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Abstract The application of machine learning algorithms to model subgrid-scale
filtered density functions (FDFs), required to estimate filtered reaction rates for Large
Eddy Simulation (LES) of chemically reacting flows, is discussed in this chapter.
Three test cases, i.e., a low-swirl premixed methane-air flame, a MILD combustion
of methane-air mixtures, and a kerosene spray turbulent flame, are presented. The
scalar statistics in these test cases may not be easily represented using the commonly
used presumed shapes for modeling FDFs of mixture fraction and progress variable.
Hence, the use of MLmethods is explored. Particularly, deep neural network (DNN)
to infer joint FDFs of mixture fraction and progress variable is reviewed here. The
Direct Numerical Simulation (DNS) datasets employed to train the DNNs in each
test case are described. The DNN performances are shown and compared to typical
presumed probability density function (PDF) models. Finally, this chapter examines
the advantages and caveats of the DNN-based approach.
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1 Introduction

Increasingly stringent regulations on pollutants emissions from fossil fuel combus-
tion are demanding for novel combustion technologies which can have high fuel
flexibility, increased efficiency and low emissions. Moreover, a significant adoption
of renewable technologies in future years is expected to reduce carbon footprint
and meet the long-term objective of CO2 neutrality. Nevertheless, combustion-based
energy technologies will play a role in the future (or low-carbon) energy mix as
discussed in the chapter “Introduction”. Hence, combustion research is called in
to provide solutions to the expected challenges arising from issues related to fuel
flexibility and improving efficiency with pollutants reduction. Current combustion
studies focus on aspects such as development, validation and uncertainty quantifi-
cation of new models, and involve either experiments or numerical simulations, or
both. A collection of these studies represents a massive amount of data that can be
leveraged to achieve significant progress in combustion science. Utilising this data
has thus become a new challenge and research opportunity. Data-driven techniques
such as machine learning (ML) have demonstrated their abilities to extract informa-
tion frommassive data and assist in developing novel models which can be leveraged
for technology development.

Machine learning techniques allow us to have statistical inference, for some
unknown quantities of interest, with reasonably accuracy and confidence by carefully
training the algorithms using representative data. Since the 1990s, ML has regained
increasing attention and achieved outstanding results in many areas (Jordan and
Mitchell 2015), including science, technology, manufacturing, finance, education,
health care, and many more. Combustion science is not an exception to this trend,
there are many studies demonstrating successful use ofML for combustion and some
of these studies date almost 30 years back. Christo and coworkers (Christo et al. 1995,
1996b, a) first employed a machine learning algorithm, namely the Artificial Neural
Network (ANN), in the 1990s to deal with chemistry tabulation for turbulent com-
bustion simulations. These works involved training an ANN to obtain changes in
the composition of several reactive scalars rather than using the conventional direct
integration of the relevant equations. Satisfactory results suggested that the ANN
was able to provide, with computational efficiency, the chemical kinetics informa-
tion required for turbulent combustion simulations. The computational efficiency
was mainly noted to come from memory saving. The subsequent studies extended
this novel approach to more complex chemical systems (Blasco et al. 1998, 1999;
Chen et al. 2000), where multiple ANNs were proposed for different subdomains of
the large composition space. The valuable time saving achieved by ANN compared
with traditionalmethodswas presented. The recent advances onML applied to chem-
ical kinetics are discussed in chapters “Machine Learning Techniques in Reactive
Atomistic Simulations” and “Machine Learning for Combustion Chemistry” with
different perspectives.

Blasco et al. (2000) employed two different ANNs, namely the Self-Organising
Map (SOM) and the Multi-layer Perceptron (MLP), to estimate the thermochemical
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states during a combustion simulation. The SOM was used to partition the thermo-
chemical space into subdomains, while several MLPs were trained on each sub-
domain to predict the evolution of the thermochemical space in time. These early
explorations identify a general route to utilise the ANN for chemistry tabulation
approaches, although their generality was limited due to the similarity between train-
ing and testing cases. Consequently, later studies focused on developing ANNs for
a wider range of combustion conditions.

Sen et al. trained ANNs using unsteady flame-turbulence-vortex interaction cases
and subsequently used them for Large Eddy Simulations (LES) of syngas/air flames
quite successfully (Sen and Menon 2009; Ali Sen and Menon 2010; Sen et al. 2010).
Zhou et al. demonstrated successful application of the ANN to turbulent premixed
flames by including 1D laminar premixed flame cases at different turbulent inten-
sities while training the ANN (Zhou et al. 2013). A wider range of combustion
conditions were also considered in later studies by including non-premixed laminar
flamelets (Chatzopoulos and Rigopoulos 2013) to include local extinction and reig-
nition (Franke et al. 2017) and non-adiabatic conditions (Wan et al. 2020, 2021)
in the training data sets. Furthermore, randomising the non-premixed flamelets
before using them as training data sets were shown to improve the generality of
the ANN and helped to capture the behaviour of turbulent premixed flames quite
well (Readshaw et al. 2021; Ding et al. 2021). Also, other techniques were explored
to improve the generalisation level of ANN: Chi et al. (2021) trained the ANN on-
the-fly during a simulation, whereas An et al. (2020) trained their ANN using data
from Reynolds-averaged Navier–Stokes (RANS) simulations of hydrogen/carbon
monoxide/kerosene/air mixture in a rocket combustion chamber and tested it for
LES.

Further to the chemical kinetics use, another application of the ANN focuses on
replacing the traditional flamelet look-up table, which requires a large memory. The
general procedure is to set thermochemical scalars, which are the basis of the look-up
table, as the input of the ANN and to infer the tabulated values. This reduces the
memory requirement significantly since only the weights and bias(es) of the ANN
need to be saved. A first successful application was demonstrated in Flemming et al.
(2005) by building ANNs having the mixture fraction, its variance and its scalar
dissipation rate as inputs and mass fractions as outputs, and using them in LES
of the Sandia flame D. This was extended in Kempf et al. (2005) and Emami and
Fard (2012) to estimate scalar mass fraction variations in a turbulent CH4/H2/N2 jet
diffusion flame. The optimisation of the ANN architecture, in terms of number of
hidden layers and neurons per layer, was also explored to improve the predictive
accuracy of LES of the Sydney bluff-body swirl-stabilised methane-hydrogen flame
(Ihme et al. 2006, 2008, 2009).

The use of ANN for inferring multi-dimensional flamelet library is also explored
in recent studies. Owoyele et al. proposed a grouped multi-targets ANN approach
to model 4D and 5D flamelet libraries respectively for a n-dodecane spray flame,
under conditions of the Spray A flame from the Engine Combustion Network (ECN),
and methyl decanoate combustion in a compression ignition engine (Owoyele et al.
2020). Ranade et al. (2021) trained a SOM-MLPmethod on a 4D Probability Density
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Function (PDF) table and used it for RANS and LES of the DLR-A turbulent jet dif-
fusion flame. These works showed that the ANN yielded good accuracy at reduced
computational costs with low storage space requirements. Similarly, Zhang et al.
(2020) extended the application of the SOM-MLP algorithm to the Flamelet Gener-
ated Manifolds (FGM) model by using species mass fractions in mixture fraction-
progress variable space as training data. This ANN approach was successfully used
in RANS calculations and LES of ECN Spray H flame to explore the detailed spray
combustion process. More comprehensive reviews of the applications ofML in com-
bustion research can be found in Zheng et al. (2020), Zhou et al. (2022) and Ihme
et al. (2022).

