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Abstract. This paper introduces Linguoplotter, a workspace-based
architecture for generating short natural language descriptions. All pro-
cesses within Linguoplotter are carried out by codelets, small pieces of
code each responsible for making incremental changes to the program’s
state, the idea of which is borrowed from Hofstadter et al. [6]. Codelets
in Linguoplotter gradually transform a representation of tempera-
tures on a map into a description which can be output. Many processes
emerge in the program out of the actions of many codelets, including
language generation, self-evaluation, and higher-level decisions such as
when to stop a given process, and when to end all processing and pub-
lish a final text. The program outputs a piece of text along with a sat-
isfaction score indicating how good the program judges the text to be.
The iteration of the program described in this paper is capable of lin-
guistically more diverse outputs than a previous version; human judges
rate the outputs of this version more highly than those of the last; and
there is some correlation between rankings by human judges and the
program’s own satisfaction score. But, the program still publishes disap-
pointingly short and simple texts (despite being capable of longer, more
complete descriptions). This paper describes: the workings of the pro-
gram; a recent evaluation of its performance; and possible improvements
for a future iteration.

Keywords: Language generation · Self-evaluation · Workspace ·
Codelet

1 Introduction

Work on language generation and language understanding are often kept sepa-
rate, but in humans the two processes are intertwined [9]: for example, simul-
taneous use of production and comprehension allow people to interweave con-
tributions in dialogue [2]. This paper introduces Linguoplotter, an attempt
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at a cognitively plausible model of language generation in which constant self-
evaluation and selection between competing ideas are integral to the generative
process. The model is tested in a toy domain of temperatures on a fictional map.

Many of the core ideas of the program are borrowed from the Fluid Analogies
Research Group, whose programs model high-level perceptual processes involved
in analogy making [6]. Their programs such as Copycat [8] and Tabletop [4]
operate in different toy domains, but in essence do the same thing: search for a
compact representation of their two inputs which allows for a satisfying mapping
and an inference that solves a problem. Unlike other contemporary models of
analogy-making such as the Structure Mapping Engine [3], the programs are not
provided with a ready-made high-level representation of the input, but generate
their own representation as part of the analogy making process.

Linguoplotter is not directly concerned with analogy making, but does
create mappings from data into natural language descriptions and generates
high-level representations of its input as part of the process. It avoids a pipeline
architecture typical of many language generating programs which keep the
analysis of data separate from the conversion to linguistic form (For example
Reiter [11], Leppänen [7]). The program is thus more concordant with work such
as by Turner [13] suggesting that language and narrative frames can influence
the way we perceive the world.

This work is open to the charge of being old-fashioned and restricted to
toy domains, but its aim is to produce an architecture which, like a neural
network, displays high-level behaviour emergent from the interactions of small
parts, while, like symbolic programs, is self-explanatory and easy to interpret.

2 How LINGUOPLOTTER Works

Linguoplotter
1 centers on a bubble chamber which contains a number of

spaces representing the program’s long- and short-term memory. Structures are
built and connected to each other in these spaces and the best, most relevant
structures bubble to the surface of the program’s attention by receiving boosts
in activation and spreading activation to related structures.

Long-term memory includes concepts (nodes located at prototypical points
in conceptual spaces), frames (recursive structures which map between seman-
tics and text), and letter-chunks (chunks of text ranging from morphemes to
sentences) in a network of spreading activation.

Short-term structures built as the program runs include chunks which group
together similar data points; labels which indicate that a node is an instance of
a particular concept; relations which link items to create instances of relational
concepts such as more or less); correspondences which map between items in
different spaces (usually for the purpose of filling a slot in a frame); and views
which collect together a consistent group of correspondences. Views have an
output space where a piece of text made of letter-chunks is built (Fig. 1).

1 Source code is available at https://github.com/georgeawright/linguoplotter.

https://github.com/georgeawright/linguoplotter
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All processing on structures is performed by codelets. Each codelet has a
small, specific task and after running, spawns another codelet to carry out follow-
up work. Codelets have an urgency representing the importance of their work
which the coderack uses when stochastically selecting the next codelet to be run.

