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Abstract Thepaper presents a simplified setupof the “criticalwavegroups”method,
suitable for swift probabilistic evaluations of ship capsize tendency due to beam-sea
resonance. The simplifications proposed herein are twofold and aim at reducing
the computational cost associated with the identification of the critical, for ship
stability, wave episodes when these are represented by the “expected” wave groups
for the ambient sea state. The first simplification concerns the initial conditions
of the vessel at the moment of a wave group encounter which, according to the
exact “critical wave groups” formulation, should be probabilistically treated. Instead,
the simplified approach pursues reliable estimates by examining only the upright
equilibrium state. Moreover, by focusing on sea states being highly probable to
provoke resonance, fewer simulations need to be performed since, among all critical
wave group candidates, the main probability contribution essentially comes from
those having periods close to the natural period of the vessel in question. Considering
these wave groups only constitutes the second simplification.Within this framework,
regular wave trains are also tried to investigate the possibility of eliminating the
computational burden due to the generation of the “expected” wave groups. The
accuracy of both schemes in calculating the probability of extreme responses is
assessed through comparisons with Monte Carlo simulations of roll motion.
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1 Introduction

The study of large amplitude ship roll motions in stochastic beam seas is a non-trivial
task expanding in both the fields of nonlinear dynamics and probability. As known,
roll statistics deviate from Gaussianity with increasing level of nonlinearity, leading
to probability distributions with heavy-tailed structure [6]. However, calculating the
probability of extreme roll events by employing “brute force” methods suffers from a
number of deficiencies. First, the accuracy of a “direct counting” definition of proba-
bility becomes questionable when dealing with rare events. At the same time, the fact
that ship response is not essentially an ergodic random process for nonlinear systems
calls for the use of ensemble averages in the direct counting procedure [4]. This,
however, requires additional effort (comparing to an ergodic system) for generating
a statistically meaningful amount of extremes since many short realizations need
to be generated while their largest part, reflecting the “statistical” transients, will
eventually be discarded (e.g. [3]). More so, even if temporal averages are to be
used, one has to set-up the simulations carefully to sample throughout a relevant
response sample space in the correct proportions without idly expending computa-
tional resources. Clearly, this type of sampling is not as straightforward as it would
be for an ergodic dynamical system and thus, it may further deteriorate the efficacy
of massive simulations in tracing the complex shape of the tails.

Various methods have been proposed to treat the so called “problem of rarity”,
described in the above. Extrapolation methods employ statistics based on a limited
number of realizations to predict the probability of an event that is too rare to be
observed. The concept derives from extreme value theory (EVT) which is built upon
two main theorems providing asymptotic expressions for the distributions of the
maximum (first theorem) and of the excesses over a threshold (second theorem)
of a sample of independent and identically distributed random variables. Thus, the
objective is the estimation of the parameters of an extreme value distribution through
fitting to a set of experimental or simulation data. The effectiveness of the approach
has been investigated in several studies and much effort has been put into addressing
practical issues regarding its application for ship stability assessment (e.g. [5, 23]).

On the other hand,wave groupmethods offer an alternative solution to the problem
by focusingon specific time intervalswhendangerouswave events occur.Oneof them
is the “critical wave groups” method which quantifies instability tendency through
the probability of encountering any wave group that could have provoked the insta-
bility [20]. In the deterministic part of the method, regular wave trains are employed
to identify critical, for ship stability, height thresholds. Then, in the probabilistic
part, the probability of encountering any wave sequence higher than the specified
thresholds is calculated using distributions of wave heights and periods derived either
empirically, from simulations of the wave field, or theoretically, directly from the
spectrum. A first attempt to validate the concept was presented by Shigunov et al.
[15] who selected a modern 8000 TEU containership to calculate the probability of
exceeding a 40° roll angle threshold. The results were tested against Monte Carlo
simulations and fair coincidence was noted in the case of beam seas excitation.
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Recently, Anastopoulos and Spyrou [3] demonstrated that the performance of the
method in predicting extreme roll responses in beam seas is improved if critical
thresholds are defined in terms of realistic wave group shapes being, in fact, the
“most expected” representatives of the ambient sea state. In assessing the accuracy
of the approach, it was concluded that treating the initial state of the vessel in a
probabilistic context is essential when dealing with sea conditions causing very few
extremes.

