
Autonomous Driving Based on Imitation
and Active Inference

Sheida Nozari1,2(B), Ali Krayani1, Pablo Marin2, Lucio Marcenaro1,
David Martin2, and Carlo Regazzoni1

1 University of Genoa, Genoa, Italy
sheida.nozari@edu.unige.it

2 Carlos III University of Madrid, Getafe, Spain

Abstract. We advance a novel computational model of acquiring a
hierarchical action sequence and its use for minimizing the divergence
between observation and prediction. The model is grounded in a prin-
cipled framework to learn and cognize the dynamic surrounding of a
learning agent, which exemplifies the model’s functioning by presenting
a simulation of overtaking scenarios in autonomous driving. The learning
agent integrates imitation learning and active inference to form hierar-
chical representations from expert demonstrations. During the online
learning phase, the learning agent improves the action selection proce-
dure based on the prior knowledge (exploiting) and the novel interactions
with a dynamic environment (exploring). The proposed method applies
an active knowledge sampling during the learning agent’s movements to
make a dynamic inference in the Bayesian structure by message passing
through the multi-levels. A line-changing driving scenario with different
levels of complexity is organized to verify the proposed framework’s effi-
ciency by dealing with single and multiple dynamic objects interacting
in the environment.

Keywords: Imitation Learning · Motion prediction · Active
inference · Dynamic Bayesian Network

1 Introduction

As autonomous vehicle (AV) technology progresses towards full autonomy, self-
driving vehicles are more likely to become a reality in the coming years [1].
Although AVs have demonstrated a guarantee to operate in a structured environ-
ment under reasonable driving circumstances, they are still facing unpredictable
behaviours causing disastrous consequences in unseen environments with high
uncertainty [2]. A crucial component of autonomous driving is making driving
decisions based on the vehicle’s environmental changes and adapting to different
types of driving conditions [3].

Due to their heavy manual tuning in modelling dynamic interactions among
vehicles, traditional planning methods are not always scalable and cost-effective
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[4]. Imitation Learning (IL) offers an alternative solution that mimics an expert’s
driving behaviour based on a data-driven approach. However, in IL, one of the
primary challenges is specifying how an AV acts when it is outside the presented
states by the demonstrations [5]. Reinforcement Learning (RL) can overcome
such an issue by exploring new states and actions while an agent is interact-
ing with the environment. Exploration plays a vital role in RL, however, it
typically requires a large amount of training data and computational resources
to succeed [6]. In response to this challenge, IL leverages inverse reinforcement
learning (IRL) to deduce the reward function from demonstrations [7]–[8]. Learn-
ing a parameterized reward function provides a compact representation of the
demonstrator’s preferences and allows policy optimization to generalize to the
unnoticed states. However, IRL methods always generate uncertainty about the
proper reward function, which can have adverse outcomes if the learning agent
figures a reward function leading it to learn the wrong policy. Additionally, sys-
tems that uses deterministic models rather than probabilistic ones ignore the
stochastic property of dynamic environments. We propose an IL approach com-
bined with a hierarchical probabilistic model under the Active Inference frame-
work [9] to overcome the mentioned limitations. An active imitator agent (i.e.,
an AV) aims to learn a robust policy to uncertainty and dynamic environmental
changes while accomplishing a specific task. The agent can effectively trade-off
the exploration-exploitation rate with the expected return within active infer-
ence. The latter allows an AV to detect novel situations by comparing what
the agent is expecting to observe based on the rules learned from an expert’s
demonstration and what it is actually observing to decide whether to explore
new actions or exploit what has been learned by imitating the expert. AV aims
to learn a sequence of actions that lead to the minimization of the abnormality.
The main contributions of this work are: 1) Integrate Active inference to IL to
optimize the learning policy by establishing the balance between expected return
and abnormality value under the new experiences. 2) Optimize the exploration-
exploitation rate by distinguishing the normal and abnormal situations through
the Bayesian predictive and diagnostic messages. 3) Optimize the action plan-
ning concerning the uncertainty and minimize the imitation loss with respect to
expert demonstrations. 4) Demonstrate that the proposed framework achieves
better results in terms of learning aspects than existing RL methods.

