pr ∈ IS(t)
in the right subtree of r, which contradicts the fact that the set IS(t) contains
processes in both subtrees of r.

(ii) Furthermore, assume that there is another node r2 of type ||a on the path
from r to the root of Sys. Then any a transition in one of the processes of
IS(t) would have to synchronise with some process in the other subtree of
r2, which means that the subtree rooted at r does actually not contain all
processes of IS(t), which is a contradiction.

(iii) Assume that there is a sequential process Pnot in the left subtree of the tree
rooted at r such that Pnot �∈ IS(t). We know that there exists a sequential
process Pr in the right subtree of the tree rooted at r such that Pr ∈ IS(t).
Then, since according to (i) r is of type ||a, either Pnot ∈ Nmay(Sys, Pr, a)
or Pnot ∈ Nmust(Sys, Pr, a). But from this it follows that Pnot would have
to be in IS(t), which is a contradiction. A symmetric argument holds if
we assume that there is a sequential process Pnot in the right subtree of
the tree rooted at r. Furthermore, any sequential process Pnot not in the
subtree rooted at r cannot be in IS(t) because according to (ii) there is no
a-synchronisation above r.

(iv) This is an immediate consequence of (i)–(iii).

Lemma 3. For two transitions t1 and t2 with action(t1) = action(t2), if
IS(t1) ∩ IS(t2) �= ∅ then IS(t1) = IS(t2).

Proof. This follows directly from the closure property of the IS definition.

3 “Parallel” Transitions and Relevant Selfloop
Combinations

3.1 Multi-transition System

It is well known that the semantic model underlying an SPA specification is
actually a multi-transition system [5,6]. This is usually flattened to an ordinary
transition system by adding up the rates of “parallel” transitions, i.e. transitions
which have the same source state, the same target state and the same action
label. Thus a transition within Sys may be the aggregation of more than one
transition. As an example, consider the system Sys = P ||a (Q ||¬a R) and the

transition t = ((s1, s2, s3)
a,λs−−−→ (s′

1, s2, s3)). The moving set is MS(t) = {P},

but the participating set must be larger. Assume that Q has a selfloop s2
a,λ2−−−→ s2

and that R has a selfloop s3
a,λ3−−−→ s3. Since Q and R do not synchronise on a,

only one of those two selfloops synchronises with s1
a,λ1−−−→ s′

1 at a time, but
both selfloops may synchronise with the a-transition in P . This yields the two
“parallel” transitions

((s1, s2, s3)
a,λ12−−−→ (s′

1, s2, s3)) and ((s1, s2, s3)
a,λ13−−−→ (s′

1, s2, s3))
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(where λ12 is a function of λ1 and λ2, and likewise for λ13) which are aggregated

to the single transition ((s1, s2, s3)
a,λ12+λ13−−−−−−→ (s′

1, s2, s3)), so λs = λ12 + λ13. As
an anticipation of Eq. 1 in Sect. 4, let us mention that in this situation our rate
lifting algorithm would create the equation x

(P )
s1s′

1
x
(Q)
s2s2 + x

(P )
s1s′

1
x
(R)
s3s3 = λs · f .

3.2 Calculating Relevant Selfloop Combinations

In the simple (and most common) case that none of the sequential processes in
the SPA specification of Sys has any selfloops (and also no “parallel” transi-
tions), we know that any transition of the flat transition system has only one
single semantic derivation. In consequence, for the considered flat transition t
it then holds that PS(t) = MS(t). However, as discussed above, in the general
case the flat transition system underlying a compositional SPA specification is
actually a multi-transition system which gets flattened to an ordinary transition
system by amalgamating “parallel” transitions. In order to cover this general
case, in the lifting algorithm (see Sect. 4) we have to do the opposite: Instead of
amalgamation, we need to deconstruct a flat transition into its constituents. I.e.,
given a flat transition (which is possibly amalgamated from parallel transitions),
we need to find out the contributing transitions, in order to be able to construct
the correct equation in the lifting algorithm (Eq. 1 in Sect. 4).

Consider the flat transition t := ((s1, . . . , sn)
c,γ·f−−−→ (s′

1, . . . , s
′
n)). We can

determine its (non-empty) moving set MS(t) and its participating set PS(t),
where we know that MS(t) ⊆ PS(t). We are particularly interested in the
processes from the set (PS(t) ∩ SS(t)) \ ⋃

P∈MS(t) Nmust(Sys, P, c), since these
are exactly the processes that may (but not must) contribute to transition t.
Certain combinations of these processes (which have selfloops, otherwise they
wouldn’t be in PS(t)) contribute to transition t. We call these combinations
“relevant selfloop combinations (rslc)”. Note that there are also selfloops in
⋃

P∈MS(t) Nmust(Sys, P, c), but they are not part of rslc.
It remains to calculate rslc for transition t. For this purpuse, we define a

function rslc(t) which returns a set of sets of sequential processes, each such
set describing a relevant selfloop combination. In the process tree of Sys, let r
be the root node of the smallest subtree containing PS(t). We know that r is
either an inner node of type ||c or a leaf (if r were an inner node of type ||¬c, the
participating set PS(t) couldn’t span both subtrees of r). Calling the recursive
function in Fig. 3 by the top-level call RSLC(t, r) delivers all the relevant selfloop
combinations3. RSLC is called from the main rate lifting algorithm in Parts C
and D (see Sect. 4).

Example: Consider the SPA specification Sys = ((P ||¬c Q) ||c (R ||¬c S)) ||c
(T ||¬c U) whose process tree is shown in Fig. 4, and the transition t :=

((sP , sQ, sR, sS , sT , sU )
c,γ·f−−−→ (s′

P , sQ, sR, sS , sT , sU )). Obviously, the mov-
ing set is MS(t) = {P}, and if we assume that there are c-selfloops in
3 rslc(t), called by the algorithm, has one argument (a transition), but the recursive

function RSLC(t, n) has two arguments (a transition and a node of the process tree).
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1: Algorithm RSLC (t, n)
2: // t ∈ T is a transition
3: // n is a node of the process tree of Sys
4: // The algorithm returns a set of sets of sequential processes
5: // (each representing a relevant selfloop combination contributing to t)
6: if type(n) = leaf then
7: if Pn ∈ (PS(t) ∩ SS(t)) \ ⋃

P∈MS(t) Nmust(Sys, P, c) then
8: // Pn denotes the process represented by leaf-node n
9: // Pn ∈ PS(t) ensures that Pn has a selfloop at its current state
10: return {{Pn}}
11: // a set containing a singleton set is returned
12: else
13: return {∅}
14: // the set containing the empty set is returned
15: end if
16: else if type(n) = ||c then
17: return {C1 ∪ C2 | C1 ∈ RSLC(t, lchild(n)) ∧ C2 ∈ RSLC(t, rchild(n))}
18: // all combinations of left and right subtree
19: else
20: // it holds that type(n) = ||¬c

21: return {C | C ∈ RSLC(t, lchild(n)) ∨ C ∈ RSLC(t, rchild(n))}
22: // the (disjoint) union of left and right subtree
23: end if

Fig. 3. Function for computing the relevant selfloop combinations

states sR, sS , sT and sU (in all of them!), the participating set is PS(t) =
{P,R, S, T, U}. So transition t can be realised as any combination of a self-
loop in R or S with a selfloop in T or U , thus the algorithm will find the set of
relevant selfloop combinations {{R, T}, {R,U}, {S, T}, {S,U}}.
Anticipating once again Eq. 1 from Sect. 4, this set of relevant selfloop combi-
nations would lead to the desired equation
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Alternatively, if we assumed that the participating set was smaller, say PS(t) =
{P,R, S, T} (i.e. if there were no c-selfloop at sU ), then the algorithm would find
a smaller set of relevant selfloop combinations, namely {{R, T}, {S, T}}, leading
to the simpler equation x

(P )
sP s′

P
x
(R)
sRsRx

(T )
sT sT + x

(P )
sP s′

P
x
(S)
sSsSx

(T )
sT sT = γ · f .

4 Lifting Algorithm

Our new lifting algorithm processes the transitions whose rates are to be modified
in a one by one fashion. It is, however, not strictly one by one, since in many
situations a whole set of “related” transitions is taken into account together with
the currently processed transition. The algorithm consists of four parts named
A, B, C and D as shown in Fig. 5. In part A, for a transition whose involved set
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Fig. 4. ((P ||¬c Q) ||c (R ||¬c S)) ||c (T ||¬c U)

Fig. 5. Overview of the algorithm

consists of only one single sequential process, the algorithm first tries to change
its rate by local repair, which means changing the rate locally in exactly this
sequential process. Local repair will fail, however, if two flat transitions which
both originate from the same local transition have different modification factors.
In part B, which is the starting point for transitions whose involved set contains
at least two processes, the algorithm creates a system of nonlinear equations and
tries to solve it. This system of equations covers all transitions with the same
action label and the same involved set, i.e. all these transitions are dealt with
simultaneously in one system of equations. The basic idea behind the system of
equations is to consider all involved local rates as variables whose values are to
be determined. Part C, entered upon failure of Part B, is the first part where the
system specification is modified by augmenting some synchronisation sets and
inserting selfloops, all within the current c-scope. These modifications are done
in such a way that the global transition system is not changed. Again, like in
part B, the algorithm creates a set of nonlinear equations (but now the system
of equations is larger since the model has been modified) and tries to solve it. If
the previous steps have failed, Part D tries to expand the scope, by modifiying
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the system in a larger scope than the current involved set. This means that the
involved set is artificially augmented by adding action c to the synchronisation
set at a higher node. Again, a similar but even larger system of equations of the
same type is constructed. However, even this system of equations may not have
a solution, in which case the desired rate lifting has turned out to be impossible.

4.1 Spurious Transitions

As we have seen, in certain situations the rate lifting algorithm needs to change
the synchronisation structure of the given system, i.e. it will change an inner node
of type ||¬c to a node of type ||c. Clearly, this needs to be done with great care,
since such a step will – in general – change the behaviour of the system. Therefore
the algorithm, before adding action c to a synchronisation set, has to ensure
that no spurious transitions will be generated. Spurious transitions (sp. tr.) are
extra, superfluous transitions not present in the original system, and therefore
incorrect. Furthermore, after action c has been added to a synchronisation set,
the algorithm also has to ensure that all transitions in the original system are
still possible (it could easily be that a previously existing transition now lacks a
synchronisation partner in the newly synchronised system). For that purpose, the
algorithm inserts selfloops into the sequential components, wherever necessary.
There are actually two types of spurious transitions:

(A) Superfluous transitions which appear when two previously c-non-
synchronised components become synchronised over action c.

(B) Superfluous transitions which appear when a new c-selfloop is inserted into
a sequential process which is in the c-must- or c-may-neighbourhood of
another process.

Overall, the algorithm guarantees that even though the synchronisation structure
of the system may be altered and artificial selfloops are inserted, the set of
reachable states and the set of transitions remain the same.

4.2 Detailed Description of the Algorithm

The full pseudocode of the new rate lifting algorithm can be found in the tech-
nical report [14]. The arguments of the algorithm are the SPA system Sys and
its flat transition system T (a set of transitions), the set of transitions whose
rate is to be modified Tmod ⊆ T as well as a function factor that returns, for
each transition in Tmod, its modification factor4. For transitions not in Tmod, the
modification factor is supposed to be 1.

In each iteration of the outer while-loop, the algorithm picks one of the
remaining transitions from Tmod, called t̂ with action label called c, and processes
it (possibly together with other transitions that have the same action label).

4 Thus, this presentation of the algorithm addresses model repair rather than rate
reverse engineering (cf. Sect. 1).
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(Part A) Local repair: If the involved set of the currently processed transition
t̂ consists of only a single process, the algorithm tries to adjust the rate of exactly
one transition in that process. But this will only work if all transitions where
this process makes the same move have the same, common modification factor.

(Part B) System of equations for Tc: If the involved set of the currently
processed transition t̂ consists of two or more processes, all transitions with the
same involved set and the same action as t̂ are processed together. This set of
transitions is denoted Tc. For every transition t ∈ Tc, the algorithm determines
its participating set PS(t), calculates the relevant selfloop combinations (rslc)
and from this information creates a nonlinear equation

∑

C∈rslc(t)

∏

P∈MS(t)

x
(P )
sP s′

P

∏

Q∈PS(t)\MS(t)
∧ ∃P∈MS(t): Q∈Nmust(Sys,P,c)

x(Q)
sQsQ

∏

R∈C

x(R)
sRsR

= γ · f (1)

where the x’s are the unknown rates of the participating processes (some of which
are rates of selfloops, if such exist in the system). The superscript of variable
x
(·)
·· identifies the sequential process, and the subscript denotes the source/target

pair of states. The equation reflects the fact that the rates of all synchronising
processes are multiplied5, and that the total rate is obtained as the sum over all
possible relevant selfloop combinations. Afterwards, this system of equations is
solved, and if a solution exists, all c-transitions in the current c-scope have been
successfully dealt with. We would like to point out that, if for some transition t
the participating set PS(t) is equal to its moving set MS(t), then the resulting
equation has a much simpler form

x
(P1)
s1s′

1
· x

(P2)
s2s′

2
· · · · · x(Pk)

sks′
k

= γ · f

(assuming that |MS(t)| = k), since in this case, there are no selfloops involved,
and therefore also no combinations of selfloops to be considered.

(Part C) Expanding the Context of c-Transitions by Synchronising
with More Processes and Inserting Artificial Selfloops Within the Cur-
rent c-Scope: If the system of equations constructed in part (B) for the set Tc

had no solution, it is the strategy of the algorithm to involve more processes (for
the moment only from the current c-scope), since this opens up more opportunity
for controlling the context of these c-transitions, and thereby controlling their
rates. In this part of the algorithm, action(t̂) = c is added to the synchronisation
set at each node of type ||¬c in the current c-scope, except where this would lead
to spurious transitions (of type A or type B). These tasks of the algorithm are
outsourced to a function TRYSYNC. Checking for spurious transitions of type

5 Multiplication of rates is a de facto standard for Markovian SPAs, as implemented,
for example, by the tools PRISM and STORM. If the rate resulting from the syn-
chronisation of two or more processes were defined other than the product of the
participating rates, the equation would have to be changed accordingly, but apart
from this change, the lifting algorithm would still work in the same way.
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A is done by checking all source states of transitions in the current Tc, making
sure that there are no concurrently enabled c-transitions in newly synchronised
subprocesses. After adding action c to some synchronisation sets, we also have
to make sure that all transitions originally in Tc can still occur, i.e. that they
have not been disabled by the new synchronisations. This is also done in func-
tion TRYSYNC, by inserting the necessary selfloops in those processes which are
now newly synchronising on action c, provided that those new selfloops do not
lead to the existence of spurious transitions (of type B). The steps just described
guarantee that the modified system Sys′ has exactly the same set of transitions
as the original system Sys (qualitatively), but it remains to find the correct
rates of all c-transitions in the involved processes. For this purpose, a similar
(but larger) system of equations as in part (B) is set up and solved.

(Part D) Expanding the Involved Set by Moving the Current Root
Upwards: It is possible that the systems of equations constructed in part (B)
and thereafter in part (C) both have no solution. In this case, the algorithm
seeks to expand the current c-scope by moving its root up by one level (unless
the root of the overall system has already been reached). Again, it needs to be
ensured that no spurious transitions would be created from this step, which is
again done with the help of function TRYSYNC.

5 Experimental Result: Cyclic Server Polling System

This section considers – as a case study – the Cyclic Server Polling System from
the PRISM CTMC benchmarks, originally described in [7] as a GSPNs. It is a
system where a single server polls N stations and provides service for them in
cyclic order. The SPA representation of this system is:

Sys = Server ||Σs
(Station1 || Station2 || . . . || StationN )

where Σs = {loopia, loopib, servei | i = 1 . . . N}. Assume that for each loop1a-
transition t in the combined flat model, a modification factor f(t) �= 1 is given.
Using our new lifting algorithm, we lift this model repair information to the
components. The modification factors f are chosen in such a way that Part B of
the algorithm will not find a solution. In part C of the algorithm, it turns out
that action loop1a can be added to all ||¬loop1a -nodes of the process tree, since
it does not cause spurious transitions. Consequently, loop1a-selfloops are added
to all the states of Station2, . . . , StationN , leading to the modified SPA model

Sys′ = Server||Σs
(Station1||loop1aStation′

2||loop1a . . . ||loop1aStation′
N )

where the stations with added selfloops are shown by Station′
i. With the chosen

modification factors, a solution can be found in Part C of the algorithm. This
example is a scalable model where the state space increases with the number of
stations N . Note that the model contains symmetries, but the considered rate
lifting problem is not symmetric, since only Station1 and the Server participate
in the loop1a-transitions.
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�������
N

6 7 8 9 10 11

Total number of states 576 1344 3072 6912 15360 33792

Total number of transitions 2208 5824 14848 36864 89600 214016

Number of loop1a-transitions 32 64 128 256 512 1024

Table 1. Model statistics of the combined model for different numbers of stations

Fig. 6. Runtime comparison for different number of stations

Table 1 shows the model statistics for different numbers of stations. The last
row of the table (number of loop1a-transitions) equals the number of equations,
each of the 2N−1 equations containing the product of N + 1 unknown variables.
The whole system of equations has (N − 1) ∗ 2 + 2 variables stemming from
(N − 1) ∗ 2 newly added loop1a-selfloops plus two original loop1a-transitions
(in the Server and Station1). Figure 6 shows the required times to run our
rate lifting algorithm (implemented as a proof-of-concept prototype in Matlab
[8]) and to solve the system of equations (done by Wolfram Mathematica [9])
for different values of N6. For large N , the time for equation solving by far
dominates the runtime of our algorithm (by a factor of 2.61 for N = 11). As
shown in the figure, the runtimes grow exponentially, which is not surprising
since the number of equations increases exponentially.

6 Correctness and Existence Considerations

Correctness: It must be guaranteed that a solution found by the algorithm
is correct, which means that the modified system (with the calculated rates,
possibly modified synchronisation sets and added selfloops) possesses the same
transition system, just with the transition rates modified as desired. Once a solu-
tion has been found by the algorithm, it is easy to check its correctness by simply
constructing the flat transition system for the modified system and comparing
6 Executed on a standard laptop with Intel Core i7-8650U CPU@ 1.90 GHz–2.11 GHz.
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it to the desired transition system. However, one can also constructively argue
for the correctness of the algorithm: In Part A, if the condition for local repair
is fulfilled, only the transition rate of a single transition in one of the sequen-
tial processes is changed, resulting in the change of a well-defined set of global
flat transitions, all having the same modification factor, which is the intended
result. Parts B, C and D each work by setting up and solving a nonlinear sys-
tem of equations relating to the original (Part B) resp. carefully modified SPA
system (Parts C and D). Each of these systems of equations precisely reflects
the synchronisation of sequential SPA processes within a certain scope, taking
into account all transitions with action label c that take place in that scope,
and making sure that the resulting rates of those transitions are all as desired
(thereby considering all relevant selfloop combinations). All procedures in Parts
B, C and D affect only a certain scope of the overall SPA system, so it is enough
to ensure correctness for such a local context. If in Parts C and D the model is
adjusted (by augmenting synchronisation sets and inserting artificial selfloops),
care is taken that this will not affect the structure of the low-level transition sys-
tem. Thus, since each individual step of the algorithm is correct, we can conclude
by induction that the total effect of multiple steps is also correct.

Existence: If the lifting algorithm doesn’t find a solution, is it really guaranteed
that none exists? We briefly give the basic line of argument: If we start with
part A of the algorithm and if local repair fails, this happens because the same
local transition (involving only a single sequential process) should be executed in
different contexts with different modification factors (i.e. different rates), which is
not possible in the unmodified system. To solve this problem, some “controlling”
context needs to be added, so we synchronise the process with its neighbouring
processes (where selfloops are added at specific states) in a subtree of a certain
height, which leads to a set of equations in part D of the algorithm. We keep
expanding the context until either a solution has been found or the root of the
system has been reached, which means that the algorithm uses its full potential.
Alternatively, if we start with part B (because the involved set of the currently
processed transition is already larger than one), we first search for a solution
in the “local” context, i.e. in the current involved set, which is a subtree of the
system. First we try to leave the model unchanged, which also leads to a system
of equations. If it turns out that this system of equations has no solution, we need
to include more degrees of freedom into the equations. This is first done within
the current scope (by synchronising with as many processes as possible, albeit
all from within this same scope) in part C. If this also fails, even more degrees of
freedom can be added by expanding the current scope, leading us again to part
D. In total, the algorithm uses all possible degrees of freedom, since at every step
it involves all processes, except those whose involvement would cause damage
(in the sense that spurious transitions would occur).
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7 Conclusion

In this paper, we have studied some novel structural concepts of Markovian SPA,
which enabled us to formulate an algorithm for the lifting of rate information
from the flat low-level transition system of a general SPA model to its compo-
nents. The algorithm works for SPA specifications with an arbitrary structure
and any number of components. We have also presented a small case study that
illustrates the practical use of the algorithm and remarked on the correctness
and optimality of the algorithm. As future work, we are planning to develop
improved implementation strategies for the algorithm. Another important point
for future work is to characterise a priori the set of problem instances for which
a solution to the rate lifting problem exists.
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ation with the tool CASPA. In: Núñez, M., Maamar, Z., Pelayo, F.L., Pousttchi, K.,
Rubio, F. (eds.) FORTE 2004. LNCS, vol. 3236, pp. 293–307. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-30233-9 22

11. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

12. Milner, R. (ed.): A Calculus of Communicating Systems. LNCS, vol. 92. Springer,
Heidelberg (1980). https://doi.org/10.1007/3-540-10235-3

https://doi.org/10.1007/978-3-642-19835-9_30
https://doi.org/10.1007/978-3-642-19835-9_30
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-540-30233-9_22
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/3-540-10235-3


84 M. Siegle and A. Soltanieh
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Abstract. We propose a simulation-based technique for the verification
of structural parameters in Ordinary Differential Equations. This tech-
nique is an adaptation of Statistical Model Checking, often used to verify
the validity of biological models, to the setting of Ordinary Differential
Equations systems. The aim of our technique is to search the param-
eter space for the parameter values that induce solutions that best fit
experimental data under variability, with any metrics of choice. To do
so, we discretize the parameter space and use statistical model check-
ing to grade each individual parameter value w.r.t experimental data.
Contrary to other existing methods, we provide statistical guarantees
regarding our results that take into account the unavoidable approxi-
mation errors introduced through the numerical resolution of the ODE
system performed while simulating. In order to show the potential of
our technique, we present its application to two case studies taken from
the literature, one relative to the growth of a jellyfish population, and
another concerning a prey-predator model.

Keywords: Statistical Model Checking · ODE models · structural
parameters

1 Introduction

All scientific branches share the common concept of modeling. When a scientist
studies a real-life system, the first step he or she goes through is to build a model
that gathers all the existing knowledge of the target system. This model is then
used as a proxy of the system it represents in order to analyze it, perform sim-
ulation or predictions. In several fields, such as Biology, Chemistry, Physics or
Engineering, models do not represent a single system but are instead an abstrac-
tion for a family of systems that share common traits but might exhibit some
internal variability. This internal variability can either be left out by considering
that the model represents the “average” individual in the family, or taken into
account inside of the model through the use of non-determinism, probabilities
or parametricity.
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When considering parametric models, scientists have to go through a phase
of parameterization, which consists in confronting the model with experimental
observations of the (family of) system(s) it represents in order to find the param-
eter values that best fit this (family of) system(s). In most cases, parameteriza-
tion techniques are deterministic [21,24]. They lead to deterministic parameter
values that best fit the experimental data, i.e. producing the best fit for the
“average” individual. In this paper, we instead focus on a technique that allows
to select parameter values that best fit under variability, i.e. that produce the
best probabilistic fit for the whole family.

Parameterization, or parameter synthesis has been the topic of many works
in the context of probabilistic systems [6,9–11,13]. Symbolic techniques such as
parametric model checking [1,5] are often difficult to use in practice because
they require automata-based models while real-life models are often expressed
either with computer programs or with differential equation models. Statistical
Model Checking (SMC) [14], on the other hand, is a simulation-based tech-
nique that allows to estimate, with formal guarantees, the probability that a
given (probabilistic) model satisfies a given property. Because it is simulation-
based, it can be applied to any stochastic model for which simulations can be
performed. SMC has been successfully applied to perform parameterization of
real-life models expressed using several formalisms such as parametric Markov
chains [2], parametric Python programs [20], or even parametric Ordinary Dif-
ferential Equation systems (ODEs) [15]. Unfortunately, the formal guarantees
obtained through SMC are linked to the simulation space (i.e. the produced
traces) and not to the original model itself. When the model consists in sets
of ODEs, as in [15], numerical resolution methods are used in order to solve
the ODEs and perform simulations, which means that the formal guarantees
obtained through SMC cannot apply to the original ODE model.

In this paper, our main contribution is to bridge the gap between the original
ODE model and the results of the parameterization procedure by combining the
statistical guarantees of SMC with the global approximation error of standard
numerical resolution methods. As in [15], we consider ODE models with struc-
tural parameters. We assume that these models represent families of real-life
systems that need to match some experimental data through simulation. We
build on the logic proposed in [15] to express our properties of interest and also
consider expected reward properties that might be of interest in practice. We
use SMC to grade parameter values by estimating the expectation of a given
reward function for these values while taking internal variability into account.
Contrarily to what is done in [15], the accuracy of this estimation is guaranteed
w.r.t. the original ODE model.

To illustrate our results, we perform the parameterization of two state-of-the-
art models taken from the literature using our technique. In this context, and
because modelers are often interested by this information in practice, we propose
a global evaluation of the parameter space that allows us to get a complete
picture of the adequacy of the parameter values w.r.t. the given experimental
data. This choice is done by interest only, since our results are generic and could
be applied to any search technique, such as the local ones performed in [15].
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Intuition. To give an intuition of our contribution, we provide an informal
summary of the method we present in this paper. Recall that, given a dataset
relative to an experiment and a parametric ODE system, the objective is to find
a solution to a parametric ODE system (i.e. parameter values) that satisfies a
property ϕ w.r.t. the dataset, which is, given a distance δ > 0, “the solution
stays in a tunnel of radius δ around the experimental data”; we also want to
acquire statistical guarantees on said result. The main issue is that we can only
simulate our model by solving the ODE system using numerical resolution meth-
ods. Hence, we cannot directly verify whether exact solutions (z) of the system
satisfy ϕ and instead have to rely on approximate solutions (y). We therefore
proceed as follows: we start by discretizing the set of parameter values into a
grid; we then evaluate each point of this grid using the procedure detailed below;
finally, we use the resulting scores to select the “best” parameter values w.r.t ϕ.
The score of a given parameter value λ is computed as follows, and illustrated
in Figs. 1 and 2 in the context of the case study presented in Sect. 4.1.

1. We set the parameter value to λ. By a careful study of the ODE system,
we give a bound on the distance ε between exact (z) and approximate (y)
solutions. We emphasize that this bound depends on (1) the chosen resolution
technique and (2) the chosen integration step. We show that this distance is
uniformly stable w.r.t. internal variability around λ, but also that it can be
uniformly bounded on the global set of solutions (i.e. independently of λ).

2. We propose two new properties ϕ1 and ϕ2 that will be verified on the approxi-
mate solutions y, and depend on the above distance. This amounts to changing
the size of the tunnel around the experimental dataset. We compute (estima-
tions of) the respective probabilities p1 and p2 and prove that the probability
p that z satisfies ϕ lies between p1 and p2.

3. We provide statistical guarantees of our estimation, i.e. a confidence interval
for our estimation of p, and use this estimation as the score for parameter
value λ.
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Fig. 1. Tunnels corresponding to the prop-
erties ϕ, ϕ1, ϕ2 and accepted simulations.
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Fig. 2. ϕ-accepted, ϕ2-accepted and
rejected solutions.

It is worth noting that the underlying theory is generic: the integration
method as well as the statistical estimation method can be chosen arbitrarily as
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long as they provide the usual guarantees. In this paper, we use Runge-Kutta
and Monte-Carlo for the sake of example.

Outline. In Sect. 2, we introduce required preliminaries and notations for the
rest of the paper. In Sect. 3, we state the main result of the paper, i.e. we com-
pute the approximation error for ODE solutions, show that this error is uniformly
stable, and provide the statistical guarantees for the estimation of the probabil-
ities. In Sect. 4, we illustrate our approach on two case studies taken from the
literature. Finally, we conclude in Sect. 5 and give perspectives for future work.

2 Background and Notations

In this section, we present the basic notations and definitions that will be used
throughout the paper. More precisely, we recall the definition of an ODE, and
present the logic used in the paper. Finally, we extend this logic by introducing
reward functions.

2.1 ODE Preliminaries

First, we consider an evolution problem described by an Ordinary Differential
Equation (ODE) of the form

dz

dt
(t) = f

(
z(t),λ

)
, t > 0. (1)

In Eq. (1), the unknown function z is defined in R
+ with values in R

n; λ ∈ R
m is a

vector of parameters; f is a function defined on R
n×R

m with values in R
n, whose

regularity will be detailed below; n, m are positive integers. In the following, we
write zi(t), 1 ≤ i ≤ n, for the projection of z(t) on its ith component. As
mentioned in our introduction, Eq. (1) can model various real-world problems
arising in life sciences. Our goal is to study some properties of the trajectories
determined by Eq. (1), by developing an innovative model-checking framework
suitable for the continuous dynamics of ODEs.

Here and for the rest of the paper, we fix an initial condition z0 ∈ R
n. Stan-

dard results of the theory of differential equations (see for instance [18]) ensure
that, for any value of the parameter λ ∈ R

m, the Cauchy problem determined
by Eq. (1) and the initial value z(0) = z0 admits a unique solution, provided f
is C1 on R

n × R
m; we denote by zλ(t) the corresponding trajectory, which we

assume to be defined on [0, T ] with T > 0. If the context is sufficiently clear,
we may write z(t) for short. As before, we write zλ

i (t) (resp. zi(t)), 1 ≤ i ≤ n,
for the projection on its ith component. We assume that the component λj of
the parameter vector λ ∈ R

m (1 ≤ j ≤ m) satisfies λj ∈ [Lλ
j , Uλ

j ], with real
coefficients Lλ

j < Uλ
j and we consider the compact sets W and INIT defined by

W =
m∏

j=0

[Lλ
j , Uλ

j ] (2) INIT = {z0} × W. (3)

For λ ∈ W , we consider the Euclidean norm defined by ‖λ‖ =
(∑m

j=1 |λj |2
)1/2

.
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We assume that the trajectories of Eq. (1) starting from z0 admit a rectan-
gular invariant region, uniform w.r.t. the parameter λ, that is zi(t,λ) ∈ [Li, Ui]
for t ∈ [0, T ], with real coefficients Li < Ui, for all λ ∈ W and for 1 ≤ i ≤ n.
The global invariant region for z is written V =

∏n
i=0[Li, Ui].

Finally, we write TRAJ for the set of all potential trajectories of the solutions
to our ODE system. Formally, TRAJ = {zλ(t) | λ ∈ W}.

It is well-known that Eq. (1) determines time continuous trajectories, which
moreover depend continuously on a variation of the initial condition z0 and of
the parameter λ ∈ W (see for instance [18]). In Sect. 3, we will be interested in
the variation of those trajectories under a variation of the parameter λ ∈ W. We
now move to the description of the properties for our models.

2.2 Bounded Linear Time Logic

As explained in the introduction, our aim is to find the parameter values that
allow our model to best fit some given experimental data. In the following, we
therefore assume that we are given a finite set of experimental observations that
correspond to a finite set of time points and a tolerance value δ > 01. We write

T = {0 = t0, t1, . . . , tN = T} (4)

for a set of time points and assume that we have a finite set of observations Ot
i =

{ot
i,1, . . . , o

t
i,k} for each of them and for each coordinate i. We assume, in practice,

that T indeed includes all the time points where experimental observations are
available. Remark nonetheless that T is not necessarily limited to this set, as we
could have Ot = ∅ for a number of t ∈ T . In practice, since T = {t0, . . . tN} is
finite, we abuse notations and substitute it, when convenient, with the integer
set T = {0, . . . N}.

We start by recalling the logic defined in [15], which allows to express our
properties of interest, i.e. that a given solution agrees with the experimental
observations available at given time points. This logic is a slightly modified
version of Bounded LTL, where atomic propositions are of the form (i, l, u) with
Li ≤ l ≤ u ≤ Ui, where Li and Ui are the boundaries of the set V defined above.
The intuition is that, for q ∈ T , z satisfies the atomic proposition (i, l, u) at
time point q if and only if l ≤ zi(q) ≤ u. Since there is a finite number of time
points and a finite number of observations, we only consider the finite number
of atomic propositions where 1 ≤ i ≤ n and l, u ∈ ∪q∈T (Oq

i ∪ Oq
i − δ ∪ Oq

i + δ).
We also allow l, u = +∞,−∞ to account for timepoints q where Oq = ∅.

The rest of the logic is defined as usual:

– every atomic proposition and the constants true, false are BLTL formulas,
– the negation and conjunction of BLTL formulas are BLTL formulas,
– if Ψ and Ψ ′ are BLTL formulas, then ΨUqΨ ′ and ΨU≤qΨ ′ are BLTL formulas

for any positive integer q ∈ T ,
– if Ψ is a BLTL formula, then XΨ is a BLTL formula.
1 Note that the method does not depend on the value of δ. We assume its value is

provided by the user.
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The interpretation of ΨU≤qΨ ′ is standard, i.e. Ψ ′ must happen before q time
points have elapsed, while the interpretation of ΨUqΨ ′ is that Ψ must hold for
exactly q time points before Ψ ′ holds. The interpretation of XΨ is standard as
well, i.e. XΨ ⇔ trueU1Ψ . We invite the interested reader to consult [15] for the
formal semantics of this logic.

Given a BLTL formula Ψ , we define models(Ψ) = {z ∈ TRAJ | z, 0 |= Ψ}.
Recall that the properties we want our models to verify are the following: the

traces of the model need to agree with the given experimental data. One way to
rephrase this property is as follows: at all time points where experimental data
is available, the trace of our model needs to be between the lower and upper
values taken from the experimental data with a given tolerance δ > 0. This is
easily expressed in BLTL as the property

Ψ∗ =
∧

1≤i≤m

ψ0
i ∧ X

(
ψ1

i ∧ X (ψ2
i ∧ · · · ∧ XψN

i ) . . .
)

(5)

where ψq
i = (i,min(Oq

i )−δ,max(Oq
i )+δ). Since our aim is to consider variability

on the ODE models of interest, we may use statements of the form P≥p(Ψ∗),
whose interpretation is expressed as follows: “the probability that a trajectory
in TRAJ is in models(Ψ∗) is greater than p”. In this regard, we need to define a
probability measure P over TRAJ.

We start by noticing that each parameter value λ completely determines
the trajectory zλ ∈ TRAJ, since the initial condition z0 ∈ R

n has been fixed.
As a consequence, TRAJ can be completely identified with INIT (see Eq. (3)).
Formally, we define Models(Ψ) ⊆ INIT as the set

{(z0,λ) ∈ INIT | zλ(t) ∈ models(Ψ)} (6)

and consider the Σ-algebra B generated by the m-dimensional open intervals of
INIT. As expected, it is shown in [15] that B is an adequate support to prove
the measurability of Models(Ψ) for any BLTL formula Ψ .

In the following, we will consider a number of probability distributions P
λ

on B (one for each parameter value λ), and use these probability distributions
to evaluate whether our ODE model meets a specification of the form P

λ
≥p(Ψ).

This will amount to checking whether P
λ(Models(Ψ)) ≥ p. We will refer to the

formulas such as P
λ
≥p(Ψ) as PBLTL formulas.

In our context, each parameter value λ in W will give rise to a probability
distribution P

λ taking into account internal variability. This probability distri-
bution will be used for evaluating the model against the property Ψ∗, which will
yield a score grade(λ) that represents the adequacy of parameter value λ w.r.t.
the given experimental data while taking into account internal variability.

However, it might happen that many of the values λ in INIT have a maximal
score grade(λ) = 1, i.e. satisfy the PBLTL property P

λ
≥1(Ψ

∗). This could be the
case for example if all the traces generated using P

λ satisfy the property Ψ∗. In
this case, we will need to consider more complex properties to filter those values
and rank them. To this purpose, we introduce the notion of reward function.
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2.3 Reward Function

The purpose of statistical model checking in general, and Monte-Carlo in par-
ticular, which will be presented in detail in Sect. 3.2, is to estimate with formal
guarantees the expected value of a given function on a measurable set. In the
context of model checking, this procedure is used to estimate the probability
that a given model satisfies a property. To do this, each sample of the system is
checked against the property and a Boolean reward is computed accordingly (i.e.
1 if the property is satisfied and 0 otherwise). Statistical model checking then
amounts to estimating the expected value of this particular reward function on
the measurable set of traces of the model at hand.

In our case, this boils down to defining a reward function rΨ∗ : TRAJ → {0, 1}
that evaluates to 1 if the trajectory satisfies Ψ∗ and 0 otherwise. Statistical model
checking will then compute an estimation of the expected value of rΨ∗ on the set
of traces TRAJ under the probability distribution P

λ , which in the end will be
an estimation of the measure of Models(Ψ∗) for the parameter value λ. Remark
that this construction would work for any other BLTL property Ψ .

In order to grade the parameter values in a more discriminating way, we
allow the use of non-Boolean reward functions. This will allow expressing more
powerful properties than those that can be defined using the BLTL logic. For
instance, one can use those reward functions in order to measure the number
of time points for which the current trace does not agree with the given exper-
imental data, or to measure the cumulative distance between the trace and the
experimental data at all time points.

In the following, we will therefore consider a given reward function r :
TRAJ → R and use statistical model checking to estimate its expected value
on the trajectories of our model under a given probability distribution P. When
convenient, we will identify a given BLTL property Ψ with its associated reward
function obtained through the above construction rΨ .

3 Global Statistical Guarantees

In this section, we state our main result, which provides statistical guarantees
on the verification of specific properties. Namely, given a property Ψ (resp. the
corresponding reward function rΨ ) on the trajectories of Eq. (1), we will establish
confidence intervals regarding the estimation of the probability of satisfaction of
that property (resp. the expected value of rΨ ), which shall be computed using
approximate solutions to Eq. (1), as well as a bound on the errors w.r.t. the exact
probability corresponding to the exact solutions to Eq. (1).

We start by recalling how ODE numerical resolution methods work, and
we propose a definition for the approximation errors introduced in the process.
Next, we introduce a method for estimating the probability p that exact solu-
tions of our ODE system satisfy a given property Ψ using an estimator p̂ that
takes the approximation error into account. Finally, we explain how those results
along with their statistical guarantees can be extended to the estimation of the
expected values of given reward functions.
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3.1 Approximation Method for the Numerical Integration
of the ODE

We recall that an approximation method, which determines the approximate
solution yλ to the ODE induced by parameter λ, can be written

yλ(0) = z0, yλ(τj+1) = yλ(τj) + h Φ
(
τj , y

λ(τj),λ, h
)
, 0 ≤ j < J, (7)

where Φ is a continuous function defined in [0, T ] × R
n × W × R with values in

R
n, τj are the discrete points of definition of yλ , and h ∈ R. Intuitively, those

methods compute each point thanks to the previous one. In this paper, we use
the well-known Runge-Kutta 4 method, which is a standard method for ODE
resolution.

For the sake of simplicity, we focus in the following on the theoretical study
of 1-dimensional systems (n = 1), but our method can be adapted to larger
systems (n ≥ 2) as shown in our second case study presented in Sect. 4.2, mostly
by adapting the definition of distance introduced below.

As explained in Sect. 2, we consider a set γ of observation data samples,
recorded at (N + 1) time points forming a set T (see Eq. (4)) with values in
R

n (N > 0). We start by defining a notion of distance between functions that
will, in the end, allow us to compare the solutions of our ODE model with the
given experimental data. Given any two functions y, ỹ in the set FT = {g : I →
R | T ⊆ I}, where I denotes an interval included in R, we consider the distance
d defined by

d(y, ỹ) = max
t∈T

|y(t) − ỹ(t)| . (8)

Note that d is rigorously only a pseudo-distance, since two functions y and ỹ
defined on [0, T ], that are distinct on [0, T ], might coincide on the finite set T ,
thus could satisfy d(y, ỹ) = 0. Nevertheless, since our purpose is to measure the
distance to the dataset γ, we do not need to distinguish such two functions.
Moreover, one may use any (pseudo-)distance of their choice, since all norms are
equivalent in the finite-dimensional space R (Rn in the general setting). In the
rest of the paper, we will abuse notations and use d to compare a given function
y ∈ FT to γ, even though γ is only defined on T and not on a continuous
subinterval of R.

In most ODE resolution methods, the approximation error depends on an
integration step. We therefore introduce a discretization Dh of the time interval
[0, T ], which we assume, for simplicity, to admit a constant step h > 0:

Dh = {0 = τ0, τ1, τ2, . . . , τJ = T}, (9)

with J > 0 and τj+1 − τj = h for all 0 ≤ j < J .
For each parameter value λ ∈ W, the chosen approximation method will

compute an approximate solution to the ODE, which we denote yλ . Recall that
the initial condition z0 ∈ R (Rn in the general setting) has been fixed and that
for any λ ∈ W, the exact solution to Eq. (1) such that z(0) = z0 is written zλ .

For the sake of measuring the approximation error between yλ and zλ , we
use a finer notion of distance than the one proposed above. Indeed, standard res-
olution methods provide guarantees that depend on the integration step in the
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sense that choosing a finer integration step enhances the quality of the approx-
imation. Our aim here is to be able to take advantage of this fact, which could
not be captured if we used the distance d from Eq. (8).

Definition 1 (Global approximation error). Let h > 0 be the integration
step of the chosen resolution method. The global approximation error εh(λ)
between the approximate solution yλ and the exact solution zλ is defined as
follows:

εh(λ) = max
τ∈Dh

∣
∣zλ(τ) − yλ(τ)

∣
∣ . (10)

In the rest of the paper, we make two important assumptions on the approxima-
tion method. First, we assume that the set T of time points given by Eq. (4), at
which the observation data γ are recorded, satisfies T ⊂ Dh. This assumption is
quite natural as there are a finite number of experimental data, therefore a suffi-
ciently small h can always be chosen accordingly. Our second assumption is that
the approximation method is convergent, which guarantees that for all λ ∈ W,
the global approximation error εh(λ) converges to 0 when h gets smaller. This
latter assumption is directly satisfied for usual approximation methods (such as,
e.g., Runge-Kutta; see for instance [3]).

3.2 Monte-Carlo Method

We now move to our main result, i.e. providing an estimation of the probability
that the original ODE system, with a given parameter value λ∗, agrees with
the experimental data with statistical guarantees. For the sake of simplicity, we
focus in this section on standard BLTL properties as introduced in Sect. 2.2. We
then show in Sect. 3.3 how these results can be extended to reward functions.

Let λ∗ ∈ W be a parameter value. In order to take the internal variability
of our system into account, we will consider that λ∗ can slightly vary. In order
to do this, we set a constant ρ > 0 and define the open ball

B(λ∗, ρ) = {λ ∈ R
m | ‖λ − λ∗‖ < ρ}, (11)

where ‖·‖ is the Euclidean norm defined in Sect. 2.1.
We start by recalling the Monte Carlo procedure for estimation. This pro-

cedure aims at taking advantage of the Central Limit Theorem and the Law of
Large Numbers. In order to estimate the probability that our system (where λ
can vary inside of B(λ∗, ρ)) satisfies the given BLTL property Ψ∗ (see Eq. (5)),
we will generate a set of n samples of values for λ inside of B(λ∗, ρ), and use
these values to provide n solutions to the ODE system. Each solution will be
evaluated, yielding a score of 1 if it satisfies Ψ∗ and 0 otherwise. Informally, the
Central Limit Theorem (Theorem 1) states that the mean value of the samples
p̂ is a good estimator for the probability p that our system (i.e. the ODE sys-
tem, where the parameter value is set to λ∗, with internal variability) satisfies
Ψ∗. Moreover, it also provides a confidence interval that solely depends on the
number of samples—provided this number is large enough—and the variance of
the initial distribution.
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Theorem 1 (Central Limit Theorem [19]). Let X1,X2, . . . be a sequence of
independent and identically distributed random variables of mean μ and variance
σ2. Then, the distribution of

∑n
i=1 Xi−nμ

σ
√

n
tends to the standard normal distribu-

tion as n → ∞. That is, for any a ∈ R,

lim
n→∞

P

(∑n
i=1 Xi − nμ

σ
√

n
≤ a

)
=

1√
2π

∫ a

−∞
e−x2/2dx.

Because we cannot evaluate the exact solutions of the ODE system but
instead have to rely on approximate solutions, we will define two auxiliary prop-
erties ϕε

1 and ϕε
2 (not expressed in BLTL) that take into account the global

approximation error defined above, use the Monte Carlo procedure to estimate
two probabilities p̂ε

1 and p̂ε
2 using those properties and the approximate solutions,

and finally propose an estimation of p̂ that relies on p̂ε
1 and p̂ε

2. We will finally
use p̂ in order to rate the chosen (central) parameter value λ∗.

Let T be a set of time points as described earlier. Let γ be the set of exper-
imental data and δ > 0 be a precision (tolerance) w.r.t. γ. Let λ∗ ∈ W
be a parameter value, let ρ > 0 be a variability setting. Consider the ball
Bλ∗ = B(λ∗, ρ) and let P

λ∗
be the uniform distribution on this ball.

Given a function g ∈ FT , we write ϕ(g) := d(g, γ) ≤ δ the property that
means “the distance between g and γ is less than δ”. Note that this property
can easily be written in BLTL (see Eq. (5) above). For convenience, if yλ is an
approximate solution to Eq. (1) induced by the parameter λ ∈ Bλ∗ , we will
identify ϕ(λ) to ϕ(yλ).

Given ε > 0, we introduce the properties:

ϕ(zλ) := d(zλ , γ) ≤ δ,

ϕε
1(y

λ) := d(yλ , γ) + ε ≤ δ, ϕε
2(y

λ) := d(yλ , γ) − ε ≤ δ.

The translation of ϕ in BLTL is the property of interest Ψ∗ defined in Eq. (5).
Our aim is to provide an estimation p̂ for P

λ∗
(Ψ∗). For convenience, we write P

for P
λ∗

in the rest of this section.
In order to do that, we show in Lemma 1 that for a small enough integration

step h, we have εh(λ) ≤ ε for all λ ∈ Bλ∗ , and therefore

ϕε
1(y

λ) ⇒ ϕ(zλ) ⇒ ϕε
2(y

λ). (12)

Lemma 1. Let (hi)i∈N ∈ R
+ be a sequence of integration steps, such that

lim
i→∞

hi = 0. Then for all ε > 0, there exists i∗ > 0 such that

εhi
(λ) < ε, ∀i ≥ i∗,∀λ ∈ Bλ∗ . (13)

In other words, the global error εh(λ) can be uniformly bounded in the closure
Bλ∗ of the open ball Bλ∗ . The proof of this lemma is given in Appendix A, along
with a method to compute hi∗ .

Now, we define the probabilities

p = P
(
ϕ(zλ∗)

)
, pε

1 = P
(
ϕε
1(yλ∗)

)
, pε

2 = P
(
ϕε
2(yλ∗)

)
. (14)
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Note that p, p1, p2 implicitly depend on δ. However, we omit this dependence in
order to lighten our notations. Next, it is straightforward that

pε
1 ≤ p ≤ pε

2, ∀ε > 0. (15)

Estimators p̂ε
1, p̂ε

2 of the probabilities pε
1 and pε

2 respectively can be determined
using the Monte-Carlo procedure, involving a precision α and a risk θ. Our
main result, given in Theorem 2 below, establishes a statistical guarantee on the
probability p of interest with respect to these estimators p̂ε

1, p̂ε
2.

Theorem 2 (Main theorem)
Let λ∗ ∈ W, ρ > 0, δ > 0, ε > 0. For any risk ξ ∈ (0, 1), we define θ =
1−

√
1 − ξ. Then, for any precision α > 0, the probabilities pε

1 and pε
2 defined in

Eq. (14) satisfy

P
(
pε
1 ∈ [p̂ε

1 − α, p̂ε
1 + α]

)
≥ 1 − θ, P

(
pε
2 ∈ [p̂ε

2 − α, p̂ε
2 + α]

)
≥ 1 − θ, (16)

where the estimators p̂ε
1 and p̂ε

2 can each be determined after performing a number
N ′ = log(2/θ)

2α2 (and hence a total number N = 2 × log(2/θ)
2α2 ) of simulations of

Eq. (1) induced by parameter values λ sampled in Bλ∗ .
Furthermore, there exist ε0 > 0 and h0 > 0 sufficiently small such that, for

any integration step h ≤ h0 and any ε < ε0, the following statements hold:

– the probability p defined in Eq. (14) satisfies the estimation

P
(
p ∈ [p̂ε

1 − α, p̂ε
2 + α]

)
≥ 1 − ξ, (17)

– the distance between p̂ε
1 and p̂ε

2 satisfies:

P (|p̂ε
1 − p̂ε

2| ≤ 3α) ≥ 1 − ξ. (18)

We emphasize that estimations (17) and (18) imply a confidence interval of
width 5α for p and require a number of samples N = 2× log(2/θ)

2α2 . If the analysis
was performed directly on the exact solutions of the ODE, we would have a
confidence interval of width 2α and only require log(2/ξ)

2α2 samples.
The proof of Theorem 2, given in Appendix B, is divided in three main steps.

First, using the Central Limit Theorem and the Law of Large Numbers, we
determine estimators p̂ε

1 and p̂ε
2 of pε

1 and pε
2, respectively. Then, Eq. (14) and the

independence of simulations lead to the confidence interval of p. Finally, Lemma
1 guarantees that proper values of h and ε can be found, in order to control
the distance between p̂ε

1 and p̂ε
2. It is worth noting that, for some resolution

methods (such as Runge-Kutta 4 for example), a value for h can be explicitly
determined to guarantee Lemma 1 for a given ε and therefore Eq. (17). However,
the convergence speed of |p̂ε

1 − p̂ε
2| is not known in general, therefore we can only

guarantee the existence of a sufficiently small value for ε to ensure Eq. (18) but
not compute it.
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3.3 Model Checking Extension Through Reward Functions

As explained in Sect. 2.3, our method can be extended to non-Boolean reward
functions. Indeed, these functions may provide not only qualitative results—
“does the property hold?”—but also quantitative ones—“how well does the prop-
erty hold?”. In our case, this allows to distinguish the good parameters that
induce a suitable solution from the best ones that induce the solutions closest
to the data.

To use such a real-valued reward function r, some conditions are required.
First, it must be assumed that two other reward functions r1 and r2 can be
found, such that the following estimation holds for any λ ∈ Bλ∗ :

r1(λ) ≤ r(λ) ≤ r2(λ). (19)

Second, the law of the unconscious statistician must be applicable to these
lower and upper reward functions, i.e. the computation of the expected value2
must be applicable, so that estimators r̂1 and r̂2 of r1 and r2 respectively, can
be computed.

Moreover, and most importantly, the reward function must be compatible
with the global error defined in Eq. (10). Indeed, since we compute score based
on approximated solutions, said computations must take this approximation into
account to provide any significance to the resulting score. It is worth noting that
these conditions are satisfied by all the reward functions we have considered in
this work, such as the total accumulated/maximal/average distance to γ or the
number of time points where γ is not respected.

Similarly to Eq. (18), the distance between r̂1 and r̂2 must be controlled.
Depending on the order of the approximation method used to compute approxi-
mate solutions to the ODEs, this may be easy to ensure. For instance, in our case
the integration method Runge-Kutta 4 ensures that the approximation error—
and thus, the global error as defined in Eq. (10)—is of order 5: all derivatives
of the integration functions converge at most linearly w.r.t. h5, where h is the
integration step.

4 Case Studies

In this section, we apply our method to two case studies [17,22] taken from the
literature to show its potential. After presenting the studies and their results,
we will display our results and discuss them. We implemented our technique in
C++ to validate the approach. The experiments were realized on a 2.1GHz Intel
Xeon Silver 4216 processor, running g++ version 7.5.0 on Ubuntu 18.04. The
code is available at https://gitlab.com/davidjulien/smc_for_ode.git, and the
experiments can be reproduced using the right branches, i.e. compute_aurelia
to run the experiment from Sect. 4.1 and compute_prey to run the experiment
from Sect. 4.2. We used the Runge-Kutta 4 method to compute approximate
solutions, a SMC precision α = 0.05 and a risk ξ = 0.05.
2 See Eq. (27) in AppendixB.

https://gitlab.com/davidjulien/smc_for_ode.git
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First, we briefly recall the experiment. After discretizing the value space W
defined in Eq. (2) for the parameter λ, we will grade every value in order to
select the best ones w.r.t. the experimental data γ. In order to take the internal
variability of the model into account, each chosen parameter value λ∗ is associ-
ated with the open ball Bλ∗ as defined in Eq. (11). Once the SMC parameters
α and ξ, as well as a small enough value for ε are chosen, we can compute an
integration step h, as well as a required number N of samples such that The-
orem2 holds. Then, we sample N values λ ∈ Bλ∗ , compute the approximated
solutions to the induced ODEs, and compare them with the experimental data
γ. For each λ∗ ∈ W, we thus estimate the probabilities p̂ε

1 and p̂ε
2 defined in the

previous section, and use them to define grade(λ∗) = p̂ε
1+p̂ε

2
2 . In order to better

discriminate the best parameter values, we also estimate the expected value of
the reward function r : λ �→ d(zλ , γ) that measures the distance between the
ODE simulations and the experimental data.

4.1 Case Study 1: A Study on Aurelia Aurita Population
Growth [17]

In 2014, Melica et al. [17] published a paper studying the growth of Aurelia
Aurita, a species of jellyfish that is very common in Adriatic Sea. In this paper,
they compared experimental data, resulting from the culture of Aurelia Aurita
polyps, to simulation models based on the following ODE:

x′(t) = ax(t)(1 − x(t)/b) (20)

where t is time, x is the population density, a is the maximum rate of population
growth, and b is the positive equilibrium. The authors show that the dynamics
of a Aurelia Aurita polyps population can, indeed, be modeled by the density-
dependent, or Verhulst [23], ODE presented above and compute the values for
a and b that ensure the best fitting w.r.t. the experimental data. These values
are recalled in Table 1.

Table 1. Estimation of parameters of the logistic curve fitting the laboratory experi-
mental data [17].

HD LD

b 5.35± 0.11(∗∗∗p < 0.001) 1.81± 0.08(∗∗∗p < 0.001)

x(0) 7.59± 0.21(∗∗∗p < 0.001) 0.081± 0.017(∗∗∗p < 0.001)

a 0.130± 0.033(∗∗p = 0.002) 0.137± 0.012(∗∗∗p < 0.001)

χ2 0.775 0.056

Remark 1. HD and LD represent the studies for High and Low Density, respec-
tively, which were both ran by the original authors. Here, we focused on the High
Density case.
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In order to illustrate our method, we applied it to the same case study,
using Eq. (20) as the ODE system. We evaluated parameter values in the ranges
a ∈ [0, 3], b ∈ [0, 9], and discretized this space with a parameter step of 0.01. We
set the internal variability of the parameters ρ = 0.005 and performed N = 874
simulations for each parameter value on the discretized space, therefore ensuring
a statistical precision of α = 0.05 and risk of ξ = 0.05.

In Fig. 3, we represent the score of the best parameter values, where the white
zones are zones where grade(λ∗) = 0. One can see that there is a small gradient
in the area where the score is positive, but this is not enough to discriminate
between the parameter values in this zone. In order to refine the result, we
present in Fig. 4 the estimation of the expected value of the reward function
r : λ �→ d(zλ , γ). Figure 4 shows a tighter area of values that induce solutions
that are very close to the data (down to 0.50 polyps on average), plotted in red,
which contains the parameter value estimated by [17]: it comforts us in saying
that our method provides tangible results. The best parameter found using our
method is the pair (a, b) = (0.19, 5.57). It induces the red curve in Fig. 5.

4.2 Case Study 2: A Prey-Predator Model for Lynx and Hares [22]

In 2010, Restrepo and Sánchez [22] published a paper describing a genetic algo-
rithm, which aimed at estimating the best parameters for prey-predator models.
The first model, which we will study in the following, is a basic prey-predator
interaction model defined by the following ODE system:

P ′ = aP − bPD, D′ = −cD + dPD (21)

where t is time, P and D are the two time-dependent variables representing the
quantity of individuals in each group: P (t) for prey and D(t) for predators; a, b,
c, d are positive constants, a and c indicating the birth rate of prey and death
rate of predators respectively, and b and d representing the rates of predation
and reproduction of predators. Note that even if the model is a standard way to
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Fig. 6. Heatmap of the
score (for c = 0.89).

Fig. 7. Heatmap of the
distance to γ (for c =
0.89).
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Fig. 8. Best solution to
Eq. (21).

describe, on first approximation, such an interaction between two populations,
its simplicity might make it imprecise – which is why other, more complex models
are studied in [22]. The best values for parameters (a, b, c, d) w.r.t. experimental
data are given in [22]: (a, b, c, d) = (0.55, 0.027, 0.83, 0.026).

Again, we applied our method to this case study, using Eq. (21) as the
ODE system. We evaluated parameter values in the ranges a ∈ [0.48, 0.68],
b ∈ [0.015; 0.04], c ∈ [0.78, 0.9], d ∈ [0.01, 0.05], and discretized this space with
a parameter step of 0.001. We set the internal variability of the parameters
ρ = 0.0005 and performed N = 874 simulations for each parameter value on the
discretized space, therefore ensuring a statistical precision of α = 0.05 and risk
of ξ = 0.05. Note that the parameter ranges have been tightened according to
the paper results, since cyclic models can be very sensitive to parameter values.

We encountered two issues with this study. First, the adequacy of the model
with the data was improvable, thus computing a fitting solution was challenging.
We had to loosen the property we verify: instead of Ψ∗, which enforces the
solution to always stay in the tunnel, we verified a property Ψ †, which allows
the solutions to step out of the tunnel a total of 5 times (for a total of 22 time
points) before rejecting them. This explains why the best solution displayed in
Fig. 8 does not perfectly fit inside of the tunnel. Remark that Ψ † can easily be
expressed in BLTL, and is therefore compatible with our theory. Second, since
system Eq. (21) involves 4 parameters, displaying the results with heatmaps is
more difficult than in case study 1 (Sect. 4.1). Nonetheless, locking a parameter
value (here, c = 0.89) allows the plot of a 3-dimensional heatmap.

Figure 6 shows a local subset of solutions fitting the data with a certain
quality. Notice that the score only goes up to 0.5; because of the internal vari-
ability we impose and the sensitivity of the model, very few simulations stayed
in the inner tunnel (corresponding to ϕε

1 in Sect. 3), yielding p̂ε
1 = 0 in most

cases. That said, Fig. 7 displays the distance for the same subset. We notice that
some solutions are, at most, at a 10 individuals distance from the data. The
subset contains our best candidate (a, b, c, d) = (0.52, 0.027, 0.89, 0.027), whose
corresponding curve is displayed in Fig. 8. We see that the general shape of the
curve is satisfying but does not perfectly fit inside of the tunnel. This may be
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explained by the fact that cyclic ODE systems like prey-predator models can be
very sensitive to the non-linear terms, i.e. bPD and dPD. Again, our goal here
was to prove the concept rather than describe a phenomenon with the upmost
precision: while this is satisfying as far as we are concerned, a more thorough
study of the parameters, along with a better quality of the data (with e.g. several
observations for each time point t, allowing for more robust data and observable
data tunnels) would help getting results closer to the actual experiments.

5 Conclusion

In this paper, we have proposed a statistical method for synthesizing the best
parameter values w.r.t. given experimental data for an ODE system with internal
variability, while providing formal statistical guarantees that for the first time (to
the best of our knowledge) take into account the approximation error introduced
through the numerical resolution of the ODEs. To do that, we discretize the
parameter space and define balls around the resulting (finite) set of parameter
values to take internal variability into account. We then use the Monte-Carlo
technique to estimate the probability that exact solutions of the ODE system
are close to the experimental data for each resulting parameter ball, and use
the result of this estimation to select the best (central) parameter values. Our
main contribution is Theorem 2 which guarantees the precision of our estimation
despite the fact that it is performed using numerical resolution techniques that
do not give us access to exact solutions of the ODE system. In contrast with
other existing works on parameter estimation for ODE systems, like [15], where
this problem is left aside, we show that the number of simulations required for a
given precision and risk of the statistical estimation is (more than) twice the one
needed when working with exact solutions. We also show that an upper bound
on the integration step of the chosen integration technique exists (and can be
computed for standard integration techniques) in order to make sure that a given
statistical precision and risk are respected.

One of the limitations of our work is that, in order to prove our results and
perform parameter synthesis in practice, we rely on a setting ε that represents
the maximal admissible distance between exact and approximate solutions to the
ODE system. Although it is possible, for most integration techniques3, to com-
pute an integration step that will guarantee that a given value for ε is respected,
our results only show the existence of a suitable value for ε for any statistical
setting, but do not provide any method to compute this value in practice. This is
due to our lack of guarantees on the convergence speed of the distance between
the two estimators p̂ε

1 and p̂ε
2 that appear in Eq. (17) and Eq. (18). What we

do in practice is that we set small values for ε, perform experiments and then
estimate the value of |p̂ε

1 − p̂ε
2|. If the resulting value is too large, then we start

over the experiment with a smaller value for ε.
Although the only BLTL property that we verify in this paper is the property

Ψ∗ defined in Eq. (5), we believe that our reasoning can be easily extended to
3 See Remark 2 in Appendix A, and [16].
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other BLTL property following the definition given in Sect. 2.2. This is, in our
opinion, a straightforward extension that we will address in the near future.

As said in the introduction, our results are generic and could therefore be
combined with any exploration strategy for the parameter space. The global
exploration we perform in this paper is obviously costly but yields global infor-
mation that is precious when analysing a complex system. In the future, we
plan on combining a coarse global exploration to identify interesting zones in
the parameter space with more efficient and detailed search algorithms (such as
the one from [15]) limited to those zones.

Appendices

In these appendices, we provide the complete proofs of Lemma 1 and Theorem 2.

A Proof of Lemma 1

First, we recall the definition of stability of an approximation method.

Definition 2 (Method stability). We say that the approximation method
determined by Eq. (7) is stable if there exists a constant K > 0, called stability
constant, such that, for any two sequences (yk)0≤k≤J and (ỹk)0≤k≤J defined as
yk+1 = yk + h Φ(τk, yk,λ, h) and ỹk+1 = ỹk + h Φ(τk, ỹk,λ, h) + ηk respectively,
(0 ≤ k < J), with λ ∈ W and ηk ∈ R, we have

max
0≤k≤J

|yk − ỹk| ≤ K
(
|y0 − ỹ0| +

∑

0≤k≤J

|ηk|
)
. (22)

It is well-known that if Φ is κ-Lipschitz w.r.t. y, i.e. ∀t ∈ [0, T ], ∀y, ỹ ∈ R,
∀λ ∈ W and ∀h ∈ R, |Φ(t, y,λ, h) − Φ(t, ỹ,λ, h)| ≤ κ |y − y2|, then stability is
ensured (see for instance [3] or [4]).

Now, we fix λ∗ ∈ W and λ1,λ2 ∈ Bλ∗ , and we consider the approximate
solutions yλ1 , yλ2 to Eq. (1) relative to λ1 and λ2 and starting from z0.

{
yλ1
0 = z0,

yλ1
k+1 = yλ1

k + h Φ(tk, yλ1
k ,λ1, h),

{
yλ2
0 = z0,

yλ2
k+1 = ỹk + h Φ(tk, yλ2

k ,λ2, h).

We recall that the exact solutions to Eq. (1) relative to λ1 and λ2 and starting
from z0 are denoted zλ1 and zλ2 respectively. For i ∈ {1, 2} and 0 ≤ k ≤ J , we
introduce the consistency error on yλi at step k:

εh,k(λi) = |zλi(τk) − yλi(τk)|. (23)

The consistency errors satisfy εh(λi) = max0≤k≤J εh,k(λi), for i ∈ {1, 2}, where
εh(λi) is the global approximation error (defined by Eq. (10)). The proof of
Lemma 1 can be derived from the following theorem.
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Theorem 3 (Stability with respect to consistency error). Assume that
the function Φ defined in Eq. (7) is κ1-Lipschitz w.r.t. λ and κ2-Lipschitz con-
tinuous w.r.t. y. Then the approximation method is stable w.r.t. the consistency
error, i.e. there exists K > 0 such that

∀λ1,λ2 ∈ Bλ∗ , max
0≤k≤J

|εh,k(λ1) − εh,k(λ2)| ≤ K‖λ1 − λ2‖, (24)

where ‖ · ‖ is the Euclidean norm defined in Sect. 2.1.

Proof (of Theorem 3). By assumption, Φ is κ1-Lipschitz continuous w.r.t. λ:

∀t, y, h ∈ R,∀λ1,λ2 ∈ Bλ∗ , |Φ(t, y,λ1, h) − Φ(t, y,λ2, h)| ≤ κ1 |λ1 − λ2| .

It follows that

|yλ1
k+1 − yλ2

k+1| ≤ |yλ1
k − yλ2

k | + h|Φ(tk, yλ1
k ,λ1, h) − Φ(tk, yλ2

k ,λ2, h)|
≤ |yλ1

k − yλ2
k | + h|Φ(tk, yλ1

k ,λ1, h) − Φ(tk, yλ1
k ,λ2, h)|

+ h|Φ(tk, yλ1
k ,λ2, h) − Φ(tk, yλ2

k ,λ2, h)|
≤ (1 + hκ2)|yλ1

k − yλ2
k | + hκ1‖λ1 − λ2‖,

for 0 ≤ k ≤ J . We write |yλ1
k − yλ2

k | = Δy,k and ‖λ1 − λ2‖ = Δλ , and we get

Δy,k+1 ≤ (1 + hκ2)Δy,k + hκ1Δλ . (25)

Applying the discrete Gronwall lemma (see for instance [7], VIII.2.3), we deduce

max
0≤k≤J

Δy,k ≤ eκ2T
(
Δy,0 +

∑

0≤j≤k−1

hκ1Δλ

)

which leads to
max

0≤k≤J
|yλ1

k − yλ2
k | ≤ eκ2T Tκ1‖λ1 − λ2‖,

since yλ1
0 = yλ2

0 = z0 and h J = T .
Furthermore, it is proved in [4] that if Φ is Lipschitz continuous w.r.t. λ, then

the exact solution zλ is also Lipschitz continuous w.r.t. λ that is, there exists
κ3 > 0 such that

∀λ1,λ2 ∈ Bλ∗ ,∀t ∈ [0, T ], |zλ1(t) − zλ2(t)| ≤ κ3‖λ1 − λ2‖. (26)

Finally, we have

|εh,k(λ1) − εh,k(λ2)| ≤ |zλ1(τk) − yλ1(τk) − zλ2(τk) − yλ2(τk)|
≤ |zλ1(τk) − zλ2(τk)| + |yλ1(τk) − yλ2(τk)|
≤ K‖λ1 − λ2‖,

with K = κ3 + Tκ1e
κ2T , which completes the proof of Theorem 3. ��
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It remains to show that Theorem 3 implies Lemma 1.

Proof (of Lemma 1). Let (hi)i≥0 be a sequence of discretization steps such that
limi→∞ hi = 0. Since the approximation method given by (7) is assumed to be
convergent, each function εhi

(·) defined in Eq. (23) is pointwise convergent to 0.
Furthermore, we recall that Φ is Lipschitz continuous w.r.t. λ ∈ W. Hence,

Theorem 3 implies that the functions
(
εhi

(·)
)
i≥0

defined in Eq. (23) are also
Lipschitz continuous, with uniform Lipschitz constant K:

|εhi
(λ1) − εhi

(λ2)| ≤ K ‖λ1 − λ2‖ , ∀λ1,λ2 ∈ Bλ∗ , ∀i ∈ N.

Consequently, the functions
(
εhi

(·)
)
i≥0

are uniformly equicontinuous. Hence,
Arzelà-Ascoli Theorem [8] implies that the sequence

(
εhi

(·)
)
i≥0

converges uni-
formly to 0 on Bλ∗ , thus ∀ε > 0, ∃i∗ ∈ N, ∀i ≥ i∗, ∀λ ∈ Bλ∗ , εhi

(λ) < ε, and
Lemma 1 is proved. ��
Remark 2 (Computation of a sufficiently small integration step). We emphasize
that Lemma 1 can be supplemented by an explicit choice of a sufficiently small
integration step h, provided the integration method comes with appropriate
estimates of their global error. Notably, the accuracy of the Runge-Kutta 4
method, which we use for the numerical treatment of our case studies, has been
thoroughly studied (see [16] for instance), and it is known that its inherent error
can be bounded in terms of the successive derivatives of the function f involved
in Eq. (1), up to order 4.

B Proof of Theorem 2

First Step. We begin the proof of Theorem 2 by showing how to compute an
estimator p̂ε

1 of the probability pε
1 defined in (14).

Let (λi)N be a sequence of values in the ball Bλ∗ . We write Bi the random
variable corresponding to the test “ϕε

1(λi) holds”: all the Bi are i.i.d. variables
and follow a Bernoulli’s law of parameter pε

1. We write bi the evaluation of Bi.
We introduce the transfer function g1 : Bλ∗ → {0, 1} corresponding to the test
regarding ϕε

1(λi), defined by g1(λi) = 1 if ϕε
1(λi) holds, 0 otherwise. Next, we

consider
G = E(g1(X)) =

∫

Bλ ∗
g1(x)fX(x)dx, (27)

where fX is defined by a uniform distribution, that is, fX(x) = 1
|Bλ ∗ | , x ∈

Bλ∗ . We produce a sample (x1, x2, . . . , xN ) of the variable X in Bλ∗ , and use
it to compute the Monte-Carlo estimator G. By virtue of the Law of Large
Numbers, the sample mean satisfies: gN = 1

N

∑N
i=1 g1xi. The Central Limit

Theorem states that the variable Z = gN −G
σgN

approximately follows a Standard
Normal Distribution N (0, 1); hence, for a risk θ, we can bound the error |αN | of
swapping G with gN by building confidence intervals:

P

(
|αN | ≤ χ1− θ

2

σg1√
N

)
= 1 − θ, (28)
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where χ1− θ
2

is the quantile of the Standard Normal Distribution N (0, 1) and σg1

is the variance of g1.
Since we are interested in finding pε

1 with a certain confidence, we can perform
this process after setting the desired target error α and risk θ, knowing how many
simulations must be ran using Hoeffding’s inequality [12]:

θ = P(gN /∈ [pε
1 − α, pε

1 + α]) ≤ 2 exp(−2α2N),

or equivalently N ≥ log(2/θ)
2α2 . Here, it is worth emphasizing that N can be chosen

independently of ε.
Further, the variance of gN can be expressed with the variance of g1(X):

σ2
g1

= E
(
[g1(X) − E(g1(X))]2

)
=

∫

Bλ ∗
(g1(x))2fX(x)dx − G2.

We consider i.i.d. samples, hence σ2
g1

can be estimated with the variance S2
g1

:

σ2
g1

� S2
g1

=
1
N

N∑

i=1

(g1(λi)2 − g2N ).

It follows that σg1 can be estimated with its empirical counterpart σ̂g1 =
√

S2
g1

,

which shows that the error displays a 1/
√

N convergence.
Finally, after estimating σg1 , we can find p̂ε

1 using the variance of Bernoulli’s
law σ̂2

g1
= p̂ε

1 × (1 − p̂ε
1). We conclude that the probability that ϕε

1(λ) holds is

estimated by p̂ε
1 = 1

2

(
1 ±

√
1 − 4σ̂2

g1

)
, with an error α and a risk θ, provided

we perform N ≥ log(2/θ)
2α2 simulations. It follows that

P
(
pε
1 ∈ [p̂ε

1 − α, p̂ε
1 + α]

)
≥ 1 − θ. (29)

Similarly, we determine an estimator p̂ε
2 of pε

2 by running N ≥ log(2/θ)
2α2 additional

simulations, and obtain a confidence interval satisfying

P
(
pε
2 ∈ [p̂ε

2 − α, p̂ε
2 + α]

)
≥ 1 − θ. (30)

Second Step. Now, let us show how a confidence interval for the probability p
can be derived from the confidence intervals given in (29), (30), involving the
estimators p̂ε

1 and p̂ε
2 respectively. The independence of the samples used to

determine the estimators p̂ε
1, p̂ε

2 guarantees that

P(p ∈ [p̂ε
1 − α, p̂ε

2 + α]) = P
(
{p ≥ p̂ε

1 − α}
)

× P
(
{p ≤ p̂ε

2 + α}
)
.

By virtue of (29), we have P(pε
1 ≥ p̂ε

1−α) ≥ 1−θ. Next, the estimate (15) implies
P(p ≥ p̂ε

1−α) ≥ P(pε
1 ≥ p̂ε

1−α) ≥ 1−θ. Similarly, we have P(p ≤ p̂ε
2+α) ≥ 1−θ,

and finally P(p ∈ [p̂ε
1 − α, p̂ε

2 + α]) ≥ (1 − θ)2 = 1 − ξ, since θ = 1 −
√
1 − ξ.
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Third Step. Finally, let us prove how Lemma 1 guarantees that proper values of
h and ε can be found, in order to control the distance between p̂1 and p̂2.

Indeed, the continuity of the probability measure P ensures that there exists
ε0 > 0 such that |pε

1 − pε
2| ≤ α, for ε < ε0. Next, we write

|p̂ε
1 − p̂ε

2| ≤ |p̂ε
1 − pε

1| + |p̂ε
2 − pε

2| + |pε
1 − pε

2| ,

hence we have, for ε < ε0:

P
(
|p̂ε

1 − p̂ε
2| ≤ 3α

)
≥ P(|p̂ε

1 − pε
1| ≤ α) × P(|p̂ε

2 − pε
2| ≤ α) × P(|pε

1 − pε
2| ≤ α)

≥ (1 − θ)2 × 1 = 1 − ξ.

In parallel, Lemma 1 guarantees that for h sufficiently small, the global stability
error can be uniformly bounded on Bλ∗ by ε0. The proof is complete. ��
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Abstract. Parametric Markov chains (pMCs) have transitions labeled
with functions over a fixed set of parameters. They are useful if the
exact transition probabilities are uncertain, e.g., when checking a model
for robustness. This paper presents a simple way to check whether the
expected total reward until reaching a given target state is monotonic
in (some of) the parameters. We exploit this monotonicity together with
parameter lifting to find an ε-close bound on the optimal expected total
reward. Our results are also useful to automatically synthesise controllers
with a fixed memory structure for partially observable Markov decision
processes (POMDPs), a popular model in AI planning. We experimen-
tally show that our approach can successfully find ε-optimal controllers
for optimal budget in such POMDPs.

1 Introduction

POMDPs. Partial-observable Markov Decision Processes (POMDPs, for short)
are models that extend probabilistic and non-deterministic behaviour with par-
tial observability [30,36]. Rather than knowing precisely in which state the pro-
cess is, one only knows the state’s observation. As multiple states may have the
same observation, the current state cannot be uniquely identified. POMDPs are
key models in AI and planning [36], e.g., for robots that only have a partial per-
ception of their environment. POMDP controllers (aka: schedulers or policies)
resolve the non-determinism based on the observation history so far, rather than
on the state history as is the case in MDPs. This limited information makes
optimal decision making harder. Indeed finding a controller to maximise reacha-
bility probabilities is undecidable for POMDPs whereas this is a polynomial-time
problem for MDPs.

Parametric MCs. A parametric Markov chain (pMC) has state-transition func-
tions that are functions over a fixed set of parameters, e.g., p and 1−p for
unknown 0 < p < 1. To relate POMDPs to pMCs, actions in observation-
equivalent states are considered as parameters [27, Ch. 7]; e.g., in case of three
enabled actions a1, a2 and a3, we map them onto the fresh parameters p1, p2
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E. Ábrahám and M. Paolieri (Eds.): QEST 2022, LNCS 13479, pp. 107–130, 2022.
https://doi.org/10.1007/978-3-031-16336-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16336-4_6&domain=pdf
http://orcid.org/0000-0002-9113-2791
http://orcid.org/0000-0002-4587-4970
http://orcid.org/0000-0002-6143-1926
https://doi.org/10.1007/978-3-031-16336-4_6


108 J. Spel et al.

s0

s1 s2�Pr

Prsi→T ∈ [0, 1]

p 1−p

(a) Reachability probability

s0

s1 s2�rew

ERsi→T ∈ [0,∞)

p 1−p

(b) Expected reward

s0

s1 s2�rew

ERsi→T ∈ [Li, Ui]

p 1−p

(c) Expected reward + bounds

Fig. 1. Different situations for ordering states

and 1−p1−p2. If action a3 leads to some state with probability 1/4, then the
corresponding function becomes (1−p1−p2)/4. Finding a POMDP controller with
optimal budget is polynomially equivalent to finding an optimal parameter val-
uation for the expected total reward in the corresponding pMC. The state-of-
the-art technique to find an ε-optimal parameter valuation is to use parameter
lifting [35]. Put in a nutshell, this approach yields upper- and lower bounds by
analysing an abstraction—obtained by relaxing parameter dependencies—of the
pMC. As this method does not scale, we take inspiration from [41] and boost
parameter lifting with monotonicity checking for expected total rewards.

Problem Setting and Approach. To check for monotonicity (see Sect. 3), we impose
an order �Pr on states such that [39]: s �Pr s′ iff Prs→T ≤ Prs

′→T , where Prs→T

denotes the probability to reach some state in set T from state s. Note that in our
parametric settingPrs→T is a function over the parameters. Consider Fig. 1(a) and
assume s1 �Pr s2. As p and (1−p) represent probabilities and

Prs0→T = p · Prs1→T + (1−p) · Prs2→T ,

it immediately follows s1 �Pr s0 �Pr s2. Unfortunately, when considering the
expected total reward for reaching T from s, denoted ERs→T , ordering s0 is not
so straightforward. Let �rew be such that s �rew s′ iff ERs→T ≤ ERs′→T . Con-
sider Fig. 1(b) and assume s1 �rew s2. As p and (1−p) denote probabilities and

ERs0→T = r(s0) + p · ERs1→T + (1−p) · ERs2→T ,

it immediately follows s1 �rew s0. However, ordering s0 w.r.t. s2 is in general not
possible if r(s0) > 0. Note that for r(s0) = 0 we do obtain s1 �rew s0 �rew s2.