Fig. 1. Structures built by codelets inside a single view. Solid blue lines are labels and
relations; dotted red lines are correspondences; green boxes are chunks. (Color figure
online)

Most codelets belong to a cycle which begins with a suggester codelet. A
suggester finds target structures and suggests a chunk or link that can be built
with them. For example, a label suggester classifies the proximity of a chunk to
a concept and spawns a label builder with an urgency reflecting its confidence
that the chunk belongs to that concept. A builder codelet builds structures and
spawns an evaluator codelet. An evaluator decides how good a structure is and
assigns it a quality score. It then spawns a selector codelet that chooses between
alternative structures, for example two different labels belonging to the same
chunk, and probabilistically boosts the activation of the best one. The selector
codelet spawns a suggester codelet to continue building related structures and
an evaluator so as to maintain the process of selecting the best structure.

Left unchecked, this forking of codelet cycles would cause an explosion in
the population of the coderack, hence coderack cleaners remove codelets that
are no longer contributing to an increase in the program’s satisfaction. In order
to avoid the depletion of the coderack population and to make sure that active
concepts and frames have structures suggested for them, factory codelets spawn
suggesters to initiate new cycles of codelets (Fig. 2).
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Fig. 2. Codelet types that run in the program. Solid arrows show each type’s follow-up
type. Dashed arrows show which types a coderack cleaner can remove.

The running of codelets and selection of structures all happens with some
degree of randomness which is determined by satisfaction. This is a measure of
the overall quality of structures in the bubble chamber. When the program lacks
active high quality structures, it is more random and pursues more options in
the search for a solution, but once good quality structures have been built and
activated, it proceeds more deterministically towards a finished piece of text.

Earlier iterations of the program were prone to too much randomness and
failed to narrow down on a single pathway towards a solution. This iteration of
the program has a focus setter codelet which chooses a single view at a time as
focus. Once a view is set as focus, codelets are targeted towards it and fill in the
slots in its frame. Having a focus gives the program a short-term sub-goal and
a narrower search space. A lack of progress or completion of the view causes a
focus unsetter to remove the view from focus. The satisfaction of the program
then falls; randomness increases; and the search space broadens (Fig. 3).

Linguoplotter also has a longer-term Worldview (an idea borrowed from
Tabletop [4]) which represents the best view completed so far. Its output space
contains a candidate piece of text for publication. Every time a worldview setter
codelet runs it searches for a better alternative to the current worldview. If it

Fig. 3. Bubble chamber satisfaction over a run of the program. Satisfaction spikes
when the focus is set and its slots filled in. Satisfaction dips when the focus is unset.
Satisfaction increases over time as the worldview is set or improved upon.
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fails, it sends activation to the publish concept. Eventually the program fails
to improve on itself and if a publisher codelet runs when the publish concept is
fully activated, the program halts and the text in the worldview is output.

2.1 Macro-level Processes in LINGUOPLOTTER

Macro-level processes emerge from Linguoplotter’s interacting components
such as: cycles that reinforce certain concepts and frames; alternation between
more engaged and more reflective behaviour; and the gradual decision to publish.

Self-Reinforcing Concepts. When a selector codelet chooses from competing
alternatives, it spawns a follow up suggester to suggest another related structure,
for example another link with the same concept or another view with the same
frame. This results in a snowballing of the use of certain conceptual structures.
For example, having created a sentence with a certain frame, the program would
be likely to start another sentence with the same frame.

Cycles of Engagement and Reflection. As the program runs, the changing
satisfaction score affects the breadth of processing. When the focus is set and
slots in its frame are filled in, satisfaction spikes and processing becomes more
deterministic and dedicated to that set of structures. But when there is no focus,
or when little progress is being made on the focus, processing is more random and
lacks a clear aim. This is analogous to Sharples’ cycle of engagement and reflec-
tion [12], the idea that humans alternate between bursts of purposeful behaviour
and periods of greater reflection and exploration. Unlike Mexica [10], a model of
narrative generation based on Sharples’ idea, this program’s cycle of engagement
and reflection is not explicitly coded, but results from a feedback loop between
codelets altering the bubble chamber and bubble chamber satisfaction adjusting
the randomness of codelet selection.

Publishing. The decision to publish is the responsibility of worldview setter
and publisher codelets, but can be affected by the intervention of other codelets.
Repeated failure of worldview setters results in the boosting of the publish

concept. This increases the likelihood of publication. But, if other codelets run
and maintain other processes, the publish concept will decay. The interactions
of different processes thus result in a period of indecision. Only a sustained
stream of failed worldview-setting can lead to publication.

