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Abstract The safety level of a criterion is defined as a probability that a failure will
occur, if the criterion is met exactly, i.e. without any surplus. This chapter considers
how the safety level can be evaluated, in principle, for the vulnerability assessment
included in the Second Generation Intact Stability Criteria (SGISC). The chapter
also provides a review of the background literature for the SGISC and considers the
alignment of SGISC with Goal Based Standards and Formal Safety Assessment.
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1 Introduction

Goal-based standards (GBS) represent a significant paradigm-shift in regulation
philosophy and practice. Instead of prescribing the means of achieving safety, GBS
formulates the objective, leaving the freedom of achieving this objective to a designer
(see, e.g. [28, 43]). GBS may be considered as the natural regulatory framework for
deploying a risk-based or probabilistic approach. Indeed, for stability in particular,
the probability of stability failure, as a universal indicator of danger, is a natural
metric of the goal of safety and is naturally aligned with the GBS.

For example, the IMO Guidelines for the approval of alternatives and equiva-
lents as provided in various IMO instruments [34] acknowledges that approval risk
assessment and reliability analysis by Administrations is an increasingly acceptable
practice, especially for novel designs. Also, risk analysis is an important part of a
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formal safety assessment (FSA), which is considered for use in the IMO rule-making
process.

A comprehensive (and still up-to-date) review of a risk-based approach to intact
stability can be found in [42]. The most difficult problem is the calculation of prob-
ability of stability failure in an absolute sense. In other words, what does the term
“probability of stability failure” mean?

Stability failures in realistic sea conditions are rare and cannot be assessed by
direct numerical simulation of reasonable fidelity. This problem of rarity (as defined
in the Interim Guidelines on the second generation intact stability criteria, see [32])
inevitably generates need of using statistical extrapolation schemes. The ability to
determine the probability of stability failure in an absolute sense means that an
extrapolation method is capable of recovering the value of the probability of stability
failure that would be observed from numerous lengthy data sets [72].

The derivation of probability of stability failure in an absolute sense allows consid-
eration of intact-stability hazards together with other hazards, like fires, machinery
failures etc., making intact stability fully assessable with risk analysis and FSA.

The next question is how the alignment with GBS propagates through the multi-
tiered structure of the second generation intact stability criteria (SGISC). Since
probabilistic criteria are expected to be used for direct stability assessment, such
alignment appears quite trivial at the tier 3 of the SGISC. Indeed, probability of
stability failure produced by the direct stability assessment directly “plugs-in” into
FSA and risk analysis. This is more difficult however for vulnerability criteria, as
there is less information available and the calculation methods are much simpler
than the direct assessment. It is especially difficult for vulnerability criteria level 1.
To address this challenge, a brief review of the physical background of the SGISC
vulnerability criteria is carried out and an attempt is made to reveal their connec-
tion to a general probabilistic framework. Before this however, the background of
the probabilistic formulation by means of which the stability failure modes can be
assessed is explained.

The Interim Guidelines on the SGISC [32] define an intact stability failure as an
event that includes the occurrence of very large roll (heel, list) angles or excessive
rigid body accelerations, which may result in capsizing or impairs normal operation
of the ship and could be dangerous to crew, passengers, cargo or ship equipment.
The Interim Guidelines address five dynamic stability failure modes, including the
dead ship condition, excessive acceleration, pure loss of stability, parametric rolling,
and surf-riding/broaching.

2 Probabilistic Framework

Waves and wind are stochastic processes. Therefore, any stability failures caused by
wind or waves are random events and they can be characterized by their probability
of occurrence.
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An objective of safe operation of a ship is the absence of stability failures during a
ship’s lifetime. The symbol X is used to denote a random event, the occurrence of at
least one stability failure during a ship’s lifetime. Then the complimentary event X
is that no stability failures occur during a ship’s lifetime. The bar above the symbol
identifies it as a complimentary random event, i.e., that the event X does not occur.
The likelihood of achieving this objective is characterized by the probability that no
stability failure occurs during a ship’s lifetime, P

(
X

)
.

Stability failure is a random event and it might occur at any interval of time
while the ship is in operation. The objective of safe operation is achieved when no
stability failure occurs at any of the time intervals comprising the entire time of ship
operation. Let us represent these intervals by a series of discrete time instances. Then
the probability of failure is expressed as:

P
(
X

) = P1
(
X

) · P2
(
X

) · · · · · PN
(
X

) =
N∏

i=1

Pi
(
X

)
. (1)

For a particular ship, the probability, Pi
(
X

)
that no stability failure occurs in asso-

ciation to the ith time instant depends on the environmental (i.e., significant wave
height, mean wind velocity, mean zero-crossing period of wave, etc.) and operational
conditions (loading, speed, heading relative to the waves, etc.). Further justification
of the probabilistic framework can be found in Chap. 1 of [9].

The short-term formulation is relevant for consideration of a particular sea state,
i.e., when the significant wave height and the mean zero-crossing period can be
associated with a particular cell of a scatter table (e.g. [30]).

