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Preface

The annual International Conference on Text, Speech and Dialogue Conference (TSD),
which originated in 1998, is continuing its third decade. In the course of time, thousands
of authors from all over the world have contributed to the proceedings. TSD constitutes
a recognized platform for the presentation and discussion of state-of-the-art technology
and recent achievements in the field of natural language processing. It has become
an interdisciplinary forum, interweaving the themes of speech technology and language
processing.The conference attracts researchers not only fromCentral andEasternEurope
but also from other parts of the world. Indeed, one of its goals has always been to bring
together NLP researchers with different interests from different parts of the world and
to promote their mutual cooperation.

One of the declared goals of the conference has always been, as its title suggests,
twofold: not only to deal with language processing and dialogue systems, but also to
stimulate dialogue between researchers in the two areas of NLP, i.e., between text and
speech researchers. In our view, the TSD conference was again successful in this respect
in 2022. We had the pleasure of welcoming two prominent invited speakers this year:
Eneko Agirre from the University of the Basque Country, Spain, and Anna Rogers from
the University of Copenhagen, Denmark.

This volume contains the proceedings of the 25th TSD conference, held in Brno,
Czech Republic, in September 2022. In the review process, 43 papers were accepted out
of 94 submitted, based on three reviews per paper, giving an acceptance rate of 46%.

We would like to thank all the authors for the efforts they put into their submis-
sions and the members of the Program Committee and reviewers who did a wonderful
job selecting the best papers. We are also grateful to the invited speakers for their con-
tributions. Their talks provided insight into important current issues, applications, and
techniques related to the conference topics.

Special thanks are due to the members of Local Organizing Committee for their
tireless effort in organizing the conference. The EXT pertise of Petr Sojka resulted in the
production of the volume that you are holding in your hands.

We hope that the readers will benefit from the results of this event and disseminate
the ideas of the TSD conference all over the world. Enjoy the proceedings!

July 2022 Aleš Horák
Ivan Kopeček

Karel Pala
Petr Sojka
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Matej Klemen
Piotr Przybyła
Giulia Rizzi
Ipek Baris Schlicht
Somnath Banerjee

Organizing Committee

Aleš Horák (Co-chair)
Ivan Kopeček
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On Comparison of Phonetic Representations for Czech Neural Speech
Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410

Jindřich Matoušek and Daniel Tihelka

The Influence of Dataset Partitioning on Dysfluency Detection Systems . . . . . . . 423
Sebastian P. Bayerl, Dominik Wagner, Elmar Nöth, Tobias Bocklet,
and Korbinian Riedhammer

Going Beyond the Cookie Theft Picture Test: Detecting Cognitive
Impairments Using Acoustic Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437

Franziska Braun, Andreas Erzigkeit, Hartmut Lehfeld,
Thomas Hillemacher, Korbinian Riedhammer, and Sebastian P. Bayerl

Dialogue

Federated Learning in Heterogeneous Data Settings for Virtual Assistants –
A Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451

Paweł Pardela, Anna Fajfer, Mateusz Góra, and Artur Janicki

PoCaP Corpus: A Multimodal Dataset for Smart Operating Room Speech
Assistant Using Interventional Radiology Workflow Analysis . . . . . . . . . . . . . . . . 464

Kubilay Can Demir, Matthias May, Axel Schmid, Michael Uder,
Katharina Breininger, Tobias Weise, Andreas Maier, and Seung Hee Yang

Investigating Paraphrasing-Based Data Augmentation for Task-Oriented
Dialogue Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476

Liane Vogel and Lucie Flek

Transfer Learning of Transformers for Spoken Language Understanding . . . . . . 489
Jan Švec, Adam Frémund, Martin Bulín, and Jan Lehečka
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Evaluating Attribution Methods
for Explainable NLP with Transformers

Vojtěch Bartička , Ondřej Pražák(B) , Miloslav Konoṕık ,
and Jakub Sido

Department of Computer Science and Engineering, NTIS – New Technologies for the
Information Society, Faculty of Applied Sciences, University of West Bohemia,

Plzeň, Czech Republic
{barticka,ondfa,konopik,sidoj}@ntis.zcu.cz

http://www.nlp.kiv.zcu.cz

Abstract. This paper describes the experimental evaluation of several
attribution methods on two NLP tasks: Sentiment analysis and multi-
label document classification. Our motivation is to find the best method
to use with Transformers to interpret model decisions. For this purpose,
we introduce two new evaluation datasets. The first one is derived from
Stanford Sentiment Treebank, where the sentiment of individual words
is annotated along with the sentiment of the whole sentence. The second
dataset comes from Czech Text Document Corpus, where we added key-
word information assigned to each category. The keywords were manually
assigned to each document and automatically propagated to categories
via PMI. We evaluate each attribution method on several models of dif-
ferent sizes. The evaluation results are reasonably consistent across all
models and both datasets. It indicates that both datasets with proposed
evaluation metrics are suitable for interpretability evaluation. We show
how the attribution methods behave concerning model size and task. We
also consider practical applications – we show that while some meth-
ods perform well, they can be replaced with slightly worse-performing
methods requiring significantly less time to compute.

Keywords: Explainable AI · Transformers · Document classification

1 Introduction

Interpretability in NLP is a large, fast-growing area. Its goal is to discover what
inputs mainly influence particular decisions of machine learning models. This
paper focuses on interpretability in transformer-based models, which are cur-
rently state of the art in the most common NLP tasks. We pay special interest
to post-hoc explanations where we focus on already trained models to produce
the explanations (i.e. we do not modify the training procedure).

In this work, we use two datasets for evaluating explanations. The first
dataset, Stanford Sentiment Treebank [14], is naturally ideal for evaluating

c© Springer Nature Switzerland AG 2022
P. Sojka et al. (Eds.): TSD 2022, LNAI 13502, pp. 3–15, 2022.
https://doi.org/10.1007/978-3-031-16270-1_1
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explanations since it provides sentiment annotation for both tokens and phrases.
The second dataset is newly created from Czech Text Document Corpus [8]. Our
main goal is to evaluate post-hoc explanations (specifically attribution methods)
used with standard pretrained Transformer models.

2 Related Work

The simplest approaches for interpreting models are based solely on gradients.
Such methods are called Vanilla Gradients methods. They compute gradients of
logits of the predicted class with respect to input embeddings. These methods
were first used for images in [12] and later for NLP in [4].

Authors of [10] proposed multiplying gradients with inputs (often referred as
gradient x input). They proved the equivalence of gradient x input to Layerwise
Relevance Propagation (LRP) [1] for piecewise linear activation functions while
LRP being more computationally expensive. Gradient x input is better than
vanilla gradients, because it leverages the sign and strength of the input [10].

Integrated Gradients [16] use baselines. A baseline is an input for which
the model prediction is neutral, or which represents a lack of information. The
need for baselines when explaining model decisions has been discussed prior to
Integrated Gradients in [9]. The method then interpolates a linear path with
evenly spaced points between the baseline and input. Gradients are computed
for each point created this way. The method then integrates over the gradients,
which yields the final attributions.

SmoothGrad [13] tackles the issue of noisy gradient attributions. The authors
identify that the gradients sharply fluctuate with small changes to the input.
They propose a simple method to suppress this phenomenon - create multiple
samples by adding noise to the input, compute the sample gradients and aver-
age them. The authors show that the method successfully improves the visual
coherence of attributions on images.

Chefer et al. [3] proposed relevance propagation method designed specifically
for Transformers. This method has very good results but unlike other methods
presented here, which are model-agnostic, this method uses specific operations
for every layer. Therefore, if we change the architecture of the model1, we need
to modify the method.

Authors of ERASER [6] try to create a general evaluation framework for
NLP models similar to GLUE [18]. They collected eight datasets with discrete
explanations (rationales) annotated. Some of the datasets had been annotated
on the token level in their original form; the rest were annotated for explanations
evaluation in ERASER. Documents in all datasets in ERASER are very long, so
for most of them, we cannot use pretrained BERT-like models in their standard
form.

ERASER has quite a broad scope. It is meant to be used with both continuous
and discrete explanations and both post-hoc explanations and models trained

1 Different activation, slightly different layer operation.
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specifically to provide good explanations. The authors use standard metrics to
measure agreement with human annotations (F1 score for discrete rationales,
AUPRC [15] for continuous). They also suggest new metrics to evaluate the
faithfulness of the model.

3 Evaluation Datasets

As the first step, we build two datasets for evaluating explanations. One is
derived from Stanford Sentiment Treebank, which is in English, and the other
is from Czech Text Document Corpus.

3.1 Sentiment Analysis

To create this dataset, we slightly modify Stanford Sentiment Treebank (SST).
The dataset contains continuous sentiment annotations (0–1) for all nodes of the
syntactic tree of the sentence. Therefore, the dataset contains sentiment values
for all phrases and all words in the sentence and a global sentence-level score.
This makes the dataset ideal for evaluating explanations since we know how the
sentiment of individual words contributes to the overall sentiment of a given
sentence. This is quite strong assumption and it means we ignore some linguistic
structures such as negation by assuming the sentiment of individual words is
independent of the sentence. However, we believe this simplification does not
have significant impact on the results. Since the annotations are continuous, we
are able to compare how important are the individual tokens in the sentence.

One of the key changes we made is the removal of neutral sentences from
train, validation, and test splits. We believe that it is counterproductive to per-
form attributions on neutral or unclear examples since it can be expected that
the attributions will not make much sense. We consider a sentence to be neu-
tral if its sentiment is between 0.4 and 0.6. Moreover, attribution methods such
as Integrated Gradients, which use a neutral baseline as a reference, would be
penalized by including the neutral sentences. We also do not evaluate the ability
of the attribution methods to explain uncertain decisions of the models.

To create the test and validation splits, we use the original splits while remov-
ing neutral sentences as mentioned. We have expanded the training split com-
pared to the original in a way similar to GLUE SST-2 dataset [18]. The original
training split contains only whole sentences. We remove neutral sentences from
the training split and add all non-neutral phrases (sequences of one or more
tokens) that do not occur in any of the sentences from test and validation splits.
We show the sizes of the splits in Table 1.
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Table 1. Statistics of the splits of the sentiment dataset

Split Samples Positive samples Negative samples Tokens

Train 83 710 45 068 38 642 878 901

Val 872 444 428 17 046

Test 1 821 909 912 35 023

3.2 Multi-label Document Classification

This dataset is derived from Czech Text Document Corpus (CTDC). CTDC
is a corpus for multi-label document classification. It consists of news articles
classified into 60 different categories. Statistical information such as word count
and class count histograms are available in the original paper [8].

The original dataset does not contain any clues how to explain the assignment
of labels to documents. However, we believe that manually annotated keywords
should be sufficient explanation of the category assignments. Fortunately, the
documents in the CTDC dataset come from journalists who include keywords in
documents. Thus, the first step is to associate the documents with the keywords
provided by journalists. However, we can not be certain that all the keywords
really support the document categories. Moreover, we can not distinguish which
keywords and categories associate to each other (the dataset contains multiple
labels for each document). To solve both issues, we employ the pointwise mutual
information (PMI), which tells us how much more likely is that a keyword k and
a class c appear together than it would happen by chance (if k and c were inde-
pendent). We take manually annotated keywords for the original news articles,
and we compute PMI for each keyword with each class. The keywords with the
largest PMI with a class are considered keywords for that class. We publish the
PMI values to preserve soft rationales information, but in the experiments, we
used hard rationales by setting the PMI threshold for class keywords.

We have 37 121 keywords and PMI values in total for all 60 classes in the
original dataset, but some of the classes have only a few keywords. We consider
as class keywords all those with PMI greater than 0 and occurring at least ten
times in that class. If we consider all PMI values greater than 0, there are 568
keywords per class on average. The PMI values, however, are low in general. If
we consider keywords with a PMI of at least log(5), we end up with an average
of 135 keywords per class. The percentiles of PMI are shown in Table 2.

The keywords can be single words or phrases of up to three words. About
84% of the keywords are single words, 16% are two-word phrases, and less than
1% are three-word phrases.

The keywords are, in a sense, characteristic of their respective category. The
PMI tells us how significant they are. We would expect the model to pay more
attention to the keywords than to other words in the document when deciding
whether or not the document belongs to a category. This enables us to measure
the performance of attribution methods since we have a ground truth in terms
of what should be important in the decision process of a model.
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Table 2. Percentiles of PMI distribution

Percentile 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

PMI 1.20 1.46 1.76 2.15 2.66 3.34 4.43 6.46 12.80

4 Experiments

We design the set of experiments to evaluate two new datasets and to find the
best attribution method for common NLP tasks with Transformers. We evaluate
several methods on various models with different sizes (in terms of trainable
parameters).

4.1 Attribution Methods

We choose multiple gradient-based attributions methods and one transformer-
specific attribution method from Chefer et al. [3]. All of these methods allow us
to get class-specific attributions.

For gradients, we use vanilla gradients [12] and gradients × input [10].
For SmoothGrad we replicate the reference implementation [13]. Afterwards we
employ a noise with standard deviation of 0.15 (the reference implementation
default). We used sample counts of 20, 50, and 100 examples. For each sample
count, we multiply the resulting attributions by input.

For Integrated Gradients [16], we use the same sample counts as in Smooth-
Grad.

For Chefer et al., we used their implementation of the method. In sentiment
analysis, we evaluate this method on all models. However, for multi-label doc-
ument classification, we only evaluate it on one model since our second model
does not rely on the BERT architecture. The method only provides positive
attributions. For this reason, we do not compare it with positive and negative
attributions but only with absolute attributions.

Additionally, we compare these methods to randomly generated attributions.

4.2 Models

Sentiment Analysis. For sentiment analysis, we choose four BERT models
of different sizes; base [5], medium, small and mini. All of these models are
already pre-trained. The medium, small and mini models were pre-trained using
knowledge distillation [17] and ported to HuggingFace in [2]. The base model is
cased and the medium, small and mini models are uncased. All the models were
trained for four epochs. Table 3 shows the model accuracies on the validation
split.

Neutral baseline samples for Integrated Gradients are created by randomly
generating embeddings which the model classifies as neutral. This was done for
each of the five models.



8 V. Bartička et al.

Multi-label Document Classification. For multi-label document classifica-
tion, we choose Czert [11], which is a BERT-base size model pre-trained on Czech
data, and small-e-czech [7], which is Electra-small model pre-trained on Czech
data. Czert is a cased model and small-e-czech is uncased.

For this task, we choose to use the same training procedure as the authors
of the original dataset. We use five-fold cross-validation on the training split
leaving one fold out as a test fold. After obtaining predictions for all the folds,
we measure the model performance using micro F1 score on the whole training
split. The results are shown in Table 3.

Neutral baseline samples for Integrated Gradients are created by adding a
baseline class to the training data. The baseline class contains samples with
empty documents (consisting of padding tokens, as suggested by the authors
[16]).

4.3 Metrics

Sentiment Analysis. For the sentiment analysis task, we discard any sentence
with an incorrect or neutral prediction (probability below 0.6). The rationale
behind this decision is the same as with the dataset; we can expect the attribu-
tions to be of decreased quality. Therefore, each model is evaluated on a slightly
different set of sentences. For a specific model, all methods are evaluated using
the same sets of sentences, meaning that the method results are comparable.

Table 3. Training results for all models for both datasets. For sentiment analysis we
show accuracy on the validation split. For multi-label classification we show micro F1
score on the training split.

Sentiment model BERT-base BERT-medium BERT-small BERT-mini

Accuracy 0.9232 0.9128 0.8945 0.8773

Document class. model Czert Small-e-czech

Micro F1 0.8574 0.7597

As a metric, we choose to use the size of the intersection between top k anno-
tated tokens and top k attributed tokens. We divide the size of the intersection
by k, formally:

sk =
|topk(gold) ∩ topk(pred)|

k
, (1)

where topk(gold), topk(pred) takes k words with the highest annotated, and
attributed values, respectively. We use k = 1, 3, 5. We choose to eliminate sen-
tences with less than 12 words since sentences with a few words often contain
neutral sentiment. This way, we can have more confidence that the k words with
the highest sentiment are not neutral.
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We evaluate the attributions in two ways; as absolute attributions and as
positive or negative attributions. For the absolute attributions, we convert the
sentiment annotations to absolute values as well and then match the top k attri-
butions and top k annotations. For polarised attributions (positive and negative),
we consider highest k annotations for sentences with overall positive sentiment
and lowest k annotations for sentences with overall negative sentiment. In the
tables below, we report these metrics as an average over all evaluated samples.

Multi-label Document Classification. For the multi-label document classi-
fication task, we first filter out documents that would not fit into the 512 token
limit of our models. We treat every category the document belongs to as a single
evaluation instance because we can get class-specific attributions for each cate-
gory. As with the sentiment analysis dataset, we decided to discard incorrectly
classified categories. We also discard categories, for which the prediction was
uncertain, meaning lower than 0.6. We take into account only keywords with
PMI of at least log(5) and consisting of a single word. Value log(5) was cho-
sen to eliminate keywords with small significance to their respective class. The
PMI of log(5) means that a keyword k is five times more likely to occur in the
document of class c than it would be by chance. We do not evaluate categories
that contain no keywords in a given document. During evaluation we stem the
keywords and document words to account for slight differences in their form.

As a metric, we choose the size of intersection between top k attributions
and all keywords for a given category present in the document n. We divide the
size of the intersection by n. Formally:

sk =
|keywords ∩ topk(pred)|

|keywords| (2)

We have used k = 5, 10, 15. We use higher value of k than in case of SST,
because here the documents are much longer (on average). We choose to consider
all keywords present during the evaluation. We know keywords with high PMI
are relevant to the category. However, we do not believe that, past a certain
threshold, a higher PMI should always correspond to a higher attribution.

As in the case of sentiment analysis, we evaluate the attributions as polarised
(positive or negative) and as absolute. In both cases, we consider top k positive
attributions. Our annotations contain only positive rationales, as there are no
“anti-keywords” that would indicate an absence of a category. In the tables
below, we report these metrics as an average over all evaluated samples.

5 Results and Discussion

Results for the sentiment analysis dataset are in Tables 4 and 5. For the multi-
label document classification dataset, see Table 6.
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5.1 Gradients and Gradients × Inputs

Vanilla gradients are fast and perform well on larger models. However, their per-
formance drops as the models get smaller (compared to other well-performing
methods). With smaller models, the speed advantage of vanilla gradients
becomes less significant, and other slower methods produce significantly bet-
ter results. We can also see that vanilla gradients perform better if interpreted
as absolute attributions. These findings are in agreement with the motivation
behind multiplying gradients with inputs described in Related Work.

Multiplying gradients by inputs degrades performance, especially on larger
models (see Table 4). On smaller models, the impact is not as significant. For
BERT-small, the performance has improved considerably (see Table 5), which
we consider an anomaly if we take into account the behavior observed in other
models. We believe multiplying the gradients by inputs negatively affects the
performance with larger models because we combine the noise from gradients
and the noise from the token embeddings, which increases with model size.

5.2 SmoothGrad

SmoothGrad performs poorly across all models and datasets. In some cases, its
performance is close to randomly assigned attributions (see Table 4). We believe
this is caused by the datasets and metrics used. By adding noise to the input
and then averaging the resulting gradients, we flatten out the distribution of
attributions across all tokens. This means that we suppress extreme attribution
values, distributing them among surrounding tokens. Since our metrics only
operate with extreme attribution values, we penalize this attribution method,
even though the attributions may be correct to some degree.

Multiplying SmoothGrad by input significantly improves the performance.
This is because SmoothGrad by itself does not take into account the sign and size
of the input (embedding). While SmoothGrad removes the noise usually present
in vanilla gradients, multiplying it by inputs corrects the flattened distribution
of the attributions. This makes the method viable, especially for smaller models
(see Table 5), where it performs exceptionally, and the computational cost of
multiple forward and backward passes is more acceptable compared to large
models.

5.3 Integrated Gradients

Integrated Gradients perform consistently across all models and datasets. On
the sentiment analysis dataset, Integrated Gradients show worse results than
SmoothGrad multiplied by input (see Table 4). In multi-label classification,
they slightly outperform or almost match SmoothGrad multiplied by input (see
Table 6). We observe that for smaller models, a low number of interpolation steps
is enough. For BERT-mini with 11.3M parameters, using more than 20 steps
brings little to no performance. This behavior also seems to be task-dependent –
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in multi-label document classification, the performance with Czert (110M param-
eters) saturates at 20 interpolation steps. Overall, Integrated Gradients perform
above average in this task.

5.4 Chefer et al.

The method from Chefer et al. has, in many cases, outperformed the other
methods (see Tables 4, 5 and 6). It proved to be especially useful on larger
models, where other comparable methods require multiple gradient calculations.
The gradient computation is a resource-intensive process, which makes methods
that require multiple gradient calculations less practical with large model sizes.
The method from Chefer et al. needs only one forward and two backward passes
(see Table 7), which gives it a significant speed advantage. This speed advantage
can be a factor in practical applications. The method only provides positive
attributions, which we consider a limitation. Additionally, the implementation
is architecture-specific, which makes it less portable than other methods.

5.5 Datasets

In both datasets, most of the methods performed consistently. We can see that
our assumptions about the agreement of automatic rationales with human anno-
tation are correct. The exception are Integrated Gradients, which show excellent
results in the multi-label classification task. They matched SmoothGrad multi-
plied by input while requiring less gradient computations but were outperformed
by Chefer et al. However, Integrated Gradients struggle in the sentiment analysis
task, where they are consistently outperformed by both SmoothGrad multiplied
by input and Chefer et al.

Table 4. Metrics on the sentiment analysis dataset for BERT-base and BERT-medium
models. Note that for BERT-base we used SmoothGrad with noise size of 0.05.

BERT-base Pos / Neg Absolute

method top1 top3 top5 top1 top3 top5

grads .147 .266 .372 .202 .351 .465

grads x I .108 .212 .330 .145 .280 .405

ig 20 .106 .244 .362 .087 .217 .344

ig 50 .126 .259 .378 .091 .227 .354

ig 100 .135 .265 .380 .102 .235 .355

sg 20 .063 .203 .337 .067 .192 .326

sg 50 .06 .194 .329 .064 .198 .324

sg 100 .054 .191 .327 .061 .185 .321

sg 20 x I .164 .299 .418 .127 .258 .366

sg 50 x I .188 .31 .422 .135 .264 .373

sg 100 x I .188 .326 .429 .143 .272 .379

Chefer et al. - - - .277 .327 .401

random .061 .190 .332 .057 .187 .314

BERT-medium Pos / Neg Absolute

method top1 top3 top5 top1 top3 top5

grads .169 .274 .380 .208 .358 .467

grads x I .138 .258 .365 .125 .262 .383

ig 20 .158 .290 .403 .108 .249 .373

ig 50 .185 .306 .411 .129 .267 .380

ig 100 .200 .315 .416 .144 .280 .390

sg 20 .057 .199 .333 .072 .208 .333

sg 50 .079 .210 .343 .097 .215 .349

sg 100 .079 .210 .340 .079 .213 .344

sg 20 x I .264 .377 .454 .212 .324 .418

sg 50 x I .325 .397 .470 .264 .369 .454

sg 100 x I .333 .423 .489 .288 .393 .479

Chefer et al. - - - .308 .374 .444

random .055 .205 .334 .058 .190 .326
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Table 5. Metrics on the sentiment analysis dataset for BERT-small and BERT-mini
models.

BERT-small Pos / Neg Absolute

method top1 top3 top5 top1 top3 top5

grads .157 .279 .383 .211 .360 .471

grads x I .215 .312 .400 .206 .358 .463

ig 20 .188 .300 .398 .146 .270 .382

ig 50 .209 .313 .409 .160 .284 .394

ig 100 .218 .319 .411 .169 .294 .401

sg 20 .068 .210 .339 .076 .217 .346

sg 50 .085 .219 .345 .087 .226 .356

sg 100 .076 .203 .334 .082 .217 .345

sg 20 x I .269 .365 .448 .218 .324 .419

sg 50 x I .316 .390 .455 .255 .364 .442

sg 100 x I .343 .404 .462 .283 .379 .455

Chefer et al. - - - .334 .428 .500

random .054 .202 .328 .056 .200 .329

BERT-mini Pos / Neg Absolute

method top1 top3 top5 top1 top3 top5

grads .153 .273 .375 .209 .365 .472

grads x I .143 .245 .338 .214 .371 .479

ig 20 .266 .359 .446 .199 .312 .417

ig 50 .287 .364 .452 .213 .319 .424

ig 100 .288 .369 .453 .218 .323 .428

sg 20 .086 .213 .343 .099 .242 .364

sg 50 .070 .221 .358 .116 .249 .374

sg 100 .100 .228 .355 .106 .245 .372

sg 20 x I .393 .468 .509 .297 .431 .513

sg 50 x I .410 .480 .520 .308 .453 .540

sg 100 x I .418 .486 .525 .312 .464 .550

Chefer et al. - - - .262 .376 .465

random .067 .194 .335 .055 .195 .321

Table 6. Metrics on the multi-label classification dataset for Czert and Small-e-czech
models.

Czert Pos / Neg Absolute

method top5 top10 top15 top5 top10 top15

grads .166 .239 .303 .229 .335 .419

grads x I .140 .213 .270 .213 .322 .396

ig 20 .308 .405 .472 .289 .378 .447

ig 50 .309 .405 .473 .291 .380 .447

ig 100 .309 .405 .474 .291 .380 .447

sg 20 .113 .182 .253 .114 .215 .299

sg 50 .116 .194 .265 .121 .213 .295

sg 100 .107 .181 .242 .118 .213 .297

sg 20 x I .254 .356 .428 .206 .316 .397

sg 50 x I .292 .416 .481 .268 .391 .470

sg 100 x I .303 .425 .490 .279 .406 .478

Chefer et al. - - - .313 .417 .480

random .077 .161 .226 .068 .155 .250

Small-e-czech Pos / Neg Absolute

method top5 top10 top15 top5 top10 top15

grads .157 .225 .273 .233 .326 .392

grads x I .151 .228 .285 .207 .320 .386

ig 20 .314 .428 .483 .303 .417 .475

ig 50 .311 .430 .482 .301 .421 .478

ig 100 .311 .430 .482 .301 .422 .478

sg 20 .108 .177 .246 .123 .218 .303

sg 50 .127 .196 .254 .151 .257 .342

sg 100 .134 .207 .258 .157 .260 .342

sg 20 x I .232 .342 .414 .180 .301 .385

sg 50 x I .316 .423 .494 .285 .398 .471

sg 100 x I .315 .430 .492 .293 .412 .478

Chefer et al. - - - - - -

random .064 .134 .204 .064 .144 .226
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Table 7. Number of forward and backpropagations for each of the attribution methods.

Forward propagations Back propagations

grad 1 1

grad x I 1 1

ig 20 20 20

ig 50 50 50

ig 100 100 100

sg 20 20 20

sg 50 50 50

sg 100 100 100

sg x I 20 20 20

sg x I 50 50 50

sg x I 100 100 100

Chefer et al. 1 2

6 Conclusion

In this paper, we present two datasets for evaluating explainable methods for
Transformers. We design the evaluation specifically for transformer architectures
making it usable for a wide range of NLP tasks.

Our results show that vanilla gradients do not perform very well compared
to other methods. Moreover, they tend to have wrong signs. Multiplying them
by input worsens performance significantly on large models, while on smaller
models, the impact is less pronounced. Integrated Gradients provide consistent
performance but are outperformed by SmoothGrad in the sentiment analysis
task. SmoothGrad does not perform well due to the tasks and metrics used. Mul-
tiplying SmoothGrad by inputs improves the results significantly. The method
from Chefer et al. performs very well across tasks and models. It is inexpensive
to compute, requiring to compute gradients only once, which gives it an edge
over the other well-performing methods. The method, however, only provides
positive attributions and is less portable between architectures.

Our evaluation datasets are publicly available along with the evaluation
source codes2.
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Abstract. Natural language resources are essential for integrating lin-
guistic engineering components into information processing suites. How-
ever, the resources available in French are scarce and do not cover all
possible tasks, especially for specific business applications. In this con-
text, we present a dataset of French newsletters and their use to predict
their impact, good or bad, on readers. We propose an original represen-
tation of newsletters in the form of graphs that take into account the
layout of the newsletters. We then evaluate the interest of such a repre-
sentation in predicting a newsletter’s performance in terms of open and
click rates using graph convolution network models.

Keywords: Newsletter · Dataset · Multimodal resource · Graph
embedding · Graph convolutional network

1 Introduction

Artificial intelligence is growing in many fields and is increasingly used to address
business problems. However, the open-source data available to train machine
learning models are often irrelevant to specific applications, such as marketing
optimization and email campaigns. This problem is even more acute in French,
where resources lack or are a poor translation of English resources.

To contribute to the development of resources dedicated to business issues
in French language, we present in this paper DaFNeGE, a dataset of French
newsletters extracted from a CRM platform (Customer Relationship Manage-
ment) and a classification task dedicated to predict newsletters’ impact on read-
ers. This dataset is intended to build predictive models of newsletter perfor-
mance. However, it can be used in a wider range of marketing applications, such
as assisting an editor in designing their newsletter to improve its performance
and prevent it, for example, from being considered as spam by the readers.
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The DaFNeGE dataset is composed of multimodal newsletters (text, image)
that we propose to represent as graphs to model the influence of the newsletter
layout on the reader’s perception. This representation is used in some recent con-
volutional graph network models to classify newsletters in different performance
categories, for instance, “good” and “bad”.

2 Context and Data Origin

2.1 Existing Resources

To investigate how the design of newsletters impacts their performance, in terms
of opening rate for example, we need to use dedicated resources. Very few
datasets are available in the French language, and they are often designed for spe-
cific tasks unrelated to email performance prediction. For example, FQUAD [4]
is a French dataset designed like its English counterpart [20] to train and evalu-
ate machine learning models on question-answering tasks. Besides, some of the
resources available in French are mere translations of English resources, such as
the dataset [1], which is an automatic translation of the EmoLex [17] lexicon val-
idated by professional translators. This approach is generally satisfactory when
the text is short, as in tweets, but in our case, the texts of the emails are much
too long, and the translation is not good enough to capture all the subtleties of
the original texts.

Emails are characterized by a subject line and content, and there is a lack
of open-source resources for such data, especially emails between companies and
their customers or subscribers, due to the strategic nature of this type of informa-
tion. One of the best known open resources in the business world is the “Enron”
dataset [12]. While interesting in many ways (relatively large, well labeled, Etc.),
this dataset is in English and concerns email exchanges between employees, and
not the B2C (Business to Customer) communications of interest in this study.

Many email optimization tools are also available, but they generally do not
provide open-source data or models to replicate or compare results. They also
focus on tasks other than ours, such as the detection of phishing emails [21].

In other NLP studies on French email data, specific datasets have been con-
structed [7,10]. Likewise, we built our data set from emails sent by Kosmopolead
customers1 to their subscribers/clients.

2.2 Presentation of Our Dataset

UNEEK is a French company that provides customer relationship management
(CRM) platforms. Its customers are various organizations such as schools, com-
panies, or associations that use mailing newsletters to manage their communi-
ties of contacts. These newsletters are of different types: event invitations, news
reviews, monthly newsletters, meeting reports, Etc. Each client customizes their
1 Kosmopolead is a UNEEK’s trademark offering services such as CRM (https://www.

kosmopolead.com/).

https://www.kosmopolead.com/
https://www.kosmopolead.com/
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newsletters in content and form with a choice of layout, fonts, or colors. None of
the newsletters are used for commercial purposes; this is a determining factor in
measuring their performance.

Our dataset consists of 799 newsletters from CRMs of different organiza-
tions. The dataset is not balanced between customers (see Fig. 1). However, the
newsletters are similar enough per type to consider them a consistent set.

Fig. 1. Distribution of newsletters by client. “other” gathers clients with few data.

Following [2], we consider two categories of newsletters: “good” and “bad,”
corresponding to newsletters with satisfactory and unsatisfactory performance
levels. Our task is to predict, before sending, the category of a newsletter from
its textual and graphical features.

This task addresses UNEEK’s intent to provide its clients with an editing
tool that helps them optimize their interactions with their subscribers. Due to
their non-commercial nature, the performance of the newsletters is not evaluated
through the amount of money spent by the recipients as usually done in the
newsletter and email impact analysis [3,13,16]. Instead, we use the open and
click rates as performance indicators. They are calculated as the number of
unique opens over the number of sends and the number of unique clicks over the
number of unique opens, respectively. However, since the open rate can only be
related to the email subject line, we only consider the newsletter click rate as a
performance indicator if we analyze the email content.

Our task can be described as a multimodal document analysis: we use both
graphical and textual features to represent the newsletters. To build our dataset,
we used the open and click rates tracked and recorded by UNEEK and the
HTML code of the newsletters. We took into account the layout of the newslet-
ters through .png files from which we extracted graphical features. Our dataset
is finally composed of a .csv file where each row corresponds to a newsletter
described by its general features and a .png file for each newsletter.
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3 Features Description

In [2], we used all text as raw material regardless of its location in the newsletter.
However, giving the text in a button in the center of the newsletter as much
weight as the small mandatory information text in the banner can result in a
significant loss of information.

3.1 Features Extraction

We based our feature extraction on both HTML data and the image of the
newsletters. To do so, we parsed the text of the HTML into paragraphs, and
we segmented the image into text areas using a recent tool dedicated to layout
parsing [24]. This tool uses a version of the Detectron2 model [27] to detect
layout areas in a document automatically.

Using an OCR ensures less sensitivity to changes in the code and gives a
better representation of what a human eye can see when opening the newsletter.
However, this is not perfect, and some text areas or paragraphs may not be
correctly detected.

Other multimodal analyses on emails, or filtering spams, attempt to compose
the graphical and textual features by combining their vectors mathematically
[23,28]. This study proposes an alternative approach where the textual features
are directly enriched with graphical features obtained from the corresponding
text area.

We aggregated the two sources of information to analyze the layout. To
do this, we compared each recognized text from the OCR to each paragraph
obtained from the HTML parsing. We then assigned each paragraph the text
area containing the recognized text with the smallest Levenshtein distance from
the source text.

However, some text-boxes may not be detected. In those cases, we still ana-
lyze the textual data, but without adding any graphical feature. Figure 2 shows
the applied processes.

Fig. 2. Depiction of the matching of textual and graphical information

Thus, we have two categories of elements composing the newsletters:

– The text from the source detected by the OCR with the textual features
obtained from the source, and the graphical features from the detected text-
box.

– The undetected text with only the textual features obtained from the source
text.
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3.2 Textual Features

We analyzed the textual data by designing some features that seem to have an
impact on the newsletter performance:

– Sentimental features (dim 2): In the literature the use of sentimental or
emotional features may be confusing. We define here the sentimental features
as the polarity and subjectivity features. We extracted them using the free
NLP tool: Python TextBlob for Natural Language Processing [14].

– Emotional features: According to some marketing studies, emotion mark-
ers can have a negative impact on newsletter performance due to their mis-
interpretation, mainly because of the lack of face-to-face communication. We
consider the basic emotions defined by Paul Eckman [6] (joy, fear, sadness,
anger, surprise, and disgust or love), using the two extraction techniques
described in a previous work [2].
• FEEL (dim 6): 6 features extracted using Feel lexicon (joy, fear, sadness,

anger, surprise and disgust)
• T5-FR (dim 6): 6 features extracted using an adaptation of the T5 model

to detect emotions in French (joy, fear, sadness, anger, surprise and love)
.

– Number of links (dim 1): by detecting the regular expressions of URLs
in the HTML text, one can tell if a paragraph is associated with one or more
links.

– Number of spam words (dim 1): the use of spam words or phrases can
be critical to email communication. Thus, we detect their number in a given
text based on a list of French spam words mainly used in business.

– Text length (dim 1): the number of words in the text.
– Syntactic depth (dim 1): the mean depth of the syntactic tree of sentences

in the given text. We get it by using the French language model from the
Spacy python library [8].

3.3 Graphical Features

The impact of text location and visualization on the reader’s reception of text
has been confirmed in the literature [18,26,29]. Therefore, it seems interesting to
improve the integration of texts by adding information about their visualization.
To do so, we associate a given text with the corresponding text area in the
newsletter image using OCR. From this image, we then extract the following
graphical features:

– Coordinates (dim 4): we set the top-left corner of the image of the newsletter
as the center of a Cartesian plane. All text-boxes in the image are rectangles
that do not intersect. A rectangle is represented by the Cartesian coordinates
of its top-left corner and its bottom-right corner in this order.

– Width, height (dim 2): based on the above coordinates, we calculate the width
and height of every detected text-box. Its area is the product of these two
values.
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– Average color (R, G, B) (dim 3): we calculate the average pixel of a text-box
as the average value of all its pixels (red, green, and blue). This value can
inform on the visibility of the font used when associated with the previous
graphical features. For instance, a bold Impact font leads to a darker average
color in its box than a lighter font.

– Dominant color (R, G, B) (dim 3): we compute the dominant color of a text-
box using K-Means2 method. This feature is useful to determine for instance
how a button can be flashy, while the average color is noised by the text font
color.

4 Graphical Connections

4.1 Linkage Rule

Once all the parts of a newsletter have been extracted, we need to assemble
them to reconstruct the newsletter’s layout. For this purpose, we define rules
to determine which text areas are connected. This approach is also used in
document classification [15]. A first assumption is that the boxes do not intersect.
If this happens during the OCR process, we merge the two boxes into a larger
one before associating it with the text. While OCR focuses on detecting text
characters, we expect these larger text boxes to contain whole paragraphs.

Next, we consider two boxes to be visually related if we can draw a line
between their centers without crossing any other box. We state that a straight
line passes through a box if it crosses one of its diagonals. The whole process is
illustrated in Fig. 3.

Fig. 3. Illustration of the process used to determine if two boxes are connected. In
the left sub-figure A and B are connected because their centers can be linked without
crossing any box, while, in the right sub-figure, it crosses on the diagonals of C. (Color
figure online)

4.2 Graph Representation of a Newsletter

The newsletter’s layout is modeled by an undirected graph whose nodes are the
textual elements of the newsletter linked according to the linking rules defined
above. If the OCR does not detect some text, we connect it to the preceding
and following text in the code HTML. The resulting graph is heterogeneous in
the sense that texts that are isolated in the layout are located at the periphery

2 With K set to 5, which here represents the number of colors to detect. It is rare to
find more than 5 colors in the same portion of the image, and if it is the case, we
only focus here on the dominant color.
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of the graph. We shall note that the quality of the OCR tool strongly influ-
ences the resulting graph. Figure 4 illustrates the modeling process of the layout
on real data and its resulting graph. One can observe that due to the poor
quality of the OCR, the text contained in an image is not used. With this mod-
eling, the graphical data can be seen as text embeddings supporting layout and
visualization.

Fig. 4. Result obtained by our graph extraction algorithm on a real newsletter. We
can see the two types of textual data, some with a visual text-box detected attached to
it, and others, in yellow dotted lines, undetected by the OCR and considered as text.
The abstract graph obtained after our process can be see on the right. (Color figure
online)

5 Model

5.1 Relational Graph Convolutional Network

We evaluate this novel graphical representation of a newsletter in the perfor-
mance categorization task. To take full advantage of the graphical connectivity
of the data, we provide graph integration using graph convolution networks. We
use a method inspired by the python library DGL [25] which consists in updat-
ing each node according to its neighboring data using a convolutional network of
relational graphs, essentially an R-GCN model as defined in [22]. It is inspired
by the GCN architecture [5,11], which applies a hidden representation for each
node based on the information attached to its neighbors. An R-GCN can apply
convolution on the graph elements according to their type (text detected by
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OCR or not). In an R-GCN, edges can represent different relationships, which
is helpful in our case to manage two types of edges: textual and graphical. Each
node represents a different text-box, and is initialized with the feature extrac-
tion described previously. Missing features of undetected nodes are set to 0. This
imputation method is intuitive [9]. The updates of the convolution filters allow
us to assume that these imputations do not introduce significant bias. At the
end of the convolution process, we obtain the representations of all the nodes
that we aggregate into one representation for each graph. For this we apply a
function readout3. We finally use a linear classifier to perform the classification
task. The complete architecture is shown in Fig. 5.

The classification task is performed with a simple linear classifier to evaluate
the relevance of the proposed data representation and the addition of convo-
lutional layers. More sophisticated methods can be considered to improve the
classification.

Fig. 5. Model architecture to perform the newsletter graph classification.

5.2 Results

To assess the relevance of the proposed representation in the task of predicting
newsletters’ performance, we trained several architectures by varying the num-
ber of convolutional layers, with the same dimension for all hidden layers. The
number of hidden layers ranges from 0 to 6, which makes 7 architectures in total.
0 is our baseline, and only the nodes of the graph are read, while with six hops,
the information reaches almost all graph nodes. More layers would make the
aggregation less meaningful and the computation slower.

The models were trained to classify our data into two classes, good and bad
newsletters. These classes are determined by splitting the dataset between the
50% newsletters with the lowest click rates and the 50% newsletters with the
highest click rates. This method ensures the same number of newsletters in each
class.

Next, we randomly split the dataset into three parts: 70% are used for learn-
ing, 15% as a validation set, and the remaining for testing. The size of the hidden
layers was fixed at 128, and the models were trained on the training samples for
300 epochs. The classification task was performed 12 times on each of the seven
architectures. The average learning curves are given by architecture in Fig. 6.

3 As defined in [25].
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Fig. 6. Average learning curves per architecture.

It appears that the more convolution layers we add to the model, the faster
it learns. However, this increases also the risk of over-fitting in the last epochs,
where we can observe a lot of instability in the training. For this reason we tested
the models not once the training has ended, but when the loss function reached
a minimal value on the validation set. The efficiency of the models, depending
on the number of hidden layers can be seen in Table 1

Table 1. F1-score statics on the performance prediction task when varying the number
of convolutional layers, with 12 different learning/testing splits. The model with 0
graphical convolutional layer can be considered as a baseline.

Layers F1 Score mean F1 Score std F1 Score min F1 Score max F1 Score median

0 0.54 0.07 0.44 0.66 0.54

1 0.51 0.01 0.32 0.65 0.53

2 0.59 0.09 0.46 0.72 0.63

3 0.65 0.06 0.51 0.73 0.66

4 0.67 0.06 0.57 0.78 0.66

5 0.66 0.05 0.60 0.73 0.67

6 0.66 0.06 0.56 0.75 0.65

We observe that, as expected, the more we add hidden convolutional layers
in the model, the better seems to be the classification. However when we reach
a certain number of convolutional layers, the results tend to stagnate, which
may be correlated with the high instability of the learning process observed in
Fig. 6. This limitation in the addition of convolutional layers is named as the
over-smoothing problem and described by Oono and Suzuki [19]. That is why
beyond 4 layers it is difficult to tell if adding more layers is a real benefit.
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As pointed out before, our data is not evenly distributed among customers, so
if all “good” newsletters come from the same set of customers, the model might
learn to “recognize” a customer instead of predicting a click rate. We, therefore,
checked the distribution of each performance class among the customers, which
is given in Table 2.

Table 2. Proportion of good and bad newsletters among the CRM clients

distribution client-1 client-2 client-3 client-4 client-5 client-6 others

% of dataset 39.2 21.4 20 9.6 4.3 3.4 2.1

% of good 54 68 29 26 74 21 0

% of bad 46 32 71 74 27 79 100

Furthermore, because of our approach by classification via the median, the
“bad” newsletters which have an average click rate closer to the median seems
to be tougher to classify properly.

If there is indeed a bias for some customers, it seems that for most of them,
the distributions are relatively balanced. Moreover, as mentioned before, cus-
tomers send newsletters with quite the same objectives and propose similar con-
tent (invitations to events, information reports, Etc.). If some clients tend to
send “bad” or “good” newsletters, it may be related to their ability to design a
newsletter rather than their content’s specificity.

6 Conclusion

The main contribution of this paper is to present a new dataset of email graphs
in French and a classification task aiming at predicting whether a newsletter will
have a good impact on recipients. The dataset is extracted from a real context
emailing campaign in customer relationship management, and it will be made
available to the natural language processing community.

In addition, we propose an innovative graphical representation of the newslet-
ters that considers the layout of the newsletters and the visual proximity of the
text areas. However, this graphical representation is limited by the performance
of the OCR tool used, but we hope that a better method will soon allow us to
overcome this problem.

The proposed graphical representation was evaluated to predict the perfor-
mance of newsletters. For this purpose, we constructed graph embeddings using
sequences of convolution layers. Graphs are a helpful representation since adding
convolution layers improves classification; however, due to over smoothing prob-
lems inherent to convolutional approaches, the results no longer improve beyond
a certain number of convolution layers (3 in our experiment).
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Our best result (F1 score of 0.78) is good enough to be used in a production
environment. However, we must be cautious of over-fitting and consider an over-
all improvement of our models, especially by using more sophisticated classifiers
than a simple linear classifier.

While these results are encouraging, many other model architectures are
possible, and we hope the community will contribute to developing new models
for this predictive task. Our newsletter dataset will be available for free very
soon.
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Alpes, March 2018. https://tel.archives-ouvertes.fr/tel-01893348

11. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

12. Klimt, B., Yang, Y.: The enron corpus: a new dataset for email classification
research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.)
ECML 2004. LNCS (LNAI), vol. 3201, pp. 217–226. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30115-8 22

13. Kumar, A.: An empirical examination of the effects of design elements of email
newsletters on consumers’ email responses and their purchase. J. Retailing Con-
sumer Serv. 58, 102349 (2021). https://doi.org/10.1016/j.jretconser.2020.102349.
https://www.sciencedirect.com/science/article/pii/S0969698920313576

https://doi.org/10.1007/s10579-016-9364-5
https://doi.org/10.1007/s10579-016-9364-5
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01348016
https://hal.archives-ouvertes.fr/hal-03424725
http://arxiv.org/abs/1509.09292
https://doi.org/10.1002/0470013494.ch3
https://onlinelibrary.wiley.com/doi/abs/10.1002/0470013494.ch3
https://onlinelibrary.wiley.com/doi/abs/10.1002/0470013494.ch3
https://aclanthology.org/2020.crac-1.17
https://tel.archives-ouvertes.fr/tel-01893348
http://arxiv.org/abs/1609.02907
https://doi.org/10.1007/978-3-540-30115-8_22
https://doi.org/10.1016/j.jretconser.2020.102349
https://www.sciencedirect.com/science/article/pii/S0969698920313576


DaFNeGE 27

14. Loria, S.: textblob documentation. Release 0.15 2 (2018)
15. Mandivarapu, J.K., Bunch, E., You, Q., Fung, G.: Efficient document image clas-

sification using region-based graph neural network. CoRR abs/2106.13802 (2021).
https://arxiv.org/abs/2106.13802

16. Miller, R., Charles, E.: A psychological based analysis of marketing email subject
lines. In: 2016 Sixteenth International Conference on Advances in ICT for Emerging
Regions (ICTer), pp. 58–65 (2016). https://doi.org/10.1109/ICTER.2016.7829899

17. Mohammad, S.M., Turney, P.D.: Crowdsourcing a word-emotion association lexi-
con. Comput. Intell. 29(3), 436–465 (2013)

18. Olive, T., Barbier, M.L.: Processing time and cognitive effort of longhand note
taking when reading and summarizing a structured or linear text. Writ. Commun.
34(2), 224–246 (2017)

19. Oono, K., Suzuki, T.: Graph neural networks exponentially lose expressive power
for node classification. arXiv preprint arXiv:1905.10947 (2019)

20. Rajpurkar, P., Jia, R., Liang, P.: Know what you don’t know: unanswerable ques-
tions for squad (2018)

21. Salloum, S., Gaber, T., Vadera, S., Shaalan, K.: Phishing email detection using
natural language processing techniques: a literature survey. Procedia Comput. Sci.
189, 19–28 (2021). https://doi.org/10.1016/j.procs.2021.05.077

22. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling,
M.: Modeling relational data with graph convolutional networks. In: Gangemi, A.,
Navigli, R., Vidal, M.-E., Hitzler, P., Troncy, R., Hollink, L., Tordai, A., Alam,
M. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-93417-4 38

23. Seth, S., Biswas, S.: Multimodal spam classification using deep learning techniques.
In: 2017 13th International Conference on Signal-Image Technology & Internet-
Based Systems (SITIS), pp. 346–349. IEEE (2017)

24. Shen, Z., Zhang, R., Dell, M., Lee, B.C.G., Carlson, J., Li, W.: Layoutparser: a
unified toolkit for deep learning based document image analysis. arXiv preprint
arXiv:2103.15348 (2021)

25. Wang, M., et al.: Deep graph library: A graph-centric, highly-performant package
for graph neural networks. arXiv preprint arXiv:1909.01315 (2019)

26. Wright, P.: The psychology of layout: Consequences of the visual structure of docu-
ments. American Association for Artificial Intelligence Technical Report FS-99-04,
pp. 1–9 (1999)

27. Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2. https://github.
com/facebookresearch/detectron2 (2019)

28. Yang, H., Liu, Q., Zhou, S., Luo, Y.: A spam filtering method based on multi-modal
fusion. Appl. Sci. 9(6), 1152 (2019)

29. Yesilada, Y., Jay, C., Stevens, R., Harper, S.: Validating the use and role of visual
elements of web pages in navigation with an eye-tracking study. In: Proceedings of
the 17th International Conference on World Wide Web, pp. 11–20 (2008)

https://arxiv.org/abs/2106.13802
https://doi.org/10.1109/ICTER.2016.7829899
http://arxiv.org/abs/1905.10947
https://doi.org/10.1016/j.procs.2021.05.077
https://doi.org/10.1007/978-3-319-93417-4_38
http://arxiv.org/abs/2103.15348
http://arxiv.org/abs/1909.01315
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2


ANTILLES: An Open French
Linguistically Enriched Part-of-Speech

Corpus

Yanis Labrak1(B) and Richard Dufour2(B)

1 LIA - Avignon University, 84911 Avignon, France
yanis.labrak@univ-avignon.fr

2 LS2N - Nantes University, 44300 Nantes, France

richard.dufour@univ-nantes.fr

Abstract. Part-of-speech (POS) tagging is a classical natural language
processing (NLP) task. Although many tools and corpora have been
proposed, especially for the most widely spoken languages, these suffer
from limitations concerning their user license, the size of their tagset,
or even approaches no longer in the state-of-the-art. In this article, we
propose ANTILLES, an extended version of an existing French corpus
(UD French-GSD) comprising an original set of labels obtained with the
aid of morphological characteristics (gender, number, tense, etc.). This
extended version includes a set of 65 labels, against 16 in the initial
version. We also implemented several POS tools for French from this
corpus, incorporating the latest advances in the state-of-the-art in this
area. The corpus as well as the POS labeling tools are fully open and
freely available.

Keywords: Part-of-speech corpus · POS tagging · Open tools · Word
embeddings · Bi-LSTM · CRF · Transformers

1 Introduction

For a few years now, several research areas have seen significant breakthroughs
in both the arrival of big data and ways of exploiting it using deep learning based
approaches. Then, various natural language processing (NLP) tasks reached a
level of performance and maturity allowing them to be industrialized.

Among NLP field, part-of-speech (POS) tagging is a low-level grammatical
task which consists in assigning, for each word of a sentence, its corresponding
morphosyntactic category, such as verb (VERB), determinant (DET), adjective
(ADJ) and much more (noun, auxiliary, etc.). This labeling is usually the root
for more complex linguistic tasks such as named-entity recognition, text summa-
rization, text generation, automatic speech recognition, spell checking, etc. In
other words, many applications or research issues depend on the efficiency and
quality of this labeling. While POS tagging problem was initially tackled with
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rule-based approaches, supervised statistical learning now allows us to achieve
the best performance [18,22].

French language has been relatively well studied for POS tagging. Nonethe-
less, for the sake of universality, the open multilingual corpora, and their derived
tools, have mainly been designed with a limited number of tags across languages.
To our knowledge, no open French corpus currently makes it possible to freely
and easily train such a state-of-the-art POS tagging system with a sufficient level
of tags granularity, allowing us to take into account this particular inflectional
language.

We therefore propose in this article ANTILLES, an extended French corpus
containing a set of linguistically enriched morphosyntactic tags. We then increase
the capacities of the Universal Dependencies (UD) French GSD corpus [11] by
extending its morphosyntactic information in single labels, from 16 to 63, thanks
to the use of additional information present in the Conll-U format. This choice
appears to be the most relevant since French GSD has been chosen for being
one of the largest French manually annotated POS corpus, with a high level of
granularity and a non-restrictive license of use. We also propose to evaluate dif-
ferent POS tagging systems using state-of-the-art neural network architectures.
The corpus as well as the POS taggers are open and freely usable.

The paper is organized as follows. Section 2 presents an overview of the cur-
rent resources (corpora and tools) available for French POS tagging. Then, Sect. 3
describes the proposed corpus and its inherent modifications. The experiments
as well as the proposed POS tagging systems are detailed in Sect. 4. Finally,
Sect. 5 concludes and opens new perspectives for the task.

2 Existing Resources for French POS Tagging

We propose, in this section, a detailed overview of the main resources in
French, including the corpora (Sect. 2.1), as well as the available tools and their
approaches (Sect. 2.2).

2.1 POS Corpora

Table 1 summarizes the most popular corpora annotated with morphosyntactic
labels for the French language. For comparison, we provided the number of tokens
(i.e. words, punctuation, ...), the number of POS tags (# Tags), the license of
use and the nature of the documents in the corpus (Genre).

The corpora are detailed in the table under four parts: 1) those completely
free to use (most UD corpora); 2) those free except for commercial use (TCOF-
POS, UD French-ParTUT and French Treebank); 3) those that are not directly
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downloadable and with limited usage constraints (Valibel and Orféo); 4) those
with a paid license, especially for commercial use (Crater). Among these corpora,
we observe a great disparity in the number of tokens, with around 20k/30k tokens
for the smallest and up to 10 millions for the largest. As we can see, most of the
large corpora are distributed under a restricted license, requiring either to pay to
be able to access the data, or to go through a registration form with acceptance
(Limited).

Regarding the nature of the documents used, we can highlight two main
types: those that are purely textual (news, wiki, blogs, etc.) and those that
are speech-oriented, relying on speech transcriptions. The second is clearly less
present in terms of number of corpus, and limited either in terms of annotated
data or license of use.

Table 1. List of major French POS corpora, including the number of tag occurrences
(# Tokens), the number of different tags (# Tags), their availability nature (License),
and the genre of annotated documents (Genre).

Corpus # Tokens # Tags License Genre

UD French-FQB [21] 23,349 16 LGPL-LR nonfiction, news

UD French-PUD [24] 24,131 15 CC BY-SA 3.0 wiki, news

UD French-ParisStories [12] 29,438 15 CC BY-SA 4.0 spoken

UD French-Rhapsodie [13] 43,700 15 CC BY-SA 4.0 spoken

UD French-Sequoia [6] 68,596 16 LGPL-LR medical, nonfiction, wiki, news

UD French-GSD [11] 400,399 16 CC BY-SA 4.0 blog, reviews, wiki, news

UD French-FTB [11] 556,064 16 LGPL-LR news

TCOF-POS [4] 22,240 62 BY-NC-SA 2.0 spoken

UD French-ParTUT [20] 27,658 17 CC BY-NC-SA 4.0 legal, wiki, news

French Treebank [1] 664,500 15 CC-BY-NC-ND news

Valibel [9] 6 millions 107 Limited spoken, thesis

Orféo [3] 10 millions 20 Limited interview, meeting, spoken

Crater 1 [15] 1 million 105 Paying telecommunication manuals

Crater 2 [17] 1,5 millions 105 Paying telecommunication manuals

2.2 POS Taggers

As for the corpora, different morphosyntactic tagging tools specific to the
French language have been proposed, each with its own specificities in terms
of approaches and tags granularity. The list of the most popular POS taggers
for the French language is detailed in Table 2.
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Table 2. List of the most popular POS taggers for the French language.

# Tags License Approach Corpus

spaCy 18 MIT Convolutional Neural Network UD French Sequoia

Talismane 27 AGPL-3.0 Support Vector Machine French Treebank

MElt 29 LGPL-3.0 Maximum-Entropy Markov models French TreeBank

LGTagger 29 LGPL-LR Conditional Random Fields French Treebank

SoMeWeTa 29 GPL-3.0 Brown clusters French Treebank

MarMoT 29 GPL-3.0 Conditional Random Field French Treebank

gilf/french-postag-model 29 Unknown bert-base-multilingual-cased free-french-treebank

SEM 30 GNU Hidden Markov Model French Treebank

Stanford 33 GPL-3.0 Cyclic Dependency Network French TreeBank

TreeTagger 33 GPL-3.0 Hidden Markov Model French Treebank

Morfette 33 BSD-3-Clause Logistic Regression French TreeBank

NLTK 33 Apache-2.0 Cyclic Dependency Network French TreeBank

DisMo 64 GPL-3.0 Conditional Random Field PFC

LIA-Tagg 103 GPL-2.0 Second-Order HMM Private corpus

We can first note that all POS taggers are based on statistical approaches
and are, for the most part, trained on open corpora. Only LIA-Tagg relies on
a private corpus, on which we found no description. Nevertheless, if we look at
the open corpora, we see that French TreeBank is mostly used: its license being
non-commercial (i.e. CC-BY-NC-ND, as seen in Table 1), only the spaCy tool,
under a non-restrictive MIT license, is completely license free right of use.

spaCy however suffers from a limited number of tags (only 18). In general,
the number of tags is very limited (between 18 and 33 tags). This is because
most tools rely on corpora following the UD annotation guideline or [7] which
sought to produce a set of labels that could apply to multiple languages.

The semi-free of use TCOF-POS corpus is nevertheless distinguished by its
high number of tags (62). In reality, these additional tags are already an extension
of the UD tags with morphosyntactic information (e.g. the ADJ tag is derived in
7 tags: demonstrative adjective, indefinite, etc.). Finally, note that although the
UD corpora have a limited number of tags, morphosyntactic information exists,
but is most often not used in the form of its own label.

In general, the sets of tags offered by the POS tools take little - or even no
- account of the specificities of the French language, seeking to maintain their
universality as much as possible. Only LIA-Tagg integrates a very complete set of
tags, but suffers from an unavailable corpus and the use of an approach that is no
longer in the state-of-the-art. Concretely, only spaCy and french-postag-model
are maintained and implement state-of-the-art methods but on a restricted set
of tags.
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3 Extended Corpus Proposal

Each existing corpus for French language has interesting specificities, whether in
relation to the size of the annotated data, their license free right of use, or the
large number of labels offered, but no corpus combines all these advantages at
the same time.

However, we found that although the associated tagset is often small, a lot
of data related to linguistic information is available. This is particularly the case
for UD corpora.

We have chosen to focus on the annotated French corpus UD French-GSD [11]
because it includes all the necessary features to implement a linguistic enrich-
ment of POS labels. Moreover, it is one of the few corpora completely free of
use (see Sect. 2.1), allowing a complete redistribution of its improvements. It
contains 16 POS tags and is composed of 16, 341 documents, for approximately
400k manually annotated word occurrences. It also offers data integrating the
morphological characteristics of words (gender, number, tense, verbal form, per-
son, etc.) which has been automatically annotated and then partially manually
corrected.

The UD French-GSD corpus follows the standard UD [19] annotation scheme.
The new annotation scheme that we propose follows the morphosyntactic tags
proposed by the LIA-Tagg tagger, as they allow a complete and deep representa-
tion of the spelling as well as the grammar of French language. We achieve this
enrichment by transforming the CoNLL-U tags (UPOS) and the features (FEATS)
to our 65 new tags in order to give information on morphological characteristics
such as the gender (feminine and masculine), number/person (first person, etc.),
tense (past participle, etc.), types of pronouns (relative, indefinite, demonstra-
tive, etc.) in a single label. The initial tags of the UD French-GSD corpus as well
as the new tags of the ANTILLES extended corpus are detailed in Table 3. The
ANTILLES corpus is freely accessible online1 under CC-BY-SA 4.0 License.

1 https://github.com/qanastek/ANTILLES.

https://github.com/qanastek/ANTILLES
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Table 3. Labels of the initial corpus UD FRENCH-GSD and of the proposed extended
corpus ANTILLES. The suffix XX at the end of a label corresponds to a declension
among feminine singular (FS), feminine plural (FP), masculine singular (MS), mascu-
line plural (MP).

UD French-GSD ANTILLES

Abbreviation Description Abbreviation Description

ADP Adposition PREP Preposition

PART Demonstrative particle

SCONJ Subordinating conjunction COSUB Subordinating conjunction

CCONJ Coordinating Conjunction COCO Coordinating Conjunction

ADV Adverb ADV Adverb

PROPN Proper noun PROPN Proper noun

XFAMIL Family name

NUM Numerical Adjective NUM Numerical Adjective

CHIF Number

AUX Auxiliary Verb AUX Auxiliary Verb

VERB Verb VERB Verb

VPPXX (x4) FS/FP/MS/MP Past participle verb

VPPRE Present participle verb

DET Determinant DET Determinant

DETXX (x2) FS/MS Determinant

ADJ Adjective

ADJ Adjective ADJXX (x4) FS/FP/MS/MP Adjective

DINTXX (x2) FS/MS Numerical adjectives

NOUN Noun NOUN Noun

NXX (x4) FS/FP/MS/MP Noun

PRON Pronoun

PINT FS Interrogative pronoun

PDEMXX (x4) FS/FP/MS/MP Demonstrative pronoun

PINDXX (x4) FS/FP/MS/MP Indefinite pronoun

PPOBJXX (x4) FS/FP/MS/MP Pronoun complements of objects

PPER1S Personal pronoun - First person singular

PPER2S Personal pronoun - Second person singular

PRON Pronoun PPER3XX (x4) Personal Pronoun - Third Person FS/FP/MS/MP

PREFS Reflexive pronoun - First person of singular

PREF Reflexive pronoun - Third person of singular

PREFP Reflexive pronoun - First/Second Person of plurial

PREL Relative pronoun

PRELXX (x4) FS/FP/MS/MP Relative pronoun

INTJ Interjection INTJ Interjection

SYM Symbol SYM Symbol

PUNCT Punctuation YPFOR Final point

PUNCT Punctuation

X Other MOTINC Unknown word

X Typos & Other



34 Y. Labrak and R. Dufour

4 Experiments

In addition to the extended corpus, we provide a comparison of several taggers
using different approaches based on neural networks. In Sect. 4.1, we describe
the implemented approaches. We then detail the results in Sect. 4.2.

4.1 Proposed Approaches

We implement three different state-of-the-art architectures to evaluate current
performance on the POS tagging task by means of our extended French corpus:

1. Word embedding + Bi-LSTM-CRF. The first proposed system consists of
a Bidirectional Long Short-Term Memory (Bi-LSTM) [10] with Conditional
Random Field (CRF) [14] using, as inputs, different kinds of word embed-
dings. Our core system incorporates FastText embeddings [5] pre-trained
specifically for French. Once this reference was obtained, we independently
evaluated other state-of-the-art representations: Flair [2] and BERT [8] (here,
CamemBERT [16] for the French).

2. Concatenation of word embeddings + Bi-LSTM-CRF. We propose to keep
the same neural network, but train it here on the combination of several
word embeddings concatenated at the input of the system. We explore all the
possible concatenation combinations starting from the same word embeddings
as before: FastText, Flair and CamemBERT.

3. CamemBERT Fine-Tuning. For the last system, rather than using the
CamemBERT word embeddings as input to a Bi-LSTM-CRF as described
in the previous architectures, we propose to directly perform a fine-tuning
of the CamemBERT model by adding a linear layer dedicated to the POS
labeling task after model outputs.

The complete training procedure was performed using the Transformers [23]
library maintained by HuggingFace.

4.2 Results

Table 4 summarizes the results obtained by the three approaches proposed on
the POS labeling task of the ANTILLES corpus test set. Overall, except for a
few simple word embeddings (Bi-LSTM-CRF + FastText and Bi-LSTM-CRF
+ Flair), the performance obtained is quite similar regardless of the approach
considered, from 95.24% to 97.97% for the success rate (Accuracy) and 95.19%
to 97.98% for the F-measure (F1).

Our best performing model combines a Bi-LSTM-CRF architecture with
a concatenation of two word embeddings Flair and Camembert as inputs (f-
measure of 97.98%). The two word embeddings integrate quite different infor-
mation, one coming from word sub-units (CamemBERT) and the other from
characters (Flair), which could explain their complementary performances. It
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Table 4. Results on the POS labeling task of the ANTILLES test set.

Model Acc. Prec. Rec. F1 # Params Inf.

Simple Embeddings (Baseline)

Bi-LSTM-CRF

+ FastText 95.24% 95.26% 95.24% 95.19% 1.27 M 34.91 s

+ Flair 96.96% 96.97% 96.96% 96.94% 18.80 M 320.42 s

+ CamemBERToscar−4gb−base 97.77% 97.80% 97.77% 97.75% 113.35 M 151.44 s

+ CamemBERToscar−138gb−base 97.76% 97.80% 97.76% 97.74% 113.35 M 147.37 s

Multi-Embeddings

Bi-LSTM-CRF

+ FastText + Flair 97.29% 97.33% 97.29% 97.28% 20.73 M 337.46 s

+ FastText + CamemBERToscar−138gb−base 97.88% 97.90% 97.88% 97.85% 114.52 M 152.14 s

+ Flair + CamemBERToscar−4gb−base 97.89% 97.90% 97.89% 97.87% 134.73 M 411.77 s

+ Flair + CamemBERToscar−138gb−base 97.97% 98.02% 97.97% 97.98% 134.73 M 418.57 s

+ Flair + CamemBERTccnet−135gb−large 97.87% 97.92% 97.87% 97.87% 362.80 M 476.07 s

+ Flair + FastText + CamemBERToscar−138gb−base 97.91% 97.93% 97.91% 97.91% 137.13 M 439.95 s

Fine-tuning

CamemBERToscar−138gb−base 97.78% 97.85% 97.78% 97.80% 110.08 M 53.94 s

outperforms our benchmark based on a Bi-LSTM-CRF combined with FastText
word embeddings by 2.73%.

Table 4 also integrates the size of the models (# Params) and their infer-
ence times (Inf.) to sequentially process 5,000 sentences with an RTX 2080 Ti
graphics card. The performance gap between our least efficient system (Bi-
LSTM-CRF + FastText) and the most efficient (Bi-LSTM-CRF + Flair +
CamembertOSCAR−138gb−base) appears small (difference in F1-score of 2.79%)
considering the number of parameters as well as the inference time (12 times
slower). Note that the large CamemBERT model trained on the CCNET corpus
(ccnet 135gb large) is provided for information only in the table: we have not
seen any improvement by using it, while its number of parameters is at least 2.5
times higher than any other model.

Finally, the fine-tuning approach of CamemBERT seems to be one of the best
choices for this task compared to the Bi-LSTM-CRF, since it obtains results close
to those obtained with the best system, but with an inference time at least 8
times faster (53.94s against ≈ 420s).

For information, we also compared our systems to one of the most widely
used tool: spaCy. We used the POS tag and the morphological information given
by spaCy to map their outputs to our tags and make the systems comparable
with each other. Likewise, we also skipped the entities without annotation and
represented in the test file as underscores to remove some noise in the metric.

This evaluation raised one big issue, which is the dissonance between the
annotation guidelines of UD French GSD and UD French Sequoia v2.8, the
first being used for training our systems and the second for training spaCy. For
example, in UD French Sequoia corpus, and by extension spaCy:

– The symbols like e, $ and % are for most of the time unhandled but they are
sometimes describe as NOUN, which us worse.
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– Last names are not always tagged as proper nouns (PROPN) which make the
mapping even more complicated.

– And last but not least, the biggest issue comes from the lack of information
about the gender and number in the original annotation for the adjectives.

– Last names aren’t all the time tagged as proper nouns (PROPN) which make
the mapping more complicated.

Finally, to have a fair comparison, we removed from this evaluation the tags
involved in the previously raised annotation issues. We then obtained an F1-
score of 85.81% for the spaCy system and 91.29% for the proposed Flair one.
To conclude, we can expect a performance increase using our systems compared
to the existing annotation tools. Note that the choice of using Sequoia to train
spaCy makes it less optimized for in-depth analysis of languages such as French.
This difference in performance between the systems would surely be much lower
if spaCy was trained on data with more consistent annotations like UD French
GSD.

All developed taggers presented in this article are available and freely usable2.

5 Conclusion and Perspectives

In this article, we proposed an extended corpus for POS tagging in the French
language. This corpus fills the observed limitations of existing corpora, whether
in terms of labels, user license or existing state-of-the-art tools.

This corpus, named ANTILLES, is an extended version of the free-to-use
UD French-GSD corpus, integrating additional POS tags based on a set of asso-
ciated morphological data. We have also implemented numerous POS tagging
tools, then evaluated the performance of various state-of-the-art neural network
architectures to give an idea of the current performance level in French POS
tagging. ANTILLES as well as the associated POS labeling tools are freely dis-
tributed and can be used by academics or industrialists.

The corpus is intended to be enriched over time, by extending, in the same
way, the other freely accessible corpora offered by the Universal Dependencies
(UD) such as PUD, ParisStories, or Rhapsodie, using the same strategy and the
same set of proposed labels. All the scripts necessary to perform this transfor-
mation are available on the GitHub repository3, the models are also available
on HuggingFace4. The extension to other languages can also be a possibility.

Acknowledgements. This work was financially supported by Zenidoc and the DIETS
project financed by the Agence Nationale de la Recherche (ANR) under contract ANR-
20-CE23-0005.

2 https://huggingface.co/qanastek/pos-french-camembert.
3 https://github.com/qanastek/ANTILLES.
4 https://huggingface.co/qanastek.
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Abstract. Knowledge bases such as Wikidata amass vast amounts of
named entity information, such as multilingual labels, which can be
extremely useful for various multilingual and cross-lingual applications.
However, such labels are not guaranteed to match across languages from
an information consistency standpoint, greatly compromising their use-
fulness for fields such as machine translation. In this work, we investigate
the application of word and sentence alignment techniques coupled with
a matching algorithm to align cross-lingual entity labels extracted from
Wikidata in 10 languages. Our results indicate that mapping between
Wikidata’s main labels stands to be considerably improved (up to 20
points in F1-score) by any of the employed methods. We show how meth-
ods relying on sentence embeddings outperform all others, even across
different scripts. We believe the application of such techniques to mea-
sure the similarity of label pairs, coupled with a knowledge base rich in
high-quality entity labels, to be an excellent asset to machine translation.

Keywords: Entity Label Mapping · Knowledge Representation ·
Multilinguality · Data Quality

1 Introduction

Knowledge bases, such as Wikidata [33] and DBpedia [5], have amassed large
amounts of multilingual information about various concepts. These include var-
ious named entities (e.g., persons, organisations, and locations) which can be
useful for various language technologies, such as named entity recognition [8],
multilingual dictionaries [31], and machine translation [23,25].

Most multilingual data stored in these knowledge bases has been crowd-
sourced by non-professionals in linguistic aspects, let alone in aspects of mul-
tilinguality. This raises data quality concerns despite the existence of proper
guidelines on creating appropriate labels,1 as these are not always followed by
1 https://www.wikidata.org/wiki/Help:Label.

c© Springer Nature Switzerland AG 2022
P. Sojka et al. (Eds.): TSD 2022, LNAI 13502, pp. 39–51, 2022.
https://doi.org/10.1007/978-3-031-16270-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16270-1_4&domain=pdf
http://orcid.org/0000-0002-4482-5376
http://orcid.org/0000-0001-6832-5600
http://orcid.org/0000-0003-4787-7099
http://orcid.org/0000-0001-7823-1034
http://orcid.org/0000-0003-1722-947X
https://www.wikidata.org/wiki/Help:Label
https://doi.org/10.1007/978-3-031-16270-1_4


40 G. Amaral et al.

editors. Additionally, linguistic, regional, and cultural factors contribute to main
labels assigned to an entity across languages not being fully correct or cross-
lingually equivalent. For instance, the Wikidata entry for Donald Trump has the
main label “Donald Trump” in Lithuanian, however, the correct representation
of the name in Lithuanian is “Donaldas Trampas”. The Wikidata entry for John
F. Kennedy has the English label “John F. Kennedy” and the Latvian label
“Džons Kenedijs” (without the initial of the middle name).

Besides main labels, Wikidata features also aliases, which are alternatives and
variants that refer to that same entity. One entity’s label in a certain language
might correspond to an alias in another language. For instance, the American
actor and politician Kane has the English label “Kane” and the French label
“Glenn Jacobs”, however, both labels can be also found in the list of alternative
labels of the other respective language. The main labels and the aliases are not in
any way cross-lingually mapped, which hinders automated use of the multilingual
data in use cases that rely on high-quality cross-lingual dictionaries.

Current neural machine translation (NMT) methods provide means for inte-
gration of term and named entity dictionaries in NMT systems thereby enforcing
term and named entity translation consistency and correctness. E.g., the work
by Bergmanis and Pinnis [6] allows integrating terms and named entities in dic-
tionary/canonical forms in NMT for morphologically rich languages. For these
methods to work properly, it is crucial that translation equivalents represent
adequate translations such that no information is lost or added with respect to
the source language. If we only used Wikidata’s main labels as a dictionary for
machine translation, we would often produce wrong translations. For instance,
the main label for the American entertainment company Miramax in English is
“Miramax” and in German – “Miramax Films”. Translating the English sen-
tence “Miramax Films released a new movie” through a machine translation
system that uses these main labels in its dictionary would yield “Miramax Films
Filme haben einen neuen Film veröffentlicht”, with the word “Films” translated
twice.

Therefore, the focus of this work is on how to cross-lingually map Wikidata
labels (both main labels and aliases) such that it is possible to acquire linguisti-
cally and semantically correct parallel named entity dictionaries from Wikidata.
Our contributions are as follows:

– We build and release a cross-lingual entity label mapping dataset based on
Wikidata in order to aid research, ours and future, into improving entity label
mapping.

– We apply and compare different cross-lingual word and sentence similarity
metrics for the task of cross-lingual entity label mapping within Wikidata,
demonstrating how sentence embedding techniques can greatly improve Wiki-
data’s label mapping.

– We analyse the level of cross-lingual parallelism of main labels in Wikidata
for 10 languages and show that cross-lingual data quality is a current issue
in the knowledge base.
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– We propose a method for cross-lingual mapping of labels that relies on similar-
ity scores from cross-lingual word alignment methods and achieves a mapping
accuracy of over 88% on our Wikidata dataset.

The paper is structured as follows: Sect. 2 describes related work on data
quality in Wikidata and cross-lingual mapping of entities, Sect. 3 described our
benchmark dataset used in the experiments, Sect. 4 describes our method for
cross-lingual label mapping, Sect. 5 describes and discusses the results achieved,
and finally Sect. 6 concludes the paper.

2 Related Work

The quality and reliability of crowdsourced data have been discussed a lot in
recent years, with different dimensions and metrics proposed and analysed [1,
11,22]. However, few works analyse the quality of crowdsourced knowledge graph
data, and only recent studies do so in a systematic way.

Most studies into measuring Wikidata’s quality and identifying potential
improvements ignore multilingual aspects [24,27,29]. For instance, Skenoy et al.
[29] rely on language-agnostic editor behaviour and ontological properties to
identify low-quality statements. Piscopo et al. [27] investigate the quality of
information provenance for references only in English.

Some recent studies do address the multilinguality of Wikidata. Kaffee et al.
[18] analyse language coverage in Wikidata, concluding that Wikidata knowledge
is available in just a few languages, while many languages have almost no cover-
age. Amaral et al. [3] investigate provenance quality across different languages
with distinct coverage, finding that quality did not correlate with coverage and
varied significantly between languages. As far as we know, ours is the first work
to measure an intrinsically multilingual quality dimension of Wikidata from a
standpoint of applicability in downstream language tasks.

The task of mapping entity labels in Wikidata is closely related to cross-
lingual terminology and named entity extraction and mapping in compara-
ble [10,12,30] or parallel corpora [20]. Although these tasks are broader, involv-
ing the identification of words and phrases constituting terms and named enti-
ties in larger contexts, a crucial component in these tasks is the assessment of
the cross-lingual parallelism of term and named entity phrases. Ştefănescu [30]
proposed a term similarity metric that combines probabilistic dictionary and
cognate-based similarity scores. While Ştefănescu analysed terms on word level,
Pinnis [26] proposed to align subwords between source and target terms and
assess parallelism using a Levenshtein distance [21] similarity metric. The sub-
word-level nature of the method allows it to map compounds and complex multi-
word terms. Daille [10] assesses term co-occurrence statistics when calculating
the parallelism of terms. Aker et al. [2] train a binary classifier that predicts
the parallelism of terms given a set of features including dictionary-based and
cognate-based features.

Since in our work, we try to address mapping in a use case without contex-
tual information, we compare the context-independent term mapping method
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by Pinnis with more novel (state-of-the-art) text similarity assessment methods
that rely on large pre-trained language models.

State-of-the-art methods usually rely on large, multilingual, pre-trained lan-
guage models, such as BERT [13], XLM-R [9], and ALBERT [19]. For exam-
ple, SimAlign word alignments obtained from such models demonstrated better
results for English-German than traditional statistical alignment methods [15].
Pre-trained multilingual BERT models are also used for cross-lingual alignment
of multilingual knowledge graphs [34]. Promising results have been demonstrated
by sentence-level embedding methods, such as LaBSE [14] and LASER [4].

The complexity of entity linking is recognized also by the Cross-lingual Chal-
lenge on Recognition, Normalization, Classification, and Linking of Named Enti-
ties across Slavic languages [28]. The task involved recognizing named entity
mentions in Web documents, name normalization, and cross-lingual linking for
six languages (Bulgarian, Czech, Polish, Russian, Slovene, Ukrainian). While the
best model for this task in terms of F-score reached 85.7% and performance for
the named entity recognition task reached 90% F-score, results for cross-lingual
entity linking were not so promising, reaching only an F-score of 50.4% for the
best system [32] employing LaBSE sentence embeddings.

Finally, recent work by researchers from Google proposes one dual encoder
architecture model for linking 104 languages against 20 million Wikidata enti-
ties [7]. While the authors demonstrate the feasibility of the proposed approach,
the quality and reliability of Wikidata are not discussed.

3 Data Preparation

To properly assess the effectiveness of entity label mapping methods, we need
to construct a benchmark dataset from Wikidata. We start by acquiring a full
dump of the knowledge graph (as of November 2021). We identify the three
main classes whose subclass trees will encompass our target entities: Person
(Q215627), Organisation (Q43229), and Geographic Location (Q2221906). By
following the paths defined by the graph’s “subclass of” (P279) and “instance
of” (P31) predicates, we identify and extract approximately 43K subclasses and
9.3M entities that are instances of Person, 27K subclasses and 3M instances of
Organisation, and 29K subclasses and 10.3M instances of Place. In total, we
extracted 21.6M distinct entities.

Our entity label dataset should not be too sparse, otherwise, our results would
be unreasonably biased by dissimilar levels of label coverage between languages.
Thus, we follow two approaches: keeping only languages with higher coverage
of labels and aliases, as well as keeping only richly labelled entities. For each
language L, we measure: its main label coverage, defined as the percentage of all
entities that have a main label in L, its alias presence, defined by the percentage
of all entities that have at least one alias in L, and the average quantity of aliases
all entities have in L. We rank all languages according to these metrics, calculate
the average rank, and pick the top 10 languages to compose our dataset. They
are: Swedish (SV ), German (DE ), Spanish (ES ), Russian (RU ), French (FR),
Italian(IT ), English (EN ), Portuguese (PT ), Chinese (ZH ), and Dutch (NL).
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Table 1. Small random sample from our benchmarking dataset. Each entry consists
of a unique cross-lingual pair for a specific entity.

entity id la 1 lan 2 label 1 label 2

Q152265 FR ZH Zaher Shah 穆罕默德·查希爾·沙阿
Q1241726 IT PT Rebecca Flanders Donna Ball

Q1400802 RU EN Iepapol� Bambika Manbug

Q150652 SV DE Vilhelm I av Tyskland Kartätschenprinz

Q275715 ES NL Estadio de Montjüıc Olympisch Stadion

We also filter entities based on their label coverage. To be kept, an entity
must adhere to the following criteria: having a main label in at least 4 of the 10
selected languages and having at least 3 aliases in 3 of the 10 selected languages.
These constraints are the highest values before label and alias coverage start to
plateau. Out of 21.6M entities, only 33K (0.16%) adhere to this criteria.

As Wikidata is a collaborative effort, labels or aliases may be put under the
wrong language either by mistake or intentionally. Thus, final filtering is per-
formed on the 33K extracted entities. We ascertain the languages of labels with
fastText’s [16,17] language detection models, which calculate the probabilities
of a label belonging to each supported language. Labels that do not have an
ambiguous language (e.g., acronyms, personal names, etc.) and have a very low
probability of being of the language they are assigned to get dropped.

We finish by reorganising the dataset so that each entry consists of a unique
cross-lingual pairing of labels for a given entity, including both main labels and
aliases. Table 1 shows a small random sample of the dataset. Our benchmark
dataset consists of 8.9M cross-lingual label pairings extracted from 33K entities
in the 10 selected languages and is available online2. The majority of entities
extracted (67%) are Persons, followed by Organisations (22%) and Places (10%).
For every selected language, entities with main labels far outnumber those with-
out, with 5 out of 10 having over 90% coverage. The mean alias count is above 1
for all languages (and above 2.5 for 5), and the alias coverage is around or above
50% for all except ZH (37%). We perceive a moderate correlation (0.57) between
the presence of RU and ZH labels, as well as between SV and IT (0.47).

4 Entity Label Mapping

We employ multiple methods to estimate the cross-lingual similarity of each
entity label pair in our dataset and to solve the problem of entity label mapping.
Then, we devise a greedy algorithm that transforms these scores into a set of
high-similarity non-overlapping pairings of labels for each unique (entity id, lan-
guage 1, language 2 ) tuple. Finally, we measure the performance of each method
and its variations in identifying these optimal pairings of labels in our Wikidata

2 https://doi.org/10.6084/m9.figshare.19582798.

https://doi.org/10.6084/m9.figshare.19582798
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benchmark dataset and compare them. Please note that all label pre-processing
is done by the methods themselves.

4.1 Label Cross-Lingual Similarity Scoring Methods

MPAlligner [26] is a statistical cross-lingual terminology mapping tool that uses
probabilistic dictionaries and Romanisation-based transliteration methods to
identify reciprocal mappings between words and sub-word units of source and
target terms. It scores each term pair by assessing the proportion of overlapping
characters. Since MPAligner relies on the existence of large bilingual dictionaries
or cognates that are shared between languages, its recall can be limited.

Simalign [15] is a word alignment method that does not require parallel data,
relying instead on multilingual word embeddings created from monolingual data.
It uses a multilingual BERT to retrieve sub-word embeddings and matches them
across two sentences through a combination of cosine similarity and various
matching strategies defined by the authors. We extract from Simalign the calcu-
lated similarity scores between sub-word units after being transformed by these
matching strategies. Finally, we average out the pair’s sub-word scores.

LASER [4] and LaBSE [14] are both sentence embedding methods. By embed-
ding the entirety of each label, we acquire pairs of vectors to which we can directly
apply similarity metrics. LASER embeds over 90 languages in a joint space by
training an LSTM-based encoder-decoder neural network that is shared between
all languages. LaBSE follows a similar approach but uses a multilingual BERT
model fine-tuned on a translation ranking task. LaBSE establishes the current
state-of-the-art results on multiple downstream multilingual tasks.

4.2 Best Match Algorithm

We aim to find the best cross-lingual mapping between entity labels. Thus, we
devise a greedy algorithm that, given a list of cross-lingual label pairings and
their respective similarity scores for a specific entity, provides us with a non-
overlapping set of pairings deemed as the best matches. We apply this algorithm
to the scores produced by each scoring method, compiling distinct lists of best
matches, and comparing each to a manually annotated ground truth.

First, the algorithm divides the dataset into groups of scored cross-lingual
label pairs, each indexed by a unique (entity id, language 1, language 2 ) tuple.
On each group, it visits all pairs in descending order of similarity, declaring a
pair as a best match only if no other pair in that same group containing either
of this pair’s labels was declared a best match before. This creates a one-to-one
mapping between an entity’s labels in a language L1 and language L2. If the
entity does not have an equal amount of labels in both languages, some labels
will remain without a match. This is expected and welcomed as not all labels
have clear cross-lingual matches in Wikidata, and is better than perhaps forcing
a match with dissimilar labels.

In addition to the aforementioned methods, we add two simple baselines:
randomised and main label matching. The first declares best matches via a
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randomised walk through the dataset, rather than ordered by scores. The second
declares all, and only, pairs of two main labels as best matches.

4.3 Ground Truth and Method Comparison

The best match selection algorithm assigns pairs a binary class, i.e. best match or
not. Thus, these mappings can be compared to ground truth and have their per-
formances measured through standard classification metrics. Elaborating such a
ground truth is not trivial, as we first need to define what truly constitutes a
label’s best match.

We define a best match as a cross-lingual pairing of labels for the same
entity wherein one neither adds information to nor removes information from the
other. By information, we mean any data about an entity’s identity, attributes,
or qualities. An example of best matches in our ground truth can be seen in
Table 2. This definition allows for potentially overlapping pairs, as Table 2 shows

Table 2. An example of pairings we consider best matches in our ground truth. For
entity Q398, the second and third pairs introduce information, namely the official
acronym and the fact Bahrain is a kingdom. For entity Q311374, pair 3 replaces the
full first name with a generic nickname.

Entity Lan1 Lan2 Label1 Label2 Best

Q398 SV EN Bahrain Bahrain Yes

Q398 SV EN Bahrain BAH No

Q398 SV EN Bahrain Kingdom of Bahrain No

Q398 SV EN Konungariket Bahrain Kingdom of Bahrain Yes

Q311374 SV FR Aleksandr Ovetjkin Aleksandr Ovetchkine Yes

Q311374 SV FR Aleksandr Ovetjkin Alexander Ovechkin Yes

Q311374 SV FR Aleksandr Ovetjkin Alex Ovechkin No

for entity Q311374, in the case of minor variations such as spelling of transliter-
ated sub-words that are commonly found on natural text. This means that none
of the tested mapping methods can achieve the maximum classification accuracy,
but it still allows us to compare their performance to each other as they still
benefit from selecting one of the ground truth best matches.

Our ground truth consists of a manually annotated representative sample
from our benchmark dataset (95% confidence interval, 5% margin of error) rather
than its totality due to annotation costs. This is obtained through a stratified
sampling after a few processing steps to account for underlying aspects of the
label distribution which might hinder comparison between methods. That is:

1. We remove from the benchmark dataset all entities with an outlier amount of
labels pairs so that they do not bias the comparison. E.g., the entity “Pope
Adeodato I”, has over 42 PT -ZH label pairs, over six times the average.
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2. We remove all entities containing only one label pair for any language combi-
nation, as they are trivially solvable and do not contribute to the comparison.

3. We randomly reduce the number of entities with an identical pair (e.g.
“Bahrain” and “Bahrain” in Table 2) by a factor of 50%, as they represent
a much smaller challenge than entities with no identical pairs, yet compose
half of all entities. This lets our comparison focus more on harder cases.

Then, we perform a stratified sampling so that languages are equally repre-
sented and carry similar weight. We manually annotate this sample according
to our definition of best match to compose our ground truth.

5 Evaluation and Discussion

With our ground truth, we can measure the performance of each of the cross-
lingual label similarity estimation methods and their variations. From the four
methods described in Sect. 4, we devise and test nine variations, except for MPAl-
ligner, which is used as-is. For Simalign, we use each of its matching methods
(Argmax, Match, and Itermax) to filter out scores of non-matching sub-word
pairings and average those remaining. We also extract the sub-word embeddings
used by the method and apply cosine similarity directly to them, extracting the
mean. As for both LASER and LaBSE, we calculate cosine similarity and inverse
Euclidean distance between pairs of label embeddings.

Fig. 1. Normalised probability density
of the similarity scores calculated by
each approach variation.

Fig. 2. The mean similarity scores per
language as calculated by each app-
roach variation.

Figure 1 shows the density distributions of similarity scores from each
method. We can see how most methods have a bell-shaped curve between values
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0 to 1, with a spike near 1, due to many pairs being nearly or truly identical.
MPAlligner has a spike near 0; as it depends on constructed dictionaries, the
lack of explicit equivalences means it will default to low values of similarity.
The mean cosine similarity applied at Simalign embeddings has a narrow and
tall curve centred in a high score, indicating these scores are either not very
informative, or their domain is naturally restricted. All other methods follow
expected distributions.

Figure 2 shows the mean similarity scores per language. All approaches seem
to calculate similar scores regardless of language, except for the only two lan-
guages not using the Latin script: RU and ZH. This drop might be attributed to
two factors. One is the natural lessened similarity between labels using different
scripts, the other is the methods’ inability to perceive cross-script similarities.
This drop is bigger with the dictionary-based method (MPAlligner), lesser with
sub-word embeddings, and minimal with sentence embeddings.

In Table 3, we show the accuracy obtained by all methods for all the data
in the ground truth annotation, as well as broken down by language, including
both baselines. Looking at the main-label baseline, we see how current Wikidata
main labels can be significantly improved in terms of cross-lingual matching. For
most languages tested, the gap in accuracy between depending on main labels
and automated methods is very high, e.g., for IT, FR, ES, etc.

Table 3. Classification performance of different approaches as measured by accu-
racy across all languages and individually. MPA = MPAlligner; SIM A = Simalign
(Argmax); SIM M = Simalign (Match); SIM I = Simalign (Itermax); SIM C = Sima-
lign (Cosine); LS C = LASER (Cosine); LS E = LASER (Euclidean); LB C = LaBSE
(Cosine); RAN = Randomised Baseline; ML = Main Labels Baseline. LaBSE with
Euclidean Similarity performs identically to LaBSE with Cosine Similarity.

ALL DE EN ES FR IT NL PT RU SV ZH

MPA 0.832 0.846 0.840 0.830 0.816 0.867 0.880 0.833 0.865 0.813 0.679

SIM A 0.827 0.826 0.844 0.798 0.844 0.857 0.880 0.860 0.865 0.801 0.649

SIM M 0.808 0.851 0.831 0.807 0.844 0.814 0.817 0.827 0.806 0.832 0.582

SIM I 0.810 0.841 0.844 0.798 0.844 0.809 0.805 0.838 0.822 0.819 0.619

SIM C 0.807 0.831 0.836 0.816 0.816 0.835 0.828 0.822 0.822 0.795 0.597

LS C 0.871 0.896 0.900 0.887 0.877 0.873 0.902 0.854 0.908 0.863 0.694

LS E 0.867 0.891 0.896 0.873 0.883 0.873 0.880 0.870 0.892 0.869 0.686

LB C 0.882 0.905 0.879 0.887 0.894 0.925 0.880 0.887 0.897 0.863 0.768

RAN 0.656 0.633 0.698 0.657 0.661 0.656 0.657 0.591 0.758 0.621 0.604

ML 0.776 0.787 0.784 0.765 0.755 0.735 0.788 0.779 0.844 0.819 0.679

We can see sentence-embedding models performing far better than other
methods. MPAlligner generally outperforms sub-word embedding methods,
which we find surprising, and indicates that approaching this task by looking at
labels in their entirety rather than broken into units is beneficial. All methods
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are generally better than the baselines, except in the case of non-Latin script
languages RU and ZH. For RU, most Simalign-based methods under-perform
the main-label baseline, whereas for ZH that is all Simalign-based methods,
some under-performing even the randomised baseline. Still, for ZH, LaBSE with
cosine similarity is the only approach significantly outperforming the main-label
baseline. These results point to LaBSE as the best-performing method for cross-
lingual entity label mapping.

6 Conclusion

Cross-lingual mapping of entity labels such that information is properly pre-
served is an important challenge to be solved if we wish downstream tasks
depending on such entities to improve. Resources such as Wikidata can greatly
help, provided their labels have a higher quality of cross-lingual alignment.
Through our contributions, we not only showcase the importance of such
resources but suggest methods to improve such quality.

In this paper, we have presented the case of Wikidata by extracting and
structuring a benchmark cross-lingual entity label mapping dataset from thou-
sands of its entities. We have showcased a comparison between the performances
of various text similarity estimation methods when applied to the task of cross-
lingual entity label mapping. This comparison consists of adapting the various
text similarity methods so that similarity scores are extracted for label pairs;
devising an algorithm to select best matches based on similarity scores; develop-
ing a balanced and expressive ground truth dataset for the proper comparison
of classification metrics.

We verified that Wikidata’s main labels overall fail to match cross-lingual
label pairings better than any of the text similarity estimation methods that
were tested. We also ascertained that methods applied to labels as a whole tend
to outperform those focused on their word and sub-word units. Furthermore,
techniques based on sentence embeddings learned in a shared multilingual space
have not only considerably outperformed other methods in same-script pairings,
but also between distinct scripts. Finally, we have seen how many current and
sophisticated word alignment techniques under-perform simplistic baselines at
this task in specific languages. Our best match algorithm is based on comparisons
between scores only, which is why we removed from our ground truth all entities
with a single pairing on the basis of being trivially resolvable, even if that pairing
is wrong. Using a threshold-sensitive approach would better treat these cases and
is an interesting direction for future work.
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Abstract. This paper describes a novel approach for assessing the qual-
ity of machine-translated subtitles. Although machine translation (MT)
is widely used for subtitling, in comparison to text translation, there
is little research in this area. For our investigation, we are using the
English to German machine translated subtitles from the SubCo cor-
pus [11], a corpus consisting of human and machine-translated subtitles
from English. In order to provide information about the quality of the
machine-produced subtitles error annotation and evaluation is performed
manually. Both the applied error annotation and evaluation schemes are
covering the four dimensions content, language, format and semiotics
allowing for a fine-grained detection of errors and weaknesses of the MT
engine. Besides the human assessment of the subtitles, our approach
comprises also the measurement of the inter-annotator agreement (IAA)
of the human error annotation and evaluation, as well as the estimation
of post-editing effort. The combination of these three steps represents a
novel evaluation method that finds its use in both improving the subti-
tling quality assessment process and the machine translation systems.

Keywords: subtitles · quality assessment · machine translation

1 Introduction

In this paper, we present a method for evaluating the subtitling quality of
machine translated (MT) subtitles. The demand for the production of subti-
tles and the translation into a variety of languages has increased tremendously.
Caused by the development and accessibility of technology, audiovisual content
is nowadays consumed worldwide on a daily basis. [15] describe how the sub-
titling workflow, at first consisting exclusively of human translation, has been
adapted by integrating machine translation technologies in the subtitling work-
flow. Approaches to neural machine translation (NMT) were embedded into the
workflow, in order to deliver high quality content in the shortest amount of time.
Still, these scenarios are limited. A possible explanation therefore is given by [8],
stating that the large amounts of high-quality data required for training the
systems, as well as the necessary pre-processing phase for the data, makes the
process a time-consuming task. Until now, the most profitable workflow is the
c© Springer Nature Switzerland AG 2022
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machine translation of subtitles followed by human post-editing. As machine
translation engines have several limitations and weaknesses [6,8,10], multiple
evaluation methods exist to assess the quality of the MT output, although there
is no consensus on a universal definition for subtitling quality. [8] and [2] give
an overview of applicable quality factors for subtitling, factors also considered
by us in our approach. According to them, adequacy and fluency together with
technical and linguistic parameters are the most important factors for subtitling
quality. Built on the most recent findings, the error annotation scheme, as well as
the evaluation taxonomy used to assess the machine translated subtitles in the
SubCo corpus1, correspond to the most recent findings in this research area [8].
We focused on the error sources and evaluated the results, to further investigate
limitations of the MT output and possible weaknesses in the quality assessment
process. Although the machine translated subtitles were produced by SUMAT,
a statistical MT online service, specifically developed for subtitling [4,12,17], we
can assert that the limitations concerning the MT adaptability similarly occur
in NMT quality assessment and training. It can therefore be applied to the most
recent NMT subtitle training studies. With a mixed approach of combining error
annotation, evaluation measures, as well as the calculation of the inter-annotator
agreement, we aim to determine the most important subtitle quality factors.
With our method, both whole documents and single subtitle lines can be eval-
uated quickly and reliably, allowing statements regarding the subtitling quality.
This way, we can identify subtitling quality ranging from perfect to unaccept-
able. For cases where the subtitle quality could not be identified, we assume that
the translation of the subtitle was rather difficult for the MT engine to process.
Particularly for the above mentioned issues, but also in general, we propose esti-
mating the post-editing effort. We can thus evaluate the amount of time and
work that is required to post-edit and improve the quality of each subtitle. Such
measures can be useful to detect general MT quality, issues and weaknesses in
the translation process and enhance the subtitling workflow.

1.1 Quality Assessment of Machine Translated Subtitles

Assessing the quality of a machine translated subtitle is a complex task. The
literature lists two main ways of proceeding, namely approaches:

(i) addressing the translation process (use of templates or subtitle product
chains), and approaches

(ii) addressing the translation product (error annotation or evaluation).

[13] and [1] concentrate on (i), investigating how the quality of a subtitle
is dependant on the translation product. We will be focusing on the second
approach (ii), the translation product and the use of error annotation and eval-
uation measures to assess the subtitle quality. In both approaches, the definition
of quality is dependant on various factors such as the workflow efficiency, the
target audience, the translator’s experience and professional environment, and
1 http://fedora.clarin-d.uni-saarland.de/subco/index.html.
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more [9]. With reference to the subtitle translation industry, [14] conducted a
survey where they addressed professional subtitlers and their clients. In analogy
to [7], they identified subtitle quality factors, divided into specifications regard-
ing (a) translation quality (content and transfer, grammar, spelling and punc-
tuation, readability and appropriateness), as well as (b) technical issues (style
guide, speed, spotting and formatting). In the process of assessing the quality
for our data, we will identify the importance and nuances of these factors and
how they contribute increasing and decreasing the quality of the final product.

2 Data and Methodology

In this section, we describe the data used for our investigation, but also the
scales and methods used.

2.1 The Corpus

The data used for our investigation is the documentary film Joining the Dots by
Pablo Romero Fresco [16]. The film consists of 132 English subtitles and a total of
1557 words. These English subtitles were automatically translated into German
and are part of the SubCo [11] corpus. To date, there is no fully automated MT
engine that can transfer the input of a source subtitle into a target translated
product. Contrary to plain text translation, the translation of subtitles requires
further individual production steps such as segmentation of the input, as well as
compliance with spatial and timing constraints. Furthermore, post-editing the
MT output by humans is indispensable. The SUMAT2 project aimed to improve
the subtitling workflow with the application of statistical machine translation
(SMT) technologies. As part of the project [15] developed an online translation
service for subtitles including 9 European language pairs that can be combined
into 14 language pairs. The German machine translated subtitles in the SubCo
corpus were produced with SUMAT’s online demo [3].

2.2 Error Annotation and Evaluation

The manual error annotation and evaluation3 of machine translated subtitles
used for our analysis comes also from the SubCo corpus [11]. In order to test the
reliability of the manual error annotation and evaluation in SubCo, we propose
our own inter-annotator agreement measuring the data by generating boxplots.
Subsequently, we derive our own measures for the estimation of subtitling quality
and post-editing effort. Lastly, we re-evaluate the MT output in terms of errors
and evaluation to compare our results to those in the SubCo corpus. The used
error annotation scheme consists of the dimensions content, language, format
and semiotics, each category covering different types of errors:
2 http://www.fp7-sumat-project.eu.
3 The subtitles were error annotated, evaluated and post-edited by novice translators,

who were trained for several weeks to perform these tasks.

http://www.fp7-sumat-project.eu
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(a) content: addition, omission, content shift, terminology and untranslated,
(b) language: function words, morphology, orthography and syntax,
(c) format: capitalisation, punctuation, number of characters per line (cpl),

number of characters per second (cps) and spacing errors,
(d) semiotics: inter-semiotic coherence (audiovisual phenomenon, where differ-

ent channels contradict each other, contributing to the meaning of text and
translation).

The first two error categories can be applied on any translation, whereas the
last two categories describe issues concerning specific features of subtitling.

The evaluation was measured for all categories, on four levels depending on
their acceptability:

• perfect: no error and no modification needed,
• acceptable: some minor errors, can be used without modification,
• revisable: one major error and/ or minor errors, revision is needed,
• unacceptable: revision is not worth the effort, re-translation is required.

In addition, we developed an additional MT error model based on the findings
of [6], who collected errors exclusively produced by MT engines. The following
error categories were considered:

(a) compounds: errors in compounding,
(b) paraphrased translation: MT fails to paraphrase translation to adhere to cpl

and cps guidelines and produces a literal translation instead,
(c) literal vs. contextual translation: MT produces literal translation and fails

to convey the correct meaning in the context,
(d) text not to translate: MT tends not to identify text to be excluded from the

translation,
(e) language nuances: incorrect choice of pronouns,
(f) abbreviations: errors in the translation of abbreviations,
(g) word structure errors: MT translation output is grammatically correct but

uses the wrong morphological form.

This special error model4 was applied on top of the already existing error anno-
tation, allowing us to detect more easily specific strengths and weaknesses of the
MT, and thus to better predict the quality and post-editing effort of the MT
output.

3 Estimating Subtitling Quality and Post-Editing Effort

The most common calculus for inter-annotator agreement is Fleiss’ kappa cor-
relation coefficient [5]. As it only accounts for numeral data, it could not be
applied to our set of ordinal data. Furthermore, the kappa value only describes
the agreement of the data set as a whole, not individual data points. As we were

4 This error annotation was performed by one professional translator.
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keen to identify not just the overall agreement, but the agreement for single
lines to further determine error sources and special translation phenomena, we
derived our own method to measure the inter-annotator agreement (IAA). For
all of our deductions, we suggest the generation of boxplots and the use of the
statistics resulting from that, to explain and depict the statistical dispersion of
the measures. For measuring the inter-annotator agreement, we deduced that the
interquartile range (IQR) (50% of the data) and the median (midpoint value) are
indicators, which enable measuring the IAA per line for each subtitle. Figure 1
shows how we can automatically filter the quality of a subtitle by interpreting
the elements of a boxplot.

We derived the measure for reliable subtitling quality as a combined obser-
vation of a IQR, which must be <1, and the position of the median (midpoint
value) ranging from 1 (perfect quality) to 4 (unacceptable quality). We can thus
make a statement about the reliable quality of a single subtitle. If we determine
the subtitle quality of each subtitle, we get an impression of reliable perfect to
unacceptable quality subtitles. Subtitles where an assertion about their quality

Fig. 1. Decision tree for estimating the quality of the MT generated subtitles. (Color
figure online)

Fig. 2. Decision tree for estimating the post-editing effort. (Color figure online)
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cannot be stated are treated as indefinable and will be considered when estimat-
ing the post-editing effort as depicted in Fig. 2.

The colours of the decision tree incorporate the degree of post-editing effort:
green stands for no post-editing effort, yellow is low post-editing effort, orange
indicates a medium post-editing effort and red implies the highest post-editing
effort, a complete re-translation of the segment. The upper part of the scheme
corresponds to the decision tree for subtitles with high agreement (IQR < 1), and
the position of the median indicates the reliable quality of a subtitle. Whereas a
(green) safe perfect quality subtitle does not require post-editing, the rise of the
value of the median increases the post-editing effort. A safe unacceptable quality
subtitle thus requires the highest post-editing effort possible. The lower part of
the tree concerns all ratings where the IQR > 1. This means that the IAA is less
reliable than in the upper case. A low IAA can be an indicator for problematic
subtitles: a non-professional annotator might not detect errors that a professional
would mark. Therefore his rating could be acceptable, simply because he missed
the error. Or the subtitle could not be rated correctly, because the annotator
could not decide between categories or classify the error correctly.

4 Analysis Results

In this section we present the analysis results based on the available error anno-
tation, the evaluations and the performed post-editing on the machine translated
subtitles. We will describe how the inter-annotator agreement is measured and
what this means for subtitling quality. We will also show what post-editing effort
and the additional error categories reveal about the quality of the analysed sub-
titles.

4.1 Inter-annotator Agreement

The mean interquartile range (IQR) as a measure for inter-annotator agreement
(IAA) depicted in Fig. 3, indicates the overall agreement for each error category.
With these values we can estimate tendencies for each category and compare
them. The best mean IAA value was achieved in the format category with the
lowest IQR value, followed by content and language with the poorest agreement
values and an increasing IQR.

Figure 4 shows the IAA per line for the first 15 subtitles5 of the format error
category. We can directly filter all subtitles with a perfect agreement and assume
that their quality is rather perfect. Subtitles with lower agreement need further
observation that consists of two steps: (1) check if IQR is < 1 or > 1, and (2)
according to the result, we can either estimate the subtitling quality or post-
editing effort.

5 In order to increase the visualisation effect, we depicted only the first 15 subtitles.
Depicting all subtitles would have made the visualisation impossible.
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Fig. 3. Overall inter-annotator agreement.

Fig. 4. Inter-annotator agreement per line for the format category.
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4.2 Subtitling Quality

Comparably to the results from the overall inter-annotator agreement, we present
in Fig. 5 the mean values of the subtitling quality for all subtitles with substantial
agreement (IQR< 1)6 for all four error categories: content, language, format,
semiotics.

The category with the most perfect reliable quality subtitles is the format
category. However, almost the same amount of subtitles was annotated with
revisable. This example shows, that the overall quality of this error category is
mixed. We are therefore interested in investigating how this trend evolved and
where the error sources can be located. That is why we consider the reliable
subtitle quality per line in Fig. 6, which shows the reliable quality of the first 15
subtitles7 for the language category.

An empty line in Fig. 6 means that the subtitle quality per line could not be
evaluated. This phenomenon occurs, when the IAA for a line is too poor. Then,
no reliable statements can be made about the quality. Lines of that kind need
to be evaluated further regarding the post-editing effort, thereby we can make
statements regarding their quality.

Fig. 5. Overall subtitling quality.

6 IQR < 1 means that not all subtitles are depicted in Fig. 5, but only the ones with
IQR < 1, leading to a different number of subtitles per error category.

7 As in Fig. 4, we decided to show only the first 15 subtitles, increasing this way
the visualisation effect. Depicting all subtitles would have made the visualisation
impossible.
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Fig. 6. Subtitling quality per line for the language category.

4.3 Post-editing Effort

We measure the post-editing effort for all subtitles with an IQR <1 and IQR
≥1, according to Fig. 2. The mean value of those results across all categories are
collected in Fig. 7. We observed that the error category language requires the
highest post-editing effort. In the format and content error category, subtitles
with medium to high post-editing effort predominate as well. We can now confirm
that, at least for our data, the performance of the MT has limitations on all levels
and decreases the quality of the output. Taking into consideration the post-
editing effort per line, allows us to identify the time and effort and determine
MT adaptability problems for each subtitle.
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Fig. 7. Overall post-editing effort.

4.4 Error Analysis

The additional error annotation of the MT produced subtitles exhibit limitations
in the content and language category. Based on the error categories in Sect. 2.2,
the analysis is showing that MT failed to identify context and produced multiple
content shift errors. With a total of 80 errors the syntax error category was the
leading category for MT errors. Surprisingly in the format category, the MT
system did not produce any spacing errors, but failed to comply with the char-
acters per line (cpl) guidelines in more than two-thirds of the subtitles. Several
intersemiotic coherence errors occurred as well. To conclude, the MT performed
a poor translation quality on almost all levels. The post-editing effort of the MT
is thus rather high and leads to a poor quality. An overview of the special MT
error evaluation can be seen in Fig. 8 below. The results of the special MT error
analysis shows that, for this investigation, the MT has limitations especially for
the paraphrased translation category and thus observing the characters per line
(cpl) and characters per second (cps) restrictions. Where a human translator
shortens the translation to avoid violating the timing guidelines, the MT pro-
duces more literal translations. According to that, in the content category the
most errors were produced and in the literal vs. contextual category also several
errors were found. This is also reflected in the word structure errors; although
the translation seems correct on the surface, contextually the translation is poor
in quality. It was found that not just for single subtitles but across multiple subti-
tles, where sections shared the same context, the MT failed to convey the correct
meaning and produced errors. The MT output thus requires high post-editing
effort in those cases or even a complete re-translation of single segments.
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Fig. 8. Additional MT errors.

5 Conclusion

We presented here three subtitling quality evaluation methods. These can be
applied to other MT and/or NMT engines to improve the quality assessment
workflow, as well as MT and NMT training. The calculation of the inter-
annotator agreement per line can provide information about specific transla-
tion issues: a potentially poor agreement indicates that the annotators struggled
with assigning the categories correctly or the quality of a subtitle could not
be determined at all. In order to test such cases, we developed a measure for
the reliable subtitle quality and post-editing effort per line. For all lines we can
make statements if (1) the quality can be determined and if not, we can (2)
estimate the post-editing effort. A subtitle with a reliable perfect quality is thus
not required to be reworked at all. Subsequently poorer quality subtitles require
higher post-editing effort. With our approach, we aimed to improve the MT
subtitle workflow. We found that there are three ways for improvement. Firstly,
pre-processing the MT output, since in the error analysis we found that the
strongest limitations of MT were context in the content category. A possible
pre-processing of contextual sequences of the source text for better MT imple-
mentation could be helpful. Secondly, enhancing the guidelines, especially for
the format layer. As we added more up-to-date categories, MT issues concern-
ing subtitling constraints can be accessed more quickly. Thirdly, improving the
quality assessment itself. Measuring IAA, reliable subtitling quality and post-
editing effort per line is more profitable than observing the results for the whole
document. We can thus identify the most difficult subtitles and find specific MT
limitations. Furthermore, the amount of effort of those subtitles can be estimated
immediately. Our additions to the error annotation scheme as well as the mea-
sure for all calculations per line can be applied to future work to help improve
the quality assessment workflow and MT/NMT quality on multiple levels. With
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our approach we accomplished calculating all three dimensions not just for the
whole document, but for all subtitles per line.
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Abstract. Coordination is a linguistic phenomenon where two or more
terms or phrases, called conjuncts, are conjoined by a coordinating con-
junction, such as and, or, or but. Well-formed coordination structures
seem to require that the conjuncts are semantically similar or related. In
this paper, we utilize English corpus data to examine the semantic con-
straints on syntactically like coordinations, which link constituents with
the same lexical or syntactic categories. We examine the extent to which
these semantic constraints depend on the type of conjunction or on the
lexical or syntactic category of the conjuncts. We employ two distinct,
independent metrics to measure the semantic similarity of conjuncts:
WordNet relations and semantic word embeddings. Our results indicate
that both measures of similarity have varying distributions depending
on the particular conjunction and the conjuncts’ lexical or syntactic cat-
egories.

Keywords: Coordination · Corpus linguistics · Semantics

1 Introduction

Coordination is the syntactic phenomenon whereby two or more terms or phrases
are linked into one larger phrasal structure. We examine two-termed coordina-
tion phrases, where two elements (the conjuncts) are linked by the coordinating
conjunctions and, or, or but, as in example (1).

(1) a. The president will [VP understand the criticism] and [VP take action].
b. Would you like [NP soup] or [NP salad] with your meal?
c. The new student was [AP intelligent] but [AP lazy].

The widely accepted Law of the Coordination of Likes (LCL) [17], which was
proposed to account for the syntactic constraints on coordination, requires that
the conjuncts belong to the same lexical or syntactic category.1 While the LCL
1 We focus on the coordination of lexical categories like nouns, verbs, and adjectives,

as well as syntactic (phrasal) categories such as noun phrases, verb phrases and
adjective phrases. For simplicity, we refer to both as categories in this paper.
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accounts for the acceptability of the examples in (1), there are cases where it is
not restrictive enough, as it would allow structures such as those in (2) [12]:

(2) a. * John ate with [NP his mother] and [NP good appetite].
b. * John [AdvP probably] and [AdvP unwillingly] went to bed.

The ungrammaticality here results from the semantic nature of these coordi-
nations rather than their syntax. A stronger version of the LCL would require
that conjuncts must also be semantically compatible. In this case, the preposi-
tional phrase “with his mother” expresses accompaniment, whereas “with good
appetite” expresses manner, so coordinating “his mother” and “good appetite”
in (2a) produces a zeugma [12]. In (2b), the semantic difference between two
adverbs (manner vs. epistemic) seems to account for the unacceptability.

Previous work explored the syntactic properties of coordination through a
corpus-based approach [7], but a similar examination of the semantic constraints
on coordination remains an open challenge. This paper explores the semantic
properties of coordination structures through a large-scale quantitative corpus
analysis. We study syntactically like coordinations, where the conjuncts have
the same categories, and measure semantic constraints in terms of WordNet
relations and word embeddings, which provide two independent measures of
semantic similarity. We investigate whether the constraints depend on the type
of conjunction (and, or, but) or on the categories of the conjuncts (noun, verb,
adjective, adverb). A broader goal is to share data that may inform linguistic
hypotheses about coordination.

2 Background and Related Work

Traditional linguistic analyses have given a thorough treatment of various seman-
tic use cases of coordination; the three main types are often referred to as con-
junctive, disjunctive, and adversative coordinations [4,5]. Conjunctive coordina-
tion links equal elements and is signalled by English and ; disjunctive coordi-
nation usually indicates mutually exclusive options and is signalled by English
or ; and adversative coordination displays semantic contrast and is signalled by
English but. However, the three conjunctions are not limited to these functions.

Quirk et al. [13] note that and is the conjunction with the most general
meaning and usage and that it can take on several different connotations in
context. For instance, and can link semantically contrastive elements and be
replaced by but to produce a phrase with equivalent meaning, as in “she tried
hard and failed.” Quirk et al. also point out that or can be logically equivalent
to and when following a negative, as demonstrated by the semantic equivalence
of (3a) and (3b) [13].

(3) a. He doesn’t have long hair or wear jeans.
b. He doesn’t have long hair, and he doesn’t wear jeans.
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A similar replacement can take place with permissive modals, as in “the
play can be performed in public or private theaters.” Furthermore, or is not
constrained to disjunctive scenarios. In (4), the conjuncts linked by or do not
necessarily represent mutually exclusive options.

(4) a. He is good at painting with watercolors or with oils.
b. You can boil an egg or make a sandwich.

With regard to computational approaches to understanding coordination,
previous work has focused on syntax rather than semantics. While the LCL
mentioned in the introduction overgenerates with regard to semantics, it is too
restrictive with regard to syntax, as it rules out perfectly acceptable coordina-
tions with syntactically unlike conjuncts [12,14]:

(5) a. Pat is [NP a Republican] and [AP proud of it].
b. John is [AP healthy] and [PP in good shape].

In a previous paper, we examined unlike category coordinations using
constituency-parsed corpora to identify coordination structures and determine
the distributions of unlike phrasal category combinations [7]. The findings show,
broadly, that noun phrases tend to coordinate with subordinate clauses and that
the first conjunct tends to be shorter in length than the second conjunct, sup-
porting an anti-symmetric account for the syntactic structure of coordination.

3 Approach

This paper focuses on the semantic properties of coordination, which to our
knowledge have not yet been explored through a computational approach. We
extract coordinate structures from hand-annotated Universal Dependencies cor-
pora, and employ two methods to measure the similarity of conjuncts: WordNet’s
paradigmatic relations [3,10], and Google’s Word2Vec semantic vectors [8,9],
which reflect syntagmatic similarity. With these metrics, we investigate whether
semantic relatedness correlates with particular conjunctions or categories.

3.1 Universal Dependencies Corpora

We examine corpora annotated within the Universal Dependencies (UD) project,
which aims to provide a consistent dependency treebank annotation across many
languages [11]. The conj relation links the first conjunct to all subsequent con-
juncts, and all coordinating conjunctions are attached to the immediately fol-
lowing conjunct by the cc relation. We utilize the enhanced dependencies of UD
v2, which augment the conj dependency labels between conjuncts by explicitly
including their coordinating conjunction in the label. This feature is useful for
disambiguating conjuncts in nested coordination phrases where more than one
conjunction is involved, as in (6).
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(6) UD v2 enhanced coordination annotation.

apples and bananas , or oranges
NOUN CCONJ NOUN PUNCT CCONJ NOUN

conj:and

cc

conj:or

punct

cc

The UD v2 dependencies also elegantly annotate ellipsis constructions by using
null nodes to represent elided material, such as in example (7). This representa-
tion aids the disambiguation of ellipsis constructions from simple coordinations
of constituents.2

(7) UD v2 enhanced ellipsis annotation, where (drank) represents a null node.

she drank coffee and he (drank) tea
PRON VERB NOUN CCONJ PRON VERB NOUN

nsubj obj

conj:and

cc

nsubj obj

We extract coordinations from three UD v2 corpora with enhanced depen-
dencies: the English Web Treebank (EWT) [15], the Georgetown University Mul-
tilayer corpus (GUM) [1,18], and the English portion of the Parallel Universal
Dependencies (PWT) treebanks [19]. Table 1 provides details about each corpus.

Table 1. Word counts, sentence counts, and example sources for each corpus we use.

Corpus Words Sentences Example media/sources

EWT 254,825 16,621 weblogs, newsgroups, emails, reviews, etc.

GUM 135,886 7,397 interviews, news stories, academic writings, etc.

GUMReddit 16,356 895 Reddit posts

PUD 21,176 1,000 news, wikipedia

3.2 Coordination Extraction

Our coordination extraction script requires input files in the CoNLL-U format,
the format in which UD annotations are provided. Sentences are represented
using one or more lines, where each line corresponds to a single token or word.
Ten fields fully describe each token or word, but for coordination extraction, we
are only concerned with a subset of fields: the word ID, FORM, LEMMA, UPOS, HEAD,

2 UD v2 also handles shared modifiers, such as the adjective old in “old men and
women,” using a distinct type of annotation.
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DEPREL (basic universal dependency relation to the HEAD), and DEPS (enhanced
dependency graph). We use a CoNLL-U parser to process corpus files into nested
Python dictionaries [16].

Table 2. The usage and applicable lexical categories for each WordNet relation in our
semantic analysis.

Relation Usage Categories

Synonymy Are the conjuncts within the same synset? N, V, Adj, Adv

Co-hyponymy Are the conjuncts co-hyponyms? N, V

Antonymy Are the conjuncts antonyms? Adj, Adv

Hypernymy Is the first conjunct a hypernym of the second,
or is the second conjunct a hypernym of the first?