In order to remedy this deficiency—our aim is to order as many states as
possible—we exploit parameter lifting [35], a technique that, with very low over-
head, provides bounds for each state s such that L(s) ≤ ERs→T ≤ U(s). This
helps to order s0 w.r.t. s2; e.g., if U(s0) ≤ L(s2), s0 �rew s2, and similarly if
U(s2) ≤ L(s0), s2 �rew s0. More involved ordering possibilities exist that exploit
bounds from parameter lifting; this is further detailed in the paper.

Main Contribution. The main contribution of this paper is a set of algorithms to
obtain monotonicity and the reward order, and their usage to tackle the ε-optimal
problem for expected total reward properties. We realised the monotonicity check-
ing for expected total reward properties on top of the Storm [24] model checker.
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Experiments show that monotonicity checking enables the ε-optimal synthesis of
POMDP controllers for expected total rewards for benchmarks with up to hun-
dreds of observations whereas plain (vanilla) parameter lifting fails.

Organisation of the Paper. Section 2 provides the technical background and for-
malises the problem. Section 3 defines monotonicity and explains how to obtain
monotonicity with help of a reward order. Section 4 describes how we combine
parameter lifting and monotonicity to find an ε-optimal parameter valuation,
and presents the used heuristics. Section 5 reports on the experimental results.
Finally, Sect. 6 discusses related work while Sect. 7 concludes.

2 Preliminaries

A probability distribution over a countable set X is a function μ : X → [0, 1] ⊆ R

with
∑

x∈X μ(x) = 1. Let Distr(X) denote the set of all probability distributions
on X. For the set of n real-valued parameters (or variables) V = {p1, . . . , pn}, let
Q[V ] denote the set of multivariate polynomials with rational coefficients over
V . For a polynomial f and variable x, we write x ∈ f if the variable occurs in
the polynomial f . An instantiation for a finite set V of real-valued variables is
a function u : V → R. We often denote u as a vector �u ∈ R

n with ui := u(xi)
for xi ∈ V . A polynomial f can be interpreted as a function f : R

n → R, where
f(�u) is obtained by substitution, i.e., f [�x ← �u], where each occurrence of xi in
f is replaced by ui.

Definition 1 (pMC). A parametric Markov Chain (pMC) is a tuple M =
(S, sI , T , V ,P) with a finite set S of states, an initial state sI ∈ S, a finite set
T ⊆ S of target states, a finite set V of real-valued variables (parameters) and
a transition function P : S × S → Q[V ].

A pMC M is well-defined if the transition function yields well-defined prob-
ability distributions, i.e., P(s, ·) ∈ Distr(S) for each s ∈ S. A well-defined pMC
M is a Markov chain (MC) if V is empty. Applying an instantiation �u to a
pMC M yields M[�u] by replacing each f ∈ Q[V ] in M by f(�u). An instanti-
ation �u is well-defined for M if M[�u] is an MC. A well-defined instantiation �u
is graph-preserving for M if the topology is preserved, i.e., P(s, s′) �= 0 implies
P(s, s′)(�u) �= 0 for all states s, s′ ∈ S. A set of instantiations is called a region. A
region R is well-defined (graph-preserving) if �u is well-defined (graph-preserving)
for all �u ∈ R. In this paper, we only consider graph-preserving regions. Finally,
let occur(s) be the set of variables {x ∈ V | ∃s′ ∈ S. x ∈ P(s, s′)}. A state s is
called parametric, if occur(s) �= ∅; we write occur(s) = x if {x} = occur(s).

Example 1. Figure 2(a) depicts pMC M with a single parameter p. Region
R = [0.1, 0.9] is graph-preserving, R′ = [0, 0.9] is not graph-preserving but well-
defined, and R′′ = [−0.1, 0.9] is not well-defined.
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Fig. 2. Obtaining bounds for a pMC

2.1 Rewards for pMCs

We consider expected total reward properties for pMCs. We let Paths(s) (see
e.g., [3, Ch. 10]) denote the set of all infinite paths starting in s. A finite path is a
finite, non-empty prefix of an infinite path. Let state reward function r : S → R≥0

associate a non-negative reward to each state in a pMC. The cumulative reward
for the finite path π̂ = s0s1 . . . sn is defined by:

r(π̂) = r(s0) + r(s1) + . . . + r(sn−1).

Rewards are thus earned when leaving a state. For infinite path π = s0s1s2 · · · ,
the reward to eventually reach T in M is the cumulated reward until reaching
T for the first time. Formally:

r(π,♦T ) =

{
r(s0s1 . . . sn) if si �∈ T for 0 ≤ i < n and sn ∈ T

∞ if π �|= ♦T.

Let Pr(π̂) =
∑n−1

i=0 P(si, si+1) be the probability of a finite path π̂ =
s0s1 . . . sn. This can be lifted to the probability of an infinite path (Pr(π)) via a
cylinder set construction [3, Ch. 10].

Definition 2 (Expected total reward). The expected total reward until
reaching T from s ∈ S for an MC M is defined as follows:

ERs
M(♦T ) =

∑

π∈Paths(s)

Pr(π) · r(π,♦T ).

As state rewards are non-negative, expected total rewards are in R≥0 or equal ∞.

The expected total reward for an MC is defined by ERM(♦T ) = ERsI

M(♦T ).
The expected total reward for a pMC M is defined analogously, however it
represents a function ERs→T

M : V → R, given by ERs→T
M (�u) = ERs

M[�u](♦T ). For
conciseness we typically omit the subscript M. On a graph-preserving region,
the function ERs→T is always continuously differentiable [35] and admits a closed
form as a rational function over V [14,21].
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Remark 1. We restrict ourselves to pMCs where all infinite paths eventually
reach T . Otherwise, ERsI →T = ∞.

Example 2. Reconsider the pMC M from Fig. 2(a) with target state and
state reward function r(si) = i. Note that the reward for can be ignored as

is the target state. The expected total reward function ERs0→ is given by
1 · p + 2 · (1−p)2 + 3 · (1−p) · p.

2.2 Problem Statement

This paper is concerned with the following questions for a given pMC M with
target states T and region R:

Optimal synthesis. Find the instantiation �u∗ such that

�u∗ = arg max
�u∈R

ERM[�u](♦T )

ε-Optimal synthesis. Given tolerance ε ≥ 0, find an instantiation �u∗ such
that

max
�u∈R

ERM[�u](♦T )·(1−ε) ≤ ERM[�u∗](♦T ) ≤ max
�u∈R

ERM[�u](♦T ) .

The optimal synthesis problem is co-ETR-hard [44]1, the same applies to ε-
optimal synthesis, as computing max�u∈R ERM[�u](♦T ) is ETR-complete.

2.3 Parameter Lifting

The state-of-the-art approach for tackling the ε-optimal synthesis problem is by
using parameter lifting [35]. Parameter lifting computes lower and upper bounds
for the expected total reward at the states in the pMC M. For state s and region
R, parameter lifting computes bounds LR(s) and UR(s) satisfying

LR(s) ≤ ERs
M[�u](♦T ) ≤ UR(s) for all �u ∈ R .

It does so by first removing all parameter dependencies in the pMC M. This
is accomplished by replacing all parameters by fresh ones, yielding the so-called
relaxation, the pMC relax(M) (see Fig. 2(b)). The relaxed pMC is in fact an
abstraction of the pMC M as parameter dependencies have been dropped. After
this, the relaxed pMC is transformed into a parameter-less MDP M′ by substi-
tuting all transitions by non-deterministic choices for the probabilistic transitions
(see Fig. 2(c)). To find the maximal/minimal expected total reward in the MDP
M′, standard MDP verification techniques are employed.
1 ETR = Existential Theory of the Reals. ETR-complete decision problems are as

hard as finding the roots of a multivariate polynomial. ETR lies inbetween NP and
PSPACE.
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Example 3. Reconsider Example 2 and assume region R = [0.1, 0.7]. Removing
all parameter dependencies yields the relaxed pMC relax(M) of Fig. 2(b). As
p ∈ [0.1, 0.7] we have p0, p2 ∈ [0.1, 0.7].

Figure 2(c) shows the MDP M′ in which all parametric transitions in the
pMC relax(M) are replaced by a non-deterministic choice for the value of the
parameter, i.e., we have a transition for both the lower bound (dashed arrow) and
the upper bound (solid arrow) of the parameter. We now apply standard MDP
model checking to maximize the expected total reward in M′. At state s0, the
dashed arrow, representing the lower bound for parameter p0, will be chosen. At
state s2 however, the solid arrow, representing the upper bound for parameter p2,
is chosen. This yields ERs0→ ≤ 0.1·1+0.9·(2+0.7·1) = 2.53 = UR(s0). Similarly,
when minimizing, we obtain LR(s0) = 0.7·1 + 0.3·(2 + 0.1·1) = 1.33 ≤ ERs0→ .

The obtained bounds on region R can now be used to find an ε-optimal
solution in R as follows. Recall that we need to find an instantiation �u∗ with:

max
�u∈R

ERM[�u](♦T )·(1−ε) ≤ ERM[�u∗](♦T ).

By construction, it holds for the initial state sI : max�u∈R ERM[�u](♦T ) ≤
UR(sI ). If now, for some �u∗ ∈ R we have that ERM[�u∗](♦T ) ≥ UR(sI )·(1−ε),
then �u∗ is a solution to the ε-optimal synthesis problem.

This suggests the following procedure to find a �u in region R: 1) Initially, we
add region R with (trivial) bound ∞ to the (initially empty) queue of regions,
then we 2) pick a region R from the queue, 3) pick a point �u ∈ R, 4) update
the current maximum seen (CurMax) and store the instantiation at �u∗, 5) use
parameter lifting to compute UR(sI ). If CurMax ≥ UR′(sI )·(1−ε) for all regions
R′ in the queue, then we stop, otherwise we split R, e.g., at its centre point, into
regions R1, . . . , Rn, add the regions to the queue with bound UR and continue at
2). Now �u∗ is an ε-optimal maximum. Similarly, one could use the lower bound
L to obtain an ε-optimal minimum.

This procedure is relatively simple, but does however not scale to practical
cases. As indicated in Table 2 on page xx (columns vanilla), none of the POMDP
benchmarks could be handled. Not even the benchmarks with three or nine
parameters, and less than hundred states. The key idea of this paper—inspired
by our earlier work [41] on reachability probabilities—is to exploit monotonicity,
i.e., identifying parameters for which the function ERs→T is monotonic. To that
end, we first define monotonicity for expected total reward properties (Sect. 3.1).
Secondly, in Sect. 3.2 we tackle the main challenge of our approach: building a
reward order which contains as many states as possible, see also Sect. 1.

3 Monotonicity

In this section, we define monotonicity for the expected total reward function in
a pMC. Furthermore, we show how to find monotonic parameters with the help
of a reward order on the state space of a pMC.
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3.1 Defining Monotonicity

We distinguish between local and global monotonicity. Whereas local monotonic-
ity only takes into consideration a given state s and the monotonicity of the
transition functions for the direct successors of s, global monotonicity focusses
on monotonicity on the entire pMC. We adapt the definitions of [39] for expected
total rewards.

Definition 3 (Global monotonicity). A continuously differentiable function
f on region R is monotonic increasing in parameter p, denoted f↑R

p , if
∂

∂p
f(�u) ≥

0 for all �u ∈ R.2 The pMC M = (S, sI , T , V ,P) is monotonic increasing in
parameter p ∈ V on graph-preserving region R, written M↑R

p , if ERsI →T ↑R
p .

Monotonic decreasing, written M↓R
x , is defined analogously.

Let succ(s) = {s′ ∈ S | P(s, s′) �= 0} be the set of direct successors of s.
Given the recursive equation ERs→T = r(s) +

∑
s′∈succ(s) P(s, s′) · ERs′→T , we

have

M↑R
p iff

∂

∂p

⎛

⎝
∑

s′∈succ(sI )

P(sI , s′) · ERs′→T

⎞

⎠(�u) ≥ 0 ,

for all �u ∈ R. Note that the state reward r(sI ) vanished, as it is constant.
Checking for global monotonicity is co-ETR hard [39]. Therefore, we focus

on local monotonicity of a parameter at a given state s.

Definition 4 (Locally monotonic increasing). ERs→T is locally monotonic
increasing in parameter p (at s) on region R, denoted ERs→T ↑�,R

p , if:
⎛

⎝
∑

s′∈succ(s)

(
∂

∂p
P(s, s′)

)

· ERs′→T

⎞

⎠ (�u) ≥ 0 for all �u ∈ R.

For conciseness, we typically omit superscript R for ↑R and ↑�,R.

Example 4. Reconsider pMC M of Fig. 2(a) with reward function r(si) = i and
target state . Observe that ERs1→ < ERs2→ and ER → < ERs1→ . From
Definition 4 we obtain: ERs0→ ↓�

p and ERs2→ ↑�
p.

If a parameter p is locally monotonic increasing (decreasing) at all states, the
reward function ERsi→T is globally monotonic increasing (decreasing) in p:

Theorem 1. (
∀s ∈ S. ERs→T ↑�

p

)
implies ERsI →T ↑p.

A proof sketch can be found in Appendix C.1.

2 To be precise, on the interior of the closed set R.
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Example 5. Reconsider pMC relax(M) of Fig. 2(b) with reward function r(si) =
i and target state . Following Example 4 we obtain ERs0→T ↓�

p0
. For all s �= s0,

we obtain
∑

s′∈succ(s)

(
∂

∂p0

P(s, s′)
)

·ERs→T = 0, as p0 doesn’t occur at those states.

Therefore, ERs→T ↓�
p0

for all s ∈ S. Thus for relax(M): ERsI→ ↓p0 . Similarly, we

obtain ERsI→ ↑p2 .

Remark 2. Here, the state rewards are constants. Monotonicity in the presence
of parametric rewards can be accommodated by extending the notion of local
monotonicity by including

∂

∂p
r(s) in the sum.

Local Monotonicity and Parameter Lifting. Local monotonicity simplifies param-
eter lifting. This can be seen as follows. Assume for given pMC M, we want to
obtain an upper bound with help of parameter lifting. Recall that in parameter
lifting, the parametric transition for a state s is replaced by a non-deterministic
choice between the lower and upper bound of the parameters occurring at the
transition. If s is locally monotonic increasing in p, we know that picking the
upper bound for p in the region R will maximize the expected total reward for
s. Thus the non-deterministic choice between lp and up at state s in the MDP
can be replaced by a deterministic one for up.

3.2 Reward Order

To determine local monotonicity at state s, we check for sufficient conditions for
monotonicity at s. These conditions are based on constructing a pre-order on
the states of the pMC, the so-called reward order. This is again an adaptation
of [39] for expected total rewards.

Definition 5 (Reward order). An ordering relation �rew
R,T ⊆ S×S is a reward

order w.r.t. target set T ⊆ S and region R if for all s, t ∈ S:

s �rew
R,T t implies ∀�u ∈ R. ERs→T (�u) ≤ ERt→T (�u).

The order �rew
R,T is called exhaustive if the reverse implication holds too.

For conciseness, we omit R and T if they are clear from the context.
If the direct successor states of s are ordered, and the transition functions

are monotonic, we can obtain local monotonicity:

Lemma 1. Let succ(s) = {s1, . . . , sn}, fi = P(s, si), and ∀j > i. sj �rew si.
Then:

∃i ∈ [1, . . . , n].
(
∀j ≤ i. fj↑p and ∀j > i. fj↓p

)
implies ERs→T

M ↑�
p.

As the rewards are constant, the proof follows directly from [40, Lemma 1].
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Example 6. Reconsider pMC M of Fig. 2(a) with reward function r(si) = i and
target state . From Definition 5, it follows �rew s1. Furthermore, P(s2, s1)↑p

and P(s2, )↓p. From this we obtain ERs2→T ↑�
p.

As it suffices for local monotonicity to only have the direct successors of states
ordered, we focus on a so-called “sufficient” reward order:

Definition 6 (Sufficient reward order). Reward order �rew is sufficient for
s ∈ S if for all s1, s2 ∈ succ(s): (s1 �rew s2 ∨ s2 �rew s1) holds. The reward
order is sufficient for pMC M if it is sufficient for all parametric states in M.

Phrased differently, the reward order �rew is sufficient for p ∈ V if (succ(s),�rew)
is a total order for all s ∈ S with p ∈ occur(s). Definition 6 and Lemma 1 yield:

Corollary 1. Let pMC M be such that for each s ∈ S, |succ(s)| ≤ 2 and P(s, s′)
is monotonic for each s′ ∈ succ(s). Then: �rew is sufficient for s implies ERs→T

is locally monotonic increasing/decreasing on any region R in all parameters.

3.3 Constructing Reward Orders

Our aim now is to construct a sufficient reward order. The construction is
inspired by an observation, graph rules, assumptions, and rules for bounds on
states. To be able to construct the reward order, let us introduce some notation.

Let ≺rew
R,T denote the irreflexive variant of �rew

R,T and s ≡rew
R,T s′ denote ∀�u ∈

R. ERs→T (�u) = ERs′→T (�u). Let [s]rew
[R,T ] denote the set of all s′ ∈ S such that

s ≡rew
R,T s′. We omit R and T for conciseness. For X ⊆ S, ub(X) = {s ∈ S |

X �rew s} and lb(X) = {s ∈ S | s �rew X} denote the upper and lower bounds
of X w.r.t. reward order �rew. Furthermore, let min(X) = {x ∈ X | �x′ ∈
X.x′ �rew x}, and max(X) = {x ∈ X | �x′ ∈ X.x �rew x′}.

Observation. By definition, ERt→T = 0 for all t ∈ T . Furthermore, for all s ∈
S \ T , we have r(s) ≥ 0, thus ERs→T ≥ 0. From this we obtain t �rew s for all
s ∈ S \ T . Note that, as all states have T as lower bound, lb(X) �= ∅ for each
X ⊆ S.

Graph Rules. We use the graph structure of the pMC to obtain the reward order.

Lemma 2. For s ∈ S:

1. if r(s) > 0, then lb(succ(s)) ≺rew s,
2. if r(s) = 0 and ub(succ(s)) �= ∅, then either succ(s) ⊆ [s]rew

or lb(succ(s)) ≺rew s ≺rew ub(succ(s)).

To deal with cycles we introduce the following lemma:

Lemma 3. For any state s with succ(s) = {s1, s2} the following holds:

1. if s1 ≡rew s and r(s) = 0, then s2 ≡rew s,
2. if s1 ≡rew s and r(s) > 0, then s2 ≺rew s,
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3. if s ≺rew s1, then s2 ≺rew s.
4. if s1 ≺rew s and r(s) = 0, then s ≺rew s2.

The idea is that if a state s has only two successors and the relation between
state s and one of its successors is known, we can also infer in many cases the
relation of s to the other successor.

Remark 3. Lemma 2 case 2 is equivalent to [39, Lemma 3]. Lemma 3 for r(s) = 0
is equivalent to [39, Lemma 4]. As explained in the introduction of the paper,
the main challenge lies at the cases where r(s) > 0.

Appendix A contains the algorithm (Algorithm 1) to obtain a reward order
based on Lemmas 2 and 3.

Lemma 4. Algorithm 1 returns a set with one reward order.

Assumptions. The above approach does not necessarily yield a sufficient reward
order. It might be that we need assumptions to obtain a sufficient reward order.

Definition 7 (Order with assumptions). Let �rew be a reward order, and
A = (A≺rew ,A≡rew) with assumptions A≺rew ,A≡rew ⊆ S × S. Then (�rew,A,A) is
an order with assumptions where �rew,A =

(�rew ∪A≺rew ∪ A≡rew

)∗
.

Lemma 5. If assumptions A = (A≺rew ,A≡rew) satisfy:

(s, t) ∈ A≺rew implies ∀�u ∈ R. ERs→T (�u) < ERt→T (�u), and

(s, t) ∈ A≡rew implies ∀�u ∈ R. ERs→T (�u) = ERt→T (�u),

then �rew,A is a reward order, and we call A (globally) valid.

The following results refer to Algorithms 1 and 2 which are found in Appendix
A. Algorithm 2 extends Algorithm 1 such that we obtain sufficient reward orders.
It is based on Lemma 5.

Theorem 2. For every order with assumptions (�rew,A,A) computed by Algo-
rithms 1 and 2 in Appendix A: If �rew,A is a reward order, then it is sufficient.

Theorem 3. If all orders computed by Algorithms 1 and 2 in Appendix A are
witnesses for a parameter to be monotonic increasing (decreasing), then the
parameter is indeed monotonic increasing (decreasing).

Using Bounds. We assume for state s and region R to have bounds LR(s) and
UR(s) at our disposal satisfying

LR(s) ≤ ERs
M[�u](♦T ) ≤ UR(s) for all �u ∈ R .

Such bounds can be trivially assumed to be 0 and ∞ respectively, but the idea is
to obtain tighter bounds by exploiting parameter lifting. A simple observation on
these bounds yields a cheap rule (provided these bounds can be easily obtained)
to order states.
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Lemma 6. For s1, s2 ∈ S and region R: UR(s2) ≤ LR(s1) implies s2 �rew s1.

We can also use the bounds and r(s) to order state s w.r.t. its successors.

Lemma 7. For any state s with succ(s) = {s1, s2}, f = P(s, s1), region R and
s1 �rew s2: if for all �u ∈ R

1. r(s) ≥ f(�u) · (UR(s2) − LR(s1)) then s2 �rew s, and
2. r(s) ≤ f(�u) · (LR(s2) − UR(s1)) then s �rew s2.

The proof is found in Appendix C.2.

Example 7. Reconsider the situation in Fig. 1(c), let r(s0) = 5 and p ∈ [0.1, 0.7].
Assume L(s1) = 3, U(s1) = 4, L(s2) = 5, and U(s2) = 10. From this we have
L(s0) = 8.6, U(s0) = 14.4. To order s0 w.r.t. s2, we cannot apply Lemma 6 as
U(s2) > L(s0) and U(s0) > L(s2). However, by Lemma 7.1 we obtain s2 �rew s0.

We extend Lemma 7 to several successor states as follows:

Lemma 8. Let succ(s) = {s1, . . . , sn}, j ∈ {1, . . . n}, and fj = P(s, sj). If for
all 1 ≤ i < j. si �rew sj then:

r(s) ≥ (1−fj) · (UR(sj) − LR(s1)) implies sj �rew s

The proof is similar to the proof of Lemma 7. Note that the dual of Lemma 8, i.e.,

r(s) ≤ (1−fj) · (LR(sj) − UR(sn)) implies sj �rew s

does not help building the order. As sj �rew sn, we obtain (LR(sj)−UR(sn)) ≤ 0
yielding a reward of at most 0.

We extend Algorithm 1 in Appendix A by Algorithm 3 which is based on
Lemmas 6 to 8.

3.4 Reachability Probabilities

To conclude this section, we show that the presented approach is a conservative
extension of our earlier work [39] on reachability probabilities. The probability
to reach some state from state s in pMC M, denoted Prs→

M , can be obtained
using expected total rewards. In fact, we can create a pMC M′, a mild variant
of M, such that PrsI →

M = ERsI → ′

M′ . This goes as follows. We obtain M′ by
adding a sink state ′ to S (yielding S′) with for any s ∈ S, P(s, ′) = 1 if
P(s, s) = 1 and P(s, ′) = 0 otherwise. Furthermore, all states M′ are equipped

with reward zero, except that r( ) = 1. The quantity ERs0→ ′
in M′ now equals

the reachability probability of eventually reaching in M. The following lemma
asserts that the reward order applied to M′ coincides with the reachability order
in [39] on M.

Lemma 9. Let pMC M = (S, sI , T , V ,P) and region R, and M′ be the equiv-
alent pMC for expected total rewards. Then:

for any s, t ∈ S. s �rew
M′ t

︸ ︷︷ ︸
this paper

iff s �Pr
M t

︸ ︷︷ ︸
defined in [39]

.
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4 Divide and Conquer

At the end of Secti. 2.3, we argued that the vanilla parameter lifting approach
does not scale for ε-optimal synthesis. In Sect. 3.2, we discussed how to build a
reward order and how this is used to determine monotonicity. We now bring these
things together. This divide-and-conquer approach is highly inspired by [41] that
considered reachability properties rather than reward properties. We observe
that the approach is similar, up to building the reward order. Furthermore, we
improved the heuristics of [41].

We first explain how the divide-and-conquer approach works for parameter
lifting with monotonicity. Then, we discuss the heuristics.

Queue Q (2) Monotonicity Checking

(3) Shrink

(4) Parameter Lifting
(6) Guess �u ∈ R′

update CurMax

(8) Split R′

Result: CurMax

(1) R, LR, UR R, X↓, X↑

R′

local mon.

(5) if U
R′ (sI ) ≤ CurMax, ∅

else, R′, LR′ , UR′else, R′, LR′ , UR′

R1, LR′ , UR′
. . .

Rn, LR′ , UR′

RewardOrder

(7) if CurMax ≥
(
maxR̂∈Q∪{R′} UR̂(sI )

)
· (1−ε)

Fig. 3. The symbiosis of monotonicity checking and parameter lifting.

Approach. Figure 3 shows how the extremal value for region Rι, pMC M, reward
property ϕ and precision ε can be computed using both parameter lifting and
monotonicity [41]. As explained in Sect. 2.3, the main idea is to analyze regions
and split them if the result is inconclusive. The approach uses a queue of regions
that need to be checked and the extremal value CurMax found so far. We iter-
atively check regions and improve both bounds until a satisfactory solution to
the ε-optimal synthesis problem is found.

Initially, the queue only contains Rι. The bounds for this region are set at
0 and ∞. For a selected R from the queue we first check for monotonicity (2).
If there is monotonicity, we shrink the region to R′ by fixing the monotonic
parameters to their bounds (3). We then compute the upper and lower bound
(UR′ and LR′) with parameter lifting. If UR′ at the initial state is below CurMax,
we can safely discard R′ (5). Otherwise, we try to improve CurMax by guessing
�u ∈ R′ and computing ERs→T (�u) (6). If ERs→T (�u) exceeds CurMax, we update
CurMax. We now check if we can terminate. Let the maximum so far be bounded
by maxR̂∈Q∪{R′} UR̂(sI ). We multiply this by (1−ε). If the result is below CurMax,
we are done, and return CurMax together with its associated �u (7). Otherwise,
we continue and split R′ into smaller regions (8). This is the same procedure as
in [41]. However, the monotonicity checking is now tailored to rewards.
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Heuristics - Initializing CurMax . As in [41], we sample each parameter inde-
pendently to find out which parameters are definitely not monotonic. We skip
parameters already known to be monotonic. We restrict ourselves to ten sam-
ples. Non-monotonic parameters are set to the middle point of their interval (as
described by the region). For the other parameters, we use the results of the
sampling, to determine whether they are possibly monotonic. When maximizing
the expected total reward, these parameters are set at the upper (lower) bound if
possibly monotonic increasing (decreasing). Furthermore, we store the possibly
monotonic parameters for the next two heuristics.

Heuristics - Updating CurMax . To update CurMax, we consider two points. As
first point, we take (like the original approach) the middle point of the region.
For the second point, we take the same approach as for initializing CurMax. So
we set the non-monotonic parameters to their middle point, and the possibly
monotonic parameters to their upper/lower bound. Note that we use the initial
sampling results, as re-sampling results in overhead.

Heuristics - Creating Copies of the Reward Order. As long as the reward order
is sufficient for less than 25% of the states, we continue extending the reward
order based on the bounds obtained from parameter lifting.

5 Experimental Validation

We built a prototypical implementation [42] of the techniques advocated in this
paper on top of the Storm model checker [24]. The main goal is to compare the
plain (vanilla) implementation using parameter lifting (as described in Sect. 2.3)
to the integrated implementation using both parameter lifting and monotonicity
(as described in Sect. 4).

Setup. We compare the integrated approach to the vanilla approach. Both ver-
sions are implemented in Storm and use the same underlying data structures
and version of Storm. All experiments were executed on a single core Intel Xeon
Platinum 8160 CPU. We did neither use any parallel processing nor randomiza-
tion. We used a time out of 3600 s and a memory limit of 32 GB. We exclude
model-building times from all experiments and emphasize that they coincide for
the vanilla and integrated approach. Finally, we set the region for all parameters
to [0.1, 0.4], as this increases the number of parameters that are possibly mono-
tonic (Table 1, column |V |↑R?). This allows us to argue about the influence of
the heuristics for CurMax.

Benchmarks. We consider all POMDP benchmarks with expected total reward
properties from [6]. The network benchmark is a unitization example [46], “ps”
refers to successfully delivered packets and “dp” refers to dropped packets. The
maze and 4× 4 grid benchmarks are slight extensions of the benchmarks pre-
sented in [32]. The samplerocks benchmarks [5,38] model a rover science explo-
ration. The rover has a limited amount of fuel and can only increase this by
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sampling rocks. The problem however is that the rover doesn’t know in advance
whether a rock will increase the fuel limit or not. The goal is to reach a given
position.

We amended the properties from [6] such that a target state is almost surely
reached; this ensures that the expected total reward is finite. The POMDPs
are translated into pMCs using the approach in [29]. We excluded typical pMC
examples [22], as they only have 2 or 4 parameters. Table 1 provides some statis-
tics of the POMDP benchmarks. The first two columns indicate the POMDPs
and the considered instance. The next three columns show respectively the num-
ber of states, transitions, and parameters in the pMC after preprocessing. For
all benchmarks we assume a fixed memory structure, the last number in the
instance column represents how many memory cells are used.

Table 1. POMDP benchmark characteristics and monotonicity checking results

benchmark instance # states # trans |V | sufficient |V |↑R |V |↑R?

network dp

(2,1,1) 98 229 9 53.1% 0 9

(2,3,1) 552 2910 84 49.3% 18 65

(4,1,1) 201 807 36 33.3% 12 24

(4,3,1) 1230 7708 216 30.2% 23 191

network ps

(2,1,1) 26 66 14 100.0% 14 0

(2,5,1) 1085 3731 143 33.5% 20 121

(4,1,1) 157 607 41 43.3% 9 32

(4,5,1) 2208 12450 302 26.8% 16 282

maze

(1) 41 82 15 80.5% 7 8

(2) 134 278 58 26.1% 7 24

(4) 358 737 131 13.7% 10 118

(8) 918 1868 296 7.6% 15 269

(16) 2253 4549 841 4.7% 20 776

(32) 4812 9678 2049 3.0% 28 1812

(64) 10682 21429 4373 2.6% 53 3511

samplerocks
(1,1) 282 565 37 41.8% 1 36

(2,1) 1129 2252 189 21.5% 2 185

4x4grid

(1) 47 106 3 6.4% 0 3

(2) 139 302 11 4.3% 0 7

(4) 393 823 26 3.8% 0 25

Results. The last three columns of Table 1 show the results of monotonicity
checking. The column “sufficient” lists the percentage of states for which the
initial order, i.e., before splitting regions, is sufficient. |V |↑R lists the number
of parameters for which monotonicity was found by our approach, while |V |↑R?
lists the number of parameters that might be monotonic based on sampling.
Note that all remaining parameters are certainly not monotonic.

Table 2 shows the results for ε-optimal synthesis for ε = 0.1 and ε = 0.05.
For each ε, we consider the time t required and the number (# i) of iterations
that the integrated loop and the baseline require. For the integrated approach,
we also provide the number (# ib) of extra parameter lifting invocations needed
to assist the monotonicity checker. We also denote # ib without heuristics. Note
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that we only consider new heuristics, so initializing CurMax is enabled for both
integrated approaches. Appendix B lists the ε-optimal values.

Discussion. Table 1 shows that for one benchmark (network ps, (2,1,1)), global
monotonicity in all parameters is established. Furthermore, it shows that many
parameters are possibly monotonic. Finally, Table 1 shows that the % of states
for which the order is sufficient does not directly relate to the number of definitely
monotonic parameters. The explanation is twofold. 1) An order can be sufficient
for parameter p, however, if for one state p is locally monotonic increasing and

Table 2. Overview of the experimental results comparing vanilla parameter lifting to
the integrated approach

ε: 0.1 ε: 0.05

Integrated Vanilla Integrated Vanilla

Heuristic No heuristic Heuristic

name instance dir # i # ib t # ib # i t # i # ib t # i t

network
dp

(2,1,1) min 0 2 <1 2 MO 47 2 <1 MO

(2,3,1) MO MO MO MO

(4,1,1) 0 2 <1 2 MO 405 2 <1 MO

(4,3,1) MO MO MO MO

(2,1,1) Max 9 2 <1 6 MO 165 2 <1 MO

(2,3,1) MO MO MO MO

(4,1,1) 0 2 <1 2 MO 7 2 <1 MO

(4,3,1) MO MO MO MO

network
ps

(2,1,1) min 0 2 <1 2 MO 0 2 <1 MO

(2,5,1) 43325 2 227 21664 MO MO MO

(4,1,1) 0 2 <1 2 MO 0 2 <1 MO

(4,5,1) MO TO MO TO

(2,1,1) Max 0 2 <1 2 MO 0 2 <1 MO

(2,5,1) MO MO MO MO

(4,1,1) 0 2 <1 2 MO 0 2 <1 MO

(4,5,1) MO TO MO TO

Maze

(1) min 9 2 <1 6 MO 13 2 <1 MO

(2) 83 2 <1 43 MO 1955 2 3 MO

(4) MO MO MO MO

(1) Max 0 2 <1 2 MO 0 2 <1 MO

(2) 0 2 <1 2 MO 0 2 <1 MO

(4) 0 2 1 2 MO 0 2 1 MO

(8) 0 2 4 2 MO 0 2 4 MO

(16) 0 2 28 2 MO 0 2 28 MO

(32) 0 2 162 2 MO 0 2 156 MO

(64) 0 2 855 2 MO 0 2 805 MO

sample-

rocks

(1,1) min MO MO MO MO

(1,1) max 13 2 <1 8 MO 923 2 2 MO

(2,1) MO MO MO MO

4 × 4 grid

(1) min 3 3 <1 3 MO 5 4 <1 MO

(2) 7 5 <1 5 MO 15 9 <1 MO

(4) 377313 188658 858 188658 MO MO MO

(1) Max 9 6 <1 6 MO 11 7 <1 MO

(2) 59 31 <1 31 MO 571 291 <1 MO

(4) MO MO MO MO
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for another state locally monotonic decreasing, then global monotonicity cannot
be obtained. 2) If a parameter occurs at only a few states, the chances that
the order is sufficient for that parameter are higher. Also, the chances that the
parameter is only locally monotonic increasing (or only decreasing) are higher.
Consider e.g. network dp, we observe that a parameter occurs on average at
10.9 and 6.6 states for instances (2,1,1) and (2,3,1) respectively. The order for
instance (2,1,1) has a higher sufficiency compared to instance (2,3,1). However,
for instance (2,3,1) global monotonicity for 18 parameters is found, whereas for
instance (2,1,1) no global monotonicity is found.

Table 2 shows that for vanilla parameter lifting, all benchmarks were out
of reach. Due to the number of parameters, many region splits are necessary,
causing out of memory errors. As these are the smallest instances of the original
POMDP benchmarks, picking benchmarks with less parameters is not possible.
For the integrated approach, more results are obtained. First of all, we observe
that picking a good initial CurMax helps a lot, as for many benchmarks splitting
the region is not needed. This can be observed from the fact that # i = 0.
Secondly, we observe that also when splitting the region is necessary, e.g., if we
want more precise results (ε = 0.05), our approach still works for most bench-
marks. Also the heuristics help minimizing the number of extra parameter lifting
invocations needed to assist the monotonicity checker. Only when minimizing for
network ps instance (2,5,1) and for 4× 4 grid instance (4) we get memory outs
at ε = 0.05. For network ps, at instance (2,1,1) we even have global monotonic-
ity in all parameters. Therefore, the result is provably optimal. For ε = 0.001,
the results remain mostly the same.

6 Related Work

Partially Observable MDPs. Several techniques exist to find optimal values in
POMDPs, including, e.g., the use of approximate value iteration [23], opti-
misation and search techniques [1,8], dynamic programming [4], Monte Carlo
simulation [37], game-based abstraction [45], machine learning [9,10,15], and
belief-MDPs [6,7,33]. If the memory structure and size is provided, the main
approaches are to either use satisfiability checking and SMT solving [11,43] or
transform the POMDP to a pMC (as in this paper) and then use parameter
synthesis [29].

Finding ε-optimal Instantiations of Parametric MCs. The first approaches
to solve problems for parametric MCs [14,31] focus on computing a closed
form for the solution function which maps parameter values to expected total
rewards [2,14,16,17,21,26,28]. Chen et al. [12] analyze (non-controllable) pertur-
bations in MCs from a robustness perspective. Fast sampling of the parameter
space and evaluating the corresponding pMCs is also a preprocessing step to
other methods [20,28]. Storm offers optimized routines, and for large numbers
of samples, just-in-time compilation is a feasible alternative [18].
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Exploiting Monotonicity. Hutschenreiter et al. [25] showed that the complexity
of model checking (a monotone fragment of) PCTL on monotonic pMC is lower
than on general pMCs. Pathak et al. [34] provided an efficient greedy approach
to repair monotonic pMCs. Spel et al. [39] present a graph-based heuristic to
determine whether a reachability property for a pMC is monotonic, i.e., whether
the gradient w.r.t. some parameter is non-negative on the complete parameter
space. Also for other Markov models, research on using monotonicity has been
done. Gouberman et al. [19] used monotonicity for hitting probabilities in per-
turbed continuous-time MCs. Furthermore, similar as in this paper, [13] recently
defines a partial order between states. They consider MDPs however, and use
this order to reduce the amount of non-determinism.

7 Conclusion and Future Work

This paper has presented monotonicity for expected total reward properties. We
have shown that with the help of monotonicity, we can tackle the optimal synthe-
sis problem for POMDPs: synthesize a controller that is ε-optimal, thus using
ε-optimal budget. We exploit the connection between synthesizing ε-optimal
finite-state POMDP controllers and finding an ε-optimal parameter valuation in
parametric Markov chains (pMC). The key concept is a deep interplay between
parameter lifting, the favourable technique so far for this problem, and mono-
tonicity checking. Experiments showed encouraging results: where with vanilla
parameter lifting, no POMDP benchmark was solved, a tight integration with
monotonicity checking allows us to check models with hundreds of parameters
(thus observations). Future work consists of extending monotonicity to paramet-
ric MDPs for both reachability and reward properties.

A Algorithm

In this section, we describe the algorithmic approach to obtain a sufficient reward
order, which is used for monotonicity checking.

Our algorithm takes as input an pMC and bounds for all states. It returns a
set of annotated reward orders (A,�rew,A), where A is a set of assumptions of
the form s �rew s′. The algorithm iteratively computes a set of reward orders.
At this stage, both the bounds and the assumptions are not relevant and not
used.

Initially, we start with the trivial order �rew s for all s ∈ S. The queue
is initialised (l.1) with an empty set of assumptions, the trivial order and all
non-target states in S. At each iteration, we pick an order from the queue. If all
states are processed (l.5), we are done building the reward order. Otherwise, we
pick a state s to process (l.7), and try to order this state based on the reasoning
from Lemmas 2 and 3 in Algorithm 1. We pick this state in reversed topological
order, as this increases the likelihood that all successor states are contained
in the order. Once we processed s, we put the (possibl) extended order in the
queue together with the set of assumptions and the states we still need to process
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Algorithm 1. Construction of a Reward Order
Input: pMC M = (S, sI , T , V , P) and bounds LR(s) and UR(s) for all s ∈ S
Output: Result = a set of annotated reward orders �rew,A

1: Result ← ∅, Queue ← (A : ∅, �rew : {( , s)}, S′ : S \ { })
2: while Queue not empty do
3: A, �rew,A, S′ ← Queue.pop()
4: if S′ = ∅ then
5: Result ← Result ∪ {(A, �rew,A)}.
6: else
7: select s ∈ S′ with s topologically last w.r.t.
8: if r(s) = 0 then
9: if ub(succ(s)) �= ∅ and ∃s′ ∈ succ(s) s.t. succ(s) ⊆ [s′] then

10: extend �rew,A with: s≡rewsucc(s) Lemma 2.2.
11: else if ub(succ(s)) �= ∅ then
12: extend �rew,A with all:

s ≺rew,A min ub(succ(s)) and max lb(succ(s)) ≺rew,A s Lemma 2.2.
13: else if succ(s) = {s1, s2} and s ≡rew,A s1 then
14: extend �rew,A with: s2 ≡rew,A s Lemma 3.1.
15: else if succ(s) = {s1, s2} and s ≺rew,A s1 then
16: extend �rew,A with: s2 ≺rew,A s Lemma 3.3.
17: else if succ(s) = {s1, s2} and s1 ≺rew,A s then
18: extend �rew,A with: s ≺rew,A s2 Lemma 3.4.
19: else
20: extend �rew,A with: max lb(succ(s)) ≺rew,A s Lemma 2.1.
21: if succ(s) = {s1, s2} and s ≡rew,A s1 then
22: extend �rew,A with: s2 ≺rew,A s Lemma 3.2.
23: else if succ(s) = {s1, s2} and s ≺rew,A s1 then
24: extend �rew,A with: s2 ≺rew,A s Lemma 3.3.
25: Queue.push(A, �rew,A, S′ \ {s})
26: return Result

(l.25). Note that, if the state reward is 0 (l.9–18), the algorithm is equivalent to
Algorithm 1 extended for treating cycles as found in [39, Sect. 4.1 and 4.3]. As
assumptions are not used, Algorithm 1 in fact computes a single reward order; it
runs linear in the number of transitions. Note that this order is not necessarily
sufficient for the pMC.

Assumptions. To obtain a sufficient reward order, we consider assumptions, as
described in Sect. 3.3. We exploit the annotations (called assumptions) that were
ignored so far. Recall from Definition 6 that a reward order is not sufficient at a
parametric state s, if its successors s1 and s2 are not totally ordered. To remain
sound, we consider all possible orderings of s1 and s2. We add for each possible
ordering a copy of the reward order to the queue, and continue as if the ordering
of s1 and s2 is known. We extend Algorithm 1 with assumptions by adding the
code of Algorithm 2 after lines 18 and 24.
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Algorithm 2. Assumption extension (put after l.18 and l.24 in Algorithm 1).
1: if �rew,A is not a total order for succ(s) then
2: pick s1, s2 ∈ succ(s) s.t. neither s1 �rew,A s2 nor s2 �rew,A s1
3: Queue.push((A≺rew ∪ {(s1, s2)}, A≡rew), �rew,A extended with s1 ≺rew s2, S

′)
4: Queue.push((A≺rew ∪ {(s2, s1)}, A≡rew), �rew,A extended with s2 ≺rew s1, S

′)
5: Queue.push((A≺rew , A≡rew ∪ {(s1, s2)}), �rew,A extended with s1≡rews2, S

′)
6: continue

Using Bounds. As creating assumptions might lead to an exponential explosion
in the number of orders in the queue, we also consider the situation in which we
have bounds LR(s) and UR(s) at our disposal satisfying

LR(s) ≤ ERs
M[�u](♦T ) ≤ UR(s) for all �u ∈ R .

As these bounds are a relatively cheap way to order states, we extend Algorithm 1
by adding Algorithm 3 directly after line 7. This algorithm uses Lemma 6 to order
the successor states of s to obtain a sufficient order for s (l.1–5). Furthermore, it
uses Lemmas 7 and 8, to order a state relative to its successor states (l. 10–13).

B Results

Table 3 shows the ε-optimal values for the integrated approach. It shows the
results for ε = 0.1 and ε = 0.05. For all entries the result for ε = 0.1 and
ε = 0.05 with heuristics is equal. This confirms that our initial guess for CurMax
is a good one, even though we do need splitting of the region. The splitting is
necessary as the bound found with parameter lifting is not yet tight enough to
confirm that CurMax is indeed an ε-optimum. When maximizing the 4× 4 grid
(2) we find with heuristics a value of 10685 and without heuristics 10679. This
can be explained by the new way of updating CurMax.

Algorithm 3. Bounds successor extension (put after l.7 Algorithm 1).
1: for all (s1, s2) ∈ succ(s) × succ(s) s.t. neither s1 �rew,A s2 nor s2 �rew,A s1 do
2: if UR(s2) ≤ LR(s1) then
3: extend �rew,A with: s2 �rew,A s1
4: else if UR(s1) ≤ LR(s2) then
5: extend �rew,A with: s1 �rew,A s2
6: if succ(s) = {s1, s2} and r(s) ≥ P(s, s1)(�u) · (UR(s2) − LR(s1)) ∀ �u ∈ R then
7: extend �rew,A with: s2 �rew,A s
8: else if succ(s) = {s1, s2} and r(s) ≤ P(s, s1)(�u) · (UR(s2) − LR(s1)) ∀ �u ∈ R then
9: extend �rew,A with: s �rew,A s2

10: if succ(s) = {s1, . . . , sn} then
11: for all j ∈ {1, . . . , n} do
12: if ∀1 ≤ i < j.si �rew,A sj and r(s) ≥ P(s, sj)(�u) · (UR(sj) − LR(s1)) then
13: extend �rew,A with: sj �rew,A s
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C Proofs

C.1 Proof Sketch of Theorem 1

Theorem 1. (
∀s ∈ S. ERs→T ↑�

p

)
implies ERsI →T ↑p.

Proof. We sketch the proof of Theorem 1, which follows the lines of [39, Thm. 2].
First of all, we lift the notion of local monotonicity (Definition 4) to local mono-
tonicity for n steps. Secondly, we claim that local monotonicity implies local
monotonicity for n steps and from this global monotonicity follows.

We define the length of a finite path |π̂| = n for π̂ = s0s1 . . . sn. Let Pathsn(s)
be the set of all paths with length n starting from state s ∈ S.

Definition 8 (Locally monotonic increasing for n steps). ERs→T
M is

locally monotonic increasing for n steps in parameter p (at s) on region R,
denoted ERs→T

M ↑�,n,R
p , iff for all �u ∈ R:

⎛

⎝
∑

π̂∈Pathsn(s)

(
∂

∂p
Pr(π̂)

)

·
(
r(π̂,♦T ) + ERπ̂n→T

M
)
⎞

⎠ (�u) ≥ 0.

Table 3. Overview of the found ε-optimal values

Name Instance Direction
ε: 0.1

No heuristic ε: 0.1 heuristic
ε: 0.05

no heuristic
ε: 0.05
heuristic

network dp

(2,1,1) Min 2.79e0 2.79e0 2.789e0 2.789e0

(4,1,1) 1.28e0 1.28e0 1.276e0 1.276e0

(2,1,1) Max 4.77e0 4.77e0 4.769e0 4.769e0

(4,1,1) 3.80e0 3.80e0 3.800e0 3.800e0

network ps

(2,1,1) min 2.61e-1 2.61e–1 2.610e–1 2.610e–1

(2,5,1) 3.94e0 3.94e0 N/A N/A

(4,1,1) 1.77e0 1.77e0 1.766e0 1.766e0

(2,1,1) max 4.57e-1 4.57e-1 4.569e-1 4.569e-1

(4,1,1) 2.03e1 2.03e1 2.029e1 2.029e1

Maze

(1) Min 7.05e1 7.05e1 7.050e1 7.050e1

(2) 7.06e1 7.06e1 7.059e1 7.059e1

(1) Max 1.54e6 1.54e6 1.535e6 1.535e6

(2) 1.55e6 1.55e6 1.545e6 1.545e6

(4) 1.86e6 1.86e6 1.861e6 1.861e6

(8) 1.81e6 1.81e6 1.810e6 1.810e6

(16) 2.06e6 2.06e6 2.062e6 2.062e6

(32) 2.33e6 2.33e6 2.334e6 2.334e6

(64) 2.17e6 2.17e6 2.171e6 2.171e6

samplerocks (1,1) Max 3.90e1 3.90e1 3.904e1 3.911e1

4× 4 grid

(1) Min 4.04e1 4.04e1 4.036e1 4.036e1

(2) 4.03e1 4.03e1 4.026e1 4.026e1

(4) 4.42e1 4.42e1 N/A N/A

(1) Max 1.05e4 1.05e4 1.048e4 1.048e4

(2) 1.07e4 1.07e4 1.068e4 1.069e4
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For n = 1, Definition 8 corresponds to Definition 4. The claim that local mono-
tonicity implies local monotonicity for n steps (for all n) can be proven by induc-
tion over n. The claim that global monotonicity follows from this can be shown
similar to the proof of [39, Theorem 2, Equation 2], with as main difference that
no state s ∈ S exists for which Prs→T = 0, cf. Remark 1.

C.2 Proof of Lemma 7

Lemma 7. For any state s with succ(s) = {s1, s2}, f = P(s, s1), region R and
s1 �rew s2: if for all �u ∈ R

1. r(s) ≥ f(�u) · (UR(s2) − LR(s1)) then s2 �rew s, and
2. r(s) ≤ f(�u) · (LR(s2) − UR(s1)) then s �rew s2.

Proof. Let f ′ = P(s, s2) = 1−f . For the first case, we derive for all �u ∈ R:

r(s) ≥ f(�u) · (UR(s2) − LR(s1))

≥ f(�u) ·
(
ERs2→T − ERs1→T

)

= f(�u) · ERs2→T − f(�u) · ERs1→T

= (1−f ′(�u)) · ERs2→T − f(�u) · ERs1→T

= ERs2→T − f ′(�u) · ERs2→T − f(�u) · ERs1→T .

From this. it immediately follows for all �u ∈ R:

r(s) + f(�u) · ERs1→T + f ′(�u) · ERs2→T

︸ ︷︷ ︸
=ERs→T

≥ ERs2→T ,

so s2 �rew s.
For the second case, the proof follows in a similar way.
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Abstract. Collective adaptive systems (CAS) are composed of a large
number of entities that interact with each other to reach local or global
goals. Entities operate without any centralized control and should adapt
their behavior to the changes in the environment where they operate.
Due to the intricacies of these interactions and adaptation, it is difficult
to predict the behavior of CAS. For this reason, formal tools are needed
to specify and verify this behavior to ensure consistency, reliability, cor-
rectness, and safety properties. In this paper, we present a novel logical
framework that permits specifying properties of CAS at both local and
global levels: local properties refer to the behavior of individuals, while
global properties refer to the whole system. An exact model checking
algorithm, whose complexity is linear with the size of the formula and
with the size of the model is also presented together with another one
based on statistical model checking that permits handling systems com-
posed by a large number of agents. Finally, a simple scenario is used to
evaluate the advantages of the proposed approach.

Keywords: Temporal Logics · Multi-agent Systems · Local and
Global properties · Statistical Model Checking

1 Introduction

Collective adaptive systems (CAS) are composed of a huge amount of compo-
nents that interact with each other and with the enclosing environment to reach
local and global goals. Each component in the system may exhibit autonomic
behavior depending on its properties, objectives, and actions. Decision-making
in such systems is complicated, and interaction between components may intro-
duce new and sometimes unexpected behaviors. Due to the intricacies of these
interactions and adaptation, it is difficult to predict the behavior of CAS. For this
reason, formal tools are needed to specify and verify this behavior to ensure con-
sistency, reliability, correctness, and safety properties. The adopted tools should

This research has been partially supported by Italian PRIN project “IT-MaTTerS” n,
2017FTXR7S, and by POR MARCHE FESR 2014–2020, project “MIRACLE”, CUP
B28I19000330007.
c© Springer Nature Switzerland AG 2022
E. Ábrahám and M. Paolieri (Eds.): QEST 2022, LNCS 13479, pp. 133–149, 2022.
https://doi.org/10.1007/978-3-031-16336-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16336-4_7&domain=pdf
http://orcid.org/0000-0003-3061-863X
http://orcid.org/0000-0002-6028-9016
https://doi.org/10.1007/978-3-031-16336-4_7


134 M. Loreti and A. Rehman

encompass both functional and non-functional aspects of behavior. In particular,
the design process should be supported by robust modelling techniques which
are able to describe CAS and to reason about their behavior in both qualitative
and quantitative terms [10].

Different models and formalism have been proposed to describe CAS. These
are mainly based on process specification languages that permit describing the
behaviour of the involved components, the enclosing environment and their inter-
actions [2,4,11,14,16,18]. In these models, systems are mainly considered from
a global perspective where the behavior of the single component somehow dis-
appears in the multitude of the system state. However, sometimes we could be
interested in a local perspective where we are not considering the whole state,
but we focus on a specific component.

Let us consider a system composed of N agents that can be either blue or red
coloured. The goal is to guarantee that without any centralized control agents
evolve to a balanced configuration where the number of blue agents is similar to
the number of red agents. In the system, each agent can autonomously change its
colour according to what are its perceptions about the state of the other agents.
Different approaches can be considered to program the behaviour of an agent.
To compare the possible solutions, we have to define requirements that involve
both local and global properties. From a global point of view we can require that
“Eventually, the system is able to reach a balanced configuration” (R1). From a
local point of view, one could be also interested in verifying that “Agents are not
continuously changing their state” (R2).

The goal of this paper is to introduce a novel framework that permits specify-
ing and verifying properties of CAS at both global and local level. We first intro-
duce a variant of Stochastic Processes tailored to describe quantitative behaviour
of CAS. For the sake of simplicity, in this paper we will focus on a variant of Dis-
crete Time Markov Chain (DTMC), named Multi-Agent Discrete Time Markov
Chain (MA-DTMC) that will be used to render the behavior of a system com-
posed by a multitude of agents by providing both global and local perspectives.
However, an extension to other classes of stochastic processes is straightforward.
Hence, we will present Global and Local Temporal Logic (GLoTL), a tempo-
ral logic that permits specifying both global and local properties of multi-agent
systems described as MA-DTMC models.

Moreover, an exact model checking algorithm is presented to check if a given
GLoTL formula is verified or not. The proposed algorithm follows an on-the-
fly approach [12]. Indeed, the state space is generated in a step wise fashion to
compute the satisfaction probability of a given global formula Φ. We will show
that the proposed approach is linear with the size of formula Φ. Unfortunately,
we will observe that when the number of agents in the system is increasing, the
number of states that one has to consider to compute the satisfaction probability
is so big that an exact computation is almost impossible. For this reason, a
methodology based on statistical model-checking [3] is also presented. In this
paper, the red/blue scenario described above is used as a running example to
evaluate the advantages of the proposed approach.
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Related Work. Many recent publications have proposed temporal logic and tools
to support the analysis of CAS or Multi-Agent Systems. We refer here the ones
that we consider more relevant for this paper. In [12], Probabilistic Computation
Tree Logic (PCTL) is used to specify the properties of CAS, and an on-the-fly
model checking algorithm is proposed to check if a given model satisfies or not a
formula. A similar approach has been proposed in [7] where Continuous Stochas-
tic Logic (CSL) is used to specify the properties of interacting agents whose
behavior is modelled via Deterministic Timed Automaton (DTA) with a single
clock. Differently from [12], where only global formulas are taken into account,
in [7] local properties are considered. However, these are verified by altering the
behavior of the agents. Finally, in [1], an extension of Linear Temporal Logic
(LTOL) is used to specify the properties of Multi-Agent Systems and to verify
against Doubly-Labeled Transition System (DLTS), which are used to specify
system behavior. The idea is that local properties is specified by means of pred-
icates on agent states, while global behavior is rendered as temporal modalities
on message passing. Differently from the approach presented in [1] the one pre-
sented in this paper focuses on quantitative aspects and, also due to the use of a
simpler formalism, it is equipped with efficient model checking algorithms.

Structure of the Paper. The paper is structured as follows. In Sect. 2 Multi-Agent
Discrete Time Markov Chain are introduced. In Sect. 3 syntax and semantics
of GLoTL is presented. In Sect. 4 we will present the exact model checking
algorithm with another algorithm based on Statistical Model Checking can be
used to check the satisfaction of GLoTL. Section 5 concludes the paper.

2 Modelling Global and Local Behaviours

Collective adaptive systems (CAS) consist of a large number of entities, the
agents, that interact with each other to reach local or global goals. To reason
about behavior of CAS, models are needed to formally specify possible compu-
tations and, in the case of quantitative analysis, to provide tools that permit
measuring the probability of the set of computations of our interest. These mod-
els should represent the behavior of a system at two different levels. A global
level, where the whole state is considered, and a local level, where one can focus
on the behavior of each single agent.

Let S be a set of agent states, a Multi-Agent Stochastic Process with size N
consists of a set of random variables {X(t), t ∈ T} that assume values in SN .
Intuitively, X(t) consists of a tuple of N agent states each of which represents
the state of one of the N agents in the system. For the sake of simplicity, in
this paper, we will focus on Discrete Time Markovian Processes and we will
introduce Multi-Agent Discrete Time Markov Chain (MA-DTMC) that consist
of a simple extension of standard Discrete Time Markov Chain (DTMC).
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2.1 Multi-agent Discrete Time Markov Chain

A Discrete Time Markov Chain (DTMC) D is a tuple of (Q,P), where Q is
the finite set of states, P : Q × Q → [0, 1] is the transition probability matrix
(where, for any q ∈ Q,

∑
q′∈Q P(q, q′) = 1). For any q, q′ ∈ Q, P(q, q′) = p

indicates the probability to jump in the next time step from state q to state q′.
When we use DTMC to model behaviour of CAS, each state in Q must describe
the specific configuration of each agent operating in the system. Given a set S
of agent states, a Multi-Agent Discrete Time Markov Chain (MA-DTMC) with
size N , MN , is a DTMC (SN ,PN ). Each state in MN is a vector in SN and
represents the state of each of the N agents operating in the system.

Given a �q ∈ SN , we let �q[i] ∈ S denote the state of agent in position i.
Moreover, for any �q ∈ SN and s ∈ S we let #(�q, s) and %(�q, s) denote the
number and the fraction of agents in the state s, respectively. Formally:

#(�q, s) = |{i|�q[i] = s}| %(�q, s) =
#(�q, s)

N

Example 1 (Red/Blue Scenario 1/5). Let us consider the Red/Blue Scenario
introduced in Sect. 1. We can assume that each agent in the system can be either
in the state B, indicating that the agent is blue coloured, or in the state R, when
the agent is red. Our scenario can be modelled via a MA − DTMC (SN

rb,P
N
rb),

where Srb = {B,R} while Prb, that represents the probabilistic evolution of our
system, depends on the agent behaviour.

A global path π over MN is a non empty (infinite) sequence of states �q0�q1�q2 · · ·
of states in SN such that, for any i, P(�qi, �qi+1) > 0. Similarly, a finite path
fragment π̂ consists of a finite sequence �q0 · · · �qk of states in SN such that, for
any i < k, P(�qi, �qi+1) > 0.

Given a global path π we will use π[i] to denote the state at position i, while
π[i..] indicates the path obtained from π by considering only the states from
position i onward. Similar notations are used for a finite path fragment π̂. We
let len(π̂) denote the number of elements in π̂, while we say that π̂ is a prefix of
π, written π̂ ≺ π, whenever for any i ≤ len(π̂) π̂[i] = π[i].

We will say that a path π (resp. π̂) starts from state �q whenever π[0] = �q (resp.
π̂[0] = �q). Moreover, we will let PathsMN (�q) and FinPathsMN (�q) denote the set
of paths and path fragments starting from �q while PathsMN and FinPathsMN

denote ∪�q∈SN PathsMN (�q) and ∪�q∈SN FinPathsMN (�q), respectively.
Any path π ∈ PathsMN represents a computation that can be experienced

in the system described by MN . We can observe that, if we focus on the specific
agent i in the sequence of states occurring in π, we have a local perspective of
the computation executed by agent i. Given a global path π, we let π ↓ i denote
the local path obtained from π by considering infinite sequence of agent states
s0s1 . . . (si ∈ S) such that for any j, sj = π[j][i]. We say that π� = s0s1 . . .
is a local path for agent i from the state �q ∈ SN if and only if there exists
π ∈ PathsMN (�q) such that π� = π ↓ i. We let Pathsi

MN (�q) denote the set of
local paths of agent i from �q, while Pathsi

MN = ∪�q∈SN Pathsi
MN (�q).
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Global Formulas

Φ ::= true ¬Φ Φ1 ∧ Φ2 %[φ] X Φ Φ1 U≤k Φ2

Local Formulas

φ ::= true α ¬φ φ1 ∧ φ2 X φ φ1 U≤k φ2

Fig. 1. Syntax of GLoTL formulas.

We say that a MA-DTMC (SN ,PN ) is decomposable if and only if there
exists a function F : S� → S × S → [0, 1] such that:

PN (�q1, �q2) =
N∏

i=1

F(�q1) [�q1[i], �q2[i]] (1)

Equation 1 states that when MN is decomposable, its global transition probability
matrix can be expressed in terms of function F that describes the probabilistic
behaviour of agent s when it is operating in a given system configuration. Indeed,
given a tuple of states in �q ∈ S� =

⋃
N∈N

SN , F(�q) yields the local probability
matrix of agents in S.

Example 2 (Red/Blue Scenario 2/5). We can now define function Frb that
describes the probabilistic behaviour of agents defined in Example 1. We assume
that, at each computational step, an agent interacts with the other agents to
decide if it has to change its colour or it can remain in the same state. In partic-
ular, an agent changes its state whenever it observes an agent having the same
colour. Let αm be the probability that in a computational step an agent is able
to meet another agent, function Frb(�q) can be defined as follows:

F(�q)[R,B] = αm · %(�q,R) F(�q)[R,R] = 1 − αm · %(�q,R)

F(�q)[B,R] = αm · %(�q,B) F(�q)[B,B] = 1 − αm · %(�q,B)

We can observe that the higher is the fraction of agents of a given colour,
the higher is the probability that one of them will change it.

3 Global and Local Temporal Logic

In this section, we present Global and Local Temporal Logic (GLoTL) a temporal
logic that permits specifying both global and local properties of multi-agent
systems. Our formalism follows a linear time approach and it is inspired by
Signal Temporal Logic (STL) [9]. We will first introduce GLoTL syntax and
discuss the operators of our logic. After that, we will give the semantics of
GLoTL in terms of MA-DTMCs. Finally, we will discuss how the interpretation
of the proposed logical framework can extended to a wider class of models.
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Global Formulas Local Formulas

false = ¬true false = ¬true
Φ1 ∨ Φ2 = ¬(¬Φ1 ∧ ¬Φ2) φ1 ∨ φ2 = ¬(¬φ1 ∧ ¬φ2)

Φ1 → Φ2 = ¬Φ1 ∨ Φ2 φ1 → φ2 = ¬φ1 ∨ φ2

♦≤kΦ = true U≤k Φ ♦≤kφ = true U≤k φ

≤kΦ = ¬♦≤k¬Φ ≤kφ = ¬♦≤k¬φ

%[φ] ∈ [a, b] = %[φ] ≥ a ∧ %[φ] ≤ b

%[φ] [a, b] = ¬%[φ] ∈ [a, b]

Fig. 2. Derivable Logical Operators

3.1 Syntax

The syntax of GLoTL formulas is reported in Fig. 1. Two categories of formulas
are considered: global formulas and local formulas.

A global formula Φ, which permits specifying properties of global computa-
tions, is built from standard Boolean operators (true, ¬ and ∧), and temporal
operators (X Φ and Φ1 U≤k Φ2). Finally, a novel operator %[φ] �� p is used to
specify that, at a given point in the computation, the fraction of agents sat-
isfying local formula φ is �� p, where �� ∈ {≤, <,>,≥}. A local formula φ is
used to specify properties of the single agents. The syntax of φ is similar to the
one already considered for global formulas and is built from atomic proposition
α ∈ AP via standard Boolean operators (true, ¬ and ∧), and temporal operators
(X φ and φ1 U≤k φ2). We will let Γ and Λ denote the set of global and local
formulas, respectively.

Other logical operators can be derived as macros of the above defined ones. A
list of derivable operators is reported in Fig. 2 for both global and local formulas:
disjunction, ∨, and implication, →, from ∧ and ¬; eventually, ♦≤k, and globally,
�≤k, from U≤k .

Given a global formula Φ (resp. a local formula φ), the horizon of Φ (resp. φ)
is the max number of time steps that are needed to guarantee its satisfaction.
Function horizon is inductively defined in Fig. 3 where Ψ denote either a global
or a local formula.

3.2 Semantic

Let MN = (SN ,PN ) be a MA-DTMC and L : S → 2AP be a labelling function
associating each state s in S with the set of atomic proposition A ∈ AP satisfied
by s. Satisfaction of global and local formulas are defined via the relations |=MN ,L

and |=MN ,L
� defined in Fig. 4 and Fig. 5. Moreover, probabilistic semantics of

global formulas Φ is defined according to a function μ (Eq. 2) associating each
state �q ∈ SN the probability that �q satisfied Φ.

For the large part of operators, definition of |=MN ,L (Fig. 4) is straightfor-
ward. Any π ∈ PathsMN satisfies true, π satisfies Φ1 ∧ Φ2 if and only if both Φ1
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horizon(true) = 0

horizon(α) = 0

horizon(%[φ] ) = horizon(φ)

horizon(¬Ψ) = horizon(Ψ)

horizon(Ψ1 ∧ Ψ2) = max{horizon(Ψ1), horizon(Ψ2)}
horizon(X Ψ) = 1 + horizon(Ψ)

horizon(Ψ1 U≤k Ψ2) = k +max{horizon(Ψ1) − 1, horizon(Ψ2)}

Fig. 3. Horizon of Local and Global Formulas

π |=MN ,L true

π |=MN ,L ¬Φ ⇐⇒ π =MN ,L Φ

π |=MN ,L Φ1 ∧ Φ2 ⇐⇒ π |=MN ,L Φ1 ∧ π |=MN ,L Φ2

π |=MN ,L %[φ] ⇐⇒ |{i|π↓i |=MN,L
φ}|

N

π |=MN ,L X Φ ⇐⇒ π[1..] |=MN ,L Φ

π |=MN ,L Φ1 U≤k Φ2 ⇐⇒ ∃0 ≤ h ≤ k. π[h..] |=MN ,L Φ2 ∧ ∀0 ≤ i < h. π[i..] |= Φ1

Fig. 4. Global Formulas: Satisfaction relation

and Φ2 are satisfied by π, while π satisfies ¬Φ if and only if it does not satisfy
Φ. Temporal formula X Φ is satisfied by π if the computation starting from step
1 satisfies Φ. Finally, π satisfies Φ1 U≤k Φ2 if and only if there exists an index
h such that π[h..] satisfies Φ2 and for any index i less then h, π[i..] satisfies Φ1.
The only interesting case is for %[φ] �� p that is satisfied by a global path π
if and only if the fraction of agents in π having a local computation satisfying
(local formula) φ is �� p. Local computations of each single agent are obtained by
considering π ↓ i, the projection of π on the index i (for 0 ≤ i < N). Definition
of |=L

� is standard and is similar to what already discussed for the global case.

π |=MN ,L true

π |=MN ,L α ⇐⇒ α ∈ L(π [0])

π |=MN ,L ¬φ ⇐⇒ π =MN ,L φ

π |=MN ,L φ1 ∧ φ2 ⇐⇒ π |=MN ,L φ1 ∧ π |=MN ,L φ2

π |=MN ,L X φ ⇐⇒ π [1..] |=MN ,L φ

π |=MN ,L φ1 U≤k φ2 ⇐⇒ ∃0 ≤ h ≤ k. π [h..] |=MN ,L φ2 ∧ ∀0 ≤ i < h. π [i..] |= φ1

Fig. 5. Local Formulas: Satisfaction relation
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We can now define function μ amounting the probability that a given state �q
in a MA-DTMC MN satisfies a global formula Φ, given a labelling function L:

μ(MN ,L, �q, Φ) = PrMN {π ∈ PathsMN (�q)|π |=MN ,L Φ} (2)

Theorem 1. For any MA-DTMC MN , time step t ∈ N, formula Φ and labelling
function L, {π ∈ PathsMN |π[t..] |=MN ,L Φ} is measurable.

Example 3 (Red/Blue Scenario 3/5). We can show now how we can use GLoTL
to specify the requirements of our running example described in Sect. 1. First of
all we let the global formula Φbal express that the system is balanced :

Φbal = (%[blue] ∈ [0.5 − ε, 0.5 + ε])

where the atomic proposition blue indicates a blue agent. Requirement R1, that
is “Within a given number of steps, the system is able to reach a balanced con-
figuration.”, can be expressed by the following formula:

Φ1 = ♦≤k1Φbal

where k1 indicates the number of required steps.
We can also require that the balanced configuration is preserved for the next

k2:

Φ2 = ♦≤k1�≤k2Φbal

Both the above defined properties consider the system as a whole and do not
say anything about the behaviour of the single agents. However, in our second
requirement (R2) we are considering that “When the system is balanced, agents
are not continuously changing their state”. We say that an agent is locally stable
if whenever it changes its colour it remains on the same colour for at least k3
steps:

φbr = blue → X (red → �≤k3red) φrb = red → X (blue → �≤k3blue)

These properties can be used to specify requirements R2:

Φ3 = �≤k4 (Φbal → %[φbr ∨ φrb] ≥ .90)

This property states that in the next k4 steps, if the system is balanced then it
is also locally stable.

4 Model Checking GLoTL

In this section, we will introduce an exact model checking algorithm that permits
computing the satisfaction probability of a given GLoTL formula. Moreover, to
cope with the problem of state space explosion, another one based on statistical
model checking [3] is also presented. Both these algorithms rely on an operational
semantics of GLoTL formulas. The proposed approach is similar to the one
presented in [8] where they define a structural operational semantics for a variant
of LTL temporal logic.
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L-True
true A−→L true

L-False
false A−→L false

L-Atom1
α ∈ A

α
A−→L true

L-Atom2
α

α
A−→L false

L-And
φ1

A−→L φ1 φ2
A−→L φ2

φ1 ∧ φ2
A−→L φ1 ∧ φ2

L-Or
φ1

A−→L φ1 φ2
A−→L φ2

φ1 ∨ φ2
A−→L φ1 ∨ φ2

L-Neg
φ

A−→L φ

¬φ
A−→L ¬φ

L-Next
X φ

A−→L φ

L-Until1
φ2

A−→L φ2

φ1 U≤0 φ2
A−→L φ2

L-Until2
φ1

A−→L φ1 φ2
A−→L φ2

φ1 U≤k+1 φ2
A−→L φ1 ∧ (φ1 U≤k−1 φ2) ∨ φ2

Fig. 6. Operational Semantics of Local Formulas

4.1 Operational Semantics of GLoTL Formulas

Let AP be a set of atomic propositions, we let −→L⊆ Λ × 2AP × Λ be the
transition relation defined in Fig. 6 where, to simplify the notation, derivable
operators false and ∨ are used. Let A ⊆ AP, we will write φ1

A−→L φ2 to denote
that (φ1,A, φ2) ∈−→L. The local transition relation −→L, which is inductively
defined on the syntax of local formulas, describes what should be satisfied after
a step given the labelling of the current state. Namely, φ1

A−→L φ2 indicates that
a local computation starting from an agent state with labels A ⊆ AP satisfies
the formula φ1 if and only if in the next step the formula φ2 is satisfied.

Theorem 2. Let MN = (SN ,PN ) be a MA-DTMC and L : S → 2AP be a
labelling function. For any local path π� of MN , π� |=MN ,L

� φ1 if and only if

φ1
L(π�[0])−−−−−→ φ2 and π�[1..] |=MN ,L

� φ2.

Transition relation of global formulas −→G⊆ Γ ×2AP� ×Γ is defined in Fig. 7.
The rules are almost the same as the one considered for relation −→L. However,
while −→L is labelled with a set of atomic propositions, −→G is labelled with a
tuple of set of atomic propositions. This because −→G can be thought of as a sort
of synchronous parallel composition of local formulas. Indeed, transition at global
level is obtained by considering all the transitions performed at local level. To
manage the interplay between local and global formulas, an auxiliary operator is
introduced. Indeed, we consider the operator 〈φ1, . . . , φN 〉 �� p whose semantics
is the following:

π |=MN ,L 〈φ1, . . . , φN 〉 �� p ⇔

∣
∣
∣
{

i|π ↓ i |=MN ,L
� φi

}∣
∣
∣

N
�� p
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Fig. 7. Operational Semantics of Global Formulas

This operator is used to assign each agent with a local formulas. The following
theorem is the corresponding at global level of Theorem 2. With an abuse of
notation, given a labelling function L : S → 2AP and a state �q ∈ SN , we let
L(�q) denote the set tuple �A ∈ 2AP� such that, for any i �A[i] = L(�q).
Theorem 3. Let MN = (SN ,PN ) be a MA-DTMC and L : S → 2AP be
a labelling function. For any path π of MN , π |=MN ,L Φ1 if and only if

Φ1
L(π[0])−−−−→G Φ2 and π[1..] |=MN ,L Φ2.

It is easy to see that both ·−→L and ·−→G are deterministic. For this reason, in
what follows we will write after(Φ1, �A) = Φ2 if and only if Φ1

A−→G Φ2.

4.2 Exact Model Checking Algorithm

Operational semantics of GLoTL formulas is used in this section to define an
exact model checking algorithm. The algorithm is straightforward and is based
on the idea that to compute the satisfaction probability of a formula Φ by a
state �q one has to perform an exploration of the state space driven by the oper-
ational semantics of Φ. The exploration terminates when either a formulas that
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true ↑ false ↓
Ψi ↑

(Ψ1 ∨ Ψ2) ↑
Ψ1 ↓ Ψ2 ↓
(Ψ1 ∨ Ψ2) ↓

Ψi ↓
(Ψ1 ∧ Ψ2) ↓

Ψ1 ↑ Ψ2 ↑
(Ψ1 ∨ Ψ2) ↑

Ψ ↓
(¬Ψ) ↑

Ψ ↑
(¬Ψ) ↓

|{i|φi↑}|
N

φ1, . . . , φN ↑
|{i|φi↓}|

N
1 − p

φ1, . . . , φN ↓

Fig. 8. Acceptance and Rejection Criteria

Algorithm 1. Compute Probabilities of Global Formulas
1: function SatProbability(MN = (SN ,PN ), L, �q, Φ)
2: if Φ ↑ then
3: return 1.0
4: end if
5: if Φ ↓ then
6: return 0.0
7: end if
8: after(Φ, L(�q)) = Φ′

9: return
∑

�q′ P[�q, �q′] · SatProbability(MN , L, �q, Φ′)
10: end function

is accepting, denoted by Φ ↑, or rejecting, denoted by Φ ↓, is reached. Accepting
and rejecting conditions are defined Fig. 8 where we use Ψ to denote both a local
and a global formula. All the rules are as expected and follows usual Boolean
interpretation. The only interesting case is the one related to the auxiliary for-
mula 〈φ1, . . . , φN 〉 �� p. Indeed, this formula is accepting whenever the fraction
of local formulas φi that are accepting is �� p. The same formula is rejecting
when the fraction of local formulas φi that are rejecting is ��(1 − p), where ��
indicates the opposite relation of ��.

Given a MA-DTMC MN , a labelling function A, a state �q in MN and
a global formula Φ, function SatProbability(MN ,L, �q, Φ) defined in Algo-
rithm 1 can be used to compute recursively the probability μ(MN ,L, �q, Φ). If
the formula Φ is accepting function SatProbability just return 1.0, while
0.0 is returned when Φ is rejecting. If Φ is neither accepting nor reject-
ing, first the formula Φ′ obtained from Φ after the labelling L(�q) of �q is
computed, then the resulting probability is obtained by summing P[�q, �q′] ·
SatProbability(MN ,L, �q′, Φ′), for any �q′ reachable from �q.

We can observe that in SatProbability the exploration of the state space
reachable from �q is made on-the-fly. This means that we do not need an explicit
generation of all the state space. This is useful in particular when we one con-
siders decomposeable models, where the probability matrix P can be defined in
terms of a simpler (local) function F like in Example 2.

Theorem 4. Let MN = (SN ,PN ) be a MA-DTMC and L : S → 2AP be a
labelling function. For any state �q of MN and formula Φ:



144 M. Loreti and A. Rehman

Algorithm 2. Checking Global Path Properties
1: function CheckPath(L, π̂, Φ)
2: i = 0
3: while i < len(π̂) do
4: after(Φ, L(π̂[i]) = Φ′

5: if Φ ↑ then
6: return 1
7: end if
8: if Φ ↓ then
9: return 0

10: end if
11: i = i + 1
12: Φ = Φ′

13: end while
14: return 0
15: end function

SatProb(MN ,L, �q, Φ) = μ(MN ,L, �q, Φ)

Finally, we can observe that the number of steps needed to compute SatProb
linearly depends on the size of the model M and on the horizon of the formula
Φ (see Fig. 3). Indeed, after at most horizon(Φ) reductions of formulas Φ either
an accepting or a reject formula is reached. Unfortunately, when the number of
agents operating in a system increases, the use of exact model checking is hard or
even impossible. For instance, if we consider our running scenario with N = 100
agents, the size of the state space will be 2100. To overcome this problem, in
the forthcoming section a statistical based approach is proposed to compute the
satisfaction probability of a formula.

4.3 Statistical Model Checking of GLoTL

In this section, an approach based on Statistical Model-Checking [3] is presented.
In the proposed approach, given a time horizon T ∈ N, first a number of compu-
tations of MN are sampled. After that the satisfaction probabilities of a Φ are
computed in the time interval [0, T ]. We will show that the proposed approach
is linear in the size of T and in the size of the formula Φ (defined in terms of its
temporal horizon).

In the following, we first introduce the algorithms that can be used to check
if a given finite path fragment π̂ satisfies a given global formula Φ. After that,
we will show how multiple invocations of this procedure permit estimating the
satisfaction probabilities.

