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Abstract This article summarizes and discusses recent developmentswith respect to
artificial intelligence (AI) super-resolution as a subfiltermodel for large-eddy simula-
tions. The focus is on the application of physics-informed enhanced super-resolution
generative adversarial networks (PIESRGANs) for subfilter closure in turbulence
and combustion applications. A priori and a posteriori results are presented for var-
ious applications, ranging from decaying turbulence to finite-rate chemistry flows.
The high accuracy of AI super-resolution-based subfilter models is emphasized, and
advantages and shortcoming are described.

1 Introduction

Many turbulent and reactive simulations require models to reduce the computational
cost. Popular approaches include large-eddy simulation (LES) for modeling (reac-
tive) turbulence and flamelet models for predicting chemistry. LES relies on the
filtered Navier–Stokes equations. The filter operation separates the flow in larger
scales above the filter width and smaller scales below the filter width, called subfilter
contributions. As a result, the filtered equations can be advanced for less compu-
tational cost, however, they require modeling for subfilter contributions. Accurate
modeling of these unclosed terms is one of the key challenges for predictive LES.
LES has been applied successfully to many different turbulent flows including reac-
tive turbulent flows (Smagorinsky 1963; Pope 2000; Pitsch 2006; Beck et al. 2018;
Goeb et al. 2021). The flamelet concept employs asymptotic and scale arguments
to motivate that flow field and chemistry are only loosely coupled by the scalar
dissipation rate, a measurement for the local mixing, in combustion. Consequently,
advancing chemistry is reduced to solving coupled one-dimensional (1-D) differen-
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tial equations, which are, for example, in mixture fraction space for non-premixed
combustion. Challenges include how to tabulate the resulting flamelets efficiently and
how to distribute the multiple flamelets across the domain for multiple representa-
tive interactive flamelet (MRIF) approaches (Peters 1986; Banerjee and Ierapetritou
2006; Ihme et al. 2009; Bode et al. 2019b).

Data-driven methods, such as machine learning (ML) and deep learning (DL),
have gained amassive boost across almost all scientific domains, ranging from speech
recognition (Hinton et al. 2012) and learning optimal complex control (Vinyals et al.
2019) to accelerating drug development (Bhati et al. 2021). Important steps towards
the wider usage ofML/DLmethods were the availability of more and larger (labeled)
datasets as well as significant improvements with respect to graphics processing units
(GPUs), which enabled high-speed GPUs and efficient execution of ML/DL oper-
ations on GPUs. One particular class of ML/DL is AI super-resolution, also called
single image super-resolution (SISR), originally developed by the computer science
community for increasing the resolution of 2-D images (i.e., to super-resolve images)
beyond classical techniques, such as bicubic interpolation. The idea is that complex
networks can extract and learn features during training with many images and are
then able to add this information to images based on local information. Dong et
al. (2014) introduced a super-resolution convolutional neural network (SRCNN),
a deep convolutional neural network (CNN) which directly learns the end-to-end
mapping between low and high resolution images. Several other works continuously
improved this approach (Dong et al. 2015; Kim et al. 2016a, b; Lai et al. 2017;
Simonyan and Zisserman 2014; Johnson et al. 2016; Tai et al. 2017; Zhang et al.
2018) to achieve better prediction accuracy by correcting multiple shortcomings of
the original SRCNN. The switch from CNNs to generative adversarial networks
(GANs) (Goodfellow et al. 2014), as proposed by Ledig et al. (2017), finally resulted
in the development of enhanced super-resolution GANs (ESRGANs) by Wang
et al. (2018).

The idea ofAI super-resolution has been also successfully adopted for simulations
of physical phenomena, from climate research (Stengel et al. 2020) to cosmology (Li
et al. 2021). While many applications focus on super-resolving single time steps of
simulations, Bode et al. (2019a, 2021, 2022), Bode (Bode 2022a, b, c) introduced an
algorithm for employing AI super-resolution as a subfilter model for (reactive) LES.
Theydeveloped thephysics-informedenhanced super-resolutionGAN(PIESRGAN)
and demonstrated its application for various turbulent inert and reactive flows. To
successfully useAI super-resolution to time-advance complex flows, accurate a priori
results are necessary but not sufficient. Only if the model also gives good a posteriori
results, i.e., when it is continuously used as model for multiple consecutive time
steps during a simulation, it is promising for applying it to complex flows. Typically,
good a posteriori results are much more difficult to achieve, as errors accumulate
over time, especially if low-dissipation solvers are used. Consequently, a posteriori
results are presented for all cases discussed in this article.

This work summarizes important modeling aspects of PIESRGAN in the next
section. Afterward, its application to a decaying turbulence case, reactive spray
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setups, premixed combustion, and non-premixed combustion is described. This
chapter finishes with conclusions for further developments of the AI super-resolution
approach in general and the PIESRGAN in particular.

2 PIESRGAN

This section summarizes the PIESRGAN and explains the PIESRGAN-subfilter
modeling approach. Details about the architecture, the time advancement algorithm,
and implementation details are given. Note that the PIESRGAN modeling approach
presented in this work follows a hybrid approach. AI super-resolution is only used on
the smallest scales to reconstruct the subfilter contributions, while the well-known
filtered equations for LES are used to advance the flow in time, i.e., the time inte-
gration is not integrated in the network. This approach is technically more complex
than integrating the time integration in the network. However, it is also expected to
be more general and universal. Turbulence is known to feature some universality on
the smallest scales (Frisch and Kolmogorov 1995), which should be learnt by the
network and be universal for many applications. The larger scales, which can be
strongly affected by the geometry and setup and thus are fully case dependent, are
considered by the filtered equations making PIESRGAN-subfilter models applicable
for multiple cases.