2 Proposed Framework

The proposed framework is divided into two main phases: offline and online learn-
ing. During the first phase, we learn a situation model explaining how an expert
agent (E) and a dynamic Object (O) interact in the environment. Moreover, we
organize a First-Person generative model (FP), allowing a learning agent (L)
to learn the E’s behavior by observing its demonstrations. In the second phase,
L modifies and updates its imperfect knowledge from the sub-optimal expert
demonstration through an Active First-Person generative model (AFP) with
respect to its relative distance with a moving object (Ô) in a dynamic environ-
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Fig. 1. Learning models: a) Situation model, b) FP model, c) AFP model.

ment. Both FP and AFP models are structured in Dynamic Bayesian Network
(DBN) representations [10].

2.1 Offline Learning Phase

Situation Model. This model is structured to explain the interaction among
two dynamic agents (see Fig. 1-(a)), E and O by using a switching DBN [11].
In order, the variables ZE

k and ZO
k illustrate the agents observations at the low

level of the hierarchy (yellow nodes). The middle level (green nodes), describes
the joint hidden continuous Generalized states (GSs) containing the dynamics
of two agents at each time instant k as follows: X̃k = [X̃E

k X̃O
k ]

ᵀ
, where X̃E

k , X̃O
k

denote the GSs of E and O, respectively. The GS related to agent i is defined
as a vector composed of the agent’s state and its first-order temporal derivative,
such that X̃i

k = [x ẋ]ᵀ where x ∈ R
d, ẋ ∈ R

d, i ∈ {E,O} and d stands for
the dimensionality. The correlation between Zi

k and X̃i
k, which describes the

observation model, is defined as:

Zi
k = HX̃i

k + vk, (1)

where H = [Id 0d,d] stands for the observation matrix that measures of how
dependent the measurements (Zi

k) are upon the hidden GSs (X̃i
k) and vk ∼

N (0,R) is the measurement noise that follows a zero-mean Gaussian distribution
with covariance R.

Initially, the evolution of X̃k is assumed to follow a static equilibrium assump-
tion described by:

X̃i
k = AX̃i

k−1 + wk, (2)

where A ∈ R
d×d and wk ∼ N (0,Q) depict the dynamic matrix and the pro-

cess noise, respectively. X̃k is predicted by utilizing a Null Force Filter (NFF)
according to (2). The NFF calculates the innovations that encode the deviations
between predictions and observations as : εX̃t

= H−1
(
Zi
k − HX̃i

k

)
. The Grow-

ing Neural Gas with utility measurement (GNG-U) [12] is empolyed to cluster
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in an unsupervised manner those innovations εX̃t
that characterise the gener-

alized errors (GEs) and outputs a vocabulary defined as: Si = {si1, s
i
2, . . . , s

i
Li

}
consisting of Li clusters.

The interaction between E and O at multi-level (i.e., discrete and continu-
ous levels) is described by a joint vocabulary (i.e., SE,SO) expressing discrete
regions with quasi-linear models that explain the interactive dynamic evolu-
tion of joint states over time. Each discrete cluster si ∈ Si follows a multi-
variate Gaussian distribution with covariance matrix Σ̃sik

and generalized mean

value µ̃si = [μsi

Pos μsi

V ], where μsi

Pos is the states’ mean value on positions and
μsi

V is the states’ mean value on velocity. Thus, a dictionary can be formed
as D = {D1,D2, · · · ,DM} according to the learned configurations, where the
interaction configuration (Dk = [sEk , sOk ]ᵀ) explains the joint activated clusters.

Consequently, an extra vocabulary encoding the joint configurations is
defined as: D = {D1,D2, · · · ,DM} with M configurations, where Dk ∈ D and
Dk = [sEk , sOk ]ᵀ depicts an interaction configuration explaining the joint activated
clusters occurring simultaneously in the agents’ vocabularies (red nodes). Each
configuration Dk consists of the average position and average velocity of the two
agents according to: Dk =

[
(μPos, μV )E, (μPos, μV )O

]
. After learning the joint

vocabulary, the dynamic model defined in (2) can be updated as follows:

X̃i
k = AX̃i

k−1 + Bμ
sik
V + wk, (3)

where B ∈ R
d×d stands for the control model matrix, μ

sik
V = [ẋsik

, ẏsik ] is a control
vector encoding the agent’s velocity (on x and y) associated with sik. The Tran-
sition Matrix (TM) can be learned by estimating the transition probabilities
P(Dk+1|Dk) that encodes the dynamic transitions among the learned configura-
tions at the top level of hierarchy is defined as:

TM =

⎡

⎢
⎢
⎢
⎣

P(D1|D1), P(D1|D2), . . . , P(D1|DM)
P(D2|D1), P(D2|D2), . . . , P(D2|DM)

...
...

