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Abstract The application of a statistical validation procedure for estimating the
probability of capsizing with the split-time method is described. The method is a
numerical-extrapolation scheme incorporating motion perturbation simulations to
evaluate a critical roll rate leading to capsizing following an up-crossing event. Fast
volume-based numerical simulations create a sample of capsizing events in realistic
irregular wave conditions that serves as a “true” value. Subsets of this data are
used with the split-time method to estimate the capsizing probability. The split-time
estimates are compared to the “true” value to judge the validity of the estimate. A
short description of volume-based numerical simulation, review of the essence of the
split-time methods, and the statistical validation and performance assessment of the
estimation of the probability of capsizing is contained in the chapter.

Keywords Probability of capsizing · Validation · Split-time method

1 Introduction

The application of advanced hydrodynamic codes in the probabilistic assessment
of capsizing in irregular waves inevitably leads to the solution of an extrapolation
problem. The Monte-Carlo application cannot be applied effectively with advanced
numerical methods, as capsizing in realistic sea conditions is too rare to be directly
observed within a limited simulation time and the computation cost of such codes
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prohibits the time and cost of obtaining a sufficiently large sample size. At the same
time, the complexity of the problem’s physics precludes the application of overly
simplified simulations. This conundrum has led to development of extrapolation
methods that attempt to characterize the probability of rare events from limited
simulation data (for example, [1, 3, 6, 11, 16, 25, 34]). These methods are typically
performed with hybrid numerical seakeeping codes such as LAMP [23, 27] and
TEMPEST [12], which can practically generate hundreds or even thousands of hours
of quantitatively relevant responses in random irregular wave fields.

The validation of the extrapolation methods, however, presents a challenge, as the
data set must be extremely large in order to be able to observe the “true” extreme
value and yet capture the principal physics of the large amplitude motion in order to
be relevant [28]. Moreover, the result of simulation-based extrapolation is a random
number that is estimated with uncertainty quantified as a confidence interval. If the
“true” value is known, the extrapolation can be regarded as successful if this “true”
value falls within the confidence interval. However, due to the very same random
nature, a single successful extrapolation result is hardly convincing. How would one
know if this was not just a coincidence?

To ensure that the result is representative relative to the environmental condi-
tions, [28] introduced a multi-tier concept of statistical validation. The first tier is
elemental: it is successful if the extrapolation result contains a “true” value within its
confidence interval (the methodology of obtaining the true value is considered in the
next section). The extrapolation procedure is then repeated several times for exactly
the same condition but with independent data sets, this is second tier. A successful
validation for a given condition produces a certain percentage of successes, referred
to as a “passing rate”; [28] proposed 90% as a level for acceptance for 100 extrapola-
tions. The third tier of statistical validation includes consideration of several condi-
tions reflecting the expected operational conditions. How many of those conditions
need to be successful for an extrapolationmethod to pass is not clear. Examples of the
application of the procedure for the EPOT (Envelope Peak over Threshold) method
[15] are considered in [28] as well as in [16] . This chapter describes the application
of this multi-tiered procedure to the evaluation of the probability of capsizing in
irregular waves with the split-time method.

2 Estimation of “True Value”

The extrapolation validation procedure reviewed in the sect. 1 requires a priori knowl-
edge of the probability of capsizing. Theoretical solutions for the probability of
capsizing are available for piecewise linear models [5], but while these models do
describe capsizing qualitatively, i.e. as a transition between two stable equilibria, they
are too simplistic to be considered as quantitative ship motion models. In particular,
they cannot describe the realistic change of stability in waves as well as the fact that
the restoring is inseparable from wave excitation for large-amplitude ship motions.
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Fig. 1 Station/incident wave intersection for volume based hydrostatic and Froude-Krylov forces
for the ONR Tumblehome hull in stern oblique seas [30]

A solution was proposed by [30]. The main idea is to compute the inseparable
nonlinear hydrostatic and Froude-Krylov forces from the distribution of the instan-
taneous submerged volume along the hull, implemented as a sectional-based calcu-
lation to preserve the variation of relative motion along the ship’s hull, as illustrated
in Fig. 1.

In a typical hybrid numerical method, hydrostatic and Froude-Krylov forces are
computed by pressure integration over the instantaneous wetted surface:

�FFK+HS(t) = −ρ

¨

SB (t)

(
∂ϕ0(x, y, z, t)

∂t
+ gz

)
�nds (1)

where ρ is density, g is gravity acceleration t is time, x, y, z are spatial coordinates,−→n is a unit vector, normal to a time-variant surface of submerged portion of ship hull
SB(t), and ϕ0(x, y, z, t) is the incident wave velocity potential, whose time derivative
is the pressure distribution of the undisturbed wave field.