2.1 Architecture

PIESRGAN is a GAN model, which is a generative model that aims to estimate the
unknown probability density of observed data without an explicitly provided data
likelihood function, i.e., with unsupervised learning. Technically, a GAN has two
networks. The generator network is used for modeling and creates newmodeled data.
The discriminator network tries to distinguish whether data are generator-created or
real data and provides feedback to the generator network. Thus, throughout the
learning process, the generator gets better at creating data as close as possible to real
data, and the discriminator learns to better identify fake data, which can be seen as
two players carrying out a minimax zero-sum game to estimate the unknown data
probability distribution.

Thenetwork architecture and trainingprocess are sketched inFig. 1. Fully resolved
3-dimensional (3-D) data (“H”) are filtered to get filtered data (“F”). The filtered
data is used as input to the generator for creating the reconstructed data (“R”). The
accuracy of the reconstructed data is evaluated by means of the fully resolved data.
The discriminator tries to distinguish between reconstructed and fully resolved data.
The accuracy is measured by means of the loss function, which reads

L = β1Ladversarial + β2Lpixel + β3Lgradient + β4Lphysics, (1)
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Fig. 1 Sketch of PIESRGAN. “H” denotes high-fidelity data, “F” are corresponding filtered data,
and “R” are the reconstructed data. The components are: Conv3D—3-D Convolutional Layer,
LeakyReLU—Activation Function, DB—Dense Block, RDB—Residual Dense Block, RRDB—
Residual in Residual Dense Block, βRSF—Residual Scaling Factor, BN—Batch Normalization,
Dense—Fully Connected Layer, Dropout—Regularization Component, βdropout—Dropout Factor.
Color-modified image from Bode et al. (2021)

where β1 to β4 are coefficients weighting the different loss term contributions with∑
i βi = 1. The adversarial loss is the discriminator/generator relativistic adversarial

loss (Jolicoeur-Martineau 2018), which measures both howwell the generator is able
to create accurate reconstructed data compared to the fully resolved data and how
well the discriminator is able to identify fake data. The pixel loss and the gradient
loss are defined using the mean-squared error (MSE) of the quantity and its gradient,
respectively. The physics loss enforces physically motivated conditions, such as the
conservation of mass, species, and elements, depending on the underlying physics
of the problem. For the non-premixed temporal jet application in this work, it reads

Lphysics = β41Lmass + β42Lspecies + β43Lelements, (2)

where β41, β42, and β43 are coefficients weighting the different physical loss term
contributions with

∑
i β4i = 1. The physically motivated loss term is very important

for the application of PIESRGAN to flow problems. If the conservation laws are
not fulfilled very well, the simulations tend to blow up rapidly, which is an impor-
tant difference to super-resolution in the context of images. Errors which might be
acceptable there can be easily too large for usage as a subfilter model (Bode et al.
2021).

The generator heavily uses 3-D CNN layers (Conv3D) (Krizhevsky et al. 2012)
combined with leaky rectified linear unit (LeakyReLU) layers for activation (Maas
et al. 2013). The residual in residual dense block (RRDB), which was introduced for
ESRGAN, is essential for the performance of the state-of-the-art super-resolution.
It replaces the residual block (RB) employed in previous architectures and con-
tains fundamental architectural elements such as residual dense blocks (RDBs) with
skip-connections. A residual scaling factor βRSF helps to avoid instabilities in the
forward and backward propagation. RDBs use dense connections inside. The output
from each layer within the dense block (DB) is sent to all the following layers. The
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discriminator network is simpler. It inherits basic CNN layers (Conv3D) combined
with LeakyReLU layers for activation with and without batch normalization (BN).
The final layers contain a fully connected layer with LeakyReLU and dropout with
dropout factor βdropout. A summary of all hyperparameters is given in Table1.

Table 1 Overview of the PIESRGAN hyperparameters. The given ranges represent the sensitivity
intervals with acceptable network results. The central values were used for the decaying turbulent
case in this work

β1 [0.2 × 10−5, 0.6 × 10−4, 0.8 × 10−4]
β2 [0.79327, 0.88994, 0.91812]
β3 [0.04, 0.06, 0.15]
β4 [0.01, 0.05, 0.06]

βRSF [0.1, 0.2, 0.3]
βdropout [0.2, 0.4, 0.5]
lgenerator [1.2 × 10−6, 4.5 × 106, 5.0 × 10−6]

ldiscriminator [4.4 × 10−6, 4.5 × 10−6, 8.5 × 10−6]

2.2 Algorithm

The LES equations, which are Favre-filtered, are used to advance a PIESRGAN-
LES in time. As consequence of the filter operation to the equations, unclosed
terms appear, which require information from below the filter width to be evaluated.
The LES subfilter algorithm aims to reconstruct this information to close the LES
equations. This is done during every time step. For the cases with chemistry, the
chemistry can be included in the PIESRGAN during the training process (Bode et al.
2022; Bode 2022a). As chemistry is often active locally, this can be also used to save
computing time by adaptively solving only in relevant regions. The algorithm starts
with the LES solution �n