In this paper, a simplified setup of the most contemporary version of the “critical
wave groups” method, presented in [3], is developed. The simplifications address
the problem of exhaustively generating wave group environments in the process of
determining the critical ones and expand in two directions. In the first, the idea is to
focus our attention on identifying instability-causing wave groups for only one set
of initial conditions of the ship at the beginning of the simulations. To determine the
most relevant, for ship stability evaluation, initial state, well-established concepts of
dynamical systems theory are invoked. In the second direction, the intention is to
reduce the number of possible critical wave group shapes by exploiting the features
of the “expected” wave groups derived for a given sea state. The method is applied
to two ship models operating in qualitatively different, with respect to the frequency
that extreme responses are realized, sea states in order to calculate the probability of
exceedance for a number of roll angle thresholds. In this context, the conditions under
which the simplified “criticalwave groups” schemeproduces comparable resultswith
those obtained fromMonte Carlo simulations of roll motion are investigated and the
focus is set on the region of extreme responses where the accuracy of the latter is
disputable.

2 A Simplified “Critical Wave Groups” Method

In the literature of ocean and coastal engineering, wave groups are traditionally
defined as sequences of waves with heights exceeding a certain preset level and
periods varyingwithin a potentially narrow range [11, 13].No doubt, such a definition
can only rely on subjective criteria regarding the selection of an “appropriate”, for
the identification of wave grouping phenomena, height threshold. To overcome this
issue in analyzing ship dynamics, wave groups are considered herein as sequences of
waves which, given the variability of their periods, are sufficiently high to provoke
instabilities.

2.1 Mathematical Formulation

Let us assume thatwe are interested in estimating the probability that a vessel exceeds
a limiting, from ship stability point of view, roll angle threshold ϕcr . The key idea
of the “critical wave groups” method is to first identify the wave events that cause
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the exceedance and then, calculate the probability of encountering them. This is
expressed by Eq. (1), presented below:

Pr[ϕ > ϕcr ] =
∑

k

Pr

[
ϕ > ϕcr |

(
⋃

q

wgk,q , ick

)]

︸ ︷︷ ︸
= 1

×Pr

[
⋃

q

wgk,q , ick

]
(1)

where wgk,q is a wave group event with characteristics q, determined for the k-th set
of initial conditions {ϕ0, ϕ̇0} of the vessel at the moment of the encounter. Nonethe-
less, evaluating stability by considering a large number of initial states {ϕ0, ϕ̇0} can
be time-consuming and eventually may become impractical in early design stages
when decision-making requires swift calculations. In assessing the influence of initial
conditions on transient ship dynamics, Thompson and co-workers discovered that
capsize tendency is associated with a specific excitation level which is immensely
independent of {ϕ0, ϕ̇0} for a given ship hull (e.g. [22]). This is due to the fact
that, at this critical level, the erosion of the safe basin is sudden, rapid and, most
importantly, starts “from within”, i.e. in the vicinity of {ϕ0, ϕ̇0} = {0, 0}. It can be
argued, therefore, that examining only the upright equilibrium position of the vessel,
corresponding to k = 0 in Eq. (1), can be somehow acceptable. Moreover, from
a preliminary investigation on the sensitivity of the estimates of the “critical wave
groups” method to the initial conditions, Themelis and Spyrou [21] concluded that
retaining only k = 0 in Eq. (1) may be sufficient for sea states being highly prob-
able to provoke resonance. Based on the above, the probability of exceeding ϕcr is
approximated here through the following equation:
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∑
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where the symbol “:=” is used to indicate the introduction of a new (more compact)
notation (right-hand side) for the probability object appearing in the left-hand side.
The superscript (0) implies that the probability calculations are performed over the
set of instability-causing wave groups

(
wgq

)
determined for {ϕ0, ϕ̇0} = {0, 0} only.

Equation (2) describes the essence of a swift “critical wave groups” approach being,
in fact, a reduced order version of the method presented in [3] which duly accounts
for the probabilistic nature of the initial state {ϕ0, ϕ̇0} of a vessel when hit by a wave
group.

