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Abstract In this paper, the practical implementation methodology of an artificial
neural network (ANN) based parametric roll prediction system, is studied. In order
to avoid expensive scale tests, an uncoupled nonlinear roll model is applied to tune
the system. The capability of this model to accurately simulate the phenomenon of
parametric roll resonance is validated using towing tank tests. Finally, the behavior
of the ANN system for forecasting roll motion in a realistic sailing condition has
been investigated, obtaining very promising results.
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1 Introduction

Fishing represents one of the industrial sectors where occupational accidents are
more frequent. In fact, fishing is considered as one of the most dangerous activi-
ties worldwide. Data from several sources indicate that it is among the first ranked
activities in fatal injury rates, including different European countries or the US [1–3].

Most of the human losses occur due to ship related events, such as stability issues,
grounding, falling objects, etc. Among them, incidents due to stability failures (i.e.
capsize or large heel) account for the majority of the casualties, especially in small
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ships. This could be explained by the fact that very often these accidents develop
very fast and because they usually imply the complete loss of the vessel [4].

Small and medium length vessel skippers base their capability for evaluating the
stability of their ships mainly on previous experience, which usually does not include
important incidents. In addition, they lack training for adequately understanding the
information contained in the stability booklets, which are, if available, the only
help they have for evaluating the intact static stability of the ship in a given sailing
condition. An even more dramatic situation shows up when talking about dynamic
stability issues. Considering that in most cases these phenomena are completely
unknown to the skippers, it is impossible that they could face them correctly in order
to avoid their consequences. All these issues, together with the fact that they need to
fish even under very rough weather conditions and other circumstantial factors, are
the main causes of such accidents.

Stability guidance systems were developed to try to mitigate this situation,
providing the crewwith stability-related information. Traditionally, they have ranged
from stability posters to computer approaches, which considered only a limited set
of conditions or relied in subjective data provided by the crew [5]. However, in recent
years these systems started pointing towards the so called “second generation guid-
ance systems”, which in addition to the characteristics of the previous ones, also use
real time data acquisition and analysis to determine the stability characteristics of
the vessel and to provide objective and more precise information to the crew.

In this last group, some of the authors of this work have proposed their own
alternative (Fig. 1). This system provides the minimum essential information related
to the stability of the vessel in the current loading condition, in a very clear and
understandable way, even for users with no specific training in the use of computer
software [5, 6]. Although it was initially based only on the computation of static
stability criteria from loading condition data introduced in the system by the crew, in
the last years the authors have been working on implementing additional real-time
capabilities. These included the automatic estimation of the stability parameters of
the vessel during operation [7] and the detection of the onset of parametric roll
resonance. And is in this last functionality where this work is focused.

As it is well known, parametric roll is a phenomenonwhich affects fishing vessels,
among other types of ships, and that may generate very large amplitude roll motions
in a very sudden way, leading to heavy damage or even capsizing [8].

Themain objective of the proposed prediction system is to alert the crew about the
immediate appearance of an episode of parametric rolling and to allow them to take
preventive actions. This approach is based on the use of artificial neural networks
(ANN). These are biologically inspired algorithms, which after a training process
with a set of samples, are capable of reproducing the behavior of nonlinear systems
[9]. ANN have been widely used as forecasters in different fields, including ship roll
motions (e.g. [10]). In previous works, the authors have tested the performance of
this approach with some success, both using as training and testing cases roll motion
data obtained from a three degrees of freedom mathematical model [11] and from a
more realistic approach using towing tank tests in head seas [12].
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Fig. 1 Fishing vessel stability guidance system screenshot