Function CheckPath, defined in Algorithm 2, takes as an input a labelling
function L, a fine path fragment π̂ and a global formula Φ and returns 1 if
the formula is satisfied by the given path fragment, 0 otherwise. The behaviour
is straightforward: the algorithm iterate for all the elements i in the path and
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Algorithm 3. Statistical Estimation of Satisfaction Probability
1: function Estimate(MN , L, K, �q, Φ)
2: T = horizon(Φ)
3: sum = 0
4: for i from 0 to K-1 do
5: π = Sample(MN , T )
6: sum = sum +CheckPath(L, π̂, Φ)
7: end for
8: return sum

K

9: end function

returns true if an accepting formula can be reached by letting the formula evolv-
ing at each step by L(π̂[i]). The following statements guarantee that the value
returned by CheckPath is coherent with the semantics of global formulas.

Theorem 5. For any MA-DTMC MN , labelling function L, local path frag-
ment π̂, such that len(π̂) ≥ horizon(Φ), CheckPath(L, π̂, Φ) = 1 if and only if
for any π ∈ PathsMN such that π̂ ≺ π, π |=MN ,L Φ

To estimate the satisfaction probability of a global formula we rely on Statis-
tical Model Checking. Statistical Model Checking (SMC) is a formal verification
technique used to analyse stochastic systems and combines simulation and sta-
tistical methods [13,17]. SMC is based on the idea that satisfaction probability
of a formula is statistically estimated via a sequence of simulations.

Given a formula Φ, to estimate the probability that a state �q of M satisfies
Φ, we sample K global paths from �q in M. For each sampled path πi we add to
variable sum 1 if Φ is satisfied, 0 otherwise. The probability that Φ is satisfied by
�q is estimated as sum

K . The procedure Estimate is reported in Algorithm 3 where
function Sample(MN , �q, T ) is used to sample a path of length T starting from
�q in MN 1. We can observe that the number of operations needed to estimate
satisfaction probability of Φ is O(K · horizon(Φ) · Σ), where Σ we assume that
the cost of sampling a path of length T is O(T ).

We can observe that the estimated probability p∗ is the result of a random
experiment, the one associated with the sampling of K paths from M. For this
reason, we can speak about the probability that this value differs from the exact
one, indicated as p̂, more than a value ε. We have that the higher the number of
sampled paths K, the smaller the probability that the obtained value is greater
than ε. Indeed, by using the Chernoff-Hoeffding Bound we have that (see [17]
for all the details) Pr(|p∗ − p̂| > ε) ≤ 2e−2Kε2

. For this reason, if we want to
limit this probability of obtaining an error greater than ε by a threshold α, the
number of paths to be sampled is K = 1

2ε2 log
( 2

α

)
.

Example 4 (Red/Blue Scenario 4/4). The results of analysis of the formulas
Φ1, Φ2 and Φ3, described in Example 3, are reported in Fig. 9 and Fig. 10.

1 We omit here the details of function Sample that should be straightforward.
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Fig. 9. Satisfaction probability of property Φ1, on the left, and Φ2, on the right (N =
103, k2 = 10).

Fig. 10. Satisfaction probability of property Φ3 (N = 103, k3 = 10).

The analyses have been conducted via a prototype implementation of the
described framework in the Java framework Sibilla2. In Fig. 9 the probability
to see formulas Φ1 (on the left) and Φ2 (on the right) while the one of Φ3 is
plotted in Fig. 10. These probabilities are computed by considering a system
composed by N = 103 agents, a meeting probability αm = 0.3 and a number of
samplings K ∈ {100, 500, 10000}. The formulas are verified by considering where
ε = 0.025, k2 = 10 while the k1 and k4 range from 0 to 30.

We can observe that, if we evaluate our system from a global point of view,
it works well. Indeed, all the properties are satisfied with an high probability
a balanced configuration is reached after few steps. Moreover, the higher the
number of samplings, the smaller the statistical error we have and the smoother
is the plot we obtain.

However, if we observe the plot on the right side of Fig. 10 we can soon realise
that from a local point of view the system is not working well since the agents are
continuously changing their colour, even if the system is globally balanced. This
is due to the fact that at each time step when the system is balanced, on the
average, αm · 0.5 agents will change their colour. This is evident in Fig. 11 where
we show how the satisfaction probability of formulas Φ1, Φ2 and Φ3 changes
according to different values of αm. We can observe that the higher the value of

2 https://github.com/quasylab/sibilla.

https://github.com/quasylab/sibilla
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αm the shorter the time needed by our system to reach a balanced configuration.
However, the higher is αm the higher the fraction of agents that are not locally
stable.

To guarantee local stability a more sophisticated solution, as the one pre-
sented in [6], should be considered. However, due to lack of space, we do not
discuss it here. Nevertheless, we can observe that, thanks to the use of GLoTL
formulas we have been able to point out a critical aspect of our system that is
not evident if we limit our observations only at a global level.

All the experiments have been performed on a standard laptop with a 2,
3GHz 8-Core Intel Core i9 and 32Gb of RAM. The execution time ranged from
1.2 s for Φ1 and K = 100 to 31.7 s for Φ3 and K = 1000.

5 Concluding Remarks

In this paper, we have introduced a novel framework that permits specifying
and verifying properties of CAS at both global and local level. First, we have
introduced Multi-Agent Discrete Time Markov Chain (MA-DTMC), a variant
of Discrete Time Markov Chain (DTMC) that can be used to describe the behav-
ior of a system composed by a multitude of agents from both global and local
perspectives. Moreover, we have introduced Global and Local Temporal Logic
(GLoTL), a temporal logic that permits specifying both global and local prop-
erties of a multi-agent systems described as MA-DTMC models. Finally, Exact
and Statistical Model Checking algorithms have been proposed to verify both
local and global properties. A prototype implementation of framework has been
implemented and integrated in Java framework, Sibilla.

For the sake of simplicity, in this paper we focused on MA-DTMC. However,
the proposed approach can easily extended to take into account Continuous
Time Markov Chain (CTMC). We will modify the exact model checking by
applying some standard techniques while, the statistical model checking, in this
case, remains the same, and the time will be continuous. As future work, we plan
to extend the scalable analysis to the techniques based on fluid and mean-field
approximation, such as the one considered in [5,12,15].
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Abstract. The master equation describes exactly the dynamics of a
Markov Population Process (MPP) by associating one differential equa-
tion for each discrete state of the process. It is well known that MPPs
are prone to suffer from the so-called curse of dimensionality, making the
master equation intractable in most cases. We propose a novel approach,
called h-scaling, that covers the state space of an MPP with a smaller
number of states by an appropriate re-scaling of the MPP transition
rate functions. When the original state space is bounded, this proce-
dure may significantly reduce the number of the states while returning
an approximate master equation that still retains good accuracy. We
present h-scaling together with some theoretical results on asymptotic
correctness and numerical examples taken from the performance evalua-
tion literature. Moreover, we show that h-scaling can be combined with a
recently proposed framework called dynamic boundary projection, which
couples subsets of the master equation with mean-field approximations,
to further reduce the number of equations without penalizing accuracy.

Keywords: Markov Population Processes · Master equation ·
Mean-field models · Approximation Methods

1 Introduction

Markov Population Processes (MPPs) are models used to describe systems of
interacting agents. The underlying population is represented as a continuous-time
Markov Chain (CTMC) in which each component of the state vector represents
one class of agents. Transitions between states are modeled by transition classes,
each consisting in a transition vector, modeling the change induced on the state
vector, and a state-dependent rate function, modeling the frequency with which
the transition happens, given that the system is in a certain state [4].

For their versatility and their ability to encode complex stochastic dynamics,
they have been used to study the performance of computer-based systems such as
queueing networks [2], virtualized environments [1], peer-to-peer networks [21],
malware propagation dynamics [3] and allocation strategies [14,16,20,22].
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In all these applications however, the analysis of the underlying stochastic
model is hindered by the exponential growth of the state space, referred to as
the curse of dimensionality. This makes a direct solution of the master equation
(ME) intractable in many cases, and the application of stochastic simulation
algorithms (e.g., [6]) computationally intensive. Different techniques have been
proposed to solve this problem such as fluid (aka mean-field) approximations
[8,11], truncation methods [15] and aggregation techniques [5].

Taking a different point of view, MPPs can be thought of as processes evolv-
ing on a multi-dimensional grid in which they perform jumps of a certain mag-
nitude, with a certain rate. The state space is then the set of vertices in the grid
reachable by the process. In this paper we propose an approximation based on
a simple re-scaling: we consider a process that performs longer jumps at lower
frequency, where the two quantities of interests, i.e. magnitude of the jumps and
rate functions, are re-scaled proportionally. When the original process evolves on
a finite state space, the advantage is immediately visible: the number of reach-
able states is reduced, or, to rephrase the idea in terms of multi-dimensional
grids, we cover the original state space with a coarser grid, so that the process
reaches fewer of its vertices.

To further reduce the number of equations needed in the approximation we
propose to couple h-scaling with a recently proposed method called dynamic
boundary projection (DBP) [18]. In DBP an approximate ME, describing the
evolution of a subset of the state space, is coupled with a mean-field equation
that shifts dynamically the observed subset over the state space. DBP has been
proposed to refine the accuracy of the mean-field equation when used as an
approximation of the average behavior of a finite-size MPP, a topic which has
enjoyed considerable interest recently [10,11]. Here, we show that coupling h-
scaling and DBP performs better than simply applying h-scaling. Furthermore,
this allows us to reduce the number of equations used by DBP while keeping a
high accuracy of the approximation.

From a theoretical point of view, we show that our scaling preserves the
behaviour of the original system in the thermodynamic limit. Beside the mean-
field limit, under additional hypotheses, it is possible to show that a sequence
of processes of increasing size tends to a Gaussian process commonly referred to
as the linear noise approximation (LNA) [19]. We show that, given a sequence
of processes admitting a mean-field limit and a LNA, and considering a second
sequence, obtained from the first by applying the proposed scaling with a fixed
parameter, both sequences share the same limiting processes, up to an error due
to possibly different initial conditions.

Finally we show some applications of our scaling coupled with DBP to sys-
tems taken from the performance evaluation literature, showing the advantages
of this approach in terms of computational effort.

Structure of the Paper In Sect. 2 we introduce some background results used
in the rest of the paper. In Sect. 3 we present our scaling and we explain how
it can be used to approximate efficiently the mean dynamics of an MPP, either
applying it directly (static h-scaling), or coupling it with DBP (scaled DBP).
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In Sect. 4 we state the theoretical results on the preservation of the limit
behaviour while in Sect. 5 we present a multi-scale extension of our method.
Finally, Sect. 6 shows some applications of our methodology, while conclusions
and future works are discussed in Sect. 7.

2 Background

Markov Population Processes. We consider an MPP X(t) evolving on S ⊆
N

m. Suppose that X(0) = x0 ∈ N
m with probability 1 and that there exists a

finite set L ⊂ Z
m such that for every l ∈ L the process X performs transitions

x → x + l with rate βl(x) (1)

(we assume βl(x) = 0 if x or x + l are not in S).
The exact dynamics of X(t) can be described by its ME:

dP (x)
dt

=
∑

l∈L
βl(x − l)P (x − l; t) −

∑

l∈L
βl(x)P (x; t) ∀x ∈ S. (2)

The (exact) mean dynamics of X(t) is given by E[X(t)] =
∑

x∈S xP (x; t).

Mean-Field Approximation. Due to the quick growth of the state-space this
method is rarely feasible, and it is common to resort to approximations. One of
the most common approaches uses a classic limit results, first stated by Kurtz
[12]. We refer to slightly more general formulation that can be found in [9].

We assume that the process X has size γN̄ and there exists a sequence
of processes

(
XN

)
N≥N0

such that XN̄ = X and each XN has size γN with
limN→∞ γN = ∞. In the most general case every XN is defined on a state-space
SN , has initial condition xN

0 and performs transitions x → x + lN firing with
rate βN

l (x) for each l in a given set L.
A particular case is given when the original sequence of processes is density-

dependent, whereby γN grows linearly with N , for each N and l ∈ L there exists
a vector vl such that l̂N = vl

γN
and for each N and l ∈ L there exists a (locally)

Lipschitz continuous and (locally) bounded function gl : E → R≥0 such that
β̂N

l (x) = γNgl(x).
Given a sequence

(
XN

)
N≥N0

, we consider the sequence of normalized pro-

cesses
(
X̂N

)

N≥N0

, where each process has state vector X̂N = 1
γN

XN , starts in

x̂N
0 = xN

0
γN

and performs transitions x → x + lN

γN
with rate β̂N

l (x) = βN
l (γNx).

We denote the normalized state space by ŜN .
Finally, we define the drift FN : ŜN → R

m as

FN (x) =
∑

l∈L
l̂N β̂N

l (x).

Under these assumptions the following theorem holds.
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Theorem 1 (Convergence to deterministic limit for MPPs [4]). Let
E ⊆ R

m be a closed set such that ∪N ŜN ⊆ E. Suppose that there exists x0 ∈ E
such that limN x̂N

0 = x0 and a Lipschitz vector field F : E → R
m such that

lim
N

sup
x∈ŜN

‖FN (x) − F (x)‖ = 0.

Assuming the rates of convergence in Theorem 4.2 of [4] are verified, for any
fixed time instant T > 0 and ∀ ε ≥ 0

lim
N→∞

P

(
sup

0≤t≤T
‖X̂N (t) − x̂(t)‖ > ε

)
= 0

where x̂(t) is the solution to the initial value problem:
{

dx̂
dt = F (x̂(t))
x̂(0) = x0

(3)

and x̂(t) ∈ E ∀ t ≥ 0.

Observe that in the case of density-dependent processes the drift is indepen-
dent of N and the hypotheses of the Theorem hold trivially.

For a general MPP defined as in (1) we define its mean-field approximation
as the solution to the initial value problem:

{
dx
dt =

∑
l∈L lβl(x)

x(0) = X(0).

Observe that if X is a density-dependent process admitting a deterministic limit
defined by Eq. (3) we have x(t) = γN x̂(t). In particular, while x̂(t) approximates
the normalized process, and therefore the average proportion of agents in a
certain class, Nx̂(t) approximates the mean number of agents in each class.

Linear Noise Approximation. Another classic limit result has been obtained
by Van Kampen applying a “size expansion” to the ME [19]. It takes into account
the stochastic fluctuations of the process around its deterministic limit. It can
be proved that, in a first order approximation, such fluctuations behave as a
Gaussian process with zero mean. The result is stated in the following theorem.

Theorem 2 (Convergence to Linear Noise Approximation for MPPs
[19]). Consider a sequence of density-dependent MPPs

(
XN

)
N≥N0

, each start-
ing in XN (0) = Nx̂0 and suppose that the drift F (x) is continuously differen-
tiable in E. Then, letting

(
X̂N

)

N≥N0

denote the sequence of normalized pro-

cesses and x̂(t) the solution of the initial value problem in (3) we have that

lim
N→∞

√
N‖X̂N − x̂(t)‖ = ξ(t) (4)



154 F. Randone et al.

where ξ(t) is a Gaussian process identified by equations of the first two moments:

dμi

dt
=

∑

j

(
∑

l∈L

∂βl

∂xj
(x̂(t))

)
μj(t) (5)

dΣij

dt
=

∑

k

(
∑

l∈L
li

∂βl

∂xk
(x̂(t))

)
Σkj(t) +

∑

k

(
∑

l∈L
lj

∂βl

∂xk
(x̂(t))

)
Σik(t)

+
∑

l∈L
liljβl(x̂(t)) (6)

Dynamic Boundary Projection. In DBP, an hyper-rectangular subset of the
state space, called a truncation, is shifted dynamically across the state space.
This is achieved by coupling a truncated ME describing the evolution of the
states in the subset with a mean-field approximation accounting for transitions
outside the current truncation.

Let n ∈ N
m and let S ⊂ N

m. We define the truncation of S of size n indexed
by y as the set:

T (n, y) = {x ∈ S : yi ≤ xi ≤ yi + ni ∀ i = 1, 2, . . . ,m}. (7)

Observe that T (n, y) has at most N (n) =
∏m

i=1(ni + 1) states. For each
truncation a special role is played by states “on the border”, i.e. those states from
which X can perform a transition that takes it outside the current truncation.
This leads us to define the sets:

∂Tl(n, y) = {x ∈ T (n, y) : x + l ∈ T (n, y)} , for l ∈ L,

∂T (n, y) =
⋃

l∈L
∂Tl(n, y) = {x ∈ T (n, y) : ∃ l ∈ L s.t. x + l ∈ T (n, y)}

We consider an augumented approximation [13] called boundary projection
(BP), in which every jump from x ∈ ∂Tl(n, y) to x′ is redirected with same rate
to a state x∗ defined as:

x∗
i =

⎧
⎪⎨

⎪⎩

min(yi + ni, x
′
i) if x′

i > xi

max(yi, x
′
i) if x′

i < xi

xi if x′
i = xi.

(8)

After performing the augmentation, for each state x ∈ T (n, y) we have a set
of jump vectors Ln(x) such that for every l ∈ L we can now define a new vector
l(n)(x) given by:

l(n)(x) =

{
l if x ∈ ∂Tl(n, y),
x∗ − x if x ∈ ∂Tl(n, y),

where x∗ is the target state in which the transition x → x+ l has been redirected
and the associated transition rates are βl(n)(x)(x) = βl(x).
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Let X
(n)
y be the BP of X on T (n, y) and let Q(n, y) be its transition rate

matrix. It can be proved [18] that for every y the transition rate matrices Q(n, y)
have the same functional form. In particular they can be written as:

[Q(n)(y)]x,x′ =

{∑
l∈L I{x′+l(n)(x′)=x}βl(x′ + y) if x = x′

−
∑

l∈L I{l(n)(x) 
=0}βl(x + y) if x = x′ for x, x′ ∈ T (n, 0).

(9)
This allows us to write the ME for the process X

(n)
y as:

dP
(n)
y

dt
= Q(n)(y)P (n)

y ( · ; t)

where P
(n)
y ( · ; t) is an N (n)-dimensional vector indexed by the states in T (n, 0)

and each component P
(n)
y (x; t) is the probability of X

(n)
y being in the state x+y.

To pass from BP to DBP, we need to write mean-field equation for y. In
order to do so we define the functions:

[
Π(n)(x, y)

]

i
=

⎧
⎪⎨

⎪⎩

xi xi < yi

xi − ni xi > yi + ni

yi yi ≤ x ≤ yi + ni.

∀x, y ∈ S

Yl(n, x) = Π(n)(x + l, 0) ∀ l ∈ L, ∀x ∈ ∂Tl(n, 0).

Then, the equation for DBP with parameter n are given by:

dY (n)

dt
=

∑

l∈L

∑

x∈∂Tl(n,0)

Yl(n, x)βl(x + Y (n)(t))P (n)(x; t)

dP (n)

dt
= Q(n)(Y (n)(t))P (n)( · , t).

(10)

Supposing the original process X has initial condition X(0) = x0 ∈ N
m with

probability 1, we rewrite x0 as x∗
0 + y0 with y0 = Π(n)(x0, 0) and x∗

0 ∈ T (n, 0).
Then, we set the initial condition for DBP to:

Y (n)(0) = y0 P (n)(x; 0) =

{
1 if x = x̄∗

0,

0 else.
(11)

3 h-Scaling

Consider an MPP as the one defined in (1). Let R(S) be a minimal (with respect
to inclusion) hyper-rectangle in N

m containing S and let vR ∈ R(S) be such that
(vR)i = min{xi|x ∈ R(S)}. We can imagine S as a subset of vertices of the m-
dimensional grid covering R(S) having edges of length 1, where vR is a the vertex
of R(S) with minimal components. We want to cover R(S) with a coarser grid,
so that less vertices will be contained in the original hyper-volume.
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To do this we fix a scalar parameter h > 1; in some cases h can be chosen
to be a vector, extending all the present results, as will be discussed in Sect. 5.
Now, let H(D) be the convex hull in R

m of any discrete set D. We define the
state space of the scaled process as:

Sh = {x = vR + h(k1e1 + . . . + kmem)|ki ∈ N∀ i = 1, ...,m} ∩ H(R(S))

where ei is the m-dimensional with 1 as i-th component and 0 else.
We now define a process Xh evolving on Sh. We set

Xh(0) = vR + h�x0 − vR

h
� ∈ Sh (12)

and define the transitions of Xh as

x → x + hl at rate
1
h

βl(x)I{x+hl∈Sh} (13)

for all l ∈ L and with IC denoting the characteristic function of the set C. We
call the process Xh so defined the h-scaling of X.

Example 1. An M/M/k queue can be seen as an MPP defined by the following
transition classes, denoting respectively exogenous arrivals with Poisson rate λ
and service with rate μ:

x → x + 1 at rate λ, x → x − 1 at rate μmin(x, k).

We assume that the queue starts with zero customers, i.e. X(0) = 0.
The original state space is S = N and H(R(S)) = R≥0 so we will have that

Sh it is still infinite, with |S| = |Sh|, but it is different from S:

Sh = {hn |n ∈ N}.

The h-scaling is Xh, such that Xh(0) = 0 and performing transitions:

x → x + h at rate
λ

h
, x → x − h at rate

μ

h
min(x, k). (14)

A variation of the M/M/k queue is the M/M/k/N queue, in which no more
than N jobs are accepted in the queue. In this case the transition classes are:

x → x + 1 at rate λI{x<N}, x → x − 1 at rate μmin(x, k).

In this case, S = {0, 1, . . . , N} and the h-scaling for the M/M/k/N queue is
defined by the transitions

x → x + h at rate
λ

h
I{x<h�N

h �}, x → x − h at rate
μ

h
min(x, k). (15)

Therefore, in this case, Sh = {0, h, . . . , h�N
h �} so we are indeed reducing the

number of states as |Sh| = �N
h � + 1 ≤ N + 1 = |S|.



Jump Longer to Jump Less 157

Interpretation of h-Scaling. When h is integer it is possible to give a physical
interpretation of the process Xh. For example, consider the M/M/k of the exam-
ple and set h = 2. X2 is a process performing transitions x → x + 2 with rate λ

2
and x → x−2 with rate μ

2 min(x, k). This means that in X2 every event involves
two perfectly synchronized agents that arrive and leave the queue together, and
each event takes place after a time which is, on average, exactly two times the
average time after which a single agent would perform that transition given the
same initial conditions. The same can be said for any integer value of h. For
h ∈ Q, the state space of Xh takes values in the real space. However, since
the components of the state vector of an MPP represent population counts,
non-integer values escape physical intelligibility. Nevertheless, we will show that
rational values of h are useful to tune the accuracy of the approximation.

3.1 Static Scaling

A first approximation can be obtained simply by solving the ME for Xh, which
will yield a smaller number of equations than the one for X. This is possible when
the state-space is finite (or when we consider a sufficiently large truncation of an
infinite state-space to contain most of the probability mass [15]). We will call this
approximation static scaling. Without loss of generality let us consider the finite
state space S = {0, 1, . . . , N1} × . . . × {0, 1, . . . , Nm}, thus |S| =

∏m
i=1(Ni + 1)

is the number of equations of the ME.
Applying the scaling in (13) for h > 1 gives as new state space Sh =

{0, h, . . . , h�N1
h �} × . . . × {0, h, . . . , h�Nm

h �}, with |Sh| =
∏m

i=1

(
�Ni

h + 1� + 1
)

≤
|S|. For all x ∈ Sh the ME for Xh can be written as

dPh(x)
dt

=
∑

l∈L

1
h

βl(x − hl)Ph(x − hl; t) −
∑

l∈L

1
h

βl(x)I{x+hl∈Sh}P
h(x; t). (16)

We can then approximate E[X] by solving (16) and computing

E[Xh] =
∑

x∈Sh

xPh(x).

Example 2. As we have seen, h-scaling applied to an M/M/k/N queue
yields (15). The ME for Xh is then

dP h(x)

dt
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

−λ
h
P h(0; t) + μ

h
min(h, k)P h(h; t) x = 0

− (
λ
h

+ μ
h

min(x, k)
)
P h(x; t) + λ

h
P h(x − h; t)

+μ
h

min(x + h, k)P h(x + h; t) x �= 0, h�N
h

�
−μ

h
min

(
h�N

h
�, k)

P h
(
h�N

h
�; t)

+λ
h
P h

(
h

(�N
h

� − 1
)
; t

)
x = h�N

h
�

In Fig. 1 we can see the results for h = 1.2, 1.4, 1.6, 1.8, 2.0 applied to an
M/M/k/N queue with parameters k = 4, N = 50, λ = 3.95, μ = 1. We can see
that the number of equations is progressively reduced up to 50% while the mean
estimated using the h-scaling still keeps a low relative error with respect to the
true mean (at steady-state no more than 4% of the true value).
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Fig. 1. Application of static h-scaling to the M/M/k/N queue.

3.2 Scaled Dynamic Boundary Projection

Here we combine h-scaling with DBP [18]. We now assume that X evolves on
a state space S ⊆ N

m (not necessarily finite) and that DBP with parameter
n ∈ N

m can be applied to X yielding system (10), consisting of N (n) + m
equations. We are going to show how to apply DBP to the scaled process Xh

and how this results in a reduction of the number of approximating equations.
In this case our idea is to cover the portion of the state space inside a trun-

cation T (n, y) with a coarser grid. To do so we define the truncations:

T h(n, y) = {x = y + h(k1e1 + . . . + kmem) | ki ∈ N∀ i = 1, . . . , m}
∩ H(T (n, y)). (17)

Observe that the states in T h(n, y) are not necessarily in Sh (although they are
if y ∈ Sh). Moreover, T h(n, y) has N h(n) =

∏m
i=1

(
�ni

h � + 1
)

≤ N (n) states for
any y. This implies that the number of equations in scaled DBP is reduced by a
factor 1

hm . Once the definition of truncation in Sh is clarified the derivation of
the equations for scaled DBP follows step by step the one for the original process
and is reported in detail in the Appendix.

The equations for scaled DBP with parameters n and h are given by:

dY (n,h)

dt
=

∑

l∈L

∑

x∈∂T h
l (n,0)

Yh
l (n, x)

1
h

βl(x + Y (n,h)(t))P (n,h)(x; t)

dP (n,h)

dt
= Q(n,h)(Y (n,h)(t))P (n,h)( · , t).

(18)

Example 3. We now consider the M/M/k queue with λ = 3.85, μ = 1 and
k = 4. In principle, the model has an infinite state space, but it converges to its
steady state distribution, so it is possible to select a finite truncation of the state
space so that the probability mass outside it is arbitrarily small. To select the
minimal truncation that we can take as ground truth, we start by considering
the ME with 500 states and progressively reduce the number of states so the
error introduced is less than 0.001% of the Average Queue Length (AQL) at
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steady state. We obtain that to correctly capture the dynamics of the queue we
need 375 equations.

DBP can be applied to this system to reduce the number of equations needed
to approximate the dynamics of the system and we see that using n = 170, the
relative error between the DBP approximation and the solution of the ME at
steady state is less than 1%.

We can further reduce the number of equations by coupling DBP with h-
scaling (equations can be found in the Appendix), at the price of a bigger error.
As can be seen from Fig. 2 and Table 1, for the same value of h, scaled DBP
performs better than h-scaling while yielding an heavier reduction in the number
of equations. We will see that this is the case also for more complex examples.

Fig. 2. h-scaling and scaled DBP
applied to the M/M/k queue.

Table 1. Approximated value of the AQL of
the M/M/k queue at steady state (t = 5000),
with relative error, number of equation and
reduction in the number of equations when h-
scaling and scaled DBP are applied. h-scaling
with h = 1 is considered the ground truth.

h-scaling scaled DBP

h err # eqs. red. err # eqs. red.

1.0 - 376 - 0.91% 172 54.25%

1.1 9.25% 341 9.31% 7.54% 156 58.51%

1.25 22.78% 301 19.94% 19.29% 138 63.29%

1.5 45.50% 251 33.24% 37.4% 115 69.41%

4 Limit Behaviour

We now prove that for a fixed h > 1 the approximating process Xh shares the
same limiting behaviour as X. To lighten notation we will assume vR = 0.

Preservation of the Mean-Field Limit. Suppose that the original process
X is part of a sequence

(
XN

)
N≥N0

satisfying the hypotheses of Theorem 1. Fix
h > 1 and consider a new sequence

(
XN,h

)
N≥N0

where each XN,h is obtained
applying the h-scaling to XN .

It is immediate to observe that the new sequence
(
XN,h

)
N≥N0

still satisfies
the hypotheses of the theorem, and, in particular, for every N

FN,h(x) =
∑

l∈L
hl̂n

1
h

β̂N
l (x) = FN (x),

which means that under the proposed scaling the drift function is preserved for
every N and independent of h. This implies that the deterministic limit process
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x̂(t) defined by (3) is exactly the same for both sequences (in fact, observe that
limN h�xN

0
h � = x0, so also the limiting initial condition is the same).

This can be summed up in the following theorem:

Theorem 3. Consider a sequence of processes
(
XN

)
N≥N0

and consider the
sequence of approximating processes

(
XN,h

)
N≥N0

obtained applying the scaling
in (13) for a fixed h > 1. If the original sequence admits a deterministic limit x̂
in the sense of Theorem 1, then the sequence of approximating processes admits
the same limit.

In the special case of density-dependent processes for all l ∈ L the scaled
transitions become

x → x +
h

γn
vl at rate

γN

h
gl(x).

This is equivalent to saying that the sequence
(
XN,h

)
N≥N0

is a density
dependent family with respect to the parameter γN

h . This is the same observation
that in [7] led to prove the limit behaviour for h → 0 and it is easily explained
by the fact that we are approximating systems of size γN with systems of size
γN

h scaling coherently both the magnitude of the jumps and the transition rates,
which are the two quantities involved in the density-dependence assumption.

Extension to Other Mean-Field Limit Results. The fact the deterministic approx-
imation is preserved with exactly the same limit drift F allows us to extend to(
XN,h

)
N≥N0

other limit results, provided they hold for the original sequence.
In particular, if E is compact and the ODE in (3) admits a globally asymptot-
ically stable fixed point x∗, every sequence of invariant measures of XN tends
weakly to the Dirac distribution centered on x∗ [3]. The same is true for any
sequence of invariant measures of the sequence

(
XN,h

)
N≥N0

. Analogously, we
can straightforwardly extend to

(
XN,h

)
N≥N0

results related to mean-field inde-
pendence (also called propagation of chaos) [3], both in transient and steady-
state, and to fast simulation [9] (provided the original sequence satisfies the
required assumptions).

Preservation of the LNA. Similarly to the mean-field limit, we assume that
our original process X belongs to a sequence of processes

(
XN

)
N≥N0

satisfying
the hypotheses of Theorem 2. Again, we fix h > 1 and consider a sequence(
XN,h

)
N≥N0

obtained by applying the h-scaling to each process of the original
sequence. Then, the following result hold:

Theorem 4. Suppose that for the sequence
(
XN

)
N≥N0

the hypotheses of The-
orem 2 are verified and, in addition:

– equation (3) admits a globally asymptotically stable equilibrium x∗;
– for each N XN (0) = Nx̂0;
– for each N γN = N .
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Then, letting μ(t) and Σ(t) denote the mean and the covariance matrix of lim-
iting Gaussian process for the original sequence, we have that the sequence of
approximating processes

(
XN,h

)
N≥N0

admits a Gaussian limiting process with
mean μh(t) and covariance matrix Σh(t) such that:

lim
t→∞

μh(t) = lim
t→∞

μ(t) = 0 and Σh(t) = Σ(t)∀ t ≥ 0.

A proof of the Theorem can be found in the Appendix.

5 Multi-scale Approximation

In some cases, it can be useful to consider, instead of a single scalar parameter
h, an m-dimensional vector h ∈ R

m, hi ≥ 1∀ i = 1, . . . ,m. In this case we
will re-scale the jumps in different components using different values hi. This
can be desirable when one component evolves on a much larger space than the
others. However, we cannot choose h arbitrarily, since we need to preserve the
quantities transformed by the transitions. If in the original process a agents of
class i transition into b agents of class j, the scaling parameters hi and hj must
be chosen so that in the scaled process the corresponding transition preserves
this conversion.

Formally, we can index the components of the original process with the set
I = {1, . . . , m}. We say that component i transitions to j, written i ↔ j, if there
exists a sequence of transitions that transforms an agent of class i into an agent
of class j. We require that when choosing h, if i ↔ j, then hi = hj . We call a
vector h satisfying this assumption a valid h-scaling vector.

Observe that the constraints on h do not depend on the rate functions but
only on the transition vectors l. The scalar case corresponds to hi = hj ∀i, j ∈ I.

All previous results can be extended straightforwardly to the multi-scale case,
provided h is a valid vector. For an application see Sect. 6.1.

Example 4. A system with K classes of customers can be represented as an
MPP with state x = (xQ1 , . . . , xQK

), where each component identifies a class of
customers in the queue. A common choice for the rate functions is to consider
classes of customers subject to an egalitarian policy [16,17] where all customers
are assigned the same weight; in particular, we use the rate functions adopted
in [22]. The transition classes associated with the process are for i = 1, . . . ,K:

ai = +eQi
, at rate Nλi, di = −eQi

, at rate μ
xQi∑K

j=1 xQj
+ N

.

In this system agents cannot transition from one class into another one, so
we can consider h-scaling vectors with hi = hj for each i, j ∈ I.
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Example 5. Consider a Malware Propagation model composed of N nodes,
where each node can be dormant (D), active (A) or susceptible (S). Since the
total number of nodes is constant, the model can be described by the state vector
x = (xD, xA) where the number of susceptible nodes at each state is given by
N − xD − xA. Following [3,10] we consider the following transitions classes:

l1 = −eD + eA at rate
(

1 +
10xA

xD + 0.5N

)
xD,

l2 = −eA at rate 5xA,

l3 = +eD at rate
(

0.1 +
10
N

xD

)
(N − xD − xA).

Since D ↔ A we need to set hD = hA for each valid h-scaling vector, i.e. we
cannot use a multi-scale approach in this case.

For a valid h-scaling vector h we define the scaled state space Sh as

Sh = {x = vR + (k1h1e1 + . . . + kmhmem)|ki ∈ N∀ i = 1, ...,m} ∩ H(R(S)).

The scaled process Xh will have initial condition Xh(0) with components
X

h
i (0) = (vR)i + hi� (x0)i−(vR)i

hi
� ∈ Sh.

Finally, we observe that, by definition of valid h-scaling vector, for each
transition vector l ∈ L, the scaling parameters hi associated with non-null com-
ponents of l, i.e. components i such that li = 0, are all equal to a certain value
hl. Then, for all l ∈ L, we define the transitions of Xh as

x → x + hl at rate
1
hl

βl(x)I{x+hll∈Sh}.

6 Examples

We propose two examples previously analyzed in [18], representing systems in
which the mean-field approximation performs a significant error with respect to
the true dynamics of the system. While in [18] the average over a sufficient num-
ber of simulations was taken as ground truth, we now compare our results with
the solution of the ME (truncated to a sufficient number of states when neces-
sary). We show that while computing the mean from the original ME requires a
prohibitive amount of time, this can be reduced significantly applying h-scaling
and even more efficiently using DBP and its scaled version. All experiments were
performed on a laptop equipped with a 2.8 GHz Intel i7 quad-core processor and
16 GB RAM.

6.1 Egalitarian Processor Sharing

First we look at the model proposed in Example 4 with two classes of customers,
where we set the parameters to N = 5, λ1 = N · 0.5, λ2 = N · 0.4, μ = N and the
initial condition to xQ1(0) = xQ2(0) = 0.
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The considered model has an infinite state space. However, choosing a trun-
cation of the type

{(xQ1 , xQ2)|xQ1 ≤ N1, xQ2 ≤ N2}
for sufficiently large parameters N1, N2, it is possible to approximate the mean
dynamics with arbitrary accuracy.

As we have done for Example 3, we start by setting N1 = 150, N2 = 120
and we progressively reduce the state space until the error introduced exceeds
the 0.001% of the AQL at steady state. We find that to keep the error below
the chosen threshold we need to set N1 = 135, N2 = 108. This truncation corre-
sponds to an approximated ME with almost 15000 equations, so that the time
needed to solve it is considerably high (≈8 h). We can apply static h-scaling
to reduce the number of equations, and consequently the computational time,
but this comes at the cost of a relative error that can reach 27% of the AQL at
steady state (see Table 2 and Fig. 3a).

For this example DBP already provide a significative advantage, by allowing
us to achieve an error of less than 1% by choosing n = (70, 56) that corresponds
to roughly 4000 equations. This reduces the computational time significantly.
Moreover using scaled DBP with the same h used for the static case, shows that
a smaller relative error can be achieved with a smaller number of equations, by
reducing the computational time to less than 2 min with a relative error of less
than 10% (see Table 2 and Fig. 3b).

Fig. 3. Application of h-scaling and scaled DBP to Egalitarian Processor Sharing with
two classes of customers.

6.2 Malware Propagation

We consider the Malware Propagation Model of Example 5 with N = 80 agents
and initial conditions xD(0) = xA(0) = 40.
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Table 2. Approximated value of the AQL of the system presented in Example 4 at
steady state (t = 1000), with relative error, number of equations, reduction in the
number of equations and computational time (in seconds) when h-scaling and scaled
DBP are applied. h-scaling with h = 1 is considered the ground truth.

h-scaling scaled DBP

h AQL err # eqs. red. time AQL err # eqs. red. time

(1.0, 1.0) 53.97 - 14824 - 3.09e4 53.46 0.94% 4047 72.70% 4.44e3

(1.5, 1.2) 57.23 6.04% 8281 44.14% 1.67e4 55.36 2.57% 2209 85.01% 1.73e3

(2.0, 1.6) 61.19 13.38% 4624 68.81% 5.43e3 57.12 5.83% 1296 91.26% 5.20e2

(2.5, 2.0) 64.95 20.35% 3025 79.59% 1.40e3 58.26 7.94% 841 94.32% 1.43e2

(3.0, 2.4) 68.39 26.71% 2116 85.72% 8.99e2 58.82 8.97% 576 96.11% 1.18e2

Since this system has a finite state-space given by {(xD, xA)|xA + xD ≤ N},
its ME can be solved exactly. Taking into account the constraint, the ME yields
(N+1)·(N+2)

2 equations, instead of (N + 1)2, and the same is true for static h-
scaling ( 12 (�N

h � + 1)(�N
h � + 2) equations). Analogously, in DBP and scaled DBP

the only states of the truncation with probability greater than 0 will be the
states (xA, xB) such that xA + Y

(n,h)
A (t) + xB + Y

(n,h)
B (t) ≤ 80. However since

the component Y (n,h) varies in time we write the equations for all (n+1)2 states.
We measure the error as the sum of the relative errors on the three different

components S,A,D at steady state. Again, we choose n for DBP by requiring
that the error is below 1%. This happens when we set n = 50 and reduces
significantly the number of equations and the computational time. Moreover,
using scaled DBP allows us to outperform static h-scaling in terms of accuracy,
and further reduce the computational times while keeping the error below 10%
(see Fig. 4 and Table 3, additional graphs are provided in the Appendix).

Table 3. Total relative error in the mean dynamics of Example 5 at steady state (t =
5), with number of equations, reduction in the number of equations and computational
time (in seconds) when h-scaling and scaled DBP are applied. h-scaling with h = 1 is
considered the ground truth

h-scaling scaled DBP

h err # eqs. red. time err # eqs. red. time

1.0 - 3321 - 5.19e3 0.87% 2601 21.68% 2.38e3

1.25 2.92% 2145 35.41% 1.73e3 2.22% 1681 49.38% 1.00e3

1.5 5.91% 1485 55.28% 6.61e2 4.28% 1156 65.19% 6.18e2

1.75 7.68% 1081 67.45% 3.20e2 6.23% 841 74.68% 1.63e2

2.0 12.1% 861 74.07% 2.48e2 8.06% 676 79.64% 1.00e2
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Fig. 4. Average number active agents in the Malware Propagation model computed
using h-scaling and scaled DBP.

7 Conclusion and Related Works

In this paper we have proposed a method that lessens the curse of dimensionality
in Markov population processes by studying the dynamics of a rescaled process.
Seeing the state space of the original process as a multi-dimensional grid of
size h = 1, our method covers it with a coarser grid with length h > 1, rescaling
transition rates by a factor 1

h . The resulting process has an exponentially smaller
state space with respect to the number of dimensions.

A similar idea to the one proposed in this paper was proposed in [7] in the
context of biochemical networks modeling using the process algebra Bio-PEPA.
While the re-scaling of jump magnitudes and rate function is the same, our
work substantially differs from the one in [7] for several reasons. First, we use
the proposed scaling for the approximation of a given system, while in [7] the
different discretizations are treated as systems on their own. Second, our scaling
can be applied to a generic Markov Population Processes, abstracting away from
a process algebraic description. Third, we propose the introduction of different
re-scaling factors for different classes of agents, stating formally under which
conditions this is possible.

Theoretically, in [7] it is proved that as the scaling parameter h tends to 0
the associated family of systems satisfies the density-dependent assumption and
so the dynamics of the associated process tends to the mean-field limit. Here we
study the case h > 1 and its convergence properties to a mean field or to an
LNA, proving that these limits are preserved in the re-scaled sequence.

A natural question is whether it is possible to establish an error bound
depending on h, or at least some convergence rate toward such limits. While
this is not currently clear we leave these questions open for future works.
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A Appendix

A.1 Derivation of Scaled DBP

Having defined the truncations for Sh as in Sect. 3.2 we proceed as in the deriva-
tion for DBP.

The border sets for the scaled truncations are defined as:

∂T h
l (n, y) =

{
x ∈ T h(n, y) : x + hl ∈ T h(n, y)

}
, for l ∈ L,

∂T h(n, y) =
⋃

l∈L
T h

l (n, y) =
{
x ∈ T h(n, y) : ∃ l ∈ L s.t. x + hl ∈ T h(n, y)

}

We can then define the boundary projection of Xh on T h(n, y), in which every
jump from x ∈ ∂Tl(n, y) to x′ is redirected with same rate to x∗ defined as:

x∗
i =

⎧
⎪⎨

⎪⎩

min(yi + h�ni

h �, x′
i) if x′

i > xi

max(yi, x
′
i) if x′

i < xi

xi if x′
i = xi.

After performing the augmentation we get the jump vectors l(n,h)(x) defined
exactly as before. Then, letting X

(n,h)
y be the boundary projection of Xh on

T h(n, y), its transition matrix Q(n,h)(y) can be written for x, x′ ∈ T h(n, 0) as:

[Q(n,h)(y)]x,x′ =

{∑
l∈L I{x′+l(n,h)(x′)=x}

1
hβl(x′ + y) if x = x′

−
∑

l∈L I{l(n,h)(x) 
=0}
1
hβl(x + y) if x = x′.

So the ME for X
(n,h)
y as:

dP
(n,h)
y

dt
= Q(n,h)(y)P (n,h)

y ( · ; t)

where P
(n,h)
y ( · ; t) is an N h(n)-dimensional vector.

Again, to pass to DBP, we need to define the functions:

Π
(n,h)
i (x, y) =

⎧
⎪⎨

⎪⎩

xi xi < yi

yi + h�xi −
(
yi + �ni

h �
)
� xi > yi + ni

yi yi ≤ x ≤ yi + ni.

∀x, y ∈ Sh

Yh
l (n, x) = Π(n,h)(x + l, 0) ∀ l ∈ L, ∀x ∈ ∂T h

l (n, 0).

Observe that the second case in the definition of Π(n,h)(x, y) is motivated by
the fact that x may not be in the form y + h(k1e1 + . . . + kmem), and, to mirror
what happens in classic DBP, we want the function to return the closes y′ in
this form so that T h(n, y′) contains x.
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Then the equations for scaled DBP with parameter n are given by:

dY (n,h)

dt
=

∑

l∈L

∑

x∈∂T h
l (n,0)

Yh
l (n, x)

1
h

βl(x + Y (n,h)(t))P (n,h)(x; t)

dP (n,h)

dt
= Q(n,h)(Y (n,h)(t))P (n,h)( · , t).

(19)

Again, supposing X(0) = x0 with probability 1, to define the initial condition
we set:

[
Y (n)(0)

]

i
= max

(
0, x0,i − h

⌊ni

h

⌋)

x∗
0 = h

⌊x0 − Y (n)(0)
h

⌋

P (n)(x; 0) =

{
1 if x = x∗

0,

0 else.

A.2 Equations for Example 3

Equations for scaled DBP read:

dY (n,h)

dt
= −μ

h
min

(
Y (n,h(t), k

)
P (n,h)(0; t) +

λ

h
P (n,h)

(

h

(⌊N

h

⌋
− 1

)

; t

)

dP (n,h)(x)

dt
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−λ
h
P (n,h)(0; t) + μ

h
min

(
h + Y (n,h)(t), k

)
P (n,h)(h; t) x = 0

−
(

λ
h

+ μ
h

min
(
x + Y (n,h)(t), k

))
P (n,h)(x; t)

+λ
h
P (n,h)(x − h; t)

+μ
h

min
(
x + h + Y (n,h)(t), k

)
P (n,h)(x + h; t) x �= 0, h�N

h
�

−μ
h

min
(
h�N

h
� + Y (n,h)(t), k

)
P (n,h)

(
h�N

h
�; t)

+λ
h
P (n,h)

(
h

(�N
h

� − 1
)
; t

)
x = h�N

h
�

A.3 Proof of Theorem 4

Theorem 5. Suppose that for the sequence
(
XN

)
N≥N0

the hypotheses of The-
orem 2 are verified and, in addition:

– equation (3) admits a globally asymptotically stable equilibrium x∗;
– for each N XN (0) = Nx̂0;
– for each N γN = N .

Then, letting μ(t) and Σ(t) denote the mean and the covariance matrix of lim-
iting Gaussian process for the original sequence, we have that the sequence of
approximating processes

(
XN,h

)
N≥N0

admits a Gaussian limiting process with
mean μh(t) and covariance matrix Σh(t) such that:

lim
t→∞

μh(t) = lim
t→∞

μ(t) = 0 and Σh(t) = Σ(t)∀ t ≥ 0.
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Proof. Theorem 2 guarantees that under the hypothesis μ(t) and Σ(t) exist.
The rest of the proof is obtained by following the same derivation used in

[19] with the ansatz:

X̂N,h(t) = x̂(t) +

√
h

N
ξh(t). (20)

and verifying that ξh(t) is a Gaussian Process whose mean μh(t) and covariance
Σh(t) satisfy exactly the same ODEs as μ(t) and Σ(t), i.e. (5) and (6).

Furthermore, in the sequence of the approximated process
(
XN,h

)
N≥0

we

have redefined the initial conditions as XN,h(0) = h�Nx̂0
h �, while the initial con-

dition for the deterministic process remains unchanged. Therefore, when setting
the initial condition for μh(y) we need to take into account that for the ansatz to
be valid at time t = 0 the Gaussian Limit Process possibly has non-zero mean,

namely μh(0) =
√

h
N

(
�Nx̂0

h � − Nx̂0

)
.

So, in general, ξh(t), describing the fluctuations of XN,h, is different from
ξ(t), describing the fluctuations of XN , since μh(0) = μ(0) = 0 (observe that
instead the covariance matrix is still the same, i.e. Σh(t) = Σ(t)∀ t ≥ 0).

However, Eq. (5) is exactly the variational equation associated with the
ODEs defining the deterministic limit (3), so, regardless of its initial condition,
its solution must tend to 0 as x̂(t) tends to the equilibrium x∗. This implies
limt→∞ μh(t) = limt→∞ μ(t) = 0.

Observe that all the introduced hypotheses are needed for the correct appli-
cation of the ansatz: the differentiability of the drifts is needed to apply the
Taylor expansion as in [19], while the presence of a globally asymptotically sta-
ble equilibrium ensures that the ansatz remains valid for t ∈ [0,+∞).

A.4 Additional Data on Malware Propagation Model

Fig. 5. Average number of dormant and susceptible agents in the Malware Propagation
model computed using h-scaling and scaled DBP.
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Abstract. Models of complex systems often consist of state variables
with structurally similar dynamics that differ in the specific values
of some parameters. Examples are multi-class epidemiological models,
chemical reaction networks describing multiple components (e.g., binding
sites) with equivalent functional behavior, and models of electric circuits
with replicated designs. In these cases, the analysis may be expensive due
to the model size. Here we consider models defined as systems of poly-
nomial ordinary differential equations (ODEs) with positive solutions.
We present an algorithm to reduce the computational cost by trans-
forming the original ODE model into one for which we can compute an
appropriate over-approximation on a smaller set of state variables. The
algorithm is based on the theory of differential inequalities and consists
of two steps. The first step computes a differential hull, which is an ODE
system providing lower and upper bounds for each state variable. The
hull is constructed such that variables with structurally similar dynam-
ics but originally different parameters may now be represented by the
same lower and upper bounds. Based on this, the second step exploits
already developed notions of exact model reduction for ODEs to lump
such variables. The algorithm is showcased on several case studies and
its results are favourably compared against CORA, a well-known tool for
reachability analysis of dynamical systems.

Keywords: Ordinary differential equations · Model reduction ·
Reachability analysis

1 Introduction

Ordinary differential equations (ODEs) are a fundamental model to describe the
behavior of dynamical systems. In many cases, they represent classes of entities
governed by structurally similar laws governed by different parameters. Such
heterogeneous parameters may encode different dynamical behavior of the same
c© Springer Nature Switzerland AG 2022
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underlying phenomenon, such as age- or location-dependent rates for the conta-
gion of a disease [4], class-dependent service demands in a queuing system [3], and
conformation-dependent binding affinities in protein interaction networks [13].

When there is a large degree of heterogeneity, intended as the number of
classes used in the model, the analysis becomes increasingly more complex. This
problem justifies the quest for reduction methods that simplify the description
whilst retaining some formal relationship with the original models. Here we tackle
this issue by designing an algorithm that aims to homogenize class-dependent
behavior into representative equations that suitably summarize the difference
in parameters. The idea builds on an earlier approach that yields so-called dif-
ferential hulls for heterogeneous ODE systems [27]. Differential hulls provide
lower- and upper-bounds on the original equations by relying on the theory of
differential inequalities [23,24,26] which can be traced back to the seminal work
of Müller [21]. Here, equations with different parameters are lower- and upper-
bounded with the same differential inequality by taking appropriate minimum
and maximum values across the parameters. Thus, the resulting system of differ-
ential inequalities is independent from the number of aforementioned classes and
its solution give an envelope within which the original trajectories live, effectively
constituting a formal over-approximation of the original model.

The main limitation of [27] is that no algorithm is given to build differen-
tial hulls; that is, the method requires a priori knowledge of the existence of
“equivalent” dynamical equations up to the choice of the parameters. The main
contribution of this paper is an algorithm that builds differential hulls for ODEs.

We focus on polynomial ODEs with positive solutions. This is already a
general class to which other forms of nonlinearity can be reduced [19], and it
essentially covers many dynamical models of systems where the state variables
are physical quantities such as concentration of molecules and populations of
agents. Our algorithm takes as input a tolerance ε that, informally, defines the
amount of heterogeneity allowed in the model parameters. The procedure con-
sists of two steps. First, the algorithm splits the set of parameters into blocks so
long as the difference between the values of the minimum and the maximum ele-
ments in each block is less than ε. The differential hull is then built by doubling
the number of variables in the system (e.g., from the original n to 2n), replacing
each variable with a pair of new ones representing its upper and lower bounds.
This is obtained by appropriately substituting in the equations of each pair of
new variables the original parameters with either of the extremal elements in
the block it belongs to. If the original system consisted of structurally similar
equations with different parameters (and these parameters are at most ε away),
the intended output of this first step is to have replicated equations that have the
same dynamical behavior due to the consistent choice of the parameter bounds.
Since the algorithm is agnostic to the form of the original model, the second
step performs an automated discovery of the replicated behavior. This is done
with backward differential equivalence (BDE) [5,6,8], a reduction algorithm that
exactly lumps ODE variables that have the same solution when starting from
the same initial condition. Overall, the procedure returns a reduced differential
hull that still bounds the original dynamics while using fewer than 2n variables.
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We use case studies from engineering, biology, biochemistry, organic chem-
istry, and epidemiology to compare against our method against CORA [1], a
state-of-the-art tool for over-approximation/reachability analysis. The compar-
ison is justified by the fact that the proposed approach can be tied to over-
approximation. Indeed, the first step of our algorithm splits the parameters into
blocks where the difference between the maximum and the minimum is less than
ε. Afterwards, the algorithm substitutes each parameter with the maximum or
the minimum of the block it belongs to. These extremal elements of each block
define the admissible parameter values that over-approximation techniques such
as CORA take into account to compute the reachable sets. The investigation
reveals that CORA computes in general tighter bounds than the proposed app-
roach, but at higher time and space requirements.

Further Related Work. Many common over-approximation techniques rely on
Lyapunov-like functions [12,20] known from stability theory of ODEs. However,
the automatic computation of Lyapunov-like functions remains a challenging
task in case of nonlinearity [14]. Instead, approaches such as CORA or Flow∗

approximate the nonlinear model by a multivariate polynomial or an affine sys-
tem, see [2,10] and references therein. The research on approximate quotients
of ODE systems, instead, can be traced to the 1960s [17] where the authors
over-approximated the dynamics of mono-molecular reaction networks. Li and
Rabitz extend this approximate lumping to general CRNs [18], but an explicit
error bound was not given. In a similar vein, approximate quotients in ecology
have been studied from the point of view of finding a reduced ODE system whose
derivatives are as close as possible (in norm) to the derivatives of the original
ODE system [15]. This is also exploited in ε-BDE [9], a reduction technique
that is based on a partition-refinement algorithm of BDE [6] and aims to lump
ODE variables with nearby trajectories, essentially by relaxing the requirement
of exact symmetry imposed by the BDE approach used in this paper. Using a
case study from [9], we show that our method can provide bounds for larger
differences in the model parameters than ε-BDE.

2 Background

Backward Differential Equivalence. Let us consider a polynomial ODE system
composed of a set of variables V = {x1, ..., xn}. The dynamics of variable xi is
in the form ẋi = qi, 1 ≤ xi ≤ n, where qi is a multivariate polynomial over V.
We say that qi is in normal form when each monomial xα ≡ ∏

xi∈V x
αxi
i , where

α ∈ N
V
0 is a multi-index, appears in qi at most once. In this way, we can define

c(qi, x
α) as the coefficient of the monomial xα in a normal form polynomial qi.

The notion of BDE [6,9] relates variables that have the same solutions at all
time points if they start from the same initial conditions. In the polynomial ODE
systems that we consider, this technique makes pairwise comparisons between
the coefficients of any two variables in the same equivalence class.
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Definition 1 (Backward differential equivalence (BDE)). Fix a polyno-
mial ODE, a partition H of V and write xi ∼B

H xj if all coefficients of the
following polynomial are zero,

qH
i,j := (qi − qj)

[
xH′,1

/
xH′ , . . . , xH′,|H′|

/
xH′ :H ′ ∈H]

i.e., when ∑

α∈N
V
0

|c(qH
i,j , x

α)| = 0. (1)

A partition H is a BDE if H = V/(∼B∗
H ∩ ∼H).

Following the definition, a partition is a BDE partition if the differences
between the coefficients on the same monomials are zero for any two variables
in the same block.

Differential Hulls. We use the notation x ≤ y for the vectors x = (x1, ..., xn) and
y = (y1, ..., yn) in R if and only if xi ≤ yi for all 1 ≤ i ≤ n. The strict inequality,
x < y, is defined similarly. The differential hull is a vector field with 2n variables
that provides upper and lower bounds for the dynamics of the original ODE
system defined on the set of variables V = {x1, ..., xn}.

Definition 2 (Differential Hull [27]). We call (g1, ..., gn, g1, ..., gn) : R2n
>0 −→

R
2n a differential hull of the polynomial ODE system (q1, ..., qn) : Rn

>0 −→ R
n

when, for all 1 ≤ i ≤ n gi, gi are polynomials and for any x ≤ x ≤ x,

xi = xi =⇒ gi(x, x) ≤ qi(x) and xi = xi =⇒ qi(x) ≤ gi(x, x)

The previous definition is very general because the only condition a differ-
ential hull should satisfy is that it should over-approximate the dynamics of a
polynomial vector field q.

Theorem 1. Let g be a differential hull of q. Then, if the solution of the poly-
nomial ODE system (ẋ, ẋ) = g(x, x) subject to 0 < x(0) ≤ x(0) ≤ x(0) exists
and is positive on [0;T ], where T > 0, then the solution of ẋ = q(x) exists on
[0;T ] as well and satisfies x(t) ≤ x(t) ≤ x(t) for all 0 ≤ t ≤ T .

3 Computing Differential Hulls

Algorithm 1 takes as input a tolerance value ε > 0 and a polynomial ODE
system O, given by ẋi = qi(x) with 1 ≤ i ≤ n. Line 2 sorts all coefficients
{(i, α, c(qi, x

α)) ∈ O | 1 ≤ i ≤ n, α ∈ N
n
0} of O in increasing order and splits

them into blocks whose members are within distance ε. More in detail, we start
from the minimum parameter and add the next one in the same block until the
difference between the first and last inserted is not greater than ε. Blocks are
collected in the resulting partition, P . Lines 4–5 define two new equations xi and
xi, respectively the lower and upper bound of xi. In lines 6–11, the algorithm
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Algorithm 1. computeDifferentialHull
Require: An ODE system O, a tolerance ε .
1: DHull = {}
2: P = groupParameters(O,ε)
3: for each xi in O do
4: ẋi = []
5: ẋi = []
6: for each monomial M in O do
7: M = upperBound(M ,P ,xi)
8: M = lowerBound(M ,P ,xi)
9: append(ẋi,M)

10: append(ẋi,M)
11: end for
12: add(DHull,ẋi)
13: add(DHull,ẋi)
14: end for
15: return DHull

considers the monomials M in equation xi. It computes the lower and upper
bound for each of them and appends these results to ẋ and ẋ, respectively.

The procedure to compute the upper bound is shown in Algorithm 2. It
requires a monomial M , the coefficients partition P already calculated by Algo-
rithm 1, and variable xi. In lines 2–3, the procedure retrieves the coefficient and
the variables associated with the monomial M . In lines 4–8, the algorithm substi-
tutes the original parameter of the monomial. If the coefficient of the monomial
p is positive, the computation picks the maximum parameter in the block p
belongs to (line 5), otherwise the minimum (line 7). In lines 9–15, the method
takes care of the variables xj . The idea is similar. The method picks the upper
or lower bound of xj depending on the value of p. The first condition in line
10 represents the case where the variable xj is the same variable as ẋi. We are
computing ẋi and we find xj equals to xi in qi, in this case, since the variable
defines itself, the algorithm will pick xj no matter what is the value of p.

We omit the algorithm for the lower bound, called in line 9 of Algorithm 1,
because it is similar to Algorithm 2. In lines 12–13 Algorithm 1 composes the
new equations to the differential hull and returns it.

Theorem 2. The time and space complexity of Algorithm 1 and Algorithm 2 is
polynomial in the size of the ODE model.

Running Example. Let us take the simple polynomial ODE system:

ẋ1 = −k2x1, ẋ2 = k1x1 − k3x2, ẋ3 = k2x1 − k3x3

with k1 = 1.0, k2 = 1.1, and k3 = 1.2 and initial conditions all equal to 1.
We now consider the application of the Algorithm 1 with a tolerance parame-

ter ε = 0.2. In the first step, the procedure splits the parameters in a single block
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Algorithm 2. upperBound
Require: A monomial M , the parameters partition P , variable ẋi.
1: M = {}
2: (·, ·, p) = getParameter(M)
3: V = getVariables(M)
4: if p > 0 then
5: add(M ,getMax(p,P ))
6: else
7: add(M ,getMin(p,P ))
8: end if
9: for each xj in V do

10: if xj == xi or p > 0 then
11: add(M ,xj)
12: else
13: add(M ,xj)
14: end if
15: end for
16: return M

B1 where the tolerance is exactly 0.2, corresponding to the difference k3 − k1.
We now discuss the detailed process to compute the upper bound ẋ2. In line 6,
Algorithm 1 considers every monomial in the dynamics ẋ2 of ODE system O.
For the first term k1x1, since k1 is positive, line 5 of Algorithm 2 picks k3, the
maximum parameter for this block. Similarly, in line 11, the maximum value
that x1 could assume is x1, which is the upper bound of x1. In this way, the
algorithm provides the first term k3x1 of ẋ2. The computation proceeds with
the maximization of the second terms −k3x2. Since −k3 is negative, the algo-
rithm takes the parameter k1. Moreover, we fall in the case where the condition
xj == xi in line 10 is true; for this reason Algorithm 2 replaces x2 with x2 rather
than x2. Summing up all the steps, the algorithm computes the upper bound of
ẋ2 with the equation ẋ2 = k3x1 − k1x2. The lower bound is computed similarly
and, for this reason, is omitted.

Overall, the differential hull for the system reads:

ẋ1 = −k3x1 ẋ2 = k1x1 − k3x2 ẋ3 = k1x1 − k3x3

ẋ1 = −k1x1 ẋ2 = k3x1 − k1x2 ẋ3 = k3x1 − k1x3

In Fig. 1 (left), we plot both the dynamics of the differential hull and the
original system when all initial conditions are equal to 1. Every trajectory xi

falls in a band bounded by the two equations xi and xi. Importantly, we notice
that, due to the choice of initial conditions, the solutions for x2 and x3 coincide,
and so do the solutions for x2 and x3. This is due to the fact that the partition
of variables

{{x1}, {x1}, {x2, x3}, {x2, x3}
}

satisfies the BDE criterion in Eq. 1.
This gives the following BDE-reduced differential hull where variables x2 and x2

are taken as the representatives of their respective blocks.

ẋ1 = −k3x1, ẋ1 = −k1x1, ẋ2 = k1x1 − k3x2, ẋ2 = k3x1 − k1x2.
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Fig. 1. (left) Over-approximation by means of differential hulls for the running exam-
ple. (right) CORA over-approximation of the running example.

It is important to notice that the bounds computed over-approximate not
only the dynamics for the parameters under study. Indeed, any set of parameters
giving rise to the same differential hull will be over-approximated by the hull.
Specifically, the following can be shown.

Theorem 3. Let O be an ODE system over variables x1, . . . , xn and let P be the
partition as computed by Algorithm 1 and Algorithm 2. Assume that all blocks
of P have common signs (i.e., for any B ∈ P and (·, ·, p1), (·, ·, p2) ∈ B, it holds
that p1 ·p2 ≥ 0). Then, an ODE system O′ over x1, . . . , xn gives rise to the same
differential hull as O when

– O′ has no more monomials than O, that is, if (j, β, ·) 
∈ B for each B ∈ P ,
then c(q′

j , x
β) = 0 and;

– the parameters of O′ yield the same minima and maxima over partition P ,
i.e., for all (j, β, ·) ∈ B and all B ∈ P we have that

min{c(qi, x
α) | (i, α, ·) ∈ B} ≤ c(q′

j , x
β) ≤ max{c(qi, x

α) | (i, α, ·) ∈ B},

where c(q′
j , x

β) denotes the coefficient of monomial xβ in q′
j of O′.

Remark 1. The assumption on P having blocks with common signs can be always
enforced by means of a prepartitioning. This being said, we wish to point out that
all models considered in the evaluation section did not require a prepartitioning,
i.e., Theorem 3 could be applied directly.

The foregoing result ties differential hulls to reachability analysis, where an
amount of perturbation is considered among the grouped parameter. This jus-
tifies the comparison against CORA in the next section. For completeness, we
next show the application of CORA to our running example.

CORA requires choosing how to represent the reachability set and the amount
of perturbation in the parameters. In this case, we decided to represent the sets
with the zonotopes. We set up the parameters to their average values, that is 1.1,
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allowing an amount of perturbation equal to 0.1. In this way, we consider the
following range of uncertainty [1.0; 1.2], that represent the set of all the possible
parameters considered by the differential hull. In Fig. 1 (right) we show the bounds
computed by CORA. In this example, the two techniques provide almost the same
bounds. In the next section, we will present several models from different fields to
compare the bounds provided by our approach and the ones by CORA. It can be
noted that the two techniques provide almost identical bounds. We will see in the
next section that CORA tends to give better bounds compared to our approach,
while requiring significantly more time and space.

4 Case Studies

In this section, we consider a number of case studies. The CORA implementa-
tion was carried out in Matlab, while the BDE reductions of Algorithm 1 were
performed by invoking ERODE [7].

4.1 SIR Model

The SIR model describes the spread of an infection in a population composed
of three main actors: infected (I), susceptible (S), and the recovered individuals
(R) [16]. The infected individuals are the ones that could infect the susceptibles;
the recovered obtained a permanent immunization from infection because they
already got the disease. The model has two types of parameters: β, the infection
rate, and γ, the recovery rate. In this context, we consider the following multiclass
SIR model of individuals with class-specific infection and recovery rates:

Ṡi =
N∑

j=1

−Siβi,jIj , İi = −γiIi +
N∑

j=1

Siβi,jIj , Ṙi = γiIi,

where the parameters βi,j represent cross-class infection rates. For consistency
across all number of classes, the parameters were chosen using the same level of
heterogeneity, as follows:

θSIR = |max
i,j

βi,j − min
i,j

βi,j | + |max
i

γi − min
i

γi| = 0.2

All parameter values and the initial conditions are provided in the Appendix.
We computed the differential hull running our algorithm with the tolerance

ε equal to θSIR, then we reduced it with BDE. The reduced differential hull is
an SIR model where all the lower and the upper bounds for each class collapse
into one, so that the reduction achieved by BDE is:

{{S1, ..., SN}, {S1, ..., SN},
{I1, ..., IN}, {I1, ..., IN}, {R1, ..., RN}, {R1, ..., RN}}

.
In Fig. 2, we show the comparison between CORA and differential hulls for

the SIR model with two different classes; the bounds computed considering an
higher number of classes are similar. CORA has tighter bounds, but it is more
time consuming. Indeed, Table 1, which lists the CORA runtimes, shows a fast
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increase with respect to the number of classes, issuing out of memory errors for
8. Our algorithm instead required less than 1 s in all cases. This is an expected
result because, as stated in Theorem 2, the cost of the algorithm is polynomial
and is based on the substitution of parameters and variables.

Fig. 2. Bounds of the infected individuals computed by our algorithm against CORA.

Table 1. CORA running times for the SIR model.

Number of classes 2 4 6 8

CORA runtime 12.98 s 43.43 s 162.96 s Out of memory

4.2 Polymerization

In chemistry, polymerization is the process by which monomers react to form
longer chains. We consider next the polymerization model presented in [28] which
describes the formation of polycyclic aromatic hydrocarbons in flame combus-
tion. The underlying system of polynomial ODEs is induced by the law of mass
action [29]. Let us consider, for instance, the reaction Ai + H αi−→ Aĩ + H2. The
terms on the left side are called reagents, while those on the right are called
products. An instance of each reagent is consumed when the reaction occurs,
and one of each product is produced. The kinetic reaction rate is αi, instead.
The reaction occurs at speed αiAiH, where the variables denote the current
concentration (the current amount) of the corresponding species. Consequently,
the monomial αiAiH will appear with negative sign in the ODEs of the reagents
(Ai and H), and with positive sign in those of the products (Aĩ and H2).
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Fig. 3. Bounds of the molecule H2 computed by Algorithm 1 against CORA.

Ai + H αi−→Aĩ + H2 (i, 1) (2)

Aĩ + H2
αi−→Ai + H (i, 1)

Aĩ + C2H2
βi−→AiCHCH˜ (i, 2) (3)

AiCHCH˜
βi−→Aĩ + C2H2 (i, 2)

AiCHCH˜+ C2H2
γi−→Ai+1 + H (i, 3) . . . (i + 1, 1)

Here Aĩ is an aromatic radical formed by H abstraction from Ai, and AiCHCH˜
is a radical formed by adding C2H2 to Aĩ. We enumerate the reactions (i, 1) and
their reverse versions (i, 1). The reverse reaction is a reaction where the products
became the reagents and vice versa. Since the reaction network is infinite we
restrict our analysis to truncated version of this model, where we consider the
dynamics of polymers up to length N (i.e., with i ∈ {1, ..., N}). To do this we
redirect the flux to Ai+1, when i + 1 > N to A1 in order to mimic the fact that
polymers longer than N are unstable. Similarly to the previous case study, let
us define the following level of heterogeneity:

θPoly = |max
i

αi − min
i

αi| + |max
i

βi − min
i

βi| + |max
i

γi − min
i

γi|

For the omitted parameters, the difference between the maximum and the
minimum is zero. This keeps a level of heterogeneity equal to 0.2 for each
model. For simplicity, only a part of the parameters was subject to pertur-
bation; the respective values and the initial conditions can be found in the
Appendix. We ran Algorithm 1 with ε = 0.2, obtaining the reduced differential
hull through BDE. The variables are lumped according to the following partition:
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Table 2. CORA running times of the polymerization model. Similarly to the SIR
model, the running times of differential hulls were within one second.

N 4 8 12 16

CORA runtime 69.73 s 232.90 s 671.10 s Out of memory

{{A1, ..., AN}, {A1, ..., AN}, {A1̃, ..., AÑ}, {A1̃, ..., AÑ}, {H}, {H}, {H2}, {H2},

{C2H2}, {C2H2}, {A1CHCH̃, ..., ANCHCH̃}, {A1CHCH̃, ..., ANCHCH̃}}.
It can be noted the lower and upper bounds of each molecule-family were

lumped together. Figure 3 shows the over-approximations of H2 obtained by
CORA and differential hulls. Also in this case study, the plot show the results
only for N = 2, but the results are similar also for bigger models. As shown in
Table 2, CORA provides tighter over-approximations but becomes computation-
ally challenging as the number of molecules grows.

4.3 Protein Interaction Network

We next consider a prototypical model from systems biology where molecule A
has multiple binding sites to which a molecule B can bind reversibly [11]. Since
the number of reactions grows exponentially with the number of the binding
sites, we only show the case for two binding sites. We indicate with A10 and A01

the complex obtained when A and B are bound via the first or second binding
site, respectively. We denote with A11 when A is bounded with two molecules of
B. The following reaction network describes this model:

A + B
kb1−−→ A10 A10

ku1−−→ A + B

A + B
kb2−−→ A01 A01

ku2−−→ A + B

A01 + B
kb1−−→ A11 A11

ku1−−→ B + A01

A10 + B
kb2−−→ A11 A11

ku2−−→ B + A10

The parameters kb and ku represent, respectively, the rate for binding and
unbinding of molecules B to/from A. We define the level of heterogeneity as
θProtein = |kb1 − kb2|. Without loss of generality, the heterogeneity was only
applied to the binding parameters, with the specific parameters being reported
in the Appendix. We applied our algorithm with a tolerance equal to 0.2 and
computed the reduced differential hull. The reduction computed by BDE was

{{A}, {A}, {B}, {B}, {A01, A10}, {A01, A10}, {A11}, {A11}
}



184 G. Squillace et al.

Fig. 4. Bounds of the molecule A11.

Table 3. CORA running times of the protein interaction network.

N 2 4 6

CORA runtime 12.51 s 376.77 s Out of memory

It can be noted that all molecules with the same amount of occupied binding site
were lumped together. This yields an exponential reduction because the size of
the original model increases exponentially in N (i.e., 2N + 1), while that of the
reduced one polynomially (i.e., N +2). We report in Fig. 4 the bounds computed
with our technique and CORA; instead, Table 3 reports the computation times
of CORA.

4.4 Electrical Network

We consider a simplified (inductance free) version of a power distribution elec-
trical network enjoying a so-called H-tree topology [25]. In this setting, let us
denote with N the depth of the tree and let the resistance and the capacitance
at depth i be denoted by Ri,k and Ci,k, respectively. We consider a constant
source voltage vs equal to 2.0V. Denoting the voltage at Ci,k by vi,k, we then
obtain the following affine ODE system

v̇1,1 =
vS − v1,1

R1,1C1,1
− v1,1 − v2,1

R2,1C1,1
− v1,1 − v2,2

R2,2C1,1
, v̇i,k =

vi−1,l − vi,k

Ri,kCi,k
,

where 1 ≤ i ≤ N , k = 1, ..., 2i−1, and l = �k/2�, with �·� denoting the ceil func-
tion. As a baseline, we considered a network with depth N = 2. For the sake of
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Fig. 5. Bounds of the voltages in the second level of the H-tree.

Table 4. CORA running times of the H-tree circuit model.

N 2 4 6

CORA runtime 53.99 s 231.56 s Out of memory

simplicity, we define the associated ODE system with the following set of param-
eters P = {b2 = 1/(R2,1C1,1), b3 = 1/(R2,2C1,1), a1,1 = 1/(R1,1C1,1), a2,1 =
1/(R2,1C2,1), a2,2 = 1/(R2,2C2,2)}. We defined the following level of heterogene-
ity by

θHtree = |b2 − b3| + |a2,1 − a2,2|.
Similarly to the foregoing case studies, the differential hull was computed through
Algorithm 1 and reduced afterwards via the BDE technique. The values of
parameter and initial conditions can be found in the Appendix. The follow-
ing variables were lumped:

{{v1,1}, {v1,1}, {v2,1, v2,2}, {v2,1, v2,2}}. As expected,
the voltages of the same level are lumped together. The bounds for the volt-
ages at the second level in case of a heterogeneity equal to 0.2 can be found in
Fig. 5. We considered larger models by increasing the height N of the H-Tree.
Table 4 reports the computational times required to calculate the respective over-
approximations.

Remark 2 (ε-BDE). This model was already studied in [9], where it was reduced
through ε-BDE, an approximate version of the BDE reduction. As anticipated
earlier, we next discuss the bounds computed by the differential hull with one
guaranteed by ε-BDE. Indeed in [9] a theorem states that, under certain con-
ditions, ε-BDE assures a formal bound error between the original model and



186 G. Squillace et al.

Fig. 6. Two largest over-approximations in the n-Hexane model (these of C2
3 and C2

2 ,
respectively). CORA provided tighter bounds but required around 10 s, while the pro-
posed technique less than one second.

the reduced one. Unfortunately, the applicability of the aforementioned theorem
hinges on restrictive assumptions and allows only for small heterogeneity in the
parameters in practice. Instead, the differential hull always succeeds in comput-
ing error bounds for approximate lumpable trajectories. This case study is an
example where the hetoregeneity expressed by the parameters is too large to
apply the theorem. Instead, as we can in Fig. 5, the differential hull approach is
able to provide formal bounds.

4.5 Conversion of Light Alkanes over H-ZSM-5

Catalytic conversions of light alkanes into industrial chemicals, such as olefins,
aromatics, oxygenates, and organic nitrides, are promising candidates for tradi-
tional petroleum-based or coal-based producing routes. We consider the conver-
sion of n-alkanes over H-ZSM5, which is commonly used in converting methanol
to gasoline and diesel. In [22], the authors considered three n-alkanes: the n-
Butane, the n-Pentane, and the n-Hexane. They investigated the three different
conversions reporting the entire reaction networks for each n-alkanes.

We applied our framework to the n-Hexane conversion of H-ZSM5 for the
original parameters from [22]. The heterogeneity parameter was set to ε = 15,
while the reactions were
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C6H14
k1−→ C1 + C

2−
5 C6H14

k2−→ C2 + C
2−
4

C6H14
k3−→ C3 + C

2−
3 C6H14

k4−→ C4 + C
2−
2

C6H14
k5−→ H2 + C

2−
6 C

2−
6

k6−→ C
2−
3 + C

2−
3

C
2−
5

k7−→ C
2−
2 + C

2−
3

Similarly to before, the parameters and the initial conditions are reported in
the Appendix. Likewise, the BDE algorithm was used to reduced the differential
hull, giving rise to the following partition of the variables:

{{C6H14}, {C6H14}, {C1, C4}, {C1C4}, {C2
5}, {C

2

5}, {C2, C
2
4},

{C2, C
2

4}, {C3,H2}, {C3,H2}, {C2
3}, {C

2

3}, {C2
2}, {C

2

2}, {C2
6}, {C

2

6}
}

We compare our approach against CORA. In Fig. 6, we show the bounds com-
puted for the molecules with the largest differential hull bounds, C2

3 and C2
2 . The

CORA bounds are tighter, as expected. At the same time, CORA’s running time
is around 10 s, while our approach remains under 1 s. Unlike to the other case
studies, the computational advantage of differential hulls cannot be exploited on
larger models instances.

5 Conclusion

Despite major efforts, the over-approximation of nonlinear models given in
terms of ordinary differential equations (ODEs) remains computationally chal-
lenging. This work proposes an efficient algorithmic approach for the over-
approximation of nonlinear ODE models by combining results from the the-
ory of differential inequalities and nonlinear model reduction. More specifically,
by enforcing a homogeneity across model parameters in dependence on a given
numerical threshold parameter, the algorithm constructs a system of differential
inequalities that a) is guaranteed to over-approximate the original ODE sys-
tem in presence of uncertain/noisy parameters and; b) can be often reduced,
thanks to homogeneous parameters, while preserving the aforementioned over-
approximation. The applicability of the approach was demonstrated by com-
plementing the established over-approximation tool CORA on models from epi-
demiology, (bio)chemistry and electrical engineering. Future work will integrate
the approach into the software tool ERODE [7].

Acknowledgments. This work was supported in part by DFF project REDUCTO
9040-00224B, the Poul Due Jensen Grant 883901, the Villum Investigator Grant S4OS,
and the PRIN project SEDUCE 2017TWRCNB.

A Appendix

A.1 Proofs

Proof (Theorem 2). Trivial.
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Proof (Theorem 3). The only nontrivial fact to be aware about is that a param-
eter block with different signs will give rise a different differential hull because of
the if-statements in algorithms upperBound and lowerBound will be evaluated
differently.

A.2 Experiments

We next report the parameter values and the initial conditions.

SIR. Here we provide the parameters and runtimes for the SIR model considered
in Sect. 4.1 (Tables 5 and 6).

Table 5. Parameters of the SIR model.

Parameters β1,1 β1,2 β2,1 β2,2 γ1 γ2

Actual values 2.46 2.45 2.53 2.55 0.5 0.6

Table 6. Initial conditions of the SIR model.