Presumed PDF shapes are typically used along with tabulated chemistry
approaches. The PDF of relevant scalars such as mixture fraction and progress
variable are used to compute averaged temperature, density, species mass fractions,
and the relevant reaction rates. These quantities can be stored in a look-up table with
the first two moments of the above scalars as controlling variables. Although widely
employed in several past studies, presumed PDF or Filtered Density Function (FDF),
in the context of LES, approaches may not accurately represent the scalar statistical
behaviour under several conditions, such as extinction and reignition, combustion
among multiple streams, multi-regime burners, and multi-phase reacting flows. The
FDFs having shapes different to the regular distributions such as Gaussian or β-
function can be also observed prominently inModerate or Intense Low-oxygen Dilu-
tion (MILD) combustion. This combustion mode features broadly distributed reac-
tion zones rather than conventional flamelet-like structures, with strong interactions
between autoigniting and propagating fronts. Therefore, it may not be satisfactory
to use conventional PDFs/FDFs models to predict reaction rates, and advanced data-
driven techniques like machine learning may be a suitable alternative for improving
the accuracy. De Frahan et al. (2019) compared the performance of three different
machine learning techniques, viz., random forests, which is a traditional ensemble
methods, deep neural networks (DNNs), and conditional variational autoencoder
(CVAE), multiple hidden layers between which is also know as generative learn-
ing, to infer marginal FDFs of reaction progress variable in a swirling methane/air
premixed flame and showed that DNN is superior compared to the other two tech-
niques. The DNN is an ANN with multiple hidden layers between input and output.
Yao et al. (2020) built an MLP to obtain the mixture fraction marginal FDF for
LES of turbulent spray flames and observed an order of magnitude improvement
compared to those of the traditional presumed FDF approaches. Chen et al. (2021)
employed a DNN to predict the joint FDF of mixture fraction and progress vari-
able in MILD combustion conditions and showed that the DNN is generally able to
capture the complex FDF behaviours and their variations with excellent accuracy,
outperforming other presumed FDF models.

This chapter aims to provide an overview of recent studies employing deep neural
networks (interchangeably referred to as DNN, ANN or MLP hereafter) to infer
subgrid-scale FDFs and reaction rates needed for LES of turbulent combustion under
conventional and MILD conditions. A review of the Direct Numerical Simulation
(DNS) data used to train these DNNs is also given. The chapter is structured as
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follows. A recap of the treatment of FDFs in LES of turbulent combustion systems
is provided in Sect. 2. The DNS cases used as training datasets for the DNNs are
described in Sect. 3. The characteristics of the DNNs employed for the different
combustion cases are illustrated in Sect. 4. The main results in terms of FDF and
reaction rate predictions are discussion in Sect. 5. The conclusions are summarised
in Sect. 6.

2 FDF Modelling

Thefiltered reaction rate appearing in the transport equation for a species filteredmass
fraction or reaction progress variable needs a closure model and recent developments
in various closure models are described in the book (Swaminathan et al. 2022) and
review papers (Veynante and Vervisch 2002; Pitsch 2006). Earlier chapters of this
book discuss the potential application of ML techniques to some of the reaction rate
closures. In the presumed PDF approach, the filtered reaction rate is modelled as
an integral of the product of a conditional reaction rate and a FDF (see Eq.6). The
mixture fraction and the reaction progress variable are typically used as conditioning
variables to signify the role ofmixing and flame propagation on reaction rate (Bradley
et al. 1998; Ihme and Pitsch 2008a). The conditional reaction rate may be estimated
using one of the methods developed in past studies and these methods used canonical
flames for chemistry tabulation, e.g., flamelet-generated manifolds (van Oijen and
de Goey 2002), flame prolongation of intrinsic low dimensional manifold (Gicquel
et al. 2000), conditional source term estimation method (Jin et al. 2008), or the
solution of conditionally filtered equations for species mass fractions and energy via
the conditional moment closure method (Klimenko and Bilger 1999).

The subgrid variations in the conditioning variables about their filtered values
are represented by the filtered density function (FDF). The FDF can generally be
obtained by solving its transport equations using various approaches, e.g., Lagrangian
particles (Pope 1985), Eulerian stochastic fields (Jones and Kakhi 1998), and multi-
environment (Fox 2003). However, these approaches are computationally expensive
and thus using a presumed FDF can be chosen (Pitsch 2006; Pope 2013) to save
computational costs. This presumed FDF approach will need only the statistical
moments, usually the mean and variance, of the key variables (mixture fraction,
progress variable, flame stretch/straining, heat loss, etc., depending on the physical
scenario of interest) to be transported and it is therefore much more economical.

The β-PDF (Cook and Riley 1994) is the most commonly used presumed FDF
in LES of turbulent flames (Raman et al. 2005; Navarro-Martinez et al. 2005; Ihme
and Pitsch 2008b; Chen et al. 2017), and it usually provides a good approximation
of a conserved scalar distribution. The Favre-averaged FDF of the mixture fraction
Z with a presumed β-distribution is calculated as

˜Pβ(ξ ; ˜Z , ˜σ 2
Z ) = �(a + b)

�(a)�(b)
ξ a−1 (1 − ξ)b−1 , (1)
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where ξ is the sample space variable for Z , ˜Z is the filtered mixture fraction and
˜σ 2
Z ≡ ˜Z ′′ = (Z − ˜Z)2 is the mixture fraction subgrid variance. The parameters of

the � function are a = ˜Z (1/g̃Z − 1) and b = (

1 − ˜Z
)

(1/g̃Z − 1). The segregation

factor is g̃Z = ˜σ 2
Z /

(

˜Z(1 − ˜Z)
)

. The Favre-filtered FDF of the progress variable,
˜Pβ(η; c̃, ˜σ 2

c ), can also be presumed to follow a β distribution and obtained in a
similar manner using c̃ and ˜σ 2

c ≡ ˜c′′ = (c − c̃)2. The joint FDF of ξ and η can be
modelled as

˜P (ξ, η) = ˜Pβ

(

ξ ; ˜Z , ˜σ 2
Z

)

˜Pβ

(

η; c̃, ˜σ 2
c

)

, (2)

assuming that there is a weak correlation between the subgrid fluctuations of Z and
c. Such assumption has been widely accepted for LES of conventional combus-
tion (Pitsch 2006; Veynante and Vervisch 2002). However, stronger subgrid correla-
tions of scalars fluctuations can occur in MILD combustion (Minamoto et al. 2014)
and hence the above assumption may not applicable universally. Other analytical
distributions have been considered in past studies (Grout et al. 2009; Darbyshire
and Swaminathan 2012; Linse et al. 2014). Darbyshire and Swaminathan (2012)
proposed a correlated joint PDF model using the Plackett copula (Plackett 1965) to
include the covariance of Z and c in RANS calculations. The covariance, σ̃Zc, written

as σ̃Zc = ˜

(

Z − ˜Z
)

(c − c̃) is used in the copula method to obtain a joint PDF from
the univariate marginal distributions, ˜Pβ(Z) and ˜Pβ(c). For non-zero values of σ̃Zc,
the correlated joint PDF is calculated as

˜P (Z , c) = θ ˜Pβ(Z)˜Pβ(c) (A − 2B)
(

A 2 − 4θB
)3/2 , (3)

with
A = 1 + (θ − 1)

[

˜Cβ(Z) + ˜Cβ(c)
]

, (4)

and
B = (θ − 1) ˜Cβ(Z) ˜Cβ(c), (5)

where ˜Cβ is the β cumulative distribution function (CDF) and θ is the odds ratio
calculated using a Monte Carlo approach (Ruan et al. 2014). The copulamethod has
been used in RANS calculations of stratified premixed and lifted jet flames (Ruan
et al. 2014; Chen et al. 2015) showing improved prediction of the lift-off height with
respect to the double-β PDF given in Eq. (2).