However, when it comes to the practical implementation of such a system in a
fishing vessel, there are some economic constraints that have to be taken into account.
Carrying out a large campaign of towing tank tests for obtaining the training data,
needed to accurately set up the ANN detector, implies a large cost and complicates
the adaptation of the system to each ship, especially in the case of a small ormid-sized
fishing vessels. So, in order to overcome this issue, an alternative approximation is
presented in this work. In order to reduce the cost of fitting the system to each ship,
a simple 1.5 degrees of freedom nonlinear mathematical model has been proposed
as the source of training data, instead of using more expensive towing tank tests
data or more complex mathematical codes. The performance of this model itself to
accurately reproduce the roll motion of a medium sized trawler has been validated by
using data from towing tank tests. And finally, the performance of the mathematical
model-tuned ANN forecasting system to predict the appearance of parametric roll in
a realistic seaway is evaluated. In order to do this, some results from the application
of the ANN forecaster to a set of roll motion time series obtained from towing tank
tests, are presented. This work updates and complements the findings previously
described by Míguez González et al. [13].

2 Model Tests

The ship under analysis is a medium sized stern trawler having an acute tendency
towards developing parametric roll resonance even in not very heavy seas. This trend
is caused, in part, by its transom stern hull forms and bow flare. This ship has also
been studied by de JuanaGamo et al. [14], and a very similar one byMíguezGonzález
and Bulian [15]. Its main characteristics are described in Table 1, and its bodyplan
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is included in Fig. 2. A 1/18.75th scale model has been used for the towing tank
experiments, which arrangement is also shown in Fig. 2. It is important to note that,
although this type of vessels are usually equipped with bilge keels, in this case the
vessel under consideration has no bilge keels installed.

These scale model tests have been carried out in the ETSIN test basin (Technical
University of Madrid). The scale model has been restrained as to ensure that surge,
sway and yaw are limited, while leaving the model to heave, roll and pitch freely. All
tests have been done in longitudinal head regular waves. Considering that the main
parameter affecting the appearance of parametric roll resonance is thewave encounter
frequency to natural roll frequency ratio (ωe/ω0), and the fact that parametric roll
resonance could be expected for ratios between 1.9 and 2.2 and even more, tests
included ratios ranging between 1.7 and 2.3. Regarding wave height (Hw), tests
included values between 0.5 m and 3 m. Finally, four ship speeds, corresponding
to Froude numbers (Fn) 0, 0.1, 0.2 and 0.3, have been considered. The complete
test matrix is composed of 24 different combinations for the zero speed case, 16
for Fn 0.1, 15 for Fn 0.2 and 13 for the Fn 0.3. These conditions include cases
where parametric roll resonance develops and others where it does not. Wave length

Table 1 Test vessel main characteristics

Overall length 34.50 m

Length between perpendiculars 29.00 m

Beam 8.00 m

Depth 3.65 m

Draft 3.290 m

Displacement 448 t

Metacentric height (GM) 0.350 m

Natural roll frequency (ω0) 0.563 rad/s

Dry roll gyradius w.r.t. CoG (kxx ) 3.128 m (39.1% B)

Fig. 2 Hull bodyplan (left) and scale model towing tank tests arrangement (right)
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(λw) is determined as a function of wave frequency (ωw), under the deep water
approximation. In addition, still water roll decay tests have also been accomplished
at four different forward speeds (corresponding to Froude numbers 0, 0.1, 0.2 and
0.3) and different initial roll angles. These decay tests were also used to estimate
the dry roll gyradius of the vessel with respect to the centre of gravity, included
in Table 1. In order to obtain this value, the added inertia in roll at the natural roll
frequency was estimated by using a potential theory code. A complete description
of this campaign, including detailed procedures, results and their analysis, could be
found in Míguez González [16].

3 Mathematical Model

In order to tune the prediction system in a simple and inexpensive way, it was neces-
sary to define a mathematical model able to adequately reproduce the behaviour of
the ship in parametric roll conditions, but minimizing the number of parameters that
have to be computed to fit the model to other different vessels.