While straightforward to evaluate in a standard spectrum-based wave field,
formula (1) can be very expensive to calculate for an irregular seaway with many
components. If the incident wave pressure can be approximated by constant gradient
over each section, Gauss theorem relates the integration of pressures to the instanta-
neously submerged volume, while the moment can be expressed through the coor-
dinate of the centroid of this volume. This idea has evolved into a very fast algo-
rithm, comparable in performance with calm-water GZ for restoring and effective
slope for excitation, but with a much more complete model of nonlinear forcing
and stability variation in waves. A known limitation of the volume-based technique
is related to short wave lengths that are comparable to or shorter than the ship’s
beam. Derivation of the formulae, a detailed description of the algorithm, and cross-
validation with LAMP can be found in [33] and [32]. Additional hydrodynamic
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Principal Dimensions and 

Calculation Conditions
Length BP, m 154

Breadth molded, m 18.8

Draft amidships, m 5.5

GM, m 2.2

Speed, knots 6

Fig. 2 Lines, principal dimensions, and flotation of the ONR tumblehome topside configuration

forces including added mass, damping and maneuvering forces are approximated by
ordinary differential equation (ODE) style models.

Weems and Belenky [31] reported that 10 h of data could be generated in 7 s on a
single processor of a laptop computer, allowing millions of hours of simulation data
to be computed practically on a standard workstation or modest sized cluster.

The subject ship for the validation exercise is the tumblehome configuration from
the ONR topside series [14]. The ship lines, principal dimensions, and flotation are
in Fig. 2. The statistical validation campaign included four different sea states and
various relative wave headings, which are summarized in Table 1.

To avoid a self-repeating effect (e.g. [8]), the simulations for each sea state
consisted of a large number of 30-min records. 240 frequency components provided

Table 1 Summary of validation conditions and “true” value estimates
Significant 

wave height, 
m

Modal 
Period, s

Heading, 
degrees

Total 
simulation 
time, hours

Number of 
capsizes

Estimate of 
rate 1/s

Low  
boundary of 

rate

Upper 
boundary of 

rate
8.5 14 45 200,000 8 1.13 E-08 4.24 E-09 1.98 E-08

8.5 14 60 200,000 31 4.38 E-08 2.97 E-08 5.93 E-08

9 14 35 720,000 12 4.71 E-09 2.04 E-09 7.37 E-09

9 14 40 200,000 12 1.70 E-08 8.48 E-09 2.68 E-08

9 14 45 200,000 51 7.20 E-08 5.37 E-08 9.18 E-08

9 14 50 20,000 7 9.89 E-08 2.83 E-08 1.84 E-07

9 14 55 60,000 69 3.25 E-07 2.50 E-07 4.05 E-07

9 14 60 200,000 176 2.49 E-07 2.12 E-07 2.85 E-07

9 14 65 200,000 80 1.13 E-07 8.90 E-08 1.38 E-07

9 14 70 200,000 6 8.48 E-09 2.83 E-09 1.55 E-08

9 15 45 345,000 10 8.19 E-09 3.11 E-09 1.33 E-08

9 15 60 300,000 11 1.04 E-08 4.71 E-09 1.70 E-08

9.5 15 45 1,000,000 157 4.44 E-08 3.74 E-08 5.13 E-08

9.5 15 60 1,000,000 242 6.84 E-08 5.98 E-08 7.70 E-08



Statistical Validation of the Split-Time Method with Volume-Based … 229

a statistically validmodel of irregular waves for 30min duration. The total simulation
time and number of observed capsizes are reported in Table 1.

The rate of the capsizing events, λ
∧

T , based of these observations is estimated as

λ̂T = NT

TT
= NT

NRTR − ∑NT
i=1(TR − tCi )

(2)

whereNT is a number of capsize events observed and TT is the total simulation time,
NR total number of records in the simulation campaign, TR duration of a record, tCi
time of ith recorded capsizing. The observed number of capsizes NT is assumed to
follow a binomial distribution as capsizings are rare and can be treated as Bernoulli
trials. The binomial distribution has two parameters: the total number of trials NR

(which is a total number independent records) and the probability p of an event’s
occurring during a particular record.

p ≈ p̂ = NT /NR (3)

Boundaries of the confidence interval for the estimate λ
∧

T are computed by a
binomial distribution (e.g. [5])

λ̂
Up,Low
T = 1

TT
QB

(
1 ± Pβ

2

)
; (4)

where QB is a quantile (inverse cumulative distribution function) for the binomial
distribution with parameters (3) and Pβ is a confidence probability. The calculation
of this quantile encounters numerical error for the total time of 720,000 h and above
(too large to compute a factorial in double precision), so a normal approximation
for the estimate distribution was employed for those cases, with the mean value and
variance (p

∧

is small compared to 1.0) equal to the estimate itself:

E
(
λ̂T

)
= 1

TT
pNS ≈ p̂NS

TT
= λ̂T ; (5)

