
AuditTrust: Blockchain-Based Audit Trail
for Sharing Data in a Distributed

Environment

Hugo Lloreda Sanchez1 , Sophie Tysebaert1 , Annanda Rath2(B) ,
and Etienne Rivière1(B)

1 EPL/ICTEAM, UCLouvain, Louvain-la-Neuve, Belgium
etienne.riviere@uclouvain.be

2 Sirris, Brussels, Belgium

annanda.rath@sirris.be

Abstract. There has been a significant recent interest in trust-building
technologies for decentralized environments, especially for sharing data
between mutually distrusting entities. One of the critical challenges in
this context is to ensure that shared data cannot be tampered with,
and that access to this data can always be traced and audited in a
secure and trustworthy way, e.g., by using an access log to detect tam-
pering. However, for audit trail data to be useful, it must be correct,
immutable, and tied with access control mechanisms. We present Audit-
Trust, a blockchain-based secure audit trail for data sharing in a dis-
tributed environment. We prototype AuditTrust using several technolo-
gies, such as Hyperledger Besu, IPFS, the Intel SGX TEE, and Vault.
Our evaluation of AuditTrust examines the latency costs of auditing and
access control and shows the effectiveness of the approach.

Keywords: Blockchain · Access control · Access logging

1 Introduction

Before sharing data with third parties, organizations participating to a dis-
tributed environment would like to agree with them on the processing of this
data, so that they can verify if an access intent is legitimate or not. These
organizations would also like to know who has processed this data, by keeping
immutable traces of every access intent and effective access. This requires access
logging, i.e., to maintain a complete history of data access for auditing usages.
The traditional use of third-party cloud storage services has resulted in isolated
(and centralized) data silos, where users (both individuals and enterprises) have
limited control over their data and over how it is used: access logs are gener-
ated by these services, such that users have to trust the cloud and application
providers about the integrity and security of those access logs. In this context,
distributed ledger technology (blockchains) has gained significant interest with
applications in cryptocurrencies, healthcare [3,5], or IoT [4] to cite a few.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Marrone et al. (Eds.): EDCC 2022 Workshops, CCIS 1656, pp. 5–17, 2022.
https://doi.org/10.1007/978-3-031-16245-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16245-9_1&domain=pdf
http://orcid.org/0000-0003-4583-6832
http://orcid.org/0000-0001-9681-6810
http://orcid.org/0000-0003-4705-544X
http://orcid.org/0000-0002-4133-394X
https://doi.org/10.1007/978-3-031-16245-9_1


6 H. L. Sanchez et al.

We propose AuditTrust, a system for secure and trustworthy data access
and access logging in a zero-trust distributed environment. AuditTrust is imple-
mented using a combination of decentralized and secure protocols and tech-
nologies, and in particular the Hyperledger Besu blockchain, the IPFS decen-
tralized storage service, the Intel SGX trusted execution environment, and the
Vault secret management software. Besides its prototype implementation, Audit-
Trust is intended also as a reference architecture that can find uses in diverse
application domains where data needs to be shared between mutually mistrust-
ing entities.

The remainder of this paper is organized as follows. We present in Sect. 2
a motivating scenario allowing to detail our problem statement through a use
case. Section 3 explains why this topic is of interest, and discusses the state of
the art related to similar use cases. Section 4 provides details about AuditTrust’s
architecture and design, Sect. 5 describes our implementation and the evaluation
of our system. We conclude this paper in Sect. 6.

2 Use Case: Problem Statement and Motivation

We detail in this section a specific use case, which we use as a motivational
example to define our problem statement.

In this use case, several organizations, referring to both public and private
sectors (e.g., city authorities, police, a smart traffic company, . . . ) would like to
access traffic data (e.g., data from CCTV cameras) managed by a traffic moni-
toring company operating in a specific city. Access to this data is governed by a
mutually signed contract between one of these organizations and the company
offering the traffic monitoring service. Once shared, this data can be processed by
those who have access to it at their destination system. Without proper control
of data access and usage at these destination systems, data can be easily shared
with a third-party system. This can lead to a data breach and to serious legal
consequences. To prevent that, access and usage of data should be auditable in
a secure and trustworthy way by any organization participating to the system.
To this end, there is a need to have an audit tool able to trace any access to
the shared data in a trusted and transparent manner, by providing immutable
access logs. Such an audit tool does not only allow verifying whether there has
been suspicious activity inside the system but also to audit the access to shared
data within a given time interval. As the organizations are both independent
and mutually mistrusting, this audit tool (relying on access logs) cannot be
managed by one single entity and the application itself implementing this tool
cannot be trusted; rather, the management of such a tool should be decentral-
ized. This decentralization is also necessary to be able to scale up the tool to
higher volumes and larger systems, and to make it resilient through redundancy.