In this work, the 1 degree of freedom (d.o.f.) nonlinear uncoupled roll model
proposed by Bulian [17] has been adopted. On it, the time varying nonlinear roll
restoring term needed for triggering parametric roll is computed taking into account
the quasi-statical effects of heave and pitch motions in roll. This leads to considering
this model as a 1.5 degrees of freedom approach, having the following structure:

(Ixx + A44) · φ̈ + B44,T (φ̇) · φ̇ + C44(φ, t) = 0 (1)

where Ixx and A44 are respectively the mass and added mass moments of inertia
in roll, B44,T (φ̇) represents the nonlinear damping term and C44(φ, t) is the time
varying nonlinear restoring coefficient (C44(φ, t) = � ·GZ(φ, t)). As it is generally
accepted, the added mass term A44 has been obtained by potential theory methods.
The computation of restoring and damping terms is described in the following
subsections.

3.1 Restoring Arm

As mentioned above, the influence of pitch and heave motions, together with wave
passing along the hull, has to be taken into account for an accurate simulation of
parametric roll. Considering that the proposed model doesn’t explicitly include the
coupling between roll and heave and pitch, both effects have been taken into account
in a quasi-static way within the restoring term.

In order to do this, the “look up table” approach, described by Bulian [17] and
applied by many authors to different types of ships [18], recommended by class
societies for modelling the variation of the ship restoring capabilities in longitudinal
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waves [19] and included within the Second Generation Intact Stability Criteria Level
2 vulnerability assessment for parametric roll [20], was applied for computing the
restoring term C44(φ, t).

Under this approach, for each wave crest position and roll angle, trim and sinkage
are statically balanced. This method has demonstrated to perform well in following
seas and in head seaswithwavelengths longer than ship length (where heave and pitch
motions are supposed to be quasi-static). Additionally, in Bulian [17], its application
to the head seas case in wavelengths similar to ship length, was also successful.

For each set of wave parameters (height and wavelength) and for the different
positions of wave crest along the hull, the GZ curves were computed applying clas-
sical hydrostatics under free trim conditions. In order to obtain the time dependant
restoring coefficient C44(φ, t), the aforementioned wave crest domain GZ curves,
were transformed to the time domain by considering the wave encounter frequency.

An example of the results of these GZ computations are displayed and compared
to the still water case in Fig. 3. Additionally, the interpolated GZ surface for this
same case and the different wave crest positions is also presented.

Fig. 3 Top Left: GZ curves as a function of wave position. Top Right: GZ variation due to wave
passing. λw = 40 m. Hw = 2 m. Bottom: Wave position (X) along the hull. X = 0, wave crest at
the forward perpendicular. X = 1, wave crest λw m away from the forward perpendicular
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3.2 Roll Damping

One of the most critical elements for ensuring a good simulation of parametric roll
resonance is the modelling of roll damping, as it is highly nonlinear in the large
roll amplitudes present during parametric resonance. In order to account for these
nonlinearities, a nonlinear quadratic approach has been adopted, decomposing roll
damping in a linear and a quadratic term. This same approach has been broadly
applied in other works dealing with parametric roll modeling, (e.g. [21]). According
to this structure, the ship roll damping would read:

B44,T (φ̇) · φ̇ = B44a · φ̇ + B44b · φ̇ · ∣∣φ̇∣
∣ (2)

In order to obtain the linear (B44,a) andquadratic (B44,b) coefficients, stillwater roll
decay tests for different forward speeds and initial roll angles have been carried out.
The procedure followed for determining the damping coefficients from these tests,
is the one described in Himeno [22]. In Fig. 4, the results of roll decrement (obtained
between subsequent full cycles) as a function of mean roll angle are presented,
together with a quadratic fitting for the whole set of data points obtained in the roll
decay tests at the four tested forward speeds.