For large ϕcr one may assume that individual wave group occurrences are suffi-
ciently rare to be treated as statistically independent. In the light of this, Eq. (2) is
reformulated as [3]:



An Efficient Formulation of the Critical Wave Groups Method … 161

Pr

[
⋃

q

wg(0)
q

]
= 1 − Pr

[
⋃

q

wg(0)
q

]

= 1 − Pr

[
⋂

q

wg(0)
q

]
= 1 −

∏

q

(
1 − Pr

[
wg(0)

q

])
(3)

where the overbar denotes the complement of an event. A significant challenge in
Eq. (3) is to ensure that wave groups causing ϕ > ϕcr form a set ofmutually exclusive
and collectively exhaustive events. To avoid possible overlaps in the calculations,
wave groups are classified with respect to their characteristics q being: (a) the run
length j, i.e. the number of consecutive heights exceeding a critical threshold and
(b) the range within which the periods of participating waves are considered to vary
Tcr,m :

Pr
[
wg(0)

q

] = Pr
[
wg(0)

m, j

]
= Pr

[
H j > hcr, j ,T j ∈ Tcr,m

]
(4)

where H j = {
H1, . . . , Hj

}
and T j = {

T1, . . . , Tj
}
are vectors of random variables

referring respectively to the heights Hn and periods Tn of an individual wave group
event with run length j (1 ≤ n ≤ j), hcr, j = {

hcr,1, . . . , hcr, j
}
is a deterministic

vector containing the heights of a critical wave group with run length j. It is remarked
that, in (4), the vectorial inequality denotes comparisons between the corresponding
components of the two vectors.

Eventually, the calculation of the right-hand side of Eq. (4) is performed in two
parts: a deterministic one, focused on the identification of the so called “critical”wave
groups, i.e. those wave successions leading to only slight exceedance of ϕcr ; and a
probabilistic part for calculating the probability of encountering any wave group
higher than the determined critical. The implementation of the former is, in general,
straightforward and requires a ship motion model and a method for systematically
generating wave group excitations. Then, for a given set of wave group parameters{
Tcr,m, j

}
, the associated hcr, j vector can be determined through successive simula-

tions, each of them testing a different, in terms of the heights of participating waves,
group scenario, until the critical height sequence is detected [3]. As realized, the
impact of the deterministic part on the effectiveness of the overall approach is explic-
itly related to the shape of the waveforms employed for representing critical wave
groups. As for the probabilistic part of the approach, we follow the work of [10] who
introduced the idea of modeling wave successions as Markov chains.1 Nowadays,
the concept enjoys wide acceptance by the scientific community since it has been
successfully validated several times by both numerical simulations and real wave
field measurements (e.g. [17]). Within the Markovian framework, the probability of
encountering dangerous wave groups with certain specifications, as in Eq. (4), can
be expressed as:

1 In very simple terms, a Markov chain is a sequence of random events in which a future outcome
depends solely on the event realized at the previous step.
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Pr
[
H j > hcr, j ,T j ∈ Tcr,m

]

= p0 ×
j∏

n=2

+∞∫

hcr,n

∫

Tcr,m

f Hn ,Tn |Hn−1,Tn−1(hn, tn|hn−1, tn−1)dtndhn (5)

where m = 1, 2, ..., M denotes different cases of critical period segments and:

p0 =
+∞∫

hcr,1

∫

Tcr,m

fH1,T1(h1, t1)dt1dh1 (6)

In the above, f Hn ,Tn |Hn−1,Tn−1 is the conditional probability density function (PDF)
of wave height and period at time-step n given the values of these variables at the
previous time step (n − 1), while fHn ,Tn is the joint height-period PDF of a single
wave. Hence, the product term in Eq. (5) gives the probability of encountering a
critical (or worse) sequence of j − 1 waves given that an initial wave with height
h1 > hcr,1 and period t1 ∈ Tcr,m is realized, while p0 is the probability of actually
experiencing an initial wave with these characteristics.