Our goal for AuditTrust is to build trust in data shared between mutually
mistrusting entities (or participants) in a distributed environment. Typical data
being shared could be videos or images originating from smart cities and used
notably by smart traffic applications. However, the proposed solution can be



AuditTrust: Blockchain-Based Secure Audit Trail 7

used in any application domains, beyond a smart traffic use case. We consider
two kinds of mutually mistrusting actors: 1 data consumers (DCs) are entities
processing data, and 2 data owners (DOs), who obtain data, e.g., from traffic
monitoring, and share it with DCs. Naturally, a DO might not want to provide
the same access to every DC and for every piece of data: each shared piece of
data is subject to a role-based access control (RBAC) policy according to which
access rights are granted. This policy holds for a bounded amount of time and
defines the role or category of users (representing the DC’s business function)
who are authorized to access the data.

In this use case, building trust in data means that 1 only authorized users are
able to access the data according to the policy defined by the data owner. This
policy must hold only for a certain duration and for a given role (representing a
data consumer’s business function), and 2 the access logs on which the audit tool
relies cannot be tampered (corrupted). An adversary might try to impersonate
another (legitimate) user or compromise any computer system on which the
audit tool is available. We also assume that neither the client application (to
which a user connects to for interacting with the system) nor the host machines
(and operating systems) are trusted.

3 Related Work

Data auditing solutions were previously described in the literature [1,2], although
none matches exactly the requirements resulting from our use case.

PrivacyGuard by Xiao et al. [1] implements mechanisms for preserving data
integrity and data confidentiality without referring to a trusted third party in
the context of data sharing in a cloud environment. PrivacyGuard uses two
domains, a control plane and a data plane. The former is related to blockchain
interactions and especially to the deployment and execution of smart contracts;
the latter is related to the use of a trusted execution environment (TEE) on
the cloud for decryption purposes and data processing. PrivacyGuard takes into
account more attacks than what we require (e.g., delayed computation in a
trusted execution environment or TEE), but is also costlier to operate due to
the intensive usage of the blockchain and smart contracts. Each access intent will
lead to a smart contract transaction whereas in our solution, a smart contract
transaction (publication of an access log) relates to a large batch of access intents.
However, PrivacyGuard is easier to deploy because it does not require a specific
audit tool: the distributed ledger is the access log itself.

Liang et al. [2] propose ProvChain, a decentralized solution based on own-
Cloud to collect and verify the history of all modifications made on shared data.
However, their approach assumes some trust relationships, as it relies on an
auditor designated by the data provider for verifying data modifications. The
scope of the implementation of their solution is also restricted to ownCloud as it
requires ownCloud’s hooks mechanism. Furthermore, only the provenance data
is really decentralized: in ProvChain, Liang et al. [2] rely on a trusted entity to
audit data. In our solution, the audit tool can be executed by any participant
and does not need to rely on a trusted entity.



8 H. L. Sanchez et al.

Miyachi and Mackey [5] propose 3 different models of decentralized data
sharing solutions for healthcare applications, depending on the nature of the
data, their purposes, and the applicable regulations. Among these models, the
one related to consumer health information (CHI) is similar to our use case: it
is used for sharing data, based on a decentralized storage system and TEEs.
However, the authors do not consider the same trust model, which impacts the
type of blockchain solution they can use. The CHI model allows, indeed, the use
of a consortium blockchain where the governance is assigned to a specific group
of organizations, an assumption we do not make for AuditTrust.

Wang et al. [6] also propose a solution for sharing data in a decentralized
manner, with access control mechanisms as well as encryption for preserving
data confidentiality. Similarly to the approach of Miyachi and Mackey [5], this
solution does not implement an auditing mechanism.