2.2 Developing the Program

Linguoplotter’s many interleaved processes give it great potential, but also
make it difficult to optimize. Its behaviour can be altered by tweaking a number
of parameters, such as the method for calculating each codelet’s urgency; the
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method used to define the quality of each structure; and the formula for cal-
culating satisfaction. There are also a number of hyper-parameters, such as the
rate at which activation spreads between structures, the decay rate of activation,
and the method for determining how random the program should be.

As shown by the outputs of the program in Table 1, the program in its current
form is stuck in a local optimum where it is capable of producing outputs which
are, for the most part, true descriptions of the input, but which lack detail
and leave some of the input undescribed, even though it is capable of linking
sentences with connectives such as and to produce a more full description.

Calculating the Satisfaction Score. Satisfaction has three components: gen-
eral satisfaction G, focus satisfaction F , and worldview satisfaction W . The
overall satisfaction of the program S is given by:

S = max(F,mean(G,W ))

If there is a view in the focus, otherwise:

S = mean(G,W )

This limits satisfaction to 0.5 when there is no worldview and no focus and
prevents satisfaction from dropping to 0 when an empty view is placed in the
focus (this would result in highly random and unfocused behaviour).

General Satisfaction. G is the mean quality of all the input and output spaces
of the bubble chamber’s views. A space’s quality is determined by:

space quality =
∑

a∈A quality(a) × activation(a)
|A|

where A is the set of structures in the space with an activation greater than 0.5.
A high quality space must contain active high quality structures.

Worldview Satisfaction. W is calculated as:

W = AND(OR(Q,
D

10
), OR(P,

1
T

))

where
AND(X,Y ) = X × Y

OR(X,Y ) = X + Y −X × Y

Q is the quality of the worldview as determined by evaluator codelets; D is
the depth of the view’s parent frame (depth is a number between 1 and 10, with
lower numbers given to frames for simple phrases and higher numbers given to
sentences and conjunctions); P is the proportion of the input involved in the
view; T is the total number of frame types used by the view (i.e. types of phrase
constituting the sentence). This satisfaction metric encourages the program to
output sentences which are correct (high Q), complete (high P ), grammatically
complete (high D), and succinct (low T ).
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Focus Satisfaction. F is calculated as:

F = mean(mean correspondence quality,
|FilledSlots|

|Slots| )

where correspondence qualities are determined by codelets according to the qual-
ity of their arguments and how well they fill in frame slots.

Optimizing the Satisfaction Score. Changes to the satisfaction score affect
the program’s randomness and the texts that it prefers to publish. For example,
calculating worldview satisfaction as the product of Q, D

10 , P , and 1
T generally

lowers overall satisfaction and makes the program unlikely to terminate, even
after finding a more complete description than the current iteration. Alterna-
tively, using the mean of the four components to calculate worldview satisfaction
can result in very high satisfaction scores and causes the program to publish an
output much earlier than the current iteration before any significant traversal of
the search space. Further investigation is required in the search for a satisfaction
formula which allows the program to distinguish between good and bad outputs
and to estimate a good time to stop working and publish.

3 Performance of LINGUOPLOTTER

Linguoplotter was tested on the four inputs shown in Fig. 4. Three of these
are variations of a similar input. The fourth is a more challenging map which has
little or no pattern in the temperatures. The program was run 30 times for each
map. Table 1 shows the mean and standard deviation for the number of codelets
that were run before the program published a description of each input. It also
shows the output that gave the highest mean satisfaction score, the output that
was most frequently output (if there were two or more equally frequent outputs,
the one one with highest mean satisfaction is shown), and the output with the
lowest mean satisfaction score. Also shown for each input are two hand-selected
human generated texts (one a detailed description and one written in note-form),
and a text output by a previous version (judged by humans to be more correct
than its other outputs.)

(a) Input 1 (b) Input 2 (c) Input 3 (d) Input 4

Fig. 4. The four maps described by the program.
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3.1 Method for Evaluation by Human Judges

The program’s outputs are evaluated through pairwise comparison. This avoids
the difficulty of requesting a numeric score for a subjective judgement (describ-
ing a text as 100% interesting would be nonsensical) and results in less variance
between respondents [1]. It also allows for direct comparison between different
iterations of the program and humans. This iteration of the program was eval-
uated using the 24 texts in Table 1.