. . .
...

P(DM|D1), P(DM|D2), . . . , P(DM|DM)

⎤

⎥
⎥
⎥
⎦

(4)

where
∑M

m P(Dp|Dm) = 1 such that p,m ∈ M.

First-Person Model. We provide the FP model by using a switching DBN
(situation model) represented by a generative DBN to consider the interaction
states with a dynamic object (Ô) under the L’s interpretation (see Fig. 1-(b)).
The discrete level represents the learned configuration Dm ∈ D (red nodes). The
continuous level stands for the generalized relative distance between E and O,
which will be updated by L and Ô through interacting in the environment(green
nodes). At FP model initialization, the generalized relative distance can be com-
puted by the difference of the joint GS to consider the agent’s interaction at a spe-
cific configuration at time k, as follow: X̃k =

[
X̃E

k −X̃O
k

]
=

[
(xO−xE)(ẋO−ẋE)

]
.
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At the bottom level (yellow nodes), the observation can be mapped onto obser-
vations (Zi

k) of both agents as: Zk =
[
ZE
k − ZO

k

]
.

2.2 Online Learning Phase

In this section, we aim to enhance IL’s efficiency through a probabilistic hier-
archical model in a dynamic environment. Therefore, the FP model must com-
pound with the active states to minimise the divergence between the internal
predictions and observations while acting in the environment.

Active First-Person Model. The AFP model takes as input a sequence of
observed or previously learned configurations (D1:M ), an action based on the
current configuration (ak), and a random variable (Zk) which represents the
learner observation by its exteroceptive sensor at time instant k. The observation
provides a relative distance between L and Ô that is embedded in the continuous
level (X̃k) of the online learning model. L sustains an internal dynamic repre-
sentation P(Z, X̃,D, a) of the external environment encoded in an AFP model
(see Fig. 1-(c)) and purposes to implicitly reduce the mismatch between what it
is expecting to receive from the environment and what it is actually perceiving.

Action Selection Probability. At each time instant, L evaluates its current
situation. In one condition, L has no prior knowledge about the current interac-
tion with Ô. In the other condition, L has been informed that E was in the same
situation while interacting with O (prior belief). Thus, L estimates the proper
behavior whether to explore by performing new actions based on the current
configuration (in the first condition) or exploit from the learnt configuration (in
the second condition). The divergence between the observation and prediction is
the main criteria which guides the action selection procedure. L employs Parti-
cle Filter (PF) to predict the learnt configuration with the least divergence until
time k. Likelihood messages (λ(X̃k) and λ(Dk)) passing in a backward manner
from the bottom level towards higher levels inside the AFP enable measuring
the anomaly between the prediction of the propagated particles and the learner’s
observation, which is computed by cosine similarity (cos(θ)), as follow:

cos(θ) =
Z̃k . X̃k,n

||Z̃k|| ||X̃k,n|| . (5)

The computed abnormality assesses the similarity of the current observation
with predictions, and the corresponding configuration to the particle with the
highest weight (the least anomaly) is assigned as the activated configuration
(D̊). The particles’ weights can be updated by using λ(Dk) which is defined as:
λ(Dk) = λ(X̃k)P(X̃k|Dk), where λ(X̃k) = P(Zk|X̃k,n) is a multivariate Gaussian
distribution such that λ(X̃k) ∼ N (Zk, vk) and λ(Dk) is a discrete probability
distribution. Additionally, L considers two parameters to perform an action.
One is the exploration rate (ε) where the highest particle weight (α) presents
a control input on it as follows: εk = 1 − αk. Both εk and α values are in an
interval between 0 and 1, as much as α tends to 1 (higher similarity), εk goes to
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0 (less exploration). L learns to decrease the exploration rate while minimizing
the distinction between the prediction and observation. The other parameter is
a threshold (ρ) which is obtained by a trial-and-error process. L compares ρ and
εk to select an action at time k as below:

ak ∼
⎧
⎨

⎩

arg max
ak

Q(A, D̊k), if ε < ρ (exploitation),

random from A+, if ε ≥ ρ (exploration),
(6)

where A = {AE,A+}, as AE = {aE
1 , aE

2 , . . . , aE
Y} is a set of actions performed by

L and encoded in the situation model that L aims to imitate during exploitation
and A+ = {a1, a2, . . . , a8} is a set of actions realizing 8 cardinal and ordinal
directions which L selects during exploration. Moreover, during exploration, L
records the new experiencing pair (D+

k , a+
k ∈ A+) in the Q-table incrementally.

Free Energy Measurement. The AFP model by leveraging a hierarchical
structure computes the imitation cost using bottom-up (λ) and lateral messages
(predictions by inter-slice links π) that drive posterior agent movements toward a
better prediction to optimize the Free Energy (FE), which will be updated after
gathering novel observations. During the online phase, L learns an optimized
mapping between the Bayesian message passing, which causes a sequence of
observations with a minimum distinction between the expectation and likelihood.
The distinction can be estimated between the predictive message π(X̃k) and
the diagnostic message λ(X̃k) after performing an action (ak−1). We employ
Kullback Leibler-Divergence (DKL) between π(X̃k) and λ(X̃k) to calculate the
FE after each performed action, as:

F = DKL

(
λ(X̃k)||π(X̃k)

)
=

∫
λ(X̃k) log

(
λ(X̃k)
π(X̃k)

)
dX̃k. (7)

Action Selection Probability Update. At each time instant k, the model
evaluates the performed action (ak−1) with respect to the FE measurement and
updates the selection probabilities in the probabilistic Q-table according the
following equation:

Q∗
k = (1 − η)P(ak−1|Dk−1) + η

[
(1 − Fk) + γmax

ak

P(ak|Dk)
]
, (8)

where η is the learning rate which controls to what extent the new experiences
overrides the previously recorded situations (1 − Fk) is the normalized reward
measurement with a range in [0, 1], and γ is a discount factor. Our objective is
to minimize the long term loss by keeping down the F though improving the
action selection procedure.

3 Experimental Evaluation

Our framework is validated using two autonomous vehicles’ multisensory infor-
mation, ’iCab 1’ and ’iCab 2’ [13]. To consider the lane-changing scenario, the
odometry module obtains positional information and velocity from the vehicles,
where iCab 2 overtakes iCab 1 from the left side without colliding.



Autonomous Driving Based on Imitation and Active Inference 19

3.1 Offline Learning Phase

This section shows how the situation model is structured by employing NFF as
an initial filter on data. The provided GEs by NFF are clustered using GNG that
outputs a set of discrete clusters representing the discrete regions of the trajec-
tories generated by E and O. The joint clusters introduce a set of configurations
that encode the interactive behavior between the agents. (see Fig. 2).

3.2 Online Learning Phase

The learning agent employs the FP model as a prior beliefs to imitate
the expected transitions. During the online phase, by balancing exploration-
exploitation trade-off, L’s actions are engaged to solve the uncertain aspects
of the action selection caused by the new dynamic environment, which adjust
the L’s hypotheses. The experiments are executed in a simulated environment
through 500 episodes with different start positions to train a learning-agent L.
Each episode consists of 10 iterations, i.e., L tries 5k iterations by 500 different
start positions to learn the policies. We evaluate the performance of the proposed
framework and compare it with other learning algorithms from the literature,
namely, the general Q-learning, IRL (when an optimal expert is available), and
self-learning in the RL context (when optimal expert data is not available).

Performance Evaluation. After trial stage, L acquires knowledge about the
contingencies and the likelihood mapping in the generative model is aligned ade-
quate with the reference generative process and the targeted goal (e.g., overtak-
ing the dynamic object). Crucially, we assume that the correctness and accuracy
of the action selection procedure guide the learning agent to the expected obser-
vations. Figure 3-(a) illustrates that L movements are engaged coherently, which
causes less exploration in each trial epoch (e.g., each episode). Additionally,
Fig. 3-(a) compares the number of executed actions during the training using
different learning methods, where it shows L performs less actions to accomplish
its task by using our method than others. Moreover, L adopting the proposed
method has higher successful trajectories than other methods as depicted in
Fig. 3-(b).

