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Abstract After discussing the construction of machine learning (ML) algorithms in 
the previous chapter, this chapter is dedicated to their assessment and performance 
estimation (with an emphasis on classification assessment), a topic that is equally 
important specially in the context of cyberphysical security design. The literature is 
full of nonparametric methods to estimate a statistic from just one available dataset 
through resampling techniques, e.g., jackknife, bootstrap and cross validation (CV). 
Special statistics of great interest are the error rate and the area under the ROC curve 
(AUC) of a classification rule. The importance of these resampling methods stems 
from the fact that they require no knowledge about the probability distribution of 
the data or the construction details of the ML algorithm. This chapter provides a 
concise review of this literature to establish a coherent theoretical framework for 
these methods that can estimate both the error rate (a one-sample statistic) and the 
AUC (a two-sample statistic). The resampling methods are usually computationally 
expensive, because they rely on repeating the training and testing of a ML algorithm 
after each resampling iteration. Therefore, the practical applicability of some of 
these methods may be limited to the traditional ML algorithms rather than the very 
computationally demanding approaches of the recent deep neural networks (DNN). 
In the field of cyberphysical security, many applications generate structured (tabular) 
data, which can be fed to all traditional ML approaches. This is in contrast to the DNN 
approaches, which favor unstructured data, e.g., images, text, voice, etc.; hence, the 
relevance of this chapter to this field. 
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1 Introduction 

1.1 Motivation 

Consider a ML problem, where some models have been trained on a given dataset. It 
is then required to know their performances, in terms of any performance measure, 
on the population of testers. This is not only for the sake of assessing each of them, 
but also to be able to select the best model among them. These different models 
could even represent different instances of the same ML algorithm, with different 
values of parameters (e.g., a KNN with different values of K ), and it is required to 
choose the best value for the current problem. The performance on the population of 
testers is called the true performance, because this is the performance on the whole 
population, not on a subset of it. 

If the underlying probability distribution of the testers is known, e.g., from a priori 
knowledge about the nature of the problem, the true performance can be calculated 
mathematically. One of the first attempts in this direction was Fukunaga [14], where 
he assumed the data follows a multinormal distribution, to find a closed-form expres-
sion of the error rate of a binary classification rule. An alternative to mathematical 
calculations is simulating a very large dataset, from the assumed distribution, from 
which a very accurate estimation of the true performance can be obtained. 

The early work of Fukunuga was inspiring, from the theoretical point of view, 
for the early community of pattern recognition and machine learning to understand 
important theoretical properties and concepts. However, for real-life applications it is 
very unusual that the assumption of multinormality, or any other assumption, hold. In 
these situations, which are called nonparametric, or distribution-free, it is impossible 
to derive either the true performance in closed form, or estimate it using a very large 
simulated dataset. In such situations, the true performance must be estimated from a 
single testing dataset (testers). The way we obtain such a testing dataset defines two 
major paradigms, discussed next. 

In Paradigm I, we only have one dataset t, usually called the design or construction 
dataset, from which we have to make up a training dataset tr and a testing dataset 
ts, such that t = tr ∪ ts. Otherwise, training and testing on the same dataset t would 
provide a very optimistic estimate of the performance measure. This splitting is per-
formed iteratively using one of the resampling techniques, e.g., jackknife, bootstrap, 
or cross validation. In each resampling iteration we get a different pair of training 
and testing datasets, on which the algorithm will be trained and tested, respectively. 
The results from these different iterations will be compiled together, as defined by 
the resampling method, to provide a single estimate of the performance measure. It 
is obvious that the performance estimation obtained from any of these methods will 
vary with varying the design dataset t. This chapter is dedicated to reviewing this 
paradigm, its different estimators, and the variance estimation of these estimators. 

