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Abstract. This article focuses on pattern identification in the context
of pupils aged 9 to 15 who are learning programming at school. In this
context, programming puzzles that involve moving a robot on a 2D grid
using a block-based programming language is common. We consider the
ability to identify and formally characterize recurring structures within
data or processes, to be a fundamental skill of computational thinking.
In this article, we study the case where the motif (i.e. repeating unit)
can be identified visually from the grid (obstacles, target. . . ) for tasks
involving the use of a loop. We ask what makes motif identification, and
thus problem solving, difficult in this context. We provide a quantitative
analysis based on the success rates of a hundred tasks from an online
programming contest (200,000 participants). We have identified relevant
features of the visual motif, which led us to specify five categories accord-
ing to the degree of correspondence between the visual motif (2D grid)
and the algorithmic motif (corresponding loop based program).

Keywords: Computational thinking · Pattern · Pattern
identification · Loop · Computer science education · Quantitative
analysis · Large-scale study

1 Introduction

Computer Science (CS) education has recently been reintroduced into school
curricula in many countries. In France, CS content has been included in compul-
sory school curricula since 2016. For students aged 9 to 12, programming is part
of the mathematics curriculum1. The prescribed task is to control a robot or a
character on a screen using a block-based programming language. For students
aged 12 to 15, they are expected to be able to “Write, develop and execute a
simple program.”2. But what does “a simple program” mean?
1 Cycle 3 curriculum in effect in 2020, mathematics, space and geometry section.
2 Cycle 4 curriculum in effect in 2020, mathematics, theme E - algorithmic and pro-

gramming.
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For this age group, using loops is one of the objectives of the school curricu-
lum, along with sequences of instructions, conditional instructions and variables.
At first, it could be considered that a program including a single loop, without
nesting, conditional statements or explicit variables, is a simple program for
students to write.

In previous studies [11], we set up pedagogical scenarios to explore how pri-
mary school students deal with programming tasks whose solution focuses on
the use of a loop. The results from these case studies led us to consider the iden-
tification of patterns, redundancies, as essential to deal with this type of task.
Especially, a recurring difficulty has been identified: the transition from one to
several instructions inside the loop.

In this article, we want to improve our analysis of pattern identification when
solving loop-focused programming tasks. Our two research questions are:

1. RQ1 What does pattern recognition consist in, in the context of visual pro-
gramming puzzles resolution?

2. RQ2 What are the parameters that make pattern recognition difficult when
getting started with solving loop-focused tasks?

To answer these questions, we mobilized elements of the theory of conceptual
fields by G. Vergnaud [16] to conduct an a priori analysis. This allows us to dis-
tinguish several elements involved in pattern recognition and to identify param-
eters that can explain the difficulty of the problems. Then, we carried out a
large-scale statistical analysis based on the success rates of 101 loop-focused
programming tasks from the 2018 to 2021 editions of the Algorea french pro-
gramming contest, which is organized by the France-ioi association. This statis-
tical analysis validates the relevance of the identified parameters.

In the next section, we introduce the context of this research: the concept of
motif and our analysis framework based on classes of situations. We then present
the analysis of the programming tasks as well as the experimental setting before
presenting the statistical analysis of the results for these tasks. We conclude
by suggesting perspectives to go further in our understanding of the process of
learning the basics of programming.

2 Theoretical Framework

2.1 From Pattern to Motif

In computer science, the word pattern is used in works about design patterns in
the field of software engineering [4]. It is also associated with a specific skill in
the scope of computational thinking, for which we can find various expressions:
“looking for patterns” [21], “pattern recognition” [6], “identifying and making
use of patterns” [3].

Some works more specifically mention the notion of loop, the focus of this
paper. Gouws et al. [5] have defined a framework for describing computational
thinking skills based on a literature review. This framework contains a category
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called “Patterns and Algorithms”, in which the notion of loop is taken as an
example. Rich et al. [12] define learning trajectories, including goals and exam-
ples of associated activities, one of which deals with iterative structures. The
authors mention the importance of the perception of redundancy because it is
intimately linked to the initiation to the notion of loop. Unfortunately, they do
not provide any analysis of pattern identification activities.

On the other hand, in mathematics education, some works address this ques-
tion of pattern identification. For Collins & Laski [2], a pattern is a sequence
with a replicable regularity, which can vary along one or more dimensions. Lil-
jedahl [7] proposes to distinguish two categories of patterns: repeating patterns
and number/growing patterns (Fig. 1). The first corresponds to a cyclic structure
generated by the repetition of a discernible unit. This definition is used in several
works [9,18,20]. The second corresponds to a pattern parameterized by one or
more pieces of information.