Fig. 2. Learning the situation model. a) iCab2 overtakes iCab1, b) Clustering of GEs.



20 S. Nozari et al.

Another noticeable point is that the AFP model expands its repertoire of
action representations by learning new interactions between L and Ô. The novel
experienced configurations are recorded in Q-table incrementally, which will be
clustered by using GNG after training. Figure 4-(a)-(b) shows the learned model
during online phase has an expanded transition matrix than the situation model
due to the exploratory aspect of the L’s behavior.

Learning Cost Evaluation. The loss cost reduction imperative is one of the
components of updating the actions’ probabilities (see (8)) that guides the action
selection policies in active inference. Figure 5-(a) demonstrates how modifying
the actions can reduce the exploration and minimize the imitation cost resulting
in a high learning rate during the training phase. Our goal is to find the best set
of actions that minimize the imitation loss in terms of FE. Figure 5-(b) shows
that the normalized global FE (F) drops down capably to decrease below 0.1.
Figure 5-(c) demonstrates that our method outperforms others in terms of suc-

(a) (b)

Fig. 3. a) The performed actions by L, b) The success rate.

(a) (b)

Fig. 4. Incremental learning. a) Corresponding TM to the situation model, b) TM after
clustering the learnt Q-table.

(a) (b)

success

loss

(c)

Fig. 5. Learning evaluation. a) The impact of exploration and learning rates after each
training quarter on the imitation cost, b) FE measurement, and c) Training result.
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cess and loss rate, which is attributed to the effectiveness of motion prediction
while dealing with abnormalities that improve the success rate.

During testing, the agent travels through 500 paths with different start posi-
tions than the training time. The testing stage includes two levels of difficulties:
I) the agent needs to overtake a single dynamic object, and II) the agent needs
to overtake multiple dynamic objects. Moreover, each level has three scenarios:
overtaking from the left side, overtaking from the right side, and when the agent
should decide to overtake from the left or right side of the object(s). Table 1
describes that the adapted agent to the learned model through the presented
method can overtake a single object and multiple dynamic objects in the envi-
ronment effectively, whereas other methods still have a high failure rate. More-
over, the provided vocabulary by E’s demonstrations tends to change-line from
the left side of O. By experiencing the unseen configuration during the online
learning phase, L learns to reduce the collision probability by interacting from
the dynamic object’s right side. The testing results show that by 5k training
trajectories, the agent can overcome the experiments with different scenarios
where it is necessary i) to overtake from the left side of the dynamic object(s),
ii) to overtake from the right side of the dynamic object(s), and iii) to decide to
overtake from which side of the dynamic object(s) has less collision probability
(mixed situation from both side).

Table 1. Testing the learnt model after 5k trial trajectories.

Our method Q-learning IRL SL

Overtake% Collision% Overtake% Collision% Overtake% Collision% Overtake% Collision%

Difficulty I: overtaking from one dynamic object

From the left side 97.42 2.58 88.13 11.87 90.28 9.72 79.67 20.33

From the right side 96.81 3.19 84.01 15.99 89.04 10.96 71.52 28.48

From both side 94.86 5.14 81.35 18.65 86.99 13.01 69.43 30.57

Difficulty II: overtaking from two dynamic objects

From the left side 95.26 4.74 83.78 16.22 89.11 10.89 73.51 26.49

From the right side 93.13 6.87 80.28 19.72 85.33 14.67 66.17 33.83

From both side 92.05 7.95 79.15 20.85 80.06 19.94 64.09 35.91

4 Conclusion

A novel framework has been proposed to integrate Imitation Learning with
Active Inference for autonomous driving. In the hybrid presented model, the
errors between the prediction and observation guide the action selection in two
processes. A low amount of error influences L that exploits the prior knowl-
edge to perform an action. In this case, L prepares an imitative response. On
the other hand, when experiencing an unobserved configuration causes a high
error, L needs to rely on random movements. During the online phase, L learns
to decide how to minimize the FE and guide the movements to the imitative
actions. Future work concentrates on employing the errors to guide the ran-
dom movement that might facilitate the execution of congruent actions with the
expert demonstrations.
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