It is worth mentioning that fatal fallacies are committed by practitioners when 
using this paradigm. For example, a very common mistake is using the whole dataset 
t to learn some statistical properties of the different classes of the classification 
problem, mistakenly naming this a data preprocessing step, using these properties
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to construct a classifier, then excluding this step from the resampling mechanism 
afterwards. Although the correct way of performing preprocessing is explained in 
textbooks (see, e.g.,Hastie et al. [20], Sect. 7.10.2), we still see this mistake in several 
occasions in both academia and industry. 

In Paradigm II, it is required, or even mandated (e.g., in several public-policy-
making or regulatory settings), to maintain what might be called the traditional 
data hygiene of two independent datasets: the design dataset t, and a final testing 
dataset TS, which is a sequestered testing dataset that has never been available to the 
design procedure, but for just onetime final testing. Assessing a ML algorithm from 
independent testing dataset is as simple as applying the estimators of the performance 
measure of interest (Sect. 1.2) on the testing dataset. However, the estimator will then 
have two sources of variability, the design and the testing datasets. The mathematical 
details of this paradigm and the estimation of this variance are discussed in Yousef 
et al. [34], Chen et al. [4], and not reviewed in our present chapter. 

Although it may seem very safe to use this testing paradigm, some practitioners 
abuse it as well. One possible common mistake is that they test several models on 
this sequestered testing set, then they analyze the relative estimated performances. 
Accordingly, these models are redesigned to improve their performance on the testing 
set! Worse than this is keeping iterating this processes several times, which indeed 
turns the independent sequestered testing dataset to be part of the training dataset, 
indirectly through this human mental parsing of the results, which acts as a feedback 
that guides the redesign process. 

Nowadays, it is almost the default in the field of ML to leverage both paradigms 
in the task of model assessment and selection. The available dataset is initially split 
into two datasets: 

1. the design dataset t, from which the ML algorithm is designed. This is conducted 
via one of the resampling methods of paradigm I explained above. Usually, sev-
eral algorithms are used, and several parameters’ values are examined for each 
algorithm. Then, the model with the best performance is chosen. 

2. the sequestered testing dataset TS, on which the final chosen model from paradigm 
I is assessed once and only once, without redesign. This is the final estimation of 
the performance measure that should be reported, along with the estimation of its 
variance. 

It is worth mentioning that, there is a convention in the field to call the dataset ts that 
is split from the design dataset t during the resampling process, a validation dataset 
rather than a testing dataset, to reserve the word testing to the final testing datset TS 
of paradigm II. However, in some applications, the converse is adopted; i.e., ts is 
called the a testing dataset and TS is called a validation dataset. To avoid ambiguity, 
any notation and expression should be defined clearly within any context. 

What is introduced above is valid for any ML problem, whether it is regression 
or classification, and for any performance measure, whether it is the error rate Err, 
AUC, or any other. However, we emphasize below two very important issues. 

(1) The true performance, which we discussed its estimation in this introduction 
so far, is itself a random variable whose randomness arises from the randomness of
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the training dataset, as was explained in the previous chapter. Have we changed the 
training dataset, the true performance would change. For example, and without loss of 
generality (WLOG) but for the sake of illustration, suppose the whole design dataset 
t is used as a training dataset tr and we are interested in the AUC as a performance 
measure. Then, as was explained in the previous chapter, we should be interested in 
the following: 

1. AUCt: the true performance conditional on a particular training dataset t of a 
specified size n. 

2. EtAUCt: the expectation of true performance over the population of training 
datasets of the same size n. 

3. VartAUCt: the variance of the true performance over the population of training 
datasets of the same size n. 

(2) Regarding the meaning and utility of the performance measure, we emphasize 
the importance of the ROC curve and its AUC as a summary measure [2, 18, 19], 
where the former is a manifestation of the trade-off between the two types of error of 
any binary classification rule. We always advocate for the use of the ROC or its AUC 
since they are prevalence independent; i.e., they do not depend on a particular chosen 
threshold, class prior probability, or misclassification costs. Adopting a performance 
measure that is prevalence dependent, e.g., the overall accuracy or its many different 
versions, can provide a misleading measure of the classification power of the clas-
sification algorithm, especially in classification problems that involve, for instance, 
unbalanced data (different class size). Therefore, the present chapter assumes famil-
iarity with the ROC and its AUC, at the level provided in the previous chapter. 
However, for the sake of completeness, all notations are tersely summarized in the 
following subsection. 

