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Abstract. Marine search and rescue missions necessitate a lot of effort
and expenses. The use of technological advancements facilitates discover-
ing and locating individuals and aids in the directing of rescuers and med-
ical teams. This has the potential to save human lives while also lowering
costs. The characteristics of the marine environment create additional
challenges for computer vision techniques used to detect the presence of
human in a scene. Currently, artificial intelligence (AI) techniques based
on convolution neural networks (CNNs) provide solid solutions to detect
and locate objects. In this paper, the relevance of the emergent You
Only Look Once (YOLO) in detecting humans in maritime environment
is investigated. The available models of YOLOv4 are trained using a
custom dataset. The trained models are evaluated using recognized eval-
uation parameters. In addition, the inference speed is reported targeting
embedded low-power hardware platforms dedicated for AI applications.

Keywords: Deep learning + YOLO - Maritime + Human detection -
Man overboard + Search and rescue

1 Introduction

Maritime search and rescue (SAR) missions are crucial for most coastal states.
According to the International Organization for Migration 218,062 irregular mar-
itime migration attempts are recorded in the Mediterranean Since 2014 [1] From
which, 23,939 dead and missing persons are recorded during attempted overseas
crossings. Furthermore, the European Maritime Safety Agency reports in the
Annual Overview of Marine Casualties and Incidents 2021 [2] that during the
2014-2020 period, 367 marine casualties resulted in a total of 550 lives lost and
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6921 injuries in the waters of European Union (EU) Member States or involving
EU ships. The ability to quickly locate missing people aids in the direction of
rescuers and medical personnel, which plays an important role in increasing the
chances of saving human lives while also lowering costs.

Years ago, visual surveillance in the maritime domain has been explored.
However, most surveillance activities have been assigned to areas near the coasts
and ports and mainly depend on human monitoring and analysis for security rea-
sons. Computer vision techniques are also adopted in few works. However, videos
and images capturing maritime environment pose challenges that are absent or
less severe in other environments such as the dynamic nature of the background,
unavailability of static cues, presence of small objects at distant backgrounds
and illumination effects [3]. These challenges impact the efficiency of traditional
computer vision techniques in detecting individuals in marine environments.

Recently, deep learning approaches have introduced efficient solutions to
detect, classify and localize several objects in images and videos. In particu-
lar, the evolution of neural networks architectures has elevated the performance
to a point that they are considered on par with human performance for some
of these problems. However, the detection performance comes at the cost of
increased hardware resources and power consumption especially for real-time
scenarios with high requirements of accuracy and precision. You Only Look
Once (YOLO) has been recently introduced as an efficient unified model of all
phases of a CNN for doing object detection in real-time. The recent version of
YOLO, so called YOLOv4, has been justified to detect objects in real-time with
high level of precision. Several models of YOLOvV4 exist, with different architec-
ture specifications and consequently different detection performance in terms of
accuracy and precision, detection speed and required energy budget.

The growing use of artificial intelligence (AI) based detection methods is
of great interest in aiding SAR missions [4-8]. However, only few works have
addressed the detection of humans in open water or for man overboard acci-
dents [9-11]. Other available works adopting deep learning in marine environ-
ment have focused mainly on the detection of sea ships [12]. This work aims to
enable efficient detection and localizing of floating humans in real-time based on
AT techniques. In particular, the relevancy of YOLOv4 [13] in detecting humans
in maritime environments to aid marine SAR missions is addressed. The work
includes collecting a custom dataset, training different YOLOv4 available models
and evaluating the trained model using mean average precision (mAP), preci-
sion, recall, and Fl-score. Also, the trained models are implemented targeting
Jestson Nano and Jetson Xavier development kits from Nvidia. For different
power modes, the inference speed is attained while processing real-life videos.
The obtained results show that YOLOv4 can achieve real-time detection when
implemented on low-cost, small size embedded platforms with reduced power
consumption. This paves the way to develop airborne systems or edge embedded
systems mounted on shore, moving boats or floating buoys that can be exploited
to facilitate search and rescue missions and in optimizing the man overboard
signaling systems.
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2 Background

2.1 Object Detection

Previously, object detection has been achieved using computer vision techniques
based on feature extraction such as histogram of oriented gradients (HOG) [14]
and scale-invariant feature transform (SIFT) [15]. Currently, artificial intelli-
gence (AI) techniques based on convolution neural networks (CNNs) are the
dominant methods for object detection, which compromise both classification
and localizing of objects within the image by determining bounding boxes (coor-
dinates and size) around the objects of interest. Several techniques based on
CNN are developed targeting object detection. Two-stage models such as region-
convolutional neural network (R-CNN) [16] apply classification of objects based
on pre-selected regions. The post-processing operations required to refine the
bounding boxes, eliminate duplicates and adjust the detection scores increase
the complexity and impact the speed of detection. Despite the introduction of
R-CNN enhanced versions [17,18], real-time detection has not been granted.