N, V

Due to the nature of coordination annotation in UD, in which subsequent
conjuncts are dependents of the first conjunct, we maintain coordination phrases
as a dictionary mapping first conjunct IDs to sets of subsequent conjunct IDs.
For each token in a sentence, the script searches the token’s DEPS field for any
dependencies of the form conj:cc, where cc is the lemma of a coordinating
conjunction. If such a dependency is present, the current token is a conjunct of
a coordination phrase, and the corresponding head is the first conjunct of that
phrase. There can be only one such conj:cc dependency; we have checked this
in the corpora programmatically, and one can also reason that it is impossible
for a word to be a secondary conjunct of more than one coordination phrase.
Importantly, the enhanced dependencies also indicate when a conjunct has been
elided and thus should be excluded from the semantic analysis.3

3.3 Semantic Analysis

On the pragmatic assumption that conjuncts must be related in meanings, we
examine and measure their semantic relatedness using two different, independent
resources that capture paradigmatic and syntagmatic relatedness, respectively,
WordNet [3,10] and Google’s Word2Vec word embeddings [8,9]. We include coor-
dination phrases with like conjuncts from the following open-class lexical cate-
gories: nouns, verbs, adjectives, and adverbs.

WordNet-based Similarity. WordNet’s structure allows us to compare con-
juncts in terms of “classical” semantic relations: synonymy, antonymy, and
hypernymy/hyponymy. We expect many conjuncts to be co-hyponyms (as in
beer and wine) or antonyms (as in right and left), since and, or, and but gener-
ally serve to conjoin elements with similar or contrasting meanings. We expect
to find few synonyms (as in cars and automobiles), since conjoining words with

3 Our code is available at https://github.com/jkallini/SemanticCoordinationAnalysis.

https://github.com/jkallini/SemanticCoordinationAnalysis
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near-identical meanings seems redundant and uninformative.4 We also expect to
find relatively few conjoined words that are in a hypernymy/hyponymy relation
(as in roses and flowers) except in cases where the hypernym in the second con-
junct is modified and thus denotes co-hyponyms, as in roses and other flowers.
We gather frequency data by counting coordination phrases that contain the
basic presence or absence of these relations, and so the conjuncts’ relative place-
ment in the WordNet hierarchy does not affect our analysis. Table 2 summarizes
the WordNet relations that we use for coordination semantic analysis in this
project.

A challenge that accompanies the use of WordNet to analyze semantic rela-
tionships between conjuncts is word sense disambiguation (WSD), or the prob-
lem of selecting the correct sense/synset for strings that have multiple meanings.
To handle ambiguous strings, we test the WordNet relations on all possible pairs
of synsets corresponding to the two conjuncts of a coordination phrase.

Table 3. Summary of frequencies and chi-square tests comparing the presence of syn-
onymy, antonymy, and co-hyponymy across the conjunctions and, or, and but. Statis-
tically significant results are in bold.

Conjunction
Synonymy Antonymy Co-hyponymy

yes no yes no yes no

‘and’ n (%) 160 (3.0) 5209 (97.0) 38 (6.2) 576 (93.8) 836 (17.6) 3919 (82.4)

‘or’ n (%) 23 (3.4) 651 (96.6) 16 (23.2) 53 (76.8) 104 (17.2) 501 (82.8)

‘but’ n (%) 19 (3.4) 542 (96.6) 1 (1.9) 53 (98.1) 94 (18.5) 413 (81.5)

Chi-square Test
χ2(2, N = 5867) = 0.600

p = .741

χ2(2, N = 737) = 28.613

p < .001

χ2(2, N = 5867) = 0.378

p = .828

Embedding-Based Similarity. We measure semantic relations among con-
juncts with Google’s pre-trained Word2Vec word embeddings [8,9]. Speakers
commonly conjoin words referring to concepts from a given semantic domain
(as in students and teachers) that are not reflected by a WordNet-style relation.
We ask whether the distributional similarity captured by semantic vectors is
reflected in coordinate structures.

4 Results

We first present general statistics about coordination from our corpus data.
Our corpora include 6,892 like-category, two-termed coordination phrases, and
in 6,641 (96.4%) of these coordinations, both conjuncts are present in Word-
Net. 27 coordinations (0.4%) include one elided conjunct; we exclude these from
the semantic analysis. 5,579 coordinations (80.9%) use and as the coordinating
conjunction; 723 (10.5%) use or, and 572 (8.3%) use but. The coordinating con-
junction nor is only present in 18 coordinations (0.3%), so we exclude it from our
analysis. For the results of our semantic analysis detailed in the next sections,
we consider p-values less than .05 to be statistically significant.
4 To avoid potential false positives for synonymy, we filter out coordinations in which

both conjuncts have the same lemma, as in “he ran faster and faster.”
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4.1 WordNet Analysis

We begin with the bidirectional WordNet relations: synonymy, antonymy, and
co-hyponymy. We observe how the presence of these relations is affected by the
coordination phrase’s conjunction or the conjuncts’ lexical categories.

Table 3 summarizes the results of several chi-square tests of independence to
examine the association between the different WordNet relations and the three
coordinating conjunctions (and, or, but). The relation between conjunctions and
the presence of antonymy was found to be significant, with the coordinating
conjunction or having the largest proportion of coordinations in which the two
conjuncts are antonyms.5

Similarly, Table 4 summarizes the results of several chi-square tests of inde-
pendence examining the association between WordNet relations and the closed-
class categories (noun, verb, adjective, adverb). For each WordNet relation, the
association between the presence of the relation and the category of the conjuncts
was found to be significant. Verbal categories had the largest proportion of syn-
onymy and co-hyponymy, and adverbs had the largest proportion of antonymy.

We also performed an analysis of hypernymy. The first conjunct of the phrase
was a hypernym of the second conjunct in 334 coordinations, and the second
conjunct was a hypernym of the first in 372 coordinations. Using a chi-square
test for goodness-of-fit, we did not find a significant difference in the distribution
of the two types of hypernymy relations, χ2(1, N = 706) = 2.045, p = 0.153.

4.2 Word Embedding Analysis

We next present the results of our embedding-based analysis. Table 5 presents
summary statistics of cosine similarity between conjuncts for each coordinating
conjunction. A one-way ANOVA was performed to compare the effect of the
coordinating conjunction on cosine similarity of the conjuncts. The one-way
ANOVA revealed that there was a statistically significant difference in cosine
similarity between groups (F (2, 6531) = 13.613, p < .001). Tukey’s HSD Test
for multiple comparisons found that the mean value of cosine similarity was
significantly different between and coordinations and or coordinations (p < .001,
95% C.I. = [.016, .046]), and between or coordinations and but coordinations
(p = .004, 95% C.I. = [−.064,−.021]). There was no statistically significant
difference between and coordinations and but coordinations (p = .223).

5 Previous corpus analyses have shown that antonymous word pairs co-occur within
the same sentence with frequencies far higher than chance [2,6].
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Table 4. Summary of frequencies and chi-square tests comparing the presence of syn-
onymy, antonymy, and co-hyponymy across the four main lexical categories. Statisti-
cally significant results are in bold.

Conjunction
Synonymy Antonymy Co-hyponymy

yes no yes no yes no

NOUN n (%) 40 (1.6) 2407 (98.4) - - 285 (11.6) 2162 (88.4)

VERB n (%) 147 (4.3) 3289 (95.7) - - 750 (21.8) 2686 (78.2)

ADJ n (%) 14 (2.2) 618 (97.8) 38 (6.0) 594 (94.0) - -

ADV n (%) 2 (1.9) 104 (98.1) 17 (16.0) 89 (84.0) - -

Chi-square Test
χ2(2, N = 6621) = 35.893

p < .001

χ2(1, N = 738) = 11.814

p = .001

χ2(1, N = 5883) = 101.474

p < .001

Table 5. Summary statistics of cosine similarity between conjuncts for different coor-
dinating conjunctions.

N Mean Std. Dev. Std. Err. Min Max

and 5334 .258 .157 .002 -.156 .967

or 670 .289 .180 .007 -.069 .964

but 530 .246 .142 .006 -.073 .734

We also compared cosine similarity between conjuncts of different lexical
categories. Table 6 presents summary statistics of cosine similarity between con-
juncts for each lexical category. A one-way ANOVA was performed to compare
the effect of the conjuncts’ category on their cosine similarity. The one-way
ANOVA revealed that there was a statistically significant difference in cosine
similarity between groups (F (3, 6547) = 83.590, p < .001). Tukey’s HSD Test
for multiple comparisons found that the mean value of cosine similarity was
significantly different between all pairs of groups, shown in Table 7. Adverbial
conjuncts had the highest cosine similarity on average, while verbal categories
had the lowest on average.

Table 6. Summary statistics of cosine similarity between conjuncts for different cate-
gories.

N Mean Std. Dev. Std. Err. Min Max

NOUN 2474 .266 .178 .003 -.156 .965

VERB 3331 .242 .132 .002 -.104 .764

ADJ 646 .309 .166 .007 -.075 .893

ADV 100 .443 .224 .022 -.035 .967
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Table 7. Results of Tukey’s HSD test for cosine similarity between conjuncts of dif-
ferent lexical categories. The table displays the difference between group means, con-
fidence intervals, and p-values for each comparison.

Difference 95% C.I p

NOUN vs. VERB −.024 [−.035,−.016] < .001

NOUN vs. ADJ .043 [.025, .061] < .001

NOUN vs. ADV .177 [.137, .218] < .001

VERB vs. ADJ .067 [.050, .084] < .001

VERB vs. ADV .202 [.161, .242] < .001

ADJ vs ADV .135 [.092, .178] < .001

5 Discussion

This section provides an in-depth discussion of the results presented in Sect. 4.
We begin with the analysis of WordNet relations, followed by a discussion of
embedding-based similarity.

5.1 WordNet Analysis

Table 8 contains several examples of synonymy, antonymy, and co-hyponymy
pulled from the corpora. The relation between the presence of synonymy and
the type of conjunction within a coordination phrase was not found to be sta-
tistically significant; the same was true for co-hyponymy. Overall, few examples
of synonymy were found, which supports our hypothesis that conjoining words
with very similar meanings is unnecessary and uninformative. With regard to
co-hyponymy, while one might expect and -coordinations to have the highest
percentage of co-hyponymy since and usually conjoins equal elements, and -
coordinations had a lower percentage than or - and but-coordinations. This result
supports the claims by Quirk et al. discussed in Sect. 2; if and is often used as a
general-purpose conjunction independent of the meaning of the conjuncts, there
would be weaker semantic constraints on and -coordinations and thus no strong
correlation between and and the presence of a particular WordNet relation.

This result also suggests that the conjunction or is not restricted to its role
as a disjunctive coordinator. As mentioned in Sect. 2, or may be used to conjoin
options that are not mutually exclusive, as in “do you have any brothers or
sisters.” The data highlights other special use-cases for or ; for instance, or is
commonly used in appositive phrases, where one noun is used to define or modify
another noun. One example from the corpora is shown in (8), where the two
conjuncts are synonyms, and the second conjunct defines the first.

(8) Corn, or maize, [...] formed the basis of their diet.

While such cases show the versatility of or, most of its usages in our corpora
overwhelmingly reflect its role as a disjunctive coordinator; the relation between
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Table 8. Example coordinations for each bidirectional WordNet relation, conjunct
category, and conjunction. Cells for which the given WordNet relation does not apply
are filled with ‘N/A’. Empty cells indicate that no samples were found.

Coordination

Type
Synonymy Antonymy Co-hyponymy

NOUN

and
It [...] is still valuable for its many

[N examples] and [N exercises].
N/A

Many [N books] and [N articles]

in moral philosophy start

with the observation [...]

or

[N Corn], or [N maize],

domesticated by 5000 BCE,

formed the basis of their diet.

N/A

If you study [N physics] or

[N chemistry] then you should

describe the real world.

but - N/A

Winter is definitely low [N season],

[...], but also an ideal [N time]

to save money [...]

VERB

and

Steven jiggled the handle [...],

[V turning] and [V twisting]

it most professionally and

murmuring encouragements.

N/A

[...] he stayed up all night [V writing]

letters to his Republican friends

and [V composing] what would

become his mathematical testament [...]

or

These can be [V bought] at

garden centers or [V purchased]

online.

N/A

A healthy ecosystem [...] will

[V reduce] the chance of these

events happening, or will at

least [V mitigate] adverse impacts.

but

I also [V think] the National

Endowment for the Arts is a waste,

but [V guess] I would rather see

my money go to the NEA [...]

N/A

[...] she [V began] appearing in films

[...] but [V continued] to be primarily

active in the theatre [...]

ADJ

and

I know that a transaction of this

magnitude would make anyone

[Adj apprehensive] and

[Adj worried].

Hundreds of vendors offered

products [Adj new] and [Adj old],

joined by celebrity guests [...]

N/A

or -

Just as concepts can be

[Adj abstract] or [Adj concrete],

we can make a distinction [...]

N/A

but -
Skin will be [Adj darker] but

[Adj lighter] than the Silkies.
N/A

ADV

and

[Adv First] and [Adv foremost]

was the provision of open space

for the benefit of townspeople [...]

It’s an entirely [Adv up]

and [Adv down] experience,

however.

N/A

or -

Wilson did not work “[Adv directly]

or [Adv indirectly]” for the

CIA since retiring.

N/A

but - - N/A

conjunctions and antonymy was found to be significant, with or having the
largest proportion of coordinations in which the two conjuncts are antonyms.

Coordinations containing but did not have a large percentage of any Word-
Net relation. This might have to do with its tendency to demonstrate contrast
between entire clauses rather than individual words, a semantic phenomenon
that is not captured using word-level measures of similarity.

Now we discuss the associations between the bidirectional WordNet relations
and the lexical categories of the conjuncts within a coordination phrase. For
each WordNet relation, the association between the presence of the relation and
the category of the conjuncts was found to be significant, with verbal categories
having the largest proportion of synonymy and co-hyponymy, and adverbs having
the largest proportion of antonymy. Although it is not entirely clear why verbal
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conjuncts tend to be more semantically similar, it is expected that the analyses
of synonymy and co-hyponymy should be complementary. One hypothesis is
that repeating similar verbs in conjoined predicates can express emphasis, as in
example (9) taken from the corpora.

(9) Trust me, and most especially, [V trust] and [V believe] yourself.

The high frequency of antonymous conjuncts in coordinations of adverbs
seems to stem from common phrases involving contrasting adverbs, such as “back
and forth,” “up and down,” “here or there,” and “more or less.”

Finally, we discuss the hypernymy relation. We hypothesized that hypernymy
would be attested in certain contexts, and that the second conjunct would more
often be a hypernym of the first, as in “I bought strawberries and other fruit.”
The determiner other contextualizes that, in addition to strawberries, the rest
of the items purchased are also kinds of fruit and therefore hyponyms of fruit,
i.e., lexically unspecified co-hyponyms of the first conjunct. While the second
conjunct was more often a hypernym of the first in our data, the difference in
the distribution of the direction of the hypernymy relation was not statistically
significant, suggesting that semantic asymmetry between the two conjunct posi-
tions is not very prominent.

5.2 Word Embedding Analysis

Our analysis of conjunct similarity using Word2Vec word embeddings revealed
that or -coordinations had a significantly higher average cosine similarity between
the conjuncts compared to and - and but-coordinations. This result complements
the previous result regarding the large proportion of antonymous coordina-
tions that use or as the conjunction. Word embeddings are created such that
words that appear in similar contexts will have similar word vectors [8]. Direct
antonyms often appear in similar contexts; for instance, large and small can
interchangeably describe the size of an object, and as a result, they have similar
word vectors. The vectors for large and small have a cosine similarity of .733,
which is higher than the cosine similarity of near-synonyms like large and big
(.556). Since or typically conjoins antonymous conjuncts, or -coordinations will
have a high average cosine similarity between the conjuncts.

The nature of how word embeddings capture word similarity also accounts
for the high average cosine similarity for adverbial conjuncts. Since a large per-
centage of adverbial coordination phrases contained antonymy, it follows that
these coordination phrases would have a high cosine similarity between the con-
juncts. Verbal coordinations had a significantly lower cosine similarity between
conjuncts, despite having the largest proportion of synonymous coordinations;
this can again be accounted for by the semantic tools we use. Near-synonymous
verbs in WordNet like grow and develop or print and publish have similar word
vectors, but the similarity is not quite as large as antonymous word vectors.
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6 Conclusion

This paper analyzed the semantics of two-termed coordination phrases through
a computational corpus analysis. We explore the differences in meaning between
the two conjunct positions and the possible relationships they share by utilizing
two representations of words: WordNet and word embeddings. The results show
that and is a general-purpose coordinator that can conjoin conjuncts in various
semantic relationships. The conjunction or is primarily used as a disjunctive
coordinator, although it is not limited to this function. The relationships and
similarities of the conjuncts also depend on their lexical categories. We see this
analysis as a step towards a fuller understanding of speakers’ real-world usage
of coordination phrases.
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Abstract. REALEC, learner corpus released in the open access, had
received 6,054 essays written in English by HSE undergraduate students
in their English university-level examination by the year 2020. This paper
reports on the data collection and manual annotation approaches for the
texts of 2014–2019 and discusses the computer tools available for working
with the corpus. This provides the basis for the ongoing development of
automated annotation for the new portions of learner texts in the corpus.
The observations in the first part were made on the reliability of the
total of 134,608 error tags manually annotated across the texts in the
corpus. Some examples are given in the paper to emphasize the role of
the interference with learners’ L1 (Russian), one more direction of the
future corpus research. A number of studies carried out by the research
team working on the basis of the REALEC data are listed as examples
of the research potential that the corpus has been providing.
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1 Introduction

Researchers over the last four decades have claimed that learner corpora provide
evidence necessary for second language acquisition theory and practices, as well
as for many areas of linguistic studies (see [9–11,14]; and the important reviews
by G. Gilquin [7] and by T. McEnery with co-authors [18], among many others).
Learner texts themselves make up a valuable resource, and their value grows
manyfold if the texts get annotation of features specific for a particular corpus.
Russian Error-Annotated Learner English Corpus (REALEC), set up at HSE

The research was carried out within the project of the HSE University Research Foun-
dation 2021 - Automated analysis of text written in English by learners with Russian
L1 (ADWISER).
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University, is a collection of essays written by 2nd- or 3rd-year university learners
of English with Russian as their native language. REALEC is in the open access
at the university portal. The errors in the texts have been manually annotated
in the years 2014–2020, and Sect. 2 gives the details about the collection and
annotation approaches adopted in REALEC.

2 Learner Corpora Available for Research Purposes

A number of large learner corpora have been presented to the research com-
munities, and the results of using their data have been reported in numerous
publications. The collection of smaller and larger learner corpora with different
L1 of the contributors can be found on the site of the Learner Corpus Associa-
tion [29]. The most frequently referenced corpora in corpus research community
seem to be EFCAMDAT ([4,6] - 1st version and [13] - 2nd version) - accessible to
the public big collection of short learner texts from learners with different levels
of proficiency; ICLE [12] with 5.5 million words of essays written by learners
with 25 different native languages; Cambridge Learner Corpus, CLC [21], a 45-
million word corpus of student responses to ESOL exams, which can be accessed
in Sketch Engine in two main parts - the error-coded learner corpus (CLC coded)
and the uncoded learner corpus (CLC uncoded); and also two corpora of spo-
ken learner production: the Louvain International Database of Spoken English
Interlanguage, LINDSEI [8], and the Trinity Lancaster Corpus, TLC [5], with
4.2 million words of transcribed L2 spoken interaction. All these corpora differ
in size, in the number of native languages of the learner authors, in platforms
they were released on, and most importantly for this paper, in availability of
different types of annotation assigned to the learner texts. These corpora have
already been successfully used for studying a broad range of lexical, grammatical
and pragmatic features. As all of them have been well documented, we tried to
adhere to the same level of detail and pointed out the same important features
in our presentation of the Russian Error-Annotated Learner English Corpus.

3 Data Collection and Annotation Practices in REALEC

All Bachelor students at the HSE University take the Independent English Lan-
guage Test (IELT) designed to evaluate English proficiency in academic register
of English [28]. The exam format is the same as that of the leading international
English certification tests, with IELTS being the closest. The examination is
called Independent because EFL instructors from HSE do not participate in
organizing this test or evaluating students’ work in it. This task is done by inde-
pendent certified examiners, who develop the materials every year and assess
students’ written and oral performance (essays and interviews, respectively) in
accordance with international language standards. The test includes Reading,
Listening, Writing and Speaking, and it is essays written in answer to the two
tasks in Writing - a description of the graphical materials in 20 min and an
opinion essay in 40 min, which have been submitted to REALEC since the year
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2014. All students taking the IELT are at a similar academic level, as they are
all undergraduate students (2nd or 3rd year at HSE), but because of differences
in prior exposure to English language, examination essays show a wide range
of levels, and our pilot experiments on automated predictions of CEFR levels
attested CEFR levels from B1 to C1 for the majority of essays [1].

The collection in REALEC of these essays from the years 2014–2020 includes
about 18,700 texts, with the total of approximately 4,336,000 words. When the
administration of the examination involved only students of three departments
typing essays on computer (in 2014–2019), we were able to annotate errors in
those essays manually. This work was done by specially trained student anno-
tators as their practical experience in corpus maintenance, and unfortunately
we never had enough of those annotators to follow the conventional practice of
double annotation of all texts. However, we did have an editing team respon-
sible for editing student annotation to ensure some consistency in annotating
approach. The new technological breakthrough came in 2020, when the test was
administered online for students of all departments of the HSE university, and as
a result REALEC received twice the number of texts as that in all the previous
5 years.

REALEC is made up of (1) the texts with the sentence borders established
by using NLTK Punkt sentence tokenizer [2], (2) automated POS annotation
tags received with the help of TreeTagger [22], and (3) of the files with manually
annotated errors in the form of error spans, error tags assigned to them, and the
correction of the error span suggested by the annotator. The learner corpus was
released on BRAT platform [23] chosen for its convenience for annotating pro-
cesses and for the highly satisfactory visualization opportunities. A team of spe-
cially trained Linguistics undergraduate students proficient in English annotated
about 6,000 essays between 2014 and 2019. The annotators chose an appropriate
label for each error they identified, and they could apply more than one error tag
to the same error span if needed (see Figs. 1 and 2 for examples). The results of
inter-annotator agreement experiment carried out across 2,128 errors annotated
by 5 independent annotators were presented in (Vinogradova, 2016:743-748).
Figures 1 and 2 illustrate REALEC annotations with two and four error tags
assigned to one error span, and a pop-up window on the screenshots presents
the corrected version suggested by the annotator.

Fig. 1. Multiple categorisation of errors in REALEC - error span with 2 error tags.
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There are 5,604 error spans with more than one error tag, which makes up
4% of the total number of error spans.

While choosing the appropriate tag for an error identified, annotators had to
tick delete if an error span was to be deleted instead of being corrected. There
was also an option to choose the tag L1 Interference as a possible cause of
error, but so far it has not been marked consistently enough. An example of such
error is the confusion in Russian learners’ use of English verbs solve and decide
Fig. 2: both English verbs have the same equivalent in Russian, so this wrong
vocabulary choice (Choice of lexical item tag) was supposedly made under
the influence of L1 interference.

Fig. 2. Multiple categorisation of errors in REALEC - error span with 4 error tags.

One more function in annotation was to show that some changes had to be
applied as a result of some other changes already made in the sentence, and for
such cases there is a way to show with an arrow the relation between two tags
called Dependent change coming from the initial suggestion of a change to the
other tag depending on the former - see the example in Fig. 3.

Fig. 3. Dependent change relation in REALEC.

After the annotators have completed their work, the supervisor of the anno-
tation practice does some spot-checks, after which some decisions get reviewed.
Annotation reviewing is an on-going process, and the specific numbers (in par-
ticular, numbers of texts without any annotations - see Table 1) and some of the
choices made by annotators are still subject to changes. Currently, the total is
134,608 error tags for 4,918 out of 6,054 texts collected in the corpus from 2014
to 2019.

There have been observed cases when POS automated annotation from Tree-
tagger produced some misleading indices - like in the following cases:
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(1) All of us have their leisure time and there is no secret that a lot of us like
some kind of sport activity.
(2) For example, my friend Andrew really like basketball. Both verbs like, the
correct form in (1) and the incorrect form in sentence (2), are marked with the
tag PRP (preposition) instead of the necessary verbal tag.
(3) It can be one of the main reasons why the mobiles phone’s part increase for
2 times. Word increase is marked with the tag NN1 (singular noun) instead of
the necessary verbal tag.

While the first confusion does not stem from any error in the learner text, the
second and the third ones can be accounted for by agreement errors made by
student authors.

4 Corpus Statistics

Table 1 gives the basic statistics of the REALEC corpus collected in 2014–2019.
The table gives numbers of texts, the total numbers of sentences, words and
tokens, the average numbers of sentences, words, and tokens per text, the max-
imum number of words in a text, the total number of error tags assigned, the
average number of errors per text, the average numbers of tokens and error tags
per sentence, and the total number of annotated and unannotated texts for Task
1 and Task 2 essays separately, as well as separately for the years 2014-2017 and
2019. For the much greater number of texts collected in 2020, manual annotation
was out of the question, so we applied a BERT-transformer-type neural network
for both identification and correction of errors, and the analysis of the results is
still in progress and will not be included in the current report.

Table 1. Corpus statistics for the texts collected in REALEC before 2020.

Year Texts Sent Words Tokens Av. Av. Av. Total Av. Av. Av. Texts

– Task Snt Wrd Tok Error Err/ Tok/ Err/ with

/Txt /Txt /Txt Tags Txt Snt Snt annot

14 – 1 829 7,757 147,953 166,906 9 178 201 17,284 26 22 3 668

– 2 823 12,223 219,740 246,325 15 267 299 22,119 33 20 3 678

15 – 1 31 5,045 5,680 8 163 183 224 621 22 23 3 28

– 2 30 401 7,709 8,612 13 257 287 981 36 21 3 27

16 – 1 670 5,902 123,522 136,130 9 184 203 9,498 18 23 3 522

– 2 664 9,603 181,135 201,406 14 273 303 11,960 23 21 2 512

17 – 1 1,126 10,467 196,103 222,619 9 174 198 23,155 25 21 3 929

– 2 1,124 16,816 315,001 351,628 15 280 313 29,227 35 21 3 839

19 – 1 377 3,293 70,665 79,449 9 187 211 8,242 23 24 3 354

– 2 380 5,708 118,605 131,898 15 312 347 11,521 32 23 3 361

Task1 3,033 27,663 543,288 610,784 9 179 201 58,800 24 22 3 2,501

Task2 3,021 44,751 842,190 939,869 15 279 311 75,808 31 21 3 2,417

Total 6,054 72,414 1,385,478 1,550,653 12 229 256 134,608 27 21 3 4,918
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It can be seen that in roughly the same numbers of Task 1 and Task 2 essays,
the numbers of sentences, words and tokens, both total and average/maximum,
correspond to the proportion of the required length: Task 1 essay is supposed
to be not less than 150 words, while Task 2 essays are required to be not less
than 250 words. The only parameter with much smaller, almost no, difference
between Task1 and Task 2 texts is the average number of tokens per sentence,
which makes sense because each student wrote both Task 1 and Task 2 essays.
The statistics related to error counts is discussed in the next section.

5 Error Taxonomy in REALEC

Hierarchical error categorization for the corpus was initially developed on the
basis of the pedagogical tradition in Russian EFL error-marking practices and
included over 150 error tags [25]. After about two years of manual expert anno-
tation with this categorization scheme and as a result of annotator-agreement
experiment, the number of tags was reduced to about 100 on the grounds of infre-
quent use of about a third of them. Further application of this reduced scheme
revealed the inconsistency and/or the need for high-level linguistic knowledge
for the appropriate use of some more of the error tags, so another portion of
about 50 tags was eliminated.

The new version of the error tags has 54 errors tags (see Table 2), of which
7 are upper-level tags (Grammar, Vocabulary, Verbs, Nouns, etc.) used only
for grouping tags of similar nature. At each stage of applying changes to the
error tags, most error spans that had been annotated with the eliminated tags
were automatically reassigned the remaining error tags, but there were six that
required manual updating. One example of these six is the tag Conditionals:
annotators used this tag either for wrong tense forms, which in all other types
of clauses were labelled with the tag Choice of tense, or for the wrong uses of
the negative form (for example, with the conjunction unless), which in turn can
be marked with Negation tag. The reassigning of tags had to be implemented
manually.

6 Distribution of Learner Errors in REALEC

From the general statistics, we can see that errors are quite frequent in student
essays collected in REALEC - error density parameter is 9.72 errors per 100
words. Roughly, every tenth word in the corpus is grammatically incorrect. This
shows that not many student authors of the essays in the corpus have achieved
a very high level of English proficiency, which in terms of CEFR, which in terms
of CEFR level implies somewhere between levels B1 and B2 for the majority of
student authors.

When we look at the distribution of errors across documents, we can make
some interesting observation. Figure 4 shows the histograms of the number of
error annotations per document for Task 1 essays and for Task 2 essays in differ-
ent colour (blue and orange, correspondingly). The distribution for both classes
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Fig. 4. Distribution of error annotations across documents in REALEC.

Fig. 5. Distribution of error annotations across sentences in REALEC.
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Table 2. Error categorisation in REALEC.

Upper-level tag Error tag Error spans and � their corrections for some tags

Punctuation

Spelling

Capitalisation

Grammar Determiners The other � Another example

Articles a lowest figure � the lowest figure of 35%

Quantifiers much � many efforts

Verbs Tense

Choice of tense There is � was a rise in 2012

Tense form It has taken many years

Voice was fluctuated � fluctuated;

interested � interesting fact

Modals must � had to do

Verb pattern let them to create � let them create;

Please introduce � introduce yourself

Gerund or participle construction Create � Creating modern house is

Infinitive construction Doing � To do it means to develop

Nouns Countable/uncountable nouns advices � advice

Prepositional noun ... a reason of � reason for

Possessive form of noun This student � student’s reaction

Noun+infinitive the way of solving � to solve

Noun number I know case � cases of injustice

Prepositions in � at night

Conjunctions new opportunities appear, � and the whole world becomes

Adjectives Prepositional adjective independent on � independent of

Adjective as collective noun poors � the poor

Adverbs Prepositional adverb independently out of � independently of

Degree of comparison the best � better of the two

Numerals three millions of � three million people

Pronouns

Agreement

Word order

Relative clauses offices which � whose role is

Parallel construction They want to study ... and doing � do sports.

Negation They have not � do not have time to do it

Comparative construction twice more � as many

Confusion of structures There is � It is very important to

Vocabulary Word choice places in work industry � work places

Choice of lexical item make � fulfil its function

Change, deletion, or addition the jury is still on � the jury is still out on

of part of lexical item

Derivation

Formational affixes controversional � controversial issue

Confusion of category I am agree � agree

Compound word crowd sourcing � crowdsourcing

Discourse Referential device higher than of � than that of male graduates

Coherence

Linking device To sum, � To sum up,

Inappropriate register tiny � insignificant increase

Absence of a necessary while appeared � there appeared more people

component in clause or sentence

Redundant component in clause from both opposite � both sides

or sentence

Absence of necessary explanation The percentage of people � people

or detail in this group is about 70%.
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of essays is heavily skewed to the left with most documents (4617 out of 6054)
having less than 32 errors, while some documents have significantly more errors
than the average document: 16 graph descriptions and 34 opinion essays have
more than 80 error annotations, and the highest number of error annotations in
a document overall is 133. The mode (the most frequent value in the histogram)
is 1 error/text for graph descriptions and 5 errors/text for opinion essays, and
the median is 16 errors for Task1 and 21 errors for Task2.

A similar pattern can be observed when we look at the distribution of errors
per sentence. Figure 5 shows a histogram of the number of error annotations per
sentence in the REALEC corpus. The histogram shows that the largest number
of sentences have no errors or one error, both in Task 1 and Task 2 essays. The
frequency decreases quickly for higher error counts, and the highest observed
number of error annotations in a sentence is 34 in Task 1 and 25 in Task 2
essays.

The skewed distribution of errors in the corpus was observed in (Dahlmeier
et al. 2013), in which the authors explicated the long tail of the distribution by
stating that if a learner has made a lot of mistakes in the beginning of the essay,
the chance of making more errors in the remainder of the essay increases at least
because of systematic errors, which are likely to be repeated.

As for the types of errors that language learners make, Fig. 6 shows a his-
togram of most frequent error categories (having 1,000 occurrences and more).
The top three categories are misspelled words (about 27 thousand, 23%), wrong
uses of articles (about 15 thousand, 13%), and wrong vocabulary choices (about
17 thousand, 15%). These top three error categories account for 51% of all error
annotations. The next 5 categories are errors in punctuation, wrong choice of
verb tense, inappropriate prepositions, agreement errors, and uses of redundant
components, ranging from 9 to 4%.

Fig. 6. Distribution of 22 most frequent REALEC error tags.
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7 Corpus at Work

Drawing from the observations over the most frequent errors made by student
authors with Russian L1, the research team working with REALEC set up the
task to create, and reported the initial description of, a writing assistant for
learners with Russian as L1 [26]. Annotated errors also formed the basis for
a test-making program which worked at the HSE University as a placement
program for a few years [26]. The third computer tool developed by the research
team was a system for evaluating text complexity parameters [15].

Currently, two more directions for the researchers working with REALEC
is to explore the relations between text complexity values and error counts in
learner texts, on the one hand, and comparisons of English learner production
by learners with different L1 [17,27]. The work on the writing assistant is still
in progress, and an interesting question is how adding syntactic parsing with
SpaCy [31] allowed us to increase the efficiency of the writing assistant in iden-
tifying four of the eight most frequent errors attested in REALEC, namely:

– errors in the subject-predicate agreement
– errors in the determiner-noun agreement
– errors in the use of commas
– errors in the use of verb tenses
– errors in the use of some prepositional constructions.

Some limitations in the ability of the parser to cope with the erroneous
learner production, especially when errors were made by Russian learners of
English under the influence of L1, have been observed by the REALEC research
team. The possible ways to tackle the problems with wrong parsing was discussed
in [17], but this specific line of research is beyond the scope of the present paper.

The difficulties of carrying out research across different learner corpora were
noted by many authors (see, for example, [24, :44–45], and one of those were
specific errors made under the influence of the interference with learners’ L1.
That is why annotation in REALEC has an additional focus on marking all
errorenous occurrences that in some way resemble the features that exist in
Russian. The examples can be brought in from such different areas as spelling
(democraty instead of democracy - cf. Russian demokratia; standarts instead
of standards - cf. Russian standart), word formation (tendention - cf. Russian
tendentsia; expluatated instead of exploited - cf. Russian ekspluatiroval, lexical
choice (see example in Fig. 3; close their eyes to instead of turn a blind eye to -
cf. Russian zakryvat’ glaza na). Errors in word order often have to be given as
the complete sentences, and the corresponding Russian sentences have exactly
the same word order as in the erroneous English sentence, as in the following
example: What it leads to? instead of What does it lead to?

8 Conclusions and Future Research

The paper has reviewed our recent work towards development the REALEC
corpus. Texts from our corpus can be downloaded, and the fact that the time-
consuming and costly error annotation has been done and is being improved will
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hopefully make REALEC a valuable resource for EFL professionals, for SLA
researchers, for linguists working in different walks in Linguistics, for NLP spe-
cialists and, finally, for students learning to become EFL instructors to practice
error detection and correction in English classes. At HSE University, REALEC
data are being used by both undergraduate and graduate students in Computer
Linguistics program for their research activities.

Now that the first results of automated identification and correction in a large
portion of learner texts have been received, it becomes even more important
to increase the consistency of manual error annotation in the smaller part of
the corpus in order to be able to create a procedure of the automated error
classification as a follow-up to deep learning model.
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Abstract. The style and vocabulary of social media communication,
such as chats, discussions or comments, differ vastly from standard lan-
guages. Specifically in internal business communication, the texts contain
large amounts of language mixins, professional jargon and occupational
slang, or colloquial expressions. Standard natural language processing
tools thus mostly fail to detect basic text processing attributes such as
the prevalent language of a message or communication or their senti-
ment.

In the presented paper, we describe the development and evaluation of
new modules specifically designed for language identification and senti-
ment analysis of informal business communication inside a large interna-
tional company. Besides the details of the module architectures, we offer
a detailed comparison with other state-of-the-art tools for the same pur-
pose and achieve an improvement of 10–13 % in accuracy with selected
problematic datasets.

Keywords: social media communication · language identification ·
sentiment analysis

1 Introduction

Detailed content analysis of unstructured texts can bring valuable insights into
otherwise hidden data ranging from emotion and sentiment information [4,9]
through market analysis [2] to electronic health records investigations [20]. Most
of the tasks rely on basic text attributes such as the prevalent language of the
text. In standard text types, the language identification task is relatively well-
managed with available n-gram modules like LangID [14] or pretrained neu-
ral models such as FastText [11] or Apple Bi-LSTM [19]. However, when these
mainstream models process non-standard input texts like spoken language (in
the form of movie subtitles) or internal business communication in the form of
chats and discussions, they usually face severe accuracy drops. Reasons for such
imprecision are relatively clear – conversational texts tend to use colloquial and
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professional vocabulary, mix phrases and terms from different languages, refrain
from using diacritics etc.

In the following text, we present the details of development of two new
modules of OfficeBot, a system designed to understand the content of internal
business communication, e.g. in the form of Slack [17] conversations. The first
module’s task is the above mentioned language identification, where we build a
dictionary based ensemble model for eighteen languages to solve the problem-
atic constructions in chat texts. The second module concentrates on the task of
sentiment analysis of Czech messages as these were failing badly with standard
multilingual tool Polyglot [5]. Both modules underwent a detailed evaluation
and comparison with selected current tools improving the results on language
identification with spoken texts of 3–13 % in accuracy (ratio of correct results to
all cases) and the sentiment analysis detection of 10 % again in accuracy.

2 Language Identification

Most of the primary text analysis tasks the OfficeBot system needs to perform
require the prerequisite of language identification – a classification task to deter-
mine the prevailing language of the message or conversation. An incorrect clas-
sification in this step implies almost inevitable failure in the subsequent tasks.
For this reason, having a module that can adequately cope with messages in a
social network setting is crucial.

The following section will briefly review existing language identification tools,
offer a detailed description of new tools created for this task, and their evaluation
and comparison.

2.1 Related Works

LangID [14] is an off-the-shelf Python library used for language identification.
It comes pre-trained with support for 97 languages as a supervised Naive-Bayes
classifier over byte n-grams (1–4). With reasonable success, the module was
evaluated on both long document and micro-blog corpora.

FastText [11] is a C++ application for learning of word representations and
text sequence classification. It includes bindings for use in Python, making it
one of the fastest libraries currently available. FastText uses a bag of n-grams
representation of the input text to train a linear classifier with hierarchical soft-
max. Within the distribution, a compact text classification model for language
identification called lid176.bin that is trained to recognize 176 languages with
texts from Wikipedia, SETimes, and Tatoeba is included.

Apple Bi-LSTM [19] is a relatively recent reproduction of Apple’s approach
using a neural network architecture for language identification. The module is
designed for applications like automatic spell checkers during typing, where the
input messages are typically shorter than usual benchmarking documents. The
reproduction uses a Bidirectional LSTM [18] on character encodings, where the
approach outperforms most of the current open-source language identification
modules.
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2.2 On the Difficulty of Identifying Internet Language

Based on the observations of data, we can make assumptions about some features
of the “internet language1” and consider the complexity of their analysis.

Short Messages. Out-of-the-shelf language identification modules were desi-
gned to work with entire paragraphs or full-fledged sentences of text. In the
internet language, messages shorter than three words are the most common
(Fig. 1).

Fig. 1. Message length distribution in the internal business communication

Frequent misspellings can be problematic for methods dependent on the
exact match of words or word n-grams; however, the most commonly used char-
acter n-gram models can deal with misspelling to some extent.

Missing diacritics, either partially or entirely. In both cases, languages that
make heavy use of diacritics (Czech, Slovak, etc.) are more difficult to classify
correctly, as diacritics is a prominent feature of the aforementioned languages.
Also, as shown in Table 1, missing diacritics can create ambiguities that would
not be present if the diacritics were present.

Table 1. The meaning and language of a word dependent on the correct use of diacritics

Word Language Meaning

pit English a large hole in the ground

pǐt Slovak to drink

ṕıt Czech to drink

Usage of Internet Slang Terms. Most of the internet slang and acronyms
(thanx, imho, btw) are derived from English, however, they are used indepen-
dently of the true language of the text. Some language-specific slang terms also
1 The language used in social media communications.
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exist (e.g. ”jj” as a positive answer in both Czech and Slovak, meaning “jo jo”,
yeah yeah). The ability to distinguish between slang terms that provide valuable
information about the language and those that are just added “language noise”
can be an important feature of a classifier.

2.3 Custom FastText Model

The initial attempt at language identification consisted in training a new Fast-
Text classification module, where the training dataset was adapted to the specif-
ics of internet language. Among the 20 supported languages,2 two special “lan-
guages” were included, Czech Without Diacritics (csd) and Slovak Without Dia-
critics (skd). Their role is to distinguish the Czech and Slovak languages even
when the messages partially or entirely miss diacritics (a prominent feature of
these languages).

Dataset and Preprocessing. Multilingual Wikipedia3 and Tatoeba corpora4

were used as sources for the datasets to train the FastText model. The prepro-
cessing part was different for two kinds of languages – the ones that use the
Latin alphabet and the others. The standard preprocessing procedures include
removal of punctuation, URLs and numerical data. For the Latin script lan-
guages, all sentences were transformed to lowercase. Especially for Czech and
Slovak Without Diacritics, the datasets were created through transliteration of
original Czech and Slovak texts. For Non-Latin script languages, all occurrences
of Latin characters were removed to avoid confusion.

Once preprocessed, the resulting dataset contained around 15 million anno-
tated sentences.

Usage of the Model. The module consists of two parts: the FastText model
itself and a Python wrapper that handles preprocessing, postprocessing, and the
usage of the FastText model itself.

In practical applications, the message is sometimes too short or filled with
language-agnostic content that makes it impossible to classify into a single lan-
guage. For this reason, a special class called “unknown” is introduced.

The input sentences require similar preprocessing as the training data, i.e.
removal of URLs, emojis, and numerical data, as they are irrelevant to the classi-
fication itself. If the message becomes too short after these steps (≤ 5 characters),
the message is automatically classified as “unknown”. If the model is too uncer-
tain about the outcome of the classification (confidence level less than 50 %), the
message is classified as “unknown” as well.

2 cs, csd, da, de, en, es, fi, fr, hu, it, jp, nl, no, pl, ru, se, sk, skd, sw, and zh.
3 https://www.wikipedia.org/.
4 https://tatoeba.org.

https://www.wikipedia.org/
https://tatoeba.org
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2.4 Dictionary-Based Language Identification

As may follow from the description above, the custom FastText module can
handle the problematic languages without diacritics, but short messages still
pose a problem. For instance, a two-word English message saying “NO WAY ”
is wrongly identified as Japanese by the original FastText model (with relatively
low confidence) and as Spanish by the custom FastText model presented in
the previous section. Since such messages are the most frequent in the chat
and conversation texts, we propose a new method based on a combined score
computation with word frequency dictionaries.

First, frequency wordlists were extracted using both very large text cor-
pora [10] and the OpenSubtitles corpus [13] for each language separately. Each
of the wordlists consists of two dictionaries – one contains 10,000 of the most
common words in the language, while the other one includes 50,000 most com-
mon word bigrams. Every dictionary is ordered by the word/bigram frequency in
the corpus. From now on, the term token is used to capture the shared properties
of both words and word bigrams in the algorithm. To describe the method, we
employ the following notation:

– W denotes the input text, L is a set of all supported languages.
– rank(w, l) corresponds to the position of the token w in the wordlist of lan-

guage l.
if w does not occur in the wordlist of l, then rank(w, l) is equal to 0.

– c is a suitable constant to compensate for the dictionary size (10,000 for
words, 50,000 for bigrams).

– length mod(w) is a multiplicative modifier that takes the token length into
account. Longer tokens tend to be more unique in the given language, and
that has be reflected in the final score.

– occ penalty(w, l), or the occurrence penalty of token w in language l, is a
measure of the token ambiguity w.r.t. the other languages. If a token occurs
in multiple languages, then there is an increased uncertainty about the word
being important for classification – so the overall score must be penalized.
p is a suitable normalization constant (1,000 for words, 5,000 for bigrams)

The combined language score of a message W for a language l is then computed
as follows

language score(W, l) =
∑

w∈W

score(w, l) (1)

score(w, l) = log

(
c

rank(w,l) length mod(w)

occ penalty(w, l)

)
(2)

occ penalty(w, l) =
∑

k∈L,k �=l

log(c − rank(w, k))
p

(3)

length mod(w) = 1 + log(length(w)) (4)

Languages with the highest score are considered the most probable candidates
for the actual language.
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2.5 The Ensemble Method

The pretrained FastText model lid176.bin performs reasonably well for most
instances of longer texts in one of the standard languages. The dictionary-based
method (Sect. 2.4) is best suited to short messages of common words without
unexpected misspellings. The custom FastText model (Sect. 2.3) works well with
languages without diacritics and instances with English terms mixed up in a
foreign language; however, the overall average performance is worse than with
lid176.bin.

To improve upon the existing modules, we present an ensemble of these three
classifiers, where the voting takes each module’s strengths and weaknesses into
account. Each of the classifiers predicts one language along with its confidence,
and the voting commences in this exact order:

– if the majority agrees on the language x, then return x.
– if the custom FastText model predicts language x with confidence large

enough (≥ 0.9), then return x.
– if lid176.bin model predicts language x with confidence large enough (≥ 0.6),

then return x.
– if the dictionary-based module reaches a confidence for language x higher

than 0.10 · log(length(W )), then return x.
– otherwise return “unknown”.

2.6 Evaluation

In the following text, the performance of all the above presented techniques is
evaluated and a comparison with current mainstream, publicly available solu-
tions is provided.

First, Table 2 compares the performance of the original and the custom Fast-
Text module on a small disjoint subset of Wikipedia articles (100 per language),
where the results support the primary decision for preparing the custom model
which shows significantly increased performance on languages without diacritics.
Compared to the following evaluation with all languages, the accuracy of the cus-
tom FastText model diminishes due to lower precision on other languages where
the diacritics do not play such important role and where the original FastText
model performs more robustly.

For the full evaluation purposes, we use two specific datasets. The first
dataset, called OfficeBot set, is a preselected collection of messages from the
OfficeBot Slack workspace that were problematic to classify using the custom
FastText module. The set was also used to fine-tune the parameters of the
Ensemble module, so it may be considered as a sort of development set of 177
messages.

The second set is created from OpenSubtitles – a multilingual parallel corpus
of movie subtitles [13]. This particular corpus was chosen due to its volume and
because it offers conversational expressions from everyday speech that closely
resembles internet conversations (compared to other commonly used multilingual
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corpora like Wikipedia or EuroParl). 10,000 sentences of each language were used
as a test set to perform the evaluation.

The Table 3 shows the prediction accuracies with both datasets. For the
OfficeBot Set, the custom FastText model reaches the least reasonable accu-
racy as the set is negatively biased against the module. The original FastText
module achieves decent performance, with the best result of the foreign solu-
tions being offered by the more recent pretrained Apple BiLSTM model. The
ensemble can properly combine the strengths of various modules, and thanks to
that, it achieves the best performance on the dataset.

Table 2. Comparison of both FastText modules on the development subset of
Wikipedia articles

Original FastText acc. (%) Our FastText acc. (%)

English 100.0 98.5

Czech 99.0 98.5

Czech Without Diacritics 89.5 98.5

Slovak 97.5 100.0

Slovak Without Diacritics 83.0 99.5

Table 3. Comparison of the prediction accuracy of the presented solutions with the
OfficeBot and OpenSubtitles datasets

Module OfficeBot Set (%) OpenSubtitles Set (%)

FastText 84.74 73.96

custom FastText 65.56 58.91

dictionary-based module (our) 94.35 87.03

Ensemble (our) 94.91 76.30

Apple BiLSTM 91.52 65.10

The best-performing module on the OpenSubtitles dataset is the dictionary
module. One of the reasons for success is that the dataset does not typically
contain misspelling as internet conversations do, so the module does not struggle
with lower recall on such sentences. The second best performance of the ensemble
shows that the rule parameters are designed to the OfficeBot Set. Future work
on the module should replace the handwritten rules with a learnable classifier
that aggregates the predicted languages in a fashion that is less likely to overfit
on larger datasets.
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3 Sentiment Analysis

The OfficeBot system employs sentiment analysis to understand users’ attitudes
in existing workspace conversations. As the workspace functions in a multilingual
setting, it is crucial to be capable of both working with the internet language
and working with multiple languages simultaneously.

3.1 Related Works

The vast majority of sentiment analysis systems focus on a single language (most
commonly English [6]). One of the main problems that are holding back the
development of multilingual sentiment analysis systems is the lack of resources
across languages [1].

An essential part of a successful multilingual sentiment analysis consists in
dealing with the sparsity of sentiment lexicons that are difficult to create and
maintain. One of the common approaches lies in using machine translation to
translate the original content into English, where the resources are well devel-
oped. However, this method comes with its own set of problems, including addi-
tional noise generated by the translation and cases where the system does not
translate essential parts of the content [1].

Polyglot [5] is an extensive multilingual NLP framework that supports tok-
enization, NER, POS tagging, language detection, but also sentiment analysis.
The sentiment analysis module is a lexicon-based method that supports 136 lan-
guages. The seed sentiment lexicons were bootstrapped using WordNet [8], and
the links to other languages were established using knowledge graphs.

3.2 Sentiment Analysis for Czech

The baseline solution for OfficeBot was to use the Polyglot sentiment analysis
module for the task. However, the usage proved insufficient due to poor perfor-
mance with the Czech language which is the most used language in the workspace
where OfficeBot is deployed. Table 4 lists a few examples of words present in the
lexicon. It is important to note that most examples are frequently used words
(most of them can be found in stoplists), so they introduce a large amount of
noisy parameters to the analysis.

Table 4. Examples of erroneous items in Polyglot Czech sentiment lexicon

Word (Czech) Word (English) Claimed polarity True polarity

o about (preposition) negative neutral

jako like (preposition) positive neutral

malý small (adjective) negative neutral

no well (interjection) positive neutral
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In this solution, we are using the ensemble technique from Sect. 2.5 to identify
the language. If the language is either Czech or CzechWithoutDiacritics, we
will use a different module adapted to this single language instead of Polyglot.
The sentiment analysis tool for Czech is an adaptation of a previously developed
sentiment lexicon-based module [3] that was created for use in political discussion
content.

If the current language is classified as CzechWithoutDiacritics, then all dia-
critics are removed (if any are left), and a specifically prepared Czech lexicon
without diacritics is used. If the language is Czech, then the czaccent [16] tool is
used to restore potentially missing diacritics of the content. The sentiment scor-
ing procedure remains identical to the original work [3], with notable exceptions
mentioned in the following subsections.

Lexicon Expansion. The original sentiment analysis module contained 3,550
affective words and a specific dictionary focused on political discussions.

The first expansion was the addition of afinn.cz [15] sentiment lexicon with
approximately 20,000 words with polarities of −1 and 1. With such an extensive
lexicon, inevitably, some of the words are not as affective, and to compensate for
that, the following rule applies: if the word is present in afinn.cz lexicon and is
not present in any other of the lexicons, the polarity value of the word is reduced
to 50 %.

The second expansion employed eval words.txt [12], a Czech sentiment lexi-
con of approximately 6,200 words originated as a Czech translation of the English
SentiWordNet lexicon [7], where positive and negative sentiment intensity is
listed separately. There is a number of instances where the sentiment intensity
is low for both polarities, that it might as well be omitted, so the word should
actually be treated as neutral. The confidence score of the word being neutral
is thus computed as 1.0 − p − n, where p stands for the positive confidence
and n stands for the negative. If the neutral confidence is the highest, the word
is omitted. Otherwise, the final polarity is the one with the higher confidence,
where the confidence level is preserved in the preprocessed lexicon. After this
pruning, 1,500 new affective words with polarity scores have been added to the
new lexicon.

Emojis. The standard Slack workspace offers 875 emojis, each following a spe-
cific text format of :lower snake case name: encoded as parts of the conversa-
tion messages. The emoji names have been converted to English words and the
emoji sentiment was then determined by using Polyglot [5]. With this method,
105 emojis were classified as positive and 59 as negative, and those were added
as a separate wordlist to the sentiment module.

Module Tweaks. The original module included several domain-dependent fea-
tures that either do not apply in the internet conversations settings or they have
to be adjusted.
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Upper-cased words were detected as “yelling”, which is usually interpreted as
strongly negative content. However, upper-case acronyms are frequently used in
internet discussions, which would bring them misinterpreted as negative yelling.
For this reason, the feature was completely removed.

With massively increased lexicon size, the module is able to interpret the
sentiment of many new words in the input messages which had to be reflected in
recalculating numeric weights and parameters of the original module. Since the
module’s decision process uses separate values for positivity confidence p and
negativity confidence n, for a comparison with Polyglot the individual predic-
tions for each polarity have to be reduced to a single number, which is done by
the following formula:

sentiment(p, n) =

⎧
⎨

⎩

0 for |p − n| < 0.5
1, for p > n
−1, for p < n

3.3 Evaluation

Unfortunately, there are no publicly available Czech sentiment analysis datasets
that would match the internet conversation domain. We have thus manually
annotated 328 messages from the OfficeBot Slack workspace to compare our
approach with selected baselines.

The messages were labeled by a single annotator using the following crite-
ria. Messages that contain an abundance of positive emojis or express appraisal,
positive news, and humorous content are labeled as positive messages. Negative
sentiment was assigned to messages that express frustration, disapproval, overall
tension or contain negative emojis. The content of the message has higher impor-
tance than the presence of emojis themselves (as they can be used sarcastically).
If the message does not fit any criteria, the sentiment is kept as neutral.

The modules are evaluated in two ways. The first one computes accuracy on
a complete match between labeled and predicted sentiments. The second one
takes into account only those examples that have non-neutral emotion. This is
because predicting the opposite polarity of the sentiment is a more severe mistake
in practice than detecting neutral sentiment instead. All message languages are
pre-set correctly in advance by an oracle.

Table 5. Confusion matrices of the sentiment prediction for all three modules

Polyglot Politics OfficeBot

neu pos neg neu pos neg neu pos neg

Neutral 75 17 12 50 7 47 35 44 25

Positive 74 47 7 22 79 27 7 111 10

Negative 68 18 10 37 22 37 13 30 53



New Language Identification and Sentiment Analysis Modules 99

Table 5 shows the confusion matrices between predicted and actual labels for
all three modules. For the Polyglot module, recall problems can be observed
as most of the sentences are predicted as neutral. Overall, the Politics module
performs better; however, it is more biased toward negative sentiment due to
the misinterpretation of yelling. The OfficeBot module improves upon this and
particularly excels at predicting positive sentiment.

Table 6. Overall test set accuracy results with separate measurements excluding the
neutral class

Accuracy Accuracy without neutral

Polyglot 40.42 69.51

Politics 50.61 70.30

OfficeBot 60.67 80.39

Table 6 concludes the overall performance for all three modules using both meth-
ods. In both cases, the proposed module outperforms the remaining modules
considerably by at least 10%.

4 Conclusion

The presented paper details the development and evaluation of newly devel-
oped modules aiming at processing social media communication texts, i.e. inter-
net chats, discussions and comments. The specifics of these non-standard texts
were briefly discussed and the evaluation proved inadequacies of standard natu-
ral language processing tools when analysis informal multilingual conversations,
specifically in the internal business communication environment.

The new modules concentrated on the language identification task for eigh-
teen most common languages with respect to the European area and specifically
for the Czech language sentiment analysis where the chosen multilingual Poly-
glot tool delivered distorted results. The modules evaluation compared the new
tools with selected baselines and showed a stable and remarkable improvement
ranging from 10 to 13 % in accuracy.

Both the modules are published with a free license available to other projects
processing the non-conforming language variety of internet discussions.5
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12. Koublová, A.: Monitoring the use of subjective adjectives in connection with named
entities in Czech internet news (in Czech) (2014). https://is.muni.cz/th/jlfc4/

13. Lison, P., Tiedemann, J., Kouylekov, M.: Opensubtitles 2018: statistical rescor-
ing of sentence alignments in large, noisy parallel corpora. In: Proceedings of the
Eleventh International Conference on Language Resources and Evaluation (LREC
2018) (2018)

14. Lui, M., Baldwin, T.: langid.py: An off-the-shelf language identification tool. In:
Proceedings of the ACL 2012 System Demonstrations, pp. 25–30. Association for
Computational Linguistics, Jeju Island, Korea, July 2012. https://aclanthology.
org/P12-3005
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Abstract. Metaphorical collocations are a subset of collocations in
which a semantic shift has occurred in one of the components. The main
goal of this paper is to describe the process of identifying metaphori-
cal collocations in different languages – English, German and Croatian.
Approaches to annotating metaphorical collocations from a list of word
sketches for the three languages are presented using one of the most com-
mon nouns for all three languages – “year” for English, “Jahr” (Engl.
year) for German, and “godina” (Engl. year) for Croatian. The compi-
lation of a list of relevant grammatical relations in the identification of
metaphorical collocations for each language is also described. Finally, the
procedures for automatic classification of metaphorical collocations for
Croatian, German and English are performed and compared.
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1 Introduction

Metaphorical collocations are a subset of collocations in which there is a shift
in the meaning of a component, usually the collocate. In this paper, procedures
for identifying metaphorical collocations are described and compared for three
different languages - English, German and Croatian. Procedures for (automatic)
identification of metaphorical collocations require a number of sub-procedures,
such as corpus selection, creation of an inventory of collocations and metaphor-
ical collocations, selection of relevant grammatical relations, machine learning
modelling, etc. They are described in details in the following sections.

According to research by [1], it was found that the noun mostly appears in
the role of the base, while verbs and adjectives, which have the potential to
acquire secondary meaning leading to polysemy, mostly appear in the role of the
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collocate. In the same article, the authors give an example of the metaphorical
collocation in Croatian “zabiti gol” (Engl. to kick a goal), where the noun “gol”
is the base and the verb “zabiti” has the function of a collocate. In the same
example, the idiosyncratic character of collocational compounds, in which two
lexemes are arbitrarily connected in a collocation, is evident. Therefore, it is very
difficult for a non-native speaker to know which word combinations are common
in another language and which are not acceptable. For example, the metaphorical
collocation “zabiti gol” - (Engl. to hit a goal) mentioned above uses different
collocates in other languages - in German the equivalent translation is “ein Tor
schießen” - (Engl. to shoot a goal), and in English “kick a goal”. The authors note
that the collocate is expressed in different images in these languages and that
the meaning is determined by different extralinguistic comparisons. However,
they also note that the comparisons are based on the same concept, namely
the physical encounter of the ball and the goal. They conclude, therefore, that
the examples of collocation compounds in different languages indicate that the
same extra-linguistic reality is lexicalized in different ways, which superficially
gives the appearance of arbitrariness, but that the process of forming collocation
compounds seems to follow the same pattern. Testing this assumption is one of
the main long-term goals of our project, and the research presented in this paper
represents the first steps in this direction.

Throughout our project, we intend to use a combination of computational-
linguistic and theoretical-semantic approaches to obtain the most relevant results
as quickly as possible. Manual annotation of metaphorical collocations in the cor-
pus is an extremely time-consuming and tedious task. Therefore, by combining
the two approaches, we aim to facilitate the task of finding different types of
metaphorical collocations in different languages and identifying similarities and
differences in the formation of metaphorical collocations in different languages.

In the second section we have singled out some of the important related
work. The third section describes the research methodology - corpus selection,
selection of the most relevant grammatical relations, annotation procedures, and
model development using machine learning techniques. Finally, a description of
the results and a conclusion follow.

2 Related Work

There is research that has addressed the automatic identification of metaphors
in a text, such as in [2–5], but to our knowledge there is no research that has
addressed the extraction of metaphorical collocations as a subset of collocations
in general. The work in the remainder of this section relates to the extraction of
collocations in general.

Most of the papers on the topic of automatic collocation extraction have dealt
with the application of various association measures. For example, Church and
Hanks [6] proposed an association ratio measure in 1990, Dunning [7] proposed
a likelihood ratio measure in 1993, and Kita [8] and co-workers proposed a cost
criteria measure in 1994. Smadja et al. [9] use the Dice coefficient to find transla-
tions of a source language collocation using a parallel corpus, and Thanopoulos
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et al. [10] propose a PMI (Pointwise mutual information) measure. All these
works focus on statistical methods in the form of association measures.

Some papers have experimented with parsing in addition to statistical mea-
sures. For example, Seretan and Wehrli [11] use different types of parsing for
flexible pair extraction, and Lin [12] proposes an approach using a parser to
extract dependency triples from a corpus.

There have also been attempts to include other linguistic features in the
models, such as POS tags. For example, Krenn [13] uses statistical POS tag-
gers and a partial parser to extract collocation-specific syntactic constraints.
Pearce [14] uses WordNet to present an approach based on constraints on the
possible substitutions of synonyms within candidate phrases.

Karan et al. [15] evaluate classification algorithms and features for the pur-
pose of collocation extraction in Croatian. They use several classification algo-
rithms and conclude that the SVM classifier performs best on bigrams and the
decision trees on trigrams.

Ljubešić et al. [16] compare two approaches to the ranking of collocates -
the logDice method and the word embedding method - on two Slovenian data
sets. The quantitative evaluation shows that the machine-learning approach gives
better results, but the lexicographers consider the obtained listings of collocates
to be very similar.

A detailed systematic literature review on collocation extraction can be found
in [17].

3 Methodology

One of the main goals of our research is to extract metaphorical collocations
in Croatian, English, German and Italian. We also want to find out if there
are similarities and peculiarities in the creation and extraction of metaphorical
collocations in different languages.

We are currently in the first phase of research, in which we are detecting the
basic metaphorical collocations and investigating their composition. The second
phase will involve the detection of translation equivalents and their extraction.

There are no evaluation resources for extracting metaphorical collocations.
In order to evaluate our own experiments, we are forced to develop suitable gold
standard reference data sets ourselves.

The following subsections describe the main steps we have taken so far. First,
we describe the selected corpora. Then we give an overview of the grammatical
relations of Croatian, German and English as used in the Sketch Engine [18] tool
for creating the lists of word sketches.

The study begins with the noun as a part of speech, since it was determined
to be the most productive part of speech in terms of creating metaphorical
collocations. Therefore, the most frequent nouns in the Croatian language were
identified. We used the Croatian Web Corpus [19] for that purpose. Since nouns
that are not productive in collocation matching (e.g. proper nouns) also appeared
among the identified nouns, such nouns were additionally excluded manually.
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The same procedure was performed for the comparable corpora enTenTen20 for
English [20], deTenTen18 [20] for German, and itTenTen20 [20] for Italian. The
nouns overlapping in four identical corpora were selected to ensure empirically
relevant data. Then, the collocation profiles of the most frequently occurring
noun “year” are analyzed in Croatian (“godina”), English and German (“Jahr”),
and the collocation compounds expressing a metaphorical meaning are manually
annotated.

3.1 Corpora

As mentioned earlier, for the Croatian language, we used the Croatian Web
Corpus [19], which consists of texts collected on the Internet and contains over
1.2 billion words. The hrWaC corpus was PoS-tagged using the MULTEXT-East
Croatian POS tag-set version 5 [21].

The English Web Corpus (enTenTen20) [20] is an English language corpus
consisting of texts collected from the Internet. The latest version of the enTenTen
corpus contains more than 38 billion words. The authors state that sample texts
from the largest web domains, which account for 40% of all texts in the corpus,
were manually reviewed and content with poor text quality and spam was re-
moved. The corpus was tagged with the TreeTagger tool using the English Web
2020 part-of-speech tag set.

The German Web Corpus (deTenTen18) [20] is a German corpus that also
consists of texts collected from the Internet. The latest version includes 5.3 billion
words. The corpus contains lemmatization including gender lemmas and part-
of-speech tagging. It was annotated with the RFTagger tool using the German
RFTagger part-of-speech tag-set.

3.2 Grammatical Relations and Annotation

When we use the Word Sketch function in the Sketch Engine, we get a list of
word’s collocates and other words in their environment, organized into categories
called grammatical relations. These are, for example, words that serve as the
subject of the verb, words that modify the word, etc. Each language/corpus
has differently defined grammatical relations, which are specified by rules in
the Sketch grammar. Sketch Engine uses the logDice measure [22] to identify
collocations.

By default, the word sketches are sorted so that the sketches with the highest
logDice score come first. logDice can be thought of as “typicality”. A high score
means that the collocate is frequently found with the base and there are not
many other bases with which the collocate is combined. In this case, it is a
strong collocation. A low score means that the collocate tends to combine not
only with that particular base, but with many other words. In this case, it is a
weak collocation.

The linguists analyzed the lists thus obtained for the most frequent word in all
three languages (Croatian, German and English) - “godina”, “Jahr” and “year”
- and performed the annotation of collocations and metaphorical collocations.
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Before compiling the final list of metaphorical collocations for each language, the
experts held several discussion sessions until they felt confident enough to distin-
guish between the different types of collocations and thus extract metaphorical
collocations. Two linguists per language participated in the task. The annotation
varies in detail among the languages, so we provide the details for each language
below.

The preliminary results of the analysis show that in all three languages,
the most productive grammatical relations and combinations of parts of speech
with respect to metaphorical collocations are combinations of an adjective in the
function of a collocate + a noun in the function of the base and a verb in the
function of the collocate + a noun in the function of the base. It is also noticed
that phrasal verbs in English make a productive relation in terms of forming
metaphorical collocations.

Croatian. For the word “godina”, the Sketch Engine generates a total of 21
grammatical relations: kakav?, oba-u-genitivu, u-genitivu-n, a-koga-čega, n-koga-
čega, koga-što, particip, prijedlog, infinitive, koga-čega, s-prilogom, a-koga-što,
a-komu-čemu, komu-čemu, glagol-ispred-prijedloga, prijedlog-iza, veznik, koordi-
nacija, imenica-iza-prijedloga, biti-kakav? and subjek-od. There are 1,747 unique
collocates dispersed over different grammatical relations out of a total of 5,019
collocation candidates. After extensive analysis by linguists, it was decided that
the following grammatical relations are most productive and relevant for the
formation and identification of metaphorical collocations in Croatian: kakav?
(like what), n-koga-čega (two nouns - one in genitive), koga-̌sto (accusative),
subjekt-od (subject of), particip (participle), biti-kakav? (be like what).
Detailed explanations on why those relations were chosen can be found in [1]
and [23]. The annotated data set for Croatian also includes labels for the
type of metaphorical collocation, such as for example “lexicalized metaphor”,
“metaphor”, “term-metonymy”, etc.

The statistics of the annotated data set for Croatian is shown in Table 1.

Table 1. Statistics of the annotated data set for Croatian.

Relation # of cands # of colls # of m-colls Ratio of m-colls

kakav? 99 54 54 55%

n-koga-čega 100 41 38 41%

koga-̌sto 100 41 41 41%

particip 100 16 11 11%

subjekt-od 100 30 30 30%

biti-kakav? 74 20 20 55%

Total 673 202 193 29%
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German. For the word “Jahr”, the Sketch Engine generates a total of 18 gram-
matical relations: Constructions, modifiers of Jahr, verbs with Jahr as subject,
genitive objects of Jahr, nouns with Jahr as genitive object, dative objects of
Jahr, nouns with Jahr as dative object, accusative objects of Jahr, nouns with
Jahr as accusative object, verbs with Jahr as genitive object, verbs with Jahr as
dative object, verbs with Jahr as accusative object, Jahr and/or ..., prepositions
with Jahr as object, prepositional phrases, prepositional objects in dative, prepo-
sitional objects in accusative, prepositional objects in genitive. After extensive
analysis by linguists, it was decided that the following grammatical relations are
most productive and relevant for the formation and identification of metaphori-
cal col-locations in German: modifiers of x (e.g. kommende Jahr), verbs with
x as subject (e.g. das Jahr beginnt), verbs with x as accusative object
(e.g. Jahr verbringen) and nouns with x as genitive object (e.g. Anfang des
Jahres). Similar to the Croatian dataset, the annotated data set for German
also includes labels for the type of metaphorical collocation, such as “lexicalized
metaphor”, “metaphor”, “term-metonymy”, etc.

The statistics of the annotated data set for German is shown in Table 2.

Table 2. Statistics of the annotated dataset for German.

Relatiom # of cands # of colls # of m-colls Ratio of m-colls

Modifier of x 105 57 41 39%

Verbs with x as subject 100 86 13 13%

Verbs with x as accusative object 101 66 33 33%

Nouns with x as genitive object 403 349 51 13%

Total 709 558 138 19%

English. For the word “year”, the Sketch Engine generates a total of 27 gram-
matical relations out of which 14 are of the type verbs with particle “x” and
“year” as object: modifiers of “year”, nouns modified by “year”, verbs with
“year” as object, verbs with “year” as subject, “year” and/or ..., prepositional
phrases, adjective predicates of “year”, “year” is a ..., year’s ..., possessors of
“year”, pronominal possessors of “year”, ... is a “year”, verbs with particle “x”
and “year” as object, usage patterns. After extensive analysis by linguists, it was
decided that the following grammatical relations are most productive and rele-
vant for the formation and identification of metaphorical collocations in English:
modifiers of “year”, verbs with “year” as object, verbs with “year” as
subject, and verbs with particle “x” and “year” as object. For English,
there are no annotations yet for the type of metaphorical collocation. There
are also no annotated collocations for a part of the list, but only metaphorical
collocations are annotated.

The statistics of the annotated data set for Croatian can be found in Table 3.
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Table 3. Statistics of the annotated data set for English.

Relation # of cands # of m-colls Ratio of m-colls

modifiers of “year” 94 28 30%

verbs with “year” as object 98 13 13%

verbs with “year” as subject 100 7 7%

verbs with particle “x” and “year” as object 541 109 20%

Total 833 157 19%

3.3 Experiment

We experimented with models for automatic identification of metaphorical col-
locations from the lists created by the linguists described in the previous section.
We trained the models for Croatian German and English, as they are fully com-
pleted at the time of writing.

Preprocessing. Before the model could be trained, all non-standard language
variants, misspelled words, incorrectly lemmatized forms, duplicated lemmas,
etc. had to be removed or corrected from the list of collocations and metaphorical
collocations.

Models. We experimented with several models, including Support Vector
Machines (SVM), Multilayer Perceptron, C4.5, and Random Forest. When train-
ing the models, we performed 10-fold cross-validation.

Features. As features for model training, we used collocation frequency,
logDice, grammatical relation, and pretrained word embeddings (containing 300
vectors for each word) as implemented in fastText [24]. While frequency and
logDice are statistical measures, grammatical relation represents syntactic infor-
mation and word embeddings represent semantic information as they are vector
representations of the context in which a word occurs.

4 Results

We evaluated the classification models based on Accuracy (percentage of cor-
rectly classified instances), Precision (proportion of correctly classified positive
instances out of all positive instances in the system output), Recall (proportion
of correctly identified positive instances out of all instances that should have
been identified as positive) and F-measure (a measure that combines the results
of Precision and Recall).

Table 4 shows the results for the Croatian data set, Table 5 the results for
the German data set, and Table 6 for the English data set.
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Table 4. Results for Croatian data set.

Model Accuracy Precision Recall F-measure

SVM 71.4706 % 0.715 0.715 0.714

Multilayer Perceptron 75.2941 % 0.754 0.753 0.752

C4.5 69.7059 % 0.697 0.697 0.697

Random Forest 68.8235 % 0.688 0.688 0.688

Table 5. Results for German data set.

Model Accuracy Precision Recall F-measure

SVM 82.9023 % 0.865 0.932 0.897

Multilayer Perceptron 79.454 % 0.853 0.898 0.875

C4.5 76.5805 % 0.855 0.853 0.854

Random Forest 81.3218 % 0.826 0.971 0.893

From the results in the tables, we can see that all the models used perform
similarly within each language, with the best results obtained with the Multi-
layer Perceptron model for the Croatian data set (Acc 75.2941%, P 0.754, R
0.753, F 0.752), with the SVM model for the German data set (Acc 82.9023%,
P 0.865, F0.897) and with the Random Forest model for the English data set
(Acc 72.242%, R 0.911, F0.826). We obtained the best Recall (0.865) for the
German data set with Random forest model and the best Precision (0.788) for
the English data set with the C4.5 model. Comparing the results between the
languages, the best results are obtained for German.

We also found that the inclusion of word embeddings in the features improved
Accuracy by almost 10%.

Table 6. Results for English data set.

Model Accuracy Precision Recall F-measure

SVM 67.6157 % 0.743 0.842 0.789

Multilayer Perceptron 67.9715 % 0.752 0.830 0.789

C4.5 69.9288 % 0.788 0.798 0.793

Random Forest 72.242 % 0.755 0.911 0.826
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5 Conclusion

In this paper, we have described the steps that we and our colleagues on the
project team have taken to identify metaphorical collocations as a subset of the
general category of collocations in different languages. So far, we have set the
theoretical and methodological framework and taken the first steps to create the
golden standard for Croatian, English and German. We have also determined
the set of nouns we will use in our study and analyzed the word sketches for the
most frequent noun in all three corpora - Croatian (“godina”), German (“Jahr”)
and English (“year”).

The project team linguists also selected the most productive grammatical
relations for the formation of metaphorical collocations. For Croatian, these
are: kakav? (like what), n-koga-čega (two nouns - one in the genitive), koga-̌sto
(accusative), subject-od (subject of), particip (participle), biti-kakav? (to be like
what). For German these are: modifiers of x, verbs with x as subject, verbs with
x as accusative object, and nouns with x as genitive object. For English these are:
modifiers of “year”, verbs with “year” as object, verbs with “year” as subject,
and verbs with particles “x” and “year” as object.

The preliminary results of the analysis show that in all three languages the
most productive grammatical relations and combinations of parts of speech in
terms of metaphorical collocations are combinations of an adjective in the func-
tion of a collocate + a noun in the function of the base and a verb in the
function of the collocate + a noun in the function of the base. Moreover, it is
noted that phrasal verbs in English are a productive relation for the formation
of metaphorical collocations.

The percentage of metaphorical collocations in the annotated data sets is
slightly different for different languages - for Croatian it is 29%, for German
19% and for English 19%. It remains to be clarified whether these differences
are due to different characteristics of the individual languages or to the different
approaches of the annotators. It has already been noted in our project meetings
that determining whether a collocation is also a metaphorical collocation might
be subject to different approaches, since there are different types of metaphorical
collocations (e.g. lexicalized metaphorical collocations, term, metonymy, etc.).
It was also noted that further new guidelines need to be found to specify the
annotation process for all languages as new insights are gained through the
research process.

We also trained models for automatic recognition of metaphorical colloca-
tions from the candidate lists for Croatian, German and English created by the
linguists. We experimented with four different models - Support Vector Machines
(SVM), Multilayer Perceptron, C4.5, and Random Forest. We used collocation
frequency, logDice, grammatical relation and pretrained word embeddings as fea-
tures in model training. We obtained the best results with the Multilayer Percep-
tron model for the Croatian dataset (Acc 75.2941%, P 0.754, R 0.753, F 0.752),
with the SVM model for the German data set (Acc 82.9023%, P 0.865, F0.897)
and with the Random Forest model for the English data set (Acc 72.242%, R
0.911, F0.826). We obtained the best Recall (0.865) for the German data set
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with Random forest model and the best Precision (0.788) for the English data
set with the C4.5 model. We also found that the inclusion of word embeddings
significantly improved the results. The results we obtained seem to be promising,
but they can only be considered as preliminary results since they are based on
only one most common noun. It remains to be seen how the data sets will behave
for other nouns.

Our future work includes compiling similar lists and conducting experiments
for other nouns. We also plan to test other measures and linguistic features to
find methods that give the best results in extracting metaphorical collocations.

Acknowledgement. This work has been fully supported by Croatian Science Foun-
dation under the project Metaphorical collocations - Syntagmatic word combinations
between semantics and pragmatics (IP-2020-02-6319).
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1 Department of Czech Language, Masaryk University, Brno, Czech Republic
machura@phil.muni.cz

2 Department of Cybernetics, University of West Bohemia, Pilsen, Czech Republic
{afremund,honzas}@kky.zcu.cz

Abstract. The task of grammatical error correction is a widely stud-
ied field of natural language processing where the traditional rule-based
approaches compete with the machine learning methods. The rule-based
approach benefits mainly from a wide knowledge base available for
a given language. On the contrary, the transfer learning methods and
especially the use of pre-trained Transformers have the ability to be
trained from a huge number of texts in a given language. In this paper,
we focus on the task of automatic correction of missing commas in
Czech written texts and we compare the rule-based approach with the
Transformer-based model trained for this task.

Keywords: Grammatical error correction · Linguistic rules · Transfer
learning

1 Introduction

Sentence punctuation is a very important linguistic feature that helps the reader
better understand the complex text flow. While the sentence separating punc-
tuation (such as full stops and question marks) is crucial for marking the basic
sentence units in the text, the intra-sentence punctuation (mostly commas) helps
to structure the sentence on syntactic and semantic levels [2,18].

If we focus on tasks where the missing or wrongly-inserted punctuation is
restored, two main tasks arise (1) punctuation restoration in speech transcripts
from automatic speech recognition and (2) grammatical error correction in writ-
ten texts. The first task is widely studied because the restored punctuation
dramatically improves the readability of the recognized transcript. The current
methods use sequence-to-sequence mapping or token classification. The neural
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networks with recurrent units (such as LSTM or GRU) or self-attention mecha-
nism (mostly Transformer) are used. The models can use only the lexical infor-
mation [4,23] or also the acoustic features extracted from speech [9,12].

In his paper, we focus on the grammatical error correction in written text.
Also, this task is widely studied in many languages (for example [3,7]). We
present a comparison of two approaches for a specific task of automatic correction
of commas in Czech written texts. We first introduce the typology of rules for
writing commas in Czech language (Sect. 2). Then we describe the rule-based
(Sect. 3.1) and the Transformer-based (Sect. 3.2) approaches which are evaluated
on the same datasets described in Sect. 4. Section 5 presents the results of
experimental evaluation and Sect. 6 concludes the paper.

2 Writing Commas in Czech Language

Regarding punctuation, the main attention is given to writing commas. The
comma is the most frequent punctuation mark not only for Czech but also for
Slovak, English or German (see [5,23]). Traditionally, writing commas in Czech
is part of the orthography. However, rather than orthographic rules at the level
of words, these are rules of higher syntactic units. The rules for writing commas
are codified in Pravidla českého pravopisu (Rules of Czech Orthography) [1]
and in Akademická př́ıručka českého jazyka (Academic Handbook of the Czech
Language) [19]. Thus, we would say that knowing how to use commas is a part
of “knowing how to write”.

Nunberg [17] recognizes two main classes of commas. He sees a difference
between a comma which separates structures at the same level (the separator
comma), and a comma which delimits the boundaries between syntactic struc-
tures at different levels (the delimiter comma). The separator comma is inserted
between members of coordinated sentence elements of the same type (e.g., mul-
tiple subject, object, predicate etc.) or of coordinated clauses within the sen-
tence (asyndeton, or parataxis). The delimiter comma marks the boundaries
between the main clause and the subordinate clause (hypotaxis), vocatives, or
parenthetical expressions. In view of this classification, we can probably think
of the existence of a third type of comma which cannot be obviously assimilated
to either of these others. Its presence affects the meaning of the utterance (see
Sect. 2, D.ii).

2.1 Typology of the Comma Insertion Place

To formalize the linguistic rules, it was necessary not only to consider the classi-
fication of commas according to which textual categories they separate but also
to specify the place (boundary) in the sentence structure where the comma is
inserted. Such a typology was first outlined in [7] and it is extended and described
in detail below. In addition, we created a small random sample of 183 sentences
and classified the commas in the text according to the established typology (see
Table 1).
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A. The Comma Precedes a Connective
A connective (conjunction, relative pronoun, or relative adverb) or group of
connectives indicates:

(i) the boundary between main clauses or multiple elements of a sentence which
are not in simple coordination relation (see “Koordinace” in [10]):
Pozvali jsme Karla, ale přǐsel Petr. (We invited Charles, but Peter came.)
Buď přijedou dnes večer, nebo źıtra ráno. (They will come either tonight
or tomorrow morning.)

(ii) the boundary between the main clause and subordinate clause (see “Souvět́ı”
in [10]):
Otec nev́ı, na jaký úřad má j́ıt. (Father does not know what bureau to go
in.)

(iii) apposition with an additional modification:
Společnost dosáhla nového vrcholu v zisku, a to 220 milion̊u korun.
(The company has reached a new peak in profit, namely CZK 220 million)

B. The Comma Is Located Between Two Clauses Without the (close)
Presence of a Connective

(i) Connections of clauses in asyndetic structures (see “Asyndeton” in [10]):
Petr má rád červené v́ıno, jeho žena miluje b́ılé. (Peter likes the red wine,
his wife loves the white one.)

(ii) A connective usually stands on the left side of the subordinate clause, and
the subordinate clause is separated asyndetically from the right side:
Auto, které stálo celou noc před dome, se rozjelo. (A car, which was standing
in front of the house the whole night, moved off.)

(iii) And finally, sentences containing direct speech or quotation:
“Muśıte j́ıt na operaci,“ řekl lékař. (“You must have surgery!” said the doc-
tor.)

C. The Comma Separates Individual Components of Multiplied Syn-
tactic Structure

(i) Multiple sentence elements or enumeration. We assume that multiple sen-
tence elements group together words that agree in some grammatical cate-
gory - e.g. part of speech or case. If it has more than two members, most
often only the last two members are separated by a conjunction. Other mem-
bers are separated asyndetically, only by the comma (see “Koordinace” in
[10]):
Mezi obĺıbené turistické destinace letos patř́ı Španělsko, Francie, Itálie
a Chorvatsko. (This year Spain, France, Italy, and Croatia belong to popular
tourist destinations.)

(ii) The apposition – construction of two elements, usually noun phrases, which
are placed side by side and the second element somehow describes the first
element - is another type of structure where is obligatory to put the comma:
Sněžka, nejvyšš́ı hora české republiky (Sněžka, the highest mountain of
the Czech Republic)
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The main difference between (i) and (ii) is characterized by the fact that
components of (i) refer to different entities. However, components of (ii) relate
fully or partially to a single entity (see “Apozice” in [10]).

D. The Comma Might but Might Not Be Inserted or Affects the
Meaning of the Utterance

(i) The writer sometimes has the option of whether or not to write a comma.
These include parentheses or phrasal idioms:
Źıtra(,) bohužel(,) přij́ıt nemohu. (Unfortunately, I can’t come tomorrow.)

(ii) In some cases, the insertion of the comma changes the meaning of the utter-
ance. The typical examples in Czech are a restrictive attribute and nonre-
strictive attribute (see “Př́ıvlastek” in [10]):
J́ıdlo, koupené v obchodńıch domě, jsem uložil do ledničky. (I put the food,
which was bought in the mall, into the fridge - all food was bought in the
mall and I put all this food in the fridge.)
J́ıdlo koupené v obchodńım domě jsem uložil do ledničky. (I put food bought
in the mall into the fridge - only food which was bought in the mall was put
in the fridge.)

E. Others
This includes the remaining cases, such as:

(i) vocatives:
Pojď sem, Petře! (Come here, Peter!)

(i) particles and interjections that must be separated from the text by commas:
Haló, je tam někdo? (Hey, is anybody there?)
Zase jsi ve škole zlobil, že? (You were naughty at school again, weren’t you?)

Table 1. Estimated distribution of commas according to the presented typology. Total
number of commas in the sample: 183

Typology # cases frequency

A. comma precede the connective 94 51.4%

B. comma without the presence of the connective 49 26.8%

C. components of multiplied syntactic structure 31 16.9%

D. comma might but might not be inserted 8 4.4%

E. others 1 0.5%

3 Automatic Grammar Correction of Commas

The work presented in this paper was motivated by our experiments, where we
initially compared the rule-based SET parser (Sect. 3.1) for automatic grammar
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correction of commas in Czech texts with the BERT-based method proposed in
[23]. The BERT-based model was trained for slightly different task – restoring
punctuation in recognized speech transcriptions. It is capable of inserting com-
mas, full-stops and question marks. Based on the promising results, we trained
a new model targeted only to the comma correction task (Sect. 3.2).

3.1 Rule-based Approach

The SET system, firstly introduced in [14], was originally developed as a syntac-
tic parser that matches patterns within text. Besides the main grammar for syn-
tactic analysis, the system also contains specialised sets of patterns that deal with
subtasks of the automatic language checking (e.g. commas detection and correc-
tion, subject-predicate agreement, capitalization, ungrammatical structures such
as zeugma, incorrect pronoun forms, etc.). These sets of patterns (“grammars”)
are used as the foundation of modules for the new online proofreader tool for
the Czech language [8]. Before matching patterns, the text has to be tokenized
and tagged. For tokenization purposes, we use the unitok tokenizer [22]. After
thorough testing and comparison of the result [16], we decided to use two sys-
tems for morphological analysis: (1) the Majka analyzer [26] and Desamb tagger
[25], (2) the MorphoDita system [21].

Based on the comma insertion rules, the SET parser produces pseudo-
syntactic trees that indicate where a comma should or should not be inserted
in the sentence structure (by hanging a particular word under the <c> or <n>
node), as illustrated in Fig. 1.

Fig. 1. One of the existing comma insertion rules, and its realization on a sample
Czech sentence: Buď mi řekneš pravdu nebo je konec (missing comma before nebo -
Either you tell me the truth or it’s over.). In this case, the rule matches double-
conjunction buď - nebo and if the conjunction nebo is not preceded by another con-
junction ($NEG(tag not): k8), the analyzer inserts a comma before nebo.
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The SET parser operates with a total of 1,400 rules. To formalize rules for
type A (the comma precedes a connective) was the least complicated and had
the highest recall. We can observe that Pareto’s principle applies here - about
100 rules for subordinating conjunctions and relative pronouns cover 40% of all
commas that should be inserted in a text. Next, we formalized rules for about 1⁄4
of the commas of type B (the comma without the presence of the connective).
These rules make use of the position of predicates or apply Wackernagel’s law
on the position of clitics in the sentence. The grammatical agreement of the
case of components within a nominal phrase played a key role in formulating
more than 600 rules for type C (components of multiplied syntactic structure).
For this category, we also tried to make use of the semantics of words using the
Word Sketch function in the Sketch Engine software that provides a summary of
a word’s grammatical and collocational behaviour [11]. Nevertheless, the parser
finds just over 10% of the commas of type C (that is little less than 2% of searched
commas). The remaining categories D, and E are dealt with marginally - partly
because the identification of the vocative based on morphological analysis is
quite unreliable partly because the comma affects the meaning of the utterance.

The advantage of rule-based systems is the ability to correct or extend exist-
ing rules. For example, creating rules for the conjunction ale (lit. but) is a more
complex task because ale can also be a particle or an interjection. The rules com-
prehensively evaluated in [13] inserted a comma before the conjunction ale with
the precision of 94%. Now, after modifying these rules, the precision increased
to 96.2% while maintaining the same recall. 1

3.2 Transformer-Based Approach

Recent advances in using transformer models for NLP have inspired us to use
Czech pre-trained RoBERTa model for automatic grammar correction of com-
mas. Then this approach has been compared to the rule-based approach.

We used our own pre-trained model from a collection of web data processed
in our web mining tool [24], Common Crawl data2 and texts collected from
the Czech part of Wikipedia. We followed all the training steps, mentioned in
[15], for pre-training the Czech RoBERTa model. As suggested we used dynamic
masking of the tokens. This strategy generates the masking pattern every time a
sequence is fed to the model. Also, the pre-training procedure does not use Next
Sentence Prediction loss in contrast with the BERT model [6]. For tokenizing
the input sequence we used Byte-Pair Encoding (BPE), introduced in [20], with
a subword vocabulary containing 50K units. This implementation of BPE uses
bytes instead of Unicode characters as the base subword units.

We used the ADAM optimization with linear warmup up to learning rate=
4 ·10−4 for the first 24K steps followed by linear decay to 0. As the [15] suggested
we pre-trained the model for 500K steps.

1 You can try out the rule-based commas detection and correction at http://opravidlo.
cz/.

2 https://commoncrawl.org/.

http://opravidlo.cz/
http://opravidlo.cz/
https://commoncrawl.org/
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For this experiment, we proposed RoBERTA model extended by a few extra
classification layers. An input sequence is preprocessed using the tokenizer and
special tokens are added (as shown in the Fig. 2). Next, we use the Czech pre-
trained RoBERTa model with output dimension d=768. RoBERTa last hidden
states are transformed by four regular densely-connected neural network layers.
Three of these layers use the element-wise ReLU activation function and the last
layer uses the softmax activation function. The last layer output defines whether
the comma should be placed right after the current token. The overall scheme
of the proposed neural network architecture is depicted in the Fig. 2.

As the training data set used for fine-tuning, we have used 10 GB of raw
text extracted from the Czech CommonCrawl data set. Because the RoBERTa’s
output is related to input tokens (not words), we assigned the target label (“,” for
comma, “0” for no comma) to each token of the word, which is followed by
a comma (as shown at the Fig. 2). In the prediction phase, it is necessary to
combine the predictions for the partial tokens into a word-level predictions using
a per-word pooling. We use a simple average pooling algorithm to obtain the
word-level predictions. As the model defines this experiment as a two classes
classification per each token, we use standard categorical cross-entropy loss. For
optimization, we use the standard Adam optimization algorithm.

We use epoch size equal to 10K sequences, the batch size equal to 45 and
epoch size equal to 25, 50 and 75. During the fine-tuning, we use linear learning
rate with values starting at 1−4, ending at 1−5. The maximum sequence length
is set to 128.

Fig. 2. Proposed model architecture. “0” and “,” in the output layer indicates where
the commas should be placed. It is necessary to post-process the model output and
align the commas at the end of the words composed of multiple tokens.
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4 Evaluation Data Sets

The same data presented in [13] were used to evaluate and compare the meth-
ods described above. These texts were prepared specifically for the automatic
insertion of commas, and since the data are exactly the same, it is also possible
to compare the current results with testing done in the past. In total, 7 texts
of different nature and styles were used: 3 sources from the Internet (blog texts,
horoscopes and selected chapters from the Internet Language Reference Book),
and 4 fiction books (2 Czech authors: one classic – K. čapek, one contemporary –
S. Monyová; 2 Czech translations of English authors: J. K. Rowling, N. Gaiman).

Blog texts and horoscopes were independently corrected by three proofread-
ers and the agreement rate among them was very high [13]. Selected chapters
from the reference book were written by linguists from the Academy of Sciences,
and for the remaining texts, we assumed that they were proofread before being
published. The size of the individual texts and the number of commas in them
can be found in Table 2. Some may question whether this data is large enough
for objective testing. On the other hand, the testing was done on real texts with
their actual size and the writers themselves usually need to review texts of this
size or smaller. Thus, we conclude that chosen data are appropriate for testing
and evaluation.

Table 2. Statistics of the test data [13].

Testing set # words # commas

Selected blogs 20,883 1,805

Internet Language Reference Book 3,039 417

Horoscopes 2015 57,101 5,101

Karel Čapek - selected novels 46,489 5,498

Simona Monyová - Ženu ani květinou 33,112 3,156

J.K. Rowling - Harry Potter 1 (translation) 74,783 7,461

Neil Gaiman - The Graveyard Book (translation) 55,444 5,573

Overall 290,851 29,011

5 Experimental Results

As explained in [13], probably the fairest evaluation method is the one where all
commas are removed from a text and a selected tool inserts commas back into
the text. Then, we can measure how many commas the tool inserted correctly
and incorrectly in comparison with the original (reference) text. We use standard
precision, recall and F1 score on detected commas.
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The texts with commas removed, but still containing all the remaining punc-
tuation, were first processed using the rule-based SET parser and the BERT-
based punctuation filling method. The BERT-based baseline was implemented
the same way as in [23] and was able to insert three punctuation symbols: comma,
full stop and question mark. The results are shown in Table 3 and Table 4.

The overall F1 performance of the BERT-based model was above the rule-
based approach. The performance gain is significantly higher on the first three
datasets (blogs, the language reference book and horoscopes). The success of
the trainable model motivated the work presented in this paper. We used the
RoBERTA model and we fine-tuned it only on the comma insertion task. The
results are summarized in Table 5. In comparison with the BERT baseline, the
F1 scores improved for all types of evaluation texts.

If we compare the Roberta-based method with the rule-based baseline,
the Precision scores are approximately the same. The difference is in the Recall
scores, where the Roberta-based method provides consistently higher scores.
The consistent increase in Recall (from 58.8% to 89.5%) also implies the increase
in F1 score (from 72.7% to 92.7%).

Table 3. Results: rule-based approach.

P [%] R [%] F1 [%]

Selected blogs 95.7 61.4 74.8

Internet Language Reference Book 92.7 42.5 58.2

Horoscopes 2015 96.9 71.3 82.2

Karel Čapek - selected novels 94.2 41.9 58.1

Simona Monyová - Ženu ani květinou 92.2 66.2 77.1

J.K. Rowling - Harry Potter 1 (translation) 94.7 61.7 74.7

Neil Gaiman - The Graveyard Book (translation) 96.3 56.5 71.2

Overall performance 95.1 58.8 72.7

Table 4. Results: Transformer-based approach (baseline BERT [23]).

P [%] R [%] F1 [%]

Selected blogs 94.5 81.6 87.6

Internet Language Reference Book 93.7 67.4 78.4

Horoscopes 2015 94.6 88.4 91.4

Karel Čapek - selected novels 88.6 58.2 70.3

Simona Monyová - Ženu ani květinou 87.9 67.3 76.2

J.K. Rowling - Harry Potter 1 (translation) 89.3 68.1 77.2

Neil Gaiman - The Graveyard Book (translation) 91.2 63.7 75.0

Overall performance 90.9 69.7 78.9
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Table 5. Results: Transformer-based approach (Roberta).

P [%] R [%] F1 [%]

Selected blogs 95.5 88.3 91.8

Internet Language Reference Book 91.8 70.0 79.5

Horoscopes 2015 96.4 93.9 95.2

Karel Čapek - selected novels 95.3 88.9 92.0

Simona Monyová - Ženu ani květinou 95.8 93.1 94.4

J.K. Rowling - Harry Potter 1 (translation) 96.6 88.4 92.3

Neil Gaiman - The Graveyard Book (translation) 96.8 87.2 91.8

Overall performance 96.1 89.5 92.7

6 Conclusion

In this paper, we compared the rule-based and the Transformer-based approaches
to the task of automatic grammar correction of commas in the Czech language.
The study was conducted using the production-ready representatives of each
approach - the SET parser and Roberta-based model.

The experimental evaluation shows that training the Roberta-based model
only for the comma insertion task provides better F1 performance, than using
a generic BERT-based punctuation insertion model. A simple numerical compar-
ison of the F1 scores shows consistently higher numbers for the Roberta-based
model. On the other side, the Precision scores are comparable for the rule-based
and Roberta-based approaches.

The great advantage of the rule-based SET parser is the explainability of
the rules applied to the input sentence. The explainability of the Transformer
models is unclear and almost impossible. The only way to interpret such models
is to visualize the attention values. But this is complicated by the multi-layer
and multi-head nature of the model.

RoBERTA model, for example, cannot insert a comma before the conjunction
a (lit. and) followed by subordinating conjunction that starts a subordinate
clause depending on the following main clause (Pes čekal doma, a když pán
přǐsel, radostně ho přiv́ıtal). The model was unable to learn to deal with this
type of syntactic construction because this type of comma does not usually
appear in the training data from the Internet. We assume that the model could
achieve even better results in the future if the training data will be without
errors.

In future work, we would like to focus on the error analysis of the particular
models. It would be helpful to know, what is the distribution of commas in our
typology (A-E) among the erroneous predictions of the Roberta-based models.
If there will be a common schema (for example lack of training data or consis-
tent erroneous predictions), the rule-based approach can be used to extract the
targeted training data and populate the rare cases to increase the overall per-
formance. Another source of prediction errors in the Roberta-based model could
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be a mismatch between the training data (web text from CommonCrawl) and
the evaluation data (especially the Internet Language Reference Book). Again,
the rule-based model can be applied to pre-select the training data to better
match the target dataset.
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morphodita for automatic grammar checking. In: Proceedings of Recent Advances
in Slavonic Natural Language Processing, RASLAN, pp. 3–14. Brno (2019)

17. Nunberg, G.: The Linguistics of Punctuation. CSLI lecture notes, Cambridge Uni-
versity Press (1990). https://books.google.cz/books?id=Sh-sruuKjJwC
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Abstract. This paper deals with cross-lingual sentiment analysis in
Czech, English and French languages. We perform zero-shot cross-lingual
classification using five linear transformations combined with LSTM and
CNN based classifiers. We compare the performance of the individual
transformations, and in addition, we confront the transformation-based
approach with existing state-of-the-art BERT-like models. We show that
the pre-trained embeddings from the target domain are crucial to improv-
ing the cross-lingual classification results, unlike in the monolingual clas-
sification, where the effect is not so distinctive.

Keywords: sentiment analysis · cross-lingual · linear transformation ·
neural networks · semantic space transformation · classification

1 Introduction

Sentiment analysis (SA) is an essential task in the natural language process-
ing (NLP) field and a lot of research interest has been devoted to this topic,
especially in monolingual settings for English. However, cross-lingual sentiment
analysis (CLSA) has been much less studied. Most of the approaches to SA
require annotated data. CLSA aims to enable knowledge transfer between lan-
guages with enough data and languages with less or without annotated data
(low-resource languages), thus allowing to run SA in these languages.

We can divide the existing approaches for CLSA into three groups. Machine
translation can be used to translate annotated data into the target language and
then the model is trained using the translated data. Secondly, the multilingual
versions of pre-trained BERT-like models such as mBERT [14] or XLM-R [13] are
applicable to CLSA. These models can be fine-tuned with annotated data from
high-resource languages, usually English. Classification in the target language,
such as Czech, is then performed without any training data [28]. The third
approach uses linear transformations and other methods to transfer knowledge
between languages. Usually, the linear transformations align semantic spaces
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[30] in different languages into one common space. The common space (word
embeddings) is then used during the training of a neural network, namely Long
Short-Term Memory (LSTM) or Convolutional Neural Network (CNN).

As shown in [28], multilingual BERT-like models achieve SotA results. Their
drawback is that they typically require much more resources and computational
power in terms of memory and GPU performance than previous approaches.
These greater requirements cause that they usually have to be fine-tuned on
expensive and specialized GPUs with high electricity consumption. On the other
hand, the approaches based on linear transformations and neural networks (e.g.,
CNN) can be easily trained on a standard computer using only a CPU. As we
show in our paper, these cheaper cross-lingual approaches achieve competitive
results in comparison to the multilingual BERT-like models.

In this paper, we focus on the Sentiment Classification1 task (also known as
Polarity detection) in cross-lingual settings for Czech, English and French. We
perform zero-shot cross-lingual sentiment classification in the three languages.
We compare the performance of five linear transformations for aligning semantic
spaces in combination with two neural network models: CNN and LSTM. We
show that the source of embeddings is a very important aspect when using
linear transformations for the CLSA. Our experiments reveal that pre-trained in-
domain embeddings can significantly improve (even more than 10%) cross-lingual
classification results, unlike in monolingual classification, where the difference is
only about 1%–2%. We compare our results with the available cross-lingual SotA
results based on multilingual BERT-like models. In addition, to the best of our
knowledge, none of the previous works applied linear transformations to the task
of CLSA for the Czech language. We release all our resources and source codes2.

Our main contributions are the following: 1) We compare the performance
of five linear transformations on the task of CLSA and compare them with the
available cross-lingual SotA results. 2) We show that the source of data for the
embeddings used in the linear transformations is crucial for the CLSA task.

2 Related Work

Cross-lingual sentiment analysis has been moderately studied in recent years,
but less attention has been paid to this research subtopic in comparison to the
monolingual task. The approaches proposed in [5,11,40], the recent state-of-the-
art BERT-like models applications [8,28,34,38], cross-lingual word embeddings
and linear transformation can be applied to tackle this task. Most of the following
cited works do not compare the linear transformations and their effect on CLSA
performance in such detail as our work does.

Authors in [18] used a recursive autoencoder architecture and sentence
aligned corpora of English and Hindi for CLSA and evaluated the system on
the Hindi movie reviews dataset. A method specifically for sentiment cross-
lingual word embeddings was proposed in [39]. The authors trained an SVM
1 Here, we consider sentiment analysis and sentiment classification as the same task.
2 https://github.com/pauli31/linear-transformation-4-cs-sa.

https://github.com/pauli31/linear-transformation-4-cs-sa
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classifier based on embeddings for the polarity classification task. In [7], multiple
techniques for cross-lingual aspect-based sentiment classification were compared,
including the one from [27]. Also, in [1], the authors experimented with the lin-
ear transformation method from [27] on English, Spanish and Chinese. In [6],
an approach for training bilingual sentiment word embeddings is presented. The
embeddings are jointly optimized to represent (a) semantic information in the
source and target languages using a small bilingual dictionary and (b) sentiment
information obtained from the source language only. A cross-lingual algorithm
using CNN is shown in [15] and evaluated on nine languages. Authors of [12]
trained an adversarial neural network with bilingual embeddings for polarity
classification in Chinese and Arabic using only English train data. In both [2,23],
the authors used linear transformations for Persian and Turkish.

3 Experimental Setup

In this section, we describe the data, linear transformations and the models that
we used for the experiments. We also cover the process of building bilingual
dictionaries needed for the linear transformations along with the methodology
of our zero-shot cross-lingual experiments.

3.1 Data

We use four publicly available datasets with binary polarity labels, i.e., positive
and negative from the movie reviews domain. For Czech, we use the CSFD
dataset of movie reviews introduced in [16]. It is built from 90k reviews from
the Czech movie database3 that were downloaded and annotated according to
their star rating (0–1 stars as negative, 2–3 stars as neutral, 4–5 stars as pos-
itive). However, we use only the examples labeled as positive or negative. We
use the data split from [28]. The French Allocine [36] dataset consists of 100k
positive and 100k negative reviews. The dataset was scraped from the Allociné4

website and annotated the same way as the CSFD dataset. English IMDB [26]
dataset includes 50k movie reviews obtained from the Internet Movie Database5

with positive and negative classes. We randomly selected 2.5k examples from
the training part as development data. The second English SST-2 [31] dataset
contains almost 12k manually annotated movie reviews into two categories, see
Table 1.

Table 1. Dataset statistics.

CSFD (Czech) IMDB (English) SST-2 (English) Allocine (French)

train dev test train dev test train dev test train dev test

Pos. 22,117 2,456 6,324 11,242 1,258 12,500 3,610 444 909 79,413 9,796 9,592

Neg. 21,441 2,399 5,876 11,258 1,242 12,500 3,310 428 912 80,587 10,204 10,408

Tot. 43,558 4,855 12,200 22,500 2,500 25,000 6,920 872 1,821 160,000 20,000 20,000

3 https://www.csfd.cz.
4 https://www.allocine.fr.
5 https://www.imdb.com.

https://www.csfd.cz
https://www.allocine.fr
https://www.imdb.com
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The linear transformations require bilingual dictionaries to align the semantic
spaces, see Sect. 3.4. With Google Translate, we translated the 40k most common
words from the CSFD dataset into English and French to obtain the required
dictionaries. We repeat the process for IMDB and Allocine datasets. We also
manually fixed some translation errors made by the translator.

3.2 Linear Transformations

We use linear transformations to create a bilingual semantic space. We align one
semantic space (word embeddings) into the second semantic space in a different
language. In such bilingual word embeddings, semantically similar words have
similar vector representations across the two languages. Thanks to this property,
we can use the bilingual space to train a neural network with a cross-lingual
ability. The goal of the linear transformation is to find a transformation matrix
W s→t ∈ R

d×d that transforms vector space Xs of the source language into the
vector space Xt of the target language by the following matrix multiplication:

̂Xs = W s→tXs, (1)

where ̂Xs is the transformed source vector space in the target space. Both matri-
ces Xt and Xs contain n vectors that correspond to translated pairs of words
(called seed words) in dictionary D. Any word vector that is not present in the
source matrix Xs but comes from the same space can be transformed into the
target space by multiplication of the transformation matrix W s→t.

We selected five transformation methods, the first was proposed in [27], where
the transformation matrix is estimated by minimizing the mean squared error
(MSE) between the pairs of vectors (xs

i , x
t
i) for the corresponding words from

the dictionary D, as follows:

MSE =
n

∑

i=1

∥

∥W s→txs
i − xt

i

∥

∥

2
. (2)

The second transformation is called Orthogonal (Orto) constraints the trans-
formation matrix W s→t to be orthogonal6. The orthogonal transformation has
the same objective as MSE. The optimal transformation matrix W s→t can be
computed as follows:

W s→t = V UT, (3)

where matrices V and U are computed by Singular Value Decomposition (SVD)
of XtTXs = UΣV T as shown in [4]. The orthogonality constraint causes the
transformation does not squeeze or re-scale the transformed space. It only rotates
the space, thus it preserves most of the relationships of its elements (in our case,
it is important that orthogonal transformation preserves angles between the
words, so it preserves similarity between words in the transformed space).
6 Matrix W is orthogonal when it is a square matrix and the columns and rows are

orthonormal vectors (WTW = WWT = I, where I is the identity matrix).
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The third method is based on Canonical Correlation Analysis (CCA). The
method aligns both monolingual vector spaces Xs and Xt to a third shared
space represented by matrix Y o [30]. CCA computes two transformation matrices
W s→o for the source language and W t→o for the target language to map the
spaces into one shared space Y o. The transformation matrices can be computed
analytically [17] using SVD. Using the approach from [3], the transformation
matrix W s→t can be computed as follows:

W s→t = W s→o(W t→o)−1. (4)

The Ranking Transformation (Rank) [24] uses max-margin hinge loss
(MML) instead of MSE to reduce the hubness problem [30]. The idea of this
method is to rank correct translations of word wi (i.e., vectors xs

i and xt
i) higher

than random translation (negative example) of word wi (i.e., vectors xs
i and xt

j).
The last Orthogonal Ranking Transformation (Or-Ra) [10] combines orthog-

onal and ranking transformations. The method tries to keep the transformation
matrix W s→t orthogonal and reduce hubness at once, see [10] for the objective
function and details. Based on our experiments and our empirical experiences,
we decided to set dictionary size to 20k word pairs in every experiment.

3.3 Neural Network Models

For our experiments, we implement a CNN inspired by [21] with one convolu-
tional layer on top of pre-trained word embeddings. The first layer (embeddings
layer) maps the input sentence of length n to an n×d dimensional matrix, where
d = 300 is the dimension of the word embeddings. We then use 1-dimensional
convolution with filter sizes of 2, 3 and 4 (256 filters of each size) to extract
features from the sentence. Next, we apply the ReLU activation and use max-
over-time-pooling. After the pooling, we concatenate these scalars into a vector,
which is then fed to a fully-connected layer to compute the prediction scores for
the classes. The class with the highest score is selected as the prediction. As a
regularization, we use a dropout [32] of 0.5 before the fully-connected layer.

We also train neural network based on the Bidirectional LSTM (BiLSTM).
Our model consists of an embedding layer that again maps the input words to
300-dimensional input vectors. These vectors then pass to two BiLSTM layers,
each with 512 units (hidden size). The output of the last BiLSTM layer is fed
into the final fully-connected layer that computes prediction scores. We use a
dropout of 0.5 before the fully-connected layer.

For our experiments, we use two types of pre-trained fastText [9] embeddings:
(a) the existing7 fastText embeddings. (b) In-domain embeddings trained by us
on the text from the sentiment datasets. For English, we concatenate the texts
from the SST-2 and IMDB datasets. We train embeddings for words with a
minimum frequency of 5. During the training of the neural network models, we
freeze the embeddings layer, meaning that we do not allow the embeddings to be

7 Available from https://fasttext.cc/docs/en/crawl-vectors.html.

https://fasttext.cc/docs/en/crawl-vectors.html
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fine-tuned during training. For out-of-vocabulary words, we utilize the ability of
fastText embeddings to generate a word vector. We train our model using Adam
[22] with constant learning of 1e-3 or 1e-4. For some experiments, we use linear
learning rate decay. We use a batch size of 32 and we train all our models for at
most 10 epochs. We do not restrict the maximum input sequence length.

3.4 Cross-lingual Sentiment Classification

We perform zero-shot cross-lingual polarity detection for each pair of the three
languages. The point of cross-lingual classification is to train a model on labeled
data from one language (source language) and evaluate the model on data from
another language (target language). The model must be able to transfer knowl-
edge to the target language without any labeled data in the target language. For
both languages in a pair, we train the model on data from one language and
evaluate on data from the second language. The transformation of the semantic
spaces is done in both directions, i.e., from the source space to the target space
and vice versa. Since the French dataset is the largest one, for experiments where
the source language is French, we use only French train data for training the
model and as development data, we use French test data. For training models,
where Czech is the source language, we use Czech train and test data parts of
the CSFD dataset for training. We use the Czech dev part of the CSFD dataset
as development data. In the case of the IMDB dataset, we randomly selected
2,500 examples as development data and the rest is used to train the model. For
the SST-2 dataset, we use train and dev parts for training and test part as the
development data.

In every experiment, we evaluate and report results for test data part in the
target language. Only the test part of the data in the target language is used for
evaluation, no other data from the target language are used to train the model.

4 Experiments and Results

We perform monolingual experiments, so we can compare the cross-lingual mod-
els with their monolingual equivalents. Secondly, we wanted to put our baselines
and results into a context with the current SotA results. We use accuracy as
the evaluation metric. We select the best models based on the results from the
development data. We repeat each experiment at least six times and report the
arithmetic mean value with the 95% confidence intervals. The label distribution
is nearly perfectly balanced in all datasets and thus, the resulting F1 Macro score
was in a vast majority of experiments almost identical to our accuracy and is
therefore not reported in the paper. Thanks to this, we are able to compare our
results with the existing work in [28].

4.1 Monolingual Results

Table 2 compares our proposed monolingual models with the current monolingual
state-of-the-art (SotA) models. We train both neural models with the existing



Linear Transformations for Cross-lingual Sentiment Analysis 131

fastText embeddings (rows CNN-F and LSTM-F) and with in-domain embed-
dings pre-trained by us (rows CNN and LSTM). As we can see, the modern
BERT-like models outperform all our baselines. For English, the difference is
the largest among all other languages, especially for the SST-2 dataset.

For Czech and French, the difference between best baselines and SotA models
is only 1.7% and 1%, respectively. The difference between our baseline models
trained on existing (rows CNN-F, LSTM-F) and our in-domain (rows CNN,
LSTM) embeddings are at most 2.4% and 2.5% for CSFD and IMDB datasets,
respectively. Based on the results, we can conclude that using custom pre-trained
in-domain embeddings can slightly improve classification performance in mono-
lingual settings, as one could expect. Our last observation is that our results are
in general less competitive for English. This is most likely due to the fact that
the current state-of-the-art approaches and models are generally more advanced
in English, thus achieving better results.

Table 2. Comparison of the monolingual results as accuracy (upper section) with
the current monolingual SotA (bottom section). The result with * was obtained on a
custom data split. The results with ‡ are listed as F1 score.

CSFD (Czech) IMDB (English) SST-2 (English) Allocine (French)

CNN (ours) 93.9±0.1 91.8±0.1 84.4±0.6 95.0±0.1

CNN-F (ours) 91.5±0.2 89.3±0.6 83.7±0.2 94.3±0.1

LSTM (ours) 94.3±0.1 92.3±0.4 84.5±0.5 96.4±0.1

LSTM-F (ours) 92.1±0.2 90.5±0.9 84.3±0.5 95.7±0.1

Current SotA

LSTM [28]‡ 91.8±0.1 BON-Cos [35] 97.4 RoB.Smart [19] 97.5 CamBERT [36] 97.4

mBERT [28]‡ 93.1±0.3 XLNet [37] 96.2 T5-11B [29] 97.5 CNN [36] 93.7

XLM-RLarge [28]‡ 96.0±0.0 BERTITPT [33] 95.8 XLNet [37] 97.0 93.0

BERTDistilled[25]* 93.8 oh-LSTM [20] 94.1

4.2 Cross-lingual Results

We report our cross-lingual results for all three pairs of languages in Tables 3,
4 and 6. In each table, we present results trained with in-domain embeddings
pre-trained by us and results for existing fastText embeddings, separated by the
slash character. These pairs of results were always obtained by models trained
with the same hyper-parameters (learning rate and the number of epochs). We
report the results of experiments where the semantic spaces were transformed in
both directions8. For easier comparison, we also include the monolingual results
of our models from Table 2. The pairs where in-domain embeddings are better
8 For example, the column labeled as EN-s ⇒ CS-t means that English space was

transformed into Czech space. English is the source language (-s suffix) and Czech
is the target language (-t suffix), in other words, the English dataset is used for
training and Czech for the evaluation.
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than the existing fastText embeddings have a gray background. The best results
in absolute values are underlined and the results that overlap with the confidence
interval of the best result are bold, we mark this separately in each column. As we
mentioned, we trained the models for at most five epochs with constant learning
rate or linear learning rate decay with learning rates of 1e-3 or 1e-49.

Our main observation is that in-domain embeddings significantly improve the
results for the CLSA task (gray background in the Tables). The improvement
is in some cases, even more than 10%. This statement is certainly true for the
models trained on English and evaluated on Czech and French (with some minor
exceptions). For the models evaluated on English, the improvement is not so
noticeable, but in most cases, it is also valid. We can observe an analogical
improvement in the monolingual results, but for these, the improvement is at
most 2.5%.

Table 3. Cross-lingual accuracy results for English and Czech language pair.

Evaluated on Czech Evaluated on English

EN-s ⇒ CS-t CS-t ⇒ EN-s CS-s ⇒ EN-t EN-t ⇒ CS-s

Dataset Method Monoling. in-domain/fastText in-domain/fastText Monoling. in-domain/fastText in-domain/fastText

CNN

IMDB
CSFD

MSE

93.9/

91.5

88.2±0.3/75.7±1.5 72.3±2.2/69.0±2.0

91.8/

89.2

77.5±1.5/67.1±1.9 53.8±2.0/67.1±1.4

Orto 88.5±0.1/78.9±0.9 87.4±0.9/72.5±1.4 83.8±0.1/76.8±0.3 81.3±0.3/79.3±0.9

CCA 88.4±0.1/76.2±1.2 87.4±0.4/79.5±0.6 83.9±0.1/75.0±0.6 79.6±0.6/67.2±4.4

Rank 85.7±0.3/78.9±0.9 88.0±0.8/76.7±0.8 83.2±0.2/76.1±0.7 82.0±1.0/74.4±1.9

Or-Ra 83.3±0.7/76.9±1.8 89.2±0.1/79.2±1.0 79.6±0.5/78.4±0.6 82.3±0.4/75.0±1.0

LSTM

MSE

94.3/

92.1

84.9±0.6/80.6±1.3 83.4±2.0/79.7±2.1

92.3/

90.5

84.8±0.6/83.4±1.0 51.2±2.2/62.9±3.7

Orto 87.1±0.3/81.5±1.3 87.7±0.7/82.2±0.8 73.6±1.4/79.8±1.7 68.2±1.5/83.7±0.7

CCA 85.9±1.7/81.3±1.5 87.4±0.3/82.6±0.4 82.7±2.9/77.7±2.9 81.8±1.6/82.6±0.7

Rank 82.5±2.4/76.9±1.4 85.1±1.4/80.9±2.9 56.3±2.4/82.9±1.9 83.8±0.9/83.5±0.5

Or-Ra 86.2±0.5/73.2±1.4 86.7±0.7/82.9±2.1 67.9±3.2/82.8±2.0 83.6±1.2/83.1±0.4

CNN

SST-2
CSFD

MSE

93.9/

91.5

84.1±2.1/55.7±3.5 86.0±1.4/78.1±1.0

84.4/

83.6

72.8±0.3/73.1±0.3 50.5±1.5/60.1±3.4

Orto 77.2±1.1/50.9±2.2 81.8±1.7/74.9±0.9 77.8±0.2/76.0±0.2 75.3±0.5/74.3±0.9

CCA 83.9±0.7/51.2±1.1 83.1±0.7/76.6±0.9 77.2±0.2/75.0±0.3 72.4±0.2/72.1±0.3

Rank 85.2±0.6/55.8±2.7 83.2±1.6/75.6±0.4 77.0±0.5/73.2±0.2 77.4±0.4/75.2±0.4

Or-Ra 80.1±1.5/55.6±3.6 82.6±1.4/76.9±0.3 76.2±0.4/75.5±0.4 77.4±0.3/77.2±0.3

LSTM

MSE

94.3/

92.1

81.1±1.9/76.4±2.9 82.0±2.3/69.5±2.6

84.5/

84.3

76.1±0.4/78.4±0.4 68.5±0.8/73.0±2.2

Orto 80.4±2.1/75.5±1.3 76.4±2.3/74.8±1.3 72.6±1.6/78.4±0.5 72.9±0.5/79.2±1.0

CCA 83.0±1.4/72.7±2.1 82.5±0.8/72.9±2.2 76.5±2.0/76.9±1.7 73.9±1.8/75.9±1.0

Rank 83.1±1.3/74.6±2.2 75.5±2.1/77.8±2.0 70.8±1.7/77.1±0.8 77.5±1.5/79.1±0.6

Or-Ra 83.0±0.7/73.8±1.7 82.2±1.9/78.3±2.4 74.7±1.8/76.1±2.1 75.9±2.5/79.5±0.4

9 We provide the details of the used hyper-parameters at our GitHub repository.
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4.3 Comparison with Existing Works

Table 5 compares our best results with related work. This table shows that the
proposed approach based on linear transformations is competitive with the cur-
rent BERT-like models. There is an exception for English results obtained by
the XLM-RLarge model, which has a huge number of parameters (559M). We
did not outperform the largest XLM-RLarge model, but for example, for the

Table 4. Cross-lingual accuracy results for English and French language pair.