For a ship at a given loading condition, heading and speed, the probability, Pi
(
X

)

remains constant for each time interval. Then the probability of no stability failure
under the conditions of a realization of a sea state with significant wave height HS

and mean zero-crossing period TZ. is:

P
(
X |HS, TZ

) = (
Pt

(
X

))n
, (2)

where Pt
(
X

)
is a probability that there will be no stability failure at a brief time

period around some time instant; n is the number of such time instants.
As is obvious, the probability of no stability failure depends on time; the longer

the time of exposure, the higher the probability of failure.
Equation (2) is interpreted as a particular case of the binomial distribution, which

expresses the probability that a random event occurs k times out of n attempts—the
probability of k failures occurring in n instants of time:

P(k) = C(n, k)pkqn−k, (3)

where C(n, k) is the number of k combinations out n without repetitions, p is the
probability of stability failure at any given instant of time and q is the probability of
the complimentary event, (i.e., that stability failure does not occur at any instant of
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time):

p = Pt (X); q = 1 − Pt (X) = Pt
(
X

)
. (4)

The Poisson distribution is the limit case of the binomial distribution for a large
number of time instants, while the duration of each time instant is small:

P(k) = (λT )k

k! · exp(−λT ), (5)

where T is a finite duration of time, while the condition (HS , TZ ) exists and λ is
the rate of random events (stability failures) per unit of time. The probability of no
stability failures while the condition (HS , TZ ) holds is given by the case k = 0:

P
(
X |HS, TZ

) = exp(−λT ). (6)

The probability of the complimentary event—at least one stability failure during
time T is interpreted as the CDF of the time before the first event occurs. It is an
exponential distribution with parameter λ:

P(X |HS, TZ ) = CDF(T ) = 1 − exp(−λT ). (7)

There are three assumptions, associated with the short-term formulation:

• Stability failures are independent random events;
• The probability of occurrence of a stability failure at a particular instant of time

is infinitely small;
• Only one stability failure can occur at a particular instant of time.

The first assumption is inherited from (1), while the two others are the result of
the limit transition from (3) to (5). A probabilistic model of random events using
these three assumptions is known as a “Poisson flow of events”.

The value of the stability failure rate λ depends on a ship’s speed, heading and
loading condition. The methods for the numerical evaluation of λ are failure-mode-
specific. A key point is that λ is assumed constant for a particular speed, heading,
loading and the environmental conditions (HS , TZ ).

The lifetime of a ship is presented as a sequence of sea states described in a
scatter table with NS significant wave heights and NT zero-crossing mean periods.
Equation (1) for the probability of no stability failures over the lifetime of a ship,
using (6), TLT is rewritten as:

P
(
X

) =
NS∏

i=1

NT∏

j=1

exp
(−λi, j TLT fi, j

) = exp(−λaTLT ), (8)
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where f i,j is the statistical frequency for the ith significant wave height and the jth
mean zero-crossing period;λa is the rate of stability failures, averaged over the scatter
table:

λa =
NS∑

i=1

NT∑

j=1

fi, jλi, j . (9)

The probability of at least one stability failure is expressed through the compli-
mentary probability to (8):

P(X) = 1 − exp(−λaTLT ). (10)

The criteria for different stability failure modes use different probabilistic
formulations, but all of them are based on Eqs. (7), (9) and (10).

The safety level of the stability criterion is ameasure of how remote the possibility
of stability failure is if a ship meets the standard used with the criterion. Hence, the
safety level of a vulnerability criterion is measured as a probability of stability failure
of a ship that passes that standard. The idea tomeasure reliability of an intact stability
criterion with a probability of stability failure while the criterion is satisfied exactly
is not new, e.g. [69]. The English version is available in subsection 1.1 of [9], where
the safety level is referred as a “guarantee”.

While formulating the framework for the SGISC, two types of criteria were envi-
sioned: deterministic and probabilistic [7]. A probabilistic criterion yields an esti-
mate of probability of failure, the standard has a meaning as the acceptable prob-
ability of failure. Thus, determining the safety level of a probabilistic criterion is
straightforward—it is equal to the standard.

To evaluate the safety level of a deterministic criterion, a random variable (or
variables) needs to be found (or assumed) in a criterion’s equation. A distribution for
this random variation is to be determined or assumed. Then, the criterion’s equation
can be treated as a deterministic function of a random argument(s) and a distribution
of the criterion value can be found. The safety level SL is determined as a probability
of exceedance of a standard;

SL = P(C ≥ St) = ∞∫
St
pd f (C)dC, (11)

where C is a criteria and St is a standard.
Level 1 vulnerability criteria are deterministic, while all the level 2 vulnerability

criteria are probabilistic. For three failure modes (excessive acceleration, pure loss
of stability and surf-riding), wave steepness can be identified as a random variable
that defines the safety level. Detailed consideration is given further in the text, while
the distribution of wave steepness is described here.