F at time step n, which includes the entirety of all relevant
fields in the simulation, and consists of repeating the following steps:

1. Use the PIESRGAN to reconstruct �n
R from �n

LES.
2. (Only for nonuniversal quantities) Use �n

R to update the scalar fields of � to
�

n;update
R by solving the unfiltered scalar equations on the mesh of �n

R.
3. Use �

n;update
R to estimate the unclosed terms �n

LES in the LES equations of �

for all fields by evaluating the local terms with �
n;update
R and applying a filter

operator.
4. Use �n

LES and �n
LES to advance the LES equations of � to �n+1

LES.
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2.3 Implementation Details

PIESRGAN was implemented using a TensorFlow/Keras framework (Abadi et al.
2016; Keras 2019) in this work to efficiently employ GPUs. For all the examples
discussed here, the data were split into training and testing sets to avoid reproduction
of fully seen data. During the training and querying processes, it was found that
consistent normalization of quantities is very important for highly accurate results
(Bode et al. 2021). Furthermore, both operations are done based on subboxes, since
reconstructing bigger boxes can become very memory intensive. Typically, each
subbox is chosen large enough to cover the relevant physical scales (Bode et al. 2021).
The filter width can become problematic if non-uniform meshes are employed. In
these cases, training withmultiple filter widths is suggested to achieve good accuracy
throughout the entire domain (Bode 2022a).

The potential extrapolation capability of data-driven methods is always challeng-
ing. Many trained networks only work well in regions which were accessible during
the training process. This can become very problematic for flow applications, where
often data at low Reynolds numbers is abundant, while data at high Reynolds num-
bers is not computable at all, making transfer learning difficult. To deal with this
problem, concepts such as a two-step training approaches (Bode et al. 2021) can be
used relying on the further prediction width of GANs compared to single networks
(Bode et al. 2022; Bode 2022a). In order to avoid this open question of extrapolation
capabilities, only interpolation cases are presented in this work.

A basic version of PIESRGAN is available on GitLab (https://git.rwth-aachen.
de/Mathis.Bode/PIESRGAN.git) for an interested reader.

3 Application to Turbulence

The application of PIESRGAN to non-reactive turbulence is a good starting point.
Besides closing the filtered momentum equations, the evaluation of passive scalars
is a key challenge toward applying PIESRGAN to turbulent reactive flows, as scalar
mixing is especially important for non-premixed combustion cases. Furthermore,
turbulence is assumed to be universal on the smallest scales that makes it reasonable
to accurately learn the subfilter behavior by a complex network.

3.1 Case Description

A decaying turbulence case with a peak wavenumber κp of 15 m−1 and a maximum
Taylor microscale-based Reynolds number Reλ of about 88 is used as turbulent
example case here. Turbulence with an initial turbulence intensity of u′

0 = 2〈k〉/3
with 〈k〉 as ensemble-averaged turbulent kinetic energy was initialized on a uniform

https://git.rwth-aachen.de/Mathis.Bode/PIESRGAN.git
https://git.rwth-aachen.de/Mathis.Bode/PIESRGAN.git
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meshwith 40963 and solved alongwith passive scalars. The original direct numerical
simulation (DNS) was computed with the solver psOpen (Gauding et al. 2019).
psOpen employs the P3DFFT library for spatial decomposition and to perform the
fast Fourier transform (FFT) (Pekurovsky2012) of the incompressibleNavier–Stokes
equations formulated in spectral space, but with the non-linear term computed in
physical space. Over time, the turbulent intensity decays, i.e., the Reynolds number
decreases, resulting in larger turbulent structures. Thismakes the decaying turbulence
case a very good baseline application, as many practical applications also features
varying Reynolds numbers.

The corresponding PIESRGAN-LESwas computedwithCIAO, an arbitrary order
finite-difference code (Desjardins et al. 2008). The physics-informed loss function
only considered a condition for enforcing mass conservation. Further details can be
found in Bode et al. (2021).

3.2 A Priori Results

For evaluating the accuracy of PIESRGAN, Fig. 2 shows 2-D slices of the fully
resolved velocity and scalar fields, the filtered fields, and the reconstructed fields
employing PIESRGAN. The visual agreement is good, and the network seems to
be able to add sufficient information to the filtered fields to reconstruct the fully
resolved data. Bode et al. (2021) pointed out that high accuracy can also be achieved
in scenarios in which PIESRGAN needs to “extrapolate” training data using a two-
step training approach. The two-step training approach combines fully resolved data
for updating generator and discriminator and underresolved training data, which
further update the generator. This is an important feature of the employed GAN
approach as many practical use cases feature Reynolds numbers which cannot be
computed with DNS.