You Only Look Once (YOLO) has been proposed in [19] as an efficient unified
model of all phases of a CNN for doing object detection in real-time. Several
versions of YOLO have been developed by modifying the network architecture.
In YOLOvV2 [20], the fully connected layers at the end have been eliminated
and Darknet-19 architecture has been adopted. YOLOv3 [21] uses Darknet-53
architecture and inherits the concept of residual networks. The detections are
made at 3 different scales which enables the detection of small objects. Recently,
YOLOv4 [13] object detection method has been introduced. It outperforms other
available methods in terms of speed and accuracy performance. The experiments
targeting Microsoft Common object in context (COCO) dataset [22] show that
YOLOWVA4 is faster and more accurate than real-time neural networks EfficientDet
[23] and RetinaNet [24] provided by Google and Facebook respectively.

The architecture of YOLOv4 consists of the backbone, neck and dense pre-
diction so-called the head. The backbone is in charge of extracting features. The
neck aggregates the features and delivers them to the detection head. Based
on several experiments and comparisons [13], CSPDarknet53 is selected for the
backbone. Spatial Pyramid Pooling block (SPP) is added to the PANet path-
aggregation neck. The anchor based YOLOv3 is adopted as detection head in
YOLOvA4.

YOLOvV4 exploits a set of universal methods that are assumed to improve
CNN accuracy for majority of models, tasks, and datasets. These univer-
sal methods are data augmentation (DA), Weighted-Residual-Connections
(WRC), Cross-Stage-Partial-connections (CSP), Cross mini-Batch Normaliza-
tion (CmBN), Self-adversarial-training (SAT) and Mish-activation. These uni-
versal methods are implemented in combination with new devised methods such
DropBlock regularization, and Complete-IoU loss. YOLOv4 employs these avail-
able methods in two ways in order to create a more efficient and powerful object
detection model: Bag-of-Freebies and Bag-of-Specials. Bag-of-Freebies compro-
mises training strategies and pre-processing methods. Adopting these strategies
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enhance the training without impacting the inference performance as training
is done offline. Data augmentation is used to alleviate the degree of variabil-
ity of training images in order to increase the robustness of the detection during
inference against unknown environments. Data augmentation includes pixel-wise
computer vision techniques such cutmix, mosaic, image resizing, blurring, image
rotating, random scaling, flipping, cropping and changing the exposure, satu-
ration and hue. Focal loss is also adopted to address the issue of data imbal-
ance existing between various classes. Label smoothing is used to convert hard
labels into soft labels leading to improving the robustness of the model. Bag-of-
Specials contains architecture-related plug-in modules and post-processing meth-
ods introduced. Mish activation is used for both backbone and detector. CSP and
Multi-input weighted residual connections are selected for the backbone. SPP-
block, SAM-block, PAN path-aggregation block are added to the neck/detector.

2.2 Human Detection Using Deep Learning Methods

Several works have adopted deep learning techniques to detect individuals for
several applications such as social distancing [25], crowd detection, security and
search and rescue missions [4-8]. However, few works have addressed human
detection in marine environment. In [9], the authors have exploited YOLOv3
Tiny to detect human swimming in open water via areal images. The authors
have deployed the trained network on NVIDIA Jetson TX1 platform to enable
real-time detection of human in search and rescue missions using UAVs. In [26],
SSD and YOLOv3 have been examined to detect man overboard event detection.
The authors have not presented the performance results. In [10], Faster R-CNN
has been employed to locate the person in water using thermal images. In [11],
YOLOvV3 has been utilized to detect and localize human in marine environment
using images captured by UAVs for search and rescue missions. The authors have
focused on analyzing the effects of flight altitude on the detection performance.
The used dataset for training, validating and testing includes 450 images only,
which are collected in one location. Note that in [10] and [11] the training and
testing results in terms of precession are only shown without presenting the
achieved detection speed or indicating the used target device.

3 Method

3.1 Dataset

We create a diverse dataset of images showing humans in maritime environment.
The images are collected from several internet resources. We make use of the
dataset published by [9]. The dataset offers images extracted by videos captured
by the means of UAV for Humans swimming in open water. We edited this dataset
by eliminating images with high similarity. Also, a great effort is done to enhance
the labeling by adjusting the existing bounding boxes to meet with the dimensions
of the persons and by adding bounding boxes of unlabeled persons. In addition,
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we add 2000 new images including showing persons in maritime environment with
different positions and from different perspectives. The number of humans in the
scene varies between the gathered images. In addition, the images show human
bodies in numerous positions and different perspectives and scales, and have var-
ious backgrounds, lighting conditions and resolutions. The final dataset includes
6462 images with 16795 bounding boxes'. The images are split randomly by 70%
as training dataset, 10% as validation dataset and 20% as testing dataset. Table 1
shows the distribution of images and objects in each dataset.