Fig. 1. Two categories of pattern in early mathematical education

For the previous authors, a pattern denotes the whole sequence, while our
focus is on the repeating unit. In our work, we choose to use the word motif for
the unit of repetition. With this meaning, the term motif is usually used in the
artistic or literary field: “an idea that is used many times in a piece of writing
or music”3, “a design which is used as a decoration or as part of an artistic
pattern”4. Drawing inspiration from the previous definitions, we define a motif
in our context as an entity that can be identified within a set, because
it is repeated identically or with predictable variations.

Liljedahl [7] lists different tasks related to the concept of pattern: copying a
pattern, continuing a pattern, finding missing elements in a pattern, transferring
a pattern from one representation to another, identifying the unit of repetition,
i.e., identifying the motif. Based on experiments conducted with young children
aged 3 to 6, Warren et al. [18] designed a pedagogical sequence and establish
a progression in the difficulty of these tasks [19,20]. In this progression, the
identification of the motif is the most difficult task and it is the one that reveals
the understanding of the structure of the pattern [19]. Indeed, the term-to-term
matching strategy, which consists in processing the elements of the pattern one
by one without considering it as a whole, is systematically defeated during the
activity of motif identification [2].

3 Cambridge Dictionary.
4 Collins Dictionary.
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In our context, we are interested in the activity of motif identification in the
field of computer science education. More specifically, we study motif identifica-
tion when pupils deal with loop-focused programming tasks. We consider that
the distinction proposed by Liljedahl [7] is a beginning of characterization of
the forms of complexity of pattern abstraction, in particular the transition from
directly observable (visual) patterns to unobservable patterns (changes of state
of the environment, even similarity processes in the context of design patterns).
We propose to specify what motif identification is in our context (RQ1) and to
study in more detail, the characteristics of the motifs to be identified and their
relation with the difficulty of the task (RQ2).

2.2 Classes of Situations

We aim to characterize and categorize the motifs to be identified when solving
loop-focused programming tasks. For this purpose, we rely on the concept of
class of situation developed by Vergnaud within the theory of conceptual fields
[16]. Vergnaud takes a constructivist and cognitivist approach to learning. He
aims to understand conceptualization, especially in the case of complex cognitive
tasks, of which computer programming is a part. The unit of analysis is the sub-
ject/situation couple, where situation is used in the sense of a task. Vergnaud’s
hypothesis is that any finalized action is based on a conceptualization-in-act, that
is to say that the actions of the subject reflect a cognitive activity that remains
most often implicit, including for the subject itself. In computer science educa-
tion, the conceptual field theory was used by Rogalski [13,14] to study computer
literacy in high school and more recently by Spach [15] to analyze educational
robotics situations. In our context, we place ourselves in this theoretical frame-
work to study situations where the goal of the subject is to design a computer
program that solves a loop-focused task.

Vergnaud invites us to analyze the situations the subject is confronted with,
by grouping them into classes. This categorization can be considered from the
point of view of the expert, by an analysis of the characteristics of the situations,
and from the point of view of the subject, by studying the way in which he deals
with the situations. The expert relies on the identification of situation variables
aimed at differentiating close situations. The change in value of a situation vari-
able may affect the structure of the subject’s processing of the situation. This
makes it possible to define two distinct classes of situations.

Vergnaud also insists on the progressiveness of the conceptualization, which
should be considered over a long period of time. In a study on additive struc-
tures in the mathematic field, Vergnaud & Durand [17] asked 28 pupils in each
level from grades 1 to 5, to solve additive tasks whose answer is strictly the
same numerically, but for which the formulation of the task induces a different
reasoning. They thus identified classes of situations which correspond to levels
of difficulty in the resolution of these additive tasks. Their results show an effect
of the age on students’ ability to solve these tasks.

In this article, we propose to refine the definition of the concept of motif in
relation to RQ1 and to characterize difficulties related to the motif identification
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activity when dealing with loop-focused type situations in a programming con-
text (RQ2). We rely on the works carried out around the concept of pattern and
we mobilize the concept of class of situation to categorize loop-focused tasks.
We are also inspired by the study by Vergnaud & Durand [17] which we have
transposed into our context. The following section details the methodology and
the experimental framework that we used to carry out this study.