Consider a short-term problem: a sea state is givenwhere both the significant wave
height Hs and the zero-crossing period Tz are known. A spectral density of wave
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elevations sw is also defined. The availability of a joint probability density function
(PDF) of the wave amplitude and the wave period is very useful for deriving the
probability of stability failure since both of these variables affect ship stability. Such
a PDF was proposed, for example, by [48] on the basis of normalized quantities,
Hw/

(
2
√
2m0

)
for wave amplitude; and τ = Tw/T01 for wave period:

T01 = 2π
m0

m1
;mn = ∞∫

0
sw(ω)ωndω, (12)

where n is an order of the spectral moment. The period, corresponding to the
mean frequency is related to the mean zero-crossing frequency through the spec-
tral moment, see e.g. [47] Tz = 2π

√
m0/m2. The joint distribution of a and τ is

expressed as:

pd f (a, τ ) = 2kN
ν
√

π

(a
τ

)2 · exp
{

−a2
[

1 + 1

ν2

(
1 − 1

τ

)2
]}

(13)

where kN is a normalizing factor taking into account the positivity of period and
amplitude, while ν is a spectral width parameter:

kN = 1

2
·

√
1 + ν2

1 + √
1 + ν2

; ν2 = m0m1

m2
1

− 1. (14)

Using the dispersion relation in deep water between a wave length λw and a wave
period Tw = √

2πλw/g (where g is the gravity acceleration), the PDF (13) can be
re-written for the wave length λw and the wave steepness s = Hw/λw, using well-
known formulae for distribution of deterministic function of random arguments (see
e.g. Sect. 6.7 of [65]—the derivation is not difficult as it is essentially a substitution
of the variables:

pd f (λw, s) = kN1λ
3/2
w s2 · exp

{

−2

(
λw · s
Hs

)2
[

1 + 1

ν2

(
1 − T01

√
g

2πλw

)2
]}

,

(15)

where the constant kN1 is defined through the normalizing factor kN :

kN1 = 8T01
√
g

πνH 3
s

kN . (16)

The distribution of thewave steepness is themarginal distribution of (15); it cannot
be expressed in elementary functions:
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pd f (s) =
∞∫

0

pd f (λw, s)dλw. (17)

A probability that the wave steepness exceeds a critical value scr for a given sea
state is defined with a significant wave height Hs and a zero-crossing period Tz :

P(s > scr |HS, TZ ) =
s=1/7∫
scr

pd f (s|HS, TZ )ds. (18)

The critical wave steepness scr is defined for each failure mode, while s = 1/7 is
the breaking wave limit.

All the level 2 vulnerability criteria are formulated as long-term probabilistic
criteria, i.e. weight-averaged over all possible sea states using statistical weights
from a wave scatter table (such as [30]). Thus, it makes sense to evaluate the safety
level of the level 1 vulnerability criteria also as an average of the short-term value
over a scatter table:

SL = Pa =
NS∑

i=1

NT∑

j=1

fi, j P
(
s > scr |HSi , TZ j

)
, (19)

where f i,j is the statistical frequency for the ith significant wave height HSi and the
jth mean zero-crossing period TZ j .

3 Dead Ship Condition

The dead ship condition corresponds to the assumed situation considered by the
severe wind and rolling criterion (also known as weather criterion), which is formu-
lated in Sect. 2.3 of part A of the 2008 IS Code [31]. As it follows from its name,
the main propulsion is assumed not to be available. As a result, a ship drifts under
the action of wind and waves. A position of a ship relative to wind is defined by the
distribution of the windage area. A conventional steam-era ship, with approximately
symmetric windage area forward and aft, usually takes a near beam seas position.
For modern ship types, this assumption is made in order to maximize the projected
area and therefore the heeling moment. Gusty wind makes the ship to heel and roll
motions have a non-zero mean. A hydrodynamic drag, generated by the drift creates
an additional heeling moment and contributes to the roll mean value.

The objective of an assessment of stability in the dead ship condition is to ensure
that a vessel can withstand the action of wind and waves; this is taken to mean that a
roll angle does not exceed a prescribed limit. Three important elements are included
in the dead ship condition assumed situation:

• A large roll angle is associated with the failure, while capsizing is not considered;
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• A ship is subjected to the combined actions of wind and waves; and
• The dynamics of ship motions must be considered.

Theweather criterion considers a specific instance when a ship experiences a peak
roll angle to the windward side (roll back angle) and followed with the application
of a wind gust. The dynamic roll angle is found with the energy balance method,
which assumes that the work of the heeling moment is equal to the increase of the
potential energy of heeling. The drift-generated drag is included in the lever of the
wind heeling moment.

A diploma thesis explored the possibility of a probabilistic interpretation of the
weather criterion [83]. It was realized, however, that this turns out to be quite
ambiguous as the applied excitations follow a rather idealized structure.

The development and background for the vulnerability assessment of the SGISC
are described in Bulian and Francescutto [12–14]. The level 1 vulnerability criteria
is essentially the weather criterion with an extended table for the natural roll period
[paragraph 2.2.2.4, 32]. The probabilistic interpretation of the level 1 criteria is a
challenge and can be addressed only in a statistical sense, a detailed consideration
of this problem is given by [62].