In addition to the visual assessment of the PIESRGAN, Fig. 3 shows the dimen-
sionless spectra for the velocity vector field and the passive scalar, denoted as S .
The spectra are computed with the fully resolved fields, the filtered fields, and the
reconstructed fields and are an important measurement for the prediction quality of
PIESRGAN, as they quantify the distribution of turbulent energy and scalar among
the length scales. The filter operation removes the smallest scales, and the task of
the PIESRGAN model is to add the smallest scales to reconstruct the fully resolved
distribution. The agreement is good for both spectra, however, not perfect for very
high wavenumbers, i.e., for κ/κp ≈ 80. It is important to note that the numerics have
a significant impact on the results in Fig. 3. Only high order and consistent numerics
avoid significant noise for high wavenumbers in the reconstructed data.
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Fig. 2 Visualization of 2-D slices of the dimensionless passive scalar z∗ and the dimensionless
velocity component u∗ for the time step with Taylor microscale-based Reynolds number of about
88. Colormaps span from blue (minimum) to red (maximum) (Bode et al. 2021)

Fig. 3 Dimensionless spectra S ∗ plotted over the normalized wavenumber κ/κp and evaluated
on DNS data, filtered data, and reconstructed data for the dimensionless velocity vector u∗ and
passive scalar z∗ for the time step with Reynolds number of about 88. Note that the symbols do not
represent the discretization but are only used to distinguish the different cases. Modified plot from
Bode et al. (2021)
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Fig. 4 Evolution over dimensionless time t∗ of the ensemble-averaged dimensionless turbulent
kinetic energy 〈k∗〉 and ensemble-averaged dimensionless dissipation rate 〈ε∗〉. Plot from Bode
et al. (2021)

3.3 A Posteriori Results

A PIESRGAN-LES must accurately predict the decay of turbulence, usually mea-
sured bymeans of the ensemble-averaged turbulent kinetic energy and the ensemble-
averaged dissipation rate, denoted as 〈ε〉. A uniformLESmesh of 643 was considered
and the results are presented in Fig. 4. The prediction accuracy of PIESRGAN-LES is
high. The results for a heavily underresolved simulationwithoutLESmodel show that
especially the ensemble-averaged dissipation rate is strongly underpredicted without
model. This makes sense as the dissipation rate acts on the smallest scales which
simply do not exist in the underresolved simulation due to the lack of resolution.

3.4 Discussion

The presented a posteriori results are remarkable as the trained network is able to
reproduce the decay on a multiple orders of magnitude coarser mesh. One reason
for this could be the universal character of turbulence on the smallest scales. From
a computational point, a too drastic reduction of mesh size might not result in the
fastest time-to-solution as the costs of subbox reconstruction increase with the recon-
struction size. Thus, a finer LES mesh with smaller subbox reconstruction can be
faster as demonstrated by the two turbulent combustion cases below. Furthermore, if
the network is used as part of a multi-physics simulation, often LES meshes which
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are only 10–20 times coarser per direction than a DNS, which fully resolves the
turbulence, are needed to accurately consider boundary conditions and other phys-
ical phenomena. In this context, it is also interesting to mention the effect of the
Courant-Friedrichs-Lewy (CFL) number. Theoretically, coarser LES meshes also
enable larger time steps. However, it was found that usually a time step size between
the DNS and theoretical LES time step sizes is needed to accurately reproduce the
DNS results. The reasonmight be that the CFL number is a numerical limit, however,
the PIESRGAN-LES also needs to fulfil some intrinsic physical time step limitations.

Overall, PIESRGAN has many advantages for turbulent flows. It can not only be
used to reduce the computing and storing cost but also to enable new workflows.
For example, smaller domains can be computed first to get accurate training data.
Afterward, the trained model is applied to a larger domain to achieve converged
statistics. In addition to the discussed LES application, it could also be used as cheap
turbulence generator for complex simulations.

4 Application to Reactive Sprays

Reactive sprays occur in many applications, such as diesel engines. Usually, the
liquid fuel is injected into a combustion chamber where it finally burns. Before igni-
tion can take place, multiple physical processes happen. The continuous liquid fuel
phase splits into smaller ligaments and small droplets. These disperse droplets start
evaporating and the resulting vapor mixes with the ambient gas forming a reactive
mixture in which the combustion process occurs. The more these stages are spatially
separated, the more similar the final combustion process becomes to classical non-
premixed combustion. A measurement for this separation is the difference between
lift-off length (LOL), i.e., the distance between nozzle tip and closest combustion
events, and the liquid penetration length (LPL), i.e., the distance between nozzle tip
and roughly furthest fuel in liquid phase. This work focuses on the Spray A and
Spray C cases defined by the Engine Combustion Network (ECN) (2019).

4.1 Case Description

SprayA andSprayC are both single hole nozzles, however,while SprayA is designed
to avoid cavitation, Spray C features cavitation. Additionally, Spray A has a smaller
exit diameter like injectors used for diesel engines, while the exit diameter of Spray
C is larger as for heavy-duty injectors. Both injectors were investigated with n-
dodecane as fuel at standard reactive conditions, reading 150MPa injection pressure,
22.8kg/m3 ambient density, 15% ambient oxygen concentration, 900K ambient
temperature, and 363K fuel temperature. Furthermore, inert conditions, i.e., without
ambient oxygen, were run for Spray A, while Spray C was also simulated with 1000,
1100, and 1200K ambient temperatures. The cases are denoted as SA900, SC900,
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SC1000, SC1100, and SC1200 based on the used nozzle geometry and ambient
temperature. Inert conditions are separately emphasized.