3 Methodology and Experimental Setting

Our work is based on the analysis of the characteristics and results from a selec-
tion of 101 different loop-focused tasks that come from the 2018 to 2021 editions
of the Algorea french programming contest. They consist in programming puz-
zles [10] involving a virtual robot on a grid, using the Scratch language. Their
common point is that the sequence of actions to be performed by the virtual
robot includes redundancy, which must be identified to solve the problem. The
reference solution therefore involves a loop or several loops in sequence, but no
nested loops. For the study of these programming situations, we considered the
two points of view indicated by Vergnaud. First, we carried out an analysis of
the programming tasks from the point of view of the expert, also called a priori
analysis, which led us to identify the parameters that have a potential impact
on the difficulty. Then we analyzed the activity of the subjects confronted with
these situations during their participation in the Algorea competition, through
the success rates noted for these problems.

3.1 A Priori Analysis: Visual Motif and Algorithmic Motif

When dealing with a loop-focused problem involving programming a virtual
robot on a grid, one has to consider two kinds of motifs. The first one is a visual
motif, which is observable on the grid. It consists of adjacent cells, which may
contain visually salient elements (marked cell, or containing an object). This can
be related to the concept of data which is one of the core concepts of computer
science [1].

The second kind of motif is the algorithmic motif, which is related to the
concepts of algorithm and machine, two other core concepts of computer science
[1]. The algorithmic motif consists of actions to be executed one after the other
by the machine, actions which are induced both by the pattern identified in the
data and by the specificities of the machine. A series of actions in a fixed chrono-
logical order constitutes this algorithmic motif and in our context it is induced
by the visual motif but it is also dependant on the possible actions (i.e., robot
language, orientation system). The algorithmic motif is only observable during
the actual execution of the actions. For instance, in the relative orientation sys-
tem, the rotational actions of the robot are not matched with any element of
the grid. In a program designed in the Scratch language, the algorithmic motif
corresponds to the sequence of blocks inside the repeat block.
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Solving a loop-focused programming problem in our context therefore
requires identifying the visual motif on the grid, matching this visual motif
with the actions to be performed by the virtual robot on this same grid, and
expressing this algorithmic motif with the Scratch programming language.

For each of these motifs, visual then algorithmic, we identify several parame-
ters or characteristics, which correspond to variables of situation in the sense of
Vergnaud [16]. For the visual motif, we consider the number of cells it occupies
on the grid, the presence of visually salient elements within the visual motif and
the presence of decorative elements on the grid. For the algorithmic motif, we
retain the number of actions constituting the motif and the presence of actions
that are not part of the pattern (corresponding to instructions outside of the
loop). As a variable of situation, we also study the degree of correspondence
between the visual motif and the algorithmic motif. These are the parameters
that will drive our analysis of the difficulty of the programming problems.

3.2 Experimental Setting

The virtual robot programming situations that we study come from the Algorea
online contest, whose programming environment is shown in Fig. 2.

Fig. 2. Algorea contest programming environment (Situation 1, where the visual motif
covers a single cell)

This environment is suitable for our study on motif identification. On the
one hand, for loop-focused tasks, the repeat block is the only available control
structure block. The subject quickly infers that he is in the situation where he
needs to use this repeat block. On the other hand, the total number of blocks
that can constitute a program is limited, which forces pupils to make use of this
repeat block. However, the number of trials is not limited, which allows a trial
and error strategy.

In total, the Algorea competition involves more than 200,000 participants
each year, from grade 4 to grade 12 (9 to 18 years old). In the context of this
study, we are only interested in the individual results of pupils from grades 4 to
9 (9 to 15 years old), who selected the Scratch language. This represents between
6,000 and 75,000 participants depending on the round of the contest. Studied
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participants are distributed over the 6 class levels, with an over-representation of
middle school students. Thus, we do not control the size of the sample studied,
which varies depending on the round but remains substantial. In addition, the
competition takes place in school or at home, so in real life conditions. However,
we consider that the large sample size compensates for the variations of the
participation context.

4 Analysis and Results

For each situation, we collect the success rate by class level, i.e. the quotient of the
number of participants who succeeded in the task over the number of participants
who opened the task. As a preliminary to the study on the identification of
motifs, we proceeded to some analysis of a more general nature. On the one
hand, we checked the robustness of our data concerning success rates. When
considering all class levels together, a chi-square test of independence allows us to
verify that all differences in success rates between two situations are statistically
significant with a p-value less than 0.01. For a particular class level, a success
rate difference of 5% units between two situations is significant for the middle
school levels (p-value < 0.02). Only a few situations for the elementary level,
whose numbers are smaller, lead to differences in success rates of 5% units that
are less statistically robust.