Evaluated on French Evaluated on English

EN-s ⇒ FR-t FR-t ⇒ EN-s FR-s ⇒ EN-t EN-t ⇒ FR-s

Dataset Method Monoling. in-domain/fastText in-domain/fastText Monoling. in-domain/fastText in-domain/fastText

CNN

IMDB
Allocine

MSE

95.0/

94.3

86.5±0.2/81.3±0.2 63.2±9.1/79.9±0.7

91.8/

89.2

86.2±0.1/78.2±0.1 55.1±4.4/72.8±1.2

Orto 90.4±0.0/81.0±0.6 89.0±0.2/81.3±0.3 86.0±0.0/81.3±0.4 87.0±0.0/81.0±0.6

CCA 89.9±0.1/81.0±0.5 89.0±0.1/81.9±0.0 84.6±0.2/80.2±0.4 85.3±0.2/79.2±0.4

Rank 88.2±0.9/77.1±2.6 88.7±0.0/80.9±0.4 83.6±0.1/74.5±0.7 85.3±0.5/74.9±0.9

Or-Ra 89.2±0.2/75.9±0.8 89.4±0.0/80.8±0.6 81.0±0.9/78.3±1.5 86.3±0.1/76.2±0.8

LSTM

MSE

96.4/

95.7

84.9±1.2/80.2±9.0 68.7±9.7/68.7±9.6

92.3/

90.5

81.7±1.0/81.9±0.6 79.3±2.9/78.4±1.1

Orto 91.2±0.3/81.2±8.2 86.9±4.8/82.4±4.1 81.6±1.2/83.0±0.5 83.2±2.2/80.3±2.1

CCA 91.7±0.2/85.0±1.7 87.8±2.2/85.9±1.1 85.2±0.9/82.2±0.1 86.8±0.3/71.5±2.4

Rank 88.3±1.6/87.2±1.0 88.2±3.2/82.9±3.6 56.7±4.6/81.1±0.9 85.2±0.6/81.2±0.5

Or-Ra 86.3±3.4/70.9±9.0 89.1±1.2/86.8±0.7 56.4±3.1/81.5±1.5 87.2±0.2/79.9±1.8

CNN

SST-2
Allocine

MSE

95.0/

94.3

86.7±0.8/67.9±2.1 84.5±0.2/68.4±0.9

84.4/

83.6

79.6±0.1/79.2±0.3 50.8±1.3/72.8±1.8

Orto 85.9±0.5/65.7±2.9 81.0±0.7/69.1±2.4 78.9±0.3/80.0±0.3 80.1±0.3/79.5±0.2

CCA 87.8±0.1/61.7±2.4 84.2±0.6/66.4±1.1 77.7±0.3/78.9±0.2 79.2±0.3/78.2±0.3

Rank 85.9±0.4/68.1±1.8 81.9±1.2/68.1±1.1 75.4±1.0/74.4±1.2 81.8±0.2/78.8±0.2

Or-Ra 83.8±0.3/72.1±2.0 83.9±0.9/70.7±0.9 73.4±1.3/77.8±0.6 80.9±0.2/79.1±0.3

LSTM

MSE

96.4/

95.7

78.6±3.7/77.6±1.7 81.9±0.9/71.6±9.2

84.5/

84.3

79.1±0.1/78.8±0.7 76.2±0.8/76.3±0.6

Orto 84.7±0.5/76.2±4.6 81.1±2.8/78.1±6.2 79.2±0.6/79.4±0.1 81.8±0.3/78.9±0.3

CCA 85.3±0.8/79.6±1.1 81.8±4.9/78.4±1.3 79.9±0.3/78.6±0.6 80.7±0.4/78.1±0.4

Rank 85.3±1.7/77.3±3.1 81.9±1.1/79.5±1.1 69.8±3.1/77.4±0.2 82.5±0.4/79.0±0.4

Or-Ra 84.7±1.9/75.7±2.7 82.3±5.0/76.6±3.4 72.7±2.1/78.5±0.6 81.7±0.4/79.6±0.4

Table 5. Comparison of cross-lingual Macro F1 results with other works. French result
with * symbol is shown as accuracy.

IMDB CSFD Allocine

XLM-RBase [28] 89.5±0.2 88.0±0.3

XLM-RLarge [28] 94.0±0.1 91.6±0.1

XLM [28] 78.2±0.5 75.4±0.3

mBERT [28] 76.3±1.1

G/F-A [15]* 93.0

Our best
87.2±0.2

(EN-t ⇒ FR-s)
89.2±0.1

(CS-t ⇒ EN-s)
91.7±0.2

(EN-s ⇒ FR-t)
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Table 6. Cross-lingual accuracy results for French and Czech language pair.

Evaluated on Czech Evaluated on French

FR-s ⇒ CS-t CS-t ⇒ FR-s CS-s ⇒ FR-t FR-t ⇒ CS-s

Dataset Method Monoling. in-domain/fastText in-domain/fastText Monoling. in-domain/fastText in-domain/fastText

CNN

Allocine
CSFD

MSE

93.9/

91.5

84.4±0.2/75.2±1.2 56.0±3.1/68.5±3.9

95.0/

94.3

74.3±0.7/65.6±1.0 52.7±0.4/63.8±2.8

Orto 85.9±0.3/77.5±0.5 86.0±0.3/78.0±0.3 84.6±0.2/80.8±0.2 84.0±0.3/78.4±0.5

CCA 83.7±0.3/75.9±0.4 82.7±0.6/71.8±0.5 84.7±0.3/79.8±0.3 76.9±0.5/73.7±0.6

Rank 81.7±1.0/75.1±1.3 86.2±0.3/69.2±0.2 82.4±0.8/78.5±0.2 84.6±0.1/68.9±1.3

Or-Ra 82.7±0.8/72.6±1.6 87.0±0.1/74.3±0.9 75.9±1.4/71.8±2.8 85.3±0.2/80.3±0.2

LSTM

Allocine
CSFD

MSE

94.3/

92.1

85.3±0.6/81.5±1.1 84.1±4.1/76.5±2.8

96.4/

95.7

81.7±2.1/76.6±1.9 52.5±2.5/62.2±5.7

Orto 87.6±0.6/80.2±0.6 88.0±0.7/81.5±0.7 71.8±0.9/70.7±4.5 68.9±1.1/69.9±5.3

CCA 87.4±0.4/79.3±1.2 87.3±0.5/79.3±1.0 76.5±2.9/72.5±4.0 64.0±1.4/72.5±3.3

Rank 76.6±5.9/81.2±1.1 86.4±0.7/76.1±1.3 69.2±7.3/77.1±2.9 85.4±0.8/78.5±1.0

Or-Ra 84.0±2.2/78.7±3.4 87.6±0.6/81.0±0.9 78.4±5.8/58.1±4.6 83.3±1.1/82.7±0.7

CSFD dataset, we beat three BERT-like models that are much larger (in terms
of a number of parameters) than our CNN and LSTM models. In the case of
the mBERT and XLM models, the difference is very significant. The results in
Table 5 are shown as Macro F1, but we have to note that our Macro F1 results
are identical to the accuracy.

4.4 Discussion

From our perception, during the experiments and from the presented Tables, we
consider the CCA and Orthogonal transformations to be the most stable in terms
of performance. These two methods usually obtain very comparable (if not the
best) results across all experiments, unlike the other methods. The other methods
(MSE, Rank Or-Ra) tend to fail in some settings and their performance decreases
significantly. For example, the performance of the MSE method often drops by
a large margin for experiments where embeddings for the target language is
mapped into the source language (the FR-t ⇒ EN-s columns).

We found no systematic differences in performance between the LSTM and
CNN models. We recognized that the transformations sometimes fail and cause
poor performance of the overall model. In future work, we want to focus on
these particular incidents and we would like to improve the stability of the
transformations, for example, by normalizing the semantic spaces before and
after the transformation.

5 Conclusion

In this paper, we studied the task of cross-lingual sentiment analysis for Czech,
English and French. We performed zero-shot cross-lingual classification on four
datasets with linear transformations in combination with LSTM and CNN based
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classifiers. We demonstrate that pre-trained in-domain embeddings can signifi-
cantly improve the cross-lingual classification, in some cases even by more than
10%. We show that the approaches based on linear transformations are, to some
extent, competitive with the multilingual BERT-like models. We provide all the
presented resources, including word embeddings, dictionaries and source codes,
freely for research purposes on our GitHub (see footnote 2).
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Abstract. Transferring knowledge from one domain to another is of
practical importance for many tasks in natural language processing, espe-
cially when the amount of available data in the target domain is limited.
In this work, we propose a novel few-shot approach to domain adapta-
tion in the context of Named Entity Recognition (NER). We propose a
two-step approach consisting of a variable base module and a template
module that leverages the knowledge captured in pre-trained language
models with the help of simple descriptive patterns. Our approach is sim-
ple yet versatile, and can be applied in few-shot and zero-shot settings.
Evaluating our lightweight approach across a number of different datasets
shows that it can boost the performance of state-of-the-art baselines by
2 − 5% F1-score.

Keywords: Named entity recognition · Few-shot learning · Transfer
learning · Prompt-tuning

1 Introduction

Transfer learning has received increased attention in recent years because it
provides an approach to a common problem for many realistic Natural Language
Processing (NLP) tasks: the shortage of high-quality, annotated training data.
While different implementations exist, the basic tenet is to utilize available data
in a source domain to help training a classifier for a low-resource target domain.

An interesting new direction of research leverages the world knowledge cap-
tured by pre-trained language models (PLMs) with cloze-style natural lan-
guage prompts for few-shot classification (e.g. [1,18]) and regression [5]. These
approaches are attractive because they require little to no training, making them
especially suitable for low-resource settings.

In this paper, we contribute to this research area by introducing a novel cloze-
style approach to Named Entity Recognition (NER), an important task which
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has previously not been addressed via cloze-style prompts. In its classical setting,
i.e. recognizing a small number of entity types in newspaper texts, NER achieves
state-of-the-art F1 scores of ∼ 95% [25]. This is not necessarily the case, however,
for more specialized domains where data is more scarce and annotations cannot
easily be provided because they may require expert knowledge, such as e.g. ,
for biomedical texts. With the approach presented here, the expertise of highly
trained specialists can be utilized in a different way, by providing representative
words for the named entity types, rather than having to annotate corpus data.

The main appeal of our method lies in its simplicity, as applying it to a
new domain requires very little effort and technical expertise. Our contribution
is three-fold: (1) we introduce a new method for Named Entity Recognition
(NER) with a focus on simplicity; (2) our technique is scalable down to zero-
shot in which case no training is required on top of the PLM; (3) we show how a
hybrid combination of our method with a standard classifier based on a simple
threshold outperforms both of the individual classifiers (Sect. 3).

The effectiveness of our method is demonstrated by a thorough evaluation
comparing different variants of the approach across a number of different data
sets (Sect. 5). For reproducibility, we release our code on Github1

2 Related Work

Named entity recognition is a well-studied task in NLP, and is usually
approached as a sequence-labeling problem where pre-trained language mod-
els such as ELMO [12], BERT [2], RoBERTa [11] and LUKE [25] have brought
significant improvements in recent years. All these methods are based on super-
vised learning but they do not generalize to new domains in zero and few-shot
settings.

Meta-learning or learning to learn [3,17,20] is a popular approach to few-shot
learning. In the context of few-shot NER, most applications of meta-learning
make use of Prototypical Networks [4,7,8] or Model-Agnostic Meta-Learning
(MAML) [9]. These approaches require training on diverse domains or datasets
to generalize to new domains.

Pre-trained language models have shown impressive potential in learning
many NLP tasks without training data [13,15]. [18] proposed using a cloze-style
question to enable masked LMs in few-shot settings to perform text classification
and natural inference tasks with better performance than GPT-3 [1]. As creating
cloze-style questions is time consuming, there are some attempts to automate
this process. [6] makes use of the T5 model [16] to generate appropriate template
by filling a [MASK] phrase similar to how T5 was trained. Shin et al. (2020) [19]
use a template that combines the original sentence to classify with some trigger
tokens and a [MASK] token that is related to the label name. The trigger tokens
are learned using gradient-based search strategy proposed in [23]. In this paper,
we extend this PLM prompt technique to named entity recognition.

1 https://github.com/uds-lsv/TOKEN-is-a-MASK.

https://github.com/uds-lsv/TOKEN-is-a-MASK
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3 Method

Our approach consists of two parts. We first describe the base method that can
be used as a stand-alone, zero- or few-shot classifier (Sect. 3.1). In Sect. 3.2, we
then lay out how a simple ensemble method can combine the base method with
another classifier to potentially improve over the individual performance of both.
We call this setup the hybrid method.

3.1 Zero-Shot Base Method

The base method for classifying NEs in a sentence consists of two steps, detecting
candidate words and querying a PLM for the NE class of each candidate word.
For example, let s = I will visit Munich next week be the sentence to label. As is
typical, most words in s do not denote a named entity, only Munich does (LOC).
We construct a cloze-style query to the PLM from the original sentence and a
template, in which the candidate word has been inserted:

I would like to visit Munich next week. Munich is a [MASK].

The first part of the prompt serves as the context for the second part of
the prompt, a template of a predefined form e.g. [TOKEN] is a [MASK]. The
[TOKEN] is replaced with the term to label. For auto-regressive LMs like GPT-
2, [MASK] is empty, the next word is predicted given a context that ends with
“TOKEN is a”.

The prediction of the PLM for the [MASK] is a probability distribution
P (w|s) over the tokens w in the vocabulary V. Intuitively, since NE labels them-
selves often are descriptive words (e.g. location, person, etc.) contained in V,
the answer to the query could be found by observing P (label|s) for all labels and
selecting the one with the highest probability. We found this approach not to
perform well, possibly because NE labels tend to describe abstract higher-level
concepts that are not commonly used in sentences realized by our template.

However, by associating with each entity type a list of words representative
of that type, we reach competitive performance to state-of-the-art approaches
(see Sect. 5). As an example, Table 1 shows representative words for the five
named entity classes Location, Person, Organization, Ordinal and Date.

More formally, let L be the set of all labels for the NER classification task. We
provide a list of representative words Wl for each label l. Denoting the output of
the PLM by P (·|s+ T (w)) where s is the original sentence, T (w) is the prompt
for token w, and + stands for string concatenation, we assign label lw to the
token w by:

lw = arg max
l

P (v ∈ Wl|s + T (w)). (1)

For the example above (s = I will visit Munich next week ; T (Munich) = Munich
is a [MASK]), the top-5 predictions using the BERT-large model are: city,
success, democracy, capital, dream. The largest probability (0.43) among
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all words is assigned to city which is among the representative words for label
LOC. Thus, Munich is labeled as a location. A graphical depiction of the full
method is shown in Fig. 1.

The outlined approach raises three design questions which we address in turn:

1. Given the input sentence, how to detect the candidate tokens to label?
2. What constitutes a good template for the second half of the prompt?
3. Which words to include in the list of representative words for each entity

label?

Fig. 1. Overview of the proposed template method: The PLM prompt consists of the
sentence and the template instantiated with the word to label. The PLM predicts the
probability of [MASK] for all representative words, and the label associated with the
most probable word is returned.

Table 1. Examples of representative word lists for entity types location (LOC),
person (PER), organization (ORG), Ordinal (ORDINAL), and date (DATE).

Entity Type Representative Words

LOC location, city, country, region, area, province, state, town

PER person, man, woman, boy, girl, human, someone, kid

ORG organization, community, department, association, company, team

ORDINAL number, digit, count, third, second

DATE date, day, month, time, year

A fourth decision to make is the choice of pre-trained language model. Our
results comparing four state-of-the-art PLMs are listed in Sect. 5.1, but we shall
first attend to the three questions listed above.
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Identifying Named Entities. In sequence labeling tasks, it is common that the
identification of token boundaries and the actual label of the token is performed
jointly as both decisions are often informed by the same features. Here, we per-
form these steps separately. This is possible because named entities are usually
realized as proper nouns (although some NE schemes also include entities such
as numbers, date, and time expressions), licensing the use of a task-independent
part-of-speech tagger to identify candidate tokens in the input sentence before
labeling it with the template method. Part-of-speech (POS)2 taggers can identify
occurrences of proper nouns (or numerals, ordinals) with a high degree of accu-
racy. However, entity boundaries in case of multi-word expressions are usually
not labeled explicitly. A phrase structure parser could be employed to deter-
mine the boundaries of multi-word named entities, but we found simply treating
consecutive proper nouns as a single entity to be a reasonable heuristic in our
experiments.

Template Selection. In order to gain insights into what constitutes a good tem-
plate we have experimented with a number of variants. Overall, we found that
most templates performed similarly, except where we intentionally tested the
limits of the format. These experiments are detailed in Sect. 5.2. Generally speak-
ing, a template should be grammatical and natural. Simple variants work better
than overly complicated templates. The simple copula [TOKEN] is a [MASK] is
a good recommendation as it performed well in all of our tested conditions.

Representative Words. If some examples of the target domain are available at
training time, the representative word lists can be derived from predictions over
this data. That is, the representative words for each entity type can be taken
as the most probable mask fillers given the respective prompts. Alternatively,
in a zero-shot setting or where otherwise appropriate, a set of words can be
provided by a domain expert. For the experiments in the next section, this is the
strategy we followed. Of course, it is possible to combine both methods, with an
expert choosing a suitable subset from words with the highest probability in the
automatic setting. Additionally, we can use static word embeddings like GloVe
to extract a list of representative for each category based on word similarity.

3.2 Few-Shot Hybrid Method

The method described thus far can be used for zero-shot classification as it does
not require any training. In a few-shot setting, however, we can improve the
performance of the system by fine-tuning the PLM using the labeled data in the
target domain.

A further performance gain can be made by combining our method with a
standard supervised classifier in a simple two-fold ensemble. Based on a selection
threshold ph, we label the token according to the prediction of the base method

2 We make use of Spacy POS tagger https://spacy.io/usage/linguistic-features.

https://spacy.io/usage/linguistic-features
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if the probability of the predicted label is higher than the threshold ph:

max
l

P (v ∈ Wl|s + T (w)) > ph, (2)

otherwise we relay the output of the supervised classifier. The threshold ph is
a hyper-parameter that can be tuned on the training examples from the target
domain.

4 Data

We consider three popular NER datasets (CoNLL03, OntoNotes 5.0 and i2b2)
from different domains and with different label sets.

The CoNLL03 data [22] consists of documents from the English news
domain that have been annotated with four named entity types: personal name
(PER), organization (ORG), location (LOC), and miscellaneous entity (MISC).

The OntoNotes 5.0 dataset [14] consist of NER in three languages (English,
Chinese and Arabic). In this work we make use of the English dataset with six
annotated domains: broadcast news (BN), broadcast conversation (BC), maga-
zines (MZ), telephone conversation (TC), and web data (WB). The annotation
scheme of OntoNotes 5.0 distinguishes between 18 entity types, making it a more
challenging task than CoNLL03.

Table 2. F1-scores for four PLMs on the CoNLL03 dataset in the zero-shot setting.

BERT RoBERTa GPT-2 XLNet

LOC 69% 65% 42% 58%

PER 80% 73% 45% 57%

ORG 42% 43% 13% 34%

Micro-Avg. 60% 59% 36% 49%

The third dataset, i2b2 2014 [21], is a BioNLP dataset commonly used for
de-identification tasks. The dataset contains 25 entity types from seven Private
Health Information (PHI) categories: Name, Profession, Location, Age, Date,
Contact, and Ids.

In our few-shot experiments, 1, 5, or 100 data points are sampled per label
from each training set, depending on the setting. In the zero-shot case, no train-
ing is used.
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5 Experiments

5.1 Comparing Language Models

We study the role of the choice of PLM in our approach by comparing four
state-of-the-art pre-trained language models: BERT [2], RoBERTa [11],
GPT-2 [15] and XLNET [27]. BERT and RoBERTa are trained to predict masked
tokens that are randomly corrupted in the training sentence. GPT-2 is based
on autoregressive language modeling, but it is less efficient predicting masked
tokens. XLNET attempts to address the limitations of BERT for next-word pre-
diction (i.e. autoregressive LM) while retaining good performance on natural
language understanding tasks.

Table 2 compares the four PLMs on the CoNLL03 dataset for the zero-shot
setting as described above. In all of these experiments, the template [TOKEN] is
a [MASK] and the representative word lists from Table 1 were used. We observe
that BERT and RoBERTa outperform the other two LMs. Interestingly, GPT-2
does not perform well in this setting with an average F1 score of just 36%.

5.2 Choice of Template

A second variable in the setup is the choice of the template used in the prompt.
We compare 15 different templates in the zero-shot setting, listed in Table 3.
We examined these templates on the CoNLL03 and OntoNotes datasets using
location, person and organization as entity classes. Tables 4 and 5 present
the results of this experiment.

T1 is a straight-forward default and copula template that directly identifies
the token with the mask. T2 template differs from T1 only in the verb. We added
it to study the influence of tense on the prediction quality. In our experiments, it
lead to slightly worse results, but it might be useful e.g. for historical texts. T3

is similar to the above but uses a modal auxiliary. We further experimented with
stripping down a template to the minimum useful form in T4. This template is
ungrammatical, however, and does not perform well. T5 is the smallest template
possible modulo word order. It is the worst performing template in our experi-
ments, especially failing to predict the PER class. The next four templates T6−T9

are further variations of T1 that replace the verb to be with longer constructions.
In all previous templates, the token to label appears as the first word. In

T10, we test whether a longer left-hand side context is beneficial to the PLM
prediction. With T11, we test the effect of extending the right-hand context. It
does not produce the same performance gain as T10, though. T12 extends both the
left-hand and the right-hand side context simultaneously, but also presents token
and mask in a contrasting relation. It seems that the language model has more
difficulties associating the mask and the token with each other in this template,
as the performance drops considerably for CoNLL03. T13 also reverses the order
of mask and token but outperforms T12 template in the case of CoNLL03.

Are the additional filler words responsible for the good performance of T13, or
is it the way the relation between mask and token are expressed using the word
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Table 3. List of templates used in the comparative experiments. Aspects considered
include tense, mood, expression length and complexity, verb choice, grammaticality,
and TOKEN/MASK order, in different forms.

ID Template

T1 [TOKEN] is a [MASK].

T2 [TOKEN] was a [MASK].

T3 [TOKEN] would be a [MASK].

T4 [TOKEN] a [MASK].

T5 [TOKEN] [MASK].

T6 [TOKEN] is an example of a [MASK].

T7 [TOKEN] is an instance of a [MASK].

T8 [TOKEN] denotes a [MASK].

T9 [TOKEN] is well-known to be a [MASK].

T10 Many people consider [TOKEN] to be a [MASK].

T11 [TOKEN] is a common [MASK] known to many people.

T12 There are many [MASK]s but [TOKEN] stands out nevertheless.

T13 A [MASK] like [TOKEN] is often mentioned in conversations.

T14 A [MASK] like [TOKEN].

T15 This [MASK], [TOKEN], is worth discussing.

like? T14 reduced template suggests the latter, as it performs even slightly better
than T13. Finally T15 is similar in spirit to T5 in that it tests whether proximity
of mask and token are important, only with the order of the two reversed, and
some context words added. It performs better than T5 but not en par with most
other templates.

The key message of these experiments is that our approach is robust against
the details of the template format as long as it is not too artificial. Indeed, we
do not observe a high variation in the performance of the model when using
different natural sounding templates.

Table 4. Comparing different templates T1–T15 and their impact on the F1-score in the
zero-shot setting on CoNLL03. The results suggest that the performance of a template
depends mainly on its naturalness.

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

LOC 69% 60% 62% 52% 46% 66% 63% 60% 67% 69% 61% 57% 73% 70% 60%

PER 80% 72% 73% 65% 7% 81% 82% 71% 76% 82% 83% 15% 76% 81% 57%

ORG 42% 48% 51% 35% 35% 44% 39% 41% 47% 44% 41% 36% 48% 54% 34%

Micro-Avg. 60% 57% 57% 47% 31% 59% 57% 55% 60% 62% 59% 36% 62% 63% 49%
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Table 5. Impact of template choice in the zero-shot setting for OntoNotes

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15

LOC 71% 72% 71% 64% 50% 69% 67% 72% 67% 67% 64% 68% 67% 68% 63%

PER 49% 45% 43% 47% 24% 51% 51% 44% 48% 49% 51% 43% 45% 43% 47%

ORG 47% 45% 44% 41% 36% 43% 42% 42% 46% 47% 47% 45% 44% 45% 42%

Micro-Avg. 57% 55% 54% 52% 38% 56% 54% 54% 55% 56% 56% 54% 53% 54% 50%

5.3 Domain Adaptation

In this section, we assess the extent to which our prompt-based approach can
improve the performance of available baseline methods for NER in a domain
adaptation setting. Specifically, we are interested in a setting where knowledge of
the source domain should be transferred to a target domain for which the number
of available training samples is very limited. This is of particular importance as
annotating a new large corpus is often prohibitive.

We consider three baselines: in the AGG baseline, we merge the training
data of the source and target domain and train a NER classifier on the resulting
aggregated dataset. In the Fine-tuning baseline, we first train the model on the
source domain and then fine-tune it on the training set of the target domain. Both
of these approaches have been shown to reach results competitive with other
state-of-the-art methods [10]. In both cases, a BERT-large cased pre-trained
LM followed by a linear layer is used as the NER classifier.

The third baseline is StructShot, introduced by [26]. It is based on a
feature extractor module obtained by training a supervised NER model on the
source domain. The generated contextual representations are used at inference
time by a nearest neighbor token classifier. Additionally, label dependencies are
captured by employing a viterbi decoder of a conditional random field layer and
estimating the tag transitions using source domain.

Following [24], we take one domain of the dataset as the target domain and
the other domains as the source domain. We randomly select K = 100 sam-
ple sentences from the target domain as our target training set. For selecting

Table 6. Domain adaptation for NER: F1 score of using the OntoNotes and i2b2
datasets. Combining our prompt-based method T with the Fine-Tuning approach
achieves the best performance. For all few-shot methods, we use K=100 samples of
target domain training set. In contrast, the In-domain method uses all available train-
ing samples and serves as a topline.

Method BC BN MZ NW TC WB AVG

AGG 46.3 47.9 46.9 52.7 51.7 43.8 48.2

AGG+T 61.1 66.2 62.1 71.0 73.3 47.4 63.5

Fine-Tuning 66.7 71.2 69.3 74.1 65.2 49.1 65.9

Fine-Tuning+T 72.0 72.1 74.7 74.3 77.0 49.1 69.9

StructShot 63.2 70.6 71.6 71.8 67.3 51.2 65.9

StructShot +T 70.3 72.8 75.5 73.5 78.4 51.9 70.4

In-domain 91.6 94.3 94.1 93.2 76.9 67.1 86.2
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Table 7. Results of domain adaptation for NER using OntoNotes as the source domain
and i2b2 as the target domain.

In-domain AGG AGG+T Fine-Tuning Fine-Tuning+T StructShot StructShot +T

94.8 53.5 57.2 62.3 65.1 60.2 64.2

source and target labels, heterogeneous setup is adopted in which we choose
PERSON, ORG, PRODUCT as source labels and PERSON, ORG, PRODUCT, LOC, LANGUAGE,
ORDINAL as target labels. This discrepancy between target and source labels
makes transfer learning more challenging.

Table 6 depicts the results of our experiments on the various OntoNotes
datasets averaged over five runs each. The table compares the performance
of the baseline models with that of our hybrid approach. It also shows the
results of an in-domain method, where we use all the training samples of target
domain for training a fully supervised classifier. As is evident from this table,
our prompt-based approach boosts the performance of all baseline models by a
considerable margin. In our next experiment, we are interested in the impact of
a greater discrepancy between source and target domain. We therefore take the
OntoNotes 5.0 dataset as the source domain and the i2b2 2014 dataset as the
target domain.

We use PERSON, ORG, DATE, LOC as source labels and PERSON, ORG, DATE, LOC,
PROFESSION as target labels. Table 7 shows the results of our experiments. We
observe the same pattern as before, i.e., combining our method with supervised
baselines achieves the best performance. Lastly, we examine the role of tags on
the performance of our method. To do so, we follow the same strategy as [26] and
split the entity categories of the OntoNotes into three non-overlapping groups:

– Group A: ORG, NORP, ORDINAL, WORK OF ART, QUANTITY, LAW
– Group B: GPE, CARDINAL, PERCENT, TIME, EVENT, LANGUAGE
– Group C: PERSON, DATE, MONEY, LOC, FAC, PRODUCT

When we pick a group, e.g. A, as the target group, the corresponding tags
are replaced with the O-tag in the training data. Thus, the model is trained only
on source groups B and C. At inference time, we evaluate the model on the
test set which contains only target labels (A). The results of this experiments

Table 8. Results of F1 scores on one-shot NER for different target labels.

one-shot five-shot

Group A Group B Group C Group A Group B Group C

Fine-Tuning 7.4 ± 2.4 8.9 ± 4.3 9.1 ± 2.0 13.1 ± 1.8 21.4 ± 7.3 20.8 ± 4.2

Fine-Tuning+T 8.9 ± 2.1 11.8 ± 3.9 13.6 ± 1.7 14.9 ± 1.6 20.7 ± 6.5 22.5 ± 2.6

StructShot 26.7 ± 4.8 33.2 ± 15.6 23.0 ± 11.4 47.8± 3.5 56.5 ± 9.3 53.4 ± 3.2

StructShot +T 27.3± 4.2 33.6± 14.1 26.5± 8.7 46.0 ± 2.9 57.7± 7.8 55.1± 2.1
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are shown in Tables 8 for the one-shot and 5-shot setting. We again observe the
improvement of baseline models by integrating them into template approach.
The amount of performance gain depends on the target group, of course. In
particular, we get a large amount of improvement for group C of tags around
3.5 in one-shot and 1.7 in the five-shot setting.

6 Conclusion and Future Work

We proposed a novel, lightweight approach to NER for zero- and few-shot set-
tings, using pre-trained language models to fill in cloze-style prompts. It is based
on extracting information available in PLMs and utilizes it to labels named
entity instances identified by a domain-independent POS tagger. Results show
that masked language models have a better performance in this setting com-
pared with auto-regressive language models. We explored a wide range of possi-
ble prompts with different datasets. We observed that the proposed method is
robust against contextual details of prompts. This is of practical significance in
the low-resource setting where there is not enough data to tune the model. Our
method is simple, general and can be used to boost the performance of available
domain adaptation baselines. We also propose a hybrid approach that can easily
combine the template method with any other supervised/unsupervised classifier,
and demonstrated the effectiveness of this hybrid approach empirically.

Further work could investigate the possibility of fine-tuning templates while
having access only to a few training samples. It would be also interesting to
explore more sophisticated approaches for combining the predictions of the tem-
plate model and other few-shot NER baselines. Two aspects of our approach
currently require manual intervention, the template and the representative word
lists. Finding ways to determine these fully automatically is another interest-
ing direction to explore. As mentioned before, one way to extract representative
words is by making use of word embeddings like GloVe. Indeed, we found that
almost all subsets of our representative words perform fairly well in practice.
We leave automatically extraction of representative words and its evaluation to
future work.
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Abstract. Programming has become an important skill in today’s world
and is taught widely both in traditional and online settings. Educators
need to grade increasing numbers of student submissions. Unit testing
can contribute to the automation of the grading process; however, it can-
not assess the structure, or partial correctness, which are needed for finely
differentiated grading. This paper builds on previous research that inves-
tigated several machine learning models for determining the correctness
of source code. It was found that some such models can be successful,
provided that the code samples used for fitting and prediction fulfil the
same sets of requirements (corresponding to coding assignments). The
hypothesis investigated in this paper is that code samples can be grouped
by similarity of the requirements that they fulfil and that models built
with samples of code from such a group can be used for determining the
quality of new samples that belong to the same group, even if they do not
correspond to the same coding assignment, which would make for a much
more useful predictive model in practice. The investigation involved ten
different machine learning algorithms used on over four hundred thou-
sand student code submissions and it confirmed the hypothesis.

Keywords: Applied Machine Learning for Code Assessment · Student
Programming Code Grading · Automated Grading

1 Introduction

Manually grading student code submissions on a large scale is a tedious and time-
consuming process for educators. With the rise of online programming courses,
thousands of submissions must be graded in a brief time. Most automated solu-
tions use question-specific unit testing to check if the code is runnable, and if
it generates the desired output. However, there are multiple ways to write code
that generate the same result. For example, printing numbers from 1 to 10 can be
solved with a loop or hard coded to print the numbers individually. A unit test-
based grade would be the same for these two solutions. The aim of this research
work is to automate the discovery of these differences and assist in grading them
accordingly. The research investigates Machine Learning (ML) algorithms for
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automated grading based on content, rather than externally testable behavior.
The paper investigates four different feature sets and suitably chosen ML meth-
ods.

The requirement for computing resources increases with the token count,
therefore ByteCode was used and compared to Python code to explore how
the lower-level language in this context would fare in terms of computational
efficiency and model performance. ByteCode used significantly fewer tokens than
Python code, saving significant amount of training time.

The hypothesis was that the student code submissions might contain common
features at different levels of quality (corresponding to different grades), which
can be picked up by ML methods. Pre-trained models can then assist educators
in the grading process for basic programming exercises along with the current
unit testing methods.

The main models were trained for binary prediction, with a pass/fail result
of unit tests previously run on the coding exercises as the target feature. The
process is displayed in Fig. 1 from compiling, preparing, and training the different
models. The main contributions of this paper are:

1. It shows the potential of using multiple pre-trained ML models to assist edu-
cators to grade student submissions.

2. The use of a smaller lower-level language instruction set (ByteCode) can
reduce the resource requirements for ML algorithms without significant loss
of performance.

Fig. 1. Process Flow

2 Related Work

There were several previous works on describing source code in computationally
solvable environment, SemCluster [2] which uses two different clustering algo-
rithms to understand how the input is partitioned into classes, and how these
classes address the problem, which is a different approach. A solution using ML
is discussed in a method called InferCode [3], which examines the usage of self-
supervised learning algorithms with NLP processing the Abstract Syntax Trees
of the programming language in question. Different approaches were deployed to
solve different but related problems, from finding security vulnerabilities directly
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in source code using Neural Network Language Model-guided Engine Fuzzer with
Montage [4] to information retrieval techniques for plagiarism detection [6,11]
and code review to predict if a code change will be approved [10] utilizing CNN
in their proposed model: DeepReview. A more recent paper related to Python
code proposes a Deep Similarity Learning approach Type4py [9] using word2vec
and word embeddings. The authors were creating type hints based on natural
information and code context.

Analyzing and understanding source code is a vital element in assisting edu-
cators in grading it. Solving the problem of grading student’s coding submission
at a scale has also been a widely researched subject, especially in the last couple
of years, due to the increasing number of online programming courses. A paper
proposing a method called ProgEdu [7] deals with an automated code quality
assessment and student feedback using unit testing, while other papers discuss
techniques to evaluate, run and grade a code using sophisticated scripts [5].
There are also question and language-independent solutions [8] using best prac-
tices and closeness to response given by logic and data dependencies and bag of
words, while AutoGrader [12] is using formal-semantics-based approach to grade
a submission based on a reference implementation and the semantic difference
between the reference and the student code.

The research is different from the above-mentioned papers as it is focused on
exploring whether student submissions can be assessed based on content only
and whether partial correctness can be determined independent of question. The
paper does not compare the code to a reference solution, or Abstract Syntax Tree,
or investigate the question itself, but tries to understand if there is a possibility
to determine content correctness and small differences from the code itself for
assigning the final grade.

3 Dataset

The data was collected as part of previous research [1] aimed at profiling stu-
dents based on their source code to identify learning development potential. The
data contained half a million student source code submissions from more than
660 students (students were able to continually submit their code until the final
deadline, resulting in multiple submissions per student for each question) across
3 years and 5 different courses, answering 657 different questions. All submis-
sions were graded by an automatic unit testing system, removing any human bias
from the results. An indicator of pass/fail status, for each submission, based on
relevant unit tests was included. The submissions varied significantly in length.
The average code length in ByteCode format was 4,000 characters, with a max-
imum of 21,000 and a minimum of 1, while the average length of Python code
was 350 characters with a maximum of 35,000 and minimum of 1. The difference
between the ByteCode and Python length is explained by the different way these
languages are presented in the source code.

The data contain various programming assignments; however, all other lan-
guages were removed apart from Python code to prepare for processing. The data
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was anonymized by discarding all information except the source code, question
name and the auto-grading results. Only code with a maximum length of 15,000
characters was used, to reduce the noise in the data created by outliers. The
removed data accounted for 3.8% of the whole dataset. Transformed code, con-
sisting of Python ByteCode was also used. ByteCode consists of a set of about
200 instructions, of which the students were using 85. The pieces of code that
could not be transformed or had empty content were discarded, leaving us with a
dataset of 202,000 submissions. Of these 58% were labelled ‘fail’ and 42% ‘pass’.

Four sets of features were derived from the raw data i.e. the files containing
code: 1. a set with a single attribute, the Python code length, 2. a set containing
ByteCode token counts, 3. a set with NLP word tokenizer output for decompiled
ByteCode instructions and 4. a set with NLP word tokenizer output for Python
code. The ByteCode token count feature set was used to investigate the possible
relationship between the pass/fail test result of the code and the number of times
each ByteCode instruction appeared in the decompiled code. Instructions that
did not appear throughout the whole dataset were discarded. Features in sets 3
and 4 represent token positions (with tokens as values) and were created using
the word tokenizer from the keras.preprocessing.text library.

3.1 Preliminary Data Analysis

Feature set 2 (token counts) was investigated from an n-gram perspective, for
how certain word sequences might influence the algorithms. The number of times
the same token appears across the whole feature set was counted, and the same
was done for bigrams, trigrams, and quadrigrams. The single token counts indi-
cated that a limited number of features (top 30 most frequent tokens) would be
sufficient for the models. The bigram counts are shown in Fig. 2. An interesting
observation that can be made from these data is that passing (i.e. good) pro-
grams contain more functions (load const, make function ByteCode tokens and
def, self Python tokens).

Fig. 2. ByteCode and Python Bigrams
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The feature importance analysis for individual tokens in ByteCode showed
similar results to feature importance reported by the decision tree model. There
are 10 words which drive the decisions, with top 5 being pop top, load name,
load fast, call function, load const. This information assisted in the hyperpa-
rameter tuning of the ML algorithms used.

4 Model Exploration

Using pre-trained networks in NLP is common practice, however these solutions
are not applicable to Python code and ByteCode as they are not natural lan-
guages.

Using standard 5-fold cross validation every algorithm was run 3 times with
different random folds, which ensured that the models would not be biased. All
algorithms had individual parameter optimization in place. Parameters were set
to be close to each other while using different approaches, for result comparabil-
ity, such as word count, maximum length, epoch, batch size etc. The algorithms
used the relevant tensorflow.keras libraries.

A one-layer Artificial Neural Network predicting the result of the submis-
sions (pass or fail) from the length of the relevant code was used to exclude the
possibility that this one feature by itself (feature set 1) would be as effective as
the more complicated approaches.

4.1 Token Count Based Models (Feature Set 2)

Multinomial Näıve Bayes was used to explore if the features are mutually inde-
pendent in the dataset, Support Vector Machine to investigate if the algorithm
can distinctly classify the pass/fail categories based on the token counts and
Logistic Regression to examine if probability-based prediction is possible. Voting
Classifier was also used with hard voting to see if the three previous algorithms
can reach better results in an ensemble way. Additionally, Decision Tree and
Random Forest was implemented to examine if a rule-based approach would be
able to predict pass/fail outcomes from the token count-based dataset (feature
set 2).

4.2 Language Based Approach - Token Sequences (Feature Sets 3
and 4)

For NLP based approaches, one layer Recurrent Neural Networks were used to
explore if there are long-term dependencies within the data, two layer Long
Short Term Memory Networks to account for more learning in context, and one
dimensional Convolutional Neural Network to investigate if the word sequence
can give an indication of the result. All deep learning methods used an embedding
layer, to make sure that the tokenized data is further processed in a similar vector
space. The preliminary data analysis using n-grams assisted in establishing the
correct embedding features. The maximum number of words and embedding
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dimensions were set to 30 based on the results explained in Sect. 3.1. The Python
token sequence (feature set 4) based investigation used the same algorithms
however due to the high number of tokens, the training required more powerful
machines and longer training times while the end results were very similar to
the Bytecode token sequence (feature set 3) based algorithms.

5 Discussion of Results

All of the ByteCode based models could be fitted on basic computers, however,
the Python code based ones required significantly stronger computing power
as they use all relevant context (including keywords, numbers, variable names,
comments). The memory requirement is also greatly increased when using the
full Python token sequence based models, and the training time was considerably
longer while the results were remarkably similar.

The results reported in Fig. 3 are the average of the 5-fold cross validation
across 3 runs. The weighted F1 score rarely varied more than 1% between the
folds. The rare occurrence of outliers was explainable by the small number of
folds, where one of the classes was represented in a significantly higher number
resulting in a one-sided prediction. These outlier results were removed from the
final reported weighted F1 scores. One attribute model (feature set 1) using
only the length of the code as a feature did not result in any satisfying accuracy,
achieving a weighted F1 score of 0.24.

Fig. 3. Consolidated Results
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The token count-based approach (feature set 2) with Decision Tree (F1 score:
0.86) and Random Forest (F1 score: 0.81) results indicate that these algorithms
are able to predict whether the code itself answered the questions posed by the
educator, based on the unit testing results. Multinominal Naive Bayes (F1 =
0.54), Logistic Regression (F1 = 0.51), SVM (F1 = 0.49) or Voting Classifier
(F1 = 0.46) did not perform well enough to predict the class consistently. High
differences in the results can be explained with how these algorithms approach
the data from a different perspective and might lack a sequential processing view
required to interpret student code.

The token sequence-based data approach (feature set 3 and 4) with LSTM,
CNN and RNN had better than chance results as per Fig. 3, (which means that
the prediction was better than a coin flip, or 50%) which is expected given the
sequential nature of a coding submission.

Precision, recall, and weighted F1 score was measured for each of the algo-
rithms. The results in Fig. 3 show that using Python token sequence as the
training data, with Deep Learning produces very similar F1 score as using Byte-
Code token sequence. This is an important finding, as using the full Python
examples with comments consumes considerably more resources than using the
smaller, instruction-only data, without any significant improvement in predic-
tion. Comments can also be considered as noise in the data.

The results on Fig. 3 also show that CNNs are the most suitable algo-
rithms to learn context from source code. However as the train-test split (using
sklearn.model selection - train test split) was random, code for all questions
was seen during training and the successful learning could have been question-
dependent. A train/test split was created to investigate question-dependence
of the prediction. In this new split, code answering any one of the questions
appeared in either the train or test portion, but not in both. This data split
caused the F1 score on the best performing CNN model, to drop significantly
from 0.81 to 0.51. This finding led to a refined approach, where the questions
in the training dataset were grouped by similar tasks. As an example, question
source codes such as: count numbers, count items, count up, count even, count
up to odd were used as training set, and count down, count even question source
codes were used as test set. This has resulted an increase in F1 score, from 0.51
to 0.70.

Based on these findings, the hypothesis that student submission source code
content can be used to measure code correctness is possible if the training dataset
contains similar questions.

6 Conclusion and Further Work

This research provides the results of the proposed assessment of code based on
content. Dichotomous classification gave results that are better than the baseline.
Prediction success is best if code pertaining to the same questions appears in the
training and test sets but some success was achieved with a test set containing
code for questions similar to those in the training set. Prediction of pass/fail
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status of code was not successful in cases where code for the same or similar
questions was not previously seen by the fitted model.

The paper concludes that smaller files (using Bytecode or other instruction-
based content without comments) give similarly accurate results reducing train-
ing time and computational requirements.

During the course of the research several different types of ML algorithms
were investigated with token count based and token sequence based feature sets.
The conclusion is that one dimensional CNNs with an embedding layer are the
most suitable to process student coding submissions, where the student code is
tokenized in a sequential format. For less resource intensive training ByteCode
token sequences are preforming close to Python token sequences.

The possibility to assist lecturers with fine-graded results might be achiev-
able, with further work using Transfer Learning and graded dataset, building on
the existing pass/fail trained algorithm structure. This requires further work.

The final, fine-tuned model structure using Transfer Learning is planned to
be released as a web service, where lecturers can submit their student’s code,
and receive grading suggestions from the most similar algorithm. In the future,
this can further evolve to be a Reinforcement Learning model, where lecturers
can signal if they agree with the grade, and the system will learn the lecturer’s
individual style, and refine the grade suggestions based on the feedback.

Another application of the research, and more immediately applicable, can be
instant feedback to the students, where they can test their code before submission
as a web service.
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Abstract. Automatically extracting relationships from biomedical texts
among multiple sorts of entities is an essential task in biomedical nat-
ural language processing with numerous applications, such as drug
development or repurposing, precision medicine, and other biomedical
tasks requiring knowledge discovery. Current Relation Extraction sys-
tems mostly use one set of features, either as text, or more recently,
as graph structures. The state-of-the-art systems often use resource-
intensive hence slow algorithms and largely work for a particular type of
relationship. However, a simple yet agile system that learns from different
sets of features has the advantage of adaptability over different relation-
ship types without an extra burden required for system re-design.

We model RE as a classification task and propose a new multi-channel
deep neural network designed to process textual and graph structures in
separate input channels. We extend a Recurrent Neural Network with a
Convolutional Neural Network to process three sets of features, namely,
tokens, types, and graphs. We demonstrate that entity type and ontol-
ogy graph structure provide better representations than simple token-
based representations for Relation Extraction. We also experiment with
various sources of knowledge, including data resources in the Unified
Medical Language System to test our hypothesis. Extensive experiments
on four well-studied biomedical benchmarks with different relationship
types show that our system outperforms earlier ones. Thus, our system
has state-of-the-art performance and allows processing millions of full-
text scientific articles in a few days on one typical machine.

Keywords: Biomedical Relation Extraction · Graph Embedding ·
Deep Neural Network · Ontology · UMLS

1 Introduction

The job of a biomedical Relation Extraction (RE) system is to identify semantic
relationships among biomedical named entities such as genes, drugs, proteins, or
chemical substances. There can be a large number of such relationships among
different entities. Associations between genes and diseases, interactions among
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proteins and chemicals, or relationships among drugs and their side effects are a
few examples. RE plays an essential role in many biomedical applications such as
clinical decision-making or information retrieval. Furthermore, RE is an integral
component of Literature-Based Discovery (LBD) systems, commonly used to
generate hypotheses for drug repurposing or drug discovery.

The advent of modern Machine Learning (ML) paradigms led to a signif-
icant boost in the performance of different RE systems, including Chemical-
Protein Interactions (CPI) [19] or Chemical-Induced Diseases (CID) [14] to name
a few. [27] use Support Vector Machines (SVMs) [3] for modeling Protein-Protein
Interaction (PPI) and [14] use SVM and decision trees to model CID.

Deep Learning (DL) is the most recent and common class of ML techniques
that attempted to address RE. Many studies on PPI extraction use variants
of DL-based algorithms such as Recurrent Neural Network (RNN) [5]. [9,20]
employed DL to develop an end-to-end system for adverse drug event and drug-
drug relationship detection. Using another DL-based algorithm named Convolu-
tional Neural Network (CNN) [8], [12] proposed segment CNN for RE in clinical
notes. [10] also made use of RNN to combine the feature vectors trained on
MEDLINE with the semantic information obtained from external Knowledge
Bases (KB) for relation and entity recognition.

Similar to our work, there are a few studies that attempted to integrate
different neural architectures. The purpose is to benefit from the advantages
and overcome the disadvantages of different shallow and deep algorithms. For
instance, [28] combined RNN and CNN in a hybrid model or [15] combined RNN,
CNN, and SVM as an ensemble system.

Contextualized language models help RE to obtain better results [11,24].
However, they are considered highly resource-intensive algorithms. Dependence
on massive machinery infrastructure usually raises concerns about scalability
when considering large-scale RE. Aiming at developing a large-scale system,
we avoid using any resource-intensive, hybrid, or ensemble system. Instead, we
design a unified model that minimizes the load and complexity of the system
via integrating ontology graph and typing information such that it can process
millions of full-text articles in a reasonable time and on a sensible infrastructure.

We apply our method to four benchmarks with different biomedical relation-
ship types and linguistic characteristics individually to ensure that our model
handles agnostic datasets without requiring any particular tuning per dataset.
These datasets include ChemProt [6], DDI [18], i2b2 [23], and AGAC [25]. Our
method shows a substantial improvement (based on the F1 score) compared to
the current SotA RE systems.

2 Methods

Instead of moving towards a more complex DL approach which is less effective [7],
we use a simple architecture with several channels that allows us to integrate
various sources of data into the training stream without over-complicating the
problem.
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Meantime to ensure optimum system throughput, and to benefit from graph-
level and sentence-level information, we train an embedding space on a graph and
integrate it into a sentence-level deep neural model. This way, we can enhance
the system’s performance while letting it process more than a thousand sentences
a second. The required time would be higher by at least one order of magnitude
if we would implement it in a graph neural network.

Three sets of features are integrated into our model, namely tokens, entity
types, and graph structures extracted from ontologies in the form of graph
embeddings. Assume the sentence S = t1, t2, ..., tn to consist of tokens ti and
to contain two named entities e1 and e2. We denote r as the relationship point-
ing to a pair of named entities e1 and e2.

In contrast to tokens which are merely occurrences of linguistic units (i.e.,
words, punctuation marks, symbols, etc.), named entities in life sciences are
referred to well-recognized drugs, species, diseases, etc. They may consist of one
or more consecutive tokens. Consider the following example:

... of the PDE inhibitors tested, dipyridamole was most effective, with
IC50 values of 1.2 and 0.45 microM for inhibition of cAMP and cGMP
hydrolysis, respectively.

The named entities are printed in red and blue. For the sake of brevity, we
use entity to refer to a named entity from now on. In the ChemProt dataset,
CPR − 9 is the relationship between the two red entities. Note that there may
be other relationships among the blue entities as well.

The task is then to find r such that

argmaxr∈R p(r|S, ei, ej , T,G; θ) (1)

maximizes the probability of r where T is a set of associated entity types rep-
resented in t dimensional embedding space, and G is a graph consisting of all
entities and relations available in the training data. Tokens in S, as well as the
entities, are represented in d dimensional embedding space. G also is represented
as g dimensional embeddings vectors. R is a set of relationships, and θ are the
network parameters. We describe S, T , and G embeddings in more detail in
sub-sections 2.1, 2.2, and 2.3 accordingly.

2.1 Token Embedding

The most efficient way for representing tokens in almost all NLP tasks is via
low-dimensional word vectors, also known as word embeddings. From a broad
perspective, word embeddings can be of two types, namely static or dynamic.
A static word embeddings algorithm (e.g., Word2Vec [13], Glove [16]) maps
each token to a unique low-dimensional vector irrespective of the context where
the token occurs. In contrast, a dynamic (i.e., contextual) word embeddings
algorithm (e.g., ELMo [17], BERT [4]) maps each token to several different low-
dimensional word vectors depending on their surrounding words. Due to the high
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computational demand of the latter, we only use static embeddings to ensure a
lean and scalable RE system. We use Word2Vec embeddings to represent S.

2.2 Type Embedding

Typing information provides a mechanism for disambiguation when the system
is not confident about the relationship between two entities. We integrate type
embeddings into the system to examine their impact on the system performance.

In contrast to tokens, there are usually very few types available in a dataset.
Consequently, a shallow embeddings technique known as the one-hot encoding
(OHE) is sufficient for representing T .

2.3 Ontology Graph Embeddings

The idea in ontology graph embeddings is to map the graph of an ontology to
low-dimensional vectors such that similar components in the graph are close to
each other in the low-dimensional space. Therefore, in addition to isolated tokens
represented via token embeddings, the network benefits from the information
about the interaction of graph components and their neighbors. As the results
show in Sect. 3, the embeddings of the ontology graph is a beneficial feature for
RE. Graph structures provide three levels of features, namely node, link, and
graph as a whole. We only estimate and use node-level embeddings to prove
the concept and postpone the two other levels to further studies. To set up the
input graph for embeddings generation, we construct a graph where entities (i.e.,
genes, diseases, drugs, etc.) are the vertices, and their relationships are the edges.
Transforming this graph into a set of linear random walks (i.e., linearization) is
the first step for embeddings generation. After setting the number and the length
of random walks, we use a simple sampling agent to linearize the graph. The
graph is a directed graph, hence backward moves are not possible. Therefore,
at each vertex, the agent decides which outgoing edge to take using a uniform
distribution.

Two hyper-parameters, namely the number and the length of random walks,
control the agent’s walking behavior. The model uses a portion of training data
called the development data to tune these hyper-parameters. After transforming
the graph into a set of random walks, we assume each walk as a sequence and
use Word2Vec’s Skip-gram algorithm to estimate the embeddings.

2.4 UMLS Graph Embeddings

The ontology graph provides a beneficial means of structured data for learn-
ing algorithms. However, for some datasets, the ontology graph is not available.
A more robust way for generating ontology graph embeddings is to use exter-
nal resources such as the Unified Medical Language System (UMLS) or Open
Biomedical and Biological Ontology (OBO).
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We consider the UMLS as an ontology of biomedical concepts. It consists of
three main components, namely Metathesaurus, Semantic network, and Special-
ist lexicon. The Metathesaurus contains over four million biomedical concepts
and their associated terms from over 200 source vocabularies. The Semantic
network defines 133 broad types (e.g., disease, drug, disorder, etc.) and 54 rela-
tionships. It includes semantic types and semantic relationships such as “clinical
drug A treats disease B or syndrome C”. Finally, the Specialist lexicon provides
lexical information for language processing.

Extracting the clusters of concepts from different vocabularies similar to
the UMLS’s Metathesaurus or extracting semantic typing information like the
UMLS’s Semantic network requires extensive querying among all available
ontologies in the OBO Foundry. Given this constraint and for the sake of acces-
sibility and reproducibility, in this study, we use UMLS and postpone OBO
integration to further studies.

We extract the words and strings and their associations with their concepts
from the UMLS 2021 package. Extracting the concepts, semantic types, and
relationships, we construct a semantic graph. After the graph is constructed, a
similar mechanism as described in the last subsection projects the concepts and
relationships into an embedding space.

2.5 Architecture

Recent advances in DL have significantly enhanced RE. Here, we propose a new
DL architecture to improve RE over biomedical data (see Fig. 1 for the schema).
This architecture complements an RNN with a CNN to extract two types of
information that are deemed critical in RE.

On the one hand, Gated Recurrent Unit (GRU) [2] as an advanced variant
of RNNs deals with strings with relatively long dependencies. GRUs in neural
networks are often used in form of bidirectional units (i.e., BiGRU). Given a
string, one GRU in a BiGRU unit extracts the textual features from right to
left and the other from left to right and the resulting vectors are concatenated.
CNN, on the other hand, is a great architecture for extracting keywords or
key-phrases [8]. The combination of BiGRU and CNN assures that the model
extracts the most informative sequential, local, and time-invariant features.

We hypothesize that combining GRU- and CNN-generated features pro-
vides RE with a more meaningful representation. Therefore, we propose a Bidi-
rectional Gated Recurrent Unit-Convolutional Neural Network (BiGRU-CNN)
multi-channel multi-input model for biomedical RE.

This architecture accepts a wide range of features. While tokens and their
sequences are valuable features for RE, as we demonstrate via extensive experi-
mentation (please refer to Sect. 6), entity types and ontology graph embeddings
facilitate RE as well. Type information helps RE to disambiguate the detected
relationships, while ontology embedding provides the model with implicit but
beneficial information about entities and their connections in their ontology
graph structure.
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The first channel in Fig. 1 is fed with the isolated token embeddings. While
individual tokens provide strong signals for some relationships, the sequence of
tokens known as n-grams allows better recognition of some other relationships.
The combination of BiGRU and CNN ensures that both of these feature types
are extracted. The model concatenates the resulting vectors of BiGRU and CNN
to get the overall feature vector. The number of hidden layers for the BiGRU
network, sequence length, CNN activation function, the dropout rate, and the
optimizer are some of the hyperparameters for this channel.

More recent studies on RE use contextualized word embeddings. Compu-
tationally, such algorithms are highly demanding with hundreds of millions of
parameters. Therefore, to estimate the S embeddings in the first channel, we use
Word2Vec (Skip-gram) as a static word embeddings algorithm and train it on
the PubMed abstracts released by BioASQ [22].

Fig. 1. Data-agnostic biomedical RE system architecture.

The second channel accepts the type embeddings, and the third channel
receives the ontology graph embeddings. Sections 2.2, and 2.3 describe the pro-
cedure for estimating the embeddings representing T , and G required for these
channels. The number and length of random walks for the ontology graph embed-
dings and the embeddings vector size are two other hyperparameters specific to
these channels. Finally, the classifier on the top is a softmax function.

The hyperparameters in Table 1 are reported to ensure reproducibility.
All hyperparameters are optimized on the development set if available (the
Chemprot dataset only), otherwise on randomly extracted 20% of the training
set.

Table 1. System hyper-parameters

Hyper-parameter Value Hyper-parameter Value

Emb. size d (tokens) 200 Optimizer adam

Emb. g (Ontology) 128 hidden layers 64

Num. random walks 100 CNN filters 32

Length of walks 16 CNN kernel size 4

Drop-out 0.05 CNN activation relu
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3 Implementation and Results

A key motivation for our study is to enable to process millions of full-text articles
while providing SotA accuracy. While many studies in RE focus on a particular
dataset, we aim towards designing a dataset-agnostic system. To test the sys-
tem, we selected four different benchmarks of relationship extraction tasks from
various biomedical domains. They include the Active Gene Annotation Corpus
(AGAC), the Informatics for Integrating Biology and the Bedside (i2b2), Drug-
Drug Interaction (DDI), and CHEMical-PROTein interactions (ChemProt). This
selection tries to reflect the thematic diversity, as well as the complexity of the
task in terms of sequence length, number of classes, linguistic genre, and vocab-
ulary. Training the models for different datasets takes from less than an hour
to at most three hours on a standard machine with a Core-i7 CPU and 16
GB ram. Depending on the dataset and sequence length of the sentences, the
models take a second to make inference over one thousand sentences with an
average length of 70 to 120 tokens each. That makes relation extraction for
the entire PubMed feasible in a few days and only using one typical machine.
Tables 2, 3, 4, and 5 report the results of the system on AGAC, DDI, i2b2, and
ChemProt datasets accordingly. The hyperparameters are tuned using the grid
search strategy. The maximum length of all strings for each dataset is set as the

Table 2. AGAC test results. The results of the current system are reported in the Micro
F1 score with two significant figures. Samples without relationships are extracted as
described in [21]

System Without none relation With none relation

Relation/Score P. (%) R. (%) F1 (%) P. (%) R. (%) F1 (%)

No-Rel - - - 95 93 94

COM 100 100 100 0 0 0

GOF 95 82 88 0.033 0.045 0.038

LOF 74 87 80 0.054 0.062 0.057

REG 100 25 40 0.031 0.042 0.035

Current system 84 72 78 87 87 87

[21] - - - 86 86 86

Table 3. i2b2 test results. The results of the current system are reported with two
significant figures due to the number of test samples. Similar to Table 10 in [26], a
weighted F-Score is used to ensure a fair comparison. Since there are not enough
training data in some classes in the i2b2 dataset, following [26], we did not use TrWP,
TrIP, and TrNAP classes for training and development

System [26] Current system

Relation/Score P. (%) R. (%) F1 (%) P. (%) R. (%) F1 (%)

TrCP 68 65 66 73 34 47

TrAP 79 82 81 86 94 90

TeRP 87 87 87 83 94 88

TeCP 63 63 63 64 46 54

PIP 73 67 70 100 100 100

Macro/Micro score 74/- 73/- 73/- 81/89 74/89 76/89
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length of the sequences for that dataset. If required, Micro F1, Macro F1, or
both are reported to make comparison with earlier works possible.

Table 4. DDI test results. The results of the current system are reported with three
significant figures to account for the number of test instances. Similar to [1], the F1
score is Micro-averaged F1 score.

Relation/Score P. (%) R. (%) F1 (%)

Advise 81.9 90.0 85.8

Effect 86.0 85.3 85.6

Int 94.4 35.4 51.5

Mechanism 89.9 91.7 90.8

Current system 86.5 83.5 85.0

[1] 85.36 82.83 84.08

Table 5. ChemProt results. The results of the current and SotA systems are reported
in Macro/Micro F1 scores.

System [19] Current system

Relation/Score F1 (%) P. (%) R. (%) F1 (%)

CPR:3 71.48 71.8 53.4 61.2

CPR:4 81.28 78.8 87.9 83.1

CPR:5 70.90 81.2 65.7 72.6

CPR:6 79.86 78.0 88.4 82.9

CPR:9 69.87 85.2 69.6 76.6

Macro/Micro score - 79/78.8 73/76.6 75.2/77.7

Macro/Micro score 74.6/76.5 - - -

The results in this section are reported based on the ontology graphs gener-
ated via the data-driven approach. Although the UMLS-based ontology graphs
have a positive impact on the system performance, they yield inferior results
compared to the data-driven approach. The distinction between the UMLS-
based system and the data-driven approach is reported in the ablation study
in Sect. 6. The reason for this inferiority comes from the fact that the cover-
age rate (i.e., the ratio of entities and relationships in a test set available in
the relevant graph embeddings) of the data-driven approach is higher than the
UMLS-based approach. Including other biomedical knowledge graphs leads to
increasing the term coverage hence improving the performance. We postpone
this integration to further studies.

3.1 Ablation

This section reports the impact of each layer and several design decisions on
the system performance. We limit the parameters of this study to the BiGRU
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and CNN base models and the result of adding the type and ontology graph
embeddings into the network. The ablation study is performed over all datasets
to eradicate possible bias as much as possible.

Table 6. Ablation results; the impact of adding each network layer on the system per-
formance. Statistically, significant changes are reported in bold. All scores are reported
as Micro F1 score for the sake of consistency.

Config Model-Dataset AGAC(%) DDI(%) i2b2(%) ChemProt(%)

1 Base CNN 71 76.1 80 70.9

2 Base GRU 72 77.2 81 72.8

3 1 + 2 73 78.6 82 74.1

4 3 + Type layer 75 81.4 85 75.4

5 4 + Ontology layer (UMLS) 77 83.2 88 77.4

6 4 + Ontology layer (data-driven) 78 85 89 77.7

The results in Table 6 show that the base BiGRU configuration consistently
outperforms the CNN one, although the performance of the combined model is
always higher than the sole BiGRU. It suggests that CNN captures some dis-
criminative features which BiGRU encoders commonly lose. Our error analysis
empirically shows that CNN does not work well for strictly directional relation-
ships. For instance, CNN makes a lot of mistakes in recognizing CPR:5 and
CPR:6 (Agonist and Antagonist relations) in the ChemProt dataset while it
recognizes CPR:3 (Upregulator and activator) slightly better than BiGRU. The
impact of type and ontology embeddings layers is also evident from the results.

4 Discussion

Biomedical relation extraction is a complex task. This complexity is partly due
to the linguistic ambiguity and variability inherent in the biomedical entities.
The difficulties involved in RE for different linguistic genres such as scientific
papers (e.g., ChemProt) versus clinical texts (e.g., i2b2) add to this linguistic
complexity. Another reason for such complexity is the wide range of ontologies
in life sciences which lead to the definition of numerous relationships’ types.
Yet another source of complexity is added to RE because relationships are often
directional connections between two entities. However, the text does not always
preserve the order of the entities.

All studied datasets in this work are highly class-imbalanced that poses a
significant issue in multi-class classification tasks. This includes an imbalance
among classes as well as an imbalance between positive and negative instances
of each class. Class imbalance usually works in favor of the majority class via
disregarding the minority class at the training step. TeRP and TrAP in the i2b2
dataset are two evident examples of errors caused by class imbalance. TrCP and
TeCP are the worst-performing classes in this dataset; TeCP is often misclassified
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with TeRP and TrCP is often misclassified with TrAP. In both cases, the class
to which the true classes are wrongly assigned belongs to the majority classes.

Another reason for making errors in classification is that in both cases the
misclassified classes are semantically similar to true classes; In the first case “Test
Conducted to investigate Problem (TeCP)” and “Test Reveal Problem (TeRP)”
and in the second case “Treatment Cause problems (TrCP)” and “Treatment
Administered Problem (TrAP)” are considerably similar. Our experiments on
various embeddings show that an embedding trained on biomedical data yields
fewer misclassified instances of this type.

The worst-performing class in the DDI dataset is also the minority class Int
which often is overshadowed by Effect. One reason for this is that Int is the
super-class denoting any interaction which conveys the same semantics as Effect
may do.

5 Conclusion

Relation Extraction is a fundamental task in biomedical text analytics. There
is a wide range of domains within biomedical and health sciences. Therefore
a universal model capable of extracting relationships across various biomedical
subdomains is highly desirable since it reduces the time and effort required to
design domain-specific architectures. Employing graph ontology and biomedical
types represented as embeddings, we designed a deep neural network for relation
extraction adaptable to various domains given the ontology and type informa-
tion encoded as embeddings layers. The network takes this information directly
from the datasets in a data-driven approach or indirectly from the UMLS as an
external resource. Our system obtains state-of-the-art results on four datasets
from different biomedical sub-domains, namely; Chemical Protein Interactions
(CPI), Drug-Drug Interactions (DDI), Gene functions, and clinical problems and
tests. Due to its uncomplicated yet quick encoders and classifier, it makes rela-
tion extraction feasible on a large volume of textual data and within a limited
time.

Funding Information. This work was funded by the ZHAW Health@N initiative

(grant 9710.3.01.5.0001.08 to M.G.).
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Abstract. Text sentiment transfer aims to flip the sentiment polar-
ity of a sentence (positive to negative or vice versa) while preserv-
ing its sentiment-independent content. Although current models show
good results at changing the sentiment, content preservation in trans-
ferred sentences is insufficient. In this paper, we present a sentiment
transfer model based on polarity-aware denoising, which accurately con-
trols the sentiment attributes in generated text, preserving the content
to a great extent and helping to balance the style-content trade-off.
Our proposed model is structured around two key stages in the sen-
timent transfer process: better representation learning using a shared
encoder and sentiment-controlled generation using separate sentiment-
specific decoders. Empirical results show that our methods outper-
forms state-of-the-art baselines in terms of content preservation while
staying competitive in terms of style transfer accuracy and fluency.
Source code, data, and all other related details are available on Github
(https://github.com/SOURO/polarity-denoising-sentiment-transfer).

Keywords: Sentiment Transfer · Text Style Transfer · Natural
Language Generation

1 Introduction

Text sentiment transfer is the task of changing the sentiment polarity of a text
while retaining sentiment-independent semantic content (e.g., “The food was
tasteless” to “The food was delicious”) [12,14,20,26]. It has been introduced in
the context of textual style transfer, where positive and negative sentiment are
considered distinct styles [14]. Style transfer is motivated by various writing assist
tasks for copywriting or personalized chatbots, e.g. changing review sentiment,
debiasing or simplifying a news text, or removing offensive language [9,14,25].

With the success of deep learning in the last decade, a variety of neural
methods have been proposed for this task [9,27]. If parallel data are provided,
standard sequence-to-sequence models can be directly applied [23]. However,
due to lack of parallel corpora (paired sentences with opposite sentiment and
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P. Sojka et al. (Eds.): TSD 2022, LNAI 13502, pp. 172–186, 2022.
https://doi.org/10.1007/978-3-031-16270-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16270-1_15&domain=pdf
http://orcid.org/0000-0002-1713-2769
http://orcid.org/0000-0002-5753-5538
http://orcid.org/0000-0002-1415-1702
https://github.com/SOURO/polarity-denoising-sentiment-transfer
https://doi.org/10.1007/978-3-031-16270-1_15


Sentiment Transfer Using Polarity-Aware Denoising 173

otherwise identical content), learning sentiment transfer – and text style transfer
in general – from unpaired data represents a substantial research challenge.

A first approach to learning text style transfer from unpaired data disen-
tangles text representation in a latent space into style-independent content and
stylistic attributes (such as sentiment polarity) and applies generative modeling
[7,20,26]. The latent representation needs to preserve the meaning of the text
while abstracting away from its stylistic properties, which is not trivial [11]. In
fact, disentanglement is impossible in theory without inductive biases or other
forms of supervision [13]. A second line of research is prototype editing [3,12],
which focuses specifically on style marker words (also called pivot words, e.g.
sentiment polarity indicating words such as “good” or “bad”). The approach
typically extracts a sentence “template” without the pivots and then fills in
pivots marking the target style. However, since the pivot words are typically
extracted using simple unsupervised probabilistic methods, they are difficult to
distinguish from content words, which again leads to content preservation errors.

Our work combines both research branches and extends them, using addi-
tional supervision. The supervision comes from a sentiment dictionary, which is
applied on pivot words within the context of generative models to learn better
latent representations via the task of polarity-aware denoising. First, we ran-
domly delete (or mask) pivot word(s) of input sentences. Then a shared encoder
pre-trained on general domain helps in preparing a latent representation, fol-
lowed by separate sentiment-specific decoders that are used to change the sen-
timent of the original sentence. We follow back-translation for style transfer
approach proposed by Prabhumoye et al. [20] to represent the sentence meaning
in the latent space.

Our contributions are summarized as follows:

– We design a sentiment transfer model using an extended transformer archi-
tecture and polarity-aware denoising. Our use of separate sentiment-specific
decoders and polarity-aware denoising training allow more control over both
the target sentiment and the sentiment-independent content.

– We derive a new non-parallel sentiment transfer dataset from the Ama-
zon Review Dataset [17]. It is more topically diverse than earlier used
datasets Yelp [12] and IMDb [2], which were majorly focused on movie and
restaurant/business-related reviews. Our dataset and code is publicly avail-
able.1

– We introduce polarity-masked BLEU (MaskBLEU) and similarity score
(MaskSim) for automatic evaluation of content preservation in this task.
These metrics are derived from the traditional BLEU score [19] and Sentence
BERT-based cosine similarity score [24]. In our approach, we mask polarity
words beforehand for sentiment-independent content evaluation.

– Both automatic and human evaluations on our dataset show that our
proposed approach generally outperforms state-of-the-art (SotA) baselines.
Specifically, with respect to content preservation, our approach achieves sub-
stantially better performance than other methods.

1 https://github.com/SOURO/polarity-denoising-sentiment-transfer.

https://github.com/SOURO/polarity-denoising-sentiment-transfer
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2 Related Work

Sentiment Transfer. A common approach to the sentiment transfer task is to
separate content and style in a latent space, and then adjust the separated style.
Hu et al. [7] use a variational autoencoder and factor its latent representation
into a style-independent and stylistic parts. Fu et al. [4] compare a multi-decoder
model with a setup using a single decoder and style embeddings. Shen et al.
[26] propose a cross-aligned auto-encoder with adversarial training. Prabhumoye
et al. [20] propose to perform text style transfer through back-translation. In a
recent work, He et al. [6] apply variational inference. Although these approaches
successfully change the text style, they also change the text content, which is a
major problem. Many previous methods [4,7,20,26] formulate the style transfer
using the encoder-decoder framework. The encoder maps the text into a style-
independent latent representation, and the decoder generates the target text
using the latent representation and a style marker. Again, a major issue of these
models is poor preservation of non-stylistic semantic content.

Content Preservation. To further deal with the above problem, Li et al. [12] first
extract content words by deleting phrases, then retrieve new phrases associated
with the target attribute, and finally use a neural model to combine these into
a final output. Luo et al. [14] employ a dual reinforcement learning framework
with two sequence-to-sequence models in two directions, using style classifier and
back-transfer reconstruction probability as rewards. Though these works show
some improvement, they are still not able to properly balance preserving the
content with transferring the style. Our polarity-aware denoising technique aims
to solve this problem by specifically targeting and changing polarity words while
preserving the rest of the content (see Sect. 4.3).

Evaluation. Another challenge remains in the evaluation of textual style trans-
fer. Previous work on style transfer [2,6,7,20] has re-purposed evaluation metrics
from other fields, such as BLEU from machine translation [19] and PINC from
paraphrasing [1]. However, these metric cannot evaluate style transfer specif-
ically with respect to preservation of content [27] as they do not take into
account the necessity of changing individual words when altering the style.
Intended differences between the source sentence and the transferred sentence
are thus penalized. In this regard, we have introduced polarity masked BLEU
score (MaskBLEU) and polarity masked similarity measure (MaskSim), where
we have masked the polarity words beforehand (see Sect. 5.3).

3 Approach

3.1 Task Definition

Given two datasets, Xpos = {x
(pos)
1 , . . . , x

(pos)
m } and Xneg = {x

(neg)
1 , . . . , x

(neg)
n }

which represent two different sentiments pos and neg , respectively, our task is
to generate sentences of the desired sentiment while preserving the meaning of
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the input sentence. Specifically, we alter samples of dataset Xpos such that they
belong to sentiment neg and samples of Xneg such that they belong to sentiment
pos, while sentiment-independent content is preserved. We denote the output
of dataset Xpos transferred to sentiment neg as Xpos→neg = {x̂

(neg)
1 , . . . , x̂

(neg
m )}

and the output of dataset Xneg transferred to sentiment pos as Xneg→pos =
{x̂

(pos)
1 , . . . , x̂

(pos)
n }.

Fig. 1. Our sentiment transfer pipeline. In the pipeline, we (1) translate the source
sentence from English to German using a transformer-based machine translation (MT)
system; (2) apply noise on the German sentence using a German polarity lexicon; (3)
encode the German sentence to latent representation using an encoder of German-
to-English translation model; (4) decode the shared latent representation using the
decoder for the opposite sentiment.

3.2 Model Overview

Figure 1 shows the overview of our proposed architecture. Following Prabhumoye
et al. [20], we first translate the input text x in the base language to a chosen
intermediate language x̄ using a translation model (see Sect. 4.1).2 Next, we
prepare a noisy text xnoise from x̄ using polarity-aware noising with word deletion
or masking probabilities θN (see Sect. 4.3):

xnoise = Noise(x̄; θN ). (1)

We provide xnoise to the encoder of the x̄ → x̂ back-translation model (where
x̂ is a text in the base language with changed sentiment polarity). The encoder
first converts the text to the latent representation z as follows:

z = Encoder(xnoise; θE), (2)

2 We work with English as base language and German as intermediate language, see
Sect. 5.1.
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where θE represent the parameters of the encoder.
Two separate sentiment-specific decoders are trained to decode the original

positive and negative inputs by passing in their latent representations z:

xpos = Decoderpos(z; θDpos
) (3)

xneg = Decoderneg(z; θDneg
). (4)

At inference time, sentiment transfer is achieved by decoding the shared
latent representation using the decoder trained for the opposite sentiment, as
follows:

x̂neg = Decoderpos(z; θDpos
) (5)

x̂pos = Decoderneg(z; θDneg
) (6)

where x̂neg, x̂pos are the sentences with transferred sentiment conditioned on
z and θDpos

and θDneg
represent the parameters of the positive and negative

decoders, respectively.

4 Model Variants

In all our experiments, we train sentiment transfer models using back-translation
(Sect. 4.1) based on the transformer architecture [28]. First, we present baselines
for sentiment transfer with simple style conditioning (Sect. 4.2). Next, we propose
an approach based on an extended transformer architecture where we use sep-
arate modules (either the whole transformer model, or the transformer decoder
only) for the respective target sentiment (Sect. 4.2). We further improve upon
our approach using polarity-aware denoising (Sect. 4.3), which we propose as a
new scheme for pre-training the sentiment transfer models.

4.1 Back-translation

Back-translation for style transfer was introduced in Prabhumoye et al. [20]. Fol-
lowing their approach, we use translation into German and subsequent encoding
in a back-translation model to get a latent text representation for our senti-
ment transfer task. Prior work has also shown that the process of translating
a sentence from a source language to a target language retains the meaning of
the sentence but does not preserve the stylistic features related to the author’s
traits [21]. A pure back-translation approach (without any specific provisions for
sentiment) is referred to as Back-Translation in our experiments.

We also experimented with an auto-encoder, but we have found that the back-
translation model gives better results for sentiment transfer. We hypothesise that
it is due to the fact that back-translation prevents the system from sticking to
a particular wording, resulting in a more abstract latent representation.
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4.2 Our Baseline Models

In addition to a pure back-translation model, we present several straightforward
baselines:

– Style Tok is a back-translation model with added sentiment identifiers (<
pos > or < neg >) as output starting tokens. At the time of sentiment
transfer, we decode the output with a changed sentiment identifier (< pos >
→ < neg >, < neg > → < pos >).

– Two Sep. transformers: To get more control over sentiment-specific gener-
ation, we train two separate transformer models for positive and negative
sentiment, using only sentences of the respective target sentiment. During
inference, the model is fed with inputs of the opposite sentiment, which it did
not see during training.

– Shrd Enc + Two Sep Decoders: We extend the above approach by keeping
decoders separate, but using a shared encoder. During training, all examples
are passed through the shared encoder, but each decoder is trained to only
generate samples of one sentiment. Sentiment transfer is achieved by using
the decoder for the opposite sentiment.

– Pre Training Enc: Following Gururangan et al. [5], we introduce a variant
where the shared encoder is pretrained for back-translation on general-domain
data. The pre-trained encoder is then further fine-tuned during sentiment
transfer training.

4.3 Polarity-Aware Denoising

We devise a task-specific pre-training [5] scheme for improving the sentiment
transfer abilities of the model. The idea of our pre-training scheme—polarity-
aware denoising—is to first introduce noise, i.e. delete or mask a certain pro-
portion of words in the intermediate German input to the back-translation step,
then train the model to remove this noise, i.e. produce the original English sen-
tence with no words deleted or masked. To decide which words get deleted or
masked, we use automatically obtained sentiment polarity labels (see Sect. 5.2
for implementation details). This effectively adds more supervision to the task
on the word level. We apply three different approaches: deleting or masking (1)
general words (i.e., all the words uniformly), (2) polarity words (i.e., only high-
polarity words according to a lexicon), or (3) both general and polarity words
(each with a different probability).

We use polarity-aware denoising during encoder pretraining, following the
shared encoder and separate decoders setup from Sect. 4.2. The encoder is further
fine-tuned during the sentiment transfer training.

5 Experiments

We evaluated and compared our approaches described in Sect. 4 with several
state-of-the-art systems [6,12,14,20,26,29] on two datasets (see Sect. 5.1). We
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first describe our training setup (Sect. 5.2), then detail our automatic evalua-
tion metrics (Sect. 5.3) and human evaluation (Sect. 5.4), and finally discuss the
results (Sect. 5.5).

5.1 Datasets

For our back-translation process and model pretraining, we used the WMT14
English-German (en-de) dataset (1M sentences) from Neidert et al. [16].

For finetuning and experimental evaluation, we built a new English dataset
for sentiment transfer, based on the Amazon Review Dataset [17]. We have
selected Amazon Review because it is more diverse topic-wise (books, electronics,
movies, fashion, etc.) than existing sentiment transfer datasets, Yelp [12] and
IMDb [2], which are majorly focused on movie and restaurant/business-related
reviews. For comparison with previous work, we also evaluate our models on the
benchmark IMDb dataset [2].

While the Amazon Review data is originally intended for recommendation, it
lends itself easily to our task. We have split the reviews into sentences and then
used a pre-trained transformer-based sentiment classifier [30] to select sentences
with high polarity. Our intuition is that high-polarity sentences are more infor-
mative for the sentiment transfer task than neutral sentences. We filter out short
sentences (less than 5 words) since it is hard to evaluate content preservation
for these sentences. We also ignored sentences with repetitive words (e.g., “no
no no no thanks thanks.”) because these sentences are noisy and do not serve
as good examples for the sentiment transfer model. We aim at comparable size
to existing datasets [12]: the resulting data has 102k positive and 102k nega-
tive examples in total, with 1+1k reserved for validation and testing for each
sentiment. The average sentence length in our data is 13.04 words.

5.2 Training Setup

In all our experiments, we use a 4-layer transformer [28] with 8 attention heads
per layer. Both embedding and hidden layer size are set to 512. The same model
shape is used for both the initial translation into German and the subsequent
model handling back-translation, denoising, and sentiment transfer.

We use a German polarity lexicon to automatically identify pivot words
for polarity-aware denoising. We prepared the German polarity lexicon by first
translating the words from German to English using an off-the-shelf translation
system [10], followed by labeling the words with positive and negative labels
using the English NLTK Vader lexicon [8]. We performed a manual check of the
results on a small sample.

We test various combinations of noise settings w.r.t. noise probability, noise
type (general or polarity-aware denoising), and noise mode (deleting or masking).
Parameter values are pre-selected based on our preliminary experiments with the
translation model (see Sect. 4.1). The parameters are encoded in the name of the
model as used in Table 1 (see the table caption for details).
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5.3 Automatic Evaluation Metrics

To evaluate the performance of the models, we compare the generated sam-
ples along three different dimensions using automatic metrics, following previous
work: (1) style control, (2) content preservation, and (3) fluency.

Standard Metrics

– Style Accuracy: Following prior work, we measure sentiment accuracy auto-
matically by evaluating the sentiment of transferred sentences. We use a pre-
trained transformer-based sentiment analysis pipeline3 from Huggingface [30].

– Fluency: We use the negative log-likelihood from the GPT-2 [22] language
model as an indirect metric for evaluating fluency. For context, we also cal-
culate average sentence lengths of the sentiment-transferred sentences.

– Content Preservation: Following previous work, we compute BLEU score
[19] between the transferred sentence and its source. Higher BLEU indicates
higher n-gram overlap between the sentences, which is generally viewed as
proxy for content preservation. We also compute Sentence BERT [24] based
cosine similarity score to match the vector space semantic similarity between
the source and the transferred sentence. None of the techniques is capable of
evaluating style transfer methods specifically with respect to preservation of
content in style transfer [27]. These metrics do not take into account the neces-
sity of changing individual words while altering the sentence style. Intended
differences between the source sentence and the transferred sentence are thus
penalized.

Newly Introduced Metrics for Content Preservation. To avoid the prob-
lems of the commonly used metrics, it makes sense in sentiment transfer to
evaluate the content and similarity while ignoring any polarity tokens. Thus,
we introduce MaskBLEU and MaskSim scoring methods – these are identical to
BLEU and cosine similarity, but they are computed on sentences where pivot
words (based on NLTK Vader sentiment dictionary [8]) have been masked. This
allows measuring content preservation while ignoring the parts of the sentences
that need to be changed.

3 https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english.

https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english
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Table 1. Automatic evaluation. Accuracy : Sentiment transfer accuracy. Sim and B :
Cosine similarity and BLEU score between input and sentiment-transferred sentence.
M/Sim and M/B : MaskSim and MaskBLEU (similarity and BLEU with polarity words
masked, see Sect. 5.3). LM : Average log probability assigned by vanilla GPT-2 language
model. Avg : Average length of transferred sentences. Avg : Average of sentiment transfer
accuracy, 100*MaskSim and MaskBLEU. Scores are based on a single run, with iden-
tical random seeds. First two sections show our own baselines, third section shows our
models with denoising (with the best settings denoted SCT1 and SCT2, see Sect. 5.5).
The bottom section shows a comparison with state-of-the-art models. Names of models
with denoising reflect settings as follows: W denotes WMT pretraining data, A denotes
Amazon finetuning data; the following tokens denote noise probability values are asso-
ciated with the respective data. G/P represents general/polarity token noising, D/M
represents noising mode deletion/masking. E.g. WG03P08-AG03P08-D : noise proba-
bilities on WMT and Amazon data are identical, noising by deletion on both general
and polarity token noising is applied (with probabilities 0.3 and 0.8, respectively).

Models Acc Sim M/Sim B M/B LM Len Avg

Back-Translation Only (Section 4.1)

Back-translation only 0.4 0.828 0.768 28.0 45.3 -78.6 11.9 40.9

Our Baseline Models (Section 4.2)

Style Tok 13.2 0.536 0.560 4.8 8.6 -52.1 7.6 25.9

Two Sep. transformers 89.3 0.394 0.611 6.8 19.6 -79.0 13.7 56.7

Shrd Enc + Two Sep Decoders 88.1 0.397 0.600 7.3 20.1 -78.0 12.5 56.0

Pre Training Enc 55.3 0.592 0.732 22.6 33.9 -93.3 13.4 54.1

Our Models (with Denoising) (Section 4.3)

WG01-AG01-D 71.4 0.517 0.694 17.1 29.8 -88.7 13.7 56.9

WG01-AG01-M 68.0 0.536 0.711 19.4 31.1 -86.3 12.6 56.7

WG03-AG03-D 83.0 0.447 0.648 11.7 24.4 -83.0 13.7 57.4

WG03-AG03-M 78.8 0.481 0.669 14.2 28.2 -82.7 13.0 58.0

WP08-AP08-D 66.9 0.528 0.701 19.5 31.3 -82.8 12.4 56.1

WP08-AP08-M 64.0 0.547 0.726 21.4 34.0 -89.1 12.9 56.9

WP1-AP1-D 58.7 0.570 0.727 22.7 33.1 -87.2 12.2 54.8

WP1-AP1-M 58.9 0.567 0.716 22.2 33.0 -86.5 12.2 54.5

WG03-AG01-D 68.0 0.529 0.697 17.9 30.9 -89.5 13.3 56.2

WG03-AG01-M 80.7 0.473 0.665 13.9 27.5 -82.8 13.1 58.2

WG01-AG03-D (=SCT2) 85.2 0.441 0.646 11.8 25.4 -79.8 13.1 58.4

WG01-AG03-M 70.0 0.534 0.711 19.7 32.3 -84.3 12.4 57.8

WP08-AP1-D 61.6 0.578 0.736 22.5 35.0 -94.4 13.4 56.7

WP08-AP1-M 60.9 0.554 0.724 22.0 33.3 -85.5 12.6 55.6

WP1-AP08-D 68.5 0.525 0.699 19.3 31.1 -84.0 12.4 56.5

WP1-AP08-M 61.1 0.560 0.714 21.5 32.9 -86.0 12.1 55.1

WG03-AP08-D 67.0 0.533 0.697 20.3 31.7 -84.3 12.5 56.1

WG03-AP08-M 65.7 0.546 0.725 21.2 33.5 -85.0 12.5 57.2

WP08-AG03-D 83.3 0.436 0.635 11.0 24.3 -80.5 13.3 57.0

WP08-AG03-M 79.6 0.473 0.665 13.2 26.9 -83.1 13.2 57.6

WG03P08-AG03P08-D 65.5 0.547 0.705 20.3 32.6 -90.4 13.2 56.2

WG03P08-AG03P08-M (=SCT1) 82.0 0.460 0.665 13.7 27.4 -79.6 12.8 58.6

State-of-the-Art Models

Shen et al. [26] 88.6 0.346 0.513 3.2 18.3 -74.0 10.9 52.7

Li et al. [12] 69.9 0.457 0.632 14.7 25.3 -85.1 12.2 52.8

Luo et al. [14] 92.4 0.279 0.468 0.0 9.1 -42.0 7.8 49.4

Prabhumoye et al. [20] 93.5 0.308 0.504 0.9 15.2 -61.0 10.3 53.0

Wang et al. [29] 79.3 0.385 0.545 10.6 20.3 -116.8 15.1 51.4

He et al. [6] 91.5 0.352 0.542 9.5 21.8 -65.9 8.2 55.8
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Table 2. Automatic evaluation on the IMDb Dataset (see Table 1 for metrics expla-
nation).

Models Acc Sim M/Sim B M/B LM Len Avg

Prabhumoye et al. [20] 87.1 0.345 0.480 2.7 14.3 -63.5 10.0 49.8

Li et al. [12] 21.0 0.587 0.668 18.3 25.9 -83.6 15.3 37.9

Wang et al. [29] 84.0 0.357 0.456 9.2 13.2 -63.9 10.8 47.6

He et al. [6] 81.7 0.458 0.576 29.0 41.8 -83.6 15.3 60.4

SCT1 (WG03P08-AG03P08-M) 85.3 0.435 0.612 28.6 42.3 -86.4 15.9 62.9

SCT2 (WG01-AG03-D) 88.2 0.379 0.588 25.8 39.2 -79.6 15.1 62.1

Table 3. Human evaluation of sentiment transfer quality, content preservation, and
fluency. Average of 1-5 Likert scale ratings on 100 examples from our Amazon Review
data.

Models Sentiment Content Fluency

Prabhumoye et al. [20] 3.95 1.19 3.56

Li et al. [12] 3.35 2.3 3.34

Wang et al. [29] 3.48 1.67 2.54

He et al. [6] 3.69 1.66 3.26

SCT1 (WG03P08-AG03P08-M) 3.94 2.61 3.73

SCT2 (WG01-AG03-D) 3.99 2.56 3.79

5.4 Human Evaluation

As automated metrics for language generation do not correlate well with human
judgements [18], we conduct an in-house human evaluation with five expert
annotators. We randomly select 100 sentences (50 for each sentiment) from the
our Amazon Review test set. The annotators rate model outputs on using a 1-5
Likert scale for style control, content preservation and fluency.

5.5 Results

Automatic Metrics results on our Amazon Review data are shown in Table 1.
Overall, there is clearly a tradeoff between preserving sentiment-independent
content and achieving the desired target sentiment. Models which perform very
well in sentiment transfer usually achieve worse results on content preservation.
This tradeoff is documented by correlations between the automatic metrics (see
Fig. 2). Sentiment accuracy is negatively correlated with BLEU score, similarity
measures as well as our newly introduced MaskBLEU and MaskSim scores.

The translation-only and style token baselines do not perform well on chang-
ing the sentiment. Using two separate decoders leads to major sentiment transfer
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Fig. 2. Correlations between automatic evaluation metrics on our Amazon Review
data: sentiment accuracy is negatively correlated with BLEU, semantic similarity, and
their masked variants.

improvements, but content preservation is poor. Using the pre-trained encoder
has helped to improve the content preservation, but sentiment transfer accuracy
degrades significantly.

The main motivation for our work was to find a denoising strategy which
offers the best balance between sentiment transfer and content preservation. Our
results suggest putting an emphasis on denoising high-polarity words results in
the best ratio between the sentiment transfer accuracy and content preservation
metrics. Additionally, our models show the ability to produce fluent sentences,
as shown by the language model score: our models’ scores are similar to the
back-translation baseline; other models only reach higher language model scores
when producing very short outputs.

Overall, our denoising approaches are able to balance well between sentiment
transfer and content preservation. On content preservation, they perform much
better than state-of-the-art models, and they stay competitive on style accu-
racy. We selected two of our model variants – SCT1=WG03P08-AG03P08-M
and SCT2=WG01-AG03-D – as the ones giving the best style-content trade-off
(SCT) according to the average of sentiment accuracy, masked similarity and
MaskBLEU (see Table 1).

Automatic metrics on the IMDb dataset [2] are shown in Table 2, comparing
our selected SCT1 and SCT2 models with state-of-the-art. Our models outper-
form the state-of-the-art in terms of sentiment accuracy and reach competitive
results in terms of similarity, BLEU, and fluency. Same as on our Amazon Review
data, they provide the best style-content trade-off (according to the averaged
metric defined in Table 1).

Human Evaluation Results: We compare our best SCT1 and SCT2 models
(selected above) with four state-of-the-art models: two of the most recent models
[6,29], and the models with best accuracy [20] and MaskBLEU score [12].
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We have evaluated over 600 model outputs. Results are presented in Table 3.
The human evaluation results mostly agree with our automatic evaluation
results. The results also show that our models are better in content preservation
than the competitor models.

Table 4. Example outputs comparison on samples from our Amazon Reviews dataset.
Sentiment marker words (pivots) are colored. Note that our models preserve content
better than most others.

Negative → Positive Positive → Negative

Source movie was a waste of
money : this movie
totally sucks .

my daughter loves them :
)

Prabhumoye
et al. [20]

stan is always a great place to
get the food .

do n’t be going here .

Li et al. [12] our favorite thing was a movie
story : the dream class roll !

my daughter said i was still not
acknowledged .

Wang et al. [29] movie is a delicious atmo-
sphere of : this movie totally
sucks movie !

i should not send dress after
me more than she would said
not ?

He et al. [6] this theater was a great place
, we movie totally amazing .

yup daughter has left ourselves
.

SCT1 (WG03P08-
AG03P08-M)

movie : a great deal of money
: this movie is absolutely per-
fect .

my daughter hates it : my
daughter .

SCT2 (WG01-AG03-
D)

this movie is a great deal of
money.

my daughter hated it .

Source nothing truly interesting
happens in this book .

best fit for my baby : this
product is wonderful ! !

Prabhumoye
et al. [20]

very good for the best . bad customer service to say
the food , and it is n’t .

Li et al. [12] nothing truly interesting hap-
pens in this book .

my mom was annoyed with my
health service is no notice .

Wang et al. [29] nothing truly interesting hap-
pens in this book make it
casual and spot .

do not buy my phone : this bad
crap was worst than it ?

He et al. [6] haha truly interesting happens
in this book .

uninspired .

SCT1 (WG03P08-
AG03P08-M)

in this book is truly a really
great book .

not good for my baby : this
product is great ! ! ! ! ! ! ! !

SCT2 (WG01-AG03-
D)

in this book is truly awesome . not happy for my baby : this
product is not great ! !
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We further examined a sample of the outputs in more detail to understand
the behavior of different models. We found that state-of-the-art models tend
to lose the content of the source sentence, as shown in the example outputs in
Table 4. On the other hand, our models mostly preserve sentiment-independent
content well while successfully transferring the sentiment. We conclude that with
our models, there is a good balance between preserving the original sentiment-
independent content and dropping the source sentiment, and existing state-of-
the-art models tend to sacrifice one or the other.

6 Conclusions and Future Work

We proposed an approach for text sentiment transfer based on the transformer
architecture and polarity-aware denoising. Experimental results on two datasets
showed that our method achieves competitive or better performance compared to
state-of-the-art. Our architecture provides a good style-content tradeoff mainly
due to two elements: (1) separate sentiment-specific decoders providing explicit
target sentiment control, and (2) polarity-aware enhanced denoising removing
sentiment implicitly at the token level. As shown by human evaluation and our
manual inspection, our models still sometimes fail to preserve the meaning of
the original. While we improve upon previous works on content preservation,
this remains a limitation.

In the future, we plan to adapt our method to the different kind of style
transfer tasks such as formality transfer or persona-based text generation. Lex-
icons for the required attribute makers can be extracted by mining stylistic
markers from generic dictionaries, or from personality-annotated data [15]. We
also intend to focus on better controlling content preservation with the use of
semantic parsing.
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Abstract. This paper introduces Linguoplotter, a workspace-based
architecture for generating short natural language descriptions. All pro-
cesses within Linguoplotter are carried out by codelets, small pieces of
code each responsible for making incremental changes to the program’s
state, the idea of which is borrowed from Hofstadter et al. [6]. Codelets
in Linguoplotter gradually transform a representation of tempera-
tures on a map into a description which can be output. Many processes
emerge in the program out of the actions of many codelets, including
language generation, self-evaluation, and higher-level decisions such as
when to stop a given process, and when to end all processing and pub-
lish a final text. The program outputs a piece of text along with a sat-
isfaction score indicating how good the program judges the text to be.
The iteration of the program described in this paper is capable of lin-
guistically more diverse outputs than a previous version; human judges
rate the outputs of this version more highly than those of the last; and
there is some correlation between rankings by human judges and the
program’s own satisfaction score. But, the program still publishes disap-
pointingly short and simple texts (despite being capable of longer, more
complete descriptions). This paper describes: the workings of the pro-
gram; a recent evaluation of its performance; and possible improvements
for a future iteration.

Keywords: Language generation · Self-evaluation · Workspace ·
Codelet

1 Introduction

Work on language generation and language understanding are often kept sepa-
rate, but in humans the two processes are intertwined [9]: for example, simul-
taneous use of production and comprehension allow people to interweave con-
tributions in dialogue [2]. This paper introduces Linguoplotter, an attempt
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at a cognitively plausible model of language generation in which constant self-
evaluation and selection between competing ideas are integral to the generative
process. The model is tested in a toy domain of temperatures on a fictional map.

Many of the core ideas of the program are borrowed from the Fluid Analogies
Research Group, whose programs model high-level perceptual processes involved
in analogy making [6]. Their programs such as Copycat [8] and Tabletop [4]
operate in different toy domains, but in essence do the same thing: search for a
compact representation of their two inputs which allows for a satisfying mapping
and an inference that solves a problem. Unlike other contemporary models of
analogy-making such as the Structure Mapping Engine [3], the programs are not
provided with a ready-made high-level representation of the input, but generate
their own representation as part of the analogy making process.

Linguoplotter is not directly concerned with analogy making, but does
create mappings from data into natural language descriptions and generates
high-level representations of its input as part of the process. It avoids a pipeline
architecture typical of many language generating programs which keep the
analysis of data separate from the conversion to linguistic form (For example
Reiter [11], Leppänen [7]). The program is thus more concordant with work such
as by Turner [13] suggesting that language and narrative frames can influence
the way we perceive the world.

This work is open to the charge of being old-fashioned and restricted to
toy domains, but its aim is to produce an architecture which, like a neural
network, displays high-level behaviour emergent from the interactions of small
parts, while, like symbolic programs, is self-explanatory and easy to interpret.

2 How LINGUOPLOTTER Works

Linguoplotter
1 centers on a bubble chamber which contains a number of

spaces representing the program’s long- and short-term memory. Structures are
built and connected to each other in these spaces and the best, most relevant
structures bubble to the surface of the program’s attention by receiving boosts
in activation and spreading activation to related structures.

Long-term memory includes concepts (nodes located at prototypical points
in conceptual spaces), frames (recursive structures which map between seman-
tics and text), and letter-chunks (chunks of text ranging from morphemes to
sentences) in a network of spreading activation.

Short-term structures built as the program runs include chunks which group
together similar data points; labels which indicate that a node is an instance of
a particular concept; relations which link items to create instances of relational
concepts such as more or less); correspondences which map between items in
different spaces (usually for the purpose of filling a slot in a frame); and views
which collect together a consistent group of correspondences. Views have an
output space where a piece of text made of letter-chunks is built (Fig. 1).

1 Source code is available at https://github.com/georgeawright/linguoplotter.

https://github.com/georgeawright/linguoplotter
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All processing on structures is performed by codelets. Each codelet has a
small, specific task and after running, spawns another codelet to carry out follow-
up work. Codelets have an urgency representing the importance of their work
which the coderack uses when stochastically selecting the next codelet to be run.

Fig. 1. Structures built by codelets inside a single view. Solid blue lines are labels and
relations; dotted red lines are correspondences; green boxes are chunks. (Color figure
online)

Most codelets belong to a cycle which begins with a suggester codelet. A
suggester finds target structures and suggests a chunk or link that can be built
with them. For example, a label suggester classifies the proximity of a chunk to
a concept and spawns a label builder with an urgency reflecting its confidence
that the chunk belongs to that concept. A builder codelet builds structures and
spawns an evaluator codelet. An evaluator decides how good a structure is and
assigns it a quality score. It then spawns a selector codelet that chooses between
alternative structures, for example two different labels belonging to the same
chunk, and probabilistically boosts the activation of the best one. The selector
codelet spawns a suggester codelet to continue building related structures and
an evaluator so as to maintain the process of selecting the best structure.

Left unchecked, this forking of codelet cycles would cause an explosion in
the population of the coderack, hence coderack cleaners remove codelets that
are no longer contributing to an increase in the program’s satisfaction. In order
to avoid the depletion of the coderack population and to make sure that active
concepts and frames have structures suggested for them, factory codelets spawn
suggesters to initiate new cycles of codelets (Fig. 2).
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Fig. 2. Codelet types that run in the program. Solid arrows show each type’s follow-up
type. Dashed arrows show which types a coderack cleaner can remove.

The running of codelets and selection of structures all happens with some
degree of randomness which is determined by satisfaction. This is a measure of
the overall quality of structures in the bubble chamber. When the program lacks
active high quality structures, it is more random and pursues more options in
the search for a solution, but once good quality structures have been built and
activated, it proceeds more deterministically towards a finished piece of text.

Earlier iterations of the program were prone to too much randomness and
failed to narrow down on a single pathway towards a solution. This iteration of
the program has a focus setter codelet which chooses a single view at a time as
focus. Once a view is set as focus, codelets are targeted towards it and fill in the
slots in its frame. Having a focus gives the program a short-term sub-goal and
a narrower search space. A lack of progress or completion of the view causes a
focus unsetter to remove the view from focus. The satisfaction of the program
then falls; randomness increases; and the search space broadens (Fig. 3).

Linguoplotter also has a longer-term Worldview (an idea borrowed from
Tabletop [4]) which represents the best view completed so far. Its output space
contains a candidate piece of text for publication. Every time a worldview setter
codelet runs it searches for a better alternative to the current worldview. If it

Fig. 3. Bubble chamber satisfaction over a run of the program. Satisfaction spikes
when the focus is set and its slots filled in. Satisfaction dips when the focus is unset.
Satisfaction increases over time as the worldview is set or improved upon.
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fails, it sends activation to the publish concept. Eventually the program fails
to improve on itself and if a publisher codelet runs when the publish concept is
fully activated, the program halts and the text in the worldview is output.

2.1 Macro-level Processes in LINGUOPLOTTER

Macro-level processes emerge from Linguoplotter’s interacting components
such as: cycles that reinforce certain concepts and frames; alternation between
more engaged and more reflective behaviour; and the gradual decision to publish.

Self-Reinforcing Concepts. When a selector codelet chooses from competing
alternatives, it spawns a follow up suggester to suggest another related structure,
for example another link with the same concept or another view with the same
frame. This results in a snowballing of the use of certain conceptual structures.
For example, having created a sentence with a certain frame, the program would
be likely to start another sentence with the same frame.

Cycles of Engagement and Reflection. As the program runs, the changing
satisfaction score affects the breadth of processing. When the focus is set and
slots in its frame are filled in, satisfaction spikes and processing becomes more
deterministic and dedicated to that set of structures. But when there is no focus,
or when little progress is being made on the focus, processing is more random and
lacks a clear aim. This is analogous to Sharples’ cycle of engagement and reflec-
tion [12], the idea that humans alternate between bursts of purposeful behaviour
and periods of greater reflection and exploration. Unlike Mexica [10], a model of
narrative generation based on Sharples’ idea, this program’s cycle of engagement
and reflection is not explicitly coded, but results from a feedback loop between
codelets altering the bubble chamber and bubble chamber satisfaction adjusting
the randomness of codelet selection.

Publishing. The decision to publish is the responsibility of worldview setter
and publisher codelets, but can be affected by the intervention of other codelets.
Repeated failure of worldview setters results in the boosting of the publish

concept. This increases the likelihood of publication. But, if other codelets run
and maintain other processes, the publish concept will decay. The interactions
of different processes thus result in a period of indecision. Only a sustained
stream of failed worldview-setting can lead to publication.

2.2 Developing the Program

Linguoplotter’s many interleaved processes give it great potential, but also
make it difficult to optimize. Its behaviour can be altered by tweaking a number
of parameters, such as the method for calculating each codelet’s urgency; the
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method used to define the quality of each structure; and the formula for cal-
culating satisfaction. There are also a number of hyper-parameters, such as the
rate at which activation spreads between structures, the decay rate of activation,
and the method for determining how random the program should be.

As shown by the outputs of the program in Table 1, the program in its current
form is stuck in a local optimum where it is capable of producing outputs which
are, for the most part, true descriptions of the input, but which lack detail
and leave some of the input undescribed, even though it is capable of linking
sentences with connectives such as and to produce a more full description.

Calculating the Satisfaction Score. Satisfaction has three components: gen-
eral satisfaction G, focus satisfaction F , and worldview satisfaction W . The
overall satisfaction of the program S is given by:

S = max(F,mean(G,W ))

If there is a view in the focus, otherwise:

S = mean(G,W )

This limits satisfaction to 0.5 when there is no worldview and no focus and
prevents satisfaction from dropping to 0 when an empty view is placed in the
focus (this would result in highly random and unfocused behaviour).

General Satisfaction. G is the mean quality of all the input and output spaces
of the bubble chamber’s views. A space’s quality is determined by:

space quality =
∑

a∈A quality(a) × activation(a)
|A|

where A is the set of structures in the space with an activation greater than 0.5.
A high quality space must contain active high quality structures.

Worldview Satisfaction. W is calculated as:

W = AND(OR(Q,
D

10
), OR(P,

1
T

))

where
AND(X,Y ) = X × Y

OR(X,Y ) = X + Y −X × Y

Q is the quality of the worldview as determined by evaluator codelets; D is
the depth of the view’s parent frame (depth is a number between 1 and 10, with
lower numbers given to frames for simple phrases and higher numbers given to
sentences and conjunctions); P is the proportion of the input involved in the
view; T is the total number of frame types used by the view (i.e. types of phrase
constituting the sentence). This satisfaction metric encourages the program to
output sentences which are correct (high Q), complete (high P ), grammatically
complete (high D), and succinct (low T ).
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Focus Satisfaction. F is calculated as:

F = mean(mean correspondence quality,
|FilledSlots|

|Slots| )

where correspondence qualities are determined by codelets according to the qual-
ity of their arguments and how well they fill in frame slots.

Optimizing the Satisfaction Score. Changes to the satisfaction score affect
the program’s randomness and the texts that it prefers to publish. For example,
calculating worldview satisfaction as the product of Q, D

10 , P , and 1
T generally

lowers overall satisfaction and makes the program unlikely to terminate, even
after finding a more complete description than the current iteration. Alterna-
tively, using the mean of the four components to calculate worldview satisfaction
can result in very high satisfaction scores and causes the program to publish an
output much earlier than the current iteration before any significant traversal of
the search space. Further investigation is required in the search for a satisfaction
formula which allows the program to distinguish between good and bad outputs
and to estimate a good time to stop working and publish.

3 Performance of LINGUOPLOTTER

Linguoplotter was tested on the four inputs shown in Fig. 4. Three of these
are variations of a similar input. The fourth is a more challenging map which has
little or no pattern in the temperatures. The program was run 30 times for each
map. Table 1 shows the mean and standard deviation for the number of codelets
that were run before the program published a description of each input. It also
shows the output that gave the highest mean satisfaction score, the output that
was most frequently output (if there were two or more equally frequent outputs,
the one one with highest mean satisfaction is shown), and the output with the
lowest mean satisfaction score. Also shown for each input are two hand-selected
human generated texts (one a detailed description and one written in note-form),
and a text output by a previous version (judged by humans to be more correct
than its other outputs.)

(a) Input 1 (b) Input 2 (c) Input 3 (d) Input 4

Fig. 4. The four maps described by the program.
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3.1 Method for Evaluation by Human Judges

The program’s outputs are evaluated through pairwise comparison. This avoids
the difficulty of requesting a numeric score for a subjective judgement (describ-
ing a text as 100% interesting would be nonsensical) and results in less variance
between respondents [1]. It also allows for direct comparison between different
iterations of the program and humans. This iteration of the program was eval-
uated using the 24 texts in Table 1.

Table 1. Texts for inputs 1-4 (D: human (detailed); N: human (note-form); B: best
satisfaction; F: most frequent; W: worst satisfaction; O: old version). Mean satisfaction
scores are given in parentheses after machine-generated texts.

Input 1 Input 2

Mean run length: 10425 (σ: 6197) Mean run length: 12857 (σ: 6353)

D The temperature is cold in the north
but progressively warm moving south,
reaching 24◦C.

It is generally warmer in the south
than the north but warmest in the
central regions.

N Cool in the north, warm in the south. Cold in the north, milder in the
centre. cooler in the south

B Temperatures will be higher in the
east than in the north. (0.675)

Temperatures will be colder in the
east than in the west. (0.670)

F Temperatures will be colder in the
north than in the south. (0.644)

Temperatures will be warm in the
east. (0.405)

W Temperatures will be better in the
southwest than in the northwest.
(0.326)

Temperatures will be cool in the west.
(0.290)

O It is hot in the southeast. It is mild in the south.

Input 3 Input 4

Mean run length: 10560 (σ: 7824) Mean run length: 13583 (σ: 9660)

D The temperature gets much warmer as
you go from northwest to southeast.
it’s very chilly in the northwest and
warm in the southeast.

The temperature is inconsistent across
the region with isolated pockets of
high and low temperatures in various
places.

N It is cold in the north, a little warmer
elsewhere, but warm in the south east.

The temperatures are very erratic.

B Temperatures will be higher in the
southeast than in the northwest.
(0.674)

Temperatures will be cooler in the
west than in the northeast. (0.673)

F Temperatures will be cool in the
north. (0.604)

Temperatures will be hot in the north.
(0.540)

W Temperatures will be higher in the
south than in the northwest. (0.350)

Temperatures will be lower in the
southwest than in the southeast.
(0.338)

O The north is cold. The southeast is hot.
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For each possible pair of texts, human judges were asked five questions in
order to evaluate the texts along different dimensions:

1. Which text is easier to understand?
2. Which text is written more fluently?
3. Which text do you find more interesting?
4. Which text is more factually correct with regard to the temperatures on the

map?
5. Which text provides a more complete description of the map?

Respondents could answer by either stating that one text was better than
the other or that they were both the same. At no point were the respondents
told that texts were machine-generated or human-generated.

Previous evaluation of the program only sought judgements on easiness, flu-
ency, correctness, and completeness. These are typical characteristics considered
in the evaluation of the quality and accuracy of machine generated language [5].
This time interestingness is also considered so as to measure the extent to which
the computer program can match humans’ creative flair when writing.

3.2 Results of Human Evaluation

Table 2 shows aggregate rankings of the different texts for each map calculated
using the pairwise preferences given by human judges answering a survey on
Amazon Mechanical Turk. Rankings were calculated by giving a text a score
where it gained 1 point each time it was preferred over another text and lost 1
point each time another text was preferred over it. Overall, the outputs of the
program are judged better than outputs of the previous version, but still lag
behind the best texts generated by humans.

It should be noted that there was little agreement between human judges.
Fleiss’ Kappa was −0.016 for easiness, −0.018 for fluency, −0.018 for interest-
ingness, −0.014 for correctness, and −0.007 for completeness. Low agreement is
inevitable with subjective judgements, but this is also partly due to a large num-
ber of annotators – 36: only 2 annotators answered all questions in the survey.
Agreement was greater between those two annotators, especially along the more
objective dimensions of correctness (0.266) and completeness (0.589). It might
be better in future for each annotator to provide rankings for all texts instead
of just pairwise preferences so that a greater number of judgements per person
can be obtained.

The latest iteration of the program consistently performs better than the
previous evaluated version along the dimensions of interestingness, correctness,
and completeness, but fails to match the best human performance.

As found when evaluating the previous version, humans tend to perform
worse in terms of easiness, most likely because the computer-generated texts
are simpler. Sometimes the previous iteration of the program (which produced
shorter sentences) also outperformed the latest iteration along this dimension.

Interestingly, the latest iteration’s best output ranked highest for all inputs
in terms of fluency, usually followed by the detailed human text. The mean
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Spearman’s rank correlation coefficient for each input between the rankings of
the program’s satisfaction scores and the aggregated human judge rankings for
fluency is 0.875. Correlation is lower for the other dimensions (0.625 for inter-
estingness, 0.25 for completeness, 0 for correctness, and 0 for easiness). Since
the number of texts being compared is so small, little weight should be given to
these correlation scores. Nevertheless this does suggest that more work is needed
to improve the program’s satisfaction score, not only to optimize the running of
the program, but also to improve its judgement.

Table 2. Average rankings according to pairwise preferences for inputs 1-4.

Input 1 Easy Fluent Interesting Correct Complete

1 F B D D D

2 N D B F F

3 B F F N N

4 O O N B B

5 D W W O W

6 W N O W O

Input 2 Easy Fluent Interesting Correct Complete

1 F B D D D

2 W D N N N

3 B W B F F

4 O F W W W

5 D O F O O

6 N N O B B

Input 3 Easy Fluent Interesting Correct Complete

1 O B D D D

2 F D N W N

3 B F B B W

4 W W W N B

5 D N F F F

6 N O O O O

Input 4 Easy Fluent Interesting Correct Complete

1 O B D O D

2 F F B W B

3 B W W D W

4 W D N N N

5 N O F B O

6 D N O F F

3.3 Discussion

Overall, the program produces better outputs than its earlier iteration, but still
falls short of human performance. It has some wherewithal to recognize poor
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performance in the form of its satisfaction score, but this also needs improving.
The current configuration of the program takes on the order of 104 codelets to
run and normally outputs a single sentence comparing two areas of the input
map, though it sometimes produces a sentence describing a single area.

Its descriptions either make use of the temperature space of the original
input (temperatures will be colder in the north than in the south) or the height

or goodness spaces (temperatures will be higher in the east that in the north,
temperatures will be better in the southwest than in the northwest). There is
little variation in the program’s language but more than in the previous version
which only used temperature adjectives and simpler sentences. The program’s
outputs still fall far short of the richer human produced texts, but this is partly
due to a lack of sentence frames available to the program.

The program’s comparisons do not always seem sensible to the human ear,
although they may be acceptable in terms of being truthful. For example, the
program’s “best” output for input 1 is a comparison between the east and the
north. This description is odd, partly because it neglects a large part of the
map, but also because it is ambiguous about the northeast. The program’s more
frequent output comparing the north and the south is ranked higher by human
judges in terms of correctness, completeness, and easiness. It is strange that the
“best” output is ranked higher in terms of fluency and interestingness, but there
is especially low agreement for these dimensions.

On average the program took longest to describe input 4, but the difference is
not significant and it shows a similar range of satisfaction scores for the outputs.
Since input 4 ought to have been more difficult for the program to describe, a
longer run time was to be expected, but the similar outputs and similar spread of
satisfaction scores was not. Inspections of the structures built inside the program
for each input indicate that relatively small chunks are being used to fill in frame
slots and generate descriptions. The program therefore judges its descriptions to
represent similar proportions of the map even though the descriptions for inputs
1-3 should be interpreted as describing larger areas. The program either builds
large chunks and neglects to use them or fails to build larger chunks before
generating text.

4 Future Improvements

It is clear from analysis of both the program’s behaviour and its outputs, that
further work is required to improve the program’s satisfaction score and its
ability to judge between good or bad outputs. This includes making sure that
the program recognizes how correct and complete its descriptions are.

The program must remedy its description’s lack of completeness by both
building chunks which cover a wider area of the input when possible so as to
gauge more accurately how much of the input a sentence can be interpreted as
describing, but also to continue processing and generate more sentences when
the text produced so far does not provide a full description.

Knowledge represented in the program and taken into account by self-
evaluation ought also to include more aesthetic considerations. For example,
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the program ought to prefer comparison between opposite locations. Odd state-
ments should not be forbidden in case a different context makes them relevant,
but the program should generally avoid them.

Future work should also include a more thorough search for a set of hyper-
parameters that will encourage good quality and complete descriptions of the
input. This will not necessarily require large-scale changes to the program, but
remains a challenge considering the complexity of the search space.

Ultimately, the program must also be put to work in a more complex domain
in order to test its general applicability to the task of generating descriptions.

5 Conclusion

This paper presents an advance towards an explainable model of language gen-
eration which can evaluate its own work and is directly affected by its own
self-evaluation. The idea has great cognitive plausibility due to the intertwining
of different processes, but the implementation thus far still lags behind humans
in terms of both language generation and language evaluation. Future work must
focus on improving the program’s in-built aesthetic measures so that it can more
reliably predict human judgements; produce better descriptions; and know when
to publish them.
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Abstract. As manually labelling data can be error-prone and labour-
intensive, some recent studies automatically classify documents without
any training on labelled data and directly exploit pre-trained language
models (PLMs) for many downstream tasks, also known as zero-shot text
classification. In the same vein, we propose a novel framework aims at
improving zero-short learning and enriching domain specific information
required by PLMs with transformer models. To unleash the power of
PLMs pre-trained on massive cross-section corpus, the framework uni-
fies two transformers for different purposes: 1) expanding categorical
labels required by PLMs by creating coherent representative samples
with GPT2, which is a language model acclaimed for generating sen-
sical text outputs, and 2) augmenting documents with T5, which has the
virtue of synthesizing high quality new samples similar to the original
text. The proposed framework can be easily integrated into different gen-
eral testbeds. Extensive experiments on two popular topic classification
datasets have proved its effectiveness.

Keywords: Natural language processing · Zero shot classification ·
Pre-trained language models

1 Introduction

Zero-shot text classifications 0SHOT-TC [32] refers to the tasks of making
a prediction by gauging the matching score between documents and candidate
labels without counting on any training data. One straightforward benefit of this
method is to accommodate emerging labels and provide promising predictions
not shown in the past. For example, to classify newly arrived Tweets into diverse
topics, the prediction model will recognize previously unseen topics and assign
them to incoming Tweets without relying on any training data. Another benefit
is that the output layer (usually expressed with a Softmax function) of the neural
networks does not need to be changed to cater for the dynamic label set, which
eases the design and implementation of the system.

Compared to those well-studied supervised text classification tasks, 0SHOT-
TC is far from satisfactory in many real-world scenarios. One of the major
reasons behind this is that people tend to conduct classification through very
c© Springer Nature Switzerland AG 2022
P. Sojka et al. (Eds.): TSD 2022, LNAI 13502, pp. 199–211, 2022.
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limited information of surface labels, but expect models to digest the underlying
meanings and even make reasoning and associations for generalization purpose.

Previous studies in this direction mainly project documents and their label
names into the same (latent) representation space, where their similarities can
be captured by different metrics such as Cosine similarity functions [1,6,18,
25,28]. Further, additional information of the label, acquired through external
resources such as Wikipedia and various knowledge graphs, can be included
[25] to shed the light on the nature of classification topics. Nonetheless, these
approaches are still in infancy due to high dependence on external resources
and undesirable classification performance [32]. With the flourish of PLMs in
recent years, people have explored their usages in various classification tasks
to provide 1) better representations of text come out [20]; 2) deeper and well-
rounded interactions between labels and documents, replacing classic cosine-
based solutions [22,27,32]. Thanks to the in-depth knowledge gained through
large and cross-section corpus, PLMs significantly reduce manual interventions
and demonstrate an ubiquitous power in different learning tasks. Nonetheless,
to the best of our knowledge, few work has been proposed to systematically
improve the performance of 0SHOT-TC using PLMs.