In presumed-FDF approaches, the subgrid reaction rate is obtained as

ω̇ =
∫ 1

0

∫ 1

0
〈ω̇|Z , c〉P

(

Z , c; ˜Z , ˜σ 2
Z , c̃, ˜σ 2

c

)

dZ dc, (6)

and this approach reduces the computational cost significantly for LES by using pre-
sumedFDF in the above equation.However, the presumedFDFshapes obtained using
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classical functions, for example bimodal delta function, may not be fully satisfactory
for situations such as (i) MILD combustion conditions, (ii) when there are evaporat-
ing droplets, and (iii) when the burnt or burning mixture is inhomogeneous leading
to significant statistical correlation between Z and c (Chen et al. 2018). To overcome
these issues, machine learning algorithms are employed to construct predictive mod-
els for the scalar PDFs/FDFs in recent studies. A deep neural network (DNN), among
other ML techniques tested, was shown to be better than a joint β-function model in
inferring subgrid FDFs in a swirling methane-air premixed flame (de Frahan et al.
2019). This behaviour was also demonstrated for MILD combustion (Chen et al.
2021) and turbulent spray flames (Yao et al. 2020). These tests were conducted using
respective direct numerical simulation (DNS) datasets. DNS can be seen as a vir-
tual experiment resolving all the relevant length and time scales without turbulence
modelling. Thus, it is a powerful tool for investigating combustion models. It is quite
straightforward to obtain filtered quantities from DNS data by applying appropriate
filtering operations (Pope 2000) and these can be used as input to ML algorithms
such as DNN. The data extraction and its processing prior to using them for DNN
training are important steps which can play a role to improve accuracy and generality
of the neural networks. Details about these steps, along with the main features of the
cases studied in de Frahan et al. (2019), Chen et al. (2021) and Yao et al. (2020),
are discussed in the following sections. Details on the respective DNS cases can be
found in those studies as the objective here is on the use of ML techniques.

3 DNS Data Extraction and Manipulation

Three combustion cases are considered in this chapter: a low-swirl premixed
methane-air flame investigated in de Frahan et al. (2019), methane-air combustion
under MILD conditions studied in Chen et al. (2021), and a turbulent kerosene spray
flame used in Yao et al. (2020). The corresponding DNS setups and data preparation
procedures are described next.

3.1 Low-Swirl Premixed Flame

The DNS dataset considered by de Frahan et al. is a snapshot of a quasi-stationary
simulation of an experimental low-swirl, premixed methane-air burner (Day et al.
2012). In this setup, a nozzle imposes a low swirl to a CH4/air mixture with fuel-air
equivalence ratio φ = 0.7 at the inflow. The nozzle region is surrounded by a co-
flow of cold air. A lifted premixed flame with its partially burnt mixture reacting with
co-flow air in downstream locations was observed in the experiments. The presence
of this multi-regime burning introduces challenges for modeling the joint FDF of
mixture fraction and progress variable. Training ML models with such DNS dataset
has additional advantages such as using diverse subsets as training data, avoiding
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overfitting, and increasing the opportunities for model generalisation. The training
sets were constructed by selecting different subvolumes, indicated byV as in Fig. 1,
spanning from premixed combustion region to downstream zone containing mixing
of premixed combustion products with co-flow air. de Frahan et al. (2019) used a
single time snapshot at t = 0.0626 s from the DNS to demonstrate the capabilities
of ML for FDF modelling. In the context of LES, the FDF at a given point and time
can be extracted by applying fine-grained filtering to DNS or experimental data at a
given instant (Pope 1990). In each subvolume, sample moments and the associated
FDF were thus obtained by using a discrete box filter:

ψ(x, y, z) = 1

n3f

n f /2
∑

i=−n f /2

n f /2
∑

j=−n f /2

n f /2
∑

k=−n f /2

ψ(x + i�x, y + j�x, z + k�x), (7)

whereψ is the quantity of interest, n f is the number of points in the discrete box filter,
� = 32�x is the filter size, and �x = 100µm is the smallest spatial cell size in the
DNS (six times smaller than the laminar flame thickness). Four sample moments
of the joint FDF, i.e., ˜Z , σ̃ 2

Z , c̃, σ̃ 2
c , which are Favre-filtered mixture fraction, its

subgrid scale (SGS) variance, progress variable and its SGS variance, were extracted
for each subvolume. The filter size was chosen to be representative of typical LES
filter scale (Pitsch 2006) and to ensure adequate samples to construct FDF. These
filters were spaced equidistant of 8�x , leading to 58800 FDFs for each subvolume.
The mixture fraction Z was defined using nitrogen mass fraction so that it took
a value of 1 in the burner stream and 0 in the co-flow air. The progress variable,
varying between 0 and 0.21, was defined using mass fractions of CO2, CO, H2O and
H2 as c = YCO2 + YCO + YH2O + YH2. The density-weighted FDFs of Z and c were
constructed using 64 bins in Z space and 32 bins in c space, which gives a vector
of 2048 values to describe a single joint FDF. The conditional means of the reaction
rate 〈ω̇|Z , c〉 were also extracted for each sample with an identical discretisation.
Prior to training, the sample moments were independently centered by subtracting
the median and scaled by dividing the data by the range between the 25th and 75th
quantiles. It is known that appropriate centring and scaling are generally beneficial
for ML algorithms (Goodfellow et al. 2016). According to the authors this centring
and scaling were robust to outliers. The samples from a volume Vi were randomly
split among two distinct datasets: a training dataset,Dt

i , and a validation dataset,Dv
i ,

comprising 5% of the total samples, as illustrated in Fig. 1.

3.2 MILD Combustion

TheMILD combustionDNS dataset of Doan et al. (2018)was used to study the appli-
cation of DNN for inferring subgrid FDF inMILD combustion by Chen et al. (2021).
A cube of size Lx × Ly × Lz = 10 × 10 × 10 mmwas used to conduct DNS of tur-
bulent combustion of inhomogeneous methane-air mixtures diluted with exhaust
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Fig. 1 Illustration of data generation procedure for V5

gases. A spatial resolution of δx ≈ 20 µm obtained using 512 points distributed uni-
formly in each direction was observed to be sufficient to resolve the turbulent and
chemical length scales of interest as described in Doan et al. (2018). The simula-
tion was run for 1.5 flow-through time τ f , defined in Minamoto and Swaminathan
(2015). Further detail on the DNS procedure and datasets can be found in Doan
et al. (2018). Three cases, viz., AZ1, AZ2 and BZ1, with different mixing length
scales and dilution levels were considered for the DNN training. The conditioning
variables for the FDF analyses were the Bilger mixture fraction (Bilger 1976) and a
temperature-based reaction progress variable, cT , defined as

cT = T − Tu
Tb(Z) − Tu

, (8)

where Tu is 1500K and the value of burnt mixture temperature Tb depends on Z and it
can be obtained usingMILDFlameElement (MIFE) laminar calculations (Minamoto
and Swaminathan 2014). Favre-filtered fields were extracted from theDNS by apply-
ing a low-pass box filter. For example, the Favre-filtered mixture fraction ˜Z was
obtained as:

˜Z(x, t) = 1

ρ(x, t)

∫ x+ �
2

x− �
2

ρ
(

x′, t
)

Z
(

x′, t
)

dx′, (9)

where · and ·̃ denote the Reynolds and Favre filtering respectively, ρ is the mixture
density and � is the filter width. The position vectors are x and x′. The subgrid
variance was obtained as
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˜σ 2
Z (x, t) = 1

ρ(x, t)

∫ x+ �
2

x− �
2

ρ
(

x′, t
) [

Z
(

x′, t
) − ˜Z (x, t)

]2
dx′. (10)

Similarly, the c̃T and ˜σ 2
cT fields were calculated as above. The Z -cT joint FDF was

then computed as

˜P(ξ, η; x, t) = 1

ρ(x, t)

∫ x+ �
2

x− �
2

ρ
(

x′, t
)

δ
[

ξ − Z
(

x′, t
)]

δ
[

η − cT
(

x′, t
)]

dx′,

(11)

where ξ and η were the sample-space variables of Z and cT respectively, δ[·] is
the Dirac delta function. The discrete FDFs were obtained for a given point in a
given DNS snapshot by binning the Z and cT samples in the corresponding filtering
subspace with 35 non-uniform bins in Z space (clustered around the stoichiometric
value) and 31 uniform bins in cT space. The subgrid-scale covariance, σ̃ZcT , also
used by the copula model, was computed as

σ̃ZcT (x, t) = 1

ρ(x, t)

∫ x+ �
2

x− �
2

ρ(x′, t)
[

Z(x′, t) − ˜Z(x, t)
]

× [

cT (x′, t) − c̃T (x, t)
]

dx′.
(12)

The filtered scalar fields ˜Z , c̃T , ˜σ 2
Z ,

˜σ 2
cT and σ̃ZcT formed the DNN input matrix

X. The unfiltered ρ, Z and cT fields were used to obtain the Favre filtered FDFs
required for the target matrix Y. The procedure is shown schematically in Fig. 2 for
a snapshot of case AZ1. The filtered fields are presented in 2D with the thin DNS
grid-lines for visual clarity. The indices i , j and k pertain to the x , y and z directions
in 3D space, respectively, and are assigned to each “LES filter cube” indicated by
a red box in Fig. 2. The total number of samples taken in each direction is ncube.
The effects of filter size were also investigated by considering a range of filter sizes
relevant to typical LES. The filter sizes were normalized using the thermal thickness
of the stoichiometric MIFE, δstth = 1.6 mm. A filter size of � = 80δx corresponded
to �+ = �/δstth = 1. The extracted matrices X and Y were flattened to be two-
dimensional, with as many rows as the number of samples and as many columns as
the number of features. The input matrix X had 5 columns, while the target matrix
Y had 1085 columns, obtained from the discretisation step mentioned above.

Centring and scaling of the input matrix X were performed as follows: each
column vector, having n3cube elements, was centred by subtracting its mean and scaled
by dividing by its standard deviation. Centring and scaling were not applied to the
output matrix Y. However, to address the issue of having unbounded values of the
FDFs, the discrete density function values were considered. As such, every number
in Y varied between 0 and 1, and the sum of the elements in each target row is equal
to 1.

Subsequent to the scaling procedures, a dimensionality reduction technique like
Principal Component Analysis (PCA), discussed in chapter “Reduced-Order Mod-
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Fig. 2 Schematic demonstration of the construction of the DNN input and target matrices (Chen
et al. 2021)

eling of Reacting Flows Using Data-Driven Approaches” was used to identify and
remove the outliers in the training data. Two types of outliers, viz., leverage and
orthogonal, Verdonck et al. (2009) were determined and discarded. Details about
the identification and removal step are provided in Chen et al. (2021). Once leverage
and orthogonal outliers were removed from the dataset, the DNN training was then
performed on the remaining observations as discussed in the following Sect. 4.2.

3.3 Spray Combustion

Carrier-phase DNS (CP-DNS) data of turbulent spray flames were used to build a
deep learning training database formixture fraction FDFpredictions. In carrier-phase
DNS, the flow field is resolved with a point source approximation for the droplets,
thus all relevant scales of the fluid phase are resolved except the boundary layers
around individual particles. The governing equations of the gas phase are solved in
the Eulerian framework and coupled with a Lagrangian solver for displacement, size,
and temperature of the droplets. An equilibrium state of the liquid and the vapor at
the interface was assumed. A full description of the governing equations is provided
in Yao et al. (2020). The computational domain is a rectangular box, discretised by a
mesh with 192×128×128 cells having δDNS = 100µm. This grid size ensured a suffi-

http://dx.doi.org/10.1007/978-3-031-16248-0_9
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cient resolution of the small scale structures of the flow field (Pope 2000), whereas a
finer resolution could compromise the point particle assumptions of the liquid phase.
Kerosene droplets (treated as single-component C12H23) were randomly injected into
humid air, representative of experimental (Khan et al. 2007; Wang et al. 2018) and
numerical (Wright et al. 2005; Giusti et al. 2018) setups. A homogeneous isotropic
turbulent velocity field, calculated by a modified von Karman spectrum (Wang et al.
2019) was imposed at the inlet. The progressive kerosene droplet evaporation led to
an ignitable mixture that promoted a statistically planar turbulent partially premixed
flame. Further downstream, the hot post-flame temperatures led to reduced turbu-
lence levels due to higher viscosity and a sudden evaporation of remaining droplets
that could penetrate the flame. This lack of homogeneity and the presence of a source
term for the mixture fraction are prone to make the existing FDF models (O’Brien
and Jiang 1991; Cook and Riley 1994) inaccurate.

Filter boxes were used for post-processing of CP-DNS data to group several
DNS cells into one LES cell. A filter box example is shown in Fig. 3 along with the
DNS domain and setup, and the simulated temperature contour. The mixture fraction
FDF P(η) was computed from DNS data using a mixture fraction binning, with a
bin size of 0.01 for all DNS cells lying within a specific LES cell. Favre filtering
was used to extract LES quantities that were employed as input variables for the
ANN. According to Klimenko and Bilger (1999), the following input quantities were
found to have an effect on the mixing statistics and were thus considered: mixture
fraction ξ , eddy viscosity νt , turbulence dissipation rate εt , diffusion coefficient D,
density ρ, spray evaporation rate Jm , relative velocity between the droplet and the

Fig. 3 Simulation setup of CP-DNS (solid points: droplets; the gas phase is colored by temperature)
and an LES filter box (Yao et al. 2020)
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surrounding gas Ud and droplet number density C . The turbulence dissipation rate
was replaced by the more easily available strain rate |Si j |. All the DNN inputs were
filtered and Favre averaged. Therefore, the input features are commonly accessible
in a typical LES of spray combustion. Moreover, Wang et al. concluded in their study
that these parameters sufficiently characterize the mixture fraction FDF in turbulent
spray flames. To ensure the reliability of the DNN for a reasonable range of LES
meshes, the authors investigated the following LES filter sizes: (�LES)

3 = (8δDNS)3,
(�LES)

3 = (16δDNS)3, (�LES)
3 = (32δDNS)3. The final database is a combination of

data samples with different �LES. The performance of the DNN for data samples
using different LES filter boxes were assessed. The output target was set to be a
placeholder of 60 elements covering ξ in [0, 0.6], as ξmax ≤ 0.6 in the the spray flame
simulations. To avoid that the binning procedure could lead to empty bins, especially
for small �LES, missing values were replaced by interpolated values computed by
Stineman interpolation method, which is widely used in statistics to deal with the
missing values as it preserves the monotonicity of data and prevents introducing
spurious oscillations (Stineman 1980). It was found that the commonly used zero-
padding operation, which fills in blank data with zeros, is not applicable as the DNN
would be misled and learn erroneous patterns. A total of 18 simulation cases were
run to form the full database for training and validation purposes. The validation
(test) dataset consisted of five simulation cases, resulting in a test/train ratio of about
0.38. These datasets included parameter ranges that approximate conditions to be
expected in real spray flames and were used for the a priori validation presented in
Sect. 5.