AuditTrust relies on off-chain computation using a TEE. We are not the first
to propose to combine the advantages of blockchain processing and the use of a
TEE. Ekiden [8] offloads computation from blockchain nodes to a collection of
computing nodes, so that the blockchain is solely used as persistent state storage.
IRON [9] and Ryoan [10] also combine blockchain and TEE to allow computation
on encrypted data through functional encryption, following access control that
leverage a blockchain. Lastly, Intel introduced in 2018 a solution called Private
Data Objects (PDOs) [11], based on TEE and a distributed ledger (Hyperleder
Sawtooth). PDOs execute smart contract functions off-chain (within an Intel
SGX enclave), while the outputs are stored on the blockchain.

4 AuditTrust: Design and Reference Architecture

In this section, we present the technical solutions for the realization of Audit-
Trust and our reference architecture of the tool with all its security compo-
nents. We will present an implementation of this architecture in Sect. 5. Audit-
Trust consists of two key constituents: (1) secure data sharing (i.e. unauthorized
access to shared data not possible) and (2) trustworthy access and usage auditing
(i.e. access log manipulation not possible). We detail these in the following.
Secure Data Sharing. The enforcement of access/usage policies is necessary
before data reaches its destination (i.e., at the DC, data consumer). To this end,
we propose to use a role-based access control model expressed in a smart contract
to control access to shared data. Roles and policies are defined and represented
by smart contracts, allowing all parties to have the same information. Each time
a data consumer requests access to some data, this access intent is recorded in
the current access log (generated at the data consumer node before being shared
with other participants). Each access intent is protected with RSA encryption,
relying on the public key of the data owner. To gain access to the file, the local
access log first needs to be uploaded to the off-chain platform. From this, a hash
can be computed and then can be published on the blockchain, for sharing this
access log file with other participants.



AuditTrust: Blockchain-Based Secure Audit Trail 9

When the hash of the access log has been published on the blockchain, the
data owner will retrieve the encrypted access log on the off-chain platform. Then,
the DO will decrypt and verify the access intents related to its files. This verifica-
tion process consists of two steps: 1 identity verification and 2 access verification.
If the access intent is valid, the data owner will authorize the data consumer to
access one of its files.

The data is stored on the off-chain platform and it is protected with a sym-
metric key issued by the data owner. Instead of transferring the entire file, which
would make us lose the benefits of using an off-chain platform, the data owner
only sends the cryptography key. However, to preserve the confidentiality of the
key, this exchange occurs between secure enclaves hosted in trusted execution
environments (TEE). This ensures that the key itself is not accessible to the
user (data consumer) itself or to its surrounding software stack, and that the
key is used to produce a cleartext version of the file for local use only. Once the
enclave on the consumer side has received the key, the file is decrypted inside
the enclave and exposed to the user space.
Access and Usage Auditing. To realize trustworthy access and usage audit-
ing, we rely on raw access log stored on the distributed off-chain platform. The
address (content identifier) usable to retrieve the log as well as a hash of its
content must be stored in an immutable database, which is why we leverage a
blockchain for this purpose. The auditing process is simple. First, we retrieve
the raw access log and produce a hash-value of it based on a selected crypto-
graphic hashing function. Then, we retrieve the corresponding hash-value stored
on blockchain. If they match (hash-value of raw access log on local device and
its corresponding hash-value stored in blockchain), there is no tampering, else,
tampering occurred. AuditTrust supports two types of audits:

– Total audit: this audit will check the integrity of all access logs available on
the off-chain platform and their associated hash published on the blockchain.
It outputs a binary value (tampered or not tampered).

– Partial audit: this audit is focused on the data usage control of a specific file.
Given two timestamps, it will find all the access logs published during this
interval and related to the particular file.

4.1 Reference Architecture

In this section, we present a short description of AuditTrust’s high-level archi-
tecture. Figure 1 complements this section with a graphical representation of the
architecture components. Note that we defer the discussion of the implementa-
tion (technologies) for these components to Sect. 5.

The AuditTrust architecture is formed of the following key components:

1. A front-end application used by users (both data owner and data consumer).
This interface allows the user to connect to different modules of the system,
including the database, the service backend, but also the auditing tools. Via



10 H. L. Sanchez et al.

Fig. 1. Global architecture of AuditTrust, representing from a high-level perspective
its core components.

this frontend, a user can also manage data access/usage policy and perform
auditing on data access if it is authorized to do so.

2. The back-end, with different drivers/interfaces, interacts with the different
modules of the system such as the blockchain monitoring tool, the blockchain
itself, or the off-chain storage and secret management service for managing
security key and other credentials.