To fill in this gap, we propose a novel framework to enhance 0SHOT-TC
paradigm in an end-to-end manner. The proposal can be divided into three major
modules. First, at the label level, we construct label-incorporated prompts to
induce new label-conditioned texts with the help of GPT2, and calculate the sim-
ilarity score between generated texts and the document using the NSP function of
BERT. Second, at the document level, we utilize T5 to harvest augmented sam-
ples with the assist of text2text transformations. Finally, the knowledge derived
from the above two modules are unified together with the matching score of the
existing zero-short learning method to better capture the relatedness between
documents and labels. Although both GPT2 and T5 models are transformer-
based algorithms, they are explored in this work for different purposes based on
their uniqueness. As one of the major contributions, our framework solely relies
on the results of pre-training, saving the cost of generating handcrafted rules, the
requirement of expert interventions, and the dependence on external resources.
In experiments, we thoroughly evaluate the effectiveness of the unified frame-
work and carefully compare each module with alternative methods. A detailed
analysis of multiple factors that could affect the performance is provided.

2 Related Work

Previous studies on 0SHOT-TC can be roughly grouped into two categories.
Similarity model based approaches attempt to construct a good representa-
tion for both labels and documents, and project them into the same embedding
representation space where similarity functions, such as cosine similarity, can
be applied to gauge the relatedness [1,6,18,25,28]. External resources such as
Wikipedia are sometimes integrated in this process [8,33]. Given recent success of
PLMs [5,15], a few studies, such as Sentence-BERT [20], create better represen-
tations using self-training and contrast learning over colossal corpus. Language
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model based approaches model the relatedness score between documents and
labels internally within deep neural networks or PLMs. For example, [32] tackles
the problem by using the entailment score of BERT trained on NLI dataset.
This line of research often wraps the label into pre-defined templates and feeds
them into PLMs. For example, prompt-tuning wraps the input sentence into a
pre-defined template and lets PLM conduct cloze completion tasks, such as “A
[MASK] article: x.”, or “x, this is [MASK] News.”, where x is the text to be clas-
sified. The prediction is usually made based on the probability a LM returns for
the [MASK] [14].

3 Problem Formulation

Given a document collection D = {d1, . . . , di, . . . , dn}, each document d ∈ D
which contains multiple sentences and correspondingly a sequence of tokens of
variable lengths, is assigned with a probability distribution over a list of candi-
date labels L = {l1, . . . , li, . . . , lk}1 by the zero-shot classification model Mzsl.
Somewhat different from traditional supervised training, in 0SHOT-TC li is
denoted as label surface names such as politics, sports, business, finance, science
which are essential and fully exploited for classification. To categorize a docu-
ment d, a 0SHOT-TC model C first takes d and every label l ∈ L as inputs,
and calculate the assignment score that d belongs to l.

scorezsl = C(d, l) (1)

The label with the highest score then becomes the classification result of C, i.e.,
picking up the label that has the highest semantic relatedness to the document.
Our objective in this paper is to enhance the 0SHOT-TC process by simulat-
ing the decision making process of human being: to understand and construct
associations both for d and l.

4 An Unified Framework

In this section, we propose a cost effective 0SHOT-TC framework based on
two pre-trained transformer models that do not require pre-processing, post-
processing and saving any intermittent results. It contains three modules where
the first two focus on label name expansion and document augmentation respec-
tively, and the last integrates different components together. The architecture of
the framework is shown in Fig. 1.

4.1 Label Name Expansion Using GPT2

Previous zero-shot classifiers perform text classifications only if suitable descrip-
tions or indicative seed words of the labels are provided. This reliance causes
1 L may not be pre-defined in practical scenarios, while in the experiments we fix it

for convenient evaluations.
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0SHOT-TC to be highly sensitive to the choice of label descriptions and human
expert designs, and hinders its broader applications in different domains. Classic
embedding approaches, including word2vec or even transformer-based embed-
dings, tend to exploit label names that consist of just one single word or phrase,
where the latent representation of embedding can not carry sufficient meaning
and therefore lose important contextual information. To mitigate this problem,
we propose to leverage GPT2 to enrich the representation of labels.

Given a prompt, we use GPT2 to harvest synthetic samples X at each time
step auto-regressively as follows:

Fig. 1. The proposed framework

Xt = GGPT2 (prompt;X<t) . (2)

Here we formulate the prompt P(l) as a template ‘‘This is {l} News:’’,
where l is an incorporated label. For example, a template of politics can be
expressed as ‘‘This is politics News:’’. This is to provide an indicative
start alluring GPT2 to write continuations that are more likely to fall into the
topic of the corresponding label l. In addition, to reduce the bias, we perform
samplings at each time step of generation to increase the diversity of synthetic
samples. This process can be formulated as

DGPT2
l = Fexpand (GPT2,P(l)) , (3)

where DGPT2
l is a collection of continuation texts from GPT2 based on P(l),

and the maximum length of continuations is set to be the average length of the
documents in D. Accordingly DGPT2

l∈L can be considered as representing label
l at the level of sentences/documents rather than words, which is significantly
different from embedding-based solutions.
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To ensure the prompt will produce closely related contents, we borrow the
idea of Next Sentence Prediction (NSP) in BERT. NSP is one of the sentence-
level pre-training objects of BERT (the other is MLM), and is frequently used
in binary classification tasks to predict whether two sentences may appear con-
secutively. In other words, NSP can determine if a pair of samples fall into the
same topic or express the same semantics, regardless of their order. In this work,
such functionality is exploited in the label name expansion module to measure
the alignment between d and t in terms of topic consistency.

Specifically, Mbert represents the model of BERT and takes a pair of texts
X and X̃ as inputs:

scorensp = Mbert

(
[CLS]X[SEP ].X̃[EOS]

)
, (4)

where scorensp indicates the output of Mbert’s NSP head, which is a probability
value ranging from 0 to 1.2 We next apply Eq. 4 to document d and every syn-
thetic text tl ∈ DGPT2

l with respect to every label l ∈ L, to calculate the overall
compatibility between d and l:

scored,lexpand =
1

|DGPT2
l |

∑

tl∈DGPT2
l

(Mbert (d, tl) + Mbert (tl, d)) (5)

A higher score suggests document d is more likely to belong to label l, where
DGPT2

l can be considered as proxy of l.

4.2 Document Augmentation Using T5

Parallel to the attempt at expanding prompt labels, we explore data aug-
mentation (DA) at document level to synthesize more samples in training set
and to regularize the classifier. Witnessed the great success of T5 as another
transformer-based PLM, we leverage T5 to generate new document samples for
d. Unlike the auto-regressive model GPT2, T5 belongs to directed generation
where the output can be regarded as a constrained transformation of the input
[9]. In the generation process, each token is generated with

X̃t = GT5

(
X | X̃<t

)
. (6)

Besides, T5 model is of an encoder-decode architecture, attending to both source
text X and generated X̃<t simultaneously. It has widely been used in machine
translation, text summarization and answer generation; nonetheless, less inves-
tigated in DA. In this work, we use T5 to synthesize augmentation samples
without providing a specific task prefix,

DT5
d = Faugment (T5, d) . (7)

2 In this study, we use the publicly available BERT of uncased version https://
huggingface.co/bert-base-uncased. The output of BERT’s NSP has two logits: the
first is the probability of IsNext and the second is the probability of NotNext, both
of which are outputs of the SoftMax function from the previous layer.

https://huggingface.co/bert-base-uncased
https://huggingface.co/bert-base-uncased
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The augmentation score of this component can be calculated with

scored,laug =
1

|DT5
d |

∑

d̃∈DT5
d

(C
(
d̃, l

)
). (8)

Note that DT5
d does not include the original sample d. Instead it is only used in

the original 0SHOT-TC suggested in Eq. 1.

4.3 Integration of Modules

To generate an informed decision of 0SHOT-TC, we finally fuse all three scores
obtained at estimations on vanilla zero-short learning, prompt label expan-
sions and document augmentation. For each document-label pair, we calculate
scorefuse as the sum of the logarithm values of three individual factors. In this
study, each compounding score is assigned with a same weight for simplicity;
however, it is also possible to evaluate their impacts on different applications
and suggest different importance for each of them.

scorefuse ∝ log scorezsl + log scoreexpand + log scoreaug (9)

5 Experiments

5.1 Datasets

We evaluate our proposed framework on two public topic classification datasets:
AG and Yahoo [34] which have been widely adopted in related studies. Both
datasets are balanced, and the numbers of candidate labels of each dataset are
|Lag| = 4 and |Lyahoo| = 10. Following previous studies, we use accuracy which
will be a reliable indicator while the data are balanced, to evaluate 0SHOT-TC’s
performance.

5.2 Benchmark Solutions

To justify the proposal is model-agnostic and can be easily combined with other
models irrespective of their local constraints, we include three benchmark models
that address 0SHOT-TC from different views, and incorporate them with our
proposed framework to evaluate the gain in performance.

1. EMBEDDING has been widely used in previous studies [2,7,12,13,21,
25,26,28] and adopts pre-trained word embedding for documents and label
words. We use cmlm [31] as text encoder3. The label with the highest cosine
similarity Mcos is selected for prediction. We do not add external informa-
tion, such as class descriptions as those in [19,33] since they vary a lot and
essentially do not change the architecture.

3 https://tfhub.dev/google/universal-sentence-encoder-cmlm/en-base/1.

https://tfhub.dev/google/universal-sentence-encoder-cmlm/en-base/1
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score (d, l) = C (d, l)
= Mcos (embed(d), embed(l))

(10)

2. NLI [32] regards 0SHOT-TC as a textual entailment problem and learns
from entailment datasets through pre-training over sentence pair classifi-
cations. This method simulates the decision process of raising and proving
hypothesis by human being. By using textual entailment, classifiers under-
stand the underlying meaning of documents labels, acquiring certain gener-
alization ability. Following template T of This text is about {label} in
[32], we take d to be labeled as premise and turn each candidate label l into
hypothesis. Both the sentence (premise) and the label (hypothesis) are fed
into the NLI model to return an entailment score scorenli computed by Mnli

score (d, l) = C (d, l)
= Mnli (hypothesis, premise)
= Mnli (d, T (l))

(11)

A higher score implies that the premise is more likely to entail the hypothesis.
roberta-large fine-tuned over XNLI [3] and ANLI [17] datasets is adopted as
Mnli in this study.

3. CLOZE [22] reformulates text classification as a cloze task. To perform
0SHOT-TC, a document is incorporated into templates with a {MASK} slot.
The pre-trained MLM model predicts the words to be filled in {MASK} based
on their possibilities to occur. Following method introduced in [22], three
templates T are included. roberta-large [15] is adopted as Mmlm to derive
the probability distribution over the vocabulary on the masked token.
{Document} This text is about {MASK}.
{Document} News: {MASK}.
[Category: {MASK}] {Document}.
In addition, the score of each label is set to be the sum of the three proba-
bilities.

score (d, l) = C (d, l)

=
∑
T

∑
w∈l

Mmlm (T (d);w) (12)

5.3 Main Results and Analysis

Evaluation on Benchmarks. We perform experiments on three benchmarks
introduced in Sect. 5.2 and demonstrate the results in Fig. 2. Specifically, we set
|DT5

d | = 32 and |DGPT2
l | = 256 for each test sample represented as a document-

label pair.
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Fig. 2. Evaluation on three testbeds. with aug refers to the ablation approach of only
including the DA module; with exp suggests only adding the label expansion module;
with aug & exp indicates uniting both modules together. (left, for AG, and right,
for YAHOO)

It is clear that the proposed framework significantly improves the baseline
benchmarks. From the view of ablation, the expansion module at labels gener-
ally contributes more, especially for EMBEDDING. It proves our hypothe-
sis that GPT2 helps generate more relevant texts to expand labels in prompts,
and compensates information deficiency along label side. In addition, expansions
can mitigate the ambiguity issue of certain labels such as World in AG dataset.
Finally, the combination of the two components brings extra gains in accuracy,
which justifies the power of ensemble.

Tuning the Number of Samples in Expansion and Augmentation Com-
ponent. As including excessive samples could introduce noises while too few
samples may under-represent documents and labels, we examine the impact of
adopting different |DT5

d |s and |DGPT2
l |s. Beside, as enlarging the number of syn-

thetic samples may incur extra computing costs, we wish to limit the expansion
as much as possible.

As shown in Fig. 3, increasing the number of augmented documents |DT5
d |

improves performance remarkably at the initial stage; while further enlarging
the number does not help much and triggers a higher computation cost. Similar
observations are made in label expansion, where 256 is identified the optimal
number. Adding more continuation texts with GPT2 tends to undermine the
performance in accuracy.
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Fig. 3. Impact of number of synthetic samples, under setting of left: with aug and
right:with exp

5.4 Comparison with Alternative Methods

In this section, we replace the two modules with some alternatives that may
serve the same purpose. Instead of justifying the importance of each module as
discussed in Sect. 5.3, this experiment sticks with the proposed framework and
examine the virtues of the two LMs: GPT2 and T5.

Alternative DAs. To answer the call of performing effective document aug-
mentation, we compare three DA approaches with T5vanilla which is adopted in
our study.

• EDA [29] is the widely used word-replacement DA method, and it contains
four basic randomization operations, i.e., replacement, insertion, swap, and
deletion.4

• Back-Translation (BT) [23] is originated from language translation and
extended to DA to bring linguistic diversities [11,16,24,30]. This experiment
uses Chinese as the intermediate language and performs translation first from
English to Chinese and then from Chinese back to English with models imple-
mented in EN-ZH5 and ZH-EN6.

• Fine-tuned T5 is a version of T5 fine-tuned7 on Google PAWS paraphrasing
dataset8. We add “paraphrase:” as a guide prefix to induce documents.

To make a fair comparison, the same experiment setting is applied to alternative
methods as that in Sect. 5.3, where |DEDA

d | = |DBT
d | = |DT5paws

d | = 32. As shown
in Table 1, T5vanilla consistently outperforms other approaches which suggests
the effectiveness of T5. For EDA and BT, only a small fraction of words in the

4 https://github.com/jasonwei20/eda nlp.
5 https://huggingface.co/Helsinki-NLP/opus-mt-en-zh.
6 https://huggingface.co/Helsinki-NLP/opus-mt-zh-en.
7 https://huggingface.co/Vamsi/T5 Paraphrase Paws.
8 https://github.com/google-research-datasets/paws.

https://github.com/jasonwei20/eda_nlp
https://huggingface.co/Helsinki-NLP/opus-mt-en-zh
https://huggingface.co/Helsinki-NLP/opus-mt-zh-en
https://huggingface.co/Vamsi/T5_Paraphrase_Paws
https://github.com/google-research-datasets/paws
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original document are replaced by synonyms, while most of T5paws’s outputs
are just reorders of the original documents without bringing new information.

Table 1. Comparison with other methods for document augmentation

AG YAHOO

EMBED NLI CLOZE EMBED NLI CLOZE

EDA 0.5199 0.7636 0.8603 0.3804 0.5612 0.6354

BT 0.5265 0.7769 0.8617 0.3971 0.5679 0.6419

T5paws 0.5301 0.7849 0.8644 0.4419 0.5669 0.6448

T5vanilla 0.5314 0.7876 0.8686 0.4422 0.5682 0.6452

Alternative Label Expansions. We expect the expanded text labels should
be in good alignment with the originals, and choose two other state-of-the-art
models that may provide such functionality. In this section, we examine their
potentials in improving the label expansion module, and manually select a list of
seed words {wl

0, w
l
1, . . . , w

l
k} ∈ W l for each label to steer text generation, where

k is not a fixed number among labels. As an example, for World in AG dataset,
some seeds could be {‘Election’, ‘Terrorism’, ‘Politics’, ‘Tyranny’, ‘Military’,
‘Democracy’, ‘Totalitarian’ . . . }

• CTRL [10] We use the off-the-shelf CTRL9 although most of our seed words
are not covered by the original control codes given by the authors. We insert
a fraction of seed words ∼ W l (randomly selected each time) into the tem-
plate ‘‘Links in {seed words}’’ as prompt P(l) for CTRL’s continuation
towards l.

• PPLM [4] is another approach for controllable text generation which com-
bines one or multiple simple attributes with a steerable layer. In 0SHOT-TC,
there is no trained classifier; therefore we consider label seed words W l∈L as
a predefined bag of words to suggest possible topic directions while making
an update of p(l|x) with log p(l|x) = log

(∑k
i=1 pt+1 [wi]

)
. To be consistent

with previous settings, we use GPT2 in Sect. 4.1 as the generative model.

In this experiment, we set |DCTRL
l∈L | = |DGPT2PPLM

l∈L | = |DGPT2vanilla

l∈L | = 256, and
demonstrate the comparison results in Table 2. Clearly, alternative controllable
label generations bring marginal improvements in accuracy. However, consid-
ering their computational costs - CTRL contains 1.63 billion parameters and
PPLM requires additional parameter updates on every token generation, using
the vanilla GPT2 is still a cost-effective and efficient practice.

9 https://huggingface.co/docs/transformers/model doc/ctrl.

https://huggingface.co/docs/transformers/model_doc/ctrl
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Table 2. Comparison with other methods for label expansion

AG YAHOO

EMBED NLI CLOZE EMBED NLI CLOZE

CTRL 0.8048 0.8049 0.9064 0.5732 0.5825 0.6812

GPT2PPLM 0.8055 0.8015 0.9087 0.571 0.5808 0.6793

GPT2vanilla 0.7907 0.7901 0.8963 0.5695 0.5783 0.6731

6 Conclusion and Future Work

In this paper, we propose to improve 0SHOT-TC through document augmen-
tations and label expansions. Extensive experiments on real datasets prove this
framework is robust and easy to implement. In addition, it does not require much
human intervention as those are usually seen in other methods. In future work,
it is worth exploring the benefit on other natural language processing tasks such
as classifying sentiments and question types in 0SHOT-TC.
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Abstract. Effective representation learning is an essential building
block for achieving many natural language processing tasks such as
stance detection as performed implicitly by humans. Stance detection
can assist in understanding how individuals react to certain informa-
tion by revealing the user’s stance on a particular topic. In this work,
we propose a new attention-based model for learning feature represen-
tations and show its effectiveness in the task of stance detection. The
proposed model is based on transfer learning and multi-head attention
mechanisms. Specifically, we use BERT and word2vec models to learn
text representation vectors from the data and pass both of them simul-
taneously to the multi-head attention layer to help focus on the best
learning features. We present five variations of the model, each with a
different combination of BERT and word2vec embeddings for the query
and value parameters of the attention layer. The performance of the pro-
posed model is evaluated against multiple baseline and state-of-the-art
models. The best of the five proposed variations of the model improved
the accuracy on average by 0.4% and achieved 68.4% accuracy for multi-
classification, while the best accuracy for binary classification is 86.1%
with a 1.3% improvement.

Keywords: Transfer learning · Multi-head attention · Text
classification · Stance detection · Deep learning · COVID-19 pandemic

1 Introduction

Social networks, notably the Twitter platform, have become a hot spot for indi-
viduals to share their opinions on a variety of topics during the COVID-19 pan-
demic, one of which is online schooling. The task of identifying a person’s position
on a specific topic is called stance detection, where the stances might be agree,
disagree or neutral. Considerable efforts have been given to classifying stances
on social media [1,14]. However, the problem lies in that existing proposed meth-
ods fail to capture the semantics of text features, resulting in poor performance.
For instance, the ambiguous stance of a user’s slang-expressed tweet on a par-
ticular problem confuses the model, resulting in inaccurate predictions. One of
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the effective approaches to improving the performance of models consisting of
millions of parameters is to train the model on a large amount of training data
to understand the underlying meaning of the language. However, the datasets
for stance detection are generally limited due to the high annotation costs.

Multiple studies have proposed multiple models for stance detection, indicat-
ing that this type of text classification is extremely challenging. The majority
of recent methods employed attentional networks [22,28] and transfer learning
[23]. However, several models were capable of detecting one or two stances at
the cost of performance in the remaining classes [2]. For example, when multi-
classification models used stances such as “favor”, “against”, and “neither”, the
“against” class almost overwhelmed the classification results, with a high per-
centage of true positives compared to the “neither” classes, which were almost
detected as true negatives due to the unclear position of the text toward a spe-
cific issue. As a result, there is a need for models that produce accurate text
representation vectors with respect to the stance, which we address in this work.
We propose a novel method for detecting stances in text using a multi-head
attention layer. The proposed method learns context-dependent and context-
independent features from baseline and deep learning models, which are then
passed in parallel to an attention-based model as shown in Fig. 1. Therefore,
the multi-head attention layer learns new feature representations from multiple
inputs by leveraging the query, key, and value parameters.

The reset of the article is organised as follows: Sect. 2 reviews related works.
Section 3 explains the proposed model. Section 4 describes the dataset, machine
and deep learning models used as baseline models, as well as the experimental
setup. Section 5 presents the results and analysis. Section 6 concludes the paper.

Fig. 1. Proposed model.

2 Related Work

Various studies have used debate-side classification [4] and stance classification
[24] to describe stance detection. Essentially, stance detection assists in under-
standing how individuals react to target information, revealing the user’s stance
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on a particular topic [6]. The rise of social media has brought this classification
task into focus. Formally, we denote the dataset as D = {xi = (ti, si)}Ni=1, where
N is the number of samples in the dataset D and each sample x contains a tweet
ti and each tweet belongs to a class of specific stance si. The aim is to predict
the probability p ∈ R

S that this piece of text belongs to a particular stance:

p = softmax (WclfS + bclf ) (1)

where W and b indicate the parameters of the classification layer, and S is the
learnt feature representation [12].

Modeling stance detection has been proposed using different learning meth-
ods, such as Convolutional Neural Networks (CNN) and Long Short-Term Mem-
ory (LSTM) [5] and transfer learning [23]. Several studies employed zero-shot
stance detection to overcome the lack of annotated datasets for all topics.
Allaway et al. [3] used adversarial learning to generalise across topics. They con-
cluded that stance classification is a topic-dependent, and they focused on iden-
tifying topic-invariant stance representations to increase generalization. How-
ever, generalisation across social media topics is still a challenge. An atten-
tional CNN model was developed in [30] to detect tweet stances. Specifically,
a self-attention mechanism was implemented over CNN for adaptive enhance-
ment of word embeddings with global textual data. Their approach was useful
for identifying stance-indicative words where stance clues usually exist within
non-informative words. The authors of [12] developed an attention-based BiL-
STM model that identified features relevant to the particular target by explicitly
adding the target information into the BiLSTM model.

Text representation learning is an essential component in stance detection.
CNN for instance, combine different local textual characteristics for classifying
stances. However, global textual information is generally ignored by CNN, lead-
ing to the missing of important discriminative textual features [30]. To solve
this issue, methods such as Word2Vec and GloVe were presented to incorpo-
rate important global text features. Ghafarian et al. [13] identified informative
tweets related to crises using a Support Measure Machine over one-dimensional
vector-embeddings using Word2Vec. Bao et al. [5] used GloVe, a pre-trained word
embedding matrix, to encode the input words. More recent models, such as bidi-
rectional LSTM [29] and Bidirectional Encoder Representations from Transform-
ers (BERT) [11], have achieved good performance in stance detection. LSTM-
based models capture long-term dependencies among n-grams. BERT is a pre-
trained model that learns contextual relations between words and predicts the
masked words. However, using only pre-trained models proved to be unreliable
when used with domain-specific text data [15].

3 Proposed Model

We propose a novel attention-based model for better representation learning
for stance detection. The proposed model is designed to address the problem
of classifying tweets correctly by improving the performance of the three stance
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classes. The proposed approach is divided into two stages as depicted in Fig. 1 to
help in generating effective vectors that remove ambiguities and resolve vocabu-
lary overlap across classes. The class overlap problem occurs when the features
used to represent each class are insufficient or ineffective of capturing the neces-
sary properties for drawing a clear boundary between them and distinguishing
samples from each class [10]. (Table 1)

Table 1. Examples of classified tweets.

Class Tweet

Agree So this mean ALL students are required to return back to
in-person school?? What if we choose online learning due to level
of risk?? I will no expose my children or elders in our home!!

Disagree #onlinelearning Put kids at risk for suicide & depression.
Punishment & lack of concern is not the solution & mental
illness is not the goal. Intervene or they’ll shut down.

Neutral remote learning has never been and will never be a 100%
effective replacement for anything, but it’s complimentary and
can be effective when it is designed to be effective, which is very
much not what we’re doing here

3.1 Stage 1: Features Representation

In the first stage we employ two pre-trained language models, BERT [11], and
the word2vec [18] to extract features. Embeddings extracted by these two models
are context-dependent and context-independent, which are injected simultane-
ously as an input into the next attention-based model. BERT learns bidirectional
representations by conditioning both left and right contexts in all layers concur-
rently, while the word2vec model generates word vectors from a massive amount
of text input by detecting the contextual data in which the input words appear.
Thus, words in a similar context tend to have collinear vectors. For example,
words like “learning” and “education” should have a smaller semantic distance,
hence word embedding develops semantics.

3.2 Stage 2: Multi-Head Attention

Here, we employ the transformer encoder architecture consisting of six encoder
layers stacked on top of each other. Each encoder layer includes a multi-head
attention layer and a feed-forward network. The multi-head attention layer takes
three inputs for each head: Query q, Key k, and Value v. Unlike the original
transformer architecture, the proposed model accepts two independent inputs
from different sources to capture the complex relationships between these inputs.
For example, the query qib is derived from the BERT hidden layer, while value
viw and key kiw are derived from the word2vec output. First, we compute the
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similarity between the query, which is BERT embeddings and the key, which is
word2vec embeddings, and then perform the dot product operations with the
value, which is the word2vec embeddings. In addition, the subjectivity feature
is computed using the TextBlob library and ranges from 0.0 to 1.0, denoting
very objective and very subjective, respectively. There are five versions of the
dot product operations score, as follows:

– Version-1: To capture the best representation of BERT features given BERT
features as query, scores = qib ∗ vib.

– Version-2: To capture the best representation of BERT features given
word2vec features concatenated with subjectivity feature as query, scores =
(qiw + qis) ∗ vib.

– Version-3: To capture the best representation of word2vec features concate-
nated with subjectivity feature given the query BERT features, scores =
qib ∗ (viw + vis)

– Version-4: To capture the best representation of word2vec features given the
word2vec features, scores = qiw ∗ viw

– Version-5: To capture the best representation features of the concatenated
word2vec and BERT features, scores = qibw ∗ vibw

The attention scores for all heads are concatenated as follows:

MultiHead (Q,K, V ) = Concat (head 1, . . . , head h)W

headi = Attention
(
QWQ

i ,KWK
i , V WV

i

) (2)

4 Experiment

4.1 Dataset

We use StEduCov dataset1 for detecting stances in tweets towards online educa-
tion during the COVID-19 Pandemic. The dataset includes 16,572 tweets classi-
fied as “agree”, “disagree”, or “neutral”. The distribution of tweets is as follows:
6,511 agree, 5,115 disagree, and 4,946 are neutral. Standard preprocessing oper-
ations are performed, such as lower-casing words and removing non-English and
duplicate tweets. Cleaning the text from noise such as mentions and hashtags
is an important step, since all extracted tweets have the same mentions and
hashtags, such as “online learning, coronavirus”. Therefore, removing such noise
enables more accurate stance learning. In addition, we remove punctuation, stop
words and URLs. Additionally, as Twitter users tend to utilise abbreviated forms
of words, we break up contractions and give up the relevant lemmas.

1 http://ieee-dataport.org/9221.

http://ieee-dataport.org/9221
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4.2 Baseline and State-of-the-Art Models

Various models are implemented and trained using the StdEduCov dataset. We
introduce them in the following while categorising them into machine and deep
learning (DL) models. Traditional machine learning models are: Logistic Regres-
sion (LR) [20], Random Forest (RF) [8], K-Nearest Neighbour (KNN) [17], Sup-
port Vector Machines (SVM) [9], Naive Bayes (NB) [21] and Decision Trees (DT)
[19]. We train DL models as follows:

– Bi-LSTM: Bi-Directional Long Short Term Memory Networks is based on
LSTM and initialized with GloVe embeddings, which can capture contextual
information and long-term dependencies [16].

– Att biLSTM: Multi-head attention based biLSTM model, where using mul-
tiple heads of attention, the model may simultaneously pay attention to data
coming from several representation subspaces located at various points in
space [26].

– BERT base: A transformer-based architecture and a bidirectional model.
As opposed to static embeddings produced by fastText and word2vec, BERT
produces contextualised word embeddings where the vector for the word is
computed based on the context in which it appears [11].

– CNN: A neural network made up of three types of layers: convolutional,
pooling, and fully connected layers. The first two layers, convolution and
pooling, extract features, and the third, a completely connected layer, maps
the extracted features into final classification [27].

– NBSVM: proposed by [25] and is implemented as a neural network, which
demonstrated that it could compete with more advanced neural network
architectures. The implementation of this model employs two embedding lay-
ers for storing Navie Bayes log-count ratios and the set of weights that have
been learnt. The dot product of these two vectors is then computed, which
becomes the prediction.

4.3 Training and Hyper-parameters

Experimental Setup. A HuggingFace transformers is used to fine-tune the
BERT model utilising the Pytorch framework, which supports GPU process-
ing. Also, the Keras framework is used to implement and customise the LSTM,
CNN and NBSVM models. The Ktrain library is used to train the NBSVM
model which is implemented as a neural network. Two PCs are utilised to train
the classification algorithms simultaneously: (a) an AsusTek PC computer with
125 GiB of RAM and four Quadro RTX 6000 GPUs; and (b) a Google Cloud
Platform virtual instance with 8 vCPUs, 52 GB of RAM and one Nvidia Tesla
K80.

Hyper-Parameters. Several experiments are performed to fine-tune the pro-
posed model’s hyper-parameters. The number of epochs and batch size are 50
and 8, respectively. The learning rate is estimated for BERT using the ktrain
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library, which is 1e-04 and the dropout ratio on all layers is 0.1. The hidden
dimension is 256 and the optimizer is AdamW. The hyper-parameters for other
DL models are: learning rate is 1e-4, hidden dimension is 300, dropout ratio is
0.3 and batch size is 16 for CNN and 64 for biLSTM.

5 Results and Analysis

The performance is evaluated using ten-fold cross validation on a shuffled
dataset. To conduct the evaluation, a weighted average of the precision, and
F1 scores is used, as well as accuracy. Table 2 shows the performance of six
traditional machine learning models, five state-of-the-art machine learning mod-
els, and model v1, which is the best performing variant of our proposed model
in terms of average results. Even though model v1 and the BERT model have
comparable F1 scores, model v1 outperforms all state-of-the-art and baseline
models on the average accuracy and precision, as shown in Table 2. In terms of
the performance of the models in each class, an ablation study was conducted to
show the performance of each version of the model, as shown in Table 4. Model
v2 has the highest accuracy for the agree class, with an improvement of 7.2%,
while the NBSVM model gives better results for the disagree class and BiLSTM
gives better results for the neutral class. Notably, while all models’ precision for
the neutral class is quite low, model v2 followed by RF gives results of 64% and
63%, respectively. The confusion matrices for BERT and model v1 show that
the neutral class has a significant impact on performance, with more than half
of neutral tweets being false negatives and the majority of tweets predicted as
agree class in both models, as shown in Fig. 2. To investigate the behaviour of
our proposed model, we performed binary classification experiment by excluding
the neutral class. The average results for the binary classification are in Table 3,
showing that our model v2, which queries the word2vec features to pay attention

Table 2. Performance of models on every class using StEduCov Dataset. Acc: Accu-
racy, Pr: Precision and weighted F1 score.

LR RF KNN SVM NB DT nbsvm biLSTM CNN BERT Att
biLSTM

Proposed
model v1

Target: Agree with online education (Agree)

Acc 70.90% 73.60% 80.00% 67.00% 70.70% 56.70% 59.10% 59.30% 73.80% 74.60% 79.90% 78.80%

Pr 67.00% 58.00% 45.00% 60.00% 63.00% 52.00% 67.00% 63.00% 60.00% 65.00% 60.00% 64.00%

F1 69.00% 65.00% 57.00% 63.00% 66.00% 54.00% 63.00% 61.00% 66.00% 69.00% 69.00% 71.00%

Target: Disagree with online education (Disagree)

Acc 83.40% 80.20% 59.30% 76.90% 91.10% 65.10% 91.80% 72.50% 75.60% 84.90% 69.20% 86.90%

Pr 68.00% 63.00% 66.00% 68.00% 64.00% 64.00% 63.00% 70.00% 73.00% 75.00% 74.00% 75.00%

F1 75.00% 71.00% 62.00% 72.00% 75.00% 64.00% 75.00% 71.00% 74.00% 80.00% 72.00% 80.00%

Target: Neutral

Acc 33.00% 26.00% 14.60% 40.30% 18.20% 32.00% 32.40% 44.90% 34.60% 33.70% 31.80% 28.10%

Pr 50.00% 63.00% 52.00% 55.00% 62.00% 37.00% 60.00% 44.00% 50.00% 54.00% 51.00% 60.00%

F1 40.00% 37.00% 23.00% 47.00% 28.00% 34.00% 42.00% 45.00% 41.00% 41.00% 39.00% 38.00%

Average results

Acc 63.10% 62.80% 52.60% 62.00% 62.70% 52.90% 63.10% 60.20% 63.00% 68.00% 62.70% 68.40%

Pr 63.20% 62.30% 54.40% 61.10% 62.80% 52.50% 63.00% 60.20% 62.00% 66.00% 62.00% 67.50%

F1 62.80% 59.90% 49.80% 61.30% 58.50% 52.60% 60.60% 60.20% 62.00% 66.00% 61.10% 66.00%
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to the important features from BERT embeddings, outperforms all other models
on all metrics.

The results show that the model is confused between “agree” and “neutral”
classes due to the use of subjectivity and objectivity in tweets. As an exam-
ple, “Because schools refuse to host any classes online, students are generally
not compelled to complete any work or maintain regular contact with teachers”.
This tweet provides a fact while also indicating a certain point of view. However,
in certain ambiguous tweets, the suggested model can predict the correct class,
which proves that it improves the feature representations, as shown in Table 5.
The importance of combining context-independent and context-dependent fea-
tures is that the features based on non-contextualised models will, in some cases,
improve the performance of the model on unseen data when different ways of
expressing the opinion and different vocabularies are used than in the training
set. So the hybrid method can have a positive effect, as shown in this study.
However, such neural networks with millions of parameters require a large cor-
pus to be fine-tuned for a particular domain, such as education. On the other
hand, other research revealed that segmenting data into more specific categories
improved the performance of models on text classification [7]. As a result, addi-
tional research efforts are required to develop novel techniques for improving the
classification accuracy of such complex and overlapping data.

Table 3. Performance of models on binary classification (Agree and Disagree Classes).

LR RF KNN SVM NB DT nbsvm biLSTM CNN BERT Att
biLSTM

Proposed
model v2

Acc 84.8% 83.6% 76.0% 84.0% 83.8% 75.0% 83.1% 83.0% 84.6% 84.3% 81.7% 86.1%

Pr 84.8% 83.7% 76.7% 84.0% 84.8% 75.0% 84.7% 83.0% 85.0% 83.6% 81.8% 86.0%

F1 84.8% 83.6% 76.0% 83.9% 83.7% 75.0% 82.8% 83.0% 85.3% 84.9% 81.6% 86.2%

Fig. 2. Confusion matrix for BERT (left) and model v1 (right) for multi-classification
(0: agree, 1: disagree and 2: neutral).
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5.1 Error Analysis

As shown in Table 5, BERT and the proposed model perform well on examples
where the stance is stated explicitly, such as tweets 1, 3, and 5. However, only
model v1 successfully predicts the stance in tweet 2, where the meaning is rep-
resented through negation. When the true meaning is obscured, as in tweet 4,
model v1 predicts it accurately while others fail. Even in tweet 6, where humans
struggle to understand the meaning, model v2 accurately predicts. As shown
in Fig. 3, the neutral class shares the top bigram words with either the agree
or disagree classes, as it is usually expressed using the two classes. Thus, the
most uncertainty occurred when predicting the neutral class. When considering
these top words as stop words, the accuracy is decreased since these words are
important for the context. However, keeping these common words when training
model v1 reduces errors by 0.4% compared to BERT and 5.4% compared to the

Table 4. Ablation study results of five variants of the proposed model.

Agree Disagree Neutral Average

Acc Pr F1 Acc Pr F1 Acc Pr F1 Acc Pr F1

v1 78.80% 64.00% 71.00% 86.90% 75.00% 80.00% 28.10% 60.00% 38.00% 68.40% 67.50% 66.00%

v2 87.20% 59.00% 70.00% 80.50% 78.00% 79.00% 21.70% 64.00% 32.00% 67.00% 61.30% 64.00%

v3 76.10% 60.00% 67.00% 76.10% 71.00% 74.00% 28.60% 51.00% 37.00 64.00% 62.10% 62.00%

v4 53.40% 57.00% 55.00% 77.40% 68.00% 72.00% 36.60% 42.00% 39.00% 58.20% 57.20% 58.50%

v5 72.70% 65.00% 69.00% 87.20% 72.00% 79.00% 30.70% 57.00% 40.00% 67.20% 66.00% 65.00%

Table 5. A comparison of the models predictions.

Tweet Actual label BERT Model v1 Model v2

1 Thank you quarantine for allowing me to log in to my
online lecture and then go back to bed because i dont
have the brain cells to endure learning today

Agree Agree Agree Agree

2 When schools close, students don’t have to stop learning.
In recent years, eLearning has made huge advancements.
However, before choosing or implementing a new eLearn-
ing program, first, follow these three key steps

Agree Disagree Agree Disagree

3 Distance learning is awful for my kindergartener’s mental
health. You know what would be worse? Her being sad-
dled with guilt at age 5 that she may have contributed
to her (very high risk) live-in grandmother’s death

Disagree Disagree Disagree Disagree

4 Year 7 and Year 10, you absolutely smashed it today
with the remote learning. Amazed at how many of you
were able to log on and even see all of your lovely faces
at home. Already missing you all, can’t wait to get you
back in my classroom! Super work guys!

Disagree Agree Disagree Agree

5 Boston University, Harvard University and others are dis-
cussing potential scenarios for a different start to the
upcoming school year due to the coronavirus pandemic

Neutral Neutral Neutral Neutral

6 Student learning is largely falling to families as Michigan
schools opt not to attempt to hold any classes online. The
result? Students mostly aren’t being required to complete
any work or to have regular contact with teachers.

Neutral Disagree Disagree Neutral
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SVM model. Models v2 and v3 rely heavily on preprocessing because they use
embeddings from BERT and word2vec models, requiring different preprocessing
for each one. Word2vec establishes a word’s association with other words, such
as “learning with education”, hence they will have vectors that are quite similar.
On the other hand, BERT captures the semantics of the context. Thus, while
training models v2 and v3, we consider removing the most common terms when
training word2vec while keeping them in BERT, which improves models v2 and
v3 performance.

Fig. 3. Error analysis: comparison of the top 15 bi-gram words in every class.

6 Conclusion

In this study, we propose an attentional neural network architecture for learning
better feature representation. The proposed model is composed of two stages,
the first of which involves transfer learning in order to generate embeddings
from pretrained BERT and word2vec models. The second stage employs the
attention mechanism, which takes inputs from two sources (BERT and word2vec
embeddings) to focus on the critical input sequences. This technique outperforms
state-of-the-art models in detecting stances in tweets by combining context-based
and non-context-based models to overcome vocabulary overlap across classes. As
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for future work, there is a need to develop an ensemble using the best performing
models in each class, which may result in improved performance. Moreover, other
transfer learning approaches that can improve model performance will also be
investigated.
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1 Introduction

Automatic metrics are necessary for machine translation research. Quantitative
evaluation of machine translation systems without an automatic metric is diffi-
cult because human evaluation needs expensive and time-consuming. Therefore,
the metrics which can achieve high correlation with human judgment are nec-
essary, and the investigation for the metrics, that have the highest accuracy,
is also performed [1]. Actually, BLEU [2] has been used widely as an industry
standard metric to evaluate various machine translation systems. Nevertheless,
metrics based on surface matching (e.g. BLEU, TER [3], chrF [4], chrF++ [5])
are unsuitable to measure semantic similarity between a reference and hypothesis
because they use only surface information.

In recent years, various metrics based on semantic similarity have been pro-
posed as neural network technology has developed. In metrics using pre-trained
models (e.g. YiSi-1 [6], WE WPI [7]), various static embedding models (e.g.
word2vec [8], fastText [9], GloVe [10], BERT [11]) are used to obtain seman-
tic similarities between pairwise word embeddings in references and hypotheses.
However, these metrics show difficulty in application to suitable specific domains
because they depend on static word embedding models. In metrics using fine-
tuned models such as BLEURT [12], COMET [13], and OpenKiwi [14], the
estimator models are built by fine-tuned language models using earlier WMT
data. Moreover, in metrics using neural models (e.g. esim [15], prism [16]), con-
textual representations that adapt to a specific domain are extracted from the
learned model using earlier WMT data. These metrics can accommodate various
sentences by fine-tuning of the models. However, they require large amounts of
learning data to fine-tune the language models.

As described herein, we propose a new metric based on optimal transport by
integration of contextual representations and static word embeddings. The con-
textual representations are extracted from the neural model (e.g. an attention-
based LSTM [17]) learned only using source sentences and references, which
correspond to the evaluation target hypotheses. Therefore, our proposed metric
can adapt to a specific domain without requiring large amounts of learning data
such as earlier WMT data. Moreover, in our proposed metrics, the contextual
representations are used as the weights for the static word embeddings. This
means that the static word embeddings are corrected to adapt the domain in
the vector space. Furthermore, the evaluation scores are calculated based on the
Earth Mover’s Distance (EMD) [18] algorithm, which solves the optimal trans-
port problem, in our proposed metric. As described herein, we call this proposed
metric OPTICS (automatic metric based on OPtimal Transport by Integration
of Contextual representations and Static word embeddings). Through the experi-
ments using WMT 20 metric shared task data, OPTICS outperformed the metric
using only the static word embeddings (i.e. WE WPI [7]). Moreover, we con-
firmed that OPTICS achieves state-of-the-art performance in correlations with
human judgments except out-of-English segment-level correlation.
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2 Related Work

2.1 Metrics Using Pre-trained Models

YiSi-1 [6] obtains evaluation scores using idf-weighted lexical semantic similarity
by the pre-trained embedding models. The idf-weighted lexical semantic similar-
ity is based on cosine similarity between lexical embeddings. In WMT 20 metric
shared task, YiSi-1 uses lexical embeddings extracted from pre-trained language
models (e.g. BERT [11], CamemBERT [19], RoBERTa [20], XLM [21], XLM-
RoBERTa [22]). Moreover, it optionally requires a semantic role labeler in the
hypotheses for evaluating structural semantic similarity. Also, WE WPI [7] is a
metric based on EMD [18] which solves the problem of the optimal transport.
In that case, fastText [9] as static word embedding model is used to calculate
similarities between word embeddings in reference and hypothesis. Moreover, it
uses the relative difference of word order between a reference and hypothesis as
the weight in the calculation of similarity. As a result, it can perform evaluation
that specifically examines differences of word order.

2.2 Metrics Using Fine-Tuned Models

BLEURT [12] is a BERT-based regression model. This model is fine-tuned
on human ratings from WMT 2015 Metrics to WMT 2019 Metrics. More-
over, it learns to predict widely diverse similarity that includes existing met-
rics (BERTScore [23] etc.) as mid-training. COMET [13] metrics are built using
the Estimator model or the Translation Ranking model. The Estimator model
regresses on human judgment such as direct assessment (DA) from WMT 2017
Metrics to WMT 2019 Metrics. The Translation Ranking model is trained to
minimize the distance between a better hypothesis and both its correspond-
ing reference and its source sentence. Both models constitute a cross-lingual
encoder and a pooling layer. OpenKiwi [14] metrics are Quality Estimation mod-
els; they are trained with WMT Metrics data from 2017–2019. OpenKiwi-BERT
and OpenKiwi-XLMR respectively use fine-tuning BERT and XLM models in a
predictor–estimator architecture.

2.3 Metrics Using Neural Models

Esim [15], a neural model proposed for Natural Language Inference as described
in an earlier report [24], has been adapted for MT evaluation. This model encodes
a reference and hypothesis with a BiLSTM, and computes attention-weighted
representations of each word embedding in the hypothesis with respect to each
word embedding in the reference. Moreover, a feedforward regressor over the
concatenation of the reference and hypothesis is applied to compute the final
predicted score. Esim requires human evaluation data from WMT Metrics as
training data. Prism [16] is a multilingual NMT system trained on data for 39
language pairs, with data derived largely from WMT and Wikimatrix, although
it requires no human judgment for training. At evaluation time, the model is
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used in zero-shot mode to score hypotheses conditioned on their corresponding
references.

3 New Automatic Metric: OPTICS

Our proposed metric is constructed from two stages: learning of the encoder
for extraction of contextual representations, and calculation of scores based on
optimal transport using contextual representations by the trained encoder and
the static word embeddings.

3.1 Learning of Encoder for Extracting Contextual Representations

Our proposed metric obtains the encoder for extraction of contextual represen-
tations. As described herein, attention-based LSTM, which is a basic encoder–
decoder model, is used to obtain the encoder. It remains unclear whether the
attention-based LSTM is the best model among various encoder–decoder models,
or not. Therefore, this point is an issue that remains for future study. Figure 1
depicts the outline for learning of attention-based LSTM.

Fig. 1. Outline of learning of attention-based LSTM model.

In Fig. 1, the reference and source sentence corresponding to the evaluation
target hypothesis, are used, respectively, as encoder and decoder inputs. As a
result, our proposed metric can convert the reference and hypothesis respectively
into contextual representations by the encoder of the learned attention-based
LSTM model.
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3.2 Score Calculation Based on Optimal Transport Using
Contextual Representations and Static Word Embeddings

The encoder of the learned neural model is used to obtain the contextual repre-
sentations of words in the reference and hypothesis. Moreover, those contextual
representations are used as features of distributions in EMD, which is an algo-
rithm to solve the optimal transport problem. Figure 2 presents an outline of
score calculation.

Fig. 2. Outline of score calculation.

In Fig. 2 (a), the contextual representations cr1∼m
of the words in reference

Xr1∼m
and the contextual representations ch1∼n

of the words in hypothesis Xh1∼n

are respectively extracted from the trained encoder; also, m and n indicates the
word numbers of reference and hypothesis, respectively. The cri and chj

are
respectively integrated into the static word embeddings sri and shj

. The ri and
hj , which are used as the features in EMD, are obtained as Eqs. (1) and (2).

rik = exp(α × crik ) × srik (1)

hjk = exp(α × chjk
) × shjk

(2)

In Eqs. (1) and (2), α is a high parameter, and k means each element position
of the vector. In Eq. (1), rik is calculated using the contextual representation
cri , which is extracted from the encoder of the attention-based LSTM model,
and the static word embedding sri . The calculation in Eq. (1) is performed using
all elements {cri1 , ..., crik , ..., cril } and {sri1 , ..., srik , ..., sril }. In Eq. (2), hjk is
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calculated using the contextual representation of chj
, which is extracted from

the encoder of the attention-based LSTM model, and the static word embedding
shj

. This indicates that the calculation in Eq. (2) is performed using all elements
{chj1

, ..., chjk
, ..., chjl

} and {shj1
, ..., shjk

, ..., shjl
}. In Eqs. (1) and (2), the con-

textual representations cri and chj
are used as the weight for the static word

embeddings sri and shj
. Therefore, the static word embeddings are corrected to

adapt the domain by using the contextual representations in the vector space.
Word vector ri in the reference and word vector hj in the hypothesis are used

as EMD features. In Fig. 2 (b), the distributions R and H respectively correspond
to the reference and hypothesis. Each signature {R1, ..., Ri, ..., Rm} of distri-
bution R has word vector {r1, ..., ri, ..., rm} and weight {wr1 , ..., wri , ..., wrm}.
Each signature {H1, ...,Hj , ...,Hn} of distribution H also has word vector
{h1, ..., hj , ..., hn} and weight {wh1 , ..., whj

, ..., whn
}. Moreover, m and n respec-

tively means the word numbers of reference and hypothesis. Weights wri and whj

are obtained using sentence-level tf · idf . Each weight based on sentence-level
tf · idf is defined as Eq. (3).

w = tf ×
(

log
N

df
+ 1.0

)
(3)

In Eq. (3), tf represents the number of times that the word appears in a
reference or hypothesis. Also, N denotes the number of all references or all
hypotheses, and df stands for the sentence number that the word appears for all
references or all hypotheses. Moreover, each weight wri and whj

is respectively
defined as Eqs. (4) and (5).

w̃ri =
wri∑m

k=1 wrk

(4)

w̃hj
=

whj∑n
k=1 whk

(5)

By Eqs. (4) and (5), the weights are normalized between 0.0 and 1.0. The
cosine similarity between two word vectors ri and hj is used to calculate the
distance dij . In that case, the penalty based on the difference of word order is
applied to cosine similarity. Also, dij is obtained using the following Eq. (6) as
shown below.

dij =

⎧⎨
⎩

1.0 − cos sim(ri, hj) × exp(−pos inf(Xri ,Xhj
))

if cos sim(ri , hj ) is the highest among cos sim between ri and h1∼n

1.0 otherwise
(6)

pos inf(Xri ,Xhj
) =

∣∣∣∣pos(Xri)
m

− pos(Xhj
)

n

∣∣∣∣ (7)

In Eq. (6), cos sim(ri, hj) represents cosine similarity between ri by Eq.
(1) and hj by Eq. (2), and exp(−pos inf(Xri ,Xhj

)) represents the penalty to
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cos sim(ri, hj) because it is smaller (i.e. less than 1.0) as the difference of word
order pos inf(Xri ,Xhj

) becomes larger. The pos inf(Xri ,Xhj
) is obtained by

Eq. (7). Here, pos(Xri) and pos(Xhj
) respectively correspond to word positions

in the reference and hypothesis. Our proposed metric can obtain the correct score
which specifically emphasizes the difference of word order between the reference
and hypothesis. Moreover, in EMD, the overall cost is defined as in Eq. (8).

WORK(R,H,F ) =
m∑
i=1

n∑
j=1

dijfij (8)

In Eq. (8), F = [fij ] denotes the total flow; also, EMD obtains F which
minimizes the overall cost. Moreover, four constraints are defined for fij to find
minimum F as in the following Eqs. (9)–(12).

fij ≥ 0 1 < i<m, 1 <j <n (9)

n∑
j=1

fij <wri 1 <i< m (10)

m∑
i=1

fij < whj
1 <j <n (11)

m∑
i=1

n∑
j=1

fij = min

⎛
⎝ m∑

i=1

wri ,
n∑

j=1

whj

⎞
⎠ (12)

In fact, Eq. (9) shows that “supplies” must be transferred from R to H, not
from H to R. Also, Eq. (10) shows that supplies exceeding the weights of R
cannot be transferred to H; Eq. (11) shows that supplies exceeding the weights
of H cannot be received from R. Moreover, Eq. (12) means that the upper limit
of the total supply corresponds to the smaller of the total weight of R and the
total weight of H. Also, EMD is defined as shown below.

EMD(R,H) =
min(WORK(R,H,F ))∑m

i=1

∑n
j=1 fij

(13)

The EMD in Eq. (13) is normalized from 0.0 to 1.0. The value approaches 0.0
as the distance between the two distributions becomes smaller. In our proposed
metric, the final score is defined as Eq. (14).

score = 1.0 − EMD(R,H) (14)
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Therefore, the score value in Eq. (14) is closer to 1.0 as the evaluation is
higher.

4 Experiments

4.1 Experiment Data and Procedure

We used WMT20 metrics shared task [25] data for experiments. For learning
the attention-based LSTM in our proposed metric, we copied the sentence pair,
which is the source sentence and its reference, ten times to increase the learning
data for each language pair. In that case, we used only source sentences and their
references, which correspond to the evaluation target hypotheses in WMT20
metrics shared task data. The maximum number of pairs of source sentences and
its references among all language pairs is 29,710, which is the number of pairs of
both Inuktitut–English and English–Inuktitut. On the other hand, the minimum
number of pairs is 7,850 which is the number of pairs of German–English. Using
those learning data, we produced the attention-based LSTM model in Fig. 1 to
extract the contextual representations in each language pair.

In Fig. 2, the numbers of dimensions ri, hj , cri , chj
, sri , and shj

respectively
denote 300. The number of epochs is 80 in each language pair. The contextual
representations of the reference cri and those of the hypothesis chj

are extracted,
respectively, from the encoder of the learned attention-based LSTM models.
Moreover, 0.1 was used as the high parameter α in Eqs. (1) and (2) by prelim-
inary experimentation. Our proposed metric (i.e. OPTICS) and WE WPI [7]
used fastText [9] as the static word embedding models for reference and hypoth-
esis. In OPTICS and WE WPI, the averages of the segment-level scores are used
as system-level scores.

Next, we obtained the correlation coefficients with human judgments to eval-
uate OPTICS and the state-of-the-art metrics using the script provided by
WMT20. The script is provided at http://www.statmt.org/wmt20/results.html.

In WE WPI and OPTICS, fastText model of Inuktitut is not provided
at https://fasttext.cc/docs/en/crawl-vectors.html. Therefore, correlations of
English–Inuktitut in WE WPI were not obtained. In OPTICS, only contex-
tual representations, which are extracted from the encoder of the neural model
learned using the pairs of English source sentence and Inuktitut reference, were
used. In that case, the vectors, of which all elements are 1.0, were used as the
static word embeddings (i.e. srik , shjk

) of Inuktitut.

http://www.statmt.org/wmt20/results.html
https://fasttext.cc/docs/en/crawl-vectors.html
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4.2 Experiment Results and Discussion

Table 1. Pearson correlations of to-English at the system-level.

cs-en de-en ja-en pl-en ru-en ta-en zh-en iu-en km-en ps-en Avg.

BLEURT

-extend 0.771 0.985 0.961 0.551 0.900 0.897 0.945 0.789 0.985 0.942 0.873

COMET 0.783 0.998 0.964 0.591 0.923 0.880 0.952 0.852 0.971 0.941 0.886

esim 0.790 0.998 0.983 0.591 0.928 0.885 0.963 0.807 0.929 0.929 0.8803

OpenKiwi

-Bert 0.726 0.989 0.735 0.355 0.862 0.645 0.625 −0.126 0.751 0.753 0.632

OpenKiwi

-XLMR 0.760 0.995 0.931 0.442 0.859 0.792 0.905 0.271 0.880 0.865 0.770

prism 0.818 0.998 0.974 0.502 0.908 0.898 0.957 0.833 0.950 0.966 0.8804

YiSi-1 0.832 0.998 0.982 0.543 0.915 0.925 0.961 0.834 0.977 0.953 0.892

WE WPI

(Baseline) 0.838 0.998 0.973 0.573 0.939 0.933 0.965 0.776 0.993 0.922 0.891

OPTICS

(This work) 0.849 0.998 0.972 0.541 0.934 0.933 0.964 0.824 0.993 0.929 0.894

Table 2. Pearson correlations of out-of-English at the system-level.

en-iu en-iu

en-cs en-de en-ja en-pl en-ru en-ta en-zh fill news Avg.

BLEURT-extend 0.989 0.969 0.944 0.982 0.980 0.940 0.928 0.823 0.762 0.924

COMET 0.978 0.972 0.974 0.981 0.925 0.944 0.007 0.860 0.858 0.833

esim 0.908 0.979 0.993 0.969 0.967 0.937 0.972 0.814 0.760 0.922

OpenKiwi-Bert 0.920 0.852 0.363 0.903 0.834 0.846 0.551 0.573 0.808 0.739

OpenKiwi-XLMR 0.972 0.968 0.992 0.957 0.875 0.910 −0.010 0.513 0.680 0.762

prism 0.949 0.958 0.932 0.958 0.724 0.863 0.221 0.957 0.945 0.834

YiSi-1 0.922 0.971 0.969 0.964 0.926 0.973 0.959 0.554 0.523 0.862

WE WPI (Baseline) 0.879 0.941 0.964 0.894 0.945 0.936 0.911 − − −
OPTICS (This work) 0.868 0.944 0.964 0.913 0.952 0.935 0.910 0.586 0.695 0.863

Table 3. Kendall correlations of to-English at the segment-level.

cs-en de-en iu-en ja-en km-en pl-en ps-en ru-en ta-en zh-en Avg.

BLEURT

-extend 0.127 0.448 0.259 0.271 0.330 0.044 0.161 0.101 0.246 0.137 0.212

COMET 0.129 0.485 0.281 0.274 0.298 0.099 0.158 0.156 0.241 0.171 0.229

esim 0.110 0.454 0.241 0.239 0.300 0.058 0.147 0.084 0.208 0.138 0.198

OpenKiwi

-Bert 0.036 0.379 −0.005 0.110 0.168 −0.033 0.076 −0.033 0.118 0.029 0.085

OpenKiwi

-XLMR 0.093 0.463 0.056 0.220 0.244 0.059 0.106 0.092 0.188 0.115 0.164

prism 0.143 0.475 0.255 0.272 0.304 0.109 0.165 0.145 0.237 0.167 0.227

YiSi-1 0.117 0.468 0.253 0.277 0.316 0.042 0.147 0.091 0.248 0.146 0.211

WE WPI

(Baseline) 0.102 0.474 0.218 0.238 0.239 0.080 0.134 0.133 0.222 0.151 0.199

OPTICS

(This work) 0.103 0.475 0.231 0.233 0.235 0.089 0.149 0.134 0.222 0.154 0.203
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Tables 1 and 2 respectively present Pearson correlations of to-English and out-
of-English system-level metrics with direct assessment (DA) human assessment
over MT systems using the newstest2020 references. Tables 3 and 4 respectively
present segment-level metric results for to-English and out-of-English language
pairs. These coefficients are Kendall’s Tau formulations of the segment-level
metric. The highlighted values shown in bold typeface in Tables 1–2 denote that
the correlations of metrics are not significantly outperformed by any other for
that language pair. “Avg.” stands for the average of correlations of all language
pairs.

Table 4. Kendall correlations of out-of-English in the segment-level.

en-cs en-de en-iu en-ja en-pl en-ru en-ta en-zh Avg.

BLEURT-extend 0.689 0.447 0.359 0.533 0.430 0.305 0.643 0.460 0.483

COMET 0.668 0.468 0.322 0.624 0.462 0.344 0.671 0.432 0.499

esim 0.469 0.347 0.122 0.522 0.312 0.224 0.599 0.391 0.373

OpenKiwi-Bert 0.262 0.168 −0.115 −0.529 0.153 0.164 0.169 0.077 0.044

OpenKiwi-XLMR 0.607 0.369 0.060 0.553 0.347 0.279 0.604 0.377 0.400

prism 0.619 0.447 0.452 0.579 0.414 0.283 0.448 0.397 0.455

YiSi-1 0.550 0.427 0.251 0.568 0.349 0.256 0.669 0.463 0.442

WE WPI (Baseline) 0.477 0.331 − 0.502 0.276 0.192 0.376 0.379 −
OPTICS (This work) 0.471 0.339 0.250 0.500 0.280 0.184 0.367 0.381 0.347

The “Avg.” of correlations with human judgment in Tables 1 and 3 expresses
that OPTICS outperforms WE WPI, which is the metric based on optimal trans-
port using static word embeddings only. Moreover, OPTICS achieves state-of-
the-art performance except out-of-English segment-level correlations of Table 4.
The difference between “Avg.” of top rank (i.e. COMET) and that of OPTICS
is not small in out-of-English segment-level correlations of Table 4 because the
correlation of “en-ta” in OPTICS is low. To ascertain the cause, it is necessary
to investigate the related details. On the other hand, the correlation of “en-iu”
of OPTICS in Table 4 is not a severe difficulty compared with that of “en-ta”
of OPTICS, although OPTICS calculated the scores only using the contextual
representations in “en-iu”. Therefore, this result represents the effectiveness of
the contextual representations in OPTICS.

5 Conclusion

As described in this paper, we proposed OPTICS as a new automatic met-
ric based on optimal transport by integration of contextual representations
and static word embeddings. In OPTICS, after the contextual representations
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are extracted from the encoder of the learned neural models, they are used
as weights for static word embeddings. Through the experimentally obtained
results, we confirmed that OPTICS can obtain high correlations with human
judgment to WE WPI, which uses only static word embeddings. Moreover,
OPTICS achieved state-of-the-art performance, although the correlations of out-
of-English segment-level are insufficient.

Future work will be undertaken to investigate the effects of other neural
models (e.g. Transformer [26]), which extract contextual representations. In that
case, the investigation about the epoch number and the suitable learning data is
also required. Moreover, we expect to perform a meta-evaluation using various
data (e.g. WMT 21 data using MQM-based human evaluation [27]).

Acknowledgement. This work was partially supported by grants from Hokkai-
Gakuen University.
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5. Popović, M.: chrF++: words helping character n-grams. In: Proceedings of the
Conference on Machine Translation, Volume 2: Shared Task Papers, pp. 612–618
(2017)

6. Lo, C.: YiSi - a unified semantic MT quality evaluation and estimation metric for
languages with different levels of available resources. In: Proceeding of the Fourth
Conference on Machine Translation, Volume 2: Shared Task Papers, pp. 507–513
(2019)

7. Echizen-ya, H., Araki, K., Hovy, E.: Word embedding-based automatic MT evalu-
ation metric using word position information. In: Proceedings of the 17th Annual
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pp. 1874–1883 (2019)

8. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. Adv. Neural. Inf. Process.
Syst. 26, 3111–3119 (2013)

9. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)



236 H. Echizen’ya et al.

10. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word repre-
sentation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, pp. 1532–1543 (2014)

11. Devlin, J., Chang, M.-W., Lee, K., Toutanova, K.: BERT: pre-training of deep
bidirectional transformers for language understanding. In: Proceedings of the 17th
Annual Conference of the North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, pp. 4171–4186 (2019)

12. Sellam, T., et al.: Learning to evaluate translation beyond English: BLEURT sub-
missions to the WMT metrics 2020 shared task. In: Proceedings of the 5th Con-
ference on Machine Translation, pp. 921–927 (2020)

13. Rei, R., Stewart, C., Farinha, A.C., Lavie, A.: COMET: a neural framework for
MT evaluation. In: Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing, pp. 2685–2702 (2020)

14. Kepler, F., Trénous, J., Treviso, M., Vera, M., Martins, A.F.T.: OpenKiwi: an
open source framework for quality estimation. In: Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics: System Demonstrations,
pp. 117–122 (2019)

15. Mathur, N., Baldwin, T., Cohn, T.: Putting evaluation in context: contextual
embeddings improve machine translation evaluation. In: Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics, pp. 2799–2808
(2019)

16. Thompson, B., Post, M.: Automatic machine translation evaluation in many lan-
guages via zero-shot paraphrasing. In: Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing, pp. 90–121 (2020)

17. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. In: Proceedings of the Third International Conference on
Learning Representations (2015)

18. Rubner, Y., Tomasi, C., Guibas, L.J.: A metric for distributions with applications
to image databases. In: Proceedings of the 1998 IEEE International Conference on
Computer Vision, pp. 59–66 (1998)

19. Martin, L., et al.: CamemBERT: a Tasty French Language Model. In: Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics, pp.
7203–7219 (2020)

20. Liu, Y., et al.: RoBERTa: a robustly optimized BERT Pretraining Approach. In:
Proceedings of the Eighth International Conference on Learning Representations
(2020)

21. Conneau, A., Lample, G.: Cross-lingual language model pretraining. In: Proceed-
ings of the 33rd Conference on Neural Information Processing Systems, pp. 7059–
7069 (2019)

22. Conneau, A., et al.: Unsupervised cross-lingual representation learning at scale.
In: Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pp. 8440–8451 (2020)

23. Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: BERTScore: evalu-
ating text generation with BERT. In: Proceedings of the International Conference
on Learning Representations (2020)

24. Chen, Q., Zhu, X., Ling, Z., Wei, S., Jiang, H., Inkpen, D.: Enhanced LSTM for
natural language inference. In: Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics, pp. 1657–1668 (2017)



OPTICS: Automatic MT Evaluation Based on Optimal Transport 237

25. Mathur, N., Wei, J.T.-Z., Freitag, M., Ma, Q., Bojar, O.: Results of the WMT20
metrics shared task. In: Proceedings of the 5th Conference on Machine Translation,
pp. 688–725 (2020)

26. Vaswani, A., et al.: Attention is all you need. In: Proceedings of the 31st Conference
on Neural Information Processing Systems, pp. 6000–6010 (2017)

27. Freitag, M., et al.: Results of the WMT21 metrics shared task: evaluating metrics
with expert-based human evaluations on TED and news domain. In: Proceedings
of the Sixth Conference on Machine Translation, pp. 733–774 (2021)



Exploration of Multi-corpus Learning
for Hate Speech Classification in Low

Resource Scenarios

Ashwin Geet D’Sa(B), Irina Illina(B), Dominique Fohr, and Awais Akbar
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Abstract. The dramatic increase in social media has given rise to the
problem of online hate speech. Deep neural network-based classifiers
have become the state-of-the-art for automatic hate speech classification.
The performance of these classifiers depends on the amount of avail-
able labelled training data. However, most hate speech corpora have a
small number of hate speech samples. In this article, we aim to jointly
use multiple hate speech corpora to improve hate speech classification
performance in low-resource scenarios. We harness different hate speech
corpora in a multi-task learning setup by associating one task to one
corpus. This multi-corpus learning scheme is expected to improve the
generalization, the latent representations, and domain adaptation of the
model. Our work evaluates multi-corpus learning for hate speech clas-
sification and domain adaptation. We show significant improvements in
classification and domain adaptation in low-resource scenarios.

Keywords: hate speech detection · multi-task learning · low-resource
text classification

1 Introduction

An increase in online social media usage has led to a rise in hate speech. Hate
speech is an anti-social behavior that targets a small part of the society, based
on race, gender, etc. [10]. In many countries, hate speech is prohibited by the law
and has to be filtered from social media platforms. However, manually analyzing
the user contents is time-consuming and expensive. Natural language processing
techniques can be used to automatically detect and filter hate speech content.
Hence, there is an increased interest in automatic hate speech classification. Deep
learning-based approaches have become the state-of-the-art for this task [3,9,15,
18,20]. However, the performance of these classifiers depends on the amount of
available labelled training data [2].

Typically, hate speech datasets are collected from sources such as Twitter
[4,8,14], Wikipedia [26], etc. Characteristics of the dataset, such as the sam-
pling strategy, the time frame [12] of the comments, and the definition of class
labels [13], often bias the models trained on each dataset. Particularly, a model
c© Springer Nature Switzerland AG 2022
P. Sojka et al. (Eds.): TSD 2022, LNAI 13502, pp. 238–250, 2022.
https://doi.org/10.1007/978-3-031-16270-1_20
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trained on one dataset can be inefficient on another dataset [25], resulting in
the restricted generalizability of the model. Furthermore, these datasets have
a small number of labelled samples. In order to bring diversity in the train-
ing data, and increase the number of samples to train the model, multiple hate
speech corpora can be harnessed to consider the corpus diversity and reduce the
data sparsity issue. In this paper, we investigate a multi-task learning (MTL)
approach, instead of a simple combination of different corpora.

MTL aims to jointly learn from multiple related tasks. MTL combines the
domain-specific information and shares representations between related tasks,
hence, can improve the generalization capabilities of the model on the target
task [7]. MTL has applications in various domains, such as computer vision,
bioinformatics, speech, natural language processing (NLP), etc. [23,27].

MTL has been explored for hate speech classification. An MTL architecture
having shared and private task-specific layers to capture shared and task-specific
features, respectively, from different hate speech classification tasks is proposed
in [16]. A joint model of emotion and abusive language detection, that allows one
task to receive relevant information from the other tasks is introduced in [22].
They combine the features of single task-learning and MTL using an attention
mechanism. Although these prior works have shown the effectiveness of MTL
architectures, they haven’t exploited the pre-trained models.

In this article, we design an MTL approach based on the work in [19], wherein
the authors combined a range of NLP tasks using shared layers represented by
the pre-trained BERT model and several groups of task-specific layers; each
group corresponding to a single task. Compared to this work, we adapt the
paradigm of multi-task learning to multi-corpus learning. In our approach, a task
corresponds to a corpus. Compared to the works in [16,22], we use the pre-trained
Bidirectional Encoder Representations from Transformers (BERT [11]) model for
our MTL to benefit from extensive knowledge learned by BERT pre-training.
A Spanish BERT model in an MTL setup has showed improvements for hate
speech classification tasks in [21]. However, they incorporate sentiment analysis
and emotion analysis tasks in their MTL. Instead, we exploit the relatedness of
hate speech classification tasks by using five well-known hate speech datasets
extracted from Twitter and Wikipedia. Furthermore, these prior works do not
study the performance of the MTL approach in low-resource scenarios. Thus, we
explore a low-resource domain adaptation scenario in the framework of multi-
corpus learning.

Our contributions are summarized as follows:

1. We adapt MTL approach to multi-corpus learning (MCL) for hate speech
classification and validate it on widely used hate speech corpora.

2. We study the robustness of the proposed MCL in low-resource scenarios.
3. We study low-resource domain adaptation.

2 Proposed Methodology

In this section, we first describe MTL. This is followed by our approaches for
MCL and domain adaptation in low-resource scenario.
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2.1 Objective of Multi-Task Learning

Given T related tasks {ti}Ti=1, MTL aims to jointly learn these tasks to improve
the model performance on each task ti. Let us consider supervised learning task
ti, with ni samples (xi

1, x
i
2 . . . xi

ni
) ∈ Xi and labels (yi

1, y
i
2 . . . yi

ni
) ∈ Y i. For the

task ti, a MTL model learns the parameter set {θs, θi} using a function f i as
follow:

f i(Xi; θs, θi) : Xi → Y i (1)

where θs are the model parameters shared between all the tasks in {ti}Ti=1, and
θi represents the task-specific model parameters. The objective is to minimize
the overall loss L:

L(θs, θ1, θ2, . . . θT ) =
T∑

i=1

Li(θs, θi) (2)

where Li(θs, θi) is the loss for task ti, and, in the supervised case, can be eval-
uated as follow:

Li(θs, θi) =
1
ni

ni∑

j=1

L(f i(xi
j ; θ

s, θi), yi
j) (3)

where, L is a loss function measuring how well the function f i fits the training
data (Xi, Y i). The objective of MTL is to reduce the overall loss L, by optimizing
the task-specific parameters {θi}Ts

i=1, and the parameters shared across all the
tasks θs. In a single task learning approach, T = 1 and the dataset of task t1 is
processed by a model with parameters θ1.

Fig. 1. Architecture of the multi-corpus model (left part) and the procedure of domain
adaptation (right part).
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2.2 Our Approach for Multi-Corpus Learning

MTL can be done with either hard or soft parameter sharing of hidden layers [23].
In our work, we use the most common approach of MTL: the hard parameter
sharing. In this case, all the datasets are first processed by the shared layers
having learnable parameters θs. These layers learn a shared representation for
all the tasks from all the available input data. The outputs of the shared layers
are passed into the task-specific layers with parameters θi when the model input
corresponds to the data of task ti.

Our methodology is based on MTL proposed in [19], where a pre-trained
BERT model is incorporated. We adapt this model for our task of low-resource
hate speech classification and apply it in a multi-corpus scenario. Usually, super-
vised classification approaches require a large amount of annotated data. By
combining several corpora, MCL mitigates the problems of less amount of train-
ing data to efficiently train a model and reduces the overfitting problem.

Figure 1 (left part) shows the architecture of our approach. We consider a
corpus as a task. The number of tasks corresponds to the number of available
annotated corpora used to train the model. The MCL model consists of two
parts: (a) the shared layers; (b) a set of corpus-specific layers.

Shared Layers: The shared layers are shared by all the tasks. We chose the
pre-trained BERT model [11] as shared layers. The training samples from all
the tasks are passed as input to the shared layers. These layers benefit from an
implicit data augmentation as they process the data from all the tasks. This
enriches the representations learned by the shared layers.

Corpus-specific Layers: The outputs of the shared layers are used as input
to the corpus-specific layers. The objective of the corpus-specific layers is to
optimize the model for a given corpus.

2.3 Domain Adaptation Using Multi-Corpus Learning

The goal of an efficient model is to generalize to unseen data. When the distribu-
tion of train and test sets differ (domain shift) [6], the ability of a model trained
on one domain to perform on another domain reduces. Supervised domain adap-
tation techniques allow a model trained on the source domain to adapt to a
target domain with a limited amount of labelled data.

The procedure for domain adaptation using the MCL is presented in Fig. 1
(right). We first train an MCL model with all the available corpora except one,
which is our target corpus for adaptation. Then we adapt the trained MCL
model to our target corpus. After adding new corpus-specific layers for the new
target corpus, during adaptation, we update the shared layers along with the
newly added corpus-specific layers using the target corpus.

3 Experimental Setup

In this section, we briefly describe the considered datasets, the text pre-
processing, and the choice of model parameters for our MCL approach.
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3.1 Corpora

We consider five widely used hate speech corpora to train our MCL model. Four
of these corpora are tweets sampled from Twitter, namely Davidson [8], Founta
[14], Hateval [4], and Waseem [24]. The fifth corpus is sampled from Wikipedia
talk pages [26]. We perform binary classification for the Hateval, Waseem and
Wikipedia datasets. The Davidson and Founta corpora are used for the multi-
class classification of hate speech. The statistics of these corpora are provided in
Table 1.

Table 1. Corpus statistics: number of tweets or comments.

Corpus Total Class labels

Normal Abusive Hateful

Davidson 24.8k 4.2k 19.2k 1.4k

Founta 86.0k 53.8k 27.2k 5.0k

Non-hateful Hateful

Hateval 13.0k 7.5k 5.5k

Waseem 10.9k 8.0k 2.9k

Non-Toxic Toxic

Wikipedia 159.7k 131.7k 28.0k

Davidson: This dataset is collected by sampling tweets using some keywords
from the hatebase lexicon.1 The corpus is annotated into three classes neither,
offensive language, and hate speech. We refer to these classes as normal, abusive,
hateful, respectively.

Founta: The Founta corpus has four classes, namely, normal, abusive, hateful,
and spam. We removed samples labelled as spam class, which reduced the size
of this dataset from 100k tweets to 86.9k tweets.

Hateval: This corpus was designed for the ‘SemEval-2019’ shared task. For our
study, we have used the English part of the dataset. The corpus is annotated
into two classes, namely, hateful and non-hateful. The corpus provides 9k, 3k,
and 1k samples for training, development, and test sets, respectively.

Waseem: This dataset is sampled using keywords containing racial and sexual
slurs. This dataset has three classes, racism, sexism, and none with 2.0k, 3.4k,
and 11.6k samples, respectively. Due to the filtering strategy of Twitter to remove
hateful content, we retrieved only 20, 2.9k, and 8.0k samples for racism, sexism,
and none classes, respectively, using the tweet-ids provided by the authors, as
in [5]. We refer to the sexism class as hateful, and the none class as non-hateful.
We discard samples from the racism class due to very few samples.
1 https://www.hatebase.org.

https://www.hatebase.org
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Wikipedia: This corpus contains comments from the user talk pages. We use
the ‘toxicity’ part of the dataset, annotated with five labels - very toxic, toxic,
neither, healthy, and very healthy. Each comment is annotated by approximately
ten annotators. We chose to split the corpus into two classes: toxic versus non-
toxic for each comment. We consider the comment as toxic if at least two anno-
tators have labelled the comment as toxic or very toxic, and if the number of
annotations as toxic or very-toxic is higher than the number of annotations as
healthy and very-healthy. The dataset provides 95.7 k, 32.1 k, and 31.9 k samples
for training, development, and test sets, respectively.

3.2 Dataset Split

For Davidson, Founta, and Waseem, we randomly split the datasets into three
parts, training, validation, and test sets, each containing 70%, 10%, and 20%,
respectively. For Hateval and Wikipedia corpora, we utilize the splits provided
by the datasets. The training set is used to train the model, the validation set to
adjust the model parameters, and the test set to evaluate the model performance.

3.3 Input Pre-processing

For Twitter corpora, the user handles are changed to ‘@USER’. The ‘#’ symbol
in the hashtag is removed, and the multi-word hashtags are split based on the
presence of the uppercase characters. For example, ‘#leaveThisPlace’ is changed
to ‘leave This Place’. The tweets containing the term ‘RT’ indicating re-tweet are
also removed. For all the datasets, we remove all numbers, newlines, and special
characters except ‘.’, ‘,’, ‘!’, ‘?’, and apostrophes. The repeated occurrences of the
same special character are reduced to a single one. All the URLs and emoticons
are also removed. Finally, all the data is lower-cased.

3.4 Multi-corpus Model and Training Description

The shared layers consist of the pre-trained English ‘bert-base-uncased’ model.
We use five sets of corpus-specific layers as we have five corpora. The output
of the [CLS] token of the BERT model is used as input to the corpus-specific
layers. We define a single dense layer as our corpus-specific layer. The outputs
of this hidden layer are passed through a softmax classifier with the number of
units equal to the number of classes of the respective corpus. We use ReLU [1]
activation for the dense layers, a learning rate of 1e − 5, Adam optimizer [17], a
maximum of 30 epochs, mini-batch size of 32, and early stopping.

Compared to the standard way of a random selection of training samples
for a mini-batch, we perform a task-specific selection of mini-batches. All the
samples of a given mini-batch are extracted from a single corpus. For example,
given two datasets, for one mini-batch, we select a fixed number of random
training samples from one dataset, and for the other mini-batch we select the
same number of samples from the other dataset. This procedure is repeated for
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the remaining mini-batches. When one corpus has fewer samples compared to
another corpus, the samples from the smaller dataset are repetitively selected.
This kind of mini-batch selection ensures that the multi-task learning model is
trained with an equal number of samples from all the corpora. Our source code
for MCL is made available2.

4 Results and Discussion

In this section, we report the classification performance. We compute average
macro-F1 and standard deviation over five runs of the model with different
random initialization.

4.1 Multi-Corpus Learning

We evaluate the following configurations:

Single-Corpus Learning (SCL): We create five models, one for each corpus.
Each model is obtained by fine-tuning the pre-trained BERT on the training
part of the corresponding corpus. The test set is used to evaluate the model.

Multi-Corpus Learning (MCL): We create a single model using all the train-
ing corpora (see Sect. 2.2). The test set of each corpus is used separately to
evaluate the model.

Multi-Corpus Learning with corpus-specific fine-tuning (MCLfinetuned):
The model learned using the MCL setup, is further fine-tuned using five target
corpora. We create five models, one for each corpus. In the beginning, one MCL
model is learned. Then, this model is fine-tuned using five training corpora sepa-
rately. This results in five models. The test part of each corpus is used to evaluate
the corresponding fine-tuned MCL model.

The results obtained on the five corpora are presented in Table 2.

Table 2. Macro-F1 and standard deviation of five runs. Results on test sets for the
different approaches. Average column presents the mean on five test corpora.

Davidson Founta Hateval Waseem Wikipedia Average

SCL 76.0 ± 0.6 75.8 ± 0.4 49.3 ± 1.8 84.0 ± 0.5 86.9 ± 0.1 74.4

MCL 76.3 ± 1.1 75.5 ± 0.2 50.4 ± 3.0 84.1 ± 0.4 86.4 ± 0.2 74.5

MCLfinetuned 75.7 ± 1.0 75.8 ± 0.7 52.1 ± 2.6 84.6 ± 0.6 86.7 ± 0.2 75.0

We observe that the average macro-F1 obtained for the SCL approach is
74.4%. The average macro-F1 of the MCL approach 74.5% is close to the SCL
approach. We note that for the two smaller training corpora (Davidson and
Hateval) the performance slightly increased, but for the two larger training cor-
pora (Founta and Wikipedia) the performance marginally reduced, thus showing

2 https://gitlab.inria.fr/adsa/multitasklearning lrec.

https://gitlab.inria.fr/adsa/multitasklearning_lrec
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higher improvements in low-resource corpora. For the MCLfinetuned setup, we
obtain an average macro-F1 of 75.0%. This shows an improvement compared to
SCL and MCL approaches. We observe that all the corpora, except Davidson,
benefit from the fine-tuning of the MCL model. This improvement observed for
the MCLfinetuned approach can be due to the fact that the MCL model is not
fully optimized for every considered corpus. Hence, fine-tuning the MCL model
on a specific corpus can help.

We would like to highlight that, although we obtain poor classification results
on the Hateval dataset, our results are higher than the average macro-F1 of
44.84% obtained by the participants of the SemEval-2019 Task 5 challenge [4].

In the MCL approach, only the shared layers benefit from jointly training
with several corpora. Whereas, each corpus-specific layer is trained only with
the corpus-specific data. To increase the amount of data used to train corpus-
specific layers, we combine the training sets of related corpora. To achieve this,
we merge the training sets of the three-class datasets together, and similarly, the
training sets of the two-class datasets. We represent the combined training sets
as {Davidson & Founta} and {Hateval & Waseem & Wikipedia} in Table 3. This
setup reduces the number of corpus-specific layers used for the MCL architecture,
and the the number of parameters to train. Compared to the standard MCL
approach, which consists of five sets of corpus-specific layers, by combining the
training sets, we have only two sets of corpus-specific layers. In this setup, for
all the configurations, we fine-tune the MCL model using the combined training
sets. However, the model is evaluated on a specific test set and the results are
reported separately to allow their comparison with the previous results.

Table 3. Macro-F1 and standard deviation of five runs. Results on test sets for the
different approaches by combining tasks. Average column presents the mean on five
test corpora.

Train set {Davidson & Founta} {Hateval & Waseem & Wikipedia} Average

Test set Davidson Founta Hateval Waseem Wikipedia

SCL 82.1 ± 4.7 77.2 ± 0.7 39.8 ± 2.3 80.4 ± 1.7 86.7 ± 0.2 73.2

MCL 82.2 ± 3.3 77.7 ± 1.1 42.5 ± 3.6 80.0 ± 1.2 86.4 ± 0.3 73.7

MCLfinetuned 88.1 ± 1.7 78.4 ± 0.2 42.3 ± 2.5 81.9 ± 0.7 86.0 ± 0.3 75.3

Table 3 presents the results obtained using the MCL by combining corpora.
For SCL, we obtain better results for Davidson and Founta test sets compared
to the SCL approach without combining the training sets (results in Table 2).
Perhaps this is because Davidson and Founta datasets have a similar label def-
inition. However, we observe a reduced performance for Hateval and Waseem
test sets. This can be due to the fact that abusive speech and toxic speech are
close but represent different concepts and bias the system. The MCL approach
by combining the tasks provides a small improvement compared to the SCL app-
roach (73.7% versus 73.2%). Furthermore, for MCLfinetuned approach, we obtain
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the best results (75.3%). In conclusion, we note that corpus-specific fine-tuning
of the trained MCL model shows improvements compared to the MCL approach.

4.2 Multi-Corpus Learning in Low-Resource Scenarios

We explore the MCL approach in low-resource training scenarios. We down-
sample the available training sets of all the corpora to 100, 200, 500, and 1000
samples. We then perform the training using SCL, MCL, and MCLfinetuned

approaches on the reduced training data.
Table 4 presents the average macro-F1 on the five datasets in low-resource

scenarios. Figure 2 shows the macro-average F1 for SCL, MCL, and MCLfinetuned

setup for the Founta and Wikipedia test sets. For illustration, we plot the results
only for the Wikipedia and Founta datasets, as examples of two-class and three-
class classification performance. We obtained similar results for other datasets.

From Table 4 and Fig. 2, we can note that MCL and MCLfinetuned setups show
similar or better results than SCL. However, MCL and MCLfinetuned give higher
performance gains in very low-resource scenarios. When we use 100 samples
for the training sets, we obtain a relative improvement of 16.8% and 23.9% for
MCL and MCLfinetuned, respectively, compared to SCL (61.2%, 57.7% versus
49.4%). For 200 samples, we obtain a relative improvement of 18.5% and 22.3%
for MCL and MCLfinetuned, respectively (65.3% and 63.3% versus 53.4%). These
improvements are statistically significant.

Table 4. Average macro-F1 results on test sets for five corpora in low-resource sce-
narios.

Approaches Number of training samples

100 200 500 1000

SCL 49.4 53.4 67.7 70.2

MCL 57.7 63.3 67.0 69.6

MCLfinetuned 61.2 65.3 68.7 70.6

Fig. 2. Macro-average F1 results on test sets for low-resource scenarios.
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This shows that when the number of available samples is low, the MCL gains
from jointly training the model using several datasets. Furthermore, the results
also indicate that corpus-specific fine-tuning of the MCL model gives significant
performance improvements in low-resource scenarios.

4.3 Domain Adaptation Using Multi-Corpus Learning Approach

We perform supervised domain adaptation for hate speech classification as
described in Sect. 2.3. We simulate low-resource scenarios for domain adaptation.
We train the MCL model with entire training sets of four tasks. Whereas, for the
target corpus, we use only 100, 200, 500, and 1000 training samples. The average
macro-F1 results obtained on five target corpora in low-resource scenarios are
presented in Table 5. The results of domain adaptation are compared against
low-resource single-corpus learning, where the SCL model is fine-tuned with the
varying amount of training data of the target set (same model as in Sect. 4.2).
Figure 3 presents the results obtained for domain adaptation for Founta and
Wikipedia as target datasets.

Compared to the SCL, for domain adaptation, we obtain a significant rel-
ative improvement of 37% and 31.5%, using 100 and 200 training samples for
the target datasets, respectively (67.7% versus 49.4% and 70.2% versus 53.4%).
The improvement is higher when the amount of available data is lower. This
can be because the shared layer of MCL captures information from multiple
related corpora, that can be transferred to a new corpus. Figure 3b shows a con-
siderable amount of improvements in the low-resource domain adaptation for
the Wikipedia dataset, although the MCL model was trained with four Twitter
datasets. This indicates that the MCL approach can still be helpful when the
task is related but the corpora come from different domains. Using the entire
training set as a target corpus for domain adaptation, an average macro-F1 of
74.7% is obtained. This result is better than macro-F1 of 73.2% obtained using
SCL. Thus, from Table 5, we conclude that domain adaptation in low-resource
scenarios gives better performance than the SCL approach.

Table 5. Average of macro-F1 results for five test datasets as target datasets for
domain adaptation: low-resource scenario and all training samples.

Approaches Low-resource scenario All training samples

Number of adaptation samples

100 200 500 1000

SCL (without adaptation) 49.4 53.4 67.7 70.2 73.2

MCL domain adaptation 67.7 70.2 71.2 72.1 74.7
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Fig. 3. Macro-average F1 results for domain adaptation.

5 Conclusion

In this article, we explored multi-corpus learning (MCL) for low-resource hate
speech classification. Our approach for MCL is based on the paradigm of multi-
task learning. Our idea is to utilize the shared layers of MCL to learn a common
representation for several corpora, and corpus-specific layers to take into account
the corpus-specific characteristics. We showed that the fine-tuning of the MCL
model improves the performance compared to the SCL model.

In very low-resource scenarios, the MCL showed significant performance
improvement when compared to SCL. We also used the MCL approach to
perform domain adaptation. Compared to fine-tuning a pre-trained BERT,
our adaptation approach showed significant improvements, especially when the
amount of available adaptation data is very low. Overall, we experimentally
demonstrated the efficiency of MCL for low-resource hate speech classification
and domain adaptation.
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Abstract. Social media have been growing rapidly during past years.
They changed different aspects of human life, especially how people com-
municate and also how people access information. However, along with
the important benefits, social media causes a number of significant chal-
lenges since they were introduced. Spreading of fake news and hate speech
are among the most challenging issues which have attracted a lot of
attention by researchers in past years. Different models based on natu-
ral language processing are developed to combat these phenomena and
stop them in the early stages before mass spreading. Considering the
difficulty of the task of automated harmful information detection (i.e.,
fake news and hate speech detection), every single step of the detection
process could have a sensible impact on the performance of models. In
this paper, we study the importance of word embedding on the overall
performance of deep neural network architecture on the detection of fake
news and hate speech on social media. We test various approaches for
converting raw input text into vectors, from random weighting to state-
of-the-art contextual word embedding models. In addition, to compare
different word embedding approaches, we also analyze different strategies
to get the vectors from contextual word embedding models (i.e., get the
weights from the last layer, against averaging weights of the last layers).
Our results show that XLNet embedding outperforms the other embed-
ding approaches on both tasks related to harmful information identifica-
tion.

Keywords: Fake news detection · Hate speech detection · Word
embedding · Contextual word embedding

1 Introduction

Social media play an important role in people’s life nowadays and affected dif-
ferent aspects of communication and accessing to information. Although they
have given the opportunity to people to publish content online in a fast and
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easy way, they also lead to ease of publishing harmful content by ease of gener-
ating content online and the anonymity that they provide [9]. South West Grid
for Learning Organization1 defined harmful content in simple terms as “any-
thing online which causes a person distress or harm.” In this paper, by harmful
information we refer to fake news and hate speech content in social media.

Huge amount of online content in social media and the other online resources
make it almost impossible to manually detect and remove harmful content from
these communication mediums [25]. As a result, Machine Learning (ML) based
approaches are being developed to increase the potential to combat these types
of information. Due to complexity of the task of automated harmful content
detection, hybrid approaches where Artificial Intelligence (AI) and human could
empower each other in order to fight harmful content have attracted considerable
attention from researchers, recently [4,14].

Automated fake news and hate speech detection in social media are con-
sidered as challenging prediction tasks because of various factors includes noisy
content and the dynamic nature of social networks [24,29]. The difficulty of these
tasks increases the importance of all the components in the whole Natural Lan-
guage Processing (NLP) pipeline. In other words, the pre-processing approach,
how to convert raw texts into vectors, the hyper-parameters and so forth could
play a significant role on the overall performance of a harmful content identi-
fication system. For instance, it has been shown that how to deal with URLs
to develop a machine learning based model to detect fake news in social media
could considerably impact the performance of different models.

In this paper, we focus on measuring the importance of word embedding on
the performance of ML models on two tasks related to harmful content identifica-
tion, namely fake news and hate speech detection. For this purpose, we compared
the performance of a deep neural network on two standard datasets for these two
tasks, by using different word embedding approaches. We tested a broad range
of word vectorization approaches from random embedding to the state-of-the-art
contextual word embedding from pre-trained models like BERT [5], XLNet [28],
and RoBERTa [15]. In addition to compare different embedding models, in the
case of contextual embedding models we extracted the activations from differ-
ent layers (i.e., one or more last layers) to find the best setting for the tasks of
harmful content detection.

The impact of word embedding on NLP tasks are studied in different papers.
For instance, the distance of human judgment and ELMO [22] and BERT embed-
dings have been compared in [11], and the performance of word embedding mod-
els for the tasks of multi-lingual plagiarism detection has been measures in [1].
Also, the contextualized representation of different contextual word embedding
models (e.g., BERT [5], ELMO and GPT-2 [23]) are studied in [6]. Although the
impact of word embedding on the task of hate speech detection has been studied
in [13], in this paper we attempt to compare and measure different embedding
approaches not only for hate speech detection, but also for the task of fake news
detection.

1 https://swgfl.org.uk/.

https://swgfl.org.uk/


Importance of Word Embedding in Harmful Information Detection 253

The rest of the paper is organized as follow; in Sect. 2 we discuss some of
the recent models for fake news and hate speech identification in social media.
Section 3 contains a brief introduction about the datasets that are used for the
experiments. Sections 4 and 5 present a proposed experiments to compare differ-
ent word embedding models and the obtained results by the models, respectively.
Finally in Sect. 6 we briefly conclude the paper and discuss some directions in
which the experiments could be extended.

2 Related Work

In this section, we review a number of research on identification of harmful
information. We discuss some of the recently developed models for automatically
detect fake news in social media. Moreover, some of the state-of-the-art models
for the task of hate speech detection in user generated contents are discussed in
this section.

2.1 Fake News Detection

There are different approaches and task definitions for fake news detection in
online content. However, most of the recently developed approached could be cat-
egorized into the knowledge-based and style-based approaches [19]. While ground
truth knowledge bases are used in the knowledge-based approaches to check the
veracity of claims in textual data (i.e., fact-checking), style-based approaches
rely on capturing the writing style of textual content (e.g., news content).

Ghanem et al., modeled the flow of effective information in fake news articles
using a neural architecture [8] named as FakeFlow model. As a style-based app-
roach, the FakeFlow model divides an input document into N segments and uses
word embeddings and other features to catch the flow of emotions in the docu-
ment. They used Convolutional Neural Network (CNN) to extract topic-based
information from articles and Bidirectional Gated Recurrent Units (Bi-GRUs)
to extract flow of the affective information.

As another experiment on word embedding for fake news detection, Verma et
al., proposed WELFake [26] as another style-based method. WELFake is based
on word embedding over linguistic features for fake news detection using ML
classification. They applied TF-IDF and count vectorizer as embedding methods
on a set of classification models like Support Vector Machine (SVM) and K-
Nearest Neighbors (KNN) on 20 extracted linguistic features from news articles.
The achieved results show that the combination of count vectorizer and SVM
can outperform the other methods.

As a knowledge-based approach, Hu et al., proposed an end-to-end graph
neural model, named as CompareNet [12]. CompareNet compares news to the
knowledge base for fake news detection. Based on the proposed model they
first construct a directed heterogeneous document graph from news articles,
considering topics and entities for enriching news representation [12]. The topic-
enriched news representation to encode the semantics of the news has been
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learned based on a heterogeneous graph attention network. As the last step,
they compare the contextual entity representations with the corresponding KB-
based entity representations. The achieved results show that the proposed model
could outperform the other deep learning based models consisting of different
architectures from LSTMs to CNNs and BERT pre-trained model [12].

2.2 Hate Speech Detection

The approaches for hate speech detection can be categorized into lexicon-based
and machine learning-based models. While lexicon-based models try to identify
hate speech expressions based on a set of pre-defined lexicons and rules, machine
learning-based models turn hate speech detection into a text classification prob-
lem. We will review a few research from each of the approaches in the following.

Mohtaj et al., proposed two different models for the task of hate speech detec-
tion in [17,18]. The first model is a character-based LSTMs model that predicts
harmful content in tweets, after replacing Twitter handles, URLs and emojis in
the text with representing phrases. The second model relies on BERT [5] pre-
trained language model. Their achieved results show that the BERT model could
outperform the LSTMs model, using the same pre-processing steps [17].

In another classification based approach, Frenda et al., studied hate speech
detection where women are the target [7]. The proposed model consists of a
SVM classifier that was fed with different textual features, includes “bag and
sequences of words”, “characters n-grams”, and “lexicons” related to the target
group. Their experiments show that characters n-grams work slightly better than
the other approaches in different testing corpora [7].

In a lexicon-based approach, Gitari et al., proposed a rule-based model to
detect hateful content in social media [10]. The proposed model includes a lexicon
building stage, in which the list of terms related to hateful content has been
extracted. As the next step, they developed a set of rules to check the presence
of pre-defined terms in the targeted sentences.

To the best of our knowledge, the experiments in this research is the first
attempt to measure the importance of word embedding step on the overall per-
formance of harmful content identification. The proposed method for measuring
the performances is described thoroughly in the following sections.

3 Data

In this section we briefly discuss the chosen datasets for running experiments for
fake news detection and hate speech detection. We also present a few statistics
from each of the datasets.

3.1 Fake News Data

For the fake news detection experiments we used a COVID-19 related fake news
detection dataset containing English fake and real tweets and news [20]. The
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data have been collected from different social media and fact checking web-
sites and contain 10,700 records in train, validation and test sections2. For the
experiments in this paper, we merged these three parts and then split the whole
data into 5 folds to measure results in a 5-fold cross validation setting. Some
statistics of the dataset are presented in Table 1.

3.2 Hate Speech Data

For the hate speech detection experiments, we chose the English training dataset
of the shared task on “Hate Speech and Offensive Content Identification in
English and Indo-Aryan Languages” HASOC 20213.

Table 1. COVID-19 Fake News Detection Dataset Statistics

Attribute #

Total number of documents 10700

Number of real documents 5600 (52%)

Number of fake documents 5100 (48%)

Average length of documents (in character) 181.8

The length of shortest document (in character) 18

The length of longest document (in character) 10170

HASOC 2021 offered 2 subtasks for hateful content identification in different
languages, including English [16]. Task 1 is a binary classification task in which
tweet are classified into two classes, namely: Hate or Offensive (HOF) and Non-
Hate and Non-Offensive (NOT). The second task is a multi-class classification
problem in which Hate or Offensive (HOF) are categorized into more detailed
classes [16].

Based on the dataset publishers, the Hate and Offensive label in the dataset
presents posts that contain hate, offensive or profane content, while posts with
Non Hate-Offensive label do not contain any Hate Speech, profanity or offen-
sive content. The (NOT) posts contain normal content, statements or anything
else [16].

In this paper we focus on the binary label of the tweets and developed models
to assign text into one of the (HOF) or (NOT) label. Table 2 presents some
statistics of the HASOC 2021 dataset. For this purpose, we split the training set
of the provided dataset into 5 folds as what we did for the fake news detection
dataset.

2 https://competitions.codalab.org/competitions/26655.
3 https://hasocfire.github.io/hasoc/2021/index.html.

https://competitions.codalab.org/competitions/26655
https://hasocfire.github.io/hasoc/2021/index.html
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Table 2. HASOC 2021 English Hate Speech Detection Dataset Statistics

Attribute #

Total number of documents 3843

Number of (HOF) documents 2501 (65%)

Number of (NOT) documents 1342 (35%)

Average length of documents (in character) 167.3

The length of shortest document (in character) 4

The length of longest document (in character) 812

4 Experiments

To measure the importance of word embedding on two above mentioned tasks
for harmful information identification in social media, we tested the impact of
word embedding on a deep neural network architecture by fixing all the other
parameters in the experiment. A set of pre-processing steps were applied on the
input text to help models better generalize. The pre-processing steps and the
developed classification models are entirely described in this section.

4.1 Pre-processing

Having fed raw text into the developed models, we applied a set of processes as
the pre-processing phase. Since the data for both tasks mainly come from social
media content, we focused on normalizing input data–considering the nature of
social network text.

As one of the pre-processing steps, we replaced social network handles (e.g.,
Twitter usernames) with a constant text (“username”). Also, we replaced URLs
with “weblink” constant text. The reason for the replacement is to keep a part
of information instead of removing it. These constant texts show that there is an
URL in a tweet or/and someone is mentioned in a tweet. Although an username
or URL does not matter by itself, keeping this information could be helpful on
assigning the tweet to a correct category (i.e., fake/real or hate full/not hate
full).

Moreover, we replaced Emojis in the texts with a descriptive text that express
them (e.g., replacing the emoji of Germany’s flag with the text “flag of Ger-
many”). As the previous pre-processing steps, adding more textual content to
the input data could help models to better distinguish text based on classes.
These pre-processing steps have been used in [17,18] and could improve the
overall performance of prediction models.

4.2 Classification Models

For developing a model to classify text into the corresponding classes for the
fake news and hate speech detection tasks, we used Recurrent Neural Network
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(RNN) architectures due to the fact that they have shown good performances for
the task of text classification [30]. We used Gated Recurrent Units (GRUs) [3]
to develop the model.

The developed deep neural network model includes an embedding layer,
where different embedding models have been tested. The embedding layer feeds
its output into a Bidirectional GRU unit in order to process the sequence of
input tokens. Then, the GRU’s output passed into a dropout layer to improve
the model’s generalization. Finally, a linear layer pass inputs to the output layer.

We set 64 as the batch size and 128 as the size of the hidden layer. The
GRU unit includes 2 layers and the dropout layer has a probability of 70% to
forget the learned weights. Finally, the model is trained in 50 epoches with the
learning rate of 1e−3. The obtained results on detecting fake news and hate
speech using the model are presented in the following section.

5 Results

In this section we present the overall performance of the mentioned architectures
on two different tasks. All the experiments are done in a 5-fold cross validation
setting. The reported results in this section are the average in the five folds.

To compare the impact of different embedding strategies on the performance
of the model, we fixed all the parameters (e.g., hyper-parameters and the archi-
tecture), and tried a number of different embedding models as the only variable
parameter in the experiment. This way, we tracked the impact of word embedding
on the performance. We used HiggingFace’s package [27] to implement the models.
Moreover, for the training phase, we froze the weights from the embedding layer,
so the model wouldn’t update the pre-trained weights from different models.

As the embedding models, we tested random embedding, GloVe [21], fast-
Text [2], BERT [5], RoBERTa [15], and XLNet [28]. They applied on a Bi-
GRU architectures for both tasks. We used bert-base-uncased, roberta-base, and
xlnet-base-cased for the BERT, RoBERTa, and XLNet models, respectively. The
performance metrics of the models based on different embedding strategies are
presented in Table 3.

Table 3. The overall performance of different embedding strategies on the tasks of
fake news and hate speech detection

Embedding Task

Fake News Hate Speech

Precision Recall F1 Precision Recall F1

Random 0.923 0.904 0.914 0.780 0.729 0.754

GloVe 0.946 0.891 0.918 0.756 0.822 0.787

fastText 0.936 0.887 0.911 0.775 0.755 0.765

BERT 0.944 0.946 0.945 0.773 0.867 0.817

RoBERTa 0.960 0.936 0.948 0.794 0.870 0.830

XLNet 0.973 0.941 0.957 0.793 0.873 0.831
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As it is highlighted in the table, all the contextual embedding models could
outperform the random and traditional embedding models. Also, the XLNet
achieved the best result with respect to F1 for both tasks among the embed-
ding models. However, BERT and RoBERTa embeddings have a competitive
performance in both tasks.

In addition to compare different embedding models, we also tested different
strategies to get the weights from hidden layers in the contextual embedding
models. Unlike the previous experiments in which the embedding weights came
from the last hidden layer of the models, here we tested averaging weights from
the last hidden layers of the models (i.e., from 1 to 4 last layers). The performance
of different strategies are tested against both fake news and hate speech detection
tasks. The obtained results are presented in Fig. 1.

(a) (b)

Fig. 1. The performance of the model with BERT, RoBERTa and XLNet contextual
word embedding models, when the embedding weights come from the average of last
n hidden layers in a) Fake News detection, and b) Hate Speech detection, tasks

As depicted in the figure, in both tasks XLNet can achieve better results when
more layers are used, not only compared to the other models, but also compared
to when only the last layer is used. BERT and RoBERTa models show different
patterns in using more than one layer for the embedding purpose. Using more
layers of BERT could give better result in the hate speech detection task, while
its performance decreases slightly in the fake news detection task. However, it
works differently for RoBERTa when more layers are used for embedding, since
the performance increases to a degree in the fake news task and fall down a bit
in the hate speech detection task.
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6 Conclusion and Future Works

In this paper, we analyzed the importance of word embedding in identification
of harmful content in social media. Two tasks of fake news detection and hate
speech detection have been used as the target tasks. We developed a deep neural
network architecture for text classification and compared the impact of differ-
ent embedding models on the overall performance of the classifier. Our results
showed that XLNet pre-trained language model could better capture the con-
cepts of the input text and the classifier achieve better results compared to the
other word embedding models. Moreover, we tested the impact of using the aver-
age of last hidden layers in BERT, RoBERTa and XLNet models, and compared
it with the common scenario in which the weights come from the very last layer.
Our experiments show that averaging of last layers could leads to better overall
results in all models.

As an open research question for the future works, we want to do the same
experiments a more broad range of word embedding models. Moreover, the same
experiments can be applied on different ML based text classifiers in order to
better validate our findings in this paper.
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7. Frenda, S., Ghanem, B., Montes-y-Gómez, M., Rosso, P.: Online hate speech
against women: automatic identification of misogyny and sexism on twitter. J.
Intell. Fuzzy Syst. 36(5), 4743–4752 (2019). https://doi.org/10.3233/JIFS-179023

8. Ghanem, B., Ponzetto, S.P., Rosso, P., Rangel, F.: Fakeflow: fake news detection by
modeling the flow of affective information. In: Merlo, P., Tiedemann, J., Tsarfaty,
R. (eds.) Proceedings of the 16th Conference of the European Chapter of the
Association for Computational Linguistics: Main Volume, EACL 2021, Online,
19–23 April 2021, pp. 679–689. Association for Computational Linguistics (2021).
https://doi.org/10.18653/v1/2021.eacl-main.56

9. Giachanou, A., Rosso, P.: The battle against online harmful information: the cases
of fake news and hate speech. In: d’Aquin, M., Dietze, S., Hauff, C., Curry, E.,
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Abstract. Free uncontrolled access to the Internet is the main reason
for fake news propagation on the Internet both in social media and in
regular Internet publications. In this paper we study the potential of
several BERT-based models to detect fake news related to politics. Our
contribution to the area consists of testing BERT, RoBERTa and MNLI
RoBERTa models with (a) short and long texts; (b) ensembling with
the best models; (c) noisy texts. To improve ensembling, we introduce
an additional class ‘Doubtful news’. To create noisy data we use cross-
translation. For the experiments we consider the well-known FRN (Fake
vs. Real News, long texts) and LIAR (short texts) datasets. The results
we obtained on the long texts dataset are higher than the results we
obtained on the short texts dataset. The proposed approach to ensem-
bling provided significant improvement of the results. The experiments
with noisy data demonstrated high noise immunity of the BERT model
with long news and the RoBERTa model with short news.

Keywords: Fake News · BERT · RoBERTa · MNLI RoBERTa ·
Ensembling · Noise Immunity

1 Introduction

Today the Internet is a very important part of our lives, a place, where we spend
a significant portion of the day, where we search for answers to our questions,
meet new friends and communicate with old ones, where we study and work,
where we watch movies and read news. Moreover, the Internet is a place where
we want to be safe and be sure that the information we get is reliable, but
nowadays with the growth of the Internet and with weak control of the validity
of information that is published in it, the problem of fake news detection is as
acute as never before.

Fake news is information hoaxes designed to deliberately mislead the reader
in order to gain a financial or political advantage [1], and could harm users both
mentally and physically, so the problem of fake news detection is important, and
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the high quality of fake news identification tools could really help to make the
Internet safer.

In our work we concentrate our efforts to analyze the quality of fake news
detection using different BERT-based models. The topic under consideration is
politics. Our focus is to explore the differences between analyzing long vs short
news texts. To improve the quality of detection we propose ensembling based
on the best models with an additional undefined class. We also study the noise
immunity of the best models with the aim to see how resilient each approach is
by introducing noise. This work is important as it helps to expand knowledge of
the application of BERT-based models - models, which became more and more
popular nowadays, and which allow researchers to obtain the highest results,
in particular for classification tasks. Moreover, our work allows researchers to
compare not only the different BERT-based models, but also the behavior of
these models on the short and long texts, and also with noisy data.

The article consists of the following parts: in Sect. 1 we discuss the target of
the research, Sect. 2 is devoted to literature review connected with the task. In
Sect. 3 we present the datasets we chose for the research, and its preprocessing.
Section 4 contains the description of models we use. In Sect. 5 we present the
results of experiments. Section 6 is a conclusion with a discussion of the results,
and plans of future work.

2 Literature Review

A large amount of research is devoted to the study of fake news detection, as an
important task of binary classification. We divide this short review into several
positions.

Approaches and Relevant Methods. We can highlight the three main
approaches for fake news detection: 1) classical methods of machine learning,
such as Logistic Regression, Support Vector Machines, Naive Bayes, and K-
Nearest Neighbor Classifier [2,3]; 2) methods of Deep Learning based on deep
neural networks, such as LSTM (Long short-term memory) (including [4] where
the authors obtained 0.42 accuracy on the LIAR1 dataset with multi-class clas-
sification, and [5] where the authors obtained 0.46 accuracy on the LIAR dataset
with multi-class classification), CNN (convolutional neural network) ([6] where
the authors obtained 0.96 accuracy on the LIAR dataset with 2-class label clas-
sification), HAN (Hierarchical Attention Network) [7–9]; and 3) advanced lan-
guage models such as BERT (Bidirectional Encoder Representations from Trans-
formers), ELMo (Embeddings from Language Models), ELECTRA (Efficiently
Learning an Encoder that Classifies Token Replacements Accurately) etc., which
demonstrated high results in various natural language processing tasks including
text classification [10–12].

Adversarial Machine Learning. In [13] the authors formulated adversarial
attacks that target compositional semantics, lexical relations, and sensitivity to
1 https://metatext.io/datasets/liar-dataset.

https://metatext.io/datasets/liar-dataset
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modifiers. They then tested their benchmark using the BERT classifier, which
was fine-tuned on the LIAR and Kaggle Fake-News2 datasets. In [14] the authors
made experiments on three different state-of-the-art datasets (LIAR, ISOT3,
and Kaggle Fake-News) under 4 different adversarial attacks (Text Bugger, Text
Fooler, PWWS, and Deep Word Bugs) implemented using the state-of-the-art
Text-Attack4 NLP attack library, where they used CNN, RNN (recurrent neural
network), and the hybrid CNN-RNN models for it. The authors of [15] conducted
experiments on two multimedia datasets and improved fake news detection with
domain-adversarial and graph-attention neural networks.

Topics and Linguistic Resources. We could mention works [16,17], where
the authors researched emotional reactions and signals, and their role in fake
news detection on the Twitter platform and Politifact5 dataset. Fake news can
reflect completely different topics. For example, the authors of [9] use neural
networks to deal with fake news in political areas. The authors of [18] explore
fake health information or misinformation related to social impact. The research
presented in [19] is focused on Naive Bayes spam filtering using word-position-
based attributes. The work [20] determines the contribution of different topics
in dynamics to the publications of well-known media. The fuzzy definition of
topics can be considered a consequence of reliable and unreliable (real and fake)
information in publications. The approach taken in [21] could help to create a
dataset for fake news detection, choosing articles for it using key phrases, the
advantage of which is that there is no need for a priori information.

Benchmarks. As a benchmark for our experiments with BERT-based models
on short and long texts we use the results from the work [22]. The authors used
the same datasets - Fake vs. Real News [23] with long news (hereinafter FRN)
and LIAR [24] with short news - as we used. As for benchmarks for the proposed
procedure of ensembling and for testing noise immunity then by the moment we
are not aware of corresponding publications.

3 Fake News Datasets

3.1 Description of Datasets

The objects of consideration are two mentioned datasets: FRN with long news
and LIAR with short news. Our chosen datasets are both devoted to politics to
be sure that our results are not affected by the fact that the datasets contain
news devoted to different topics (in other words, to not compare results obtained
on medical articles with results obtained on movie reviews).

The numerical features of the LIAR and FRN datasets, including the number
of fake and real messages and an average length of messages, are presented in
Table 1.
2 https://www.kaggle.com/c/fake-news.
3 https://www.uvic.ca/ecs/ece/isot/datasets/fake-news/.
4 textattack.readthedocs.io/en/latest/.
5 https://www.mpi-inf.mpg.de/dl-cred-analysis/.
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Table 1. The numerical features of FRN and LIAR project datasets.

Dataset Number of messages Fake Messages Real Messages Average length of messages

FRN 6,335 3,164 3,171 765 words

LIAR 12,791 5,657 7,134 18 words

The first dataset we chose, FRN, was developed by George McIntire, and
contains more than 6,000 messages with a nearly equal number of fake and
real messages. Fake news for the dataset was collected from a Kaggle fake news
dataset6, while the real news was collected from media organizations such as
The New York Times, WSJ, Bloomberg, NPR, and The Guardian.

The LIAR dataset includes more than 12,000 short messages collected from
POLITIFACT.COM, and all messages are labeled for six groups: pants-fire,
false, barely-true, half-true, mostly-true, and true. As our target was to imple-
ment binary classification for fake and non-fake messages, we re-labeled these
labels: pants-fire, false, and barely-true messages as fake messages, and half-
true, mostly-true, and true messages as real messages. As a result, our dataset
contains 56% real and 44% fake statements.

We created the standard splitting of the datasets into training/development/
test with a 60/20/20 ratio.

3.2 Text Preprocessing

It is well-known that the preprocessing step is extremely important, as the cor-
rect text preprocessing could significantly improve the results of experiments,
while careless preprocessing could similarly decrease the results. After a number
of experiments, we settled on the following steps:

– converting all characters to lowercase;
– removing all characters except those of the English alphabet and numbers;
– removing stopwords;
– removing words that occur too often (in more than 50% of messages);
– removing words that occur too rarely (in less than 1% of messages);
– stemming.

In relation to the number of texts in which a word appears, we chose a
threshold of 50% as we are applying binary classification: we indirectly associate
words with their belonging to classes. However, the results remain practically
the same with the thresholds of 40% and 60%.

For all preprocessing steps we used Python, NLTK - Porter Stemmer and
Stopwords library.

6 https://www.kaggle.com/mrisdal/fake-news.

https://www.kaggle.com/mrisdal/fake-news
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3.3 Noisy Data

To study noise immunity of the selected models we need to generate noisy
data with different levels of noise. For this purpose, we implemented the cross-
translation of the original datasets for two different languages: Italian and
Japanese. Our idea is based on the fact that a change of the number of original
words may be considered as the action of a noise. With this operation the level
of noise can be determined by the relative number of such words. This value is
easily calculated by the Jaccard measure of similarity.

To obtain the first level of noise, we translated the datasets to Italian and
back to English. To obtain the second level of noise, we translated the datasets to
Japanese and back to English. We did the latter with the assumption that such
translated datasets will be more different from the original ones in comparison
with datasets translated from Italian. For translation we used Google Translate.

Jaccard Distances (the inverse values to Jaccard measures of similarity) for
both datasets and both levels of noise are presented in Table 2.

Table 2. Jaccard Distance for translated datasets.

Dataset/Noise level 1st level (EN-IT) 2nd level (EN-JA)

FRN 0.27 0.39

LIAR 0.25 0.46

Therefore we assume that the levels of noise for FRN dataset are equal 27%
and 39% and the levels of noise for LIAR dataset are equal 25% and 46%.

Note. In order to present our results more clearly, in our experiments we
interpolated the quality of fake news detection to the levels 25% and 50% of
noise for both datasets (see Sect. 5.1).

4 Models and Their Combination

4.1 BERT-based Models

We consider the following three popular BERT-based models as the subject of
consideration in this research:

BERT (Bidirectional Encoder Representations from Transformers) [25] is
designed to pre-train deep bidirectional representations from unlabeled text by
jointly conditioning on both left and right context in all layers. As a result, the
pre-trained BERT model can be fine-tuned with just one additional output layer.
We used the BERT-Base model for fine-tuning which has 12 layers, 12 attention
heads and 110 million parameters.
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RoBERTa (Robustly optimized BERT approach) [26] is based on the BERT
model. RoBERTa obtains better performance using larger mini-batch sizes,
spending more time to train the model and using more data. In comparison
with BERT, RoBERTa uses longer sequences and removes NSP (next sentence
prediction) loss. We used the RoBERTa-Base model for fine-tuning to perform
the experiments.

MNLI RoBERTa (RoBERTa-Large-MNLI model) [26] is fine-tuned on the
Multi-Genre NLI (Natural Language Inference) Corpus7. The idea of the model
is to establish the relationship between two proposed sentences: neutral, contra-
diction or entailment. We used the pretrained MNLI RoBERTa model as follows:
we chose all the fake messages from the train LIAR dataset and compared them
with messages from the test LIAR dataset. If a message from the test dataset
had an ‘entailment’ label with any message from the training dataset, we labeled
this message as fake news. The same procedure was implemented for both the
training and test subsets of the FRN dataset.

4.2 Ensembling with an Additional Class

It is well-known that in many cases ensembling (a collective of algorithms) may
improve the results of classification. Such an effect is especially significant when
we deal with diverse algorithms reflecting different parts of the same object
of classification. In this research we have the contradictory situation that all
the algorithms belong to the group of BERT-based algorithms. Under these
circumstances we build an ensemble with two of the best algorithms and test
two rules of decision-making:

Rule-1. The decision is ‘False News’ if both algorithms say ‘False News’. The
decision is ‘Real News’ if even one algorithm says ‘Real News’. Here we take into
account that the precision of Real News detection is slightly better than Fake
News detection.

Rule-2. The decision is ‘False News’ or ‘Real News’ in case of consensus. Other-
wise the decision is ‘Doubtful News’. The latter means we use so-called delayed
decision.

In case of the Rule-1 we calculate binary F1-measure having in view all the
data. In case of the Rule-2 we calculate binary F1-measure twice: for all the data
and for the certain classes except the class ‘Doubtful news’.

5 Experiments

5.1 Options and Platforms

The full list of options of the experiments, including algorithms, experiments
with noisy data, numbers of datasets and classes, are presented in Table 3.

7 https://cims.nyu.edu/∼sbowman/multinli/.

https://cims.nyu.edu/~sbowman/multinli/
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Table 3. Options for experiments.

Experiments Number Description

Algorithms 4 3 models (BERT, RoBERTa, MNLI RoBERTa),
and ensemble (BERT, RoBERTa)

Experiments with noisy data 8 2 models (BERT, RoBERTa)
on 2 datasets with 2 levels of noise

Datasets 2 2 datasets (FRN, LIAR)

Classes 2 and (2+1) 2 classes (Fake and Real news),
3 classes (Fake, Real and Doubtful news)

We performed the experiments on the NVIDIA Tesla K80 GPU provided
by Microsoft Azure. For the fine-tuning, we trained each model on the training
sets for 2 epochs and evaluated on the validation sets. The models are optimized
using AdamW [27] with a learning rate of 5e−5 and epsilon of 1e−8, and a batch
size of 16. For the models’ implementation we used Pytorch [28] and Huggingface
Transformers [29] libraries.

5.2 Experiments with Different Models

The results of experiments with BERT, RoBERTa, MNLI RoBERTa models on
FRN and LIAR datasets are presented in Table 4.