To recap, the three studies selected severalDNScases to construct a heterogeneous
training set. If only one DNS case was available then several subdomains within the
DNS domain were selected. Chen et al. (2021) considered one additional DNN input
feature, i.e., the scalar covariance, to the input set chosen by de Frahan et al. (2019).
Yao et al. (2020) chose different DNN input features specifically for spray combus-
tion. No scaling was adopted by Yao et al., whereas two different scaling methods
were implemented in the other studies. Only Chen et al. adopted an outlier removal
by using a dimensional reduction technique. Discrete density functions, bounded
between 0 and 1, were the DNN target in de Frahan et al. (2019) and Chen et al.
(2021) while Yao et al. (2020) considered probability density function values. The
review of these studies shows that no unique algorithm needs to be adopted to prepare
the input data for a ML model. The only common goal that needs to be pursued is to
construct an input dataset that is as heterogeneous as possible to increase the gener-
alisation, also known as transfer learning, of the trained MLmodels. The similarities
and differences of the DNNs used in these three studies are discussed next.
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4 Deep Neural Networks for Subgrid-Scale FDFs

A standard neural network consists ofmany simple connected functional units, called
neurons. Each neuron receives an input which is processed through activation func-
tions to produce an output.Multiple neurons can be combined to form fully connected
networks, which are called artificial neural networks (ANNs) since they mimic the
neuron arrangements in the human brain. Feed-forward networks, also called multi-
layer perceptrons (MLPs), are classic ANN structures, and they are composed of
layers of neurons, where a weighted output from one layer is the input to the next
layer. The first layer of the MLP accepts a vector as input and the elements of this
vector are known as features. The final output of the MLP is the target quantity of
interest. The layer providing the final MLP output is called output layer, while the
other layers in the network are called hidden layers. In a mathematical perspective
(Goodfellow et al. 2016), the MLP defines a mapping from the input x to the output
y = f (x, θ), where the parameters θ are the trainable network parameters. Each
neuron is a functional unit that is generally described by

y = φ(xTω + b), (13)

where ω and b are the weights and bias vector, and φ is the activation function
(see Sect. 2.3.7.2, Chap. 2, this volume), which provides great flexibility to ANNs
by introducing non-linearity to an otherwise linear relationship between input and
output. There are several activation functions and some of these will be introduced
and described later. The weight ω is a matrix of the size k × m, whereas the bias b is
a vector of m elements. For each layer, k is the number of inputs received from the
preceding layer andm is the number of neurons in the current layer. ω and b contains
the trainable parameters of the network. The training of ANNs pursues the objective
of minimizing a target loss function

L(x,ω) = G ( f (x,ω) − f ∗), (14)

where G is any measure of the difference between the modeled value f and the
real value f ∗. The most commonly used loss functions are the mean absolute error
(MAE) and the mean squared error (MSE). Nonlinear optimization methods, such
as backward propagation (Rumelhart et al. 1986), are used to identify the network
weights that minimize the error between predictions and labeled training data. The
training step gives the optimized set of weights. The MLP is a design that is suitable
for regression problems, whereas other types of ANNs, such as Convolutional Neural
Network (CNN) and Recurrent Neural Network (RNN), have been extensively used
in processing image data and time series problems, etc., see Sect. 2.3.7.2 (Chap. 2,
this volume), for further detail. A schematic of the MLP architecture with input,
hidden, and output layers is shown in Fig. 4 as an example.

http://dx.doi.org/10.1007/978-3-031-16248-0_2
http://dx.doi.org/10.1007/978-3-031-16248-0_2
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Fig. 4 A schematic of
3-layer MLP architecture

4.1 Low-Swirl Premixed Flame

A feed-forward fully connected DNN with three, two hidden and an output, layers
was trained by de Frahan et al. (2019) to predict the joint subfilter FDF of mixture
fraction and progress variable. There were 256 and 512 neurons in the two hidden
layers and neurons had a leaky rectified linear unit activation function (LeakyReLU):

yi =
{

xi if xi ≥ 0

αxi otherwise
(15)

where xi is the weighted sum of the neuron input, yi is its output, and α, usually
equal to 0.01, is the slope. A LeakyReLU activation function avoids mapping neg-
ative input to zero values unlike its parent function ReLU having α = 0. A large
weight update during training can yield the summed input to be always negative
regardless of the network input. A neuron featuring a ReLU function will then out-
put a zero value leading to the dyingReLU case, in which the neuron neither activates
a gradient-based optimization nor adjust its weights. Furthermore, similar to the van-
ishing gradients problem, the learning can be slow while training ReLU networks
stumbling on constant zero gradients. The leaky rectifier allows for a small, non-zero
gradient when the unit is saturated and not active. Additionally, each hidden layer is
followed by a batch normalization layer (Ioffe and Szegedy 2015) and this technique
has been widely used to build deep networks as it leads to speed and performance
improvements. It applies the following function:

yi = γ
xi − μx
√

σ 2
x + ε

+ δ (16)
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where xi and yi are the i-th elements of the layer input and output vectors respectively.
These vectors are of size n having a mean and variance of μx = 1/n

∑n
i=1 xi and

σ 2
x = 1/n

∑n
i=1(xi − μx )

2. A small real number ε is used to maintain numerical
stability. Both γ and δ are learning parameter vectors of size n and they are updated
iteratively during training for optimization purposes. de Frahan et al. (2019) chose
ε = 10−5 and a moving average of μx and σx computed during training with a decay
of 0.1 (or, equivalently, momentum of 0.9).