Var
(
λ̂T

)
= 1

TT
pNS(1 − p) ≈ p̂NS

TT

(
1 − p̂

) ≈ λ̂T (6)

The boundaries of the normal-approximation-based confidence interval are:

λ̂
Up,Low
T = λ̂T ± QN

(
1 + Pβ

2

)√
λ̂T (7)

QN is the standard normal (with zero mean and unity variance) quantile. The
boundaries of the confidence interval for the capsizing rate estimates, computed
with a confidence probability of 0.95, are listed in Table 1.
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3 Essence of the Split-Time Method

The objective of the split-time method is to provide a way to use an advanced numer-
ical code for estimating the probability of a rare event without actually having to
observe it in simulations. Its principal idea is to separate the estimation procedure
into an observable or “non-rare” problem and a non-observable or “rare” problem.
The “non-rare” problem is an estimation of the crossing rate of an intermediate roll
threshold. The threshold roll angle must be low enough to observe a statistically
significant number of up-crossing events in, say, 100 h, but high enough so that most
of these up-crossings can be treated as independent events.

The “rare” problem is solved for each up-crossing with a motion perturbation
scheme in Fig. 3. The roll rate is perturbed at the instant of up-crossing until capsizing
is observed. The minimum value of roll rate perturbation leading to capsizing is
computed by a metric of the danger of capsizing at the instant of up-crossing

yi = c + φ̇U,i − φ̇C,i ; c = 1 rad/s ; i = 1, . . . , NU (8)

φ̇Ci is the critical roll rate calculated for the i-th up-crossing defined as the minimum
perturbed roll rate leading to capsizing (corresponds to capsizing time history in
Fig. 3), φ̇Ui is the roll rate observed at the i-th up-crossing, and NU number of
observed up-crossings. The constant c = 1 rad/s is introduced for convenience in
working with the metric.

A rate of capsizing events λC (a number of events per unit of time) is expressed
as

1000 1020 1040 1060 1080 1100

0

50

100

150

200

Instant of 

up-crossing

Capsized position

Intermediate threshold u

Roll, deg

Time, 

Capsizing time history

Fig. 3 Illustration of motion perturbations
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λC = λU P(y ≥ c|φ = u ∩ φ̇ > 0) (9)

where λU is a rate of up-crossings of the intermediate threshold u; P(y ≥ c|φ =
u ∩ φ̇ > 0) is a conditional probability that the capsizing occurs after an up-crossing
of the intermediate threshold u (i.e. the capsizing metric y exceeds the constant c =
1 rad/s). Following standard definition (e.g. [18]), an up-crossing event is defined
when the roll angle crosses the intermediate threshold φ = u with a positive roll rate
(φ̇ > 0).

To find the conditional probability P(y ≥ c|φ = u ∩ φ̇ > 0), modeling of the
entire distribution of the capsizing metric y is not necessary (as was done by [9] for a
time-variant piecewise linear model, Eq. 61 of the cited reference). As the capsizing
event is rare, to fit the tail of the distribution of the capsizing metric is sufficient.

Following the second extreme value theorem (e.g. [17]), the tail of any distri-
bution can be approximated with a Generalized Pareto Distribution (GPD), whose
probability density function is described as

pdf(y) =

⎧⎪⎨
⎪⎩

1
σ
exp

(− y−w

σ

)
for ξ = 0

1
σ

(
1 + ξ

y−w

σ

)−(1+1/ξ)
for ξ �= 0 and ξ

y−w

σ
> −1

0 otherwise

(10)

where ξ is a shape parameter, σ is a scale parameters, and w is a threshold for
the capsizing metric (secondary threshold, in angular velocity units), defining the
beginning of the distribution tail. A brief overview on extreme value theorems is
available from [7].

Fitting the GPD for the tail of a capsizing metric, which is described in detail in
[10], consists of the following steps:

• Define a set of “candidate” secondary thresholds
• Estimate shape and scale parameters of GPD for each secondary threshold value
• Search for the secondary threshold
• Evaluate the confidence intervals for estimates of the conditional probability (with

the distribution of the extrapolated estimate, derived from a bivariate normal
distribution of ξ̂ and lnσ̂ ) and capsizing rate in Eq. (9).

This fitting procedure is completely data-driven and does not account for any
physical considerations that may be available for the problem at hand. Adding phys-
ical considerations to a data-driven model may reduce statistical uncertainty (for
example, Fig. 8 of [20]).

Nonlinearity of roll rate is usually considered to be weak as it is related to roll
damping, which is a weakly nonlinear function of roll rate. As a result, a roll rate
process is assumed normal. The capsizing metric contains a value of roll rate at an
instant of up-crossing φ̇U . If both roll and roll rate are normal, the value φ̇U follows a
Rayleigh distribution (for example, p. 201 of [21]). Similar to the normal distribution,
the Rayleigh distribution has an exponential tail (a proof is in Example 1.1.7 in [19]).
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For the roll rate at the instance of up-crossing of an actual nonlinear roll process, the
exponential tail is a plausible assumption.