The cases were computed using CIAO with a similar setup as described by Goeb
et al. (2021). More precisely, the initial droplets were generated based on a pre-
computed droplet size distribution for the Spray A case (Bode et al. 2014, 2015).
For the Spray C case, a blob method utilizing the effective liquid diameter at the
nozzle exit was employed. Breakup and evaporation were modeled with Kelvin-
Helmholtz/Rayleigh-Taylor (KH/RT) (Patterson and Reitz 1998) and Bellan’s evap-
oration approach (Miller and Bellan 1999) for both cases. Velocity and mixing LES
closure were based on PIESRGAN-subfilter modeling. Note that due to the lack
of reactive spray DNS data and motivated by the separation of phenomena within
the combustion process of sprays, the PIESRGAN was trained with the decaying
turbulence data introduced in the previous sections.

The reaction mechanism by Yao et al. (2017) was used for all simulations. An
MRIF approach was employed for chemistry modeling, which is also summarized
in Fig. 5. The non-premixed flamelet approach assumes that chemistry and flow are
only loosely coupled through the scalar dissipation rate. Consequently, two differ-
ent sets of equations are solved in MRIF approaches. The first set are the usual
flow equations solved in 3-D spatial space. The second set describes chemistry in
the mixture fraction space Z which is only 1-D, and is called flamelet equations.
Therefore, representing and solving the chemistry by means of the flamelet equa-
tions is much cheaper compared to solving the chemistry in full 3-D spatial space.
As shown by the equations in Fig. 5, the mapping towards the flamelet space is done
by weighted volume-averages, while the mapping back to physical space employs

1-D Flamelet Solver: Solve nW flamelets

Ỹα(�x) =
∫

β(Z; Z̃(�x), Z̃ ′′2(�x))

(
nW∑
i

Yα,i(Z) W̃i(�x)

)
dZ

ẽ(�x) =
∑

α

eα(T̃ (�x), p(�x)) Ỹα(�x)

3-D CFD Solver: Advance flow equations in time

χ̂i(Z) =
∫

ρ(�x) W̃i(�x) χref(�x) f(Z; Z̃(�x), Zmax) d�V∫
ρ(�x) W̃i(�x) d�V

p̂ =
∫

p(�x) d�V∫
d�V

χref(�x), Zmax, ρ(�x),
Z̃(�x), W̃i(�x)

p(�x)

χ̂i(Z) p̂

T̃ (�x)

Ỹα(�x)

Yα,i(Z)

ẽ(�x),
p(�x)

Z̃(�x),
Z̃ ′′2(�x),
W̃i(�x)

Ỹα(�x)

Fig. 5 Schematic representation of the MRIF approach and its coupling to 3-D computational
fluid dynamics (CFD) solver. Tilde denotes Favre-filtered data. The overbar indicates Reynolds-
averaging. The hat labels quantities in mixture fraction space. Z is the mixture fraction, Wi the
flamelet weights, p the pressure, χ the scalar dissipation rate, ρ the density, Yα the mass fractions,
e the internal energy, and T the temperature. β denotes the presumed β-PDF, and f indicates
the functional form of the scalar dissipation rate. The spatial coordinates are represented by x,
and integration over the volume of the full domain is described by

∫
dV. All variables are time

dependent, but t is omitted here for brevity. Image from Bode (2022c)
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probability density functions (PDFs), typically constructed by means of the filtered
mixture fraction and mixture fraction variance.

Thus, the MRIF approach typically requires a presumed functional form of the
scalar dissipation rate in mixture fraction space f and the PDF of the mixture fac-
tion. For the functional form, often a presumed log-based profile is assumed (Pitsch
et al. 1998), while a beta-PDF is often employed for the mixture fraction PDF. Both
quantities are critical for LES, as they often have significant subfilter contributions.
In the context of PIESRGANmodeling, both assumptions can be avoided by directly
evaluating both profiles on the reconstructed fields which can improve the predic-
tion results of the simulations. For the Spray C cases, the mixture fraction PDF was
indeed evaluated based on the reconstructed data for the results presented here (Bode
2022b).

4.2 Results

The lack of DNS data makes a distinction between a priori and a posteriori results
difficult. Instead LES results are compared with experimental data here (Engine
Combustion Network 2019). Figures6 and 7 compare the ignition delay time ti and
the LOL lLOL for the considered spray cases. All simulations slightly underpredict the
experimental results. This could be because of the chemical kinetics mechanism used
which has a significant impact on the ignition delay time. Furthermore, the ignition
delay time and consecutively LOL decrease with increasing ambient temperature.
These trends are correctly predicted for Spray C by the PIESRGAN-LESs.
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Fig. 6 Ignition delay time ti for Spray A and Spray C cases
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Fig. 7 LOL lLOL for Spray A and Spray C cases

The near nozzle experimental data for the inert Spray A case allow a further
evaluation of PIESRGAN-LES compared to classical LES with dynamic Smagorin-
sky (DS) model. Figure8 compares the temporally and circumferentially averaged
fuel mass fraction for an underresolved simulation without model, a DS-LES,
and a PIESRGAN-LES with experimental data. The agreement is best between
PIESRGAN-LES and experimental data. Note that a similar resolution is chosen
for DS-LES and PIESRGAN-LES here. It seems that the PIESRGAN-LES is more
robust with respect to coarser resolutions. If a finer resolution were to be used, the
results for PIESRGAN-LES and DS-LES would become more similar.