In adittion, in Table 2, the obtained damping coefficients at the four Froude
numbers are shown in the form of non-dimensional damping coefficients, defined
by:

2 · ν · ωφ = B44a

(Ixx + A44)
; β = B44b

(Ixx + A44)
(3)

The validation of the damping coefficient results has been done by comparing
the towing tank results of the roll decay tests to those obtained by using the mathe-
matical model. Results presented in Fig. 5, corresponding to forward speeds of Fn

Fig. 4 Roll decrement data (scatter points) and fitting quadratic polynomial (lines) from roll decay
tests
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Table 2 Non-dimensional damping coefficients

Froude number (Fn) ν [−] β [rad−1]

0 0.0187 0.3932

0.1 0.0404 0.3008

0.2 0.0620 0.3158

0.3 0.0953 0.3631

Fig. 5 Roll decay tests. Fn = 0 (left) and Fn = 0.1 (right)

0 and 0.1, show that the roll damping model is adequate, accurately reproducing the
experimental roll decay tests.

3.3 Model Validation

In this section, the performance of themodel for accurately simulating the roll motion
of the studied vessel in the different sailing conditions, including those where para-
metric rolling is present, is analyzed. The data used for the validation process are those
obtained from the towing test campaign that has been already described, including
runs at different forward speeds, wave frequencies and wave heights.

In Fig. 6, two sample comparisons between the simulations and the towing tank
tests, are presented. On them, the roll motion time series obtained with the proposed
mathematical model, for conditions likely to induce parametric roll, are compared
to the corresponding results from the towing tank experiments. These conditions
include ωe/ω0 = 2, wave height Hw of 1.491 m and forward speeds corresponding
toFn 0 and 0.1. A full description of the results from thewhole test matrix is available
in Míguez González [16].

Observing these results, it can be concluded that the correspondence between
simulated and towing tank test data is quite good, both in the initial transient stage
and in the steady statemotion; however, a slight underestimation of the roll amplitude
has been observed, not only in the two presented cases, but also in the rest of the
compared time series at these two speed values.

This issue is more noticeable as speed increases, as could be appreciated in the
right side of Fig. 6; in fact, the model is unable to reproduce any of the parametric
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Fig. 6 Comparison between experimental roll motion and 1.5 d.o.f. model simulations. Left: Fn
= 0. ωe/ω0 = 2.0. Hw = 1.491 m. λw = 48.640 m. Right: Fn= 0.1. ωe/ω0 = 2.0. Hw= 1.491 m.
λ = 66.145 m

Fig. 7 Detail of pitch motions during one roll cycle under the effect of parametric roll. Fn = 0.2.
ωe/ω0 = 2.0. Hw = 1.988 m. λw = 81.965 m

roll events which occur for the higher speeds of Fn 0.2 and Fn 0.3, where lower wave
frequencies imply much longer wavelengths [16].

This behaviormaybe relatedwith the quasi static approach adopted for the compu-
tation of the time varying restoring term. From the towing tank tests experiments,
it has been observed that heave and pitch motions were of quite large amplitude in
these conditions (see Fig. 7), and that their influence in the developing of parametric
roll was much higher than that predicted by the quasi static approach. However, and
in order to illustrate the performance of the parametric roll prediction system, only
conditions of up to Fn 0.1, where the mathematical model has demonstrated to work
fine, have been used.

4 Parametric Roll Forecasting System

Developing a system which could alert the crew and allow them to take corrective
actions before a parametric roll event takes place, is a task which has gained a lot
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of attention in the last years, due to the increase in size and number of ships likely
to suffer from the phenomenon, especially containerships. Among the published
alternatives, the one by Galeazzi et al. [23, 24] is the only under real scale testing
nowadays.

On the other hand, the authors of the present work have been working on the
development of a roll forecasting system, based on the application ofArtificial Neural
Networks (ANN). The main objective of this approach is to predict, some time
in advance, the roll motion time series of the vessel, including possible episodes
of parametric roll resonance. In comparison to the single detection provided by
the proposal by Galeazzi et al. [23], the availability of the roll motion time series
forecast which provides the ANN approach, has the main advantage of increasing
the performance of possible corrective actions [12].