Variables S1 S2 I1 I2 R1 R2

Initial conditions 20 20 10 10 0 0

Polymerization. Here we provide the parameters and runtimes for the poly-
merization model considered in Sect. 4.2 (Tables 7 and 8).

Table 7. Parameters of the Polymerization model.

Parameters α1 α2 α1 α2 β1 β2 β2 β2 γ2 γ2

Actual values 0.55 0.60 1.95 2.00 1.5 1.6 0.01 0.01 0.25 0.25

Table 8. Initial conditions of the Polymerization model.

Variables A1 A2 A1̃ A2̃ H H2 C2H2 A1CHCH̃ A2CHCH̃

Initial conditions 1 1 1 1 1 1 1 1 1

Protein Interaction Network. Here we provide the parameters and runtimes
for the model considered in Sect. 4.3 (Tables 9 and 10).
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Table 9. Parameters of the Protein interaction network.

Parameters kb1 kb2 ku1 ku2

Actual values 20.10 19.90 0.1 0.1

Table 10. Initial conditions of the Protein interaction network.

Variables A B A10 A01 A11

Initial conditions 50 50 0 0 0

Electrical Network. Here we provide the parameters and runtimes for the
model considered in Sect. 4.4 (Tables 11 and 12).

Table 11. Parameters of the Electrical network.

Parameters b2 b3 a1,1 a2,1 a2,2

Actual values 0.56 0.66 1.12 0.40 0.50

Table 12. Initial conditions of the Electrical network.

Variables v1,1 v2,1 v2,2

Initial conditions 0.56 0.66 1.12

n-Hexane Model. Here we provide the parameters and runtimes for the model
considered in Sect. 4.5 (Tables 13 and 14).

Table 13. Parameters of the n-Hexane model.

Parameters k1 k2 k3 k4 k5 k6 k7

Actual values 17 54 42 13 32 32 14

Table 14. Initial conditions of the n-Hexane model.

Variables C6H14 C1 C2
5 C2 C2

4 C3 C2
3 C4 C2

2 H2 C2
6

Initial conditions 1 1 1 1 1 1 1 1 1 1 1
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Abstract. In this paper, we study the probabilistic stability analysis of a
subclass of stochastic hybrid systems, called thePlanarProbabilistic Piece-
wise Constant Derivative Systems (Planar PPCD), where the continuous
dynamics is deterministic, constant rate and planar, the discrete switching
between the modes is probabilistic and happens at boundary of the invari-
ant regions, and the continuous states are not reset during switching. These
aptly model piecewise linear behaviors of planar robots. Our main result
is an exact algorithm for deciding absolute and almost sure stability of Pla-
nar PPCD under some mild assumptions on mutual reachability between
the states and the presence of non-zero probability self-loops. Our main
idea is to reduce the stability problems on planar PPCD into correspond-
ing problems on Discrete-time Markov Chains with edge weights.

Keywords: Stability · Probabilistic Piecewise Constant Derivative
Systems · Discrete-time Markov Chain · Convergence

1 Introduction

Stability of Stochastic Hybrid Systems (SHS) [28] is a desirable property, as it
guarantees eventual convergence of executions to a point of equilibrium, even
in the presence of random errors. In this paper, we investigate the stability of
a certain kind of SHS where the continuous state space is planar and dynamics
has constant rate, where the rates are discrete and chosen probabilistically. More
precisely, we study Probabilistic Piecewise Constant Derivative Systems (PPCD),
that consist of a finite number of discrete states representing different modes of
operation each associated with a constant rate dynamics, and probabilistic mode
switches enabled at certain polyhedral boundaries. Such systems can aptly model
piecewise linear behaviour of planar robots.

Safety analysis of SHS has been extensively studied in the context of both
non-stochastic as well as stochastic hybrid systems [1,8,17,18,26]; stability on
the other hand is relatively less explored, especially, from a computational point
of view. It is well-known that even for non-stochastic hybrid systems decidability
(existence of exact algorithms) for safety is achievable only under restrictions on
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the dynamics and the dimension [14]. More recently, decidability of stability of
hybrid systems has been explored in the non-stochastic setting [24]. The main
contribution of this paper is the identification of a practically useful subclass of
stochastic hybrid systems for which stability is decidable along with an exact
stability analysis algorithm.

The classical stability analysis techniques build on the notion of Lyapunov
functions that provide a certificate of stability. While the notion of Lyapunov
functions have been extended to the hybrid system setting, computing them is a
challenge. Typically, they require solving certain complex optimization problems,
for instance, to deduce coefficients of polynomial templates, and more impor-
tantly, need the exploration of increasingly complex templates. In this paper, we
take an alternate route where we present graph theory based reductions to show
the decidability of stability analysis.

Our broad approach is to reduce a planar PPCD, that is a potentially infi-
nite state probabilistic system, to that of a Finite State Discrete-time Markov
Chain such that the stability of the planar PPCD can be deduced exactly by
algorithmically checking certain properties of the reduced system. We study two
notions of stability, namely, absolute stability and almost sure stability. In the
former, we seek to ensure that every execution converges, while in the latter, we
require that the probability of the set of system executions that converge be 1.
Absolute convergence ignores the probabilities associated with the transitions,
and hence, can be solved using previous results on stability analysis of Piece-
wise Constant Derivative systems [23], where one checks for certain diverging
transitions and cycles. Checking almost sure convergence is much more chal-
lenging. We show that almost sure convergence can be characterized by certain
constraints based on the stationary distribution of the reduced system. For this
result to hold, we need mild conditions on the PPCD that ensure the existence
of this stationary distribution. The proof relies on several insights, including the
properties of planar dynamics, and convergence results on infinite sequences of
random variables.

The rest of the paper is organized as follows. In Sect. 2, we discuss related
works. In Sect. 3, we model motion of a planar robot with faulty angle actuator
using PPCD. In Sect. 4, we define important definitions and notations related
to Markov Chains. In Sect. 5, we develop algorithms for analyzing convergence
of Markov Chains. We analyze stability of general and planar PPCDs in Sect.
6. Finally, we conclude in Sect. 7.

2 Related Work

Stability is a well studied problem in classical control theory, where Lyapunov
function based methods have been extensively developed. They have been
extended to hybrid systems using multiple and common Lyapunov functions
[4,9,19,30]. However, constructing Lyapunov functions is computationally chal-
lenging, hence, alternate approximate methods have been explored. For exam-
ple, in one approach the state space is divided into certain regions and shown
that the system inevitably ends up in a certain region, thus ensuring stabil-
ity [12,13,20,21]. Another approach is based on abstraction, where a simplified
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model (known as the abstract model) is created based on the original model and
stability analysis on the simplified model is mapped back to the original one
[1,2,5,8,10,22,23,25].

While stability has been extensively studied in non-probabilistic setting,
investigations of stability for probabilistic systems are limited. Sufficient con-
ditions for stability of Stochastic Hybrid Systems via Lyapunov functions is
discussed in the survey [29]. Almost sure exponential stability [6,7,11,15] and
asymptotic stability in distribution [31,32] for Stochastic Hybrid Systems have
also been studied. Most of these works on probabilistic stability analysis pro-
vide approximate mehtods for analysis. We provide a simple class of Stochastic
Hybrid Systems that have practical application in modeling planar robots, and
an exact decidable algorithm for probabilistic stability analysis.

3 Case Study: Planar Robot with a Faulty Actuator

δ
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Fig. 1. Motion of planar robot with faulty heading angle actuator

Consider a robot navigating in a 2D plane at some constant speed v as shown in
Fig. 1. The plane is divided into four regions R1, R2, R3, R4 corresponding to the
four quadrants, and the robot has a unique direction θi (mode of operation) in
which it moves while in the region Ri, and changes its mode of operation at the
boundary of the regions. Due to faulty actuator, the robot heading angle may
deviate from θi by an amount εi. We model this as probabilistically choosing one
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of the ki uniformly distanced angles θ1i , · · · , θki
i in the interval [θi − εi, θi + εi]

with probabilities p1i , · · · , pki
i , respectively. The whole system can be modelled

as a planar PPCD with
∑4

i=1 ki modes, where for every i and 1 ≤ j ≤ ki, the
mode qj

i corresponds to the robot traversing with heading angle θj
i with speed v

in the region Ri. The mode switching is possible between Ri and Rj if they are
neighbors, that is, they share a common boundary. For instance, we can switch
between quadrants 1 and 2 or 4 and 1 but not 1 and 3. We can move to any
mode corresponding to a neighbor qj

i with probability pj
i .

The objective of the navigation is to reach a target point r on the 2D plane
arbitrarily closely. More precisely, we want to check whether the robot reaches
within a δ > 0 ball around r for any arbitrarily small δ. We want to check if all
executions of the robot have this property, i.e., if the planar PPCD is absolutely
stable, as well as if the probability of convergence is 1, i.e., the planar PPCD is
almost surely stable.

4 Preliminaries

In this section, we will discuss important concepts related to Discrete-time
Markov Chain (DTMC), Weighted Discrete-time Markov Chain (WDTMC) and
convergence of WDTMC.

4.1 Discrete-Time Markov Chain

Let Dist(S) denote the set of all probability distributions on the set S. Let us
define Discrete-time Markov Chain (DTMC) on the set of states S.

Definition 1 (Discrete-time Markov Chain). The Discrete-time Markov
Chain (DTMC) is defined as the tuple M = (S,P) where

– S is a set of states.
– P : S �→ Dist(S) is a function from the set of states S to the set of all

probability distributions over S, Dist(S).

We use P(s1, s2) to denote P(s1)(s2) and Pn(s1, s2) to denote the probability of
going from s1 to s2 in n-steps.

A path of a DTMC M is a sequence of states σ = s1, s2, . . . such that for
all i < |σ|, P(si, si+1) > 0, where |σ| is the length of the sequence. A path
of length 2 is called an edge and the set of all edges is denoted as E . The ith

state of the path σ is denoted by σi and the last state of σ is denoted as σend.
σ[i : j] denotes the subsequence σi, σi+1, . . . , σj . We say s2 is reachable from s1
(denoted s1 � s2) if there is a path σ on M such that σ1 = s1 and σend = s2.
The set of all finite paths of a DTMC M is denoted as Pathsfin(M) and the set
of all infinite paths is denoted as Paths(M).

The probability of a finite path σ, denoted P(σ), is the product of the prob-
abilities of each of its edges, P(σ) :=

∏
i<|σ| P(σi, σi+1). The probability of σ

with respect to a distribution ρ, denoted Pρ(σ) is the product of P(σ) and the
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probability of σ1 under ρ, i.e., Pρ(σ) := ρ(σ1) · P(σ). We can associate a prob-
ability measure Pr to the set of infinite paths Paths(M) of a DTMC M using
probability of the cylinder sets of the finite paths as discussed in [3]. A path
property P is said to be almost surely satisfied if the set of all paths having
property P has probability 1, i.e., Pr{σ | σ has P} = 1.

Next we define some subclasses of DTMC and show that it has some nice
convergence properties.

Definition 2 (Irreducibility). A DTMC M is called irreducible if for any
s1, s2 ∈ S, s1 � s2 and s2 � s1.

Definition 3 (Periodicity). A state s ∈ S in a DTMC M is called periodic
if there is a natural number n > 1 such that, for any path σ starting and ending
at s, |σ| is a multiple of n. A DTMC M is called aperiodic if none of its states
is periodic.

We say a probability distribution is stationary for a DTMC M if the next
step distribution remains unchanged.

Definition 4 (Stationary Distribution). A distribution ρ∗ ∈ Dist(S) is
called the stationary distribution of DTMC M if,

ρ∗(s) =
∑

s′∈S

ρ∗(s′)P(s′, s), ∀s ∈ S.

For finite, irreducible DTMC, the stationary distribution is unique. The fol-
lowing theorem guarantees existence of limiting distribution for finite, irreducible
and aperiodic DTMC and associates it with the stationary distribution of the
DTMC (see [27]).

Theorem 1. For a finite, irreducible and aperiodic DTMC limn→∞ Pn(s1, s2)
exists for all s1, s2 ∈ S and limn→∞ Pn(s1, s2) = ρ∗(s2) where ρ∗ ∈ Dist(S) is
the unique stationary distribution of M.

Note that, Pn(s1, s2) does not depend on s1 as n → ∞.

4.2 Weighted Discrete-Time Markov Chain

Let us now define Weighted Discrete-time Markov Chain (WDTMC) that extend
DTMC with weighted edges. Basically, a WDTMC can be observed as a Markov
Reward Process where rewards are associated to individual transitions rather
than nodes.

Definition 5 (Weighted DTMC). The weighted DTMC (WDTMC) MW =
(S,P,W) is a tuple such that (S,P) is a DTMC and W : E �→ R is a weight
function where E is the set of all possible edges of MW .

We also define disjoint union of two WDTMC M1
W and M2

W as a WDTMC
M1

W � M2
W whose states and edges are disjoint unions of states and edges of

M1
W and M2

W respectively. With the weight function W defined, it is possible
to associate weights to individual paths of MW .
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Definition 6 (Weight of a path). The weight of a path σ of WDTMC MW ,
denoted W(σ), is defined as,

W(σ) :=
∑

i<|σ|
W(σi, σi+1)

For σ ∈ Paths(MW ), the quantity limn→∞
∑n

i=1 W(σi, σi+1) is denoted by
W(σ[1 : ∞]). It is easy to observe that, W(σ) = W(σ[1 : ∞]). A simple path
is a path without state repetition and a simple cycle is a path where only the
starting and the ending states are same. We use the notation SP(MW ) for the
set of all simple paths and the notation SC(MW ) for the set of all simple cycles
of a WDTMC MW .

4.3 Convergence of Weighted Discrete-Time Markov Chain

Let us define the notions of absolute and probabilistic convergence of WDTMC.
A WDTMC is said to be absolutely convergent if the weight of every infinite
path diverges to −∞.

Definition 7 (Absolute Convergence of WDTMC). A WDTMC MW is
said to be absolutely convergent if for all infinite path σ ∈ Paths(MW ), W(σ)
diverges to −∞, i.e.,

W(σ[1 : ∞]) = −∞.

Further, a WDTMC is said to be almost surely convergent if the weight of an
infinite path diverges to −∞ with probability 1.

Definition 8 (Almost Sure Convergence of WDTMC). We say that a
WDTMC MW is almost surely convergent if for any path σ of MW , W(σ)
diverges to −∞ with probability 1. In other words,

Pr {σ ∈ Paths(MW ) : W(σ[1 : ∞]) = −∞} = 1.

Remark 1. Let us explain the reason behind defining such a strange notion of
convergence. For reasons that will be clarified later, we actually want to check for
an infinite path σ of MW , if the product of weights of the edges converge to 0,
i.e., limn→∞

∏n
i=1 W(σi, σi+1) = 0, provided 0 < W(σi, σi+1) < ∞ for all i ∈ N.

This condition is equivalent to limn→∞
∑n

i=1 log(W(σi, σi+1)) = −∞. Hence for
convenience, we consider log of original weights as weights of individual edges,
and check if sum of weights of edges of an infinite path diverge to −∞.

4.4 Probabilistic Bisimulation

Probabilistic bisimulation [3] on a WDTMC is an equivalence relation on its
set of states such that probabilities of corresponding edges agree for two related
states.
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Definition 9 (Probabilistic Bisimulation). A probabilistic bisimulation on
a WDTMC MW is an equivalence relation ∼ on S such that for any s1, s2 ∈ S
with s1 ∼ s2, P(s1, T ) = P(s2, T ) for each equivalence class T of ∼.

Note that, P(s, T ) =
∑

t∈T P(s, t) for s ∈ S. Let us now use probabilistic bisim-
ulation to relate infinite paths of a WDTMC.

Definition 10 (Bisimulation-Equivalent Paths). Given a probabilistic
bisimulation ∼ on a WDTMC MW , two infinite paths π = π1, π2, . . . and
π̃ = π̃1, π̃2, . . . are said to be bisimulation equivalent, denoted π ∼ π̃, if they
are statewise related by ∼, i.e.,

π ∼ π̃ iff πi ∼ π̃i for all i ≥ 1

A set of infinite paths is ∼ bisimulation-closed for some probabilistic bisimulation
∼, if for any path in the set, all its bisimulation-equivalent paths are also in the
set. In other words, Π ⊆ Paths(MW ) is ∼ bisimulation-closed if for any π ∈ Π
and any π̃ ∼ π, π̃ ∈ Π. Let us denote by Prs(Π) the set of all paths in Π
that start from s ∈ S. The following lemma [3] equates the probability of two
sets of paths that start from ∼ related states and are subset of the same ∼
bisimulation-closed set.

Lemma 1. Let ∼ be a probabilistic bisimulation on a WDTMC MW . For all
states s1, s2 of MW , s1 ∼ s2 implies Prs1(Π) = Prs2(Π), for all ∼ bisimulation-
closed events Π ⊆ Paths(MW ).

4.5 Polyhedral Sets

We denote the set of all polyhedral subsets of Rn by Poly(n). The facets of a
polyhedral subset A are the largest polyhedral subsets of the boundary of A. We
denote the boundary of a polyhedral subset A by ∂(A) and the set of all facets
of A by F(A). We say a polyhedral subset P is positive scaling invariant if for
all x ∈ P and α > 0, αx ∈ P .

5 Analyzing Convergence of Weighted Discrete-Time
Markov Chains

In this section, we discuss necessary and sufficient conditions for absolute and
almost sure convergence of WDTMC. For our analysis, we will assume all paths
of the WDTMC start from a single state called the initialization point (denoted
sinit) of the WDTMC. In other words we restrict our attention to the set of
paths Σ′ := {σ ∈ Paths(MW ) | σ1 = sinit}. Consequently, we consider only
those edges E ′ = Σ′ ∩ E , which are reachable from sinit. We abuse notation and
use Σ for Σ′ and E for E ′ for the rest of the section.
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5.1 Analyzing Absolute Convergence of Weighted DTMC

Here we provide a necessary and sufficient condition for analyzing absolute con-
vergence of a WDTMC. We begin with the following proposition (proved in
Appendix A.1) which states that for any finite path σ ∈ Pathsfin(MW ), we can
get one simple path and a set of simple cycles such that their total weight equals
the weight of σ.

Proposition 1. For any finite path σ of MW there exist a simple path σs ∈
SP(MW ) and a set of simple cycles SCσ ⊆ SC(MW ) such that W(σ) = W(σs)+∑

C∈SCσ
W(C).

We use Proposition 1 to prove the following main theorem which states that,
a WDTMC is absolutely convergent iff there is no edge of infinite weight and no
cycle of weight greater or equal to 0 reachable from the initial point.

Theorem 2. The WDTMC MW is absolutely convergent iff,

1. There does not exist an edge e ∈ E reachable from sinit such that W(e) = ∞.
2. For any simple cycle C reachable from sinit, W (C) < 0.

Proof. (⇒) To show that the conditions 1 and 2 are necessary, we have to prove
that if either of them is negated then MW is not absolutely convergent. If
condition 1 is false then there is an edge e = (s1, s2) with W(s1, s2) = ∞ such
that for some finite path σ starting from sinit, σ|σ|−1 = s1 and σ|σ| = s2. But
that implies W(σ) =

∑|σ|−1
i=1 W(σi, σi+1) = ∞. So for any infinite path σ′ with

prefix σ, W(σ′) = ∞. Thus MW is not absolutely convergent. On the other
hand if we suppose condition 2 is false then there is a simple cycle C ∈ SC(MW )
with W(C) ≥ 0 such that for some finite path σ starting from sinit, there exists
an index j such that C = σ[j : |σ|]. Now we can easily construct the following
infinite path σ∞ = σ ·C ·C . . . by concatenating C infinite times to σ. Clearly, σ∞
starts at sinit since σ starts at sinit and W(σ∞) = W(σ) +

∑
n∈N

W(C) ≥ W(σ).
Since for any finite path σ, W(σ) is also finite, W(σ∞) is bounded below by
some finite quantity and cannot diverge to −∞. Thus, MW is not absolutely
convergent.

(⇐) Conversely, suppose both conditions 1 and 2 hold. Now, let σ be an
arbitrary infinite path starting from sinit and σ[1 : i] be its finite prefix of length
i ∈ N. By Proposition 1, there exist a simple path σ[1 : i]s and a set of simple
cycles SCσ[1:i] such that W(σ[1 : i]) = W(σ[1 : i]s) +

∑
C∈SCσ[1:i]

W(C). Now, for
any i ∈ N, W(σ[1 : i]s) is at most

∑
(s1,s2)∈E max{W(s1, s2) | (s1, s2) ∈ E} < ∞.

Also, SCσ[1:i] is a set of simple cycles where each cycle has weight at most
maxC∈SC(MW ) W(C) < 0 (here we abuse notation and denote the set of all simple
cycles reachable from sinit as SC(MW )). Thus, for all K ∈ R, there exists i ∈ N
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such that
∑

(s1,s2)∈E
max{W(s1, s2) | (s1, s2) ∈ E} +

∑

C∈SCσ[1:i]

W(C) < K

⇒ W(σ[1 : i]s) +
∑

C∈SCσ[1:i]

W(C) < K

⇒ W(σ[1 : i]) < K.

But this implies W(σ) = limi→∞ W(σ[1 : i]) = −∞ for any infinite path σ
starting from sinit, i.e., MW is absolutely convergent. ��

5.2 Analyzing Almost Sure Convergence of Weighted DTMC

In this subsection, we will provide a necessary and sufficient condition for almost
sure convergence of a WDTMC. We assume a WDTMC MW is finite, irreducible
and aperiodic and thus has the limiting distribution equal to its stationary dis-
tribution ρ∗ (Theorem 1).

Given a WDTMC MW , we begin by defining random variables {Xe
j | e ∈

E ; j ∈ N} on the set of infinite paths Paths(MW ), that captures the information
of whether an edge e ∈ E appears on the jth step of an infinite path σ. More
precisely,

Xe
j (σ) =

{
1 if (σj , σj+1) = e

0 else.

Note that for some e ∈ E and σ ∈ Paths(MW ),
∑n

j=1 Xe
j (σ) gives the number of

times e appears on σ[1 : n + 1]. Now, the following lemma (proved in Appendix
A.3) gives that, for any edge e ∈ E , the average of {Xe

j | j ∈ N} almost surely
converges to Pρ∗(e), which is the probability of e with respect to the stationary
distribution ρ∗.

Lemma 2. For any edge e ∈ E of a WDTMC MW ,

Pr

{

σ ∈ Paths(MW ) : lim
n→∞

∑n
j=1 Xe

j (σ)
n

= Pρ∗(e)

}

= 1.

Next, we define partial average weight upto n for an infinite path σ as

(Sσ)n

n
:=

∑n
i=1 W(σi, σi+1)

n
,

and note that,

(Sσ)n

n
=

∑
e∈E(# times e appears on σ[1 : n + 1]) · W(e)

n

=

∑
e∈E

(∑n
j=1 Xe

j (σ)
)

· W(e)

n
(1)
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We now state the main lemma of this subsection which essentially states that,
the average weight of an infinite path almost surely converges to a quantity that
depends only on the weights and probabilities of the edges.

Lemma 3. For a WDTMC MW ,

Pr

{

σ ∈ Paths(MW ) : lim
n→∞

(Sσ)n

n
=

∑

e∈E
Pρ∗(e)W(e)

}

= 1.

Proof. We have already established that,

(Sσ)n

n
=

∑
e∈E

(∑n
j=1 Xe

j (σ)
)

· W(e)

n
[Eq. 1]

Thus, lim
n→∞

(Sσ)n

n
= lim

n→∞

∑
e∈E

(∑n
j=1 Xe

j (σ)
)

· W(e)

n

⇒ lim
n→∞

(Sσ)n

n
=

∑

e∈E
Pρ∗(e) · W(e) almost surely [by Lemma 2]

��
We say

∑
e∈E Pρ∗(e)W(e) is the effective weight of the WDTMC MW and denote

it as WE . The main theorem basically states that a WDTMC is almost surely
convergent iff its effective weight is strictly less than 0.

Theorem 3. A WDTMC MW is almost surely convergent iff WE < 0, where
WE =

∑
e∈E Pρ∗(e)W(e) is the effective weight of MW .

Proof. Observe that, weight of an infinite path σ, W(σ), can be written as
limn→∞ n · ((Sσ)n/n), where ((Sσ)n/n) is the partial average weight upto n
for the infinite path σ. Since,

lim
n→∞

(
(Sσ)n

n

)

=
∑

e∈E
Pρ∗(e)W(e) almost surely [by Lemma 3]

⇒W(σ) = lim
n→∞ n ·

(
(Sσ)n

n

)

= lim
n→∞ n ·

(
∑

e∈E
Pρ∗(e)W(e)

)

almost surely

Thus, W(σ) diverges to −∞ almost surely if and only if
∑

e∈E Pρ∗(e)W(e) < 0.
In other words, MW is almost surely convergent iff WE < 0. ��

5.3 Computability

Based on Theorems 2 and 3 we present two algorithms here (Appendix A.2)
for checking absolute and almost sure convergence of a WDTMC. For the first
algorithm, assuming the WDTMC is finite, we first check for existence of an
infinite weight edge by Breadth First Search (BFS) [16] and then for a cycle
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with non-negative weight using a variant of the Bellman-Ford algorithm [16]. If
neither of them is found then the WDTMC is deemed absolutely convergent by
Theorem 2. Since BFS takes time linear to the size of its input and Bellman-
Ford takes time quadratic to the size of its input, the time complexity of this
algorithm is O(|S|2), where S is the set of states of MW .

For the second algorithm, assuming the WDTMC is finite, irreducible and
aperiodic, existence of an infinite weight edge is checked by Breadth First Search
(BFS). If such an edge exists then the WDTMC is deemed not almost surely
convergent (by Theorem 3). Otherwise, the stationary distribution ρ∗ of the
WDTMC is calculated by solving a set of linear equations mentioned in Defi-
nition 4. The value

∑
e∈E Pρ∗(e)W(e) is then calculated (where E is the set of

transitions of the WDTMC) and compared to 0. The WDTMC is deemed almost
surely convergent only if

∑
e∈E Pρ∗(e)W(e) < 0. Since BFS takes time linear to

its input size and solving a set of linear equations takes time at most cubic in
the number of variables, the time complexity of this algorithm is O(|S|3), where
S is the set of states of MW .

6 Probabilistic Piecewise Constant Derivative Systems

In this section, we present the details of the Probabilistic Piecewise Constant
Derivative Systems (PPCD) and provide a characterization of absolute and
almost sure stability by a reduction to that of DTMCs.

6.1 Formal Definition of PPCD

We model PPCDs as consisting of a discrete set of modes, each associated with
an invariant and probabilistic transitions between modes that are enabled at the
boundaries of the invariants.

Definition 11 (PPCD). The Probabilistic Piecewise Constant Derivative Sys-
tem (PPCD) is defined as the tuple H := (Q,X , Inv,Flow,Edges) where

– Q is the set of discrete locations,
– X = R

n is the continuous state space for some n ∈ N,
– Inv : Q → Poly(n) is the invariant function which assigns a positive scaling

invariant polyhedral subset of the state space to each location q ∈ Q,
– Flow : Q → X is the Flow function which assigns a flow vector, say Flow(q) ∈

X , to each location q ∈ Q,
– Edges ⊆ Q×(∪q∈QF(Inv(q)))×Dist(Q) is the probabilistic edge relation such

that (q, f, ρ) ∈ Edges where for every (q, f), there is a at most one ρ such that
(q, f, ρ) ∈ Edges and f ∈ F(Inv(q)). f is called a Guard of the location q.

Next, we discuss the semantics of the PPCD. An execution starts from a
location q0 ∈ Q and some continuous state x0 ∈ X and evolves continuously for
some time T according to the dynamics of q0 until it reaches a facet f0 of the
invariant of q0. Then a probabilistic discrete transition is taken if there is an edge
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(q0, f0, ρ0) and the state q0 is probabilistically changed to q1 with probability
ρ0(q1). The execution (tree) continues with alternating continuous and discrete
transitions.

Formally, for any two continuous states x1, x2 ∈ X and q ∈ Q, we say that
there is a continuous transition from x1 to x2 with respect to q if x1, x2 ∈ Inv(q),
there exists T ≥ 0 such that x2 = x1+Flow(q)·T , x1+Flow(q)·t �∈ ∂(Inv(q0)) for
any 0 ≤ t < T and x2 ∈ ∂(Inv(q0)). We note that there is a unique continuous
transition from any state (q, x) since it requires the state to evolve until it reaches
the boundary for the first time, which corresponds to a unique time of evolution
T . Further, if for all t ≥ 0, x1+Flow(q) · t ∈ Inv(q) then we say x1 has an infinite
edge with respect to q. For two locations q1, q2 ∈ Q, we say there is a discrete
transition from q1 to q2 with probability p via ρ ∈ Dist(Q) and f ∈ F(q1) if
f ⊆ Inv(q2), (q1, f, ρ) ∈ Edges and p = ρ(q2).

We capture the semantics of a PPCD using a WDTMC, wherein we combine
a continuous transition and a discrete transition to represent a probabilistic
transition of the DTMC. In addition, to reason about convergence, we also need
to capture the relative distance of the states from the equilibrium point, which
is captured using edge weights. Let us fix 0 as the equilibrium point for the rest
of the section. The weight on a transition from (q1, x1) to (q2, x2) captures the
logarithm of the relative distance of x1 and x2 from 0, that is, it is (||x2||/||x1||),
where ||x|| captures the distance of state x from 0.

Definition 12 (Semantics of PPCD). Given a PPCD H, we can construct
the WDTMC MH := (SH,PH,WH) where,

– SH = Q × X
– PH and WH are defined as follows for any (q1, x1) and (q2, x2):

• If there is a continuous transition from x1 to x2 with respect to q1 and
there is a discrete transition from q1 to q2 with probability p via some
ρ ∈ Dist(Q) and f ∈ F(q1), and x2 ∈ f , then PH((q1, x1), (q2, x2)) = p
and WH((q1, x1), (q2, x2)) = log (||x2||/||x1||)

• If x1 has an infinite edge with respect to q1, then PH((q1, x1), (q2, x2)) = 1
if (q1, x1) = (q2, x2) and 0, otherwise, and WH((q1, x1), (q1, x1)) = ∞.

• Otherwise, PH((q1, x1), (q2, x2)) = WH((q1, x1), (q2, x2)) = 0.

Since all executions of the PPCD H start from location q0 and state x0, we
consider only those paths of the semantics MH which start from (q0, x0) and
denote them as Paths(MH). We say a path σ = (q0, x0), (q1, x1), . . . converges
to 0 if norm of the corresponding state sequence ||x0||, ||x1||, . . . converges to 0.
Stability of a PPCD H is defined in terms of convergence of paths of its semantics
MH as follows,

Definition 13 (Stability of PPCD). A PPCD H is called absolutely stable if
every path of MH converges to 0. Analogously, H is called almost surely stable
if any path of MH converges to 0 with probability 1, i.e.,

Pr {σ ∈ Paths(MH) : σ converges to 0} = 1.
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We now characterize stability of a PPCD H in terms of its semantics MH.
Basically we state that, H is absolutely (almost surely) stable iff MH is abso-
lutely (almost surely) convergent.

Theorem 4 (Characterization of Stability). A PPCD H is absolutely sta-
ble iff its semantics MH is absolutely convergent and it is almost surely stable
iff MH is almost surely convergent.

Proof. Note that, a path σ of MH converges to 0 iff W(σ) diverges to −∞. To
observe this, let σ = (q0, x0), (q1, x1), . . . . Then, ||x0||, ||x1||, . . . converge to 0 iff,

lim
n→∞

||xn||
||x0|| = 0 [since ||x0|| �= 0]

⇐⇒ lim
n→∞

||x1||
||x0|| · ||x2||

||x1|| · · · ||xn||
||xn−1|| = 0

[since ||xi|| �= 0 for all i = 1, . . . , n − 1 if σ is infinite]

⇐⇒ lim
n→∞ log

( ||x1||
||x0|| · ||x2||

||x1|| · · · ||xn||
||xn−1||

)

= −∞

⇐⇒ lim
n→∞ log

( ||x1||
||x0||

)

+ log
( ||x2||

||x1||
)

+ · · · log
( ||xn||

||xn−1||
)

= −∞

⇐⇒ lim
n→∞ W(σ[1 : n]) = −∞

Thus, every infinite path of MH converges to 0 iff weight of every infinite path
diverges to −∞ and the set of infinite paths of MH converging to 0 has probabil-
ity 1 iff the set of infinite paths having weight diverging to −∞ has probability
1. In other words, H is absolutely (almost surely) stable iff MH is absolutely
(almost surely) convergent. ��

6.2 Stability of Planar PPCD

In general, semantics of a PPCD has infinite number of states and thus the
algorithms developed in Sect. 5.3 cannot be applied to decide absolute (almost
sure) convergence of the semantics. However, if the continuous state space of a
PPCD H is R

2, then we can reduce MH to a finite WDTMC that provides an
exact characterization of MH. A PPCD with X = R

2 is called a planar PPCD.
Since for each location q, Inv(q) is positively scaled, the facets of Inv(q) are rays
emanating from origin. Given constant flow for each location q, a continuous
transition starting at a point of some facet f1 ∈ ∪q∈QF(Inv(q)) ends up at a
unique point of a unique facet f2 ∈ ∪q∈QF(Inv(q)). This property is not observed
if the continuous state space is of three or higher dimensions (Fig. 2). Also, if
two continuous transitions start from different points x1, x

′
1 of the same facet

f1, they end up in unique points x2, x
′
2 (respectively) of a unique facet f2 such

that ||x2||/||x1|| = ||x′
2||/||x′

1||. This gives us the following lemma,

Lemma 4. Let e = ((q1, x1), (q2, x2)), e′ = ((q1, x′
1), (q2, x

′
2)) be two edges of

MH (where H is a planar PPCD) such that, PH(e),PH(e′) > 0, and x1, x
′
1 ∈ f1

where f1 ∈ ⋃
q∈Q F(Inv(q)). Then PH(e) = PH(e′) and WH(e) = WH(e′).
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x

y

z

x1

x′1x2

x′2

x1
x′1

x2
x′2

Fig. 2. (a) In R
2, continuous transition with constant rate starting from any point in

a facet leads to a unique point in a unique facet. (b) In R
3, even with constant rate,

continuous transitions starting from different points in the same facet may end up in
different facets.

A proof of Lemma 4 is provided in Appendix A.4. For the rest of the section,
we will assume all paths of the semantics MH of a planar PPCD H start at
(q0, x0) and x0 ∈ f0, where f0 is a facet in ∪q∈QF(Inv(q)).

We now define the quotient of a planar PPCD H, which is a finite WDTMC
having the same convergence properties as MH. Here we consider the set of
states as Q × ∪q∈QF(Inv(q)) instead of Q × X and use Lemma 4 to define the
probabilistic edges and their weights.

Definition 14 (Quotient of PPCD). Let H be a planar PPCD and MH be
its semantics. We define the WDTMC Hred = (Sred,Pred,Wred) as follows,

– Sred = Q × ⋃
q∈Q F(Inv(q))

– Pred((q1, f1), (q2, f2)) = PH((q1, x1), (q2, x2)) for some x1 ∈ f1 and x2 ∈ f2
such that PH((q1, x1), (q2, x2)) > 0, and 0 otherwise.

– Wred((q1, f1), (q2, f2)) = WH((q1, x1), (q2, x2)) for some x1 ∈ f1 and x2 ∈ f2
such that PH((q1, x1), (q2, x2)) > 0, and 0 otherwise.

The above definition is well-defined, that is, the choice of x1 and x2 do not
matter due to Lemma 4.

We will eventually prove that a planar PPCD H is absolutely (almost surely)
stable if and only if its quotient WDTMC Hred is absolutely (almost surely)
convergent. First, let us show that for every infinite path σ of MH, there is a
path π in Hred with same weight and vice versa.

Lemma 5 (Conservation of weight). For every infinite path σ of MH, there
is a path π in Hred such that W(σ) = W(π) and vice versa.
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Proof. (⇒) Let σ = σ1, σ2, . . . be an infinite path of MH. By assumption, σi ∈ fi

where fi ∈ ⋃
q∈Q F(q) is a facet, for each i ∈ N. Suppose for each i, σi = (qi, xi).

Since for each i, there is an edge between (qi, xi) and (qi+1, xi+1) in MH, there
should be an edge between (qi, fi) and (qi+1, fi+1) in Hred. Using Lemma 4 we
can conclude that for all i, W((qi, xi), (qi+1, xi+1)) = W((qi, fi), (qi+1, fi+1)).
Thus we can construct the infinite path π = ((q1, f1), (q2, f2), . . . ) such that
W(π) = W(σ).

(⇐) To prove the converse, we show by induction that for any n ∈ N if there
is a path π of length n in Hred then there is a path σ of length n in MH with
same weight as π.

Base Case: Suppose ((q1, f1), (q2, f2)) is an edge of Hred. Then there exist x1 ∈
f1 and x2 ∈ f2 such that x2 = x1+Flow(q1)·t, for some t ≥ 0, i.e., there is an edge
between (q1, x1) and (q2, x2) in MH. Also by Lemma 4, W((q1, x1), (q2, x2)) =
W((q1, f1), (q2, f2)). Hence base case is proved.

Now suppose ((q1, f1), . . . , (qn, fn), (qn+1, fn+1)) is a path of Hred and by
induction hypothesis we have a path ((q1, x1), . . . , (qn, xn)) in MH such that
W((q1, f1), . . . , (qn, fn)) = W((q1, x1), . . . , (qn, xn)). Since there is an edge
between (qn, fn) and (qn+1, fn+1), there exist x′

n ∈ fn and x′
n+1 ∈ fn+1 such

that
x′

n+1 = x′
n + Flow(qn) · t (2)

for some t ≥ 0. Since X = R
2, fn and fn+1 are rays. By Eq. 2, there is a straight

line of slope Flow(qn) that intersects both of them. But then any straight line
with slope Flow(qn) intersecting fn will also intersect fn+1, in fact, if we take the
straight line with slope Flow(qn) passing through xn, it will intersect fn+1. That
means there exists t ≥ 0 and xn+1 ∈ fn+1 such that xn+1 = xn+Flow(qn)·t. This
is because for t to be negative, fn and fn+1 must intersect and xn and x′

n must
lie on opposite sides of this intersection point on fn. But this is impossible since
fn and fn+1 intersect only at 0 and both of them get terminated at 0. Thus
there exist xn+1 ∈ fn+1 such that ((qn, xn), (qn+1, xn+1)) is an edge of MH.
By Lemma 4, W((qn, xn), (qn+1, xn+1)) = W((qn, fn), (qn+1, fn+1)). Hence our
claim is proved for all n ∈ N, i.e., it holds for infinite paths of Hred as well. ��

Using Lemma 5, we now prove the main theorem which states that a PPCD is
absolutely (almost surely) stable if and only if its quotient WDTMC is absolutely
(almost surely) stable.

Theorem 5. A planar PPCD H is absolutely (almost surely) stable iff its quo-
tient WDTMC Hred is absolutely (almost surely) convergent.

Proof. A PPCD H is absolutely stable iff MH is absolutely convergent (Theorem
4). By Lemma 5, it is easy to observe that every infinite path of MH diverge
to −∞ if and only if every infinite path of Hred diverge to −∞. Thus, we can
conclude that H is absolutely stable if and only if Hred is absolutely stable.

On the other hand, a PPCD H is almost surely stable iff MH is almost surely
convergent (Theorem 4). Let us show that MH is almost surely convergent iff
Hred is almost surely convergent. Since we have assumed that all paths of MH
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start from (q0, x0), all paths of Hred will start from (q0, f0), where f0 is the facet
containing x0. Let us define the equivalence relation ∼ on the set of states of the
WDTMC MH � Hred as,

(qi, xi) ∼ (qj , xj) if qi = qj and xi, xj belong to the same facet
(qi, xi) ∼ (qj , fj) if qi = qj and xi ∈ fj

(qi, fi) ∼ (qj , fj) if qi = qj and fi = fj ,

where qi, qj ∈ Q, xi, xj ∈ X and fi, fj ∈ ∪q∈QF(Inv(q)). Note that, the set
of equivalence classes of ∼ is given by {(q, f) | q ∈ Q, f ∈ F(Inv(q))}. Now
by Lemma 4, we can easily deduce that ∼ is a probabilistic bisimulation on
MH � Hred. Observe that, the set

Π = {π ∈ Paths(MH � Hred) : W(π[1 : ∞]) = −∞}

is ∼ bisimulation-closed. To see this, take any π ∈ Π and π̃ ∼ π. By Lemma
4, W(πi, πi+1) = W(π̃i, π̃i+1) for all i. Thus, W(π̃[1 : ∞]) = −∞ as well, i.e.,
π̃ ∈ Π. Now, we have Pr(q0,x0)(Π) = Pr(q0,f0)(Π) as a direct consequence of
Lemma 1, i.e.,

Pr{σ ∈ Paths(MH) | σ1 = (q0, x0) and W(σ) diverges to − ∞}
= Pr{π ∈ Paths(Hred) | π1 = (q0, f0) and W(π) diverges to − ∞}.

Hence, Pr{σ ∈ Paths(MH) | σ1 = (q0, x0) and W(σ) diverges to − ∞} = 1 if
and only if Pr{π ∈ Paths(Hred) | π1 = (q0, f0) and W(π) diverges to − ∞} = 1,
i.e., MH is almost surely convergent iff Hred is almost surely convergent. Thus,
H is almost surely stable iff Hred is almost surely convergent. ��

Since Hred is finite, we can use the algorithms developed in Sect. 5.3 to decide
its absolute (almost sure) convergence. This in turn decides absolute (almost
sure) stability of H by Theorem 5.

7 Conclusion

In this paper, we showed the decidability of absolute and almost sure convergence
of Planar Probabilistic Piecewise Constant Derivative Systems (PPCD), that are
a practically useful subclass of stochastic hybrid systems and can model motion
of planar robots with faulty actuators. We give a computable characterization
of absolute and almost sure convergence through a reduction to a finite state
DTMC. In the future, we plan to extend these ideas to analyze higher dimensions
PPCD and SHS with more complex dynamics. In particular, the idea of reduction
can be applied to higher dimensional PPCD but we will need to extend our
analysis to a Markov Decision Process that will appear as the reduced system.
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A Appendix

A.1 Proof of Proposition 1

Here we provide a detailed proof of Proposition 1 which states that,
For any finite path σ of MW there exist a simple path σs ∈ SP(MW ) and a set
of simple cycles SCσ ⊆ SC(MW ) such that W (σ) = W (σs) +

∑
C∈SCσ

W (C).

Proof. We traverse σ and whenever a cycle C is encountered, remove its edges
from σ and add the cycle to the set SCσ. This process is repeated until SCσ

contains only simple cycles and the remaining edges of σ form a simple path
σs = σ − (∪{C | C ∈ SCσ}). Let Eσs denote the set of edges of σs and for each
C ∈ SCσ, EC denote the set of edges of C. Clearly, {Eσs} ∪ {EC | C ∈ SCσ} is a
partition of the set of edges of σ. Thus W(σ) = W(σs) +

∑
C∈SCσ

W(C). Hence,
our claim is proved. ��

A.2 Algorithms from Sect. 5.3

Based on the discussions of Sect. 5.3, we provide pseudocodes for algorithms for
checking absolute (almost sure) convergence of a finite (finite, irreducible and
aperiodic) WDTMC.

Algorithm 1. Checking absolute convergence of WDTMC
Input: A WDTMC MW := (S, P, W)
Output: Yes/No
1: Convert MW to a weighted graph G = (V, E, W ′) where,

V = S, E = {(s1, s2) ∈ S × S | P(s1, s2) > 0},
and W ′ : E → R defined as W ′(e) := −W(e)

2: Run BFS on G to check existence of edge with weight −∞
3: if (edge with −∞ weight exists) then
4: Return No
5: end if
6: Run Bellman-Ford algorithm on G
7: if (cycle with negative weight is found) then
8: Return No
9: else

10: Let d : V → R≥0 define the shortest distance of each v ∈ V from sinit
11: Mark in E all edges (u, v) such that d(v) = d(u) + W ′(u, v)
12: Delete from G all unmarked edges
13: Run DFS on G (with unmarked edges deleted) to check for a cycle
14: if (a cycle is found) then
15: Return No
16: else
17: Return Yes
18: end if
19: end if
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Algorithm 2. Checking almost sure convergence of WDTMC
Input: A WDTMC MW := (S, P, W)
Output: Yes/No
1: Convert MW to a weighted graph G = (V, E, W ′) where,

V = S, E = {(s1, s2) ∈ S × S | P(s1, s2) > 0},
and W ′ : E → R defined as W ′(e) := W(e)

2: Run BFS on G to check existence of edge with weight ∞
3: if (edge with ∞ weight exists) then
4: Return No
5: end if
6: Calculate stationary distribution ρ∗ of MW by solving the set of linear equations,

ρ∗(s) =
∑

s′∈S

ρ∗(s′)P(s′, s), ∀s ∈ S

∑

s∈S

ρ∗(s) = 1

7: asWeight ← 0
8: for e ∈ E do
9: asWeight = asWeight + Pρ∗(e)W ′(e)

10: end for
11: if asWeight < 0 then
12: Return Yes
13: else
14: Return No
15: end if

A.3 Proof of Lemma 2

We prove Lemma 2 here which essentially states that,
For any edge e ∈ E of a WDTMC MW ,

Pr

{

σ ∈ Paths(MW ) : lim
n→∞

∑n
j=1 Xe

j

n
= Pρ∗(e)

}

= 1,

Proof. Construct the DTMC M′ = (S′,P′) from MW , where S′ = S ∪E and for
each e = (s, s′) ∈ E , (s, e), (e, s′) ∈ E ′ with P′(s, e) = P(s, s′) and P′(e, s′) = 1 (E ′

is the set of edges of M′). Note that, there is a one to one correspondence between
Paths(MW ) and Paths(M′), where each edge e = (s, s′) in σ ∈ Paths(MW ) is
replaced by consecutive edges (s, e) and (e, s′) in the corresponding path σ′ ∈
Paths(M′). Thus, (σj , σj+1) = e if and only if σ′(2j) = e, where σ′ is the
corresponding path of σ. Now, let us define random variables {Y x

j | x ∈ S′; j ∈
N} as,

Y x
j =

{
1 if σ′

j = x

0 else

for σ′ ∈ Paths(M′). Then, it is easy to observe that,
∑n

j=1 Xe
j =

∑2n
j=1 Y e

2j . Note
that, M′ is finite and irreducible. Hence, by strong law of large numbers for any
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x ∈ S′ [27],

lim
n→∞

∑2n
j=1 Y x

j

2n
= ρ∗′(x) almost surely,

where ρ∗′ is the stationary distribution of M′. Since for any x ∈ S′,

lim
n→∞

∑2n
j=1 Y x

2j

2n
= lim

n→∞

∑2n
j=1 Y x

j

2n

Thus, lim
n→∞

∑n
j=1 Xe

j

n
= 2

(

lim
n→∞

∑2n
j=1 Y e

2j

2n

)

= 2ρ∗′(e) almost surely. (3)

Consider ρ : S′ → [0, 1] as

ρ(x) =

{
ρ∗(x)

2 if x ∈ S
P(x)ρ∗(s)

2 if x = (s, s′) ∈ E .

where ρ∗ is the stationary distribution of MW . Let us observe that,∑
x∈S′ ρ(x) =

∑
s∈S ρ∗(s)/2 +

∑
s∈S

∑
(s,s′)∈E ρ∗(s)P(s, s′)/2 = 1, i.e., ρ is a

probability distribution.
Note that, for any x ∈ S,

∑

x′∈S′
ρ(x′)P′(x′, x) =

∑
{ρ(e)P′(e, x) : e = (s′, x) ∈ E}

=
∑ {

P(e)ρ∗(x)
2

: e = (s′, x) ∈ E
}

=
ρ∗(x)

2
= ρ(x).

And for any x = (s, s′) ∈ E ,

∑

x′∈S′
ρ(x′)P′(x′, x) = ρ(s)P′(s, x) =

ρ∗(s)
2

· P(x) = ρ(x).

Thus, for all x ∈ S′, ρ(x) =
∑

x′∈S′ ρ(x′)P′(x′, x), i.e., ρ is a stationary dis-
tribution for M′. Since M′ is finite and irreducible, it has a unique stationary
distribution. Thus, ρ = ρ∗′, which ultimately provides for any e = (s, s′) ∈ E ,

lim
n→∞

∑n
j=1 Xe

j

n
= 2

(
P(e)ρ∗(s)

2

)

almost surely [by Eq. 3]

= ρ∗(s)P(e) almost surely
= Pρ∗(e) almost surely,

This proves Lemma 2. ��
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A.4 Proof of Lemma 4

We prove Lemma 4 here which states the following,
Let e = ((q1, x1), (q2, x2)), e′ = ((q1, x′

1), (q2, x
′
2)) be two edges of MH (where

H is a planar PPCD) such that, PH(e), PH(e′) > 0, and x1, x
′
1 ∈ f1 where

f1 ∈ ⋃
q∈Q F(Inv(q)). Then PH(e) = PH(e′) and WH(e) = WH(e′).

Proof. Since continuous state space of H is R
2, there is a unique facet f2 for

f1 such that x2, x
′
2 ∈ f2 (assuming WH(e),WH(e′) �= ∞). Now, since PH(e)

and PH(e′) depend only on q1 and f2, PH(e) = PH(e′). Since any facet is a ray
emanating from the origin, it can be depicted by the formula y = kx, where
k ∈ R. Let x1 = (x1[1], x1[2]) and x2 = (x2[1], x2[2]). By property of PPCD,
x2 = x1 + Flow(q1) · T for some T ≥ 0. Thus,

(x2[1], x2[2]) = (x1[1], x1[2]) + (Flow(q1)[1]),Flow(q1)[2])T (4)

Let f1 : y = k1x and f2 : y = k2x. So,

x2[2] = k2 · x2[1] (5)
x1[2] = k1 · x1[1] (6)

Using Eqs. 4, 5, 6 we can write x2[1] = c · x1[1] where c depends on k1, k2,
Flow(q1)[1] and Flow(q1)[2]. Thus ||x2||

||x1|| can also be written in terms of k1,

k2, Flow(q1)[1] and Flow(q1)[2] since ||x2||
||x1|| is equal to either |x2[2]|/|x1[2]| or

|x2[2]|/|x1[1]| or |x2[1]|/|x1[2]| or |x2[1]|/|x1[1]| and x1 and x2 dependent terms
on numerator and denomenator always cancel off each other. Same is true for
e′ as well. Thus, WH(e),WH(e′) depend only on q, f1 and f2 and not on the
points x1, x

′
1, x2, x

′
2. Hence, they must be equal. ��
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Abstract. LCRL is a software tool that implements model-free Rein-
forcement Learning (RL) algorithms over unknown Markov Decision
Processes (MDPs), synthesising policies that satisfy a given linear tem-
poral specification with maximal probability. LCRL leverages partially
deterministic finite-state machines known as Limit Deterministic Büchi
Automata (LDBA) to express a given linear temporal specification. A
reward function for the RL algorithm is shaped on-the-fly, based on the
structure of the LDBA. Theoretical guarantees under proper assump-
tions ensure the convergence of the RL algorithm to an optimal policy
that maximises the satisfaction probability. We present case studies to
demonstrate the applicability, ease of use, scalability and performance
of LCRL. Owing to the LDBA-guided exploration and LCRL model-free
architecture, we observe robust performance, which also scales well when
compared to standard RL approaches (whenever applicable to LTL spec-
ifications). Full instructions on how to execute all the case studies in this
paper are provided on a GitHub page that accompanies the LCRL distri-
bution www.github.com/grockious/lcrl.
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1 Introduction

Markov Decision Processes (MDPs) are extensively used for problems in which an
agent needs to control a process by selecting actions that are allowed at the pro-
cess’ states and that affect state transitions. Decision making problems in MDPs
are equivalent to resolving action non-determinism, and result in policy synthe-
sis problems. Policies are synthesised to maximise expected long-term rewards
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obtained from the process. This paper introduces a new software tool, LCRL, which
performs policy synthesis for unknown MDPs when the goal is that of maximising
the probability to abide by a task (or constraint) that is specified using Linear Tem-
poral Logic (LTL). LTL is a formal, high-level, and intuitive language to describe
complex tasks [9]. In particular, unlike static (space-dependent) rewards, LTL can
describe time-dependent and complex non-Markovian tasks that can be derived
from natural languages [16,36,46]. Any LTL specification can be translated effi-
ciently into a Limit-Deterministic Büchi Automaton (LDBA), which allows LCRL
to automatically shape a reward function for the task that is later employed by
the RL learner for optimal policy synthesis. LCRL is implemented in Python, the
de facto standard programming language for machine learning applications.

1.1 Related Work

There exists a few tools that solve control (policy) synthesis in a model-free fash-
ion, but not under full LTL specifications. One exception is the work in [6] which
proposes an interleaved reward and discounting mechanism. However, the reward
shaping dependence on the discounting mechanism can make the reward sparse
and small, which might negatively affect convergence. The work in [17] puts
forward a tool for an average-reward scheme based on earlier theoretical work.
Other model-free approaches with available code-bases are either (1) focused on
fragments of LTL and classes of regular languages (namely finite-horizon specs)
or (2) cannot deal with unknown black-box MDPs. The proposed approach in
[29,30] presents a model-free RL solution but for regular specifications that are
expressed as deterministic finite-state machines. The work in [10,11] takes a set
of LTLf/LDLf formulae interpreted over finite traces as constraints, and then
finds a policy that maximises an external reward function. The VSRL software
tool [12–14,28] solves a control synthesis problem whilst maintaining a set of
safety constraints during learning.

1.2 Contributions

The LCRL software tool has the architecture presented in Fig. 1, and presents
the following features:

– LCRL leverages model-free RL algorithms, employing only traces of the sys-
tem (assumed to be an unknown MDP) to formally synthesise optimal policies
that satisfy a given LTL specification with maximal probability. LCRL finds such
policies by learning over a set of traces extracted from the MDP under LTL-
guided exploration. This efficient, guided exploration is owed to reward shap-
ing based on the automaton [18–21,23,26]. The guided exploration enables the
algorithm to focus only on relevant parts of the state/action spaces, as opposed
to traditional Dynamic Programming (DP) solutions, where the Bellman itera-
tion is exhaustively applied over the whole state/action spaces [5]. Under stan-
dard RL convergence assumptions, the LCRL output is an optimal policy whose
traces satisfy the given LTL specification with maximal probability.
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– LCRL is scalable owing to LTL-guided exploration, which allows LCRL to
cope and perform efficiently with MDPs whose state and action spaces are
significantly large. There exist a few LDBA construction algorithms for LTL,
but not all of resulting automata can be employed for quantitative model-
checking and probabilistic synthesis [31]. The succinctness of the construction
proposed in [39], which is used in LCRL, is another contributing factor to
LCRL scalability. The scalability of LCRL is evaluated in an array of numerical
examples and benchmarks including high-dimensional Atari 2600 games [3,7].

– LCRL is the first RL synthesis method for LTL specifications in continuous
state/action MDPs. So far no tool is available to enable RL, whether model-
based or model-free, to synthesise policies for LTL on continuous-state/action
MDPs. Alternative approaches for continuous-space MDPs [1,34,41,44] dis-
cretise the model into a finite-state MDP, or alternatively propose a DP-based
method with value function approximation [15].

– LCRL displays robustness features to hyper-parameter tuning. Specifically,
we observed that LCRL results, although problem-specific, are not significantly
affected when hyper-parameters are not tuned with care.

Fig. 1. The LCRL architecture: the inputs to the tool are the environment (MDP) -
in particular its states s and corresponding labels L(s) - as well as the LDBA gener-
ated from the user-defined LTL specification. The MDP (with state s) and the LDBA
(with state q) are synchronised on-the-fly, thus generating the pair (s, q). A reward r
is then automatically generated by LCRL, based on the environment label L(s) and the
automaton state q; actions a are selected accordingly and passed back to the environ-
ment (MDP). (Color figure online)

2 Logically-Constrained Reinforcement Learning (LCRL)

We assume the unknown environment is encompassed by an MDP, which in
this work is a discrete-time stochastic control processes defined as the tuple
M = (S,A, s0, P ) over a set of continuous states S = R

n, and where A = R
m is

a set of continuous actions, and s0 ∈ S is an initial state. P : B(S) × S × A →
[0, 1] is a conditional transition kernel which assigns to any pair comprising a



220 M. Hasanbeig et al.

state s ∈ S and an action a ∈ A a probability measure P (·|s, a) on properly
measurable sets on S [4]. A finite state/action MDP is a special case in which
|S| < ∞, |A| < ∞, and P : S × A × S → [0, 1] is a transition probability
matrix assigning a conditional probability to enter sets of states in S. A variable
R(s, a) ∼ Υ (·|s, a) ∈ P(R+) is defined over the MDP M, representing the reward
obtained when action a is taken at a given state s, sampled from the reward
distribution Υ defined over the set of probability distributions P(R+) on subsets
of R+.

LCRL is a policy synthesis architecture for tasks that are expressed as specifi-
cations in LTL [18–26]. The LCRL Core in Fig. 1 is compatible with any general
RL scheme that conforms with the environment state and action spaces. Inside
the LCRL module the MDP and LDBA states are synchronised, resulting in an
on-the-fly product MDP. Intuitively, the product MDP encompasses the extra
dimension of the LDBA states, which is added to the state space of the orig-
inal MDP. The role of the added dimension is to track the sequence of labels
that have been read across episodes, and thus to act as a memory register for the
given task. This allows to evaluate the (partial) satisfaction of the corresponding
temporal property. More importantly, this synchronisation breaks down the non-
Markovian LTL specification into a set of Markovian reach-avoid components,
which facilitates the RL convergence to a policy whose traces satisfy the overall
LTL specification. In practice, no product between the MDP and LDBA is com-
puted: the LDBA simply monitors traces executed by the agents as episodes of
the RL scheme.

Remark 1. The LDBA construction inherently introduces limited form of non-
determinism, called ε-transitions, which is treated as an extra action over the
original MDP action space [39,40]. Namely, when there exists a non-deterministic
transition in an LDBA state, the MDP action space is augmented with the non-
deterministic transition predicate of the LDBA. These non-deterministic tran-
sitions are automatically handled by LCRL during the learning and appropriate
on-the-fly modifications are carried out, so that the RL agent can learn to deal
with those non-deterministic transitions in order to reach the accepting condi-
tions of the LDBA. We emphasise that the underlying assumption in LCRL is
that the MDP model is unknown (Fig. 1), and thus a single state is obtained as
output when given a state and an action as input. �

LCRL defines a reward function R for the RL Core, whose objective is to
maximise the expected discounted return [42]:

Eπ[
∞∑

n=0

γn R(sn, an)|s0 = s], (1)

where Eπ[·] denotes the expected value given that the agent follows the policy
π : S × A → [0, 1] from state s; parameter γ ∈ [0, 1] is a discount factor; and
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s0, a0, s1, a1... is the sequence of state/action pairs, initialised at s0 = s. This
reward is intrinsically defined over the product MDP, namely it is a function of
the MDP state (describing where the agent is in the environment) and the sate
of the automaton (encompassing partial task satisfaction). For further details on
the LCRL reward shaping, please refer to [18–21,23,26].

The discount factor γ affects the optimality of the synthesised policy and has
to be tuned with care. There is standard work in RL on state-dependent discount
factors [6,35,37,45,47], which is shown to preserve convergence and optimality
guarantees. For LCRL the learner discounts the received reward whenever it’s
positive, and leaves it un-discounted otherwise:

γ(s) =
{

η if R(s, a) > 0,
1 otherwise, (2)

where 0 < η < 1 is a constant [20,47]. Hence, (1) reduces to an expected return
that is bounded, namely

Eπ[
∞∑

n=0

γ(sn)N(sn) R(sn, π(sn))|s0 = s], 0 < γ(s) ≤ 1, (3)

where N(sn) is the number of times a positive reward has been observed at
state sn.

For any state s ∈ S and any action a ∈ A, LCRL assigns a quantitative action-
value Q : S×A → R, which is initialised with an arbitrary and finite value over
all state-action pairs. As the agent starts learning, the action-value Q(s, a) is
updated by a linear combination between the current Q(s, a) and the target
value:

R(s, a) + γ max
a′∈A

Q(s′, a′),

with the weight factors 1 − μ and μ respectively, where μ is the learning rate.
An optimal stationary Markov policy synthesised by LCRL on the product

MDP that maximises the expected return, is guaranteed to induce a finite-
memory policy on the original MDP that maximises the probability of satisfying
the given LTL specification [20]. Of course, in finite-state and -action MDPs, the
set of stationary deterministic policies is finite and thus after a finite number
of learning steps RL converges to an optimal policy. However, when function
approximators are used in RL to tackle extensive or even infinite-state (or -
action) MDPs, such theoretical guarantees are valid only asymptotically [21,24].

2.1 Installation

LCRL can be set up by the pip package manager as easy as:

pip install lcrl

This allows to readily import LCRL as a package into any Python project

>>> import lcrl
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Table 1. List of hyper-parameters and features that can be externally selected

Hyper-parameter Default Value Description

algorithm ‘ql’

RL algorithm underlying LCRL Core, selected between (cf. Table 2):

- ‘ql’: Q-learning,

- ‘nfq’: Neural Fitted Q-iteration,

- ‘ddpg’: Deep Deterministic Policy Gradient

episode num 2500 number of learning episodes

iteration num max 4000 max number of iterations/steps within each episode

discount factor 0.95 discounting coefficient η as in (2)

learning rate 0.9 learning rate parameter μ

epsilon 0.1 value for epsilon-greedy exploration (= 0 for fully greedy)

test true run of closed-loop simulations to test the generated policy

save dir ‘./results’ directory address for saving the results

average window -1
number of episodes for moving-average window for plots

(default value -1 for 30% of episode num)

and employ its modules. Alternatively, the provided setup file found within the
distribution package will automatically install all the required dependencies. The
installation setup has been tested successfully on Ubuntu 18.04.1, macOS 11.6.5,
and Windows 11.

2.2 Input Interface

LCRL training module lcrl.src.train inputs two main objects (cf. Fig. 1): an
MDP black-box object that generates training episodes; and an LDBA object;
as well as learning hyper-parameters1 that are listed in Table 1.

MDP: An MDP is an object with internal attributes that are a priori unknown
to the agent, namely the state space, the transition kernel, and the labelling
function (respectively denoted by S, P , and L). The states and their labels
are observable upon reaching. To formalise the agent-MDP interface we adopt
a scheme that is widely accepted in the RL literature [7]. In this scheme the
learning agent can invoke the following methods from any state of the MDP:

– reset(): this resets the MDP to its initial state. This allows the agent to
start a new learning episode whenever necessary.

– step(action): the MDP step function takes an action (the yellow signal in
Fig. 1) as input, and outputs a new state, i.e. the black signal in Fig. 1.

A number of well-known MDP environments (e.g., the stochastic grid-world)
are embedded as classes within LCRL, and can be found within the module
lcrl.src.environments. Most of these classes can easily set up an MDP object.
However, note that the state signal output by the step function needs to be fed
1 These parameters are called hyper-parameters since their values are used to control

the learning process. This is unlike other parameters, such as weights and biases in
neural networks, which are set and updated automatically during the learning phase.
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to a labelling function state label(state), which outputs a list of labels (in
string format) for its input state (in Fig. 1, the black output signal from the
MDP is fed to the blue box, or labelling function, which outputs the set of label).
For example, state label(state) = [‘safe’, ‘room1’]. The labelling func-
tion state label(state) can then be positioned outside of the MDP class, or
it can be an internal method in the MDP class. The built-in MDP classes in
lcrl.src.environments module have an empty state label(state) method
that are ready to be overridden at the instance level:

1 # create a SlipperyGrid object
2 gridworld_1 = SlipperyGrid()
3

4 # "state_label" function outputs the label of input state
5 # (input: state, output: string label)
6 def state_label(self, state):
7 # defines the labelling image
8 labels = np.empty([gridworld_1.shape[0], gridworld_1.shape[1]], dtype=object)
9 labels[0:40, 0:40] = ’safe’

10 labels[25:33, 7:15] = ’unsafe’
11 labels[7:15, 25:33] = ’unsafe’
12 labels[15:25, 15:25] = ’goal1’
13 labels[33:40, 0:7] = ’goal2’
14 # returns the label associated with input state
15 return labels[state[0], state[1]]
16

17 # now override the step function
18 SlipperyGrid.state_label = state_label.__get__(gridworld_1, SlipperyGrid)

Listing 1.1. Example of state label(state) specification in the MDP object
lcrl.src.environments.gridworld 1.

LDBA: An LDBA object is an instance of the lcrl.src.automata.ldba class.
This class is structured according to the automaton construction in [39], and it
encompasses modifications dealing with non-determinism, as per Remark 1. The
LDBA initial state is numbered as 0, or can alternatively be specified using the
class attribute initial automaton state once an LDBA object is created. The
LDBA non-accepting sink state is numbered as −1. Finally, the set of accepting
sets, on which we elaborate further below, has to be specified at the instance level
by configuring accepting sets (Listing 1.2 line 1). The key interface methods
for the LDBA object are:

– accepting frontier function(state): this automatically updates an inter-
nal attribute of an LDBA class called accepting sets. This is a list of
accepting sets of the LDBA, e.g. F = {F1, ..., Ff}. For instance, if the set
of LDBA accepting sets is F = {{3, 4}, {5, 6}} then this attribute is a list
of corresponding state numbers accepting sets = [[3,4],[5,6]]. As dis-
cussed above, the accepting sets has to be specified once the LDBA class is
instanced (Listing 1.2 line 1). The main role of the accepting frontier function
is to determine if an accepting set can be reached, so that a corresponding
reward is given to the agent (cf. red signal in Fig. 1). Once an accepting
set is visited it will be temporarily removed from the accepting sets until
the agent visits all the accepting sets within accepting sets. After that,
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accepting sets is reset to the original list. To set up an LDBA class in LCRL
the user needs to specify accepting sets for the LDBA. LCRL then automati-
cally shapes the reward function and calls the accepting frontier function
whenever necessary. Further details on the accepting frontier function
and the accepting sets can be found in [18–21,23,26].

– step(label): LDBA step function takes a label set, i.e. the blue signal in
Fig. 1, as input and outputs a new LDBA state. The label set is delivered to
the step function by LCRL. The step method is empty by default and has to
be specified manually after the LDBA class is instanced (Listing 1.2 line 5).

– reset(): this method resets the state and accepting sets to their initial
assignments. This corresponds to the agent starting a new learning episode.

1 goal1_or_goal2 = LDBA(accepting_sets=[[1, 2]])
2

3 # "step" function for the automaton transitions
4 # (input: label, output: automaton_state, non-accepting sink state is "-1")
5 def step(self, label):
6 # state 0
7 if self.automaton_state == 0:
8 if ’epsilon_1’ in label:
9 self.automaton_state = 1

10 elif ’epsilon_2’ in label:
11 self.automaton_state = 2
12 elif ’unsafe’ in label:
13 self.automaton_state = -1 # non-accepting sink state
14 else:
15 self.automaton_state = 0
16 # state 1
17 elif self.automaton_state == 1:
18 if ’goal1’ in label and ’unsafe’ not in label:
19 self.automaton_state = 1
20 else:
21 self.automaton_state = -1 # non-accepting sink state
22 # state 2
23 elif self.automaton_state == 2:
24 if ’goal2’ in label and ’unsafe’ not in label:
25 self.automaton_state = 2
26 else:
27 self.automaton_state = -1 # non-accepting sink state
28 # step function returns the new automaton state
29 return self.automaton_state
30

31

32 # now override the step function
33 LDBA.step = step.__get__(goal1_or_goal2, LDBA)

Listing 1.2. Example of the specification of the step(label) method in the LDBA
object lcrl.automata.goal1 or goal2 for the LTL specification (♦�goal1∨♦�goal2 )∧
�¬unsafe. The non-accepting sink state is numbered as −1.

If the automaton happens to have ε-transitions, e.g. Fig. 2, they have to
distinguishable, e.g. numbered. For instance, there exist two ε-transitions in the
LDBA in Fig. 2 and each is marked by an integer. Furthermore, the LDBA class
has an attribute called epsilon transitions, which is a dictionary to specify
which states in the automaton contain ε-transitions. In Fig. 2, only state 0
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Fig. 2. LDBA for the LTL specification (♦�goal1 ∨ ♦�goal2 ) ∧ �¬unsafe.

has outgoing ε-transitions and thus, the attribute epsilon transitions in the
LDBA object goal1 or goal2 has to be set to

goal1 or goal2.epsilon transitions = {0:[‘epsilon 0’, ‘epsilon 1’]}

2.3 Output Interface

LCRL provides the results of learning and testing as .pkl files. Tests are closed-
loop simulations where we apply the learned policy over the MDP and observe
the results. For any selected learning algorithm, the learned model is saved as
learned model.pkl and test results as test results.pkl. The instruction on
how to load these files is also displayed at the end of training for ease of re-
loading data and for post-processing. Depending on the chosen learning algo-
rithm, LCRL generates a number of plots to visualise the learning progress and
the testing results. These plots are saved in the save dir directory. The user has
the additional option to export a generated animation of the testing progress,
LCRL prompts this option to the user following the completion of the test. Dur-
ing the learning phase, LCRL displays the progress in real-time and allows the
user to stop the learning task (in an any-time fashion) and save the generated
outcomes.

3 Experimental Evaluation

We apply LCRL on a number of case studies highlighting its features, performance
and robustness across various environment domains and tasks. All the experi-
ments are run on a standard machine, with an Intel Core i5 CPU at 2.5 GHz
and with 20 GB of RAM. The experiments are listed in Table 2 and discussed
next.

The minecraft environment [2] requires solving challenging low-level con-
trol tasks (minecraft-tX), and features many sequential goals. For instance, in
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Fig. 3. (a) Synthesised policy by LCRL in minecraft-t3; (b) cart-pole experiment [43];
(c) pacman-lrg - the white square on the left is labelled as food 1 (f1) and the one on
the right as food 2 (f2), the state of being caught by a ghost is labelled as (g) and the
rest of the state space is labelled as neutral (n). (Color figure online)

minecraft-t3 (Fig. 3a) the agent is tasked with collecting three items sequen-
tially and to reach a final checkpoint, which is encoded as the following LTL
specification: ♦(wood∧♦(grass∧♦(iron∧♦(craft table)))), where ♦ is the known
eventually temporal operator.

The mars-rover problems are realistic robotic benchmarks taken from [21],
where the environment features continuous state and action spaces.

The known cart-pole experiment (Fig. 3b) [8,24,43] has a task that is
expressed by the LTL specification �♦y ∧ �♦g ∧ �¬u, namely, starting the
pole in upright position, the goal is to prevent it from falling over (�¬u, namely
always not u) by moving the cart, whilst in particular alternating between the
yellow (y) and green (g) regions (�♦y ∧ �♦g), while avoiding the red (unsafe)
parts of the track (�¬u).

The robot-surve example [38] has the task to repeatedly visit two regions
(A and B) in sequence, while avoiding multiple obstacles (C) on the way: �♦A∧
�♦B ∧ �¬C.

Environments slp-easy and slp-hard are inspired by the widely used
stochastic MDPs in [42, Chapter 6]: the goal in slp-easy is to reach a par-
ticular region of the state space, whereas the goal in slp-hard is to visit four
distinct regions sequentially in a given order.

The frozen-lake benchmarks are adopted from the OpenAI Gym [7]: the
first three are reachability problems, whereas the last three require sequential
visits of four regions, in the presence of unsafe regions to be always avoided.

Finally, pacman-sml and pacman-lrg are inspired by the well-known Atari
game Pacman, and are initialised in a tricky configuration (pacman-lrg as in
Fig. 3c), which is likely for the agent to be caught: in order to win the game, the
agent has to collect the available tokens (food sources) without being caught by
moving ghosts. Formally, the agent is required to choose between one of the two
available foods and then find the other one (♦[(f1 ∧ ♦f2) ∨ (f2 ∧ ♦f1)]), while
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Table 2. Learning results with LCRL. MDP state and action space cardinalities are
|S| and |A|, the number of automaton states in LDBA is denoted by |Q|, the optimal
action value function in the initial state is denoted by “LCRL maxa Q(s0, a)”, which rep-
resents the LCRL estimation of the maximum satisfaction probability. For each exper-
iment, the reported result includes the mean and the standard error of ten learning
trials with LCRL. This probability is also calculated by the PRISM model checker [33]
and, whenever the MDP model can be processed by PRISM, it is reported in column
“max sat. prob. at s0”. The closer “LCRL maxa Q(s0, a)” and “max sat. prob. at

s0” the better. Note that for continuous-state-action MDPs the maximum satisfaction
probability cannot be precisely computed by model checking tools, unless abstraction
approximation techniques are applied, hence “n/a”. Furthermore, if the MDP state (or
action) space is large enough, e.g. pacman, the model checkers tools cannot parse the
model and the model checking process times out, i.e. “t/o”. The column “LCRL conv.

ep.” presents the episode number in which LCRL converged. Finally, “wall clocktime”
presents the average elapsed real time needed for LCRL to converge on a test machine.
The rest of the columns provide the values of the hyper-parameters, as described in
Table 1.

experiment
MDP LDBA LCRL maxa max sat.

alg.
episode iteration discount learning wall clock

|S|, |A| |Q| Q(s0, a) prob. at s0 num num max factor
∗

rate
†

time�(min)

minecraft-t1 100, 5 3 0.991 ± 0.009 1 ‘ql’ 500 4000 0.95 0.9 0.1

minecraft-t2 100, 5 3 0.991 ± 0.009 1 ‘ql’ 500 4000 0.95 0.9 0.1

minecraft-t3 100, 5 5 0.993 ± 0.007 1 ‘ql’ 1500 4000 0.95 0.9 0.25

minecraft-t4 100, 5 3 0.991 ± 0.009 1 ‘ql’ 500 4000 0.95 0.9 0.1

minecraft-t5 100, 5 3 0.995 ± 0.005 1 ‘ql’ 500 4000 0.95 0.9 0.1

minecraft-t6 100, 5 4 0.995 ± 0.005 1 ‘ql’ 1500 4000 0.95 0.9 0.25

minecraft-t7 100, 5 5 0.993 ± 0.007 1 ‘ql’ 1500 4000 0.95 0.9 0.5

mars-rover-1 ∞, 5 3 0.991 ± 0.002 n/a ‘nfq’ 50 3000 0.9 0.01 550

mars-rover-2 ∞, 5 3 0.992 ± 0.006 n/a ‘nfq’ 50 3000 0.9 0.01 540

mars-rover-3 ∞, ∞ 3 n/a n/a ‘ddpg’ 1000 18000 0.99 0.05 14

mars-rover-4 ∞, ∞ 3 n/a n/a ‘ddpg’ 1000 18000 0.99 0.05 12

cart-pole ∞, ∞ 4 n/a n/a ‘ddpg’ 100 10000 0.99 0.02 1

robot-surve 25, 4 3 0.994 ± 0.006 1 ‘ql’ 500 1000 0.95 0.9 0.1

slp-easy-sml 120, 4 2 0.974 ± 0.026 1 ‘ql’ 300 1000 0.99 0.9 0.1

slp-easy-med 400, 4 2 0.990 ± 0.010 1 ‘ql’ 1500 1000 0.99 0.9 0.25

slp-easy-lrg 1600, 4 2 0.970 ± 0.030 1 ‘ql’ 2000 1000 0.99 0.9 2

slp-hard-sml 120, 4 5 0.947 ± 0.039 1 ‘ql’ 500 1000 0.99 0.9 1

slp-hard-med 400, 4 5 0.989 ± 0.010 1 ‘ql’ 4000 2100 0.99 0.9 5

slp-hard-lrg 1600, 4 5 0.980 ± 0.016 1 ‘ql’ 6000 3500 0.99 0.9 9

frozen-lake-1 120, 4 3 0.949 ± 0.050 0.9983 ‘ql’ 400 2000 0.99 0.9 0.1

frozen-lake-2 400, 4 3 0.971 ± 0.024 0.9982 ‘ql’ 2000 2000 0.99 0.9 0.5

frozen-lake-3 1600, 4 3 0.969 ± 0.019 0.9720 ‘ql’ 5000 4000 0.99 0.9 1

frozen-lake-4 120, 4 6 0.846 ± 0.135 0.9728 ‘ql’ 2000 2000 0.99 0.9 1

frozen-lake-5 400, 4 6 0.735 ± 0.235 0.9722 ‘ql’ 7000 4000 0.99 0.9 2.5

frozen-lake-6 1600, 4 6 0.947 ± 0.011 0.9467 ‘ql’ 5000 5000 0.99 0.9 9

pacman-sml 729,000, 5 6 0.290 ± 0.035 t/o‡ ‘ql’ 80e3 4000 0.95 0.9 1600

pacman-lrg 4,251,000, 5 6 0.282 ± 0.049 t/o‡ ‘ql’ 180e3 4000 0.95 0.9 3700
∗ coefficient η in (2) † learning rate μ ‡ timed out: too large for model-checking
tools � on a machine running macOS 11.6.5 with Intel Core i5 CPU at 2.5 GHz and
with 20 GB of RAM

avoiding the ghosts (�¬g). We thus feed to the agent a conjunction of these
associations, as the following LTL specification: ♦[(f1 ∧♦f2)∨ (f2 ∧♦f1)]∧�¬g.
Standard QL fails to find a policy generating satisfying traces for this experiment.
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Table 3. Robustness of LCRL performance against hyper-parameter tuning, for the
frozen-lake-1 experiment. Maximum probability of satisfaction is 99.83% as calcu-
lated by PRISM (cf. Table 2). The reported values are the percentages of times that
execution of LCRL final policy produced traces that satisfied the LTL property. Statis-
tics are taken over 10 trainings and 100 testing for each training, namely 1000 trials
for each hyper-parameter configuration.