The level 2 vulnerability criteria has a probabilistic formulation through the
random exceedance of a prescribed limit from either side of the ship. The exceedance
or upcrossing of a threshold is defined as a random event when the current value of
a stochastic process equals the leeward threshold ϕ f ail+ and the first derivative is
positive

(
ϕ(t) = ϕ f ail+ ∩ ϕ̇(t) > 0

)
. The general formula for the rate of exceedance

or upcrossing of ϕ f ail+ is:

λ f ail+ = ∞∫
0

ϕ̇ · pd f (ϕ = ϕ f ail+, ϕ̇
)
dϕ̇, (20)

where pd f
(
ϕ = ϕ f ail+, ϕ̇

)
is a joint PDF of the roll angle and the roll rate computed

at the level of stability failure in the leeward direction.
The failure or exceedance through the windward side is expressed through the

downcrossing of the level ϕ f ail−. The rate of downcrossing is expressed in a similar
way to (11), but under the condition of a negative roll rate:

λ f ail− = 0∫
−∞

ϕ̇ · pd f (ϕ = ϕ f ail−, ϕ̇
)
dϕ̇. (21)

The failure in the dead ship condition is the exceedance of either ϕ f ail+ or ϕ f ail−,
which is an assumption that both exceedances are rare (i.e., that this does not happen
within the time interval of the auto-correlation of shipmotion being significant). This
failure is expressed through a simple sum of (11) and (13);

λDS(HS, TZ ) = ∞∫
0

ϕ̇ · pd f (ϕ = ϕ f ail+, ϕ̇
)
dϕ̇
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+ 0∫
−∞

ϕ̇ · pd f (ϕ = ϕ f ail−, ϕ̇
)
dϕ̇. (22)

The short term solution (13) requires knowledge of the joint distribution of roll
angles and rates that needs to include large roll angles.

The evaluation of the joint distribution of roll angles and rates including large roll
angles is a non-trivial task. The distribution is non-Gaussian and its shape depends
on the hull geometry (mostly on the freeboard that effects the shape of the GZ curve
(e.g. subsection 8.6.2 of [9]). For a non-Gaussian distribution, the roll angles and roll
rates may be dependent while uncorrelated because only stochastic processes with a
normal joint distribution are independent when they are uncorrelated. However, there
are some indications that the assumption of independence of the roll angles and roll
rates is applicable for beam seas [8]. A method for modeling the non-Gaussian
distribution of large roll angles through Fokker-Plank-Kolmogorov equation was
proposedbyMaki [49, 50]. The influenceof the hull geometry on thePDF is preserved
despite the existence of white noise excitation. The actual PDF is obtained by scaling
with the results of a numerical simulation.

An approximate approach was proposed by Bulian and Francescutto [12–14] and
it was used for the level 2 vulnerability criterion of the dead ship condition stability
failure mode. The idea is to use a linear roll process and to adjust a level of failure to
account for nonlinearity. The values of this equivalent level of failure are computed
from the first integral equations, which express the energy balance over one quarter
of a period of roll oscillation.

4 Excessive Accelerations

The second generation intact stability criteria extends the definition of an intact
stability failure to the lateral acceleration that exceeds a prescribed limit [paragraph
1.1.2.2.3 of 32]. The lateral accelerations were a main factor in two fatal accidents
with the container carriers Chicago Express in September of 2008 [6] and Guayas
in September of 2009 [5]. Fatalities and injuries were sustained by crew members
who fell and were thrown across the navigation bridge in the course of these acci-
dents. Both accidents occurred in stormy conditions in which large roll angles were
observed. Both cases were characterized by a very high GM value (7.7 m and 5.6 m,
respectively). Synchronous roll resonance is believed to be the main reason for both
accidents. The situation was exacerbated by a decrease of roll damping (caused by
slow speed) and by the high location of the navigation bridge. Development of the
vulnerability assessment is described in [70], while the validation of a direct stability
assessment for this failure mode is addressed in [45].

The criteria consider the highest point on a ship where passengers or crew may
be present. The evaluation of the acceleration at the point is based on the kinematics
of a point of a rigid body involved in an arbitrary motion.
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Formathematicalmodelswith reduced degrees of freedom, further simplifications
are appropriate [see Appendix 3, 36]. Roll acceleration combined with the lateral
component of the gravity acceleration is considered to be the main factor causing the
failure. Separation of the contribution of the roll acceleration from the contribution
of other motions leads to the following equation for the lateral acceleration:

aALat = (az0 − g)sinϕ + zAϕ̈ + ay0cosϕ. (23)

The contribution from other degrees of freedom is accounted as horizontal ay0
and vertical az0 components of the acceleration caused by motions other than roll,
expressed in an earth-fixed coordinate system; where zA is the coordinate of the point
of interest expressed in ship-fixed coordinate system. Note that a difference in (23)
and formula (1) in Ref. [Appendix 3, 36] is caused by the difference in coordinate
systems applied.