4.3 Discussion

The reactive spray cases computed with PIESRGAN-subfilter model show that the
PIESRGAN-based subfilter approach can be used to actually compute complex flows
with high accuracy. In terms of operations needed per time step, the PIESRGAN-
subfilter model is more expensive than a classical DS approach. Furthermore, the
PIESRGANapproach generates additional cost for training of the network. However,
the PIESRGAN approach has the advantage of naturally running on GPUs which
are responsible for the majority of floating point operations per second (FLOPS) in
current supercomputer systems.

As discussed, the PIESRGAN approach can be used to reduce model assump-
tions, such as those made for the mixture fraction PDF and functional form of the
scalar dissipation rate, which is an advantage. The presented results demonstrate that
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Fig. 8 Temporally and circumferentially averaged fuel mass fraction Yfuel evaluated 18.75 mm
downstream from the nozzle and plotted against the radial distance from the spray axis r . Plot from
Bode et al. (2021)

simulations without the discussed presumed closures but with PIESRGAN closure
are able to reasonably match experimental data. However, due to the lack of DNS
data and themultiplemodels which are still involved, such as breakupmodels and the
chemical mechanism, a detailed analysis of the impact of these closures on macro-
scopic quantities, such as LOL and ignition delay time, remains difficult. However,
it can be concluded that the PIESRGAN approach is very robust even in heavily
underresolved flow situations. This is an important feature for very complex simu-
lations such as full engine simulations. In these cases, it is impossible to sufficiently
resolve all parts and the robustness of closure models becomes significant.

5 Application to Premixed Combustion

In premixed combustion cases, fuel and oxidizer are completely mixed before com-
bustion is allowed to take place. Typical examples include spark ignition engines and
lean-burn gas turbines. Therefore, in contrast to non-premixed combustion, correctly
predicting fuel-oxidizer mixing is less important for premixed combustion.
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5.1 Case Description

Falkenstein et al. (2020a, b, c) computed a collection of premixed flame kernels with
iso-octane/air mixtures under real engine conditions and with unity and constant
Lewis numbers. The case with unity Lewis number, i.e., featuring the same diffu-
sion coefficient for all scalar species, is used as demonstration case in this work.
All simulations, DNS and PIESRGAN-LES, were computed with CIAO (Desjardins
et al. 2008). The DNS relies on the low-Mach number limit of the Navier–Stokes
equations employing the Curtiss–Hirschfelder approximation (Hirschfelder et al.
1964) for diffusive scalar transport and including the Soret effect. A mesh with 9603

cells was used. The iso-octane reaction mechanism features 26 species (Falkenstein
et al. 2020a). The setup puts one flame kernel in a homogeneous isotropic turbu-
lence field. Consequently, the turbulence decays over time, while the flame kernel
expands, wrinkles, and deforms from its originally spherical shape. As the resulting
flame speed depends on the local curvature of the flame kernel, it is very important
to accurately predict the flame surface density. For running PIESRGAN-LES, the
training of PIESRGAN was performed with multiple filter stencil widths varying
from 5 to 15 cells (Bode et al. 2022).

Often, a reaction progress variable is defined to describe the temporal state of a
flame kernel. Falkenstein et al. (2020a) defined it as sum of the mass fractions of H2,
H2O, CO, and CO2 and introduced a simplified reaction progress variable ζ . The
simplified reaction progress variable behaves according to a transport equation with
the thermal diffusion coefficient as diffusion coefficient reading

∂ρζ

∂t
+ ∂ρu jζ

∂x j
= ∂

∂x j

(

ρDth
∂ζ

∂x j

)

+ ω̇ζ , (3)

employing Einstein’s summation notation, with ρ as fluid density, t as time, u j as
velocity vector, x j as space vector, Dth as thermal diffusion coefficient, and ω̇ζ as
chemical source term of the simplified reaction progress variable, which is the sum
of the source terms of the species used for the definition of the reaction progress
variable. The evolution of one flame kernel realization is visualized in Fig. 9.

In contrast to the decaying turbulence and reactive spray cases presented in the
previous sections, it is not sufficient to only train the PIESRGANwith turbulence data
for finite-rate chemistry cases. Instead, the fully trained network based on decaying
homogeneous isotropic turbulence was only used as starting network, which was
further updated with finite-rate chemistry data. As a consequence, reconstruction is
learnt for all species fields, and the optional solution step with the unfiltered transport
equations on the finer mesh of the reconstructed data is employed. This combination
of reconstructing and solving was found to be crucial for the accuracy of finite-rate
chemistry flows (Bode et al. 2022; Bode 2022a).
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Fig. 9 (Continued)
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�Fig. 9 (Continued) Visualization of 2-D slices of the simplified reaction progress variable ζ , the
source term of the simplified reaction progress variable ω̇ζ , and the velocity component U (left to
right) for five different increasing time steps (top to bottom) for the fully turbulent flame kernel with
unity Lewis number. The first time shows 6.0 × 10−5 s, and the time increment is 7.5 × 10−5 s.
The final time is 3.6e-4 s, which is also used for the a priori analysis in Fig. 10. Colormaps span
from blue (minimum) to green to yellow (maximum). Note that the flame kernel does not break into
parts at the latest time shown. A coherent flame kernel topology was maintained at all times

5.2 A Priori Results

Reconstruction results for the simplified reaction progress variable, two species mass
fractions, and one velocity component are compared with fully resolved and filtered
fields in Fig. 10. The agreement between fully resolved fields and reconstructed fields
is good. The filtered data, which were filtered over 15 cells, are less sharp due to the
smoothing of small-scale structures.