3. An off-chain storage system is responsible for storing durably and reliably
data off-chain, implementing the necessary level of redundancy and distri-
bution of the data. It is used for storing both encrypted shared data and
encrypted access logs.

4. The audit tool module is responsible for data access and usage auditing. It
interacts with both the database, storing the state of the blockchain transac-
tion, and with the blockchain system through a blockchain driver.

5. Finally, the blockchain is used to store the hash-value of the access logs and
enables a transparent auditing process.

4.2 Security Mechanisms

In this section, we present several security mechanisms adopted in the design
of AuditTrust. The design and implementation of AuditTrust required carefully
thinking of a number of security aspects (establishment of secure communica-
tion channels and APIs, secure file transfer protocols, or key management) that
employ traditional techniques and best practices but will not be discussed in



AuditTrust: Blockchain-Based Secure Audit Trail 11

the present paper due to space limitations. We focus instead on aspects that are
specific to AuditTrust.
Access Control Management. Proper access control is a critical security
feature to allow secure data sharing. We analyzed various access control mod-
els when designing AuditTrust (such as discretionary access control - DAC - or
mandatory access control - MAC -), and concluded that role-based access con-
trol (RBAC) was the most suitable and matches the requirements of our use
case. RBAC [7] is a well-known access control model where access permission is
granted based on role of user(s)/people in an organization, for instance, users
can have a role of employee, administrator, . . . RBAC provides an easy way for
the user and access rule management since a user is not connected directly to the
access rule: the access rule is associated only with role. This means that, to grant
or revoke a user’s access rights, we need to simply remove the user from the role
they belong. When data is shared with data consumers, the access permission is
defined based on the role of users belonging to the data consumer organization.
This offers freedom for data consumer to assign, un-assign, and reassign a user
to that role without affecting the access control policy defined by data owner.
This is particularly beneficial when there is a change in user and role structure
in the data consumer organization.
Implementing RBAC with Smart Contracts. In AuditTrust, RBAC is used
for expressing access control policies. The RBAC policy is then transformed into
a RBAC smart contract, which is considered as an agreement between data owner
and data consumer. This idea was taken from Cruz et al. [12] and implemented in
AuditTrust. This smart contract is only executed when new policies are created,
updated or deleted. This provides transparency to all involved parties, while
avoiding important costs of calling the contract for every access authorization.
Based on information from the contract, any party can verify each access intent
and enforce the RBAC.
Secure File/Secret Storage. For preserving the confidentiality of data (files
and access logs), we use symmetric and asymmetric (RSA) encryption. We gen-
erate a symmetric key per shared file. We also encrypt access logs but, in this
case, every entry of these files is only readable by the involved parties (a DO and
one or several DCs included in the concerned role) and is encrypted with RSA
using the DO’s public key. The use of encryption enables a DO to share files with
a DC, and a DC to audit logs, but bears a risk that the key present in memory
of one of the involved DC party will leak and be used to access data without
authorization and without logging by malevolent parties. To prevent this risk,
AuditTrust relies on a trusted execution environment or TEE. A TEE can exe-
cute code (a so-called secure enclave) that is certified and can be provisioned
with secrets (here, the symmetric key) without revealing these secrets to the
machine hosting the enclave or its operating system. The sharing of symmetric
keys happens between secure enclaves in TEEs on both sides and the cleartext
data is exported, without the key, to regular memory.
Blockchain Usage. AuditTrust leverages a blockchain for two primary pur-
poses. First, it is used as a immutable storage medium to store roles and policies



12 H. L. Sanchez et al.

as well as indexing information (content identifiers and hash values) allowing to
retrieve content for DC and DO alike. The immutability of the blockchain storage
is a necessary asset for a trustworthy auditing process. Second, the blockchain
is used as a shared execution medium supporting smart contracts for the man-
agement of access control, i.e., setting rules, roles, and associated policies. The
execution of these operations is auditable by any party ensuring the transparency
of the information exchange agreement between DO and DC.

5 Prototype Implementation and Evaluation

We discuss in this section the implementation of the reference architecture pre-
sented for AuditTrust in the previous section, and motivate the technological
choices for its different modules.
Blockchain Selection. A large number of blockchain technologies exist, target-
ing different membership models (open vs. consortium) and deployment models
(public vs. private). An important selection criteria for AuditTrust was that the
blockchain used should support immediate finality, i.e., the fact that a block
appended to the chain (and the transactions therein) are never revoked and can-
celled later, as can happen with fork events in most open, public blockchains
such as “classical” Ethereum. Other important criteria was the compatibility
with common toolsets and languages used for smart contracts, and the ability to
support various deployment models in the future (i.e., not to be “vendor-locked”
in a private solution).