On the other hand, Fig. 3 confirms that, as expected, the success rate
decreases when the number of instructions in the reference solution increases.
However, we notice a significant dispersion of values on the vertical axis, some-
times by more than 50% units, which tells us that other situational variables
influence the success rate. The identification and study of these variables are the
subject of the following sections. To this end, for each characteristic identified in
the Sect. 3.1, we calculate the median of the success rates and the interquartile
range, as indicators of the distribution of the data. At first, we focus on the
visual motif which allows a first categorization of the tasks. We then complete
and refine the analysis by also considering the algorithmic pattern.

4.1 Visual Motif

In this section, it is the visual aspect of the pattern that matters, regardless of
the actions that the virtual robot has to perform.

Concerning the number of cells over which the visual motif extends, we can
very clearly distinguish two classes of situations (Fig. 4). For a first class of situ-
ation, the visual motif consists of a single cell of the grid (example Fig. 2). The
success rate of these tasks is high as early as elementary school. The interquar-
tile range is low, which means that this characteristic is significant in explaining
the success rate. On the other hand, the interquartile range is much higher if
the visual motif extends over several cells (examples Fig. 6). In this case, other
variables contribute significantly to the value of the success rate.
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Fig. 3. Success rate scatter plot depending on the number of instructions in the ref-
erence solution (linear correlation rate −0.81; p-value < 0.05 on the Bravais-Pearson
test)

Fig. 4. Two classes of situations: situations where the motif is limited to a single cell,
and situations for which the motif extends over several cells

For 70 situations for which the visual motif extends over several cells, we
study the adjacent cells which are not part of the same motif.

When adjacent identical cells with a visually salient element do not belong
to the same motif (examples Fig. 6: situations 3 and 4), the success rate is low
(Fig. 5: red curve), and this is more pronounced with younger students. However,
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Fig. 5. Study of adjacent cells not belonging to the same visual motif

when two adjacent empty cells belong to different motifs, the success rate is close
to that of situations without identical adjacent cells belonging to different motifs.
This result leads us to think that the salient elements are taken as privileged
reference points during the identification of the visual motif. Identical salient
elements on adjacent cells are perceived as part of the same visual entity. When
they do not belong to the same motif, this makes the motif less visible and
therefore more difficult to identify.

We show in the same way, the effect of the presence of decorative elements on
the grid, that is, visual elements that are not on the expected path of the robot,
but make the cells look different from regular empty cells, or may be forbidden
cells for the robot. For lack of space, we only give for each modality, the value of
the median (Q2) and the interquartile range (IQR) for all the class levels taken
together, with the unit being the percentage point of the success rate. Depending
on how they are arranged, the decorative elements are more of a help or a source
of difficulty. When they completely constrain the path of the robot (Q2: 60.0,
IQR: 31.3), they constitute an aid compared to situations without decorative
elements (Q2: 51.1, IQR: 58.0). If not, they seem to act as distractors and are a
source of difficulty (Q2: 27.7, IQR: 49.0). This difficulty becomes massive when
these decorative elements make some motifs visually different (Q2: 3.2, IQR:
3.3). Thus the study of the characteristics of the visual motifs shows that the
nature of the elements present on the grid has an effect on the complexity of the
situation. The easier the motif is to visually isolate, the more likely the situation
is resolved by pupils. Conversely, factors that disrupt the visibility of the motif
negatively impact the success rate of the situation.
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4.2 Matches Between Visual Motif and Algorithmic Motif

Once the visual motif on the grid has been identified, it is necessary to deduce the
matching algorithmic motif. We distinguish 5 classes of situations concerning the
correspondence between visual motif and algorithmic motif. For the first three
classes, all the visual motifs are the same, which is no longer true for the last
two classes.