The structure of an ANN consists of an input layer, which receives the data, a
series of hidden layers, where the so-called neurons are included, and an output layer.
Neurons are in charge of processing the data by weighing, biasing and summing up
the input data they receive, processing them with an activation function and sending
them to the following neuron. The process of training consists of feeding the network
with known data of the behavior of the system to be modeled, and selecting the
weights and biases which minimize the errors between real and predicted outputs
[25], modifications which are done relying in the so called learning algorithm. In
this work, a multilayer perceptron architecture (MPNN) has been selected, which is
shown in Fig. 8. MPNN are also called feedforward or backpropagation networks,
as they use the error backpropagation algorithm for the update of weights and biases
[9].

The process for obtaining the outputs of this network from the corresponding
inputs, is summarized in Eqs. 4 and 5. Basically, in each neuron k, each imput x j

is weighted by a synaptic weight wkj and all the weighed inputs of the neuron are
added, togetherwith a bias bk . The obtained result vk , known as activation potential, is
proccesed by an activation function f(),obtaining the neuron output yk . This activation
function is selected depending on the type of problem and data under consideration,
and it keeps the output of the neuron under some desired limits. Finally, and regarding
the number of hidden layers and neurons of anANN, it has to be said that it determines
the degree of complexity of the problems which could be tackled by the network, but
only up to a specific threshold. From that point onwards, the capabilities of the system
are not improved although the number of neurons or hidden layers is increased.

Fig. 8 Multilayer perceptron artificial neural network architecture
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vk =
m

∑

j=1

wk j x j + bk (4)

yk = f (vk) (5)

As it has been already described, the objective of this work is to evaluate the
performance of a roll motion forecaster based on the use of ANN, which have been
trained using a simplified nonlinear mathematical model of roll motion. This would
reduce the cost of adapting the system to each vessel, as the setting up of the mathe-
matical model is a simpler task than developing a whole scale model test campaign.
This way, the only need when setting up the system on a ship will be to compute the
mathematical model parameters and then use it to train the networks, with no need
for complex towing tank testing. This approach would represent the practical way of
implementing the system in a real case.

After some previous testing, which is described in detail inMíguezGonzález [16],
it was concluded that the structure with a better compromise between simplicity and
performance, is that of a multilayer perceptron network with three hidden layers,
30 neurons per layer, and one output layer. The input vector is composed by 40
elements, representing 20 s of the roll motion time series. The output is composed
by only one element, being it the prediction one step ahead. Substituting the output
value within the input vector and recursively executing the algorithm, predictions in
different degrees of advance can be obtained. Tan sigmoid-functions have been used
as activation functions in the hidden layers and a piecewise linear function has been
selected for the output layer.

Regarding the training algorithm, its objective is to modify the different weights
and biases in order to optimize a given performance (loss) function. In this case,
the error between the network’s prediction and the target value, measured using the
Mean Squared Error, has been selected as performance function. In the case of the
training algorithm, the Levenberg–Marquardt (L–M) algorithm [26] has been used.
In Fig. 9, the evolution of theMSE during the subsequent training epochs for the best
performing network is shown. In this case, training was stopped when the obtained
MSE value was below the goal value of 1 × 10–8.

The training data was obtained from 56 time series of roll motion, obtained with
the 1.5 d.o.f. nonlinear mathematical roll model previously described, at different
combinations of wave frequency and height and for a forward speed of Fn 0.1. The
selected parameters are included in Table 3. This data set not only includes cases
where resonance ismost likely, but also combinations of parameters where resonance
does not develop.

Regarding training, it has to be taken into account that the first set of weights and
biases are randomly generated at the beginning of the process; so, the same set of
training cases could lead to trained networks with different performance. In order to
improve the obtained results, the training process has been repeated 50 times, and
the best network structure out of the 50 cases was selected based upon the network
performance index.