η

μ
0.2 0.4 0.6 0.8 0.99

0.2 92.5 ± 7.5% 96.7 ± 3.2% 91.3 ± 8.7% 98.8 ± 1.1% 94.7 ± 5.29%

0.4 98.6 ± 1.4% 89.5 ± 10.5% 94.5 ± 5.5% 94.5 ± 5.5% 99.2 ± 0.74%

0.6 99.0 ± 0.83% 94.5 ± 5.5% 93.3 ± 6.7% 96.4 ± 3.59% 93.3 ± 6.7%

0.8 95.8 ± 4.2% 99.5 ± 0.49% 99.5 ± 0.49% 96.9 ± 3.09% 97.7 ± 2.2%

0.99 88.9 ± 11.09% 98.4 ± 1.55% 97.1 ± 2.31% 96.1 ± 3.73% 95.2 ± 4.79%

overall avg. 95.676 ± 4.268%

We emphasise that the two tasks in cart-pole and robot-surve are not co-safe,
namely require possibly infinite traces as witnesses.

Additionally, we have evaluated the LCRL robustness to RL key hyper-
parameter tuning, i.e. discount factor η and learning rate μ, by training the
LCRL agent for 10 times and testing its final policy for 100 times. The evaluation
results and an overall rate of satisfying the given LTL specifications are reported
for the frozen-lake-1 experiments in Table 3. The statistics are taken across
10 × 100 tests, which results in 1000 trials for each hyper-parameter configura-
tion.

4 Conclusions and Extensions

This paper presented LCRL, a new software tool for policy synthesis with RL
under LTL and omega-regular specifications. There is a plethora of extensions
that we are planning to explore. In the short term, we intend to: (1) directly
interface LCRL with automata synthesis tools such as OWL [32]; (2) link LCRL with
other model checking tools such as PRISM [33] and Storm [27]; and (3) embed
more RL algorithms for policy synthesis, so that we can tackle policy synthesis
problems for more challenging environments. In the longer term, we plan to
extend LCRL such that (1) it will be able to handle other forms of temporal
logic, e.g., signal temporal logic; and (2) it will have a graphical user-interface
for the ease of interaction.
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Abstract. We overview LN, a novel solver introduced in the LINE soft-
ware package to analyze layered queueing network (LQN) models. The
novelty of the LN solver lies in its capability to analyze LQNs with a user-
defined combination of solution paradigms, including discrete-event and
stochastic simulation, continuous-time Markov chain analysis (CTMC),
normalizing constant evaluation (NC), matrix analytic methods (MAM),
mean-field approximations (FLUID), and mean-value analysis (MVA).
Being parametric in the solver used for each LQN layer, LN as a whole
enables the efficient computation of advanced performance metrics such
as marginal and joint state probabilities, response and passage time dis-
tributions, and transient measures, leveraging individual strengths of the
supported solution paradigms. We discuss in particular recent develop-
ments added to NC, the default layer solver of LN, which significantly
improve the solution of queueing network models obtained using loose
layering of the LQN.

Keywords: Layered queueing networks · Computational algorithms ·
Class switching · Performance measures

1 Introduction

LINE1 is an open-source software package for analyzing extended queueing net-
work models [9]. The package implements several tens of solution algorithms
grouped into solvers, each embodying a specific paradigm for queueing analysis,
either simulation-based or analytical (CTMC, NC, MAM, FLUID, MVA). In
this paper, we present the LN solver available within the LINE suite version 2.0,
which adds a capability to analyze LQNs, a class of extended queueing networks
featuring simultaneous resource possession. LN is the first LQN meta-solver,
i.e., it offers the flexibility to parametrically choose any of the aforementioned
paradigms to evaluate individual layers that compose an LQN. This feature
greatly extends the scope of the original LQN solver available in the first version
of LINE [28], which was supporting the solution of each layer based on mean-field

1 http://line-solver.sf.net/.
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approximations only. The present paper is the first one to review LQN analysis
methods available in the LINE 2.0.x releases.

LINE is open sourced under a permissive BSD-3-Clause license. It is mainly
developed in MATLAB, with a few components coded in Java for computational
efficiency. A royalty-free Docker image built on the MATLAB compiler runtime
is also made available so that end users can run the tool as a service with-
out licensing costs. Some solution methods are implemented based on external
solvers that include JMT [2], LQNS [15], BuTools [19], KPC-Toolbox [12], and
Q-MAM [3]. In essence, LINE acts as an integration point for multiple queueing
analysis tools, providing a common model specification language for their joint
use along with its native solvers. For example, an LQN may be analyzed via
LQNS for a fast solution, and the result then verified using a slower simulation-
based trace-driven execution of the LN solver. This is especially useful in research
studies, to detect bugs and compare efficiency of alternative solution methods.
JMT is used to visualize models through automated model-to-model transfor-
mation and for simulation-based analysis [9]. Besides, LINE is complementary to
other efforts to broaden the availability of queueing network algorithms for per-
formance evaluation educators and practitioners, such as Octave queueing [23]
and PDQ [18]. Compared to these, LINE adds several advanced algorithms not
available in existing software packages.

Related Work. State-of-the-art solvers specific to LQNs include for example
LQNS [15] and DiffLQN [33,34]. LQNS is an established solver with a long record
of application to real-world software engineering case studies. At heart, the tool
applies to the LQN layers approximate mean-value analysis for extended queue-
ing network models [15]. LQN analysis using GreatSPN [1] is also supported via
its petrirsrvn tool.

DiffLQN is instead a solver that is based on the mean-field approximation the-
ory developed in the context of PEPA models to scalably analyze LQNs [33,34].
The mean-field fluid paradigm is particularly suited to the solution of large
models, as it becomes asymptotically exact in layers with multi-server FCFS
stations once the number of jobs and servers grows large in a fixed ratio. Subse-
quent work on mean-field approximations has further generalized the fluid solu-
tions to processor sharing (PS) stations, class switching, random environments
and response time percentiles [28], differentiated service weights [38], multi-class
FCFS approximations [9], and mixed models [30].

LN is built around the experience of these LQN solvers, integrating many of
the approximate MVA and fluid methods proven effective in the above studies.
In addition, it enables the analysis of LQNs using solution paradigms that are
uncommon for LQNs, such as continuous-time Markov chains, matrix analytic
methods, and normalizing constant evaluation techniques, all of which are not
available in existing solvers. As we show later, these paradigms are helpful in
computing several LQN metrics that are difficult or impossible to obtain with
mean-value analysis or mean-field fluid approximations.

Theoretical Contributions. In developing the LN solver, we have advanced the
theory of product-form queueing networks for models consisting of a single
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infinite-server node and m replicated queueing stations (i.e., having identical
service demands in every class). Each station offers multi-class service, accord-
ing to per-class service time distributions that are possibly load-dependent. We
shall refer to such models as homogeneous layers, since they naturally arise from
a certain LQN decomposition style known as loose layering [16, §3.2], that can
be used to analyze arbitrary LQNs. The main theoretical contributions of this
paper, are as follows:

– We develop a Gaussian quadrature method for approximating the normalizing
constants of homogeneous layers, which leads to a fast computation of their
associated performance metrics. By controlling the order of the quadrature,
these methods can trade accuracy for speed, while retaining linear worst-case
complexity in the total population size.

– We propose a method of moments algorithm for exactly solving homoge-
neous layers in linear time with respect to the total population size when
the queueing stations have a single server. We show its ability to handle
multi-class models with thousands of jobs in a few milliseconds. As opposed
to existing methods such as MoM [7] and CoMoM [6] that can theoretically
achieve linear complexity, the proposed technique is the first one that real-
izes this in concrete implementations by avoiding the use of exact arithmetic,
which introduces overheads up to about log-linear in the total population
size [6,7]. Moreover, it does so without solving systems of linear equations usu-
ally appearing in methods of moment algorithms. The result provides efficient
approximations for more complex networks with multi-server stations [11,31]
and for non-product-form models.

– We derive a related method for marginal probability computations in homo-
geneous layers featuring quadratic complexity in the total population size.
This method also does not require solving systems of linear equations.

We illustrate the application of the above methods to LN and exemplify the
other features of the solvers through case studies. In particular, we demonstrate
the ability of LN, as a meta-solver, to study performance metrics that cannot
be easily analyzed with other LQN solvers, for example integrated models of
queueing and caching.

The rest of the paper is organized as follows. Section 2 describes the model-
ing formalism supported by the LN solver. The overall solution approach and
advanced features unique to LN are discussed in Sect. 3. Section 4 elaborates
novel solution algorithms offered by the solver. Some case studies are presented
in Sect. 5 to illustrate the distinguishing features of LN. Finally, Sect. 6 is ded-
icated to the conclusions. Proofs of the solution algorithms are given in the
Appendix together with an overview of the software architecture of LN.

2 LQN Formalism

LINE offers exact, approximate, asymptotic and simulation-based analysis of
open, closed, and mixed multi-class queueing network models. In these models,
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Fig. 1. Example of an LQN model.

jobs are probabilistically routed across a set of nodes, usually queueing sta-
tions, where they receive service, typically subject to contention by other jobs.
Each job belongs to a class, i.e., a type that defines its service, routing, and
arrival characteristics at each node. LINE also supports extensions commonly
required in applications such as class switching, non-exponential service times,
load dependence, and priorities. The problem is to obtain station and system per-
formance measures such as average queue lengths, utilizations, response times,
and throughputs/arrival rates.

Among the most feature-rich extended queueing network models is the class
of layered queueing networks (LQNs), which has found broad application in soft-
ware performance engineering [15]. We point the reader to [35] for a comprehen-
sive introduction to LQNs and discuss here only the essential concepts. In an LQN,
job visits to the system are modeled as directed acyclic graphs that invoke entries
exposed by tasks running on host processors. A workflow of one or more activities
(i.e., service phases) is executed at each invocation of an entry. This workflow is
called the activity graph bound to the entry. Within it, an activity may issue a
synchronous call to an entry, while keeping a server in the task blocked, leading
to simultaneous resource possession. Asynchronous calls are also possible, which
behave similarly to job movements in ordinary queueing networks.

Figure 1 shows an example that contains all the basic elements of LQN mod-
els: tasks, host processors, entries, and activities. Tasks are depicted as stacked
parallelograms and their multiplicities are indicated within curly brackets. A task
runs on a single processor (e.g., P1), which is represented by a circle. Specific
services provided by a task are called entries and drawn as smaller parallelo-
grams inside that task. Each rectangle denotes a particular activity performed
during the execution of an entry. The number between square brackets specifies
the service demand of the activity (e.g., 1.6 for activity A1). Workloads in LQNs
are generated by a special task termed the reference task, e.g., tasks T1 and T2
in Fig. 1 which model two classes of users with 3 and 2 jobs each and both call
entry E3 of task T3.

Extensive prior work in the area has shown that an LQN can be accurately
solved by iteratively evaluating a collection of ordinary mixed queueing networks,
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obtained via decomposition, until reaching a fixed-point solution. Each decom-
posed sub-model conceptually represents a layer of the client-server system being
modeled [29]. These models interact, in the sense that the outputs parameters of
one model (e.g., its response times) may form the input parameters of another
model (e.g., its service times). In LINE, a collection of interactive models is
referred to as an ensemble, which is not restricted to LQNs and can encompass
other formalisms such as caching models [17]. For this reason, LN may be seen as
a general-purpose layered stochastic network solver.

3 LQN Decomposition and Iterative Solution

This section describes the algorithmic methods underpinning the LN solver. We
particularly focus on the strategy to divide a given LQN model into multiple lay-
ers and the default, though customizable, solution paradigm applied to analyzing
each resultant layer.

3.1 Layering Strategy

Prior art has extensively investigated layering strategies, i.e., methods for gen-
erating a decomposition of an LQN model into an ensemble of ordinary queue-
ing networks on which solution algorithms can be instantiated. In the current
release, the LN solver adopts loose layering [16, §3.2], which ensures that each
layer includes replicated queueing stations (i.e., an LQN task or host processor)
coupled with an infinite-server node to model the inter-request times of clients.
An exception to this rule is that identical replicas of the queueing station are
also generated by LN in the same layer. For example, the model in Fig. 1 fea-
tures under the loose layering style 4 layers: T1→ P1, T2→P2, T3→P3, and
(T1,T2)→T3, where → indicates a client-server relationship.

The rationale for choosing loose layering as the default strategy is that, for
a total of m queueing stations, many queueing network analysis methods are
computationally more efficient in solving m small models with a single (possi-
bly replicated) queueing station rather than a monolithic model comprising m
queueing stations. For example, a CTMC solver may be fairly scalable for single
queueing systems, but easily incurs exponential state space explosion for queue-
ing networks. A drawback of loose layering is that heterogeneous load balancing
or fork/join sections are challenging to model as the participating queueing sta-
tions may be scattered across different layers.

Solutions of interactive models in an ensemble are reconciled through fixed-
point iterations until performance metrics across the layers are consistent within
a predefined numerical tolerance. To this end, the LQNS solver adopts an “eleva-
tor” algorithm whereby the graph that describes the client-server relationships
is traversed top down and bottom up in an alternate fashion after topological
sorting, thus cyclically inverting the order in which the layers are analyzed [16].
The same algorithm is implemented in LN to iterate over all the models within
an ensemble.
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Fig. 2. A layer of the LQN model with replication m = 2 and multiplicity c = 3.

3.2 Homogeneous Layers

Let us introduce the notation for individual LQN layers obtained by LN through
loose layering. These are closed queueing networks with m identical c-server
queues and a delay (i.e., infinite-server) node. Jobs in class r have service demand
Dr at the multi-server station and think time Zr at the infinite-server station.

Service distributions are assumed to be of phase type in LN. They include
special cases such as the Disabled distribution, which allows users to forbid
the routing of a class to a station for debugging purposes, and the Immediate
distribution, which characterizes negligible processing that takes zero time. The
handling of the latter is solver-dependent. For example, LINE’s CTMC solver
applies stochastic complementation to remove the corresponding transitions in
an exact fashion [25].

We now outline the mapping between LQN abstractions and product-form
models. Under loose layering, a layer l consists of a queueing network with m
identical queueing stations, modeling servers in that layer, and a single infinite-
server station, modeling the clients. Thus, m denotes the replication factor of
the server. We shall refer to such a queueing network as a homogeneous model.
The number of servers in the queueing stations is equal to the multiplicity c
of the task or host processor acting as servers in that layer. Figure 2 gives the
model of a layer for the LQN where T3 acts as server.

Clients issuing synchronous calls to layer l are represented as jobs initialized
in a reference class at the delay. Subsequently, these jobs cycle between the
delay and the queues, switching class to represent the specific tasks, entries, and
activities that the clients visit (or invoke) during execution. Parameters such as
think times and service demands are iteratively updated as per the method of
layers [29]. For example, if certain sections of the client workflow require access
to another layer l′ �= l, the corresponding residence times are modeled as think
times that already incorporate the queueing contention in layer l′. Moreover,
the probability of a client executing a particular entry is set proportional to the
last throughput of this entry. Unlike LQNS, LN updates routing probabilities
at each iteration, because not all solution paradigms are visit-based.

Clients that send asynchronous calls to layer l are instead represented as open
Poisson arrival streams. Coexistence of open and closed classes therefore gives
rise to mixed models, which can be reduced to closed ones by demand scaling [5].

Service classes are mapped to a set of R chains, obtained by computing the
strongly connected components of the routing matrix. Each chain j represents
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a client task to the layer, and has an associated number of jobs Nj that are
initialized at the infinite-server station, starting in the chain reference class.
Note that this does not loses information as it is possible to exactly recover the
per-class performance metrics from the per-chain ones [5,36].

For ease of presentation, since a multi-chain model can always be reduced
to a corresponding multi-class model with R classes, one per chain, we shall use
the terms “chain” and “class” interchangeably.

3.3 Performance Metrics

Performance metric computation is solver-dependent. We focus here on the
default solver used by LN, which is LINE’s normalizing constant (NC) solver.
We assume for simplicity that scheduling leads to product-form models and
single-server stations (c = 1). Approximations to handle other cases, such as
multi-class FCFS, are discussed later in the paper.

Let N = (N1, . . . , NR) be the population vector for a layer, |N | =
∑R

r=1 Nr,
and recall that G(m,N) is the normalizing constant of the state probabilities
for the associated product-form model, which consists of m identical queueing
stations and an infinite-server node. Denote by 1r a row vector of all zeros with
a one in the r-th dimension. We may exploit the following relations for the mean
class-r throughput Xr(N) and for the mean class-r queue length Qr(N) at any
of the identical queueing stations:

Xr(N) =
G(m,N − 1r)

G(m,N)
Qr(N) = Dr

G(m + 1, N − 1r)
G(m,N)

The system throughput Xr(N) is assumed to be computed at a reference station
for which we set the mean number of visits of class r to unity. Little’s law may
then be combined with the previous relations to obtain other metrics such as
mean response times and resource utilizations [14,22].

Before discussing the novel algorithms integrated in LN to compute these
metrics, we remark that specific simplifications arise in evaluating normalizing
constants for homogeneous layers due to the structure of the product-form solu-
tions. At first, if either Zr = 0 ∧ Dr = 0 or Nr = 0 holds for a class r, then this
class can be removed from the model as it does not contribute to the normalizing
constant. Define RD as the set of remaining classes for which Dr = 0. We note
that the contribution of such classes to G(m,N) is given exactly by a factor∏

s∈RD
ZNs
s /Ns!. Hence, every model can be reduced without loss of generality

to one where all classes have Dr > 0, which we will assume throughout.

3.4 Advanced LN Features

We now briefly overview advanced features and LQN extensions supported by
LN, which are to the best of our knowledge unique to this solver.

Caching Layers. We have made an extension to the LQN formalism, enabling the
inclusion of cache nodes. When visiting a cache, a job reads an item according to
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some probability, resulting in either a cache hit or a cache miss. The subsequent
processing activities can depend on whether the read outcome was a hit or
miss. Cache reads also activate a replacement policy (e.g., random replacement,
FIFO, LRU) to evict infrequently used items. The LN solver features the ability
to define caches in an LQN using specialized tasks and entries named CacheTask
and ItemEntry, which capture the data access requirements of jobs traversing the
LQN. More details can be found in [17] and in Sect. 5.

Multi-chain Joint and Marginal Probabilities. The LN solver allows the com-
putation of joint and marginal state probabilities in each layer, leveraging the
ability of the NC solver to evaluate normalizing constants. This makes it possible
to obtain probabilistic measures, which may be useful for example in parameter
inference and buffer overflow analysis.

Multi-chain Transient Analysis. With the FLUID solver, one can compute tran-
sient metrics and passage time distributions in each layer. This solver performs
mean-field approximations for PS nodes based on the theory presented in [28].
As mentioned before, FCFS stations are also treated as PS nodes with service
demands corrected through a hybrid M/G/k-diffusion approximation [9].

Response Time Distributions. Recently, we have demonstrated the possibility to
couple LN with mixture density networks (MDNs) for response time distribution
analysis [27]. The MDN-based approach considerably increases the precision of
computing response time percentiles for LQNs compared to analytical approxi-
mations, which are notoriously difficult for multi-chain networks.

4 Novel Algorithms

LN’s default layer solver, NC, implements state-of-the-art exact and approxi-
mate methods for normalizing constant analysis of mixed queueing networks.
Historically, such methods were replaced in the early years of performance eval-
uation by exact and approximate MVA algorithms to overcome intrinsic numer-
ical instabilities arising from the use of normalizing constants. However, recently
developed techniques for computing normalizing constants exhibit superior com-
plexity to their corresponding MVA counterparts, prompting a reconsideration
of these methods, as we discuss throughout.

Particularly in the context of loose layering, we show that the normalizing
constant numerical instabilities can be circumvented through appropriate scal-
ings or log-sum-exp approximations [4], and propose several exact and asymp-
totic solution methods for queueing networks, that are not available in the tra-
ditional MVA framework.

4.1 Solving Homogeneous Layers with the CoMoM Algorithm

Recall that mixed queueing network models can be mapped with suitable trans-
formation to a model consisting only of closed classes [5, §8.2.3]. On this basis,
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LN analyzes layers by default using the NC solver, which implements the Class-
oriented Method of Moments (CoMoM) algorithm proposed in [6]. For a model
with N jobs belonging to a fixed number of R classes, CoMoM implementations
require approximately log-quadratic time and log-linear space in |N | to obtain
an exact solution, thus being more scalable than the exact MVA algorithms. The
latter have a time and space complexity of O(|N |R). Moreover, contrary to other
moment-based methods, CoMoM can avoid degeneracies when the model con-
sists of one or more replicated queueing stations, as in the case of loose layering.
An equivalent result is not currently available for MVA. Among the complica-
tions, it is worth noting that MVA expressions such as the celebrated arrival
theorem are bi-linear in their defining terms, mean queue lengths and mean
throughputs, yielding systems of non-linear equations that are not as tractable
as CoMoM’s linear matrix recurrence relation.

Enhancements. LN evolves CoMoM by developing explicit solutions to its system
of linear equations for homogeneous models. Such solutions are applicable to
models with an arbitrary number of classes R. For a vector v with d dimensions,
let |v| =

∑d
i=1 vi and define diag(v) as a diagonal matrix with the elements of v

placed on the main diagonal. We give the following exact result.

Theorem 1. Consider a product-form queueing network model with R classes,
having m identical single-server queueing stations with service demand Dr > 0
in class r and an infinite-server node with think time Zr in class r. Define the
collection of normalizing constants

g(m,N) =
[
G(m,N) G(m,N − 11) · · · G(m,N − 1R−1)

]
.

and the basis
Λ(N) =

[
g(m + 1, N) g(m,N)

]T

Then the following matrix recurrence relation holds

Λ(N) = (F 1,R + N−1
R F 2,R)Λ(N − 1R) (1)

in which

F 1,R =
[
DRE1,1 0

0 0

]

F 2,R =
[
mDRS ZRS
mDRI ZRI

]

S = −m−1

[ −|Ñ | − m Z̃T

−diag(D̃)−1Ñ diag(D̃)−1 diag(Z̃)

]

where E1,1 is of order R with a single nonzero entry in position (1, 1), Ñ =
(N1, . . . , NR−1)T , D̃ = (D1, . . . , DR−1)T , Z̃ = (Z1, . . . , ZR−1)T , I is the identity
matrix of order R, and 0 is the zero matrix of order R.

A proof of the theorem is in the Appendix A. Note in particular that the knowl-
edge of Λ(N) and Λ(N − 1R) is sufficient to determine the expression of all the
mean performance metrics introduced in Sect. 3.3.

Termination conditions for the matrix recurrence relation (1) are obtained
noting that G(·, 0) = 1 and, whenever any element of N is negative, G(·, N) = 0.
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Table 1. Relative error and runtime upon computing logG(m,N) exactly.

Classes Total jobs Method Runtime [s]

8 40 Convolution 0.0033

8 40 CoMoM (original) 0.0047

8 40 CoMoM (enhanced) 0.0014

8 400 Convolution 1.4201

8 400 CoMoM (original) 1.1433

8 400 CoMoM (enhanced) 0.0016

8 4000 Convolution Memory exhausted

8 4000 CoMoM (original) Timeout

8 4000 CoMoM (enhanced) 0.0017

8 106 Convolution Memory exhausted

8 106 CoMoM (original) Timeout

8 106 CoMoM (enhanced) 0.2591

Numerical Stabilization. In principle, to prevent floating-point range exceptions,
the proposed solution can either be computed using exact or multi-precision
arithmetic. In practice, we have observed that scaling at each step the vector
Λ(N) so that |Λ(N)| = 1, and removing the effect of such scaling only in the final
result, is sufficient to sanitize numerical problems in practical uses, except for
negligible numerical fluctuations. This makes the theoretical and implementation
complexity identical and, empirically, much faster than using exact arithmetic.

To illustrate this, we consider a challenging model with R = 8 classes, where
m = 1, Zr = r and Dr = 10−r, r = 1, . . . , R. Jobs are split equally across the
classes. The exponential spacing of the demands and the large population make
the analysis numerically challenging. We set a timeout of 10 s to solve a model.
The original CoMoM leverages exact arithmetic in Java, whereas the enhanced
method implements in MATLAB the recursion we have proposed in Theorem 1
using standard floating-point arithmetic. Table 1 shows numerical results, which
corroborate the high scalability of the enhanced CoMoM for homogeneous mod-
els. Results are obtained on an AMD Ryzen 7 2700X Processor with 64 GB of
RAM. Note that at population |N | = 4000 convolution becomes unviable due
to excessive memory requirements, but since the normalizing constant reaches
order 10−602 it would have anyway exceeded the floating-point range during
execution. Scaling methods for Convolution have been proposed in [21], however
it is not difficult in our experience to generate examples of large models where
this technique still cannot prevent floating-point range exceptions. Instead, the
enhanced CoMoM can also solve the largest model with 106 jobs, agreeing within
the first 11 digits of log G(m,N) with the results of the logistic expansion (LE)
proposed in [8], which is asymptotically exact. We have also observed in all
cases that at least the first 6-digits of the mean per-class throughputs com-
puted by the enhanced CoMoM were identical to the ones obtained by the AQL
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approximate MVA method [37]. As no other exact method can reach this model
scale, it is difficult to rigorously verify exactness, yet the result suggests no, or
at least negligible, presence of error accumulation.

4.2 Solving Homogeneous Layers with Gaussian Quadratures

As illustrated in the last numerical example, the CoMoM method has slightly
increasing time requirements to analyze a single layer as the population grows.
This also occurs as R increases, since the CoMoM basis has 2R elements. While
tens or hundreds of milliseconds may be negligible for a single model, LQNs are
solved iteratively and can feature many layers, hence solution times compound
quickly. In large models, it is therefore useful to trade accuracy for speed. LN uses
to this aim quadrature methods for integral forms of the normalizing constant.

A simple expression for the normalizing constant is given by the McKenna-
Mitra integral form [24]. This is in general a multidimensional integral, with one
dimension for each queueing station in the model. Thus, in a homogeneous model
for a layer one would expect a m-dimensional integral. We show however that in
homogeneous models this integral form takes the following simpler expression.

Theorem 2. Under the same assumptions of Theorem 1, the normalizing con-
stant of state probabilities for the queueing network model admits the following
integral form

G(m,N) =
1

(m − 1)!
∏R

r=1 Nr!

∫ +∞

u=0

e−uum−1
R∏

r=1

(Zr + Dru)Nrdu (2)

A proof is given in Appendix C. The main difficulty associated with evaluating
G(m,N) directly is that (2) is prone to numerical difficulties. This is because
quadratures do not operate directly in the log domain and are therefore numer-
ically sensitive to the magnitude of the factors under the integration sign, one
being an exponentially decaying function (e−u), the other being a polynomial of
high order |N |+m−1. A novel strategy developed in the NC solver to evaluate (2)
is to use Gaussian quadrature methods coupled with the log-sum-exp trick [4].
We have implemented both Gauss-Legendre and Gauss-Laguerre quadratures for
(2), finding them empirically better suited at evaluating normalizing constants
than MATLAB’s default integral method and overall the best evaluation methods
unless job populations are asymptotically large. We point to Appendix B for a
brief introduction of both Gauss-Legendre and Gauss-Laguerre quadratures.

Generally, Gauss-Laguerre quadrature enables increasingly precise evalua-
tions of (2) for growing values of its order K, however it also faces numerical
difficulties for large number of jobs N , for which the quadrature weights and
the integrand can display vastly different magnitudes. In such cases, we evaluate
instead log G(m,N) in the quadrature summation by applying to the expression
the log-sum-exp method, using in particular the implementation described in [4].
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Numerical Example. We consider the same models considered for CoMoM and
numerically evaluate the integral form (2). MATLAB’s integral method is run
with an absolute tolerance of 10−12. Node and weights for the Gaussian quadra-
tures are precomputed offline: due to numerical instability we can reach for the
Gauss-Laguerre method up to order 300, while for Gauss-Legendre we could pre-
compute weights up to order 20000 in the range u ∈ [0, 106]. We also include in
the test the LE asymptotic expansion implemented in NC, which is a scalable
method for models with few stations and many classes. The method applies a
Laplace’s approximation to the simplex integral form for the normalizing con-
stant in [8]. Asymptotically the LE results are tight to the exact solutions.

Table 2. Relative error and runtime upon approximating logG(m,N).

Classes Total jobs Method Rel. error [%] Runtime [s]

8 40 MATLAB’s integral 0.0000 0.0006

8 40 Gauss-Legendre 0.0000 0.0004

8 40 Gauss-Laguerre 0.0000 0.0010

8 40 Logistic expansion -0.1249 0.0012

8 400 MATLAB’s integral 0.0144 0.0005

8 400 Gauss-Legendre -0.0001 0.0006

8 400 Gauss-Laguerre -0.0001 0.0010

8 400 Logistic expansion 0.0033 0.0013

8 4000 MATLAB’s integral Unstable 0.0008

8 4000 Gauss-Legendre -0.0006 0.0021

8 4000 Gauss-Laguerre -0.0006 0.0010

8 4000 Logistic expansion 0.0003 0.0013

8 106 MATLAB’s integral Unstable 0.0008

8 106 Gauss-Legendre -0.0592 0.0095

8 106 Gauss-Laguerre 0.2508 0.0011

8 106 Logistic expansion 0.0000 0.0013

The results are given in Table 2. Overall, we see that Gauss-Legendre is typ-
ically sufficient except in large asymptotic models where LE solutions are closer
to optimal. The lower performance of Gauss-Laguerre is interpreted as being due
to the restriction of using up to 300 nodes and weights in the interpolation due
to numerical instability in their computation. Since Gauss-Legendre quadratures
of order K = 2n−1 are exact for polynomials up to order n, and the normalizing
constant is itself the integral of a polynomial of order n = |N |+m− 1, it is pos-
sible to use the K = 2|N |+2m−3 order as a threshold for when the quadrature
will cease to be exact and switch afterwards to LE. For example, with Gaus-
sian integration of order n = 300 and m = 1 the solution would switch to LE
for |N | ≥ 6000. Note that, on top of this, approximation errors are incurred in
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Table 2 by the log-sum-exp trick used for numerical stabilization, which explains
why small errors are incurred by Gauss-Legendre and Gauss-Laguerre also in
cases where the quadrature should be exact. Another source of errors is that
Gauss-Legendre requires a finite interval and has therefore been truncated to
the range u ∈ [0, 106], whereas the normalizing constant integral is defined in
the range u ∈ [0,∞].

Summarizing, the numerical analysis reveals that a combination of Gauss-
Legendre quadrature, for models with tens or hundreds of jobs, and LE, for
larger models, provides an effective way to approximate homogeneous layers.

4.3 Computing Marginal Probabilities in Homogeneous Layers

Using normalizing constants instead of MVA simplifies the calculation of proba-
bilistic measures on each layer, as illustrated in this section. Thanks to loose lay-
ering, specialized results can be derived to allow simple computation of marginal
probabilities in a layer. We focus here in particular on the marginal probability
πN (m,n) that n jobs are queueing or receiving services at any of the m identical
queueing stations. This is also equal to the probability that πN (m, |N | −n) jobs
are waiting at the infinite server station.

Computing πN (m,n) is in general a difficult problem, since with R classes
there is a combinatorially-large number of job mixes that result in the same total
job population n at the m queueing nodes. In this case, NC leverages a novel
result, developed in the next theorem, which obtains marginal probabilities in
O(|N |2) time and O(|N |) space in homogeneous layers. For m = 1, this improves
over MVA methods that require instead O(|N |R) time and space, while matching
the complexity of CoMoM’s extension to marginal probabilities [6, §VII], but
without requiring the solution of a system of linear equations as CoMoM does for
marginal probabilities. Another novelty is that, unlike CoMoM, the expression
below applies also to homogeneous models with m > 1.

Theorem 3. Under the same assumptions of Theorem 1, let πN (m, k) be the
marginal probability that the m queueing stations have k resident jobs in total,
k = 0, . . . , |N |. Define the following basis of unnormalized probabilities:

Π(N) = G(m,N)
[
πN (m, |N |), . . . , πN (m, 0)

]T

with Π(0) = (0, . . . , 0, 1)T . Then G(m,N) = |Π(N)| and the following exact
recurrence relation holds

Π(N) = N−1
R TRΠ(N − 1R) (3)

where

TR =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ZR (|N | + m − 1)Dr 0 · · · 0
0 ZR (|N | + m − 2)Dr · · · 0
...

...
...

. . .
...

0 0 0 ZR (m − 1)Dr

0 0 0 0 ZR

⎤

⎥
⎥
⎥
⎥
⎥
⎦
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A proof of the result is given in Appendix D. While the result is exact, this little
says about its numerical stability. We have verified with numerical examples,
using the load-dependent convolution algorithm, that the formulas in Theorem 3
match numerically the exact solutions, while avoiding exponential time and space
requirements as the number of classes grows. In the tests we observe that the
method is applicable using floating-point arithmetic only to models with up
to, approximately, |N | = 500 jobs, provided that, without loss of generality [21],
demands are rescaled beforehand to Dr = 1, r = 1, . . . , R. Larger models require
instead the use of exact or multi-precision arithmetic to prevent floating-point
range exceptions, which heightens complexity by a log-linear factor in both time
and space [7].

4.4 Multi-server Nodes, Load-Dependence and Multi-class FCFS

We here briefly discuss other strategies used in LN to accelerate the evalu-
ation and cope with extended features. In cases where the scheduling policy
does not yield a product-form, suitable approximations are coupled with the
proposed algorithms to approximate the solution. In particular, first-come first-
served (FCFS) multi-class stations are mapped to PS stations with demands
iteratively adjusted with an interpolation that depends on a hybrid M/G/k-
diffusion approximation, as proposed in [9]. We point to the original paper for
results showing high accuracy.
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Fig. 3. Some meta-solver capabilities of LINE in analyzing LQN models.

Seidmann’s approximation is used by default in NC to approximate FCFS
and PS stations with multiple servers [31]. This is a simple method that replaces
a c-server station with demands Dr with a sub-network consisting of a single-
server queueing station having demands Dr/c and infinite server station having
demands Dr(c − 1)/c. Under this transformation, as in the original system, a
class-r job can traverse the two stations in Dr time overall when these are found
both empty upon arrival. Moreover, the new infinite server station delay can be
exactly aggregated within the pre-existing infinite server think time, so that the
model retains overall the same number of stations.
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Load-dependent modeling methods are also available in LINE to evaluate
individual layers, which rely on the exact normalizing constant methods recently
proposed in [11]. In essence, the latter factorize the normalizing constant of a
load-dependent model into solving a single-server queueing network and scaling
the resultant mean performance metrics by the normalizing constant of a related
load-dependent model defined on a reduced state space. The work shows that
this can be done either exactly or approximately, based on mean-value analysis
(RD method) or a novel integral form of the normalizing constant (Norlund-Rice
form). Although these methods may also be applicable to multi-server station
analysis, Seidmann’s approximation often suffices to achieve good accuracy while
retaining the benefit of reducing the problem to a simple single-server model on
which the CoMoM and Gaussian integration methods both apply.

5 Case Studies

5.1 Meta-solver Capabilities

The most distinctive feature of the LN solver is the meta-solver capability. Differ-
ent solution paradigms can be used throughout individual iterations and across
layers. Moreover, once the iteration has reached a fixed-point, multiple paradigms
can be applied to obtain the metrics of interest. We here focus on the latter case.

We illustrate this feature on the example shown in Fig. 1, which describes a
scenario where two job classes T1 and T2 require services from a server T3. There
are 3 and 2 jobs for class1 and class2 respectively, and T3 is a FCFS service
station with multiplicity c = 2. We consider transient analysis, for which LINE
provides multiple solver options. Figure 3a shows the transient average queue
length for the two job classes, representing T1 and T2 as clients, for the layer
where T3 is modeled as a server. The plot shows a tight matching between the
figures given by both CTMC and FLUID solvers. We can observe that the system
reaches steady-state at around t = 16. In the figure, FLUID solver looks very
accurate for this non-saturated single queue scenario but the accuracy depends
on load and number of servers.

We also show meta-solver capabilities on steady-state probabilities. Figure 3b
displays the joint steady-state probabilities calculated by NC and CTMC solvers
for the whole state space at T3, given the service demand of A3 as 50. The results
from both solvers are almost the same, but the speed of NC solver is much faster.
In this example, the calculation of each probability takes CTMC solver around
4 s while the NC solver takes less than 50 ms.

Beyond joint probabilities, LINE allows us to compute response time per-
centiles with the FLUID and CTMC solvers. In the model, the operations of
T3 are executed by the processor P3, here we use both solvers the obtain the
response time distribution at the layer where T3 acts as client to P3. Results
are shown in Fig. 3c, demonstrating agreement of the solutions.
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Fig. 4. Example of a multi-formalism model containing a caching layer (middle task)

5.2 Multi-formalism Capabilities

LINE can analyze, analytically or via simulation, models with integrated queue-
ing and caching formalisms. LN can therefore also solve LQNs with caching,
such as the three-layer model in Fig. 4. The host processors P1, Pc, P2 adopt
the processor sharing scheduling policy. The number of users is represented by
the multiplicity of the task T1 and the number of jobs is represented by the
multiplicity of the task T2 and the cache task CT. As per Sect. 3.4, a cache task
is a novel LQN element introduced by LN to describe data item reads from a
cache, with different activities occurring based on whether a cache hit or a cache
miss occurred. This is modeled by means of state-dependent class-switching.

In the example under study, items access probabilities obey a discrete uni-
form distribution and the cache is configured with a random replacement (RR)
strategy. Arbitrary access probability distributions may be configured in LN
and replacement strategies such as FIFO or LRU are supported. Jobs requested
from T1 retrieve the items in the cache task CT. If the required items are cached,
jobs will be processed by the hit activity with a probability of phit. Otherwise,
jobs will be transformed to the miss activity with a probability of pmiss and be
further processed by the task T2.

To solve an LQN model containing caching, LN first decomposes the entire
model into a group of layers, as illustrated in Sect. 3. For the layer without
cache nodes, the solutions are given in Sect. 4. On the other hand, for the layer
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that involves a cache node, LN additionally divides the layer into two sub-
models. In the upper sub-model, the cache node is isolated in an open model
with Poisson arrivals, as shown in Fig. 5a. In the lower sub-model, the delay and
the queueing station are contained in a closed queueing network with routing
probabilities dynamically obtained from the phit and pmiss values obtained at
the last iteration on the upper sub-model. More details can be found in [17].

For this model that combines both the queueing and caching stochastic for-
malisms, numerical results given by LINE are shown in Fig. 5. Figure 5b demon-
strates the miss probabilities against different number of items, which decrease
with the improvement of the cache capacity. Figure 5c compares the accuracy of
the throughput for cache solved by MVA and NC solver respectively. MVA ana-
lyzes caches by the fixed-point iteration method (FPI) proposed in [10], whereas
NC implements the normalizing constant asymptotics proposed in the same
paper. The solvers are both compared against an equivalent model constructed
with a JMT model using both queueing and Petri net formalisms, similar to
the validation model used in [17], but adapted to the example at hand. The
results indicate high accuracy of both MVA and NC in capturing the cache layer
throughput, which is in general a function of the cache hit ratio.

6 Conclusion

We have presented the LN solver, the first meta-solver for LQNs, introducing
new analysis methods for loose layering, in particular Gaussian integrals and a
stabilized version of the exact CoMoM [6] to efficiently analyze layers in mil-
liseconds. Case studies have shown the ability of the tool of combining several
formalisms and solution methods in LQN analysis.

Future work will focus on extending LN to broaden the support for extended
queueing models, such as fork-join networks and state-dependent queues.

Acknowledgments. LINE has been partially funded by the European Commission
grants FP7-318484 (MODAClouds), H2020-644869 (DICE), H2020-825040 (RADON),
and by the EPSRC grant EP/M009211/1 (OptiMAM).

A Proof of Theorem 1

For a homogeneous model, the CoMoM recurrence relation may be written as

AΛ(N) = BΛ(N − 1R)

where

A =
[
A1,1 A1,2

0 A2,2

]

B =
[
B1,1 0
B2,1 B2,2

]

Let 0I,J indicate a block of zeros of size I × J . Defining D̃ = (D1, . . . , DR)T , we
have

A1,1 =
[

1 −D̃T

0R−1,1 −m diag(D̃)

]

A1,2 =
[−1 01,R−1

Ñ −diag(Z̃)

]

A2,2 = NRI
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B1,1 = DRE1,1 B2,1 = mDRI B2,2 = ZRI

The inverse of the block upper triagonal matrix A is now computed as

A−1 =
[
A−1

1,1 SA−1
2,2

0R−1,1 A−1
2,2

]

with S = −A−1
1,1A1,2. Observe first that

A−1
1,1 =

[
1 −m−1eT

0R−1,1 −m−1 diag(D̃)−1

]

A−1
2,2 = N−1

R I

where eT = D̃T diag(D̃)−1 = (1, . . . , 1). Thus

S = −
[

1 −m−1eT

0R−1,1 −m−1 diag(D̃)−1

] [−1 01,R−1

Ñ −diag(Z̃)

]

= −m−1

[ −|Ñ | − m Z̃T

−diag(D̃)−1Ñ diag(D̃)−1 diag(Z̃)

]

Note that A2,2 is the only block that depends on NR. We can therefore write

A−1B = F 1,R + N−1
R F 2,R

where

F 1,R =
[
A−1

1,1 0
0 0

] [
DRE1,1 0
mDRI ZRI

]

=
[
DRE1,1 0

0 0

]

F 2,R =
[
0 S
0 I

] [
DRE1,1 0
mDRI ZRI

]

=
[
mDRS ZRS
mDRI ZRI

]

B Gaussian Quadratures

A Gauss-Laguerre quadrature of order K evaluates exponentially-weighted inte-
grals by means of the approximation

∫ ∞

x=0

e−xf(x)dx ≈
K∑

k=1

wkf(xk) (4)

where xk denotes the k-th root of the Laguerre polynomial

LK(x) =
K∑

j=0

(
K

i

)
(−1)j

j!
xj

and with weights wk = xk

(
(k + 1)2 [Lk+1 (xk)]

2
)−1

.
Gauss-Legendre methods are similar but applicable to finite ranges [a, b].

Setting a = 0 and large b they can also help evaluating the normalizing constant.
Their main benefit is that nodes and weights do not incur the same floating-
point range exceptions as observed instead for Gauss-Laguerre quadratures of
large order. We point to [20] for further details on Gauss-Legendre methods.
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C Proof of Theorem 2

For a homogeneous model with m identical single-server stations, the McKenna-
Mitra integral takes the form

G(m,N) =
1

∏R
r=1 Nr!

∫ +∞

u1=0

· · ·
∫ +∞

um=0

e−(u1+...+um)h(u1 + . . . + um)du1 · · · dum

where h(u) =
∏R

r=1 (Zr + Dru)Nr . We note that the multidimensional integral
may be interpreted as computing E[h(U1 + . . . + Um)] for the i.i.d. exponential
random variables Ui ∼ Exp(1). The result then readily follows after noting that
U1 + . . . + Um is Erlang-m distributed with density f(u) = 1

(m−1)!u
m−1e−u.

D Proof of Theorem 3

Let the entries of Π(N) be indicated with π̃N (n), n = |N |, . . . , 0. A probabilistic
population constraint holds for homogeneous models with m = 1 [6, Thm. 6]

NRπ̃N (n) = ZRπ̃N−1R(n) + nDRπ̃N−1R(n − 1)

for all n = 1, . . . , |N | and where π̃N−1R(n − 1) = 0 if n = 0. With a load-
dependent queueing station (m = 1), the derivation in [6] generalizes with similar
passages to the following form

NRπ̃N (n) = ZRπ̃N−1R(n) + n
DR

μ(n)
π̃N−1R(n − 1) (5)

where μ(n) is the load-dependent scaling at the queueing station. Organizing (5)
in matrix form, we get (3)

TR =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ZR |N | DR

μ(|N |) 0 · · · 0

0 ZR (|N | − 1)
DR

μ(|N | − 1)
· · · 0

...
...

...
. . .

...

0 0 0 ZR
DR

μ(1)
0 0 0 0 ZR

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

As assumed, consider now an homogeneous layer, where there are m identical
load-independent single-server stations. The proof follows by noting that, if m >
1, the m queueing stations can be exactly replaced by a flow-equivalent server
station with identical D1,. . . , DR and [26]

μ(n) =
n

(n + m − 1)

The final expression for TR follows after plugging the above expression for μ(n).
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E Software Architecture Design

Figure 6 illustrates the key architectural elements of LINE, including the Net-
workStruct data structure, and the Network, NetworkSolver, LayeredNetwork, Ensem-
bleSolver and LayeredNetworkSolver classes.

NetworkStruct

proc
njobs
nservers
rt
chains
visits
isstation

Network

getStruct()

<<abstract>>
NetworkSolver

getAvgTable()
runAnalyzer

SolverCTMC

SolverNC
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*

Fig. 6. Key architectural elements of LINE.

The Network object summarizes the model characteristics and acts as its per-
sistence layer. The object is generated by the user either through a domain-
specific language offered by LINE [9] or via model-to-model transformations
from other formats (e.g., JMT’s XML [2], PMIF [32]). Besides the model speci-
fication, a Network object can cache the model state space, its initial state, and
retain information needed for the traffic equations in state-dependent models.

Each Network object is able to synthesize via the getStruct method a Net-
workStruct data structure. The latter includes key model parameters, such as
representations of service and arrival processes, job populations, and number of
servers, among others. In addition, the data structure includes the routing table,
the associated chains, and the average number of visits that each class pays to
each node. NetworkStruct also offers indexing functions, that allow for example
to differentiate between stations, where jobs can reside, and nodes, which are
elements of the network traversed with zero service time (e.g., a fork).

The NetworkSolver object encodes a solver type, of which the aforementioned
six LINE solvers are specific instances. The main role of this class is to ensure
consistent computation of performance results, adopting identical conventions
for reporting per-class and per-chain results to the end-user. Operational rela-
tionships are also applied by this object to derive certain performance metrics
from the ones returned by the solvers, e.g. arrival rates from throughputs [14].

Each NetworkSolver object is equipped with a getAvgTable method that returns
mean performance metrics for the model in a tabular format. The method invokes
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via the runAnalyzer method one of the solution methods offered by that solver,
which operates solely on the NetworkStruct data structure. Model transformations
that alter the model topology are conducted within runAnalyzer. An example is
tagging a job class, which is used in response time distribution analysis.

The EnsembleSolver specifies the life-cycle for an iterative solution method that
works on an ensemble of Network objects. This class allows to bind a Network-
Solver to each particular Network in the ensemble, applying consistently actions
before, in-between, and after each iteration, and verifying convergence. It also
harmonizes the presentation of ensemble-level results to the end-user. Besides
LN, the Env solver is another example of EnsembleSolver, wherein iteration is
used to analyze random environments [13].

The LN solver is a special instance of EnsembleSolver, operating on an ensem-
ble consisting of the LQN layers. The LayeredNetwork class encompasses the
objects that form an LQN, such as the Entry, Task, Host, and Activity classes.

The LayeredNetwork class offers a getEnsemble method that generates, and
stores within the LayeredNetwork object, the ensemble of Network models, each
mapping to a distinct LQN layer. Similarly to Network, this class also exposes a
getStruct method that builds a static data structure of the LQN parameters.

The LN solver, implemented in the SolverLN class, is specified parametrically
in terms of any of the LINE solvers, or a custom combination thereof. For exam-
ple, the end-user may require to use LINE’s simulators on layers that include
non-Markovian service distributions (e.g., Pareto) and MVA otherwise.
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Abstract. We present Eulero, a novel Java library enabling modeling
of complex workflows and evaluation of their end-to-end response time
Probability Density Function (PDF). Workflows consist of activities with
general (i.e., non-exponential) duration with bounded support, composed
through sequence, choice/merge, and split/join blocks, with unbalanced
split and join constructs that break the structure of well-formed nest-
ing. Eulero supports specification of workflows through structure trees,
a hierarchical representation enabling the workflow decomposition into
sub-workflows that can be efficiently analyzed in isolation. Eulero imple-
ments composition of the analysis results of these sub-workflows to pro-
vide a stochastically ordered approximation of the response time PDF of
the overall workflow. The library supports random generation of work-
flow models controlling the main factors of computational complexity.
Eulero exploits the SIRIO Library of the ORIS tool to represent mono-
variate PDFs and to model and analyze sub-workflows, and it is designed
to facilitate usability, maintainability, and extensibility.

Keywords: stochastic workflows · response time probability density
function · structured model · compositional evaluation · stochastic
ordering · model random generation · software tools and libraries

1 Introduction

Workflows are a collection of activities orchestrated according to precedence
constraints and control-flow constructs. In particular, workflows can be built
using basic patterns such as sequence, split/join, choice/merge [8], and more
complex patterns that break the well-formed nesting of basic patterns, such
as Directed Acyclic Graphs (DAGs) and loops [21]. This expressivity enables
workflows to represent processes of many application contexts, such as supply
chain management [16], composition of web services [6], and cloud function as a
service [24]. When activities are enriched with stochastic durations, quantitative
analysis of the workflow end-to-end response time provides relevant metrics that
can guide choices during system design, or be exploited to define soft deadlines
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https://doi.org/10.1007/978-3-031-16336-4_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16336-4_13&domain=pdf
https://doi.org/10.1007/978-3-031-16336-4_13


256 L. Carnevali et al.

or penalty functions [14,20], e.g. to define Service Level Agreements (SLA) of
a composite web service, or to select contractors who maximize the profit of a
manufacturing production. In both cases, summary statistics, such as mean value
or variance, are not sufficient to characterize the considered metrics, and the
Probability Density Function (PDF) of the workflow response time is required.

Depending on the type of duration distributions of activities, workflows
underlie different classes of stochastic models, which rely on different analy-
sis techniques and, hence, on different tools. In case of exponential durations,
the underlying stochastic process of a workflow is a Continuous Time Markov
Chain (CTMC), for which analysis is performed by exploiting the Markov prop-
erty (i.e., the future state of the system depends on the current state only through
the discrete logical location). For this class of models, evaluation can lever-
age several consolidated tools such as GreatSPN [2], PRISM [18], MRMC [15],
SMART [5], and Storm [7]. However, in many application contexts, workflows
include activities with deterministic or bounded or stochastic non-exponential
duration. In this case, the Markov property does not hold in every state, and
the underlying stochastic process is a non-Markovian process. Here, the end-
to-end response time can be evaluated numerically exploiting the presence of
regenerations, that are states where the Markov property holds true again. In
particular, when the model is such that a regenerative state is eventually reached
with probability 1 (w.p.1), the model belongs to the class of Markov Regen-
erative Processes (MRPs) [17], whose evaluation is performed by computing a
global kernel characterizing behavior until the first regeneration is reached, and a
local kernel characterizing sequencing and timing of visits to subsequent regen-
erations. Kernel-based evaluation can be performed with different techniques,
implemented in consolidated tools. SHARPE [23], TimeNET [28], and Great-
SPN [2] enable evaluation of models that satisfy the enabling restriction, i.e., the
condition for which only one duration with general (GEN), i.e., non-exponential,
distribution is enabled in each state [12]. ORIS [19] implements the method of
stochastic state classes, which enables evaluation of MRPs beyond the enabling
restriction [13]. Nevertheless, when the concurrency degree of activities with gen-
eral distribution increases, the complexity of the analysis of the workflow model
cannot be afforded. In this case, workflows are decomposed into sub-workflows
that can be evaluated efficiently in isolation, and results are recombined to obtain
an approximation of the actual end-to-end response time [3,4].

In this paper, we present the Eulero Java library, which implements the app-
roach of [3,4] for efficient and accurate evaluation of the response time PDF of
complex workflows, consisting of activities with GEN duration with bounded
support, composed through sequence, choice/merge, and split/join blocks, with
unbalanced split and join constructs that break the structure of well-formed
nesting. The library (Sect. 2) is organized in three packages, supporting work-
flow modeling (Sect. 3), workflow evaluation (Sect. 4), and random generation
of workflow models (Sect. 5). A workflow is modeled as a hierarchy of sub-
workflows using structure trees, providing not only ease of modeling but also
efficiency of analysis by facilitating the identification of sub-workflows that can
be separately analyzed. Eulero uses the SIRIO Library of the ORIS tool [19] to
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represent monovariate PDFs, to model sub-workflows as Stochastic Time Petri
Nets (STPNs) [26], and to perform their transient analysis to derive the sub-
workflow response time PDF. The library is designed with the aim of facilitating
usability, maintainability, and extensibility, by exploiting consolidated program-
ming design patterns [11]. Possible extensions of the library are discussed in the
conclusions of the paper (Sect. 6).

2 The Eulero Library

The Eulero library is available at https://github.com/oris-tool/eulero under the
AGPL licence. The UML use case diagram of Fig. 1a shows the main function-
alities, in Fig. 1b:

– The package modeling supports modeling of workflows affording various
aspects of complexity (i.e., bounded generally distributed durations, high con-
currency degree, unbalanced split and join constructs breaking the structure
of well-formed nesting) in terms of structure trees, a hierarchical representa-
tion enabling accurate and efficient evaluation of the response time PDF.

– The package evaluation includes the sub-package heuristics, implement-
ing compositional methods for the evaluation of the workflow response time
PDF, and the sub-package approximation, supporting the derivation of the
analytical form of stochastically ordered approximants of numerical PDFs.

– The package modelgeneration provides functionalities to randomly generate
models according to the specification of the package modeling.

Eulero uses the SIRIO library for the representation of the analytical form
of monovariate PDFs, for the derivation of their response time PDF of sub-
workflows, and for the estimation of complexity of this evaluation.

Fig. 1. Eulero library: (a) UML use case diagram and (b) package diagram.

3 Workflow Modeling

The package modeling implements the structure tree specification for the rep-
resentation of stochastic workflows. In particular, we illustrate the formalism
(Sects. 3.1 and 3.2) and how to use the package to instantiate the structure tree
of a workflow (Sect. 3.3).

https://github.com/oris-tool/eulero
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3.1 Structure Tree and STPN Blocks

We specify a class of stochastic workflows that can represent a wide set of control
flow patterns [21,27]. In particular, workflows are built by recursively composing
Single Entry Single Exit (SESE) blocks, defined as STPN blocks with a single
starting place and a single ending place. A block execution starts when a token
reaches its starting place, and eventually terminates with probability 1 (w.p.1)
when a token reaches its final place. Blocks can be designed to model concur-
rent behaviors (fork-join structures, termed AND blocks), sequential behaviors
(sequence and choice/merge structures, termed Seq and XOR blocks, respec-
tively), and acyclic behaviors where well-formed nesting is broken by an unbal-
anced composition of fork and join operators (termed DAG blocks).

Blocks are combined together in a structure tree S = 〈N,E, n0〉, where N is
the set of nodes (i.e., blocks), E is the set of directed edges connecting each block
with its component blocks, and n0 is the root node (i.e., the overall workflow).
Figure 2b shows an example of the structure tree of the workflow STPN of Fig. 2a,
where a block is depicted as a box labeled with the block name and with either
the activity name (for Act blocks) or the block type (for Seq, AND, and XOR
blocks). The box of a DAG block also contains places and transitions connecting
their component blocks. Since every block is defined as an STPN, then each
workflow can in turn be mapped to a unique STPN. Conversely, the composition
of blocks does not cover all the expressivity of STPNs.

3.2 Complexity Measures

The complexity of workflow evaluation is estimated by exploiting the state class
graph provided by nondeterministic analysis of the Timed Petri Net (TPN) [1,25]
underlying the workflow STPN (which can be obtained by exploring the structure
tree). Since workflows are SESEs blocks, the state class graph has a single final
state class, where all model transitions are disabled. Based on this, complexity is
measured in terms of concurrency degree c, representing the maximum number of
concurrent GEN transitions, and sequencing degree q, representing the maximum
number of firings of GEN transitions in any path of the state class graph.

If the model is too complex, enumeration of state classes may require a non-
negligible amount of time, making nondeterministic analysis unfeasible. In this
case, the structure tree provides an abstraction to identify the workflow unex-
panded TPN, which is the underlying TPN whose inner blocks are replaced
with single activities having the same durations. Then, workflow complexity
measures can be derived by exploring the structure tree through a bottom-up
approach, combining nondeterministic analysis of the unexpanded TPN with the
complexity measures of inner blocks, obtaining upper bounds C and C̄ on the
concurrency degree of the workflow TPN and unexpanded TPN, respectively, as
well as sequencing degrees q and q̄ of the workflow TPN and unexpanded TPN,
respectively. Given two thresholds Θc and Θq, a workflow is termed complex if
C > Θc ∨ q > Θq, and internally complex if C̄ > Θc ∨ q̄ > Θq.
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Fig. 2. (a) STPN model of a workflow: blocks are highlighted by boxes, blue for com-
posite blocks and red for activity blocks. (b) Structure tree of the workflow of Fig. 2a:
composite blocks are filled with light blue. (Color figure online)

3.3 Package Description

The package modeling is responsible for building stochastic workflows as Java
objects. The related UML class diagram is shown in Fig. 3 and a code snippet
illustrating the programmatic specification of the model of Fig. 2b is provided in
Listing 1.1. Workflow modeling is implemented through the design pattern Com-
posite [11], where the abstract class Activity defines a common interface, which
is implemented by subtype classes Simple, XOR, DAG, AND, and SEQ. In particu-
lar, Activity defines block types common attributes, such as the minimum min
and maximum max response time of the block, the degrees of concurrency C and
simplifiedC corresponding to C and C̄ respectively, the degrees of sequencing Q
and simplifiedQ corresponding to q and q̄ respectively, and the abstract meth-
ods buildSTPN() and buildTPN(), which are overridden by sub-typing classes
to define the transformation of the block structure tree into the block STPN and
its underlying TPN, respectively.

The class Simple enables the instantiation of simple activities whose piece-
wise duration PDF is encoded in the field features as a list of Stochastic-
TransitionFeature. The latter is a class of the SIRIO library defining the
support and analytical form of a PDF. Each feature is assumed to have unit
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Fig. 3. UML class diagram of the package workflow.

measure, and therefore it is weighted by a value that guarantees unit measure
over the whole PDF. These values are encoded by the attribute weights.

The class XOR enables the instantiation of XOR blocks having different alter-
native branches. Branches are referenced through the field alternatives and
associated with a probability value encoded in the field probabilities.

The class DAG enables the instantiation of DAG blocks. DAG objects have three
references to class Activity. The reference activities consists of a list refer-
encing all the activities nested in a DAG block. The references begin and end
refer to the initial and final fictitious activities, respectively, that are required to
define a DAG block as a SESE block. The structure of a DAG is defined by adding
preconditions to its internal activities through the method addPrecondition(),
which updates the list attributes pre and post of the DAG activities. The DAG
class also exposes three static methods empty(), sequence() and forkjoin().
The method empty() enables the generation of empty DAGs that can then
be built by adding activities and preconditions, evaluating the response time
bounds, and referencing the added activities. The methods sequence() and
forkjoin() enable the generation of SEQ and AND blocks, respectively, which
are implemented as derivation classes of DAG. Although AND and SEQ classes do
not extend DAG functionalities, they have been treated as separate classes in
order to handle them as a specific case in the analysis algorithm.

In Listing 1.1, blocks Q, R, S and T are created using the static methods of
DAG and the constructors of XOR and Simple (lines 3 to 52). Then, the top node
is created as a DAG block through the static method empty(), and populated



A Tool for Quantitative Modeling and Evaluation of Complex Workflows 261

connecting inner blocks by adding preconditions (lines 54 to 59). In doing so, it
is mandatory that final blocks be preconditions of the node end (line 59), and
that all initial nodes have the node begin as precondition (lines 55 and 56).
Since DAGs are built step-by-step adding preconditions, then min and max are
estimated and set using the related setter methods (lines 60 and 61), and the
added activities are also referenced using the related setter method (line 62).

1 StochasticTransitionFeature feature = StochasticTransitionFeature.
newUniformInstance("0", "1");

2

3 Activity Q = DAG.sequence("Q",
4 DAG.forkJoin("Q1",
5 new Simple("Q1A", feature),
6 new Simple("Q1B", feature)
7

8 ),
9 DAG.forkJoin("Q2",

10 new Simple("Q2A", feature),
11 new Simple("Q2B", feature)
12 )
13 );
14

15 Activity R = DAG.forkJoin("R",
16 new XOR("R1",
17 List.of(
18 new Simple("R1A", feature),
19 new Simple("R1b", feature)
20 ),
21 List.of(0.3, 0.7)),
22 DAG.sequence("R2",
23 new Simple("R2A", feature),
24 new Simple("R2B", feature)
25 )
26 );
27

28 Activity S = DAG.forkJoin("S",
29 DAG.sequence("S1",
30 new Simple("S1A", feature),
31 new Simple("S1B", feature),
32 new Simple("S1C", feature)
33 ),
34 DAG.sequence("S2",
35 new Simple("S2A", feature),
36 new Simple("S2B", feature),
37 new Simple("S2C", feature)
38 )
39 );
40

41 DAG T = DAG.sequence("T",
42 DAG.forkJoin("T1",
43 new Simple("T1A", feature),
44 new Simple("T1B", feature),
45 new Simple("T1C", feature)
46 ),
47 DAG.forkJoin("T2",
48 new Simple("T2A", feature),
49 new Simple("T2B", feature),
50 new Simple("T2C", feature)
51 )
52 );
53

54 DAG top = DAG.empty("TOP");
55 Q.addPrecondition(top.begin());
56 R.addPrecondition(top.begin());
57 T.addPrecondition(R);
58 S.addPrecondition(R, Q);
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59 top.end().addPrecondition(T, S);
60 top.setMin(top.getMinBound(top.end()));
61 top.setMax(top.getMaxBound(top.end()));
62 top.setActivities(Lists.newArrayList(Q, R, S, T));

Listing 1.1. Construction of the workflow structure tree of Fig. 2b.

The method buildSTPN() is an abstract method responsible for the construc-
tion of the workflow STPN. Construction is realized recursively by exploring
the workflow structure tree, and adding Place, Transition, Precondition and
Postcondition objects to a PetriNet object depending on the tree topology
(the latter 5 classes belong to the SIRIO library). The method buildSTPN()
of DAG, AND, and XOR merely adds places and immediate transitions, repre-
senting fork, join, choice, and merge structures specifying the nesting of inner
blocks, before the method is called recursively by the inner blocks. The method
buildSTPN() of SEQ simply chains the recursive calls made for inner activi-
ties belonging to the considered sequence. The method buildSTPN() of Simple
adds a random switch of transitions whose distributions are encoded by the
fields features and weights. The buildTPN() method is the abstract method
that enables the construction of the underlying TPN. Similarly to buildSTPN(),
it assigns temporal and complexity features to the workflow activities, so that
these information can be exploited during the block complexity analysis.

4 Workflow Evaluation

The package evaluation implements a compositional technique [3,4] for the
evaluation of the response time PDF of stochastic workflows. We provide an
overview of the analysis heuristics (Sect. 4.1) and illustrate the use of the package
(Sect. 4.2).

4.1 Analysis Heuristics

The end-to-end response time PDF of a workflow is evaluated by composing
the results of separate analyses of sub-workflows. In turn, the sub-workflows are
identified by a recursive exploration of the structure tree, which selects the most
appropriate action to analyze a block, based on its type or complexity measures
and according to the provided heuristics of analysis. Four actions are considered:

– Numerical analysis combines the numerical response time PDFs of the com-
ponents of well-nested blocks, providing the overall response time PDF.

– Forward transient analysis is suitable to evaluate not well-nested blocks with
limited complexity, providing the numerical form of their response time PDF.
The analysis requires each activity to be associated with the analytical form
of its duration distribution. If not, the analytical form of a stochastic upper
bound PDF is derived for each numerical PDF.

– Inner block analysis can be applied to blocks with high complexity measures.
It selects an internal block, evaluates its response time PDF with some action
and replaces it with a new activity block.
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– Inner block replication can be applied to complex not well-nested blocks. It
identifies two sub-workflows sharing activities, separates them by replicating
shared activities, and recombines them as children of an AND block, guaran-
teeing that the resulting response time PDF is a stochastic upper bound of
the exact one [3]. For example, in Fig. 7, activities S and T share the same
predecessor R. Applying inner block replication, two sub-workflows would
be identified, consisting of activities Q, R and S, and activities T and R,
respectively, where every instance of R is a replication of the original activity.
The two sub-workflows would then be combined in an AND block, as shown
in Fig. 4. If one or both sub-workflows had become well-nested, they would
subsequently be evaluated through numerical analysis.

Fig. 4. Result of application of inner block replication to the DAG block of Fig. 7.

Heuristics can be defined to explore the structure tree and evaluate the work-
flow response time. In [3,4], two heuristics are defined, which both use numerical
analysis for well-nested blocks and forward transient analysis for simple DAGs,
as illustrated by Algorithm 1, but differ in the way complex DAGs are evaluated,
by favouring either inner block replication or inner block analysis, as shown in
Algorithms 2 and 3. Specifically, considering a workflow block b:

– If b is an activity block, then its exact response time PDF is its duration PDF
for both heuristics (line 2 and 3).

– If b is, or can be reduced to, a well-nested composition of independent sub-
workflows, then a numerical analysis is recursively applied to get the exact
response time PDF, for both heuristics (lines 4 to 12).

– If b is a DAG block, inner block analysis, inner block replication or forward
transient analysis are applied according to the complexity measures of the
block, and depending on the considered heuristics (see Algorithms 2 and 3).
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Algorithm 1: Evaluation of the response time PDF of a workflow block

CompositionalAnalysis(b, Θc, Θq, h )
input : block b, concurrency degree threshold Θc, sequencing degree

threshold Θq, heuristics h

output: response time PDF φ(t) of b
1 if b is an activity block then
2 return the duration PDF of b
3 if b is a SEQ block or an XOR block or an AND block then
4 foreach block bi of b do
5 φi(t) ← CompositionalAnalysis(bi, Θc, Θq, h)
6 return NumericalAnalysis(φ0(t), ..., φn(t))

7 if b is a DAG block then
8 return h(b)

Algorithm 2: Evaluation of the response time PDF of a DAG block

Heuristics1(b)
input : workflow block b
output: response time PDF φ(t) of b

1 if b is internally complex to analyze then
2 return InnerBlockReplication(b)
3 if b is complex to analyze then
4 return InnerBlockAnalysis(b)
5 return the PDF of b computed through forward transient analysis

Algorithm 3: Evaluation of the response time PDF of a DAG block

Heuristics2(b)
input : workflow block b, concurrency degree threshold Θc, sequencing

degree threshold Θq

output: response time PDF φ(t) of b
1 if b contains at least one composite block and is complex to analyze then
2 return InnerBlockAnalysis(b)
3 if b is internally complex to analyze then
4 return InnerBlockReplication(b)
5 return the PDF of b computed through forward transient analysis

4.2 Package Description

The package evaluation implements the compositional evaluation method of [3,
4], recalled in Sect. 4.1. The related UML class diagram is provided in Fig. 5.
The package contains the inner packages heuristics and approximator, both
of which implement the design pattern Strategy [11].
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In the package heuristics, the abstract class AnalysisHeuristicsStrategy
implements the methods numericalXOR(), numericalAND(), numericalSEQ(),
for numerical analysis operations on well-nested block types XOR, AND, SEQ, respec-
tively, and forwardAnalysis(), innerBlockAnalysis(), and innerBlock-
Replication(), which implement the remaining actions. Each of these methods
makes one or more recursive calls to the abstract method analyze(), enabling the
top-down evaluation of any structure tree. The order of execution of the actions is
specified by overriding the analyze() method, using the fields CThreshold and
QThreshold as the thresholds Θc and Θq for the complexity measures, respec-
tively. The heuristics of Algorithms 2 and 3 are implemented by the classes
AnalysisHeuristics1 and AnalysisHeuristics2, respectively. Note that the
Strategy Pattern facilitates the addition of new heuristics strategies by extend-
ing the abstract class AnalysisHeuristicsStrategy with a new concrete class.
Moreover, it is trivial to implement new actions as non-abstract methods of the
class AnalysisHeuristicsStrategy.

The package approximation implements different approximation methods
for numerical monovariate PDFs. The abstract class Approximator provides the
abstract method getApproximationStochasticTransitionFeatures(), which
processes a numerical monovariate PDF and returns an approximant piece-
wise PDF represented as a list of weights and StochasticTransitionFeature
objects. Concrete approximators define the approximation logic by overriding
this method. Again, the Strategy pattern enables an easy extension of the pack-
age. The class AnalysisHeuristicsStrategy uses the class Approximator in
the method innerBlockAnalysis(): when this method is called, the most com-
plex inner block of a DAG is picked up and evaluated by recursive call of
analyze(), then the result is approximated by the selected Approximator, and
finally, the obtained features and weights are passed to the constructor of the
class Simple to generate the simple activity that replaces the complex inner
block.

Listing 1.2 shows how to evaluate the model built in Listing 1.1. Considering
values tC and tQ for complexity thresholds Θc and Θq, respectively, analysis
horizon timeLimit, numerical precision step, and a specific approximator (lines
1 to 5), the analysis is performed by creating the heuristics (line 6) and calling
analyze() (line 8). Figure 6 shows the evaluated response time PDF and CDF.

1 BigInteger tC = BigInteger.valueOf (3);
2 BigInteger tQ = BigInteger.valueOf (7);
3 BigDecimal timeLimit = model.max();
4 BigDecimal step = BigDecimal.valueOf (0.01);
5 Approximator approximator = new EXPMixtureApproximation();
6 AnalysisHeuristicStrategy strategy = new AnalysisHeuristics1(tC, tQ,

approximator);
7 double[] cdf = strategy.analyze(model , timeLimit , step);

Listing 1.2. Evaluation of a workflow structure tree.

The analysis algorithm scales even on more complex models. In fact, analysis
heuristics have been tested for structure trees having depth up to 6, concurrency
and sequencing degree up to 64, and whose corresponding STPNs contain up to
7000 transitions. In all cases, analysis heuristics always took less than 1 s.
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Fig. 5. UML class diagram of the package evaluation.

Fig. 6. PDF (a) and CDF (b) evaluated for the workflow of Fig. 2.

5 Workflow Generation

Many problems can be modeled as workflows, and experimention enabled by
tools such as TGFF [9], Apache Airflow [10] or Luigi [22] results to be an added
value. However, there is often a lack of models on which to conduct experi-
ments, and when there are, they are often not complex enough to justify the use
of compositional methods. In this section, we present a generation strategy to
randomly build workflows that can be exploited to test quantitative evaluation
methods, stressing different complexity factors, such as the degree of parallelism
and sequencing. In particular, we illustrate how a model compliant with the
structure tree specification is generated (Sect. 5.1), and describe its Java imple-
mentation through an illustrative example (Sect. 5.2).
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5.1 Random Generation

Algorithm 4 implements the proposed strategy for random generation of work-
flow structure trees. Specifically, given the depth of the structure tree, random
generation of a workflow is carried out through a recursive procedure, which
builds well-nested or DAG blocks in different ways, depending on the type of
block that is drawn (lines 2 and 12). If a well-nested type (i.e., SEQ, AND, XOR)
is selected, the number of its children is drawn too, and these are generated by
the recursive call of the generation procedure (lines 3 to 5). Then, the block of
the drawn type is created, assigning the created children to it (lines 6 to 11).

Algorithm 4: Random generation of a workflow

GenerateBlock(d, settings)
input : depth level d, generation settings settings
output: workflow b

1 if d > 0 then
2 if type is SEQ or AND or XOR then
3 children ← {}
4 foreach i ∈ {2, ..., RandomMaximumChildren()} do
5 children ← children ∪ GenerateBlock(d − 1, settings)
6 if type is SEQ then
7 return GenerateSEQBlock(children)
8 if type is AND then
9 return GenerateANDBlock(children)

10 if type is XOR then
11 return GenerateXORBlock(children)

12 if type is DAG then
13 return GenerateDAGBlock(parameters)

14 return GenerateSimpleBlock()

A DAG block consists of a set of nodes sorted according to a topological
order in several consecutive levels, such that every node can have predecessor
nodes in previous levels (see Fig. 7). In particular, a node belongs to the i -th
level if, for all paths from the initial fictitious node to the considered one (both
not included), the longest paths contain exactly i nodes. For instance, node E
in Fig. 7 belongs to level L2 because, among all the paths from the initial node
in to node E, the longest paths contain 2 nodes. Since DAG blocks break the
well-formed nesting of concurrent blocks, yet ensuring that execution ends w.p.1,
both conditions must be fulfilled to generate a not well-nested DAG. The first
condition holds when there is at least one level where i) at least two nodes share
at least one predecessor and ii) their predecessor sets do not coincide (e.g., C
and D share A as predecessor, but D also has B) or coincide but contain at least
2 predecessors (e.g., E and F share all the predecessors, which are more then
1; otherwise, they would have been well-nested). The second condition holds if
every node has at least one predecessor and at least one successor.
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Fig. 7. A DAG block with nodes sorted according to a topological order.

Hence, random generation of a DAG (lines 12 and 13 of Algorithm 4) is
achieved by drawing the number of levels, the number of nodes for each level, and
randomly connecting nodes of different levels, ensuring that the two conditions
described above are met. To guarantee not well-formed nesting, it is sufficient
to randomly select two nodes from some level i > 0, and connect both of them
to the same predecessor node, and one of them to a different predecessor node,
randomly drawn from the (i − 1)-th level. To guarantee that a block is a SESE,
every node of a level is connected to at least one predecessor and one successor,
except for the first-level nodes, which share the same and only predecessor node
(the initial fictitious node in), and the last-level nodes, which share the same
and only successor node (the final fictitious node fin). Finally, at the lowest level
of the workflow structure tree, a simple block is created (line 14 of Algorithm 4).

5.2 Package Description

The package modelgeneration implements the approach of Sect. 5.1 for ran-
dom generation of workflow structure trees. The UML class diagram of the
package is shown in Fig. 8. The class RandomGenerator defines the recursive
method generateBlock(), which implements the generation logic based on
the depth treeDepth of the structure tree and on some setting parameters
referenced by list settings. Each item of the list refers to a certain level
of depth of the workflow, and collects a set of BlockTypeSetting objects,
through which generation is driven. In particular, BlockTypeSetting is an
abstract class that specifies a type and a probability of being drawn. For
every item of the list settings, the sum of BlockTypeSetting probability
fields must be equal to 1. BlockTypeSetting is extended to define block type
related parameters, such as the minimum and maximum number of children
for class WellNestedBlockSetting, or the minimum and maximum number of
levels, nodes per level, connections between nodes and distance between nodes



A Tool for Quantitative Modeling and Evaluation of Complex Workflows 269

belonging to not consecutive levels, for class DAGBlockSetting. Note that
XORBlockSet-ting, ANDBlockSetting, and SEQBlockSetting do not add func-
tionalities to WellNestedBlockSetting, but are required to generate XOR, AND,
and SEQ blocks in the method generateBlock(), respectively. In addition, it is
possible to constrain the structure of a DAG by varying its generation parameters.

Fig. 8. UML class diagram of the package modelgeneration.

Listing 1.3 shows how to use the package modelgenerator to randomly
generate workflow structure trees. For each level of the tree, at least one
BlockTypeSetting object must be created and added to that level setting vari-
able, specifying the occurrence probability of that block type and the related
parameters (e.g., lines 4 to 8 and lines 10 to 12 for levels 1 and 2, respectively).
Every level setting is added to a global setting variable (lines 14 to 16) which is
then passed to a RandomGenerator object (line 19). Finally, the model is created
invocating the method generateBlock() of the RandomGenerator object.

1 int concurrencyDegree , sequenceFactor;
2 concurrencyDegree = sequenceFactor = 3;
3

4 Set <BlockTypeSetting > level1Settings = new HashSet <>();
5 BlockTypeSetting AND = new ANDBlockSetting (0.5, concurrencyDegree);
6 BlockTypeSetting SEQ = new SEQBlockSetting (0.5, sequenceFactor);
7 level1Settings.add(AND);
8 level1Settings.add(SEQ);
9

10 Set <BlockTypeSetting > level2Settings = new HashSet <>();
11 BlockTypeSetting DAG = new DAGBlockSetting (1.);
12 level2Settings.add(DAG);
13

14 ArrayList <Set <BlockTypeSetting >> settings = new ArrayList <>();
15 settings.add(level1Settings);
16 settings.add(level2Settings);
17

18 StochasticTransitionFeature feature = StochasticTransitionFeature.
newUniformInstance("0", "1");

19 RandomGenerator randomGenerator = new RandomGenerator(feature , settings);
20 Activity model = randomGenerator.generateBlock (settings.size());

Listing 1.3. Random generation of a workflow structure tree.
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6 Conclusions

Eulero is a Java library for efficient and accurate compositional evaluation of
the response time PDF of complex stochastic workflows, where the presence of
a large number of concurrent activities having GEN distribution with bounded
support makes the analysis of the underlying stochastic process unfeasible. This
issue is exacerbated by the presence of unbalanced split and join constructs
breaking the structure of the well-formed nesting, which further increases the
concurrency degree of activities with GEN distribution and requires a composi-
tional approach to afford the workflow analysis. Specifically, the library supports
the representation of workflows as structure trees, a hierarchical formalism that
facilitates not only the workflow instantiation but also its evaluation by sup-
porting the decomposition into sub-workflows that can be efficiently analyzed
in isolation. Eulero implements evaluation heuristics to decompose the structure
tree, exploiting various analysis techniques to evaluate the sub-workflows. Last
but not least, the library also provides a package to instantiate randomly gener-
ated workflows, exposing parameters that impose structural constraints on the
generated structure trees and thus allows the user to control the different factors
of computational complexity in the model generation.

Eulero is designed to facilitate usability, maintainability and extensibility. In
the perspective of modeling, new basic workflow patterns and even structures
compliant with other formalisms can be defined, notably including the Business
Process Model and Notation (BPMN). In the perspective of evaluation, the sys-
tematic use of the Strategy design pattern enables the definition of new analysis
heuristics and new approximation methods for monovariate PDFs.

It is planned to support structured cycles that execute a body and then repeat
it with constant probability p > 0 or terminate with probability 1 − p. Future
work also includes exploiting the library in specific application domains such
as management of manufacturing processes and composition of web services. In
these application contexts, Eulero methods will provide added-value features,
such as predicting completion times of a production workflow or selecting SLA
compliant services of a composite web service.