The second random component of the capsizing metric (8) is the value of the
critical roll rate φ̇C . . Its randomness reflects the variation of stability in waves. The
variability of the roll rate at up-crossing is assumed larger than the variability due to
the changing stability in waves. Finally, the assumption of exponential tail is adopted
for the entire capsizing metric (8). The exponential tail is a particular case of GPD
(Eq. 10) when the shape parameter ξ = 0.

Applying the exponential tail, the conditional probability of capsizing after up-
crossing of the intermediate threshold u is expressed as

P(y ≥ c|φ = u ∩ φ̇ > 0) = P(y ≥ w)exp(−(c − w)/γw) (11)

where γw is the parameter of the exponential tail and w is the secondary threshold.
Fitting the exponential tail follows the same steps as fitting the GPD. Given a

sufficient number of up-crossings of the intermediate threshold u, the parameter for
the tail of the distribution can be estimated as

γ̂w = 1

Nw

Nw∑
i=1

(yi − w) (12)

where Nw is the number of data points remaining above the secondary threshold w.
The value of the secondary thresholdw is found by testing a number of “threshold

candidates” and finding one that provides the best fit for the tail. Two methods were
selected in Belenky et al. [6]: a prediction error criterion developed by Mager [24]
and a goodness-of-fit test, modified for exponential distribution by [29].

The rate of up-crossing of the intermediate threshold u and the probability of
exceedance of the secondary threshold w are estimated as

λ̂U = NU

T
; P̂(y ≥ w) = Nw

NU
(13)

where T is the total simulation time. The final expression for the capsizing rate
estimate is

λ̂C = Nw

T
exp

(−(c − w)/γ̂w

) = λ̂wexp
(−(c − w)/γ̂w

)
(14)

where λ̂w = Nw/T is an estimate of exceedance rate of the secondary threshold w.
The estimate of the capsizing rate Eq. (14) is a function of two other estimates,

λ̂w and γ̂w, which are random numbers. To evaluate a confidence interval for the
capsizing rate estimate, distributions are needed for the estimates λ̂w and γ̂w.

Similarly to the capsizings, the exceedance events of the secondary thresholdw can
be considered rare enough to be treated as Bernoulli trials (independence assumed).
The number of events observed within simulation time T then follows binomial
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distribution. The binomial distribution has two parameters: number of trials N and
probability p̂ of an exceedance event at any instant of time so that

N = T

�t
; p̂ = Nw/N (15)

where �t is the time increment in the simulations. The estimate of the exponential
tail parameter (5) is essentially amean value. Its distribution is approximately normal
with the standard deviation

σ̂γ = 1

Nw

√
Var
∧

(y − w) = 1

Nw

√√√√ 1

Nw

Nw∑
i=1

(yi − w)2 − γ̂ 2
w (16)

where Var
∧

(y − w) is an estimate of the variance of the capsizing metric values on
the tail.

Boundaries of confidence interval for the estimates λ̂w and γ̂w can be found as
follows:

λ̂Up,Low
w = 1

T
QB

(
1 ± Pβ1

2

)
;

γ̂Up,Low
w = γ̂w ± QN

(
1 + Pβ1

2

)
σ̂γ (17)

where QB is a quantile (inverse cumulative distribution function) for binomial distri-
bution with parameters (15), QN is standard normal (with zero mean and unity
variance) quantile, and Pβ1 is confidence probability for the estimates λ̂w and γ̂w.

The confidence probability of the estimates λ̂w and γ̂w is related to the confidence
probability for the complete capsizing as estimate Pβ as

Pβ = √
Pβ1 (18)

under an assumption of mutual independence of the estimates λ̂w and γ̂w. The bound-
aries of the confidence interval for capsizing rate estimate λ̂

Up,Low
c can be obtained

through the boundaries of the confidence intervals of the estimates λ̂
Up,Low
w and

γ̂
Up,Low
w :

λ̂Up,Low
c = λ̂Up,Low

w exp
(−(c − w)/γ̂Up,Low

w

)
(19)

Justification for Eq. (17), sometimes referred as “boundarymethod”, can be found
in Sect. 4.4 of [13].
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4 Results of Statistical Validation

Examples of the tier-two validation are in Fig. 4 (GPD tail fit) and Fig. 5 (exponential
tail fit). A seaway derived from aBretschneider wave spectrum [22] with a significant
wave height of 9.0 m and a modal period of 14 s is used in both examples. The tier-
two validation data set consists of 50 independent extrapolations. Each extrapolation
estimate uses 100 h of volume-based simulations, with no capsizing cases observed
during those times. The extrapolation result is presented with a confidence interval
for the 0.95 confidence probability. Besides these boundaries, each extrapolation has
the most probable value (identified by red x-marks in Fig. 4) and the mean value
(indicated as circles in Fig. 4). The calculation of the mean and most probable values
is discussed in detail in [10]. The tier-one validation is successful if the confidence
interval contains the “true” value. The case in Fig. 4 has 45 individual extrapolations
that contain the “true” value within their confidence interval. The tier-two validation
is successful when a percentage of the underlining tier-one validation successes
(“passing rate”) is close to the accepted confidence probability. This number is 0.90
for the case in Fig. 4, which would be considered a successful passing rate by [28].