5.3 A Posteriori Results

Multiple quantities can be tracked during the evolution of the flame kernel. The flame
surface density � can be evaluated by means of a phase indicator function �(x, t),
defined for a reaction variable progress variable threshold value ζ0 as �(x, t) =
H(ζ(x, t) − ζ0), with H being the Heaviside step function. The surface density is
then given by

� = 〈|∇�|〉, (4)

employing volume-averaging. Moreover, the corresponding characteristic length
scale L� can be defined as

L� = 4〈�〉 (1 − 〈�〉)
�

. (5)

As for the decaying turbulence case before, the averaged turbulent kinetic energy
decays. In contrast to this, the flame surface density is expected to increase signifi-
cantly and the characteristic length scale L� should increase slightly. This is shown
in Fig. 11. The agreement between DNS and PIESRGAN-LES results is good.

5.4 Discussion

The accuracy of PIESRGAN for premixed combustion cases is very promising. This
enables PIESRGAN-LES to be a very useful tool for evaluation of cycle-to-cycle
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ζH ζF ζR

YC8H18; H YC8H18; F YC8H18; R

YOH; H YOH; F YOH; R

UH UF UR

Fig. 10 Visualization of DNS, filtered, and reconstructed fields for the unity Lewis number case
employing PIESRGAN. Results for the simplified reaction progress variable ζ , the C8H18 mass
fraction YC8H18, the OH mass fraction YOH, and the velocity component U are shown. Colormaps
span from blue (minimum) to green to yellow (maximum). Note that the images are zoomed in
compared to the images presented in the last row in Fig. 9
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Fig. 11 Evolution over time
t of the volume-averaged
turbulent kinetic energy in
the unburnt mixture 〈ku〉, the
surface density �, and the
characteristic length scale
L� for the DNS and
PIESRGAN-LES for the
unity Lewis number case.
Plot from Bode (2022c)
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variations (CCVs) and other complex phenomena in engines. A potential workflow
could first compute two DNS realizations and other complex phenomena of pre-
mixed flame kernels, which are used for on-the-fly training of the PIESRGAN. The
trained network is then used to compute multiple PIESRGAN-LES realizations of
the premixed flame kernel setup and enable sufficient statistics to study CCVs. Bode
et al. (2022a) also showed a certain robustness of the PIESRGAN-subfilter model
with respect to setup variations, which might be partly a result of the GAN approach.
Consequently, PIESRGAN could also be employed to optimize geometries of tur-
bines or devise optimal operating conditions to reduce harmful emissions.

As discussed in the context of reactive sprays, the reconstruction approach could
also be used to improve conventional models, typically relying on filtered probability
functions. Instead, a PIESRGAN approach allows to directly evaluate the filtered
density function (FDF) increasing the model accuracy.

6 Application to Non-premixed Combustion

In non-premixed combustion cases, fuel and oxidizer are initially separated. As a
consequence, mixing and continuous interdiffusion is necessary to establish a flame.
Typical examples are furnaces, diesel engines, and jet engines.

6.1 Case Description

The study of non-premixed temporally evolving planar jets (Denker et al. 2020,
2021) was also performed with the CIAO code (Desjardins et al. 2008) and featured
multiple nonreactive and reactive cases with a highest initial jet Reynolds number
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Fig. 12 Visualization of the
turbulent non-premixed
temporal jet at a late time
step. The fuel is in the center,
two flames burn upwards and
downwards, respectively, and
the main flow direction is
from the left to the right.
Upper half: Mixture fraction
Z on a linear scale.
Colormap spans from black
(minimum) to red
(maximum). Lower half:
Scalar dissipation rate χ on a
logarithmic scale. Colormap
spans from black (minimum)
to red (yellow)

of 9850. It used methane as fuel, modeled by a reaction mechanism with 28 species.
The largest case used 1280 × 960 × 960 cells and is visualized in Fig. 12 by means
of the mixture fraction Z and its scalar dissipation rate defined as

χ = 2D

(
∂Z

∂xi

)2

(6)

with D as diffusivity, xi as spatial coordinate, and utilizing Einstein’s summation
notation. The temporal jet setup has two periodic directions: the flow direction (from
left to right) and the spanwise direction (perpendicular to the cut view in Fig. 12). The
moving layer of fuel is in the center and surrounded by originally quiescent air. At
the late time step shown, the central fuel stream has already experienced significant
bending due to turbulence, resulting in the lack of fuel in the upper half at about
one quarter length of the domain. Furthermore, it can be seen that the layer in which
scalar dissipation is active is broader than the fuel layer and the scalar dissipation
rate structures are much finer than the mixture fraction structures resulting from the
derivative. Only one realization per parameter combination was computed, however,
the spanwise direction was chosen in such a way that turbulent statistics evaluated in
the two periodic directions converged. The nonperiodic direction was chosen large
enough to prevent interaction of the jet with the boundary. As for the premixed case,
a PIESRGAN with learnt chemistry was employed for the results presented here.
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Fig. 13 PDFP of the scalar
dissipation rate χ evaluated
with the fully resolved data,
the filtered data, and the
reconstructed data