Data Availability Statement. An artifact of the Eulero library is available at
https://doi.org/10.5281/zenodo.6841108. The artifact consists of the jar archive of the
library, two Java classes containing the code snippets provided with the paper, a suite
of models randomly generated through the procedure described in Sect. 5.2, a script to
generate and evaluate a new suite of models, and a script to replicate the generation
and the evaluation of a suite of models.
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Abstract. A key cornerstone of Multi-Access Edge Computing (MEC)
is an offloading policy utilized to determine whether to execute computa-
tion tasks on IoT devices or to offload the tasks to MEC servers for pro-
cessing. In this work, we propose a Probabilistic Model Checking based
offloading policy catering to device user preferences. We model the inter-
actions between the various components of the MEC environment using
a Turn-Based Stochastic Multi-Player Game (SMG). We present experi-
ments on practical scenarios on data gathered from a test-bed setup with
benchmark applications to show the benefits of an adaptive preference-
aware approach over conventional approaches in MEC offloading.

Keywords: Multi-Access Edge Computing · Probabilistic Model
Checking

1 Introduction

In recent times, Multi-Access Edge Computing (MEC) is showing much promise
as the preferred application service provisioning model to facilitate convenient
access to services for Internet-of-Things (IoT) device users [17,24,27,38]. The
central idea of MEC is to have service providers deploy their application ser-
vices on MEC servers located near mobile base stations. Computationally inten-
sive tasks from mobile IoT devices are either executed locally on the devices or
routed to, and served from nearby MEC servers on their route as they move
around, with improved computation running times. This provisioning model is
increasingly being acknowledged as a near-user low latency convenient alterna-
tive to traditional cloud computing for several classes of real-time latency driven
applications. Driven by new innovations in MEC, the number of application ser-
vices (e.g. object recognition, obstacle identification, navigation, maps, games,
e-commerce etc.) hosted at servers to be used by IoT users (e.g. autonomous
vehicles, drones, users on the move) is also growing at a considerable pace.

Motivation and Objectives of This Work: A key challenge in MEC is to
devise an offloading policy which decides whether to execute the task locally on
c© Springer Nature Switzerland AG 2022
E. Ábrahám and M. Paolieri (Eds.): QEST 2022, LNCS 13479, pp. 275–297, 2022.
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the IoT devices or on a MEC server. While on one hand, executing tasks on
MEC servers enables low computation running times, on the other hand, the
data transfer associated with offloading the task to the MEC server can lead to
high bandwidth usage and in turn high battery consumption. This can occur
since the data transmitter is often a higher energy consuming component than
the CPU [4]. The users of these IoT devices often have several preferences such
as long Battery Cycle Life (BCL) and high quality of experience (QoE). How-
ever, the role of user-preferences in computation offloading has been relatively
less explored [21]. An offloading strategy that is optimized towards computa-
tion running time may perform poorly when the user expects a high BCL, while
similarly, a different offloading strategy that is optimized towards energy con-
sumption may produce high computation times when the user prefers a high
QoE. Deriving an offloading strategy catering to user preferences is thus a criti-
cal challenge. Additionally, IoT devices are often heterogeneous, comprising CPU
cores with varied operating frequencies, thus executing tasks locally on the IoT
devices is accompanied by the additional challenge of scheduling the tasks on
the appropriate core to ensure conformance to user preferences. Overall, finding
the best trade-off between local execution versus MEC server execution in the
presence of user preferences necessitates judicious planning and scheduling of the
device-execution mapping over time as different tasks are executed by different
devices. This is aggravated by the fact that some IoT devices’ performance and
longevity are affected by the temperature of its various components [32]. Exe-
cuting a task for prolonged periods on the IoT device or on the same CPU core
may often lead to device shutdowns when critical temperatures are exceeded.
This often necessitates task migrations to preserve continuity of service provi-
sioning and a steady acceptable Quality of Experience (QoE). In this paper, we
derive a computation offloading strategy considering all the above scenarios. The
offloading strategy serves as a wrapper to the operating system running on the
IoT device, determining offloading and heterogeneous core scheduling decisions.

Our Approach: In this paper, we use formal methods for the synthesis of
computation offloading strategies with probabilistic guarantees. We model the
offloading policy using a Labeled Transition System (LTS) [2]. We model the
IoT device and the scheduling tasks on the heterogeneous cores as another LTS.
We leverage on the power of non-determinism of the LTS models to capture the
various choices of offloading and scheduling. We model the resulting stochastic
computation running times of executing tasks as a Discrete Time Markov Chain
(DTMC) [2]. We utilize composition of the aforementioned models which yields
a Markov Decision Process (MDP) capturing the non-deterministic choices of
the LTSs and the stochastic nature of the DTMC. Finally, we capture the com-
plex interactions between the MEC servers and the IoT devices as a Turn-Based
Stochastic Multi-Player Game [13]. The interactions are captured using the com-
position of the MDP and the DTMC. Composing such models allows effective
characterization of the non-deterministic choices of offloading and heterogeneous
core scheduling while also characterizing the stochastic nature of task execution
running times. We formalize user preferences such as high BCL or low compu-
tation times as a reward formulation and use a probabilistic model checker [13]
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to synthesize offloading strategies. The SMG enumerates the trade-offs such as
on-device and off-device execution, heterogeneity of IoT device processor cores,
IoT device battery energy consumption and battery temperature with respect
to user preferences. We utilize a testbed with the Odroid XU4 board as the
IoT device, with heterogeneous cores, each having different processing capabil-
ities. We experimentally demonstrate the benefits of our adaptive SMG based
preference-aware approach over conventional approaches.

2 A Motivating Example

Consider the MEC scenario depicted in Fig. 1 comprising two edge servers E1

and E2. The coverage areas of E1 and E2 are depicted by encompassing circles.
An IoT device located in the coverage area of an edge site can connect to one of
the associated edge servers with low latency access [15,23,24]. A user allocation
policy determines which edge server an IoT device’s task request is allocated
to. Once the allocation is determined, the offloading policy determines whether
the task is executed either locally on the IoT device or on the MEC server.
We consider heterogeneous IoT devices comprising multiple cores with varied
operating frequencies and power consumption. For example, in Fig. 1a, the video
processing task from the IoT device, a mobile phone in this scenario, is executed
locally on the mobile phone. On the other hand, in Fig. 1b, the video processing
task is offloaded to the MEC server E1 for execution. Executing the task locally
versus executing the task on the MEC server is associated with varying battery
energy consumption, battery temperature and resulting execution computation
times. For execution on the MEC server, we consider execution computation
time as the task execution running time along with the server access latency. We
first perform a set of experiments to demonstrate the benefits of a preference-
aware strategy. We use an ODROID XU4 board as the IoT device. We generate
synthetic workloads using real-world applications from the Mibench benchmark
[10,32] as explained in detail in Appendix B. We consider the scenario where
the IoT device user’s preference is set to low computation time and low energy
consumption. We quantify this notion in Sect. 4.5. In the following, we compare
the different offloading approaches.

Fig. 1. Multi-Access Edge Computing Enabled IoT
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Fig. 2. Multi-Access Edge Computing Enabled IoT

A strategy that does not offload always executes the task on the device.
Such a strategy leads to lower energy consumption, however leads to higher
computation times. The resulting computation times (in seconds) and remain-
ing device energy (in Joules) are depicted in Fig. 2a. A strategy that always
selects to offload the task to the MEC server incurs low computation time as
observed in Fig. 2b. However, such a strategy incurs higher energy consumption
as compared to the no offloading strategy. Both the strategies above execute
the tasks without considering user preferences. Recently, in [21], the benefits
of adapting to user preferences were demonstrated in a different context, i.e.,
user allocation in MEC. To overcome the limitations of the above strategies, we
propose a Stochastic-Game based Strategy, discussed in detail in Sect. 4. Our
SMG based strategy generates offloading strategies by considering IoT device
user preferences. Figure 2c depicts the results by setting the user preferences to
low computation time and low battery consumption. The benefits of incorporat-
ing user preferences into offloading decisions thus can have a critical impact on
the computation time and the energy consumption. Figure 2d depicts the results
when the user does not have any specific preferences, which can be handled by
our approach as well.

3 Problem Formulation

We consider the following in this work:

– The MEC system comprises n MEC servers, E = {E1, E2, . . . En} where each
server is represented by its latitude and longitude coordinates.

– Server Ej is associated with a service zone of radius rj . IoT devices located
within the zone can avail services deployed on the server with low latency.

– We consider IoT devices comprising heterogeneous cores with each core asso-
ciated with different operating frequencies.
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– We assume that the application for the task and its associated data are avail-
able at the MEC server in each discrete time slot.

– We assume that within an IoT core comprising multiple CPUs, the task
scheduling within a specific core is carried out by the operating system.

– The MEC system follows a discrete time-slotted model [23,24,38].
– We consider each discrete time slot Δt of duration μ seconds.

We now describe the computation offloading strategy synthesis problem. The
offloading strategy is synthesized individually for each IoT device user. Each IoT
device user is associated with preferences such as low computation time or low
battery energy consumption and so forth. Whenever an IoT device executes a
task T , the objective of the computation offloading policy is to determine for
each discrete time slot: a) whether the task should be executed on the device
locally or the computation be offloaded to the MEC server and b) for local
execution, determine the core to schedule the task for heterogeneous hardware
enabled devices by taking into consideration the IoT device user preferences.

Offloading Strategy Synthesis

IoT Device Users

MEC Server E1

Other Edge Servers
Run Task Offloading

Strategy

Offloading Strategy Synthesis

IoT Device Users

Run Task Offloading
Strategy

MEC Server E2

Fig. 3. Architecture of the Offloading Strategy Synthesis

We now discuss the overall architecture of our offloading strategy synthe-
sis setup. Figure 3 depicts the overall architecture of our methodology. We use
a distributed approach where each edge server is associated with an offloading
strategy synthesis controller. Whenever an IoT device executes a task, the IoT
device invokes the offloading controller. The IoT device provides the offloading
controller with IoT user specified preferences. The offloading controller then ini-
tializes the various models as discussed in detail later in Sect. 4. The offloading
model utilizes the rewards formulation to represent the IoT device preferences
as discussed in detail in Sect. 4.5. The objective of strategy synthesis is speci-
fied in rPATL as discussed in Sect. 4.6. The models and the rPATL specification
are then utilized as inputs to a Probabilistic Model Checker which returns the
offloading strategy. The offloading is then executed in accordance with the strat-
egy returned by the Probabilistic Model Checker. In the next section, we discuss
our formal model of the computation offloading policy.

4 Formal Model of Computation Offloading

Our formal model of the offloading strategy is based on a Turn-Based SMG. We
utilize a composition driven approach where we model the various components
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of the MEC ecosystem separately and then utilize MDP composition to obtain
the SMG model. We now describe the model of each component in detail.

4.1 LTS Model of the Offloading Policy

Fig. 4. LTS Model of the Offloading Policy

We model the offloading policy as an LTS. The state space of the LTS represents
the various possibilities of task execution for an IoT device, i.e., local versus
server execution and possible task migration across the IoT device and MEC
server. Each state of the LTS is thus associated with two Atomic Propositions
(APs): execution and mig, where each AP is an enumerated type denoting the
various possibilities of location of task execution and task migration respectively.
We model each possible execution and migration scenario using the APs. The
LTS model of the offloading policy is depicted in Fig. 4. We now explain the
model of the offloading policy in detail:

– Initial State: State 0 depicts the initial state of the offloading policy where
both the APs are set to none representing there is no current execution and
no migration being executed.

– Choices of Execution: We consider a discrete time slotted model where the
decision to execute the task either locally or on the MEC server is executed at
the beginning of each time slot. The two choices of execution are represented
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with the transitions from state 0 to 1 and 2 . State 1 denotes local exe-
cution of the task while 2 denotes server execution. Thus, such transitions
denote the initial non-deterministic choice of local versus server execution.
Note that in Fig. 4, the AP corresponding to execution is updated in states
1 and 2 accordingly.

– Choices of Migration: Task migration occurs when the task executing locally
on the IoT device is moved to the MEC server for execution (or vice-versa).
The outgoing transitions from states 1 and 2 denote the various migra-
tion possibilities. However, frequent migrations can have a derogatory effect
on the running times due to the added overheads involved in executing the
migration such as data transfer. Thus, in order to prevent frequent migra-
tions, we restrict that after the allocation of the task to either the local IoT
device processor or the MEC server, migration can only be executed after
tmig discrete timesteps. This condition is represented as a migguard in Fig. 4.
Thus, all migration choices can only be executed when migguard = true. We
explain the various migration possibilities in our model below:

• No migration: In this scenario, the execution state (either local execu-
tion or MEC server execution) is retained and no migration overheads
are involved. Such scenarios are denoted by the transitions from 1 to
3 and 1 to 6 where mig = retain. Retention is only possible when
the temperature of the IoT device cores is below a critical temperature
THRESHOLD, which is an external parameter.

• Migrate from device to server: Migration from the device to the MEC
server is denoted by the transition from 1 to 4 . After successfully exe-
cuting the migration, the LTS transitions to state 2 which denotes MEC
server execution. The AP mig = none signifies migration completion.

• Migrate from MEC server to device: Migration from MEC server to the
device is analogous to the above scenario with the APs adjusted accord-
ingly. The transitions from 2 to 4 and subsequently to 1 denote the
complete life-cycle of such a migration.

Note that we utilize states 3 to 6 to denote the various possibilities of migra-
tion. We account for the costs associated with the migrations by the state based
reward formulation explained in detail later. In the next subsection we discuss
the LTS model that we create to represent the functioning of each IoT device.

4.2 LTS Model of the IoT Device

We model each IoT device as a labeled LTS. The LTS model of the IoT device
incorporates the various choices of scheduling on the IoT device locally and
the resulting impact on the energy consumption, and the temperature of the
IoT device. Each state of the LTS is associated with five Atomic Propositions
(APs): batteryenergy, temp, coremig, core and dtime, denoting the battery State-
of-Charge (SoC), the temperature of the device, the core migration status, the
selected core for executing the task and discrete time slot respectively. Thus, we
model each possibility of task allocation to cores and task migration across cores
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Fig. 5. LTS Model of the IoT Device

using the APs. The LTS model of the IoT device (considered as the Odroid XU4
board) is depicted in Fig. 5. We now explain the model in detail:

– Initial State: State 0 depicts the initial state of the IoT device. The AP
batteryenergy is initialized with the remaining battery energy of the device
when the task was initialized, the temp AP is initialized with the temperature
of the device, both the coremig and core APs are initialized to none since there
is no execution initially, and dtime is initialized with the number of discrete
time slots that the model will run for.

– Choices of Local Execution: We consider the Odroid XU4 board as the device,
which comprises two heterogeneous cores, LITTLE and BIG, each running at
different clock speeds. Whenever an IoT device executes a task T and the LTS
model of the offloading policy selects local execution, there are two possible
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choices of scheduling the task, the LITTLE core or the BIG core. The two
choices of execution are represented with the transitions from state 0 to 1
and 2 . State 1 denotes the task is executed on the LITTLE core while 2
denotes the task is executed on the BIG core. Thus, such transitions denote
the non-deterministic choice of LITTLE core versus BIG core scheduling.
Note that in Fig. 5, the AP corresponding to core is updated in states 1
and 2 accordingly. For each transition between states, we utilize prev(AP)
to depict the scenario where an AP retains the value in the previous state.
When the LITTLE core is chosen as an outcome of the policy, the task may
be scheduled on any of the available LITTLE cores. The same holds true for
the BIG core as well. Executing the task on the LITTLE core/BIG core is
associated with different energy consumption/task running times.

– Local Execution: On successful scheduling on either the LITTLE/BIG core,
the task computation proceeds with battery energy consumption and tem-
perature according to the core the task is being executed on. In each discrete
time step, the battery energy consumption and the temperature are calcu-
lated according to the model discussed in Appendix A. The state of the LTS
is then updated to reflect the battery energy consumption and the resulting
temperature. Such scenarios are denoted by transitions from state 1 to 3
for the LITTLE core and from state 2 to 4 for the BIG core.

– Choices of Migration: Task migration across cores occurs when the task exe-
cuting locally on the IoT device is moved from the LITTLE core to the BIG
core (or vice-versa). The outgoing transitions from states 3 and 4 denote
the various core migration possibilities. In order to prevent frequent migra-
tions across cores, after the allocation of the task to either the LITTLE core
or the BIG core, migration can only be executed after Cm discrete timesteps.
This condition is represented as core mig guard in Fig. 5. Thus, all migrations
choices can only be executed when core mig guardard = true. We explain the
various core migration possibilities in our model below:

• No migration: In this scenario, the execution state (the scheduled core)
is retained and no migration overheads are involved. Such scenarios are
denoted by the transitions from 3 to 5 and 4 to 8 where the coremig
AP is set as retain. Retention is only possible when the temperature of
the IoT device cores is below the critical temperature THRESHOLD.

• Migrate from LITTLE to BIG core: Migration from the LITTLE core to
the BIG core is denoted by the transition from 3 to 6 . After successfully
executing the migration, the MDP transitions to state 2 which denotes
the task is being scheduled on the BIG core. The AP coremig is set to
none signifying migration completion.

• Migrate from BIG to LITTLE core: Migration from BIG to LITTLE is
analogous to the above with the APs adjusted accordingly.

Task migration from local processing on the IoT device to server execution is
denoted by the transitions from 3 to 11 and 4 to 11.
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– Server Execution: On the other hand, when the LTS model of the offloading
policy selects server execution, the LTS of the IoT device transitions to state
9 with the core AP updated to SERVER. In this scenario, in each discrete
time step, the battery energy consumption and the temperature are calculated
according to the model similar to the earlier scenario. In this case, the energy
consumption is dominated by the transmitter/receiver modules of the device.
This is because in this scenario, the entire processing is carried out on the
MEC server. Such scenarios are denoted by self transitions to state 10 until
the offloading controller invokes a local migration.

Note that our model is generic and can be generalized to other IoT devices
by incorporating as many non-deterministic choices of cores as supported by
the device. Similarly, note that in our model we only depict batteryenergy and
temperature to represent the devices’s characteristics. However, our model is
also generic on the characteristics front where a different characteristic such as
bandwidthconsumption can simply be incorporated by adding a corresponding
AP and the resulting updation models for bandwidthconsumption similar to bat-
teryenergy and temperature. In the next subsection we discuss the DTMC model
of task execution latencies.

4.3 DTMC Model of Task Execution Latencies

Fig. 6. DTMC Model of Task Computation Time

The LTS models of the offloading policy and the IoT device non-deterministically
select the choice of task execution. As a result of selecting a particular device for
execution, the resulting computation times are generated by a DTMC model rep-
resenting the stochastic nature of computation times. Each state of the DTMC
is represented by the ctime AP. In each state, ctime represents the compu-
tation time incurred for executing the task invoked by the IoT device during
the discrete time slot. The computation time representation is discretized into
equal sized sub-intervals Rinterval in the closed interval [0, Rmax]. The concrete
continuous valued latencies are mapped to the discretized interval computa-
tion time set as follows: computation times between 0 and Rinterval in the con-
tinuous closed-open interval [0, Rinterval) are mapped to the state where the
ctime component is 1 × Rinterval, computation times in the continuous inter-
val [Rinterval, 2 × Rinterval) are mapped to 2 × Rinterval and so forth, where
[0, Rinterval) denotes the continuous interval inclusive of the lower bound 0 and
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exclusive of Rinterval. Computation times which exceed the threshold Rak
max are

mapped to Rak
max

′. Our work builds on a similar discretized interval representa-
tion used in [31,38]. Figure 6 depicts the DTMC for task execution computation
times. For task execution on the MEC server, the stochastic computation run-
ning time is inclusive of the network latency to access the MEC server. From
each state of the DTMC, a transition exists to all other states. Such transitions
execute in a discrete time step where the state of the DTMC is updated in
accordance with the computation time encountered for task execution.

4.4 Turn-Based Stochastic Multi-player Game Model Composition

The aforementioned models systematically abstract the behaviour of the various
entities involved in the MEC ecosystem. Firstly, the overall model is obtained
by parallel composition of these models and is denoted as:

GMEC = Moffloading−policy||MIoT−device||Mtask−computation−time

In order to represent the interactions between the various models, we utilize
a Turn-Based SMG. In our SMG, we utilize two players, offload&schedule and
taskctime. The composition of the models results in an MDP [6], since each LTS
is also an MDP with only non-deterministic transitions and the DTMC is also an
MDP with only stochastic transitions, where each state of the MDP is controlled
by a specific player as follows:

– The player offload&schedule controls the choices in states corresponding to
the LTS model of the offloading policy and the LTS model of the IoT device.

– The player taskctime controls the stochastic transitions in the states corre-
sponding to the DTMC model of Task Execution Computation Times.

Fig. 7. Turn-Based SMG for Computation Offloading

The Game is initialized with the player offload&schedule and alternates
in turn with player taskctime. Thus, when it is the turn of the player
offload&schedule, all non-deterministic choices for local versus server execu-
tion as well as LITTLE versus BIG core are resolved. Note that the player
offload&schedule only determines whether to execute the task on the LITTLE
or the BIG core. The operating system running on the device, determines which
of the CPUs within a LITTLE or BIG core to schedule the task once the non-
determinism is resolved by offload&schedule. In the subsequent turn, the player
taskctime generates computation time according to the defined probability dis-
tribution of the DTMC model. The Turn-Based SMG is depicted in Fig. 7.
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4.5 Reward Formulation and IoT User Preferences

The Turn-Based SMG does not quantify the impact of each offloading and
scheduling choice. In order to quantify each offloading and scheduling choice,
we utilize the notion of rewards where each state of the SMG is associated with
a quantitative reward value in accordance with the APs in the state. Such a
notion of rewards is used to encode the preferences of the device user.

For each AP, we define a function ρAP : {AP} → R, a mapping from each
possible value of the AP (denoted as {AP}) to a real number, indicating a
quantitative measure of the values of the AP. Note that the composition yields
an MDP which includes the APs from all the models [6]. The total reward of
each state is thus defined as the additive reward for each AP defined by the
individual rewards functions ρAP . We now discuss types of user preferences and
their representation using the rewards formulation.

– No User Preferences: In such a scenario, each state of the SMG is assigned a
constant positive reward denoting all states are quantitatively equivalent.

– Low Computation Time: We define a reward formulation where each ctime
AP is assigned a constant positive value. Such values can be specified as
external parameters. Each discrete computation time interval is assigned a
value in accordance with the user preferences, with higher positive values
assigned to computation time values with a high user preference.

– Low Energy Consumption: Represented by each state’s reward value defined
by the AP batteryenergy. Intuitively, such a formulation captures the notion of
energy consumption since the AP batteryenergy represents the actual remain-
ing energy of the IoT device’s battery model.

– Low Computation Time and Low Energy Consumption (Balanced): Simulta-
neous preferences involving both computation time and energy consumption
are formulated by assigning constant positive values associated with the AP
ctime as well as assigning to each state a positive reward equal to the value of
the AP batteryenergy. In such a scenario, the reward associated with each state
is the additive value of the rewards. Additionally, since migration can involve
data transfer overheads, the migration costs are incorporated by assigning
rewards depending on the APs involved in Task and Core migration.

Table 1. Reward Formulation for User Preferences

State Reward

All States 1

(a) No Preference

State Reward

ctime = 10 100

ctime = 20 80

ctime = 30 60

(b) Low Computation

Running Time

State Reward

All States batteryenergy

(c) Low Energy

State Reward

ctime = 10 100

All States batteryenergy

retain 20

mig != 0 10

tmig != 0 10

(d) Balanced
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Table 1 describe four different reward encoding schemes for the different types
of user preferences discussed above. Note that the reward formulation can be
setup depending on the APs. The function ρ defines the reward values associated
with each AP where the mapping between the AP and the defined real value is
utilized to determine the reward of a state. Thus, our model is not restricted to
the above particular reward formulation. Depending on the user’s preferences,
an appropriate reward formulation can be defined with a suitable function ρ.

4.6 Offloading Strategy Objectives

We use GMEC to synthesize offloading strategies. We use temporal logic to for-
mally specify the objective of the strategy synthesis. Specifically, to express
properties for SMGs we use the logic rPATL - Probabilistic Alternating-time
Temporal logic with Rewards [13]. The objective of the offloading strategy syn-
thesis for the player offload&schedule is specified as:

φ = 〈〈offload&schedule〉〉R{max=?}[F dtime = TMAX]

In this specific scenario, the property utilizes the ‘Eventually’ temporal
operator denoted by F . Hence, the synthesis problem for an SMG aims to
find the optimal strategy π which resolves the non-deterministic choices for
the offload&schedule player [13] for the duration when dtime = TMAX, where
TMAX denotes the number of discrete time slots for which the strategy is to
be synthesized. After TMAX timeslots, the procedure is invoked again with the
APs updated according to the present state. Formally the synthesis problem for
GMEC is defined as:

Definition 1. Given the SMG GMEC , a strategy π is a set of rules to resolve
all non-deterministic choices of a player offload&schedule such that for all
opponent strategies σ, where the opponent is taskctime, the resolution of the
non-deterministic choices satisfies the property φ.

The Rmax operator evaluates the maximum expected value of the cumula-
tive rewards since an SMG involves stochastic behavior. The algorithm utilized
to compute the expected rewards ensures maximization of the rewards and the
details are presented in [6]. Probabilistic Model Checking ensures probabilis-
tic guarantees with respect to the specification for the expected cumulative
reward [6]. We use PRISM-Games [13] to implement GMEC along with the
rPATL property. PRISM-Games utilizes Probabilistic Model Checking to deter-
mine the maximum numerical value of the expected reward associated with the
property. Model checking systematically explores all states and transitions in
the model to check whether it satisfies the given property. Thus, PRISM-Games
systematically explores the search space generated by GMEC considering all pos-
sible interactions between the two players and their respective choices of actions.
In the next section, we describe our implementation.
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5 Results and Discussion

In this section we demonstrate the effectiveness of our approach against state-of-
the-art algorithms. Our experimental setup is described in Appendix B. Figure 8
provides a comparative study on the resulting temperature for the different cores
simulated using the model described in Sect. A. Figure 8 also provides a compara-
tive study of the computation time incurred versus the location of task execution
(either locally on the IoT device or on the MEC server). The computation time
is depicted in seconds while the energy consumption is depicted as multiplied by
103 for brevity. We consider preferences as considered in Sect. 4.5. For our sim-
ulation, we considered Tenv as 32◦. Since Tenv is a parameter in our model, any
other value of Tenv can be utilized by setting the parameter to the current envi-
ronmental temperature. Figures 8a and 8b depict the computation time incurred
when the preference is set to low energy consumption. In this case, our SMG
based approach always schedules the device on the LITTLE core. Figures 8c and
8d depict the scheduling scenario for low computation time preferences. In this
case, the SMG based strategy schedules the task always on the MEC server
since the MEC server provides the lowest computation time. Figures 8e and 8f
correspond to the balanced computation time and energy scenario as described
in Sect. 4.5. In this scenario, our SMG based strategy schedules the tasks on
the LITTLE core and the MEC server while not utilizing the BIG core. Finally,
Figs. 8g and 8h depict the results for the scenario when there is no specific user
preference. In such a scenario, the SMG based approach schedules the tasks on
the LITTLE, BIG cores as well as MEC servers. Such variations depict the gov-
erning impact of the reward formulation on the resulting synthesized scheduling
strategy. Figure 8 thus demonstrates the effectiveness of our SMG based strategy
with varied user preferences.

Table 2. Model Characteristics

No. of Discrete Slots 25 40 50

Number of States 7515 25585 46515

Model Checking Time (in Seconds)

Low Energy 0.126 1.083 1.699

Low Time 0.118 0.927 1.427

Balanced 0.134 1.236 1.934

No Preferences 0.126 1.157 1.702

Algorithm Running Time (in Seconds)

G-ECPRA - 0.011 s, Greedy - 0.007 s

CEFO - 0.021 s

Table 3. Comparison With Others

User Preference -

Low Energy Consumption

User Preference -

Low Computation Time

Energy

Consumed

(in Joules)

Computation

Time

(in Seconds)

Energy

Consumed

(in Joules)

Computation

Time

(in Seconds)

G-ECPRA [1] 756 0.224 742 0.235

SMG 761 0.212 1043 0.131

Greedy [16] 1303 0.119 1245 0.127

CEFO [35] 856 0.154 877 0.178

Table 3 depicts the comparison of our approach with G-ECPRA [1], a heuris-
tic based algorithm that is optimized towards minimizing energy consumption
and does not adapt to user preferences and CEFO [35], an offloading strategy
which jointly optimizes computation time, latency and energy, however does not
consider user preferences. We observe that our SMG based strategy when utilized
with the reward formulation set to low energy consumption performs similar to
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G-ECPRA. However, G-ECPRA when compared with the SMG strategy with
the reward formulation set to low computation time, is unable to adapt to the
new user preference. We compare with a greedy strategy optimized towards com-
putation time and latency which selects the task execution location depending
on the current load [16]. The greedy strategy also performs similarly as observed
in Fig. 3. These approaches are geared towards a single optimization objective
and cannot incorporate different user preferences as in our SMG based approach.
Our approach is thus flexible catering to a variety of preference-aware scenarios.
Table 2 details the number of states of the model with variation in the number
of time slots with higher number of slots providing higher accuracy. We found
from our experiments that selecting more than 50 discrete time slots exceeds 2 s.
Additionally, the table lists the model checking times for the various types of
user preferences discussed in Sect. 4.5.

Fig. 8. Temperature, Computation Time and Execution Location for SMG
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6 Related Work

In recent times, there has been extensive research on various issues in the MEC
paradigm [22,23,26,29,30,39]. Offloading in Mobile Cloud Computing [3,9,42]
and Multi-Access Edge Computing [7,18,33] have both been studied extensively
concerning what/when/how to offload workloads from handheld devices to the
cloud or edge [41]. A number of different approaches to offloading have been pro-
posed. [20] focuses on the energy efficiency of edge devices. Wang et al. [37] deal
with minimizing each MEC server’s energy consumption while satisfying QoS
requirements. The authors [5] consider scenarios where migrations are allowed
between edge servers while keeping the objective same as in [37]. The authors
in [7] introduce a unique perspective on energy consumption with simultaneous
harvesting by considering devices utilizing battery resources while harvesting
other energy sources. Recently, in [36] the authors investigate the role of each
user preferring an MEC server over another. However, they do not consider indi-
vidual preferences such as computation time and energy. Unlike an offloading
policy, service/user allocation [14] deals with determining the assignment of ser-
vice requests from users to already deployed services on MEC servers. A number
of allocation policies have been proposed in recent literature considering vari-
ous metrics such as number of users allocated, QoE/QoS maximization, energy
optimization, optimizing the number of re-allocations as users move about and
so on [14,21,23,43]. Probabilistic Model Checking has been demonstrated as an
effective technique for formally reasoning about the performance and reliability
of systems involving stochastic behavior [12]. A number of authors have applied
probabilistic model checking to provide performance guarantees in aspects of
cloud and MEC systems such as auto-scaling [8], horizontal scaling [19], live
migration [11] and user allocation [25,28]. However, unlike other approaches, we
use probabilistic model checking to synthesize user-preference based offloading
strategies in MEC enabled IoT, which makes this work novel.

7 Conclusion and Future Work

In this paper, we propose an offloading strategy for MEC enabled IoT devices
derived using formal methods. We model the offloading strategy synthesis prob-
lem using a Turn-Based Stochastic Multiplayer Game as a composition of several
components. We demonstrate encoding user preference objectives as the rewards
formulation. Experiments on benchmarks demonstrate the effectiveness of our
approach. In our work, we assume that the application and the associated data
are always available at the MEC server. A possible future direction is thus to
design a joint offloading and service placement strategy where the application
services may not always be available at the MEC server. Another possible direc-
tion is synthesizing offloading schemes by incorporating Dynamic Voltage Fre-
quency Scaling (DVFS) and the varied energy consumption that different DVFS
levels can admit unlike our work where average power consumption is considered.
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A Battery Model

We use a battery model (4 V, 2, 000mAh) which is representative of IoT devices.
Further, we consider an effective battery energy (28, 800 J) which has been uti-
lized in several previous studies [32,34,40].

Battery Energy: For predicting the battery energy pattern, we consider the
discharging cycles using the models utilized in several real-world studies. For
estimating the remaining battery energy and SOC in smartphones during dis-
charging, we use a discharging model [32]. For an accurate calculation of available
charge, the model takes into account the rate capacity effect in batteries. Accord-
ing to the rate capacity effect of batteries, charging and discharging efficiency
fall as charging and discharging currents increase [32]. Over each discrete time
slot, we calculate the battery energy by monitoring the device’s instantaneous
power consumption and discharging current E using:

E(t + Δt) = E(t) − Ec,

where Ec, the energy consumption (J) over one cycle (Δt), is given by

Ec = Δt × Pdevice + Eloss,

where Δt denotes the time duration of each cycle (in second) and Pdevice is the
total power consumption (Watt) of the device during Δt. In the work in [34],
the authors demonstrate generation of individual power characterization of work-
loads on specific cores (such as the LITTLE and BIG cores) of IoT devices. We
assume that such a characterization is available a priori. Thus, the value of
Pdevice is calculated in accordance with the power characterization depending
on where the task is executed. In our work, Pdevice refers to the average power
consumption. Eloss is the internal loss of the battery, caused by the rate capacity
effect and is calculated by

Eloss = Δt × (
i2bRtotal + ib · vOC · (1/η (ib) − 1)

)
,

where ib is the discharging current (amp) of the battery, Rtotal is the total
internal resistance (ohm) of the battery, vOC is the open circuit terminal voltage
(volt) of the battery, and η (ib) denotes the battery discharging efficiency, which
can be approximated as 1/

(
(ib)

kd

)
, where kd is the parameter representing the

Odroid platform utilized in [32]. Rtotal and vOC are calculated using

Rtotal = b21e
b22vSOC+b23

vOC = b11e
b12vsoc + b13v

4
soc + b14v

3
soc + b15vsoc

2 + b16vsoc + b17,

where bij are regression coefficients, and vSOC is the voltage representation of
the battery SOC, that is,

vSOC = Cb/Cb,full × 1 V,
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where Cb is the remaining charge in the battery, and Cb,full is the battery charge
when it is fully charged. Note that we utilize energy consumption in our model.
The State-Of-Charge is related to the energy consumption as follows:

SOC(t + Δt) =
E(t + Δt) × 100

ET

The State-Of-Charge is an important factor in influencing battery life and
ageing, according to [32]. Battery capacity declines with use over time owing to
the loss of active components, which is known as battery ageing. As a result,
in this paper, we present an offloading strategy based on the battery model
used in [32]. The chosen model mimics capacity decline over time using average
energy and temperature as input. In the next subsection we discuss the model
of temperature utilized in our work.

Battery Temperature Model: In this paper, we employ a battery thermal
model similar to the model employed in [32] that represents an IoT device.
Thermal coupling between the battery and the CPU is taken into account in
this model. The thermal coupling effect between the battery and the CPU plays
a major role in determining the battery temperature in smartphones due to the
tiny physical area. As a result, one part of a smartphone’s thermal behaviour
is not independent of the other. Furthermore, the CPU’s thermal behaviour is
strongly influenced by the application services that are running. By monitoring
the power utilized by the CPU we can estimate the battery temperature in an
indirect manner. The detailed model is presented below:

Tbat = Tenv +
Rcpu−envRbat−env

Rbat−env + Rcpu−bat + Rcpu−env
.Pcpu

where Tbat and Tenv are battery and environment temperature, Pcpu and Pbat

are CPU and battery power consumption, and Ri−j is the thermal resistance
between i and j, where i and j can be CPU , environment, and battery. The
value for these resistances are utilized from [32]. The above energy and thermal
models can be replaced by any other model, as our framework is designed in a
modular and replaceable manner.

B Experimental Setup

Workload: To the best of our knowledge, there are no real-world MEC imple-
mentation workload traces that are publicly available and sufficiently repre-
sentative of our problem context. Therefore, for our experiments, we generate
synthetic workloads using real-world applications from the Mibench benchmark
[10,32]. The Mibench benchmark suite provides benchmarks in various categories
of standard applications ranging from sensor systems on simple microcontrollers
to smartphones and desktops. Table 4 summarises the Mibench programmes
utilised in this setup. The applications we employ in this research are in the
network and security categories, both of which are pertinent to and reflective of
IoT applications.
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Fig. 9. Comparative Computation Running Times for Combinations of Applications
on the MEC server, LITTLE core and BIG core respectively

Data Gathering: We utilize the applications described in Table 4 to character-
ize the running times of various tasks of the applications. We utilize the executa-
bles of the Mibench benchmark as application tasks. We utilize these running
times to simulate the MEC-IoT setup. We first consider a random number of
applications between 2 and 4 and execute these applications simultaneously. We
consider three measurements: a) by running the applications simultaneously on
the MEC server b) by running the applications simultaneously by setting the
processor affinity to the “LITTLE” cores and c) by running the applications
simultaneously by setting the processor affinity to the “BIG” cores. Figure 9
depicts the runtimes for the various scenarios and the corresponding application

Table 4. Mibench benchmark applications used in this work

Application Category Summary

Dijkstra (D) Network Constructs a large graph and then calculates the shortest path between every pair of nodes

Patritia (P) Network Creates data structure for representing routing tables in network applications

Sha (S) Security Secure hash algorithm

Qsort (Q) Automotive Control Simulate autonomous vehicle control algorithms by sorting a large array of strings
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scenarios utilized with a combination of the Dijkstra, Patricia, Quick Sort and
Sha applications. Each combination of applications is executed 100 times. Fig-
ures 9a, 9b and 9c depict the variations in runtimes for the different combinations
of applications for 100 different executions. As can be inferred from the figures,
even for the same type of application combination, for example, Dijktra and
Patricia, there is a variation in the runtimes depicting the stochastic nature of
application execution runtimes. Additionally, note that there is a variation in the
runtimes depending on whether the application is executed on the MEC server
or locally as well as on the type of core when executed locally. These variations
depict the impact of the hardware specifications on the runtime of application
tasks. Prior work [44] has proposed that it is possible to effectively predict the
combinations of applications utilized given a specific time of day as well as local-
ity. Our methodology is thus based on such a premise. We assume that such a
characterization involving a combination of applications can be derived a priori
and utilizing the setup described above their running times can be determined
for a specific set of hardware. We utilize these runtimes as the values of laten-
cies (measured in seconds) to generate the DTMC model of the Task Execution
Latencies as explained in Sect. 4.3.

B.1 Simulation Setup

We simulate the MEC scenario by considering an IoT device executing tasks.
Upon task execution, the models are initialized into the Probabilistic Model
Checker PRISM-Games [13] along with the IoT device preference1 The model
checker returns the strategy. Each discrete time slot is then simulated by exe-
cuting the strategy as returned by PRISM-Games and the data gathered from
the above set of experiments is used to sample the stochastic nature of task
execution times. Additionally, in the simulation, the battery energy and tem-
perature are updated according to the models described. Our simulation thus
implicitly assumes that an accurate model of the energy and thermal dynamics
of the MEC ecosystem is available. However, note that our SMG based model
can be utilized with any other battery and energy model as well thus providing
a generic approach. We simulate the MEC scenario by considering a single IoT
device since the offloading scheme is identical whenever each IoT device exe-
cutes a task. When the task is executed at the MEC server, the computation
time distribution is obtained by considering the running times of a combination
of applications. Such a setup thus simulates several applications running on the
MEC server simultaneously.
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Abstract. To reduce carbon emission, the transportation sector evolves
toward replacing internal combustion vehicles by electric vehicles (EV).
However, the limited driving ranges of EVs, their long recharge duration
and the need of appropriate charging infrastructures require smart strate-
gies to optimize the charging stops during a long trip. These challenges
have generated a new area of studies that were mainly directed to extend
the classical Vehicle Routing Problem (VRP) to a fleet of commercial EVs.
In this paper, we propose a different point of view, by considering the
interaction of private EVs with the related infrastructure, focusing on a
highway trip. We consider a highway where charging stations are scat-
tered along the road, and are equipped with multiple chargers. Using Fluid
Stochastic Petri Nets (FSPN), the paper compares different decision poli-
cies when to stop and recharge the battery to maximize the probability of
a car to reach its destination and minimize the trip completion time.

Keywords: Electric Vehicle · Charging infrastructure · Battery charge
decision policy · Fluid Stochastic Petri Nets

1 Introduction

According to the Fuel Report 2021 of the International Energy Agency [1] the
transport sector is responsible for around 60% of total oil demand. Inside the
transport sector, oil was the predominant energy source, providing 92% of final
energy over the past decade [2]. A major way to limit carbon emission in the
transport sector is to replace internal combustion engine vehicles (ICEV) by
electric vehicle (EV), and many countries are introducing new regulations and
incentives to push the market toward this goal.

Between the two EV technological alternatives: hybrid electric vehicle (HEV)
and battery electric vehicle (BEV), we consider, in the present paper, only BEV
which are exclusively powered from rechargeable batteries mounted inside the
vehicle. From the carbon emission point of view, BEVs have the following benefits
as compared to ICEVs [3].
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– They reduce oil consumption, and greenhouse gas emissions, improving air
quality.

– They operate with minimal noise.
– Can be charged from a wide range of different primary (renewable) energy

sources, reducing kilometric cost.

On the other hand, their high cost of acquisition, limited driving ranges, the
need for specific charging infrastructure, and long recharge duration limit the
penetration of EV in the market.

The appearance of BEVs in the private as well in the commercial sector poses
new challenges for their use and for the new infrastructures they need. These
challenges have generated a new area of studies denoted as green logistic [4].
The major effort in this direction was to extend the classical Vehicle Routing
Problem (VRP) to a fleet of commercial EVs and is referred to as Electric Vehicle
Routing Problem (EVRP) [5]. The present paper, however, assumes a different
point of view, considering a flow of private vehicles traveling along a highway
and we study the performability of the system formed by the BEVs and the
related infrastructure.

More specifically, we consider a long stretch of a highway with a flow of
cars, both BEVs and non-BEVs, driving on it. A number of charging stations
is scattered along the road and each charging station has one or more chargers.
The problem of optimizing the siting and sizing of the charging infrastructure
has been the object of recent research [6,7], but we assume here that the stations
are already located and their positions are parameters to feed the model. We
tag and follow a particular BEV that enters the highway at the beginning of the
stretch and drives up to the end. We study the probability that the tagged car
arrives at the end of its itinerary and the distribution of the time to complete
the itinerary. The battery of the BEVs discharges as a function of the time, the
speed of the car and the driven kilometers, while for the charging we adopt the
non-linear function discussed in [8].

We model the system by means of a Fluid Stochastic Petri Net (FSPN) [9],
in which the battery is represented by a fluid place with one input and one
output fluid transition representing the charging and the discharging process,
respectively.

The time that the tagged car takes to drive the segment between two suc-
cessive service stations is a generally distributed random variable with a know
mean (determined by the average speed of the car). The BEVs arriving at a
charging station queue up for charge, and we assume, in the present formula-
tion, that their arrival and service times are exponentially distributed. When the
tagged driver arrives at a charging station she must decide whether to stop and
recharge or go on. This decision depends on the level of the battery, the presence
and the length of a queue at the station and the distance to the next station or
to the destination. Different decision policies are considered and analyzed, also
in view of a possible experimentation on autonomous EVs. The FSPN is solved
analytically using Matlab, and a number of numerical experiments are presented
to compare different decision policies.
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The paper is organized as follows. In Sect. 2 we summarize the state of the
art, in Section 3 the characteristics of the charging infrastructure and of the flow
of cars are described. Section 4 illustrates the FSPN model, with the charging
decision policies. The subsequent Sect. 5 sketches the numerical solution through
a semi-discretization approach. Section 6 reports the numerical results and in
Sect. 7 a discussion on the model and hints for future work close the paper.

2 State of the Art

The diffusion of EVs is limited, especially in Italy with respect to other countries
(Germany, France), also as a consequence of the scarcity of charging stations
along the road network, and to their uneven distribution in the national territory.
Although the technological innovation continuously increases the driving range of
EVs, planning the charging stops is still a critical issue due to the long charging
times. The seminal paper of Erdogan & Miller-Hooks [5] has first introduced
the EVRP, considering different alternative-fuel vehicles (not only powered by
electricity but also by GPL, hydrogen, natural gas etc.) for which the charging
stations are not widespread on the territory. The paper generated a huge interest
in the scientific community, and many extensions have been proposed and studied
in the following years, as documented in two recent survey papers [10,11].

Hybrid vehicles, which can switch from the electric propulsion to a traditional
fuel have been addressed in [12]. Schneider et al., [13] introduced the EVRP
with Time Windows (EVRPTW) in which customers must be visited within a
prefixed time-window. The concept of partial recharges to the EVRPTW was
introduced in [14], while in [15] a non-linear charging function is considered.
In [16], charging stations with limited capacity are addressed for the first time,
and a maximum number of vehicles that can simultaneously access the station
is strictly imposed. Instead, in [17], vehicles are allowed to access the station
and queue up if all the charging slots are busy, so that service may start when
the queue becomes empty. All the above mentioned papers deal with decision
problems faced by the usage of commercial EVs in freight distribution. In the
present paper, we look at the problem under a different perspective considering
a private BEV driver, immersed into a flow of private vehicles, who has to cover
a given trip and must decide where and when to stop to recharge her vehicle to
maximize the probability of completing the trip minimizing the total trip time.
We introduce, in this paper, a performability view on the interaction between
the EVs and the charging infrastructure [18], since we combine the evaluation
of the driver trip time with the evaluation of the probability that the trip fails
and the car does not complete its itinerary. The key element in the interaction
between EVs and the infrastructure is the discharging and charging process of
the battery. The flow intensity of the vehicles, the traffic conditions on the road
and the queue length in front of a station are non-deterministic phenomena that
can be represented by a stochastic model. To combine in a single framework
the continuous variation of the charging level of the battery in time and the
randomness in the traffic condition, we model the system by means of a Fluid
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Stochastic Petri Net (FSPN) [9,19,20] where the battery is represented by a fluid
place whose fluid level is the charge, the time to travel the highway between two
successive service stations is a random variable with general distribution and the
queue at a station is a M/M/γ if the station has γ parallel chargers.

FSPNs were introduced in [19] and further extended in [20]. FSPNs evolve
the stochastic Petri nets framework [21] by introducing as new primitives the
continuous places, which contain a fluid quantity, and the fluid arcs, which con-
nect timed transitions to fluid places and determine the flow in and out to the
fluid places. The basic FSPN formalism was enriched in [9] by introducing fluid
impulses that increment the fluid level by a discrete quantity whose intensity
depends both on the fluid levels and on the discrete marking of the net. FSPNs
have a graphical representation that helps building the model, and then from
the graphical representation we can derive the fluid stochastic equations that
describe the underlying stochastic marking process. In general, the solution of
these equations is a challenging task. Steady-state solution of FSPN models,
with dependency on discrete places only, has been proposed in [20] using spec-
tral decomposition. In the same paper, transient analysis has also been described
using upwind semidiscretization. FSPNs have been successfully used in the lit-
erature to study systems in several technological areas, but we are not aware of
applications in the field of EV routing.

3 The Infrastructure and the EV

To be concrete, we consider, the Italian motorway A1 from Bologna to Taranto
(743 km), which we display in Fig. 1 with the real allocation of the service
stations.

The portion of highway between two charging stations is called segment.
Table 2 in Appendix shows the location of the service stations along A14 Bologna
to Taranto. We assume that each service station is equipped (or will be equipped
in the near future) with a charging point with a number γ of parallel chargers
and that all the chargers provide the same power, so that the charging profile is
the same for all the EVs in all chargers.

Along the highway runs a flow of cars, composed by BEVs and non-BEVs and
by the tagged BEV that we follow from the beginning of the trip up to the end.
The other BEVs in the flow may compete for the charging points, generating
possible queues at the stations when the tagged car arrives for charge. The
non-BEV cars are not explicitly modeled, but their presence is reflected on the
average speed of the car flow including the tagged BEV. The time that the tagged
BEV takes to complete one segment is a random variable whose distribution may
change in each road segment. The distribution of the driving time to complete
a segment is modeled by a shifted Erlang distribution whose parameters (shift,
expected value and number of stages) are input data (see Sect. 4) that may
depend on the traffic conditions in the segment. In this way, we allow to model
fluctuations or congestion in the traffic flow in specific segments of the highway.
Each station is provided with γ parallel chargers and we assume that the BEVs
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Fig. 1. The A14 from Bologna to Taranto with the actual position of the service sta-
tions. We assume that in each service station there is an EV charging point

arrive at the station according to a Poisson process of known parameter. In
the present study, we assume also that all the BEVs and all the chargers have
the same characteristics; furthermore we do not model the level of the residual
charge of the vehicles joining the queue, hence, even if the charging profile has a
nonlinear behavior (see Sect. 4.1), we approximate the charging time of the non-
tagged BEVs at a station with an exponential distribution of known parameter,
so that the queue in front of the station becomes a M/M/γ.

4 Fluid Stochastic Petri Net: The Scenario

Figure 2 shows the FSPN of the considered scenario. Following the customary
notation for FSPNs [9,20], the set of places P is partitioned in a set of discrete
places Pd and a set of continuous places Pc. Discrete places are drawn as single
circles and may contain a discrete number of tokens, while continuous places
are depicted by two concentric circles and contain a continuous quantity called
fluid. The model of Fig. 2 contains a single fluid place β representing the battery
whose fluid level, ranging in the interval 0 ≤ β ≤ B, is the charge measured
in km.
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The set of transition T is partitioned into a set of timed transitions TE , a set
of immediate transitions TI and a set of fluid transitions TF . Timed transitions
are drawn as a rectangle and are assigned a random firing time with known
distribution, immediate transitions are represented by a thin bar and fire in zero
time, while fluid transitions are represented by double rectangles and connect the
fluid places. In Fig. 2, the timed transition SEGMENT(φ) (in gray) is assigned
a general distribution, while transitions EMP Q and FREE, representing the
queue of BEVs at a station, have an exponentially distributed firing time. B UP
and B DOWN are the fluid transitions modeling the charge and discharge of the
battery, respectively,

The set of arcs A is partitioned into two subsets Ad and Ac: the former is a
subset of (Pd × T ) ∪ (T × Pd) representing the discrete arcs and are drawn as
single arrows, the latter is a subset of (Pc × TF ) ∪ (TF × Pc) representing the
fluid arcs and are drawn as double arrows. In Fig. 2, the fluid arc from B UP to
β continuously adds fluid (charge) when enabled, while the fluid arc from β to
B DOWN continuously removes fluid when enabled. Inhibitor arcs, represented
with dashed lines ending by a small circle, have the usual meaning of preventing
a transition to fire when the input place contains a number of tokens (or a fluid
level) greater or equal to the weight. In Fig. 2, there are two inhibitor arcs: from
place φ to transition AVAIL SLOT which may fire only when place φ contains
less than K tokens and from fluid place β to transition FAIL which may fire
when the fluid level is less than the weight l(φ). Finally, impulse arcs, which
connect fluid places to discrete transitions, add or remove a finite amount of
fluid during the firing event. In Fig. 2, the only impulse arc is from place β to
transition SEGMENT(φ), and removes a fluid quantity l(φ) when the transition
fires.

Let mi = [#pi, i ∈ Pd] be the discrete marking of the FSPN and let x be the
vector of the fluid levels in the continuous places. The complete state of the fluid
Petri net is given by the pair M = (mi,x) which evolves in time, generating the
stochastic marking process M(τ) = {(mi,x), τ ≥ 0}. The evolution of each fluid
level x depends both on a continuous component determined by the instanta-
neous flow rates assigned to fluid arcs and a discrete component determined by
fluid impulses transferred to (or removed from) the fluid place when the impulse
transition fires [9].

Place N represents the tagged car initiating segment φ, with φ = 1, ...,K,
counted in place φ. The total number of segments to be traveled is hence denoted
by K. Transition SEGMENT(φ) represents the completion of segment φ and
the arrival at the charging station at the end of the segment. Such transition
is characterized by a state-dependent shifted-Erlang firing time, expressed by
Eq. (1), where s is the number of exponential stages, t0 the shift and ψ the rate
parameter.

f(t) =

⎧
⎨

⎩

ψs(t − t0)s−1e−ψ(t−t0)

(s − 1)!
t ≥ t0

0 t < t0

(1)
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Fig. 2. Fluid Stochastic Petri Net model of the considered scenario.

Let lφ be the length of segment φ, vmax the maximum speed allowed for the car,
and vave the average speed on the segment. t0 and ψ are defined as follows:

t0 =
lφ

vmax
; ψ =

s

lφ

(
1

vave
− 1

vmax

) (2)

The distribution (1) starts at t0, which is the traveling time when the segment
is driven at the maximum speed vmax, and the expected value is E[t] = lφ

vave
as

required by the definition of vave. From Eqs. (2), the parameters t0 and ψ of the
distribution (1) are derived assigning vmax and vave, while the number of stages
s is assigned independently.

The coefficient of variation cv is lower than the corresponding non-shifted
Erlang with same order s:

cv =
1√
s

(

1 − vave

vmax

)

(3)

4.1 The Battery Level

In the control screen of most EVs, the battery level is conventionally measured
and displayed in kilometers. The battery is consumed during the firing time of
transition SEGMENT(φ) (when a token is in place N) according to distribution
in (1), and charges when a token is in place F. Battery charging and discharging
are modeled by fluid transitions B UP and B DOWN, respectively. The discharge
is a function of the length lφ of segment φ, the average speed of the car and of the
power supplied to support services such as air conditioning and music playing
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Fig. 3. The non linear charging profile

dβ

dt
=

⎧
⎪⎨

⎪⎩

rc ; β < σ1B

rc · σ3 − β/B

σ3 − σ1
; σ1B ≤ β < σ2B

0 ; β ≥ σ2B

(4)

(converted in equivalent km), which is a function of the time spent to drive
segment φ. The rate of consumption of the battery increases almost linearly
with the average speed [22] beyond a cruise speed of around 50 km/h.

For each segment we could assign a value for vmax and vave to define the
distribution of the time to drive the segment. However, in the present paper we
keep the same values of vmax and vave for all the segments, but we show how
the model reacts modifying these values. The random time to drive a segment is
given by t0 (the time to drive the segment at the maximum speed), augmented
by the deviation given by the Erlang component (the series of s exponential
stages) (Eq. 1). During this period, the battery level β reduces at a rate r(t, i) =
−rb to account for the services. At the end of the last Erlang stage, transition
SEGMENT(φ) fires and a fluid impulse lφ, reduces the battery level to account
for the completion of segment φ.

When a token is in place F, the battery charges according to a non-linear
model inspired by the work in [8]. The recharge model is given by Eq. (4), where
rc is the initial constant recharge rate and σi are the parameters needed to define
the non-linear behavior. Figure 3 gives the corresponding non linear charging
profile. As soon as the capacity σ2B is reached, immediate transition RESUME
fires, putting a token in place N to prepare for driving the next segment. When-
ever the battery level β becomes zero or negative, due to the reduction at rate
rb or to the effect of the negative impulses, the immediate transition FAIL is
triggered causing the mission to fail. This is modeled with the inhibitor arc of
weight lφ that connects β to FAIL.

When transition SEGMENT(φ) fires and φ = K (last segment), transition
AVAIL SLOT is disabled, immediate transition SUCCESS fires and the tagged
car successfully completes its itinerary. If φ < K transition AVAIL SLOT fires
and place Q becomes marked, the tagged BEV must take the decision whether to
continue, or to stop and recharge. This decision is performed inside the element
of the CHARGING STATION box of Fig. 2, and depends on the current battery
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level β, on the position of the car φ, on the state of the queue and on the
implemented stopping decision policy.

We have modeled the queue at the charging stations as a M/M/γ and we
have computed its state probabilities. We define p(Wait) the probability that
the chargers are busy and there is a queue in front, p(NoQueue) the probability
that the chargers are busy, but there are no cars in the queue, and p(Free) the
probability that there are empty slots. Such probabilities can be computed from
the queue length distribution πQ(n) using the conventional formula [23]:

ρ =
λ

γμ
, πQ(n) =

⎧
⎪⎨

⎪⎩

πQ(0)

n!
· (γρ)n n < γ

πQ(0)γ
γρn

γ!
n ≥ γ

(5)

πQ(0) =

[
(γρ)γ

γ!
1

1 − ρ
+

γ−1∑

k=0

(γρ)k

k!

]−1

(6)

p(Free) =
γ−1∑

n=0

πQ(n), p(NoQueue) = πQ(γ), p(Wait) = 1 − πF − πZ (7)

where λ is the arrival rate of BEVs at the station and 1/μ is the average time to
recharge. The resulting values, together with the chosen stopping decision policy,
are then used to compute the firing probabilities of the four immediate transi-
tions CONTINUE, WAIT QUEUE, WAIT SLOT and CHARGE, as detailed in
Sect. 4.3.

4.2 Stopping Decision Policies

In the present paper, we take into account only the waiting and service times
due to the queue and we neglect the overhead in exiting the highway, pulling
up to a charger, plug in, and then reentering the highway. This overhead can be
easily introduced in the FSPN of Fig. 2 by adding an extra timed transition if
the car decides to stop at a station.

We experiment different stopping decision policies where each policy j is
characterized by three functions that return the probability of stopping depend-
ing on the current battery level β, and the distance of the next charging stations
(derived from the segment φ): i) if there are free slots u

[j]
f (β, φ) (token in place

F), ii) if the slots are busy, but there are no cars queuing, u
[j]
z (β, φ) (token in

place Z) and iii) if there are already other cars queuing for a charging facility to
become free u

[j]
w (β, φ) (token in place W).

We have tested five different stopping policies:
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1. Stop only when absolutely needed: stop only if the remaining battery
level is not enough to reach the next charging station. This policy is imple-
mented with the following functions:

u
[1]
f (β, φ) = 1(β < lφ+1)

u[1]
z (β, φ) = 1(β < lφ+1)

u[1]
w (β, φ) = 1(β < lφ+1)

where 1(•) is the indicator function that returns 1 if proposition • is true, 0
otherwise.

2. Blind probabilistic stopping: stop at any station, independently of the
queue, with a given probability p:

u
[2]
f (β, φ) = p

u[2]
z (β, φ) = p

u[2]
w (β, φ) = p

3. Informed probabilistic stopping: stop at any station, with a given high
probability pe if there is at least an empty slot, or with a lower probability
pw if there is to wait:

u
[3]
f (β, φ) = pe

u[3]
z (β, φ) = pw

u[3]
w (β, φ) = pw

4. Avoid waiting: We define a safety threshold of η km. Whenever the battery
level β is such that (β < η), stop if there is at least a free charger, otherwise
retry at the next station. However, if the remaining battery level is less than
the length of the next segment, stop anyway.

u
[4]
f (β, φ) = 1(β < η)

u[4]
z (β, φ) = 1(β < lφ+1)

u[4]
w (β, φ) = 1(β < lφ+1)

5. Skip long queues: This policy relaxes the previous one, by allowing the car
to stop with probability p, even if all chargers are busy, but there are no other
cars in the queue.

u
[5]
f (β, φ) = 1(β < η)

u[5]
z (β, φ) = p · 1(β < η)

u[5]
w (β, φ) = 1(β < lφ+1)

Of the proposed policies, the first three are just for comparison purpose, since
they are not realistic; the ones on which this work really focuses are the last two.
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4.3 Computing Decision Policy Probability

As transition AVAIL SLOT fires depositing a token in place Q four immediate
competing transitions are enabled determining the next move of the tagged car.
The weights of the four immediate transitions are a function of the state of the
queue and the stopping policy j

wCONTINUE = (8)

p(Free)(1 − u
[j]
f ) + p(NoQueue)(1 − u[j]

z ) + p(Wait)(1 − u[j]
w )

wWAIT QUEUE = p(Wait)u[j]
w (9)

wWAIT SLOT = p(NoQueue)u[j]
z (10)

wCHARGE = p(Free)u[j]
f (11)

In Eqs. (8) to (11) the dependencies on β and φ have been omitted to simplify
the presentation. If there is a queue of cars already waiting to be served the
waiting time is modelled by transition EMP Q(γ), which, according to queuing
theory [24], is exponentially distributed with rate:

qEMP Q(γ) = γμ − λ (12)

If all slots are full, but there are no other cars in the queue, the waiting time
represented by transition FREE(γ), is exponentially distributed with rate:

qFREE(γ) = γμ (13)

When a token arrives in place F, the charging of the battery begins. If,
instead, the decision is to continue, the immediate transition CONTINUE fires,
moving the tagged BEV to the next segment.

5 Solution Equation

Since there is only one fluid place with fluid level β, the stochastic marking
process of the FSPN of Fig. 2 can be written as (see Sect. 4) M(t) = {(mi, β), t ≥
0}. The non exponential distribution of transition SEGMENT(φ) is modeled with
a phase-type approach, and the discrete marking mi includes both the s stages
of the shifted Erlang distribution and the state of the queue.

Then, let us define πi(t, β) as the probability density of finding the system
in state mi with fluid level β at time t, qij as the transition rates from state
mi to state mj and dij as the fluid impulse transferred to the fluid place at the
transition firing from state mi to state mj . In our case, qij corresponds either to
the rates of the Erlang stages given in Eq. (2), to the rates given in Eqs. (12) or
(13), or to a Dirac’s delta on the fluid component to represent the battery level
dependent jumps caused by either end of charging or failure. The fluid impulse
terms are dij = −lφ for the transitions at the end of the Erlang stages, and
dij = 0 otherwise.
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The transient behavior of the model illustrated in Sect. 4 follows the system
of partial differential equations:

∂πi(t, β)
∂t

− ∂ (r(t, i, β) · πi(t, β))
∂β

=
∑

mj∈Md,mj �=mi

qjiπi(t, β + dij), ∀mi ∈ Md. (14)

We apply a semi-discretization of (14) in the coordinate direction β using a
first-order upwind method [20]. Since the fluid place of the battery is bounded
at a maximum level B, its fluid level can be discretized at a finite number of
equidistant points βi = iΔβ with 0 ≤ i ≤ � B

Δβ 	, where Δβ is the size of the
discretization interval of the battery level.

From the semi-discretization we obtain the linear system of ordinary differ-
ential equations:

dπ̃(t)
dt

= π̃(t)(Q̃ + W̃ ), (15)

where π̃(t) is the vector of the probabilities that the system is in a discrete
marking at different points of the discretized fluid range, Q̃ is the state transition
matrix representing the discrete part of the net and W̃ is the discretization of the
space derivative multiplied by the flow rates; more details can be found in [20].

Such equations can be integrated and solved by any standard method. In
particular, we resorted to the ode23() function of Matlab to implement the
proposed scheme with adaptive step size integration with ΔX = 5 km or ΔX = 2
km. Solution required between 20 s to 10 min on a standard MacBook Pro 2016
laptop.

Table 1. Model parameters

Param. Description Value

γ Num. charging slots 2

s Erlang stages 4

vmax Maximum speed 130 km/h

vave Average speed 100 km/h

λ Electric cars arrival rate 1 car/h

B Battery capacity (km) 250 km

rb Basic energy consumption (km/h) 10 km/h

rc Charging rate (km/h) 200 km/h

σ1, σ2, σ3 Parameters of the charging model 0.68, 0.995, 1.0

η Threshold for the battery level 80 km
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6 Numerical Results

We fix the number of slots to γ = 2 for every charging station. To study how
the model captures the evolution of the system, we start focusing on policy 4),
assigning a threshold η = 80 km and setting the other parameters to the values
in Table 1. Figure 4 shows the main state probabilities: charging, waiting, success
and failure. On Fig. 4 we have also reported the average battery percentage β̄(t)
at time t, and the average number of segments φ̄(t) already driven at time t,
where φ(i) is the highway segment corresponding to state mi. The two quantities
β̄(t) and φ̄(t) are expressed in Eq. (16) and are conditioned on the fact that the
tagged BEV reaches its destination, and on the probability that it is still traveling
at time t. Let us call πdest(t) the probability that the car has successfully reached
its destination at time t, and πfail(t) the probability that the car has run out of
battery while traveling on a segment. Then we have:

β̄(t) =
1
B

[
∑

i

∫ B

β=0

β πi(t, β) dβ

]

(1 − πdest(t) − πfail(t))
−1

φ̄(t) =
1
K

[
∑

i

∫ B

β=0

φ(i)πi(t, β) dβ

]

(1 − πdest(t))
−1 (16)

From the plot, it is possible to visualize when the car stops, and how long it has
to wait for charging the battery. It is interesting to note that the probability
of charging the battery becomes negligible as the probability of reaching the
destination becomes higher. The “staircase” trend of “Ave. Battery” and “Ave.
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Fig. 4. States evolution: a) success probability, charging probability, average battery
percentage and average number of segments driven at time; b) waiting probability and
failure probability
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segment” curves, observable at time t < 2h, is due to the embedded process
behavior. In particular to the impulsive battery level reduction lφ that occurs at
discrete times when the vehicle reaches the next service station, modeled by the
firing of transition SEGMENT(φ) in Fig 2.

We then start comparing the various policies, showing the probability of
unsuccessful arrival at destination in Fig. 5a), and the trip duration distribution
conditioned on a successful arrival in Fig. 5b). Policy 2), which stops the car at
every charging point, has basically no probability of failing, but it experiences an
extremely long trip duration. Conversely, policy 1) that stops the car only when
absolutely needed has the worst reliability. Its response time is not one of the
best either, since it stops independently on the queue at the station where the
battery level becomes too small. Policy 3), as expected, places itself between the
two. The more advanced policies 4) and 5) have a much shorter traveling time,
but policy 5), which anticipates the recharge, shows a lower failure probability
than policy 4).
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Fig. 5. a) Failure probability and b) conditioned success probability, as function of
time for the 4 considered policies

Figure 6a) shows the average battery level as a function of time. for the
different decision policies. Policies 2) and 3) induce frequent stops and recharges
and the battery power is not well exploited since the charge is almost always
at the maximum level. Policy 1) depletes the battery almost completely before
charging. For Policies 4) and 5) (whose curves are almost indistinguishable) the
battery depletion and then the stops to charge are well visible; the two policies
perform an early charge, more or less in the same station.

Figure 6b) for the only Policy 4) shows the effect on the battery cycles of the
speed of the car. The increased average speed has two competing effects. The bat-
tery depletion rate increases almost linearly with the speed [22], but since driving
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Fig. 6. a) Average battery level versus time for the considered policies and b) Average
battery level versus average speed for Policy 4)

a segment takes a shorter time, also the battery consumption due to the services
(AC, sound, etc.) is lower. The combined effect in Fig. 6b) shows that at increased
speed the recharge must be done more frequently. The curves in Fig. 6b) have
been obtained by setting vmax = 140 km/h and vave = 100, 115, 130 km/h.

As explained in Sect. 4.2, Policies 4) and 5) require a safety threshold η to
decide their stopping interval. Figure 7 shows the average trip time and the fail-
ure probability for policies 4) and 5) under different thresholds η ∈ [20 . . . 120] km.
While the failure probability increases as the margin decreases, as expected, the
average trip time has a non-linear and non-monotonic behavior, even if it tends to
increase with η. This tendency is motivated from the fact that by stopping earlier
there is a higher chance of requiring an additional stop. Non-monotonic behavior
is instead caused by the non uniform position of service stations along the road. In
some cases, increasing the margin can have a positive effect: arriving at a station
with a larger remaining battery capacity decreases the stopping time. If this does
not increase the required number of stops, it has the effect of reducing the traveling
time. By combining both measures with appropriate goal-dependent weights, the
proposed model can thus be used to find the value of η which gives the best trade-
off between traveling speed and failure probability depending on the position of
the charging points along the trip.
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7 Conclusions

This paper has explored a new line of research by analyzing a system composed
by electric vehicles, immersed in a traffic flow, on a real highway, and their
interaction with the related charging infrastructure. The balance between the
probability of successfully completing the itinerary versus the time required to
complete the trip, that is influenced by the number of stops and the state of
the queue at the charging stations, has been examined under different charging
decision policies. The described system has been modeled and analyzed using
stochastic fluid models, and in particular, Fluid Stochastic Petri Nets. Although
results are still preliminary, the paper shows the appropriateness of the consid-
ered technique for studying the performance and the reliability of the proposed
system.

The model is predisposed to be extended in different directions. More realistic
traffic condition, in which the speed of the car flow can be modulated according
to the traffic intensity, and the battery depletion rate is sensitive to the speed
of the tagged BEV. The incorporation of chargers with different characteristics
that modify the nonlinear charging profile of the battery. The inclusion of the
probability of the charging station to be up or down, and the adaptation of
the stopping decision policies. Further the decision policy can benefit by the
availability of system level controllers (i.e., an app) that informs the driver of
unavailable or free slots along the way.

The model investigated in this paper can be proposed as a building block for
an optimization strategy aimed at finding the best policy parameters for a given
road. Further, the analysis of charging decision policies can provide suitable
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algorithms to be implemented on board, mainly in view of the possible new
generation of autonomous EVs.

Appendix

In Table 2 the location of the service stations along A14 Bologna to Taranto is
shown. In particular: the name of the service stations (column 2), the length of
the segments (column 3) together with the progressive distances from the start
(column 4) and to the end (column 5).

Table 2. Location of service stations along A14 Bologna to Taranto

Station Distances [km]

φ Name segment from start to end

0 Bologna 0 0 743.4

1 La Pioppa 2.3 2.3 741.1

2 Sillaro 35.1 37.4 706

3 Santerno 22.1 59.5 683.9

4 Bevano 30 89.5 653.9

5 Rubicone 21.8 111.3 632.1

6 Montefeltro 22.3 133.6 609.8

7 Foglia 25.3 158.9 584.5

8 Metauro 27.3 186.2 557.2

9 Esino 22.5 208.7 534.7

10 Conero 30.3 239 504.4

11 Chienti 24.9 263.9 479.5

12 Piceno 26.9 290.8 452.6

13 Tortoreto 32.9 323.7 419.7

14 Vomano 16.6 340.3 403.1

15 Torre Cerrano 22.8 363.1 380.3

16 Alento 30.8 393.9 349.5

17 Sangro 34.9 428.8 314.6

18 Trigno 29.8 458.6 284.8

19 Torre Fantine 15 493.5 269.8

20 S.Trifone 19.9 517.51 249.9

21 Gargano 48.73 542.23 201.17

22 Le Saline 44.94 587.17 156.23

23 Canne Battaglia 33.19 620.36 123.04

24 Dolmen Di Bisceglie 24.05 644.41 98.99

25 Murge 27.03 671.44 71.96

26 Le Fonti 26.18 697.5 45.78

27 Taranto 36.78 743.4 0
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9. Gribaudo, M., Sereno, M., Horváth, A., Bobbio, A.: Fluid stochastic Petri nets
augmented with flush-out arcs: modelling and analysis. Discrete Event Dy. Syst.
11(1/2), 97–117 (2001). https://doi.org/10.1023/A:1008339216603
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Abstract. A blockchain is an immutable ledger driven by a distributed
consensus protocol. In public blockchains such as Bitcoin and Ethereum
consensus is established through a computational effort called Proof-of-
Work (PoW). Special users called miners contribute to the PoW com-
putational effort in exchange for a fee and also verify the data stored in
blocks mined by the other miners. Here is where the Verifier’s Dilemma
emerges. To maximise their profits, miners are incentivized to invest their
resources in PoW, because they do not receive any incentives for the ver-
ification phase. In this paper, we study the Verifier’s Dilemma using a
quantitative model based on PEPA. The analysis demonstrates the cir-
cumstances under which non-verifying miners gain fees higher than that
of verifying miners. Moreover, we consider a mitigation approach con-
sisting of the injection of invalid blocks to disturb the mining process
of non-verifying miners. The model allows us to derive the optimal rate
at which invalid blocks must be injected, so that skipping the verifying
phase becomes economically disadvantageous while the throughput of
the blockchain is only minimally reduced. The impact on miners’ rewards
and overall performance is also assessed.

Keywords: Blockchain · Stochastic Process Algebra · Verifier’s
Dilemma

1 Introduction

A blockchain is a decentralized distributed network with an immutable and time
ordered ledger whose records are stored in blocks. Blockchain users submit their
transactions to the system, where other special users called miners verify the
transactions and include them in blockchain blocks.

Every blockchain network follows a certain consensus protocol. Particularly,
Ethereum [5] (the second largest blockchain project after Bitcoin) is driven by
the Proof-of-Work (PoW) consensus protocol. PoW consists of a race among
miners to solve a certain computationally intensive problem. However, once a
solution is announced, other miners can verify its correctness quickly. Winning
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the race is important because only the miner who announces the new block
is rewarded for its efforts. One of the main strengths of PoW is the fact that
any modification to transactions in the ledger has a high computational cost
that miners must face. In particular, since blocks are linked, modifications of
consolidated blocks requires to re-mine all the subsequent blocks, and this has
such a high computational cost that is commonly considered infeasible.

Miners do not only work on the solution of the PoW, but they also have to
verify the transactions that they want to include in their candidate block and
those contained in the blocks announced by others. Ethereum transactions can
be of two types: financial and smart contract. The latter ones are essentially
transactions encompassing a piece of computing code in them. This naturally
implies that verification of such transactions is connected to the execution of
the corresponding code pieces which, indeed, requires extra computational effort
with respect to the financial transaction verification. It should be noted that
the language used to write smart contracts (usually Solidity) is Turing complete
and hence, the execution may be computationally quite demanding. While the
verification process delays miners in the race of mining the next block, there is
no miners’ incentive mechanism behind this process nor a way to check if miners
performed this task. As a result, miners face the Verifier’s Dilemma: use resources
for verification to support the blockchain honestly or avoid the verification process
to have more time to mine new blocks in favour of maximizing their revenues.

Clearly, in a healthy blockchain, the large majority of miners should be fair,
i.e., they verify other miners’ blocks. For this reason, methods to incentivize
fair miners or disincentivize unfair ones are being investigated in the litera-
ture. Among the most promising approaches to the mitigation of the Verifier’s
Dilemma problem is the intentional production of invalid blocks [1]. The solution
refers to the implementation of a special node that generates invalid blocks, i.e.,
blocks that contain at least one invalid transaction. Such a block will be rejected
by fair miners but accepted by others that will immediately start to compute the
PoW of the subsequent block. While this unethical behaviour gives an advan-
tage to the unfair miners upon a valid block announcement, it is harmful when
an invalid block is announced. In fact, unfair miners will try to consolidate a
new block after an invalid one and, even if they succeed, they will never get any
reward because all fair miners will never recognize their blockchain branch. If the
miner does not verify an invalid block, they realise that the network of peers has
not accepted it only when a new valid block is announced, and hence the waste
of time could be much larger than the advantage of skipping the verification.

Injecting invalid blocks has some drawbacks. First, it diverts some compu-
tational power of fair miners to the verification of meaningless blocks. Second,
the invalid block must still exhibit a valid PoW that will not be used to secure
the immutability of the ledger. For these reasons, the rate of injection of invalid
blocks is a crucial problem for the system designers. This should be the minimum
rate that makes miners’ unfairness non- or dis-advantageous.

In this paper, we use the Performance Evaluation Process Algebra
(PEPA) [10], for modelling the salient aspects of Ethereum network allowing
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us to study the Verifier’s Dilemma and the above described mitigation app-
roach. The choice of PEPA is motivated by its simplicity and compositionality
properties. Moreover, it is quite interesting to observe that the solution of the
PoW is known to be a memoryless process, i.e., the delays between two subse-
quent blocks are independent and exponentially distributed, as it is exponentially
distributed the time required by a single miner to solve the PoW (see, e.g., [4]).

The main contributions of the paper are:

– First, we introduce a base PEPA model to understand, investigate and vali-
date our approach to the Verifier’s Dilemma problem. In particular, the model
quantitative indices are confirmed by the simulations performed in [1] based
on real data from the Ethereum blockchain. The model, thanks to an aggre-
gation of states [2,13,14] is analytically tractable.

– The second contribution is the introduction of a PEPA model that takes
into account the invalid block injection mechanism. Using this model, we are
able to investigate this important countermeasure from the perspective of the
single miner and that of the entire network. The model allows us to determine
the waste in terms of rewards both of fair miners (that spend more time in
verifying) and of unfair miners (that spend time in mining possibly invalid
blocks because subsequent to an injected one). A counter-intuitive observation
following this model analysis is that the optimal rate of injection of invalid
blocks grows with the percentage of fair miners. We will explain the reason
from a system perspective in the following sections.

– The analysis of the model allows us to define a numerical algorithm for the
computation of the optimal injection rate which is provably correct under
mild conditions. The advantage of this approach is that it can be used to
dynamically control the optimal injection rate without requiring the solution
of the model for each change in its parameters.

The paper is structured as follows. In Sect. 2 we provide a literature review.
Section 3 gives the necessary background. Section 4 proposes a model for the
Verifier’s dilemma. Section 5 proposes a model for the invalid block injection
approach. In Sect. 6, we study the optimal configuration of the system using the
invalid block injection. Finally, Sect. 7 concludes the paper.

2 Related Work

The Verifier’s Dilemma remains the subject of discussion in many Ethereum-
related works. The authors of [12] firstly spotted this problem. They have shown
from a game theoretical perspective that rational miners would omit the verifi-
cation process to maximise their rewards. Based on this idea, other authors [9]
analyzed the case in which malicious miners design dummy smart contracts
which are computationally expensive to verify in order to slow down the mining
process of all other miners and hence increase the possibilities of winning the
PoW race. In addition, [1,9,12] showed the profitability of skipping the verifica-
tion process in scenarios with computationally intensive smart contracts.
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Various authors [3,6,8,17] introduced the parallel computation of the smart
contracts transactions in order to mitigate the drawback of long verification
time. Particularly, in [6] the on-chain protocol that allows miners to delay veri-
fication of transactions in a block by up to the certain number of blocks ahead
was introduced. The authors showed that thanks to this implementation the
Ethereum-like blockchains become less vulnerable to the problems caused by
the growth of the verification time.