The DNN inputs are the four moments of the joint FDF, viz., ˜Z , ˜σ 2
Z , c̃, and

˜σ 2
c

whereas the outputs are a total of 2048 FDF values obtained from the discretisation of
the joint FDF of mixture fraction Z and progress variable c as described in Sect. 3.1.
Thus, an output layer having 2048 neurons, as many as the number of outputs, was
considered in de Frahan et al. (2019). The output layer features a softmax activation
function:

yi = exp(xi )
∑n

i=1 exp(xi )
(17)

where xi and yi are defined as for Eq.16. This type of activation function ensures
that

∑n
i=1 yi = 1 and yi ∈ [0, 1] ∀ i . The loss function used was the binary cross

entropy between the target y and the prediction ŷ and this function is

L(ŷ, y) = 1

n

n
∑

i=1

(

yi log ŷi + (1 − yi ) log
(

1 − ŷi
))

, (18)

representing a proper metric for measuring the difference between two probability
distributions. The total number of trainable parameters was 1.1 M. The training
was performed over 500 epochs, i.e., 500 training loops through the entire training
data. For each epoch, the training data is fully shuffled and divided into batches
with 64 training samples per batch. All trainable parameters are updated after each
epoch. A split of 95/5% between training and validation samples was applied on
the entire dataset. The loss function is computed on the validation samples which
are not part of the training process. Thus, the validation loss is the true indicator of
the ANN’s performance and provides hints regarding its generality. It is a common
practice to track the losses during both training and validation steps continuously
to check if the losses are decreasing over each epoch by studying learning curves
(a plot of loss vs epoch number). These learning curves can be used to diagnose an
underfit, overfit, or well-fit model and whether the training or validation datasets are
not representative of the problem domain. A good ANN training gives loss curves
that decreases continuously until a plateau is reached where the difference between
the training and validation losses is small. de Frahan et al. (2019) chose Adam
optimizer (Kingma and Ba 2014), which is a gradient descent algorithm, with an
initial learning rate of 10−4. The learning rate is a dimensionless parameter that
determines the step size of the stochastic gradient descent used to adjust the weights,
ω. The Adam optimizer is more sophisticated than traditional stochastic gradient
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descent by having a per-parameter learning rate, which can also be adapted during
the training (Kingma and Ba 2014).

4.2 MILD Combustion

Chen et al. (2021) used a feed-forward fully connected DNN to infer the joint FDF
of mixture fraction and progress variable. This DNN is similar to the one employed
by de Frahan et al. (2019) and can be summarized as follows:

• linear hidden layer with 5 input features and bias, LeakyReLU activation function
with α = 0.01, and 256 output features;

• batch normalization layer with 256 input and output features, and momentum
equal to 0.9;

• linear hidden layer with 256 input features and bias, LeakyReLU activation func-
tion with α = 0.01, and 512 output features;

• batch normalization layer with 512 input and output features, and momentum
equal to 0.9;

• linear output layer with 512 input features and bias, softmax activation function,
and 1085 output features.

Thus, the two hidden layers had 256 and 512 fully connected neurons, where
LeakyReLU activation functions were applied. Each hidden layer was followed by a
batch normalization layer. The output layer contained 1085 neurons featuring a soft-
max activation function. The loss function used was the binary cross entropy given
in Eq.18 along with Adam optimizer with an initial learning rate of 10−4. The model
was trained for maximum 1000 epochs with batch size of 256 training samples. The
ANN features were the four moments of the joint FDF and the outputs were a total
of 1085 FDF values. A split of 80/20% between training and validation samples was
applied on the entire dataset containing about 28000 filtered DNS boxes. An early
stopping method, by using a predefined number of epochs, was used for the training
to avoid overfitting. An overfitted ANN will have a validation loss that decreases for
the first several epochs but increases subsequently (Goodfellow et al. 2016).

4.3 Spray Flame

Yao et al. (2020) used an MLP with four hidden layers and 500 neurons per layer
to infer the Favre-filtered FDF of the mixture fraction in spray flames. As noted
in Sect. 3.3, the input quantities were ˜ξ , ν̃t , ˜|Si j |, ˜D, ρ, spray evaporation rate ˜Jm ,
relative velocity between the droplet and the surrounding gas ˜Ud , and droplet number
density ˜C . The output was a vector with 60 elements since the FDF of the mixture
fraction P(η) (where η is the sample space variable for the mixture fraction ξ ) was
obtained as described in Sect. 3.3. The activation function φ(z) = max(0, z) applied
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in each layer was the ReLU. A traditional stochastic gradient descent algorithm was
used to minimize the mean absolute error, which was the loss function. A total of 18
DNS cases were run to form the full datasets for the training and validation steps.
The validation (test) dataset consisted of five cases, resulting in a test/train ratio
of ∼0.38. An early stopping criterion was imposed for the training process. This
ANN was also trained on the conditional scalar dissipation rate 〈N |ξ = η〉, which is
another interesting application.

5 Main Results

5.1 FDF Predictions and Generalisation

An overview of the ML model performance in each of the test cases is discussed
in this section. The FDF predictions provided by ML and analytical models were
assessed a priori using the FDFs obtained from the DNS cases.

5.1.1 Premixed Flame

Three different ML models, i.e., random forest (RF), conditional variational autoen-
coder (CVAE), and DNN, were trained by de Frahan and coworkers using filtered
DNS data from the subvolume V3 of the low-swirl premixed flame, i.e., the algo-
rithmswere trained onDt

3, and themetricswere evaluated onDv
3 (see Fig. 1). Figure5

compares the marginal FDFs P(Z) and P(c) obtained using the three ML models,
β-function model and DNS result for V3 for three different values (low, medium,
and high) of the Jensen-Shannon divergence (JSD), which measures the similarity
of two probability distributions, Q1 = QDNS(n) and Q2 = Qmodel(n). The JSD is
given by

J(Q1||Q2) = 1

2

N
∑

n=1

{

Q1(n) ln

[

Q1(n)

Q2(n)

]

+ Q2(n) ln

[

Q2(n)

Q1(n)

] }

(19)

The JSD divergence is symmetric, i.e., J (Q1||Q2) = J (Q2||Q1), and mathemati-
cally bounded between 0 and ln(2), with 0 indicating Q1 = Q2. The JSD for the three
samples shown in Fig. 5 were computed by considering the FDFs extracted from the
DNS of the premixed flame and those obtained by the β − β analytical model. It can
be seen fromFig. 5 that theβ − β analyticalmodel is unable to capturemore complex
FDF shapes, such as bimodal distributions, as also confirmed by high JSD values.
Thus, the need for more accurate models is motivated. Accurate predictions can
be expected for J (P||Pm) < 0.3, whereas predictions with J (P||Pm) > 0.6 exhibit
incorrect median values and overall shapes.
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Fig. 5 Marginal FDF for low,mid-range, and high Jensen-Shannon divergence values for the β − β

PDF model. Red solid line is for RF model, green dashed line is for DNN model, blue dash-dotted
line is for CVAE model, orange short dashed line is for β − β model and black solid line is the
DNS result (de Frahan et al. 2019)
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The abilities of the three ML models to infer the subgrid FDF in regions other
thanDt

3 was also assessed because DNS results showed that the FDF in downstream
locations were significantly different from those for V3. So, the ML models were
trained using (1) Dt

3 data (volume centered at z = 0.0775 m), (2) data from Dt
5

(volume centered at z = 0.1025 m) and (3) data collected from the odd-numbered
volumes Dt = ∪i=1,3,5,7,9Dt

i . The training data in the last case were representative
of the entire computational domain. It was found that the models trained using data
from a single volume were unable to infer the FDF in other volumes which was
indicated by the high 90th percentile (J90) of all the Jensen–Shannon divergences
errors. The ML models trained using the odd-numbered volumes (test 3 above) gave
J90 < 0.2 for the entire physical domain although only 4% of the DNS data from the
entire computational domain was used for the training. Among the three ML modes,
DNN yielded the lowest errors. The analytical β − β model had J90 values which
were almost twice of that for the ML models. The sample marginal FDFs of mixture
fraction and progress variable for 3 different values of Jensen-Shannon divergences
computed for the DNN model are shown in Fig. 6 and it is clear that the bimodal
distributions are also captured quite well by the ML models.