2.2 Wave Groups Construction Method

Based on theMarkovian property of seawaves, [1] developed amethod for predicting
the shape of the “expected” wave groups for a given sea state. In its original version,
the method requires as input the run length j and the characteristics (height hc and
period tc) of the highest wave in order to generate the particular “expected” wave
group for these specifications. In [3], amodified version of thismethodwas discussed
where the wave group construction algorithm could also allow for tuning the periods
of individual waves to vary within a desired range Tcr,m . This, on the one hand,
extends the capabilities of the “critical wave groups” method itself since the orig-
inal construction process basically produces wave groups with periods varying only
in the vicinity of the mean period of the assumed sea state. Therefore, when the
natural period of the vessel in question is far from this regime, very few critical wave
groups can be generated and eventually, the probability of stability failure is under-
estimated. On the other hand, having an additional design parameter (Tcr,m) entails a
larger number of possible wave group formations which, in turn, have to be tested in
the deterministic part of the method. Here, aiming at formulating a relatively simpler
“critical wave groups” setup, requiring fewer simulations, we resort to the original
construction algorithm of [1], yet knowing that the effectiveness of the current (more
efficient) approach will presumably be challenged when the examined sea condi-
tions are very unlikely to provoke instabilities due to resonance. The algorithm is
implemented in two steps described, in brief, next.
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Given the wave group specifications { j, hc, tc}, the first step is to predict the
“expected” values (in time) of the heights and periods of the participating waves.
To this end, the height hc and period tc of the highest wave, assumed to occupy the
n-th position (1 ≤ n ≤ j) in the wave sequence, are used for initiating the following
iterative scheme:

hn =
∞∫

0

hn fHn |Hn−1,Tn−1(hn|hn−1, tn−1)dhn (7)

tn =
∞∫

0

tn fTn |Hn ,Hn−1,Tn−1(tn|hn, hn−1, tn−1)dtn (8)

where the overbar is used to denote the expected value of the corresponding random
variable. The integral kernels fHn |Hn−1,Tn−1 and fTn |Hn ,Hn−1,Tn−1 are the transition PDFs
of the Markov chain and can be obtained either from spectral methods [1] or by
“direct counting” procedures based on Monte Carlo simulations of the wave field
[2]. Provided the time reversibility property of this particularMarkov chain, and since
the characteristics of the highest wave are a priori known, at most j − 1 iterations
of Eqs. (7) and (8) are required for predicting the “expected” characteristics of the
surrounding waves. If, for example, the objective is to construct a wave group with
j = 5 and highest wave encountered in the 4th position, then it is sufficient to
predict the heights and periods {hn, tn} of the 3 preceding waves (n = 1, ..., 3) and
eventually set {h5, t5} = {h3, t3} due to time reversibility. The concept applies to
all wave group configurations, unless the highest wave occupies either the first or
the last (j-th) position and thus, all j − 1 iterations need to be performed. Finally,
to avoid any confusion due to the notation used herein, we emphasize that Eqs. (7)
and (8) naturally differ from Eqs. (6) and (8) in [3] due to the absence of the Tcr,m
parameter from the current approach, as discussed in the above. Moreover, Eq. (8)
improves Eq. (4) of [1] since it takes into account the correlation between the height
and the period of a predicted wave.

The final step of the construction process deals with the generation of the wave
group time-history at a fixed location x0, given the height and period sequences
obtained from the previous step. This can be formulated as an identification problem
with respect to the bi parameters appearing in the following expression for the water
surface elevation η:

η(t) =
5 j∑

i=0

bi sin(ki x0 − ωi t) (9)

where j is the run length of the wave group under construction. The idea here is to
consider Eq. (9) as an interpolating function passing through a number of key points
(i.e. crests, troughs and zero-crossings) describing the wave group shape in the time
domain. The coordinates of these points can be inferred from the “expected” height
and period values derived from Eqs. (7) and (8) (more details on this part can be
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found elsewhere, e.g. in [2]). To ensure the uniqueness of the solution, the number
of terms kept in the series expansion (i.e. 5j + 1) is set equal to the number of
imposed geometrical constraints and thus, it becomes a function of the run length j.
The above constitute a well-defined (Hermite-type) interpolation problem for which
closed-form expressions for the bi parameters are available in the existing literature
(e.g. [12]).