Alternatively, in [1,7,11,16] a number of off-chain solutions have been pro-
posed for efficient computation of complex smart contracts. Thus, they suggested
that the verification of complex contracts is not anymore performed by all the
nodes, but only a small subset of them. Those nodes earn reward only if they
perform the verification correctly. Furthermore, in [12], the authors proposed to
divide complex transactions into a set of transactions with smaller size so that
it becomes possible to include them in special blocks.

A closely related work is [1]. The authors introduced a simulation framework
that allows them to investigate the network behaviour when a part of the miners
do not verify the blocks. They showed that the single non-verifying miner can be
rewarded approximately 23% higher than the network’s fair share as total gain
of all other fair nodes is reduced respectively. They also proposed the injection
of invalid blocks as a solution to the Verifier’s Dilemma problem. The authors
propose to use a special node for intentionally generating invalid blocks as a way
to punish non-verifying miners. Furthermore, they assume this node to perform
full verification of all blocks generated by other miners. With respect to our
work, we have used the simulation estimates of [1] to validate our PEPA model
and proved its importance in determining the optimal rate of injection of invalid
blocks. In fact, it would be very computationally expensive to run stochastic
simulations searching the optimal value of this rate while, thanks to our model,
the problem is reduced to the application of the bisection algorithm to find the
root of a certain polynomial.

3 Background

3.1 Verifier’s Dilemma

Similarly to most blockchains, in Ethereum consensus is fully distributed and
miners contribute to the life of the blockchain in two ways: (i) they verify the
transactions stored in the blocks and (ii) they compete to solve the PoW problem.

Smart contracts are stored in Ethereum as contract accounts, which con-
tain the code and some storage space to support their execution [5]. Users of
the blockchain control the so called externally owned accounts. External entities
and contract accounts cooperate with each other through two types of trans-
actions: financial and contract-based. The former is responsible for moving the
Ethereum cryptocurrency, namely Ether, among the accounts. Contract trans-
actions control all interactions with contract accounts: either to publish a new
smart contract or to execute an existing one.
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While the verification of financial transactions is very quick since its heaviest
activity is to verify that no double spending has been done, smart contracts pose
more problems. Smart contracts are written with a Turing complete language
and the verification of a transaction containing the output of their execution
requires all miners to re-execute the same program on the same input [12].

Miners are rewarded for their work according to a probabilistic process. In
fact, only the miner that solves first the PoW problem receives the reward.
When all miners behave fairly, the probability of winning the race for PoW
is equal to the proportion of computational power invested by a miner. This
feature leads miners to face the Verifier’s Dilemma. Some miners tend to skip
the verification process to save computational resources for profitable mining
instead of supporting the blockchain fairly.

One of the solution is to inject invalid blocks in the network to punish unfair
miners. The idea is that if an unfair miner does not verify the announced blocks,
it would mine its candidate block after an invalid one and hence does not gain
a fee in case of success. So the unfair miners must face a trade-off between the
advantage of skipping the verification phase and the risk to mine a new block
after an invalid one.

At the state of the art, there has not been a rigorous analysis of this mitigation
solution using quantitative analysis techniques. Our goal is to investigate the
impact of the Verifier’s Dilemma and to detect the minimum rate of invalid
blocks injection that makes the unfair policy less lucrative than the fair one.

3.2 PEPA

We use the Performance Evaluation Process Algebra (PEPA) [10] to investigate
the Verifier’s Dilemma in Ethereum and its impact on miners’ behaviour. In this
section, we give a brief overview of PEPA. The advantages of using PEPA lie
primarily in the fact that PEPA is compositional, every PEPA specification has
an underlying stochastic process and, under given assumptions, this stochastic
process is a continuous time Markov process. Moreover PEPA is supported by a
tool that can be applied to Eclipse, namely PEPA Eclipse Plug-in.

A PEPA system specification consists of a collection of active agents or com-
ponents cooperating with each other through activities to achieve the system
behaviour. The syntax for PEPA terms is defined by the following grammar:

P ::= P ��
L

P | P/L | S S ::= (α, r).S | S + S | A

where S denotes a sequential component, while P denotes a model component
which can be obtained as the cooperation of sequential terms. The meaning of
the operators is the following: (α, r).S performs the activity (α, r) with action
type α and rate r and subsequently behaves as P . P +Q specifies a system which
may behave either as P or as Q. The component P/L behaves as P except that
any activity of type within the set L are relabelled with the unknown type τ .
The meaning of a constant A is given by a defining equation such as A

def
= P
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which gives the constant A the behaviour of the component P . The coopera-
tion combinator ��

L
represents an interaction between two components, which

is determined by the set of action types L, namely cooperation set. Activities
with action types in the cooperation set L, called shared activities, require the
synchronisation of the components. It is assumed that each component proceeds
independently with the activities whose types do not occur in the cooperation
set L. The duration of a shared activity is reflected by the rate of the slower
participant. If in a component an activity has the unknown rate �, then the rate
of the shared activity will be that of the other component.

4 Analysis of the Verifier’s Dilemma

In this section, we present a base PEPA model for the Ethereum network with
fair and unfair miners. The validation of the model is done with the estimates
obtained by stochastic simulation in [1].

4.1 Model Description

Let N be the number of miners and λ be the total computational power of the
network measured in expected number of PoW problems that can be solved per
unit of time. We assume that all miners have the same computational power
γ = λ/N . If this is not the case, it will be easy to aggregate some miners to
obtain multiples of γ, while the change on the verification process brings to
negligible effects on the overall model behaviour.

Among the N miners, a fraction p ∈ [0, 1] is fair and verifies the new incoming
blocks, while 1 − p is unfair and skip this verification.

Since the number of miners is in practice very high, the detailed represen-
tation of the state of each of them would incur into a state space explosion
problem. Thus, we resort to a representation based on the aggregation of all
fair (unfair) miners with the exception of one. Leaving one fair and one unfair
miner outside the aggregation is important because it allows us to study their
detailed behaviours and consider situations such as that in which all miners are
fair with the exception of one, that will result to be crucial to determine our
main practical result in Sect. 6.

Table 1 shows the PEPA description of our Base Model (BM). The fair (i.e.,
correctly operating) environment is defined as EF and represents the behaviour
of all verifying miners that perform the verification step VEF

. EU corresponds
to the unfair environment where miners avoid the verification part. Notice that,
pλ and (1 − p)λ are the fractions of the hash power of verifying miners and
non-verifying ones, respectively. The Network component is obtained as the
cooperation of all components over a set of actions L.

Let us inspect the behaviours of single fair and unfair miners; those of the
environments will follow trivially (see Table 7 in Appendix A). Component MF

represents a single fair (verifying) miner. The miner mines a new block with
action type mF and rate γ. Then, it returns to its initial state and it starts to
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Table 1. PEPA specification of BM where L = {mF , mU , mEF , mEU }.

MF
def
= (mF , γ).MF + (mEF , �).VF + (mEU , �).VF + (mU , �).VF

VF
def
= (τ, β).MF + (mEF , �).VF + (mEU , �).VF + (mU , �).VF

MU
def
= (mU , γ).MU + (mEF , �).MU + (mF , �).MU + (mEU , �).MU

EF
def
= (mEF , pλ).VEF + (mEU , �).VEF + (mF , �).VEF + (mU , �).VEF

VEF

def
= (τ, β).EF + (mEU , �).VEF + (mF , �).VEF + (mU , �).VEF

EU
def
= (mEU , (1 − p)λ).EU + (mEF , �).EU + (mF , �).EU + (mU , �).EU

Network
def
= (MF ��

L
MU ) ��

L
(EF ��

L
EU )

mine another block. Once verifying miner MF gets a block from the network,
it starts the verification process VF . Meanwhile, the non-verifying, or unfair,
miner MU skips this step and adds the incoming block directly to its copy of the
ledger. The verification of a block occurs with rate β.

It is worth of notice that, while the race policy of PoW requires us to sum
the rates of all miners belonging to an environment, the verification phase is not
governed by a race policy and hence it is performed with rate β as it happens
for the single miner. Intuitively, the amount of work required for the verification
is assumed to be exponentially distributed but, since all miners have the same
computational power and must perform the same operations, we can say that
the aggregated speed remains β. Another interesting aspect is that since the
time for solving PoW is independent and exponentially distributed by design,
the aggregation of the rates is exact.

The underlying derivation graph of the model is depicted in Fig. 1. Each fair
miner that is in the verification phase can still get new blocks from the rest of
the network. It means that, in real systems, miners must maintain a queue of
incoming blocks. However, the required time for verification is usually much lower
than the block interval time. This observation allows us to simplify VF and VEF

by abstracting out the queue of blocks to verify. Experiments confirmed that this
simplification does not significantly affect the type of analyses that we perform.

To illustrate the described model, consider a network with N = 100 miners,
each controlling an equal amount of hash power. We assume that the network
consists of large blocks, such that each block is full and contains only contract-
based transactions since financial transactions take less time to verify and do
not contribute to the Verifier’s Dilemma. Block verification time is, on average,
3.18 s as an extreme case scenario [1]. Block interval time is, on average, 12 s.
Thus, β = 1/3.18 = 0.314 and λ = 1/12 = 0.083. Since all miners have equal
hash power, γ = λ/N = 8.3 × 10−4. Assume, furthermore, that there are 10
of the 100 miners who do not verify. As a result, the fraction of fair miners is
p = 0.9. These parameters are summarized in Table 2.
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Fig. 1. Derivation graph of BM.

We assume that the reward that miners gain is proportional to the effective
throughput, which describes what part of invested computational power is used
for mining. Since unfair miners do not spend time for verification, the effective
throughput for a single miner is equal to its invested power γ = 8.3 × 10−4.
The effective throughput of the single fair miner is 6.6 × 10−4 since it has to
verify all blocks. Thus, the received reward of the single unfair miner is ≈25.75%
more than the fair miner’s one. These results confirm those in [1] for the same
scenario.

4.2 Model Assessment

The Continuous Time Markov Chain (CTMC) underlying BM is depicted in
Fig. 2, while its states are described in Table 3.

The symbolic expressions of the steady-state probabilities are reported in
Appendix B. If we use the parameters of Table 2, we obtain the following values:

π1 ≈ 0.69518, π2 ≈ 0.09568, π3 ≈ 0.11691, π4 ≈ 0.09223 .

We can then compute the throughput of action types mF , mU , mEF
and

mEU
, namely, the effective throughput and, hence, the profits of fair and unfair

miners from the individual and aggregated perspective.
Figure 3a shows the total throughput of all fair (green line) and all unfair

(orange line) miners as a function of the fraction of verifying miners. Indeed, the
higher number of fair miners implies a reduction of the total throughput of unfair
miners and consequently leads to a rise of the throughput for those who follow
the protocol. Notice that the equilibrium point, where the two lines intersect
each other, corresponds to 55% of verifying miners in the network. Thus, in case
of equal proportion of these two classes of miners the non-verifying ones gain an
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Fig. 2. Markov chain of BM.

Table 2. BM rate parameter assignment.

Parameter Value

λ 0.083 blocks/s

N 100

γ = λ/N 8.3 × 10−4 blocks/s

β 0.314 s−1

p 0.9

Table 3. BM Markov chain description.

State Short description

1 All miners are mining

2 The fair environment is in verification step (VEF ) and the rest of the
network is mining

3 All fair components are verifying (VEF and VF ) and the rest of the network
is mining

4 The single fair miner is verifying (VF ) and the rest of the network is
mining

advantage since their total throughput, and so the total reward, is approximately
27% higher than that of fair miners.

Figure 3b shows a comparison between the effective throughput for a single
fair and unfair miner as a function of the fraction of verifying miners in the
network (blue and red lines, respectively). The throughput of the single unfair
miner remains equal to γ since it omits the verification step using the available
resources only for mining. Meanwhile, the throughput of the single fair miner
is reduced by ≈19% with respect to the network with all verifying miners. This
is due to the fact that the prevalence of non-verifying miners as well as their
constantly higher total throughput lead to a higher production rate of blocks
that every fair miner has to verify.

In conclusion, the unfair behaviour of miners has two consequences on fair
miners: first, it causes unfairness in the network, i.e., the reward obtained by
a miner is not proportional to its computational power. Second, and probably
even worse, when a large amount of the network is unfair, the throughput of
blocks is higher and fair miners will spend more time in the verification phase
hence reducing their absolute throughput. Finally, while the throughput of an
unfair miner is insensitive to the throughput of blocks in the network, its relative
advantage over all other miners is highest when it is the only unfair miner (indeed
in a network of all unfair miners, it would have no advantage at all).
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Fig. 3. Effective throughput as function of the fraction of verifying miners p.

5 Analysis of the Invalid Block Injection Policy

In the literature, several solutions have been proposed to mitigate the Verifier’s
Dilemma. In this section, we discuss one mitigation solution, namely the inten-
tional injection of invalid blocks, which was proposed to mitigate the problem
by Alharby et al. in [1].

In general, miners benefit from skipping the verification step because almost
all blocks are valid anyway. Intentional production of invalid blocks aims to
punish unfair miners, since they could end up working on new blocks on top of
the invalid ones, thus not gaining a fee for the new blocks. Invalid blocks are
supposed to be generated by a special node, named creator.

When an invalid block is injected it introduces a ‘soft fork’ of the chain, with
the unfair miners working on an invalid branch and fair ones staying on a correct
branch. We assume that, thanks to a blacklist of invalid block hashes, fair miners
always recognize the correct branch. On the other hand, unfair miners realise
that they are working on the wrong branch as soon as a fair miner announces
a new block. Basically, since an unfair miner knows that they could be working
on a wrong branch of the chain, it is rational for them to work on the last block
announced (recall that PoW is a memoryless operation and hence this does not
cause a waste of work).

5.1 Model Description

To study and optimize the invalid block injection approach, we extend the BM
with more components. We assume that there are no malicious miners in the
network, so all blocks are valid with the exception of those intentionally injected.
If this is not the case, the rate of invalid block creation from malicious miners
should be added to that of the creator. The PEPA model of the system with
invalid block injection is called Invalid Block Injection Model (IBIM) and is
reported in Table 4.



Verifier’s Dilemma in Ethereum 327

Table 4. PEPA specification of IBIM where L = {mF , mU , mEF , mEU ,mfake}.

C
def
= (mfake , ε).C + (mF , �).C + (mU , �).C + (mEF , �).C + (mEU , �).C

MF
def
= (mF , γ).MF + (mEF , �).VF + (mEU , �).VF + (mU , �).VF + (mfake , �).VF

VF
def
= (τ, β).MF + (mEF , �).VF + (mEU , �).VF + (mU , �).VF + (mfake , �).VF

MU
def
= (mU , γ).MU + (mEF , �).MU + (mF , �).MU + (mEU , �).MU + (mfake , �).MUINV

MUINV

def
= (τ, γ).MUINV + (mEF , �).MU + (mEU , �).MUINV + (mF , �).MU + (mfake , �).MUINV

EF
def
= (mEF , pλ).VEF + (mEU , �).VEF + (mF , �).VEF + (mU , �).VEF + (mfake , �).VEF

VEF

def
= (τ, β).EF + (mEU , �).VEF + (mF , �).VEF + (mU , �).VEF + (mfake , �).VEF

EU
def
= (mEU , (1 − p)λ).EU + (mF , �).EU + (mEF , �).EU + (mU , �).EU + (mfake , �).EUINV

EUINV

def
= (τ, (1 − p)λ).EUINV + (mF , �).EU + (mEF , �).EU + (mU , �).EUINV + (mfake , �).EUINV

Network ′ def
= (MF ��

L
MU ) ��

L
(EF ��

L
EU ) ��

L
C

The new component C models the behaviour of the invalid block creator. It
produces invalid blocks with action type mfake and rate ε. The creator recognises
and rejects all invalid blocks and always works on the valid blockchain copy.

Furthermore, to model the behaviour of non-verifying miners MU and EU , we
introduce the components MUINV

and EUINV
representing the same components

working on an invalid blockchain copy. Once miner MU , which is working on the
valid chain, receives a fake block from the creator, its state changes to MUINV

.
The same explanation can be applied to the states of the unfair environment EU .
A description of the new components is presented in Table 8 of Appendix A. The
underlying derivation graph of the model is depicted in Fig. 4.

5.2 Model Assessment

The CTMC underlying the model is shown in Fig. 5, while the description of its
states is shown in Table 5.

The plots in Fig. 6 describe the relation between the effective throughput
and the rate of invalid block injection ε in a network of 100 miners. Figures 6a
and 6b, 6c and 6d, 6e and 6f study the network with a percentage of fair miners
or p = 90%, p = 50% and p = 10%, respectively. Figures 6a, 6c and 6f show the
impact of invalid block creation on both the environments EF and EU in terms
of effective throughput. Figures 6b, 6d and 6f are crucial for our reasoning and
show the impact of invalid block injection rate ε on a single fair and unfair miner.
The importance of these plots rely on the fact that rational miners decide if a
fair or unfair behaviour is convenient based on the maximisation of the expected
profits. Hence, we desire to choose ε in such a way that the effective throughput
of a fair miner is higher than that of an unfair one. We know from the base
model that for ε = 0, rational miners choose not to verify. However, as ε grows,
we observe a point in which it is more convenient to be fair. What stops us to
choose a very large ε? This is explained in the plots of left-hand side column
of Fig. 6. Indeed, when ε grows the throughput of both fair and unfair miners
decrease (for different reasons). This leads us to conclude that the optimal value
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Fig. 4. Derivation graph of IBIM.

for ε is that at which the effective throughput of a single fair miner is equal to
that of a single unfair one.

Another important observation is that the optimal value of ε is higher when
there are many fair miners. This seems to be quite counter-intuitive, but the
explanation is connected to the way that forks due to the injection of invalid
blocks are resolved. In fact, the presence of many verifying miners helps the
unfair ones because they reveal, by announcing their blocks, that the previous
one was invalid. Thus, the unfair miner knows earlier that it is wasting its work.
As a consequence, to make the unfair behaviour inconvenient the creator has
to choose a value of ε higher than what would happen if the network had more
unfair miners. This observation is proved for small valued of γ in Sect. 6.
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Fig. 5. Markov chain of IBIM.

Table 5. IBIM Markov chain description.

State Short description

1 The creator and all miners are mining

2 The fair environment is in verification step (VEF ) and the rest of the network
(including the creator) is mining

3 All fair components are verifying (VEF and VF ) and the rest of the network
is mining

4 The single fair miner is verifying (VF ) and the rest of the network is mining

5 The creator and all miners are mining

6 The fair environment is in verification step (VEF ) and the rest of the network
is mining

7 All fair components are verifying (VEF and VF ) and the rest of the network
is mining

8 The single fair miner is verifying (VF ) and the rest of the network is mining

6 Optimal Invalid Block Injection Rate

In this section, we show that the analysis of the Markov chain depicted in Fig. 5
allows us to derive the symbolic expressions of the steady-state probabilities (see
Appendix C). Hence, we can also derive the expression of the throughput for a
single fair (TF ) and unfair miner (TU ).

TF = (π1 + π2 + π5 + π6)γ , TU = (π1 + π2 + π3 + π4)γ .
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Fig. 6. Effective throughput as a function of the rate of invalid block creation.

The optimal injection rate is the rate at which TF = TU , that is π5 + π6 =
π3 + π4. To simplify our analysis, we assume that γ → 0, i.e., the single miner
computational power is much lower than the entire network. This assumption is
very realistic especially in public blockchains. Therefore, we need to find the real
zeros of a rational function. These correspond to the roots of the polynomial
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Table 6. Coefficients of P (ε).

Coefficient Expression Sign

c6 −β −
c5 −7β2 − 3βλ −
c4 −19β3 − (17 − p)β2λ − (3 − p2 + p)βλ2 −
c3 −25β4 − (35 − 4p)β3λ − (13 − 2p2 − p)β2λ2 − (1 − 2p2 + 2p)βλ3 −
c2 −16β5 − (31 − 5p)β4λ − (18 − 10p − p2)β3λ2 − (3 + 2p3 − 4p2 − p)β2λ3 − (1 − p)pβλ4 −
c1 −4β6 + 2β5λ + (12p − 8)β4λ2 − (2 + 3p3 − 3p2 − 9p)β3λ3 −
c0 4pβ5λ2 + 6pβ4λ3 + (−4p2 + 4p + 2)β3λ4 + 2(1 − p)p2β2λ5 +

Pp(ε) =
6∑

i=0

ciε
i,

where the coefficients are shown in Table 6.
Since the polynomial has degree higher than 4, we cannot find a general closed

form expression for its roots. However, we can use a bisection based algorithm
whose applicability is ensured by the following Theorem:

Theorem 1. Pp(ε) has exactly one positive real root provided that λ < β.

Proof. By Descartes’ rule of signs [15], the number of sign changes between
consecutive (nonzero) coefficients is 1 and then the number of positive roots is
exactly 1. This can be easily observed by inspecting the coefficients of Pp(ε)
in Table 6 with some care for the coefficient of the linear term that is negative
provided that λ < β. ��

The condition in Theorem 1 is straightforwardly satisfied by the actual mod-
els since it requires that the expected verification time must be lower than the
expected block generation time.

At this point, we can easily derive the optimal injection rate thanks to the
bisection method with arbitrary accuracy. Indeed, it is easy to observe that
Pp(0) > 0 while Pp(∞) < 0. Therefore, once an interval [0, b] is found such that
the Pp(b) < 0, the standard bisection algorithm can be applied.

In general, it is impossible to know the correct value of p, i.e., the fraction
of fair miners. However, the following result formally supports the experimental
observations of Sect. 5.

Theorem 2. If λ < β, the optimal invalid block injection rate is monotonically
increasing with the fraction of fair miners p and hence it reaches its maximum
for p = 1.

Proof. The proof relies on the fact that, if λ < β, it holds that, for ε ≥ 0:

p > q =⇒ Pp(ε) > Pq(ε) .
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This can be proved by computing the polynomial Qp,q(ε) = Pp(ε) − Pq(ε) and
by observing that the coefficients of Qp,q(ε) are all non-negative and hence
Qp,q(ε) > 0 for all ε ≥ 0. Since Pq(0) > 0 and, by Theorem 1, Pp(0) must
have a positive root, this implies that the root of Pp(ε) is strictly greater than
that of Pq(ε). ��
In conclusion, it is safe for the network to compute the optimal injection rate
assuming p = 1 and maintain the same rate unless a change on rates λ or β
are measured. In this way, p will not change even in presence of rational miners
since verifying the blocks is more convenient than cheating.

7 Conclusion

In this paper, we have investigated Ethereum Verifier’s Dilemma by means of
quantitative Markovian models expressed in PEPA. The models allowed us to
study the problem by showing that the profits of an unfair (i.e., non-verifying)
miner can be significantly higher than those of fair ones and that these depend
on the amount of unfair miners. Indeed, the optimal scenario for an unfair miner
is that it is the only one that skips the verification of announced blocks. Then,
we have proposed a model for the countermeasure that requires the injection of
invalid blocks to encourage unfair miners to abandon their unethical behaviour
by making it economically disadvantageous. The second model has two purposes:
(i) it allows us to determine the optimal injection rate, i.e., the minimum rate
at which the average reward of an unfair miner is lower than that of a fair one,
and (ii) it can be used to estimate the impact of this countermeasure on the
overall network throughput and miners’ rewards. More specifically, regarding
(i), we have shown that the optimal rate can be computed numerically as the
unique positive root of a certain polynomial thanks to a simple bisection method.
Moreover, we observed that, since an unfair miner has the maximum advantage
when all others are fair, the optimal injection rate reaches its maximum when
there is only one unfair miner. Thus, in practice, this is the scenario that must
be considered to configure the invalid block injection.
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Appendix

A Tables of Notations

The following tables provide a description of the notations used in the PEPA
specification of the BM and IBIM models. In particular they describe the nota-
tions used to model the behaviours of single fair and unfair miners and those
used for the environments.
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Table 7. BM component description.

Symbol Description

MF Single fair miner which mines a block with action type mF and rate γ.
When it receives a block, then it starts the verification VF .

VF Verification step of a single fair miner.

MU Single unfair miner which mines a block with action type mU and rate γ.
When it receives a block, then it returns to the initial state MU .

EF Correctly operating environment representing the fraction of fair miners
mining blocks with action type mEF and rate pλ.

VEF Verification step for the fair environment.

EU Unfair environment representing the fraction of non-verifying miners min-
ing blocks with an action type mEU and rate (1 − p)λ.

Table 8. IBIM component description.

Symbol Description

C Invalid blocks creator who creates invalid blocks with action type mfake

and rate ε.

MUINV Single unfair miner with a fake block in its blockchain copy. It mines blocks
with action type τ and rate γ. When it receives a block from MF or EF ,
then it obtains the valid blockchain copy and returns to the initial state
MU .

EUINV Unfair environment with an invalid blockchain copy. It almost always
remains on the same state and returns to EU only when the ledger is
synchronised with MF and EF .

B Steady State Probabilities for BM

We report the symbolic expressions of the steady-state probabilities for the BM
model. In particular, the steady-state probabilities for the CTMC depicted in
Fig. 2 are as follows:

π1 =
(β2(2(β + γ + λ) − λp))

K

π2 =
(β((γ + λ)(2γ + λ) + β(3γ + λ)))

K

π3 =
(β(β(γ + λ) + (2γ + λ)(γ + λ − λp)))

K

π4 =
((β + γ + λ)(β(γ + λ) + (2γ + λ)(γ + λ − λp)))

K
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where
∑4

i=1 πi = 1 and K is the normalising constant whose expression is

K = (2β3 + β2(7γ − λ(−5 + p)) + β(7γ2 + γλ(11 − 4p)

− 2λ2(−2 + p)) + (γ + λ)(2γ + λ)(γ + λ − λp)) .

C Steady-State Probabilities for IBIM

We report the symbolic expressions of the steady-state probabilities for the IBIM
model. In particular, the steady-state probabilities for the CTMC depicted in
Fig. 5 are as follows:

π1 =
β2

(
λ3r2

(−2β2(r − 2) − βε(r − 2)
)

+ λ2r
(
3β2ε(r + 2) + 2β3(r + 2)

K

+βε2(r + 2)
)

+ λr(β + ε)
(
6β2ε + 4β3 + 2βε2

))

K

π2 =
β

(
β2λr(ε + λ)

(
4ε2 + 3ελ(r + 1) + 2λ2r

)
+ 2β4λr(ε + λ)+

K

+β3λr(ε + λ)(5ε + 2λ(r + 1)) + βελr(ε + λ)2(ε + λr)
)

K

π3 =
β(β + ε + λ)

(
2β3λr(ε + λ) + β2λr(ε + λ)(5ε + 2λ)

K

+βλr(ε + λ)
(
4ε2 + 3ελ − 2λ2(r − 1)r

)
+ ελr(ε + λ)(ε + λ − λr)(ε + λr)

)

K

π4 =
β2

(
2β3λr(ε + λ) + β2λr(ε + λ)(5ε + 2λ)

K

+βλr(ε + λ)
(
4ε2 + 3ελ − 2λ2(r − 1)r

)
+ ελr(ε + λ)(ε + λ − λr)(ε + λr)

)

K

π5 =
β2ε(2β + 2ε + λr)

(β + ε)(2β + ε)(ε + λr)(β + ε + λr)

π6 =
βε

(β + ε)(2β + ε)

π7 =
ε

2β + ε

π8 =
βε

(2β + ε)(β + ε + λr)
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where
∑8

i=1 πi = 1 and K is

K = (β + ε)(2β + ε)(ε + λr)(β + ε + λr)
(
2β3 + β2(5ε + 5λ − λr)

+2β(ε + λ)(2ε + 2λ − λr) + (ε + λ)2(ε + λ − λr)
)
.
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Abstract. In delay-tolerant networks (DTNs) with uncertain contact
plans, the communication episodes and their reliabilities are known a pri-
ori. To maximize the end-to-end delivery probability, a bounded network-
wide number of message copies are allowed. The resulting multi-copy
routing optimization problem is naturally modelled as a Markov decision
process with distributed information. The two state-of-the-art solution
approaches are statistical model checking with scheduler sampling, and
the analytical RUCoP algorithm based on probabilistic model checking.
In this paper, we provide an in-depth comparison of the two approaches.
We use an extensive benchmark set comprising random networks, scal-
able binomial topologies, and realistic ring-road low Earth orbit satellite
networks. We evaluate the obtained message delivery probabilities as well
as the computational effort. Our results show that both approaches are
suitable tools for obtaining reliable routes in DTN, and expose a trade-off
between scalability and solution quality.

1 Introduction

Delay-tolerant networks (DTNs) are time-evolving networks lacking continuous
and instantaneous end-to-end connectivity [11,18]. The DTN domain comprises
deep-space [9] and near-Earth communication [10], airborne networks [27], vehic-
ular ad-hoc networks [5], mobile social networks [32], Internet of things scenar-
ios [6], and underwater networks [40], among many others. A bundle layer over-
comes the delay and disruption in DTNs by means of (i) a persistent storage
on each DTN node and by (ii) assuming no immediate response from neigh-
boring nodes [41]. As a result, bundles of data (a data unit in the Bundle Pro-
tocol [47])—and status information about the rest of the network—flow in a
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E. Ábrahám and M. Paolieri (Eds.): QEST 2022, LNCS 13479, pp. 337–355, 2022.
https://doi.org/10.1007/978-3-031-16336-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16336-4_17&domain=pdf
http://orcid.org/0000-0002-8528-9215
http://orcid.org/0000-0001-9816-6989
http://orcid.org/0000-0003-3268-8674
https://doi.org/10.1007/978-3-031-16336-4_17


338 P. R. D’Argenio et al.

store-carry-and-forward fashion as transmission opportunities become available.
Connectivity in DTNs is represented by means of contacts: an episode of time
when a node is able to transfer data to another node.

Where contacts can be accurately predicted, the DTN is scheduled [22];
in probabilistic DTNs, the contact patterns can be dynamically inferred; no
assumptions on future contacts can be made in opportunistic DTNs [11]. Recent
work extended this classification to also consider uncertain DTNs, in which
forthcoming connectivity can be described by probabilistic schedules available
a priori [17,23,38,39,44,45]. Instead of a guaranteed contact plan, uncertain
contact plans include information on the reliability (i.e. failure probability) of
planned links. In other words, the materialization of contacts can differ from the
original plan with a probability that can be computed/estimated in advance.
Uncertain DTNs describe a plethora of practical scenarios: unreliable space
networks [23], public vehicle networks with uncertain mobility patterns [35],
interference-sensitive communication links in cognitive radio [46], or networks
based on third-party carriers with limited but well-known availability [33].

This work summarises and compares existing routing solutions for uncer-
tain DTNs. The state-of-the-art techniques are lightweight scheduler sampling
(LSS) [17] and routing under uncertain contact plans (RUCoP) [44]. Both lever-
age Markov decision processes (MDPs), allow a bounded network-wide number
of message copies to maximize the delivery probability, and properly assume that
uncertain DTN nodes can only act on limited local knowledge. However, they
are different in nature: LSS exploits simulation and statistical model checking
techniques [1] whereas RUCoP is based on an analytical solution that exhaus-
tively explores the MDP akin to probabilistic model checking [3,4]. Both are
off-line approaches, as a central node is assumed to pre-compute the routing in
advance and then distribute the required information to the DTN nodes.

We provide an extensive benchmarking framework to evaluate LSS and
RUCoP comprising random networks (random contact assignment), binomial
networks (multi-level tree contact topologies with controllable complexity), and
realistic ring-road low-Earth orbit satellite networks. In these scenarios, we com-
pare the resulting message delivery probability and computational effort in terms
of time and memory consumption. Our results highlight the performance-cost
trade-off between these two state-of-the-art routing techniques for uncertain
DTN. We also report on our enhancements to encoding DTNs for use with
LSS that significantly improve the cost/performance ratio of the approach.

Section 2 of this paper revises the background of DTNs, MDP, and modelling
the routing problem. We dive into the details of the LSS and RUCoP techniques
in Sect. 3, including a summary of our improvements to LSS for DTNs. We
present, apply and analyze the benchmark framework in Sect. 4.

2 Background

This section describes the concept and context of DTNs and explains how to
encode DTN routing with global and local information as MDP.
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Scheduled vs. Uncertain DTNs. The term “DTN” was introduced in the context
of interplanetary communication to designate time-evolving networks lacking con-
tinuous and instantaneous end-to-end connectivity [9]. The concepts and mecha-
nisms devised to deal with the delays and disruptions of interplanetary communi-
cations can readily be applied to other domains characterized by long signal propa-
gation time, frequent node occlusion, high node mobility, and/or reduced commu-
nication range and resources [24] such as airborne, vehicular, social, IoT, underwa-
ter and space networks [5,6,10,21,27,32,40]. DTN protocols like the Bundle Pro-
tocol [13,47] address the delays and disruptions by implementing the principles of
store-carry-and-forward and minimal end-to-end messaging exchange for control
or feedback [11]. The time-evolving and partitioned nature of DTNs favors repre-
senting connectivity by contacts: episodes of time where a node can transfer data
to another node. Contacts can be classified [11] as opportunistic (no assumptions
can be made on future contacts), probabilistic (contact patterns can be inferred
from history, e.g. in social networks), and scheduled (contacts can be accurately
predicted and documented in a contact plan).

A contact plan comprises the set of forthcoming contacts, and is a central
element in scheduled DTN routing. The routing process is typically divided into
planning (future episodes of communication are estimated to form the contact
plan), routing (the plan is used to compute routes, either in a centralized (off-
line) or decentralized (on-line) fashion [20]), and forwarding (effectively enqueu-
ing the data for the correct next-hop node). Contact graph routing (CGR) [2]
is the de-facto standard decentralized routing algorithm when a contact plan is
available. It is the sole routing approach that has been flight-validated in deep-
space [48] and near-Earth networked missions [34]. CGR optimizes delivery time
by leveraging adaptations of Dijkstra’s algorithm to the time dynamics of DTNs.

The limitation of the contact plan structure and associated routing algo-
rithms like CGR is that they assume that connectivity episodes are guaran-
teed. Instead, an uncertain contact plan comprises contacts whose materializa-
tion can differ from the original plan with a given probability available a pri-
ori [45]. Reasons include well-known failure modes of the DTN nodes, or an
incomplete/inaccurate knowledge of the system status by the time the sched-
ule was computed. Uncertain contact plans gave raise to a new type of DTNs
coined uncertain DTNs [17,38,39,44,45] that exploit time-dependent probabilis-
tic information of the forthcoming communication opportunities. Instead of a
single copy sent via the fastest path like CGR, uncertain DTNs can use the
uncertainty information in the contact plan to optimally route multiple copies
of the data to increase its successful delivery probability (SDP).

Markov decision processes (MDPs) provide a mathematical framework captur-
ing the interaction between non-deterministic and probabilistic choices [19,42],
making them appropriate for modelling decision making under probabilistically
quantified uncertainty. In its simplest form, an MDP M is a tuple (S,Act ,P, s0)
where S is a finite set of states with initial state s0 ∈ S, Act is a finite set of
actions, and P : S×Act×S → [0, 1] is a transition probability function such that∑

s′∈S P(s, α, s′) ∈ {0, 1} for all s ∈ S and α ∈ Act . If
∑

s′∈S P(s, α, s′) = 1,
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α is enabled in s, and P(s, α, s′) gives the probability that the next state is s′

conditioned on the system being in state s and action α being chosen.
A reachability problem is characterized as follows: given a set of goal states

B ⊆ S, maximize the probability that a state in B is reached from the initial state
s0. That is, we want to calculate Prmax

s0
(reach(B)). In our application, B is the

set of states in which a bundle has been successfully delivered. Moreover, we are
also interested in determining the decisions—namely, the policy or scheduler—
that lead to such a maximizing value. A scheduler is a function π : S → Act
that defines the decision that resolves a possible non-determinism. This problem
can be solved e.g. by using value iteration on the Bellman equations [4].

A

B

C

D

t0 t1 t2 t3 t4

0.1

0.1

0.5

0.5

0.9

Fig. 1. Uncertain contact plan.

Encoding Uncertain Contact Plans. Consider
the example contact plan with nodes A, B,
C, and D in Fig. 1. It spans a window of five
time slots, t0 to t4. We also assume an ending
time t5. The possible contacts in each slot
are depicted by an arrow labelled with the
contact failure probability. In time slot t1, for
instance, node C is in reach of node B with
transmission failure probability of 0.1 (and success probability of 0.9).

Suppose we want to transmit a bundle from A to D. To increase the probabil-
ity of success, we allow two copies throughout the network. A state of the MDP
consists of the number of copies that each node holds at a given time slot. Ini-
tially, at the beginning of t0, node A has the two copies while the others have none,
represented by state [A2 B0 C0 D0 | t0] in Fig. 2. At this point, node A has three
options: (i) sending only one copy to node B, represented by action “A 1−→B” leav-
ing from state [A2 B0 C0 D0 | t0], (ii) sending two copies to B (action “A 2−→B”),
or (iii) keeping the two copies (action “A stores”). In the first case, the successful
transmission leads to state [A1 B1 C0 D0 | t1] where A has kept one copy and the
other has reached B. Since success probability is 0.9, we have

P( [A2 B0 C0 D0 | t0], A 1−→B , [A1 B1 C0 D0 | t1] ) = 0.9.

[A2B0C0D0 | t0]

[A1B1C0D0 | t1] [A2B0C0D0 t1]

[A1B0C1D0 | t2] [A1B1C0D0 | t2]

[A1B0C1D0 t3][A0B1C1D0 t3][A1B1C0D0 t3]

A 1−→B A 2−→B

B 1−→C

A 1−→C B 1−→C

A
0.9

0.1
0.90.1

B

0.9 0.1

A
0.5

0.5 A
0.5

0.5

Fig. 2. MDP for Fig. 1. (Color figure online)

Failing to transmit moves us
to the next time slot without
altering the number of copies in
each node. Therefore

P( [A2 B0 C0 D0 | t0], A 1−→B ,

[A2 B0 C0 D0 | t1] ) = 0.1.

Action A 1−→B is the black tran-
sition out of [A2 B0 C0 D0 | t0] in
Fig. 2 where the solid line repre-
sents the successful transmission
while the dotted arrow represents
the failing event. The situation is
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analogous for action A 2−→B (red transition on the right), while for storing the
two bundles there is no possibility of failure, so we have

P( [A2 B0 C0 D0 | t0], A stores , [A2 B0 C0 D0 | t1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2 depicts it partially;
we indicate with “. . . ” where the MDP needs to continue.

We assume that the sending node can determine whether a transmission
was successful or not; in case of success, it deletes the transmitted number of
copies, while in case of failure, it keeps them. This ensures that the entire network
contains the intended number of copies at any time, and is possible and typical in
LEO constellations. We refer to this assumption as acknowledged communication
(a.k.a. custody transfer in the Bundle Protocol [24]). The alternative is fully
unreliable communication where transmitted copies are lost upon failure, which
is natural in deep-space communication.

Global and Local Information. For the MDP described above, the maximizing
scheduler for goal set B = { [Aa Bb Cc Dd | t5] | d ≥ 1 } describes the optimal
routing decisions. This scheduler, however, is based on a global view of the sys-
tem: decisions are taken based on the current state of the whole network. This
implies that distributed nodes need to know where all copies are in the network
at any moment, including remote and potentially disconnected nodes. This is
impossible to achieve in practice in highly partitioned DTNs. Nodes must there-
fore decide based on partial local knowledge. To illustrate, consider time slot
t2 in the example of Fig. 1. Here, node A has two possible decisions: storing or
forwarding to C. Consider precisely the situation in which A has one copy and
the second copy is already on its way. A’s optimal decision depends on whether
the other copy is on B or C at time t2, reflecting the optimal decisions on Fig. 2:
A stores if C already has the other copy and A forwards to C if B has the copy.
However, it is most likely that A is not able to know whether the second copy
is in B or C, in which case A’s decision should be the same regardless if it is
in state [A1 B1 C0 D0 | t2] or [A1 B0 C1 D0 | t2]. This type of problem, in which
decisions in an MDP associated to a distributed system may only be based on
local knowledge, is known as distributed scheduling [12,25,26].

3 Routing in Uncertain DTNs

The optimal global scheduler can be computed using any probabilistic model
checker such as Prism [36], Storm [16], or mcsta of the Modest Toolset [30]:
we compactly describe the MDP and the goal set in the tool’s higher-level input
language; then the tool generates and stores in memory the MDP’s entire state
space, solves the reachability problem by solving the linear program induced by
the Bellman equations or by using an iterative algorithm such as a sound variant
of value iteration [28,31,43], and writes the induced scheduler to file. Probabilis-
tic model checkers, however, are generic tools that solve arbitrarily structured
MDP without optimizations for the DTN routing application. For complex net-
works, they will quickly encounter the state space explosion problem and run
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out of memory (see [44]). Furthermore, none of them provides a solution for
the local-information problem. We now summarize the two existing MDP-based
approaches for optimal DTN routing under uncertain contact plans, RUCoP
and LSS. Both can also produce schedulers based on local information only, and
approach the routing process in an off-line fashion: the routing decisions are
pre-computed in a centralized node.

3.1 RUCoP

RUCoP [45] (routing under uncertain contact plans) provides an analytical solu-
tion to find the routing decisions optimising SDP for an uncertain contact plan.

The first observation exploited by RUCoP is that, due to the inclusion of
the current time slot value in the states, the MDP for an uncertain contact
plan is acyclic. RUCoP thus only constructs the “optimal” part of the MDP by
following the Bellman equations backwards. In our example from the previous
section, it starts at any state in t5 in which D contains at least one copy. It then
walks backwards in the contact plan, selecting only the maximizing transitions
according to the Bellman equations. In its general form, RUCoP (i) considers the
possibility that multiple nodes can transmit to each other in one time slot, which
may produce a cycle in the MDP. However, since cyclic transmission would only
lower the SDP, RUCoP can break all such cycles and keep the MDP acyclic. It
also in general (ii) takes a target node and builds the optimal part of the MDP for
any possible transmitting source rather than restricting to a single source node
as in our example. The full RUCoP algorithm is in 2-EXPTIME: its runtime
is exponential in the number of nodes and doubly exponential in the number
of copies. This makes RUCoP highly expensive in time and memory. However,
for memory optimization, RUCoP not only constructs the optimal part of the
MDP backwards in an on-the-fly manner, but also writes all information that
is not going to be necessary for further calculations to disk. In particular, only
the states at the current time slot are necessary for calculating the states at the
preceding time slot and the respective connecting optimal transitions.

RUCoP delivers optimal routing decisions for acknowledged communication
in general. However, it is based on a global view of the system. To find local-
information schedulers, we need to use its L-RUCoP (local RUCoP) variant. It
works as follows: Suppose that, to increase reliability, n copies of the bundle are
used. L-RUCoP builds a table T (N, c, ti) that assigns to each node N holding
c copies (1 ≤ c ≤ n) at time ti the best decision based on local knowledge.
This decision is taken from running RUCoP on c copies (instead of n), which
basically amounts to supposing that N holds c copies and no copy is on the
other nodes. Thus, for our example, the decision for states [A1 B1 C0 D0 | t2] and
[A1 B0 C1 D0 | t2] will be both taken from T (A, 1, t2) which in turn is obtained
from the decision in state [A1 B0 C0 D0 | t2] derived from running RUCoP with
one single copy. On top of this basic idea, L-RUCoP also exploits extra knowl-
edge that may be available in certain occasions. For instance, at time t1 in our
example, A knows if B holds a copy depending on whether the transmission
at time t0 was successful or not. In this case, L-RUCoP looks ahead using the
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appropriate RUCoP instance on the state with the available knowledge where,
just like before, all information about the other (unknown) copies is assumed to
be 0. In the example, at time t1, the entry T (A, 1, t1) will be filled with the infor-
mation retrieved from RUCoP for two copies on state [A1 B1 C0 D0 | t1] since A
knows B has received the copy. The interested reader may find the details of
L-RUCoP as well as the full specification of RUCoP in [45].

3.2 LSS

Given a discrete-time Markov chain (DTMC), i.e. an MDP where every state has
at most one enabled action, Monte Carlo simulation or statistical model checking
(SMC [1]) can be used to estimate the probabilities for reachability problems:
We (pseudo-)randomly sample n paths—simulation runs—through the DTMC,
identify each success (that reaches a goal state) with 1 and every failure with 0,
and return the average as an estimate of the reachability probability. The result
is correct up to a statistical error and confidence depending on n. Compared to
probabilistic model checking, SMC needs only constant memory, assuming that
we can effectively simulate the MDP from a high-level description so that we do
not need to store its entire state space. As a simulation-based approach, SMC is
easy to parallelize and distribute on multi-core systems and compute clusters.

Lightweight scheduler sampling [37] (LSS) extends SMC to MDP: Given an
MDP M , it (i) randomly selects a set Σ of m schedulers, each identified by
a fixed-size integer (e.g. of 32 bits), (ii) employs some heuristic (that involves
simulating the DTMCs M |σ resulting from combining M with a scheduler σ ∈ Σ)
to select the σmax ∈ Σ that appears to induce the highest probability, and finally
(iii) performs a standard SMC analysis on M |σmax

to provide an estimate p̂σmax

for Prmax
s0

(reach(B)). However, note that—unless we are lucky and Σ happens
to include an optimal scheduler and the heuristic identifies it as such—p̂σmax

is
an underapproximation of Prmax

s0
(reach(B)) only, and subject to the statistical

error of the SMC analysis. The effectiveness of LSS depends on the probability
mass of the set of near-optimal schedulers among the set of all schedulers that
we sample Σ from: It works well if a randomly selected scheduler is somewhat
likely to be near-optimal, but usually fails in cases where many decisions need
to be made in exactly one right way in order to get a successful path at all. We
use the smart sampling [15] approach to select σmax in step (ii): We start by
performing 1 simulation run for each of the m schedulers, then discard the �m

2 �
worst of them; in the next round, we perform 2 runs for each of the approx. m

2
remaining schedulers, and again discard the worst half. We continue until only
one scheduler remains, which is σmax . In this way, the number of simulation
runs, and thus the runtime, needed for LSS grows only logarithmically in m.

The key to LSS is the constant-memory representation of schedulers as (32-bit)
integers. It enables LSS’ constant memory usage in the size of the MDP, which sets
it apart from simulation-based machine learning techniques such as reinforcement
learning, which need to store learned information (e.g. Q-tables) for each visited
state. Let i ∈ Z32 identify scheduler σi. Then, upon encountering a state s with
k > 1 enabled actions while simulating M |σi

, LSS selects the (H(i.s) mod k)-th
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action, where i.s is the concatenation of the binary representations of s and i, and
H is a (usually simple non-cryptographic) hash function that maps its inputs to
a fixed-size integer so that, ideally, the resulting values are uniformly distributed
over the output space. This selection procedure is deterministic, so we can repro-
duce the decision for state s at any time knowing i. For nontrivial H, it is also
highly unpredictable: changing i, e.g. by modifying a certain bit, may result in a
different decision for many states.

Local Information. As described above, LSS produces global-information sched-
ulers. However, it can be adapted to sample from local-information schedulers
only [17]: When having to make a decision on node N , instead of feeding i.s
into H, we use N.i.s|N instead, where s|N contains only the locally available
information: the number of locally-stored copies and the current time slot. To
avoid conflicts where two nodes need to make a decision at the same time, cer-
tain restrictions apply to the high-level modelling of the MDP as a system of
multiple independently executing nodes; we refer the interested reader to [17]
for details. We refer to LSS with local-information schedulers as L-LSS.

A scheduler found to be good via L-LSS can in principle be implemented, e.g.
on the satellites themselves, by simply replicating the L-LSS decision procedure:
each node knows its identifier N , the number of copies it stores, and can translate
the current time into a time slot in the contact plan. The only data that needs
to be transmitted to the node is the integer identifying the scheduler.

Our Improvements to LSS for DTN. For our comparison in Sect. 4, we use the
implementation of DTN routing with LSS and L-LSS of [17]. It consists of two
parts: a cp2modest Python script that converts a contact plan into a high-
level description of the MDP as described in Sect. 2 in the Modest modelling
language [29], and an implementation of LSS and L-LSS in the modes simu-
lator/statistical model checker [7] of the Modest Toolset. We use the latter
as-is, but have added preprocessing based on decisions already implemented in
RUCoP to the former in order to produce more succinct MDP models as follows:

1. Useful contacts only. A contact may be useless for transmitting a message
from the source to the target node because it leads to a dead-end, i.e. a
situation where a message copy is transmitted to node X in time slot t but
there is no sequence of contacts reaching the target from X after t. Similarly,
there may not be any sequence of contacts from the source to X before t: then
X is guaranteed not to have any copies in t. We analyse the contact graph
for such situations and drop all useless contacts. This reduces the amount
of decisions in the MDP, and thus the number of schedulers to sample from,
without excluding any scheduler with positive message delivery probability.
Consequently, (near-)optimal schedulers are more likely to be sampled.

2. Forcing to send. With the same motivation, when we are in node X’s last
useful contact, it would be useless to keep any copies. Thus, for such contacts,
the only option that we generate now is to send all available copies.

3. Forcing to receive. Like a node deciding to store all copies at a contact, i.e.
choosing not to send, the previous translation allowed the receiving node to
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ignore the incoming transmission (which would consequently look like a failure
to the sender). While this allowed some interesting collaborations between
nodes to share non-local information [17, Sect. 5.3], we are not interested
in such special behaviours, and consequently omit the option to ignore an
incoming message. This again reduces the scheduler sampling space.

4. Skipping empty slots. The previous translation generated a “clock tick” action
to advance time from t to t+1 in all nodes for every time slot, even if that slot
had no contacts. To improve simulation runtime, we now omit these actions
for empty slots and directly skip ahead to the next slot with a contact.

All combined, these improvements eliminate many useless schedulers from the
sample space, making (L-)LSS noticeably more likely to find good ones; they also
simplify the model, improving the runtime and memory consumption of modes.
We will showcase the difference on one of our benchmarks in Sect. 4.

4 Evaluation

In order to evaluate the performance-cost trade-off of LSS and RUCoP in uncer-
tain DTNs, we created a benchmark set consisting of three use cases to compute
SDP metrics and the associated computational cost.

4.1 Benchmark Set

Random networks use a uniform distribution of contacts among a configurable
number of network nodes and contact plan duration. We use 10 random topolo-
gies with 8 nodes, each covering a duration of 100 s. Time is discretized into
episodes of 10 s. In each episode, the connectivity between nodes (i.e. the pres-
ence of contacts) is decided based on a contact density parameter of 0.2, similar
to [39]. We assume an all-to-all traffic pattern, run each of the routing algorithms
100 times on each of the 10 networks, and report the averages.

Fig. 3. Binomial tree.

Binomial Networks. To gain insights into
how increasing the topological complexity
affects the routing algorithms, we devised
a family of contact plans with a binomial
topology. They are easy to scale up in a
controlled manner that preserves the char-
acteristics of the topology. The topology
is a binomial tree. The higher the number
of levels in the tree, the more complex the
routing problem is to solve. Specifically, a
binomial topology with L levels implies: (i)
1+2L−2 nodes have contacts with two neighbors; (ii)

∑i<L−2
i=1 2i nodes have con-

tacts with three neighbors; and (iii) 1 final destination node has 2L−2 contacts.
The resulting tree is illustrated in Fig. 3. Contacts between consecutive levels
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Fig. 4. RRN satellite constellation topology, parameters and orbital tracks [23].

are also consecutive in the time dimension, that is, the order of the contacts
corresponds to enumerating the arrows in Fig. 3 left-to-right, top-to-bottom. A
node on the i-th level will have a total of 2L−2−i paths to the destination. There-
fore, the larger the level count, the more nodes are in the network and the more
paths per node have to be evaluated. For example, a binomial topology of 6 levels
results in 32 nodes with up to 32 simple paths. When considering the forwarding
of 3 copies, a total of 91000 possible actions need to be considered.

Ring Road Networks. Finally, we use a realistic satellite topology exported from
high-precision orbital propagators. Specifically, we consider a low-Earth orbit
Walker constellation of 16 satellites as proposed and described in [23]. Satellites
act as data mules by receiving data from 22 isolated ground terminals, storing
the data, and delivering it to a ground station placed in Argentina. We use an
all-to-one traffic pattern. The satellites are equipped with inter-satellite links
(ISLs), so contacts are possible in orbit. The dynamics of the topology and the
specific orbital and ground parameters are depicted in Fig. 4. Routes can involve
multiple hops between satellites and ground terminals. The scenario spans 24 h
and is sliced into 1440 time slots, each of 60 s. Within a time slot, we consider a
contact feasible if communication is possible for more than 30 s.

4.2 Analysis

Our evaluation results present compelling evidence of the trade-off between the
LSS and RUCoP approaches, both in their global (LSS and RUCoP) and local
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Fig. 5. SDP gain over CGR in random networks.

versions (L-LSS and L-RUCoP). We evaluate them in terms of the SDP of the
computed scheduler, and the computational resources used: processing time and
memory consumption. Plain single-copy CGR is used as a baseline. We write
“(L-)RUCoP-c” and “(L-)LSS-c” for the respective method when allowing c
copies. We used an Intel Core i5-5300U (2 cores, 4 threads, 2.3–2.9 GHz) system
with 12 GB of memory running 64-bit Ubuntu 18.04.5 for all experiments.

Random Networks. The SDPs we obtained for random networks are illustrated
in Fig. 5. To facilitate the interpretation of the outcomes, we plot the curves
with respect to the SDP delivered by CGR. Indeed, CGR is the baseline of
comparison as it assumes a perfect contact plan that does not drift from real-
ity. As the contact plan becomes more uncertain, the RUCoP- and LSS-based
schemes provide increasingly better SDPs. This holds up to the point where the
failure probability is such that the partitioning of the topology dominates (i.e.
pf ≈ 0.8), a situation in which delivery of data becomes much more difficult.
Still, in these cases, RUCoP and LSS perform noticeably better than CGR.

We ran LSS and L-LSS in two configurations, one sampling m = 1000 and
one sampling m = 10000 schedulers. We indicate m as “#SS”, the number of
sampled schedulers, in our figures. From Fig. 5, we observe that increasing m
from 1000 to 10000 does not improve the SDP drastically in these random net-
works. In particular, averaged along all failure probabilities, sampling m = 10000
schedulers improves SDP by ≈1.8%, with ≈5.8% being the maximum gain reg-
istered at pf = 0.7. We explain this limited improvement with the simplicity of
the random topologies, which are easily explored with few schedulers.

When compared to L-RUCoP, L-LSS is, on average, 3% and 1% worse in
terms of SDP, for 1000 and 10000 schedulers, respectively. The larger difference
is observed at pf ≈ 0.7% and 3 copies, where L-RUCoP outperforms L-LSS by
10%. We observe that the lower the number of copies, the smaller the difference
between L-RUCoP and L-LSS, with the single-copy case almost identical in
SDP. Interestingly, the single-copy case provides limited or no gain with respect
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Fig. 6. SDP, solving time, and memory for binomial networks with varying complexity.

to the CGR baseline in these simple topologies. A similar effect was reported for
Opportunistic CGR in [8].

Regarding the processing and memory footprint for random networks, all
the techniques we study always complete in less than 20 s, using less than 20
MB of memory. Also, we observed that the runtime and memory values were
rather stable and independent of the failure probability. In the following, we
thus leverage the more complex binomial and ring-road topologies for a more
detailed time and memory consumption assessment.

Binomial Networks Analysis. The results obtained for binomial networks are
plotted in Fig. 6. All links in the topology were set to a failure probability of 0.1
in this case. Instead, we vary the tree level count from 4 to 8 (i.e. 8 to 128 nodes,
and 13 to 449 paths), to evaluate the performance of RUCoP and LSS with
increasing topological complexity, and thus, increasing routing decision making
difficulty. Results are expressed, from left to right in the figure, in terms of SDP,
solving time, and required memory.

In the binomial topologies, the CGR baseline is always equal to RUCoP with
one copy (RUCoP-1) since the path with the earliest delivery time is also the
one with highest SDP. On the other hand, the global view of RUCoP can be
directly implemented with a limited local view. This is because each node can
only reach two exclusive neighbors, which means that the local information is
already enough to take a globally-optimal decision (i.e. the amount of copies to
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send to one of the two next hop nodes). As a result, L-RUCoP and RUCoP plots
in Fig. 6 are presented in a single curve (solid line).

On the one hand, the SDP plots show that LSS is rather close to RUCoP
when leveraging 10000 schedulers, especially for low level counts (with less than
0.01% difference). In the worst-case scenario with 8 levels, L-LSS is only 3%
below L-RUCoP for the single and dual copy scenarios. However, due to memory
exhaustion, RUCoP (and thus L-RUCoP) fails to deliver a valid routing schedule
for 8 levels and 3 copies (its limit highlighted by the red circle in Fig. 6). We
verify that for this case, more than 15 million actions need to be considered in
the MDP. Another observation from these plots is that the delivery probability
when using dual copies increases from ≈0.88 to ≈0.97 (i.e. by 10%) for 4 levels
and from ≈0.85 to ≈0.96 (i.e. by 13%) for 8 levels. However, due to the binomial
nature of the topology, having a third copy provides limited or no advantage.

Regarding the time and memory requirements in the binomial topologies,
RUCoP proves to be by far the most demanding approach. In the worst case
solved for 3 copies (7 levels), RUCoP needs 28 min of computation time, com-
pared to less than 10 s for LSS with 1000 schedulers, or 1 min with 10000 sched-
ulers. This is a notable difference considering the similar performance in terms
of SDP. Solving time and memory plots of the original LSS as in [17], i.e. with-
out the improvements described in Sect. 3.2, are also plotted in Fig. 6, in gray
dashed lines. These improvements reduce LSS runtime by up to ≈600% (from
117 down to 17 s). A reduction of ≈6% in memory is also achieved. Indeed, in
memory utilization, RUCoP quickly escalates up to more than 1 GB to keep
track of the MDP decision tree, while lightweight schedulers never require more
than 100 MB, even for the most complex binomial topologies.

In summary, for binomial topologies, LSS and L-LSS with 10k schedulers
closely follow RUCoP and L-RUCoP in delivery probability and solving effort for
simple trees. As the topology’s complexity rises (notably for more than 7 levels),
RUCoP exhausts the available memory. Even in these challenging cases, LSS is
able to deliver a valid solution with minimal runtime and memory footprint.

Ring Road Networks Analysis. We have evaluated all downlink source-
destination pairs in the realistic RRN network. Figure 7 present some repre-
sentative cases for the different behaviors we observed. In this figure, node 38
as the destination stands for the mission control center on ground, while node
1 and 7 are remote nodes sending data via the ring-road satellites1. For these
nodes, we present the computation of the routing schedule for varying contact
plan sizes, spanning durations from 1 to 3 h (plots from top to bottom). The #SS
parameter is again varied to 1000 and 10000 schedulers, to gain sensitivity on
the improvement of the sampling technique (plots from left to right).

The SDP plots in Fig. 7 show that the longer the contact plan, the more
noticeable the difference between the analytic and statistical approaches (i.e.
curves separate progressively). In particular, there is barely any difference for any
failure probabilities for the shorter contact plan with 1 h of scheduling horizon.

1 Nodes 1 and 7 correspond to nodes 8 and 15 in the contact plan used in [23].
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Fig. 7. SDP for RRN for different source-target nodes and plan durations.

However, we observe that L-RUCoP is notably superior to L-LSS for the 2 h and
3 h plans, especially for failure probabilities between 0.4 and 0.8. Specifically, we
observe that the gap between RUCoP and LSS can be as large as ≈60%, for
failure probabilities of ≈0.6, and contact plans of 3 h. Interestingly, the gap is
reduced to ≈30% if we raise the number of schedulers to 10000 in LSS, indicating
that this case is right on the boundary of what can effectively be solved via LSS.
Nevertheless, both LSS and L-LSS perform worse than the CGR baseline even
when leveraging multiple copies in schedules larger than 2 h. This is compelling
evidence that the uninformed sampling strategy of LSS may not be fully adequate
for realistic RRN topologies, even though it performed pretty well in generic
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Fig. 8. Solving time (left) and memory (right) for RRN for different source-target
nodes, contact plan durations, and numbers of schedulers sampled (R: RUCoP, L: LSS).

binomial and random topologies, and may need to be adapted to a variant yet
more specifically tailored to the DTN routing application.

Also, we observe that LSS and L-LSS are typically close, but L-LSS frequently
presents better SDP than the global LSS. This was also observed in Fig. 5, but
in a much more subtle manner. We explain this phenomenon with the fact that
L-LSS has a reduced space of schedulers to be sampled from, which increases
the chances of finding a better routing policy.

Figure 8 presents the computational resources required to obtain the dis-
cussed SDP results for ring-road networks. This figure is computed based on
the computational effort of solving several downlinking node pairs (instead of
the two example pairs discussed in Fig. 7). The results confirms once again that
RUCoP is able to deliver network performance at the expense of significantly
higher memory and runtime. In particular, the runtimes for the analytical app-
roach can reach up to ≈20 min (for the 3-h contact plan, with 3 copies), while
LSS typically delivers a result in less than 1 min. We thus postulate that the
3 h contact plan is as challenging for RUCoP as the 7-level binomial topology,
i.e. that larger contact plans are likely intractable for RUCoP. Memory-wise, we
observe similar ratios. While RUCoP needs as much as 600 MB of memory for
the worst-case scenario, LSS consistently uses about 100 MB. Again, this is due
to the simulation nature of LSS, where no decision trees need to be stored as
in RUCoP. Interestingly, LSS also showed a limited computational cost sensi-
tivity to increasing L-LSS from 1000 to 10000. This is likely due to the possi-
bility of using multiple CPU threads concurrently to perform the exploration in
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LSS. Indeed, LSS can exploit parallelization intensively: each scheduler can be
evaluated independently in separate threads. However, in RUCoP, the calcula-
tions for each time slot strongly depend on the successor time slot, which limits
parallelization.

In summary, the evaluation over realistic ring-road networks showed that
there is still room for improvement on scheduler sampling techniques to cope with
more heterogeneous or application-specific topologies. In our particular satellite
constellation, L-RUCoP provided delivery probabilities up to 60% higher than
LSS, at higher computational costs. The reported runtimes and memory usages
anyway appear reasonable for this kind of satellite application. In particular,
since satellites revisit ground stations at most every ≈90 min [22], solving times
of 20 min, as measured for RUCoP, are by all means acceptable.

5 Conclusions

This paper provides the first extensive comparison of the state-of-the-art analyt-
ical and statistical routing approaches for uncertain DTNs. While both RUCoP
and LSS leverage MDP models, the former performs an exhaustive and optimal
exploration of the solution space whereas the latter exploits SMC with sam-
pling for optimization. We improved the DTN models for LSS for efficiency. We
thoroughly compared the two approaches in a new benchmarking framework
comprising random, binomial, and realistic satellite network topologies.

The outcomes provided quantitative evidence of the performance of the
global- and local-information flavors of RUCoP and LSS. On the one hand, both
schemes provide routes that deliver up to 1.8 times the data volume achievable
by the baseline CGR approach. However, we touched the tractability limits of
RUCoP in binomial networks of 8 levels. While RUCoP failed to deliver, LSS was
able to solve the problem with just 5% of the memory footprint. We attribute
part of this success to the improvements made to LSS for DTNs in this paper.
Last but not least, the analysis on realistic satellite networks showed that despite
the good performance of LSS, its applicability to case-specific topologies could
enjoy further refinement. Such work is indeed needed seeing that RUCoP already
stressed the computational resources for 3-h contact plans.

Even though LSS and RUCoP stand on the frontier of the state-of-the-art
of routing in uncertain DTNs, a few challenges remain to be tackled. On the
one hand, both approaches assume non-congested links: routing in uncertain
and congested DTNs is an open research topic. Also the integration of uncertain
and Opportunistic CGR [8] is appealing future work. Finally, the evaluation of
the routing schedules obtained from the presented use cases in realistic DTN
protocol simulations is currently being investigated by the authors.

Data Availability. A dataset with the models and tools needed to replicate our
experimental evaluation is archived and available at DOI 10.4121/20334687 [14].

https://doi.org/10.4121/20334687
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Abstract. In this paper we start from the simplest form of Quantum
Finite Automata (QFAs), namely Measure-Once QFAs with cut-point.
First we elaborate on a variant of their semantics that can be obtained
through a shift from the Schrödinger to the Heisenberg picture of Quan-
tum Mechanics. In the Schrödinger picture states evolve in time while
observables remain constant, while in the Heisenberg one states are con-
stant and observables evolve. Interestingly, in the case of a QFA such
shift reverts time-evolution. However, the equivalence of the two pic-
tures over the class of QFAs holds thanks to the closure of the class with
respect to language mirroring. Since the expressive power of such class
of automata remains limited to infinite languages, we then consider their
extension with bounded (multi-letter QFAs) and unbounded memory.
Unfortunately, while bounded memory enhances the expressive power,
the unbounded memory approach does not behave as one would expect.
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1 Introduction

Deterministic and Nondeterministic Finite State Automata (DFA/NFA) are the
building blocks of classical computation. They are the models at the basis of
Verification Techniques such as Temporal Logic Model Checking [15].

A shift to their probabilistic and stochastic counter-parts is necessary when-
ever the evolution of the computation depends on probabilities and rates. In this
context models such as Probabilistic/Stochastic Automata, Discrete/Continuous
Time Markov Chains, and Probabilistic/Stochastic Process Algebra have been
described (e.g., [20,21,24]). Their formal analysis involves performance metrics,
behavioural equivalences, and extensions of temporal logics.

A currently emerging field in the context of Quantitative Computation and
Performances Evaluation is Quantum Computation, where again extensions of
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automata, Markov chains, and temporal logics constitute a starting point for
understanding properties of the computations (e.g., [3,17,19]).

Even though Quantum Automata have been studied since the end of the
nineties, still today there is not a unique widely accepted definition of Quantum
Finite Automata (QFAs). Moore and Crutchfield [27] introduced the idea of
General Quantum Automata and characterized the properties of Quantum Reg-
ular Languages. The model they introduced was named Measure-Once Quan-
tum Finite Automata (MO-QFAs) because the result can be observed (mea-
sured) only when the read of the input string has terminated. In the same years,
Kondacs and Watrous in [23] introduced a different model of QFAs in which
measurements can be used at each step of the computation. For this reason,
these are called Measure-Many Quantum Finite Automata (MM-QFAs). More-
over, similarly to what happens on probabilistic automata [32], a key role in the
expressive power of such models is played by the acceptance condition. The two
most adopted conditions are called cut-point and bounded error.

The expressive power of both MO-QFA and MM-QFA has been deeply inves-
tigated in [2,8,14]. The expressive power of MO-QFAs does not include all lan-
guages accepted by DFAs. As a consequence, different extensions have been
considered. In [1] a model called Latvian QFAs was considered. Bertoni et al. [9]
introduced MO-QFAs with control language which are able to recognize regular
languages with bounded error. The same behavior can be found in a formalism
in which a MO-QFAs are used together with a classical set of states [31]. Another
model that can at least recognize regular languages was presented in [29] were
the concept of Ancilla qubits is used.

In this paper we are interested in the most simple of these models, e.g., MO-
QFAs with cut-point acceptance condition. In the case of Quantum Circuits
the principle of deferred measurements states that measurements can always be
moved from an intermediate stage to the final step. This is not true in the case
of Quantum Automata, since MO-QFAs and MM-QFAs are not equivalent. So, a
Measure-Once condition is more in the spirit of a basic model. As for the accep-
tance condition, bounded error ensures the possibility of arbitrarily improving
the precision. Consequently, it has been largely studied in the literature. How-
ever, it is not the “equivalent” of what happens in experimental disciplines such
as biology and medicine, where cut-offs have to be arbitrarily chosen and no
separation is guaranteed between positive and negative answers.

First, in this paper we analyse whether it is possible to increase the expressive
power of MO-QFAs with cut-point without enriching their syntax, but simply
moving to an alternative semantics. Such semantics from the point of view of
physics is as natural as the one which has been considered in the literature so far.
We are talking of a shift from the Schrödinger picture of Quantum Mechanics to
the Heisenberg one. We will not obtain a positive answer in terms of increase of
the expressive power, but our investigation provides a closure property of MO-
QFAs with respect to mirror images which is new. In other terms, the mirror
closure proves that not only each internal step of a MO-QFA is reversible, but its
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computation as a whole is. Such result was not granted because of the asymmetric
use in MO-QFAs of final states and measurement.

As a second step, we are interested in considering another semantics for MO-
QFAs. This is only inspired by the Heisenberg picture and at first sight it seems
to provide an unbounded quantity of memory to the automata. In particular, at
each point of the computation all the prefix that has been read so far is involved
in the choice of the evolution. However, as it usually happens in the quantum
realm, our intuition is cheated and such unbounded quantity of memory is less
expressive than expected. Again, the path which leads us to such “negative”
result is interesting by itself. We quantify the minimum amount of memory
necessary for accepting finite languages and provide a pumping lemma for a
class of QFAs which have been studied in the literature with bounded error, but
not with cut-point [6,30].

The paper is organized as follows. In Sect. 2 we give a brief presentation of the
notation and the basic concepts that are useful throughout the paper. In Sect.
3 we introduce MO-QFAs and we briefly survey the state of the art about their
expressive power and realizations. These results will be useful in Sect. 4 where we
define Heisenberg Quantum Finite Automata (HQFAs) and compare them with
MO-QFAs. In Sect. 5 we study a class of Heisenberg inspired automata which
we call Unbounded Memory Quantum Automata (UMQFAs) and we compare
them with a bounded memory counter-part. The proofs of the main results of
this paper can be found in the Appendix.

2 Preliminaries

2.1 Strings and Languages

An alphabet Σ is a set of symbols. We always refer to finite alphabets. A string
x = x1x2 . . . xm of length m over Σ is a finite sequence of symbols xi ∈ Σ. The
empty string ε is the only string of length 0. With Σi we indicate the set of all
strings of length i over Σ, while Σ≤i = ∪i

j=0Σ
j is the set of all strings of length

at most i. Σ∗ = ∪i∈NΣi is the set of all finite length strings we can build on Σ.
Given a string x = x1x2 . . . xm we denote by ←−x its mirror image, i.e., the

string ←−x = xmxm−1 . . . x1. Given an index 1 ≤ j ≤ n we denote by xj the prefix
of x from x1 to xj−1, i.e., xj = x1x2 . . . xj−1. If j = 1, then xj is the empty
string. Moreover, for h ∈ N we denote by xh

j the sub-string of x ranging from
xj−h to xj−1 if j − h > 0, and the prefix xj otherwise. In other terms, xh

j is the
sub-string of x ranging from xk to xj−1, where k is the maximum between 1 and
j − h. Notice that xh

j has length either h or j − 1.
A language L is a set of strings over an alphabet Σ, i.e., L ⊆ Σ∗. Given a

language L, we denote by
←−
L the mirror image of L, i.e.,

←−
L = {←−x | x ∈ L}.

2.2 Quantum Computing

The most used model of Quantum Computation relies on the formalism of state
vectors, unitary operators, and projectors. At high level we can say that state
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vectors evolve during the computation through unitary operators, then projec-
tors remove part of the uncertainty on the internal state of the system.

The state of the system is represented by a unitary vector over the Hilbert
space Cd with d = 2k for some k ∈ N. The concept of bit of classical computation
is replaced by that of qubit. While a bit can have value 0 or 1 a qubit is a
unitary vector of C2. When the two components of the qubit are the complex
numbers α = x + iy and β = z + iw, the squared norms |α|2 = x2 + y2 and
|β|2 = z2 + w2 represent the probabilities of measuring the qubit thus reading
0 and 1, respectively. In the more general case of k qubits the unitary vectors
range in Cd with d = 2k. Adopting the standard Dirac notation we denote a
column vector v ∈ Cd by |v〉, and its conjugate transpose v† by 〈v|. A quantum
state is a unitary vector:

|ψ〉 =
d∑

h=1

ch |vh〉

for some basis {|vh〉}. In this case we also say that |ψ〉 is a superposition with
coefficients {ch} over the basis {|vh〉}. When not specified, we refer to the canoni-
cal basis denoted by {|0〉 , |1〉 , . . . , |n − 1〉}, where for each q ∈ [0, d−1] the vector
|q〉 is the unitary vector having 1 as q +1-th component and all its other compo-
nents are 0. Moreover, usually |q〉 is written using the binary representation of
q of length m. The canonical basis is an ortonormal basis for Cd. Further details
can be found in [28].

Unitary operators are a particular class of reversible linear operators. They
preserve both the angles between vectors and their lengths. In other terms,
unitary operators are transformation from one orthonormal basis to another.
Hence, they are represented by unitary matrices. Let U be a square matrix over
C. U is said to be unitary iff UU† = U†U = I. We describe the application of a
unitary matrix U to a state |ψ〉 by writing:

|ψ′〉 = U |ψ〉
meaning that the state |ψ〉 becomes |ψ′〉 after applying the operator U .

In order to extract informations from a quantum state |φ〉 a measurement,
also called observation, must be performed. Projectors are the most common
measurements/observables. Let |u〉 be a vector. The projector operator Pu along
the direction of the unitary vector |u〉 is the linear operator defined as:

Pu = |u〉〈u|
where |u〉〈u|, being the product between a column vector and a row one both of
size d, returns a matrix of size d×d. Given a set of directions F = {|u1〉 , . . . |uf 〉}
specified by unitary vectors the projector operator associated to F is defined as:

PF =
∑

u∈F

|u〉〈u|
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3 Measure-Once Quantum Finite Automata

Quantum Finite Automata (QFA) are the quantum counterpart of Finite
Automata. Two models of Quantum Automata were independently introduced
in the literature: Measure-Once QFAs (MO-QFAs) [27] and Measure-Many QFAs
(MM-QFAs) [23]. The difference between the two definitions is about the num-
ber of observations that are made. While a MM-QFA is measured after reading
each letter from the input, in a MO-QFA only one measurement is made after
the whole input has been read.

We focus on MO-QFAs. Therefore, for sake of readability, we refer to MO-
QFAs with just QFAs.

Let Cd be a finite dimension Hilbert space and Q = {|0〉 , |1〉 , . . . |d − 1〉} be
its canonical basis. Usually in quantum computation it holds that d = 2k for
some k ∈ N, where k is the number of involved qubits. However, we refer here to
a generic dimension d. It is not difficult to embed all the definitions and results
we present into a space of dimension 2k′

> d, thus using k′ qubits, whenever it
is necessary in the implementations.

Definition 1 (QFA). A QFA is a 5-tuple M = (Q,Σ,U , |ψ〉 , F ) where:

– Q–the set of states– is the finite canonical basis of Cd for some d ∈ N;
– Σ is a finite alphabet;
– U = {Uσ}σ∈Σ is a finite set of unitaries of dimension Cd × Cd;
– |ψ〉 ∈ Cd is a unitary vector representing the initial superposition of M ;
– F ⊆ Q is the set of final states.

In the literature the standard semantics attributed to QFA is based on the
Schrödinger picture of quantum mechanics in which states evolve in time. We
will come back to this in Sect. 4, when we will compare this interpretation with
other possible ones. However, in the remaining of this section we will use the
letter S of Schrödinger to refer to a generic QFA.

A generic configuration for a QFA S is a unitary vector of Cd, i.e., it is a
vector of the form:

|ϕ〉 =
∑

|q〉∈Q

αq |q〉

Let |ϕ〉 be the current configuration of S and σ ∈ Σ be the current input symbol.
|ϕ〉 evolves as follows:

|ϕ′〉 = Uσ |ϕ〉
The computation starts from |ψ〉 and evolves reading the symbols of the

string x. At the end of the computation, i.e., when all the symbols of x have
been read, a measurement is performed on the obtained state of S using the
matrix PF =

∑
|q〉∈F |q〉〈q|. The probability of S accepting a string x is:

pS(x) = ‖PF Ux |ψ〉 ‖2 = 〈ψ|U†
xP †

F PF Ux |ψ〉 =
∑

|q〉∈F

| 〈q|Ux |ψ〉 |2
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where Ux–the evolution matrix accumulated along the read of x– is defined as:

Ux = Uxn
Uxn−1 · · · Ux1

We consider two different acceptance conditions. The first one is called with
cut-point and it recalls the acceptance condition of probabilistic automata [32].

Definition 2 (Cut-point QFA). A language L ⊆ Σ∗ is accepted by a QFA
S with cut-point λ if and only if L = {x ∈ Σ∗ | pS(x) > λ}.

A language L ⊆ Σ∗ is said to be accepted by a QFA with cut-point if and
only if there exist a QFA S and λ ≥ 0 such that L ⊆ Σ∗ is accepted by S with
cut-point λ.

The second one is called with certainty. In this case we mimic the acceptance
of a deterministic automata (DFA).

Definition 3 (Certainty QFA). A language L ⊆ Σ∗ is said to be accepted by
a QFA S with certainty if the following holds:

x ∈ L iff pS(x) = 1 and x /∈ L iff pS(x) = 0

It is straightforward to see that an acceptance with certainty implies an
acceptance with cut-point 1 − ε, ∀ε ∈ (0, 1]. The converse is trivially false.

The class of languages accepted by QFAs with cut-point was introduced and
characterized in [14]. Such class is called Unrestricted Measure-Once, UMO. One
of the main contribution to the characterization of such class is the connection
with the languages accepted by Probabilistic Automata:

Theorem 1 ([14]). Let L be a language accepted by a QFA S with cut-point λ.
There exists a Probabilistic Finite Automaton that accepts L with cut-point λ′,
for some λ′.

The class UMO was further investigated in [8,27], with the introduction of
the following pumping lemma.

Theorem 2 ([27]). Let L ⊆ Σ∗ be the language accepted by a QFA S with cut-
point λ. ∀x = uv ∈ L and ∀y ∈ Σ∗, there exists k ∈ N+ such that uykv ∈ L.

A straightforward consequence of the above theorem is that finite languages
cannot be accepted by QFA.

Corollary 1. QFAs can accept only languages that are either empty or infinite.

Notice that the theorem holds for any possible split of the string x into two
strings u and v. So, either u or v could be empty. In particular, taking v empty
we get that languages whose elements have a fixed suffix cannot be recognized.