Another generalisation testwas conducted by using validation data generated from
a different time snapshot of the DNS (t = 0.059 s). For this case, the DNN model
trained on Dt = ∪i=1,3,5,7,9Dt

i provided reasonable J90 values, although slightly
higher than those obtained for the validation data from the same time snapshot of
the training data. The β − β model provided similar errors in both cases but three
times higher than those of the DNN model. These generalisation tests demonstrated
that the learned models are able to generalize temporally, as well as spatially. The
results reported in this subsection suggest that it is important to use the training data
covering the expected range of physical processes for which the ML is to be applied.

5.1.2 MILD Combustion

For the MILD combustion cases, the FDFs provided by DNN, β − β and copula
models are presented and compared to the DNS FDFs in Figs. 7, 8 and 9 for cases
AZ1, AZ2 and BZ1 respectively. The DNN model significantly outperforms both
analytical models and its prediction agrees very well with the DNS data for the
different cases. As a general observation, the DNN captures the non-regular shapes
of the marginal FDF of the progress variable quite well where the analytical models
given by the β function and copula give Gaussian-like distributions. This difference
has important implications for the reaction rate modelling as one shall see later in
Sect. 5.2. For the mixture fraction, however, all models give good results but only
the DNN is able to capture the asymmetry of the FDF which can be seen clearly
in Fig. 9b and 9d for case BZ1. These results indicate promising capabilities of the
DNN to predict the complex subgrid scalar statistics in MILD combustion.

It was noted by Chen et al. (2021) that the FDFs extracted directly using the
instantaneous snapshots of DNS are random variables containing subgrid statistical
information, as also pointed out in Pitsch (2006) and Pope (1985). The instantaneous
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Fig. 6 Marginal FDF for median and high Jensen-Shannon divergence values for models trained
on Dt = ∪i=1,3,5,7,9Dt

i . Red solid line is for RF, green dashed line is for DNN, blue dash-dotted
line is for CVAE, orange short dashed line is for β − β model, and black solid line is for DNS (de
Frahan et al. 2019)
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Fig. 7 Case AZ1: comparison of joint and marginal FDFs from DNS and models for filter sizes of
�+ = 0.5 in (a) and (b), �+ = 1 in (c) and (d), and �+ = 1.5 in (e) and (f) (Chen et al. 2021)
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Fig. 8 Case AZ2: comparison of joint and marginal FDFs from DNS and models for filter sizes of
�+ = 0.5 (Chen et al. 2021)

Fig. 9 Case BZ1: comparison of joint and marginal FDFs from DNS and models for filter sizes of
�+ = 0.5 in (a) and (b), and �+ = 1.0 in (c) and (d) (Chen et al. 2021)
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FDFs present certain levels of randomness due to the unsteady nature of single
realisations. This randomness is removed to a good extent if the training data for ML
are selected over many DNS realisations at a statistically stationary state. Therefore,
following several experimental studies (Wang et al. 2007; Tong 2001; Cai et al. 2009),
the instantaneous FDFs obtained from the DNS were conditioned on the resolved
scalars, ˜Z and c̃T , and then ensemble-averaged. A quantitative comparison of the
conditionally averaged FDFs was then performed. Two variables, ˜Z and c̃T , were
considered as the number of available DNS samples was not sufficient to perform
a statistically meaningful averaging on the four statistical moments used as ANN
inputs. The resolved mixture fraction and progress variable were chosen so that the
selected samples were located in the reaction zone (c̃T ≈ 0.5). Figures10 and 11
show the conditional FDFs,

〈

˜P(Z , cT )
∣

∣ ˜Z , c̃T
〉

, for cases AZ1 and BZ1 respectively
and the values of the conditioning variables are given in the figure captions. TheDNN
accurately reproduces the conditional joint and both marginal FDFs. It also captures
the significant changes in the FDF shape with the varying filter size, especially for
the progress variable. For case AZ1, both the β and copula models overpredict the
peak when �+ ≤ 1 for both Z and cT distributions. However, for �+ = 1.5, the
overall prediction is good for ˜P(Z) and the peak of ˜P(cT ) is also close to the DNS
value although the shape is not captured. Similar results were reported for cases AZ2
also. For case BZ1, the mixture fraction distribution is predicted fairly well by all
models for different �+ values. However, both analytical models fail to predict the
bimodal-plateau shape of ˜P(cT ), which is typical of MILD combustion but seen
seldom in conventional flames.

The JSD values were also calculated using Eq. (19), for the DNN and the two
analytical models which confirmed the observations made using Figs. 7, 8, 9, 10 and
11. The JSD values provided by the DNN were much lower than those for the β and
copulamodels. Improved predictions and lower JSD values were observed for all the
models by increasing the filter size and this improvement was particularly significant
for the DNN having J90 < 0.05. The DNN model performed equally well for Z
and cT .

To check for generalisation capability, the DNN was further validated using data
which were not included in the learning/training step. The training and validation
datasets included snapshots taken from t = τ f to 1.2τ f , where τ f is the flow-through
time, but the test data were taken using snapshots taken between 1.4τ f and 1.5τ f .
Substantial variations in the MILD combustion behaviour were observed among
these snapshots (see Doan et al. 2018 for details). Hence, a robustly trained DNN
is attractive if it can accurately infer a quantity of interest (here, FDF) for scenarios
that have not been explicitly seen during the training process. The PDFs of the JSD
values for the self-predictions (i.e., predictions performed on the training datasets)
and unknown-predictions of the FDF are shown in Fig. 12. A filter size of �+ = 1
was used for all cases. As indicated in Fig. 12, the DNN provides a similar level of
accuracy when unseen test data points are fed to the model. More than 80% of the
JSD values are smaller than 0.05. The advantage of using DNN as FDF model is
still unaffected since the majority of JSD values were larger than 0.1 for the β and
copula FDF models. A slightly worse performance was achieved by the DNN when
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Fig. 10 Case AZ1: comparison of joint and marginal FDFs from DNS and models for a and b
�+ = 0.5,˜Z = 0.007, c̃T = 0.45; c and d�+ = 1,˜Z = 0.0066, c̃T = 0.43; and e and f �+ = 1.5,
˜Z = 0.0064, c̃T = 0.39 (Chen et al. 2021)
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Fig. 11 Case BZ1: comparison of joint and marginal FDFs from DNS and models for a and b
�+ = 0.5, ˜Z = 0.00034, c̃T = 0.48; and c and d �+ = 1, ˜Z = 0.0036, c̃T = 0.46 (Chen et al.
2021)

the training data came from cases AZ1 and BZ1, and the validation was done on
case AZ2. The JSD results obtained from this new test with the self-predictions for
�+ = 0.5 indicated that the overall performance was still good although the JSD
distribution shifted towards higher JSD values. Further improvement on predictions
is expected to be achieved if more datasets with different scenarios are included in
the training.

5.1.3 Spray Flame

Yao et al. (2020) visually compared the FDF predicted by ANN and β-function
model with the DNS values for one of the validation cases (CX1). Moreover, the
data samples of this case were divided into three different groups characterized by
filter size �LES, to compute the sensitivity of the trained ANN model to LES grid
sizes. The LES cells were selected randomly for a given˜ξ ranging from fuel-lean to
fuel-rich conditions. The stoichiometric mixture fraction value is˜ξst = 0.068.
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Fig. 12 Comparison of Jansen-Shannon divergence for DNN self- and unknown-predictions of
FDF of a progress variable and b mixture fraction. The filter size for all cases is �+ = 1.0 (Chen
et al. 2021)

Figure13 compares FDF computed using ANN and β-function with DNS results
for two filtered mixture fraction values and three �LES. There is no marked differ-
ences in the ANN prediction for different �LES. The ANN predictions of ˜P(η) are
in excellent agreement with the DNS results, including the peak value and its loca-
tion. The FDF is skewed towards the lean side (η < ξst ) for˜ξ = 0.05 whereas it is
stretched towards the rich side for˜ξ = 0.10, and even a bimodal behaviour appears
at larger filter sizes. The β-function does not seem to represent the FDFs well and
numerical issues can arise when the mean is close to zero or unity with small SGS
variance (Kronenburg et al. 2000).