Table 1. Specifications of the created dataset

Dataset Training | Validation | Testing | Total
Number of images | 4463 666 1333 6462
Number of objects | 11913 1677 3205 16795

3.2 Target Models

In this work we examine three different YOLOv4 networks: YOLOv4 Large,
YOLOv4 Tiny and YOLOv4 Tiny-3l. The original YOLOv4 network consists of
162 layers and uses mish activation functions. YOLOv4 Tiny is the compressed
version of YOLOv4. It uses the simplified network structure of CSPDarknet53-
tiny. It compromise 38 layers with LeakyRelu activation functions and only two
detector heads. YOLOv4 Tiny-3l architecture is similar to YOLOv4 Tiny, but
with three detector heads. Table 2 presents the target networks specifications.

Table 2. Specifications of the targeted YOLOv4 models

Model Number of Activation Model weights’
layers function volume (MB)
YOLOv4 162 Mish 256.2
YOLOv4 Tiny 38 LeakyRelu 23.5
YOLOv4 Tiny-31| 45 LeakyRelu 24.5

3.3 Training

The training is conducted using the Darknet framework [27] using Quadro RTX
4000 from Nvidia. Transfer learning is adopted in order to maintain the general-
ization. We make use of the weights generated in previous training processes of
networks with similar architecture specifications targeting COCO dataset. Note
that the imported weights of the feature extraction layers are kept; whereas, the
weights of the neck and the detector layers are eliminated. The networks’ general

! https:/ /www.kaggle.com/datasets/mostafarizk /maritimesar.
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architectures have not been altered. Only the depth size of the three convolution
layers allocated before the YOLO detector layers are adjusted. The number of
filters in these three convolution layers are modified considering our case where
only one class (Person) is targeted.

The number of images per batch is set to 64. The total number of iterations is
set to 2000. The initial learning rate for training is set to 0.001 and it scales down
two times by 0.1 at iteration 1600 and 1800. The input images are down sampled
into 416 x 416 or 608 x 608. While training the models, data augmentation is
activated. Mosaic data augmentation type is used where 4 images are merged
into one. When activated, Cutmix data augmentation type is applied for the
classifier only. The saturation of input images and their exposure (brightness)
are randomly changed as well as the rotation.

The models are validated using the validation dataset. Mean average preci-
sions (mAP) is calculated during training for each 4 epochs. Figure 1 illustrates
the training performances. Note that the blue curves correspond to the train-
ing losses whereas the red curves corresponds to the computed mAP values.
The mAP calculation starts after 1000 iterations and it adopts the AP50 metric
defined in the MS COCO competition (same to the metric of precision in the
Pascal VOC competition) and uses the following expressions to compute the
Precision and Recall values:

TP TP
P=wprrp 7 (TP + FN) (1)

where P is the Precision, R is the Recall and TP, F'P and F'N stand for True Pos-
itive, False Positive and False Negative respectively. Table 3 shows the required
time for training the targeted networks with different input resolutions using
Nvidia Quadro RTX 4000.

3.4 Evaluation

The trained models are evaluated using the test dataset. Sample detection results
from network testing are shown in Fig. 2. The figure shows that trained models
are able to accurately detect and classify the presence of human bodies in differ-
ent maritime environments. Table 3 shows the obtained mean average precision
considering VOCO07 and VOC12 performance metrics [28]. In addition, the table
shows the obtained values of precession, recall, F1-score and average intersection
over union (IOU) considering 0.5 IOU threshold.



Towards Real-Time Human Detection in Maritime Environment 589

AP T
0%

en . a) YOLOv4 trained with mosaic and cutmix DA = b) YOLOv4 trained without mosaic and cutmix DA
10 18,
160 160
|
10 = 142
=
ot
oo
12,0 12.0- e i
o7
100 100
50 0
w7
i o
v
" LW w
. ! "N\“‘f."ﬁ A M,
PPN n AL
T i s W"\’W*\.‘\\ i %WM
20 | 20 WMMMJ‘*L..««\W»MM/“V
°g e P —T) TN — o —— 20 P T 1000 200 raoo ieoo 1600 20
ey . e '
lco0x c) YOLOV4 tiny trained with mosaic and cutmix DA co0n d) YOLOvV4 tiny-3I trained with mosaic and cutmix DA

esi 867

\
20 b L PASRAS 20
R NV

(3 20 300 500 500 1000 T200 1300 600 i600 0]