We selected Hyperledger Besu, an Ethereum client supporting both public
and private deployments. We use Besu with IBFT 2.0 [13], a proof-of-authority
Byzantine fault-tolerant (BFT) algorithm, ensuring immediate finality.

We developed different contracts to handle policy management by data own-
ers (DO), and by specific users of a data consumer (DC) organization:

– DataOwner: There is one smart contract of this type deployed per DO. This
smart contract handles all policies issued by a data owner and all actions
related to the management of policies;

– DataConsumer: One smart contract of this type is deployed every time a role
is created by a DC;

– DataConsumerOrganisation: This smart contract is used for periodically
sending access logs to the blockchain, by tracking and aggregating access
logs for all managed roles instead of publishing them independently, which
would increase the transaction fees of the solution. This smart contract is also
responsible for validating the organization’s roles.

Off-Chain Storage and Anchorage on the Blockchain. Storing data
directly on the blockchain is undesirable and would not scale to the require-
ments of AuditTrust. It is also undesirable to store data in a centralized location
or even at a pre-defined consortium organization under our zero-trust assump-
tion. We use instead a decentralized storage system that does not rely on pairwise



AuditTrust: Blockchain-Based Secure Audit Trail 13

trust relations between entities of the system. We selected IPFS [14] for this pur-
pose, one of the currently most popular decentralized store. We point out that
any store offering a minimalistic put/get interface could be used in replacement.
IPFS addresses data in a content-centric fashion, i.e., the content identifier of a
file its the hash of its content. IPFS handles the replication and diffusion of data
such that deletion or eclipsing by an adversary requires significant computational
and communication power.

For each uploaded file, the content identifier (hash of the file) is published
on-chain. This “anchorage” of off-chain data to in-chain records allows check-
ing for data integrity and ensuring availability [15]. As IPFS is distributed and
decentralized, data availability is also preserved, which is especially important
for files such as access logs. A final positive aspect of decentralized off-chain
storage is to avoid having a single point of failure.
Trusted Execution Environment (TEE). The two major choices for TEEs
at our disposal from a material perspective or allowing a simulation are ARM
TrustZone and Intel SGX. For the purpose of AuditTrust, the features offered
are equivalent (even if the programming model differs). We considered both
options in the implementation of AuditTrust and settled on Intel SGX due to
the simpler programming environment and existence of more complete support
libraries. We used specifically the Ego Go library for the Go language [16]. We
point out that a production implementation of AuditTrust would probably have
to realize a thorough analysis of the library safety as previous work found several
weaknesses in other, similar solutions [17].
Client Application. Depending on the type of the user, several operations are
possible through the client application. If the user is a data consumer, she can
create and manage roles, demand access to some shared file, or access a shared
file once access has been validated by AuditTrust. If the user is a data owner, he
can create and manage policies for enforcing the RBAC mechanism as explained
earlier. Both data consumer and data owner can audit the solution to check if
any tampering occurred (resolution or penalization of such occurrences are out
of scope of the present paper but would typically leverage on-chain proof-of-
misbehavior checking using another smart contract).

Whenever a data consumer wants to access a particular file, an entry is
appended in the current access log. This access log is published on the blockchain
at periodic intervals. Once the access log is published, the data owner system
performs verifications to see if these accesses were legitimate or not. These ver-
ifications are composed of two steps: (1) the verification of the identity of the
data consumer through a signature mechanism and (2) the verification of the
access, i.e. making sure that a policy authorizing this access exists and is still
valid. This mechanism incentivizes DC organizations to publish the hash of this
access log file on the blockchain because until then its users are unable to access
any file.

Once the access is validated by the DO, the DC who made the request can
contact the DO node to retrieve the key associated with the file. The DO node
will again perform the identity verification, as mentioned before, to make sure



14 H. L. Sanchez et al.

it does not share any information with a malicious or unauthorized entity. If the
verification phase is successful, both the DO and the DC will attest enclaves in
a pair-wise fashion (for SGX, this step requires using an Intel-provided service
to attest the genuineness of the communicating SGX enclave and of its running
code). Once enclaves are validated, both parties exchange necessary keys over a
secure channel visible to only the enclave code.