Table 1. Texts for inputs 1-4 (D: human (detailed); N: human (note-form); B: best
satisfaction; F: most frequent; W: worst satisfaction; O: old version). Mean satisfaction
scores are given in parentheses after machine-generated texts.

Input 1 Input 2

Mean run length: 10425 (σ: 6197) Mean run length: 12857 (σ: 6353)

D The temperature is cold in the north
but progressively warm moving south,
reaching 24◦C.

It is generally warmer in the south
than the north but warmest in the
central regions.

N Cool in the north, warm in the south. Cold in the north, milder in the
centre. cooler in the south

B Temperatures will be higher in the
east than in the north. (0.675)

Temperatures will be colder in the
east than in the west. (0.670)

F Temperatures will be colder in the
north than in the south. (0.644)

Temperatures will be warm in the
east. (0.405)

W Temperatures will be better in the
southwest than in the northwest.
(0.326)

Temperatures will be cool in the west.
(0.290)

O It is hot in the southeast. It is mild in the south.

Input 3 Input 4

Mean run length: 10560 (σ: 7824) Mean run length: 13583 (σ: 9660)

D The temperature gets much warmer as
you go from northwest to southeast.
it’s very chilly in the northwest and
warm in the southeast.

The temperature is inconsistent across
the region with isolated pockets of
high and low temperatures in various
places.

N It is cold in the north, a little warmer
elsewhere, but warm in the south east.

The temperatures are very erratic.

B Temperatures will be higher in the
southeast than in the northwest.
(0.674)

Temperatures will be cooler in the
west than in the northeast. (0.673)

F Temperatures will be cool in the
north. (0.604)

Temperatures will be hot in the north.
(0.540)

W Temperatures will be higher in the
south than in the northwest. (0.350)

Temperatures will be lower in the
southwest than in the southeast.
(0.338)

O The north is cold. The southeast is hot.
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For each possible pair of texts, human judges were asked five questions in
order to evaluate the texts along different dimensions:

1. Which text is easier to understand?
2. Which text is written more fluently?
3. Which text do you find more interesting?
4. Which text is more factually correct with regard to the temperatures on the

map?
5. Which text provides a more complete description of the map?

Respondents could answer by either stating that one text was better than
the other or that they were both the same. At no point were the respondents
told that texts were machine-generated or human-generated.

Previous evaluation of the program only sought judgements on easiness, flu-
ency, correctness, and completeness. These are typical characteristics considered
in the evaluation of the quality and accuracy of machine generated language [5].
This time interestingness is also considered so as to measure the extent to which
the computer program can match humans’ creative flair when writing.

3.2 Results of Human Evaluation

Table 2 shows aggregate rankings of the different texts for each map calculated
using the pairwise preferences given by human judges answering a survey on
Amazon Mechanical Turk. Rankings were calculated by giving a text a score
where it gained 1 point each time it was preferred over another text and lost 1
point each time another text was preferred over it. Overall, the outputs of the
program are judged better than outputs of the previous version, but still lag
behind the best texts generated by humans.

It should be noted that there was little agreement between human judges.
Fleiss’ Kappa was −0.016 for easiness, −0.018 for fluency, −0.018 for interest-
ingness, −0.014 for correctness, and −0.007 for completeness. Low agreement is
inevitable with subjective judgements, but this is also partly due to a large num-
ber of annotators – 36: only 2 annotators answered all questions in the survey.
Agreement was greater between those two annotators, especially along the more
objective dimensions of correctness (0.266) and completeness (0.589). It might
be better in future for each annotator to provide rankings for all texts instead
of just pairwise preferences so that a greater number of judgements per person
can be obtained.

The latest iteration of the program consistently performs better than the
previous evaluated version along the dimensions of interestingness, correctness,
and completeness, but fails to match the best human performance.

As found when evaluating the previous version, humans tend to perform
worse in terms of easiness, most likely because the computer-generated texts
are simpler. Sometimes the previous iteration of the program (which produced
shorter sentences) also outperformed the latest iteration along this dimension.

Interestingly, the latest iteration’s best output ranked highest for all inputs
in terms of fluency, usually followed by the detailed human text. The mean
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Spearman’s rank correlation coefficient for each input between the rankings of
the program’s satisfaction scores and the aggregated human judge rankings for
fluency is 0.875. Correlation is lower for the other dimensions (0.625 for inter-
estingness, 0.25 for completeness, 0 for correctness, and 0 for easiness). Since
the number of texts being compared is so small, little weight should be given to
these correlation scores. Nevertheless this does suggest that more work is needed
to improve the program’s satisfaction score, not only to optimize the running of
the program, but also to improve its judgement.