The results of experiments with an ensemble of BERT and RoBERTa models
with 2 and 3 classes on FRN and LIAR datasets are presented in Table 5. The
latter results refer only to certain classes ‘Fake news’ and ‘Real news’. The
size of ‘Doubtful news’ for FRN and LIAR datasets are equal to 9% and 32%
respectively.

The results from Table 4 and Table 5 are presented also in graphical form in
Fig. 1.

Table 4. Results of experiments with different models (F1-score).

Dataset/Model BERT RoBERTa MNLI RoBERTa

FRN 0.91 0.89 0.66

LIAR 0.72 0.72 0.72

Table 5. Results of experiments with ensemble (F1-score).

Dataset/Model Ensemble of BERT and RoBERTa
(2 classes)

Ensemble of BERT and RoBERTa
(3 classes)

FRN 0.92 0.94

LIAR 0.72 0.77
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5.3 Experiments with Noisy Data

The results of the experiments with the BERT and RoBERTa models on FRN
and LIAR datasets are presented in Table 6. Here the level of noise is presented
in parentheses.

The data from the Table 6 were recalculated using the following 2 operations:

1) Normalization on F1-score without noise.
2) Smooth interpolation (using splines) on the levels 25% and 50%.

The results are presented in Table 7 and in Fig. 2.

5.4 Benchmark

We consider results [22] concerning two BERT-based models as baseline for our
research. These results for BERT and RoBERTa models on FRN and LIAR
datasets are presented in Table 8. The authors used the same FRN and LIAR
datasets and the same ratio of 80/20 split of these datasets (train/test).

Fig. 1. Results of the experiments (F1-score, %).

Table 6. BERT and RoBERT with noisy data (F1-score).

BERT/RoBERTa BERT-FRN BERT-LIAR RoBERTa-FRN RoBERTa-LIAR

Without noise 0.91 (0%) 0.72 (0%) 0.89 (0%) 0.72 (0%)

Noise(EN-IT) 0.87 (27%) 0.70 (25%) 0.65 (27%) 0.65 (25%)

Noise(EN-JA) 0.86 (39%) 0.59 (46%) 0.60 (39%) 0.66 (46%)
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Table 7. Normalized and aligned results for BERT and RoBERTa with noisy data
(F1-score).

BERT/RoBERTa BERT-FRN BERT-LIAR RoBERTa-FRN RoBERTa-LIAR

Without noise 1.00 1.00 1.00 1.00

Noise(EN-IT),25% 0.96 0.97 0.75 0.91

Noise(EN-JA),50% 0.93 0.79 0.58 0.90

Fig. 2. Normalized and aligned results for BERT and RoBERTa with noisy data (F1-
score).

Table 8. Benchmark results (F1-score).

Dataset/Model BERT RoBERTa

FRN 0.96 0.98

LIAR 0.62 0.62

6 Conclusion

The completed experiments showed the following results:

1. On short texts all the methods, BERT, RoBERTA and MNLI RoBERTa, pro-
vide the same results. These results, F1 = 72%, essentially exceed the baseline
of 62% (see Table 4 and Table 8).

2. On long texts BERT and RoBERTa show close results, which are essentially
better than MNLI RoBERTa with their F1 = 91%, 89%, 66% respectively, so
we demonstrated that the idea of Natural Language Inference usage for long



272 E. Shushkevich et al.

texts classification is not good, as opposed to using this idea on short texts.
The best result with BERT (F1 = 91%) yields slightly to that of the baseline
of BERT and RoBERTa having F1 = 96%, 98% respectively (see Table 4 and
Table 8).

3. Ensembling shows its significant advantages only when we include the addi-
tional ‘Doubtful news’ class. This improvement is reflected with F1 = 77%,
94% versus F1 = 72%, 92% for short and long texts, respectively (see Table 4
and Table 5), and this fact confirms the promise of using ensembles in future
research.
Note: Here the difference between 94% and 92% is statistically significant at
the level of 5%.

4. The BERT model shows low noise immunity with short texts and high noise
immunity with long texts. It is justified by the values of normalized F1 = 79%,
93% at the level of 50% noise for both cases, respectively (see Table 5).

5. RoBERTa shows the opposite results with short and long texts. It is justified
by the values of normalized F1 = 90%, 58% on the level of 50% noise for both
cases, respectively (see Table 5).

The ensembling and the study of noise immunity look like promising areas
for further improvement. Here, it is worth paying attention to the works [30,31]
respectively.
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Abstract. A meta-review usually written by the editor of a journal or
the area/program chair in a conference is a summary of the peer-reviews
and a concise interpretation of the editors/chairs decision. Although the
task closely simulates a multi-document summarization problem, auto-
matically writing reviews on top of human-generated reviews is some-
thing very less explored. In this paper, we investigate how current state-
of-the-art summarization techniques fare on this problem. We come up
with qualitative and quantitative evaluation of four radically different
summarization approaches on the current problem. We explore how the
summarization models perform on preserving aspects and sentiments in
original peer reviews and meta-reviews. Finally, we conclude with our
observations on why the task is challenging, different from simple sum-
marization, and how one should approach to design a meta-review gener-
ation model. We have provided link for our git repository https://github.
com/PrabhatkrBharti/MetaGen.git so as to enable readers to replicate
the findings.

Keywords: Meta review generation · Text Summarization · Peer
reviews

1 Introduction

Editors write meta reviews of a journal or area-chairs of a conference to com-
municate peer review decisions to the authors. It is supposed to be a concise
description of the submission’s main content, a summary of the discussions with
the reviewer or the original peer reviews, followed by the recommendation of
the meta-reviewer justifying their decision1. A critical difference between a peer

1 https://iclr.cc/Conferences/2020/MetareviewGuide.
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review and a meta-review is that a meta-review has to recommend a decision
and be not ambivalent about the paper. Hence meta-review is a crucial task in
peer review usually performed by senior researchers in the community to craft
the venue’s content. Ideally, a meta-reviewer is expected to find the consensus
of the reviewers to arrive at a decision, but there could be exceptions.

With the deluge of paper submissions in top-tier conferences nowadays, orga-
nizers are finding it difficult to hire experienced program committee as well as
area-chairs. Here in this exploratory work, we investigate what if we can auto-
matically generate a meta-review and how would it look like? We are intrigued
to explore: Is a meta-review a summary of the actual reviews or if is there some-
thing more? If meta-review is a summary of the reviews, is it an extractive or
abstractive summary? How is the sentiment and aspects of the original reviews
reflect in the generated meta-reviews? We experiment with four state-of-the-
art text-summarization models of different categories and seek answers to our
questions. We evaluate the machine-generated reviews both qualitatively and
quantitatively to understand where do the current text summarization models
stand for this task. In this work, we also discuss that the generated meta-review
should have the salient features of the peer reviews along with quantitatively
scoring the aspect overlap and sentiment polarity. As we approach this prob-
lem as a summarization task we also experiment with some recently introduced
automatic evaluation metrics.

2 Related Work

To our knowledge, this is a fairly new task to generate meta-review by peer
reviews automatically. Therefore, metaGen [2] only work done in the direction
of generating an assistive meta-review that will help speed up the review pro-
cess, with conferences/journals having many submissions to be handled in the
stipulated time. In this work authors first, generate the extractive draft and then
uses fine-tuned UniLM Unified Language Model for the final decision of accep-
tance and making the final abstractive meta-review. Without data and associated
code, we could not compare our approach with the one used by MetaGen [2].
Therefore, this paper compares SUPERT [10], PEGASUS [20], BART-based text
summarization [15], and TextRank [14] models for mentioned task. Although we
do not come across the same literature survey, here we mention some previous
works in this direction. One of the first works done on opinion-based summa-
rization is by Hu and Liu [11]. In this, they proposed ways to mine product
features that expressed opinions from customer reviews. Based on features, they
then summarize the customer reviews and determine whether opinions are pos-
itive or negative. Another prior work done in this direction by Li and Feng
focuses on specific domain movie reviews [23]. They both also show that this
task is different from traditional text summarization because the main goal of
opinion summarization is to provide a feature-based summary. Opinosis [9] is a
graph-based summarization framework generating concise abstractive summaries
with highly redundant opinions. Evaluation results show that they agree bet-
ter with human-generated summaries compared to the other baseline extractive
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models. As peer review can be very concise and rich in information, micro review-
summarization with usual reviews are under 200 characters authors, formulate
this as synthesizing a new “review” using snippets of full-text reviews [17]. Due to
the lack of datasets with large paired documents and summaries, a recent focus
on the unsupervised technique has included an unsupervised abstractive auto-
encoder model for multi-document summarization over the documents that are
only product and business reviews without example summaries given. Through
human evaluation and automatic metrics, the author also shows that summaries
are highly abstractive and fluent [4]. A generative model [3] is an extension of
a vanilla text-variational auto encoder for end-to-end unsupervised abstractive
summarization. The model is designed on the intuition that when generating a
review for the product relying on the set of another review “amount of novelty”
going into a new review can be controlled. At test time, it is forced to be mini-
mal. Review summarization models discussed so far summarize mainly based on
review content and neglect the author’s attributes (e.g., gender, age, and occu-
pation). So authors propose an attribute-aware sequence network that mainly
uses attributes-specific vocabulary and uses four attribute-based strategies to
build attribute aware encoder and summarise decoder [12].

3 Dataset Description

Peer reviews are hindered by confidentiality and proprietary metadata. However,
a few venues have started publicizing peer review data, such as The International
Conference on Learning Representations (ICLR). Such initiatives facilitate trans-
parency and trust in the system and give rise to a recent interest in peer review
studies.

Data Collection: We collect the required peer review data (reviews, meta-
reviews, recommendations, and confidence score) from the OpenReview2 plat-
form along with the decision of acceptance/rejection in the top-tier ML confer-
ence ICLR for the years 2018, 2019, 2020, and 2021. After pre-processing and
eliminating some unusable reviews/meta-reviews, we arrive at a total of 7,072
instances for our experiments. We use 15% of the data as the test set (1060), 75%
as the training set (5304), and the remaining 10% as the validation set (708). A
meta-review should contain key/deciding features along with the final decision.
We remove the paper if the meta-review or reviews word token size is less than
10. We provide the total number of reviews, meta-reviews, and their length in
terms of words in Table 1. The ground truth and generated meta-reviews statis-
tics are shown in Table 2.

2 https://openreview.net/.

https://openreview.net/
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Table 1. Statistics of the reviews and meta-review in our dataset across the year (2018
to 2021). Each value in the row corresponds to statistics for review/meta-review.

Year # Data Max Length Min Length Avg Length

ICLR 2018 2802/934 2557/458 23/11 ∼372.73/99.03

ICLR 2019 4239/1413 4540/839 14/10 ∼403.32/138.69

ICLR 2020 6390/2130 3970/810 15/11 ∼408.55/125.63

ICLR 2021 7785/2595 4110/1102 14/13 ∼455.65/177.45

Table 2. Details of ground truth and generated meta reviews.

Data # Data Max Length Min Length Avg Length

Meta-review 5304 1102 10 143.743

Bert-extractive-summarizer 5304 1647 70 313.672

TEXTRANK 5304 564 153 300.010

SUPERT 5304 330 79 119.001

Pegasus 708 243 17 61.374

4 Meta-Review Generation: A Text Summarization
Struggle

For this task, we experiment with a model based on TextRank [14] and three
state-of-the-art summarization models: SUPERT [10], PEGASUS [20], BART-
based text summarization [15]. Further details on the hyperparameters are avail-
able in the our git repository.

4.1 Summarization Approaches

We experiment with the following supervised and unsupervised techniques for
extractive and abstractive text summarization. We evaluate the performance of
these techniques to generate a meta-review from the three official peer-reviews
for each paper.

SUPERT: SUPERT [10] is an unsupervised multi-document summarization
method using reinforcement learning, which requires neither human-written ref-
erence summaries nor human annotations. SUPERT rates the quality of a sum-
mary by measuring its semantic similarity with a pseudo reference summary,
i.e. selected salient sentences from the source documents, using contextualized
embeddings and soft token alignment techniques. Then SUPERT is used as a
reward function to guide reinforcement learning based extractive summarizers.

PEGASUS: PEGASUS [20] is an abstractive method which uses self-supervised
objective Gap Sentences Generation (GSG) to train a transformer-based
encoder-decoder model. In PEGASUS, important sentences are removed/masked
from an input document and are generated together as one output sequence from
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the remaining sentences, similar to an extractive summary. We fine-tune the pre-
trained PEGASUS model on our peer review dataset.

Bert-Extractive-Summarizer: Bert-extractive-summarizer [15] is an extrac-
tive summarization technique built on top of BERT [8] language-representation
model for text embeddings and uses K-Means clustering to identify sentences
closest to the centroid for summary selection.

TEXTRANK: Textrank [14] is an extractive unsupervised summarizaton tech-
nique which uses a graph based ranking model to assign importance to each
vertex which can build up the summary using “voting” or “recommendation”.

4.2 Evaluation Metrics

The results of our analysis are analyzed quantitatively and qualitatively, and
we conclude that quantitative text summarization metrics are unsuitable for
evaluating the generated meta-reviews.

Quantitative Analysis: To evaluate the model generated meta-reviews, we
use some popular automatic evaluation metrics applied to evaluate both text
generation and summarization. We use multiple metrics ROUGE [13], S3 [19],
BertScore [21], MoverScore [22], BLEU [18], METEOR [1], Sentence Mover’s
Similarity [5] since a single metric does not give the best evaluation for a gener-
ated summary.

ROUGE: [13] Widely adopted summarization metrics, Recall-Oriented Under-
study for Gisting Evaluation, calculates n-gram recall (overlap) between the
candidate and reference summary, while abstractive methods show less correla-
tion with human scores in comparison to the extractive method. The intuition
behind using ROUGE-2 and ROUGE-3 is to have more consecutive ordering
which gives more information about fluency.

BERTScore: [21] Given candidate and reference sentences each token is repre-
sented by contextual embeddings and calculates matching using cosine similarity.
BERTScore computes recall score by matching token in reference sentence x to
token in candidate sentence x̂ and precision vice-versa, F1 score is calculated by
combining precision and recall. It also uses a greedy approach to match each
token to the most similar token in the other sentence to maximize the similarity
score.

S3: [19] This metrics create a regression model trained on human judgment
datasets from TAC conferences, that uses existing automatic metric as features
such as ROUGE, JS-divergence, and ROUGE-WE and predict the score. The
model learns the combination exhibiting the best correlation with human judg-
ments. Pyramid [16] measures how many important semantic content units in
the reference summaries are covered by the system summary, while Responsive-
ness measures how well a summary responds to the overall quality combining
both content and linguistic quality.
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BLEU: [18] Stands for Bilingual Evaluation Understudy is precision-oriented
metrics that calculate n-gram overlap between candidate and reference summary.
Uses brevity penalty to penalize score wrt length of candidate summary.

METEOR: [1] The score is computed by aligning candidate and reference sum-
mary sentences such that every unigram in the generated summary maps to zero
or one unigram in the reference summary. Unigrams can be matched based on
exact, stem, synonym. Unlike BLEU which does not take recall into account
directly, Meteor uses precision and recall reported as harmonic mean. METEOR
1.5 [7] weighs content and function words differently and also applies importance
weighting to different matching types, phrases.

MoverScore: [22] Moverscore is a set-based similarity metric to measure the
semantic distance between two sequences of n-gram words in candidate text to
reference text. Uses contextual embeddings to encode each word of sentences (e.g.
ELMO, BERT) and calculates Euclidean Distance Metric, flow transportation
metric and sum up as transportation cost when moving embeddings from one
set to other. The intuition of flow transportation metric is the effect of n-gram
like those including function word (functors) can be downplayed by giving them
lower weights e.g. using Inverse Document Frequency (IDF).

Sentence Mover’s Similarity: [19] Extends word mover’s distance to view
documents as a bag of sentence embeddings to measure similarity, and to get
sentence representation based on averaging or pooling word embeddings, they
used the average of their word embeddings as they outperformed pooling. Word
mover distance is transformed into similarity by taking negative exponent to
match it in between 0 to 1. Based on their nature of usage, we can say ROUGE,
S3, BLEU, METEOR are metrics which operate at the lexical level whereas
BERTScore, MoverScore, SMS are intended for semantic evaluation.

Table 4 shows that Burt-extractive-summarizer and Textrank perform com-
paratively better in terms of ROUGE. ROUGE is based on n-gram similarity,
and both Bert-extractive-summarizer and TextRank are extractive. The same
goes for S3 and METEOR. Pegasus generated summaries do not perform well
for either metric because they are small in length and do not exhibit good lexical
overlap (abstracts). In the case of BLEU, SUPERT does better. However, as we
can see, no one technique does justice to the given task and cannot serve as a
baseline.

Qualitative Analysis: Table 4 shows an output of the four different tech-
niques on a given paper review. Please note while SUPERT (reinforcement learn-
ing), TextRank (unsupervised) and Bert-extractive-summarizer (supervised) are
extractive, PEGASUS (supervised) is abstractive. Please find the official reviews
to this instance here3.

The reinforcement learning-based technique SUPERT generated summary is
extractive and not detailed. It lacked in-general meta-reviewing characteristics.

3 https://openreview.net/forum?id=H1eH4n09KX.

https://openreview.net/forum?id=H1eH4n09KX
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Table 3. Automatically generated meta-review for a given paper

Original Meta-Review

The paper presents an algorithm for audio super-resolution using adversarial models along with

additional losses, e.g. using auto-encoders and reconstruction losses, to improve the generation process.

Strengths- Proposes audio super resolution based on GANs, extending some of the techniques proposed

for vision / image to audio. - The authors improved the paper during the review process by including

results from a user study and ablation analysis. Weaknesses - Although the paper presents an interesting

application of GANs for the audio task, overall novelty is limited since the setup closely follows what has

been done for vision and related tasks, and the baseline system. This is also not the first application of

GANs for audio tasks. - Performance improvement over previously proposed (U-Net) models is small. It

would have been useful to also include UNet4 in user-study, as one of the reviewers’ pointed out, since it

sounds better in a few cases. - It is not entirely clear if the method would be an improvement of

state-of-the-art audio generative models like Wavenet. Reviewers agree that the general direction of this

work is interesting, but the results are not compelling enough at the moment for the paper to be accepted

to ICLR. Given these review comments, the recommendation is to reject the paper.

SUPERT generated meta-review

PRO’s: +well-written +nice overall system: GAN framework for super-sampling audio incorporating

features from an autoencoder +some good-sounding examples CON’ s : some confusing/weakly-presented

parts (admittedly covering lots of material in short space) -I am confused about the evaluation; would

like additional qualitative/observational understanding of what works, including more on how the results

differ from baseline SUMMARY : The task addressed in this work is : given a low-resolution audio

signal, generate corresponding high-quality audio. This paper presents a GAN-based method to perform

audio super-resolution. Fascinating problem & fair results. Ok but not good enough- rejection.

Bert-extractive-summarizer

nice work, confused about evaluation-related aspects. Marginally above acceptance threshold. The

training framework is basically that of a GAN, but where, rather than providing the generator with a

low-dimensional noise signal input, they provide the generator with the subsampled audio signal. This is

overall a nice problem and a nice approach! That said, I understand that there are page/space

limitations. (more on this next) It’s possible that there is something simple about it that I am not

understanding. I’m open to being convinced. Otherwise, why not just write: or something along those

lines, and leave it at that? Is this a result of careful selection of examples? I do believe what I hear, e.g.

that the MU-GAN8 is clearly better on some examples than the U-net8. I guess I would like to get a

better understanding of what is actually going on, even if qualitative. Is there any qualitative or

anecdotal observation about which “types” of samples one system works better on than another? maybe

I’m overgeneralizing from the few examples I heard. For example, are there visible but inaudible

artifacts? A couple of typos: descriminator last sentence of 2nd par is actually not a sentence. “the

reduction in convolutional kernels prior to the superpixel operation. something)– I would gladly consider

revising my rating (which is currently somewhere between 6 and 7). . The reviewer is confident but not

absolutely certain that the evaluation is correctOfficial review. From a technical perspective, I do not

find the proposed approach very novel. This would be a good point for the paper. While this is an audio

processing paper, it lacks domain insights (even the terminology feels borrowed from the image domain).

Would a WaveNet decoder also be improved by including these auxiliary losses? The authors mention

that not including it leads to audible artifacts. A van den Oord, Aaron, and Oriol Vinyals. Any

nontrivial insight would be highly appreciated. Interesting idea and fascinating problem. The results are

fair.

PEGASUS

ICLR 2018 Conference Acceptance Decision. Pros: + well-written +nice overall system: GAN

framework for super-sampling audio incorporating features from an autoencoder +some good- sounding

examples Cons: - I am confused about the evaluation; would like additional qualitative/observational

understanding of what works, including more on how the results differ from baseline . Accept (Poster)

TEXTRANK

In this work, the authors avoid this auxiliary challenge by using unsupervised feature losses, taking

advantage of the fact that any audio signal can be downsampled, and therefore one has the corresponding

upsampled signal as well. In contrast to previous work, this work uses auto-encoder to obtain feature

losses derived from unlabeled data. Would there be any info for the reader by doing an ablation removing

the feature loss from the GAN framework? I think that more studies should be presented (including

quantitative evaluations and audio samples). Working in raw sample-space (e.g. pixels) is known to be

challenging, so a stabilizing solution is to incorporate a feature loss. GAN framework for super-sampling

audio incorporating features from an autoencoder +some good-sounding examples CON. The paper

presents a model to perform audio super resolution.. While the audio samples seem to be good, they are

also a bit noisy even compared with the baseline.. My biggest confusion was with the evaluation &

results: Since the most directly related work was (Kuleshov 2017), I compared the super resolution

(U-net) samples on that website (https://kuleshov.github.io/audio-super-res/ ) to the samples

provided for the present work ( https://sites.google.com/view/unsupervised-audiosr/home ). This

paper presents a GAN-based method to perform audio super-resolution

https://kuleshov.github.io/audio-super-res/
https://sites.google.com/view/unsupervised-audiosr/home
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The generated review highlights the merits and demerits of the paper with a
short summary, and the decision of the human meta-reviewer is preserved.

We find that although PEGASUS generated meta-review manifests sentences
with polarity, the output is not detailed. The significant aspects of concern in
the human-generated review are not visible in the generated meta-review. The
overall polarity and decision don’t match with the original meta-review.

Bert-extractive-summarizer type extractive approach is not suitable for this
task since a meta-review is written by another person in coherence with the
existing peer reviews; it is not a combination of sentences from peer reviews.
Secondly, a meta-review enforces the acceptance or rejection of a paper, which
cannot be directly extracted as a combination of sentences from peer reviews.

Textrank outputs more details and extracts possibly the most important
parts from the reviews; however, a meta-review is not a mere collection of critical
reviewer comments. A meta-review is also a coherent text generated by the
editor while considering the reviewer’s judgment and consensus. Quite expected
that the output from all these techniques does not appear that the meta-review
is written by another person based on the original peer reviews. Hence fine-
tuning on actual meta-reviews is required for such a system. Table 3 shows the
automatically generated meta-reviews by Bert-extractive summarizer, Pegasus,
SUPERT, and Textrank.

Table 4. Model scores for automatic evaluation metrics. The highest score of each
metrics are in Bold. The output is the average of all the scores in the test set used for
PEGASUS.

Model Bert-Extractive-Summ TEXTRANK SUPERT Pegasus

ROUGE-1 0.49584 0.47599 0.31392 0.18842

ROUGE-2 0.09987 0.10891 0.06159 0.03775

ROUGE-3 0.02366 0.0336 0.01835 0.00812

S3(pyr/resp) 0.3977/0.4617 0.3894/0.4607 0.2170/0.3707 0.1046/0.3135

BertScore(f1) 0.5470 0.5508 0.5396 0.5350

MoverScore 0.0980 0.0927 0.1130 0.0783

METEOR 0.1633 0.1585 0.1100 0.0751

BLEU 2.3702 3.1684 3.5366 2.1358

SMS 0.08049 0.09911 0.09061 0.07464

5 How Sentiment Plays a Part?

With conferences and journals requesting reviewers to take a stand on the paper,
it becomes important that the review bears certain polarity reflecting the overall
attitude of the reviewer. This becomes even more important for the meta-reviews.
We hypothesize three important characteristics that a generative model should
manifest:
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(a) Sentiment Transfer : Sentiment should be transferred from the peer reviews
to the meta-review, i.e. the polarity of the meta-review should co-relate with
the dominant sentiment from the peer reviews.

(b) Sentiment Preservation: While evaluating the performance of such a gener-
ative system, the sentiment of the generated meta-review should co-relate
to the sentiment of the actual meta-review written by the editor.

(c) Sentiment Polarity : The meta-review should be decisive and indicate the
acceptance or rejection of the paper. To evaluate sentiment empirically,
we use generating reviews and Discovering Sentiment tool by OpenAI and
extract out the sentiment scores for the peer reviews, actual meta-review
and the generated meta-reviews. We calculate the average sentiment of the
peer reviews and compare it with the sentiment score of meta-review. Our
findings Table 5 suggest that the automatic methods lacked sentiment trans-
fer and sentiment preservation. Most of the generated meta-reviews lacked
in sentiment polarity. Though the extractive methods preserved the aspects,
they were not able to transfer or preserve the sentiment. The mean polarity
suggests that the automatically generated reviews do not manifest deci-
siveness which is an important characteristic of meta-reviews. Since a meta-
review would ideally consist of a summary of peer reviews, and recommenda-
tion for acceptance and rejection4, both of these are to be generated jointly;
with one part of the model generating the aspect and sentiment preserved
summary of the peer reviews, while the other part predicting the acceptance
or rejection decision to maintain the polarity of the meta-review.

Table 5. Root Mean Square Deviation from sentiment of peer reviews (sentiment trans-
fer) to meta-reviews, and sentiment of original meta-review to automatically generated
meta-review (sentiment preservation). Mean polarity refers to the mean of absolute
values of sentiment scores to show the polarity.

Model Transfer Preservation Mean Polarity

Bert-extractive-summarizer 0.242 0.342 0.386

Pegasus 0.323 0.374 0.316

SUPERT 0.369 0.437 0.315

Textrank 0.304 0.401 0.264

6 How Aspect Plays a Part?

Here we investigate if the paper aspects highlighted in the meta-review are pre-
served in the automatically generated meta-reviews. We undertake manual anno-
tation of 1300 peer reviews for two tasks: Section Identification (to which section
of the paper does the review sentence correspond?) and Aspect Identification

4 https://iclr.cc/Conferences/2020/MetareviewGuide.

https://iclr.cc/Conferences/2020/MetareviewGuide
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(which aspect of the paper is highlighted in the given review sentence). We train
a BERT-based Sequential Sentence Classification model [6] on the above data
for the two tasks. The categories for Task 1 are

Fig. 1. Section and aspect identification labels distributions in the automatically gen-
erated meta-reviews by Bert-extractive summarizer, Pegasus, SUPERT, and Textrank

Task1: [(ABS) Abstract, (INT) Introduction, (RWK) Related Works, (PDI)
Problem Definition/Idea, (DAT) Datasets, (MET) Methodology, (EXP) Exper-
iments, (RES) Results, (TNF) Tables & Figures, (ANA) Analysis, (FWK)
Future Work, (OAL) Overall, (BIB) Bibliography, (EXT) External] while for
Task2: [(APR) Appropriateness, (NOV) Originality/Novelty, (IMP) Signifi-
cance/Impact, (CMP) Meaningful Comparison, (PNF) Presentation & Format-
ting, (REC) Recommendation, (EMP) Empirical/Theoretical Soundness, (SUB)
Substance, (CLA) Clarity].

Figure 1 shows section and aspect labels distributions in the automatically
generated meta-reviews by Bert-extractive summarizer, Pegasus, SUPERT, and
Textrank. We predict the labels for Task 1 and Task 2 in both the human-
generated meta-review and the automatically generated meta-review to calculate
the overlap, signifying the degree of aspect preservation in Table 6. It shows Bert-
extractive-summarizer much better than the others in terms of section and aspect
identification coverage in the automatically generated meta-reviews. Because
Bert-extractive-summarizer summaries are more extended, the model extracted
basic sentences from the original reviews that could appear in the meta-review.
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Table 6. Section (Task1) and Aspect (Task2) - overlap ratio for actual and generated
meta-reviews

Model Task1 Task2

Bert-extractive-summarizer 0.760 0.840

Pegasus 0.473 0.484

SUPERT 0.511 0.520

Textrank 0.458 0.487

7 Observation

We arrive at the following observations:

(1) Current state-of-the-art summarization techniques do not suffice the meta-
review generation task.

(2) A meta-review generation system would need to manifest sentiment-aware
aspect-based summarization from the reviews as well as conclude with the
consensus polarity of the peer reviews to arrive at a decision.

(3) A supervised approach fine-tuned on the peer-reviews and corresponding
meta-reviews (reference summary) could be an interesting direction to probe
with considerations in (2).

8 Conclusion

Here in this work, we study a novel task of meta-review generation. We investi-
gate different summarization techniques and their performance on the given task
and also explore the differences of a meta-review from a simple summary. Finally,
we arrive at some interesting observations and directions for the community to
explore automatic approaches to generate a meta-review from the peer reviews.
Our next step would be to investigate appropriate metrics for meta-review gen-
eration evaluation.
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Abstract. The demand for both quantity and quality of online educa-
tional resources has skyrocketed during the last two years’ pandemic.
Entire course series had since been recorded and distributed online. To
reach a broader audience, videos could be transcribed, combined with
supplementary material (e.g. lecture slides) and published in the style
of blog posts. This had been done previously for Autoblog 2020, a cor-
pus of lecture recordings that had been converted to blog posts, using
automated speech recognition (ASR) for subtitle creation. This work
aims to introduce a second series of recorded and manually transcribed
lecture videos. The corresponding data includes lecture videos, slides,
and blog posts/transcripts with aligned slide images and is published
under creative commons license. A state-of-the-art Wav2Vec ASR model
was used for automatic transcription of the content, using different n-
gram language models (LM). The results were compared to the human
ground truth annotation. Findings indicated that the ASR performed
well on spontaneous lecture speech. Furthermore, LMs trained on large
amounts of data with fewer out-of-vocabulary words were outperformed
by much smaller LMs estimated over in-domain language. Annotated
lecture recordings were deemed helpful for the creation of task-specific
ASR solutions as well as their validation against a human ground truth.

Keywords: Lecture video corpus · Speech recognition · Language
model · Spontaneous lecture speech

1 Introduction

Teaching routines of educational institutions around the world had been severely
impacted by the many restrictions that had been imposed during the early stages
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of the Covid-19 pandemic. Lectures had to be held online, students exchanged
their real classrooms for virtual ones. To maintain an equally high teaching qual-
ity compared to on-site classes, supplementary material (on-demand recordings,
slides,. . . ) could help increase the availability of online lecture resources. On the
other hand, the creation of additional material often requires human experts
to take action, it, therefore, does not scale well and can easily take too much
time. Automated solutions could be of significant help, for example, to transcribe
entire lecture series, making the content also available for reading. Such an app-
roach had been introduced before with the Autoblog system [6], a sequence of
routines to automatically convert lecture videos to blog posts. A more detailed
description of Autoblog and the resulting dataset is given in Sect. 2.2.

Transcription of spontaneous speech is rather difficult for an ASR, as sys-
tems had commonly been optimized on vast amounts of read speech data. Fur-
thermore, differences between the two types manifest in both the acoustic as
well as the LM. This leads to a lower recognition performance on spontaneous
speech samples [12]. The challenge of spontaneous speech recognition is further
increased by the large amount of variety between speakers, different speaking
styles and accents. If ASR is used to transcribe lecture recordings, the domain-
specific vocabulary and semantic structures (e. g. spoken mathematical expres-
sions) cause recognition rates to decline further. Lastly, recording conditions
could yield challenging audio signals which are affected by reverberation, back-
ground noise or poor microphone configuration. Nevertheless, there could also
be potential for improving ASR performance for a given setup. If a large num-
ber of recordings had to be transcribed for the same lecturer, better results
are likely achieved with a system that had been fine-tuned on the particular
speaker. Whilst this could be considered a violation of an elementary machine
learning principle for speech processing (do not test on speakers seen during
training), it could be justified by intentionally tailoring the application to that
single speaker. Again, such speaker-adaption could be done on the level of the
acoustic or language model.

The current study analyses the importance of LMs in the context of lec-
ture video ASR. Specifically, we evaluate on lecture videos related to biomedical
engineering, a growing field of research with a very technical vocabulary. We
compare the performance of n-gram LMs built from large text corpora against
smaller in-domain and lecture-style LMs. An intrinsic evaluation is conducted
by measuring the perplexity of LMs with sentences from lecture transcripts. Fur-
thermore, LMs are used as a decoder for the output of a pretrained Wav2Vec2
model. All data used in this paper will be made open access with the acceptance
of the paper.

1.1 Related Works

The importance of language modelling in lecture videos is explored in [14] where
researchers evaluated the language perplexity of computer sciences (CS) courses.
Results showed that models with smaller vocabularies had lower perplexity and
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that using non-CS lectures along with smaller relevant text yielded lower per-
plexities. A perplexity of 160 was obtained when building an LM on non-CS
lecture text with a CS textbook while building on the Switchboard [2] text and
a CS textbook led to a perplexity of 265 (the lower the perplexity the better
the LM). Results further indicate that spontaneous speech text generates more
accurate transcriptions.

In a similar study with Japanese language lectures [9], researchers compared
multiple LMs and their influence on ASR. They found that a smaller LM of 970
lectures and a vocabulary size of 20,000 had a better performance than a model
built from 3,285 lectures and a vocabulary size of 20,000. However, this only
applies when the content of the lecture is academically similar, otherwise, the
model with a larger amount of lectures is better. They also showed that the rather
small Corpus of Spontaneous Japanese [10] (CSJ) would produce more suitable
LMs compared to two other, much larger corpora. To achieve improved results
on lecture speech recognition, unsupervised LM adaption had been employed to
perform speaker adaption from initial results yielded by an ASR [13]. Training
data for successful LM estimation could also be generated by using the content of
corresponding lecture slides, using a web-based resource gathering approach [11].

2 Materials and Methods

Bigram LMs are built using the KenLM toolkit [4] with a modified Kneser-
Ney smoothing [5]. The data used for building LMs originate from multiple
datasets reflecting in-domain, out-of-domain and lecture-style texts. For each LM
we evaluate the number of out-of-vocabulary (OOV) words and the perplexity
of all sentences in the biomedical engineering lecture transcripts.

For all video lectures, we extract the audio and split it into chunks based on
silent segments using a audio detection toolkit1. The tool uses a simple energy
detection algorithm on audio signals. Chunks contained a minimum of 2 s and
maximum of 20 s of audio. A maximum silence duration of 1 s was chosen to split
the files. We then run a Wav2vec2 model [1] on each chunk and evaluate the
WER output of the model with different bigram LMs. Higher-order LMs made
very little difference in improving WER. We utilise two Wav2Vec2 models: a
base model pretrained and fine-tuned on 960 h of Librispeech, and a large model
pretrained on 960 h of Librispeech along with 60,000 h from Libri-Light [16].

2.1 Acoustic Model

The acoustic model is trained by finetuning a Wav2Vec2 model with a Connec-
tionist Temporal Classification (CTC) algorithm. Wav2Vec2.0 is transformer-
based model that learns speech representations based on unlabelled data. Simi-
lar, to masked language modelling, Wav2Vec2 learns contextualized speech rep-
resentations by randomly masking feature vectors before passing them to a trans-
former network. A contrastive loss function is then used to identify the true latent
1 https://github.com/amsehili/auditok/.

https://github.com/amsehili/auditok/
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speech representation. After training, a linear layer with C classes representing
the vocabulary is attached for speech recognition finetuning. Optimization is
done by minimizing the CTC loss [3]. For simplification, the CTC algorithm
outputs a probability distribution over all possible characters given an acoustic
feature vector (our Wav2Vec2 speech representations).

2.2 Autoblog Data

The Autoblog 2021 data2 consists of 25 lectures from the biomedical Engineer-
ing course taught in the Summer of 2021 at Friedrich-Alexander Universität
Erlangen-Nürnberg. In total, the lectures amount to nearly 10 h of audio, with
an average duration of 37 min per lecture. Recording was conducted in a quiet
room with an external microphone. The lecturer is a native German speaker
and his speech contains German accented English. Some of the main topics
covered can be seen in Table 1. The data comprises lecture videos, slides, and
corresponding transcripts with aligned slide images as blog posts. The course
give a comprehensive overview of different medical imaging modalities that are
used in medicine to perform diagnoses. These include Endoscopy, Microscopy,
X-Ray, Computed Tomography, Optical Coherence Tomography, Ultrasound,
MRI, and PET/SPECT. The lectures provides an in-depth analysis of the dif-
ferent properties and sensitivities of all these modalities. It describes system
theory, Fourier Transform, convolution, and sampling theorem to understand
the trade-offs between spatial resolution and sensitivity. It also focuses on 2-D
and 3-D image processing, non-linear filters, and non-linear image processing
techniques. An LM generated by lectures transcripts from previous semesters
is also built. This includes the 43 (11.4 h) pattern recognition lectures from an
early version of the Autoblog corpus [6].

Table 1. AutoBlog 2021 biomedical engineering lecture topics.

Lecture Topics

Endoscopy Microscopy

Magnetic Resonance Imaging X-Ray

Computed Tomography Emission Tomography

Phase Contrast Imaging Ultrasound

Optical Coherence Tomography System Theory

2.3 Language Modelling

Without an LM, the Wav2Vec2 trained acoustic model still achieves state-of-
the-art results as it makes use of the CTC algorithm for solving the problem of
aligning varying audio lengths to output text length. In [16], a Wav2Vec2 model
2 https://www.kaggle.com/datasets/abnerh/autoblog.

https://www.kaggle.com/datasets/abnerh/autoblog
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acheived a WER of 1.9% without an LM on the LibriSpeech test-set. However,
an LM can still be used to support the acoustic model output by predicting the
next word given all previously transcribed words [8]. Specifically, the LM is a
probabilistic model that can be defined as: P (wn|wt−1

0 ), where wt−1
0 refers to

the sequence of all previous words in an utterance and wn is the following word.
There are two main approaches to evaluating the quality of LM. First, we

can evaluate the model extrinsically which measures how well the LM performs
on real-world tasks. In our case, this is measured by the improvement of WER in
an ASR system. Second, we can take an intrinsic evaluation of the model which
purely considers the LM itself. Perplexity is a common metric for evaluating LMs
and measures how well our probabilistic model predicts a sample. Perplexity can
also be defined as the exponential of the cross-entropy as in Eq. 1 where H(W )
refers to the average number of bits needed to encode each word. Perplexity
2H(W ) is then the average number of words that can be encoded using H(W )
bits.

PP (W ) = 2H(W ) = 2− 1
N log2P (w1,w2,...,wN ) (1)

Perplexity can also be simplified as the normalised inverse probability of the
test set as in Eq. 2. In both cases, we want to lower the entropy and perplexity
of the LM given a well-formed sentence.

PP (W ) = n

√
1

P (w1, w2, ...wN )
(2)

2.4 Datasets

Out-of-Domain. As seen in Table 2 the text used for building LMs range from
large general datasets such as LibriSpeech to small in-domain datasets like Auto-
Blog. The LibriSpeech LM is built on cleaned text from 14,500 public domain
books. A second out of domain corpus is used by combining the monolingual
used for the Workshop on Machine Translation (WMT). This corpus contains
text from news articles, European parliament speeches, and text from Common
Crawl [15]. The transcripts from the training set of TED-LIUM 3 [7] based on
2,351 TED talks are used to build a lecture-style LM. While this model is out-
of-domain, it reflects a speaking style more similar to the lecture videos in the
Autoblog dataset.

In-Domain. The Biomedical text (BMT) comes from datasets used in the 2021
EMNLP (Conference on Empirical Methods in Natural Language Processing)
Biomedical Translation Task [17]. The datasets consist of titles and abstracts
from Medline, SciELO, and EDP scientific publication databases3. While this
represents in-domain information regarding medical terminology, these texts are
based on formal journal-style language. The YouTube corpus consists of tran-
scripts from math and computer science-related lectures. The information pre-
sented in these lectures is similar to the ones in the Medical Engineering dataset
3 https://github.com/biomedical-translation-corpora/corpora.

https://github.com/biomedical-translation-corpora/corpora
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and also represents lecture-style speech. Lastly, we build an LM on the tran-
scripts of previous lectures in the AutoBlog corpus [6]. Specifically transcripts
from Deep Learning, Pattern Recognition and Speech and Language Under-
standing courses. This model represent both domain-related information and
speaker-dependent text as all lectures were given by the same professor.

3 Results

3.1 Intrinsic Language Model Evaluation

Perplexity and OOV for each LM is calculated on the full medical engineering
lecture transcripts see Table 3. Perplexity is evaluated on all transcripts then
normalized by length in words. The librispeech LM has a high perplexity of 595
but only 328 OOV words. This is in contrast to the AutoBlog LM which has
1,554 OOV words but a low perplexity of 138. We can balance the OOV and
perplexity trade-off by combining datasets. When combining the YouTube, BMT
and Ted3 datasets, we can decrease the OOV and perplexity to 205, and 182
respectively. Typically, the lower the perplexity, the better the language model,

Table 2. Language model information.

Data Number of Sentences Vocab Size LM Size

LibriSpeech 40.4M 9M 1.1Gb

WMT 12.8M 3.8M 498Mb

Tedlium3 254K 200K 24Mb

BMT 325K 247K 34Mb

YouTube 306K 120K 14Mb

AutoBlog 15K 16K 1.7Mb

Table 3. Intrinsic LM evaluation. Lower perplexity refers to a better language model.

Language Model OOV Perplexity

LibriSpeech 328 595

WMT 218 319

Tedlium3 467 240

BMT 539 964

YouTube 778 213

AutoBlog 1,554 138

Ted3+BMT 261 247

Ted3+YT 330 181

YT+BMT 292 199

YT+BMT+Ted3 205 182
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but results from the extrinsic evaluation show that with enough in-domain and
spontaneous lecture material, even a model with high perplexity can outperform
a model with lower perplexity.

3.2 Extrinsic Language Model Evaluation

The results presented in Table 4 show the WERs when averaging across all 25
videos. As expected, in all cases an LM helps lower the WER but to varying
degrees. Without an LM, the large Wav2Vec2 model can achieve a WER of
12.73%. The LMs built with out-of-domain text lowered the WER up to 1.25%
for the large model and up to 4.08% with the base model. In both cases, the LM
trained on the Tedlium3 text lead to the best results while the LM trained on
LibriSpeech text led to the highest WER. Improvements are also seen with LMs
trained on in-domain text and lecture-style text. In the base-model case, the
Tedlium3 LM had the most impact on lowering WER followed by the AutoBlog,
YouTube and BMT models respectively. In the large-model case, the AutoBlog
model lowered the WER the most, followed by Tedlium3, BMT and YouTube
models.

Figure 1 illustrates WER results observed for various fusions of training data.
For easier comparison, the first set of bars represents the result of an LM esti-
mated over the large LibriSpeech corpus. Any fusion of in-domain datasets leads
to a further improvement of WER compared to the stand-alone results. Note
that the AutoBlog dataset, which had been recorded from the same speaker as
the one for AutoBlog 2021, had not been included in the combinations, as the
intention was to purely observe the importance of domain on language modelling.

Table 5 summarizes the findings of the last experiment of combining in-
domain and speaker-related language information. The table shows that a care-
ful selection of domain-related data could outperform the speaker-adapted LM.
A further speaker-adaption of already in-domain LMs would then improve the
results even further, but these changes were found to be rather small.

Table 4. Word-error-rate results of Medical Engineering lectures with different lan-
guage models.

Language Model Base-Model WER (%) Large-Model WER (%)

No LM 20.88 12.73

LibriSpeech 18.31 12.70

WMT 17.75 12.06

Tedlium3 16.80 11.48

BMT 17.75 11.87

YouTube 16.82 11.68

AutoBlog 16.71 11.18
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Table 5. WER results when combining in-domain and speaker-dependent autoblog
texts.

Language Model Base-Model WER (%) Large-Model WER (%)

Only Autoblog 16.71 11.18

Only Domain (YT&BMT) 16.40 10.97

Autoblog-25% & Domain 16.29 10.92

Autoblog-50% & Domain 16.25 10.88

Autoblog-75% & Domain 16.21 10.85

Autoblog-full & Domain 16.20 10.85

4 Discussion

LMs are commonly estimated over a large amount of data to achieve decent gen-
eralization. Per definition, LMs model transitions between words on a statistical
level and thus have to be shown representative data during training. The pre-
sented results clearly show the weaknesses of corpora like LibriSpeech when it
comes to spontaneous speech. Whilst they are often quite large, and ultimately
allow the LM to explore vast amounts of written (and read) language, they are
limited to this semantic structure. Countless studies have already investigated
the many differences between spontaneous and read speech. Consequently, a lan-
guage model should ideally be estimated over data that is related to the final
domain of application.

Fig. 1. WER results when combining in-domain and lecture style texts.
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In our case, even small amounts of transcripts from spontaneous speech
were sufficient to produce LMs superior to that from LibriSpeech. The observed
improvements were even approaching the speaker-adapted LM. After fusing mul-
tiple domain-related datasets to increase the amount of data used for LM com-
putation, the speaker model was outperformed. Despite all these fused models
having a higher perplexity score, they still led to lower WERs in comparison to
the speaker-adapted LM. This leads to the conclusion that domain information
was of greater importance than speaker information for language modelling. At
the same time, this could be different for another lecturer that employed a very
unique language style.

5 Conclusion

The current study explores the importance of LMs for spontaneous lecture-
style ASR. While recent state-of-the-art ASR systems perform well without
LMs, spontaneous lectures still benefit from well-built LMs. Results from our
experiments show that even with high OOV words, LMs built from lecture-
style text outperform large models with few OOV words. Furthermore, an LM
with high perplexity can still be useful as exemplified by the BMT LM which
had a high perplexity of 1,624 but still reduced the WER of our base model.
However, spontaneous lecture-style text is more important than in-domain text.
Despite a smaller amount of OOV words in the BMT LM (539) compared to the
YouTube (778) or Autoblog (1,554) LMs, higher WER improvement was seen in
the lecture-style LMs. In the future, we would like to explore larger lecture-style
corpora such as those available from online courses in Coursera, Udemy and oth-
ers. The corpus data used for this study will be published with the acceptance
of this paper.
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3: twice as much data and corpus repartition for experiments on speaker adap-
tation. In: Karpov, A., Jokisch, O., Potapova, R. (eds.) SPECOM 2018. LNCS
(LNAI), vol. 11096, pp. 198–208. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-99579-3 21

8. Jurafsky, D., Martin, J.H.: Speech and language processing. chapter 3: N-gram lan-
guage models (3rd ed. draft). Available from: https://web.stanford.edu/∼jurafsky/
slp3/3.pdf (2018)

9. Kogure, S., Nishizaki, H., Tsuchiya, M., Yamamoto, K., Togashi, S., Nakagawa, S.:
Speech recognition performance of CJLC: corpus of Japanese lecture contents. In:
Ninth Annual Conference of the International Speech Communication Association.
Citeseer (2008)

10. Maekawa, K.: Corpus of spontaneous Japanese: its design and evaluation. In: ISCA
& IEEE Workshop on Spontaneous Speech Processing and Recognition (2003)

11. Munteanu, C., Penn, G., Baecker, R.: Web-based language modelling for automatic
lecture transcription. In: Eighth Annual Conference of the International Speech
Communication Association (2007)

12. Nakamura, M., Iwano, K., Furui, S.: Differences between acoustic characteristics of
spontaneous and read speech and their effects on speech recognition performance.
Comput. Speech Lang. 22(2), 171–184 (2008)

13. Nanjo, H., Kawahara, T.: Unsupervised language model adaptation for lecture
speech recognition. In: ISCA & IEEE Workshop on Spontaneous Speech Processing
and Recognition (2003)

14. Park, A., Hazen, T.J., Glass, J.R.: Automatic processing of audio lectures for
information retrieval: vocabulary selection and language modeling. In: Proceedings.
(ICASSP 2005). IEEE International Conference on Acoustics, Speech, and Signal
Processing, 2005, vol. 1, pp. I-497. IEEE (2005)
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Abstract. Czech is a very specific language due to its large differences
between the formal and the colloquial form of speech. While the formal
(written) form is used mainly in official documents, literature, and pub-
lic speeches, the colloquial (spoken) form is used widely among people
in casual speeches. This gap introduces serious problems for ASR sys-
tems, especially when training or evaluating ASR models on datasets
containing a lot of colloquial speech, such as the MALACH project. In
this paper, we are addressing this problem in the light of a new paradigm
in end-to-end ASR systems – recently introduced self-supervised audio
Transformers. Specifically, we are investigating the influence of colloquial
speech on the performance of Wav2Vec 2.0 models and their ability to
transcribe colloquial speech directly into formal transcripts. We are pre-
senting results with both formal and colloquial forms in the training
transcripts, language models, and evaluation transcripts.

Keywords: Wav2Vec 2.0 · Colloquial speech · ASR

1 Introduction

Formal Czech differs a lot from the colloquial Czech. Almost 20% of Czech words
have different transcription in both varieties [17, p. 250]. This gap between the
everyday, colloquial language, and the official codified formal language emerged
during the Czech National Revival back in the 1830s when a group of Czech
writers, poets, translators, editors, and teachers established new grammar rules
and vocabularies independent of German influence. They took inspiration from
other Slavic languages and outdated Czech Bible texts. However, common people
did not adopt these new rules and words into their spoken language creating a
very specific widely-spoken vernacular that persists to this day [7].

The gap between formal and colloquial Czech constitutes a serious problem
for Automatic Speech Recognition (ASR) systems which automatically tran-
scribe – possibly colloquial – spoken utterances into formal text [4]. The usual
way how to deal with this phenomenon in a common Large-Vocabulary Contin-
uous Speech Recognition (LVCSR) system is to train the acoustic model with
c© Springer Nature Switzerland AG 2022
P. Sojka et al. (Eds.): TSD 2022, LNAI 13502, pp. 301–312, 2022.
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colloquial phonetic transcripts, define alternative (colloquial) pronunciations for
formal words in the lexicon and finally use a formal language model to decode
the speech into a formal transcript [14,16].

In the recent few years, self-supervised neural networks became a very pop-
ular alternative to LVCSR systems in speech recognition tasks. A significant
milestone was the introduction of the Transformer architecture [18] into ASR
systems [2,3,5,11,12]. The most studied transformer-based ASR model archi-
tecture is Wav2Vec 2.0 [3]. It is an end-to-end speech recognizer that alleviates
the need for word pronunciation modeling and does not require any alignment of
data. It is a single model converting the raw audio signal from the input into the
sequence of tokens on the output, no meter whether these tokens are graphemes,
phonemes, word pieces, or other speech units. Thus, the model has a very inter-
esting ability: when the input audio data during fine-tuning contain colloquial
speech and the target transcripts are in the formal Czech, it could internally
learn the mapping between the two forms without any engineering or manual
effort. In this paper, we are investigating the extent of this ability of Wav2Vec
models.

2 MALACH Project

The whole story of the MALACH project began in 1994, when after the pre-
miere of the film “Schindler’s List”, many survivors turned to Steven Spielberg
to tell him their stories about the Holocaust. Inspired by these requests, Spiel-
berg decided to establish the Shoah Visual History Foundation (VHF) so that
as many survivors as possible could record their stories and save them for future
generations. Nowadays are these video interviews located in the Shoah Foun-
dation Institute at the University of Southern California (USC-SFI) along with
another 54,000 video interviews with witnesses of the history of the entire 20th
century.

The Shoah part of the archive contains testimonies in 32 languages of per-
sonal memories of survivors of the World War II Holocaust, in total it is 116,000 h
of video. Interviews (in all languages) contain natural, unrestricted speech, full
of disfluencies, emotional excitements, heavy accents, and are often influenced
by the high age of speakers (problems with keeping ideas). More than 550 testi-
monies are in the Czech (almost 1000 h hours of video).

In 2014, the Linguistic Data Consortium (LDC) released the Czech part of
the MALACH project [15]. There were published 420 testimonies along with
their transcripts. The release contains 400 randomly selected testimonies for the
purpose of acoustic model training. As only 15-min segments were transcribed for
each testimony, the acoustic training part, therefore, consists of 100 h of Czech
speech from theoretically up to 800 speakers (interviewer and interviewee). The
rest of the Czech MALACH corpus consists of 20 testimonies, which have been
completely transcribed and are intended for development (10 testimonies, i.e. 20
speakers) and testing (10 testimonies, i.e. 20 speakers) purposes. (see Table 1 for
details).
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3 Formal vs. Colloquial Czech

During the annotation process of the Czech Malach corpus, the transcribers
were instructed to use the orthographic transcription of colloquial words (i.e.,
not to “formalize” them artificially) to bring the transcripts as close as possible
to what was actually said. There were several reasons for this decision. Firstly,
this procedure was very beneficial for classical acoustic modeling, because the
resulting transcription is very close to the actual phonetic realization of the word.
Secondly, transcribing colloquial sentences using formal words is not an easy
task, especially for transcribers without a solid linguistic background. Another
problem solved by the colloquial method of transcription was no need to unify
the transcription of foreign words.

Table 1. Statistics of training and test data-sets of the Czech part of the MALACH
project.

Train Test

# of speakers 776 20

# of words 49k 10.3k

# of tokens 715k 63k

dataset length [hours] 87.5 8.9

On the other hand, the effect of the abundance of colloquial words on the
language model is rather negative. The orthographic transcription of colloquial
words causes an unnecessary growth of the lexicon. There are often several dif-
ferent colloquial variants corresponding to one formal word form. Consequently,
the already sparse language model training data became even sparser. To take
advantage of formal word forms in language modeling, we decided to “formalize”
the lexicon. We went through a lexicon built from the original (orthographic)
transcriptions and added a corresponding standard form to each colloquial word
form, but only in cases where it was unambiguous. The normalization of manual
transcripts not only made the parameters of the estimated language model more
robust but also brought this main and most useful source for language modeling
much closer to other potential formal text sources. More details on this process
can be found in [13].

A good example of the ambiguity of such a formalization is the word sem.
While in formal Czech this word means sem (here), in colloquial Czech it is
also used instead of the correct form jsem ((I) am) which naturally occurs quite
frequently (the fourth most frequent word in the corpus). To distinguish which
formal variant of a word sem is the correct one, we would have to use a larger
word context or better use a sophisticated method of text understanding. Never-
theless, by formalizing the lexicon, we found more than 13k unambiguous rules
that reduced the number of colloquial words by almost 85%.
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In order to illustrate that the number of colloquial forms for a single formal
word form can be really high, we present a fragment from the “formalized” lex-
icon in Table 2. The new “formalized” text corpus was created by automatically
replacing colloquial words in the original transcripts with their formal counter-
parts using the above-mentioned 2-column lexicon. Note that such a procedure
does not take into account the word context, and therefore the formalization
process is far from perfect.

4 Wav2Vec 2.0

Wav2Vec 2.0 model [3] is one of the current state-of-the-art models for ASR. It
is a deep neural network pretrained to reconstruct the corrupted signals. The
input raw audio signal is processed by a multi-layer convolutional neural network

Table 2. Example of formalization rules.

formal colloquial in English

odjet
odejet odjec odject vodjet

to leave
vodejet vodject vodeject

odtamtud
odtamtad’ odtamtud’ vodtamtad’ vodtamtud

from there
vodtamtud’ votamtad’ votamtud’

bývalý bejvalej bejvalý bývalej former

into a sequence of latent-speech representations which are fed into a multi-layer
Transformer [18]. Only the encoder part of the full encoder-decoder Transformer
architecture is used. The output of the Transformer is a sequence of frame-
level contextualized speech representations encoding both the frame itself and
its context in the signal. This approach is motivated by very successful self-
supervised text-based Transformers solving Natural Language Processing (NLP)
and Natural Language Understanding (NLU) tasks [8].

The training of Wav2Vec models consists of two phases: pretraining and
fine-tuning. During the first self-supervised pretraining phase, the model learns
contextualized speech representations from large-scale unlabeled audio datasets.
This approach is motivated by the learning skills of infants, who do not learn to
understand speech by reading its transcripts, but rather by listening to adults
around them and trying to catch the meaning from the context. By masking
latent representations of the raw waveform and solving a contrastive task over
quantized speech representations, the model learns contextualized representa-
tions jointly with discrete speech units without the need for any annotations or
labels.
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Since labeled data could be very expensive and precious, the pretraining
phase equips the model with deep knowledge about the speech signals mined out
from tens of thousands of hours of unlabeled speech. This knowledge constitutes
a great advantage over models trained from scratch using labeled data only.
From this point of view, the pretrained weights of the Wav2Vec model could be
seen as very clever initializations of the model weights for supervised training.

During the second supervised fine-tuning phase, the model transfers the pre-
trained knowledge into the ASR task. For input speech signals, the speech rep-
resentations are fed into Connectionist Temporal Classification (CTC) layer [9]
and the most probable sequences of graphemes are decoded. The model is fine-
tuned with frozen feature-encoder weights from labeled data optimizing the CTC
loss.

CTC is an alignment-free method for grouping audio frames belonging to
the same output token in order to convert a sequence of speech representations
(one per audio frame) into a much shorter sequence of output tokens. The CTC
classification process can be described – in a simplified way – in 3 steps: (1)
assign the most probable output token to each audio frame, (2) group sequences
with the same tokens into a single token, and (3) remove blank tokens. Tokens
are usually graphemes (i.e. characters including also a word delimiter) but could
be any speech units.

5 Experimental Setup

5.1 Pretraining

Public monolingual Wav2Vec models for non-English languages are very rare.
For the Czech language, there are none. However, there are several public mul-
tilingual pretrained models of sizes from large [6] to extremely large [1]. These
models included also Czech in the pretraining datasets. The common practice
with these models is to select the most suitable pretrained model and fine-tune
it on the labeled ASR data from the target language. Since we were not satis-
fied with results from multilingual models and, at the same time, we had access
to large unlabeled datasets and a high-performance GPU cluster, we decided
to pretrain our own base-sized monolingual Wav2Vec model from scratch and
released it to the public.

Self-supervised audio transformers are known to scale well with the size of
pretraining data, even with extremely huge datasets [1]. Hence, we tried to gather
as much public and in-house unlabeled audio data as possible. Together, we were
able to collect more than 80 thousand hours of Czech speech. The collection
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includes recordings from radio (22 k h), unlabeled data from VoxPopuli dataset
[19] (18.7 k h), TV shows (15 k h), shadow speakers (12 k h), sports (5 k h),
telephone data (2 k h), and a smaller amount of data from several other domains.
We included also raw unlabeled audio data from the MALACH project (1 k h).

Since the feature extraction of the input signal is limited by the memory of
GPUs in use, we sliced all records not to exceed 30 s, which we found to be a
reasonable input size for batching.

We followed the same pretraining setup as for the base Wav2Vec 2.0 model
in [3]. We pretrained the model for 400 thousand steps with a batch size not
exceeding 1.6 h, corresponding to more than 11 epochs over the dataset. The
pretraining took about two weeks on a machine with four NVIDIA A100 GPUs.
We released our pretrained model under the nickname ClTRUS (abbreviation
for Czech language TRransformer from Unlabeled Speech) for public non-
commercial use1. We are not aware of any similar model for Czech mentioned in
the literature so far.

5.2 Fine-tuning

When fine-tuning models, we used the same setup as in [3], i.e. we trained the
pretrained model for 80 thousand update steps with the peak learning rate of
2 × 10−5 and the batch size about 27 min of audio, resulting in 270 training
epochs over the dataset. We removed non-speech events and punctuation from
the transcripts and mapped texts into lowercase. We used implementation from
the Fairseq tool2 to fine-tune models.

First, we trained the colloquial model, denoted as W2Vcolloq, from the orig-
inal transcripts. Since annotators were instructed to transcribe the speech in
the spoken form, i.e. exactly as it was spoken in the underlying speech, these
transcripts are mainly in colloquial Czech. However, it is in fact a mix of both
forms, because some people tend to speak more formally when giving an inter-
view, and sometimes annotators were not able to distinguish between the two
forms, especially in the strong emotional and heavily accented speeches. We left
the formal words untouched as the rules from formal to colloquial form would
be ambiguous.

After that, we transformed the original transcripts into formal Czech using
the prepared set of rules (see Sect. 3) and fine-tuned the second model, denoted
as W2Vformal. The whole fine-tuning process is depicted in the upper part of Fig. 1.
The fine-tuning of each model took about 14 h on a machine with four NVIDIA
A100 GPUs.

1 Available at https://huggingface.co/fav-kky/wav2vec2-base-cs-80k-ClTRUS.
2 https://github.com/pytorch/fairseq.

https://huggingface.co/fav-kky/wav2vec2-base-cs-80k-ClTRUS
https://github.com/pytorch/fairseq
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Fig. 1. Scheme of fine-tuning and evaluation.

5.3 Decoding

We studied two different decoding setups: (1) Connectionist Temporal Classifi-
cation (CTC) [9], which is the training loss we used during fine-tuning of the
models, and (2) CTC beam search decoder with a Language Model (LM). Decod-
ing setup (1) is a grapheme-based lexicon-free speech recognition without any
language constraints. The only orthography-related knowledge the model could
learn is the training transcripts fed in during the fine-tuning. Wav2Vec with the
CTC decoding setup (1) decodes also word delimiters, so it is an end-to-end
ASR system, which can be evaluated using standard word-based metrics like
word error rate.

Decoding setup (2) incorporates an LM into the CTC beam search decoder
which usually improves the speech recognition accuracy by bringing useful lan-
guage information into the decoding process and penalizing improbable out-
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puts. For our experiments, we prepared 2 different word-based n-gram LMs: (a)
LMcolloq trained from all colloquial transcripts, and (b) LMformal trained from the
formalized training transcripts, i.e. from the training data of W2Vformal model.
We limited the maximum order of models to 4-grams for both LMs.

We used implementation from Transformers [20] for CTC decoding and
pyctcdecode3 decoder for CTC beam search decoder with n-gram LM. To train
LMs, we used KenLM [10] and mapped all texts into lowercase.

5.4 Evaluation

Both decoding setups described in Sect. 5.3 generated a 1-best hypothesis for
each input signal. We aligned decoded hypotheses and reference transcripts using
the minimum edit distance and evaluated the standard Word Error Rate (WER)
and Character Error Rate (CER).

To evaluate colloquial models, we used the original reference transcripts pro-
cessed in the same way as the training transcripts, i.e. we removed non-speech
events and punctuation and mapped texts into lowercase. We denote test dataset
with this colloquial reference as TESTcolloq. To evaluate formal models, we fur-
ther converted the colloquial reference texts into formal texts using the prepared
set of rules (see Sect. 3) and thus generated the test dataset with formal reference
transcripts, denoted as TESTformal.

We evaluated all combinations of formal and colloquial models and LMs
against both formal and colloquial reference transcripts. From these combina-
tions, we are particularly interested in three real-world scenarios:

1. Evaluation of the colloquial model, i.e. how well W2Vcolloq model with LMcolloq
transcribes the colloquial speech (thus evaluated against TESTcolloq dataset).

2. Evaluation of the formal model, i.e. how well W2Vformal model with LMformal
transcribes the colloquial speech into formal Czech (thus evaluated against
TESTformal dataset). This scenario is particularly interesting as it evaluates
how well the Wav2Vec model internally learns the mapping between the two
forms without any engineering or manual effort.

3. Transcripts generated from W2Vcolloq with LMcolloq post-processed by rule-
based formalization of texts evaluated against TESTformal dataset. This sce-
nario shows how the Wav2Vec model can use data prepared with a great
manual effort for a standard LVCSR system in order to generate formal tran-
scripts. We denote this colloquial model with Formalization Post-processing
as W2Vcolloq + FP

These three scenarios are depicted in a flowchart diagram in the bottom part
of Fig. 1 and corresponding error rates will be underlined in the results table.

Note, that the numbers of reference words in TESTcolloq and TESTformal differ
due to multi-word replacements in the rules. While the formal transcripts consist
of 62 690 words, the colloquial has 62 918 words, so results evaluated against
TESTformal and TESTcolloq are not exactly comparable.

3 https://github.com/kensho-technologies/pyctcdecode.

https://github.com/kensho-technologies/pyctcdecode
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6 Results

Results of our experiments are tabulated in Table 3. First, we evaluated the
existing LVCSR system developed specifically for MALACH dataset [16]. The
system was a CNN-TDNN LF-MMI with iVectors, sMBR criterion, and system-
specific 3-gram LM denoted as LMLVCSR. The system was trained to transcribe
colloquial speech into formal form, so we report only results evaluated against
TESTformal. A comparison of this system with the formal Wav2Vec model clearly
reveals the superiority of transformer-based ASR systems.

Table 3. WER [%] and CER [%] of colloquial and formal models evaluated against col-
loquial and formal evaluation datasets (TESTcolloq and TESTformal). Each Wav2Vec model
was decoded using three different decoding setups: as an end-to-end ASR with no LM
and with the beam search CTC decoder with LMformal and LMcolloq (see Sect. 5.3). Under-
lined values correspond to scenarios we are particularly interested in (see Sect. 5.4).
Bold values are the best error rates for each model.

TESTcolloq TESTformal

model LM WER CER WER CER

LVCSR LMLVCSR - - 14.71 5.25

W2Vcolloq - 12.24 3.58 19.73 5.28

LMformal 13.85 4.05 15.96 4.68

LMcolloq 11.55 3.64 18.99 5.27

W2Vformal - 19.17 5.07 11.52 3.32

LMformal 18.60 5.19 10.48 3.31

LMcolloq 18.60 5.16 10.85 3.37

W2Vcolloq + FP - 19.02 5.05 11.18 3.33

LMformal 18.47 5.07 11.09 3.53

LMcolloq 18.47 5.12 10.43 3.30

As for the Wav2Vec models, the best results evaluated against TESTcolloq are
significantly higher (i.e. worse) than best results evaluated against TESTformal.
It is mainly because the colloquial Czech does not have codified rules and one
formal word could have many possible colloquial forms. Each speaker can use –
based on his or her geographical background – a different set of colloquial words
in the speech. Moreover, each annotator can perceive the spoken colloquial forms
differently, especially in the strong emotional and heavily accented speeches. This
ambiguity of transcribed speech leads to confusion when training and evaluating
the colloquial models.

If we compare the underlined results of the last two Wav2Vec models in
Table 3 (corresponding to scenarios 2. and 3. from Sect. 5.4), we see very similar
error rates. The W2Vcolloq + FP is slightly better, which we found to be caused by
an occasional incorrect exact match of formalized hypotheses with the formalized
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reference, as both were generated using the same rules. After analyzing errors
from W2Vformal model, we found that many recognition errors were actually errors
in the reference as the rules were not covering all occurrences of colloquial form
in the reference. For example, the formal reference contained (incorrectly) the
word “německýho” (colloquial inflected form meaning “German”), because it was
not covered by mapping rules due to its non-existence in training transcripts.
Formalized output from W2Vcolloq + FP exactly matched the reference for the
same reason, so there was no error counted. W2Vformal predicted the correct formal
form “německého”, which was, however, wrongly counted as a recognition error
due to an error in the reference. We didn’t make more effort to clean the reference
transcripts and fix these errors as they were infrequent and it would cost a lot of
manual work with only a little effect on the error rates. Nevertheless, observing
these types of errors was a clear sign of the generalization ability of the W2Vformal
model and we can conclude that W2Vformal is – despite slightly higher error rates –
a more useful model than rule-based W2Vcolloq + FP because of its generalization
ability.

To sum up the results, Wav2Vec models are significantly better ASR systems
for the MALACH project than LVCSR systems. They are able to learn the
mapping from colloquial speech into a formal transcript and generalize this skill
also to words not observed in training data, which is a more beneficial solution
than limited rule-based formalization post-processing of the colloquial model.
Moreover, the Wac2Vec’s internal mapping from colloquial speech to formal
transcripts could make the acquisition of training transcripts much simpler as
the annotators could be instructed to transcribe the speech directly into formal
Czech alleviating the problems with ambiguous colloquial transcripts and manual
listing of rules.

7 Conclusion

In this paper, we showed that the new paradigm models in ASR – Transformer-
based models with CTC decoder (specifically Wav2Vec 2.0) – have a very inter-
esting ability to learn how to transcribe Czech colloquial speech directly into
formal transcripts. Such models not only perform better than common LVCSR
systems, but also alleviate the need for complicated and ambiguous colloquial
annotations, data alignments, phonetic transcriptions, and pronunciation lexi-
cons. When collecting training transcripts for a new ASR dataset, we can instruct
annotators just to transcribe the speech directly into formal Czech sentences,
which is codified and unambiguous form, and that’s all that is needed for the
Wav2Vec model to be fine-tuned. From the formal transcript and raw audio sig-
nal, the model is able to learn the alignment between the speech signal frames
and graphemes, and also how to generalize the conversion between the colloquial
speech and formal text. We believe our findings will simplify and accelerate the
acquisition of training data for new challenging datasets containing a lot of col-
loquial speech.
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Abstract. We propose a novel approach for semi-supervised learning
(SSL) designed to overcome distribution shifts between training and
real-world data arising in the keyword spotting (KWS) task. Shifts from
training data distribution are a key challenge for real-world KWS tasks:
when a new model is deployed on device, the gating of the accepted data
undergoes a shift in distribution, making the problem of timely updates
via subsequent deployments hard. Despite the shift, we assume that the
marginal distributions on labels do not change. We utilize a modified
teacher/student training framework, where labeled training data is aug-
mented with unlabeled data. Note that the teacher does not have access
to the new distribution as well. To train effectively with a mix of human
and teacher labeled data, we develop a teacher labeling strategy based
on confidence heuristics to reduce entropy on the label distribution from
the teacher model; the data is then sampled to match the marginal dis-
tribution on the labels. Large scale experimental results show that a
convolutional neural network (CNN) trained on far-field audio, and eval-
uated on far-field audio drawn from a different distribution, obtains a
14.3% relative improvement in false discovery rate (FDR) at equal false
reject rate (FRR), while yielding a 5% improvement in FDR under no
distribution shift. Under a more severe distribution shift from far-field to
near-field audio with a smaller fully connected network (FCN) our app-
roach achieves a 52% relative improvement in FDR at equal FRR, while
yielding a 20% relative improvement in FDR on the original distribution.

Keywords: wakeword detection · distribution shifts · keyword
spotting

1 Introduction

While deep learning models have a remarkable capacity to fit the training data
distribution, fitting even random labels [26], distribution shifts from the training
data can present challenges [12,19,23]. These challenges include covariate shifts,
prior shifts, selection bias, domain shift etc. [18]. Such distribution shifts can
cause a model to learn spurious structures in the data and generalize poorly [9].
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Our work in this paper happens in this context and focuses on small footprint
on-device wakeword detection1 models [5,7,11,15,21,24,25].

Wakeword detection is a modeling area that is prone to distribution shifts.
For wakeword detection models deployed on device, the data that is accepted or
rejected is gated by the model, causing a tight coupling between the model on
device and the data available for subsequent training and evaluations. However,
continuously selecting and labeling data can be time consuming and expensive.
Beyond distribution shifts associated with deployed models, shifts can also occur
due to changes in devices, user populations, and usage patterns/applications. An
extreme version of this shift is the introduction of devices that differ significantly
from existing population. Generalizing annotated data collected for one such set
of devices to another requires addressing distribution shifts introduced.

In this paper we investigate the problem of helping generalize an on-device
wakeword detection model over a distribution shift caused by a model update
and underlying temporal changes in data distributions. We propose a novel ver-
sion of teacher/student training with two major deviations from the standard
approach, where labeled training data is augmented with unlabeled data. First,
since the teacher does not have access to the new distribution, our proposed
labeling strategy reduces the entropy on the label distribution by using confi-
dence heuristics, enabling student models to be trained from a combination of
human and teacher labeled data. Second, assuming that the marginal distribu-
tions on labels do not change, we develop an approach to sampling unlabeled
data to overcome both distribution shifts inherent to the KWS task as well as
biases introduced by the proposed labeling scheme. To empirically validate the
proposed approach we conducted two sets of large scale experiments (over 200K
hours of unlabeled data) on de-identified production data. In these experiments,
we demonstrate the ability to overcome both temporal distribution shifts as well
as device-type distribution shifts.

Related Work: Research related to modeling under distribution shifts falls
into three categories: a) without access to the shifted distribution, approached
using robust optimization and meta-learning [1,12]; b) with access to shifted
distribution and a small set of labeled data, approached using active learning [4];
c) with access to the shifted distribution, but without labels - our problem falls
under the third category. Continual learning [16] is a related topic where the
data is constrained to be processed online.

Learning from unlabeled data, especially under distribution or domain shifts,
remains a challenge [6,20]. Zhao et al. [27] imposed similarity constraints on
labeled and unlabeled distributions as a form of consistency regularization prin-
ciple, proposed in [2,3,22]. Our algorithm falls under this category, imposing the
assumption that the marginal distributions on labels do not change; however
the previous approaches perturb the data in an unbiased fashion, whereas in our
setting, the data distribution shifts. Another principle used in SSL, entropy min-
imization, encourages the pseudo-labels to be well-separated on the unlabeled
1 Also known as keyword spotting; this is a task of detecting keywords of interest in

a continuous audio stream.
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data, through the use of regularizers [10,14]. Inspired by this principle, but to
scale it to a large unlabeled dataset, our algorithm uses confidence thresholds to
encourage separability of classes. Our approach combines these two principles to
handle distribution shifts in a teacher/student framework where the teacher has
not seen the new distribution too.

Fig. 1. (a) Embeddings of wakeword data plotted with respect to year along with the
first standard deviation contour of a Normal distribution approximation. Data from
2018 is represented by blue, from 2019 by red, 2020 by cyan, and 2021 by green; (b)
Embeddings of random samples of wakeword data drawn from a far-field device (blue)
and mobile devices (red) along with the first standard deviation contour of a Normal
distribution approximation. (Color figure online)

2 Distribution Shifts in Wakeword Data

We illustrate two shifts in data distributions below. First, Fig. 1(a) shows the
temporal drift in the distribution of data the model observes due to factors such
as the wakeword model gating behavior (as described in the introduction), phys-
ical changes to devices, introduction of newer versions of devices with differing
hardware/software, growth and change in user population, and change in use of
devices. This introduces the challenge of leveraging older annotated data that
may not be representative of the current distribution.

A second major shift in wakeword data distributions occurs due to general-
ization to differing devices/use cases. An example of this is shown in Fig. 1(b),
where data collected from mobile devices is compared to data collected on far-
field devices. Mobile device data is fundamentally different for a wide range of
factors. Differing customer usage leads to different acoustic and background noise
conditions (e.g. use in automobiles, while walking around), generally is near-field,
and has significantly differing microphones and audio front-end capabilities. In
this setting, our goal is to build performant models for new device-types with
limited annotated data by leveraging annotated data from different device-types.
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3 On-device Wakeword Detection Models

We describe the two wakeword detection models, namely the CNN and FCN.
Models are similar to [5,21], with the difference being that the input window
encompasses a larger audio context. The models are trained using a set of positive
and negative examples (i.e. positive examples contain the wakeword, while the
negatives do not). During training, the wakeword is consistently center aligned
in the input window [11].

Fig. 2. Model architectures: (a) CNN annotation model with 5 CNN layers and 3 fully-
connected layers (4M parameters); (b) CNN on-device wakeword detection model with 5
CNN layers and 3 fully-connected layers (2M parameters); (c) FCN on-device wakeword
detection model with 5 fully-connected layers (250k parameters).

The CNN model architecture has 2M learnable parameters, and it operates
on 64-dimensional log mel filter bank energy (LFBE) features, computed with
analysis window size and shift of 25 ms and 10 ms respectively; the input to
the model is 100 frames. The model has 5 CNN layers and 3 fully-connected
layers, as shown in Fig. 2(b). Dropout and batch normalization are used in all
the layers. The output is a binary classification layer trained with cross entropy
loss, representing the probability of “wakeword” and “non-wakeword” [8].

The FCN model architecture has 250K learnable parameters, and it operates
on 20-dimensional LFBE features computed over the same analysis window size
and shift as the CNN; the input to the model is 81 frames, downsampled by a
factor of 3. The architecture consists of five fully connected layers. Details of this
model architecture is presented in Fig. 2(c). Dropout and batch normalization are
used with all hidden layers. Similar to CNN, the output is a binary classification
layer trained with cross entropy loss.

During inference, the posterior estimates, from CNN or FCN, corresponding
to the wakeword are smoothed by an exponential moving average (EMA) or a
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windowed smoothing average (WMA) filter respectively; these are then thresh-
olded to infer the wakeword hypothesis.

4 Proposed SSL Algorithm

The SSL algorithm consists of selection of an annotation model, selection of
thresholds to compute pseudo-labels, distributing matching with subsampling,
and the actual training. We describe each of these components in depth.

Selecting and Annotating Data: A critical aspect of model training to
account for distribution shifts in the selection of unlabeled training data to be
annotated with a teacher model. Let zo

s = (xo
s, y

o
s) be the original supervised

training data distribution. This supervised data is not drawn from the distri-
bution of examples the model is exposed to due to both access to the data, as
well as the imbalance of classes in the detection setting. Instead, the supervised
data selection is more heavily drawn from “hard” examples that are close to the
decision boundary of previous models. Note that an example can be “hard” due
to a number of reasons beyond distribution shift; for example, features not being
able to separate examples.

Under a distribution shift, we ideally would like to have access to zn
s =

(xn
s , yn

s ), the equivalent supervised training data distribution drawn heavily from
“hard” examples from the new shifted distribution, with subsequent models
then trained using {zo

s ∪ zn
s }. Since manual labeling of hard examples is slow,

we want some approximation of zn
s using an SSL algorithm. Let (zn

u , sn
u) =

(xn
u, yn

u , sn
u) be the unsupervised distribution with score sn

u from a teacher model.
We want to approximate zn

s with zn
u . We make the assumption that the marginal

distributions on labels (i.e. yo
s and yn

s ) share the same distributions, even under
distribution shifts.

In the absence of distribution shifts, we could use a teacher model to derive
soft or hard pseudo labels. However in the presence of distribution shifts, select-
ing data that is hard for the student will yield noisy labels since teacher model
has not been trained on the shifted distribution. To ameliorate this issue, we
design our algorithm so that the teacher is able to label well, applying thresh-
olds τ+ and τ− to obtain zn

uτ
:= (xn

uτ
, yn

uτ
) = fτ (xn

u, yn
u , sn

u).
The thresholded scores on unlabeled examples from the annotation model

are binarized to pseudo-labels: data above the accept threshold (τ+) have pos-
itive labels, while those below the reject threshold (τ−) have negative labels.
Unlabeled data with scores between the two thresholds are then discarded.

The accept/reject thresholds are determined based on analysis done on held-
out examples that have groundtruth. We investigated precision and false pos-
itive rate (FPR) as means to quantify the “purity” of positive labels. Since
data is biased towards positive examples, precision does not capture purity with
sufficient granularity: therefore, we choose an accept threshold value on FPR.
Similarly, FRR and False Omission Rate (FOR) were considered as metrics for
negative labels. Analysis on held-out data showed that both FOR and FRR are
reasonable metrics; we choose a reject threshold value on FRR.
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Applying the thresholds τ+ and τ− can be viewed as a form of entropy min-
imization, however this strategy alone is not sufficient to approximate zn

s with
zn
uτ

. Since we have access to yo
s (and we assume yo

s and yn
s share the same dis-

tribution), we subsample zn
uτ

to yield zn
uτ,θ

:= (xn
uτ,θ

, yn
uτ,θ

) = gθ(fτ (xn
u, yn

u , sn
u)).

Subsampling of the data can be viewed as a form of consistency regularization,
where the distributions of yo

s and yn
s are kept close through the selection of data.

Training Method: We use the verification model described in Fig. 2(a) as the
annotation model: it has a similar architecture to the CNN model described
earlier, with 64-dimensional LFBE feature input to 5 stacking CNN layers fed
to 3 fully-connected layers; the last layer performs the binary classification task,
however the input window context is larger (consisting of 195 frames) and the
model is specifically trained for the verification task rather than general wake-
word detection. The model parameters are optimized with the cross entropy
loss, and the model outputs a posterior probability [13]. The posteriors from the
annotation model are used to annotate unlabeled data with hard labels; we refer
to these as scores.

Algorithm 1: SSL scheme to generate pseudo-labels on unlabeled data
Data: τ+, accept threshold

τ−, reject threshold
θ+, positive class subsampling
s ∈ S, unlabeled data
score, annotation model posterior

Result: Pseudo-labeled data
initialization;
for s ∈ S do

score = query score(s);
u = rand();
if score ≥ τ+ and u ≤ θ+ then

label = “Wakeword”;
else if score ≤ τ− then

label = “Not Wakeword”;
else

return None;

Similar to [3,17], we interleave this teacher annotated data with human
labeled data within a minibatch during training. We set a weight of λ : (1 − λ)
for labeled and pseudo-labeled data respectively.

5 Experimental Setup

All experiments in this paper were conducted on de-identified production
datasets. We now describe the setup for the two sets of training and evalua-
tion experiments: a) CNN trained on far-field audio, and evaluated on far-field
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audio with and without distribution shift; b) FCN trained on far-field audio, and
evaluated on near and far-field audio. We also discuss the evaluation metric used
in our experiments. For all datasets, pseudo-labels are generated using annota-
tion models as described in Sect. 4; in the interest of space, we do not discuss
these annotation models as the training has been described in [13].

Datasets: For the two sets of experiments, we created a labeled and a pseudo-
labeled training dataset; the latter was constructed using the procedure described
in Sect. 4. For CNN: a) the labeled data consisted of 8K hours of far-field audio;
b) the pseudo-labeled data consisted of 200K hours of far-field audio. Note these
datasets are drawn from different distributions, as discussed earlier. For FCN: a)
the labeled data consisted of 12K hours of far-field audio; b) the pseudo-labeled
data consisted of 16K hours of near-field mobile phone data.

We created evaluation datasets with and without distribution shifts for the
two cases. For CNN: a) without distribution shift labeled data consisting of 3K
hours of far-field audio drawn from the same distribution as the labeled training
data; b) distribution shifted labeled data consisting of 1K hours of far-field audio
drawn from the same distribution as the pseudo-labeled training data. For FCN:
a) without distribution shift labeled data consisting of 33 h of far-field audio
drawn from the same distribution as the labeled training data; b) distribution
shifted labeled data consisting of 30 h of near-field mobile phone audio drawn
from the same distribution as the pseudo-labeled training data.

Training and Evaluation: We select the accept/reject thresholds and the sub-
sampling factor for the positive class for the two sets of model training based on
held-out datasets. We tuned λ, the mixing factor, for CNN and FCN training,
obtaining a smaller λ for FCN training (reasonable given the extent of distribu-
tion shift). During model training, with each minibatch, we updated the model
using the Adam optimizer to compute the error signal; 700K model updates were
done for CNN, while 200K model updates were done for FCN. During inference,
we tuned the EMA and WMA values for the models on held-out datasets.

We use DET curves to measure the performance of the models, using False
Rejection Rate (FRR) and False Discovery Rate (FDR); DET curves for pro-
posed models are plotted compared to their baselines. Similar to [8,11,13,24,25],
we normalize the axes of the DET curves using the baseline model’s operating
point (OP). For certain results, in the interest of space, we only report the results
in terms of relative FDR at the baseline model’s OP.

6 Results

We now describe the results for two sets of experiments presented in Sect. 5:
a) far-field to far-field distribution shifts with CNN; b) far-field to near-field
distribution shifts with FCN. We discuss the first experiment in depth using an
ablation study with respect to the size of pseudo-labeled datasets as well as an
analysis using the reliability of annotations.
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6.1 Far-field Distribution Shifts with CNN

The baseline and the proposed approach use the CNN model architecture dis-
cussed in Sect. 3, with results presented in Table 1. While the baseline model was
trained on labeled data, the proposed model was trained on a mixture of labeled
and pseudo-labeled data. As can be seen from the table, the proposed approach
achieves a 14.3% relative improvement in FDR at FRR matching the baseline
model on eval data with a distribution shift (matching the distribution of the
pseudo-labeled data). Furthermore, it achieves a 5.0% relative improvement in
FDR on eval data without a distribution shift (matching the distribution of the
labeled data).

We also present the full DET curves for both the baseline and the proposed
model in Fig. 3. Note that (1.0, 1.0) on the DET curves correspond to the OP of
the baseline model. It can be seen from Fig. 3 that the DET curves mirror the
larger and smaller gains, respectively, on evaluation data sets observed in the
table; these correspond to conditions with and without distribution shifts. This
shows that the proposed approach generalizes well.

Table 1. Rel. imp. in FDR at FRR matching the baseline model on eval data with and
without distribution shifts. Baseline model was trained on only labeled data while the
model using proposed approach was trained on both labeled and pseudo-labeled data.

Condition Rel. FDR Imp. (%)

Distribution shift 14.3

No distribution shift 5.0

Fig. 3. DET curves showing the baseline (blue) and the SSL (orange/with dots) models
evaluated on a distribution shift (left) and no distribution shift (right). (Color figure
online)
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Table 2. Rel. imp. in FDR at FRR matching the baseline model on eval data with and
without distribution shifts. The size of the pseudo-labeled training data is increased.

Data (hrs)
Relative FDR
(Distr. Shift)

Relative FDR
(No Distr. Shift)

1K −16.8 −22.5

4K −1.8 −3.2

16K 4.7 0.7

64K 10.1 1.5

200K 9.6 1.3

Effect of Pseudo-Labeled Training Data Size. Given the small model size,
we wanted to understand how much pseudo-labeled data was useful. Table 2
presents performance of the CNN models in terms of increasing sizes of the
pseudo-labeled data. To avoid the impact of imbalanced training set sizes, no
labeled data was used. Results are reported on evaluation data (both with
and without a distribution shift) in terms of relative improvement in FDR at
equal FRR compared to the baseline model (from Table 1). We see a steady

Fig. 4. Baseline (blue) and the SSL (orange/with dots) models evaluated on: (a) eas-
ier examples with distribution shift; (b) easier examples with no distribution shift; (c)
harder examples with distribution shift; (d) harder examples with no distribution shift.
(Color figure online)

Fig. 5. Comparing the baseline (orange) and the SSL (blue/with dots) models evaluated
on a distribution shift (left) and no distribution shift (right). (Color figure online)
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improvement in performance on both eval data sets till the training data
increases to 64K hours; thereafter the performance saturates indicating the
capacity of the model.

Table 3. Rel. imp. in FDR at FRR matching the baseline model on eval data with and
without distribution shifts for models trained without (-) and with (+) subsampling.

Models

Rel. FDR Imp (%)

(Dist. Shift)

Rel. FDR Imp (%)

(No Dist. Shift)

− subsampling 2.0 −21.0

+ subsampling 4.0 −3.0

Effect of Subsampling on Pseudo-Labeled Training Data. For study-
ing the effect of subsampling, we trained a baseline model only on 1K hours
of labeled audio. Two models were trained only on 1K hours of pseudo-labeled
audio using the approach in Sect. 4: a) a model that uses the best subsampling
factor identified in Sect. 5; b) a model that uses no subsampling. Table 3 presents
the results in terms of relative improvement in FDR at equal FRR compared
to the baseline model. With distribution shift, the pseudo-labeled models are
better, independent of the subsampling factor; not surprisingly, on the original
distribution, the models trained on pseudo-labeled data are worse. However sub-
sampling yields a large improvement on the original distribution and bridges the
gap with the baseline.

Table 4. Rel. imp. in FDR at FRR matching the baseline model on eval data with and
without distribution shifts.

Condition Rel. FDR Imp. (%)

Distribution shift 52.0

No distribution shift 20.0

Effect of Pseudo-Labeling on Easy and Hard Cases. A risk of using
pseudo-labeled examples the annotation model was confident on is whether the
model performance generalized well over “hard” cases. We divided the eval data
from both the shifted and unshifted distributions based on whether it was hard
or easy for the annotator to label. Figure 4 presents the DET curves for those
cases, with and without distribution shifts.

Figure 4(a, b) shows that for easier examples the proposed method yields
improvements with and without distribution shifts. We see the same trend as
in Fig. 3, where the gains were larger on the setting with distribution shift. For
harder examples (Fig. 4(c, d)), the trend is similar, except that we observe no
gains when there is no distribution shift, demonstrating the proposed method
generalizes to “hard” examples.
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6.2 Far and Near-Field Distribution Shifts with FCN

For the second set of experiments, the baseline and the proposed approach use
the FCN model architecture discussed in Sect. 3. Table 4 presents the results.
The proposed approach achieves a 52% relative improvement in FDR at FRR
matching the baseline model on eval data with a distribution shift. Furthermore,
it yields a 20.0% relative improvement in FDR without a distribution shift, show-
ing that the proposed approach generalizes well even under a severe distribution
shift even with models having much lower capacity. The gains observed in the
table also reflects on Fig. 5 with DET curves corresponding to conditions with
and without distribution shifts.

7 Conclusions

This paper characterizes distribution shifts in wakeword detection and proposes
an approach to address it. Utilizing large scale unlabeled data from the shifted
distribution, we use an annotation model with guidance from accept/reject con-
fidence heuristics to generate pseudo-labels. We mitigate the over representation
of subsets of data on which the annotation model does well by subsampling the
positive class conditional distribution. Experiments on de-identified production
data show that for a CNN model (2M parameters) trained on far-field audio and
evaluated on far-field audio drawn from a different distribution, the proposed
approach achieves a 14.3% relative improvement in FDR at equal FRR, while
still yielding a 5% improvement in FDR under no distribution shift. We per-
formed 3 ablation studies: a) size of pseudo-labeled data; b) with and without
subsampling; c) easy and hard cases, confirming the viability of the proposed
approach. As a second study, under a more severe distribution shift from far-field
to near-field audio, with a smaller footprint FCN (250K parameters), our app-
roach achieves a 52% relative improvement in FDR at equal FRR, while yielding
a 20% relative improvement in FDR on the original far-field distribution.
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Elmar Nöth2 , and Juan Rafael Orozco-Arroyave1,2

1 Faculty of Engineering, University of Antioquia UdeA, Medelĺın, Colombia
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Abstract. Deep Learning (DL) has enabled the development of accu-
rate computational models to evaluate and monitor the neurological
state of different disorders including Parkinson’s Disease (PD). Although
researchers have used different DL architectures including Convolutional
Neural Networks (CNN), Recurrent Neural Networks (RNN) with Long
Short-Term Memory (LSTM) units, fully connected networks, combina-
tions of them, and others, but few works have correctly analyzed and
optimized the input size of the network and how the network processes
the information. This study proposes the classification of patients suffer-
ing from PD vs. healthy subjects using a 1D CNN followed by an LSTM.
We show how the network behaves when its input and the kernel size
in different layers are modified. In addition, we evaluate how the net-
work discriminates between PD patients and healthy controls based on
several speech tasks. The fusion of tasks yielded the best results in the
classification experiments and showed promising results when classifying
patients in different stages of the disease, which suggests the introduced
approach is suitable to monitor the disease progression.

Keywords: Parkinson’s Disease · Speech Processing · Convolutional
Neural Networks · Long Short-Term Memory

1 Introduction

The automatic evaluation of pathological speech has captured the attention of
the research community for many years. Among the benefits of using speech
signals to diagnose and monitor different diseases are that it is non-invasive,
and can be captured remotely at a very low cost. In the context of Parkinson’s
Disease (PD), different biomarkers have been studied for the development of
computer-aided tools to support the diagnosis and monitoring of patients [11].
PD is a neurological disease characterized by resting tremor, rigidity, bradyki-
nesia, postural instability, and other symptoms [9]. The disease is caused by a
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progressive loss of dopaminergic neurons in the substantia nigra of the brain [6].
Most PD patients develop speech deficits which are grouped and called hypoki-
netic dysarthria where the speech is characterized by monotone intensity, low
pitch variability, and poor prosody that tends to fade at the end of the utter-
ance [12,14].

Several speech tasks are typically performed with the aim to model different
pathologies. The most common tasks are read text, isolated words, the rapid
repetition of diadochokinetic (DDK) tasks, sustained vowels, modulated vowels,
and others. Each task brings different information that enables a better under-
standing of the pathology. Although there is significant progress in modeling
pathological speech signals through classical methods mainly based on digital
signal processing techniques, nowadays, Deep Learning (DL) has enabled differ-
ent methodologies to speech traits processing in PD [1,3,17]. The main limita-
tion of DL approaches is that it is typically considered as black-box because their
interpretability is very limited or null, therefore it is not possible to know what
happens inside the model.

In the last years, DL techniques have been implemented to classify PD
patients vs. Healthy Control (HC) subjects, achieving promising results in the
automatic assessment of speech in PD patients. Different techniques and archi-
tectures have been used to analyze speech data including Convolutional Neural
Networks (CNNs) [15,17,18], 1D convolutional layers [3,7], Recurrent Neural
Networks (RNNs) with Long Short-Term Memory (LSTM) units [1,13], fully-
connected networks [2,3,13], and combinations of them [8]. However, to the best
of our knowledge, there are no studies about the interpretation and understand-
ing of the configuration of the networks. Different DL models used to predict
pathologies work with the raw data, therefore their hyper-parameters should
have a meaning or interpretation depending on the studied phenomenon.

Motivated by the above mentioned, the main objective of this study is to
present different experiments using several speech tasks to find the best network
configuration that allows the discrimination of pathological speech traits. In
order to address this objective, we have created an architecture composed of two
1D convolutional layers, 2 LSTM layers, and a fully-connected neural network.
The architecture was trained to classify PD patients vs. HC subjects by varying
the input size of the architecture. Once the best input size is found, the kernel
size of the 1D convolutional layers is varied to find the best kernel configuration.
Afterwards, given the best input and kernel sizes, the architecture was tested
upon different tasks and combinations. In addition, we evaluated the model
in a multi-class experiment where ranges of the modified Frenchay Dysarthria
Assessment (m-FDA) scale [16] are considered as threshold to create different
groups of speakers. This experiment allows to evaluate the suitability of the
proposed approach to classify patients in different stages of the disease. Finally,
with the aim to perform a more realistic evaluation of the proposed model, an
independent test set with 20 PD patients and 20 HC subjects was considered.

The rest of the paper is as follows: Sect. 2 describes the corpora considered
for this study. Section 3, presents the methods used in the study and the final
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architecture created to identify which task and which hyper-parameters settings
yield better results. Section 4 shows the results of the study, and finally, Sect. 5
contains the conclusions and future work.

2 Data

2.1 PC-GITA

This corpus contains speech recordings of 50 PD patients and 50 HC subjects
sampled at 44.1 kHz [10]. All participants are native speakers of Colombian Span-
ish and are balanced in age and gender. Each patient was in ON-state during
the recording session, i.e., under the effect of their medication and was evaluated
by an expert neurologist who labeled the patients according to the Movement
Disorder Society - Unified Parkinson’s Disease Rating Scale (MDS-UPDRS-III)
scale [5]. Additionally, the dysarthria level of each participant (patients and
healthy controls) was evaluated by three phoniatricians according to the m-FDA
scale. The median value over the three labels was considered as the dysarhtria
level of each participant. Further details can be found in [16]. The speech sig-
nals were down-sampled to 16 kHz to standardize the sampling rate with the
independent test set presented below. Table 1 shows demographic and clinical
information of the speakers. The subjects produced a total of 21 speech tasks,
including: 10 sentences, a monologue, a read text, 24 isolated words, rapid rep-
etition of 6 DDK tasks, sustained vowels, and modulated vowels.

Table 1. Demographic and clinical information of the participants. [F/M]:
Female/Male. Time since diagnosis and age are given in years. Values are reported
as mean ± standard deviation.

PD patients HC subjects Patients vs. Controls

Gender [F/M] 25/25 25/25 ∗p= 1.00

Age [F/M] 60.7±7/61.3±11 61.4±7/60.5±12 ∗∗p= 0.98

Range of age [F/M] 49-75/33-81 49-76/31-86

Time since diagnosis [F/M] 12.6±12/8.7±6

MDS-UPDRS-III [F/M] 37.6±14/37.8±22

Speech item (MDS-UPDRS-III) [F/M] 1.3±0.8/1.4±0.9

m-FDA [F/M] 28.3±8.5/29.2±8.5 7.3±7/6.7±7.8
∗p-value calculated through Chi-square test.
∗∗p-value calculated through t-test.

2.2 Independent Test Set

This corpus is formed with 20 PD patients and 20 HC subjects. The patients
group consisted of 9 males and 11 females with ages between 29 an 83 years (mean
= 61.3 ± 14.3). All of them were evaluated by a neurologist expert according
to the MDS-UPDRS-III scale. The scores of such evaluations ranged between
9 and 106 (mean = 40.1 ± 22.7). The healthy group is formed with 11 males
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and 9 females with ages between 49 and 78 years (mean = 62.6 ± 10). None
of the participants of this group had symptoms of neurological or movement
disorders. All participants are also native speakers of Colombian Spanish and are
independent of the PC-GITA database. Each patient was captured at a sampling
frequency of 16 kHz and performed 3 tasks: (1) read text, (2) monologue, and
(3) /pa-ta-ka/ DDK.

3 Methods

Figure 1 summarizes the architecture proposed in this work. It consists of two
1D convolutional layers followed by an LSTM network. Finally, a fully-connected
layer is in charge of the classification between PD patients and HC subjects. In
addition to this, max pooling layers were added to down-sample the information
after each convolutional layer. Details of each stage are presented below.

Fig. 1. Architecture proposed in this work to classify between PD patients and HC
subjects.

3.1 1D Convolutional Layer

1D convolutional layer configurations are typically used to model sequential
data, the main idea is to extract different representations based on the tem-
poral domain. The layer consists of 2 main elements, number of channels and
kernel. The kernel works as a filter upon the input data, it slides through the
signal to extract information according to its weights and size. The layer has as
many kernels as channels. The output data will have different representations
from the same signal, as many as the number of channels. The weights of the
kernel are learned during the training process and the size is given as a hyper-
parameter. The output value of a convolutional layer with input size (N,Cin, L)
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and output (N,Cout, L) can be precisely described as Eq. 11.

out(Ni, Coutj , L) = bias(Coutj , L) +
Cin−1∑

k=0

weight(Coutj , k, L) � input(Ni, k, L)

(1)
where � is the valid cross-correlation operator, N is a batch size, C denotes a
number of channels, and L is the length of the signal sequence. Notice that in
this type of layers, the kernel represents a temporal sliding window. Therefore,
when a signal is represented by 16000 samples per second, a kernel size of 40
corresponds to an analysis window of 2.5 ms.

3.2 Temporal Max Pooling

Temporal max pooling is a down-sampling technique used to reduce the temporal
size of the data. The pooling depends on the kernel size, which indicates how
many samples of the input vector should be reduced. The max pooling procedure
creates a new vector obtained from the input data with less samples. The kernel
slides through the original data taking as many samples as its size and calculating
the maximum value of the samples. Such a maximum will be the number of
samples in the new vector. The sliding step is equal to the length of the kernel.
In this way, if a temporal max pooling with a kernel size of 2 is applied to a
1 s signal with 16000 samples, the new vector will be temporally down-sampled
representing the same 1 s of information with 8000 samples, where each sample
is the maximum of a pair of consecutive values in the original data.

3.3 Recurrent LSTM Layer

RNNs have been proposed to model sequential data, inside its architecture, it
has a hidden state ht that contains the information of the samples that have
already passed through the network. These networks were improved when the
storing process was introduced, resulting in the well-known LSTM networks.
The LSTM is a cell that tries to remember sequential information for a longer
time than the RNNs. The LSTM includes a status state that stores the long-term
information, and also includes the following three new concepts: the input gate I
aims to determine what new information should be added to the network status
state. The forget gate F decides what information to keep for a long term and
what information to forget from the status state. And finally, the output gate S
decides the new hidden state as a combination of the previous hidden state, the
new input, and the status state.

1 https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html.

https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
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3.4 Network’s Topology

Figure 1 shows the architecture implemented in this work. It is composed of
two 1D convolutional layers with 16 and 32 channels, respectively. Each layer is
followed by a temporal max pooling with a kernel size of 2. Then, the charac-
terization performed by the convolutional layers is the input to an LSTM that
is responsible of performing the temporal analysis of the network. The recurrent
network is composed of 2 LSTMs layers with 64 cells each. Finally, the output
of the LSTMs feeds a fully-connected network to make the final decision. ReLu
activations are considered in the convolutional layers, and a Softmax activation
function is used at the output. For the training of the network, we used Pytorch
with a cross-entropy loss function and an Adam optimizer. Batch normalization,
dropout, and L2-regularization techniques are also used.

4 Experiments and Results

Motivated to know the best configuration of the network concerning the input
and kernel sizes to classify PD patients vs. HC subjects, we performed two exper-
iments: (1) we segmented the raw input waveform into different window sizes:
125 ms, 250 ms, 500 ms, 1 s, 2 s, and 4 s. The size that yielded the best result was
considered for the next experiment. (2) Given the best input size, we changed
the kernel size in the convolutional layers from 20 to 640 which corresponds
to analysis windows from 2.5 ms to 40 ms. Once for the best input and ker-
nel size configuration were found, we performed the classification experiments.
In addition, we included a multi-class classification experiment to evaluate the
dysarthria level of the speakers according to the m-FDA scale. Finally, we eval-
uated the model over an independent test set with 20 PD patients and 20 HC
subjects. All experiments (except the independent test) are performed following
a speaker-independent 10-fold cross-validation strategy. The results are reported
in terms of mean and standard deviation computed along the folds.

4.1 Parameters Optimization

Input Size: The raw signals were segmented into different sizes to observe the
behavior of the network at different lengths and to conclude which input size
gives the best performance. Each sample was down-sampled to 16 kHz and pre-
processed by removing its DC level and normalizing its amplitude. The results
obtained are shown in Table 2. Notice that the best configuration is obtained
with 1 s windows. This input size yielded an accuracy of 89.1% and 88.5% of
F1-score. It is important to highlight that this result is balanced in sensitivity
(86%) and specificity (91%).



332 C. D. Rios-Urrego et al.

Table 2. Classification of PD patients vs. HC subjects at different input sizes in the
proposed architecture. Values are reported as mean ± standard deviation.

Input size Accuracy(%) Sensitivity(%) Specificity(%) F1-score(%)

125ms 83.6 ± 10.3 70.3 ± 19.6 94.3 ± 13.1 82.8 ± 10.9

250ms 85.1 ± 9.6 80.0 ± 23.0 91.3 ± 13.1 84.4 ± 10.4

500ms 86.4 ± 9.8 74.0 ± 23.2 96.0 ± 12.7 85.4 ± 10.9

1 s 89.1 ± 9.3 86.0 ± 21.1 91.0 ± 15.5 88.5 ± 10.2

2 s 87.3 ± 10.6 81.0 ± 23.3 96.3 ± 14.1 86.6 ± 11.4

4 s 83.6 ± 9.4 74.0 ± 23.1 90.7 ± 19.1 82.4 ± 10.6

A visual comparison was performed to analyze the behavior of each input size
in terms of accuracy and also considering the Receiver Operating Characteristic
(ROC) curves obtain in each case. The Area Under the ROC Curve (AUC) was
also reported for each configuration. From Fig. 2, we conclude that the input size
of 1 s is the best choice, with an AUC of 0.87 and the maximum accuracy. It is
worth noting that this input size not only yielded the highest accuracy, but also
provided the best balance between sensitivity and specificity.

Kernel Size: After obtaining the best configuration regarding the input size, we
decided to evaluate different kernel sizes in the first and second convolutional lay-
ers, this allows determining the window of information that will be characterized

Fig. 2. (A). Mean accuracy and standard deviation (width of the gray stripe) with
different input sizes. (B). ROC curves for different input sizes.

by the network as a response to the input signal. In the first convolutional layer,
we performed kernel length variations between 40 and 640, corresponding to
analysis windows of 2.5 ms and 40 ms, respectively (for a sample rate of 16 kHz).
For the second layer, the kernel size was changed between 20 and 320, corre-
sponding to 2.5 ms and 40 ms for a sample rate of 8 kHz, this is due to the
temporal max pooling layer, which reduces the sampling rate of the sequence.
The results are reported in Table 3.
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Table 3. Classification of PD patients vs. HC subjects at different kernel sizes. Input
length is fixed at 1 s. Values are reported as mean ± standard deviation.

Kernel size Accuracy(%) Sensitivity(%) Specificity(%) F1-score(%)

layer 1 layer 2

40 20 89.1 ± 11.9 84.0 ± 22.7 92.6 ± 11.9 88.5 ± 12.7

80 40 89.1 ± 10.3 86.0 ± 21.2 91.0 ± 15.6 88.5 ± 11.1

160 80 89.1 ± 9.3 86.0 ± 21.2 91.0 ± 15.6 88.5 ± 10.2

320 160 80.8 ± 7.8 69.5 ± 21.4 89.0 ± 18.9 79.6 ± 8.9

640 320 80.6 ± 9.0 68.7 ± 19.1 91.3 ± 12.1 80.1 ± 9.7

The results show that a kernel size of 160 in the first convolutional layer and
80 in the second convolutional layer yield a classification accuracy of 89.1%. The
corresponding AUC value is 0.87 (see Fig. 3.B). It is also possible to observe
that for the first 3 combinations of kernel sizes, the results are very similar. The
main difference is the standard deviation which is computed along the 10 folds
considering in the cross-validation stage.

Figure 3 shows the plot with the average accuracies and the corresponding
standard deviation. It can be observed a kind of saturation bend in the first three
values, i.e., from 40–20 to 160–80 kernel sizes. A comparison of the ROC curves
for each experiment is shown on the right side of Fig. 3. Notice that there are 2
groups of curves with similar trends. The group with larger areas corresponds

Fig. 3. (A). Mean accuracy and standard deviation (width of the gray stripe) with
different kernel sizes. (B). ROC curves for different kernel sizes.

to the solid lines with an AUC values of 0.84, 0.86, and 0.87. And the group
with smaller values correspond to the dashed lines with AUC of 0.75 and 0.74.
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According to the results presented above, temporal and spectral in-deep anal-
yses to find optimal parameters for the 1D CNN-LSTM architecture proposed
in this study help in maximizing the classification performance to discriminate
between PD patients and HC subjects.

4.2 Bi-class and Multi-class Classification

Previous experiments allowed to find the best configuration concerning input
and kernel sizes. In this experiments, we want to validate how stable the network
configuration is for different speech tasks. We also performed multi-class classi-
fication experiments to assess the dysarthria level of the participants according
to the m-FDA scale [16].

Bi-class Classification: The neural network is trained and evaluated by using
different tasks performed by each participant, including: (1) the DDK task con-
sisting in the repetition of the syllables /pa-ta-ka/, (2) read text, (3) monologue,
and (4) the fusion of the 21 tasks mentioned in the Sect. 2. Table 4 contains the
results of each experiment. Notice that the fusion of all tasks yields the best
classification result with an accuracy of 89.1%, which is comparable with state
of the art when the same database is used.

Figure 4.B shows the ROC curves and the corresponding AUC values
obtained in each experiment. It can be observed that the fusion of tasks yields
the highest AUC value. Notice also that the monologue provides a similar result.
Figure 4.A illustrates the histogram and the probability density distribution
obtained from the best result (the fusion of speech tasks). It can be observed
that the error for the discrimination of HC subjects is small (i.e., specificity =
91%), while the discrimination of PD patients is larger (i.e., sensitivity = 86%).

Table 4. Classification of PD patients vs. HC subjects based on different speech tasks.
Values are reported as mean ± standard deviation.

Task Accuracy(%) Sensitivity(%) Specificity(%) F1-score(%)

/pa-ta-ka/ 65.8 ± 18.8 51.7 ± 25.5 79.0 ± 20.3 64.3 ± 19.6

Read text 77.9 ± 12.2 78.3 ± 17.6 76.5 ± 26.9 76.9 ± 13.3

Monologue 78.9 ± 14.4 86.3 ± 13.4 70.5 ± 26.1 78.1 ± 15.3

Fusion 89.1 ± 9.4 86.0 ± 21.2 91.0 ± 15.6 88.5 ± 10.2
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Fig. 4. (A). Histogram and the corresponding probability density distribution of the
scores obtained from the classification of PD patients and HC subjects for the fusion of
speech tasks. (B). ROC curves for several speech tasks performed by the participants.

Multi-class Classification: Besides the bi-class classification, we evaluated the
dysarthria level of the speakers according to the m-FDA scale, which is a modified
version of the Frenchay dysarthria assessment scale [4]. The m-FDA evaluates
several aspects of speech, including: respiration, lips movement, palate/velum
movement, larynx, tongue, monotonicity, and intelligibility. The participants are
divided into four groups according to their m-FDA score. The distribution of
the groups is illustrated in Fig. 5.A. Note that the white bars correspond to HC
subjects while the others are for PD patients.

The result for the multi-class classification yielded an accuracy of 59.9 ± 6.7
and an F1-score of 55.7 ± 13.1. Figure 5.B shows the confusion matrix resulting
from this experiment. Note that most speakers were correctly classified in the
intermediate levels. Most of the errors occurred in groups 0 and 3, where the
scores of the m-FDA are the smallest and the largest. To the best of our knowl-
edge, this is one of the first works that includes an end-to-end architecture for
the dysarthria level classification of PD patients.

4.3 Classification Using the Independent Test Set

This experiment is performed with the aim to evaluate the proposed approach
in a more realistic scenario. This will provide a better impression regarding the
generalization capability of the proposed models. We considered 20 independent
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Fig. 5. (A). Distribution of the m-FDA scores for the participants of this study. The
scores for the PD patients are grouped into three classes: low, intermediate, and severe
according to the severity of the disease. The scores for the m-FDA scale also include
HC subjects, represented with the white bars. (B). Confusion matrix for the multi-class
classification.

PD patients and 20 HC subjects that were not included in the training and vali-
dation processes introduced before. Notice that this additional test set represents
a group of subjects that arrived at the clinic and performed speech recordings
to decide whether to continue with further tests to define their neurological
condition.

The results are shown in Table 5. Note that the fusion of speech tasks yielded
the best result with an accuracy of 77.5% and an F1-score of 75.3%. Furthermore,
it can be observed that the same trend of the trained network is preserved with
higher specificity (85%) than sensitivity (70%). These results confirm that it is
possible to design deep neural network models to support the PD diagnosis and
screening. We hypothesize that by adding more data in the training process, we
could improve the stability and robustness of this classifier in order to obtain
results closer to those reported with the cross-validation strategy (see Table 4).

Table 5. Classification of PD patients vs. HC subjects based on several tasks performed
by the participants in the independent test set.

Task Accuracy(%) Sensitivity(%) Specificity(%) F1-score(%)

/pa-ta-ka/ 62.5 52.0 73.0 61.6

Read text 73.0 78.0 68.0 72.9

Monologue 71.0 78.5 63.5 69.1

Fusion 77.5 70.0 85.0 75.3
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5 Conclusions

This paper proposes an end-to-end architecture of an 1D CNN-LSTM network
for the classification of patients suffering from PD vs. HC subjects. We evaluated
and determined the best configuration of the proposed architecture for different
input and kernel sizes in the convolutional layer. The results showed that the
best configuration with respect to the input is obtained from windows of 1 s. We
noticed that a correct window analysis for the convolutional layers corresponds
to a kernel size of 160 and 80 for the first and second layers, respectively. (i.e.,
windows of 10 ms for two layers). Then, we evaluated how the network classifies
patients and controls based on several tasks performed by the participants. The
fusion of speech tasks yielded the best results in the classification experiments
with an accuracy of 89.1%. Motivated by this result, we included an experiment
for the evaluation of the dysarthria level according to the m-FDA scale. We
obtained an accuracy of up to 60%, and we could observe that the error in
classification was mainly in the subjects with the smallest and largest m-FDA
scores. Finally, we evaluated the robustness and generalization capability of the
network with an independent test set of 20 PD patients and 20 HC subjects. For
this last experiment, we observed that the fusion of speech tasks yielded also
the best result, with an accuracy of 77.5%, which demonstrates that despite the
small amount of data, it is possible to generate deep neural network models for
the automatic diagnosis of PD.

Future experiments will include the training of architectures with larger
amounts of data, as well as other pathologies in different languages. In addi-
tion, we will also address experiments for the interpretation of the hidden states
of RNNs, preliminary results showed that in some cases, the hidden states
of the network carry the same behavior as the fundamental frequency of the
participant.
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Abstract. Business Actors communicate to audiences via the mass
media through public statements or informal interviews with journal-
ists. This information is directly quoted in news stories about financially
significant events. The motivation for speaking to the mass media varies
from job role to job role, and therefore the vocabulary of a job role
and the delivery of the information to the press varies also. This paper
provides a comprehensive analysis using lexical bundles and sentimental
lexical bundles to discover the common vocabulary of four selected job
roles: Analyst, CEO, CFO and Economist, and their similarity with other
job roles. This work demonstrates that the CEO job role makes ample
use of highly positive repetitive lexical bundles, whereas the Economist
holds a unique role where it has a vocabulary with less of a positive skew
and few shared lexical bundles with other job roles.

Keywords: Lexical Bundles · Corpus Linguistics · Business Actors

1 Introduction

Public business communication does influence the prospects of an organisa-
tion [6]. Business Actors who make unguarded or unvarnished statements can
prejudice the organisation’s share price and in some extreme cases bankrupt the
company. The most famous example of this phenomenon is the case of Gerald
Ratner, who stated: “People say to me, ‘how can you sell this for such a low
price?’ And I say because it’s total crap” [11]. His company, Ratners the Jew-
ellers, promptly lost eighty per cent of its value and renamed itself Signet [11].
The reputational damage caused by “straight talking” has led to Business Actors
developing their own method of communication with unique idioms and risk-
averse language [4]. Finance Professionals, such as Economists and Analysts are
not bound by such concerns, and can make objective and factual statements
about a company, but do not have access to private information, and therefore
may have to couch their statements with expressions of uncertainty.

Lexical bundles are a method of determining the vocabulary and the idioms
of speakers [12]. This article uses the 500,000 public statements by Business
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Actors and Finance Professionals from the 2007 Financial Crisis to determine
the common language of each group, as well as the differences and similarities
between each group. The article will adhere to the following structure: Literature
Review, Lexical Bundle Methodology, Lexical Bundle Experiments, Sentiment
Lexical Bundle Experiments, and Conclusion.

2 Literature Review

The literature review covers relevant business speech corpora and lexical bundles.
The corpora research search limited itself to identifying corpora that contained
day-to-day public communication by Business Actors, whereas the lexical bundle
research was limited to the examination of diverse domains using lexical bundles.

The main corpus discovered in the literature review is the Minho Quotation
Resource [2], which is a resource of 500,000 public statements from Business
Actors during the Financial Crisis of 2007 to 2011. The statements contain the
speaker’s name, where possible a job title and the quote. The resource was
updated in 2021 [5]. The update cleaned up the quotes to make sure that they
had the same encoding and inferred missing job titles.

Lexical bundles are a technique that can be used to discover patterns within
corpora. They are a sequence of words or Part of Speech Tags (POS) from the
same sentence [10]. The most common sequences will represent the everyday lan-
guage of the corpora. Lexical bundles can be of any length, however, the research
literature suggests that a length of four words (tetragrams) is optimal [10]. The
lexical bundle approach to determine common vocabularies has been applied to
several domains including Wikipedia [7], spam emails [9], and historical English
[13]. The literature review failed to discover the application of lexical bundles to
the business speech domain.

3 Lexical Bundle Methodology

This paper seeks to explore the hypothesis that the employment status affects
the vocabulary and style of public utterances of Business Actors. This paper
asserts that Business Actors employed by an organisation will moderate their
language, and use a style of delivery that will use risk-averse language to down-
play uncertainty and exaggerated language to amplify success or rise a banal
event to a positive achievement. Independent Business Actors will not have lim-
itations imposed on their language, however, they will not have access to private
information which is available to their employed counterparts and consequently
will not communicate an accurate picture of the current financial situation.

3.1 Lexical Bundles

The experimental methodology collects tetragrams with a minimum of twenty
occurrences per million words, as this is a common cut-off point in the research
literature [1].
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The speech of four job roles was chosen for comparison. They are Analyst,
Chief Executive Officer (CEO), Chief Financial Officer (CFO) and Economist.
These roles were chosen because they represent different roles in the business
domain. The Analyst and Economist are typically independent of constraints
of causing reputational damage as they are commenting on third-party organ-
isations, whereas the CEO and CFO are subject to constraints as their utter-
ances can affect share price and sales. The lexical bundle analysis will 1. analyse
the most frequent lexical bundles and 2. compute the lexical bundle similarity
between the job roles. Job roles with similar lexical bundle similarity will have
a common motivation for public communication.

The common use of sentiment in the vocabulary of a speaker can be an indi-
cation of a manipulative role, where the speaker seeks to convince an audience to
accept their point of view through the use of emotion [4]. The use of sentiment to
manipulate opinion is known as framing [4]. The sentiment lexical bundle anal-
ysis will follow the lexical bundle analysis, but will exclude any lexical bundle
that does not have a sentiment word.

4 Lexical Bundle Experiments

The lexical bundle analysis extracted tetragrams that had a relative frequency of
twenty or above. The results for the four selected speakers are shown in Table 1,
and because of space limits the most frequent ten lexical bundles for each speaker
are displayed. The raw results data can be found here. Lexical bundles that are
common to all speakers are in bold.

The lexical bundles for the Analyst job role clearly show that their vocab-
ulary is dominated by forward-looking lexical bundles that imply a short-term
prediction about a financial instrument. The forward-looking lexical bundles
include “is going to be” and “in the short term”. This is not unexpected, as the
prediction or estimation of financial results is part of an analyst’s job role.

The CEO lexical bundles show the language of manipulation, as there is
frequent use of positive sentiment to frame a subject. The common sentiment
terms are “pleased” and “excited”, and the lexical bundles also reveal that a
common sentiment phrase “look forward to” is frequently used.