The vertical scale of Fig. 4 is logarithmic. To indicate zero, a small value of
10−15 s−1 was applied. A total of 37 values of lower boundary of the confidence
interval extends below 10−15 s−1, and 11 most probable extrapolated estimates and
even 1 value of upper boundary are also very small. The reason is an apparent light
tail and associated right bound of the estimated distribution of the metric. It is one
of the known issues of practical application of GPD [2, 4, 26].

Figure 5 has results for the exponential tail, inferred fromweak nonlinearity of the
roll rate and the assumption that the variability of roll rate at up-crossings is larger
than the variability of critical roll rate caused by changing stability in waves see
the sect. 3 of this chapter. This inference is essentially a choice of statistical model

-4
Logarithm of rate of capsizing

-6

-8

-10

-12

-14

-16
5 10 15 20 25 30 35 40 45 50

Index of extrapolation data set

”true” value

Fig. 4 Example of tier-two validation with the GPD tail fit; significant wave height 9.0, modal
period 14 s, heading 60°„ passing rate 0.90; circles indicate mean value of extrapolated estimates,
x-marks are most probable extrapolated estimates
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5 10 15 20 25 30 35 40 45 50

-4

-6

-8

-10

-12

-14

-16 Index of extrapolation data set

Logarithm of rate of capsizing
”true” value

Fig. 5 Example of tier-two validation with the exponential tail fit (prediction error criterion);
significant wave height 9.0, modal period 14 s, heading 60°, passing rate 0.98

(exponential tail) based on physical considerations. Including physical information
reduces uncertainty, which is reflected in the decreased width of the confidence
intervals in Fig. 5 as compared to Fig. 4. Similar results were reported previously
by [20]. A mathematical aspect of the decreased uncertainty is a transition from the
GPD tail with two estimated parameters to the exponential tail with a single estimated
parameter. Comparing Figs. 4 and 5, the difference in the upper boundary is not that
dramatic. The practical advantage of this physics-informed approach is improved
reliability of prediction.

Besides the passing rate, assessing the performance of the different approaches
and elements of an extrapolation is done with two other indicators: “conservative
distance” CD and “relative bias” RB. These are defined as:

CD = log

⎛
⎝ E

(
λ̂
Up
c

)

λ̂T

⎞
⎠; RB =

E
(
λ̂c

)
− λ̂T

λ̂T

(20)

where E
(
λ̂
Up
c

)
is the upper boundary of extrapolated estimates averaged over all the

considered extrapolation data sets, E
(
λ̂c

)
is the extrapolated estimate (most probable

estimate is used for GPD) averaged over all the considered data sets, and λ̂T is the
true value estimated from capsizing observations with Eq. (2).

In a sense, theCD-value expresses the practicality of the extrapolation. The upper
boundary of the extrapolated estimate is likely to be utilized for the final answer,
to keep the whole procedure conservative. If the upper boundary is too far from the
“true” value, the result may be too conservative to be practical. TheCD-value shows,
on average, by how many orders of magnitude the upper boundary exceeds the true
value. The RB-value may be helpful for comparing the accuracy of the fit, including
most probable estimate vs. mean value estimate of GPD and two different techniques
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of the exponential fit. It also indicates if a method is conservative (when its sign is
positive).

As mentioned above, the third tier of the [28] validation procedure is carried out
over a number of environmental conditions. Table 1 lists the conditions considered
in the present validation campaign. Table 2 summarizes the results with the GPD
fit (meaning of different font colors are explained in the next section). The tier-two
validation procedure was repeated three times on independent data to check the vari-
ability of the results. Each data set included 50 records with a duration of 100 h. The
passing rate for each individual data set is indicated as PR1, PR2, and PR3, while PRA

stands for the passing rated averaged over all three data sets. Conservative distance
and relative bias were also averaged over all three data sets. The symbol RBM is for
the relative bias, computed over the mean value of the extrapolated estimate, while
RBMP means relative bias of the most probable value of the extrapolated estimate.
Two more values were included in Table 2 to indicate the ability to complete the
extrapolation with a given data set. The value NFMP shows how many times the
calculations did not yield the most probable extrapolated value over 150 data sets,
e.g. data set #3 in Fig. 4. The value NFU indicates how many times over 150 data
sets the upper boundary of the extrapolated estimate was not provided, e.g. data set
#17 in Fig. 4. Finally, averaged quantities for all performance indicators are included
in Table 2.