Corollary 2. Let Σ = {a, b} and L = {x |x ends with a}. L cannot be accepted
by any QFA S with cut-point.
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Proof. Suppose such a S exists. Let x ∈ L and y = b, by Theorem 2 it holds
that ∃k ∈ N+ such that xyk ∈ L. This contradicts the definition of L. �

The above corollary also gives an example of a regular language that cannot
be accepted by QFAs.

Despite being unable of accepting finite languages, QFAs can accept lan-
guages that are not regular. Let x ∈ Σ∗, σ ∈ Σ. We denote by |x|σ the number
of occurrences of σ in x. It was proven in [14] that there exists a QFA that
accepts the language L = {x ∈ {a, b}∗ : |x|a �= |x|b} with cut-point 0.

The equivalent of UMO in the case of MM-QFAs is denoted by UMM (Unre-
stricted Measure-Many) and it was introduced in [14]. It was then characterized
and eventually further investigated in the literature (see, e.g., [2]). Results on
Quantum Automata descriptional complexity can be found in [12]. Recently in
[18] the expressive power of Quantum Automata over the unary alphabet under
different acceptance condition has been investigated. A physical realization of
Quantum Automata has been presented in [26]. Undecidability results have been
proved in [5]. In [11] it has been proved that languages accepted by MO-QFAs
with bounded error are not definable in Linear Time Temporal Logics, while it
is definable in the case of Measure-Many. A recent review can be found in [10].

Even more recently, Quantum Automata minimization has been studied in
[22], while succintness has been described and implemented in [25]. Physical
realizations of Quantum Computing algorithms always require to consider the
noise introduced by non-perfect gates. In [13] the aim is to implement QFAs on
noisy devices.

4 Heisenberg Quantum Finite Automata

The most widely adopted formulation of the Copenaghen interpretation of quan-
tum mechanics is the Schrödinger representation. It is based on the idea that
there is a state vector in an Hilbert space that completely describes the config-
uration of the system. This state vector evolves through time according to the
Schrödinger equation. In particular, at each time instant a unitary operator is
applied to the state vector. So, in the Schrödinger picture the state vector is
time-dependent, while the unitaries and the observables remain unchanged.

There exists another representation known as Heisenberg picture in which
the state vector is time-independent and always remains fixed to its value at
time 0. Therefore, the time-dependency is shifted on the observables.

A third representation, named Dirac picture, also known as Interaction pic-
ture, “distributes” time dependencies over both states and operators.

Even though a mathematical equivalence between Schrödinger and Heisen-
berg representations has been proved by Von Neumann in [33], divergencies were
pointed by Dirac in [16].
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In terms of Quantum Finite Automata all the models described in the lit-
erature so far rely on the Schrödinger picture, where the initial state evolves
through time using unitaries, while the observables never change1.

In this section we shift to the Heisenberg picture and we formalize a new
semantics for QFAs, named Heisenberg Quantum Finite Automata (HQFAs).
The idea is that while the string x is read the state is unchanged, but there
is an effect on the projector. At the end of the read such modified projector
is applied to the initial state to obtain the final result. The way in which the
observable gets modified is in a sense arbitrarily chosen. In our definition we try
to keep such choice as close as possible to that of QFAs. In particular, in quantum
mechanics when one shifts from the Schrödinger picture to the Heisenberg one a
transformation of the states of the form U |ϕ〉 is mapped into a transformation of
the observables/projectors of the form U†PU , where the meaning is that U† has
been applied to P . As a consequence HQFAs have exactly the same definition of
QFAs, while the difference is in the acceptance condition, i.e., in the semantics.

Let P be the current observable of a HQFA H and σ ∈ Σ be the current
input symbol. P evolves as follows:

P ′ = U†
σPUσ

The computation starts from the observable PF and evolves reading the symbols
of x. At the end of the read a measurement is performed using the resulting
projector and the probability of accepting x is:

ρH(x) = ‖U†←−x PF U←−x |ψ〉 ‖2 = 〈ψ|U†←−x P †
F PF U←−x |ψ〉

where consistently with the definition given in Sect. 3 the evolution matrix U←−x
is defined as:

U←−x = Ux1Ux2 · · · Uxn

The acceptance condition with cut-point for an HQFA now inolves ρH .

Definition 4 (Cut-point HQFA). A language L ⊆ Σ∗ is accepted by an
HQFA H with cut-point λ if and only if L = {x ∈ Σ∗ | ρH(x) > λ}.

A language L ⊆ Σ∗ is said to be accepted by an HQFA with cut-point if and
only if there exist an HQFA H and λ ≥ 0 such that L ⊆ Σ∗ is accepted by H
with cut-point λ.

Example 1. Let Q = {|0〉 , |1〉} be the canonical basis of C2. Let Σ = {a, b}.
Consider the two unitary matrices Ua = X (the negation gate) and Ub = H (the
Hadamard gate), i.e.:

Ua =
(

0 1
1 0

)
Ub =

1√
2

(
1 1
1 −1

)

Let |ψ〉 = 1√
2
(|0〉 + |1〉) = |+〉 and F = {|0〉}.

1 Some work has been done for Quantum Cellular Automata, where the equivalence
between Schrödinger model and Heisenberg model has been proved (e.g., [4]).



Mirrors and Memory in Quantum Automata 367

If we consider M as a QFA, i.e., we endow M with the Schrödinger semantics,
we get that the probability for the sting ab is:

pM (ab) = ‖ |0〉 〈0|UbUa |+〉 ‖2 = ‖ |0〉 〈0| Ub |+〉 ‖2 = ‖ |0〉 〈0| |0〉 ‖2 = ‖ |0〉 ‖2 = 1

This means that no matter which is λ, the string ab is accepted.
If we consider the string abb we have to apply again Ub before projecting.

Hence, we obtain pM (abb) = ‖ |0〉 〈0| Ub |0〉 ‖2 = ‖ |0〉 〈0| |+〉 ‖2 = 1/2.
On the other hand, if we look at M as a HQFA, i.e., we apply to M the

Heisenberg semantics, the probability for the string ab is:

ρM (ab) = ‖U†
b U†

a |0〉 〈0|UaUb |+〉 ‖2 = ‖U†
b |1〉 〈1| Ub |+〉 ‖2 = ‖ |−〉 〈−|+〉 ‖2 = 0

where |−〉 = 1√
2
(|0〉 − |1〉). This means that no matter which is λ, the string ab

is not accepted. Instead, if we consider the string ba we obtain:

ρM (ba) = ‖U†
aU†

b |0〉 〈0|UbUa |+〉 ‖2 = ‖U†
a |+〉 〈+|Ua |+〉 ‖2 = ‖ |+〉 〈+|+〉 ‖2 = 1

As a matter of fact, in this simple example one can notice that for all x ∈ Σ∗

the behaviour of S on x is equivalent to the behaviour of H on its mirror image←−x , i.e., pS(x) = ρH(←−x ). In the following we prove this result in the general case,
for any automaton. �
Theorem 3. Let M be a QFA over an alphabet Σ. For each x ∈ Σ∗ it holds
that

pM (x) = ρM (←−x )

Proof. Let y = ←−x . We have that ←−y = x. So, ρM (y) = 〈ψ|U†←−y P †
F PF U←−y |ψ〉 =

〈ψ|U†
xP †

F PF Ux |ψ〉 = pM (x). �
Intuitively, when we shift to the Heisenberg picture, the effect of the first char-
acter of x is close to the observable instead of being close to the initial state. So,
the word is read in the usual way from left to right by the automaton and the
effects of the read are accumulated on the observable. However, when we look
to such effects on the state, it is like if the word is read from right to left. In a
sense it seems that the flow of time is reverted in the Heisenberg picture.

One could argue that we could have avoided the mirror effect by using in
the Heisenberg definition the inverse unitary operators. Since the inverse of a
unitary operator is its transposed conjugate, this would have meant to define
the evolution of an observable P after reading a symbol σ as P ′ = UσPU†

σ. In
the following example we show that such choice does not help in avoiding the
mirroring.

Example 2. Let us consider again the automaton M defined in Example 1. The
two matrices Ua = X and Ub = H coincide with their transposed conjugate,
i.e., U†

a = Ua and U†
b = Ub. So, the automaton M ′ defined using the transposed

conjugate coincides with M . Hence, pM (x) = ρM′(←−x ), for any string x. �
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As a consequence of Theorem 3, the languages accepted by Heisenberg seman-
tics are exactly the mirror images of those accepted by Schrödinger one.

Corollary 3. Let L ⊆ Σ∗. L is accepted by a QFA with cut-point λ if and only
if

←−
L is accepted by an HQFA with cut-point λ.

So, now the question is whether the two formalisms have the same expressive
power. As a consequence of the above corollary this is equivalent to check whether
QFAs are closed under mirror images. By Example 1 we already know that it is
not true that each language recognized by a QFA is closed under mirror images.
However, it can be the case that whenever a language L is recognized by a QFA
S, the language

←−
L is recongnized by a QFA S′.

Invoking Von Neumann’s proof of equivalence of Schrödinger and Heisenberg
pictures is not satisfactory by many point of views. First, Von Neumann’s result
has been proved in a general setting, while here we are confined in a restricted
model, where there is a single initial state, while the final states are many.
Moreover, only one projective measurement can be used and only at the end of
the read. Second, we are not dealing with a single quantum system, but with
an infinite set of systems, one for each string x. The input x does not affect the
initial state, but the sequence of unitary transformations. In a sense it affects
the hamiltonian of the system. Third, it would be interesting to have either a
constructive proof of equivalence or a counter-example in this specific setting.

The following result shows that QFAs are closed under mirror images. We
provide a constructive proof. Given a QFA for a language L, we build a QFA for
the language

←−
L . Intuitively, the asymmetry between a single initial state and a

set of final ones is solved through an opportune increase in the state space size.

Theorem 4 (Mirror Closure of QFAs). Let L ⊆ Σ∗. L is accepted by a
QFA with cut-point if and only if

←−
L is accepted by a QFA with cut-point.

So, we can conclude that HQFAs do not increase QFAS expressive power.

Corollary 4 (Equivalence between QFAs and HQFAs). L is accepted by
a QFA with cut-point if and only if L is accepted by an HQFA with cut-point.

Proof. Let L be accepted by a QFA with cut-point. By Theorem 4
←−
L is accepted

by a QFA with cut-point. As a consequence of Corollary 3 L is accepted by an
HQFA with cut-point.

On the other hand, let L be accepted by an HQFA with cut-point. By Corol-
lary 3

←−
L is accepted by a QFA with cut-point. By Theorem 4 L is accepted by

a QFA with cut-point. �

5 Heisenberg Inspired Automata: (Un)bounded Memory

The Heisenberg semantics introduced in the previous section has the same
expressive power of the Schrödinger one introduced in the literature. However,
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we can take inspiration from Heisenberg proposal and analyse what happens
if each time a character is read all the unitary matrices are transformed, i.e.,
instead of changing at each step the observables we modify the unitaries associ-
ated to the single characters. We do such changes by exploiting the characters
that have already been read.

In particular, given an automaton M = (Q,Σ, {Uσ}σ∈Σ , |ψ〉 , F ), after read-
ing the prefix xj of the string x = x1x2 . . . xn the unitary matrix associated to
a character σ has evolved into:

Wxj
σ = Uxj

Uσ

where Uε = Id is the identity transformation. So, if the current configuration
after reading xj is |ϕ〉 and we read xj , then the state evolves as follows:

|ϕ′〉 = Wxj
xj

|ϕ〉 = Uxj
Uxj

|ϕ〉
The computation starts from |ψ〉 and evolves reading the symbols of the

string x. The state reached at the end of the read is:

Wx |ψ〉
where Wx–the evolution matrix accumulated along the read of x– is defined as:

Wx = Wxn
xn

Wxn−1
xn−1

· · ·Wx2
x2
Wx1

x1

As in the case of QFAs the projector PF is finally applied to obtain the proba-
bility of accepting a string x, denoted by ωM (x):

ωM (x) = ‖PFWx |ψ〉 ‖2 = 〈ψ|W†
xP †

F PFWx |ψ〉
Example 3. Let us consider again the automaton of Example 1. If we consider
the string abb the evolution matrix that is applied to the initial state is:

[(UbUa)Ub][(Ua)Ub][(Id)Ua]

where we use the parenthesis to emphasized the single steps. In particular, the
squared parenthesis enclose the read of a single character, while the rounded
ones enclose the transformations due to the read of the prefix accumulated so
far. Instantiating Ua, Ub and |ψ〉 as in Example 1 we obtain that the state reached
at the end of the read is − |1〉. So, since F = {|0〉}, we get:

ωM (abb) = (−〈1|)P †
F PF (− |1〉) = 0

Example 4. Let us now consider a simpler example in which Σ = {a}, Ua = X,
the initial state is |ψ〉 = |0〉, and F = {|0〉}. It is immediate to see that when a
string of the form ak is read the evolution matrix has the form:

XkXk−1 · · · X2X = X
(k+1)k

2

This means that a string of length k is accepted by the automaton if and only
if (k + 1)k is a multiple of 4. �
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As in the case of HQFAs, for these automata, that we call UMQFAs
(Unbounded Memory Quantum Finite Automata), the syntactic definition is the
same as for QFAs, while the accepting condition is different.

Definition 5 (Cut-point UMQFA). A language L ⊆ Σ∗ is accepted by a
UMQFA M with cut-point λ if and only if L = {x ∈ Σ∗ | ωM (x) > λ}.

A language L ⊆ Σ∗ is said to be accepted by a UMQFA with cut-point if
and only if there exist a UMQFA M and λ ≥ 0 such that L ⊆ Σ∗ is accepted by
M with cut-point λ.

Notice that we arbitrarily decided to rely on a single set of matrices. One
could have considered a more general definition. The only important point is
that when a character is read the unitary matrix that is applied depends also on
all the characters that have been read before. However, such dependency have
to be defined in a finitary way, i.e., relying on a finite initial set of matrices.

So the question now becomes: is this semantics increasing the expressive
power of QFAs? In order to analyse such question we first take a step back
and study what happens when, instead of using all the characters that have
been read so far, we only use a bounded amount of them. On the one hand,
such step back makes the situation more similar to what happen in the case of
classical automata, which have a finite amount of memory. On the other hand,
this naturally allows to give a more general definition, where a larger set of
unitaries is used.

5.1 Bounded Memory

The most natural way to instantiate the above semantics in order to take care
only of a bounded quantity of characters is to fix h ≥ 0 and to refer to xh

j

instead of xj (see Sect. 2.1). The sub-string xh
j takes into account at most h

symbols that precede xj in the string x. Since there exists a finite number of
strings of length at most h, the matrices Wy

σ , with y of length at most h, can be
directly specified in the definition of the automaton. Such automata have been
already defined in the literature [6,30], using an equivalent notation, and called
Multi-letter Quantum Finite Automata (MQFA). However, as we will discuss a
different acceptance condition was used. Let h ∈ N.

Definition 6 (h-MQFA). An h-MQFA is a 5-tuple M = (Q,Σ,W , |ψ〉 , F )
where:

– Q–the set of states– is the finite canonical basis of Cd for some d ∈ N;
– Σ is a finite alphabet;
– W = {Wy

σ }σ∈Σ,y∈Σ≤h is a finite set of unitaries of dimension Cd × Cd;
– |ψ〉 ∈ Cd is a unitary vector representing the initial superposition of M ;
– F ⊆ Q is the set of final states.

Let x = x1x2 . . . xn be an input string for an h-MQFA M = (Q,Σ,W , |ψ〉 , F ).
The computation starts in the state |ψ〉. Let us assume that after reading the
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first j −1 symbols of x a state |ϕ〉 is reached. When xj is read the states evolves
according to the following law:

|ϕ′〉 = W
xh
j

xj |ϕ〉

The computation starts from |ψ〉 and evolves reading the symbols of the
string x. At the end of the computation, a measurement is performed on the
state of M through the projector PF . The probability of M accepting x is:

μM (x) = ‖PF Wx |ψ〉 ‖2

where Wx is defined as:

Wx = W
xh
n

xn W
xh
n−1

xn−1 · · · Wxh
2

x2 W
xh
1

x1

The acceptance condition with cut-point for an h-MQFA is based on μM .

Definition 7 (Cut-point h-MQFA). A language L ⊆ Σ∗ is accepted by an
h-MQFA M with cut-point λ if and only if L = {x ∈ Σ∗ | μM (x) > λ}.

A language L ⊆ Σ∗ is said to be accepted by an h-MQFA with cut-point if
and only if there exist an h-MQFA M and λ ≥ 0 such that L ⊆ Σ∗ is accepted
by M with cut-point λ.

Intuitively, h-MQFAs have bounded memory h in the sense that at each
point of the computation the preceding h characters are used for choosing the
evolution. Notice that QFAs coincide with 0-MQFAs. Moreover, each h′-MQFA
can be embedded into a h-MQFA with h > h′ by simply defining W in such a
way that if x and y are two strings of length at most h that coincide on the
suffix of length h′, then Wx

σ = Wy
σ , for each σ ∈ Σ.

Example 5. Let Σ = {a, b} and L = {a, b}∗b, i.e., the language of strings that
end with b. The pumping lemma for QFAs ensures that this language cannot
be accepted by a QFA with cut-point. Consider instead the 1-MQFA M =
(Q,Σ,W , |ψ〉 , F ) where Q = {|0〉 , |1〉}, Σ = {a, b}, |ψ〉 = |0〉, F = {|1〉}. The
set W is defined as follows:

W ε
b = W a

b = W b
a = X W b

b = Id

and all the other matrices are the identity. The above matrices exactly simulate
the behaviour of the following deterministic automaton, interpreting |i〉 as qi:

q0 q1

b

a

a b

Fig. 1. Deterministic automaton accepting {a, b}∗b.
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So, M accepts L with certainty, hence also any cut-point λ ≥ 0 is fine.

In [6,30] properties of this class of automata have been studied in the case of
isolated cut-point acceptance condition, also called bounded error. It was shown
that the expressive power of h-MQFAs is strictly dependent on the parameter
h. The set of languages recognized by h-MQFAs with bounded error coincides
with those recognized by h-Group Finite Automata and are a subset of regular
languages. As a consequence in [30] it has been proved that the set of languages
accepted by a h′-MQFAs with bounded error is strictly included in the set of
languages accepted by h-MQFAs with bounded error, for h′ < h. This is con-
sistent with our intuition that more memory increases the computation power.
Moreover, in [30], it was proved that if the minimal DFA accepting a language
L contains a particular forbidden structure, then L cannot be accepted by h-
MQFAs with bounded error, for any h ≥ 0. This is a structural characterization
of languages that cannot be accepted by h-MQFAs with bounded error.

In this section, as in the rest of this paper, we focus on cut-point acceptance
condition which is less demanding than bounded error and has not been studied
in the literature for h-MQFAs. We start presenting a pumping lemma which
provides a structural characterization of the languages that are accepted from
h-MQFAs with cut-point. Then we investigate on the expressive power of h-
MQFAs with respect to h. Differently from QFAs, h-MQFAs can also recognize
finite languages and still they constitute a proper hierarchy.

In the proof of the pumping lemma we exploit the following lemma which is
also at the basis of the pumping lemma for QFAs. The norm ‖A‖ of a matrix A
is defined as:

‖A‖ = sup
〈u|u〉=1

{‖A |u〉 ‖}

Lemma 1 ([8]). Let V ∈ Cd × Cd be a unitary matrix let Id ∈ Cd × Cd be the
identity matrix of dimension d. For any ε > 0 there exists k ∈ N+ such that:

‖Id − V k‖ ≤ ε

The pumping lemma for h-MQFAs states that if we consider a sufficiently
long suffix of a string which is inside the accepted language, then we can pump
such suffix for an opportune number of times and fall again inside the language.

Theorem 5 (Pumping Lemma for h-MQFAs). Let L ⊆ Σ∗ be the language
accepted by an h-MQFA. Then, ∀x = uv ∈ L with |v| ≥ h there exists k ∈ N+

such that xvk ∈ L.

Notice that differently from Theorem 2, the above pumping lemma does not
prevent finite languages to be accepted by h-MQFAs. As a matter of fact, if all
the strings accepted by an h-MQFAs are shorter than h, then it is not possible
to find a suffix that can be pumped.

Theorem 6 (Singleton/Finite Languages). Let L = {w} with w ∈ Σh−1

and h − 1 > 0. Then there exists an h-MQFA that accepts L with certainty.
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Let L be a finite language whose elements have length less than h. There
exists an h-MQFA that accepts L with cut-point.

We can exploit our pumping lemma to prove that the amount of memory we
provided to the h-MQFA in the above theorem is the minimum.

Lemma 2. Let L = {w} with w ∈ Σh−1, h−1 > 0. Then, there is no h′-MQFA,
with h′ < h that accepts L with cut-point.

Proof. Assume by contradiction that there exists an h′-MQFA that accepts L
with h′ < h. Since |w| = h − 1 ≥ h′, the string w can be written as uv with
v ∈ Σh′

. By Theorem 5, it holds that there exists a k ∈ N+ such that wvk ∈ L.
So, we have a contradiction. �

Exploiting Theorems 5 and 6, together with Lemma 2 we have that the set
of languages accepted by h′-MQFAs is a proper subset of the set of languages
accepted by h-MQFAs, with h′ < h. The inclusion immediately follows from
the definition of h-MQFAs and our results show that the inclusion is proper by
exhibiting as witnesses all the singleton languages of strings of length h′.

Corollary 5. The set of languages accepted by h′-MQFAs with cut-point is a
proper subset of those accepted by h-MQFAs with cut-point, when h′ < h.

The hierarchy result proved in [30] concerns sets of languages which are all
included in the set of regular languages, while our hierarchy includes already at
level 0 non-regular languages.

5.2 Unbounded Memory

QFAs and also h-MQFAs fail to recognize many classical regular languages, since
unitary transformations introduce a notion of memory which is quite different
from the classical one.

On the one hand, it is easy to define a classical automaton for a finite language
by using the finite set of states of the automaton to store the finite quantity of
memory that is necessary. This cannot be achieved in QFAs and in h-MQFAs,
when h is not large enough, as a consequence of the following property of unitary
matrices that has been stated in Lemma 1:

∀ε > 0 ∃k ∈ N+ ‖Id − V k‖ ≤ ε

This is the key ingredient of the pumping lemmas for QFAs and h-MQFAs.
On the other hand, it is possible to define a QFA that accepts the non-regular

language of strings having a different number of a and b characters. Classical
automata do not have enough memory for this language, since it is necessary to
count an unbounded number of characters.

We started this section introducing the Heisenberg inspired automata called
UMQFAs hoping to increase the expressive power of QFA and h-MQFAs still
relying on a finite set of unitaries and a single measurement at the end of the
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read. It is time to draw some conclusions about this. The automaton described
in Example 4 pointed out that in UMQFAs we are not able to replicate the use
of a unitary matrix V for any possible k ∈ N+, i.e., we cannot exploit Lemma 1.
For instance in the example the matrix X can only occur with an exponent of
the form (k + 1)k/2, i.e., all the possible values assumed by a polynomial p(k)
when k ranges in N+. The proof of Lemma 1 in [8] is based on Cauchy sequences
and cannot be easily generalized. However, there is another proof of the same
result in [14] that ultimately relies on the following algebraic property:

for each α ∈ R \ Q the set of fractional parts of the multiples of α, i.e.,
{kα − �kα� | k ∈ N}, is dense in [0, 1].

This results generalizes to polynomials having irrational coefficients and to mul-
tiple dimensions (e.g., [7]). As a consequence we have a language that can be
accepted by h-MQFAs, but not by UMQFAs.

Theorem 7. Let Σ = {a} and L = {ε, a}. There is a 2-MQFA that accepts L
with cut-point and there is not a UMQFAs that accepts L with cut-point.

There are technical ingredients in the proof of the above result that are some-
how interesting. We had to carefully choose the language L in order to obtain
homogeneous polynomials. Otherwise the eigenvalues related to rotations that
are rational multiples of π would have given troubles. Moreover, the interplay
between some eigenvalues could be favorable for constructing UMQFAs that
approximate h-MQFAs, since the distribution of the wrong strings accepted by
the UMQFA is not uniform.

Beside these technical considerations, the result shows that the unbounded
memory we tried to introduce does not generalize the bounded one, and it does
not seem easy to find a natural generalization with a finitary description.

6 Conclusions

Quantum Computing is becoming a more and more investigated subject thanks
to phenomena like quantum speed-up. Using the properties of quantum mechan-
ics it is possible to design algorithms that polynomially solve problems that
require exponential time with classical computation [28]. However, when one
looks at basic models of computation such as automata the rules of quantum
mechanics, imposing unitary evolutions along the computation, constitute more
an obstacle to the expressive power, than an advantage. Informally, we can say
that the unitaries cause a loss of memory in the automata. As a matter of fact,
a simple language including only one string cannot be accepted by MO-QFAs.

In our work we tried to better understand the role of unitaries and mea-
surements in MO-QFAs. We proved that for any MO-QFA there is a “reversed”
MO-QFA that accepts the mirror language. Then we analysed the effect of play-
ing with the unitaries. We forced a sort of stuttering behaviour hoping to gain
expressive power. We obtained a first negative result which however gives some
suggestions for further investigations. For example, there may be other defini-
tions for the Unbounded Memory case that lead to larger expressive power.
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A. Appendix: Proofs of Main Theorems

A.1 Proof of Theorem 4

Let M = (Q,Σ, {Uσ}σ∈Σ , |ψ〉 , F ) be a QFA accepting L with cut-point λ. We
recall that Q is the canonical basis of Cd, for some d ∈ N. Without loss of
generality, let F = {q0, q1, . . . qm−1}. Let x = x1x2 . . . xn be an input string. By
definition, the acceptance probability of M for x is:

pM (x) =
m−1∑

i=0

| 〈qi|Ux |ψ〉 |2

We now define
←−
M = (

←−
Q,Σ, {Vσ}σ∈Σ ,

∣∣∣
←−
ψ

〉
,
←−
F ), where

←−
Q is the canonical basis

of Cdm and:

Vσ =
m−1∑

i=0

|i〉 〈i|⊗U†
σ,

∣∣∣
←−
ψ

〉
=

1√
m

m−1∑

i=0

|i〉 ⊗ |qi〉, ←−
F = {|i〉⊗|ψ〉 |i ∈ [0,m−1]}

We have that Vx = Vxn
Vxn−1 · · · Vx1 and U←−x = Ux1Ux2 . . . Uxn

. By definition
of QFA we get:

p←−
M

(x) = ‖P←−
F

Vx

∣∣∣
←−
ψ

〉
‖2

= ‖P←−
F

1√
m

m−1∑

i=0

|i〉 ⊗ U†
xn

U†
xn−1

· · · U†
x1

|qi〉‖2

= ‖ 1√
m

m−1∑

i=0

|i〉 ⊗
(
|ψ〉 〈ψ|U†

xn
U†

xn−1
· · · U†

x1
|qi〉

)
‖2

= ‖ 1√
m

m−1∑

i=0

(
〈ψ|U†

xn
U†

xn−1
· · · U†

x1
|qi〉

)
|i〉 ⊗ |ψ〉‖2

=
1
m

m−1∑

i=0

| 〈ψ|U†
xn

U†
xn−1

· · · U†
x1

|qi〉 |2

=
1
m

m−1∑

i=0

| (〈qi|U←−x |ψ〉)∗ |2 =
1
m

m−1∑

i=0

| 〈qi|U←−x |ψ〉 |2 =
1
m

pM (←−x )

Let
←−
λ = λ

m . We have that:

←−x ∈ L iff pM (←−x ) > λ iff p←−
M

(x) >
←−
λ iff x ∈ ←−

L

�
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A.2 Proof of Theorem 5

For sake of readability we prove the result for |v| = h. For |v| > h the idea is
the same, just the notation would be much heavier.

Let L ⊆ Σ∗ be a language and let M = (Q,Σ,W , |ψ〉 , F ) be an h-MQFA
that accepts L with cut-point λ.

Let x = uv = u1 . . . uav1 . . . vh be a string of L. First we write the matrix
Wxvj , for a generic j ∈ N, in order to make explicit its relationship with Wx. In
particular, by applying the definition of h-QMFA we have that Wxvj = V jWx,
where V is defined as:

V = W vhv1···vh−1
vh

W vh−1vhv1···vh−2
vh−1

· · · W v1v2···vh
v1

Having represented a vector |v〉 in the canonical basis and being |q〉 be an
element of the canonical basis, let (|v〉)q be the q−th component of |v〉. For any
j ∈ N it holds:

|μM (x) − μM (xvj)| =
∣∣∣
∑

q∈F

(|(Wx |ψ〉)q|2 − |(Wxvj |ψ〉)q|2
)∣∣∣

≤ 2
∑

q∈F | |(Wx |ψ〉)q| − |(Wxvj |ψ〉)q| | ≤ 2
∑

q∈F |(Wx |ψ〉)q − (Wxvj |ψ〉)q|
= 2

∑
q∈F

∣∣ (Wx |ψ〉)q − (V jWx |ψ〉)q

∣∣ = 2
∑

q∈F

∣∣ 〈q| (Id − V j)Wx |ψ〉 ∣∣
≤ 2

∑
q∈F ‖Id − V j‖ = 2|F |‖Id − V j‖

Since x ∈ L, we have μM (x) − λ = Δ > 0. By Lemma 1 there exists k ∈ N+

such that:

‖Id − V k‖ ≤ Δ

4|F |
which yields to

∣∣μM (x) − μM (xvk)
∣∣ ≤ Δ

2 . Therefore, xvk ∈ L, since:

μM (xvk) − λ ≥ μM (x) − Δ

2
− λ ≥ Δ

2
≥ 0

�

A.3 Proof of Theorem 6

Let M = (Q,Σ,W , |ψ〉 , F ) be a h-MQFA, where Q = {|0〉 , |1〉}, |ψ〉 = |0〉,
F = {|1〉}. The states |0〉 and |1〉 are such that |1〉 = X |0〉 and |0〉 = X |1〉.
Since w has length h − 1 > 0, w = uα with u ∈ Σh−2, α ∈ Σ. We define:

Wu
α = X

Ww
σ = X ∀σ ∈ Σ

while all the other matrices inside W are the identity matrix. We must now
prove that the language accepted by M is exactly L.

If w is the input for M , then the computation evolves as follows:

Ww = W
wh

m
m W

wh
m−1

wm−1 . . . W
wh

1
w1
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Since all the matrices we set to be different from the identity concern strings

with length that is at least h−1, it holds that W
wh+1

j
wj = I,∀j ∈ {1, 2, . . . m − 1}

Therefore,
Ww = W

wh+1
m

wm = Wu
α = X

Since the initial state is |0〉, then ‖PWw |0〉 ‖2 = ‖P |1〉 ‖2 = 1.
Otherwise, suppose x �= w is the input for M . If the string x does not contain

the sub-string w, then clearly Wx = Id, and x is refused. If x has w as proper
prefix, then x is of the form ws, with s = σ1 . . . σj , j ≥ 1. In this case, we have
that Wx is as follows:

Wx = W
xh
h−j−1

σj W
xh
h−j−2

σj−1 · · · Wxh
h−1

σ1 Ww

= W
xh
h−j−1

σj W
xh
h−j−2

σj−1 · · · Ww
σ1

Ww = Id · · · XX = Id

since all the matrices of the form Wy
σ , with y of length h are the identity matrix.

So, x is refused. The last case we need to consider is when w occurs as a proper
sub-string of x, but it is not a proper prefix of x. This means that the input x
is of the form x = vws, with v �= ε and vw which does not have w as prefix. In
this case, the key point is that since |w| = h − 1, but w is now preceded by at
least one character the matrices Wu

α and Ww
σ do not occur in Wx. So, Wx = Id

and x is refused. Notice that the automaton we defined accepts with certainty.
Let L = {x1, . . . ,x�} be a finite language whose elements have length less

than h. For each element xj there exists an hj-MQFA that accepts only xj with
certainty. As already observed any h′-MQFA can be embedded into an h-MQFA
that accepts the same language with the same cut-point, if h ≥ h′. Let h be
greater than the length of the longest string in L. We have that for each element
xj of L there exists an h-MQFA Mj that accepts only xj with certainty. The
tensor product M of the Mj ’s automata, whose construction is similar to that
used in the proof of Theorem 4 accepts the language L. The tensor product
automaton does not accept with certainty but with cut-point λ, with λ any
number in the interval (0, 1/�). �

A.4 Proof of Corollary 5

Let h, h′ ∈ N+ with h′ < h. From Lemma 2 we know that there exist languages
accepted by h−MQFAs, but not by h′−MQFAs.

We must prove that all the languages accepted by h′−MQFAs are also
accepted by h−MQFAs.

Let M = (Q,Σ,W , |ψ〉 , F ) be a h′−MQFA accepting a language L. We can
build an h−MQFA M ′ = (Q,Σ,W ′, |ψ〉 , F ) accepting the same language setting
W ′ = W (eventually completing with identity matrices). �

A.5 Proof of Theorem 7

By Theorem 6 there is a 2-MQFA that accepts L = {ε, a} with cut-point.
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Let us assume by contradiction that there exists M = (Q,Σ,U , |ψ〉 , F )
UMQFA that accepts L = {ε, a} with cut-point λ. Since the string ε is in L it
has to be:

ωM (ε) = ‖PF |ψ〉 ‖2 = ‖PF Ua |ψ〉 ‖2 = λ + Δ > λ

Any other string ak, with k > 1 over the alphabet Σ would instead give:

ωM (ak) = ‖PFWak |ψ〉 ‖2 = ‖PF U
k(k+1)

2
a |ψ〉 ‖2

Let us consider a generic unitary matrix V and study the sequence:

{V
k(k+1)

2 }k>1

As observed in [14], V can be diagonalized and V h = RDhR−1, where R is
unitary and D is the diagonal matrix of the eigenvalues of V . Let eiπvj be the
j-th eigenvalue of V .

If all the rjs are rational, then let n = 4Πjqj , where the qjs are the denomi-
nators of the rjs. We have that D

n(n+1)
2 = Id, and hence V

n(n+1)
2 = Id.

If m of the rj are irrational, and � of them are rational, we can safely assume
that the first m are the irrational ones. Let again n be defined as above consid-
ering only the rational coefficients. If we consider the sub-sequence:

{V
nk(nk+1)

2 }k>1

we have that all the rational eigenvalues have always values 1 in the sub-
sequence. On the other hand, the remaining eigenvalues take values of the
form eiπrj

nk(nk+1)
2 in the sub-sequence. Let p : N → Rm be defined as p(k) =

(r14nk(4nk + 1), . . . , rm4nk(4nk + 1)). These are quadratic polynomials in the
variable k with irrational coefficients. The fractional parts of each of these poly-
nomials are dense and uniformly distributed over [0, 1] (e.g., [7]). This means that
each of these polynomials is infinitely many times arbitrarily close to a multiple
of 4. This implies that each of the values eiπrj

nk(nk+1)
2 is infinitely many times

arbitrarily close to 1. As far as the whole polynomial function p is concerned it
is uniformly distributed over [0, 1]m if the irrational rjs are independent. When
some of the of the irrational rjs are linear combinations of the others the uni-
form distribution is no more ensured, but the density in (0, 0, . . . , 0) is preserved,
since by making the fractional parts of the independent ones arbitrary small we
can ensure that also the fractional parts of their linear combination are small
enough.

Hence, for any unitary matrix V , and for each ε there exists k > 1 such that:

‖Id − V
k(k−1)

2 ‖ ≤ ε

As a consequence working as in the proof of Theorem 5 on the string ε which is

in L and using U
k(k−1)

2
a we obtain that there exist k > 1 such that ak is accepted

by M . This is a contradiction. �
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Abstract. Priced timed automata (PTA) were introduced in the early 2000s to
allow for generic modelling of resource-consumption problems for systems with
real-time constraints. Optimal schedules for allocation of resources may here be
recast as optimal reachability problems. In the setting of PTA this problem has
been shown decidable and efficient symbolic reachability algorithms have been
developed. Moreover, PTA has been successfully applied in a variety of appli-
cations. Still, we believe that using techniques from the planning community
may provide further improvements. Thus, in this paper we consider exploiting
Monte Carlo Tree Search (MCTS), adapting it to problems formulated as PTA
reachability problems. We evaluate our approach on a large benchmark set of
PTAs modelling either Task graph or Job-shop scheduling problems. We discuss
and implement different complete and incomplete exploration policies and study
their performance on the benchmark. In addition, we experiment with both well-
established and our novel MTCS-based optimizations of PTA and study their
impact. We compare our method to the existing symbolic optimal reachability
engines for PTAs and demonstrate that our method (1) finds near-optimal plans,
and (2) can construct plans for problems infeasible to solve with existing symbolic
planners for PTA.

Keywords: Priced Timed Automata (PTA) · Model-checking ·
Monte Carlo Tree Search (MCTS) · Planning · Upper confidence bounds
for trees (UCT)

1 Introduction

The world is full of planning and scheduling problems that have impact on the real
world. Finding optimal solutions for such problems can be of great importance for
profit maximization or resource minimization, affecting financial success and sustain-
able development. In general such problems do not just have one solution, but many
solutions – with varying cost. These scheduling problems are one sub-field within oper-
ations research, and lots of effort has been put into finding both optimal and near optimal
solutions to them.

One technique that has been successfully applied to planning is that of model check-
ing, e.g. BDD based model checking [19]. For optimal planning problems involving
timing constraints, the notion of priced timed automata was introduced in the early

c© Springer Nature Switzerland AG 2022
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2000s, with initial decidability results [4,7] based on so-called corner-point regions
and later with efficient symbolic forward reachability algorithms using so-called priced
zones made available in the tool UPPAAL CORA. Here a generic and highly expressive
modeling formalism is provided, extending the classical notion of timed automata [3]
with a cost-variable (to be optimized), but also providing support for discrete variables
over structured (user-defined) types, as well as user-specified procedures [8]. In fact,
the notion of PTA allows for an extension of Planning Domain Definition Language
(PDDL) 2.1 at level 3 towards duration-dependent and continuous effects to be encoded
as demonstrated by [18]. Most recently so-called extrapolation techniques have been
introduced for more efficient analysis of PTA, implemented in the tool TiaMo [13].

Applications of PTA and UPPAAL CORA are several and from a variety of
areas [14], e.g. power optimization of dataflow applications [2], battery scheduling [27],
planning of nano-satellites [23,30], grape harvest logistic [33], programmable logic
controllers [35], smart grids [21], service oriented systems [17], and optimal multicore
mapping of spreadsheets [11] to mention a few.

Despite the success of PTA and UPPAAL CORA, we still believe that the perfor-
mance may be improved by exploiting advances made by the planning community.
Thus, we consider in this paper various ways of exploiting Monte Carlo Tree Search
(MCTS) to further improve performance of PTA optimization. MCTS is a powerful
technique that has seen application in many domains requiring (near-) optimal plan-
ning, including problem instances where the size of the search-space makes symbolic
and complete methods infeasible. In particular, MCTS [16] has already been applied
directly to Job-shop [5] scheduling problems. We benchmark our implementations of
MCTS based analysis of PTA on Job-shop and Task graph problems and compare
against the two tools UPPAAL CORA [9] and TiaMo [13].

The rest of the paper is organized as follows: First we formally define Priced Timed
Automata, then we introduce a general formalization of Monte Carlo Tree Search along
with specific PTA policies. Finally we discuss additional enhancements and present our
experimental evaluation.

2 Priced Timed Automata

The priced timed automaton [6] is an extension of timed automaton [3] with prices on
both locations and transitions. Delaying in locations entails a price growth based on
fixed price (cost) rate, while taking transitions is associated with a fixed price. We now
present the formal definition of priced time automaton and its semantics based on [9].

Let C be a set of clocks. The set of constraints over clocks C, B(C), are defined
as the set of conjunctions of atomic constraints of the form x �� n, where x ∈ C,
�� ∈ {<,≤,=, >,≥} and n ∈ N≥0. Such constraints – guards and invariants – allow
to restrict the behavior w.r.t. the values of clocks. The power set of C is denoted as 2(C).

Definition 1 (Priced Timed Automaton). A Priced Timed Automaton (PTA) over
clocks C and actions Act is represented as a tuple A = (L, l0 ,E , I ,P) where:

– L is a finite set of locations,
– l0 ∈ L is the initial location,
– E ⊆ L × B(C) × Act × 2(C) × L is a set of edges where an edge connects two

locations and contains a guard, an action, and a set of clocks to be reset,
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– I : L →,B(C) is a set of location invariants, and
– P : (L ∪ E) → N assigns cost rates and cost increments to locations and edges,

respectively.

In the case of (l, g, a, r, l′) ∈ E, we write l
g,a,r−−−→ l′. A clock valuation v over C is

a mapping v : C → R≥0 and R
C denotes a set of all clock valuations. The semantics of

a PTA is defined in terms of a priced transition system:

Definition 2 (Priced Transition System). A Priced Transition System (PTS) over
actions Act is a tuple T = (S, s0, Σ,→) where:

– S is a set of states
– s0 is an initial state,
– Σ = Act ∪ R≥0 is the set of labels, and
– →⊆ (S×Σ×R≥0×S) is a set of labelled and priced transitions. We write s

a−→p s′

whenever (s, a, p, s′) ∈→.

Now a PTA A = (L, l0 ,E , I ,P) defines a PTS TA = (S, s0, Σ,→), where the set
of states S are pairs (l, v), with l ∈ L is a location and v is a clock valuation s.t. the
invariant I(l) of l is satisfied by v, denoted v |= I(l).

There are two possible types of transitions between states: action transitions and
delay transitions. Action transitions are the result of following an enabled edge in the
PTA A. As a result, the destination location is activated and the clocks in the reset set
are set to zero, and the price of the transition is given by the cost of the edge. Formally:

(l, v) a−→p (l′, v′) iff ∃(l, g, a, r, l′) ∈ E, such that

v |= g ∧ v′ = v[r] ∧ v′ |= I(l) ∧ p = P ((l, g, a, r, l′))

where v[r] is the valuation given by v[r](x) = 0 if x ∈ r and v[r](x) = v(x) otherwise.
Delay transitions allow the time to pass resulting in an increase of the value of all

clocks, but with no change of the location. The cost of a delay transition is the product
of the duration of the delay and the cost rate of the active location. Formally:

(l, v) d−→p (l, v′) iff v′ = v + d ∧ v |= I(l) ∧ v′ |= I(l) ∧ p = d · P (l)

where v+d is the valuation given by (v+d)(x) = v(x)+d for all x. Finally, the initial
state is s0 = (l0, v0), where l0 is the initial location, and v0(x) = 0 for all clocks x.
For networks of priced timed automata we use vectors of locations and the cost rate of
a vector is the sum of the cost rates of individual locations.

An example of a PTA is shown in Fig. 1 with clocks x and y and five locations –
�0 (initial), �1, �2, �3, and �g (goal), with cost rates P (�0) = +5, P (�2) = +10 and
P (�3) = +1, and the cost of the edge from �2 (�3) to �g is +1 (+7). Note that the
invariant y = 0 in �1 enforces that the location must be left immediately. Below we
show two example traces for the automaton:

π1 = (�0, x = 0, y = 0) −→0 (�1, x = 0, y = 0) −→0 (�3, x = 0, y = 0)

2−→2 (�3, x = 2, y = 2) −→7 (�g, x = 2, y = 2)

π2 = (�0, x = 0, y = 0)
1.5−−→7.5 (�0, x = 1.5, y = 1.5) −→0 (�1, x = 1.5, y = 0)

−→0 (�2, x = 1.5, y = 0)
0.5−−→5 (�2, x = 2, y = 0.5) −→1 (�g, x = 2, y = 0.5)
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Fig. 1. Priced Timed Automata example

We see that π1 reaches �g with a total cost of 2 + 7 = 9, whereas the reachability cost
of π2 is 7.5 + 5 + 1 = 13.5. In fact, among the infinitely many traces that reach �g , π1
has the minimum cost. The question of cost-optimal reachability was shown decidable
by [7] and later proven to be PSPACE-complete [12]. Here, extending the result for
reachability of TAs in [15], it is observed that a PTS semantics with natural-valued
delays is complete for PTAs with non-strict guards. Moreover, if k is the maximum
constant to which clocks are compared to in guards and invariants, it suffices to consider
delays no greater than k + 1. In short, in Definition 2 it suffices to consider finite-state
PTS with Σ = Act ∪ N≤k+1

1 – as in the PTA of Fig. 1, where k = 2.
These observations are crucial for our developments of non-symbolic MCTS-based

methods for optimal reachability of PTA as we shall see.

3 Monte Carlo Tree Search

Monte-Carlo Tree Search (MCTS) is a family of algorithms that has been intensely
studied in the last decades due to its high success in a range of domains, in particular -
game playing. MCTS works on a search tree that grows in asymmetric fashion and in
accordance to the results of random samples (or heuristics) that are used to estimate the
reward (potential) of the action taken. The tree is iteratively expanded starting from the
root node according to four steps:

– Selection: Descend down the tree by selecting the best child according to the chosen
policy and until a first unexplored node is met. The selection process typically tries
to balance between exploration (visiting promising nodes) and exploitation (visiting
nodes with least visits).

– Expansion: Generate a successor of the given state according to the chosen policy.
– Simulation: Estimate the reward of the expanded node by performing simulations,

aka roll-outs until the terminal node is reached. Typically, the performance of the
algorithm can be drastically improved by a smart simulation strategy.

– Backpropagation: The estimated reward is “backed up” through the tree to update
reward estimates.

The first two steps (selection and expansion) are often referred to as tree policy,
whereas the simulation (roll-out) step is called default policy. The algorithm does not

1
N≤k+1 are all natural numbers less than or equal to k + 1.
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have a predefined termination condition and is typically running until either a com-
putational budget (time, memory, etc.) is reached or some different, domain-specific
condition is met.

Some of the characteristics that have made MCTS popular in other domains are
particularly relevant in the setting of PTA. Tree policy allows to favor more promis-
ing regions of the model which over time leads to asymmetric tree growth. This helps
alleviate the state-space explosion – the most prominent obstacle in model-checking.
Moreover, MCTS being aheuristic – easily applicable without the need for domain-
specific knowledge – it can be applied to any problem domain as long as it can be
modelled as PTA.

We now introduce the formal definition of MCTS and then give the pseudocode of
the algorithm – both adapted for the setting of PTA with non-strict guards. Recall that
for PTA A with non-strict guards and with maximum constant k (to which clocks are
compared) it suffices to consider the finite set of labels Σ = Act ∪ N≤k+1 to get a
finite and complete PTS FA. We let Σ∗ denote the language of finite (natural-valued
and bounded) timed strings over Σ and let ε ∈ Σ∗ denote the empty string.

By convention we let |ε| = 0 and otherwise define |a0 . . . an| = n to be the length
of a word. We denote by wi ∈ Σ the i’th index of the word w ∈ Σ∗.

A timed word w ∈ Σ∗ of a PTS T = (S, s0, Σ,→) is valid iff for n = |w| we have:

s0
w0−→ s1

w1−→ . . .
wn−→ sn+1

We let the function O : Σ∗ ⇀ S denote the outcome of such a valid trace w be
O(w) = sn+1. By convention we let O(ε) = s0.

Definition 3 (Search Tree). We define ΥT = (N,n0,⇒) to be the search-tree for a
natural- and bounded-valued PTS T = (S, s0, Σ,→) as follows:

– N = Σ∗ is set of nodes,
– n0 = ε is the root node, and
– ⇒⊆ N × Σ × N is the transition relation such that (n, b, n′) ∈⇒ if and only if

nb = n′ with b ∈ Σ and (O(n), b,O(n′)) ∈→.

We delimit our attention to the most popular MCTS algorithm – the upper confi-
dence bound for trees (UCT) [29]. UCT uses upper confidence bound (UCB1) formula
as the tree policy, which addresses the exploration-exploitation dilemma of selecting
the most promising paths by treating it as a multiarmed bandit problem. UCB1 makes
a good candidate since it is guaranteed to be within a constant factor of the best bound
for regret.

Let us define the global functions of the MCTS algorithm. Let V : N → N assign
the number of node visits, Q : N → R assign the accumulative reward of the node,
P : N → N maps to the parent of a node s.t. P (n) = n′ where n′ = nα and
(n, α, n′) ∈⇒, and YX : N → P(N) defines all children of the node that are valid
according to the policy transition relation ⇒

X
, s.t. YX(n) = {n′ | n ⇒

X
n′}. The def-

initions for each policy and respective transition relations are given in the following
sections. Children are also partitioned into unexplored (Y U ) and explored (Y E) ones
s.t. YX(n) = Y U

X (n) ∪ Y E
X (n) and Y U

X (n) ∩ Y E
X (n) = ∅.
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Algorithm 1. The UCT Algorithm. This is a PTA-adapted redefinition of the Algorithm
from [16].
1: function UCTSEARCH(An initial state s0, a set of goal-states G, an empty set of solved nodes

S, an empty set of dead nodes D, and a Cp constant)
2: n0 ← s0
3: while budget remaining do
4: n ← TREEPOLICY(n0, G, Cp, S, D)
5: Δ ← DEFAULTPOLICY(n, G)
6: BACKUP(n, Δ)
7: if O(n) ∈ G then
8: MARKSOLVED(n,S)

9: if O(n) �∈ G and Y (n) = ∅ then
10: PRUNE(n, D)

11: return BESTCHILD(n0, 0, ∅, D)

12: function TREEPOLICY(n, G, Cp)
13: while O(n) �∈ G do
14: if Y U

X (n) �= ∅ then
15: return EXPAND(n)
16: else
17: n ← BESTCHILD(n,Cp, S, D)

18: return n
19: function EXPAND(n)
20: sample n′ ∈ Y U

X (n)
21: V (n′) = Q(n′) = 0
22: Y E

X (n′) = ∅
23: add n′ to Y E

X (n)
24: return n′

25: function BESTCHILD(n,Cp, S, D)

26: return argmax
n′∈Y E

X
(n)\(S∪D)

QB
V (n′)
Q(n′) + C

√
lnV (n)
V (n′)

27: function DEFAULTPOLICY(n,G)
28: while n �∈ G and within roll-out budget and
29: YX(n) �= ∅ do
30: sample n′ ∈ YX(n) uniformly
31: n ← n′

32: return reward for n
33: function BACKUP(n, reward)
34: while n �= ε do
35: V (n) ← V (n) + 1
36: Q(n) ← Q(n) + reward
37: n ← P (n)

38: function MARKSOLVED(n,S)
39: while n ∈ G or n′ ∈ S for all n′ ∈ YX(n) do
40: S ← S ∪ {n}
41: n ← P (n)

42: function PRUNE(n, D)
43: if n �= ε and YX(n) = ∅ then
44: PRUNE(P (n))
45: D ← D ∪ {n}
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Algorithm 1 gives a pseudocode for our PTA-adapted version of the UCT algorithm.
The selection strategy used is a standard UCT formula (line 26). The expected reward of
a node, determined by the exploitation factor QB

V (n′)
Q(n′) , is inversely proportional to the

average cost found so far which is normalized according to the currently best solution
QB . The normalization ensures the reward value to be in range between 0 and 1 and
thus supports domain (cost range) independence and eliminates the need for any prior
knowledge about the reward distribution, which is also apriori unknown for PTAs. The
significance of the exploration term is controlled by the value of C constant.

Once a solution is found, we mark the given node terminal to avoid re-exploration
(lines 7 and 38–41). As long as the underlying search-tree is complete (determined
by the variant of ⇒

X
), the algorithm is guaranteed to (eventually) provide an optimal

solution given that one exists.

4 General PTA Challenges

Infinite Transition Sequences: MCTS algorithms have in large parts been developed
for game playing, probabilistic planning or other, typically finite, state-space problems.
However, in the setting of PTA, infinite transition sequences are possible, e.g. due to
loops in the model. First and foremost it means that traditional roll-outs, directed at
reward estimation, might never come to a halt. To overcome this problem we introduce
a maximum budget for a roll-out (line 28). An example of the budget is an upper bound
on maximum allowed steps that can be done in the default policy before the simulation
is terminated.

Reward Evaluation: In turn, capped roll-out length can pose a problem by introduc-
ing the need to evaluate non-terminal states. Fortunately, PTA contains all the nec-
essary information needed to evaluate the current cost of any state, including non-
terminals. We evaluate and back-propagate the reward regardless of whether the rollout
has reached a terminal state.

‘Dead’ States: Apart from infinite transition sequences, it is possible to encounter
states with no possible successors in PTA. In most MCTS algorithm domains such no
successor states are also terminal states; however, it is not necessarily the case for PTA.
This is an issue for UCT as it is not equipped to deal with such dead states. In UCT, a
dead state can be encountered either during expansion or simulations step. For the latter
we simply terminate the roll-out upon reaching a dead state (line 29). In case of the
former, if UCT expands into a dead state, it must have highest so far expected reward.
Simulating from a dead state will not generate any new information, resulting in that
state being the best-so-far. To avoid computational overhead, we prune dead states and
their parent states from the search tree (lines 9 and 42–45) until no dead states remain
in the current branch of the tree.
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5 Policies

In MCTS, the structure of the search tree is decided by the unfolding mechanism of
the tree policy. The same unfolding strategy is also used during the simulation process
of the default policy. In this section we discuss different unfolding strategies that we
refer to as policies. The specific choice of policy can have a dramatic effect on the
performance of MCTS (as we shall demonstrate in the experiments). In particular, for
PTA, the search-tree transition function ⇒ for the PTA in Fig. 1 would for the state
(�0, x = 0, y = 0) contain both the delay-action of 2 time units and the delay-action of
1 time unit (which would be repeatable), leading to the exact same configuration with
the same total cost, namely (�0, x = 2, y = 2) at cost 10.

We thus explore both incomplete and complete policies, all restrictions over the full
search-tree transition function ⇒, with the latter category quarantining the existence of
at least one optimal trace. Here, an incomplete policy does not retain the entire search-
tree and does not guarantee preservation of an optimal solution. As the first policy, we
introduce the Unit Delay Policy.

Definition 4 (Unit Delay Policy). The transition function ⇒
UDP

is given directly by

⇒
UDP

= (N × (Act ∪ {1}) × N)∩ ⇒.

While the UDP policy streamlines the application of delays, we observe a decreasing
probability to pick larger delays. A child node (in tree and default policies) is chosen
randomly between all available actions from that state and a delay of a single time unit;
consequently, the probability for sequential choice of d unit-delay transitions at state s,
i.e. delaying d time units, can be captured as follows:

Pr(s, d) =
(

1
|Acts| + 1

)d

where s ∈ S, d ∈ N and assuming that all actions Acts are available from state s at all
times. If a state has actions that are only valid after a certain amount of time, then those
actions are considerably less likely to be explored. We anticipate that such a skewed
construction of the tree severely affects the ability of MCTS to find optimal solutions.

To alleviate this, we introduce a Delay Sampling policy (DSP) that allows to choose
delays according to a more favorable probability distribution by enforcing a particular
structure where delay and action transitions are always alternated. We also use this node
layer alternation in the policies following the DSP policy giving a clear cut between
transitioning by delay or action. Let X : S → P(N) be a function that given a state
returns a set of natural-valued delays w.r.t. to location-based constants, which includes
the smallest possible delay, the largest possible delay, and a certain amount of delays
from in between the bounds. We include only a subset of possible delays, which is lim-
ited to contain at most 100 values and at most 30% of the number of possible values
(excluding bounds). The set of possible delays is selected in an attempt to reduce poten-
tially huge branching factor due to delay-actions as to direct the search towards more
cost-promising paths. Notice that X may change with each subsequent execution of the
algorithm, but will not change during. Formally, DSP is defined as follows.
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Definition 5 (Delay Sampling Policy). The DSP policy ⇒
DSP

is defined s.t. if

(n, α, n′) ∈⇒ then (n, α, n′) ∈ ⇒
DSP

iff:

– n′ = na, a ∈ Act , n = n′′d, d ∈ N, or
– n′ = nd, d ∈ X(O(n)), a ∈ Act and either n = ε or n = n′′a.

The policy solves the issue of uneven probability distribution for larger delays.
However, it is incomplete in the function X not guaranteeing preservation of key delay
values. In addition, we note that the policy still considers a fair degree of delay values
(up to 100), quickly leading to a significant degree of branching in the search-tree.

As an alternative, we introduce a policy with the behavior inspired by Non-lazy
schedules of [1]. The idea behind non-laziness is to avoid unnecessary simultaneous
idling of both jobs and corresponding resources. If the resource is available, the job
should claim the resource unless some other job can also use it. In the latter case, the first
job can be delayed to ‘pass’ the resource to the second job. We do not give the formal
definition of Non-lazy schedules here to maintain readability and refer the interested
reader to the mentioned paper for more details.

We introduce our Non-Lazy policy with delays restricted to being either zero, to
mimic no delay, or a non-lazy delay, representing the smallest non-zero delay leading
to some action becoming enabled, similarly to non-lazy schedules. In comparison to
DSP this drastically reduces the breadth of the search tree to at most 2 children and in
part alleviates the state-space explosion problem. Let NLD : S → P(N) give a set of
zero and non-lazy delay, and A′ = {α ∈ Σ | s  α−→} be a set of actions that are not
immediately enabled from a given state.

NLD(s) = {0 | ∃α ∈ Σ s.t. s
α−→ s′}∪

{d′ | d′ = arg min
d∈N>0

{∃α ∈ A′ s.t. s
d−→ s′′ α−→ s′}}

We now give a formal definition of the policy.

Definition 6 (Non Lazy Policy). The NLP policy ⇒
NLP

is defined s.t. if (n, α, n′) ∈⇒
then (n, α, n′) ∈ ⇒

NLP
iff:

– n′ = na, a ∈ Act , n = n′′d, d ∈ N, or
– n′ = nd, d ∈ NLD(O(n)), a ∈ Act and either n = ε or n = n′′a.

In [1] it is shown that non-lazy schedulers preserve optimal solutions for Job-shop
scheduling problems; however, this is not the case for all problems expressible as PTA
– implying that the method is incomplete for general PTAs.

Lastly we introduce a policy inspired by Randomized Reachability Analysis heuris-
tics from [28]. The idea is to consider action transitions and select delays based on
availability range of the chosen action transition. This supports an equal probability
distribution to traverse each individual action transition irrespective of its availability
range in terms of delays and overall provides a ‘fair’ exploration. The authors of this
heuristics demonstrated its efficiency in finding rare events. We here adapt the idea
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for finding cost-optimal plans under the heuristic that taking only the smallest possible
delay for each transition will often lead to a lower cost.

We now give a formal definition of the Enabled Transition policy. Let LB : S×Σ →
N give the lower bound of the transition’s availability range over the actions of a given
PTS. Simply put, LB gives the smallest delay after which a certain action can be taken.
Formally:

LB(s, α) =

⎧⎨
⎩
0 if � d ∈ N s.t. s

d−→ s′ α−→ s′′

arg min
d∈N

s
d−→ s1

α−→ s2 otherwise

Definition 7 (Enabled Transition Policy). The ETP policy ⇒
ETP

is defined s.t. if

(n, α, n′) ∈⇒ then (n, α, n′) ∈ ⇒
ETP

iff:

– n′ = na, a ∈ Act , d ∈ N, n = n′′d, d = LB(O(n′′), a), or
– n′ = nd, a ∈ Act , d ∈ {LB(O(n), a′) | a′ ∈ Act} and either n = n′′a or n = ε.

Similarly to NLP, ETP is also an incomplete policy but with more relaxed condi-
tions allowing it to consider all eventually enabled (either now or after delay) actions
from a given state.

6 Enhancements

To improve on the performance of the MCTS algorithm, we propose the following
modifications over the standard MCTS algorithm presented in Algorithm 1.

Building Rollouts. The standard UCT algorithms uses rollouts to estimate the reward
of a node, but strictly in a way s.t. the tree is not expanded, as to preserve memory. We
propose to add a rollout to the tree under two conditions: if 1. a roll-out reaches the
terminal state, and 2. it does so with the so-far-best cost. We denote such configuration
as BR.

Tree Pruning with Steps. It can be beneficial to perform a step (advance the root) once
‘enough’ information has been gathered to ensure near-optimal action choice in the
root of the search-tree. Two domain-independent techniques – Absolute pruning and
Relative pruning – have been introduced in [25]. They have shown that the Absolute
pruning in fact preserves the optimality of the search tree, but concluded that rather few
nodes are actually being pruned due to pruning conditions being too strict. We will thus
only study the Relative pruning technique.

We briefly recall the condition for Relative pruning (RP), which is dependent on the
tunable parameter μ.

Condition 1 (Relative pruning condition). Node ni can be pruned if ∃j such that
V (nj) > V (ni) + μ, where i ∈ {1, · · · , k}, j ∈ {1, · · · , k}, i = j and for all i we
have (n, α, ni) ∈⇒ with α ∈ Σ.

We also propose a simpler method of pruning based on a constant stepping value,
i.e. a number of samples required in the current root-node before advancing the root of
the tree. We denote this pruning technique Stepping pruning (SP).
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7 Experiments

We perform experiments on three benchmarks:

1. Job-shop scheduling2 problems,
2. Task graph scheduling3 problems of [34] translated to PTA by [20], and
3. satellite mission scheduling problems [10,31].

We select 120 Task graph models (of thousands) and use all 162 Job-shop models,
and all of the satellite models. The largest Job-shop model contains 100 jobs using
20 machines and the largest Task graph consists of 300 tasks (83 chains) executed on
16 machines. To account for randomness of the MCTS and random-search methods, we
report the average of 10 executions. For symbolic methods (which are deterministic) we
only conduct one execution. All experiments are limited to 10 min and the best found
solution is reported (if any). The experiments are conducted on AMD Opteron 6376
processors with frequency-scaling disabled running Debian with a Linux 5.8 kernel
and limited to 8 GB of memory (except for experiments with TiaMo which is given
sufficient memory).

Solving Using PDDL (Planning Domain Definition Language) Planners. As a con-
sequence of our restriction to natural-valued delays, it is possible to compile the PTA
models into (classical, deterministic) planning problems and apply well-studied classic
planning algorithms. To study this, we convert the Job-shop PTA models to PDDL 2.2
with action costs from PDDL 3.1 and use the Fast Downward4 planner to find cost-
efficient plans. We apply some classical algorithms, e.g. greedy best-first search with
the FF heuristic for sub-optimal plans [24] and A∗ with LM-Cut for optimal plans [22].
However, the so-called grounding phase never terminates within the time and mem-
ory limit, even for the smallest Job-shop model consisting of 6 jobs and 6 machines.
Scaling down the models further (by gradually removing jobs) reveals that the com-
plexity of the model with 3 jobs already surpasses the capabilities of the planner to find
a solution in allotted time. It is well-known that if the parameter-space of the actions in
PDDL encoding grows large, which is the case for our models, the state-space suffers
from an exponential explosion. We thus refrain from comparing to classical planners
in the remainder of this section and leave comparison to more complex planners (e.g.
temporal planning algorithms) to future work.

Presentation of Results. In our graphs we present the relative performance of a method
against Best Known Solutions (BKS) which is known for the Job-shop and Task graph
problems. A 0% deviation indicates that the BKS was found and a 10% deviation
denotes a solution that is 110% of the BKS. We refer to the BKS as the reference
value. For all but the last experiment we present the results over both benchmarks in
one single plot. Figures 2, 3, 4, 5, 6, 7, 8 and 9 are plotted as “Cactus” or “Survival”
plots. The y-axis shows the quality of the solution as “% worse than the BKS” (Fig. 2, 3,
4, 5, 6 and 7). Each method is sorted individually, resulting in monotonically increasing

2 https://github.com/tamy0612/JSPLIB.
3 https://github.com/marmux/spreadsheets.
4 https://www.fast-downward.org/HomePage.

https://github.com/tamy0612/JSPLIB
https://github.com/marmux/spreadsheets
https://www.fast-downward.org/HomePage
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Fig. 2. The effect of BR and SP on the NLP
policy. (Color figure online)

Fig. 3. Comparison of stepping values for
NLP using BR and with Cp =

√
2.

lines. Therefore, data-points from different methods for a given x-value can be produced
by different models, showcasing the general trend of each individual method over the
benchmark.

We conduct the following sets of experiments:

– Building Rollouts where we construct the search-tree if a terminal node is found
during rollout,

– Impact of Stepping where we experiment with pruning techniques,
– Cp Sensitivity where we vary the exploration constant,
– Policy Study where we compare the proposed policies, and
– Comparison w. Existing Methods where we compare our best performing method

with existing solvers for PTA, and
– a study of the methods on a set of more general PTA models stemming from the

domain of satellite mission planning.

Building Rollouts. We initially study the impact of the BR enhancement as any config-
uration without this enhancement is unable to yield results for a significant portion of
the benchmarks. As a representative configuration we here present the results with the
NLP policy both with and without the SP pruning and the exploration constant C fixed
to

√
2. Other configurations demonstrate a similar tendency. We observe in Fig. 2 that

only versions with the BR optimization manage to find a solution to all the instances.
In particular, we see that the version without both SP and BR produces no results at
all (red line). We witness the effect of BR from the plot and see that the best perform-
ing configurations are deviating no more than 30% from the reference. In addition, for
roughly 50% of the models, this deviation is less than 5%.

Impact of Stepping. In Fig. 3 we compare different stepping sizes for SP and different
upper-bounds number of visits (μ) for RP. We here restrict the reported results to the
BR variant of the NLP policy. We observe that SP is highly sensitive to the stepping
size and see that the smallest step sizes result in worse performance due to a too rapid
progression of the root-node while too high values fail to reduce the search-space to a
feasible size. We observe a similar tendency with RP wrt. the sensitivity of the μ-value,
albeit to a lesser degree. Importantly we observe that SP (using a stepsize of 500) and
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Fig. 4. Comparison of different Cp values
effect on NLP with BR and SP-500 options.

Fig. 5. Comparison of UDP, DSP, NLP, ETP
policies with Cp =

√
2 and the best enhance-

ments used: BR and SP-500.

RP (with μ = 5) perform similarly well – and we delimit ourselves to reporting only on
variants using SP in subsequent experiments.

While using Cp =
√
2 is often considered a good value to strike a balance between

exploration and exploitation, we here study the sensitivity to changes in the Cp-value, in
particular as our setting is a single-player setting. Specifically we can in Fig. 4 observe
the difference in performance when Cp ∈ {0, 0.4, 1√

2
, 1,

√
2, 1.70, 100} where the

value 100 is chosen arbitrarily as “a sufficiently large value” to force the algorithm to
focus purely on exploration. From Fig. 4 we observe that apart from Cp = 0, the choice
of Cp has little to no impact on the performance – likely due to the fact that our setting
is a single player setting. Regarding Cp = 0, we conjecture that the effect observed
stems from an intensive search around the initially found solution. For instances with a
positive effect we believe that a (near-)optimal solution is found within the vicinity of
any solution, where a negative effect indicate a larger difference between local minima
in the search-space. While a small set of models clearly favor Cp = 0, we use Cp =

√
2

for the remainder of the experiments as it provides overall good performance and is the
value recommended by literature.

Fig. 6. Job-shop overview. Fig. 7. Task graph overview.
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Fig. 8. Job-shop runtime overview. Fig. 9. Task graph runtime overview.

Policy Study. The summary on the performance of different policies is shown in Fig. 5.
Here we fix the configuration to use the BR and SP enhancements with a step-size of
500. We observe that UDP has the worst performance with less than 20% of problem
instances solved within the given time-frame - and significantly worse quality solutions.
We believe this to be due to the low probability of selecting larger delays and the state-
space explosion of having to consider all possible delays. While DSP is an improvement
over UDP, it suffers from a similar problem in that the branching factor can explode
leading to a performance degradation. Both NLP and ETP were able to solve all problem
instances with near-optimal solutions of at most 28.88% and 35.42% away from the
reference value, respectively, however with a clear advantage to NLP.

Comparison w. Existing Methods. Lastly we perform a comparison of our best config-
uration with other existing state-of-the-art solvers for PTA, namely UPPAAL CORA and
TiaMo. In addition, we have also adapted the Randomized Reachability Analysis (RRA)
methods of [28] to search for optimal schedules rather than rare events. We experiment
with several of the techniques proposed for RRA (RET, RLC and RLC-A) to search
for optimal solutions. We refer the interested reader to the mentioned paper for more
details.

In the case of CORA we use both the complete and optimal search-method as well
as the incomplete Random Optimal First Search (ROFS) approach, which allows for a
very lightweight search in a depth-first manner while choosing the most optimal action
at each step but providing no guarantee wrt. optimality of the returned solution. It is
important to note that both CORA (except for the ROFS version) and TiaMo are com-
plete and able to find an optimal solution if given enough time and memory - and that
both methods are relying on a symbolic representation of the search-space.

Figure 6 gives an overview of all the methods for Job-shop scheduling benchmark
compared against BKS from [26]. Note that CORA has not managed to solve any
instance for either of the benchmarks, primarily limited by the fact that it is a piece
of 32bit software only capable of utilizing 4 GB of memory. Unfortunately CORA does
not provide anytime solutions in its current distribution. Both TiaMo and RRA methods
solve less than 20% of the instances, with TiaMo delivering sub-par solutions as it never
completes the search within the time-limit, and thus provides only any-time solutions
as they are found.
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Table 1. Results for different PTA models of satellite problems. MCTS policies executed with
Cp =

√
2, BR and SP-500 enhancements enabled. (oom = out of memory)

DSP NLP ETP ROFS Cora

gomx3-1day
Mean cost

186,007
(±0.00%)

188,408
(±1.95%)

186,007
(±0.00%)

198,292
(±0.00%)

186,007

Time 40.2 49.8 61.5 0.05 5.12

gomx3-2day
Mean cost

442,190
(±0.04%)

442,218
(±0.01%)

442,080
(±0.06%)

478,002
(±0.17%)

oom

Time 223.3 268.0 230.7 0.05 -

5sat
Mean cost

5,072,861
(±4.12%)

5,961,014
(±1.72%)

3,548,824
(±0.77%)

3,739,730
(±1.82%)

oom

Time 267.5 366.7 295.8 0.25 -

10sat
Mean cost

5,632,414
(±0.57%)

6,130,961
(±0.68%)

nf
5,687,131
(±2.47%)

oom

Time 232.4 232.6 600.0 0.56 -

MaxData626
Mean cost nf nf nf

7,458,522
(±2.17%)

oom

Time 600.0 600.0 600.0 0.62 -

The ROFS algorithm of CORA outperforms both the random search and TiaMo in
terms of solved instances, while having a drawback with the quality of the produced
plans when compared to our MCTS implementation. In terms of time (Fig. 8 and 9), the
ROFS algorithm is the fastest overall, completing its search within single-digit seconds.
We note that the overall quality of the schedules found by ROFS is within a surpris-
ingly reasonable distance from the optimal, indicating that a greedy search strategy is
well suited for the given benchmark. We observe the best performance of the proposed
MCTS configuration using NLP, SP, BR and Cp =

√
2 and see a deviation of up to

28.88% of the BKS - with a median of deviations of no more than 10.3%. However,
investigating the computation time, we can see that the best found solution is in the
median produced at 289 s and peaking at 546 s.

The overview for the Task graph scheduling benchmark compared against BKS
from [32] is shown in Fig. 7. Due to its limited support of the PTA syntax, the TiaMo
tool was not applicable. For over 80% of the benchmark (100/120 models) the solutions
found by NLP are (near-)optimal with the quality of solutions of at most 1% away from
BKS. For the rest of the benchmark the performance of NLP slightly worsens reaching
at most 9.11% deviation from BKS. In general, the trends for different methods are very
similar: RRA methods solve around 33% of models only, while ROFS finds solutions
near instantly, but their quality degrades with increased model complexity.

Satellite Models. Additionally, we experiment with two satellite cases - GomX-3
and Ulloriaq - designed, delivered, and operated by Danish satellite manufacturer
GomSpace. The PTA models for these satellites have been developed in [10] and [31]
studies, respectively, and analyzed with UPPAAL CORA (including ROFS). We show
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the results in Table 1, but exclude UDP as it produces no results within the time limit.
For all models (but one) MCTS provides the best mean cost across all the methods;
however, ROFS finds solutions up to 4 orders of magnitude faster and with a modest
reduction of quality (up to 10% from the best MCTS method). We believe this is due to a
generally small variance in the quality of solutions in the solution-space and the fact that
ROFS performs only a single traversal of the model, immediately reporting the result
upon reaching the terminal state. For “MaxData626” model MCTS methods timeout
without a solution. Further experiments with an increased time-limit of 5 h do not yield
additional results indicating issues with the incompleteness of the methods rather than
missing computation-time. The relative efficiency of the ROFS method demonstrates a
potential for extending the MCTS method in the direction of a symbolic search, allow-
ing for an efficient and complete MCTS tree-search method, and overcoming the current
limitations of the discretized equivalents studied in this paper.

8 Conclusion

We have adapted the Monte Carlo Tree Search (MCTS) algorithm for the setting of
problems described as Priced Timed Automata (PTA) – a formalism that can capture
the behavior of a wide range of optimization problems such as resource-consumption
or -allocation problems. PTA is a very versatile modeling formalism, facilitating more
direct modeling of a problem domain. We introduced a number of complete and non-
complete policies that act as unfolding mechanism and decide the structure of the tree.
Some domain-independent enhancements to improve the performance and coverage of
the algorithm are suggested.

We have evaluated the performance of our MCTS algorithm adapted to PTA on
three benchmarks of Job-shop, Task graph and satellite mission scheduling problems
and compared it against other state-of-the-art methods and tools. For the first two bench-
marks, the results indicate that MCTS is able to find near-optimal solutions for all inves-
tigated problem instances. In general, we observed an up to 28.88% and 9.11% devi-
ation (on average) from the best known solution in a set of Job-shop and Task graph
scheduling problems, respectively. For satellite models, MCTS methods have found the
best cost across all tested methods except for one model where only ROFS was able to
produce results, hinting at issues with the incompleteness of MCTS methods.

All this suggests that MCTS is a promising alternative that copes well with the
state-space explosion problem where other existing, exhaustive and complete methods
perform poorly or fail. We note that the Random Optimal First Search strategy of the
tool UPPAAL CORA performs well, even when compared to MCTS. The study of more
symbolic approaches to MCTS for PTA is left as future work.

Data Availability Statement. A reproducibility artifact, which contains binaries, models and
scripts to reproduce results can be found at https://doi.org/10.6084/m9.figshare.19772926.
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17. Čaušević, A., Seceleanu, C., Pettersson, P.: Checking correctness of services modeled as
priced timed automata. In: Margaria, T., Steffen, B. (eds.) ISoLA 2012. LNCS, vol. 7610,
pp. 308–322. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34032-1 29

https://doi.org/10.1109/DSD.2015.59
https://doi.org/10.1007/BFb0031987
https://doi.org/10.1007/3-540-45351-2_8
https://doi.org/10.1016/j.engappai.2011.08.003
https://doi.org/10.1016/j.engappai.2011.08.003
https://doi.org/10.1007/3-540-45319-9_13
https://doi.org/10.1007/3-540-45319-9_13
https://doi.org/10.1007/3-540-45351-2_15
https://doi.org/10.1145/1059816.1059823
https://doi.org/10.1145/1059816.1059823
https://doi.org/10.1007/11561163_8
https://doi.org/10.1007/11561163_8
https://doi.org/10.1007/s00165-018-0458-2
https://doi.org/10.1007/978-3-030-22348-9_3
https://doi.org/10.1007/s10703-007-0035-4
https://doi.org/10.1007/s10703-007-0035-4
https://doi.org/10.1007/978-3-319-41528-4_28
https://doi.org/10.1145/1995376.1995396
https://doi.org/10.1145/1995376.1995396
https://doi.org/10.1007/3-540-48153-2_11
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1007/978-3-642-34032-1_29


398 P. G. Jensen et al.

18. Dirks, H.: Finding optimal plans for domains with restricted continuous effects with
UPPAAL CORA. In: ICAPS 2005. American Association for Artificial Intelligence (2005)

19. Edelkamp, S.: Heuristic search planning with BDDs. In: PuK 2000 (2000). http://www.puk-
workshop.de/puk2000/papers/edelkamp.pdf

20. Ejsing, A., Jensen, M., Muñiz, M., Nørhave, J., Rechter, L.: Near optimal task graph schedul-
ing with priced timed automata and priced timed Markov decision processes (2020)

21. Geuze, N.: Energy management in smart grids using timed automata. Master’s thesis, Uni-
versity of Twente (2019)

22. Helmert, M., Domshlak, C.: Landmarks, critical paths and abstractions: what’s the difference
anyway? In: Nineteenth International Conference on Automated Planning and Scheduling
(2009)

23. Hermanns, H., Krcál, J., Nies, G.: How is your satellite doing? Battery kinetics with recharg-
ing and uncertainty. Leibniz Trans. Embed. Syst. 4(1), 04:1–04:28 (2017). https://doi.org/10.
4230/LITES-v004-i001-a004

24. Hoffmann, J., Nebel, B.: The FF planning system: fast plan generation through heuristic
search. J. Artif. Intell. Res. 14, 253–302 (2001)

25. Huang, J., Liu, Z., Lu, B., Xiao, F.: Pruning in UCT algorithm. In: 2010 International Confer-
ence on Technologies and Applications of Artificial Intelligence, pp. 177–181 (2010). https://
doi.org/10.1109/TAAI.2010.38

26. Jain, A., Meeran, S.: Deterministic job-shop scheduling: past, present and future. Eur. J.
Oper. Res. 113(2), 390–434 (1999). https://doi.org/10.1016/S0377-2217(98)00113-1

27. Jongerden, M.R., Haverkort, B.R., Bohnenkamp, H.C., Katoen, J.: Maximizing system life-
time by battery scheduling. In: IEEE/IFIP International Conference on DSN 2009, pp. 63–72.
IEEE Computer Society (2009). https://doi.org/10.1109/DSN.2009.5270351

28. Kiviriga, A., Larsen, K.G., Nyman, U.: Randomized reachability analysis in UPPAAL: fast
error detection in timed systems. In: Lluch Lafuente, A., Mavridou, A. (eds.) FMICS 2021.
LNCS, vol. 12863, pp. 149–166. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
85248-1 9
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