The CFO lexical bundles are similar to both that of the Analyst and CEO
role, as the lexical bundles have both the sentimental lexical bundles such as
“we are pleased to” as well as the reporting type lexical bundles such as “in
the first quarter” and “in the second half”. These reporting and manipulation
lexical bundles are expected as the CFO is employed directly by a company, but
also has a reporting function where the CFO is legally mandated to provide a
truthful account of the origination’s financial position.

The Economist lexical bundles, except for the named entity, Bank of England,
seem to be reporting bundles such as “in the fourth quarter” and “in the first
quarter”, which again is in line with the demands of the job role.

The most frequent lexical bundles as shown in Table 2 does not seem to have
common bundles across each of the job roles. There is one, “the end of the”,

https://drive.google.com/drive/folders/18QfIEZfThtJoOvQAvQjSdpszThcYZLt6?usp=sharing
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which is common to all job roles. However, the use of a lexical bundle may vary
between job roles. A sample of the use of the lexical bundles is shown below.

– Analyst: Last Christmas was the end of the world, so we’re seeing some
quite good numbers

– CEO: he had not abdicated from his pledge to make an announcement on the
post before the end of the year

– CFO: While Credit Suisse’s Tier 1 ratio was 14.1 per cent at the end of the
first quarter

– Economist: There are some who are at the end of their operating capital.

Table 1. The Most Frequent Lexical Bundles per Speaker Role, where L.B = Lexical
Bundle and Rel. Freq. = Frequency Per Million Bundles

Analyst CEO CFO Economist

L.B Rel.
Freq.

L.B Rel.
Freq.

L.B Rel.
Freq.

L.B Rel.
Freq.

is going to be 228 we look for-
ward to

433 in the first
quarter

523 the bank of
england

511

the end of
the

185 we are pleased
to

365 in the fourth
quarter

481 in the third
quarter

468

in the short
term

174 we are very
pleased

272 the end of
the

396 the second
half of

373

in the second
half

149 the end of
the

178 at the end of 382 in the fourth
quarter

347

is likely to be 145 are very
pleased to

163 in the third
quarter

382 the end of
the

338

at the end of 141 we are excited
to

160 in the second
quarter

311 in the second
half

303

in the united
states

127 as we continue
to

152 by the end of 283 over the com-
ing months

286

going to be a 127 look forward
to working

149 we are pleased
to

283 in the first
quarter

277

the second
half of

123 and look for-
ward to

145 we look for-
ward to

269 at the end of 251

per cent of the 120 we will con-
tinue to

140 in the second
half

255 in the second
quarter

243

As demonstrated by the examples is that the lexical bundle at the end of
can refer to different types of speech, such as time periods or idioms such as “the
end of the world”.

The relative frequency and variety of lexical bundles can indicate a type of
vocabulary. A restricted number of lexical bundles with high relative frequency
will indicate a repeated and frequently used vocabulary, whereas numerous lex-
ical bundles with low relative frequency may indicate a richer vocabulary. A
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comparison was made where the lexical bundles were aggregated by their rela-
tive frequency, and the results are shown in Fig. 1, and it is clear from the results
that the CEO job role has the most restricted vocabulary of all the job types as
the most frequent lexical bundles represent a large amount of the total frequency
of all lexical bundles when compared to other job roles.

The remaining speakers have similar profiles where the low-frequency bundles
in combination make up the majority of the linguistic profile of each of the
Analyst, CFO and Economist job roles. This suggests that these job roles have
a richer vocabulary than the CEO, with less repetition. The research by [4]
would suggest that this repetition would be used in framing and manipulative
statements, and that the remaining job roles would indulge in this activity less
often than the CEO job role.

The speakers from each job role will share lexical bundles, as they will
have common functions when communicating with the mass media. It is pos-
sible to compute the similarity of lexical bundle profiles with a weighted

Fig. 1. A Comparison of The Distribution of Frequency of Use of Lexical Bundles with
a minimum relative frequency of twenty

lexical bundle similarity, which can be represented as weighted sim =
sum of common bundles rel frequency

sum ofall bundles . The similarity results are in Table 2, and it is
clear from the results that the two most similar job roles are the CEO and Ana-
lyst with a 0.40 weighted lexical bundle similarity score, and the most dissimilar
job roles are the CFO and the Economist.
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Table 2. Weighted Lexical Bundle Similarity by Job Role

Job Role Analyst CEO CFO Economist

Analyst N/A 0.40 0.14 0.26

CEO 0.40 N/A 0.22 0.18

CFO 0.14 0.22 N/A 0.12

Economist 0.26 0.18 0.12 N/A

The shared vocabulary between Analysts and CEOs are forward-looking
statements that include lexical bundles such as: “is expected to be”, “in the com-
ing years”, “end of this year”, “be one of the”, “market share in the”, and “in
the next few”. It is likely that because the CEO is obliged to manipulate various
audiences, they will speculate positively about the prospects of the organisation,
whereas the Analyst will also speculate, but objectively. It should be noted that
the shared vocabulary between the CEO and the Analyst is objective lexical
bundles, whereas the most common CEO lexical bundles have sentiment words
such as “pleased” and “excited”.

The average similarity of each job role to other job roles, can indicate the
breadth of the job role when communicating through the mass media. Low aver-
age similarity indicates a unique communication function, whereas a high average
similarity indicates a shared communication function with other job roles. The
average similarity for each job role is: Analyst 0.26(±0.11), CEO 0.26(±0.09),
CFO 0.16(±0.04) and Economist 0.19(±0.06). The Analyst and the CEO roles
have the highest average similarity, but they are within one standard deviation
of the lowest score. The Analyst and the CEO roles have the highest similarity
score because of their mutual similarity. However, the similarity scores for the
CFO and the Economist are relatively low due to their unique vocabulary and
role when communicating with the mass media.

The Minho Quotation Resource contains additional job roles to the four that
have been used thus far. This experiment used job roles that have more than
two hundred quotes in the aforementioned resource. The similarity experiment
was repeated with these new job roles. The results are in Table 3.

Table 3. Most Similar Job Roles by Weighted Lexical Bundle

Job Roles Similarity

Role Role Role Role

Analyst Head (0.54) Director

(0.42)

CEO (0.40) Managing

Director

(0.31)

CEO President

(0.78)

Chairman

(0.74)

Director

(0.6)

Vice Presi-

dent (0.52)

CFO CEO (0.22) Chairman

(0.19)

President

(0.18)

Head (0.15)

Economist Head (0.26) Analyst

(0.26)

Chief

Economist

(0.20)

CEO (0.18)
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In common with the previous experiments, the CFO and the Economist job
roles have the least lexical bundle similarity with the other job roles, and there-
fore it is possible to assume that their lexical bundles are unique to their job role
when communicating with the mass media. The Analyst and the CEO job roles
have a shared lexical bundle across some job roles, which infers that they share
similar communication functions with other job roles. For example, the CEO and
President job roles share numerous highly frequent lexical bundles, such as “i
am pleased to”, “and we are confident” as well as reporting lexical bundles such
as “in the second quarter”, although the common lexical bundles did not reveal
any lexical bundles that speculated about the financial future of the organisa-
tion. The Analyst and the Head roles in common share forward-looking lexical
bundles, such as “is likely to be” and “the next six months”.

The lexical bundle analysis reveals some characteristics of the vocabulary of
the public utterances of each of the selected job roles. The Analyst role is preoc-
cupied with forward-looking lexical bundles whereas the CEO, despite having the
most restricted vocabulary, has the broadest role when communicating with the
mass media. They have forward-looking, reporting and framing lexical bundles.
The Economist and CFO job roles have very few frequent lexical bundles in com-
mon with other job roles. This paper claims that these job roles’ communication
with the mass media is very limited or specialised.

5 Sentiment Lexical Bundle Experiments

The previous section mentioned sentiment lexical bundles as lexical bundles that
have sentimental words. Job roles that have a sentimental lexicon could be using
sentiment to manipulate the audience that the quote was directed to [8]. The
first experiment was to compute the percentage of the lexical bundles that have
a sentiment orientation. Two measures were used: a simple percentage compu-
tation, number sentimental lexical bundles

total number lexical bundles , and a weighted percentage computation,
which is computed by frequency sentimental lexical bundles

frequency all lexical bundles . These measures deter-
mine the percentage of the common vocabulary of a job role that uses sentiment.
High use of sentiment is an indicator of manipulation [4].

Table 4. The Percentage of Sentimental Lexical Bundles

Job Role Percent. Sentiment Weighted Percent.
Sentiment

Analyst 0.09 0.07

CEO 0.26 0.30

CFO 0.12 0.13

Economist 0.09 0.07

It is clear from results in Table 4 that the CEO job role relies more upon
sentimental lexical bundles than the other job roles. The use of sentimental
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language is probably by design to portray their organisation and its achievements
in a positive light. The most frequent lexical bundles are shown in Table 6, and
it is clear from the results is that the relative frequency of the lexical bundles for
the CEO and CFO roles is far higher than for the Analyst and Economist roles
and that the CEO and CFO lexical bundles have a framing role. The bundles
such as “we are pleased to” and “we are excited to” frame the event or action
which is next in the sequence. For example, “We are excited to see a genuine
transformation for insurance buyers, brokers and insurers”1, which is a framing
quote as it caries a high sentiment score, but little or no actionable information.

The sentiment bundles for the Analyst and Economist job roles are not fram-
ing an event or action to promote their organisation, but are bundles that provide
an opinion or description about a third party. For example, “in the right direc-
tion” and “recovery will be slow”, are non-manipulative lexical bundles as they
are objective statements.

The type of sentiment that is used is an indicator of the function of the
language in the mass media. An overly positive lexicon could be an indicator of
a manipulative imperative when communicating with the public at large. The
distribution of bundles across the sentiment categories could be found in Table 5,
where the per cent measure is a simple intersection of lexical bundles with each
sentiment category and the weighted per cent is where the relative frequency of
the bundle is included in the calculation. It is calculated by freq lb sent cat

total frequency where
freq lb sent cat is the relative frequency of all lexical bundles with a given
sentiment direction, and total frequency is the total frequency of all lexical
bundles with a sentiment category.

Table 5. Sentiment Profile of Lexical Bundles by Job Role

Job Role Lexical Bundles

Positive Negative

Percent.
Weighted

Percent. Percent.
Weighted

Percent

Analyst 0.79 0.79 0.21 0.21

CEO 0.99 0.99 0.01 0.01

CFO 0.86 0.83 0.14 0.17

Economist 0.65 0.68 0.35 0.32

The results demonstrate that the CEO vocabulary is dominated by positive
lexical bundles. This would imply that the CEO job role may be using framing
[4] to manipulate audiences. A restricted vocabulary and frequent highly positive
lexical bundles, indicates that CEOs communicate no useful information when
using positive sentiment [4]. The CFO job role is also highly positive with 0.86
of lexical bundles being positive, and this would imply that a job role that has a

1 https://archive.fo/aGN0g.

https://archive.fo/aGN0g
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dependent employment role will have a highly positive lexicon. The Economist
has the highest percentage of negative lexical bundles, and this would imply
that they have a more balanced vocabulary, and this is not unexpected as the
economist job role should provide balanced commentary on the economy.

In common with the lexical bundle section, an experiment was conducted
to identify the distribution of sentiment lexical bundles by job role. And from
the results, it is clear that the CEO and CFO have differing sentimental lexical
profiles to that of the Economist and Analyst roles. The sentimental lexical
bundles appear infrequently for the Analyst and Economist job roles. There are
no sentimental lexical bundles that have a relative frequency higher than one
thirty-three times per million lexical bundles for either job role. Conversely, the
CEO job role uses very high frequently occurring sentimental lexical bundles
in their vocabulary. The CFO role is almost equidistant between the profiles,
as it demonstrates that the majority of its sentimental lexical bundles are low
frequency, but not as many as the Analyst and Economist roles. And it has a
higher use of more frequent sentimental lexical bundles than the Analyst and
Economist roles, but lower than the CEO.

The distribution of sentimental lexical bundles is similar to that of lexical
bundles in Fig. 1 for that of the Analyst, CEO, and Economist job roles. However,
the CFO role uses sentimental lexical bundles differently from that of lexical
bundles, as it has a heavier reliance on more frequent lexical bundles. It can be
inferred that the CFO has a dual role, where they behave similarly to an Analyst
or Economist with objective lexical bundles. However, the CFO behaves similar
to a CEO when it comes to the use of sentiment lexical bundles.

The similarity of sentimental lexical bundles between job roles is an indicator
of similar use of sentiment in their communication with the mass media. And
from the results in the Table 7, it is clear that the use of sentiment is determined

Fig. 2. A Comparison of The Distribution of Frequency of Use of Sentimental Lexical
Bundles with a minimum relative frequency of twenty
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by the type of employment, where the CFO and the CEO have the highest
mutual common use of sentimental lexical bundles, whereas the Economist and
Analyst job roles share a higher degree of common sentimental lexical bundles
than with the CFO and CEO roles. This is different to the similarity experiments
with all lexical bundles in Table 2 where the Analyst and the CEO shared the
most lexical bundles. Therefore, it can be concluded that the Analyst and the
CEO job roles have a common objective or neutral shared vocabulary, but a
dissimilar sentimental lexicon. It can be also concluded that although similar
information is being communicated to the mass media by both the Analyst and
the CEO, the function of the communication is different due to the dissimilar
use of sentiment. This characteristic justifies the approach taken by [3] who
identified actionable quotes by CEOs when their quotes were similar to that of
Economists and Analysts (Fig. 2).

The similarity of sentimental bundles can indicate a similar motivation when
communicating through the mass media. This experiment repeated the experi-
ment on page 322, where the job roles compared were expanded to all job roles
in the Minho Quotation Resource that had more than two hundred quotes.

Table 6. The Most Frequent Sentimental Lexical Bundles Per Job Role, where L.B =
Lexical Bundle and Rel. Freq. = Frequency Per Million

Analyst CEO CFO Economist

L.B Rel.
Freq.

L.B Rel.
Freq.

L.B Rel.
Freq.

L.B Rel.
Freq.

more than per
cent

72 we are pleased
to

365 we are pleased
to

283 the worst of
the

121

to be able to 58 we are very
pleased

272 we are very
pleased

212 in the right
direction

87

at the top of 51 are very
pleased to

163 one of the
most

170 more than per
cent

78

will be able to 51 we are excited
to

160 for the full
year

127 the worst is
over

61

in the right
direction

47 we are
delighted
to

139 we were able
to

113 this is good
news

52

would be able
to

43 we are very
excited

129 will be able to 113 is good news
for

52

it will be diffi-
cult

40 to be able to 127 are very
pleased with

99 that the worst
is

52

is unlikely to
be

36 one of the
most

119 very pleased
with our

99 it is hard to 52

not be able to 36 will be able to 116 would be able
to

85 at the very
least

52

the worst of
the

36 we are pleased
with

103 we are
delighted
to

99 it is impor-
tant to

43
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Table 7. Weighted Sentimental Lexical Bundle Similarity by Job Role

Job Role Analyst CEO CFO Economist

Analyst N/A 0.17 0.07 0.18

CEO 0.17 N/A 0.36 0.08

CFO 0.07 0.36 N/A 0.04

Economist 0.18 0.08 0.04 N/A

It is clear from the results in Table 8 that the CEO and CFO roles have a
higher similarity with the nearest job roles when considering only sentimental
bundles. This would imply that how these job roles communicate is more simi-
lar when communicating using sentiment than when communicating factual or
objective information. The average increase in similarity for the four most simi-
lar job roles was 0.09± 0.01 for the CEO role and 0.19± 0.05 for the CFO role.
Conversely, the Economist and the Analyst roles saw a decline in similarity when
considering sentimental lexical bundles, with the Analyst similarity score declin-
ing by an average of 0.17 ± 0.03 and the Economist’s similarity score declined
by 0.12 ± 0.02. This infers that these job roles share more objective or neutral
lexical bundles with other job roles than sentimental ones. It is possible to con-
clude that these job roles do not have a common function when communicating
with the mass media, however, they do have a common subject.

The sentimental lexical bundle analysis clearly shows that sentiment is used
frequently by the CEO job role, however, because the job role depends upon a
limited number of high frequent lexical bundles, their sentimental vocabulary is
limited. There is a sentimental vocabulary that is common between several job
roles, which is demonstrated by the increase in weighted lexical bundle similarity
between the CEO job role and the most similar job roles. The converse is true for
the Economist and the Analyst, as there seems to be no common sentimental

Table 8. Most Similar Job Roles by Weighted Sentimental Lexical Bundle

Job Roles Similarity

Role Role Role Role

Analyst Head
(0.37)

Director
(0.26)

Managing
Director
(0.19)

Economist
(0.18)

CEO Chairman
(0.86)

President
(0.86)

Director
(0.70)

Vice Pres-
ident
(0.63)

CFO CEO
(0.36)

Chairman
(0.33)

Vice Pres-
ident
(0.26)

Director
(0.23)

Economist Analyst
(0.18)

Head
(0.13)

CEO
(0.08)

Director
(0.07)
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vocabulary. This is demonstrated by lexical bundle weighted similarity being
lower for the most similar job role than for lexical bundle weighted similarity.

The common sentimental vocabulary is designed to manipulate, or at least
to maintain, a positive perception of an organisation. This is demonstrated by
the highly positive lexicon of the CEO and CFO job roles, despite the quotes
being drawn from the Financial Crisis of the early two-thousands.

6 Conclusion

The analysis in this article provides a comparison of the vocabulary of four
types of speakers from their public communication during the Financial Crisis
of 2007. It is clear from the analysis that the CEO is a unique position that
shares some common functions with other job roles, however, it does have a
unique function which is to use sentiment to manipulate the various audiences
that the public communication is aimed at. The CEO job role not only relies upon
sentiment but also on a repetitive vocabulary where highly positive sentimental
lexical bundles dominate public communication. This characteristic is shared by
several leadership roles such as Chairman, President and Director. The inference
that can be drawn from this characteristic is that sentiment analysis will not be
successful in predicting the prospects of the CEO’s organisation. The other job
roles are not dominated by a few lexical bundles and have a richer lexicon than
the CEO role, and the skew between positive and negative sentiment is not as
pronounced as in the CEO job role.

The Economist job role in terms of lexical bundles is unique as their commu-
nication with the mass media has the least common lexical bundles with other
job roles, and these lexical bundles are more likely to be negative than any other
job role.

The differing lexical bundles and the varying reliance upon sentimental lexical
bundles, as well as the disparate richness of vocabulary used by the selected job
roles, imply that one form of analysis to infer future economic prospects will not
be sufficient for Business Actors. Models will need to be generated for each type
of speaker, and differing assumptions will have to be made.
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Abstract. Spectrograms provide a visual representation of the time-
frequency variations of a speech signal. Furthermore, the color scales
can be used as a pre-processing normalization step. In this study, we
investigated the suitability of using different color scales for the recon-
struction of spectrograms together with bottleneck features extracted
from Convolutional AutoEncoders (CAEs). We trained several CAEs
considering different parameters such as the number of channels, wide-
band/narrowband spectrograms, and different color scales. Additionally,
we tested the suitability of the proposed CAE architecture for the predic-
tion of the severity of Parkinson’s Disease (PD) and for the nasality level
in children with Cleft Lip and Palate (CLP). The results showed that
it is possible to estimate the neurological state for PD with Spearman’s
correlations of up to 0.71 using the Grayscale, and the nasality level in
CLP with F-scores of up to 0.58 using the raw spectrogram. Although
the color scales improved performance in some cases, it is not clear which
color scale is the most suitable for the selected application, as we did not
find significant differences in the results for each color scale.

Keywords: AutoEncoder · Grayscale · Color Scales · Cleft Lip and
Palate, Parkinson’s Disease · Speech Analysis

1 Introduction

Many deep learning approaches in speech analysis use 2D-representations such
as spectrograms as input to a Convolutional Neural Network (CNN). Each raw
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value of a time-frequency representation is a frequency bin which can be trans-
formed via a quantization (e.g., 8 bit grayscale) or a transformation into a color
scale with a succeeding quantization, e.g., 8 bit for the Red, Green, and Blue
channels (RGB). Other color scales such as Jet and Viridis are used as well.
A color scale spectrogram can be considered as a sequence of three different,
parallel quantizations. For the creation of the raw spectrogram, the length of
the Short Time Fourier Transform window is crucial, leading for instance to a
narrow or broad band spectrogram.

In [7], a method based on pseudo-color quantification for sound event classi-
fication was proposed. In this approach, the regular spectrogram is normalized
into grayscale and then the dynamic range is quantized into regions according
to the RGB scale. The obtained results indicate that this approach outper-
formed in most of the cases the equivalent grayscale features, where the sepa-
rability between sound classes has increased using the proposed quantification
to RGB. Several approaches use deep spectrum features extracted from color-
spectrograms by using image processing methods based on CNN for the classi-
fication of different speech tasks [1,6]. The authors compared these features to
state-of-the-art approaches for speech-based emotion recognition [6] and for the
detection of several snoring types [1], obtaining significant improvement using
the Viridis color map. These studies motivated the use of grayscale / color spec-
trograms in this paper for the assessment of different speech disorders in adults
with Parkinson’s Disease (PD) and in children with Cleft Lip and Palate (CLP).

PD is associated to the loss of common neurotransmitters in the midbrain,
which causes progressive degeneration of physiological and cognitive capabili-
ties [14]. It results in the appearance of motor disturbances such as muscle stiff-
ness, bradykinesia, resting tremor, among others. Additionally, PD also affects
the speech production of the patients. The most common symptoms include
abnormal variation of pitch, decreased loudness, and hypokinetic dysarthria [9].
The standard scales to evaluate movement and speech impairments caused by
PD are the third part of the Movement Disorders Society Unified Parkinson’s
Disease Rating Scale (U-III) [11], the Hoehn & Yahr (H&Y) scale [3], and the
modified Frenchay Dysarthria Assessment (mFDA) [22]. The U-III and the H&Y
scale aim at describing the neurological state of PD patients, while mFDA aims
at evaluating the dysarthria level in diseases that involve speech disorders. In
this study, we focused on the prediction of the neurological state and dysarthria
level of PD patients according to the aforementioned scales.

We use the PC-GITA dataset [18], which was analyzed in previous works
for the classification (healthy vs. PD) [21,26] and regression of the disease
severity [5,10]. In [26] a transfer learning approach using CNN-based features
extracted from spectrograms for the prediction of PD was proposed. The authors
reported results of up to 99% on vowel based tasks. An approach based on con-
volutional (CAEs) and recurrent (RAEs) AutoEncoders was proposed in [21] to
discriminate PD with accuracies of up to 84% for RAEs and of up to 80% for
CAEs. Speaker embeddings were considered in [10] for the prediction of the U-III
and mFDA score of PD patients, reporting Spearman’s correlations (ρ) of .63
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and .72, respectively. The prediction of the dysarthria level in PD patients was
also performed in [5], where a ρ of .57 was obtained by using phoneme posterior
probabilities.

Speech disorders can also affect the communication ability of children. Com-
mon medical conditions that lead to speech impairments such as CLP, occurs
1 in every 700 live births [17]. Patients with CLP may experience feeding and
swallowing difficulties, hearing loss, and different speech disorders associated
to voice and articulatory impairments. Further, CLP can cause Velopharyngeal
Dysfunction (VPD) resulting in hypernasality, which is characterized by exces-
sive resonance in the nasal cavity during the production of vowels or voiced
consonants, and significant nasal emission due to a large velopharyngeal open-
ing, resulting in weak consonant production, short utterance length [15,24]. The
speech of children with CLP is impaired (even after surgery) and shows abnor-
mal characteristics such as hypernasality or hyponasality, glottal stops, backing,
and weakening of consonants [23]. Resonance and VPD are evaluated by speech
pathologist in different ways. A perceptual evaluation is performed to determine
the type, severity, and cause of the speech disorder.

Different approaches have been considered to model speech disorders in chil-
dren with CLP. In [16], different pronunciation and articulation features along
are used to evaluate speech disorders in recordings of German children with
CLP. An analysis of Malayalam children speech with Cleft Palate (CP) before
and after surgery was presented in [8]. The authors considered the Voice Low
tone to High tone Ratio (VLHR) as a measure of nasality, finding a significant
decreasing in the VLHR index (at 95% confidence level) after surgery for the
sustained phonation of vowels. Classical articulatory and spectral features were
considered in [4,12] to classify between normal speech and hypernasal speech in
children with CLP, achieving accuracies of up to 85% and 80%, respectively.

In this paper, we analyze the suitability of different color scales in the assess-
ment of PD and CLP using a CAE approach, since several papers reported
improved performance in speech disorder related tasks. We wanted to confirm
the suitability of color scales (a.k.o normalization) and whether they improve
consistently in a known dataset with standard tasks. We found inconsistent
results and no significant differences in most predictions.

2 Methods

2.1 Data

PC-GITA: this corpus [18] consists of 50 PD patients and 50 Healthy Control
subjects (HC). The participants are native Spanish speakers from Colombia.
They were asked to perform different exercises. T1: a monologue, the participants
described their daily routines, T2: the reading of a phonetically balanced text,
and T3: a Diadochokinetic (DDK) task, i.e., the rapid repetition of /pa/-/ta/-
/ka/. The patients were evaluated by an expert neurologist and labeled according
to the U-III and H&Y scale, and by an expert phoniatrician according to the
mFDA scale. In these scales, the higher the label the higher the severity, where
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the U-III ranges from 0 to 132, the H&Y from 0 to 5, and the mFDA from 0 to
52. The HC subjects were only included to add variability in the prediction of
the mFDA score. Additional demographic information is displayed in Table 1.

Children with Cleft Lip and Palate: recordings of 81 Colombian children
with CLP are considered. All of them native Spanish speakers. This dataset was
recorded in Bogotá, Colombia in a controlled acoustic environment. The chil-
dren were asked to read 3 sentences containing a combination of vowel, fricative,
stop, nasal, and liquid speech sounds: “Carlos coge su pelota”, “Susi come sopa”,
and “Tomás toca tambor”. All of them where evaluated by an expert phoniatri-
cians according to four nasality levels: normal (18 subjects), mild (27 subjects),
moderate (22 subjects), and severe (14 subjects).

Table 1. General information of the subjects in PC-GITA

PD patients HC subjects

Gender [f/m] 25/25 25/25

Age [f/m] 60.7(7.3)/61.3(11.7) 61.4(7.1)/60.5(11.6)

U-III [f/m] 37.6(14.0)/37.8(22.1) −
H&Y [f/m] 2.2(0.6)/2.3(0.9) −
mFDA [f/m] 27.2(8.1)/29.0(8.2) 6.6(6.9)/8.7(7.8)

f: female. m: male. Values are expressed as mean(standard
deviation). Age is given in years.

Additional Datasets: we combined the CIEMPIESS corpus [13] and the Lib-
riSpeech dataset [19] to increase the robustness for the training process of
the CAE (see Sect. 2.2). Both datasets were recorded in controlled conditions
(e.g., no background noise) at 16 kHz. CIEMPIESS consists of 16717 audio
recordings (17 h) of radio podcast from 141 Mexican Spanish speakers (45 f).
The recordings were divided into 75% for training and 25% for validation. Lib-
riSpeech is composed of read English speech. We used the 100 h of clean speech
subset for training, which contains a total of 251 speakers (125 f). The average
duration of each recording is 25 min. The validation set consisted of 5.4 h from
40 speakers (20 f).

2.2 Model Description

Mel Spectrogram Representations: In this paper, we considered two ways to
extract information from the logarithmic Mel spectrogram. On the one hand, we
computed the regular log-Mel spectrogram for three different resolution windows
(15, 25, and 45 ms) with a hop size of 10 ms in order to capture different patterns
related to articulation and prosody. Sequences of 500 ms (50 frames) were taken
and the number of Mel filters was set to 128. These resolutions provide three
different channels to be used in the proposed model.
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On the other hand, in order to compare the suitability of using image repre-
sentations, we also converted the spectrograms to RGB, i.e., different color scales
were used as a pre-processing normalization, which has not been explored for the
assessment of PD. Inspired by [1,6,7], the spectrograms were converted using a
linear and non-linear color scale transformations. The color-spectrograms were
obtained using different non-linear color maps (“Gray”, “Jet”, and “Viridis”)
extracted with the “matplotlib library” from Python [2]. Finally, they were con-
verted to images with a resolution of 266 × 200 pixels. A grayscale transformation
is performed by quantizing the spectrogram to 50 Shades of Gray (50SGray),
while the Gray color map is obtained from a non-linear transformation (NL-
Gray). This is performed to analyze the suitability of features extracted from
spectrogram images as proposed in [1,6]. Jet scale ranges from blue via cyan,
yellow, orange to red, while Viridis from blue via green to yellow.

Multi-Resolution Convolutional AutoEncoder: Generative Models aim to
learn the data distribution by encoding the most relevant information. AEs are
one of the most popular techniques regarding these models in deep learning,
which aims to reconstruct a specific input starting from an encoded representa-
tion known as the latent-space. It allows the model to learn the optimal param-
eters that minimize the reconstruction loss, which in this study is defined by the
Mean Squared Error (MSE). A variation of AEs which includes CNNs are the
CAEs. Commonly, they are used in order to reproduce an image in the output
layer. The image is passed through the encoder that in this case compresses the
image by using Convolutional Layers (CLs). Then, the bottleneck representation
is obtained with a linear layer. The decoder is composed by another set of CLs
with the same structure and parameters as the encoder.

Fig. 1. General architecture of the CAE model. It consists of three parts for the encoder
and the decoder: (1) three parallel CLs of 8 filters with a kernel size of (3,3), max
pooling (2,2), a batch normalization layer, and an ELU activation, (2) three parallel
CLs of 16 filters with a kernel size of (3,3), max pooling (2,2), a batch normalization
layer, and an ELU activation, and (4) one linear layer of 128 units for the bottleneck
representation
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Figure 1 illustrates the proposed CAE model, which consists of a set of par-
allel CLs and a linear layer for the bottleneck vector. The input dimension will
vary depending on whether it is the original or the color-spectrogram and also
depending on the resolutions; however, the same architecture is used. We noted
that the reconstruction of the harmonics in middle and higher frequencies seems
more challenging. To handle this issue, we proposed a parallel CNN with three
levels of abstraction to process different frequency bands separately with a shift
of 125 Hz: (1) 0 – 2.75 kHz, (2) 2.63 – 5.37 kHz, and (3) 5.25 – 8 kHz. This improved
the reconstruction, noticeable in the error and by visual inspection. The bottle-
neck representation was used as feature vector for the prediction of the severity
of PD. Furthermore, four functionals (mean, standard deviation, skewness, and
kurtosis) were computed across the sequences to form a static vector of 512
elements.

2.3 Optimization and Regression

A Linear-Support Vector Regressor (L-SVR) was considered for the prediction of
the U-III, mFDA, and H&Y in PD patients. The optimal parameters were found
through a grid search where C and ε ∈ {10−5, 10−4, ..., 105}. Further, a Light
Gradient Boosting Machine (LGBM) was used for classification of the nasality
levels in children with CLP The optimal parameters of the LGBM were found
through a grid search where number of estimators ∈ {10, 20, ..., 300} and the
maximum depth ∈ {5, 10, ..., 100}. The validation for all experiments followed a
5-Fold Cross-Validation strategy. For the classification and regression an early
fusion strategy was applied by merging the different sets of bottleneck features
before performing the classification/regression and making the final decision.

3 Experiments and Results

This study proposes to investigate the use of different parameters in CAEs for the
assessment of PD and CLP. The reconstruction errors according to the MSE were
computed, where on average, the lowest reconstruction error is obtained with
45 ms (.014), and the highest with 15 ms (.027). It may be an indicator that the
proposed model is focused more on the frequency than on the temporal domain.
For the color scales, Viridis achieved the lowest reconstruction error (.0042),
while the highest was for Jet (.073). One reason may be that Viridis has a lower
range of different color/values compared to the original spectrogram and Jet.

The following subsections describe different experiments according to the
applied RGB scales for the spectrograms: (1) Raw, (2) 50SGray, (3) Gray,
(4) Viridis, and (5) Jet. Moreover, two different experiments were performed:
(1) the prediction of the dysarthria level (mFDA) and the neurological state
(U-III, and H&Y score) of PD patients, and (2) the classification of the nasality
level in children wih CLP.
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3.1 Parkinson’s Disease

Table 2 shows the results of different experiments according to the applied color
scales for the spectrograms along several tasks that were described in Sect. 2.1.
The performance is evaluated according to the average of ρ. The highest perfor-
mance in the prediction of the mFDA (ρ =.63) is achieved using the NL-Gray
and merging the bottleneck features from the all tasks. Regarding the prediction
of the U-III score, the best result (ρ =.52) is achieved by using the Jet scale and
the DDK task. The prediction of the H&Y score reported slightly more accu-
rate results for the Jet (ρ =.38) compared to the other scales. Notice that the
performance is similar for the different color scales.

For the analysis and to compare the performance of the different color scales
and resolutions, Fig. 2 illustrates a heatmap visualization of the overall results,
where 3D is the 3-channel spectrogram composed by the different resolution and
used as input in the CAE. The value of the highest ρ for each constellation is
provided. In general, the best results were obtained for the prediction of the
mFDA. This was expected since it evaluates directly impairments in speech.
Although the U-III and the H&Y scale also aim at assessing the severity of the
disease, these scores consider different factors related to movement disorders, not
only speech. The low performance for the H&Y prediction could be explained
due to the lower range of values and the low variability (See Table 1).

Fig. 2. Heatmap of the Spearman’s correlation coefficients for the prediction mFDA,
U-III, and H&Y score. T4: T1 & T2. T5: T1 & T3. T6: T2 & T3. T7: T1 & T2, & T3.
EF: Early fusion of the resolution windows
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Table 2. Top 3 of the average Spearman’s correlation coefficients for the prediction
mFDA, U-III, and H&Y score using the different color scales

Task/Color scale Raw 50SGray NL-Gray Viridis Jet

mFDA

T5 0.61 0.54 0.58 0.59 0.58

T6 0.59 0.58 0.59 0.57 0.57

T7 0.60 0.60 0.63 0.60 0.61

U–II

T3 0.46 0.39 0.50 0.46 0.52

T6 0.49 0.37 0.43 0.49 0.41

T7 0.40 0.39 0.35 0.32 0.28

H&Y

T3 0.30 0.25 0.34 0.28 0.38

T5 0.17 0.16 0.19 0.18 0.22

T6 0.34 0.33 0.30 0.21 0.24

T5: T1 & T3. T6: T2 & T3. T7: T1 & T3 & T3

In the case of the resolutions, the 15 ms and the early fusion yielded the most
accurate results, particularly for the prediction of the mFDA and U-III, while
for H&Y there is not a clear trend w.r.t. the resolutions.

Notice from the figure that Raw spectrograms seem to be lighter and more
consistent along the experiments, while the color scale has more variations spe-
cially in those values related to the prediction of the U-III and H&Y. As we
expected and since NL-Gray is still grayscale, similar results were obtained for
the two representations, where the NL-Gray was slightly better (ρ =.71) com-
pared to the 50Sgray (ρ =.68). This may be due to when converting the spectro-
grams to a non-linear scale. In general, the DDK and its fusion with the other
tasks report higher results.

However, there is no a clear tendency to state that one color scale could be
more suitable than the other, since in several cases the results were close to each
other, inconsistent, or varied according to the task, and resolution.

3.2 Cleft Lip and Palate

Two classification problems were addressed: (1) a 2-class system was trained
for the discrimination of nasal speech, and (2) a 4-class system was trained
considering the four nasality levels described in Sect. 2.1.
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Table 3. Top 3 of the average F-scores for the 2-class (normal vs. nasal) and 4-class
(nasality levels) classification in children with CLP using the different color scales

Task/Color Scale Raw 50SGray Gray Viridis Jet

2-class

T3 0.59 0.68 0.71 0.65 0.66

T6 0.64 0.62 0.61 0.59 0.63

T7 0.64 0.62 0.61 0.61 0.60

4-class

T6 0.35 0.38 0.37 0.32 0.38

T3 0.36 0.40 0.35 0.32 0.31

T7 0.39 0.35 0.36 0.33 0.32

T5: T1 & T3. T6: T2 & T3. T7: T1 & T3 & T3

The performance of the classification was measured according to the
unweighted average F-Score along the classes. The three best classification results
according to the sentences (see Sect. 2.1) are displayed in Table 3, where the aver-
age of the F-scores along the resolutions was computed. For this case, T1 refers
to “Carlos coge su pelota”, T2 to “Susi come sopa”, and T3 to “Tomás toca
tambor”.

Notice that the overall results showed that grayscale (on average) was more
suitable to classify nasality levels in CLP. For the 2-class case an average F-Score
of up to 0.71 was achieved, while for the 4-class of up to 0.40. Moreover, the task
providing more information to discriminate nasality was the task three, which
only consider of reading the sentence “Tomás toca tambor”. Despite grayscale
reporting the overall highest performance, no significant differences were found
when using the raw spectrogram.

For a closer look at the best results, Fig. 3 illustrates a heatmap visualization
of the performance considering the different resolution, tasks, and color scales.

Fig. 3. Heatmap of the F-Scores for the 2-class (normal vs. nasal) and 4-class (nasality
levels) classification in children with CLP. T4: T1 & T2. T5: T1 & T3. T6: T2 & T3.
T7: T1 & T2, & T3. EF: Early fusion of the resolution windows
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On the one hand, the best results of the 2-class problem were obtained with
information from the 50SGray together with a 25 ms resolution window (F-Score
= 0.84) and the raw spectrogram together with a 15 ms resolution (F-Score =
0.79). For this case, the highest F-scores are related to or a merger with task T3,
while it seems that task T2 achieved the lowest performance. On the other hand,
for the discrimination of the nasality levels (4-class), the fusion of different tasks
was more suitable. The best classification was achieved by using raw spectrogram
with 3-channel resolution (3D) for the combination of all tasks (F-Score = 0.58).

Similar to the prediction of the different scores in PD, it is difficult to state
that one color scale is more suitable than the other. Nevertheless, the different
color scales can be used as a normalization pre-processing step.

4 Discussion and Conclusions

A CAE-based approach was proposed in this study to analyze the suitability
of compressed representations (bottleneck features) extracted from spectrogram
images for the assessment of PD and CLP. In addition, we investigate the use
of different time-frequency resolutions and color scales applied to several tasks
such as spontaneous speech, reading text/sentence, and DDK exercises. The
prediction of three disease severity scores related to the neurological state and
dysarthria level in PD was performed. Compared to the state-of-the-art results,
we showed that our approach outperformed the results of [5,10] for U-III and
mFDA. Notice that from the results presented in this study, the DDK task was
more suitable and consistent for predicting disease severity, while the sponta-
neous speech (monologue) obtained the lowest correlations. The DDK is com-
monly used for the assessment of speech disorders related to articulatory capa-
bilities, which consists of the repetition of a simple and cyclic syllabic sequences.
This allows the computation of the extracted functionals for the bottleneck static
features [25].

The combinations of resolutions were not suitable in most of the cases for
the prediction of the different scores in PD. It is not clear to us, whether this is
due to training data size since the combination/muti-channel approach for the
resolutions was considered due to good results for the emotional modeling and
detection of depression in PD [20].

In the case of CLP, we considered two classification schemes: (1) normal vs.
nasal speech and (2) estimation of the nasality level according to four categories
(normal, mild, moderate and severe). In both tasks, we obtained the highest
results using grayscale spectrograms. Furthermore, we found that the highest
classification performance was obtained with the sentence “Tomás toca tambor”,
which includes more stop sounds (/t/, /b/, /c/) than the other two sentences.
These results indicate that children with CLP have more difficulties to produce
stop sounds resulting in a lower speech intelligibility. Therefore, speech therapy
should be focused on improving the accuracy of certain phoneme groups such as
the stop sounds. In future work, we will focus on automatic methods to analyze
phoneme accuracy of children with CLP.
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In addition, different Kruskal Wallis tests were performed for the different
color scales w.r.t. the raw spectrogram. No significant improvement was found
in all cases (p>>0.05) for the prediction of mFDA and U-III in PD, and the
classification of nasality levels in CLP. The H&Y prediction obtained significant
improvement along all the scales (p = 0.05). This can be explained due to the
small variation of the scale itself and in the dataset (see Sect. 2.1).

We are aware that one of the limitations of this study is the amount of data
and the comparison to clinical scores that are based on perceptual estimations
of motor competence or on several aspects of speech, which may not provide a
precise evaluation. We are currently collecting and labeling more data for further
research. Other fusion methods will be explored in future research to merge dif-
ferent resolutions. Therefore, we need to investigate other possible architectures
and causes that influenced the results.
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Abstract. We propose a novel 2-stage sub 8-bit quantization aware
training algorithm for all components of a 250K parameter feedforward,
streaming, state-free keyword spotting model. For the first stage, we
adapt a recently proposed quantization technique using a non-linear
transformation with tanh(.) on dense layer weights. In the second stage,
we use linear quantization methods on the rest of the network, includ-
ing other parameters (bias, gain, batchnorm), inputs, and activations.
We conduct large scale experiments, training on 26,000 h of de-identified
production, far-field and near-field audio data (evaluating on 4,000 h of
data). We organize our results in two embedded chipset settings: a) with
commodity ARM NEON instruction set and 8-bit containers, we present
accuracy, CPU, and memory results using sub 8-bit weights (4, 5, 8-bit)
and 8-bit quantization of rest of the network; b) with off-the-shelf neural
network accelerators, for a range of weight bit widths (1 and 5-bit), while
presenting accuracy results, we project reduction in memory utilization.
In both configurations, our results show that the proposed algorithm can
achieve: a) parity with a full floating point model’s operating point on
a detection error tradeoff (DET) curve in terms of false detection rate
(FDR) at false rejection rate (FRR); b) significant reduction in compute
and memory, yielding up to 3 times improvement in CPU consumption
and more than 4 times improvement in memory consumption.

Index Terms: 2-stage quantization, keyword spotting, embedded chipsets

1 Introduction

Wakeword detection, also known as keyword spotting (KWS), detects words or
phrases of interest from streaming audio and plays a vital role in voice assis-
tants [5,17]. KWS models are based on neural network architectures and are
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processed on device. A challenge for KWS systems is to attain high accuracy
under tight resource constraints such as model size, runtime memory footprint,
and power consumption. To address some of the constraints, previous work has
explored knowledge distillation [24], low rank approximation [18,23], and compu-
tationally efficient architectures [4,13,15]. As an orthogonal direction, quantiza-
tion has been applied to KWS, where the components of the model are converted
from 32-bit floating points to lower bit width representations.

Quantization is often applied post-training, resulting in performance degra-
dation [25]. To mitigate this, quantization aware training (QAT) is applied to
reduce errors [14,20]. QAT, including very low bit width (even binary quan-
tization), is an established technique [6,19]. Since the quantization function is
discrete (and therefore the gradient is zero almost everywhere), a fake quantizer
with straight through estimator (STE) [3] or a Gumbel-Softmax trick [11] are
used to estimate the parameters. Since accuracy of 1-bit models is still a chal-
lenge, in the context of speech processing, 4 to 6-bit QAT has been studied for
event detection [20], speech recognition [16], and KWS [14].

Furthermore, commercially realizable KWS models have additional chal-
lenges often ignored in research focused on “model size vs accuracy” tradeoff: a)
sub 8-bit quantization requires hardware support1; b) need to run in streaming
mode2; c) cannot use corruptible memory3. Our paper happens in the context of:
a) using sub 8-bit representations to avoid overflow errors with 8-bit containers
in commodity or off-the-shelf platforms; b) addressing accuracy challenges with
sub 8-bit, including 1-bit representations.

Contributions: In this paper, we tackle the problem of sub 8-bit quantization of
on-device, small footprint, streaming, state-free KWS models, that can execute
on commodity or off-the-shelf hardware platforms. We propose a novel 2-stage
QAT algorithm: for the first stage, we adapt a non-linear quantization method
on weights [21], while for the second stage, we use linear quantization methods on
other components of the network. We conduct large scale experiments, training
on 26K hours of de-identified production audio, collected from a mix of far-
field devices and mobile phones (evaluating on 4K hours of data). We show the
efficacy of our methods by presenting accuracy and compute results (CPU4,
memory, and model size) for sub 8-bit models (4, 5, 8-bit) on ARM NEON
chipset, while projecting memory gains for a range of weight bit widths (1 and
5-bit) on off-the-shelf neural network accelerators.

2 Small Footprint, Streaming, State-Free KWS Models

While QAT algorithm can be applied to convolutional models, we use a model
that is a feedforward network (FFN) with 250k parameters using a bottleneck

1 An instruction set that can efficiently carry out matrix-vector multiplications.
2 Models have to run with low latency – i.e., cannot use large buffers.
3 Since the models are running continuously, they cannot get into a “bad” state.
4 We use CPU cycles as a proxy for power consumption.
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architecture [8]. The full precision version of this model has been optimized for
low power, small footprint, streaming and state-free setting and serves as our
baseline. It is trained on a set of positive and negative examples (i.e. positive
examples contain the wakeword, while negative examples do not).

The model architecture has 250K learnable parameters, and it operates on
20-dimensional log mel filter bank energy (LFBE) features, computed with an
analysis window size and shift of 25 ms and 10 ms respectively; the input to
the model is 81 frames, downsampled by a factor of 3. The architecture consists
of five fully connected layers with batch normalization [10] and ReLU [1] being
used with all hidden layers. The output is a binary classification layer trained
with cross entropy loss, representing the posterior probability of “wakeword” and
“non-wakeword” [8]. Later, to investigate quantized models with lower bit width,
we explore two other model sizes with different layer sizes, keeping the other
architectural aspects the same. During training, the wakeword is consistently
center aligned in the input window [12]. Adam optimizer is used to update
the model parameters during training. During inference, the posterior estimates
corresponding to the wakeword are smoothed by a windowed smoothing average
(WMA) filter and then thresholded to infer the wakeword hypothesis.

3 Relevant Embedded Chipsets

In this section, we describe hardware considerations in two settings: a) commod-
ity ARM NEON instruction set; b) off-the-shelf neural network accelerators.

Commodity ARM NEON Instruction Set Overview: In 2021 over 90% of
mobile phones use ARM-based chipsets5. The majority of these include a Single-
Instruction-Multiple-Data (SIMD) extension known as NEON; this is available
by default in ARM’s chipsets for mobile phones (armv8a, aarch64 6). The NEON
instruction set is based on parallelizing arithmetic operations on vectors stored
in 128-bit registers, allowing packing of multiple scalar values in the register -
i.e. 4× 32-bit floating point, 4× 32-bit integer, 8× 16 bit-integer, or 16× 8-bit
integer - then perform an arithmetic operation on every value in the register in
a clock cycle. For NEON, 8-bit is the smallest supported container for Multiply-
And-Accumulate (MAC) operations.

The compute requirement for a KWS model can be reduced by using lower bit
widths for weights, input and activations. Our QAT algorithm produces a model
that can utilize the SIMD instruction set available with NEON. While NEON
uses 8-bit containers for MAC operations, using sub 8-bit weights can yield
benefits: a) prevent overflow when performing computations; b) lower model
size for over the network deployments.

Off-the-Shelf Neural Network Accelerators: The smallest container in
ARM NEON architecture is 8-bit, so we do not observe a memory reduction with

5 https://www.counterpointresearch.com/global-smartphone-ap-market-share/.
6 https://www.arm.com/blogs/blueprint/android-64bit-future-mobile.

https://www.counterpointresearch.com/global-smartphone-ap-market-share/
https://www.arm.com/blogs/blueprint/android-64bit-future-mobile
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sub 8-bit weights. Some off-the-shelf accelerators can utilize sub 8-bit weights7,8.
In this paper, we use data sheets from them to project memory savings for our
QAT algorithm.

4 Proposed 2-Stage QAT Algorithm

In this section, we describe the design of our approach. Section 4.1 gives an
overview of our second stage training algorithm. We provide detailed descriptions
of the first and second stages in Sects. 4.2 and 4.3.

4.1 Quantization Overview

A layer in a feedforward neural network typically takes the following form:

y = ψbn(φrelu(Wx + b)) (1)

where x is the input to the dense layer, W is the dense layer weight matrix,
b is the bias, φrelu and ψbn represent ReLU and batch norm transformations.
Using a gain α and a linear quantizer (qz(.)) that discretizes the values to z
levels (log2(z) bits), let Wq, xq, αq, bq be the corresponding quantized repre-
sentations. Quantization of such a layer can be done in the following steps:

yq ← αq(Wq · xq + bq)

y(φq)
q ← qz(φrelu(yq))

y(φq,ψq)
q ← qz(ψbn(y(φq)

q ))

Our QAT algorithm for the layer follows a 2-stage procedure. During the
first stage we adapt the tanh(.) based quantization technique introduced in [21],
for obtaining Wq. In the second stage of training, we propose specific linear
quantization techniques for the remaining components: gain (αq), bias (bq),
batch normalization (qz(ψbn(.))), activations (qz(φrelu(.))), and inputs (xq).

4.2 First Stage: tanh(.) Quantization of Weights

Linear quantization [26] is widely used for model compression. However, the
weights of a neural network are typically Gaussian distributed. Linear quanti-
zation is not efficient for Gaussian distributions. To mitigate this problem, we
adopt [21]: it encourages the weights of a neural network to become more uniform
distributed, by first applying tanh(.) on W, and then applying a linear quantizer
to obtain Wq ← qz(tanh(W)); here Wq is the quantized weight matrix.

Figure 1(a) shows an example on the original weight distribution W ∼
N (0, σ2

w). In order to push the weight distribution towards U(−1, 1), the
7 https://datasheets.maximintegrated.com/en/ds/MAX78000.pdf.
8 https://www.syntiant.com/post/syntiant-introduces-second-generation-ndp120-

deep-learning-processor-for-audio-and-sensor-apps.

https://datasheets.maximintegrated.com/en/ds/MAX78000.pdf
https://www.syntiant.com/post/syntiant-introduces-second-generation-ndp120-deep-learning-processor-for-audio-and-sensor-apps
https://www.syntiant.com/post/syntiant-introduces-second-generation-ndp120-deep-learning-processor-for-audio-and-sensor-apps
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Fig. 1. Distributions for (a) original dense layer weights with a nearly Gaussian dis-
tribution; (b) dense layer weights with a flatter distribution after tanh(.).

weights are initialized with a target distribution N (0, σ2
t ) and a regularizer

λσ(σw−σt)2+λμμ2
w is added during training to penalize deviations from the tar-

get weight distribution, where σw and μw are the standard deviation and mean
of the weights. An example of the resultant distribution is shown in Fig. 1(b).

4.3 Second Stage: Linear Quantization of Full Network

In this section we describe the second stage, providing details on quantization of
gain and bias, batch norm, activations, and lastly the inputs. We then perform
one epoch of training to reestimate parameters.

Quantization of BatchNorm. Recall that BatchNorm (BN) has four sets of
parameters, γ, β, μB and σ2

B . While γ and β are trainable parameters, μB and σ2
B

are the empirical estimates of means and variances. These are running estimates
of mean and standard deviation during training, while they are replaced by global
estimates during inference. In this work, we quantize all four sets of parameters.

From the first stage, we inherit floating point representations of the four sets
of parameters. During this stage of training (i.e., second), we quantize these
parameters. To quantize the BN parameters, given a preferred bit-width, we
apply linear quantization on γ, β, μB and σ2

B separately. Following [2], BN
parameters, especially μB and σ2

B, tend to have large dynamic range. We also
observe that the parameters continuously shift during training. We start with
μB and σ2

B: to reduce the dynamic range, we introduce a scale factor CBN and
quantize x, μB and σ2

B with a linear quantizer (qz(.)):

xnorm =
x − μB√

σ2
B

=
x

CBN
− μB

CBN√
σ2
B

C2
BN

xnorm
q ← qz( x

CBN
) − qz( μB

CBN
)

√
qz(

σ2
B

C2
BN

)

(2)
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We then perform the remaining steps in quantizating a BN transformation, with
the application of the qz(.) on γ and β to obtain qz(ψbn(x)):

γq ← qz(γ)
βq ← qz(β)

qz(ψbn(xnorm
q )) ← γq · xnorm

q + βq

Quantization of Gain and Bias. We apply a linear quantizer on gain (α)
and bias (b) to obtain the respective quantized representations bq and αq.

Quantization of Activation Functions. A standard dense layer is typically
followed by a non-linear activation function and a BN layer in order. Our initial
experiments showed that a direct linear quanization of ReLU can lead to a large
drop in accuracy. To mitigate this, since ReLU is unbounded on the positive
domain, we experimented with bounded (clipped ReLU, sigmoid, and tanh) as
well as with smoother activation functions (GeLU, SiLU) [7,9]. Clipped ReLU
was the most promising activation function in our initial study; experiments with
GeLU and SiLU did not yield conclusive results; while sigmoid and tanh yielded
worse performance than with a direct quantization of ReLU (presumably require
more training updates due to gradient saturation). The output of clipped ReLU
is processed with the linear quantizer to obtain qz(φrelu(.)). We also found that
with quantization, the order of BN and the activation matters. Specifically, we
switch the order of BN and clipped ReLU activations.

Quantization of Inputs. The input LFBE features are processed using global
mean and variance normalization. Subsequent to this step, the normalized input
is processed similar to Sect. 4.3, such that xinput

q ← qz( xinput

Cinput
).

5 Experimental Setup

In this section we describe our training and test datasets; we also discuss the
models and evaluation metrics. All experiments in this paper were conducted on
de-identified production datasets.

Datasets: For our experiments we used a fully labeled training dataset consisted
of 26K hours of audio. The training dataset contains both far-field audio and
near-field mobile phone audio. We used two test sets in this work: (a) a validation
test set (referred to as VAL), which consisted of about 4K hours of audio data,
(b) an independent test set (referred to as TEST), which also consisted of about
4K hours of audio data. Both VAL and TEST data contain far-field audio and
near-field mobile phone audio. TEST data was collected from a wider range of
commodity devices.

Evaluation Metrics: During inference, we tuned the WMA values for the
models on held-out datasets. We measure the model performance with DET
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curves having False Rejection Rate (FRR) on the x-axis and False Discovery
Rate (FDR) on the y-axis. Similar to [8,12,22], we normalize the axes of DET
curves and report relative FDR. In the interest of space, we do not present
the full DET curves for all experiments; in such cases we only report relative
degradation in FDR at the FRR of the baseline model’s operating point (OP),
where the chosen OP corresponds to the 1.0 in relative FRR.

Table 1. Model architecture including hidden layer size, # param., # bits for weights,
# bits for gain (α), bias ( b), and BN parameters (μ, σ, γ, β), and input and activation.

ID Layer Size # Param.
# bits
weight

# bits

(α, b, BN)
# bits
act.

# bits
input

M0 {87, 400, 87, 400, 87, 400} 250K 32 32 32 32

M1 {87, 400, 87, 400, 87, 400} 250K 8 8 16 16

M2 {87, 400, 87, 400, 87, 400} 250K 8 8 8 8

M3 {87, 400, 87, 400, 87, 400} 250K 5 8 8 8

M4 {87, 400, 87, 400, 87, 400} 250K 4 8 8 8

Models: All our models use the architecture described in Sect. 2. The proposed
QAT technique, presented in Sect. 4, is applied to different components of the
model, and the results are described in Sect. 6. We also study the effect of num-
ber of bits for parameters (weights, biases, gain, BN parameters), input and
activations. Details of the models are summarized in Table 1. M0 is a full preci-
sion model. M1 uses 8-bit parameters and 16-bit activation and input. M2, M3
and M4 use weights quantized to 8, 5, and 4 bits respectively, while the activa-
tions and input are quantized to 8-bits. Models M0 to M4 have 250K learnable
parameters.

6 Results

In this section, we provide a detailed study of the proposed 2-stage QAT app-
roach, against an unquantized full precision model in terms of (a) accuracy, (b)
memory and computation. Our results are presented in 2 groups: a) Non-binary,
sub 8-bit models in Sects. 6.1 and 6.2, for ARM NEON instruction set; b) Binary
(1-bit) weight models in Sect. 6.3, for off-the-shelf accelerators.

6.1 Non-binary Sub-8 Bit Models: First Stage Training

To study the effectiveness of tanh(.), we train models with 5-bit dense layer
weights for 100K updates, with and without tanh; note that other components
are not quantized in this experiment, and that all trainable parameters are
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updated. Table 2 presents the results, comparing against an unquantized base-
line model. The table also presents results with two quantizers for weights: a)
the non-linear quantization with tanh(.); b) a linear quantizer without tanh(.).
The model with tanh(.) achieves a 7.4% relative degradation in FDR, while the
model without tanh(.) yields a 12.3% degradation in FDR.

6.2 Non-binary Sub-8 Bit Models: Second Stage Training

In this section, we compare the performance of the quantized models against
the baseline unquantized model. The baseline model is trained for 500K model
updates. For the proposed QAT approach, the models were trained for 500K
and 35K updates in the first and second stage training respectively. Firstly, we
discuss the accuracy implications, and then present results in terms of memory
and CPU gains (for ARM NEON instruction set).

Table 2. Relative degradation in FDR at baseline model’s FRR on VAL. Models have
5-bit weights with or without tanh(.).

Quantization Rel. FDR (%)

Unquantized model 0.0 (Baseline)

With tanh(.) 7.4

Without tanh(.) 12.3

Evaluation of Accuracy. From Table 3, M1 with the proposed 2-stage train-
ing algorithm yields a 3.1% relative degradation in FDR. To study the effect of
number of bits for weights, we quantized M2, M3 and M4 with 2-stage training.
Notice that going from M0 to M1, there is a very small increase in relative degra-
dation in FDR at FRR (3.1% increase). Here the changes include: 32 to 8-bit
weights; 32 to 8-bit quantization of other parameters (bias, gain, BN parame-
ters); and 32 to 16-bit input and activations. Further reducing the inputs and
activations from 16-bit to 8-bit (i.e., M1 to M2) does not lead to an increase in
FDR (3.1% to 3.5%). A further change in weights from 8 to 5 or 4-bits (i.e., M2
to M3 or M4) leads to a small increase in FDR (3.5% to 7.4% or 8.7%).

CPU, Memory, and Model Size Gains. Reduction in compute resources
(memory, CPU) is dependent on hardware architecture. In Table 3, we present
CPU, memory consumption on ARM NEON.

CPU: We observe a 45% reduction in CPU when using 8-bit activation and
input versus 16-bit activation and input. This reduction in bandwidth is due to
8-bit SIMD processors achieving a throughput of 2x computation with 8× 8 bit
multiplications compared to 8× 16 bit multiplications. Note that going from a
full precision M0 model to M1 (a 8-bit parameters, 16-bit activations and input),
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Table 3. Performance of models in terms of rel. degradation in FDR at FRR against
baseline full precision model on TEST data. CPU, memory consumption, and model
size for ARM NEON in MCPS and KB (MCPS refers to Million Cycles Per Second).

ID

# bits

weight
# bits
act.

# bits

input

Quant.

Method
Rel. FDR

Degrad. (%)
CPU

(MCPS)

Memory

(kb)
Model

size (kb)

M0 32 32 32 No Quant.
0.0

(Baseline) 37.6 912 912

M1 8 16 16 2-stage 3.1 18.8 228 228

M2 8 8 8 2-stage 3.5 10.3 228 228

M3 5 8 8 2-stage 7.4 10.3 228 142

M4 4 8 8 2-stage 8.7 10.3 228 114

Table 4. Relative degradation in FDR at FRR against baseline on TEST, compressing
weights, other parameters, input and activations to 8-bit.

Quantization on Rel. FDR Degrad. (%)

weight 3.8

weight + bias + gain 4.7

weight + input + activation 5.2

weight + BN1 5.3

weight + BN2 9.0

lead to a 50% saving in CPU consumption. Also, since 8-bit containers are used,
further reduction in bit widths (i.e. from M2 to M4), do not yield gains in MCPS.

Memory and Model Size: We observe a 75% reduction in memory by using
8-bit weights, input and activations when compared to non-quantized, 32-bit
models. The smallest data type in ARM NEON is 8-bit, so we don’t observe any
memory reduction by using sub-8-bit weights. However, we study and use sub
8-bit weights because this effectively provides more headroom for accumulation
of weights, input and activations – reducing the likelihood of overflow, and using
a lower-precision accumulator. We also note the model size, which decreases
linearly with bit width.

Some Ablation Studies. In this segment, we present 3 sets of ablation stud-
ies: 1) quantizing different components of the network to 8-bits; 2) quantizing
inputs and activations from 8-bit to 5-bit; 3) quantizing other components of the
network from 8-bit to 5-bit (bias, gain, batch norm parameters).

1) 8-bit models: Fixing 8-bit quantization for all components of the network,
we perform an ablation study for accuracy implications in terms of quantiz-
ing bias, gain, BN parameters, input and activations. The unquantized baseline
model and the quantized models in this section were trained for 100K updates.
Table 4 presents the results in terms of relative degradation in FDR at equal
FRR compared to the baseline model on TEST data. With tanh(.) 8-bit weight
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Fig. 2. On TEST: DET curves showing performance of quantized model with 8-bit input
and activation (Baseline, Blue) and 5-bit quantization (Orange) (Color figure online)

quantization we obtain a 3.8 % relative degradation in FDR. With further quan-
tization of input and activations (5.2%) or bias and gain (4.7%) or batch norm
parameters (5.3%), we did not see a significant decrease in model performance.
However, it is interesting to note from the Table 4 that the dynamic scaling of
BN yields an improvement (i.e., from 9.0% to 5.3% relative FDR degradation).

2) 8-bit to 5-bit change in input and activations: While compressing input
and activations from 16-bit to 8 bits (from M1 to M2 in Table 3) only results
in a minor performance degradation, reducing further from 8-bit to 5-bit input
and activations leads to a significant drop in performance (see Fig. 2).

3) 8-bit to 5-bit change in parameters: Similar to the small degradation in
FDR in going from 8 bits to 5 bits for weights (Table 3), reducing the bit width
from 8 to 5 for other parameters does not lead to a significant degradation in
FDR (3.0% increase in relative FDR).

6.3 Binary Weight Models

In this section, we present results for models with 1-bit weights using 2-stage
training; note that the other parameters, input and activations are non-binary
(i.e., either quantized or full precision). The models were trained for 500K and
35K updates in the first and second stage training respectively.

We experimented with two quantized models, with 2-times and 6-times the
number of parameters as the baseline model (250K parameters): a) M5 with
500K parameters – where the first, second, and the last layer weights are 5-bit,
the other layer weights are 1-bit, and all other parameters, input and activations
being 8-bit; b) M6 with 1.5M parameters – where all layer weights are 1-bit,
and other parameters, input and activations being 8-bit. Results are reported in
Table 5. In addition to FDR, we report the model size and project reduction in
memory utilization with off-the-shelf neural network accelerators.



374 L. Zeng et al.

Table 5. Performance of the models in terms of rel. degradation in FDR at FRR
matching baseline full precision model on TEST. Hidden layer sizes of M5 are {123,
566, 123, 566, 123, 566}, while those of M6 are {1080, 566, 123, 566, 123, 566}.

ID # Param.
Rel. FDR

Degrad. (%)

Memory

(kb)
Model

size (kb) Note

M0 250K 0.0 912 912 Baseline

M5 500k 14.0 128 128 with large LR

M6 1.5M 6.2 198 198 with large LR

M5 500k 0.4 128 128 with LR change

M6 1.5M -0.4 198 198 with LR change

In our experiments, models having binary weights are sensitive to learning
rates. Although Adam optimizer is employed in model training, we find that
manually changing learning rate to a smaller number for the last few model
updates of the first stage improves the model performance for M5 and M6. In
Table 5, we find that the learning rate change results in 13.6% and 6.6% reduc-
tion in relative degradation in FDR against baseline model (M0) for M5 and M6
respectively. With the LR change, M5 and M6 are able to achieve performance
parity with M0. With off-the-shelf neural network accelerators, projected mem-
ory utilization is equivalent to the model size, with 86.0% and 78.3% reduction
in memory consumption with M5 and M6.

7 Conclusions

We proposed a 2-stage algorithm for sub 8-bit quantization of 250K parameter
KWS models. For the first stage, we adapted a recently proposed QAT technique
using a non-linear transformation on weights. In the second stage, we used linear
quantization methods on other parameters, input and activations. This paper
happens in the setting of on-device, low footprint, streaming KWS models, that
being explored on two embedded chipset settings, where we achieved parity in
accuracy against a full precision model in terms of FDR at a chosen FRR.
With sub 8-bit non-binary weight models, on an ARM NEON architecture, we
match accuracy, and obtain up to 3 times improvement in CPU consumption and
more than 4 times improvement in memory consumption. With a binary weight
model (and other components being 8-bit), using off-the-shelf neural network
accelerators, at accuracy parity with a full precision model, we project 4 to 7
times reduction in memory consumption and model size.
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3. Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradi-
ents through stochastic neurons for conditional computation. arXiv preprint
arXiv:1308.3432 (2013)

4. Blouw, P., Malik, G., Morcos, B., Voelker, A.R., Eliasmith, C.: Hardware aware
training for efficient keyword spotting on general purpose and specialized hardware.
arXiv preprint arXiv:2009.04465 (2020)

5. Chen, G., Parada, C., Heigold, G.: Small-footprint keyword spotting using deep
neural networks. In: Proceedings of ICASSP (2014)

6. Courbariaux, M., Bengio, Y., David, J.P.: BinaryConnect: training deep neural
networks with binary weights during propagations. In: Advances in Neural Infor-
mation Processing Systems, pp. 3123–3131 (2015)

7. Elfwing, S., Uchibe, E., Doya, K.: Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural Netw. 107, 3–11 (2018)

8. Gao, Y., et al.: On front-end gain invariant modeling for wake word spotting. arXiv
preprint arXiv:2010.06676 (2020)

9. Hendrycks, D., Gimpel, K.: Gaussian error linear units (GELUS). arXiv preprint
arXiv:1606.08415 (2016)

10. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: International Conference on Machine Learning,
pp. 448–456 (2015)

11. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with Gumbel-softmax.
arXiv preprint arXiv:1611.01144 (2016)

12. Jose, C., Mishchenko, Y., Senechal, T., Shah, A., Escott, A., Vitaladevuni, S.:
Accurate detection of wake word start and end using a CNN. In: InterSpeech
(2020)

13. Li, X., Wei, X., Qin, X.: Small-footprint keyword spotting with multi-scale tem-
poral convolution. arXiv preprint arXiv:2010.09960 (2020)

14. Mishchenko, Y., et al.: Low-bit quantization and quantization-aware training for
small-footprint keyword spotting. In: Proceedings of IEEE International Confer-
ence On Machine Learning and Applications (ICMLA) (2019)

15. Mittermaier, S., Kürzinger, L., Waschneck, B., Rigoll, G.: Small-footprint keyword
spotting on raw audio data with SINC-convolutions. In: Proceedings of ICASSP
(2020)

16. Nguyen, H.D., Alexandridis, A., Mouchtaris, A.: Quantization aware training with
absolute-cosine regularization for automatic speech recognition. In: Proceedings of
InterSpeech (2020)

17. Panchapagesan, S., et al.: Multi-task learning and weighted cross-entropy for DNN-
based keyword spotting. In: Proceedings of InterSpeech (2016)

18. Prabhavalkar, R., Alsharif, O., Bruguier, A., McGraw, L.: On the compression of
recurrent neural networks with an application to LVCSR acoustic modeling for
embedded speech recognition. In: 2016 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 5970–5974. IEEE (2016)

19. Rastegari, M., Ordonez, V., Redmon, J., Farhadi, A.: XNOR-net: imagenet classi-
fication using binary convolutional neural networks. In: Leibe, B., Matas, J., Sebe,
N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 525–542. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-46493-0 32

http://arxiv.org/abs/1308.3432
http://arxiv.org/abs/2009.04465
http://arxiv.org/abs/2010.06676
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1611.01144
http://arxiv.org/abs/2010.09960
https://doi.org/10.1007/978-3-319-46493-0_32


376 L. Zeng et al.

20. Shi, B., Sun, M., Kao, C.C., Rozgic, V., Matsoukas, S., Wang, C.: Compression of
acoustic event detection models with low-rank matrix factorization and quantiza-
tion training. arXiv preprint arXiv:1905.00855 (2019)

21. Strom, N., Khan, H., Hamza, W.: Squashed weight distribution for low bit quan-
tization of deep models. In: Submitted to Proceedings of InterSpeech (2022)

22. Sun, M., et al.: Compressed time delay neural network for small-footprint keyword
spotting. In: InterSpeech (2017)

23. Sun, M., et al.: Compressed time delay neural network for small-footprint keyword
spotting. In: Proceedings of InterSpeech (2017)

24. Tucker, G., Wu, M., Sun, M., Panchapagesan, S., Fu, G., Vitaladevuni, S.: Model
compression applied to small-footprint keyword spotting. In: Proceedings of Inter-
Speech (2016)

25. Vandersteegen, M., Van Beeck, K., Goedemé, T.: Integer-only CNNs with 4 bit
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Abstract. Prosodic boundaries in speech are of great relevance to both
speech synthesis and audio annotation. In this paper, we apply the
wav2vec 2.0 framework to the task of detecting these boundaries in
speech signal, using only acoustic information. We test the approach
on a set of recordings of Czech broadcast news, labeled by phonetic
experts, and compare it to an existing text-based predictor, which uses
the transcripts of the same data. Despite using a relatively small amount
of labeled data, the wav2vec2 model achieves an accuracy of 94% and
F1 measure of 83% on within-sentence prosodic boundaries (or 95% and
89% on all prosodic boundaries), outperforming the text-based approach.
However, by combining the outputs of the two different models we can
improve the results even further.

Keywords: Phrasing · Prosodic boundaries · Phrase boundary
detection · wav2vec

1 Introduction

Prosodic phrasing is the division of fluent speech into prosodic (or intonation [2])
phrases – groups of words in a spoken sentence, typically featuring an intonation
peak and often separated by pauses.

Prosodic phrasing not only plays an important role in the human understand-
ing of spoken language [6] but is also highly relevant for many speech processing
tasks, such as speech synthesis and audio annotation.

In text-to-speech (TTS) systems, information about prosodic boundaries in
text helps improve the naturalness of synthesized speech, by allowing the system
to insert pauses and modify intonation in a similar way to a human speaker. In
audio, it can be used to enhance the training data, likewise leading to a more
natural-sounding speech [17].

In speech recognition and spoken language understanding, phrase breaks
also help distinguish between otherwise identical sentences with a different
meaning (such as the popular example “Let’s eat, grandma!” versus “Let’s eat
grandma!”).
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There are two different scenarios for the automatic detection of prosodic
boundaries: detection solely from text, most often for the purposes of speech
synthesis [7,13,18,20,24], or detection from spoken utterances as a form of audio
annotation. In the latter case, some approaches have been based solely on acous-
tic information (though sometimes with word or syllable boundaries derived from
text transcripts) [11,14–16], while others have combined both lexical and acous-
tic information [4,8,9].

In this paper, our main goal is to obtain a detector which works solely in
the audio modality, using only acoustic cues. However, its results will also be
compared to an existing text-based model [20], evaluated on the transcripts of
the same utterances.

2 Data

The experiments were performed on a set of recordings of Czech radio broadcast
news (Channels 1 and 2 of the Czech Radio), previously used in [20] as the
News-Reading Speech (NRS) corpus1. The dataset consists of 12 news bulletins
presented by different speakers (six male and six female), each between 2.5 and
5 min long, for a total of 42 min of speech (486 sentences). The recordings have
been annotated by phonetic experts, following the guidelines in [2].

The annotation conventions, as described in [2], include multiple levels of
phrasing: most relevantly, prosodic (intonation) phrases can also be further
divided into one of more intermediate phrases – smaller units with less dis-
cernible boundaries. These are also labeled in the NRS dataset. However, in our
work, we are specifically interested in the detection of prosodic boundaries as the
most important ones for most speech processing applications – we will explore
the use of intermediate boundaries during training, but we ignore them during
evaluation.

3 Model for Text-Based Detection

We compare the results of our audio-based prosodic boundary detection to those
achieved by our existing text-based detector [20] on the same dataset.

This model remains as described in [20]: it is a Text-to-Text Transfer Trans-
former (T5) model [12], which transforms a given sequence of words into an
output sequence with predicted phrase boundaries. It was pre-trained on large
amounts of unlabeled Czech text in the CommonCrawl corpus and fine-tuned
for the phrase detection task on what [20] referred to as The Laboratory Speech
(LS) data – text sentences from 6 large-scale Czech speech corpora created for
the purposes of speech synthesis in the TTS system ARTIC [19].

1 Since the publication of [20], the NRS annotations have undergone a round of revi-
sions and the model was updated accordingly. The text-based results in Sect. 5.3 will
thus differ from those listed in the aforementioned paper.
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The prosodic boundaries in the LS dataset were labeled only using automatic
segmentation, but the fine-tuned model was subsequently adapted on the hand-
annotated NRS data using a leave-one-out approach – 12 different models were
trained, each adapted on 11 speakers and evaluated on the last speaker.

4 Model for Audio-Based Detection

Systems for audio-based prosodic boundary detection have traditionally utilized
combinations of different features such as the duration of pauses and syllables, F0

range and resets, intensity, or pitch movement [4,9,11,14,15]. Rather than use
such handcrafted combinations of features, however, we chose to employ learned
representations from raw audio data.

Wav2vec 2.0 [1] is a self-supervised framework for speech representation
which has been used for a large variety of different speech-related tasks [5,22,23].
One of the main advantages of the wav2vec approach is that a generic pre-trained
model can be fine-tuned for a specific purpose using only a small amount of
labeled data.

We use the pre-trained wav2vec 2.0 base model “ClTRUS”2, which is specifi-
cally trained for the Czech language using more than 80 thousand hours of Czech
speech from various domains [10].

Using the HuggingFace Transformers library [21], we fine-tuned the model
for an audio frame classification task (Wav2Vec2ForAudioFrameClassification)
on the NRS data and evaluate it using a leave-one-out approach, similarly to
the text-based T5 model (12 different models, each fine-tuned using 11 speakers
and tested on the last speaker) (Fig. 1).

wav2vec Linear

input audio
frame vectors

predicted frame labels

Fig. 1. Illustration of the wav2vec2-based prosodic boundary detector. The model out-
puts a label for each audio frame (every 20 ms).

During the fine-tuning of the wav2vec 2.0 model, the references are given
in the form of a fuzzy labeling function, as depicted in Fig. 2 (top): prosodic
boundaries are given the reference label 1, linearly decreasing to 0 in an interval
±0.2 s around each boundary.

The model was fine-tuned with MSE loss. The fine-tuning process is very
fast – the model learns to predict the triangular shapes nearly perfectly within
2 Czech language TRransformer from Unlabeled Speech,

available from: https://huggingface.co/fav-kky/wav2vec2-base-cs-80k-ClTRUS.

https://huggingface.co/fav-kky/wav2vec2-base-cs-80k-ClTRUS
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several epochs, at which point the results do not improve further with additional
training.

Due to the relatively high memory requirements of wav2vec, the audio is pro-
cessed in chunks of 30 s, with a 15 s step – the chunks are partially overlapping.
When the outputs are stitched back together for evaluation, the middle part of
each chunk is used and the overlapping edges are discarded. This was originally
meant to avoid potential issues near the beginning and end of each chunk (due
to missing context on one side). However, in terms of the overall precision and
recall, the difference appears to be minimal.

Finally, in order to improve the robustness and consistency of the results and
limit the influence of random chance, each model (for each leave-one-out fold)
was fine-tuned five times with identical settings and different random seeds, and
the raw outputs were averaged. This does not substantially improve the results,
but it reduces random fluctuations and allows for a more reliable comparison
between models fine-tuned with different training labels or different amounts of
data (e.g. in Figs. 3 and 5).
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Fig. 2. Example of the reference labels and predictions for one audio segment. Training
labels for the wav2vec2 model either include only prosodic phrase boundaries, with a
peak value of 1 (top), or also intermediate phrase boundaries, with a smaller peak value
of 0.5 (bottom).

4.1 Influence of Intermediate Phrase Boundaries

As previously stated, our targets for prediction are only the prosodic phrase
boundaries. However, the less important intermediate boundaries may also con-
vey useful information for training, particularly since the distinction between
the two categories is not always clear.
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In our initial experiments with a model fine-tuned solely on prosodic bound-
aries, we found that the majority of false positives (approximately two thirds, as
seen in Fig. 3) were located in spots marked as intermediate phrase boundaries
by the expert annotators. This is despite the fact that intermediate boundaries
are present in less than 7% of all word boundaries in the NRS dataset.

This spurred us to question whether it is truly appropriate to label these
boundaries as zero in the reference labels - they clearly exhibit similar acoustic
features that the model is learning to detect, albeit perhaps to a less pronounced
degree. Assigning them a label with a smaller, but non-zero value may have a
positive effect on the resulting model.

Thus, we decided to test two options for the training data:

a) Only prosodic phrases are included in the reference labels.
b) Both prosodic and intermediate phrases are included in the reference labels,

with different values. Prosodic boundaries are given the maximum value of 1
and intermediate boundaries are labeled as 0.5 – both with a linear decrease
to zero over ±0.2 s, as previously described.

In both cases, the model is still evaluated on prosodic boundaries only.

4.2 Post-processing

The fine-tuned wav2vec2 model outputs predicted labels for each audio frame
(every 20 ms, as per the base model). However, the text-based T5 model natu-
rally predicts phrase breaks between words and is evaluated in terms of within-
sentence word boundaries. Thus, it is necessary to convert the wav2vec2 predic-
tions to a more comparable format:

First, we identify the peaks in the raw outputs. If the value of a peak is
higher than a specific threshold and there is no higher peak within 0.25 s, the
system marks this as a predicted boundary.

For the purposes of evaluation, these predicted boundaries are then aligned
to the nearest end of a word within 100 ms, based on the reference annotations
– this is because the ground truth phrase boundaries are likewise aligned to the
ends of words. For the numeric results listed in this paper, we did not specifically
tune the decision threshold – we simply chose the value 0.5 as the “middle
ground”. Similarly, for the model trained with added intermediate boundaries,
the threshold was selected as 0.75 – as the average between the labels of prosodic
boundaries (1.0) and intermediate boundaries (0.5).

5 Results

In this paper, we list two separate sets of results, evaluated under slightly dif-
ferent conditions: First, evaluation of the full outputs of the wav2vec2 models,
given as time labels, and including all boundaries, even those between sentences.

However, for a fair comparison with the T5 model, we secondly convert our
predictions into text form (using the transcripts to ensure identical sentences),
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with boundaries marked only between words and ignoring the ends of sentences
– this is because the text-based T5 model worked with isolated sentences and
only searched for prosodic boundaries within the sentence (i.e. not at the end).

5.1 Evaluation Measures

The standard evaluation metrics for phrase boundary detection are precision
(P ), recall (R), accuracy (Acc), and F1-score, given as

P =
tp

tp + fp
(1)

R =
tp

tp + fn
(2)

Acc =
tp + tn

tp + tn + fp + fn
(3)

F1 = 2 · P · R
P + R

(4)

where tp refers to the number of correctly detected phrase boundaries (true
positives), fp the number of false positives, fn is the number of missed phrase
boundaries (false negatives) and tn is the number of true negatives - between-
word boundaries that were correctly labeled as not being phrase breaks.

As the wav2vec2 model outputs per-frame predictions, not constrained to
word boundaries, we decided to also perform frame-wise evaluation, in terms of
segmentation of each audio file into prosodic phrases. For this, we chose segment
purity and coverage (e.g. [3]) as the main metrics. These are obtained as

purity(S,R) =
∑

k maxj |sk ∩ rj |∑
k |sk| (5)

and

coverage(S,R) =

∑
j maxk |sk ∩ rj |

∑
j |rj | (6)

where S = {s1, . . . , sK} is the set of segments (i.e. prosodic phrases) found by
the system, R = {r1, . . . , rJ} corresponds to the reference segments, |rj | is the
duration of segment rj , and sk ∩ rj denotes the intersection of segments sk and
rj .

5.2 Audio-Based Evaluation

Figure 3 shows the precision-recall and purity-coverage curves achieved by the
two fine-tuned wav2vec2 models when evaluated on the entire audio data. Table 3
then lists the numeric results corresponding to the default thresholds.

From the results displayed in Fig. 3, it appears that the addition of interme-
diate boundaries to the training data has had a very minimal effect on the two
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curves, at least when evaluated only on prosodic boundaries. However, if we look
at the false positives, a greater percentage of them now consists of intermediate
boundaries as opposed to no-breaks. This could be considered an improvement
by itself – in many use-cases, an intermediate boundary being incorrectly marked
as a prosodic boundary is a less problematic mistake than if a location with no
phrase boundary was marked as such.

Table 1. Results on the entire audio files, including boundaries at the ends of sentences,
and with a wav2vec2 model fine-tuned a) only on prosodic boundaries (threshold 0.5)
or b) also intermediate boundaries (threshold 0.75). “Pur” and “Cov” refers to purity
and coverage, respectively.

fine-tuning data Pur Cov Acc P R F1 tp fp fn tn

a) prosodic b. only 93.82 92.94 94.87 88.22 88.90 88.56 1266 169 158 4781

b) pros. & interm. b 92.29 94.39 94.78 90.26 85.88 88.02 1223 132 201 4818
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Fig. 3. Precision-recall (left) and purity-coverage (right) curves of models fine-tuned
a) only on prosodic boundaries (“w2v2 (P)”), or b) on both prosodic and intermediate
boundaries (“w2v2 (PI)”). The left plot additionally shows the fraction of false positives
which correspond to intermediate boundaries, relative to the total number of false
positives.

5.3 Text-Based Evaluation

In order to compare the results of the wav2vec2 model with the text-based T5
model, we convert the wav2vec2 predictions to the same format – sequences of
words, separated by sentence, with marked prosodic boundaries.

Thus, for this second evaluation, we only consider the predicted phrase
boundaries which were matched to word boundaries within the sentence dur-
ing post-processing. Peaks in the wav2vec2 output which were more than 100 ms
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from the nearest end of a word are simply ignored. However, the number of such
cases is minimal (3 out of 1435 predicted boundaries at threshold 0.5).

The text-based results are illustrated in Fig. 4, which compares the precision-
recall curve of the wav2vec2 model (fine-tuned with prosodic boundaries only)
with the results of the T5 model. The latter are shown only as a single point, as
there is no threshold to change – the T5 model directly outputs a sequence of
words and prosodic boundaries.

The graph additionally shows the precision-recall curves for two possible
combinations of the two models:

a) prosodic boundaries are marked only where both the T5 model and the
wav2vec2 model predict them (“T5 AND wav2vec”),

b) prosodic boundaries are marked where at least one of the models predicts
them (“T5 OR wav2vec”).

Finally, the numeric results are presented in Tables 2 and 3: Table 2 lists the
individual results of the T5 model and one wav2vec2 model (fine-tuned only on
prosodic boundaries) for separate speakers. Table 3 then shows the overall results
for both wav2vec2 models and also for the combinations of T5 and wav2vec2.
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Fig. 4. Results evaluated on text - precision and recall of the text-based T5 model,
audio-based wav2vec2 model, and their combinations (wav2vec2 fine-tuned only on
prosodic boundaries)

We can see that in the terms of accuracy and F1, the listed “T5 OR wav2vec”
variants score higher that the individual models alone. However, it is at the cost
of slightly reduced precision. Conversely, the “T5 AND wav2vec” achieve a very
high precision of ∼94 %, but with a relatively low recall of ∼60 %. Which one of
these alternatives is best would depend on the specific application.
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Table 2. Results on individual speakers, wav2vec2 fine-tuned only on prosodic bound-
aries and with a threshold of 0.5.

model speaker # sent. Acc P R F1 tp fp fn tn

T5 NRS01 36 91.42 85.25 64.20 73.24 52 9 29 353

NRS02 60 94.24 82.02 76.84 79.35 73 16 22 549

NRS03 38 95.74 86.36 83.82 85.07 57 9 11 393

NRS04 31 92.76 84.91 66.18 74.38 45 8 23 352

NRS05 48 92.56 87.67 66.67 75.74 64 9 32 446

NRS06 45 89.29 92.54 54.39 68.51 62 5 52 413

NRS07 33 94.66 87.04 77.05 81.74 47 7 14 325

NRS08 37 93.28 91.07 66.23 76.69 51 5 26 379

NRS09 50 94.4078 80.00 74.73 77.27 68 17 23 606

NRS10 34 94.57 90.00 73.77 81.08 45 5 16 321

NRS11 35 94.70 86.00 75.44 80.37 43 7 14 332

NRS12 39 93.96 85.71 75.00 80.00 54 9 18 366

all 486 93.44 86.18 70.24 77.40 661 106 280 4835

wav2vec2 NRS01 36 92.55 81.58 76.54 78.98 62 14 19 348

NRS02 60 95.61 82.35 88.42 85.28 84 18 11 547

NRS03 38 94.68 77.92 88.24 82.76 60 17 8 385

NRS04 31 94.39 84.38 79.41 81.82 54 10 14 350

NRS05 48 92.01 80.23 71.88 75.82 69 17 27 438

NRS06 45 96.24 92.73 89.47 91.07 102 8 12 410

NRS07 33 95.67 85.48 86.89 86.18 53 9 8 323

NRS08 37 93.49 84.06 75.32 79.45 58 11 19 373

NRS09 50 94.12 76.34 78.02 77.17 71 22 20 601

NRS10 34 95.09 83.87 85.25 84.55 52 10 9 316

NRS11 35 95.20 76.39 96.49 85.27 55 17 2 322

NRS12 39 94.63 82.43 84.72 83.56 61 13 11 362

all 486 94.46 82.47 83.00 82.73 781 166 160 4775

Table 3. Results on the entire NRS data, using a leave-one-out-approach. “T5 AND
wav2vec2” places prosodic boundaries only where both models predicted them. “T5
OR wav2vec2” places them where at least one of the models did.

model Acc P R F1 tp fp fn tn

T5 Model 93.44 86.18 70.24 77.40 661 106 280 4835

wav2vec2 - f.-t. on pros. b. only 94.46 82.47 83.00 82.73 781 166 160 4775

wav2vec2 - fine-tuned with int. b 94.36 85.12 78.43 81.64 738 129 203 4812

T5 AND wav2vec2 (pros. b.) 93.35 93.38 62.91 75.17 592 42 349 4899

T5 OR wav2vec2 (pros. b.) 94.54 78.70 90.33 84.12 850 230 91 4711

T5 AND wav2vec2 (with int. b.) 93.15 94.39 60.79 73.95 572 34 369 4907

T5 OR wav2vec2 (with int. b.) 94.64 80.45 87.89 84.00 827 201 114 4740
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One may also notice that the precision and recall values here are slightly
lower than those in Table 1. This is because of the exclusion of end-of-sentence
boundaries. These are naturally much more pronounced in speech, in terms of
both intonation and pause, and so the wav2vec2 model can detect them with
much greater accuracy than the within-sentence boundaries.

6 Discussion

We have shown that the results achieved by the wav2vec2 model surpass those
of the text-based T5 model. However, it is important to note that this is still a
somewhat “unfair” comparison: The ground truth labels (provided by phonetic
experts) used in our experiments were based on the spoken sentences and there-
fore reflect the specific phrasing of the speaker. However, the locations of phrase
breaks are partly subjective and different speakers may place them differently.
Thus, the predictions made by the T5 model, which does not have access to
acoustic information, may not necessarily be less correct, they simply do not
match the specific speaker.

Another thing to consider is the relatively small amount of data which was
available for fine-tuning and testing – approximately 42 min of speech or 486
sentences. Although the wav2vec2 framework is known for being able to achieve
good results with small amounts of data, and the results achieved here do indeed
look very promising, it is likely that the performance could be improved further
if more data were available.

This is also suggested by Fig. 5, which compares wav2vec2 models fine-tuned
with different amounts of training data: models fine-tuned using only one, three
or six of the 12 speakers show a lower precision and recall, indicating that increas-
ing the amount of training data could lead to further improvement.
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Fig. 5. Precision-recall curve for wav2vec2 models fine-tuned using different amounts
of training data, evaluated on the text sentences and with the text-based results shown
for comparison.
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7 Conclusion and Future Work

In this paper, we explored the use of the wav2vec 2.0 framework for the detection
of prosodic boundaries in speech.

We have found that the relatively straightforward and easy to use wav2vec 2.0
approach works surprisingly well: it does not require text annotation or knowl-
edge of word boundaries (these were only used for evaluation), nor a handcrafted
selection of features, yet it achieves very good results, surpassing the text-based
T5 model which was used for comparison.

Still, this was, in its essence, only an initial experiment. In the future, we
would like to test the approach on a larger amount of more varied data and
also explore the possibilities of combining the audio and text modalities within
a single model, rather than merely combining the outputs.
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Abstract. Appropriate prosodic phrasing of the input text is crucial for
natural speech synthesis outputs. The presented paper focuses on using
a Text-to-Text Transfer Transformer for predicting phrase boundaries in
text and inspects the possibility of enriching the input text with more
detailed information to improve the success rate of the phrasing model
trained on plain text. This idea came from our previous research on
phrasing that showed that more detailed syntactic/semantic information
might lead to more accurate predicting of phrase boundaries.
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1 Introduction

Human speech is not monotonous but it expresses itself by variable intonation
patterns which, together with the words themselves, help the speaker to manifest
the meaning of the words and, thus, present his/her thoughts to the listeners.
Longer sentences, for example, when read out, are usually divided into smaller
units, phrases – groups of several words carrying a special meaning [3,4,24].
They are defined by a complex set of acoustic cues, e.g. the prosodic boundaries
(PBs) between them (both with or without a pause) or a prosodic coherence
within a phrase. The appropriate prosodic phrasing in speech is very impor-
tant for the listeners so that they are able to understand and easily follow the
thoughts of the speaker. On the other hand, inappropriate phrasing (i.e. making
phrase boundaries and pauses in incorrect positions in the sentence) might cause
misunderstanding or irritation.

In text-to-speech (TTS) systems, the correct phrasing increases the natural-
ness of the speech synthesis outputs – which includes both the correct phrase
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boundary placement and adequate prosody within the phrase itself [19]. Never-
theless, this paper focuses only on the PBs prediction.

Many different approaches to phrase boundary detection task have been stud-
ied and published during the last decades, including deterministic approaches
based on punctuation marks, classification-based approaches with different sets
of features, HMM, and neural networks [5,10,17,18,20].

2 Data and Model Description

The main problem in the phrase boundary task usually lies in the difficulty of
obtaining enough data for training. Moreover, the task is ambiguous – i.e. missing
some PBs may not be such a mistake and, similarly, some extra predicted PBs
could be correct, in fact [23].

In our study, we use two different sets of data – Laboratory Speech and News-
Reading Speech. The Laboratory Speech (LS) data originated from 6 large-scale
Czech speech corpora (3 male and 3 female speakers) created and recorded for
our TTS system ARTIC [21] (following the approach described in [13]), more
than 10,000 sentences each. The phrase boundaries in the audio were assigned
automatically during the segmentation process [7,14] and then transformed to
PBs labels in the original texts. The recording itself was carried out in a sentence-
by-sentence manner (the sentences were isolated and did not interfere with each
other) and the speakers were instructed to keep the same informative style and
speed of speech during the whole recording process.

The News-Reading Speech (NRS), on the other hand, represents a set of sen-
tences with phrases established by phonetic experts during the auditory analysis
guided by [1]1. These sentences originated from the transcriptions of authentic
recordings of 3–4 min long news-bulletins from Czech Radio. In this paper, we
experiment with 12 Czech Radio professional readers (6 male and 6 female),
with only about 40 sentences each. Note that the same original audio data are
used in [11] for detecting phrase boundaries in speech signal (using only acoustic
information) and the results are compared to those presented in this paper.

2.1 T5 Phrasing Model

Neural network approaches (mostly with encoder-decoder architecture) repre-
sent state-of-the-art techniques for almost all tasks in natural language process-
ing (NLP), including predicting phrase boundaries in text. Transformer [22] is a
novel architecture of sequence-to-sequence model which uses the attention mech-
anism allowing the model to focus only on some parts of the input sequence,
making the training much more efficient. In our experiments, we used the Text-
to-Text Transfer Transformer (T5) model (following the architecture presented
in [16,25]) pre-trained from a huge amount of unlabeled text from the Czech
1 Note that only the level ‘4’ phrases (prosodic/intonational phrases) were considered

in our experiments; smaller ones (e.g. intermediate phrases were also labeled but not
used).
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CommonCrawl corpus [27]. For training the model itself, we used the Tensor-
flow implementation [25] and the framework of [26].

This paper presents our T5 phrasing model, firstly introduced in [23], and
explores the possibilities of input text adjustments for obtaining better results
of phrase boundary detection from text.

2.2 Evaluation Measures

From the machine learning point of view, the task of phrase boundary detection
can be considered a binary classification into 2 classes. Thus we have 4 types of
outputs: true positives (tp; correctly predicted phrase boundaries), true negatives
(tn; correctly predicted no-breaks), false positives (fp; incorrectly (extra) pre-
dicted phrase boundaries) and false negatives (fn; missed phrase boundaries).
To compare results, these four numbers are often recalculated to some measures.

Accuracy (Acc, Eq. (1)) is the proportion of correct predictions among the
total number of all cases examined. This measure needs not necessarily be the
best choice since it can be misleading for unbalanced classes and does not reflect
the real “success rate” of the model on testing data. So while the accuracy
measure can be used for tasks with similar class distribution, our phrase bound-
ary detection issue, with definitely uneven class distribution (significantly larger
number of negatives), requires a different approach for the evaluation.

To obtain more relevant results, other two measures and their combination
are usually used instead: The measure called precision (P, Eq. (2)) is the fraction
of correct positive predictions among all positive predictions, in other words, it
tells us how much we can trust the positive results we detected, which means
fewer false positives for higher precision value. The second one, recall (R, Eq. (3),
also known as sensitivity), represents the fraction of positive instances that were
detected. It is defined as the ratio of correct positive predictions to all positive
instances in data and higher numbers signify fewer false negatives.

The harmonic mean of the two measures explained above is called F1-measure
or F1-score, defined in Eq. (4). That gives a better measure of the incorrectly
classified instances than the accuracy. Let us note that this measure will be the
main indicator for us during the evaluation in Sect. 3.

Acc =
tp + tn

tp + tn + fp + fn
(1)

P =
tp

tp + fp
(2)

R =
tp

tp + fn
(3)

F1 = 2 · P ·R
P + R

(4)

3 Experiments and Results

The presented paper follows the paper [23] and compares the phrasing models
from that study to the new, enriched phrasing models.
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3.1 Former Experiment

In our preceding study [23], we trained a general T5 phrasing model on LS
data, excluding 40 sentences for each speaker for testing. The training process
lasted for 50 epochs (with 1000 steps per epoch) and we got the general phrasing
model which was tested both on the LS and NRS data. When applied to LS data,
the results were acceptable, yet, it would be better to train speaker-dependent
models for each speaker in case we wanted to use the model predictions for TTS
using these voices (similarly to [9,12,15])) – but that is beyond the scope of
this paper. On the contrary, we wanted to train a general model which could
be applied to data obtained from unseen speakers. On the NRS data, the model
was less successful in predicting phrases compared to the application to LS data,
the lower values of the measures were mostly caused by higher number of false
negatives (i.e. missed PBs) – which was caused, as explained in the mentioned
paper, by a different genre of those data.

So we, therefore, adapted the general model on NRS data to get a transferred
phrasing model for news-reading speech and tested that on each of the 12 speak-
ers’ sentences. Because of a small amount of NSR data, we used a leave-one-out
approach – we trained 12 transferred models, using data from 11 speakers for
training and the sentences of the remaining speaker for testing. These adapted
phrasing models provided better results compared to the general model (espe-
cially fn cases and the Recall value), even with the small amount of NRS data.

The overall results are shown in Table 12.
Our previous paper also contained an in-depth syntactic-semantic analysis

which showed the most common categories of errors in T5 phrasing (and also
point to the fact that many false positives and false negatives are acceptable, yet
the speaker used a different phrasing of the sentence). The detailed analysis is
described in Sect. 3.4 in [23], let us just list the most well-represented categories:

– missed phrase boundary between subject and predicate part of the sentence
– missed phrase boundary before an attribute in post-position
– missed phrase boundary after an initial adverbial

Those categories (all together with the others) are connected with the syntac-
tic/semantic description of the sentence. This led us to the idea of using other
information in training the model, not just the text. And although the T5 model
should be able to grasp the syntax (and part-of-speech tags) by itself (internally),
we hoped that additional information explicitly added to the input text could
increase the model’s ability of correct phrase break prediction.

3.2 Phrasing Models with Enriched Text Input

As described before, in our former study we had used only a text input dur-
ing the T5 model training process – that is also a common use of T5 net-
works. Nevertheless, we hoped that the enriched text input could help to train
2 The numbers in the second and the third part of the table slightly differ from those

in [23] since a couple of manual corrections and amendments had been made in NRS
data during the last year.
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Table 1. Overall results using plain text input (Acc, P, R, F1 in %).

speaker No. of sents Acc P R F1 tp fp fn tn

(a)

G
e
n
e
ra

l
m
o
d
e
l,

L
S LS01 40 99.20 100.00 95.24 97.56 60 0 3 312

LS02 40 97.38 87.50 96.55 91.80 56 8 2 316

LS03 40 96.63 89.39 90.77 90.08 59 7 6 314

LS04 40 96.86 94.12 85.71 89.72 48 3 8 291

LS05 40 96.63 85.71 93.75 89.55 60 10 4 342

LS06 40 95.42 94.23 77.78 85.22 49 3 14 305

all 240 97.02 91.46 89.97 90.71 332 31 37 1880

(b)

G
e
n
e
ra

l
m
o
d
e
l,

N
R
S

NSR01 36 89.35 89.47 41.98 57.14 34 4 47 394

NRS02 60 92.64 88.89 50.53 64.43 48 6 47 619

NRS03 38 93.11 83.67 60.29 70.09 41 8 27 432

NRS04 31 92.37 88.37 55.88 68.47 38 5 30 386

NRS05 48 90.48 86.79 47.91 61.74 46 7 50 496

NRS06 45 89.08 96.36 46.49 62.72 53 2 61 461

NRS07 33 93.66 90.48 62.30 73.79 38 4 23 361

NRS08 37 91.16 90.24 48.05 62.71 37 4 40 417

NRS09 50 92.02 72.73 52.75 61.15 48 18 43 655

NRS10 34 92.87 91.89 55.74 69.39 34 3 27 357

NRS11 35 92.34 83.33 52.63 64.52 30 6 27 368

NRS12 39 91.77 83.33 55.56 66.67 40 8 32 406

all 486 91.69 86.65 51.75 64.80 487 75 454 5352

(c)

A
d
a
p
te

d
m
o
d
e
l,

N
R
S

NSR01 36 92.07 85.25 64.20 73.24 52 9 29 389

NRS02 60 94.72 82.02 76.84 79.35 73 16 22 609

NRS03 38 96.06 86.36 83.82 85.07 57 9 11 431

NRS04 31 93.25 84.91 66.18 74.38 45 8 23 383

NRS05 48 93.16 87.67 66.67 75.74 64 9 32 494

NRS06 45 90.12 92.54 54.39 68.51 62 5 52 458

NRS07 33 95.07 87.04 77.05 81.74 47 7 14 358

NRS08 37 93.78 91.07 66.23 76.69 51 5 26 416

NRS09 50 94.76 80.00 74.73 77.27 68 17 23 656

NRS10 34 95.01 90.00 73.77 81.08 45 5 16 355

NRS11 35 95.13 86.00 75.44 80.37 43 7 14 367

NRS12 39 94.44 85.71 75.00 80.00 54 9 18 405

all 486 93.94 86.18 70.24 77.40 661 106 280 5321

a T5 model predicting the phrase boundaries more precisely, so we prepared the
training inputs supplemented with syntactic word categories (analytic functions,
i.e. afun phrasing model). Besides that, we also used part-of-speech tags since
those were used frequently and successfully in different phrasing approaches,
usually as one of the features in classification-based ones, e.g. [8], (POS phras-
ing model). And finally, we add both syntactic categories and the part-of-speech
tags (afun+POS model).
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The text inputs (and the output) used for training the models are as follows:

– original text input (plain):
• word1 word2 word3 . . .

– analytic functions (afun):
• word1/afun1 word2/afun2 word3/afun3 . . .

– part-of-speech categories (POS):
• word1/POS1 word2/POS2 word3/POS3 . . .

– both syntactic (analytic) functions and part-of-speech categories
(afun+POS):
• word1/afun1/POS1 word2/afun2/POS2 word3/afun3/POS3 . . .

– outputs (the same for all inputs) with a special symbol for marking the phrase
boundary positions in the sentence:
• word1 word2 | word3 ...

For tagging the training and testing data with syntactic and part-of-speech
tags, we used our proprietary T5 taggers trained from the data in PDT corpus
and its analytical and morphological annotation [2].

All the three new general models were trained in the same manner as the
plain general model from [23] (50 epochs with 1000 steps per epoch, with 10 % of
training data used for validation during the training process), and all transferred
models (using a leave-one-out approach) were being adapted from the general
model for 10 epochs.

3.3 Results

The results are listed in Table 2, Table 3 and Table 4; the overall results for each
task are also shown in Fig. 1.

The results in the tables and Fig. 1 show that adding more information to the
plain text input could lead to better results. That is especially true for enrich-
ing the input words with syntactic functions (afun model) which have resulted
in obtaining more precise phrasing models – despite the fact that adding tags
brought some errors in the input data, since the taggers were hardly error-free.
Higher F1 values were mostly caused by higher recall numbers – i.e. there were
less false negatives which means more phrase boundaries were set by the model
in the testing sentences. It is also satisfactory that the false positives were about
the same as for the plain model (and it should be noted that some of them are
acceptable, as previously stated in [23]). A quick analysis also showed that some
of these cases corresponded to other level of phrase boundaries (intermediate
phrases, level ‘3’ in ToBI [1]).



T5 Phrasing Model Using Enriched Text Input 395

Table 2. Overall results using text input enriched with analytic functions (Acc, P, R,
F1 in %).

speaker No. of sents Acc P R F1 tp fp fn tn

(a)

G
e
n
e
ra

l
m
o
d
e
l,

L
S LS01 40 99.20 98.39 96.83 97.60 61 1 2 311

LS02 40 97.91 89.06 98.28 93.44 57 7 1 317

LS03 40 96.89 89.55 92.31 90.91 60 7 5 314

LS04 40 97.14 92.59 89.29 90.91 50 4 6 290

LS05 40 97.12 87.14 95.31 91.04 61 9 3 343

LS06 40 96.23 92.98 84.13 88.33 53 4 10 304

all 240 97.41 91.44 92.68 92.06 342 32 27 1879

(b)

G
e
n
e
ra

l
m
o
d
e
l,

N
R
S

NSR01 36 91.02 93.18 50.62 65.60 41 3 40 395

NRS02 60 93.19 91.07 53.68 67.55 51 5 44 620

NRS03 38 93.69 84.31 64.18 72.88 43 8 25 432

NRS04 31 93.25 87.76 63.24 73.50 43 6 25 385

NRS05 48 86.21 85.96 38.28 52.97 49 8 47 495

NRS06 45 89.77 96.61 50.50 65.90 57 2 57 461

NRS07 33 94.13 90.91 65.57 76.19 40 4 21 361

NRS08 37 91.97 89.36 54.55 67.74 42 5 35 416

NRS09 50 92.28 72.86 56.04 63.35 51 19 40 654

NRS10 34 92.87 91.89 55.74 69.39 34 3 27 357

NRS11 35 92.34 83.33 52.63 64.52 30 6 27 368

NRS12 39 92.36 85.71 58.33 69.42 42 7 30 405

all 486 92.24 87.31 55.58 67.92 523 76 418 5349

(c)

A
d
a
p
te

d
m
o
d
e
l,

N
R
S

NSR01 36 92.48 83.58 69.14 75.68 56 11 25 387

NRS02 60 95.00 82.42 78.95 80.65 75 16 20 609

NRS03 38 96.06 86.36 83.82 85.07 57 9 11 431

NRS04 31 93.25 82.46 69.12 75.20 47 10 21 381

NRS05 48 93.82 87.34 71.88 78.86 69 10 27 493

NRS06 45 90.47 91.55 57.02 70.27 65 6 49 457

NRS07 33 95.31 85.96 80.33 83.05 49 8 12 357

NRS08 37 94.38 91.53 70.13 79.41 54 5 23 416

NRS09 50 95.42 81.82 79.12 80.45 72 16 19 657

NRS10 34 96.20 90.91 81.97 86.21 50 5 11 355

NRS11 35 95.36 86.27 77.19 81.48 44 7 13 367

NRS12 39 94.86 85.07 79.17 82.01 57 10 15 404

all 486 94.36 86.01 73.86 79.47 695 113 246 5314

The part-of-speech tags, representing the morphological layer of the sen-
tences, did not improve the phrasing models considerably, except for the adapted
models. The results of combined enriched models were very close to the afun
models, but they predicted slightly worse results (however, the precision values
were slightly higher in average). Nevertheless, the detailed analysis of the errors
(both false positives and false negatives) is needed.
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Table 3. Overall results using text input enriched with part-of-speech tags (Acc, P,
R, F1 in %).

speaker No. of sents Acc P R F1 tp fp fn tn

(a)

G
e
n
e
ra

l
m
o
d
e
l,

L
S LS01 40 99.20 100.00 95.24 97.56 60 0 3 312

LS02 40 97.91 89.06 98.27 93.44 57 7 1 317

LS03 40 96.63 89.39 90.77 90.08 59 7 6 314

LS04 40 96.57 92.31 85.71 88.89 48 4 8 290

LS05 40 96.88 86.96 93.75 90.23 60 9 4 343

LS06 40 95.42 94.23 77.78 85.22 49 3 14 305

all 240 97.11 91.74 90.24 90.98 333 30 36 1881

(b)

G
e
n
e
ra

l
m
o
d
e
l,

N
R
S

NSR01 36 89.35 89.47 41.98 57.14 34 4 47 394

NRS02 60 92.50 87.27 50.53 64.00 48 7 47 618

NRS03 38 93.11 83.67 60.29 70.09 41 8 27 432

NRS04 31 92.59 88.64 57.35 69.64 39 5 29 386

NRS05 48 90.32 86.54 46.88 60.81 45 7 51 496

NRS06 45 89.08 96.36 46.49 62.72 53 2 61 461

NRS07 33 94.13 92.86 63.93 75.73 39 3 22 362

NRS08 37 91.16 90.24 48.05 62.71 37 4 40 417

NRS09 50 92.02 72.06 53.85 61.64 49 19 42 654

NRS10 34 92.87 91.89 55.74 69.39 34 3 27 357

NRS11 35 92.58 83.78 54.39 65.96 31 6 26 368

NRS12 39 91.77 83.33 55.56 66.67 40 8 32 406

all 486 91.72 86.57 52.07 65.03 490 76 451 5351

(c)

A
d
a
p
te
d

m
o
d
e
l,

N
R
S

NSR01 36 92.48 82.61 70.37 76.00 57 12 24 386

NRS02 60 95.28 83.52 80.00 81.72 76 15 19 610

NRS03 38 96.26 86.57 85.29 85.93 58 9 10 431

NRS04 31 93.25 83.64 67.65 74.80 46 9 22 382

NRS05 48 93.99 87.50 72.92 79.55 70 10 26 493

NRS06 45 89.95 90.00 55.26 68.48 63 7 51 456

NRS07 33 95.07 87.04 77.05 81.74 47 7 14 358

NRS08 37 94.38 90.16 71.43 79.71 55 6 22 415

NRS09 50 95.42 81.82 79.12 80.45 72 16 19 657

NRS10 34 95.72 89.09 80.33 84.48 49 6 12 354

NRS11 35 95.13 86.00 75.44 80.37 43 7 14 367

NRS12 39 94.65 83.82 79.17 81.43 57 11 15 403

all 486 94.30 85.77 73.65 79.25 693 115 248 5312
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Table 4. Overall results using enriched text input, both analytic functions and part-
of-speech tags (Acc, P, R, F1 in %).

speaker No. of sents Acc P R F1 tp fp fn tn

(a)

G
e
n
e
ra

l
m
o
d
e
l,

L
S LS01 40 99.20 100.00 95.24 97.56 60 0 3 312

LS02 40 97.91 89.06 98.27 93.44 57 7 1 317

LS03 40 96.89 89.55 92.31 90.91 60 7 5 314

LS04 40 97.14 94.23 87.50 90.74 49 3 7 291

LS05 40 97.60 88.57 96.88 92.54 62 8 2 344

LS06 40 95.69 92.73 80.95 86.44 51 4 12 304

all 240 97.52 92.12 91.87 91.99 339 29 30 1982

(b)

G
e
n
e
ra

l
m
o
d
e
l,

N
R
S

NSR01 36 90.40 90.70 48.15 62.90 39 4 42 394

NRS02 60 92.92 89.29 52.63 66.23 50 6 45 619

NRS03 38 93.11 83.67 60.29 70.09 41 8 27 432

NRS04 31 93.03 89.13 60.29 71.93 41 5 27 386

NRS05 48 90.48 86.79 47.91 61.74 46 7 50 496

NRS06 45 89.77 96.61 50.00 65.90 57 2 57 461

NRS07 33 94.13 92.86 63.93 75.73 39 3 22 362

NRS08 37 91.77 89.13 53.25 66.67 41 5 36 416

NRS09 50 92.02 72.06 53.85 61.64 49 19 42 654

NRS10 34 92.87 91.89 55.74 69.39 34 3 27 357

NRS11 35 92.58 83.78 54.39 65.96 31 6 26 368

NRS12 39 92.18 84.00 58.33 68.85 42 8 30 406

all 486 92.04 87.03 54.20 66.80 510 76 431 5351

(c)

A
d
a
p
te
d

m
o
d
e
l,

N
R
S

NSR01 36 92.48 83.58 69.14 75.68 56 11 25 387

NRS02 60 95.14 83.33 78.95 81.08 75 15 20 610

NRS03 38 96.06 86.36 83.82 85.07 57 9 11 431

NRS04 31 93.46 83.93 69.12 75.81 47 9 21 382

NRS05 48 93.82 86.42 72.92 79.10 70 11 26 492

NRS06 45 90.29 91.43 56.14 69.57 64 6 50 457

NRS07 33 95.07 85.71 78.69 82.05 48 8 13 357

NRS08 37 94.38 91.53 70.13 79.41 54 5 23 416

NRS09 50 95.42 81.82 79.12 80.45 72 16 19 657

NRS10 34 95.96 90.74 80.33 85.22 49 5 12 355

NRS11 35 95.13 86.00 75.44 80.37 43 7 14 367

NRS12 39 94.65 84.85 77.78 81.16 56 10 16 404

all 486 94.32 86.05 73.43 79.24 961 112 250 5315
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Fig. 1. Comparison of phrasing models – average results.

4 Conclusion

The presented paper explored the possibility of enriching the text input of the
Text-to-Text Transfer Transformer model. We used part-of-speech tags and syn-
tactic categories to adjust the plain text input and we trained phrasing models
using these inputs. The comparison of the results showed that the phrasing
models using enriched texts were able to yield more precise phrase boundary
predictions compared to our previous study described in [23].

Anyway, the proposed approach has to be also verified for different languages
(since all the presented results were obtained on Czech), and the in-depth anal-
ysis of the wrong predicted boundaries should be performed by phonetic experts
to find out in which cases the additional information in the input text helped.
The possibility of using the proposed enriched T5 phrasing models in the TTS
system (to split the input text into phrases) must also be verified using a listen-
ing test (e.g. [6]), in which the listeners would evaluate the naturalness of the
synthesized sentences with the suggested phrasing.
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Infrastruktura CZ” (e-INFRA CZ LM2018140) supported by the Ministry of Edu-
cation, Youth and Sports of the Czech Republic.
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for Czech speech synthesis. In: Matoušek, V., Mautner, P. (eds.) TSD 2003. LNCS
(LNAI), vol. 2807, pp. 287–294. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-39398-6 41

15. Prahallad, K., Raghavendra, E.V., Black, A.W.: Learning speaker-specific phrase
breaks for text-to-speech systems. In: SSW (2010)

16. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text
transformer (2020). arXiv:1910.10683

17. Read, I., Cox, S.: Stochastic and syntactic techniques for predicting phrase breaks.
Comput. Speech Lang. 21(3), 519–542 (2007)

18. Rosenberg, A., Fernandez, R., Ramabhadran, B.: Modeling phrasing and promi-
nence using deep recurrent learning. In: InterSpeech 2015. pp. 3066–3070. ISCA
(2015)

http://hdl.handle.net/11858/00-097C-0000-0023-1AAF-3
http://hdl.handle.net/11858/00-097C-0000-0023-1AAF-3
https://doi.org/10.1007/978-3-642-15760-8_36
https://doi.org/10.1007/978-3-030-27947-9_31
https://doi.org/10.1007/978-3-319-64206-2_19
https://doi.org/10.1007/978-3-030-58323-1_37
https://doi.org/10.1007/978-3-540-39398-6_41
https://doi.org/10.1007/978-3-540-39398-6_41
http://arxiv.org/abs/1910.10683
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24. Voĺın, J.: The size of prosodic phrases in native and foreign-accented read-out
monologues. Acta Universitatis Carolinae - Philologica 2, 145–158 (2019)

25. Wolf, T., et al.: Transformers: state-of-the-art natural language processing. In:
Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System Demonstrations, pp. 38–45. Association for Computational Lin-
guistics, Online, October 2020
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Abstract. Norwegian is a challenging language for automatic speech
recognition research because it has two written standards (Bokm̊al and
Nynorsk) and a large number of distinct dialects, from which none has
status of an official spoken norm. A traditional lexicon-based approach
to ASR leads to a huge lexicon (because of the two standards and also
due to compound words) with many spelling and pronunciation variants,
and consequently to a large (and sparse) language model (LM). We have
built a system with 601k-word lexicon and an acoustic model (AM) based
on several types of neural networks and compare its performance with a
lexicon-free end-to-end system developed in the ESPnet framework. For
evaluation we use a publically available dataset of Norwegian parliament
speeches that offers 100 h for training and 12 h for testing. In spite of
this rather limited training resource, the lexicon-free approach yields
significantly better results (13.0% word-error rate) compared to the best
system with the lexicon, LM and neural network AM (that achieved
22.5% WER).

Keywords: automatic speech recognition · Norwegian · Bokm̊al ·
Nynorsk · Deep neural network · end-to-end speech recognition

1 Introduction

Norwegian, spoken by some 5.3 million people, belongs to the branch of North-
Germanic languages, together with Swedish and Danish. All the three share
some common features and to a certain extent they are mutually intelligible.
Yet, Norwegian is unique as it utilizes 2 written standards, Bokm̊al (BK) and
Nynorsk (NN). The former is historically older and has its roots in Danish, the
latter was created in 19th century. Both are official languages of Norway, with
equal rights, even though a large majority of people (about 85%) use Bokm̊al.

The choice between them is done mainly on the regional level (during school
education) and later it follows personal preferences. As to the spoken form, there
are many distinct dialects in Norway from which none has status of an official
standard [1]. They are used both in informal and formal communication, such as
c© Springer Nature Switzerland AG 2022
P. Sojka et al. (Eds.): TSD 2022, LNAI 13502, pp. 401–409, 2022.
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Table 1. Two examples of the same utterance transcribed either in Bokm̊al or Nynorsk.
In English, the first means “I come from Norway”, the second “In the report, the
government points out how reparations can help . . . ”.

BK Jeg kommer fra Norge

NN Eg kjem fr̊a Noreg

BK I meldingen s̊a peker regjeringen p̊a hvordan reparasjon kan være med . . .

NN I meldinga s̊a peikar regjeringa p̊a korleis reparasjon kan vere med . . .

in public media, government institutions or in the parliament. When transcribing
someone’s speech, one must take into account his/her dialect and also his/her
written preference, so technically it is a many-to-two mapping. This means that
the same spoken utterance can be transcribed in (at least) two distinct ways,
using different words (and sometimes also different grammar), as it is shown in
Table 1.

This has a large impact on the development and evaluation of an ASR sys-
tem that must cope with many spelling and pronunciation variants. Moreover,
Norwegian morphology heavily uses compounding, which significantly increases
lexical inventory. And even further, many compound words occur in more vari-
ants, e.g. universitets-sykehus, universitets-sjukehus, universitetssykehus, univer-
sitetssjukehus (university hospital, in English). Another challenging feature is
Norwegian numbers that use alternative words for some digits and two differ-
ent paradigms for constructing numbers in range of 21–99 (a direct one as in
English, or a reversed one as in German) [2]. Hence, for example, year 2022 can
be expressed in one of the following forms: totusen og tjueto, totusen og toogtjue,
totusen og tyveto, totusen og toogtyve, tjue tjueto, tyve toogtyve, and even more.

All the above mentioned facts imply that a traditional general-purpose ASR
system for Norwegian requires a very large lexicon with hundreds of thousands
items and multiple pronunciations and, consequently a large and sparse language
model

2 State-of-the-Art and Research Goals

There are not many publications aimed at automatic speech recognition in Nor-
wegian. One can find some older papers that deal with simpler tasks, such as
digit recognition [2], information retrieval over telephone in a limited application
domain [3], or dictation of medical records [4]. Several recent publications focus
on supplementary tasks, e.g., pronunciation variants and their modeling [5], or
automatic grapheme-to-phoneme conversion [6].

There is no doubt that Norwegian ASR will be appreciated in many appli-
cation fields as stated recently by the Language Council of Norway in [1]. A
large effort has been devoted to collecting speech databases that cover various
speaking styles, dialects and topics, and that are necessary both for research and
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practical development. Some of them have been made publicly available thanks
to the National Library of Norway. Its webpage called Spr̊akbanken1 (the Lan-
guage bank) offers open access to large text and speech resources. Some were
collected in early 2000 s, such as a 540-hour set of prompted phonetically rich
speech sentences (known as NST set), others have been compiled and uploaded
recently. This is the case of the NPSC database that contains 126 h of recorded
and transcribed plenary sessions in the Norwegian parliament [7]. In contrast
to the previously mentioned NTS set, the NPSC data provides realistic and
challenging resource for research and hence we used it this study.