2.3 Equation of Roll Motion

In principle, “the critical wave groups” method is not biased towards any specific
type of mathematical model (in fact, it can handle equally a simple ODE and a CFD
model). However, since our intention is to evaluate the performance of the approach,
massive Monte Carlo simulations will have to be carried out using the very same
model of ship motion. Aiming at enhancing the reliability of Monte Carlo estimates
(particularly in the tail region) through a large (and computationally inexpensive)
simulation campaign, we adopt the following uncoupled equation, written in terms
of the relative roll angle ϕ:

(I44 + A44)ϕ̈ + D(ϕ̇) + g�GZ(ϕ) = M(t) (10)

with I44 and A44 being the roll moment of inertia and the added moment of inertia,
respectively, � is the ship displacement, g is the gravitational acceleration and D is
the damping moment:

D(ϕ̇) = B1ϕ̇ + B2ϕ̇|ϕ̇| (11)

The restoring arm in still water is given as:

GZ(ϕ) =
∑

k

Ckϕ
k (12)

When information about the roll moment amplitude operator Froll(ω) is available,
the wave group induced moment can be expressed, via Eq. (9), as:

M(t) =
5 j∑

i=0

Froll(ωi )bi sin(ki x0 − ωi t) (13)

Alternatively, in the presence of long incident waves, the concept of instantaneous
wave slope at the middle of the ship α(t) = ∂η(x, t)/∂x |x=x0 can be employed [24]:

M(t) = −I44α̈(t) (14)
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3 Results and Discussion

In this section, the simplified “criticalwave groups” scheme is applied to twodifferent
ship models in order to compute the probability of exceedance Pe = Pr[ϕ > ϕcr ] for
several roll angle thresholds ϕcr . These are implied as possible limits of unacceptable
behaviour given that Eq. (10) is a very simple roll model and it does not contain
design information about deck submergence, downflooding angles etc. As a result,
derived Pe values are considered to be referring to a parameterized limit for stability
failure. Regarding the construction of the “expected” wave groups, the transition
PDFs in Eqs. (7) and (8) are determined according to the copula-based methodology
described in [1], yet the necessary correlation parameters are estimated from datasets
produced from extensive simulations of the water surface displacement. In this way,
the effectiveness of the Markov model in predicting the “expected” wave height and
period sequences is enhanced. For calculating the probability inEq. (5), the associated
PDF f Hn ,Tn |Hn−1,Tn−1 is also obtained by direct counting procedures based on the
generated wave data. To investigate the possibility of eliminating the computational
cost due to the generation of the “expected” wave groups, regular wave trains are also
tried for representing critical group encounters. In both the regular and the “expected”
wave group implementations of the approach the results are tested against Monte
Carlo simulations of roll motion.

3.1 Ship Model 1

An ocean surveillance ship, referred in the study of [19], was selected as the first
ship model. Main parameters of the vessel are given in Table 1 and the roll moment
amplitude operator Froll(ω) is presented in Fig. 1.

The ship is assumed to operate in conditions described by the Bretschneider
spectrumwith significant wave height Hs = 4m and peak period Tp = 6s (e.g. [13]):

Sηη(ω) = 1.25

4

ω4
p

ω5
H 2

s exp

[
−5

4
·
(ωp

ω

)4
]

(15)

Table 1 Main parameters of
ship model 1

Parameter Dimensional value Dimensions

I44 + A44 5.540 × 107 kg m2

� 2.056 × 106 kg

B1 5.263 × 106 kg m2/s

B2 2.875 × 106 kg m2

C1 3.167 m

C3 −2.513 m
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Fig. 1 Roll moment
amplitude operator Froll (ω)

for ship model 1

were ωp = 2π/Tp is the peak frequency. For the simulations of the wave field, the
spectral representation method is adopted [18]:

η(t) =
∑

i

√
2Sηη(ωi )δωi cos(ωi t + εi ) (16)

were εi are random variables uniformly distributed over [0, 2π), ωi are the frequen-
cies of the wave components and δωi is the frequency resolution. In total, 18,853
waves were analyzed from a set of 24 records of 1h produced within 7min on a
modern laptop using the Fast Fourier Transform (FFT) approach [16].