Table 2 Summary of validation results with GPD tail

Hs, m Tm, s β deg PR1 PR2 PR3 PRA CD RBM RBMP NFMP NFUB

8.5 14 45 1.00 0.98 0.90 0.96 2.31 32.21 21.77 10 0 

8.5 14 60 0.92 0.96 0.94 0.94 1.85 10.96 8.43 25 4 

9 14 35 1.00 0.98 0.98 0.99 2.53 45.39 25.15 7 0 

9 14 40 1.00 0.98 1.00 0.99 2.20 22.61 13.15 6 0 

9 14 45 0.98 0.98 0.96 0.97 1.68 7.62 5.66 18 1 

9 14 50 0.98 0.92 0.94 0.95 1.55 5.32 4.31 30 2 

9 14 55 0.90 0.80 0.92 0.87 0.89 0.38 0.20 42 3 

9 14 60 0.90 0.86 0.94 0.90 1.02 0.81 0.57 42 3 

9 14 65 0.94 0.92 0.94 0.93 1.33 2.47 1.75 35 3 

9 14 70 0.92 1.00 0.90 0.94 2.20 16.89 9.01 46 3 

9 15 45 0.98 0.96 0.96 0.97 2.53 50.58 32.68 14 1 

9 15 60 0.96 0.98 0.98 0.97 2.40 40.27 27.94 13 0 

9.5 15 45 0.96 0.94 0.96 0.95 1.80 8.71 5.35 14 1 

9.5 15 60 0.98 0.94 0.96 0.96 1.64 6.70 5.25 25 1 

Averaged quantities 0.95 1.85 17.92 11.52 23.36 1.57
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Table 3 summarizes the results of the extrapolations with the exponential tail fit.
Both methods of fit are included: prediction error criterion and goodness-of-fit test.
Any justification for setting a level of significance α for the goodness-of-fit test is not
apparent, the level of significance was varied from 0.1 to 0.5. Averaged quantities
for all performance indicators are also included in Table 3.

Passing rate is the main criterion in tier-two validation. [28] considers the tier-
two validation successful if the passing rate does not fall below a standard value
that depends on the number of extrapolation data sets, and it equals to 0.9 for 100

Table 3 Summary of validation result with exponential tail fit

Hs, 
m

Tm, 
s

β
deg

Prediction error criterion Goodness-of-fit α = 0.1 Goodness-of-fit α = 0.2
PR CD RB PR CD RB PR CD RB

8.5 14 45 0.94 1.54 2.53 0.94 1.32 0.99 0.94 1.50 1.78
8.5 14 60 0.96 1.56 5.96 0.94 1.43 4.28 0.96 1.64 6.11
9 14 35 0.94 1.41 1.20 1.00 1.42 0.32 1.00 1.75 1.03
9 14 40 0.98 1.71 5.64 0.92 1.33 2.88 0.98 1.65 3.93
9 14 45 0.98 1.35 3.20 0.98 0.95 0.66 0.98 1.19 1.12
9 14 50 1.00 1.23 2.64 0.98 1.14 1.79 1.00 1.27 1.63
9 14 55 1.00 0.75 0.77 0.98 0.76 0.61 0.98 0.84 0.30
9 14 60 0.98 0.88 1.31 0.92 0.89 1.11 0.98 0.97 0.69
9 14 65 0.90 1.12 2.82 0.92 0.99 1.54 0.98 1.16 1.56
9 14 70 0.98 1.75 7.96 0.86 1.67 7.81 0.96 1.82 7.07
9 15 45 0.92 2.01 13.55 0.74 1.82 8.09 0.90 1.97 7.32
9 15 60 0.98 1.76 6.76 0.96 1.54 3.31 1.00 1.79 4.76

9.5 15 45 0.98 1.26 1.73 0.94 1.06 0.71 0.96 1.22 0.56
9.5 15 60 0.92 1.32 3.41 0.84 1.05 1.72 0.96 1.28 2.06
Averaged quantities 0.96 1.40 4.25 0.92 1.24 2.56 0.97 1.43 2.85

Hs, 
m

Tm, 
s

β
deg

Goodness-of-fit α = 0.3 Goodness-of-fit α = 0.4 Goodness-of-fit α = 0.5
PR CD RB PR CD RB PR CD RB