A further simplification of (23) involves a linear assumption for roll motion. For
both known accidents involving excessive accelerations, the maxima of the GZ curve
were located above 50°. Therefore, the observed roll angles (20°–30°) were in the
nearly linear range. The assumption of linearity could be justified by the fact that the
excessive accelerations are expected in case of high metacentric heights, when the
GZ curve is dominated by the “initial stability” in the expected range of roll angles.

The assumption of linearity of the GZ curve allows the use of frequency-domain
models for irregular roll motions. The response amplitude operator (RAO) for lateral
acceleration is expressed through the magnitude of the lateral acceleration, which is
derived from (23). Further simplifications include expressing the influence of other
degrees of freedom through a location coefficient kL, which takes into account the
simultaneous action of roll, yaw and pitch motions:

aALat (ω) = ϕa(ω)kL
(
g + ω2zA

)
. (24)

where ω is a wave frequency; a formula for kL is given in paragraph 2.3.2.1 of [32].
Formula (24) is used for the vulnerability assessment on both level 1 and level 2;
further simplifications for level 1 are aimed at the elements of roll motions.

Level 1 vulnerability criterion is a deterministic criterion and uses a characteristic
roll angle that depends on wave steepness. The wave steepness is interpreted as a
random variable and is used for the safety level evaluation, see Eq. (19). Table 2.3.2.1
in [32] provides values of wave steepness as a function of the natural roll period.
These values of wave steepness can be considered as critical for use in Eq. (19).

Thewell-justified linear assumption for roll motions leads to a normal distribution
of lateral accelerations for the considered failure mode scenario (i.e., when the GM
value is large). The rate of the upcrossing, λLat , of the acceptable level of lateral
acceleration, R2 = 9.81 m/s2, is expressed as

λLat = 1

2π

σȧALat

σaALat

exp

(

− R2
2

2σ 2
aALat

)

, (25)
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where σaALat is the standard deviation of lateral accelerations, while σȧALat is the
standard deviation of a temporal derivative of the lateral acceleration.

There are certain difficulties in the frequency-domain evaluation of the standard
deviation of a temporal derivative of the lateral acceleration. This is related to the
accepted formulation of the spectral density of wave elevations that may have a
convergence problem when used with high-order frequency derivatives. To avoid
this problem, the level 2 vulnerability criterion kept only the exponential part of
Eq. (25) and the standard REA2 = 0.00039 was calibrated for this truncated formula.
This calibration requires additional consideration for evaluation of the safety level
for the excessive acceleration vulnerability criteria level, which remains as future
work.

5 Pure Loss of Stability

At a given draft, the ship waterplane may be narrow at the bow and stern, while near
the midship section it is relatively full. At the same time, the waterplane is full at the
full depth level. These basic geometry features may lead to decreased stability while
a crest of a longitudinal wave is located near the midship section. Sometimes, this
loss of stability may be so significant (even completely negative) that a ship capsizes
or heels over to a large angle. This type of stability failure is referred as “pure loss
of stability on a wave crest” or just “pure loss of stability”. A universally accepted
theory describing a failure caused by pure loss of stability is not available at this
writing.

The fact that stability decreases when a ship is located in the wave crest has
been known to naval architecture for well over a century [64]. It was observed on
a segmented model in 1949 [46]. However, practical calculation methods were not
available until the 1960s [57]. A decade later, it was recognized as a separate mode
of stability failure [60] while observing capsizing due to this phenomenon in free-
running model experiments in San Francisco Bay. Kan et al. [20] de Kat and Thomas
[39] and others also demonstrated capsizing due to pure loss of stability by free-
running model experiments in seakeeping and maneuvering basins.

There are a number of single large roll accidents in which pure loss of stability
may have been a trigger: the rail ferry Aratere in March 2006 [55], the ro-ro ship
M/V Finnbirch in November 2006 [82], the fast ferryM/V Ariake in November 2009
[38], and the container shipM/V Svendborg Maersk in February 2014 [18].

The main feature of pure loss of stability is the significant change of the stiffness
of the dynamical system. The stiffness may even become completely negative, which
has the effect of turning a dynamical system into a “repeller” (see e.g., [4] or [81]).

Key elements of the GZ curve can be assessed as stochastic processes in irregular
waves. The first attempt to describe the behavior of the instantaneous GM was made
by [21] using a Gaussian distribution. Later, [11] applied it to describe pure loss of
stability. However, it was found that the behavior of stability elements in irregular
waves is too complex to be described by a normal distribution [10]. This complex
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Fig. 1 GZ curve variation in wave

probabilistic behavior of the stability elements in irregular waves makes the [23]
effective wave the preferable practical solution. The accuracy of Grim’s effective
wave was studied by [88, 86] and found sufficient for practical use. To account
for surging [86] “modulated” Grim effective wave, it allows modeling the effect of
increased timing of decreased stability.