Fig. 1. Sample training performances

Furthermore, the inference speed of trained models is evaluated using several
captured videos targeting embedded platforms. Table 4 shows the obtained speed
of the trained models in frames per second (FPS) when applied to the captured
videos on Jetson Nano and Jetson Xavier NX development kits while operating
on different power modes. Both used kits are small powerful computers that
allow running neural networks for applications like image classification, object
detection, segmentation, etc. Jetson Nano provides 472 GFLOPS of FP16 com-
puting performance with 5W and 10W of power consumption. Whereas, Jetson
Xavier NX provides up to 21 TeraOPS of compute performance in configurable
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Table 3. Evaluation results of the trained YOLOv4 models
Target Image Training Data mAP mAP Precession | Recall | F1 avg
model resolution time (h) augmentation VvOCo7 VOCi12 score 10U
YOLOv4  |416x416 | 03:22 - 60.46 58.78 61.61 70.80 |65.88 |62.14
Large mosaic 64.27 65.66 62.57 7548 6842 | 63.8
mosaict+cutmix | 65.63 69.04 61.95 78.03 69.07 | 64.83
608 x 608 | 06:00 - 55.16 59.15 66.15 69.98 |68.01 |63.13
mosaic 64.64 64.91 66.74 73.45 |69.93 | 64.92
mosaictcutmix | 65.82 69.37 63.96 78.28 | 70.4 65.39
YOLOv4 | 416x416 | 00:24 - 57.00 56.53 49.03 73.39 |58.79 | 61.34
Tiny mosaic 56.34 56.10 48.25 73.95 |58.40 |61.75
mosaic+cutmix | 56.90 56.90 47.40 73.85 |57.74 | 61.85
608 x 608 | 00:35 - 59.29 60.07 53.98 7491 [62.75 | 62.08
mosaic 60.91 63.10 52.83 77.00 |62.66 | 62.58
mosaic+cutmix | 60.59 62.47 53.04 76.57 |62.67 | 62.66
YOLOv4 | 416x416 | 00:25 - 54.89 53.31 53.78 72.32 |61.69 | 60.97
Tiny-3l mosaic 55.28 54.17 53.16 73.04 |61.53 | 6157
mosaictcutmix | 55.80 55.41 53.09 73.95 |61.81 61.88
608 x 608 | 00:47 - 59.12 57.46 59.27 70.92 |64.57 | 61.81
mosaic 59.54 59.43 56.63 73.26 | 63.88 | 62.35
mosaic+cutmix | 60.08 59.92 57.60 73.17 | 64.46 62.21
Table 4. Average detection performance in FPS
Trained Input Jetson Nano Jetson Xavier NX
model frame - Mode0 | Model | Mode0 | Model | Mode2 | Mode3 | Mode4 | Modes
resolution 10W  [5W | 15W 15W 15W 10W 10W 10W
2C0RE |4CORE |6CORE |2CORE |4CORE | Desktop
YOLOv4 416 x 416 2.0 1.5 101 10.7 10.8 8.8 9.4 6.5
Large 608 x 608 1.0 0.7 5.6 5.7 5.7 5.0 4.9 3.7
YOLOv4 416 x 416 19.2 125 584 80.6 72.0 54.3 67.4 53.0
Tiny 608 x 608 9.6 6.5 |35.3 44.3 45.6 31.3 39.4 30.3
YOLOv4 416 x 416 16.8 [10.9 | 50.1 60.0 69.9 43.6 58.6 48.0
Tiny-31 608 x 608 85 | 57 326 39.7 403 35.1 35.7 26.8

10W or 15W power budgets by capping the GPU and CPU frequencies and the
number of online CPU cores at a pre-defined level. Figure 3 shows samples of
the obtained detection results in captured video sequences. The obtained results
show that applying DA enhances the detection performance (mAP, precision,
recall, Fl-score and average IOU). The use of cutmix DA increases the enhance-
ment ratio in most of the cases. The use of higher image resolution enhances the
mAP performance but at the cost of reduced inference speed and longer training

time.
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Fig. 3. Samples of the obtained detection results in video sequences

4 Conclusion

In this paper, the use of YOLOv4 in detection of humans in maritime envi-
ronments is investigated. Available YOLOv4 architectures are trained on a cus-
tom dataset. The trained models are evaluated in terms of mAP, precession,
recall and average IOU. Also, the performances of the models are examined on
embedded platforms using our own videos showing humans in open water. The
obtained results show that YOLOv4 can achieve real-time detection of humans
in maritime environment with acceptable accuracy and precession. For example,
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YOLOv4 Tiny achieves an inference speed of 45.6 FPS with mAP of 63.10 when
running on Jetson Xavier NX considering 608 x 608 resolution. Future work will
include applying optimization techniques such as quantization and pruning to
increase the inference speed and study their impact on the detection perfor-
mance.
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