Furthermore, Monte Carlo simulations of roll motion were set-up accordingly so
as to estimate desired probabilities using ensemble averages, i.e. without assuming
the ergodic property for the response [4]. The idea was to explore the roll probability
space at a fixed time instant ts beyond which the statistical properties of the response
process remain practically constant. Specifically, a collection of approximately 15
× 105 short-duration realizations was simulated and the roll angle value sampled
at ts = 150s was kept from each realization for further analysis (details for duly
selecting ts are given in [3]). Then, exceedance probabilities for various roll angle
thresholds ϕcr were computed through the number of observed exceedances over ϕcr

divided by the sample size (15 × 105). To quantify the uncertainty of these direct
counting estimates, the Wilson score confidence interval was preferred knowing that
it is the most consistent with the nominal coverage probability among a number of
binomial proportion-based intervals described in the literature [7]. At this point, it
is important to distinguish Eq. (9) from Eq. (16) since the latter is a well-known
model for representing stochastic processes, while the former is only a Fourier-
based interpolation function, essentially not designed for Monte Carlo simulations.
Therefore, for massively generating roll response time-histories through Eq. (10), the
wave inducedmoment was obtained bymultiplying each individual wave component
in Eq. (16) by the corresponding Froll(ωi ) amplitude.

Figure 2 illustrates the pattern of the predictions of Eqs. (7) and (8) for the
examined sea conditions when various {hc, tc} values (squares) are considered. The
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Fig. 2 Map of the
“expected” height and period
sequences generated for the
Bretschneider spectrum

“expected” heights hn and corresponding periods tn , as derived from successive iter-
ations, are shown on the vertical and horizontal axes, respectively. The evolution
of the procedure for a given set of {hc, tc} parameters is denoted by circles along
the dashed lines. The root of this tree-shaped diagram is the stationary state of the
Markovian system and the structure of the “expected” wave groups is largely affected
by the distance of {hc, tc} from it. Since the width �T of a critical period range Tcr,m
is the difference of the shortest from the longest period in a generated sequence,
it naturally coincides with this characteristic distance for wave groups with large j
(i.e. when more iterations are applied). In this regard, the maximum period tc,max

used in the calculations should exhibit an interesting relationship with the deduced
probability values. Finally, as anticipated, there is a large concentration of points
close to the mean period of the sea state, indicated by the abscissa of the root.

Figure 3 presents the results of the Monte Carlo simulations (solid line) and the
associated 95% confidence intervals (dashed lines) in the tail region. The estimates
of the “critical wave groups” method, obtained by employing the “expected” wave
group forms for the ambient sea statewith run lengths j ≤ 6, have been superimposed
on the same plot. For the latter method, two implementations (denoted by circles and
diamonds) are presented corresponding to different values of the maximum period
tc,max considered for initiating the iterations in Eqs. (7) and (8). As demonstrated
in Fig. 2, for increasing tc the highest wave progressively deviates from the periods
of the surrounding waves leading to larger �T . Therefore, the tolerance for the
detection of resonant phenomena is relaxed and the probability in Eq. (5) increases.
However, including very distant, with respect to the root, tc values may be irrelevant,
and more importantly inaccurate, since the period of the highest wave distorts the
grouping character of the rest period sequence. To avoid this issue, Fig. 2 could be
utilized for identifying the region where theMarkov chain predictions are insensitive
to tc,max . For the sea state in question, this happens beyond tc = 7s and thus, for
tc,max = 10s the proposed method consistently overestimates the probability of
exceedance Pe. On the contrary, more reliable estimates are provided for tc,max = 8s.
Interestingly, for practical instability limits ϕcr ∈ [

30 deg, 40 deg
]
, the selection of
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Fig. 3 Probability of
exceedance for ship model 1
using irregular wave groups
(circles and diamonds).
Dashed lines indicate the
95% confidence intervals of
the simulation-based
estimates (solid line)

tc,max does not seem to be that important, given that in both the examined scenarios
the method performs satisfactorily. In the tail region, though, both schemes predict
more exceedances than the Monte Carlo approach; this, however, could be due to the
very rarity of the extremes. The current method was not applied for ϕcr < 15 deg
since in this regime ship response is, in principle, Gaussian [3]. In producing results
for all 9 thresholds, the elapsed time per tc,max case was less than an hour on a
modern desktop, including the most time-consuming part of the procedure being the
construction of the “expected” wave groups.