The background of the vulnerability assessment for pure loss of stability is
described in [44] and [90]. A low-freeboard extended weather deck has a signifi-
cant influence on the physics of pure loss of stability failure because this feature can
allow a large volume of green water on the ship that changes the dynamics of the
ship and the stability variation may not be sole factor causing a stability failure. The
results of experimental and numerical studies can be found in [91] and [29].

The essential feature of pure loss of stability is a negative stability experienced by
a ship during a certain interval of time. Figure 1 shows an example of the variation
of the GZ curve computed for a 260 m long containership with a draft of 8.4 m
encountering a following wave of a length equal to the ship length. The height of the
vertical center of gravity is assumed as the maximum to satisfy the 2008 IS Code
[31], part A, which corresponds to a GM of 0.39 m.

The roll stiffness, shown by the GZ curve, changes from positive to negative
and then from negative to positive during the passing of a longitudinal wave (i.e. a
“wave pass”). The solution of the roll equation experiences drastic changeswith these
stiffness variations. To understand this better, consider an equation of roll motion
that includes the variation of the restoring arm GZ(ϕ, t), depicted in Fig. 1.

(Ixx + A44)ϕ̈ + B44ϕ̇ + 	gGZ(ϕ, t) = 0, (26)

where A44 is the added mass in roll, B44 is the roll damping.
The drastic changes can be illustrated with the solutions of the linear equations

for positive and negative stiffness. For the positive stiffness, the linear roll equation
and its solution are well known:

(Ix + A44)ϕ̈ + B44ϕ̇ + 	gGMϕ = 0, (27)
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ϕ = ϕAsin(ωd t + ε), (28)

where ϕA and ε are arbitrary constants, depending on initial conditions and ωd =√
ω2
0 − δ2 is the frequency of small damped roll oscillations, ω0 is the natural roll

frequency and δ = B44/2(Ix + A44) is the roll damping coefficient.
The solution of the linear roll equation with the negative stiffness is quite different

because it is exponential rather than oscillatory where the eigenvalues λ1,2 = −δ ±√
ω2
1 + δ2 are real where ω2

1 is a stiffness coefficient: ω2
1 = 	g|GM1|/(Ix + A44)

(frequency is no longer relevant as GM1 < 0)

(Ix + A44)ϕ̈ + B44ϕ̇ − 	g|GM1|ϕ = 0, (29)

ϕ = C1exp(λ1t) + C2exp(λ2t), (30)

whereC1,2 are arbitrary constants which depend on the initial conditions. Dynamical
system described by the (29) is known as “repeller”.

One of the eigenvalues of the solution (30) is negative, but the other one is positive.
The solution (30) is unlimited. The time tf necessary to reach a large roll angle ϕf is
approximated by neglecting the exponential function with the negative eigenvalue:

t f = 1

λ1
ln

(
ϕ f

C1

)
. (31)

The linear solution (30) is only appropriate for a qualitative description because the
actual phenomenon includes large amplitudes of roll and time-dependent stiffness.
An equivalent linear stiffness may be derived by balancing the potential energy that
corresponds to the initial time-dependent stiffnesswith the potential energy of a linear
system. This approach further may lead to an analytical formulation for dynamics
of pure loss of stability in regular waves, see Spyrou [77]. However, the level 2
vulnerability assessment of SGISC in [32] does not include any mathematical model
of dynamics and instead focuses on the stability variation in waves. Following the
ideas presented in Spyrou [77], alternative vulnerability criteria were proposed that
include dynamical considerations, see [62].

The level 1 vulnerability criteria for pure loss of stability is described in Sect. 2.4.2
of [32]. This is essentially a simplified calculation of GM with the ship assumed to
be situated with the crest of a longitudinal wave at amidships. The critical value of
the wave steepness is set to 0.0334 and can be used in Eq. (19) to evaluate the safety
level.
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6 Parametric Roll

Parametric roll resonance is an amplification of roll motion caused by periodic
variation of stability in longitudinal waves.

The large-scale container loss that occurred on the container carrier M/V APL
China in October 1998 was attributed to parametric roll beyond reasonable doubt
[22]. Parametric roll can be also suspected as cause of accident of M/V Pacific
Sun [54]. Beyond the IMO, the problem of parametric roll has being addressed by
classification societies [1, 16] and the International Towing Tank Conference [37].

The theoretical possibility of parametric roll was studied in [58] and the
observation of this phenomenon in a model test is described in [59].

The background for vulnerability assessment for parametric roll is described in
Spyrou [75], Bulian and Francescutto [15, 14] and Sakai et al. [67]. The probabilistic
treatment for the level 2 vulnerability criteria is based on the application of theGrim’s
effective wave [23] where the calculation of the encounter wave period for the Grim
effective wave is considered in [66].

The Mathieu equation is the simplest mathematical model of parametric roll and
it has been extensively used to analyze this phenomenon (e.g. [61]).

d2x

dτ 2
+ (p + q · cos(τ )) · x = 0, (32)

where the variable x is related to roll motion through an exponential formula (to elim-
inate damping), τ is non-dimensional time, p and q are numerical parameters related
to calm water GM and the magnitude of the GM variation in waves, respectively.