8.5 14 45 0.98 1.65 2.77 0.98 1.75 3.49 0.96 1.78 4.10
8.5 14 60 0.96 1.69 6.35 0.96 1.71 5.96 0.96 1.71 5.55
9 14 35 1.00 1.84 1.58 1.00 1.90 1.87 1.00 1.98 2.92
9 14 40 1.00 1.75 4.16 1.00 1.80 4.68 0.98 1.81 5.11
9 14 45 0.96 1.28 1.47 0.98 1.34 1.57 0.98 1.36 1.87
9 14 50 1.00 1.32 1.78 1.00 1.36 1.73 1.00 1.38 1.76
9 14 55 0.98 0.88 0.31 0.98 0.90 0.30 0.98 0.91 0.29
9 14 60 0.96 1.01 0.72 0.96 1.03 0.70 0.96 1.04 0.69
9 14 65 1.00 1.21 1.38 0.96 1.22 1.46 0.96 1.24 1.26
9 14 70 0.98 1.85 5.45 1.00 1.88 5.37 0.98 1.89 4.52
9 15 45 1.00 2.07 8.09 1.00 2.13 9.76 1.00 2.19 11.61
9 15 60 1.00 1.79 3.34 1.00 1.88 4.20 1.00 1.96 5.73

9.5 15 45 0.96 1.32 0.71 0.96 1.39 1.02 0.96 1.45 1.37
9.5 15 60 1.00 1.39 2.30 1.00 1.43 2.32 1.00 1.44 2.25
Averaged quantities 0.98 1.50 2.89 0.98 1.55 3.17 0.98 1.58 3.50
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Table 4 Upper and lower acceptable passing rates
Ne 50 100 150 700 2100

Lower 0.88 0.90 0.91 0.93 0.94

Upper 1.00 0.99 0.98 0.97 0.96

extrapolations. The standard should be lower for 50 extrapolations in this validation
campaign, as the random variability is expected to be larger. To adjudicate a tier-two
validation with an arbitrary number of data sets, consider each extrapolation (i.e. tier-
one validation) as a Bernoulli trial. If an extrapolation procedure works perfectly,
the probability of covering a true value with the confidence interval is equal to the
accepted confidence probability Pβ. Then the number of successful extrapolations
NS of a total ofNe extrapolations is a random number following binomial distribution
with parameters Ne and Pβ.

Using the same confidence probability Pβ, the expected boundaries of the passing
rate can be computed as

PTUp,Low = 1

Ne
QB

(
1 ± Pβ

2
; Ne, Pβ

)
(22)

The upper and lower acceptable passing rates for different number of extrapola-
tions are listed in Table 4.

5 Discussion

Only the lower boundary for the passing rate (Table 4) is proposed for validation
use by [28]. An apparent reason is that exceeding the upper boundary of the passing
rate indicates that the width of the confidence interval was likely overestimated. The
results are likely to be conservative, but the extrapolation method is still usable.

If the passing rate falls below the lower boundary from Table 4, the extrapolation
result may be questionable. A likelihood that its confidence interval does not contain
a true value may be too high and cannot be explained by natural variability. These
cases were encountered during the described validation study for both GPD and
exponential tail fits. They are indicated by the red font in Tables 2 and 3.

Two tier-two validation failures were observed for GPD tail fit: in date set 2 for
the heading 55 and 60° at significant wave height of 9 m and modal period 14 s. Two
other data sets for these conditions did not indicate a failure. The reason for failure
is likely that the shape parameter was significantly underestimated, leading to a very
light tail and to one of the “pitfalls” of GPD tail fitting described by [26]. Table 2
also contains the passing rate averaged over three data sets in the column marked
PRA. As the total number of “trials” for this column is 150, the acceptable passing
rate is between 0.91 and 0.98 (Table 4). The cases when the passing rate exceeded
the upper boundary of 0.98 are in the blue font. The observed number of failures for
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the most probable estimate and upper boundary are given for 150 data sets as well
as values of the conservative distance and relative bias.

Two failures were observed with the exponential tail: for a heading of 70° with a
modal period 14 s and at 45° with a model period 15 s and significant wave 9 m. Both
failures were observed when applying goodness-of-fit with the level of significance
0.1. As no failures were recorded for a level of significance exceeding 0.1, the reason
is likely to be the fitting method. Based on these observations, the significance level
must be 0.2 or more for successful use of the goodness-of-fit test. No failures were
observed for the prediction error criterion.

Asmentioned above, the requirements for tier three are not yet clear. One approach
described by [28] is to fail a validation if one of the conditions at tier two did not pass.
Following this approach, theGPD tail fit and exponential tail fitwith the goodness-of-
test and significance level of 0.1 should be limited in application to those conditions
that passed tier two.

Alternatively, the passing rates averaged over all the considered conditions could
be reviewed. That would correspond to 2100 extrapolation data sets for the GPD
tail and 700 for the exponential tail. Acceptable boundaries for the passing rates
are available in Table 4. This approach finds the GPD tail acceptable with a perfect
passing rate of 0.95, indicating that the light tail “pitfall” still can be overcome by
a large-volume sample. This is also a possible indication of slow convergence of
GPD. The “averaged” approach still fails the exponential tail with a significance
level goodness-of-fit of 0.1. Significance levels of 0.3 and above may be seen as too
conservative with a passing rate of 0.98, exceeding an acceptable level of 0.97 from
Table 4. The exponential tail estimated with 0.2 significance level for goodness-of-fit
and prediction error criterion are found acceptable by both tier-three approaches.