5.2 Reaction Rate Predictions

The filtered reaction rate inferred by the MLmodels were also assessed against DNS
results by de Frahan et al. (2019) for their premixed flame and by Chen et al. (2021)
for the MILD combustion cases. The ML models used by de Frahan et al. inferred
the unconditional filtered reaction rates ω̇, which are computed according to Eq.6,
and are shown in Fig. 14. Significant over predictions were observed for the β − β

model. The comparisons of the conditional reaction rates are also shown in Fig. 14.
The reaction rate in the transport equation for the filtered temperature-based

progress variable, ω̇cT , can be computed using

ω̇cT (x, t) =
∫ 1

0

∫ 1

0
〈ω̇cT 〉˜P(Z , cT ; x, t) dZ dcT , (20)
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Fig. 13 Validation of ANN predictions of ˜P(η) with DNS results for different LES grid sizes. The
results are shown for˜ξ = 0.05 (top) and˜ξ = 0.1 (bottom) (Yao et al. 2020)

where the joint FDF ˜P (Z , cT ) is obtained through theANN in theMILD combustion
cases investigated by Chen et al. (2021). The symbol 〈ω̇cT (x, t)〉 =
〈ω̇cT (x, t)/ρ(x, t)|Z , cT 〉 is defined as the doubly conditional mean reaction rate
obtained from the DNS data. The instantaneous reaction rate of cT is defined as
ω̇cT = q̇/[cp(Tb − Tu)], with q̇ and cp being the volumetric heat release rate and
specific heat capacity of the mixture respectively. The conditional averages are com-
puted using samples collected over the entire computational domain, see Sect. 3.2,
and all the snapshots available (≈ 60) to achieve good statistical convergence. The
authors verified that the doubly conditional mean rates have negligible variations in
time and space, supporting the assumption of many turbulent combustion models
(viz., flamelets, see Bradley et al. 1990; Fiorina et al. 2003; Pierce and Moin 2004;
van Oijen et al. 2016; and conditional moment-based methods, see Klimenko and
Bilger 1999; Steiner and Bushe 2001) that the conditional means have small tempo-
ral and spatial variations if appropriate conditioning variables are used. The target

filtered reaction rate ω̇
m−DNS
cT was obtained by computing both the conditional mean

reaction rate and the FDF in Eq.20 directly from the DNS data. The scatter plots

of ω̇
m−DNS
cT and the reaction rates computed using FDFs obtained through β, copula

and DNN models are presented in Fig. 15 for one of the DNS cases (AZ1) investi-
gated in Chen et al. (2021). The qualitative behaviours and the trends were found
to be similar for the other two cases. Although all models give reasonable predic-
tions, the DNN outperforms the analytical models for all filter sizes. Moreover, the
DNN predictions generally exhibit good symmetry about the diagonal, indicating
a bias towards neither under- nor over-prediction, while the scatters for both the β
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Fig. 14 Reaction rate ω̇ inferred by the ML models trained on Dt = ∪i=1,3,5,7,9Dt
i . Red squares

and solid line are for RF model, green diamonds and dashed line are for DNN, blue circles and
dash-dotted line are for CVAE, orange pentagons and short dashed line are for β − β model, and
black solid line is for DNS result (de Frahan et al. 2019)

and copula models are asymmetric. As �+ increases, the DNN prediction improves
considerably whereas the performance of the analytical models does not follow this
trendwith the filter size. For both the β and copulamodels, a trend in the off-diagonal
samples moving from under-predictions at small�+ to over-predictions at larger�+
can be seen.

6 Conclusions and Prospects

The application of ML algorithms to infer subgrid-scale filtered density functions
(FDFs) in three test cases, i.e., swirling premixed flame, MILD and spray combus-
tion, have been discussed in this chapter. Particularly, the promising results provided
by deep neural networks (DNNs) for accurately inferring the FDFs have been shown.
DNNs are generally able to capture the complex FDF behaviours and their variations
with great accuracy across various combustion scenarios, turbulent and thermochem-
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Fig. 15 Scatter plot of ω̇
m−DNS
cT and ω̇cT (in kg/m3/s) modelled using different FDF models

(denoted using different markers) for case AZ1. The results for different filter sizes are also
shown (Chen et al. 2021)

ical conditions, and LES filter sizes. This can be achieved by manipulating the input
data (extracted from DNS of these three cases), changing the network architecture,
and tuning the network hyperparameters (e.g., learning rate, batch size). It has been
shown that if the DNN training dataset is heterogeneous, i.e., it contains different
possible outcomes of the quantities of interest, the DNN can handle unknown inputs
quite well, suggesting a good model robustness. Thus, the DNN can be applied as a
black-boxmodel to other cases. By contrast, analytical models such as the β-function
and copula models in most cases show their limitations quite clearly.

Although the above observations demonstrate the potential of DNN-based FDF
modelling in combustion, several challenges remain and require further investiga-
tions. Searching for an optimal combination of the DNN hyperparameters can be
highly time-consuming and computationally expensive. For example, an exhaustive
grid search, looping through all combinations of layers and neurons to find an opti-
mum, is not an easy task andmay require cloud computing services (Yao et al. 2020).
Moreover, due to the black-box nature of ML models, it is often hard to debug them
to a satisfying level or improve them substantially after such a level is reached. This
shifts the attention to the preprocessing of training data, which can be a daunting
and time-consuming task, as mentioned in Chen et al. (2021). The lack of physical
constraints in the training of MLmodels is yet another issue, and research is ongoing
to develop physics-informed ML models that can respect physical laws and increase
the interpretability and generalisation capability of ML models.

If DNNs are to replace combustion models, the overhead of retrieving predictions
can also be of concern and counterbalance the observed savings in storage require-
ment. The overhead associated with the use of DNNs is highly machine-dependent
and also network size-dependent. A posteriori LES studies need to quantify the com-
putational times required by the DNN inference of FDFs and mean reaction rates.
High inference times could hinder the development of in-situ capabilities, where the
ML model is trained during the simulation, which can mitigate the risk of extrapola-
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tion. The latter can be reduced by also combining ML training and applications with
uncertainty quantification or sensitivity analysis approaches that can effectively ver-
ify the performance of theMLmodel, provide a level of confidence in its predictions,
guarantee that it does not violate physics laws and promote its more comprehensive
application.

Machine Learning has induced notable advancements in combustion science. It
has been effectively used for finding hidden patterns under large amounts of data,
exploring and visualising high-dimensional input spaces, deriving complex map-
ping from inputs and outputs, and reducing computational cost and memory occupa-
tion (Zhou et al. 2022). However, many challenges and hence research opportunities
are left to be addressed, and the development of physics-based ML approaches is
just the starting point of a scientific paradigm shift that will bring new insights in
combustion science with the help of big data. The combination of ML and com-
bustion will provide solutions to daunting problems and enhance the understanding
and deployment of novel combustion processes and technologies, which will shape
a cleaner and sustainable future energy arena.
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