5.1 Evaluation

Testing Environment. We use a setup environment with 4 virtualized
machines on a single host. This host is equipped with a AMD 5800 h 8-core,
16-thread CPU, 32 GB of RAM, and fast NVMe SSD for storage. In addition to
the four VMs hosted by KVM, the host runs simple Python scripts to orches-
trate the evaluation. Each VM is allocated 2 virtual cores, 5 GB of RAM and
20 GB of disk space. Each virtual host is similar with a Hyperledger Besu node,
an IPFS node, and other services implemented as web services. As the CPU does
not support SGX, we employ the SGX emulation functionality of the Ego Go
library [16].

Fig. 2. Global overview of the response time (the vertical bar represents the median
and the green triangle is the mean). (Color figure online)

Results. Figure 2 presents the distribution of response times for the various
operations involved in the AuditTrust workflows. The latency of the different
operations is impacted by calls to the blockchain (and the subsequent wait for
the corresponding transaction to appear as finalized in a block), and calls to
IPFS to lookup data. Operations are all successful with a majority under 3 s
of latency and an average of 3.89 s. The sign method, which creates an access
intent, is the fastest with an average of 0.03 s.



AuditTrust: Blockchain-Based Secure Audit Trail 15

The majority of requests that interact with the blockchain with a single trans-
action (e.g., update a policy, role validation, and other management requests.)
take a similar time (around two seconds, which is the period of generation of
blocks by Besu). The role creation call that requires a slightly more complex call
on a smart contract and shows slightly higher variability. Other requests that
only require reading the content of the chain replicated in the local database
(e.g., getting the file ownership, get the list of roles or retrieving the last state
of the solution.), have negligible latency, with the exception of getting the pos-
sible access that needs to verify if an existing access intent or authorized access
does not exist already; in contrast to queries that only replicate the state of the
blockchain without additional verifications. Furthermore, this request, but not
only, suffers from the limited performance of the hardware used in our test envi-
ronment. We also observe that the main function, accessing a file of a data owner
by a data consumer, may take a relatively significant time. This is explained by
two factors. First, the establishment of secure enclaves on both sides (emulated
by Ego Go [16]) and the actual exchange of secrets take time, about 1 to 2 s in
total. Second, the relative load on the machine increases due to the in-enclave
decryption of the file, leading to throttling mechanisms to trigger to avoid over-
loading the system in other modules. Overall, our evaluation shows that the cost
of auditing and access mediated by a blockchain is not insignificant but remains
justified for the level of security that it brings.
Discussion. Our evaluation already provides interesting preliminary results but
more extensive tests with a distributed testbed would be necessary to evaluate
AuditTrust in a production-like environment. We expect, nonetheless, that the
availability of more resources per service (instead of sharing resources for dif-
ferent services in the same VM, and between VMs in the same host) will only
provide enhanced performance, e.g., by allowing to decrease the default inter-
block period in Besu.

We also note that performance is impacted by some convenience implementa-
tion choices and in particular the use of a synchronous communication pattern
between our modules, e.g., between the back-end and the IPFS Web3 access
library, or between the front-end and back-end components. We believe, nonethe-
less, that the refactoring of AuditTrust to support asynchronous calls does not
incur more than engineering and implementation challenges, and that our proof-
of-concept implementation validates the approach.

6 Conclusion

Sharing data and controlling its usage in a distributed context, when participants
are mutually mistrustful, is a real challenge. Defining how this data can be
processed through strict access control rules, and being able to audit its usage
transparently with confidentiality and integrity in a distributed environment
where participants do not trust each other is not a trivial problem.

This paper addresses this challenge by designing and prototyping a solution
based on recent decentralized and zero-trust technologies including blockchain,



16 H. L. Sanchez et al.

distributed storage, and trusted execution environment in addition to classical
cryptography. AuditTrust allows data owners (DOs) and data consumers (DCs)
to share and to request access to data, alongside the ability to check for fraudu-
lent accesses within the system. AuditTrust, as shown in the evaluation, works
well in a modest distributed setup and even with restrained resources and numer-
ous services running in parallel. The proof-of-concept is also limited in its imple-
mentation, a point that we intend to address in our future work as well as with
the deployment of a larger proof-of-concept in a smart city scenario.