The Mathieu equation is a linear differential equation with variable coefficients,
but its solution cannot be expressedwith elementary functions. The solution is consid-
ered to be a specialized function, known as theMathieu function. It is tabulated and is
included in advanced mathematical software packages. The Mathieu functions may
exhibit two types of behavior: bounded and unbounded, each depending on values
of the parameters p and q. A graphical representation of this dependence is known
as Ince-Strutt diagram. Formulae for the approximation of the boundaries between
the bounded and unbounded types of Mathieu functions can be found in [27].

Due to its linear nature, theMathieu equation cannot yield an amplitude of steady-
state parametric roll. To evaluate roll amplitude caused by parametric roll, the nonlin-
earity of a GZ curve must be included, see e.g. [61]. To avoid the complexity of a
nonlinear differential equation, Spyrou [75] proposed to use a transient solution of
the Mathieu equation to formulate a criterion and a standard for development of
dangerous parametric roll:

δGM1

GM
≤ 2

ln f + ln2

πn
+ 4δ

ω0
, (33)

where δGM1 is an amplitude of variation of the metacentric height, δ is roll damping
coefficient,ω0 is natural roll frequency, and f is an amplification factor of parametric
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resonance achievedduringn roll oscillations. Two factors are included in the standard,
which are shown on the right-hand side of Eq. (33): damping δ and amplification f .

The level 1 vulnerability criterion for parametric roll and its appropriate standard
is described in section 2.5.2 of [32]. With the exception of ships with sharp bilges,
the standard RPR in paragraph 2.5.2.1 of [32] consists of two components:

RPR = 0.17 + Cbk, (34)

where the valueCbk accounts for the contribution of the bilge keels and is computed as
a function of the area of the bilge keels, length, beam andmidship section coefficient.

The value 0.17 may be attributed to the transient and roll damping of the bare hull
and appendages other than bilge keels. To estimate a safety level for the parametric
roll criterion, a conservative assumption can be taken that the entire value of 0.17 is
attributed to the transient. For the initiation of parametric roll, the amplification factor
has to be more than 1.0, but this is another conservative assumption. According to
Eq. (33), the value 0.17 will be achieved during approximately 2.6 roll oscillations,
which is equal to approximately 5 wave encounters.

Further consideration requires a probabilistic characterization of encountering
several waves of certain parameters. The wave group approach seems to be the most
natural one. First, the application of the wave group approach to ship dynamics was
proposed by Spyrou and Themelis [80]. This was followed by an application of this
approach to a long-term probabilistic assessment of stability during the voyage [84]
as well as the application to broaching [89] and parametric roll [52]. For the current
state-of-the-art on wave groups, see [2, 26] as well as [71].

Since the wave group is defined as NW waves that exceed a certain threshold aG,
the event of the encounter of a wave group can be considered as the upcrossing of
the threshold followed by NW − 1 waves with peaks exceeding the threshold. If the
threshold is set high enough, the event of the encounter can be considered to follow
Poisson flow with the rate:

ξG(NW ) = ξG(aG)P

(
NW⋃

i=2

(ai > aG)

)

, (35)

where the ξ(aG) is a rate of upcrossing of the threshold aG by the water surface.
Assuming a normal distribution for wave elevations, the rate is expressed as

ξG(aG) = 1

2π

√
VD

VW
exp

(
− a2G
2VW

)
, (36)

whereVW is the variance of thewave elevation andVD is the variance of the derivative
of wave elevations. Further modeling of the wave group follows [84].

The properties of wave amplitudes are described using envelope theory. The
assumption that only amplitudes of two consecutive waves are dependent is made
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because the autocorrelation function of thewave envelope usually goes to zerowithin
twomean periods.With this, the set of amplitudes of consecutive waves can be repre-
sented by a Markov chain and the rate of encounter of a wave group with NW waves
can be written as

ξG(NW ) = ξG(aG)(P(a2 > aG |a1〉aG))NW−1. (37)

The conditional probability that the second wave exceeds the threshold aG as the
firstwave exceeds it aswell is calculated from the joint distribution of two consecutive
amplitudes available from envelope theory:

f (a1, a2) = a1a2
V 2
W p2

exp

(
−a21 + a22

2VW p2

)
I0

(
a1a2

√
1 − p2

2VW p2

)

, (38)

where I0 is the modified Bessel function of the first kind and zero order (the standard
function is included in most mathematical handbooks and software packages) and p
is the parameter derived from the spectrum:

p =
√
1 − k2 − r2, (39)

where k() and r() are the autocorrelation function and the result of the sine transfor-
mation of the wave spectrum density sw(ω), which is computed for the time lag τ

that is equal to a period corresponding to the mean frequency τ = T01:

k(τ ) = ∞∫
0
sw(ω)cos(ωτ)dω; r(τ ) = ∞∫

0
sw(ω)sin(ωτ)dω. (40)