Our project (supported by Norway funds) aims at developing an ASR sys-
tem that could be used in practical on-line and off-line applications, such as
automatic speech-to-text document conversion, meeting transcription, or broad-
cast monitoring. We can benefit from our previous research oriented mainly on
multi-lingual ASR applications [8,9] where we often utilized data from public
sources, such as parliament archives [10]. So far, we have been using our mod-
ular ASR system in which the language-specific components, i.e. a lexicon, a
language model (LM) and an acoustic model (AM) had to be adapted to a tar-
get language. In this paper, we investigate an alternative approach, known as
end-to-end (E2E) one, which is based on connectionist temporal classification
(CTC) method introduced in [11]. We wanted to learn if it was applicable to
Norwegian whose speech resources are significantly limited when compared to
many other European languages.

3 Lexicon-based ASR System for Norwegian

Here, we briefly introduce our baseline large-vocabulary continuous-speech recog-
nition (LVCSR) system. It utilizes a lexicon, whose size can go up to 1 million
words with multiple pronunciations. Optionally, it can contain also frequent
multi-word expressions and phrases to cover longer context in the corresponding
N-gram LM. The AM is based on hidden Markov models (HMM) whose smallest
units are triphone states. Their output probabilities can be represented by gaus-
sian mixture models (GMM) or by deep neural nets (DNN). Recently, we use
bidirectional feedforward sequential memory net (BFSMN) that proved to be a
computational efficient alternative to recurrent NNs [13]. In our implementation,
it has 11 layers, each covering 4 left and 4 right temporal contexts. Previously,
we used also a 5-layer feedforward DNN with 512 neurons in a layer. When
bootstrapping an AM for a new language, we usually start with the GMM that
is more appropriate for smaller amounts of data. Later, after harvesting more
data, we move to the more complex NN models [8]. For AM training, we utilize
the open-source pytorch platform. In all cases, log mel-spectral coefficients serve
as acoustic features.

In order to build the lexicon and the LM for Norwegian, we have collected a
large amount of texts. The main sources were webpages of major and regional

1 https://www.nb.no/sprakbanken/.

https://www.nb.no/sprakbanken/
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newspapers, broadcasters (mainly NRK TV and radio) and the Stortinget (Nor-
wegian parliament). As to the last one, we downloaded the available official tran-
scriptions of the plenary sessions, except of those from the 2017–2018 period (to
avoid a potential conflict with the test set described in Sect. 5. After that, the
texts were cleaned and repeated articles (occurring in regional editions of some
newspapers) were removed. Numbers expressed as digits were replaced by their
most frequent word equivalents, which was a compromise with regards to the
variability mentioned in Sect. 1. Let us note that a large majority of the text
sources in the corpus use Bokm̊al, except of the Parliament proceedings where
official speech transcriptions respect the speakers’ preferences. The complete
cleaned corpus contains 1.4 GB text data.

The lexicon was built from all the words that occurred at least three times in
the corpus. Next we added about 2500 most often occurring multi-word names
and phrases. Pronunciations were generated according to major rules for spo-
ken Norwegian, including some frequent variants. For foreign words and names,
manual corrections were required. The recent lexicon contains 601k words (both
Bokm̊al and Nynorsk) with 639k pronunciations. The LM is technically a bigram
model, though it covers also many 3 to 4-word long sequences due to the multi-
word lexicon items. This choice reflects the large lexicon size and also the decoder
requirements for real-time performance.

During the development of a Norwegian ASR we have trained and tested
various architectures using up to several hundred hours of training data. The
system worked well but at some moment it reached a performance plateau and
any further improvement required an immense load of additional work and data.
The main reasons were: a) too many out-of-vocabulary (OOV) words, b) pro-
nunciations not fitting some dialects, and c) the LM too rigid for informal and
spontaneous speech.

4 Lexicon-free System

End-to-end systems have become very popular during the last 5 years. Instead
of assembling a recognizer from separately optimized and trained modules (lex-
icons, AMs and LMs), they utilize a single (yet complex) neuron network based
architecture that learns to convert a speech signal directly to text. It has been
possible after the introduction of several key concepts, namely the connectionist
temporal classification (CTC) [11] and its successful application to speech [13]
and an attention-based encoder-decoder (AED) design [14]. The former utilizes a
dynamic programming strategy (similar to that used in HMMs) to map speech
frames to the output symbols, the latter tries to solve the same task via the
encoder-decoder NN structure supported by an attention mechanism. Both the
techniques have been implemented in an open-source toolkit ESPnet [15] and it
is possible to combine them to get better results [16]. A slight improvement can
be further achieved if the output symbols are not just single letters but word
fragments derived from the most frequent words [17].
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Table 2. Statistics of the Norwegian Parliament Speech Corpus (NPSC)

Total duration (after removing long pauses) 125.7 h

Word count 1.17 million

Utterance count 64,531

Number of different speakers 267

Number of different words 45,800

Bokm̊al : Nynorsk distribution 87 : 13

Male : female distribution 62 : 38

Table 3. Statistics of NPSC subsets

Train Eval Test

Hours of speech 100.3 13.1 12.3

Number of sessions 32 5 4

Utterance count 51,342 6,844 6,355

Word count 942,102 120,834 112,312

Unique words not in Train set - 2,786 2,747

We have been using the above mentioned ESPnet platform2 for our exper-
iments. Speech recordings in the train set had to be no longer than 25 s and
their text annotations were filtered to keep only letters and spaces. For tests
with sub-word units, we used Sentencepiece3 to get the list of K most frequent
tokens and to re-annotate the transcriptions. Speech files were parametrized to
80 mel-spectral features per frame (25 ms long). For training the neural net, we
used the hybrid CTC/AED option (CTC weighting factor equal to 0.3). The
other important parameters were set as follows: output size of the encoder: 256,
encoder/decoder attention heads: 8, linear units in AED: 2048, Adam optimizer,
max epochs: 120. In initial tests, we employed the provided decoder, later we
wrote our own implementation of the CTC prefix beam search algorithm [18].

5 Experiments

5.1 Data

Our experiments are organized in a closed-set manner. This means that training,
evaluation and testing is performed within the given dataset only. It is fairly large
and, more importantly, it is publicly available. This will allow other researchers
to compare their results with ours.

2 https://github.com/espnet.
3 https://github.com/google/sentencepiece.

https://github.com/espnet
https://github.com/google/sentencepiece
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We have been using a set of recordings from the Norwegian parliament known
as the NPSC. It has been available since 20214 and its description can be found
in [7]. It covers 41 plenary sessions from 2017–2018 years. The records have
been cut into shorter sentence-like utterances (1 to 43 s long) and transcribed.
This dataset represents most features of spoken Norwegian, namely all major
dialects, transcriptions in Bokm̊al or Nynorsk, all types of speech (read, planned,
spontaneous and emotional) and includes also some low quality records when
speakers do not speak directly to the main microphone. Table 2 summarizes its
basic statistics.

The dataset is officially split into 3 parts aimed at ASR training, evaluation
(during development) and testing. The split has been done so that each part
contains a subset of complete sessions. In Table 3, we present basic facts on
the split. Let us admit that a small portion (3.6 h) had to be removed from the
training part because our baseline recognizer detected notable mismatch between
its output and provided annotations. A brief check unveiled that some of these
utterances had been in English, the other had probably wrong transcriptions.
Hence, the data really used for training had a size of 96.7 h.

5.2 Tests and Results

We have investigated various architectures and their parameters. All the sys-
tems were trained using the NPSC-Train set only and tests were conducted on
the NPSC-Test data. The Eval part was applied for parameter optimizations if
the training process required it. The most relevant results for this study are pre-
sented in Table 4 where we compare three lexicon-based recognizers with an E2E
system. The former type shares the same 601k word lexicon and LM, and differs
only in the deployed AM. As expected, the lowest word-error rate (22.46%) was
achieved with the bidirectional feedforward sequential memory net (BFSMN),
i.e. the model that operates with the longest temporal contexts (in a similar way
as recurrent NNs). Let us note that even the large general-purpose 601k-word
lexicon led to 1.09% out-of-vocabulary (OOV) rate in this test.

The E2E system was trained within the ESPnet framework and evaluated
by our decoder. The training phase on the 100-hour set took about 20 h on
a PC equipped with a GPU card. The recognition was much faster with real-
time factor about 0.22. We investigated mainly the impact of the E2E output-
symbol inventory, starting from characters only (all Norwegian letters + several
letters from other major European languages + space and blank symbol) and
going up to 5000 word-substrings proposed by the Sentencepiece tool. The best
performance (12.97% WER) was achieved with the 1000-item inventory but the
difference between the letters only and the biggest set was not that large, which
is probably due to the rather small size of the training data. In any case, the
E2E system significantly outperformed all the other ones.

In general, a large portion of the errors were just confusions between Bokm̊al
and Nynorsk word forms. It is something hardly avoidable in Norwegian since

4 https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-58/.

https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-58/
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Table 4. Word-error rate (WER) achieved on NPSC-Test set for several investigated
ASR architectures

ASR system Lexicon LM AM WER [%]

GMM-HMM 601k words 2-gram GMM 35.77

DNN-HMM 601k words 2-gram DNN 27.28

BFSMN-HMM 601k words 2-gram BFSMN 22.46

E2E 42 chars none CTC/AED 14.26

E2E 1k subwords none CTC/AED 12.97

E2E 5k subwords none CTC/AED 13.67

the choice of the written standard is given by speakers’ personal preferences as
explained in Sect. 1 and can be hardly predicted just from speech. Yet, the num-
ber of confusions was significantly smaller when compared to the lexicon-based
system. This indicates that the E2E system was able to learn inter-word context
better than the traditional language model. Also, we tried to analyse how the
latter system coped with the words not seen in the training (2,747 unique words,
see the last line in Table 3) and found that about 1/5 of them were recognized
correctly. This was true mainly for those that were somehow acoustically and
orthographically related to the seen ones. The system also seemed to learn at
least some rules of word compounding. On the other side, a word like ‘autisme’
(autism in English) often used in one of the debates included in the test set,
has never been recognized correctly and occurred in many misspelled or strange
forms.

5.3 Discussions

We are aware of the fact that the rather low WER achieved by our best system
is partly due to the tight match between the training and testing data (the same
acoustic environment and the same group of speakers). Yet, the performance of
the lexicon-free system (trained on 100 h only) is much better compared to the
systems with a traditional architecture that can benefit from additional linguistic
resources.

Our results can be directly compared to those published recently in [7]. Its
authors utilize the same test and training set but their ASR system is based on
DeepSpeech 2 platform [19] and equipped with a large lexicon (size not men-
tioned) and a 3-gram LM prepared from their large non-public text corpus that
includes - in contrast to ours - also the NPSC-Train transcriptions. They report
slightly worse 15.9% WER as their best result.

Besides experimenting with the NPSC data, the same authors tested their
system on another (smaller) Norwegian dataset known as NB Tale5, namely on
its Part3. This subset consists of 2-min talks given by speakers representing 12

5 https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-31/.

https://www.nb.no/sprakbanken/en/resource-catalogue/oai-nb-no-sbr-31/
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major dialects. They were asked to speak freely about their own hobbies and pro-
fessional interests, and they did it in a more or less spontaneous way. The authors
report 37.3% WER. We conducted a similar experiment employing the best E2E
system mentioned in the previous section. We used it as it was, without chang-
ing any of its parameters and received 38.9% WER. This result documents two
aspects: The E2E system trained on a (small-size) data from a restricted domain
performs significantly worse when tested in another (non-related) domain, which
is obviously not surprise. Yet, our WER is still comparable to that of an estab-
lished ASR system with a large lexicon and general LM used in [7].

6 Conclusions and Future Work

In spite of the large recent popularity of the E2E approach, we had not been sure
whether it could be used for a language like Norwegian where both orthography
and phonology had such complex nature and relation, and where speech resources
were quite limited (especially when compared to other studies, e.g. [20]). That is
why we decided to make a comparison between the traditional procedure to adapt
an existing ASR platform to a new language, and the E2E method to build an
ASR system in a more straightforward and efficient way. In our experiments we
used data that represented many aspects of spoken Norwegian and the achieved
results clearly confirmed the superiority of the modern E2E approach.

The next step will be incorporation of the other available data from
Spr̊akbanken into the training material. It should be done carefully, because,
for example, the largest set (NST) consists of many identical (phonetically rich)
sentences recorded by hundreds of speakers, which may be a drawback for the
E2E training concept. After that we plan to run a data mining campaign that
will allow us to harvest automatically additional training data from the Norwe-
gian parliament archive and also from TV channel NRK whose news programs
are equipped by subtitles. Our goal is to collect up to 1000 h hours to train a
Norwegian E2E system suitable for the practical tasks mentioned in Sect. 2.

Acknowledgements. This work was supported by the Technology Agency of the
Czech Republic (project No. TO01000027).
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Abstract. In this paper, we investigate two research questions related
to the phonetic representation of input text in Czech neural speech syn-
thesis: 1) whether we can afford to reduce the phonetic alphabet, and 2)
whether we can remove pauses from phonetic transcription and let the
speech synthesis model predict the pause positions itself. In our experi-
ments, three different modern speech synthesis models (FastSpeech 2 +
Multi-band MelGAN, Glow-TTS + UnivNet, and VITS) were employed.
We have found that the reduced phonetic alphabet outperforms the tradi-
tionally used full phonetic alphabet. On the other hand, removing pauses
does not help. The presence of pauses (predicted by an external pause
prediction tool) in phonetic transcription leads to a slightly better quality
of synthetic speech.

Keywords: neural speech synthesis · phonetic representation ·
phonetic reductions · pause modeling · czech language

1 Introduction

Modern neural speech synthesis models can utilize raw text (i.e., letters) as the
input representation. In that case, the explicit phonetic representation is omitted
because the neural model maps the input letters (or graphemes) directly to their
acoustic counterparts. Such an approach is called end-to-end. On the other hand,
graphemes generally do not represent the pronunciation, and consequently, they
need not correspond to the acoustic representation closely [2,27].

On contrary, phonemes (or phones) are often used as the input representation
to a speech synthesizer in text-to-speech (TTS) systems. The advantage of using
phonemes is that, for many languages, they have a more direct relationship to
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the acoustic signal than graphemes, and they approximate speech more closely
than graphemes. This is especially true for analytic languages (like English)
in which the written and pronunciation forms differ significantly. As a result,
phonemes are expected to lead to improved quality of the resulting synthetic
speech. The disadvantage of using phonemes is that an additional module, usu-
ally called front-end, is required. The front-end typically includes a pronunciation
lexicon lookup and a grapheme-to-phoneme (G2P) model for dealing with out-of-
vocabulary words (OOVs), phonetic disambiguation of non-standard words such
as numbers, abbreviations, and homographs [3]. Development of these modules
traditionally requires a large amount of manual expertise and effort. On the
other hand, the textual material consisting of sequences of words/graphemes
and the corresponding sequences of phonemes is usually more readily available
and in much larger quantities (many times more than an end-to-end system that,
given it also needs acoustic signals, has only a limited amount of data available).
Then, the above-mentioned modules can be trained on such large textual data;
for instance, the G2P model was successfully trained using sequence-to-sequence
models like long short-time memory (LSTM) networks [7,21], or more recently,
transformer-based models [32,33], obtaining very good results.

In this paper, we focus on phonetic representation and compare the effect
of different phonetic representations on the quality of Czech synthetic speech
generated by different neural speech synthesis models. Unlike Fong et al. [3] who
investigated the differences between graphemic and phonetic representations and
different levels of phonetic transcription imperfection, in this paper we assume
perfect phonetic transcription on the input.

The paper is organized as follows. In Sect. 2, we introduce the research ques-
tions. In Sect. 3, we describe the data used for our experiments. Different pho-
netic representations are introduced in Sect. 4. In Sect. 5, we present neural
speech synthesis models used to generate speech from the different phonetic
representations in our experiments. Section 6 describes and discusses the results.
Finally, conclusions are drawn in Sect. 7.

2 Research Questions

In this study, we explore two research questions related to input phonetic rep-
resentation in neural-based speech synthesis of Czech speech.

Firstly (RQ1), we investigate the size of the phonetic inventory. Traditionally,
relatively rich phonetic inventories are used in speech synthesis, distinguishing
between some variants of a phoneme. For instance, in Czech, two variants of
a vibrant [rfi] or non-syllabic/syllabic variants of [r, l, m] are distinguished. The
question is if such a fine differentiation is really necessary for neural-based speech
synthesis. Since neural speech synthesis models cope well even with orthographic
input (typical for the end-to-end approach), we examine if a smaller inventory
is not sufficient. Given the ability of modern neural speech synthesis models to
capture speech contexts (using the attention mechanism [28]), the hypothesis is
that less-frequent phones and/or phones occurring in very specific contexts can
be omitted and a smaller phonetic inventory can be utilized.
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Table 1. Phonetic transcription examples using three different phonetic alphabets (in
Czech). The English translation would be If there’s time, my brother will drive to the
bank, otherwise he’ll take the tram.

Text Když bude čas, bratr pojede do banky autem, jinak p̊ujde třeba na
tramvaj.

Full $ gdIZ bUdE
>
tSas, # bratr

"
pOjEdE dO baNkI P aUtEm, # jInak pu:jdE

trfi
˚
Eba na traMvaj. $

Reduced # gdIZ bUdE
>
tSas, # bratr pOjEdE dO bankI aUtEm, # jInak pu:jdE

trfiEba na tramvaj. #

Pause-free gdIZ bUdE
>
tSas, bratr

"
pOjEdE dO baNkI P aUtEm, jInak pu:jdE trfi

˚
Eba

na traMvaj.

Secondly (RQ2), in speech synthesis, phonetic transcription is often accom-
panied by symbols of pauses, and pauses are treated like any other phone. Given
punctuation is present in the input phonetic representation (see Sect. 4) and
pauses often correspond to punctuation symbols, the question is whether pauses
should be included in the phonetic representation at all.

3 Speech Data

For our experiments, we used a large corpus of Czech read speech recorded
by a professional male speaker. The corpus was primarily designed for the use
with unit-selection speech synthesis [15–17], but Vı́t et al. [29] showed that
the corpus is also suitable for neural speech synthesis. It contains paired text-
audio data with approximately 14 h of audio (including pauses) distributed over
12,240 utterances. For our purposes, the audio has been downsampled to 24 kHz,
carefully annotated and the resulting text has been normalized to expand out
numbers, dates, ordinals, monetary amounts, etc. Finally, the text of each audio
was transcribed into a sequence of phones using a set of carefully designed Czech
phonetic rules and a pronunciation dictionary with words that do not obey Czech
pronunciation rules [33].

4 Phonetic Representations

In line with the research questions set out in Sect. 2, we defined three phonetic
representations: full phonetic alphabet (see Sect. 4.1), reduced phonetic alphabet
(Sect. 4.2), and pause-free phonetic alphabet (Sect. 4.3). Examples of phonetic
transcription1 using the different phonetic representations are shown in Table 1.
1 For phonetic transcription we use International Phonetic Alphabet (IPA), https://

www.internationalphoneticassociation.org/content/ipa-chart.

https://www.internationalphoneticassociation.org/content/ipa-chart
https://www.internationalphoneticassociation.org/content/ipa-chart
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Table 2. Full phonetic alphabet.

Phone group Phones Number (51)

Short vowels a, E, I, O, U 5

Long vowels a:, E:, i:, o:, u: 5

Diphthongs >oU, >aU, >eU 3

Plosives p, b, t, d, c, é, k, g 8

Affricates
>
ts,

>
tS,

>
dz,

>
dZ 4

Fricatives f, v, s, z, S, Z, x, H, l, r, rfi, j 12

Nasals m, n, ñ 3

Additional phones @, P, N, M, G, rfi
˚
, r
"
, l
"
, m
"

9

Pauses $, # 2

Note that all phonetic transcriptions contain punctuation symbols. This was
done in purpose to help neural models to capture prosodic characteristics asso-
ciated with the punctuation [23]. The full stop at the end of each transcription
denotes a declarative sentence and thus should capture the falling intonation
pattern typical for this kind of sentences. On the other hand, a comma inside a
sentence indicates a prosodic boundary usually accompanied by a slightly rising
intonation [23].

A detailed description of the phonetic representations is given in the following
subsections.

4.1 Full Phonetic Alphabet

By the term full phonetic alphabet we denote a standard phonetic inventory2

usually used in Czech speech-synthesis related research [18,20]. This phonetic
alphabet was the one used to transcribe textual sentences in Sect. 3. The alphabet
consists of “basic” phone groups like short/long vowels (containing 10 phones),
diphthongs (3), plosives (8), affricates (4), fricatives (12), and nasals (3). The
inventory also includes fine phonetic units denoted as “additional phones” in
Table 2. From the phonetic point of view, these are allophonic variants of the
“basic” phones [25]. Since the additional phones are mostly the phones to be
considered for reduction, they are described in Sect. 4.2 in more detail.

In our phonetic description, we also use two symbols for a pause. Sentence
leading and trailing pauses are denoted as [$], while the sentence-internal (inter-

2 Czech SAMPA, http://www.phon.ucl.ac.uk/home/sampa/czech-uni.htm.

http://www.phon.ucl.ac.uk/home/sampa/czech-uni.htm
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word) pauses are denoted as [#]. The reason for distinguishing the two types
of pauses is that [#] results from the natural phrasing of the speaker during
speaking; thus it is related to temporal characteristics imposed by the speaker.
On the other hand, [$] can be viewed as a longer “artificial” silence present at
the beginning and end of the recording of each utterance. We use an external
speech segmentation tool [5] as a pause predictor to add both kinds of pauses to
the phonetic transcription of input text.

The total number of symbols in the full phonetic alphabet is 51 (see Table 2).

4.2 Reduced Phonetic Alphabet

As mentioned in Sect. 2, the idea behind phonetic reductions is that some phones
occur less frequently and/or in very specific contexts in spoken Czech. Given the
ability of modern neural speech synthesis models to capture speech contexts,
the following phonetic reductions (corresponding mainly to additional phones in
Table 2) were taken into account [25]:

– Velar nasals [N] and [M] are replaced by their “standard” nasal variants [n],
or [m], respectively.

– Syllabic consonants [r
"
, l
"
], and [m

"
] are replaced by their non-syllabic versions

[r, l, m].
– Since the difference between unvoiced and voiced variants of [rfi] is rather

small, the unvoiced vibrant [rfi
˚
] is replaced by its voiced variant [rfi].

– The status of voiced [G] is relatively unclear and in phonetic descriptions it
is sometimes replaced by voiced [H] or unvoiced [x]. In this study, we replace
[G] by [x].

– Low-frequency affricates [
>
dz,

>
dZ] are replaced by a combination of the two

corresponding consonants [dz, dZ].
– Diphthongs [>aU, >oU, >eU] are replaced by a combination of the two correspond-

ing vowels [aU, oU, eU].
– Since glottal stop [P] occurs in very specific contexts (usually after a pause

and before a vowel or diphthong) [14,30], it is ignored, i.e. deleted without
replacement.

– Schwa [@] occurs very rarely in standard Czech pronunciation, limiting itself
primarily to a certain form of spelling, like in ČR [

>
tS@r@]. Therefore, schwa is

ignored in this study.
– As part of the phonetic reductions, both types of pauses were combined into

one and denoted as [#].

The number of phones after the reduction decreased to 36. A summary of the
phonetic reductions is given in Table 3. More general phonetic reductions were
introduced by Hanzĺıček et al. [5] to cope with the modeling and segmentation
of different foreign languages.
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Table 3. Phonetic reductions.

Full alphabet Reduced alphabet

Phone Example Phone Example Word

N baNka n banka banka

M traMvaj m tramvaj tramvaj

r
"

bratr
"

r bratr bratr

l
"

vl
"
k l vlk vlk

m
"

Posm
"

m osm osm

rfi
˚

trfi
˚
i rfi trfii tři

G abIG bIl x abIx bIl abych byl

>
dz lE

>
dzgdo dz lEdzgdo leckdo

>
dZ

>
dZUs dZ dZUs džus

>oU b>oUda OU boUda bouda

>aU
>
PaUtO aU aUto auto

>eU
>
PeUrO eU eUro euro

P PUSI ∅ USI uši

@
>
tS@r@ ∅ >

tS r ČR

$ $ Pano # rOzumi:m $ # # ano # rOzumi:m # Ano, rozumı́m.

4.3 Pause-free Phonetic Alphabet

The pause-free phonetic alphabet is almost identical to the full phonetic alpha-
bet. The only difference is that it includes no pauses. In this case, the neural
speech synthesis models are left to train pauses implicitly from the pause-free
input phonetic representation and the punctuation present in the input repre-
sentation. The advantage of the pause-free alphabet is that it does not need an
external pause predictor to add pauses.

5 Speech Synthesis Models

For the evaluation of the effect of different phonetic representations on the qual-
ity of Czech synthetic speech, we employed three modern neural speech synthesis
models. Two of them follow the most widely used scheme today: they employ
an acoustic model (also called text-to-spectrogram or text-to-mel), which gener-
ates acoustic features (usually mel-spectrograms) from either text (graphemes)
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or phonemes, and a vocoder to generate waveform from acoustic features. In
our study, we used (a) FastSpeech 2 [22] as an acoustic model and Multi-band
MelGAN [31] as a vocoder (see Sect. 5.1), and (b) Glow-TTS [8] as an acoustic
model and UnivNet [6] as a vocoder (see Sect. 5.2).

As the third neural model, we employed VITS [9], which could be viewed as
a full end-to-end model in that it directly converts graphemes/phonemes into
waveform. For an excellent overview of neural speech synthesis models, please
see [26].

5.1 FastSpeech2 + Multi-band MelGAN

FastSpeech 2 [22] is a fast and robust Transformer-based acoustic model pro-
posed to solve issues typical for autoregressive models (such as Tacotron 2 [24])
by adopting feed-forward Transformer network to generate mel-spectrograms
from an input phone sequence in parallel and replacing the error-prone atten-
tion mechanism by an explicit phone duration predictor to match the length of
mel-spectrograms. In our experiments, FastSpeech 2 models were trained using
the AdamW optimizer [13] with β1 = 0.9, β2 = 0.98 and weight decay λ = 0.001.
The initial and end learning rates were set to 10−3 and 5 × 10−5 respectively,
with 4k warm-up steps. The batch size was set to 16 and the models were trained
up to 200k steps on a single GeForce GTX 1080 Ti GPU.

Multi-band MelGAN [31] is a vocoder based on generative adversarial net-
works (GANs). GAN consists of a generator for data (audio) generation, and
a discriminator to judge the authenticity of the generated audio. MelGAN uses
multiple discriminators to judge audios in different scales; thus in each scale, it
can focus on the characteristics in different frequency ranges. Multi-band mod-
eling divides the waveform into multiple sub-bands and enables the parallel gen-
eration and fast inference. The Multi-band MelGAN vocoders were trained with
the Adam optimizer [10] for both generator and discriminator with β1 = 0.9,
β2 = 0.999, using piece-wise learning rate decay starting at 5 × 10−4 going to
10−6 for generator and 2.5×10−4 to 10−6 for discriminator, both stepping down
to half after each 100k steps. The batch size was set to 64, and the models
have been trained up to 2.7M steps, with the discriminator employed after 200k
training steps.

Both FastSpeech 2 and Multi-band MelGAN models were trained using the
TensorFlowTTS project [19].

5.2 Glow-TTS + UnivNet

Glow-TTS is a flow-based acoustic model that leverages generative flow
for non-autoregressive mel-spectrogram generation [8]. It applies a novel
monotonic alignment search (MAS) to perform internal alignment between
graphemes/phonemes and mel-spectrograms and to predict the duration. In our
experiments, Glow-TTS models were trained using the RAdam optimizer [12]
with β1 = 0.9, β2 = 0.998, weight decay λ = 10−6, and with the Noam learning
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rate schedule [28]. The batch size was set to 48 and the models were trained up
to 570k steps on a single NVIDIA A100 GPU.

UnivNet is a neural GAN-based vocoder that uses full-band mel-spectrograms
input to generate high-fidelity waveforms in real-time [6]. Similar to Multi-
band MelGAN, it utilizes a multi-resolution spectrogram discriminator that
uses multiple linear spectrogram magnitudes computed using various parameter
sets (including spectral and temporal domains). In our experiments, UnivNet
vocoders were trained using the Adam optimizer [10] with β1 = 0.5, β2 = 0.9,
and under a 10−4 learning rate. The batch size was set to 32 and the models
were trained up to 2.72M steps on a single GeForce GTX 1080 Ti GPU. The
generator was trained with only auxiliary loss without discriminators in the first
200k steps [6].

Both Glow-TTS and UnivNet models were trained using the Coqui-TTS
project [4].

5.3 VITS

VITS is a conditional variational autoencoder with adversarial learning [9]. It
employs different deep-learning techniques together (adversarial learning, nor-
malizing flows, variational autoencoders, transformers) to achieve high-quality
natural-sounding output. VITS is mainly built on the Glow-TTS model but it
updates on Glow-TTS by introducing the following updates. First, it replaces the
duration predictor with a stochastic duration predictor that better models the
variability in speech. Then, it connects a HiFiGAN vocoder [11] to the decoder’s
output and joins the two with a variational autoencoder (VAE). That allows the
model one-stage training in an end-to-end fashion and finds a better interme-
diate representation than traditionally used mel-spectrograms. This results in
high fidelity and more precise prosody [1,8].

In our experiments, VITS models were trained using the AdamW optimizer
[13] with β1 = 0.8, β2 = 0.99, and weight decay λ = 0.01. The learning rate
decay was scheduled by a 0.9991/8 factor in every epoch with an initial learning
rate of 2 × 10−4. The batch size was set to 16 and the models were trained up
to 1.3M steps using mixed precision training on a single GeForce GTX 1080 Ti
GPU.

VITS models were trained using the Coqui-TTS project [4].

6 Results and Discussion

6.1 Listening Tests

Two preference listening tests were conducted for a direct comparison of the
investigated phenomena. The first listening test concerned RQ1 (see Sect. 2),
i.e., it answers the question of whether it is possible/advantageous to reduce
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the phonetic alphabet (full vs reduced). The second listening test concerned
RQ2 and answers the question of whether it is necessary to add pauses (by an
external predictor) to phonetic transcription (full vs pause-free).

Each listening test contained the same 18 sentences that were synthesized
by each of the three synthesis models described in Sect. 5. The sentences were
chosen to differ in the phenomena under study and were 4–12 words long. Of
course, we used sentences not included in the training data. The longer sentences
were compound/complex sentences that contained internal pauses. The listeners
then listened to two versions of the same sentence: (a) one with a full phonetic
alphabet and one with the reduced phonetic alphabet (full vs reduced), and (b)
one with external pauses and one without pauses (full vs pause-free). In each
test, 54 comparisons were made.

12 listeners participated in both listening tests. They were instructed to
evaluate each pair of the synthesized sentences on a three-point scale (bet-
ter/same/worse) concerning the overall quality of synthesized speech. The syn-
thetic sentences were presented in the same order to all listeners. As a result,
648 comparisons (216 for each synthesis model) were made in each test. All the
listeners were native Czech speakers (some of them had no knowledge of speech
synthesis) and had no hearing problems.

6.2 Full vs Reduced Phonetic Alphabet (RQ1)

The results in Table 4 show a clear preference for the reduced phonetic alphabet.
The reduced alphabet was preferred consistently across all the synthesis models
examined. The total preference rate for the reduced alphabet was 43.67%, only
22.38% of all comparisons preferred the full alphabet, and 33.95% were without
preference. Addressing RQ1 introduced in Sect. 2, we can see that (at least for
the Czech language and the male voice under investigation) a smaller phonetic
inventory (with 36 phones, as opposed to 51 phones in the full phonetic inven-
tory) that does not use less frequent and overspecified phones leads to better
synthetic speech in neural-based speech synthesis. This may be considered a
surprising finding since there has always been a tendency in speech synthesis
(as opposed to, for example, speech recognition) to use a rather finer phonetic
alphabet and thus larger inventories. Of course, we would like to repeat this
experiment on more voices (including female ones) and more languages.
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Table 4. Results of the preference listening test: full phonetic alphabet vs reduced
phonetic alphabet.

Preference [%]

Model Full Same Reduced

FastSpeech2 + Multi-band MelGAN 28.24 33.80 37.96

Glow-TTS + UnivNet 11.57 35.19 53.24

VITS 27.32 32.87 39.82

Overall preference 22.38 33.95 43.67

Table 5. Results of the preference listening test: full phonetic alphabet vs pause-free
alphabet.

Preference [%]

Model Full Same Pause-free

FastSpeech2 + Multi-band MelGAN 31.02 42.13 26.85

Glow-TTS + UnivNet 38.89 38.89 22.22

VITS 35.19 30.56 34.26

Overall preference 35.03 37.19 27.78

6.3 Full vs Pause-free Alphabet (RQ2)

The results of this experiment are not as clear as they were in the “full vs
reduced” experiment described in the previous section (Table 5). Yet, the results
are consistent across all the synthesis models examined and show that listeners
tend to prefer the full phonetic alphabet including pauses (35.03%) or they prefer
neither option (37.19%). Only 27.78% of all comparisons preferred the pause-
free version. Addressing RQ2 introduced in Sect. 2, it seems that explicit usage
of pause symbols in neural-based speech synthesis slightly helps. But again,
additional experiments with other voices and languages are needed to confirm
this finding.

7 Conclusions and Future Work

In this paper, we investigated two research questions related to the phonetic
representation of input text in Czech neural speech synthesis. In our experi-
ments, three different modern speech synthesis models were employed. Two of
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them are two-stage models, employing both an acoustic model and a vocoder,
and the other is a fully end-to-end model. In the first experiment, we showed
that the reduced phonetic alphabet with 36 phonetic symbols outperformed the
traditionally used full phonetic alphabet with 51 phonetic symbols. The second
experiment concerned the explicit use of pauses in the phonetic representation.
We have found that removing pauses from phonetic transcription and letting
the synthesis model predict the position of the pauses on its own does not help
– slightly better results were obtained when pauses (predicted by an external
speech segmentation tool [5]) were included in phonetic transcription of input
text.

In our future work, in addition to extending the experiments to more voices
and languages, we also plan to investigate other levels of phonetic alphabet
reduction – for example, ignoring phenomena such as voicing or articulatory
assimilation. It would also be interesting to see what would happen if we reduced
the phonetic inventory even further.
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cation, Youth and Sports of the Czech Republic.
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5. Hanzĺıček, Z., Vı́t, J.: LSTM-based speech segmentation trained on different foreign
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in NLP. In: Matoušek, V., Mautner, P., Pavelka, T. (eds.) TSD 2005. LNCS
(LNAI), vol. 3658, pp. 371–378. Springer, Heidelberg (2005). https://doi.org/10.
1007/11551874 48

24. Shen, J., et a;.: Natural TTS synthesis by conditioning WaveNet on mel spec-
trogram predictions. In: IEEE International Conference on Acoustics Speech and
Signal Processing, pp. 4779–4783. Calgary, Canada (2018)

25. Skarnitzl, R.: Allophonic variability in Czech from the perspective of speech syn-
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Abstract. This paper empirically investigates the influence of differ-
ent data splits and splitting strategies on the performance of dysfluency
detection systems. For this, we perform experiments using wav2vec 2.0
models with a classification head as well as support vector machines
(SVM) in conjunction with the features extracted from the wav2vec 2.0
model to detect dysfluencies. We train and evaluate the systems with
different non-speaker-exclusive and speaker-exclusive splits of the Stut-
tering Events in Podcasts (SEP-28k) dataset to shed some light on the
variability of results w.r.t. to the partition method used. Furthermore,
we show that the SEP-28k dataset is dominated by only a few speak-
ers, making it difficult to evaluate. To remedy this problem, we created
SEP-28k-Extended (SEP-28k-E), containing semi-automatically gener-
ated speaker and gender information for the SEP-28k corpus, and suggest
different data splits, each useful for evaluating other aspects of methods
for dysfluency detection.

Keywords: stuttering · dysfluencies · pathological speech · SEP-28k

1 Introduction

Stuttering is a speech disorder that negatively affects a person’s ability to com-
municate. Detecting if speech is dysfluent has implications for stuttering self-
help applications, monitoring of stuttering behaviour, therapy applications, and
enabling speech recognition systems to be more inclusive. Stuttering is highly
individual and has a huge inter and intra-person variance w.r.t. the occurrence
of symptoms, which among other things, depends on psychological factors, the
communication situation, or the linguistic complexity of an utterance [6]. Those
properties make the detection of stuttering a very hard problem.

Data scarcity has always been a problem for research on pathological speech
in general, even more so with the rise of neural networks, which typically need
large amounts of labeled training data. Datasets containing pathological speech
are often small, inconsistently labeled, and rarely publicly available. The same
was true for stuttering in the past, but recent efforts by various research groups
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are a step towards resolving the problem of data scarcity and being able to focus
on detection methods.

Kourkounakis et al. released LibriStutter, a dataset containing artificially
generated stuttered speech with word-level stuttering annotations [10]. Stutter-
ing Events in Podcasts (SEP-28k) is a large corpus consisting of some 28000
clips (∼23 h) annotated with five stuttering event types [11]. The authors also
released a relabeled version of the adults who stutter subset of FluencyBank
using the same annotation scheme, adding another 4000 clips [3,11]. Using a
similar labeling approach, Bayerl et al. introduced a therapy-centric dataset of
stuttered speech containing data taken from stuttering therapy with an addi-
tional label for modified speech, indicating the use of speech technique as it is
taught in stuttering therapy [2].

It is good practice to use speaker-exclusive data partitioning when training
and testing machine learning systems on pathological speech and paralinguistic
tasks (e.g., splits in [18–20]). This data partitioning method prevents that sys-
tems learn speaker-specific traits instead of the targeted behaviour. Even when
using this data partitioning method, there are many possible combinations of
speakers. Ideally, the distributions of classes, the speakers’ gender, and age are
similar among the train, test, and development sets. If this cannot be guaranteed,
N -fold cross-validation is a possible way of partitioning the data but will increase
the number of experiments necessary N times. Even with cross-validation, speak-
ers in the train and development partition of a fold should not appear in the
test partition of the same fold. To be able to compare the performance of dif-
ferent machine learning systems on such a problem, it must be ensured that the
data-partitioning can be reproduced [18]. If this is not the case, it is impossible
to compare different methods’ results. Results reported on unknown, arbitrary
splits are not representative and are of little use to other researchers.

In the initial release of SEP-28k, the authors suggest several baseline systems
and hint at their data partitioning [11], but unfortunately did not include the
splits. There is little metadata available besides the podcast name and episode
number the clips were taken from, making it hard to create an ideal speaker-
exclusive data split. Using this information only allows for leave-one-podcast out
validation, to not include speakers in the test fold that were in the training or
development partition. This metadata is available for the relabeled FluencyBank
portion of their data, but unfortunately, the baseline results were not reported
with the split used.

In this paper, we evaluate the influence of different non-speaker and speaker-
exclusive data partitioning methods using a frozen wav2vec 2.0 model with a
classification head and use the same features in conjunction with Support Vector
Machine (SVM) classifiers. We provide additional insights into the composition
of the SEP-28k dataset and describe a process to generate per-episode speaker
labels based on manually collected metadata and ECAPA-TDNN embeddings.
The additional metadata is made available to the scientific community in an
updated release called SEP-28k-Extended. Furthermore, we report baseline
results for newly created splits which consider the retrieved metadata.
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2 Data

In this paper, we use and extend data from the SEP-28k dataset. The dataset
consists of 385 podcast episodes taken from eight podcasts revolving around the
topic of stuttering. It contains ∼28000 3 s long clips extracted from the episodes
and labeled with five dysfluency types; blocks, sound repetitions, interjections,
word repetitions, and prolongations [11]. The labels are non-exclusive, meaning
a clip can be labeled as belonging to more than one class. The initial release
of the dataset also contains ∼4000 clips extracted from the adults who stutter
portion of FluencyBank, that were labeled similarly [3,11].

Table 1. Distribution of stuttering-related labels in SEP-28k per podcast, total number
of clips, and share of the complete dataset.

HVSA ISW MSL SV ST SIC WWS HS total

Block 12.23 14.71 10.09 15.16 10.78 8.80 13.59 11.45 12.10

Interjection 33.70 20.00 13.51 6.76 23.72 22.43 21.96 26.22 21.04

Prolongation 11.96 11.84 7.87 14.99 8.33 7.87 9.89 12.13 10.61

Sound repetition 11.41 29.08 6.71 1.60 8.04 5.18 8.07 12.40 10.31

Word repetition 6.66 6.32 6.46 1.95 11.45 8.35 11.38 13.90 8.31

No stuttered words 51.49 42.41 64.77 62.52 59.46 65.94 53.34 48.72 56.08

Total # 736 870 2339 2308 5064 4013 9163 3684 28177

% of total 2.61 3.09 8.30 8.19 17.97 14.24 32.52 13.07 100.00

For this paper, we researched missing metadata from all 385 episode descrip-
tions to extract the number of speakers per episode, i.e., the maximum num-
ber of speakers that can be expected in the extracted clips of each episode. A
closer examination of the label distribution (see Table 1) of each podcast and the
statistics for the whole dataset reveals a large imbalance w.r.t. the distribution
of labels between the individual podcasts and the number of clips in the total
dataset. A substantial share of clips was extracted from the podcast Women
Who Stutter (WWS), about 33% of total clips, followed by three other podcasts
that each add ≥10% of total clips. Analysis of the retrieved metadata reveals
that the He Stutters (HS) podcast is hosted by the same women as WWS, inter-
viewing men instead of women. Aggregating those two podcasts shows an even
greater imbalance, which means that one female speaker could be in up to 46%
of total clips. This has a potentially negative effect on the generalisation ability
of detection systems trained on this data, even though the dataset is rather big.
For experiments in this paper, we will therefore treat the two podcasts as one.
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3 Methods

3.1 Classification Experiments

We chose a simple experimental design based on the wav2vec 2.0 (W2V2) model
to evaluate the influence of data partitioning on the detection of atypical speech
patterns. W2V2 features have shown robust performance in several speech tasks,
such as speech recognition, speech emotion recognition, and mispronunciation
detection [1,15,25].

We use a W2V2 model that was pre-trained in an unsupervised manner
on 960 h of unlabeled speech data from the LibriSpeech corpus [13] and later
fine-tuned for automatic speech recognition (ASR) on the transcripts of the
same data. The weights for the model were published by [1]. The model yields
different hidden representations after each of the models’ twelve transformer
blocks. Depending on the location in the processing hierarchy, the model has
encoded different information into the representations, with embeddings from
lower layers having basic speech information encoded and higher layers encoding
information closer to phonemic information. The W2V2 model uses the self-
attention mechanism that helps the model focus on relevant parts of the input
sequence, w.r.t. the learning objective [23]. The hidden representations have
information about their relationship to other vectors in the extraction context
encoded. The model takes the raw wave-form audio as its inputs and yields 768-
dimensional speech representations for roughly every 0.02s of audio, yielding 149
vectors for every 3s long clip in the dataset.

For our experiments, we used pre-trained W2V2 models with a classification
head equivalent to the implementation from the Transformers library [24]. The
classification head consists of a mean-pooling operation, pooling model outputs
over the time dimension, yielding a single 768-dimensional vector for every audio
clip. The pooling operation is followed by a 256-dimensional dense projection
layer and a classification layer.

The same model is also used to extract the contextual W2V2 embeddings as
input features for training Support Vector Machine (SVM) classifiers, as they
allow quick experimentation and can learn from only a few samples. We extract
W2V2 features for each audio clip and, similar to the mean-pooling operation
in the classification head described previously, take the mean over the time
dimension, yielding one 768-dimensional vector for every 3s long audio clip.

3.2 ECAPA-TDNN

The Emphasized Channel Attention, Propagation, and Aggregation - Time Delay
Neural Network (ECAPA-TDNN) architecture builds on the x-vector architec-
ture for speaker identification and proposes several enhancements [5,21]. The two
main modifications are 1-dimensional Res2Net [7] modules with skip connections
and squeeze-and-excitation (SE) [8] blocks to capture channel interdependencies.
Furthermore, features are aggregated and propagated across multiple layers.
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We use the ECAPA-TDNN implementation from [16]. The model was trained
on the VoxCeleb dataset [12]. The training data is augmented with additive
noises from the MUSAN corpus [22] and reverberation using a collection of room
impulse responses [9]. It uses 80-dimensional Mel Frequency Cepstral Coefficients
(MFCC) with a frame width of 25 ms and a frame-shift of 10 ms as its’ inputs.
Additionally, the data is speed-perturbed at 95% and 105% of the normal utter-
ance speed, and the SpecAugment [14] method is applied in the time domain.

3.3 Metadata Retrieval

We use the ECAPA-TDNN embeddings to automatically generate speaker labels
for each of the clips in the SEP-28k dataset, allowing more granular speaker
exclusive splits than on the podcast. The assignment of a speaker to individual
audio clips is accomplished in an unsupervised manner using K-Means clustering
and silhouette analysis [17].

We employ silhouette analysis to assess the distance of separation between
clusters without ground truth labels being available. The silhouette coefficient s
for an individual data point x is given by sx = (b−a)(max(a, b))−1. The variable
a represents the average distance between the sample and all other points in the
same cluster. The variable b is the mean distance between the sample and all
other points in the nearest cluster.

The measure has a value range of [−1, 1]. Silhouette coefficients close to +1
indicate that the sample is far away from neighboring clusters and therefore
likely assigned correctly. A value of 0 indicates that the sample is close to the
decision boundary between two neighboring clusters and negative values indicate
that those samples might have been assigned to the wrong cluster.

Silhouette analysis can also be used to determine the optimal number of
clusters. For a set of cluster values k ∈ {m, . . . , n} ⊂ N>0, the optimal number
of clusters kopt can be chosen as the one that maximizes the global average
silhouette coefficient. We employ this method to episodes where the number of
guests could not be determined.

The process of generating speaker labels and determining podcast hosts
starts with the extraction of high-dimensional (R192) speaker embeddings from
the trained ECAPA-TDNN model. We collect all embeddings belonging to one
podcast, preprocess the embeddings, and subsequently cluster them using the
K-Means algorithm. The preprocessing pipeline involves removing the mean,
scaling to unit variance, and dimensionality reduction using Principal Compo-
nent Analysis (PCA). We reduce the embedding dimensionality to R

4, since it
led to more robust distance computations, while the principal components still
explained ∼33% of total variance.

We assume that the largest cluster for each podcast belongs to the podcast’s
host. This assumption is reasonable as most podcasts have the same host, who
speaks across multiple episodes, while the guests and co-hosts vary across differ-
ent episodes. After preprocessing and clustering, we obtain the cluster centroids
and select the one belonging to the largest cluster. The centroid of the host clus-
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ter serves as a prototype vector, against which other clip-level representations
are compared to determine whether they belong to the host.

We also fit individual cluster models for each podcast episode. The prepro-
cessing and clustering steps are equivalent to the host centroid creation. In this
case, the K-Means algorithm is applied to embeddings representing clips from
a the same podcast episode. The resulting cluster labels serve as labels for the
different speakers in an episode. The cluster centroids obtained on the episode-
level are then compared to the global host centroids to determine which cluster
label belongs to the host speaker. We compute the cosine distance between the
global host centroid of the podcast and each centroid representing a cluster in
a specific podcast episode. The smallest cosine distance indicates which cluster
label is the best candidate for the host speaker.

3.4 Quality Criteria

We analyze the quality of the automatically generated speaker labels based on
the sample-specific silhouette score, average per-episode silhouette score, and the
variance ratio criterion [4]. An overview of those quality measures can be found
in Table 2. The measures and their respective per clip and episode values are
included in the metadata published with this work. Depending on the desired
quality level of the speaker labels, it is possible to exclude clips for stricter
evaluation.

Table 2. Statistics for cluster quality measures aggregated across all podcast episodes
in SEP-28k containing more than one speaker.

Model Measure Mean Standard Deviation Minimum Maximum

Silhouette Score 0.46 0.09 0.17 0.68

K-Means Variance Ratio 69.50 83.06 8.52 406.21

Cosine Distance 0.34 0.46 0.00 1.96

Higher sample-specific silhouette scores indicate that the speaker label is
more likely to be assigned correctly. The average silhouette score can be used
to assess the assignment quality within full podcast episodes. The absence of
clusters where all sample-specific scores are below the average silhouette score
for the cluster, can be a quality indicator. For instance, clips belonging to an
episode could be excluded if not all k clusters contain at least one sample with
an above-average silhouette score.

The variance ratio criterion defined in [4] measures how well-defined clusters
are. For a dataset D with nD elements, which has been divided into k clusters, the
variance ratio criterion v is defined as the ratio of the between-cluster dispersion
and the within-cluster dispersion for all clusters. A threshold could be set to filter
out episodes with less well-defined clusters. The score is higher when clusters are
dense and well separated.
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We chose to use K-Means for clustering instead of Gaussian Mixture Models
(GMM), as we found the slightly better quality criteria (e.g., average silhouette
score of 0.46 vs. 0.44). The impact of setting different thresholds for silhouette
score and variance ratio is illustrated in Table 3. The two columns under Com-
bined Fulfilled show the number of podcast episodes in which all three quality
criteria are fulfilled, and their share of the total number of episodes. The three
criteria are also shown individually under Standalone Fulfilled. The first criterion
measures the number of episodes in which at least one sample silhouette score in
each of the episodes’ clusters is above the average silhouette score. The criterion
is independent of the thresholds of the other criteria and therefore remains con-
stant. The second and third criteria measure the number of episodes where the
average silhouette score and the variance ratio are above the threshold displayed
below the Threshold columns.

4 SEP-28k-Extended

The extended data set created for this paper, SEP-28k-Extended (SEP-28k-E),
is available online.1 It contains information about the gender and number of
speakers to expect in the clips taken from each episode, and a label, identifying
the podcast hosts. The dataset repository contains the original content of SEP-
28k with the additional metadata and instructions for using the data.

Table 3. Impact of varying silhouette score and variance ratio thresholds on the qual-
ity of speaker labels obtained using K-Means clustering. Thirty-three episodes were
excluded from the analysis since they contained only one speaker. The numbers below
indicate the number of episodes meeting the specified quality criterion thresholds.

Threshold Standalone Fulfilled Combined Fulfilled

Silhouette
Score

Variance
Ratio

1.
All Above
Average

2.
Silhouette

Score

3.
Variance

Ratio
Episodes

% of
Total

0.20 10 278 332 331 270 76.7%

0.30 20 278 317 281 234 66.5%

0.40 30 278 272 197 166 47.2%

0.50 40 278 123 135 72 20.5%

1 https://github.com/th-nuernberg/ml-stuttering-events-dataset-extended.

https://github.com/th-nuernberg/ml-stuttering-events-dataset-extended
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Table 4. Shares of clips that belong to podcast hosts in the SEP-28k dataset.

Podcast Host Clips Host Share % of total clips Cumulative

WomenWhoStutter Pamela Mertz 9163 69.2% 22.63% 22.63%

HeStutters Pamela Mertz 3684 71.5% 9.40% 32.02%

StutterTalk Peter Reitzes 5064 63.2% 11.42% 43.45%

StutteringIsCool Daniele Rossi 3853 66.6% 9.16% 52.60%

MyStutteringLife Pedro Peña 2339 79.4% 6.63% 59.23%

HVSA TJ Travor 736 53.0% 1.39% 60.62%

IStutterSoWhat Evan Sherman 870 43.8% 1.36% 61.98%

4.1 Speaker Imbalance

Across all 385 podcast episodes, there are 42 (11%) episodes in which the esti-
mated speaking time of a single speaker (most likely the host) is above 90%
and 92 (24%) episodes in which the estimated speaking time is above 80%. This
indicates that the dataset is dominated by a few speakers, which possibly has
a detrimental influence on the generalisation ability and validity of evaluation
results. Table 4 shows the share of clips belonging to various podcast hosts rel-
ative to the total number of clips in a podcast. The StrongVoices (SV) podcast
has two hosts, which makes the automatic assignment of a cluster label to the
host speaker more difficult, so we excluded it from the analysis. There are about
500 unique speakers in the dataset, but Table 4 displays the strong dominance of
only four speakers, which are in 59% of all clips (see column Cumulative). This
makes it very difficult to split the dataset so that it does not introduce a strong
bias w.r.t. the dominant speakers.

4.2 Data Partitioning Considering Metadata

This section briefly describes four different speaker-exclusive dataset splits, that
were created considering the peculiarities of SEP-28k. Each split has its purpose
and tests another facet of a detection method. The priorities for creating test,
development, and training set, in order, where speaker-exclusiveness, label dis-
tribution, and gender distribution; statistics for the newly created splits can be
viewed in Table 5.

The SEP-12k split consists of about 12,000 clips taken from the original
dataset. These are all clips that are not associated with the top-four dominant
speakers. We suggest evaluating the split using five-fold cross-validation without
overlapping speakers between the folds. The use of this split tests a method’s
ability to use many speakers with only few samples for training while also eval-
uating the method on many unseen speakers.

The SEP-28k-E split is partitioned into training, development, and test.
The training partition contains only clips belonging to the top-four dominant
speakers. The split can be used to test a method’s ability to learn from many
examples provided by few speakers.

The SEP-28k-T and SEP-28k-D splits are similar to each other as well
as to SEP-28k-E. They can be used to evaluate a model’s capability to train on
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Table 5. Composition of train, test and development set of SEP-28k-E and SEP-12k

SEP-28k-E train SEP-28k-E dev SEP-28k-E test SEP-12k

Block 11.57 % 12.84 % 12.01 % 12.48 %

Interjection 22.94 % 18.79 % 19.51 % 19.10 %

Prolongation 9.87 % 10.07 % 10.13 % 10.15 %

Sound repetition 8.13 % 10.40 % 6.69 % 8.57 %

Word repetitions 9.98 % 8.79 % 10.48 % 9.67 %

No stuttered words 56.92 % 55.78 % 58.15 % 56.81 %

Total # 15213 6402 6562 12804

relatively few samples by many different speakers and review its performance on
only a few speakers with many samples. The test partition consists of the four
dominant speakers, and the development and training set are an equal size split
of the remaining clips. SEP-28k-D uses the same partitioning as SEP-28k-T but
switches the test and development partitions.

5 Experiments

The experiments described in this section are formulated as binary classification
tasks that vary mostly w.r.t. the data partitioning used. To evaluate the influence
of different data partitioning strategies on classification results, we performed
experiments using a classification head on top of a frozen W2V2 feature extrac-
tor, and SVM classifiers with radial basis function (rbf) kernels on seven different
data-partitioning strategies; a leave-one-podcast-out strategy, speaker agnostic
five- and ten-fold cross-validation, three different balanced, speaker separated
train/validation/test splits considering the additional metadata from SEP-28k-
E, and five-fold speaker-separated cross-validation on the SEP-12k subset. All
results reported are F1-scores for the dysfluency classes, which is the harmonic
mean of precision and recall and was also used for evaluation of the baseline
systems by the original authors of SEP-28k [11].

The leave-one-podcast-out strategy uses data from all podcasts for training
and validation and uses data from the podcast that was left out for testing.
Both podcasts, He Stutters and Women Who Stutter, have the same host; we,
therefore treat them as one podcast labeled as HeShe in the classification exper-
iments. Both cross-validation splits are performed completely agnostic to the
speaker and podcast label. All cross-validation experiments were performed five
times. We report the mean and the respective standard deviation of these results.

The training uses a single weighted cross-entropy loss term with an initial
learning rate of 0.001, a batch size of 200, training for up to 200 epochs using the
adam optimizer, with early stopping if the development loss is not decreasing
for 10 epochs. The optimal position of the classification head after W2V2 trans-
former layer L was determined from L ∈ {1, 2, . . . , 12} using cross-validation on
the respective development partition.
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Table 6. Results (F1-Scores) for experiments with leave-one-podcast-out evaluation.
Column headers are indicating the podcast name used as test-set.

HVSA ISW MSL SV ST SIC HeShe Mean (std)

SVM

Blocks 0.34 0.37 0.32 0.40 0.33 0.29 0.36 0.34 (0.03)

Interjections 0.73 0.68 0.62 0.48 0.73 0.71 0.70 0.66 (0.08)

Prolongations 0.53 0.50 0.46 0.54 0.45 0.44 0.44 0.48 (0.04)

Sound repetitions 0.39 0.70 0.38 0.19 0.45 0.36 0.41 0.41 (0.14)

Word repetitions 0.34 0.35 0.43 0.31 0.50 0.42 0.49 0.41 (0.07)

NN

Blocks 0.19 0.21 0.16 0.23 0.19 0.15 0.17 0.19 (0.03)

Interjections 0.65 0.63 0.58 0.44 0.71 0.68 0.68 0.62 (0.09)

Prolongations 0.42 0.37 0.44 0.45 0.31 0.40 0.39 0.40 (0.05)

Sound Repetitions 0.27 0.62 0.40 0.14 0.38 0.36 0.37 0.36 (0.14)

Word Repetitions 0.25 0.26 0.42 0.34 0.42 0.37 0.40 0.35 (0.07)

The optimal hyperparameters and input features for the SVM classifiers were
determined using grid search in five-fold cross-validation on the respective devel-
opment sets described in Sect. 2. The kernel parameter γ was selected from the
set γ ∈ {10−k | k = 1, . . . , 4} ⊂ R>0, the regularisation parameter C was
selected from C ∈ {1, 10, 100} ⊂ N>0, and the W2V2 extraction layer L was
selected from L ∈ {1, 2, . . . , 12}.

5.1 Results

We observed that across most experiments, using the SVM on the extracted
W2V2 features outperforms the simple mean-pooling based classification head
(NN). Analyzing results on the podcast level, as done in Table 6, reveals a wide
spread of results, with relative differences of up to 37% for blocks, 52% for
interjections, 20% for prolongations, 268% for sound repetitions, and 61% for
word repetitions.

Table 7 contrasts the results for the speaker agnostic splits (5/10-fold-cv), the
average results over the leave-one-podcast-out (LOPO) cross-validation(CV),
SEP12k-CV results, and the three train-development-test splits described in
Sect. 4.2. Results on the speaker agnostic CV splits are slightly more optimistic
than the LOPO results except in one case. The effect is more pronounced in the
experiments using the neural network classification head on top of the W2V2
model. Each CV result reported, is to be interpreted as the mean of five unique
CV runs, each using different random seeds for splitting. Results for ten-fold CV
and five-fold CV are very similar and vary only slightly across multiple valida-
tion runs, which is indicated by the small standard deviation of the results, and
also shows that results are converging after multiple runs. Experimental results
of prolongations are an outlier, being the only time LOPO results are greater
than 5- and ten-fold CV.

Results for NN on the SEP-28k-E split are among the best for word repeti-
tions and prolongations and are overall slightly optimistic compared to LOPO,
SEP28k-T, SEP-28k-D, and SEP-12k results. SVMs achieve decent performance
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Table 7. Results (F1-scores) for non-speaker exclusive cross-validation experiments,
leave-one-podcast-out (LOPO), five-fold CV results on SEP-12k, and three differ-
ent speaker exclusive splits from SEP-28k-E, omitting “SEP” in the interest of
brevity. LOPO and CV results are reported in the formant mean (std).(Bl=block,
Pro=prolongation, Wd=word repetition, In=interjection)

5-fold CV 10-fold CV LOPO SEP-12k 28k-E 28k-T 28k-D

SVM

Bl 0.36 (0.03) 0.36 (0.03) 0.34 (0.03) 0.34 (0.02) 0.33 0.33 0.33

In 0.71 (0.01) 0.71 (0.01) 0.66 (0.08) 0.64 (0.03) 0.68 0.70 0.70

Pro 0.46 (0.02) 0.47 (0.02) 0.48 (0.04) 0.44 (0.03) 0.46 0.43 0.44

Snd 0.46 (0.05) 0.47 (0.03) 0.41 (0.14) 0.41 (0.06) 0.39 0.41 0.42

Wd 0.51 (0.03) 0.52 (0.03) 0.41 (0.07) 0.42 (0.05) 0.51 0.45 0.45

NN

Bl 0.22 (0.02) 0.22 (0.02) 0.19 (0.03) 0.22 (0.05) 0.19 0.19 0.21

In 0.69 (0.01) 0.69 (0.02) 0.62 (0.09) 0.66 (0.02) 0.65 0.69 0.70

Pro 0.41 (0.02) 0.41 (0.02) 0.40 (0.05) 0.40 (0.04) 0.41 0.39 0.39

Snd 0.43 (0.02) 0.42 (0.03) 0.36 (0.14) 0.38 (0.03) 0.39 0.37 0.38

Wd 0.44 (0.02) 0.44 (0.03) 0.35 (0.07) 0.40 (0.01) 0.46 0.39 0.40

on SEP-28k-E, with overall results slightly less optimistic than the speaker agnos-
tic CV experiments. Compared to the SEP-12k evaluation scenario, results on
SEP-28k-E are slightly better for interjections and prolongations, substantially
better for word repetitions, and slightly worse for sound repetitions and blocks,
but within the expected deviation.

5.2 Discussion

It is hard to directly compare the results of all splits and strategies introduced
in this paper, as they vary greatly w.r.t. the amount of training data and their
speaker composition. Results from the experiments utilizing the LOPO strategy
reveal that evaluation results on unique splits can vary considerably, and there is
potential for cherry-picking particularly favourable subsets for reporting results.
There are many possible splits and there will never be only one perfect evaluation
strategy. Despite this, common ground has to be established; otherwise, it is not
possible to compare methods. For a fair evaluation that makes sure that systems
detect dysfluencies reliably and independent of the speaker, it is paramount to
avoid having audio samples of speakers in the test set that are either in the
development or training set. In scenarios such as long-term monitoring, it might
be advisable to adapt models to a speaker, but this requires different methods,
datasets, and evaluation scenarios. This is supported by the slightly optimistic
results on the speaker agnostic CV splits.

Keeping in mind what gets evaluated using a certain data split or evalua-
tion method is important when comparing the results of different methods for
dysfluency detection. The five-fold CV experiments on the SEP-12k subset, con-
sisting of speech from many speakers, consistently yield lower F1-scores across
most experiments. Even though less training data was used for training and
testing, these experiments indicate that speaker-independent splits can lead to
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worse results. SVMs can learn solid decision boundaries from only a few good
representatives, which at least makes the SVM results a fair comparison.

The problem of the speaker imbalance in the dataset cannot be solved for the
whole dataset, no matter which speaker-exclusive split is used, as the dominant
speakers, almost certainly bias the training process, no matter in which data
partition they are. An ideal speaker-independent evaluation would be a leave-
one-speaker-out evaluation, but this is not feasible for large datasets with many
unique speakers and would probably harm overall progress in the interest of
supposed maximum fairness.

Therefore, we suggest using the SEP-28k-E split for swift and easy develop-
ment with a fixed train-test-validation split. Still, this does not guarantee per-
fect generalisation, as it is only trained on a few speakers, but the development-
and test-set vary considerably and can hopefully provide realistic results. When
adapting the weights of a neural network pre-trained on data from a few speakers
with transfer learning, we expect that even a few out-of-domain samples from
multiple speakers will lead to greater generalisation.

The approach in this paper is limited w.r.t. the classification methods used,
that was not specifically tailored for each dysfluency type. Therefore results
vary greatly for different dysfluency types. Especially those that need longer
temporal context or a higher temporal-resolution, such as word-repetitions, and
blocks suffer from the method employed. Still, all experiments achieve above
chance-level results [11], making the demonstrated differences based on multiple
data partitionings meaningful. Even though, we strongly believe that the semi-
automatically generated speaker labels are valid, there are limitations. The splits
created and used here did use the least restrictive clustering criteria in order to
keep all training data. Some episodes have hosts from other podcasts appearing
as guests, or episodes of, e.g., StutterTalk feature former guests as hosts for
some episodes. We tried to account for this with manual rules but are aware
that this speaker separation will not be perfect. If one seeks maximum speaker
independence, the meta data and quality metrics provided allow the exclusion
of such clips.

6 Conclusion

SEP-28k is a very valuable resource when working on new methods and appli-
cations for dysfluency detection systems because it significantly increases the
amount of training data available, but one has to be aware of peculiari-
ties that might lead to problems. This paper contributed important insights
into working with the SEP-28k dataset. We created and published SEP-28k-
Extended, as an addition to one of the largest freely available resources contain-
ing labeled stuttered speech. It provides semi-automatically generated speaker
labels obtained using K-Means clustering on ECAPA-TDNN speaker representa-
tions. The speaker labels are accompanied by quality metrics for these automati-
cally generated speaker labels, enabling the creation of new speaker-independent
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splits with different levels of strictness. We hope to raise awareness about poten-
tial problems when working with SEP-28k and provide potential remedies to a
few.

Based on the generated and retrieved metadata, we suggest five different
possible splits, each with a different evaluation goal alongside baseline results.
Thus, establishing common ground for the future evaluation of dysfluency detec-
tion methods using the SEP-28k dataset.
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Abstract. Standardized tests play a crucial role in the detection of cog-
nitive impairment. Previous work demonstrated that automatic detection
of cognitive impairment is possible using audio data from a standardized
picture description task. The presented study goes beyond that, evaluat-
ing our methods on data taken from two standardized neuropsychological
tests, namely the German SKT and a German version of the CERAD-
NB, and a semi-structured clinical interview between a patient and a
psychologist. For the tests, we focus on speech recordings of three sub-
tests: reading numbers (SKT 3), interference (SKT 7), and verbal flu-
ency (CERAD-NB 1). We show that acoustic features from standardized
tests can be used to reliably discriminate cognitively impaired individu-
als from non-impaired ones. Furthermore, we provide evidence that even
features extracted from random speech samples of the interview can be
a discriminator of cognitive impairment. In our baseline experiments, we
use OpenSMILE features and Support Vector Machine classifiers. In an
improved setup, we show that using wav2vec 2.0 features instead, we can
achieve an accuracy of up to 85%.

Keywords: dementia screening · pathological speech ·
paralinguistics · neuropsychological tests

1 Introduction

In geriatric patients, dementia represents one of the most common condition
seen in the psychiatric consultation service of a general hospital. According to
the WHO, over 55 million people worldwide were living with dementia in 2020
[28]. This number will nearly double every 20 years, reaching 78 million in 2030
and 139 million in 2050. The estimated annual global cost of dementia currently
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exceeds US$ 1.3 trillion and is expected to rise to US$ 2.8 trillion by 2050, of
which more than half is care costs.

Dementia is characterized by a loss or decline of function; in addition to
memory impairments, patients exhibit one or more of aphasia, apraxia, agnosia
or impairments of executive function. These symptoms can relate to different
neurological conditions (e.g., Alzheimer’s). Due to its typically insidious onset,
dementia is in many cases detected too late. Early diagnostic clarification with
the resulting possibility of a rapid start of treatment is key to slowing the pro-
gression of dementia and thus achieving a gain in quality of life for the patient
and their family caregivers. Dementia screening and monitoring enable early
detection, classification and tracking of cognitive decline.

In addition to medical examinations (e.g., brain imaging), a combination
of medical and psychological history taking, cognitive testing, and the use of
rating scales is the gold standard for dementia screening in clinical or research
settings [9]. To that end, standardized tests play a key role in clinical routine
since they aim at minimizing subjectivity by measuring performance on a vari-
ety of cognitive tasks. Tests typically target both short- and long-term memory
and cover tasks such as naming, memorizing, counting and recalling objects,
or general situational awareness. The widely used Mini Mental State Examina-
tion (MMSE), the Clock Drawing Test (CDT), the Mini-Cog test, the German
SKT [26], among other cognitive scales have gained acceptance since they are
brief while still showing good sensitivity and specificity [25]. Neuropsychological
test batteries such as the Boston Diagnostic Aphasia Exam (BDAE) [7]) and
the CERAD-NB [18] evaluate various perceptual modalities (auditory, visual,
gestural), processing functions (comprehension, analysis, problem-solving), and
response modalities (writing, articulation, manipulation). They include common
sub-tests such as the Cookie Theft Picture Test (CTP), the Boston Naming Test
(BNT), and the Verbal Fluency Test (VFT). Additionally, history taking inter-
views assist in looking for further dementia indicators related to activities of daily
living (ADL), mood, physical activity and more. Such interviews and tests are
administered by trained physicians or psychologists who spend about 30–60 min
with the patient. With waiting times for appointments frequently exceeding six
months, automated dementia screening could help to monitor patients closely
and prioritize urgent cases for in-person appointments.

The automation of dementia screening based on speech is an area of high
interest; it was previously covered by the ADReSS and ADReSSo challenges
[16,17]. Previous work shows strong evidence for the effectiveness of speech-
based screening in dementia patients, even at early stages, and focuses primarily
on the publicly available DementiaBank [5]. [2,13,15,16,20] obtained convincing
results on spontaneous speech of the CTP from the BDAE. Free recall tasks of
visual material, such as the CTP, have the advantage of eliciting speech on a
common topic, making it more self-contained and thus easier to process. The
same is true for elicited speech based on free recall tasks from moving images,
such as short films [27]. Most work uses either fluency [12,14] or deep speech
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markers [17] for classification, as these show high selectivity for discriminating
patients with cognitive impairment from healthy controls.

This paper describes and reports the results of baseline experiments on the
automated evaluation of a semi-structured clinical interview and three stan-
dardized sub-tests from the Syndrom-Kurz-Test (SKT, translates to “Syndrome
Short Test”) and the Consortium to Establish a Register for Alzheimer’s Dis-
ease Neuropsychological Battery (CERAD-NB). The speech data used in the
experiments comprise 101 recordings of conversations between patients and psy-
chologists collected during dementia screening sessions at the Memory Clinic of
the Department of Psychiatry and Psychotherapy, Nuremberg Hospital in Ger-
many. In our experiments, Support Vector Machine (SVM) classifiers are used
in conjunction with openSMILE (OS) and wav2vec 2.0 (W2V2) features to test
the feasibility of using speech data to automatically evaluate three sub-tests and
categorize patients into cognitively impaired and non-impaired. In addition, we
investigate whether this classification is possible using short segments of spon-
taneous speech extracted from the clinical interview.

2 Data

All dementia screenings were carried out at the Memory Clinic (“Gedächtnis-
sprechstunde”) of the Department of Psychiatry and Psychotherapy, Nuremberg
Hospital, Germany.1 From an ongoing recording effort, to date, a total of 101
recordings of German-speaking subjects aged 55 to 88 years (µ = 73.9 ± 8.5)
have been acquired (40 male, 61 female). Their medical diagnoses range from no
or mild cognitive impairment to mild and moderate dementia. The fact that the
data includes patients with no cognitive impairment despite being referred to the
Memory Clinic makes this data set somewhat unique: typically, such “healthy
controls” would be recruited separately.

All participants underwent a three-part screening procedure: clinical inter-
view (cf. Sect. 2.2); SKT and CERAD-NB tests; two questionnaires for self-
assessment of mood (GDS-K: Geriatric Depression Scale Short Form) and activ-
ities of daily living (B-ADL: Bayer-Activities of Daily Living Scale).

Data includes labels for SKT and CERAD-NB sub- and total scores, both as
raw and normalized values, as well as coded medical and psychological diagnoses
(work in progress). Metadata includes sex, age, smoker/non-smoker, medication
(antidementives, antidepressants, analgesics), GDS-K, B-ADL (self and infor-
mant assessment), NPI (Neuropsychiatric Inventory, informant assessment), IQ-
range (below average, <90; average, 90–110; above average, >110), and years of
education. Furthermore, we labeled the data with start and end times for each
of the sub-tests.

The audio recordings consist of 83.3 h of speech and were performed with a
Zoom H2n Handy Recorder in XY stereophonic mode, positioned between the
patient and the psychologist in such a way that level differences between the
1 Research approved by the Ethics Committee of the Nuremberg Hospital under File

No. IRB-2021-021; each subject gave informed consent prior to recording.
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Fig. 1. Example templates of the sub-tests SKT 3 (left) and SKT 7 (right) from the
original SKT Manual [26].

left (psychologist) and right (patient) channels could be used to separate the
speakers. The audio samples were recorded in 16-bit stereo wav format with a
sampling rate of 48 kHz and later converted to uncompressed PCM mono wav
format with a sampling rate of 16 kHz. Both psychologists and patients reported
that they were not affected by the presence of the device. Due to the Corona
pandemic, psychologists and patients wore surgical or KN95 masks that affect
the speech signal according to [19]. The speech of some subjects exhibits strong
forms of local accents and dialects.

2.1 Standardized Sub-Tests

The dataset contains recordings from screening sessions, including time-labeled
segments with speech from subjects performing the standardized sub-tests of
SKT and CERAD-NB. We selected recordings from three sub-tests that we con-
sidered particularly suitable for classification experiments using only acoustic
features; the time limit of all three tasks is one minute. The following section
provides a brief description of the sub-tests and the data.

SKT 3 (reading numbers). Sub-test SKT 3 starts with the psychologist
asking the patient to read the two-digit numbers written on the colored game
pieces (Fig. 1, left) out loud in the direction of reading; this should be done as
quickly as possible. We chose this reading task because of its simplicity compared
to the other sub-tests; patients with mild impairments usually still perform well
in it. The time needed to complete the task is converted into norm values from 0
(no impairment) to 3 (severe impairment). These values are normalized according
to age and IQ-group (below average, average, above average) [26]. With a cut-off
value of 1 (mild impairment), we separate the subjects into impaired (1–3) and
non-impaired (0) and observe an almost balanced class distribution of 47/54
respectively.

SKT 7 (interference test). Sub-test 7 is an interference test (Fig. 1, right). It
measures the “disposition rigidity” according to R.B. Cattell [8], i.e., the mental
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ability to switch. The aim is to learn to quickly break through intensively learned
responses (here: the alphabet). A sequence consisting of two repeating letters
(e.g., “A” and “B”) is to be read as quickly and accurately as possible. The
particular challenge is that the subject has to read one letter but say the other
(i.e., read “A” but say “B” and vice versa). The underlined letters serve to
explain the task and are not to be worked on by the patient and thus are not
included in the temporal evaluation. We chose this interference test because it is
comparatively the most demanding in terms of subjects’ cognitive performance.
It happens that more severely impaired patients do not understand the task or
achieve only very low performance. The merit of this task lies in its sensitivity to
mental performance impairment: Especially in the range of questionable or very
mild impairments, it can differentiate best. As in sub-test 3, the time required is
converted into norm values from 0 to 3 and a cutoff value of 1 is set, resulting in
a balanced class distribution of 50/51 for non-impaired and impaired subjects,
respectively.

CERAD-NB 1 (verbal fluency test). The CERAD-NB 1 is used to examine
the speed and ease of verbal production ability, semantic memory, linguistic
ability, executive functions, and cognitive flexibility. The psychologist conducting
the sub-test asks the patient to name as many different animals as possible within
one minute; the number of correctly named animals forms the basis for the test
score. We choose this verbal fluency test (VFT) because it has already been
shown to be suitable for our purpose in related work [12,14]. The CERAD-NB
1 raw values (number of named animals) are normalized taking into account the
influence of age, education level, and sex according to [6] and then converted to
z-scores. The z-score indicates by how many standard deviations a found value
deviates from the mean of the population. Statistics of the studied healthy norm
population from [1] are used as reference. However, there are inherent selection
biases in the overall (Memory Clinic) and study (mildly impaired) populations,
and at the time of writing there is no compensating healthy control group,
making class separation considerably more difficult. While SKT 3 and SKT 7
address the patient’s mental attention, CEARD-NB 1 differs in execution and
examines mental production. To obtain a conclusive class division despite these
limitations and differences, we calculate the z-score threshold for CERAD-NB 1
based on the individuals matched in the classes for SKT 3 and SKT 7 (73%),
i.e., between the two groups for true-positive (impaired) and true-negative (non-
impaired). The resulting z-score of −1.2 leads to a balanced distribution of 50/51
for the non-impaired (> −1.2) and impaired (≤ −1.2) classes in our data set.

2.2 Clinical Interview

The semi-structured clinical interview includes questions on memory, orienta-
tion, attention, activities of daily living, mood, sleep quality, appetite, physical
activity, and medication of the patient. It also includes an intro (greeting and
introduction of the interview part) at the beginning and a final part (intro-
duction of the testing part) by the psychologist. For this reason, we extracted
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samples (4×30 sec) from the middle (at 30%, 40%, 50% and 60%) of the inter-
view to capture as much patient speech as possible; ground truth diarization was
available from manual transcriptions of 30 patients.

For the interview samples, we use the CERAD-NB 1 labels as targets since
speech of the VFT is inherently more similar to the spontaneous speech from
the interview and also allows for more deep speech markers than the other two
tasks (more in Sect. 5).

3 Methods

This section briefly describes the features used for the machine learning experi-
ments conducted.

3.1 openSMILE

OpenSMILE is a popular toolkit that is used for the extraction of audio features
[11]. The toolkit computes several functionals over low-level descriptor (LLD)
contours in a brute-force approach. In our experiments, we use the ComParE
2016 feature set, which consists of 6373 static features. OpenSMILE features are
widely used in baseline experiments. The features have been shown to achieve
proper baseline performance in numerous paralinguistic applications such as gen-
der detection, age detection, or speech emotion recognition [23,24].

3.2 wav2vec 2.0

Models based on transformer architectures achieve state-of-the-art performance
in various areas. Early breakthrough results have been achieved in the natural
language processing domain [10]. Wav2vec 2.0 (W2V2) is a neural network model
based on the transformer architecture designed for learning speech representa-
tions from raw audio data. The model is usually pre-trained with large amounts
of unlabeled audio data [4]. The W2V2 model takes raw waveform audio data as
inputs, which are processed by a Convolutional Neural Network (CNN) encoder,
followed by a contextualized transformer network and a quantization module.
The CNN generates latent representations directly from the waveform inputs,
which are then discretized by the quantization module. The convolutional fea-
ture extractor is followed by twelve contextualized transformer blocks that use
self-attention to make the model focus on the parts of the audio relevant to
respective tasks. The model can be used as a feature extractor with or without
adaptation.

W2V2 features are contextualized audio representations that encode infor-
mation about a vector’s relationship at time step t to other vectors inside the
extraction window [4]. Due to the way transformer models are trained, they are
capable of extracting many aspects of the underlying data. The W2V2 model
yields different speech representations after every transformer block, encoding
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the audio depending on the position in the processing hierarchy. Thus, the rep-
resentations after each layer focus on different aspects of the encoded audio,
making them more or less useful for a particular task [3]. Features extracted
from the model have been successfully applied to tasks such as phoneme recog-
nition, speech emotion detection, and mispronunciation detection [4,21,29].

The W2V2 features used in our experiments were extracted from models
pre-trained unsupervised on 960 h of speech from the LibriSpeech corpus. We
hypothesize that features extracted using only the weights obtained with unsu-
pervised training will emphasize fine-grained differences in speech, as opposed
to features that were fine-tuned for speech recognition, since these must reduce
differences to be more robust w.r.t. articulation and speech production in order
to increase robustness of speech recognition. The model takes the raw wave-
form audio data as inputs and returns 768-dimensional speech representations
after each transformer block, representing roughly 0.02 s of audio. This yields
N = T/0.02− 1 vectors for the extraction context of T, i.e. 449 vectors with the
extraction context of 10 s used. For the speech data of each sub-test, we extract
features and, analogous to mean pooling along the time dimension, compute a
mean vector over all extracted feature vectors of a sample. As a result, we obtain
one vector representing the audio of the respective sub-test. For the interview
audio data, we take the mean for the samples extracted at the specified relative
duration and perform the same processing, yielding four vectors for each subject.

4 Experiments

Our experiments aim to differentiate the speech of individuals who are cogni-
tively impaired from the speech of individuals who are not cognitively impaired
in the context of their performance on neuropsychological tests. The experiments
are conducted with speech data from the three sub-tests described in Sect. 2.1
and with speech data extracted at specific points in the semi-structured interview
described in Sect. 2.2, relative to the duration of the interview.

The experiments using speech data from the standardized sub-tests are sim-
ilar to experiments conducted with data from the ADReSSo challenge, which
includes recordings of patients and healthy control speakers performing the CTP.
Since subjects are asked to perform a standardized task in a given time, the
speech samples should be inherently comparable, making them ideal for experi-
mentation. There are however some limitations to our experiments: At the time
of writing, we do not have an independent healthy control group, which is why we
relate the labels for cognitive impairment to performance on the three sub-tests.
Thus, performance on the sub-tests is not necessarily equivalent to the subject’s
diagnostic cognitive state. We choose labels for impaired and non-impaired for
SKT 3, SKT 7, CERAD-NB 1 according to Sect. 2.1 and for the interview speech
samples according to Sect. 2.2.

We use Support Vector Machine (SVM) classifiers with radial basis function
kernels (rbf) as they allow for quick experiment turnaround and are able to
learn from only a few samples. The optimal hyperparameters for the SVM and
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Table 1. Average classification accuracy and standard deviation (in %) over the five
test folds using OpenSMILE (OS) and wav2vec 2.0 (W2V2) features for SKT 3, SKT
7, CERAD-NB 1, and the interview (predicted on CERAD-NB 1 label). For W2V2,
the best numbers after investigating the classification performance of features taken
from the 12 different layers of the model are shown.

Method SKT 3 SKT 7 CERAD-NB 1 Interview

OS 78.1 ± 5.4 84.8 ± 2.1 67.6 ± 7.1 53.5 ± 3.3

W2V2 82.9 ± 4.3 84.8 ± 7.1 77.1 ± 8.5 67.3 ± 4.4

the respective input features for the SVM classifiers were determined using grid
search in stratified five-fold cross-validation on the respective training portion
of the data.

We use five-fold cross-validation of disjoint speakers. For the sub-tests, the
data was split into five distinct training sets comprising 80% of the data and
test sets comprising the remaining 20%. The training test partitioning of the
interview segment data (4 segments/speaker) uses stratified group partitioning
for speaker-exclusive folds considering label distribution. Each training portion
is then split again into five folds to determine the best hyperparameters in a
stratified five-fold cross-validation. The kernel parameter γ was selected from
the set γ ∈ {10−k | k = 1, . . . , 5} ⊂ R>0, the regularization parameter C was
selected from C ∈ {10k | k = −1, . . . , 3} ⊂ N, and specific to the experiments
conducted using W2V2 features, the W2V2 extraction layer L was selected from
L ∈ {1, 2, . . . , 12}.

We evaluate our models’ performance by accuracy, which is a good indicator
of model performance since the data set is mostly balanced between the classes.

4.1 Results

Table 1 contains the experimental results. We report the average classification
accuracy over all five test folds using OS and W2V2 features.

With OS features, we observe solid classification results on the sub-tests
SKT 3, SKT 7 and CERAD-NB 1 with accuracies of 78.1%, 84.8% and 67.6%,
respectively. Using the speech samples taken from the interview, OS features do
not seem to provide any discriminatory power, leading to results at chance level.

Table 1 contains the best results using W2V2 features. We investigated the
classification performance w.r.t. the features taken from the 12 different layers
of the W2V2 model. To that end, Fig. 2 depicts the performance of classifiers
utilizing W2V2 features taken from each of the 12 layers for each task. Experi-
ments on the constrained tasks of reading numbers (SKT 3) and the interference
test (SKT 7) achieve adequate to high accuracies on all W2V2 layers, with both
reaching their maximum accuracy of 82.9% (SKT 3) and 84.8% (SKT 7) on layer
8. This suggests that markers of cognitive status for constrained speech tasks
are amplified in the upper-middle layers of the processing hierarchy. The VFT
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Fig. 2. Average classification accuracy over the five test folds for features taken from
each of the 12 wav2vec 2.0 layers for SKT 3, SKT 7, CERAD-NB 1, and the interview.

is the task of naming animals (CERAD-NB 1), which is intrinsically more open-
ended than the other two tasks focusing on production instead of attention; the
speech and content will therefore vary more from patient to patient. Neverthe-
less, experiments on CERAD-NB 1 are promising, yielding an accuracy of up
to 77.1% using features extracted from W2V2 layer 5. For the selected speech
segments from the interview, the average accuracy does not vary much across
the layers, ranging around 66%. Here, we obtain the best classification result on
layer 1 with 67.3% accuracy. We therefore hypothesize that spontaneous speech
taken from a semi-structured interview may be sufficient to extract discriminat-
ing speech features that can help with the detection of cognitive impairment.

5 Discussion

Even though we achieve partly high accuracies on the SKT 3 and SKT 7, it
is important to question whether the features represent “deep speech markers”
that lead to these results or whether they rather capture basic features such as
delays and rate of speech. It is noticeable that OS features perform as well as
W2V2 features on the SKT 7. This could be due to the fact that this sub-test has
a high sensitivity for mental performance impairment, which in turn is reflected
in basic acoustic features, such as the ones extracted with OS. It is becoming
clear that there will be no one-fits-all method for automating the entire SKT and
CERAD-NB test inventories. This may be well suited for the CTP, as it captures
both attention (timing constraints) and production (picture description) in one
test and thus allows screening for dementia in general. However, we focus on
test inventories that intentionally cover a number of different neuropsychologi-
cal domains with specific tests in order to obtain a detailed diagnostic picture
of the patient, which therefore will also require a differentiated investigation in
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methodology. Thus, an important finding for us is the question of which sub-tests
are actually suitable for acoustic evaluation and which sub-tests should rather
be evaluated at a textual or even semantic level. All the more we would like
to emphasize the result that the classification on the spontaneous speech of the
interview already worked in our basic experiment with random samples. Man-
ual transcriptions for all patients, which are in progress, will allow the targeted
selection of patient speech in the interview and thus a more accurate interpreta-
tion of the results. Once the medical and psychological diagnoses are finalized,
a detailed analysis of the diagnoses, e.g., Alzheimer’s dementia (AD) or mild
cognitive impairment (MCI), of the misclassified individuals could be helpful in
understanding and improving the results. For example, AD patients are presum-
ably more likely to be identified in language production, whereas MCI patients
should be evaluated semantically.

6 Conclusion

We successfully classified cognitive impairments in three neuropsychological sub-
tests, namely the SKT 3, SKT 7, and CERAD-NB 1, by using OS and W2V2
features from the elicited speech of these standardized tests to train SVM clas-
sifiers. Using OS features, we demonstrated high accuracies of 78.1% (SKT 3),
84.8% (SKT 7), and 67.6% (CERAD-NB 1), which remained the same for SKT
7 but improved to 82.9% and 77.1% for SKT 3 and CERAD-NB 1, respectively,
when using W2V2 features. We found that constrained speech (SKT 3 and 7)
performed best at level 8, while speech from a fluency task (CERAD-NB 1)
performed best at level 5. Spontaneous speech (interview), on the other hand,
showed similar performance on all layers, with layer 1 performing slightly better
than the others. In addition, we provided conclusive evidence that spontaneous
speech from the interview can be used to extract discriminating features for the
detection of cognitive impairment.

The task of automating test inventories such as the SKT and the CERAD-
NB is difficult, and there will probably never be just one universal method to
accomplish this. Just as the original tests are an ensemble of specialized sub-
tests that target different neuropsychological domains, tailored methods will be
needed to automatically evaluate the sub-tests. In the future, the analysis of
completed diagnoses and the inclusion of a healthy control group will help to
define more distinct classes. For the experiments on the spontaneous speech
of the interview, automatic as well as manual transcriptions including speaker
diarization will help to target patient speech only and factor out the potential
influence of the interviewer [22].
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Abstract. Due to recent increased interest in data privacy, it is impor-
tant to consider how personal virtual assistants (VA) handle data. The
established design of VAs makes data sharing mandatory. Federated
learning (FL) appears to be the most optimal way of increasing data
privacy of data processed by VAs, as in FL, models are trained directly
on users’ devices, without sending them to a centralized server. How-
ever, VAs operate in a heterogeneous environment – they are installed
on various devices and acquire various quantities of data. In our work,
we check how FL performs in such heterogeneous settings. We compare
the performance of several optimizers for data of various levels of het-
erogeneity and various percentages of stragglers. As a FL algorithm, we
used FedProx, proposed by Sahu et al. in 2018. For a test database, we
use a publicly available Leyzer corpus, dedicated to VA-related experi-
ments. We show that skewed quantity and label distributions affect the
quality of VA models trained to solve intent classification problems. We
conclude by showing that a carefully selected local optimizer can suc-
cessfully mitigate this effect, yielding 99% accuracy for the ADAM and
RMSProp optimizers even for highly skewed distributions and a high
share of stragglers.

Keywords: federated learning · FedProx · natural language
understanding · virtual assistants · ADAM · PGD

1 Introduction

Virtual assistants (VA) were proposed in the early 60s [23]. With the rapid
increase of computational power on consumer electronics it has become possible
to implement and distribute personal VAs that reach millions of users [11,20].

Modern VAs can provide weather information, play music, control IoT
devices, make recommendations or even answer complex questions. They have
become an interface to many digital services. Major tech companies, like Ama-
zon, Apple, Google, Microsoft and Samsung, compete to come up with the best
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solution. Their VAs are powered by complex deep learning models that can rec-
ognize speech, analyze it, and then process it according to user needs. Currently,
the most common way to train the model is to aggregate the data on a server and
train a centralized model, often in an iterative process of updating the training
set and fine-tuning the model.

The data used for the training comes from multiple sources, such as web-
crawling, dictionaries, crowd-sourcing and logs collected from end user devices.
The latter source raises questions about data privacy and relevant regulations
[5]. VAs are usually available all around the globe and there might be legal
barriers to the transfer of data across national borders. Many additional VA-
related privacy concerns have been recently raised [2,4,16]. The main question
that emerges is: how can one conduct effective machine learning (ML) without
exposing users’ data?

Federated learning (FL), originally proposed by [12], tries to answer to this
question. It has been proven to increase data privacy, both in research studies
and practical applications [3,7]. The federated approach keeps the data decen-
tralized and only the local models’ weights are transferred to update the global
model. However, there is one frequent challenge that comes with distributed
data environments: the data on local devices is non-independently and identi-
cally distributed (the so called non-IID data). FedProx is one of the frameworks
that aims to tackle this issue. To our knowledge, so far there have been no studies
that investigate its performance in real-life applications.

We want to bring focus to the problems we faced while improving our VA.
Non-IID data is a significant issue, that has been raised by [19] – the authors of
the FedProx framework. We seek to further research the issue of non-IID data
by comparing the end results on differently distributed data.

In this work we describe a case study using the Leyzer corpus [22], the largest
open-source dataset for VA-oriented intent and domain utterance classification.
We show that the performance of FedProx can be seriously affected by hetero-
geneous data settings in the context of natural language understanding (NLU).
We also demonstrate that proper selection of the local optimizer improves the
overall performance even for significantly skewed label distribution.

2 Related Work

2.1 Federated Learning

FL is a distributed learning paradigm whereby as in edge computing, models are
retrained locally and only then shared with the central server to be aggregated
and redistributed as an improved, consolidated model.

The classical way of improving the model is to:

1. distribute the server trained model to users’ devices;
2. collect the data on how the VA is used by the user;
3. pack the data and send to the main server;
4. use the data both to retrain the model and to improve the test set.
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However, in FL the steps are slightly different:

1. distribute the pretrained model;
2. periodically retrain the local model on users’ devices;
3. send extracted weights from local models to the main server;
4. the main server aggregates the local weights and uses them to update the

main model.

The main advantages of the FL approach over edge computing or standard
ML methods are as follows:

– data is never merged into one dataset; the handling of missing data and
uneven distribution is built into the algorithm;

– the training data is kept on devices and never sent over the network, thus
strengthening data security;

– models on end devices can be improved and (in some cases) also personalized
without forfeiting privacy.

However, FL introduces some challenges. One of them is expensive communi-
cation between the server and user devices. Another one is the impact of system
and statistical heterogeneity on the FL effectiveness [14].

Over recent years research on FL has yielded variations on its conceptual-
ization in order to overcome such challenges [1,18]. One of them is Federated
Averaging (FedAvg), proposed by [17]. In this method, the stochastic gradient
descent (SGD) is used as the local optimizer. In each iteration, K � N clients
are picked and SGD is run locally for E epochs. After each iteration only the
model weights are shared with the server and then averaged.

The authors point out that in FedAvg it is very important to set the hyper-
parameters properly. Increasing the number of local epochs boosts the amount
of computation done on local devices. This, in turn, potentially decreases the
number of connections between the server and end devices. However, setting
local epochs too high in highly heterogeneous environments may cause the end
devices to find only the local optima, which hurts convergence. The increased
load may prevent some devices from finishing their local computation and only
the partial solutions will be dropped during the aggregation phase.

In the Federated Proximity (FedProx) version [19] introduce small modifica-
tions to FedAvg. Firstly, FedProx allows for partial solutions to be aggregated,
meaning that devices with less resources can execute fewer epochs and their par-
tial solutions will still be counted instead of dropped. Secondly, it allows one to
use a local solver of choice. [19] suggest that too many local updates may still
have a negative impact on convergence. To further deal with the problem of sta-
tistical and systems heterogeneity, it is recommended by [19] to add a proximal
term to the local sub-problem.

2.2 Tackling Heterogeneity in Federated Learning

In a federated setting each device creates a local dataset based on user’s inter-
actions. This leads to statistical heterogeneity. It is a common issue when data
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is non-independently and identically distributed (non-IID) between clients. In
recent years it has become a subject of research [8,13,24]. Both the quantity of
data and label (or feature) distribution might differ on different devices. This
is often caused by real-world data imbalance, as some users generate more data
than others. Some functionalities might be limited to certain groups of users,
which may result in label distribution skew.

Many studies [9,15] suggest that non-IID data settings may degrade the effec-
tiveness of the trained model. [10] address statistical heterogeneity by sharing
local device data. However, those methods might turn out to be insufficient, due
to the data privacy validation and the increased strain on the network band-
width. As previously mentioned, [19] tackle the issue of system heterogeneity,
and (for synthetic datasets) statistical heterogeneity with one data distribution
for each dataset.

3 Materials and Methods

3.1 Our Case Study

In this article we focus on a case of distributed VAs, i.e., VA instances installed
on various end devices (e.g., smartphones, tablets etc.). To provide high qual-
ity of service, we need to update VA models systematically. What is more, we
would like to ensure the privacy of users’ data, therefore we should not transfer
users’ data to a central server. Even though FL appears to be a solution to our
problems, we need to stress that the FL performance can be seriously influenced
by the following factors:

– devices with VAs installed differ significantly in processing power and internet
accessibility;

– data gathered on each device ranges from a few to thousands of samples.

Both problems – system and statistical heterogeneity – have been partially
addressed in [19]. In our work we would like to perform a deeper study on
heterogeneity, using the VA context and a relevant dataset. We will also check if
(and to what extent) the performance of FedProx can be improved by the choice
of local optimization algorithm.

3.2 Datasets Used

To provide a broad benchmark we use the same corpora as [19]. In addition, we
use a VA-dedicated Leyzer dataset. We briefly characterize these datasets below.

Synthetic Data. In [19] synthetic data were generated using the formula pro-
posed in [21], with two variables added:

α – to control how much local models differ from each other
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β – to control how much the local data on each device differs from that of
other devices

In Eq. 1, α and β scale the width (or spread) of normal distribution for W
and b respectively when drawing samples.

y = argmax(softmax(αWx + βb)), (1)

where x ∈ R60, W ∈ R10×60, b ∈ R10.
In [19] α and β are set to (0, 0), (0.5, 0.5), (1, 1). This way three distinctive

non-IID datasets are generated. They contain 30 devices in total, and the number
of samples on each device is decided by the rules of the power law.

The Leyzer dataset consists of 20 domains and 186 intents with a wide
variety of utterance samples. We only use the English subset of the corpus. We
distributed the samples among 1000 devices using several different distributions.
Our goal was to utilize this dataset for intent classification. The dataset was
preprocessed by expanding the set to size of 156,772 utterances, using the slots
provided by the authors. The generated utterances were encoded with uncased
BERT Base 12/768 [6].

Table 1. Statistics for three synthetic datasets with various σ.

Dataset σ Devices Samples
Samples/device

Mean Stddev

Leyzer

0.2 1,000 156,772 156 67

0.5 1,000 90,034 90 57

0.9 1,000 17,357 17 24

Real Data. In [19] FedProx was tested on four real datasets (MNIST, FEM-
NIST, Sent140 and Shakespeare). We used the same datasets with exception for
the Shakespeare, which we had to skip due to memory limitations.

Table 2. Statistics for three datasets with real data.

Dataset Devices Samples
Samples/device

Mean Stddev

MNIST 1,000 69,035 69 106

FEMNIST 200 18,345 92 159

Sent140 772 40,783 53 32
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Table 3. Parameters used in experiments.

Parameter Value

No. of rounds 200

No. of epochs 20

Learning rate 0.01

Batch size 10

No. of clients 20

Drop 0.01, 0.2, 0.5, 0.9

μ 0.1, 0.5, 1

Optimizer PGD, SGD, ADAM, RMSProp, AdaGrad

3.3 Emulating Heterogeneous Condition

To simulate different heterogeneous data settings we used normal and skewed
distributions of labels and quantity of data to simulate the real world imbalance
in data distribution (described in Subsect. 2.2). For comparison, we also prepared
an IID homogeneous data setting.

It bears mentioning that for this set of experiments we use the expanded
Leyzer dataset with focus on cross-domain intent detection. We use log-normal
distribution to create various skewed distributions. For parametrization, we
change σ – a standard deviation of the normally distributed random variable,
which is commonly used for parametrization of log-normal distribution.

Skewed Data Quantity Distribution. In this case, we shuffle and split the
main dataset into local datasets according to the skewed normal distribution.
Each device is assigned one dataset that is unique in content and number of
samples.

We test several cases of similar distributions with different σ parameter,
which affects the skewness of the distribution. We test the FedProx method on
1,000 devices.

Skewed Label Distribution. For this part of experiment our goal is to sim-
ulate the label imbalance. We opted for quantity-based label imbalance, where
a fixed number of labels is allocated to each device, so only a part of all labels
is included in each local dataset. The quantity of labels assigned to a device is
decided by applying the skewed normal distribution to the label set. In the case
of Leyzer, we use intents as labels and utterances as samples.

3.4 Evaluation of Local Optimizers

The choice of optimizer usually depends on the problem that is being solved. We
decided to compare the PGD, SGD, ADAM, RMSProp, and AdaGrad optimizers
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in the FedProx framework on several problems, to find the best suit for the VA
case. We conducted tests for all optimizers on all the datasets described in Sub-
sect. 3.2. The number of devices, rounds and epochs is presented in Table 3. The
drop value in the latter table is a share of devices with uncompleted computa-
tions (the so called stragglers), that would be dropped in the FedAvg procedure.

4 Results

4.1 Results on Non-IID Data Distributions

Below we present the results of the skewed data distribution impact on the
accuracy of intent classification on the Leyzer dataset.

Table 4. Highest accuracy for homogeneous and skewed data quantity distributions
(drop = 0.9) for Leyzer dataset.

Optimizer Homogeneous
σ

0.01 0.2 0.5 0.9

ADAM 1.00 0.99 0.99 0.99 0.98

AdaGrad 1.00 0.87 0.86 0.84 0.83

PGD μ0.1 0.89 0.95 0.94 0.92 0.90

PGD μ0.5 0.73 0.92 0.91 0.89 0.87

PGD μ1 0.65 0.90 0.88 0.86 0.85

RMSProp 1.00 0.99 0.99 0.98 0.98

SGD 1.00 0.95 0.94 0.92 0.91

FedAvg – SGD 1.00 0.96 0.95 0.92 0.88

Skewed Data Quantity Distribution. In Table 4 we compare the accuracy
of the model trained with different optimizers on the Leyzer data, distributed
among devices with various skewness. These results show that non-uniform dis-
tribution affects accuracy. For example, even for a low σ = 0.01 and the AdaGrad
optimizer, accuracy drops from 1.00 down to 0.87. However, the negative impact
can be amortized with proper choice of the local optimizer. For the RMSProp
and ADAM optimizers, the accuracy drop is minor (by 2% relative); they achieve
the highest accuracy regardless of the skewness of the distribution.

With the inclusion of the partial results, FedProx was more successful when
compared to the original FedAvg algorithm. As expected, the PGD optimizer
with higher μ values performed worse in the homogeneous setting. The learning
curves in Fig. 1 additionally indicate that FedProx combined with ADAM or
RMSProp achieved the convergence in a smaller number of rounds than the
FedAvg.
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(a) (b)

Fig. 1. Testing accuracy for FL with drop = 0.9 and Leyzer dataset, for skewed data
quantity distribution with: (a) σ = 0.2 and (b) σ = 0.9.

Skewed Label Distribution. Table 5 shows the results of experiments con-
ducted on data with the skewed label distribution. All the results were severely
impacted. ADAM and RMSProp once again outperformed all other choices for
training using the Leyzer data. However, the accuracy of RMSProp with σ = 0.9
declined, while ADAM yields better results in this case.

(a) (b)

Fig. 2. Testing accuracy for FL with drop = 0.9 and Leyzer dataset, for skewed label
distribution with: (a) σ = 0.2 and (b) σ = 0.9.
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Table 5. Highest accuracy for skewed label distribution classification on Leyzer with
drop = 0.9.

Optimizer
σ

0.2 0.5 0.9

ADAM 0.77 0.76 0.81

AdaGrad 0.62 0.55 0.45

PGD μ0.1 0.59 0.53 0.51

PGD μ0.5 0.56 0.51 0.51

PGD μ1 0.53 0.48 0.50

RMSProp 0.69 0.66 0.55

SGD 0.60 0.53 0.51

FedAvg – SGD 0.11 0.13 0.10

ADAM also achieved the highest accuracy more quickly than other local
solvers, which might also suggest the need for an increase in the total number
of rounds for training with other local solvers in order to achieve similar results.
Especially intriguing here was, for the ADAM optimizer, when the skewness
increased from σ = 0.5 to σ = 0.9, results seem to improve (Table 5). Once
again using PGD with lower μ value yielded better results. However, in this set-
ting, FedAvg performs worse than any other local optimizer used with FedProx.
Especially with higher percentage of stragglers the solver shows to be largely
ineffective.

Figure 2 illustrates the learning curves for the case of 90% of stragglers and
skewed label distribution. The FedProx algorithm manages to converge scoring
the accuracy of 0.81, whereas FedAvg in the same setting does not get past 0.1
accuracy score.

4.2 Choosing the Best Local Optimizer

In Fig. 3 we present the learning curves for FedAvg, FedProx with PGD, and
FedProx with RMSProp. The combination of FedProx with PGD as a local
solver seems to be the most stable, though it is not always the fastest one to
reach convergence. The learning process for FEMNIST seems most monotonous
for all optimizers. In contrast, while the learning curve for MNIST looks rather
monotone for PGD, it is very hectic for FedAvg and RMSProp.
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Table 6. Accuracy for different datasets and optimizers (drop = 0.01). Best results for
each column are shown in bold.

Optimizer
Real Datasets Synthetic Datasets

Mean
MNIST FEMNIST Sent140 Synthetic 0 0 Synthetic 0.5 0.5 Synthetic 1 1

ADAM 0.85 0.71 0.72 0.67 0.62 0.64 0.70

AdaGrad 0.90 0.55 0.70 0.68 0.73 0.62 0.70

PGD µ0.1 0.90 0.67 0.71 0.73 0.74 0.68 0.74

PGD µ0.5 0.90 0.65 0.71 0.76 0.80 0.72 0.76

PGD µ1 0.90 0.63 0.71 0.78 0.80 0.72 0.76

RMSProp 0.76 0.69 0.72 0.64 0.59 0.62 0.67

SGD 0.89 0.68 0.71 0.71 0.68 0.68 0.73

FedAvg – SGD 0.89 0.68 0.71 0.71 0.68 0.68 0.73

Table 6 also shows that the PGD algorithm with μ = 1 is the best performing
local optimizer in our tests when it comes to accuracy. PGD achieves the highest
training accuracy on MNIST and the synthetic corpora. ADAM, on the other
hand, has the best results in terms of accuracy on FEMNIST and Sent140, with
RMSProp also scoring high on the latter. We find that RMSProp paired with
FedProx scores the lowest when it comes to mean accuracy for all problems, but
it outperforms other algorithms in the Sent140 set.

It appears no single optimizer can be claimed to be universally superior to
the others. The disparities in their performance in different contexts suggest the
suitability of each optimizer is by and large defined by the problem at hand.

The experiment shows that the solution proposed by the authors of FedProx
is the best choice in most cases. However, we also point out examples where
other local solvers perform significantly better, e.g., ADAM for the FEMNIST
dataset.

When investigating various straggler percentages (i.e., drop values), the algo-
rithms achieve similar results when paired with FedProx. For FedAvg the accu-
racy drops with higher drop percentages. Table 6 shows the best case for FedAvg
with drop = 0.01.
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Testing accuracy in local optimizer benchmark. The results are shown for dif-
ferent datasets: (a) MNIST, (b) FEMNIST, (c) sent140, (d) synthetic(0,0), (e) syn-
thetic(0.5,0.5), and (f) synthetic(1,1).

5 Conclusions

In this study we present a case study of using FL in the VA context, which is
characterized by non-uniform distribution of data samples and labels, as well
as various shares of stragglers. We use the FedProx framework to compare how
various local optimizers handle such non-IID data. We compare the results on
several different datasets and ML models, with the main focus on the Leyzer
dataset, as it was best suited for the intent classification problem, crucial for
VAs.

The main conclusion of our study is that skewed label distribution can dras-
tically affect overall federated model performance – we show the accuracy drops
to be up to 17% relative. We find the performance to be the worst for the skewed
label distribution with the highest σ value. For the data quantity distribution
the effect was not as severe.

We also show that the selection of the proper local optimizer improves the
overall performance. We achieve 99% accuracy on the Leyzer dataset (with
ADAM and RMSProp optimizers) even in the worst case scenario of 90% strag-
glers. We find that the right choice of a local optimizer, in addition to improving
the results, also decreases the time needed to train the models on end devices.
Based on our experiments, we can recommend the choice of RMSProp for intent
classification and PGD for tasks such as digit classification.
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12. Konečný, J., McMahan, H.B., Yu, F.X., Richtarik, P., Suresh, A.T., Bacon, D.:
Federated learning: strategies for improving communication efficiency. In: NIPS
Workshop on Private Multi-Party Machine Learning (2016). https://arxiv.org/
abs/1610.05492

13. Li, Q., Diao, Y., Chen, Q., He, B.: Federated learning on Non-IID data silos: an
experimental study. ArXiv:abs/2102.02079 (2021)

14. Li, T., Sahu, A.K., Talwalkar, A., Smith, V.: Federated learning: challenges, meth-
ods, and future directions. IEEE Signal Process. Mag. 37(3), 50–60 (2020). https://
doi.org/10.1109/msp.2020.2975749

15. Li, X., Huang, K., Yang, W., Wang, S., Zhang, Z.: On the convergence of FedAvg
on non-IID data (2020)

16. Malkin, N., Deatrick, J., Tong, A., Wijesekera, P., Egelman, S., Wagner, D.: Pri-
vacy attitudes of smart speaker users. In: Proceedings on Privacy Enhancing Tech-
nologies 2019, pp. 250–271, October 2019. https://doi.org/10.2478/popets-2019-
0068

17. McMahan, H.B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.:
Communication-efficient learning of deep networks from decentralized data. In:
AISTATS (2017)

https://doi.org/10.1109/TWC.2020.2974748
https://doi.org/10.1109/TWC.2020.2974748
https://doi.org/10.1145/3311956
https://doi.org/10.1109/MC.2017.3571053
https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf
https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf
https://ec.europa.eu/commission/sites/beta-political/files/data-protection-factsheet-changes_en.pdf
https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip
https://storage.googleapis.com/bert_models/2018_10_18/uncased_L-12_H-768_A-12.zip
https://proceedings.mlr.press/v119/hsieh20a.html
https://proceedings.mlr.press/v119/hsieh20a.html
https://proceedings.neurips.cc/paper/2018/file/17326d10d511828f6b34fa6d751739e2-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/17326d10d511828f6b34fa6d751739e2-Paper.pdf
https://voicebot.ai/2017/10/19/samsung-bixby-10-million-active-users-globally
https://arxiv.org/abs/1610.05492
https://arxiv.org/abs/1610.05492
http://arxiv.org/2102.02079
https://doi.org/10.1109/msp.2020.2975749
https://doi.org/10.1109/msp.2020.2975749
https://doi.org/10.2478/popets-2019-0068
https://doi.org/10.2478/popets-2019-0068


Federated Learning in Heterogeneous Data Settings for Virtual Assistants 463

18. Reddi, S.J., et al.: Adaptive federated optimization. CoRR abs/2003.00295 (2020).
https://arxiv.org/abs/2003.00295

19. Sahu, A.K., Li, T., Sanjabi, M., Zaheer, M., Talwalkar, A., Smith, V.: On
the convergence of federated optimization in heterogeneous networks. CoRR
abs/1812.06127 (2018). http://arxiv.org/abs/1812.06127

20. Schwartz, E.H.: Samsung Bixby Lives! New features quash premature demise
rumors, October 2021. https://voicebot.ai/2021/10/26/samsung-bixby-lives-new-
features-quash-premature-demise-rumors/

21. Shamir, O., Srebro, N., Zhang, T.: Communication-efficient distributed optimiza-
tion using an approximate newton-type method. In: Xing, E.P., Jebara, T. (eds.)
Proceedings of the 31st International Conference on Machine Learning. Proceed-
ings of Machine Learning Research, vol. 32(2), pp. 1000–1008. PMLR, Beijing,
China, 22–24 June 2014. https://proceedings.mlr.press/v32/shamir14.html
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Abstract. This paper presents a new multimodal interventional radiol-
ogy dataset, called PoCaP (Port Catheter Placement) Corpus. This cor-
pus consists of speech and audio signals in German, X-ray images, and sys-
tem commands collected from 31 PoCaP interventions by six surgeons with
average duration of 81.4±41.0 min. The corpus aims to provide a resource
for developing a smart speech assistant in operating rooms. In particular,
it may be used to develop a speech-controlled system that enables sur-
geons to control the operation parameters such as C-arm movements and
table positions. In order to record the dataset, we acquired consent by the
institutional review board and workers’ council in the University Hospital
Erlangen and by the patients for data privacy. We describe the recording
set-up, data structure, workflow and preprocessing steps, and report the
first PoCaP Corpus speech recognition analysis results with 11.52% word
error rate using pretrained models. The findings suggest that the data has
the potential to build a robust command recognition system and will allow
the development of a novel intervention support systems using speech and
image processing in the medical domain.

Keywords: Multimodal interventional corpus · Interventional
radiology · Surgical data science · Automatic speech recognition ·
Operating room smart assistant · Port catheter placement

1 Introduction

Modern operating rooms (OR) are adapting advancing technologies rapidly and
becoming more digitalized environments [9]. Necessary medical devices are col-
lecting and visualizing large amounts of data required for an improved execution
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of an operation. This allows physicians to do more intricate and successful proce-
dures, improving patient safety and OR efficiency. However, the quantity of data
and the complexity of an operation cannot be expanded indefinitely. Therefore,
intelligent systems which can follow the execution of an operation and assist
physicians are proposed [5]. These systems can process available data in the OR
and present it in the correct time and format, follow the operation semantically,
and take over some routine tasks.

A major approach in the creation of an intelligent workflow assistance system
is surgical workflow analysis, which is often done by hierarchically decomposing
an operation into smaller meaningful activities on different semantic levels [8].
In this approach, an operation is typically defined by phases, steps or actions.
Phases are highest-level actions such as preparation, cutting, or sterilization.
Steps are necessary activities to perform phases, such as table positioning, instru-
ment setting, or putting covers. Actions are generally the lowest-level activities
in an analysis. They include basic activities such as grabbing an instrument or
turning on a device.

The available corpora for surgical workflow analysis vary considerably in size,
quality, coverage, and depth of linguistic and structural characteristics. However,
thevastmajorityofcorporaonlycontainsendoscopicvideodata,while some include
additional instrumentusage information.Otherpossibledatamodalities inORsuch
asspeecharemostlyunder-investigated.Weclaimthatacorpusforsurgicalworkflow
analysiscanbenefitfrommultimodaldata, includingnotonlyimagesandvideos,but
also speech uttered by the surgeons in their language. This will allow development
of a smart OR speech assistant, which is able to understand the different phases of
a surgery and identify surgeons’ command words during operations.

To this end, we construct a new kind of multimodal German dataset in the
domain of interventional radiology workflow. We describe the design, collection,
and development of our 31 PoCaP (Port-catheter Placement) Corpus. It consists
of X-ray images, RGB ambient videos, speech uttered by the surgeons, and system
commands given by medical personnel to operate devices in the OR. The dataset
is annotated with different levels of structural and descriptive meta-information,
as well as linguistic information. All speech samples are automatically transcribed
using an Automatic Speech Recognition (ASR) engine, and surgical phases are
manually annotated with the help of surgeons in the Radiology Department at the
University Hospital of Erlangen in Germany. Unfortunately, this dataset cannot
be made publicly available to ensure patients’ and personal’s data privacy.

The following section of this paper summarizes the related works on biomed-
ical corpus collection and processing. Section 3 and 4 describe our PoCaP data
and preprocessing results, respectively. In Sect. 5, we discuss surgery-specific
and surgery-independent challenges regarding annotation and data processing.
Finally, we end with the potential use of the corpus, future research direction,
and concluding remarks.

2 Related Works

Similar to other medical fields, publicly available data for surgical phase recog-
nition are not abundant. Firstly, collecting and annotating data from OR is a
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costly procedure. Acquiring any sort of data requires the implementation of new
hardware or software in the OR and maintenance during the whole procedure.
Annotation is a time-intensive step in the data collection and needs to be per-
formed or validated by medical experts. Secondly, local legal requirements have
to be followed in order to ensure the security of the medical data. This factor
may also limit the public sharing of collected datasets.

Cholec80 is a endoscopic video dataset of 80 laparoscopic cholecystectomy
surgeries, including phase annotations for seven distinctive phases and seven
tools [15]. m2cai16-workflow dataset contains 41 endoscopic videos of laparo-
scopic cholecystectomy and phase annotations for eight phases [14,15]. HeiChole
is another endoscopic video dataset of laparoscopic cholecystectomy containing
33 surgeries with phase, action and tool annotations [16]. In HeiChole, phase
annotations are provided similar to Cholec80. In [3], authors created a private
dataset of 1243 endoscopic videos for laparoscopic cholecystectomy from multi-
ple medical centers. CATARACTS is a microscopic video dataset of 50 cataracts
surgery, which contains annotations consisting of 14 phases [17]. Another dataset
of cataract surgery is Cataract-101, which has 101 operations and annotations
with ten phases [13]. Kitaguchi et al. collected 300 laparoscopic colorectal surgery
videos from multiple institutions and annotated them with nine phases [6].
Bypass40 is an private dataset of 40 endoscopic videos of gastric bypass sur-
gical procedures annotated with both phases and steps [11].

3 Data Collection Procedure and Setup

As described in the previous section, datasets on the workflow analysis are mostly
concentrated on video signals, either endoscopic or microscopic. Some datasets
include additional tool annotations. However, other possible data sources are
mostly under-investigated. In this paper, we propose a multimodal dataset con-
sisting of three-channel speech and audio signals, X-ray images, and system
commands collected during PoCaP interventions in the Radiology Department
of University Hospital Erlangen, Germany. Before data collection, we obtained
approvals from the institutional review board and workers’ council. Addition-
ally, we asked every patient for their consent in a written form. Operations are
performed by six different surgeons with different levels of expertise. The aver-
age duration of an intervention is 81.4 ± 41.0 min. Additionally, we have cap-
tured ambient videos to help the annotation procedure, see Fig. 1. Our dataset
includes 31 operations. We defined 31 surgical steps and eight surgical phases
for the PoCaP intervention, to use in surgical phase and step recognition tasks,
which are shown in Table 1.

3.1 Port-Catheter Placement

Port-catheter placement is a frequently executed intervention in the radiology
department. It is often applied to patients who require frequent infusions, e.g.
during chemotherapy. A port-catheter is a device consisting of a port, an access
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Table 1. Definitions of surgical phases and steps of port-catheter placement surgery
in the PoCaP Corpus.

Phases Steps

1. Preparation 1.1 Patient positioning on the table
1.2 Table moves up
1.3 Radiologist in sterile
1.5 Preparation of sterile material
1.6 Patient in sterile

2. Puncture 2.1 Local anesthesia
2.2 Ultrasound guided puncture

3. Positioning of the
Guide Wire

3.1 C-Arm moves in

3.2 Fluoroscopy on the subclavian area
3.3 Fluoroscopy on the vena cava inferior (VCI) area
3.4 C-Arm moves out

4. Pouch Preparation and
Catheter Placement

4.1 Local anaesthesia
4.2 Incision
4.3 Pouch preparation
4.4 Sheath

5. Catheter Positioning 5.1 C-Arm moves in
5.2 Fluoroscopy on the VCI area
5.3 Positioning of the catheter

6. Catheter Adjustment 6.1 Shortening of the catheter
6.2 C-Arm moves out
6.3 Connection of the catheter to the port capsule
6.4 Positioning of the port capsule in the pouch
6.5 Surgical suture
6.6 Puncture of the port capsule

7. Catheter Control 7.1 C-Arm moves in
7.2 Digital subtraction angiography of the chest
7.3 C-Arm moves out to parking position

8. Closing 8.1 Sterile patch
8.2 Table moves down

point to use for infusions during treatment, and a thin flexible tube called a
catheter. During an intervention, the port is placed approximately two centime-
tres under the skin on either side of the chest and the catheter is connected to a
large vein emptying into the heart. The placement of a port makes it possible to
avoid repeated injuries to small vessels and chemotherapy-related inflammation
of peripheral veins during chemotherapy [4].
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Fig. 1. The data recording setup of our corpus. During an intervention, X-ray images
are recorded with a C-Arm machine and displayed on a screen in the OR. X-ray images
were captured from this display. The surgeon and the assistant were equipped with per-
sonal microphones to record their speech signals. System commands were recorded from
a local network utilizing a monitoring software. An RGB camera with an embedded
microphone recorded the interventions. Audio data from this camera were added to
our corpus and recorded videos are used solely for aiding with the annotation process.