346 M. Míguez González et al.

Fig. 9 Evolution of MSE with epochs during the training process. Best performing network

Table 3 Training data parameters

Froude number Fn 0.1

ωe/ω0 range 1.6–2.6

Hw range 0.5–2.5 m

In order to test the system, two time series, where parametric roll takes place,
have been selected from the towing tank tests described in preceding sections. The
parameters of these time series are included in Table 4. In both cases, the forecasting
system has been executed to obtain predictions 10 s ahead, which approximately
represent one whole roll period. The obtained results are presented in Fig. 10. The
Mean Squared Error (MSE) of the predictions is included also in Table 4.

Analyzing the obtained results, it can be observed that the forecasting system
correctly tracks the onset of the phenomenon in both test cases. However, as roll
motion amplitude increases, some overpredictions are observed, which are especially
relevant in Test Case 1. If the system is applied only for detecting the appearance of
the phenomenon, these overpredictions won´t be very relevant, as they won’t imply
a misdetection or false alarm. Nevertheless, if forecasted roll motion is needed for
establishing preventive measures, it is necessary to improve the performance of the
system in order to avoid these peaks in the predicted roll motion.

Table 4 Test data parameters and MSE results

Test case 1 Test case 2

Froude number Fn 0.1

ωe/ω0 2.0

Hw (m) 1.491 1.988

MSE × 10–4 442.00 504.14



On the Application of Artificial Neural Networks for the Real Time … 347

Fig. 10 Prediction results. Test Case 1 (left) and Test Case 2 (right)

5 Conclusions

This work presents some of the activities carried out by the authors for implementing
a parametric roll prevention system based on the use of Artificial Neural Networks
within an onboard stability guidance software. This system is primarily focused on
providing stability information to the skipper of small and medium sized fishing
vessels. The main requirements of such a system are ease of use and installation,
and low cost. These requirements make the use of towing tank test campaigns not a
feasible option for training the forecaster. The presented approach relies on the use
of a mathematical model to train the ANNs for forecasting roll motion in realistic
sailing conditions.

In order to do this, a one degree of freedom nonlinear roll model of a medium
sized trawler, where pitch and heave effects on roll are taken into account in a quasi–
static way has been developed.Moreover, a nonlinear quadratic approximation of roll
damping term has been selected. The capacity of this model to accurately reproduce
parametric roll resonance in different conditions of wave frequency, wave height
and ship forward speed, has been analyzed by comparing the results obtained with
the model against those obtained from a towing tank test campaign. In addition,
roll decay tests in still water have been carried out to define the components of the
quadratic damping.

The proposed model has shown a good performance for simulating parametric
rolling at small forward speeds (up to Fn 0.1). However, at higher speeds the model
is unable to simulate the large coupling between heave, roll and pitch observed in
the tank tests and the parametric rolling events that were observed in them.

Once the model behaviour has been analyzed, it has been applied for computing
the ANN training data, including different combinations of wave parameters. The
selected speed corresponds to a Fn 0.1, at which the proposed forecasting model
showed to be accurate.

With the objective of testing the system in a realistic situation, two time series
where parametric roll is completely developed, have been selected from the Fn
0.1 tank test results and the forecaster was executed in order to obtain 10 s in
advance predictions. The obtained forecasts are quite accurate in both test cases,
especially during the transient period in which resonance develops, although some
overpredictions were observed during the steady state phase.
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Regarding the prediction horizon, it is necessary to improve this value because
10 s (1 roll period) could be enough for triggering automatic corrective actions in the
type of vessels analyzed in this work; but they seem to be too short if these corrective
actions have to be undertaken by the crew.

In any case, the obtained results empower the idea of applying mathematical
model trained artificial neural networks, for parametric roll prediction, with no need
of expensive and time consuming towing tank tests. Nevertheless, further research is
needed to improve the performance of the forecaster during the steady state phase,
and also to increase the prediction time horizon.
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