The conservative distance,CD, as follows from its name and definition in Eq. (20),
is an indicator of how conservative the extrapolated estimate could be, expressed as
an order of magnitude. The CD values are evaluated for all the extrapolation data
sets individually and averaged over all conditions. The latter is a convenient metric
to compare the performance of different tail fits. The exponential tail reduces the CD
value to 1.4–1.5 from the 1.85 evaluated for GPD. This conclusion is consistent with
the visual observation in Figs. 4 and 5, showing a more significant decrease for the
lower boundary of the confidence interval.

The relative bias, RB, is defined in Eq. (20) and is similar to the CD-value. It
measures the conservativeness of the extrapolated estimate but uses themost probable
value (and mean value for the GPD tail) rather than the upper boundary of the
confidence interval. Since the upper boundary is expected to be of practical use,
the RB value can be observed as an auxiliary performance indicator. Similar to the
conservative distance, RB values are evaluated for all the extrapolation data sets
individually and averaged over all the conditions. The RB value is formulated as a
factor rather than an order of magnitude, so the most probable value can be expected
to converge to the true value if the extrapolation is perfect.

The relative bias values reveals that for the GPD tail, the most probable value is
a better estimate, as RBMP < RBM in Table 2. However, the estimation of the most
probable extrapolated value fails on average in about 15% (22.36/150, the column
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identified NFMP in Table 2) of extrapolation attempts, while the mean value estimate
always can be computed (Eq. 27 in [10]). The difference between RB values for
GPD and exponential tail is also a good illustration of improvement made by the
physics-informed approach: on average 11 for GPD in Table 2 versus 2.9–4.25 for
the exponential tail in Table 3. This difference is believed to be caused by slower
convergence of GPD vs. exponential tail.

The last column in Table 2 (identified as NFU ) is the number of failures for the
calculation of the upper boundary of the confidence interval for theGPD extrapolated
estimate. The percentage of failures is about 1% (1.57/150), which is smaller than
the percentage of failures for the most probable estimate, NFU < NFMP; therefore,
so even if the calculation of the most probable GPD value fails, the upper boundary
of the confidence interval still may be available.

Concluding the overall performance assessment, the best method was found to be
an exponential fitted with goodness-of-fit test with significance level of 0.2 with CD
= 1.43 and RB = 2.85, while the fitting with the error prediction criterion having a
similarCD= 1.4 but RB= 4.25. However, since no theoretical background exists for
the choice of the significance level in the goodness-of-fit test, the recommendation is
to use the extrapolation with exponential tail fitted with the error prediction criterion.

6 Summary and Conclusions

This chapter describes the statistical validation of the split-timemethod for estimating
the probability of capsizing in irregular waves. The main feature of the split-time
method is to compute a metric of the likelihood of capsizing as a difference between
the observed roll rate at a roll threshold up-crossing and a critical roll rate leading
to capsizing at a particular instant of time. Statistics for the metric values can be
collected without actual observation of capsizing and extrapolated to estimate the
probability of capsizing.

Extrapolation is performed with Generalized Pareto distribution (GPD) following
the second extreme value theorem. Accounting for weak nonlinearity of roll rate and
assuming lesser influence of stability variation in waves, an exponential tail can be
applied instead of GPD. Including physical information into extrapolation scheme
(i.e. the physics-informed approach) allows a significant decrease in the statistical
uncertainty and improvement of the reliability of the prediction.

Validation of extrapolation is determined with a fast numerical simulation algo-
rithm, capable of qualitatively reproducing the most principle nonlinearity of roll
motion by computing the instantaneous submerged volume and its centroid. These
calculations were carried out for sufficiently long times to observe capsizing in real-
istic conditions. The validation is considered to be successful if a small subset of this
data can predict the capsizing probability without observing capsize.
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The statistical validation considered 14 conditions for the ONR tumblehome top
configuration. A three-tiered validation procedure was employed for GPD and expo-
nential tail extrapolation. Two tail fitting techniques were applied for the exponen-
tial tail: prediction error criterion and goodness-of-fit test, with the series level of
significance varying from 0.1 to 0.5.

If the successful multi-condition validation requires that all the conditions to
be validated individually, only extrapolation with exponential tail fitted with error
prediction criterion or goodness-of-fit test with the significance level 0.2 and above
can pass. If adjudication of success is based on the averaged outcomes, GPD
extrapolation also passes.

In addition to validation, performance of the extrapolation methods was assessed
with criteria for conservativeness and accuracy. The best performing methods were
extrapolations by exponential tail fitted with error prediction criterion and goodness-
of-fit test with a significance level of 0.2. The final recommendation is application of
the split-time method with exponential tail fitted with the error prediction criterion.
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