On the other hand, the effectiveness of the “critical wave groups” method deteri-
orates when regular wave trains with j ≤ 6 are employed, as shown in Fig. 4. In the
same spirit, two different cases of critical period range widths �T were studied and
both were found to consistently underestimate the probability of exceedance below
40°. For larger angles, though, the accuracy of the method is improved, particularly
for �T = 2s. This is in accordance with the work of [22] who concluded that in
analyzing capsize tendency,2 it is sufficient to consider only the upright equilibrium
initial state of the vessel when hit by a regular wave train. In the context of the
“critical wave groups” method, this was verified by Themelis and Spyrou [21] who
observed that the effect of the initial state becomes weaker (in terms of probability)
for sea conditions associated with resonant phenomena. Another important aspect
of the regular-wave implementation of the current approach is that, in contrast to
the “expected” wave groups-based scheme, there is no guidance (at the moment at
least) for selecting �T accordingly. Only in retrospect it can be deduced that setting
�T = 1s is too strict. Finally, although here calculations were performed for 11
thresholds, the associated computational cost per�T scenario was only fewminutes

2 Defined as the escape from the potential energy well; thus, implying the exceedance of a large roll
threshold.
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Fig. 4 Probability of exceedance for ship model 1 using regular wave groups (circles and
diamonds). Dashed lines indicate the 95% confidence intervals of the simulation-based estimates
(solid line)

on amodern desktop. The dramatic speed-up comes from the time spent in generating
wave group environments given that for regular waves it is practically negligible.

In the deterministic part of the method, critical wave group parameters, identified
for ϕcri t = 45deg, are summarized in Fig. 5 in the form “transient capsize diagrams”
[14]. These are plots of the wave steepness H/λ of a critical wave group against
its period T , here normalized with the natural period of the vessel To = 5.9s. In
the case of regular wave trains, the boundary between the “stable” and “unstable”
regions is shown by solid lines, while for the “expected” wave groups, short and long
dashed lines are utilized for indicating the boundary location when defined in terms
of the mean and maximum steepness, respectively, of the participating waves. As
one obtains two boundary lines for this case, shading has been applied to enhance
the contrast against the regular-waves curve. For j = 2, height thresholds produced
by regular and the “expected” wave trains are, in the mean sense, relatively close.
For j = 3, however, the dangerous zone is enlarged when considering irregular wave
groups. The shift of instability region towards the area of long waves has already
been reported in [2].

3.2 Ship Model 2

A modern 4800 TEU Panamax containership with main parameters listed in Table 2
and natural period To = 15.2s was considered for a second case study. The restoring
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Fig. 5 Transient capsize diagrams for ship model 1 corresponding to run lengths j = 2 (left panel)
and j = 3 (right panel); in both cases instability is defined as the exceedance of ϕcri t = 45deg

arm coefficients in Eq. (12) were provided directly from the loading manual of the
vessel, while roll damping estimates were obtained by applying Ikeda’s method
[9]. Since no information was available about the Froll function, wave forcing was
approximated by Eq. (14). In this application, the JONSWAP spectrum with Hs =
10m, Tp = 14s and γ = 1.932 was selected to describe the sea state of operation
(e.g. [8]):

Sηη(ω) = (1 − 0.287 ln γ )SB(ω)γ
exp

[
− 1

2

(
ω−ωp
0.08ωp

)2
]

(17)

where SB(ω) is the Bretschneider spectrum. Again, wave group statistics were
extracted by simulating 24 records of 1h length using Eq. (16). These produced
a total population of 7,875 waves within only few minutes on a modern desktop.
Roll motion time-histories were generated using the same setup as for ship model 1,
yet sampled at ts = 200s.