Fig. 6. Prototypical example of a situation for each class defined for the correspondence
between visual motif and algorithmic motif

A first class of situation, very distinct, and which we have already identified
in the previous section, concerns situations where the motif is limited to a sin-
gle cell (example in Fig. 2). The other classes are represented in Fig. 6. We put
in a second class, situations where the motif extends over multiple cells, and
for which we have a strict correspondence between visual motif and algorith-
mic motif. Each movement action of the robot is identifiable by the boundary
between two cells, while the other actions are identifiable by a visually salient
element. These are the situations where the movement of the robot is only pos-
sible in one direction, and the situations for which the orientation of the robot is
absolute (north, south, east, west). A third class corresponds to situations where
several states of the robot on the same cell are visually identical, making the cor-
respondence between visual pattern and algorithmic only partial. These are the
situations where the robot has a relative orientation, and for which the pivoting
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actions of the robot are not observable before the execution of the program. To
solve these situations, it is necessary to mentally simulate the pivoting actions
of the robot, by representing them on the appropriate cells and by keeping the
orientation of the robot in memory. The fourth class concerns situations in rela-
tive orientation for which the arrangement of motifs is cyclical. The visual motifs
are identical but each rotated by a quarter turn compared to the previous one.
Finally, for the fifth class, the correspondence between visual motif and algorith-
mic motif is hindered, and it is necessary to disregard certain visual elements.
That is, either visual salient elements or decorative elements are equivalent but
visually different, or several visual motifs are partially superimposed, disturbing
the visibility of each of them.

The 5 classes of situations defined above correspond to a gradation in the
difficulty of matching visual motif and algorithmic motif (Fig. 7). The situations
of class 1, for which the correspondence between the two motifs is attached
to the cell, are solved well by most pupils from elementary school. However,
situations of class 5, which require much more abstraction skills, are still difficult
for most middle school students. The interquartile zones of classes 1 and 5 do
not overlap with those of the other classes of situations. We deduce that the
degree of correspondence between visual motif and algorithmic motif strongly
determines the difficulty of these situations. On the other hand, classes 2, 3 and 4
have partially overlapping interquartile areas, which means that other variables
also impact the difficulty of these situations in a significant way. These are also
classes of situations where we observe the strongest progression during the 6
class levels studied.

Fig. 7. Study of the correspondence between visual motif and algorithmic motif

Concerning the algorithmic motif expressed in Scratch language, we further
show that the success rate is correlated with the number of instructions in the
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loop (linear correlation rate of −0.79) and that the situation is significantly less
successfully resolved when it is necessary to place instructions outside the loop,
especially before the loop. We think that this last difficulty is linked to the
identification of the position of the robot to be considered for the beginning of
the pattern, i.e. the robot has to move to reach the beginning of the pattern.
This position need to be mentally anticipated.

5 Conclusion and Perspectives

We show in this study that a loop-focused programming puzzle, even if the solu-
tion includes only one loop, is not necessarily a simple task. When solving this
type of problem, pattern identification skill is essential, especially the identifi-
cation of the repeat unit. We have specified the definition of a motif in this
context. More precisely for programming puzzles that involve moving a virtual
robot on a 2D grid, the identification of a visual motif and of the correspond-
ing algorithmic motif are required (RQ1). Using a quantitative analysis of one
hundred loop-focused tasks, we have characterized factors that make it difficult
to identify the visual motif and we have established a gradation in the difficul-
ties encountered, in particular for the matching of visual and algorithmic motifs
(RQ2). Among the difficulties identified, we find the one, already identified in a
previous study [8], related to the association of the programming situation with
orientation in space.

Our contribution to knowledge concerns the understanding of what pat-
tern identification covers in the situation of programming a virtual robot on
a grid. This contribution makes it possible to better understand the obstacles
encountered when starting learning computer science. The practical implication
addresses teachers, by helping them to understand the difficulties of their stu-
dents and to design relevant courses.

Further work is underway to continue this study. On the one hand, can we
consider that a student has mastered the notion of loop when he has solved
programming problems by trial and error, which is possible in this context? On
the other hand, we know that motif identification is not the only issue in the
treatment of loop-focused situations. Once the motif has been identified, the
motifs have to be counted, which can lead to other difficulties that remain to be
analyzed. To refine our understanding, we need more precise data. This is why
we have set up a collection of activity traces at several scales. Apart from the
success rates collected at the national level analyzed in this article, we have traces
of activities at the class level and video recordings of contest participation at the
individual level. Class-wide activity traces should allow us to distinguish between
expert solving procedures and trial-and-error successes. As for the analysis of the
video recordings, we seek to identify indicators that reflect the reasoning, the
conceptualization-in-action [16] of the participant (expert procedure, errors).
The objective will then be to match these indicators with the traces of activity
in order to scale up, i.e. to make the link between the three collection scales.
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11. Peter, Y., Secq, Y., Léonard, M.: Reconnaissance de motifs redondants et
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