The formulation of the level 1 vulnerability criterion in paragraph 2.5.2.2 uses
the wave steepness value sPR = 0.0167. For the wave length equal to ship length,
aG = 0.5sPRL . If thewave length that causes significant stability variation is between
λw1 andλw2 (say, between 1 and2 ship length), then a rate encounter of awave capable
of causing parametric roll can be approximated as:

ξG(NW ) = (P(a2 > aG |a1〉aG))NW−1
λw2∫
λw1

ξG(0.5sPRλw)pdf(λw)dλw, (41)

where pdf(λw) is the marginal pdf for wave lengths.
Equation (41) describes the short-term rate of encounter of wave groups capable

of causing parametric roll according to the level 1 vulnerability criteria. This equation
preserves the dependence on time. If the safety level is needed in a time-independent
form (like Eq. 11), then the rate of encounter (11) may be substituted by a probability
of exceedance of the wave amplitude using the Rayleigh distribution:
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pG(NW ) = (P(a2 > aG |a1〉aG))NW−1
λw2∫
λw1

pG(0.5sPRλw)pdf(λw)dλw;

pG(aG) = aG
2πVW

exp

(
− a2G
2VW

)
. (42)

The long-term safety level is computed by averaging Eq. (41) or (42) over all the
sea states represented in the wave scatter table.

The level 2 vulnerability criteria is described in Sect. 2.5.3 of [32]. Both C1 and
C2 are probabilistic criteria; the safety level is equal to the corresponding standard
identified in paragraph 2.5.3.1 of [32].

7 Surf-Riding and Broaching

Broaching (a shortening of “broaching-to”) is a violent uncontrollable turn (or large
yaw rate) that occurs despite maximum steering efforts to maintain course that are
often accompanied with a dangerously large heel angle that leads to a partial or
total stability failure. Surf-riding is a transition from a periodic surging motion to
a situation where the ship takes on the speed of the wave. Surf-riding is the most
common pre-requisite for broaching, but it is not the only one [74].

Broaching-to is believed to be a primary reason behind the capsizing of the Papua
New Guinean passenger shipM/V Rabaul Queen on the route from Kimbe to Lae on
February 2nd, 2012, which caused the death of at least 142 and possible as many as
161 persons [3].

As a phenomenon, broaching was known as a major threat from the age of sail
[79]. The scientific description of broaching and surf-riding date to the middle of
the twentieth century [19, 17, 92, 93]. The early phase plane analysis [53] pointed
towards the true nature of the phenomena. The development of nonlinear dynamics
[25], together with the analysis of surf-riding experiments [40] prompted the modern
understanding of the physics of surf-riding and broaching [73, 74, 78, 85].

A recommendation on the avoidance of surf-riding is included in [33], which is the
same criterion that was used for the level 1 vulnerability assessment based on [87].
The level 2 vulnerability assessment is based on the Melnikov analysis [56]. The
initial application of linearized resistance is described in Kan [41], while versions
that include nonlinear resistance is available in [51, 76] and [68]. These versions,
however, used an assumption of small damping in the surge equation. Wu et al. [93]
theoretically demonstrated the validity of the small damping assumption.

The physics of surf-riding and the justification of the criteria are described in
another chapter of this book [63]. The level-1 vulnerability criterion is described in
Sect. 2.6.1 of [32]. The criterion was developed by assuming the wave steepness to
be 0.1, which means that the safety level can be computed using Eq. (19). The level
2 vulnerability criterion is described in 2.6.2 of [32]. Because this is a probabilistic
criterion, its safety level is equal to its standard, which is defined in paragraph 2.6.3.2
of [32].
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8 Final Remarks

This chapter has summarized the scientific background of the IMO second generation
intact stability criteria (SGISC). In particular, the implementation of the concept of
“safety level” in the SGISC, that is the probability of failure if a criterion is satisfied,
has been analyzed.

There are two types of the criteria in SGISC: probabilistic and deterministic. An
assessment of the safety level of a probabilistic criterion is straightforward since
it equals the associated standard. Evaluation of the safety level for a deterministic
criterion is more challenged because the random elements need to be identified in the
criterion’s formulation.While the criterionmay be treated as a deterministic function
of random variables, the details, however, may not be so straight forward.

The SGISC covers five intact stability failure modes: dead ship condition, exces-
sive accelerations, pure loss of stability parametric roll, surf-riding and broaching.
For the level 2 vulnerability criteria, the derivation of the safety level is simple,
since for all failure modes these criteria are probabilistic. However, as all the level
1 criteria are deterministic, the safety level for these criteria requires probabilistic
interpretation as follows:

• For the dead ship condition failure mode, there is no robust probabilistic
interpretation;

• For excessive accelerations, pure loss of stability and surf-riding failure modes,
the probabilistic consideration is that of wave steepness; and

• For the parametric roll failure mode, a combination of a simplified wave group
method and a probabilistic consideration of wave steepness is needed.

Considerations of the safety level of these criteria are still quite abstract, but a
detailed numerical analysis remains for the future work.
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