3.2 Data Collection Setup

A PoCaP intervention is commonly performed by a surgeon and an assistant.
While the surgeon is in the sterile area, the assistant controls the table, lights, C-
Arm X-ray machine, or other medical equipment in accordance with commands
given by the surgeon. Therefore, it is meaningful to capture all verbal conversa-
tions between the surgeon and the assistant, in order to capture rich contextual
information for the surgical workflow analysis. Additionally, speech is the sole
data source that appears in every type of surgery, and it is therefore important
to analyze for the design of scalable systems. In order to record these speech
signals, the surgeon and the assistant were equipped with personal microphones
during surgeries. For this task, we used two sets of Sennheiser XSW 2 ME3-E
wireless headsets. With this configuration, we were able to obtain two-channel
high-quality speech signals uttered by the surgeon and the assistant individ-
ually. In some cases, a second surgeon or assistant was necessary in the OR,
however, that personnel didn’t wear a microphone. The necessity is generally
due to complications during the operation.

X-ray images are another highly useful data source, especially for a PoCaP
intervention. For example, the subclavian area and VCI area are monitored
before catheter placement, using fluoroscopy during the intervention. Further-
more, the catheter is guided into the patients’ body and controlled similarly by
X-ray images. These activities are represented in phases 3,5 and 7 in Table 1. For
those reasons, it is a very rich complementary data source for the surgical work-
flow analysis in this case. In the OR, X-ray images are shown on a widescreen
located on the other side of the surgical table for immediate assessment. To
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record X-ray data, we utilized the input signal going into this display, see Fig. 2.
We duplicated the input signal and recorded it with the Open Broadcaster Soft-
ware (OBS) [1]. We also utilized OBS to concurrently capture audio and speech
input from the configuration described in the previous paragraph.

Fig. 2. An illustration of the screen capture with an X-ray image from a port-catheter
placement intervention captured with OBS. For data privacy purposes, the X-ray image
is replaced by an open-source image from [10].

Modern ORs have many digital sensors providing information about the sta-
tus and activities of medical devices. We included such data from the C-Arm
machine in our corpus as system commands. System commands refer to status
and activity logs and they are created when the device is utilized, which is typi-
cally done by the assistant during a PoCaP intervention. In our case, the C-Arm
machine is connected to a local network and can be monitored by a local PC and
a monitoring software called ACSOS. ACSOS generates a ticket when a function
of a medical device in the OR is used and logs all related variables. It can dis-
play a total of 393 different variables in total. An example of a ticket is shown
in Fig. 3. This information can be regarded as similar to tool usage information
and as a relevant source for the workflow analysis. We manually copied this data
from the local computer for each operation.

In order to ease the annotation procedure, we recorded ambient videos with a
single GoPro Hero 8 camera. Depending on the patients’ choice, intervention can
be done on the left or right side of their chest. We positioned the camera on the
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Fig. 3. When the C-Arm machine is utilized, a respective ticket containing all necessary
variables is created. The exemplary ticket variables in this table show the current
position of the C-arm machine and mode settings with arbitrary values.

left or right side of the OR to cover the operation table and the sterile area. We
utilized ambient videos solely to annotate our corpus accurately. However, these
ambient videos include also speech and audio signals recorded with an embedded
microphone. We integrated these signals as a third channel to our dataset. When
compared to personal microphones, this data channel is noisy and reverberant.

4 Dataset

4.1 Data Structure

After the data collection process, we created a data structure with different
modalities. We extracted two-channel audio signals from OBS captures and
single-channel audio from ambient videos. We saved this audio data separately.
As shown in Fig. 2, OBS recordings include software tool section on the right side.
We cropped this section and converted videos to frames at 1fps. The cropped
section did not include relevant information about the intervention. Finally, we
included system commands in our corpus. We used extracted audio and video
frames for the alignment of the data sources. Moreover, we used the audio signals
to obtain transcriptions of the conversations as explained in Sect. 4.3. The data
structure of our corpus is shown in Fig. 4.

4.2 Alignment

In our data collection protocol, three different recording devices are used. X-ray
images and audio signals are recorded with OBS on a laptop, system commands
are recorded on a local computer, and ambient videos are recorded with a single
camera. Each recording is started from the relative source manually in the fol-
lowing order: ambient video recording, X-ray and audio capture with OBS, and
system commands recording with ACSOS. Thus, it is necessary to align these
data sources before continuing with the preprocessing and data annotation steps.

We used the audio channels to align the ambient videos and OBS video
captures. First, we randomly chose a reference channel from the personal micro-
phones. Next, we computed the autocorrelation function of the reference chan-
nel and the third channel from the ambient videos. We used the position of the
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Fig. 4. The multimodal data structure of the PoCaP Corpus, consisting of speech,
transcriptions, X-ray images, system commands, and workflow annotations.

maximum correlation point to find the time difference between these sources.
We padded the microphone signals at the beginning with zeros to align them
with the third channel from the ambient videos. Additionally, due to limitations
of the battery capacity of the ambient camera, we could not capture the last
parts of every operation, if the intervention took longer than approximately one
and a half hours. For these operations, we padded the audio signals with zeros
at the end as well, in order to have the same length as the microphone signals.

Finally, systems commands are aligned utilizing the OBS video captures.
When the monitoring software ACSOS is started from the local computer, it is
displayed on the same screen as the X-ray images. Therefore, the launch scene of
ACSOS is also captured in the OBS videos. Lastly, since the OBS video capture
started before the system command recording with ACSOS, we are also able to
observe it’s starting time on the OBS video captures.

4.3 Transcription

After the alignment step, we used Voice Activity Detection (VAD) and ASR
algorithms to convert speech signals to corresponding transcriptions.

Personal microphones are always placed closely to the talkers and have low
background noise. In this case, the VAD task is close to a signal activity detec-
tion task. Therefore, we used simple energy and correlation-based thresholding
to detect voice activities [2]. Initially, we applied 30 ms length Hann Window
with 50% overlap. For each window, we calculated signal energy σ2 and auto-
correlation ck at lag = 1 of microphone signal x as:

σ2(x) = ||x||2 = ΣN−1
k=0 x2

k (1)

and
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ck =
E{xkxk−1}

E{x2
k}

, (2)

where k ε {0, ..., N − 1} is the time index and E is the expectation operator.
Afterwards, we applied a threshold to detect voice activities.

After the voice detection, we used publicly available, pre-trained Ger-
man ASR models to transcribe the speech. To find the best performing ASR
model for our case, we manually transcribed a total of six minutes of speech
data from different operations with different surgeons and tested six different
models. We compared models with our transcriptions using the basic Word
Error Rate (WER) as a metric. After the evaluation of the results, we chose
stt_de_conformer_transducer_large model for the preprocessing pipeline. All
results are shown in Table 2.

Table 2. Performance of different ASR models on a short clip from our dataset.

ASR Model PoCaP Corpus WER (%)
asr-crdnn-commonvoice-de [12] 85.80
stt_de_quartznet15x5 [7] 56.46
stt_de_citrinet_1024 [7] 29.87
stt_de_contextnet_1024 [7] 26.96
stt_de_conformer_ctc_large [7] 29.37
stt_de_conformer_transducer_large [7] 11.52

5 Discussion

In this section, we discuss the challenges in our data collection process and
considerations in terms of future machine learning approaches with our corpus.
In Sect. 3, the average duration and standard deviation of PoCaP intervention
in our dataset were reported. The execution of an intervention can be affected
naturally by many different variables. Some actions can be repeated several
times or may require a longer time period due to complications. The expertise
of surgeons is another noteworthy factor. The duration of an intervention is
significantly affected by the experience level of the surgeon.

Since speech and audio data are the main components of the PoCaP Cor-
pus, the performance of an ASR algorithm is crucial for any application. This
performance is significantly affected by the use of medical words and dialect.
Even with correct transcriptions, speech dialects can pose additional challenges
for the following steps. It may be necessary to consider translating these tran-
scriptions to standard language before employing a language model or extracting
word vectors. It would be challenging to train such a translation model, similar
to difficulties in low-resource language processing.
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Moreover, for the development of a smart operating room speech assistant, it
is necessary to classify surgery-related conversations and understand synonyms
in the speech. Some conversations recorded with personal microphones may not
be related to the intervention. These conversations can occur between the sur-
geons, the assistant, or other medical personnel in the OR. These conversations
should be classified and removed as they carry information not related to the
procedure and could rather be seen as noisy observations at the semantic level.
After this removal, synonyms should be processed next. Here, different surgeons
or the same surgeon at different time points, may use synonyms to refer to the
same underlying meaning. These commands should be recognized accordingly as
having the same meaning.

As depicted in Table 1, X-Ray images are used in three phases and are typ-
ically utilized for a short duration in order to emit a minimal radiation dose to
the patient. This also highlights that X-ray images are only taken a few times
during a single operation especially considering the overall duration of the inter-
vention. This fact makes them a very valuable source of information for the task
of phase recognition of an intervention since they can be used as distinct land-
marks for the identification of specific phases. However, this aspect should be
further investigated in future works.

In order to develop robust machine learning algorithms, a large dataset with
a large variety of variables is necessary. In our case, the number of operations,
the number of medical institutions, and the number of surgeons are important.
Currently, our corpus includes 31 interventions performed by six surgeons in
a single medical center. For these reasons, we plan to expand our corpus with
recordings of more interventions in the future.

6 Conclusion

In this paper, we presented the PoCaP Corpus, which consists of speech and
audio signals, X-ray images, and system commands collected from 31 PoCaP
interventions in the Radiology Department of University Hospital Erlangen, Ger-
many. With this unique dataset, we aim to contribute to the development of a
smart speech assistant in the operating room of the future. When compared
to previous corpora for workflow analysis, the PoCaP Corpus differs in data
types and multi-modality. To best of our knowledge, the PoCaP Corpus is the
first dataset that includes speech and audio signals and X-ray images for the
development of a Smart Speech Assistant.

We described the data collection procedure, used systems, and preprocessing
stages. Furthermore, we described the alignment process of the three different
sources using audio signals and screen recordings. Later, we extracted X-ray
images from screen recordings and transcriptions from speech signals, recorded
by two personal microphones equipped to medical personnel in the OR and
reported the ASR results. Finally, we reported challenges and possible future
directions. Speech recognition is a more challenging task due to the terminology
in a medical environment and speech dialects when compared to the standard
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ASR tasks. Therefore, the performance of ASR algorithms is worse than in the
usual settings. These challenges may also manifest in the feature extraction tasks
of future work. In addition to ASR performance improvements, correctly recog-
nized dialect words should be translated into the standard German language.
Synonymous medical terms will be also included in the training of feature extrac-
tion algorithms.

In the future, we plan to expand our dataset with more recordings. In the
development of a Smart Speech Assistant, the PoCaP Corpus can be used for
workflow analysis, recognition of commands given by surgeons, optimization of
operation parameters, remaining surgery time estimation, or similar tasks. In
that sense, the PoCaP Corpus enables the development of a wide variety of
applications and thereby has the potential of making significant contributions
to surgical data science.
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Abstract. With synthetic data generation, the required amount of
human-generated training data can be reduced significantly. In this work,
we explore the usage of automatic paraphrasing models such as GPT-2
and CVAE to augment template phrases for task-oriented dialogue sys-
tems while preserving the slots. Additionally, we systematically analyze
how far manually annotated training data can be reduced. We extrin-
sically evaluate the performance of a natural language understanding
system on augmented data on various levels of data availability, reduc-
ing manually written templates by up to 75% while preserving the same
level of accuracy. We further point out that the typical NLG quality
metrics such as BLEU or utterance similarity are not suitable to assess
the intrinsic quality of NLU paraphrases, and that public task-oriented
NLU datasets such as ATIS and SNIPS have severe limitations.

Keywords: Paraphrasing · Synthetic Data Generation ·
Conversational Assistants · NLU

1 Introduction

Task-oriented conversational assistants are designed to perform certain tasks to
accomplish a user goal, such as booking a table at a restaurant or playing a
specific song. Natural Language Understanding (NLU) components are part of
such assistants to perform the tasks of intent classification (IC) and slot filling
(SF) [28].

Training data for NLU systems are user utterances such as “I want to book
a table in an Italian restaurant”, annotated with the intent (here book a restau-
rant) and slots (here cuisine = “Italian”). To reduce the immense manual effort
needed to conduct such annotations, we explore automatic augmentation possi-
bilities using paraphrasing techniques. Our starting point are template phrases in
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natural language, such as “Play [song] by [artist]”, that contain slot type place-
holders. These template phrases can be specified by developers and are auto-
matically populated from database entries. Our strategy is to directly generate
a larger and more varied number of these templates rather than first generating
and then paraphrasing example sentences.

Comparing two different paraphrasing techniques, namely a Conditional
Variational Autoencoder (CVAE) [27] and the language model GPT-2 [25], we
conduct several experiments with different ratios of original and generated data
to analyze:

– Under which circumstances does paraphrasing template phrases increase the
performance of an NLU system? What are the limitations of this approach?

– How far we can reduce the amount of manually annotated data without a
significant loss in NLU performance?

– Which role does the quality of the generated paraphrases in terms of diversity,
grammatical correctness and preservation of the intent play in downstream
tasks?

2 Related Work

Data augmentation for task-oriented dialogue systems has been explored in mul-
tiple directions. Similar to our approach, Malandrakis et al. [22] explore variants
of variational autoencoders to generate template phrases and Sahu et al. [26]
explore the usage of GPT-3 [2] for data augmentation. However, they both focus
only on the task of intent classification, disregarding the often more challenging
tasks of slot filling and slot preservation. Yu et al. [31] augment data for new
Alexa skills by generating template phrases with a transformer-based encoder-
decoder sequence-to-sequence model. They only evaluate their approach on inter-
nal data that is not publicly available. D’Ascoli et al. [8] augment data from the
SNIPS dataset [6] by creating intent embeddings and extracting relevant infor-
mation from large unlabeled datasets with CVAEs.

Some approaches use simple solutions for data augmentation. Louvan et al.
[21] present a lightweight non-machine-learning approach including methods like
slot substitution and cropping and rotating parts of phrases based on dependency
parse trees. Andreas et al. [1] introduce a rule-based approach for data augmen-
tation. It is based on replacing fragments in training examples with other frag-
ments that appear in the same context. They propose this method for a variety
of tasks as it is model-agnostic. However, the approach is different from para-
phrasing methods, as it focuses on rewriting phrases but is not necessarily con-
cerned with preserving the meaning of phrases. Gaspers et al. [11] use machine
translation to leverage existing datasets while manually replacing slots. Recent
approaches explore the usage of GPT-2 or other language models to generate
paraphrases [17]. Witteveen et al. [29] use a supervised approach to paraphrase
sentences by fine-tuning GPT-2 on pairs of phrases that are separated with a
delimiter. They filter the phrases generated by GPT-2 based on several scores
(USE [3], Rouge-L [19], BLEU [23]). They do not evaluate their methods in an
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extrinsic task. Hedge et al. [13] explore generating paraphrases with GPT-2 in
an unsupervised setting. They fine-tune GPT-2 for reconstructing phrases from
corrupted input in which all stopwords were removed. The reconstructed phrases
are paraphrases of the input phrases. They evaluate their approach on a down-
stream classification task. However, none of these approaches was applied to the
domain of task-oriented dialogue systems, which faces particular challenges due
to its slot preservation and intent disambiguation needs.

3 Datasets

The number of annotated, publicly available datasets for natural language under-
standing is limited [20]. We conduct our experiments on the frequently used
benchmark datasets ATIS [14] and SNIPS [6]. The Airline Travel Information
System (ATIS) dataset contains user utterances in the domain of airline travel,
categorized into 17 intents and labeled with 67 different slot types1. It is an
unbalanced dataset where about 75% of the datapoints are from the atis flight
intent with a variety of slots. The SNIPS dataset contains utterances for seven
intents from different domains, such as booking a restaurant or playing music. It
is a balanced dataset with about 2000 datapoints per intent class, the utterances
are annotated with 39 different slot types.

4 Methodology

4.1 Generating Paraphrases

In this section we describe how we generate the paraphrases. To simulate the
industry development bootstrapping scenario on publicly available datasets, we
automatically construct template phrases by replacing slot values in every utter-
ance with generic slot tokens, and sample fixed volumes of the most frequent
ones.

GPT-2. We start with a pre-trained GPT-2 model from Huggingface [30], which
we further fine-tune for the task of template phrase generation, treating the
slot placeholders as words. We then sample from the fine-tuned model to obtain
paraphrases. The fine-tuning is done on un-paired template phrases, and only for
a small number of epochs to avoid overfitting on the limited training data. The
embedding layer of GPT-2, which is shared between the input and output layer,
is kept fixed from the pre-training and is not set to be trainable during fine-
tuning. We observe that not adapting the previously learned embeddings leads
to more diverse paraphrases, as more of the knowledge acquired during pre-
training can be incorporated. We train one model for each intent in a dataset
separately. The training data is the set of template phrases from that intent.

At inference time, the model receives only the Beginning-Of-Sentence token
[BOS] as input. When sampling from the predicted distribution, it generates
phrases that are similar to the training data. Some input template phrases and
generated phrases from GPT-2 are shown in Table 1.
1 Dataset Source: https://www.kaggle.com/siddhadev/atis-dataset-clean.

https://www.kaggle.com/siddhadev/atis-dataset-clean
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Table 1. Example input and output template phrases finetuning GPT-2 on single
template phrases

Intent Example utterance Input Generated

GetWeather What’s the weather going to be in <city> <state> at <timeRange> x

GetWeather Will it be getting <condition description> on <timeRange> in <country> x

GetWeather Is there any chance to change your forecast for <timeRange> in <country> x

GetWeather Will the temperature be going to be <condition temperature> in <timeRange> x

GetWeather You can forecast the weather for <timerange> in <country> x

PlayMusic I would like to hear <track> x

PlayMusic Please play a <music item> off the <artist> <music item> <album> x

PlayMusic I would love to hear some <sort> <music> x

PlayMusic Play some <artist> music that we think people will enjoy x

PlayMusic Play <music item> by <artist> x

Conditional Variational Autoencoder (CVAE). Additionally to GPT-2 we gener-
ate paraphrases using a CVAE, trained to reconstruct input templates from the
latent representation. As conditional input for the encoder and decoder we con-
struct a vector with size of the available slots per template. Elements in the vector
are 1 if the slot is present in the corresponding template and 0 otherwise. We
sample from the trained models using a mixture of sampling strategies, namely
random sampling with temperature, top-k sampling [9] and nucleus sampling
[16]. We observed that combining diverse sampling strategies and parameter
values outperformed single-approach scenarios in the extrinsic evaluation. All
sampled phrases that duplicate the training data or reoccur in the generation
are discarded. We also discard paraphrases without slots. We automatically fill
the generated templates with specific slot values from a database to obtain user
utterances. For each slot type, we randomly pick a slot value to substitute the
placeholder in the template phrase (e.g. date = “tomorrow evening”).

4.2 Intrinsic Evaluation – Utterance Quality

We compute intrinsic metrics in order to assess diversity and grammatical cor-
rectness of the generated phrases. As metrics we explore BLEU-2 score [23] and
sentence embedding cosine similarity between the generated and the original
template phrases, using a pre-trained Universal Sentence Encoder [3]. We save
the maximum cosine similarity score encountered for each generated template,
average all of those maximum scores and report the mean to obtain a similarity
value for a set of generated phrases. We also considered utterance perplexity [5],
but discarded it as it is unsuitable to properly measure grammaticality [18].

4.3 Extrinsic Evaluation – NLU System

Our NLU model for the extrinsic evaluation of the data augmentation tech-
niques consists of a combined LSTM-based [15] NLU system similar to [12] that
jointly performs IC and SF. The architecture is shown in Fig. 1. In order to
focus on improvements through data augmentation, we intentionally decided to
use a fairly simple NLU system. State-of-the-art NLU systems such as [4] are
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optimized for large datasets, and are therefore unlikely to work optimally in low-
resource environments. As preprocessing, all utterances are padded or cropped
to a length of 25 tokens as 99% of the utterances are shorter. The tokenizer is
constructed with a vocabulary size of 75% of the most frequent words occur-
ring in the training data. This ensures that the model is confronted with out of
vocabulary words in the training process, and is intended to better generalize
to out-of-vocabulary words encountered during inference. We split the data into
70% for the training and 30% for the validation. An unseen test set is already
provided in the datasets. The hyperparameters used during training are listed
in Table 2. We evaluate the NLU model on both ATIS and SNIPS datasets and
report intent classification accuracy and slot filling F1 scores on unseen test data.
In line with previous work, only slots where all tokens are correctly labeled are
considered correct.

Fig. 1. NLU Bi-LSTM model architecture. Blocks represent layers in the model, arrows
indicate intermediate values and are marked with the corresponding dimensionality. N
is the length of the input utterance.

Table 2. Hyperparameters for training the NLU model

Parameter Value

Tokenizer

Vocabulary Size

75% of

train set words

Embeddings GloVe [24] 300d

Train / Validation Split 70% / 30%

Epochs 200

Batch Size 16

Layer Dimension 100 units

Regularization Strength 5e−4

Optimizer Nadam [7]

Learning Rate 4e−4
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(a)SNIPS original data augmented with GPT-2

(b)SNIPS original data augmented with CVAE

Fig. 2. Scores for Slot filling (bar chart) and Intent classification (line chart) on the
SNIPS test data augmented using GPT-2 and CVAE models. The x-axis shows the
number of original utterances per intent used to create templates to train paraphrasing
models. The y-axis shows the performance of NLU models trained on each (augmented)
split. Different colored lines represent different augmentation multipliers for the initial
data. (Color figure online)

5 Results

In the following subsections we address the individual research questions by
reporting and discussing the results of our experiments.

5.1 NLU Performance with Augmented Data

In this set of experiments, we explore if augmenting template phrases by para-
phrasing increases NLU performance, and if so, until when. Figure 2a shows that
the performance of the NLU system increases for all used splits when adding
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data generated using GPT-2 to the SNIPS dataset. As intuitively expected, the
increase of slot filling performance is highest for experiments with a low number
of datapoints. Starting with a higher number of manually produced examples,
the improvement is smaller, indicating a saturation behavior at around 1,000–
2,000 utterances per intent. Figure 2b shows similar trends as Fig. 2a, indicating
that both, the CVAE and GPT-2 models are suitable approaches for generating
data that helps the NLU system compared to non-augmented data.

5.2 Reduction of Manually Annotated Training Data

In these experiments, we explore how far we can reduce the volume of manually
annotated training data, i.e. what loss in performance is expected when replacing
a part of original utterances with generated ones. In contrast to the previous
set of experiments, where we ask how far can we increase the performance by
augmenting, here the aim is to minimize the manual efforts. Figure 3 shows the
intent classification and slot filling results over varying amounts and proportions
of original and generated data. For instance, using 64 original datapoints per
intent, the intent classification accuracy on SNIPS is 68.6% (see Fig. 3a, black bar
in first column). When fine-tuning GPT-2 on templates from only 32 randomly
selected utterances, and generating 32 utterances more, the NLU model trained
on the combined 64 datapoints (50% generated) reaches an intent classification
accuracy of 87.7% (same column, red bar). This represents a 50% reduction in
annotations, with not only no decrease, but an actual improvement in accuracy.
We can see that a reduction of over 75% of manual annotations is feasible on
SNIPS without a notable performance impact. Overall, the results using GPT-
2 and CVAE models to obtain paraphrases are very similar. Compared to the
results on the SNIPS dataset, a more noticeable decrease in intent classification
performance is observed on the ATIS dataset. We hypothesize that this is due
to the shared airline travel domain of all intents, which are more difficult to
distinguish for the NLU model. ATIS is an imbalanced dataset, where around
75% of the data belongs to the intent atis flight. In order to estimate how many
template phrases per intent class are required to use the data augmentation
approach, we use a manually balanced (downsampled) version. For intents with
fewer utterances than the specified threshold on x-axis, all utterances are used.

5.3 Comparison Between GPT-2 and CVAE Models

The results in Fig. 4a show that both the CVAE and GPT-2 are suitable
approaches to augment the SNIPS training data. In direct comparison, for both
tasks, the NLU performance trained on data generated by the CVAE (blue) is
always slightly higher than the results for data generated using GPT-2 (red).
Further research is needed to fully understand why the phrases generated by the
CVAE are better in this scenario.

Figure 4b shows that on ATIS, for the task of intent classification, the data
generated by GPT-2 outperforms the model trained on data generated by the
CVAE. For the task of slot filling, it is the other way around and the CVAE
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(a) (b)Slot Filling F1 scores - SNIPS

(c) (d)Slot Filling F1 scores - ATIS

Fig. 3. How far can we reduce original annotated data and replace it with generated
paraphrases? Different utterance sample volumes and proportions of original training
data per intent were paraphrased using GPT-2. Each column shows the NLU test data
performance values from using only original to using mostly generated training utter-
ance mix for that total volume, indicating a replacement of over 75% of the utterances
is feasible.

(a)SNIPS (b)ATIS

Fig. 4. NLU performance with GPT-2 (red) and CVAE (blue) paraphrasing models
trained on 64 original datapoints per intent. Lines show the Intent Classification Accu-
racy, bars the Slot Filling F1. (Color figure online)

outperforms GPT-2 in this case. One possible reason why the data generated by
GPT-2 is less helpful for the slot filling task is that GPT-2 often paraphrases
the slot placeholders. For example the input template phrase “Show me the
flights from [fromloc.city name] to [toloc.city name]” can be paraphrased by
GPT-2 to the template phrase “I want to see flights from [from.city name] to
[toloc.city name]”. The slot placeholder [fromloc.city name] has been converted
by GPT-2 to the placeholder [from.city name], which is not a valid annotation
tag in the ATIS dataset and therefore cannot be correctly filled up with a real
value. This modification of slot placeholders cannot occur with the CVAE app-
roach, because a different strategy for word embeddings is used. GPT-2 makes
use of byte-pair-encodings [10], where depending on the frequency of occurrence,
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each character, syllable or word receives an embedding. For the CVAE approach,
we use GloVe embeddings [24]. The CVAE predicts words over a vocabulary of
the most common 20,000 words in the GloVe embeddings, and uses an out-of-
vocabulary token for unknown words. We add a random embedding vector for
each of the occurring slot placeholders. Thus, there is no possibility for the CVAE
to modify slot placeholders as GPT-2 does.

5.4 Limitations on Intent Preservation

We observe that the generated data contains phrases that do not perfectly preserve
the intent. Therefore, this section investigates if conflicts occur, and whether the
NLU performance for intent classification suffers from noisy, possibly mis-labeled
paraphrases. We report F1 scores for intent classification as accuracy values are
not suitable for a per-class comparison. The reported values are the mean ± stan-
dard deviation of three different runs. When a generated paraphrase does not
clearly belong to the intent it was generated for, its semantic content can con-
flict with the assigned intent label. If the content of a paraphrase is more simi-
lar to a different intent from the dataset, this may affect the intent classification
accuracy of the NLU system. For example, when training GPT-2 on phrases of the
intentAddToPlaylist, one of the generated phrases was “Remove this [music item]
to my playlist”, even though all training phrases only concerned adding songs to
playlists. This phrase inherits the intent label AddToPlaylist, because it was gen-
erated by the model trained for this class. The SNIPS dataset does not contain
an intent for removing songs from playlists. However, in a real-world scenario this
intent would likely be present, leading to conflicts and a decrease in the NLU sys-
tem’s performance. Figure 5 shows NLU intent classification F1 scores for intents
from the SNIPS and ATIS datasets, for ATIS only the 7 intents with the most
examples are shown. For the SNIPS dataset, the generated data appears to pre-
serve the intent sufficiently. On ATIS data, especially for the intent atis aircraft,
the NLU system has difficulties to classify unseen test data correctly. This sug-
gests that on ATIS, the generated paraphrases do create conflicts between the

(a)SNIPS, generated data mostly preserves the

datapoints per intent)

(b)
tween the intents (experiment done with 1024
datapoints per intent)

Fig. 5. Intent classification performance per intent for both datasets
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intents. One possible explanation for this decrease in performance on ATIS is that
the intents in this dataset are closer related than those in the SNIPS dataset.
Therefore, we assume that it is more common on ATIS that generated paraphrases
would actually belong to a different intent, because the intents are more similar
and errors can happen more easily.

A selection of example utterances generated by a GPT-2 model trained on
ATIS are shown in Table 3, labeled manually according to whether or not they
preserve intent for which they were generated. The examples in this table are illus-
trative and not representative of the overall distribution of generated paraphrases.
Based on our results, we conclude that in “easy” datasets such as SNIPS, preser-
vation of intent is not an issue for data augmentation, as the NLU model can still
learn to distinguish between the different intents based on generated data. Sup-
posedly, this is because the similarity between intents in the SNIPS data is not
very high. However, on datasets with many intents from similar domains, such
as ATIS, more care must be taken to preserve the initial intent of the generated
paraphrases. More open-access NLU data is needed to draw quantifiable findings.

Table 3. Example utterances generated by GPT-2 trained on 128 original datapoints
per intent from ATIS (manually balanced dataset). Some of the generated utterances
do not belong to the intent they were generated for.

Model Generated Utterance
Intent to be

generated

Belongs to

intent?

GPT-2 what’s the fare from detroit to chicago on april second atis airfare �
GPT-2 how many passengers are allowed the tampa dc from denver dc atis airfare x

GPT-2 where is the ticket for the flight from westchester county to bay area tuesdays atis airfare x

GPT-2 please let me know about ground transportation in denver atis ground service �
GPT-2 can you help pittsburgh in dc atis ground service x

GPT-2 show me the airlines with flights between Pumwani and san diego atis airline �
GPT-2 is it possible to fly to nashville and check flights from new york to miami atis airline x

GPT-2 what type of aircraft is used on flights from newark to tampa atis aircraft �
GPT-2 why does least aircraft not fly eastern flying from new york to new york atis aircraft x

5.5 Qualitative Analysis

Additionally to the extrinsic evaluation of the generated paraphrases for the NLU
task, we perform an intrinsic evaluation to assess the internal quality of the gen-
erated phrases. On one hand, the generated paraphrases should be semantically
close to the original phrases, especially the intent needs to stay the same in order
to inherit the intent annotation. On the other hand, the generated phrases should
be syntactically diverse and differ in choice of words, to represent a variety of pos-
sibilities for expressing an intention such as booking a restaurant. Simultaneously
measuring these two desired properties with automated intrinsic metrics is chal-
lenging, since the sentences with subpar scores can be both plausibly diverse or
undesirably misleading. We do not observe a clear correlation between the extrin-
sic intent classification performance and either of the intrinsic metrics (Table 4).



486 L. Vogel and L. Flek

Table 4. BLEU-2 Scores to measure similarity of generated template phrases data and
template phrases of the original data. BLEU between 0 and 1, higher scores = higher
similarity. Cosine similarity scores between −1 and 1, 0 = no correlation, 1 = perfect
match.

Intent

Intent Classification

F1 Score [%]

64 datapoints

(50% generated)

BLEU-2 Score

Generated vs.

”unseen” 32

BLEU-2 Score

32 orig vs.

other 32 orig

Cosine

similarity

USE

Generated

vs. unseen

Cosine

similarity

USE

32 orig vs.

other 32 orig

GetWeather 83.26 0.6352 0.8064 0.7139 0.7820

AddToPlaylist 90.91 0.6703 0.8015 0.8504 0.8721

PlayMusic 88.05 0.7823 0.7048 0.8101 0.7745

BookRestaurant 85.29 0.7050 0.7990 0.6596 0.7176

SearchCreativeWork 82.63 0.5722 0.8021 0.6171 0.7664

SearchScreeningEvent 81.21 0.4995 0.5876 0.6550 0.6713

RateBook 97.54 0.7429 0.8707 0.7325 0.8125

Slot Refilling. As the output of the paraphrasing models are template phrases,
we automatically fill up the generated slot placeholders with random slot values
from a database to obtain utterances. This process is simple in theory but often
yields unsatisfactory results especially for time information, where already in the
original datasets phrases such as “The weather on Sunday” are sometimes labeled
as “The weather on [timeRange]” and sometimes as “The weather [timeRange]”.
Such inconsistencies in preposition annotations as part of the slot value result in
syntactically incorrect utterances. For example the template “I want to book a
hotel on [timeRange]” sometimes results in utterances such as “I want to book a
hotel on in 2 weeks” or “I want to book a hotel on at 3 pm”. More syntactically
and semantically informed heuristics could be attempted in the future to further
improve results.

6 Conclusions and Future Work

In this paper, we investigate the paraphrasing of template phrases as a data aug-
mentation method for task-oriented conversational assistants. Our results show
that both used models, the CVAE and GPT-2, are suitable for generating useful
paraphrases, improving the performance on downstream tasks. We further point
out that we cannot properly assess the intrinsic quality of NLU paraphrases
with traditional NLG quality metrics such as BLEU or utterance embedding
similarity, and show that these metrics do not correlate with downstream per-
formance improvements. The main limitation for further improving the proposed
approach is a lack of diversity in publicly available task-oriented NLU datasets.
As future work, it would be interesting to investigate whether our findings are
also applicable to state-of-the-art transformer-based NLU models.
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26. Sahu, G., Rodŕıguez, P., Laradji, I.H., Atighehchian, P., Vázquez, D., Bahdanau,
D.: Data augmentation for intent classification with off-the-shelf large language
models. CoRR (2022). https://doi.org/10.48550/arXiv.2204.01959

27. Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep
conditional generative models. Adv. Neural. Inf. Process. Syst. 28, 3483–3491
(2015)

28. Tur, G., De Mori, R.: Spoken Language Understanding: Systems for Extracting
Semantic Information from Speech. Wiley, Hoboken (2011)

29. Witteveen, S., AI, R.D., Andrews, M.: Paraphrasing with large language models.
In: EMNLP-IJCNLP 2019, p. 215 (2019)

30. Wolf, T., et al.: Transformers: state-of-the-art natural language processing. In:
Proceedings of the 2020 EMNLP Conference: System Demonstrations, pp. 38–45
(2020)

31. Yu, B., Arkoudas, K., Hamza, W.: Delexicalized paraphrase generation. In: Pro-
ceedings of the 28th COLING: Industry Track, pp. 102–112 (2020)

https://doi.org/10.48550/arXiv.2204.01959


Transfer Learning of Transformers
for Spoken Language Understanding
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Abstract. Pre-trained models used in the transfer-learning scenario are
recently becoming very popular. Such models benefit from the availabil-
ity of large sets of unlabeled data. Two kinds of such models include the
Wav2Vec 2.0 speech recognizer and T5 text-to-text transformer. In this
paper, we describe a novel application of such models for dialog systems,
where both the speech recognizer and the spoken language understand-
ing modules are represented as Transformer models. Such composition
outperforms the baseline based on the DNN-HMM speech recognizer and
CNN understanding.

Keywords: Wav2Vec model · Speech recognition · T5 model · Spoken
language understanding

1 Introduction

Speech processing techniques historically relied on the noisy channel model and
the generative paradigm. In automatic speech recognition (ASR), this class of
models was represented by the GMM-HMM type of speech recognizers [3]. The
same generative paradigm was followed also in the downstream tasks of speech
processing in spoken dialog systems, especially in the spoken language under-
standing module (SLU) [5]. The rise of deep neural networks together with the
massive popularity of automatic differentiation toolkits such as TensorFlow or
PyTorch introduced the discriminative model paradigm first into the field of
SLU [6]. The advent of deep neural networks emerged as a hybrid DNN-HMM
architecture, where only the Gaussian mixtures were replaced by the deep neural
networks keeping the rest of the decoder stack the same (pronunciation lexicon,
language model, and decoding strategy).

The research was accelerated with the publication of the Transformer archi-
tecture [12], which was introduced first for the high-level linguistic tasks such
as machine translation. The Transformer architecture is capable to capture the
inherent knowledge present in large datasets. But for many tasks, including ASR
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and SLU, the number of available labeled data is always insufficient for train-
ing the powerful parameter-rich Transformer model. The problem was solved by
using a transfer learning approach, that uses models trained on large unlabelled
data in a self-supervised manner as a base for subsequent training of the param-
eters on small labeled data. The representatives of this class of models are BERT
(Bidirectional Encoder Representations from Transformers) [4] or T5 (Text-To-
Text Transfer Transformer) [10] models. The use of the Transformer architecture
has also spread to the field of ASR, changing the modeling paradigm from gen-
erative models to discriminative models. The end-to-end training of ASR has
started to become the state-of-the-art [9]. The recently published Wav2Vec 2.0
combines the Transformer architecture with the transfer learning approach and
with the direct processing of a speech signal using convolutional layers [2].

In this paper, we present the results of using the transfer learning approach
both in the ASR and the SLU modules of the Czech spoken dialog system. We use
the Wav2Vec 2.0 speech recognizer instead of the traditional DNN-HMM hybrid
ASR and the fine-tuned T5 model as a replacement for the discriminative SLU
module based on carefully designed convolutional architecture.

2 Transfer Learning for Spoken Dialog Systems

The Transformer architecture is a building block of many modern approaches in
speech and language processing. The rise of transfer-learning techniques leads to
novel methods with state-of-the-art performance. The training process consists
of two steps: (1) pre-training a generic model and (2) fine-tuning the pre-trained
model on in-domain data. We used these paradigms for both models involved in
spoken language understanding. We choose the Wav2Vec 2.0 model as a speech
recognizer and the Text-To-Text Transfer Transformer (T5) as an SLU module.
In this section, the pre-training procedure of the generic models is described. The
fine-tuning step of speech recognizer is then described in Sect. 3.2 and fine-tuning
of the SLU in Sect. 4.2.

2.1 Wav2Vec 2.0 Transformer

One of the most studied self-supervised end-to-end automatic speech recogni-
tion (ASR) model architectures is Wav2Vec 2.0 [2]. It is a deep neural network
pre-trained to reconstruct the corrupted signals. The input raw audio signal
is processed by a multi-layer convolutional neural network into a sequence of
latent-speech representations which are fed into a multi-layer Transformer [12]
(Fig. 1). The output of the Transformer is a sequence of frame-level contex-
tualized speech representations which are then processed by the connectionist
temporal classification (CTC) layer [1] decoding the most probable sequence of
graphemes.

Because there is no Wav2Vec 2.0 model available for Czech language, which
we are experimenting with, we decided to pre-train our own model. We gathered
as much public and in-house unlabeled audio data as possible. Together, we
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collected more than 80 thousand hours of Czech speech. The collection includes
recordings from radio (22k hours), unlabeled data from VoxPopuli dataset [13]
(18.7k hours), TV shows (15k hours), shadow speakers (12k hours), sports (5k
hours), telephone data (2k hours), and a smaller amount of data from several
other domains.

Fig. 1. Architecture of the Wav2Vec 2.0 model. Figure taken from [2].

Since the feature extraction of the input signal is limited by the memory of
GPUs in use, we sliced all records not to exceed 30 s, which we found to be a
reasonable input size for batching.

We followed the same pre-training steps as for the base Wav2Vec 2.0 model
in [2]. We pre-trained the model for 400 thousand steps with a batch size of
about 1.6 h, corresponding to more than 11 epochs over the dataset. We released
our pre-trained model under the nickname ClTRUS (abbreviation for Czech
language TRransformer from Unlabeled Speech) for public non-commercial
use1.

2.2 Text-to-Text Transfer Transformer

The Text-to-Text Transfer Transformer (T5) model is a self-supervised trained
variant of the generic textual Transformer architecture [10]. The T5 model is
able to construct the internal representation of input on many linguistic layers:
starting from phonetic and syntactic through semantic to the pragmatic layer.
The T5 model is pre-trained in a self-supervised manner by generating a text
restoration task from unlabelled training data. An example of the pre-training
input/output text pair is shown in Fig. 2.

The T5 model tries to recover missing tokens in the input sentence masked
with sentinel tokens <X> and <Y>. The masked tokens are used as training tar-
gets and the output sentence is terminated using another sentinel token <Z>.
1 Available at https://huggingface.co/fav-kky/wav2vec2-base-cs-80k-ClTRUS.

https://huggingface.co/fav-kky/wav2vec2-base-cs-80k-ClTRUS
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This way, the T5 learns not only the knowledge required to understand the
input sentence but also the knowledge necessary to generate meaningful output
sentences.

The original Google’s T5-base English model2 was trained from Common
Crawl data3. We replicated the same pre-processing procedure to obtain the
Czech data and we pre-trained our own T5 model for Czech language. The
pre-processing steps correspond with the steps presented in [11] for building
the Colossal Clean Crawled Corpus (C4) on which Google’s T5 model was pre-
trained. Such rules are generally applied while processing web text:

Fig. 2. Example of processing the original text and creating input/output text pairs.
Figure taken from [10].

– Only lines ending in terminal punctuation are retained. Short pages and lines
are discarded.

– Pages with dirty and obscene words are removed.
– Lines with the word “JavaScript” and the curly braces { } are removed

(remains of incorrect crawling of the webpage).
– The pages in the corpus were de-duplicated. The resulting corpus contains

each three-sentence span just once.

For the Czech language, we have collected the CommonCrawl corpus at the
end of August 2020. It contains 47.9 GB of clean text, 20.5 M unique URLs
and 6.7 B running words. The Czech T5 training procedure followed the original
procedure described in [11].

We used the t5-base architecture consisting of 220M parameters, 2×12
transformer block in the encoder and the decoder. The dimensionality of hid-
den layers and embeddings was 768. The attention mechanism uses 12 attention
heads with inner dimensionality 64.

2 https://github.com/google-research/text-to-text-transfer-transformer.
3 https://commoncrawl.org/.

https://github.com/google-research/text-to-text-transfer-transformer
https://commoncrawl.org/
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3 Speech Recognition

Speech recognition is the first module in a dialog system that transforms an
input audio signal into a textual representation usable in the SLU module. The
accuracy of speech recognition is the key metric of the dialog system because the
entities which are not recognizable in this module cannot be used in downstream
dialog processing. In this paper, we compare the performance of the DNN-HMM
baseline speech recognizer and the Transformer-based Wav2Vec 2.0 (W2V) rec-
ognizer.

3.1 DNN-HMM Baseline

The traditional DNN-HMM baseline speech recognizer consists of a set of differ-
ent models, esp. an acoustic model, pronunciation lexicon, and language model.
We used two separated class-based languages models for the HHTT and TIA
corpora trained from the training set with classes populated by the related
entities (names, station names, etc.). The acoustic model was a generic hybrid
DNN-HMM model with PLP parameterization. The pronunciation lexicon was
generated by the Czech phonetic rules. The DNN-HMM system allows generat-
ing of not only the 1-best word hypothesis but also the word-lattice of multiple
hypotheses. This allows the SLU module to compensate for the lower recognition
accuracy if it is designed to process such input structure.

3.2 Wav2Vec 2.0 Recognizer

The W2V recognizer consists of a stack of convolutional layers transforming the
raw input waveform into a latent speech representation. The latent speech rep-
resentation is then processed in the Transformer model to obtain a contextual
representation of the speech. This representation is then classified using a single
dense multi-class classification layer with softmax activation and trained using
the CTC loss. In this paper, we used an unsupervised scenario where the recog-
nizer was not trained on the in-domain data. The fine-tuning data consisted of
5k hours of labeled data including approximately 430 h of telephone speech with
no overlap with the in-domain data.

The W2V recognizer is a grapheme-based recognizer containing no recogni-
tion lexicon nor language model. The W2V recognizer generates an orthographic
transcription of the input audio. It is able to generate grapheme posterior prob-
abilities, but the conversion of the output into the form of word-lattice is com-
plicated. We, therefore, use only the 1-best hypothesis.

When analyzing the output of the W2V recognizer, the confusion tables
revealed that a significant number of errors were caused by wrong word forms,
while the meaning was fully kept. It was caused mainly by the use of Czech
colloquial word forms. Therefore, we decided to apply an output normalization
method mapping all possible word variants having the same semantic meaning
into one correct form.
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4 Spoken Language Understanding

The spoken language understanding (SLU) module of a dialog system converts
the output of the speech recognizer into a semantic representation, which encodes
the meaning of the utterance. In this work, we used the abstract semantic trees.
Such trees consist of nodes labeled with semantic concepts. The trees are abstract
because they do not encode an alignment between the words of the recognized
hypothesis and the nodes of the tree. The abstract semantic trees could be
represented in the textual parenthesized form (for examples, see Table 1).

4.1 CNN SLU Baseline

The baseline SLU method used in this paper is a hierarchical discriminative
model based on a convolutional neural network (CNN SLU) [15]. This model is
able to cope with the multiple hypotheses output from the speech recognizer in
the form of a word lattice. The convolution is performed directly on the word
lattice, where each convolution region is represented as a bag-of-word vector
with the corresponding lattice score assigned to this region. The output of the
convolutional layer is max-pooled to obtain a fixed-size vector representation of
the input word lattice. Then, this vector representation is transformed using a
stack of fully connected layers to obtain expansion probabilities of the semantic
grammar.

The semantic grammar is parameterized by the utterance u and consists of
a tuple Gu = (Θ, Ru, S), where Θ is a set of semantic concepts, Ru is a set
of grammar rules dependent on the utterance u and S ∈ Θ is a root concept
(starting symbol of the parsing algorithm). The rules Ru are in the form A →
β [p], where A ∈ Θ, β ⊆ {ν} ∪ Θ, ν is a special symbol representing rules
without lexical realization in the utterance u (see below) and p is the probability
of concept A having a set of child nodes β:

p = P (A → β|u) = P (β|A, u) (1)

A standard best-first search algorithm is used to decode the most probable
unordered semantic tree assigned to the utterance u by iteratively expanding
the nodes of the semantic tree starting with the root symbol S0 and using the
rules from Ru. In the CNN reimplementation of the HDM, the output layer
contains multiple softmax units (one unit for each concept A prediction posterior
probability distribution P (β|A, u)). The parameters of the neural network are
then optimized using the categorical cross-entropy loss function.

4.2 T5 SLU

For fine-tuning the T5-based SLU model we used the Tensorflow implementation
of HuggingFace Transformers library [14] together with the t5s4 library. This

4 https://github.com/honzas83/t5s.

https://github.com/honzas83/t5s
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library simplifies the process of fine-tuning, predicting, and evaluating the model
to easy-to-use Python modules. The input files (train, eval, test data sets) for
fine-tuning are the tab-separated files (TSV) containing two columns: input text
and output text. For training, it is also necessary to prepare a simple YAML
configuration file, which specifies the name of the pre-trained T5 model, the
SentencePiece model, the names of TSV files for fine-tuning and hyperparameters
settings such as the number of epochs, batch sizes, and learning rate. The t5s
library uses a variable sequence length and a variable batch size to fully utilize
the underlying GPU used for training. In the experiments, we used the ADAM
optimization with learning rate decay proportional to the inverse square root of
the number of learning epochs.

As the T5 model allows to transfer the task of spoken language understanding
into the text-to-text transformation, we used for fine-tuning pairs consisting of
speech recognition outputs and relevant parenthesized abstract semantic trees.
During the fine-tuning procedure, we tried many combinations of hyperparam-
eter values (number of epochs, steps per epoch, and learning rate). We also
experimented with training from ground-truth transcriptions only, recognized
data only, and from the mixture of ground-truth and recognized data. The best
combination of such hyperparameters was determined using the development
set and subsequently, the test data were processed using these settings. The
best results were obtained using the following values: the number of epochs: 2,
steps per epoch: 1800, learning rate: 5 · 10−4 and training from the mixture of
ground-truth and recognized data.

Table 1. Examples of training pairs consisting of speech recognition output (input
text) and relevant parenthesized abstract semantic trees (expected output). The first
three examples come from the TIA corpus and the other three examples are from the
HHTT corpus.

Utterance transcription Abstract semantic tree

dobrý den mám čas poźıtř́ı od jedný do p̊ul druhý HELLO, ZJISTI(KALENDAR(TIME))

Lit. hello I have time tomorrow from one to half past one

nejlepš́ı by to bylo źıtra od p̊ul druhé do čtyř hodin VYTVOR(SCHUZKY(TIME))

Lit. it would be best tomorrow from half past one to four o’clock

je volno v zasedačce dnes od čtyř do sedmi ZJISTI(KALENDAR(SUBJECT, TIME, VEC))

Lit. is the meeting room available today from four to seven?

v kolik jedou vlaky na prahu kolem páté a šesté hodiny DEPARTURE(TO(STATION), TIME)

Lit. what time do the trains go to Prague around five or six o’clock?

no tak potom v šest sedmnáct s přestupem v chomutově TIME, TRANSFER(STATION)

Lit. well, then at six-seventeen with a transfer in Chomutov

ano dvacet jedna deset stav́ı v rokycanech ACCEPT(ARRIVAL(TIME, TO(STATION)))

Lit. yes (the train) at ten past nine stops in Rokycany
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5 Dataset Description

In the experiments, we use two Czech semantically annotated corpora: a Human-
Human Train Timetable (HHTT) corpus [8] which contains inquiries and answers
about train connections; and an Intelligent Telephone Assistant (TIA) [16] cor-
pus containing utterances about meeting planning, corporate resources sharing
and conference call management. These corpora contain unaligned semantic trees
together with word-level transcriptions (for examples, see Table 1). We have split
the corpora into train, development, and test data sets (72:8:20) at the dialog
level so that the speakers do not overlap (Table 2). To perform the multi-task
training experiment, we had to unify some semantic concepts. In the HHTT cor-
pus, all time and date information was annotated as Time. On the opposite side
the TIA corpus contained more granular annotation of dates and times include
concepts like Time, Interval, Relative-Date etc. To avoid re-annotation of
the first corpus, we have merged all time- and date-related concepts into a Time

concept. We have also unified the concepts for agreement and disagreement so
that the resulting corpus contains Accept and Reject concepts.

To evaluate the SLU performance we use the concept accuracy measure [17]
defined as cAcc = N−S−D−I

N = H−I
N where H is the number of correctly recog-

nized concepts, N is the number of concepts in reference and S, D, I are the
numbers of substituted, deleted and inserted concepts. The concept accuracy can
measure the similarity of partially matching semantic trees. We also evaluate the
sentence accuracy measure (sAcc), which measures the ratio of sentences with
the predicted semantic tree exactly matching the reference semantic tree.

6 Experimental Evaluation

The comparison of the recognition word accuracy of the speech recognizers is
presented in Table 3. First, we present the performance of two different DNN-
HMM recognizers on the HHTT and TIA datasets. In this case, the recognizer

Table 2. Corpora characteristics.

HHTT TIA multi-task

# different concepts 28 19 46

# different semantic trees (train) 380 253 630

# train sentences 5240 6425 11665

# train concepts 8967 13499 22466

# dev. sentences 570 519 1089

# dev. concepts 989 1106 2095

# test sentences 1439 1256 2695

# test concepts 2546 2833 5379
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is tailored for the specific task by using a domain-dependent language model.
Then, we recognized the same data using the W2V recognizer. Although the
Wav2Vec recognizer does not use domain knowledge, we report the recognition
accuracy for TIA and HHTT datasets separately. The comparison of W2V with
the DNN-HMM shows that the W2V provides a significant performance boost
on the TIA dataset but no improvement on the HHTT dataset. The error anal-
ysis on the HHTT dataset showed that a large number of errors come from
the orthographic transcription produced by the W2V recognizer scored against
a normalized ground-truth reference. Therefore, we applied the rule-based nor-
malization mentioned in Sect. 3.2. We defined a set of 91 normalization rules in
total, for example:

– na shledanou ← nashledanou, naschledanou, na schledanou (Lit. good bye)
– tři čtvrtě ← tv̌ičtvrtě, tv̌ǐstvrtě, tv̌i štvrtě (Lit. three quarters)
– děkuji ← děkuju (Lit. thanks)

Using these rules, we normalized the recognizer output as well as the ground
truth transcription. The vocabulary size was reduced by 31 words in the case of
the HHTT corpus and by 47 words for the TIA corpus respectively. The nor-
malized outputs from the W2V recognizer have a significantly higher recognition
accuracy than the DNN-HMM baseline.

Since we train a single SLU model using multi-task conditions, we also
report the recognition accuracy on the union of HHTT and TIA datasets. Under
the multi-task condition, the recognition accuracy on test data increased from
76.23% (DNN-HMM baseline) to 85.01% (normalized W2V recognizer). The
lower accuracy on development data is caused by the selection of utterances
which are probably more challenging to recognize.

In the next set of experiments, we compared the CNN SLU baseline with
the T5 SLU model. We have to note, that the CNN SLU baseline is a special
model designed for the SLU task and is able to process the input in the form

Table 3. Speech recognition word-level accuracy.

% Acc

devel test

DNN-HMM TIA 71.31 77.88

DNN-HMM HHTT 70.40 74.05

W2V TIA 83.70 86.08

W2V HHTT 68.93 73.66

W2V TIA normalized 86.39 89.14

W2V HHTT normalized 73.80 79.48

DNN-HMM TIA+HHTT 70.92 76.23

W2V TIA+HHTT 77.30 80.72

W2V TIA+HHTT normalized 80.96 85.01
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Table 4. Spoken language understanding performance.

% cAcc % sAcc

devel test devel test

DNN-HMM ASR + CNN SLU (baseline) 76.04 80.24 69.70 74.51

DNN-HMM ASR + T5 SLU 76.09 81.50 70.98 74.84

W2V ASR + T5 SLU 80.81 84.29 73.09 79.04

W2V ASR normalized + T5 SLU 81.19 85.37 73.55 79.33

Ground truth transcription + T5 SLU 87.54 87.69 81.27 83.41

of word lattice and also generate the probabilistic distribution over the set of
semantic trees. In addition, we used ensembling of multiple models to filter-
out different random initializations [16]. By contrast, the T5 SLU model is a
text-to-text transformer working only with the 1-best input and 1-best output.
From this point of view, the results shown in Table 4 are very promising – the
much simpler fine-tuning and prediction of the T5 model is fully compensated by
the knowledge extracted during self-supervised pre-training. The T5 SLU model
provides better performance on the test data in both the cAcc and sAcc metrics
when using the DNN-HMM speech recognizer in comparison with the baseline
CNN SLU.

Since the T5 model is a generative model, the correctness of the generated
parenthesized semantic trees is not guaranteed. The T5 generates its output in
an autoregressive manner and therefore a small number of predicted semantic
trees have an incorrect number of closing parentheses. We, therefore, perform a
simple post-processing in which we add the missing parentheses to obtain valid
semantic trees. The T5 model also does not have a fixed set of output semantic
concepts and therefore it is able to generate semantic concepts not seen in the
training data. We treat such concepts as erroneous predictions and count them
as an insertion or substitution errors.

By moving from the DNN-HMM speech recognizer to the W2V recognizer,
the performance of the T5 SLU significantly improves in both metrics (Table 4).
The impact of W2V recognition output normalization is less obvious than in the
speech recognition experiment. This is expected because the normalization rules
only merge the semantically equivalent words.

The last row of Table 4 shows the ceiling for the cAcc and sAcc metrics
obtained by using the ground-truth transcriptions instead of the speech recog-
nizer. There is only a 2.32% margin in cAcc which indicates that the W2V speech
recognizer graphemic hypotheses are semantically close to the human-made tran-
scriptions. At the same time, the speech recognition accuracy is around 85% and
we can state that the errors are not changing the semantics of the utterances.
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7 Conclusion

In this paper, we presented the application of Transformer-based models in the
spoken dialog systems. We combined the speech recognizer represented by the
Wav2Vec 2.0 recognizer with CTC output and spoken language understand-
ing implemented as the fine-tuned T5 model. The overall performance of the
ASR/SLU pipeline outperforms the baseline method based on the traditional
approach of DNN-HMM hybrid ASR and SLU based on convolutional networks.

The results presented in this paper are very promising and outline future
research in the applications of transfer-learning Transformers in spoken dialog
systems. First of all, the Wav2Vec 2.0 speech recognizer with the current archi-
tecture is not suitable for real-time usage required by natural speech interaction.
The causes are mainly the full attention mechanisms used in the Transformer as
well as the computational costs of the Wav2Vec model. Another open question
is the composability of the Transformer models. In the current setup, the utter-
ances are processed step-wise (speech → text → semantics). Future research
should focus on the composition of multiple transformers (e.g. by using adapters
[7]) and the joint end-to-end training. This way, the limitation on only the 1-best
text hypothesis would be eliminated. Also, the text normalization process could
be implicitly modeled in the composed model.
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Abstract. In this paper, we present a spoken dialog system used for
collecting data for future research in the field of dementia prediction
from speech. The dialog system was used to collect the speech data of
patients with mild cognitive deficits. The core task solved by the dialog
system was the spoken description of the vivid shore picture for one
minute. The patients also performed other simple speech-based tasks. All
utterances were recorded and manually transcribed to obtain a ground-
truth reference. We describe the architecture of the dialog system as well
as the results of the first speech recognition experiments. The zero-shot
Wav2Vec 2.0 speech recognizer was used and the recognition accuracy
on word- and character-level was evaluated.

Keywords: Spoken dialog systems · Degenerative diseases ·
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1 Introduction

Recent research in the interdisciplinary field between medicine and computer sci-
ence leads to big advances in the development of technological tools that help
doctors in the common medical practice. Other tools are available for the broad
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public to perform self-assessments and to provide a recommendation about fur-
ther medical examination under a specialist’s supervision. The nature of human
speech allows observing the first symptoms of many diseases in the changes in the
speaker’s speech characteristics. Such characteristics could change at all levels of
human speech production, ranging from changes in phonetic and prosodic features
to syntactic and semantic features to the pragmatic level of human interaction.

Current goals in terms of machine learning include two major branches of
research: (1) automatic speech recognition of disordered speech and (2) auto-
matic classification of diseases from speech. The first branch could be used as
the compensation tool for patients with dysarthria [14] or recognition of the
electrolaryngeal speech [15]. The second branch involves the classification of
many degenerative diseases from speech, including Parkinson’s disease [17] and
Alzheimer’s dementia [22] or other diseases such as dysarthria [1].

Alzheimer’s disease (AD) and its research is a very broad field in medic-
inal research [7,21]. The importance of early recognition of dementia is also
clearly visible in speech and NLP research. The research has shown that speech
can be used to distinguish between a healthy population and AD patients [12]
according to non-verbal features, such as length of segments and the amount of
silence [9]. Researches for English speech [13] and German speech [20] were con-
ducted. One of the most recent contributions was the 2021 ADReSSo Challenge
(Alzheimer’s Dementia Recognition through Spontaneous Speech only) which
targets three difficult automatic prediction problems of societal and medical rel-
evance, namely: detection of Alzheimer’s Dementia, inference of cognitive testing
scores, and prediction of cognitive decline [10].

This paper describes our initial experiments with implementing the dialog
system for patients with Alzheimer’s dementia speaking Czech. The initial use-
case of the dialog system is to collect speech data from real-world dialog scenar-
ios. In the future, we plan to expand the usability of the dialog system to more
interactive scenarios by re-implementing the current pen-and-paper standardized
cognitive tests. The goal of this paper is to evaluate the modern, state-of-the-art
Wav2Vec 2.0 technique for speech recognition of disordered Czech speech.

To the best of our knowledge, our work is the first attempt to deal with the
Czech language in the context of dementia and speech recognition – this includes
also the development of a corresponding speech corpus in Czech. In this paper, we
provide also a comparison of recognition accuracies on word- and character-level
between the group of people with cognitive disorders and the control group.

The paper is organized in the following way: Sect. 2 describes the implemen-
tation of the dialog system and dialog scenarios, Sect. 3 presents the Wav2Vec
2.0 recognizer used in experiments, Sect. 4 provides description of datasets used
in the experimental evaluation in Sect. 5. Finally, Sect. 6 concludes the paper
and describes possible future work.

2 Spoken Dialog System

Since the real-quality datasets are necessary for almost every machine learn-
ing task (excluding zero-shot scenarios), we designed a dialog system that can
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Fig. 1. SpeechCloud architecture

perform a set of pre-defined tasks with a person having potentially some kind
of neurodegenerative disorder. The dialog system should be also able to store
the metadata required for further machine-learning-based processing, such as
automatic classification or detection of disorders.

The dialog system was implemented using the distributed platform called
SpeechCloud. This platform provides a unified real-time interface between a
dialog manager (which has to be implemented as part of the dialog system) and
the speech modules such as automatic speech recognition (ASR), text-to-speech
synthesis (TTS), and spoken language understanding (SLU) (such modules could
be reusable across different dialog systems).

2.1 SpeechCloud

The SpeechCloud is a cluster-based technology [23], which allows to easily
develop a dialog system and the corresponding dialog manager from scratch.
During this development, the ASR, TTS, and SLU modules could be easily
reused in a new system. The architecture divides into three parts (see Fig. 1):
(1) the SpeechCloud cluster running all the shared services (2) the client system
providing an audio interface, and (3) the dialog manager running separated from
the SpeechCloud cluster. The communication between these parts is provided
using the standardized WebSocket protocol and the SpeechCloud cluster serves
as an interconnecting hub. The audio data are transferred between the client sys-
tem and the SpeechCloud cluster using the RTP protocol. The dialog manager
does not use directly the audio, instead, it uses the services provided by speech
modules (ASR, SLU, TTS) to perform conversions between machine-readable
structures and speech audio.

The client system can be implemented in many ways. One of the most flexible
ways is the use of a standard modern web browser implementing the WebRTC
protocol. WebRTC is a set of standards enabling the use of audio interfaces in
the web browser and allowing the acquisition of an audio recorder (microphone)
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and audio player (loudspeakers) from the JavaScript code together with the
session maintaining protocols like SDP (Session Description Protocol). On the
server side, the SIP (Session Initiation Protocol) is used to connect the web
browser with the speech engines and RTP (Real-time Transport Protocol) for
the transmission of the audio packets. The FreeSwitch software was used as the
telecommunication stack, which interconnects the SpeechCloud clients with the
allocated speech engines.

SpeechCloud workers instantiate the speech recognizer and speech synthe-
sizer. We used our in-house large vocabulary continuous speech recognition sys-
tem, [11] and also the in-house speech synthesis, [16]. Typically, 2 CPU cores are
used for each worker, but the nature of spoken dialog allows to overprovision the
workers because the humans are not talking the whole time during the dialog
and the CPU load interleaves across simultaneous sessions [23].

2.2 Spoken Dialog

Because the main goal of the spoken dialog at this stage of research was to
collect the speech data and evaluate the speech recognizer, the dialog manager
only carried out the set of predefined tasks.

The session with the human subject (potential patient) starts with filling in
the textual form with the session metadata (subject’s anonymized identification,
date of birth, place where the subject lives, the scores of the subject in the
cognitive tests etc.).

Then, the spoken dialog starts and mainly the text-to-speech synthesis is used
to guide the subject through the dialog session consisting of a set of dialog scenarios
(see Sect. 2.3). At the same time, the speech recognizer is used to recognize and
store the subject’s utterances. The dialog itself consists of a set of simple cognitive
tests and the time to complete the test is indicated using a timer.

Although the feedback from the speech recognizer to the state of the dialog is
not currently used, the overall framework and implementation of the dialog man-
ager allows a simple modification and extension of the testing procedure in the
future.

The dialog is executed from a multimodal web application, which uses the
visual feedback to guide the subject through dialog, to present the visual stimulus
to the subject and to measure the time remaining in the current dialog scenario.
The web forms are used as the metadata input form. The audio output of the web
page is generated using TTS and the utterances of the subjects are streamed to
the SpeechCloud server. The web application alone is implemented using HTML,
JavaScript and CSS code. For interfacing with the SpeechCloud platform, the
SpeechCloud.js library was used.

2.3 Dialog Scenarios

The sequence of dialog scenarios is started after the dialog session is initiated
by filling in the subject’s metadata. Each dialog scenario is introduced using
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the prompt synthesized in TTS module. The prompt describes the goal of the
scenario and its time constraints. After the time measured by the visible counter
runs out, the next dialog scenario is automatically executed. It is supposed that
the subject fulfills the scenario using his own voice. The speech data are recorded
and together with the automatically recognized speech transcript are stored in
the data storage of the dialog manager.

In the following paragraphs we will shortly describe the currently deployed
dialog scenarios used to collect the data for this paper:

Repeating Numbers. The first test is meant to be more of a warm-up test for
the patient. They are required to repeat numbers said to them by the application
to test whether the application is working properly but more importantly to test
the patient’s hearing.

Remembering Animals. The patient has thirty seconds to name as many ani-
mals as he/she can remember, which is evaluated at the end of the test and cross-
referenced with the number of animals remembered by a healthy population.

Picture Description. The core dialog scenario of the dialog system was the
description of the vivid shore picture (Fig. 2). The picture was carefully designed
by the members of our team. The picture takes into account all the effects
that accompany cognitive disorders like dementia. The disorder not only affects

Fig. 2. Black and white vivid shore picture
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memory, and thus remembering individual words, but also significantly impairs
the patient’s ability to sustain the flow of thought and the ability to describe
interconnected events present in the picture.

The picture is divided into three layers of interest: (1) the water of the lake in
the foreground (2) the grassy shoreline in the middleground, and (3) the sky and
trees in the background. There are several events taking place in each layer so
that the subject always has something to describe and talk about. This division
of planes and distribution of events in each layer was specifically designed so
that the flow of thoughts of the patient could be analyzed:

1. Where do patients start and where do patients end in describing the picture?
2. Do they go through the picture horizontally/vertically?
3. Do they notice all the events?
4. Do they use only single words to describe events?
5. Do they see the overall big picture – “sunny day at the river”?
6. Do they remember the right words (e.g., squirrel)?
7. Does the described story follow some story line or does the subject only repeat

a few words describing the most obvious activities?

The description of the flow of thoughts must still be done by hand, however,
the preparation of a new approach to automatic evaluation is an ongoing process,
see Sect. 6.

3 Wav2Vec 2.0 Speech Recognition

The recorded audio data are very hard to recognize using traditional DNN-HMM
hybrid speech recognizer for many reasons, we will mention the following: (1)
hard acoustic conditions caused by the use of web browser and distant micro-
phone recording (2) speech influenced by cognitive deficits (3) almost arbitrary
language of utterances that is hard to model using language modeling (4) spe-
cific, open and probably large recognition lexicon.

Therefore, we looked for a new promising end-to-end method for speech
recognition. The evaluation of available methods lead us to the use of the
Wav2Vec 2.0 recognizer with the CTC trained output grapheme classification
layer. The method uses a transfer learning approach consisting of pretraining
on large unlabelled datasets and subsequent fine-tuning on a smaller labeled
dataset.

We hope that such kind of recognizer could tackle the mentioned limitations
of traditional hybrid recognizers. The adaptation to acoustic conditions is per-
formed during the pretraining phase where many audios are recorded in other
situations than the close-talk microphone. The remaining problems are solved
inherently by the grapheme nature of the Wav2Vec 2.0 recognizer – it uses no
recognition lexicon nor language model and therefore can recognize non-standard
words or just fragments of words pronounced by people with cognitive deficits.

The Wav2Vec 2.0 [3] is a deep neural network pre-trained to reconstruct
the corrupted signals. The input raw audio signal is processed by a multi-layer
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convolutional neural network into a sequence of latent-speech representations
which are fed into a multi-layer Transformer [18]. The output of the Transformer
is a sequence of frame-level contextualized speech representations which are then
processed by the connectionist temporal classification (CTC) layer [2] decoding
the most probable sequence of graphemes.

Public model repositories contain a large number of pretrained or even fune-
tuned Wav2Vec models for many languages. Unfortunately, for Czech, the set of
available models is limited. We used the pre-trained model nicknamed ClTRUS
[8] (Czech language TRransformer from Unlabeled Speech)1. The model was
pretrained from more than 80 thousand hours of Czech speech. The collec-
tion includes recordings from radio (22k hours), unlabeled data from VoxPopuli
dataset [19] (18.7k hours), TV shows (15k hours), shadow speakers (12k hours),
sports (5k hours), telephone data (2k hours), and a smaller amount of data from
several other domains. For fine-tuning, the model was trained using the labeled
data which were out-of-domain from the point of view of the cognitive disordered
speech evaluated in this paper.

Because the Wav2Vec model is a kind of Transformer model, the self-
attention layers present in the Transformer blocks impose a quadratic compu-
tational and memory complexity with respect to the input sequence length.
Therefore a manageable length of input waveforms is in the order of tens of
seconds. To overcome this limitation, we used the sliding window approach to
obtain the grapheme posteriors. In particular, we used the window length of 18 s
with a 3-s overlap. The overlaps are split in half and the posteriors for the first
1.5 s are taken from the left window and the posteriors for the remaining 1.5 s
from the right window. This way, we can decode input utterances of an arbitrary
length, because the CTC decoding step is applied to the whole composite matrix
of posterior probabilities.

4 Datasets (Participants and Their Inclusion Criteria)

We collected the evaluation data in two phases. The first phase consisted of
recording the subjects using the vivid shore picture (Fig. 2) and recording the
utterances using the smartphone laid on the top of the desk. At the same time,
we developed the dialog system and the description of the picture was one of the
implemented dialog scenarios. The dialog system was used in the second phase
of recordings.

4.1 Mobile Phone Recordings

Data collection took place at the Memory Center at the University Hospital
Kralovske Vinohrady Third Faculty of Medicine, Charles University, Prague in
the Czech Republic in 2022. Participants were asked to describe a submitted
picture for one minute. All the participants were informed about an audio record

1 Available at https://huggingface.co/fav-kky/wav2vec2-base-cs-80k-ClTRUS.

https://huggingface.co/fav-kky/wav2vec2-base-cs-80k-ClTRUS
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being made during the examination. A mobile phone with a running dictaphone
was laid on the table in front of the participants. There were total of 17 mild
cognitive disorder (MCD) patients (Dataset1 ) and 11 normal elderly (NE) people
(Control Group).

4.2 Dialog System Recordings

Black and white vivid shore picture (2) was described for one minute by patients
with mild cognitive deficits individuals at Memory Center at the University
Hospital Kralovske Vinohrady Third Faculty of Medicine, Charles University,
Prague in the Czech Republic in 2022. There was a total of 16 recorded MCD
patients using the presented dialog system. We denote this dataset as Dataset2.

The inclusion and exclusion criteria of normal elderly people were assessed
during a brief interview based on a questionnaire. Inclusion criteria were age
over 45 years, Czech native language, and independent living in the community.
Exclusion criteria were psychiatric or neurological brain disorders (e.g., stroke,
trauma, tumor, alcohol abuse, and psychoactive medications) and depression
with a Geriatric Depression Scale score of more than six points.

Patients with MCD were recruited consecutively if they met the following
inclusion criteria: long-term follow-ups at the Memory Center of the Department
of Neurology, University Hospital Kralovske Vinohrady, Prague, Czech Republic,
a neurocognitive disorder based on criteria from the Diagnostic and Statistical
Manual of Mental Disorders 5 (DSM 5), which was determined by an experienced
cognitive neurologist, and mild cognitive deficits based on scores of our in-house
cognitive tests Amnesia Light and Brief Assessment (ALBA test) and PICture
Naming and Immediate Recall (PICNIR test). These two innovative and original
Czech tests are easy to perform and evaluate, but at the same time challenging for
the subject, are very short, lasting up to five minutes, and are used to detect mild
cognitive deficits, especially short-term episodic or long-term semantic memory.
The ALBA test consists of repeating a sentence of six words, performing and
then recall of six gestures, and finally recall of the words of the original sentence.
In the PICNIR test, the first task is to write down the names of 20 black and
white pictures and then to recall and write as many picture names as possible
in one minute [4,5].

One-minute description of the picture was recorded using a smartphone dur-
ing an in-person examination (normal elderly people, dataset Control group:
11 speakers, 1117 transcribed words, patients with MCD, dataset Dataset1 : 17
speakers, 1960 transcribed words). The second type of data was recorded using
the presented dialog system (patients with MCD during an in-person examina-
tion or online, dataset Dataset2 : 16 speakers, 1593 transcribed words).

5 Experimental Evaluation

For experimental evaluation, we manually transcribed all three datasets. Then,
we used the fine-tuned Czech Wav2Vec 2.0 speech recognizer to automatically
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transcribe all the utterances. Our goal in the evaluation was to estimate the
expected recognition accuracy of the untrained Wav2Vec recognizer. We evalu-
ated the accuracy on the character- and word-level, because the Wav2Vec rec-
ognizer is grapheme-based and can produce an exact transcription of the utter-
ance not influenced by the recognition vocabulary. To compute the recognition
accuracy, we computed a Levenshtein alignment of the reference and hypoth-
esis, and then the accuracy is computed as Acc = N−I−D−S

N , where N is
the total number of tokens in reference, and I/D/S are the counts of inser-
tion/deletion/substitution errors.

The results of the evaluation are summarized in Table 1. The accuracy means
and standard deviations are computed over the set of different speakers in a given
dataset. We can see that the character-level and word-level accuracy are corre-
lated. But, the same character-level accuracy of 90% for Dataset2 and Control
group is not mirrored in the word-level accuracy for those datasets. We suppose
that this is influenced by the basic principle of the Wav2Vec recognizer – the
recognition of graphemes. This leads to high character-level accuracy, but it can
cause a drop in the word-level accuracy because the human transcriber naturally
tends to transcribe the utterance into a readable form. Therefore, the transcriber
sometimes inserts some characters, which are not audible in the utterance and
are not recognized by the Wav2Vec recognizer.

The word accuracy of around 70% indicates a good baseline for subsequent
machine-learning-based methods applied to the automatic transcriptions. The
difference between character-level and word-level accuracy suggests, that further
data collection and retraining of the Wav2Vec recognizer could improve the
recognition performance. By training the Wav2Vec on the in-domain data, the
model will be aware of the entities occurring in the vivid shore picture and also
in the utterances (such as a swimmer, a fisherman, or a parasol).

Table 1. Character-level and word-level accuracy per dataset in percents. avg means
the average accuracy over the speakers and std its standard deviation.

Char-level Acc Word-level Acc

Groups avg ± std avg ± std

Dataset1 83.5 ± 10.2 64.6 ± 11.9

Dataset2 90.0 ± 7.8 67.4 ± 13.3

Control group 90.1 ± 5.7 74.1 ± 11.6

Finally, we plotted the scattered plot of the character accuracy versus the
word accuracy (Fig. 3). Each data point in the scattered plot indicates an indi-
vidual speaker. The majority of speakers are located inside a rectangle with the
center designed with the mean accuracy and width and height of two standard
deviations of the accuracy. But for all three datasets, the outliers are present.
Again, we can hypothesize that the number of outliers will be reduced after
retraining on the in-domain data.
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Fig. 3. Scattered plot of word-level accuracy vs. character-level accuracy for individual
speakers.

6 Conclusion and Future Work

In this paper, we presented our initial effort toward the automatic processing
(and in the future classification and prediction) of Czech speech data of people
with cognitive disorders such as Alzheimer’s dementia. We outlined the design
and architecture of the baseline spoken dialog system. The system uses a modular
architecture called SpeechCloud, which provides multiplatform access to speech
modules such as speech synthesis and recognition.

We also evaluated the performance of the Wav2Vec 2.0 speech recognizer on
a data sample containing the speech of people with cognitive disorders. A large
portion of such data comprise the spoken description of the vivid shore picture.
In evaluation, we observed that even the untrained speech recognizer provides
high character-level accuracy. The lower word-level accuracy is caused by the
fact that the words used in the utterances are not well-modeled in the speech
recognizer. We hope that further data collection can lead to a sufficiently large
dataset suitable for fine-tuning the Wav2Vec speech recognizer. We also plan
to use the adaptation techniques for Wav2Vec models, for example, based on
Transformer adapters and x-vectors [6].

The future of our research is not only in recognition of the utterances but also
in understanding them. Our goal is to map the flow of spoken concepts related to
the described vivid shore picture with the spatial position of the concept in the
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picture. We plan to model and visualize the flow of such concepts with respect
to a particular group of people (normal elderly/patients with cognitive deficits).
We would like also to include the linguistic and phonetic features present in
the utterance, such as the timing of phonemes, mispronounced words, repeated
phonemes, and words. The results presented in this paper suggest a good starting
point for this research.
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8. Lehečka, J., Švec, J., A.P., Psutka, J.: Exploring capabilities of monolingual audio
transformers using large datasets in automatic speech recognition of Czech. In:
Proceedings Interspeech (2022)

9. König, A., et al.: Automatic speech analysis for the assessment of patients with pre-
dementia and alzheimer’s disease. Alzheimer’s Dementia Diagn. Assessment Dis.
Monit. 1(1), 112–124 (2015). https://doi.org/10.1016/j.dadm.2014.11.012, https://
www.sciencedirect.com/science/article/pii/S2352872915000160

10. Luz, S., Haider, F., de la Fuente, S., Fromm, D., MacWhinney, B.: Detecting cogni-
tive decline using speech only: the ADReSSo challenge. In: Proceedings Interspeech
2021, pp. 3780–3784 (2021). https://doi.org/10.21437/Interspeech.2021-1220
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Abstract. Current data-driven Dialogue State Tracking (DST) models
exhibit a poor capacity to adapt themselves to domain changes, resulting
in a significant degradation in performance. We propose a methodology,
called Generative Dialogue Domain Adaptation, which significantly sim-
plifies the creation of training data when a number of changes (e.g., new
slot-values or new instances) occur in a domain Knowledge Base. We
start from dialogues for a source domain and apply generative meth-
ods based on language models such as BERT, fine-tuned on task-related
data and generate slot-values substitutions for a target domain. We have
experimented dialogue domain adaptation in a few-shot setting showing
promising results, although the task is still very challenging. We provide
a deep analysis of the quality of the generated data and of the features
that affect this task, and we emphasise that DST models are very sensi-
tive to the distribution of slot-values in the corpus.

Keywords: Dialogue State Tracking · Task-oriented Dialogue ·
Domain Adaptation

1 Introduction

Dialogue State Tracking (DST) [7] is a core component of task-oriented dialogue
systems and conversational agents [11,12,15]. The goal of a DST model is to
keep track of the information that is provided by the user during the whole
conversation. Recent DST models (see [3] for a survey) are trained on annotated
dialogues, and they learn how to detect slot-value pairs (mostly pre-defined in
a domain ontology) in a certain user utterance. Recent research has focused on
models that are robust to unseen slot-values, i.e., slot-values that are present in
the test set but not in the training data [2,13], and on approaches that are able
to manage substantial changes in the domain knowledge [8].

In this paper, we deal with the situation where we have a conversational
dataset, i.e., a collection of annotated dialogues, for a source domain and we need
to create new dialogues that are consistent with a target domain, where a number
of the changes has occurred in the domain knowledge. We propose Generative
Dialogue Domain Adaptation (G-DDA) as a methodology for facing dialogue
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Fig. 1. Example of dialogue domain adaptation. Slot-values in the dialogues (indicated
in bold) are generated by a fine-tuned Language Model.

adaptation. G-DDA consists in fine-tuning a Language Model on the target
domain related data, and using the fine-tuned model for generating appropriate
slot-values substitutions. Figure 1 shows an example of some utterances taken
from the source dialogue, and corresponding utterances after undergoing the
process of G-DDA. Slot-values (marked in bold) refer to a certain Source Domain
(restaurants from Cambridge - left part of the figure), have been substituted in
order to be adherent to a new target domain (restaurants from Pisa - in the
right part of the figure).

Taking advantage of the capacity of the language model to generate several
variants for a slot-value, we experimented with different configurations, and have
obtained significant improvements with respect to the No-Adaptation setting
over the MultiWOZ dataset.

The main contributions of the paper are the following: (i) we propose Gen-
erative DDA, a strategy for generating slot-values substitutions based on the
use of large pre-trained language models; (ii) we define a reproducible method-
ology for fine-tuning a language model given a target Knowledge Base, with
four parameters that can be adjusted to optimize slot-value substitutions; (iii)
we introduce new evaluation metrics for assessing the quality of automatically
generated conversational dataset without the need for training a DST model.

2 Generative Dialogue Domain Adaptation

The objective of our research is to perform Dialogue Domain Adaptation (DDA),
a process through which slot-values in a source conversational dataset are substi-
tuted with new values consistent to a target Knowledge Base (KB). For instance,
the goal of DDA is to substitute the slot-value British, consistent with the
Cambridge source domain, with the slot-value Tuscan, which is consistent with
the Pisa target domain (see Fig. 1). Such substitutions are challenging for sev-
eral reasons: (i) slot substitutions need to consider morpho-syntactic constraints,
e.g., in case the source dialogue list more than one options (I have seven dif-
ferent options, while there is only one for the target domain, then the sentence
has to be modified (I have only one option; (ii) we need to preserve linguistic
variability of slot-values, i.e., a certain slot-value (Tuscan, can be expressed
in several ways, like Tuscan food, food from Tuscany, or Tuscanian food ; (iii)
substitutions need to be consistent with the target KB, e.g., if there is only one
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Tuscan restaurant in Pisa with moderate price, then the source dialogue need
to be adjusted accordingly; (iv) substitutions need to maintain dialogue internal
coherence, e.g., if a certain substitution has been done at the beginning of the
dialogue, then all substitutions that refer back to it (i.e., coreference) have to be
coherent.

Given the above mentioned challenges, slot-substitutions can hardly been
carried out using simple rule-based approaches. Rather, in this paper we pro-
pose a generative method (called G-DDA) based on masking a source slot-value
(de-lexicalization phase) in an utterance and making a language model generate
a target text (re-lexicalization phase) to be substituted to the mask. The gener-
ation is influenced both by the context (the text around the mask) and by the
prior knowledge of the model.

Figure 2 depicts the process that has been followed for implementing G-DDA.
At step 1) we use the slot-values from a target KB (cfr. Sect. 3.1) and the utter-
ances from the source dialogues, to create the training utterances (cfr. Sect. 2.1).
We then use these utterances to fine-tune a language model (cfr. Sect. 2.2).
Finally, we use this fine-tuned model to generate slot-values (cfr. Sect. 2.3 and
substituting them to the original ones in the source dialogues.

The choice of generating the new slot-values with a fine-tuned Language
Model, instead of picking them from the Knowledge Base using some rule-based
strategy (as already done in previous works [8,9]) is motivated by the fact that
the generative approach produces benefits like language variability (the same
concept can be expressed with different words, similarly to natural language),
and linguistic agreement (e.g., singular-plural agreement is respected).

2.1 Training Utterances for Fine-Tuning

Within the DDA task, the training data required for performing fine-tuning
consists of a list of utterances containing information on the target slot-values,
namely the ones that are in the target KB.

To obtain new training utterances, we select a certain number of patterns,
i.e., representative source domain sentences with masks in place of slot-values,
and iteratively substitute all possible values in the target KB to the correspon-
dent masks. For example, if we select the slot-values cheap, expensive for the
slot Restaurant-Price, and Italian, Indian for Restaurant-Food, and
we take the pattern:

[I want a Restaurant-Price restaurant that serves Restaurant-Food food]

we would create the following training utterances:

I want a cheap restaurant that serves Italian food.
I want an expensive restaurant that serves Italian food.
I want a cheap restaurant that serves Indian food.
I want an expensive restaurant that serves Indian food.

Increasing the number of patterns and slot-values produces exponential
growth in the total number of different utterances.
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Fig. 2. Illustration of the Generative DDA approach. (1) Some utterances are selected
from the Dialogue Source and the slot-values are substituted with values from KB
target instances, in order to create a list of new utterances to be used as fine-tuning
data (FT data); (2) BERT is fine-tuned on the FT Data, and a new model is created
(Finetuned BERT); (3) the new fine-tuned model is used for generating the slot-values
that substitute the ones in the Dialogue source, and a new dataset (Dialogue Target)
is created.

2.2 Fine-Tuning: Choice of BERT

Starting from the patterns that have been created, as explained in Sect. 2.1, we
then implemented fine-tuning of the pre-trained language model.

The fine-tuning process allows us to reap the benefits of large language mod-
els, and at the same time to specialize the model on a specific task with a very
fast training phase. The choice of the language model to use fell on BERT.

BERT [4] is a language representation model presented by Google in 2018,
which has rapidly become prominent for many tasks in NLP. Unlike previous
language models, which use left-to-right or right-to-left approaches, BERT uses
a bidirectional pre-training, meaning that all tokens in the input contribute to
influencing the prediction. One feature of BERT that is particularly relevant
for our purpose is that of using a masked language model (MLM) pre-trained
objective: some random tokens are masked from the input, and the model has
to predict the original word understanding it from the context. This is very
well suited for the task of slot-values substitution, where the new value to be
generated depends both on previous and subsequent context in the utterance.
In addition to that, a second approach based on next sentence prediction (NSP)
is used. NSP consist in predicting whether a given sentence A is followed by
a sentence B. BERT has reached a new state-of-the-art on eleven NLP tasks
including GLUE, SQuAD, and question answering Test F1.
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Despite BERT is already 4 years old, we therefore considered it to best suite
the requirements of our task. The fine-tuning process took around 30 min using
an NVIDIA GeForce GPU. We used 12 hidden layers, a batch size of 8 and a
dropout rate of 0.1.

2.3 Slot-Values Generation

Once we have a language model fine-tuned on our target domain, we can use it
to generate the new slot-values. In order to do that, we select one by one each
utterance in the source dialogues. If the utterance contains some slot-values, we
mask them and we ask the language model to predict the word (or group of
words) that should take the place of the mask.

We then take the prediction that has been generated and substitute it back
to replace the mask. Figure 1 shows an example of original utterances that went
through this process and corresponding target utterances with the slot-values
generated by the language model.

After a generation has been substituted to an original slot-value, this sub-
stitution will be remembered throughout the whole dialogue, and the next time
that the same slot-value is found, instead of asking the model to generate a
new value, we use the same value that was generated before. This allows us to
maintain a coherence throughout the dialogue.

2.4 Slot-Value Substitution Parameters

The methodology discussed so far can be put into practice with different imple-
mentation choices. In order to formalise them, we introduce four parameters,
which we describe in the following paragraphs.

Pattern Selection Method - M. This parameter specifies the way in which the
patterns are collected. It is a boolean value and corresponds to 1 if the patterns
are created manually (ad-hoc patterns), 0 if they are automatically extracted
from the source dialogues. In both cases, particular attention is paid to including
the names of domains and slots explicitly in the pattern, so to help the model
disambiguate between one slot and another.

Number of Patterns - P. This parameter refers to the number of patterns that
are created for every [domain/slot-name] pair. It takes 1 as the minimum value
so that the fine-tuning is performed on all the slots. With a higher value, we
have an increment in the variety of training utterances.

Number of Slot Masks - S. It represents the number of slot-name masks for each
pattern. The higher this number, the higher will be the total amount of training
utterances, since more combinations of slot-values are possible. It takes 1 as the
minimum value and MAX as the maximum. MAX means that every pattern
has as many masks as is the total number of slot-names for the specific domain.
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Number of Generation Candidates - C. This parameter indicates the number of
generation candidates to choose from for performing the substitution. When the
fine-tuned model is asked for generating a substitution to a given mask in an
utterance, it proposes a list of possible candidates, ordered by prediction confi-
dence. If this parameter is equal to 1, the first prediction is always picked. If the
value is higher, any of the N candidates can be chosen by a conditioned prob-
ability, which means that the first values are selected with a higher probability
than the last ones.

3 Experimental Setting

Following recent literature on DST [5,10,16], we use the MultiWOZ 2.3 dataset
[6]. The dataset has been collected through the Wizard of OZ technique and it
contains a total of more than ten thousand dialogues, each with an average of
around 13 turns, spanning over 7 domains. The context of the dialogues relates to
a user asking for information about activities to do in Cambridge and the system
provides responses following the setting of a task-oriented dialogue system.

Starting from MultiWOZ 2.3 as source domain dialogues, the dialogue
domain adaptation task that we intend to experiment consists in obtaining a
new dialogue dataset that is no longer related to the Cambridge domain but
relates instead to a Pisa domain (which is a city with similar characteristics),
having at disposal only a KB of this target domain.

3.1 Source and Target KBs

The target Knowledge Base related to Pisa has been manually built, applying
limited variations with respect to the source MultiWoz KB: specifically, the
Pisa KB has the same [domain/slot-name] pairs, i.e., the schema of the domain
ontology is shared, and it has the same number of instances for each domain
(e.g., same number of restaurants), a constraint which is useful to keep under
control the complexity of the task. Differences between source and target KB are
due to different slot-values used in the Pisa context. For example, Train-Day

has exactly the same slot-values in both KBs, since both have the same English
names for the days of the week, while Train-Depart has zero overlaps since there
are no train stations in common between Cambridge and Pisa.

The choices for matching a source instance to a target instance have been
made following a frequency distribution strategy, meaning that an instance with
characteristics that have a certain degree of rarity in the Cambridge KB has
been substituted with an instance that has a similar degree of rarity in the
Pisa KB. For example, instances of Indian restaurants have been substituted
with instances of Italian restaurants, since Indian is the most common food in
Cambridge, and Italian is the most common in Pisa.

The information for building the Pisa KB has been taken from an open-source
database1.
1 http://www.datiopen.it/.

http://www.datiopen.it/
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3.2 Datasets Implementation

Following the G-DDA procedure illustrated in Sect. 2, we have come to create an
adaptation of MWOZ with dialogues that are adherent to the Pisa domain. We
have produced different versions of Pisa dialogues, using various combinations of
values of the parameters presented in Sect. 2.4. In order to find the best values
for the parameters (according to an evaluation strategy described in Sect. 4), we
used a Grid Search strategy. We report here only a limited number of relevant
experiments:

– BERT (no fine-tuning) - original language model BERT without any fine-
tuning;

– BERT-M1.P1.S1.C1 - patterns created manually, 1 pattern per
domain/slot-name couple, 1 slot-values masked for every pattern, only first
generation is selected;

– BERT-M1.P1.S3.C50 - patterns created manually, 1 pattern per
domain/slot-name couple, 3 slot-values masked for every pattern, generation
selected over first 50 predictions;

– BERT-M1.P4.SMAX.C50 - patterns created manually, 4 patterns per
domain/slot-name couple, maximum possible number of slot-values masked
for every pattern, generation selected over first 50 predictions;

– BERT-M0.P4.SMAX.C50 - patterns selected automatically, 4 patterns
per domain/slot-name couple, maximum possible number of slot-values
masked for every pattern, generation selected over first 50 predictions;

– BERT-M0.P8.SMAX.C50 - patterns selected automatically, 8 patterns
per domain/slot-name couple, maximum possible number of slot-values
masked for every pattern, generation selected over first 50 predictions.

Each one of these configurations has been evaluated, as described in Sect. 4,
and has been used as training set for a DST model, as described in Sect. 5.

3.3 Target Test Set

In order to evaluate the quality of our DDA techniques, we need a test set
consisting of dialogues whose structure is similar to the ones in MultiWOZ, but
related to the Pisa domains. We manually collected a total of 1,000 dialogues,
using utterances in MWOZ, and changing the slot-values and their annotations
so as to be consistent with the target Pisa KB. Utterances from both user and
system have been modified, in order to maintain a coherence throughout the
dialogue.

4 Evaluation

Table 1 shows the target dialogue datasets obtained using different configurations
of slot-value generation parameters, as discussed in Sect. 3.2. For all configura-
tions, DDA has made 78,264 slot-value substitutions. In order to estimate the
quality of the substitutions, we consider four features of the resulting datasets.
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Table 1. Training data obtained using different configurations of generative DDA
applied on the MultiWoz 2.3 source dialogues. First line (Cam) is for reference, and
reports the characteristics of the MultiWoz 2.3 training data.

Training Data rank@100 correct@100 # slot-values st. dev. KB adh.

Cam-MWOZ (training) 1.00 0.97 1680 241.51 0.61

BERT (no fine-tuning) 0.68 0.65 4323 106.79 0.18

BERT-M1.P1.S1.C1 0.62 0.59 3183 115.21 0.27

BERT-M1.P1.S3.C50 0.92 0.65 1313 221.53 0.65

BERT-M1.P4.SMAX.C50 0.95 0.69 1475 207.03 0.67

BERT-M0.P4.SMAX.C50 0.96 0.74 1679 215.08 0.72

BERT-M0.P8.SMAX.C50 0.98 0.70 1841 202.20 0.74

Correct@100 and Rank@100. This is a human evaluation of the correctness
of the slot-values generated by G-DDA. Given a triple [Domain, slot-name,

slot-value], this is considered correct (scored 1) if the generated slot-value is
appropriate for the corresponding domain and slot, otherwise it is considered as
wrong (scored -1). As an example:

[Hotel, Price, Expensive] = correct
[Train, Day, Day] = wrong

In fact, the slot-value Expensive is an appropriate value for Hotel-Price,
but the slot-value Day is not appropriate for Train-Day (it should instead be
a week-day).

We manually assessed the first one hundred slot-values generated by dif-
ferent DDA configurations. In Table 1 we report two measures: correct@100 is
the proportion of correct generations (percentage of correct slot-values), while
rank@100 scores slot-values assigning higher scores to those that are correct in
higher positions, using a Geometrical Series [1] (correct values with high ranking
have a higher weight with respect to correct values with low ranking).

# Slot-Values. This is the number of unique slot-values generated by a certain
DDA configuration. Intuitively, a high number of slot-values is an indication of a
good generative capacity of the model, which is somehow expected by the BERT
masked language approach. However, the goal is to generate correct slot-values,
which are captured by correctness@100. Furthermore, different [Domain, Slot]

pairs have different generative capacities, which are, to a large extent, inherent
to domain knowledge. As an example, we may think that there are many more
[Train, Destination] from Cambridge, than different [Hotel, Stars].

St. Dev. This is the standard deviation over the occurrences of all slot-values
generated by a certain DDA configuration. We consider standard deviation as
useful information related to the distribution of the slot-values in the training
data. While the slot-value distribution in test data of the target domain is not
known, we can expect the standard deviation of the source training data (i.e.,
MultiWOZ 2.3) to be a good approximation.
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KB Adherence. This is the proportion of slot-values generated by DDA that
are present in the target Knowledge Base. Basically, KB Adherence measures
the capacity of a DDA configuration to constrain slot-value generations to the
target domain (i.e., the Pisa domain described in Sect. 3). We expect that a good
trade-off between target slot values (i.e., used in the target KB), and unseen slot-
values (not used in the target KB, although consistent with it), would allow best
predictions by the dialogue state tracking model (see Sect. 5).

Several considerations can be extrapolated from Table 1. First, it is evident
that the size of fine-tuning data used by DDA configurations has a relevant
impact on the generated slot-values. In fact, both the correctness@100, the num-
ber of generated slot-values, and the KB Adherence increase as the number of
patterns used by the DDA model (indicated with P1, P4 and P8) grows. How-
ever, correct@100 slightly decreases with the largest number of patterns (line 7
in Table 1), which indicates that the DDA model starts introducing noisy slot-
values. This issue is also reflected in the high number of slot-values generated
by the P8 model (1841, last line).

We also notice that the DDA configuration based on automatic extraction
of patterns (lines 6 and 7 in Table 1) from the source training data has bet-
ter quality results than the corresponding configuration with manually selected
patterns. This is very significant, as it shows that the whole DDA process can
be automatized, without losing the quality of data. Finally, we notice that the
standard deviation of all DDA configurations is lower than in the MWoZ train-
ing data. This might mean that the DDA distribution is still not optimal, which
may affect the performance of dialogue state tracking. Specifically, the MWoZ
distribution is significantly more polarized than DDA.

Table 2. Results obtained with different DDA configurations on dialogue state tracking
using the TRADE model.

Training Data Test Data JGA JGA (test) F1 (test) SA (test)

Cam-MWOZ (training) Cam-MWOZ 0.521 0.489 0.900 0.970

Cam-MWOZ (training) Pisa-MWOZ 0.521 0.131 0.632 0.918

BERT (no fine tuning) Pisa-MWOZ 0.381 0.094 0.582 0.906

BERT-M1.P1.S1.C1 Pisa-MWOZ 0.400 0.074 0.551 0.902

BERT-M1.P1.S3.C50 Pisa-MWOZ 0.406 0.175 0.698 0.929

BERT -M1.P4.SMAX.C50 Pisa-MWOZ 0.404 0.190 0.705 0.930

BERT-M0.P4.SMAX.C50 Pisa-MWOZ 0.401 0.195 0.708 0.931

BERT-M0.P8.SMAX.C50 Pisa-MWOZ 0.389 0.192 0.710 0.931

5 Results

Table 2 shows how the training data generated by different DDA configurations
performs in dialogue state tracking. For all experiments, we used a manually built
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test set for the Pisa domain, described in Sect. 3. As for the DST model we used
TRADE [14], a model able to consider multiple domains and intensively exper-
imented over several MultiWOZ versions. We used standard evaluation metrics
for DST. Slot Accuracy (SA) indicates the average of single slot-values that have
been correctly predicted; the Joint F1 score reflects the accuracy of the model,
considering both precision and recall; finally, the Joint Goal Accuracy measures
the percentage of correct predictions of dialogue states for every dialogue turn,
where a prediction is considered correct if all the slot values in the dialogue turn
are correctly predicted. We report both JGA at training time and JGA after
evaluating the model on the Test Data. We notice that the performance of all
the DDA configurations is low, if compared with the performance of the model
trained on the MWoZ source dialogues and tested on the MWoZ source test data
(line 1 in Table 2).

Although this was somehow expected, the gap with the best DDA model
(line 7) indicates that automatic adaptation of source training dialogues is still
very challenging. A relevant outcome so far is that there is a strong correlation
between the indicators that we used in Table 1 to assess the quality of the DDA
generations and the performance on the DST task. This is important for two
reasons: (i) knowing which are the properties of the training set that affect DST
performance allows to focus on improving DDA in those aspects; (ii) working on
the DDA generation significantly shortens the developing cycle.

6 Conclusion

We have investigated a new task, Generative Dialogue Domain Adaptation, aim-
ing at automatically developing new training dialogues when such dialogues
become obsolete due to changes that occurred in the domain knowledge. We pro-
pose a generative DDA approach based on a large pre-trained language model
such as BERT, fine-tuned on the target domain. We have defined a granular
methodology for performing this kind of adaptation, by setting four parame-
ters that can be adjusted for obtaining different target dialogue datasets. In
addition to that, we have formulated new evaluation metrics for DDA generated
datasets, which can be used for assessing the quality of the dataset in a very cost-
effective way. The experiments that we conducted indicate that the DDA task
is still very challenging, although we have shown evidence that, even with these
first attempts, it can be possible to obtain strong improvements if compared
to the No-adaptation setting, especially with patterns collected automatically
from data and with larger sets of training utterances used for implementing
fine-tuning.
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Abstract. There is a high demand for chatbots across a wide range
of sectors. Human-like chatbots engage meaningfully in dialogues while
interpreting and expressing emotions and being consistent through
understanding the user’s personality. Though substantial progress has
been achieved in developing empathetic chatbots for English, work on
Arabic chatbots is still in its early stages due to various challenges asso-
ciated with the language constructs and dialects. This survey reviews
recent literature on approaches to empathetic response generation, per-
sona modelling and datasets for developing chatbots in the English lan-
guage. In addition, it presents the challenges of applying these approaches
to Arabic and outlines some solutions. We focus on open-domain chat-
bots developed as end-to-end generative systems due to their capabilities
to learn and infer language and emotions. Accordingly, we create four
open problems pertaining to gaps in Arabic and English work; namely,
(1) feature representation learning based on multiple dialects; (2) mod-
elling the various facets of a persona and emotions; (3) datasets; and (4)
evaluation metrics.

Keywords: Chatbots · Deep learning · Empathetic dialogue · Natural
language generation

1 Introduction

Chatbot systems have attracted increasing attention in recent years. These chat-
bots should exhibit empathy, which is the capacity to share another’s emotional
states. Additionally, tailoring the chatbot responses based on general or specific
knowledge about the user increases the chatbot’s adaptability and engagement.
According to several psychological studies, empathy is associated with certain
aspects of the persona [14,41]. Therefore, different types of interlocutors require
an adaptable chatbot, capable of grasping several aspects of their personality
based on the context of the conversation. Researchers have classified empa-
thy into multiple levels: ‘affective empathy’, which is the ability to understand
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another person’s emotions and respond appropriately; and ‘cognitive empathy’,
which is the ability to understand another person’s mental state [33]. By incor-
porating this level of empathy into a humanoid chatbot, user engagement might
be increased and the dialogue enriched rather than generating generic responses
devoid of consistency, empathy or relevancy.

The sole survey on Arabic chatbots [3] focused exclusively on retrieval-based
techniques. [8] conducted an analysis of dialogue systems that employed a vari-
ety of deep learning algorithms, datasets, and evaluation frameworks. They high-
lighted empathetic datasets, but they didn’t focus on methods for analysing emo-
tions and personas. Contemporary surveys [13,42] reviewed recent techniques for
text generation that capture emotions and personalities. [35] focused on gener-
ative adversarial networks for implementing empathetic chatbots. Due to the
advancements in empathetic chatbots occurring at a breakneck pace, there is
an ongoing need for up-to-date surveys. The reset of the article is organised
as follows: Sect. 2 discusses two issues: (a) emotion versus sentiment response
generation, as recent works have grouped emotions into sentiments, which gen-
erate a response with general feelings. (b) the research challenges associated with
interpreting emotions in Arabic chatbots and preprocessing. Section 3 provides
an overview of emotion-based chatbots and persona-based chatbots, highlighting
the importance of personality understanding in empathetic chatbots. Section 4
presents various proposed chatbots that use deep learning and reinforcement
learning techniques. Section 5 is to lay the ground work for future research into
Arabic gaps and language-independent works. To the best of our knowledge,
none of the recent surveys addressed these issues.

2 Research Challenges

This section highlights the challenges associated with recently proposed empa-
thetic chatbots, as well as the difficulties related with preprocessing the Arabic
language.

2.1 Emotion vs Sentiment

Some studies have focused on addressing the issue of conversing empathetically
by sentiment or emotion modelling [25,43]. In practice, user emotion modelling
is much more challenging than sentiment analysis. Emotion analysis is based on
a more in-depth analysis of the intensities associated with each emotion, which
enables a chatbot to identify the user’s thoughts and state. The sentiment is
used to understand how individuals feel and has limited number of classes, such
as positive, negative, or neutral. Still, the emotional analysis is broad and have
been identified into eight bipolar emotions with varied intensities: joy, sadness,
anger, fear, trust, disgust, surprise and anticipation [31]. As shown in Table 1,
the sentiment analysis captures the general feeling of the user’s statement. Yet,
it does not focus on the nuances of feelings that the emotion analysis captures,
which makes the sentiment-based model giving a generic answer. In contrast, the



Empathy and Persona of English vs. Arabic Chatbots 527

emotion-based response looks for specific positive emotions like surprise, which
validates what the user is feeling. Complex colloquial expressions like sarcasm
and negation continue to confound sentiment and emotion models. The negation
might cause the emotion to change in the opposite direction, causing difficulties
in determining the emotion and, as a result, generating inappropriate responses.
To the best of our knowledge, this issue has not yet been addressed for Arabic
chatbots due to limited resources for data-driven models.

Table 1. Emotional vs sentimental response

Context
Response

Sentiment analysis

Response

Emotion analysis

It was my birthday last week,

and I thought everyone

forgot about it.

Sentiment: Positive

I’m happy to hear that.

Emotion: Surprise

That’s cool... Did you

have a surprise party?

2.2 Arabic Preprocessing Challenges

Arabic is the fourth most spoken language in the world, and it comes in two
forms: standard Arabic (MSA) and dialectal Arabic (DA). MSA is the standard
form of Arabic, and DA is more common for everyday speaking and writing and
has simpler grammar rules [4]. Arabic chatbots have fallen behind their English
counterparts in terms of limited datasets and non-learning approaches. Some of
the challenges in preprocessing the Arabic language are: (1) In Arabic writing,
vowels are omitted, causing ambiguity [29], (2) clitics can be attached to a root
word without orthographic markers and can be up to four clitics before a stem
and three after [29], (3) Because Arabic does not support capital letters, it is
difficult to recognise names [5], (4) There is a high degree of lexical sparsity,
implying that words can take various forms while still communicating the same
meaning, and (5) different dialect words may have the same spelling but an
entirely different meaning, which affects a chatbot’s ability to identify emotions
and personas in written text without extra input.

3 Emotion- and Persona-Based Chatbots

Humans chat with someone who understands their feelings and personality. And,
chatbots should reflect this skill. The chatbot system must first understand the
emotion and topic of the written text, which entails dealing with the language
linguistic issues. Through the application of empathy, three distinct machine
learning-based approaches have been used to generate human-like responses to
a user’s statements: training a model for response generation while fixing it to
a certain emotion; a multi-tasking approach that trained a model to predict the
user’s present emotional state and to generate an appropriate response based on
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that state [24]; and an end-to-end approach in which the model learned both the
language and the emotional state required to generate an empathetic response.
On the other hand, Zhong et al. [45] argued that personas are critical in empa-
thetic conversations and presented a dataset for persona-based empathetic con-
versations. A persona is an abstract depiction of a large number of people who
share certain traits, such as age, gender or a general or specific self-description of
their personalities [38]. Learning the persona in chatbot systems ensures the con-
sistency of generated responses and avoids giving out generic responses. Traits
were grouped into what the ‘Big Five personality traits’, which reflect human
temperament and identity [36]. For instance, neurotic people often feel anxious
and sad and are more likely to be described as ‘angry’ or ‘depressed’. Thus,
personality and emotions are tightly correlated [26].

Conversational systems are composed of interconnected components, each
of which affects overall system performance. Figure 1 depicts a framework that
can be used to develop an end-to-end empathetic chatbot. It consists of the fol-
lowing four modules: (1) NLU consists of preprocessing and semantic analysis.
The preprocessing includes standard tokenisation, stemming, normalisation and
segmentation. Segmentation is especially needed for languages such as Arabic,
as Arabic nouns can take on a variety of forms when prefixed with the definite
article ‘Al’, (equivalent to the English ‘the’). Thus, it is necessary to remove
this portion from words before proceeding with further processing, otherwise
the process will result in the term appearing multiple times [1]. The semantic
analysis includes sentiment and/or emotion detection, named entity recognition,
intent recognition and persona understanding. (2) Dialogue management tracks
emotion-state changes by managing a conversation history, the user’s emotion
state and topic transition. (3) NLG generates an empathetic response. (4) knowl-
edge access to produce useful responses [34]; however, the majority of end-to-
end systems employ the first and third modules using data-driven techniques
to understand the language’s structure. Various datasets are used to train NLU
and NLG models, including parallel data labelled with emotion, sentiment and
persona [32]. The performance of the chatbot and the quality of the answers
it generates are measured both automatically and by humans. Popular metrics
based on word-overlapping are BLEU [30] and ROUGE [17]. There are other
trained metrics, such as the automatic dialogue evaluation model, which is a
hierarchical recurrent neural network trained to predict human scores [23].
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Fig. 1. Empathetic chatbot architecture.

4 Learning Models for Chatbots

This section surveys the recent work on empathetic and persona-based chatbots
by employing deep learning and reinforcement learning techniques.

4.1 Deep Learning Models

Neural networks, such as seq2seq and Generative Adversarial Networks (GANs)
[16], are commonly used in current generative-based models. They learn the lan-
guage structure and syntax to generate a sequence based on the input [27]. Using
pretrained, finetuned models can generate an appropriate sequence because the
models have been trained on vast amounts of conversational open-domain data
[7,27]. However, It is not a guarantee that using pretrained models will lead to
an empathetic, consistent and relevant response. Empathy requires a thorough
understanding of the current conversation and its preceding threads. Recent
research papers employ end-to-end models for generative-based conversations by
utilising encoder-decoder architectures or a mixture of experts [18]. This type of
model takes user input at the t − th dialogue turn and dialogue context Ct to
generate a response Yt.

Yt = arg max
Y ∈α

Pθ(Y |Xt, Ct) (1)

Typically, in the case of generation-based approaches, the search space α is
quite big, specifically Y ∈ V m, where V represents the size of vocabulary, m
the length of the response and Pθ(Y |Xt, Ct) creates a sentence word by word.
A single-turn conversation is modelled when Ct = φ. Ct can also encode other
contexts, such as personas and emotion labels [15].
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According to Rashkin et al. [32], training the model over an empathetic
conversation dataset can boost the effectiveness of an end-to-end chatbot system
on empathetic conversation. Therefore, they released a new benchmark dataset
with empathetic speech. This dataset was translated into Arabic by Naous et al.
[28] to train the Arabic chatbot. Naous et al. [27] addressed the issue of limited
Arabic datasets by introducing an encoder-decoder transformer initialised with
AraBERT parameters [6] (a Bert2Bert model [9]). The model was trained using
the Arabic Empathetic Dialogues dataset, which originally comprised 32 emotion
labels, but the authors mapped them to the six core labels. As compared to the
Bi-LSTM model [28], this model outperforms it with a perplexity score of 17.0,
proving its high ability to exhibit empathy while generating relevant responses in
open-domain scenarios. However, this approach is coarse-grained and has issues
when applying the model to other dataset.

There are a handful of studies that take both persona and emotion into
account by employing encoder-decoder framework. Zhong et al. [45] developed a
method based on a BERT for response selection engine, to retrieve empathetic
responses based on personas. However, they annotated 200 randomly selected
conversations in order to determine their emotions, which are not enough to
train a model. Firdaus et al. [11] suggested a transformer model for generating
an emotional response in accordance with the user’s persona by encoding both of
them. However, this approach relies on sentiment, which does not always deliver
the desired emotion. An empathetic neural chatbot called CAiRE was pretrained
on the PersonaChat dataset [44] and fine-tuned on empathetic dialogues. This
allowed CAiRE to have a more consistent persona. Detecting the interlocutor’s
emotions was implemented by taking the summary of the recent state of dialogue
and passing it to a linear projection layer [19]. RoBERTa [22] was employed
as an encoder and GPT-2 as a decoder to generate an empathetic response.
This response generation decoder was supported by external knowledge, where
keywords were extracted from sentences and emotional concepts [21]. However,
empathy was not evaluated by a human. These chatbots would achieve good
performance when trained on English datasets, but data-driven models would
face difficulty in inferring the emotions and personas in Arabic text since the
same word could convey multiple meanings and the same word could have at
least 16 different nouns and verbs. Table 2 summaries some of the recent work.
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Table 2. Empathetic and persona-based chatbots using RL and DL technique

Objective models Challenges Open Problems

DL models

Generating
an empathetic
response [18]

• Mixture of standard decoders
• Meta listener
• Standard encoder

Additional inductive
bias and inter-
pretability

considering only the
coarse-grained emo-
tional classes

Empathetic Ara-
bic chatbot [28]

• Seq2seq model using LSTM
units and attention

Inferring emotions
from the user’s
statement

There is some
deviance from the
topic in the response,
as indicated by the
relevance score

Personalising
response genera-
tion [12]

• GRU
• persona-aware attention

lack of a dataset
annotated with both
emotions and per-
sonas

The followed strat-
egy is susceptible to
repetition and its rel-
evance is not mea-
sured

RL models

Rewriting con-
versations with
low empathy to
higher empathy
[37]

• Policy model (GPT-2)
• Position classifier
• Sentence generator
• Empathy classification model
• Language model for English
(GPT-2)
• Text-classification model
(BERT)
• Reward functions: change in
empathy from the original to
the rewritten response

Language fluency
must be maintained
while converting low
empathetic text to
high empathetic text

This approach sup-
posed that the
responses are avail-
able which is not
customised to the
user’s statement.

Making the chat-
bot learn from
and be guided by
the user’s state-
ments to influ-
ence its interlocu-
tor with inten-
tions [39]

• Interlocutor model
• Guiding Chatbot (DialoGPT)
• Emotion classifier (BERT)
• Reward function: conveying a
specific emotion and speaking
specific words

Understanding the
impact of the chat-
bot’s statements on
the interlocutor

Response generation
based on controlled
emotions that do
not empathize with
the user’s words
but rather aim to
influence the user

Incorporating
mutual-persona
perception [20]

• Pretrained model (GPT)
• Next Utterance Predictor
• Reward function: Characteris-
ing mutual-persona perception

Have a dialogue
generation that is
naturally focused on
understanding

Used predefined per-
sonas, which limits
the chabot’s adapt-
ability

A model learns to
ask personalised
questions to
identify its part-
ner’s underlying
persona [40]

• Identifier model
• Verifier network (Person-
aGPT)
• Deep Q-learning
Reward function: loss function
of the previous turns and the
input agent’s personality

Understanding of
sentences is not
always the goal of
supervised dialogue
generation

Only considers direct
persona expressions,
not indirect ones.
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4.2 Reinforcement Learning (RL) Models

Deep learning approaches have yielded outstanding results, however these models
do not learn from their actions and do not measure the impact of those actions.
This style of dynamic learning is achieved by RL, which learns through trial and
error, allowing the system to self-improve and adapt to changes in the user’s
state. The reward functions at the core of RL provide feedback on the model’s
performance in relation to the chatbot’s purpose. Even though the purpose of
the chatbot is to understand the emotion in a user’s statement and generate an
empathetic response, other components are integral parts of the conversational
system, such as sentence fluency and relevancy. Based on the motivation, research
in RL may be broken into two categories: first, improving the response based on
how the user would feel about the generated response, and, second, evaluating
the empathy of the generated response. This first issue is critical because, if
the response had been as intended, the user would have engaged more actively
in the dialogue. Many studies have proposed combining the encoder-decoder
model with RL to preserve emotion changes, fluency and relevance of responses
[37,39]. Table 2, shows various works have proposed distinct reward functions
for developing an emotion-based and persona-based chatbots.

5 Open Problems

This section outlines open problems related to gaps in Arabic and English work
that could serve as future directions for developing empathetic and persona-
based chatbots. These problems can be classified into four broad groups as
follows:

Modelling the Various Facets of a Persona and Emotions. According
to psychological studies, emotions can be confusing and they are classified into
varying degrees of intensity. There are certain emotions that are a composite of
two basic emotions. For instance, combining joy and trust creates love [31]. Due
to the complexity of emotions, models will have a limited capacity to recognise
them. Additionally, some emotions are close to one another, causing the model
to have difficulties identifying them. For instance, with surprise and fear, the
former may convey a positive sentiment while the latter may convey a negative
sentiment. One possible solution is to layer sentiment analysis on top of fine-
grained emotion analysis to generate appropriate responses with the relevant
feelings. Another potential solution is to combine persona and emotion in order
to boost engagement and make the model generate a more empathetic response
based on the character being conversed with since most recent models are hin-
dered by repeated and generic responses. All of these aspects require a paradigm
shift in a variety of dimensions to construct an emotional-intelligence model.

Feature Representations Learning Based on Multiple Dialects. The
proposed approaches for DA are limited to a single Arabic dialect or based on
retrieval approaches employing artificial intelligence markup language (AIML)
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[2]. So the proposed chatbots are limited in their capacity to respond to state-
ments that are based on different dialects. Since there is no work on empathetic
generative-based chatbots for multiple dialects, more study is needed. The diffi-
culty with DA is that various countries share some words with distinct meanings
and different emotions, so the model must understand which dialect is being used
in the context in order to reply accordingly. For example, most dialects use the
expression “May God give you strength” to indicate appreciation ,
in the Moroccan dialect, it represents anger and insult, and means “You wish
him to burn with the fire”. Moreover, diacritics are used to distinguish between

the meanings of words that have the same form. For example, the
first one indicates praise, while the second means blindness and if they aren’t
understood appropriately, the model could be misled into producing incorrect
embeddings, which affect the performance of the NLP tasks.

Evaluation Metrics. Automation can be achieved to some extent with open
domain text generation, but it can be improved by developing a metric that is
highly correlated with human judgments. The unstructured nature of the con-
versation makes evaluating an open-domain chatbot tricky, and it is challenging
to determine whether the response is human-like. Since the majority of current
evaluation measures are coarse-grained, it is necessary to create fine-grained tech-
niques to have a better understanding of the model’s various behaviours and the
impact of token-level performance on the overall performance. One solution is to
construct a dataset with multiple possible responses and compare the generated
responses against them using the BLEU metric [30].

Datasets. Conversational datasets are a valuable resource for the development
of end-to-end chatbots. In English, datasets are either annotated with emotions
or personas, as shown in Table 3, but no Arabic dataset is annotated with per-
sonas. Hence, a dataset annotated with both is needed. These datasets will enable
the generative-based model to learn complicated semantic associations. However,
effective approaches to be suggested in the future may rely on the development
of a model that learns from a small number of samples. More advancement could
eventually lead to the creation of a parallel dialogue dataset that contains many
different dialects of the Arabic language.
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Table 3. Open-domain empathetic and persona-based datasets.

Dataset Dialogues Dataset description Multi-turn Persona Emotion Public

Persona-Based
Empathetic Conver-
sational [45]

Dialogues: 355k

Utter: 833k

Persona: 250k

-Source: social media (Red-
dit)

- 100 randomly sampled con-
versations annotated from
each domain

✓ ✓ ✗ ✓

PERSONA-CHAT
[44]

Dialogues: 11,981

Utter:164,356

Persona: 1,155

-Source: Crowd-sourced ✓ ✓ ✗ ✓

ConvAI2 [10]

Dialogues: 19,893

Utter: 145,873

Personas: 1,355

-Source: Crowd-source

- Extended version (with a
new test set) of the persona-
chat dataset

✓ ✓ ✗ ✓

EMPATHETIC
DIALOGUES [32]

Dialogues: 24,850

Emotions:

24,850/32 labels

-Source: Crowd-source ✓ ✓ ✓ ✓

Arabic EMPATHET-
ICDIALOGUES [28]

Dialogues: 24,850

Emotions:

24,850/32 labels

-Source: Crowd-source

-Translated from ED

dataset [32]

✗ ✗ ✓ ✓

6 Conclusion

Empathy-based chatbots have been the focus of considerable research in recent
years and this paper provides a survey of the state-of-the-art studies in this
area in terms of approaches for empathetic response generation, datasets and
persona modelling. Furthermore, it provides insights into the future directions
for this field, such as understanding the persona from the emotions expressed in
sentences and modelling both emotions and persona, which will improve engage-
ment and consistency. In addition, it outlines the challenges associated with the
Arabic language, as well as proposes some solutions. Despite extensive research
on empathetic chatbots, this study found that most models do not capture the
intensity of emotions, which opens the door to future directions for understand-
ing the intensities of complex emotions.
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Polák, Filip 501
Pražák, Ondřej 3
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