Table 2. Average rankings according to pairwise preferences for inputs 1-4.

Input 1 Easy Fluent Interesting Correct Complete

1 F B D D D

2 N D B F F

3 B F F N N

4 O O N B B

5 D W W O W

6 W N O W O

Input 2 Easy Fluent Interesting Correct Complete

1 F B D D D

2 W D N N N

3 B W B F F

4 O F W W W

5 D O F O O

6 N N O B B

Input 3 Easy Fluent Interesting Correct Complete

1 O B D D D

2 F D N W N

3 B F B B W

4 W W W N B

5 D N F F F

6 N O O O O

Input 4 Easy Fluent Interesting Correct Complete

1 O B D O D

2 F F B W B

3 B W W D W

4 W D N N N

5 N O F B O

6 D N O F F

3.3 Discussion

Overall, the program produces better outputs than its earlier iteration, but still
falls short of human performance. It has some wherewithal to recognize poor
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performance in the form of its satisfaction score, but this also needs improving.
The current configuration of the program takes on the order of 104 codelets to
run and normally outputs a single sentence comparing two areas of the input
map, though it sometimes produces a sentence describing a single area.

Its descriptions either make use of the temperature space of the original
input (temperatures will be colder in the north than in the south) or the height

or goodness spaces (temperatures will be higher in the east that in the north,
temperatures will be better in the southwest than in the northwest). There is
little variation in the program’s language but more than in the previous version
which only used temperature adjectives and simpler sentences. The program’s
outputs still fall far short of the richer human produced texts, but this is partly
due to a lack of sentence frames available to the program.

The program’s comparisons do not always seem sensible to the human ear,
although they may be acceptable in terms of being truthful. For example, the
program’s “best” output for input 1 is a comparison between the east and the
north. This description is odd, partly because it neglects a large part of the
map, but also because it is ambiguous about the northeast. The program’s more
frequent output comparing the north and the south is ranked higher by human
judges in terms of correctness, completeness, and easiness. It is strange that the
“best” output is ranked higher in terms of fluency and interestingness, but there
is especially low agreement for these dimensions.

On average the program took longest to describe input 4, but the difference is
not significant and it shows a similar range of satisfaction scores for the outputs.
Since input 4 ought to have been more difficult for the program to describe, a
longer run time was to be expected, but the similar outputs and similar spread of
satisfaction scores was not. Inspections of the structures built inside the program
for each input indicate that relatively small chunks are being used to fill in frame
slots and generate descriptions. The program therefore judges its descriptions to
represent similar proportions of the map even though the descriptions for inputs
1-3 should be interpreted as describing larger areas. The program either builds
large chunks and neglects to use them or fails to build larger chunks before
generating text.

4 Future Improvements

It is clear from analysis of both the program’s behaviour and its outputs, that
further work is required to improve the program’s satisfaction score and its
ability to judge between good or bad outputs. This includes making sure that
the program recognizes how correct and complete its descriptions are.

The program must remedy its description’s lack of completeness by both
building chunks which cover a wider area of the input when possible so as to
gauge more accurately how much of the input a sentence can be interpreted as
describing, but also to continue processing and generate more sentences when
the text produced so far does not provide a full description.

Knowledge represented in the program and taken into account by self-
evaluation ought also to include more aesthetic considerations. For example,
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the program ought to prefer comparison between opposite locations. Odd state-
ments should not be forbidden in case a different context makes them relevant,
but the program should generally avoid them.

Future work should also include a more thorough search for a set of hyper-
parameters that will encourage good quality and complete descriptions of the
input. This will not necessarily require large-scale changes to the program, but
remains a challenge considering the complexity of the search space.

Ultimately, the program must also be put to work in a more complex domain
in order to test its general applicability to the task of generating descriptions.

5 Conclusion

This paper presents an advance towards an explainable model of language gen-
eration which can evaluate its own work and is directly affected by its own
self-evaluation. The idea has great cognitive plausibility due to the intertwining
of different processes, but the implementation thus far still lags behind humans
in terms of both language generation and language evaluation. Future work must
focus on improving the program’s in-built aesthetic measures so that it can more
reliably predict human judgements; produce better descriptions; and know when
to publish them.
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