The results obtained from the implementation of the “critical wave groups”
method when ship model 2 is excited by the “expected” wave groups for the given
sea state and by regular wave trains are presented in Figs. 6 and 7, respectively.
Regarding the accuracy of the approach for roll angle thresholds up to 40°, again it
is enhanced when irregular waveforms are employed. Beyond 43°, the Monte Carlo
simulations did not predict any extremes due to the problem of rarity; while in the
same regime both schemes of the current method seem to reliably extrapolate the

Table 2 Main parameters of ship model 2

Parameter Dimensional value Dimensions Parameter Dimensional value Dimensions

I44 1.020 × 1010 kg m2 C1 2.851 m

A44 1.021 × 109 kg m2 C3 5.407 m

� 6.820 × 107 kg C5 −18.169 m

B1 4.829 × 108 kg m2/s C7 14.278 m

B2 6.316 × 108 kg m2 C9 −3.677 m
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trend of the direct counting estimates. As for the selection of tc,max , it was based
on the same methodology described for ship model 1. Specifically, tc,max = 15s
was anticipated to perform better since beyond this value the “expected” height and
period sequences were found practically independent of the assumed {hc, tc}. In the
regular-wave version of the approach, it can be argued that setting �T = 2s is more
suitable for calculating exceedance probabilities Pe associated with intermediate roll
angle thresholds, while �T = 1s appears more suitable for extrapolation, as docu-
mented also in [3]. The specific sea state was consciously selected for demonstrating
the extrapolation character of the proposed method since although it is very likely
to provoke resonance, Hs is not high enough for inducing many extremes. More so,
[21] have observed that, for such sea states, considering various initial conditions
within the “critical wave groups” framework is rather unnecessary.

Finally, Fig. 8 compares regular and irregular critical wave trains with j = 2
and j = 3 in terms of their contribution to the total probability of exceedance
Pe. The calculations were made for the critical period parameters that provided the
best agreement with the simulation results in Figs. 6 and 7. Thus, �T = 2s and
tc,max = 15s were selected for the regular and the irregular case, respectively. The
contribution of run lengths with j > 6 to the total probability of exceedance was
found negligible.

Fig. 6 Probability of
exceedance for ship model 2
using irregular wave groups
(circles and diamonds).
Dashed lines indicate the
95% confidence intervals of
the simulation-based
estimates (solid line)
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Fig. 7 Probability of exceedance for ship model 2 using regular wave groups (circles and
diamonds). Dashed lines indicate the 95% confidence intervals of the simulation-based estimates
(solid line)

Fig. 8 Contribution of individual run lengths j to the probability of exceedance for ship model 2

4 Concluding Remarks

In this study, a simple and computationally efficient “critical wave groups” method
was developed for calculating the probability of large-amplitude ship motions in
beamseas. Themethod is focusedonproviding swift estimates by examiningonly one
scenario of initial conditions of the vessel when approached by the “expected” wave
groups for the ambient state. To investigate the possibility of further simplification,
since the generation of realistic wave environments is time-consuming, the method
was applied also using regular wave trains. The effectiveness of both the regular and
the “expected” wave group-based schemes was assessed through comparisons with
the predictions of Monte Carlo simulations of roll motion. The results indicate that
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the proposed method performs better when the “expected” wave groups are utilized
for representing critical, for ship stability, wave episodes, particularly because period
successions are modeled in a realistic manner. Since the degree of variability allowed
in the wave period groupings is crucial for the accuracy of the method, guidelines
were formulated for duly selecting it. This contributed not only in obtaining reliable
estimates for practical limiting angles (e.g. 40°), but also in extrapolating in the tail
region where the efficiency of Monte Carlo simulations is generally low.

Most importantly, given that only few minutes were needed for completing the
calculationswith respect to a single roll angle threshold, the current approach appears
very suitable for preliminary ship stability evaluations. At the same time, however,
it is designed specifically for sea states being highly probable to provoke resonance
since otherwise most critical wave encounters will presumably remain unidentified
due to the very nature of the “expected” wave groups. More so, in non-resonant
sea states the effect of initial conditions becomes quite important [21] and thus,
the more detailed version of the “critical wave groups” method, discussed in [3],
should be invoked. As a final remark, methods for quantifying the uncertainty of the
estimates obtained via the “critical wave groups” approach are currently investigated
and results will hopefully be presented in future studies.
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