6.2 A Priori Results

The scalar dissipation rate, i.e., the measurement of local mixing, is very essential
for non-premixed combustion as it requires the fuel and oxidizer streams to be mixed
first, resulting in a lower limit for the scalar dissipation rate required for burning.
As indicated by Fig. 12, the scalar dissipation rate is a quantity which acts on the
smallest scales making it difficult for LES as it usually has significant contributions
below the filter width. Furthermore, extinction (and later reignition) can occur in
regionswhere the scalar dissipation rate becomes too large, typically estimated by the
quenching scalar dissipation rate in so-called stationary flamelet solutions, denoted
as χq. Overall, the scalar dissipation rate is a very well suited quantity to evaluate the
prediction accuracy of the PIESRGAN-model. The PDFP of the scalar dissipation
rate is shown in Fig. 13. As expected, the filtering leads to a lack of regions with very
high scalar dissipation rate. These missing values are successfully reconstructed
by the PIESRGAN-model via the mass fraction fields, i.e., the scalar dissipation
rate shown in the figure is a post-processed quantity relying on other reconstructed
quantities of the simulation data. The result in the log-log plot looks very good,
however, note that the increase of probability (from about χ = 0.1 to 1 s−1) is much
better predicted with the reconstructed data than with filtered data alone, but far from
perfect.

6.3 A Posteriori Results

Typically, a non-premixed flame is located on surfaces of roughly stoichiometric
mixture fraction, which makes the scalar dissipation rate conditioned on the stoi-
chiometric mixture fraction an interesting quantity. Furthermore, a dimensionless
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Fig. 14 Evolution over
dimensionless time t∗(∗) of
the ensemble-averaged
(density weighted) scalar
dissipation rate conditioned
on the stoichiometric
mixture friction and
normalized by the quenching
scalar dissipation rate
〈χ |ZZ〉χq. Modified plot
from Bode (2022c)

time is introduced, denoted as t∗. This time is shifted to make different cases com-
parable with the starting point defined as the time when the variance of the scalar
dissipation rate at stoichiometric conditions is zero. The normalization is done with
the jet time defined with the jet height and its bulk velocity as 32.3 mm/20.7 m/s.
The time evolution of the ensemble-averaged density-weighted scalar dissipation
rate conditioned on the stoichiometric mixture fraction is compared between DNS
and PIESRGAN-LES in Fig. 14. The LES used training data of varying filter widths
with stencil sizes of 7–15 cells per direction (Bode 2022a). The prediction of the
LES is very good even though the peak is slightly underpredicted.

6.4 Discussion

The non-premixed case emphasizes two important points with respect to PIESRGAN
modeling. First, as seen for the decaying turbulence case, the accuracy for predict-
ing mixing is very high. This is crucial for many applications going far beyond
combustion cases. Second, PIESRGAN is able to statistically predict a local phe-
nomenon like quenching, which is very challenging for classical LES models. Both
points make PIESRGAN very promising for predictive LES of even more complex
configurations.

The non-premixed case with more than one billion grid points and 28 species,
chosen as an example in this section, also highlights the capability of PIESRGAN
to be used for recomputing the largest available reactive DNS. This is technically
remarkable and only possible due to the rapid developments in the fields of ML/DL
and supercomputers in general.
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7 Conclusions

AI super-resolution is a powerful tool to improve various aspects of state-of-the-
art simulations. These include the reduction of storage and input/output (I/O), a
better comparability between experimental and simulation data, and highly accu-
rate subfilter models for LES, as demonstrated by the examples discussed in this
work. The remarkable progress in the fields of ML/DL and supercomputing in gen-
eral, especially with respect to GPU computing, has made ML/DL-based techniques
competitive and in some aspects even superior compared to classical approaches, and
it is expected that the rapid developments in this field will continue in the upcoming
years.

The presented applications ranging from turbulence to non-premixed combustion
focused on the high accuracy of PIESRGAN-based approaches in a priori and a
posteriori tests. Especially, the a posteriori accuracy is striking unveiling the potential
of the PIESRGAN-subfilter approach. Compared to classical methods, the LESmesh
can be often significantly reduced as the PIESRGAN technique was found to bemore
robust in underresolved flow situations.

Froma technical point of view, PIESRGAN-basedmodels are simple to use as they
can be easily implemented in frameworks, such as Keras/TensorFlow and PyTorch,
which are used by a very large community. The trained network can be coupled to
any simulation code by just adapting the existing application programming interface
(API) to external libraries.

PIESRGAN-based subfilter modeling is a relatively new technique and thus many
questions are still open. The presented architecture resulted in good results but it is
expected that it could be further improved. The approach of physics-informed loss
function compared to physics-informed network layers seems to be reasonable and
has the advantage of a trivial implementation while resulting in equally accurate pre-
dictions. One of the most important topics in the context of data-driven approaches is
the extrapolation capability, i.e., how accurate are predictions outside of the training
range. The recent publications (Bode et al. 2019a, 2021, 2022; Bode 2022a, b, c)
show some promising properties in this regard for PIESRGAN, but it should be
investigated in more detail in the future. Additionally, the combustion community
has computed petabytes of DNS data for various combustion configuration. Given
the demonstrated generality of PIESRGAN in the sense that the same architecture
worked very well for multiple configurations, the combination of DNS database and
PIESRGAN could be already very useful to advance combustion research. PIESR-
GAN was also shown to be universal enough to use the same trained network for
physical parameter variations. Thus, many optimization problems could be easily
accelerated.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
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adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
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