References

1. Xiao, Y., Zhang, N., Li, J., Lou, W., Hou, Y.T.: PrivacyGuard: enforcing pri-
vate data usage control with blockchain and attested off-chain contract execution.
In: Chen, L., Li, N., Liang, K., Schneider, S. (eds.) ESORICS 2020. LNCS, vol.
12309, pp. 610–629. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
59013-0 30

2. Liang, X., Shetty, S., Tosh, D., Kamhoua, C., Kwiat, K., Njilla, L.: ProvChain:
a blockchain-based data provenance architecture in cloud environment with
enhanced privacy and availability. In: 17th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGRID), pp. 468–477. IEEE (2017)

3. Kuo, T.-T., Kim, H.-E., Ohno-Machado, L.: Blockchain distributed ledger tech-
nologies for biomedical and health care applications. J. Am. Med. Inform. Assoc.
24(6), 1211–1220 (2017)

4. Shafagh, H., Burkhalter, L., Hithnawi, A., Duquennoy, S.: Towards blockchain-
based auditable storage and sharing of IoT data. In: Proceedings of the 2017 on
Cloud Computing Security Workshop, pp. 45–50 (2017)

5. Miyachi, K., Mackey, T.K.: hOCBS: a privacy-preserving blockchain framework for
healthcare data leveraging an on-chain and off-chain system design. Inf. Process.
Manag. 58(3), 102535 (2021)

6. Wang, S., Zhang, Y., Zhang, Y.: A blockchain-based framework for data sharing
with fine-grained access control in decentralized storage systems. IEEE Access 6,
38437–38450 (2018)

7. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. Computer 29(2), 38–47 (1996)

8. Cheng, R., et al.: Ekiden: a platform for confidentiality-preserving, trustworthy,
and performant smart contracts. In: 2019 IEEE European Symposium on Security
and Privacy (EuroS&P), pp. 185–200 (2019)

9. Fisch, B., Vinayagamurthy, D., Boneh, D., Gorbunov, S.: IRON: functional encryp-
tion using Intel SGX. In: ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS), pp. 765–782. ACM (2017)

10. Hunt, T., Zhu, Z., Xu, Y., Peter, S., Witchel, E.: Ryoan: a distributed sandbox for
untrusted computation on secret data. ACM Trans. Comput. Syst. 35(4), 13:1–
13:32 (2018)

11. Bowman, M., Miele, A., Steiner, M., Vavala, B.: Private data objects: an overview.
arXiv, 5 November 2018

12. Cruz, J.P., Kaji, Y., Yanai, N.: RBAC-SC: role-based access control using smart
contract. IEEE Access 6, 12240–12251 (2018). https://doi.org/10.1109/ACCESS.
2018.2812844

https://doi.org/10.1007/978-3-030-59013-0_30
https://doi.org/10.1007/978-3-030-59013-0_30
https://doi.org/10.1109/ACCESS.2018.2812844
https://doi.org/10.1109/ACCESS.2018.2812844


AuditTrust: Blockchain-Based Secure Audit Trail 17

13. IBFT 2.0 - hyperledger besu. https://besu.hyperledger.org/en/stable/HowTo/
Configure/Consensus-Protocols/IBFT/

14. Benet, J.: IPFS-content addressed, versioned, P2P file system. arXiv preprint
arXiv:1407.3561 (2014)

15. Eberhardt, J., Heiss, J.: Off-chaining models and approaches to off-chain computa-
tions. In: 2nd Workshop on Scalable and Resilient Infrastructures for Distributed
Ledgers (SERIAL), pp. 7–12 (2018)

16. EdgeLess systems, Ego-Go library. https://github.com/edgelesssys/ego
17. Liu, W., et al.: Understanding TEE containers, easy to use? Hard to trust. arXiv

preprint arXiv:2109.01923 (2021)

https://besu.hyperledger.org/en/stable/HowTo/Configure/Consensus-Protocols/IBFT/
https://besu.hyperledger.org/en/stable/HowTo/Configure/Consensus-Protocols/IBFT/
http://arxiv.org/abs/1407.3561
https://github.com/edgelesssys/ego
http://arxiv.org/abs/2109.01923

	AuditTrust: Blockchain-Based Audit Trail for Sharing Data in a Distributed Environment
	1 Introduction
	2 Use Case: Problem Statement and Motivation
	3 Related Work
	4 AuditTrust: Design and Reference Architecture
	4.1 Reference Architecture
	4.2 Security Mechanisms

	5 Prototype Implementation and Evaluation
	5.1 Evaluation

	6 Conclusion
	References