1.2 Notation 

Consider the binary classification problem, where a classification rule η gives a score 
of h(x) for the predictor x , and classifies it to one of the two classes by comparing 
this score h(x) to a chosen threshold th. The observation x belongs to one of the two 
classes with distributions Fi , i = 1, 2. The two error components of this rule (e1, or  
the false negative fraction (FNF), and e2 or the false positive fraction (FPF)), along 
with the risk, are given as follows: 

FNF = e1 = 
th{ 

−∞ 

fh (h(x)|ω1) dh(x), (1a) 

FPF = e2 = 
∞{ 

th  

fh (h(x)|ω2) dh(x), (1b)
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R = c12 P1e1 + c21 P2e2. (1c) 

The cost ci j  , i, j = 1, 2 is the cost of classifying an observation as belonging to 
class j whereas it belongs to class i ; cii  = 0, which means there is no cost for correct 
classification; and Pi is the prior probability of each class, i = 1, 2. The risk (1c) is  
called the “error rate” Err, or probability of misclassification (PMC), when putting 
c12 = c21 = 1, which is denoted by the 0-1 cost, or loss. 

The receiver operating characteristics (ROC) curve is a plot of the true positive 
fraction (TPF), which is 1 − FNF, versus the FPF. Then the area under the curve 
(AUC) is given by: 

AUC = 
1{ 

0 

TPF d(FPF). (2a) 

= Pr
[
h(x)|ω2 < h(x)|ω1 

]
, (2b) 

which expresses how the classifier scores for class ω1 are stochastically larger than 
those of class ω2. 

If the distributions F1 and F2 are not known, a setup that is called nonparametric 
or distribution-free, any performance measure can be estimated only numerically 
from a given dataset, called the testing dataset. This is regardless of the testing 
paradigm, i.e., whether this testing dataset is obtained by simulation, resampling, or 
sequestering. This is done by assigning equal probability mass for each observation: 

F̂ : mass 
1 

n 
on ti , i = 1, . . . ,  n, (3) 

where n is the size of the testing dataset. Lemma 1 shows that this is the maximum 
likelihood estimator (MLE) of the distribution F . 

In this case the performance measures (1) can be obtained as follows. 

^FNF = ê1 = 
1 

n 

nΣ  
i=1 

Ih(xi |ω1)<th  (4a) 

^FPF = ê2 = 
1 

n 

nΣ  
i=1 

Ih(xi |ω2)>th (4b) 

^R(η) = 1 

n 
(c12 ê1 n1 + c21 ê2 n2) . (4c) 

The indicator function Icond equals 1 or 0 when the Boolean expression cond is true 
or false, respectively. The values n1 and n2 are the number of observations in the two 
classes respectively, and P̂1 and P̂2 are the estimated a priori probabilities for each 
class.
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As the the two components TPF and FPF defined a single operating point on 
the ROC, the two components ^TPF(= 1 − ^FNF) and ^FPF give one point on the 
empirical (estimated) ROC curve. To draw the complete curve in the nonparametric 
situation, the classifier’s sore is calculated for each point of the available dataset. 
Then all possible thresholds are considered in turn, i.e., the threshold values between 
every two successive scores. At each threshold value a point on the ROC curve is 
calculated. Then the AUC (2a) can be estimated from the empirical ROC curve using 
the trapezoidal rule: 

^AUC = 
1 

2 

nthΣ  
i=2 

(FNFi − FNFi−1) (TPFi + TPFi−1), (5) 

where nth  is the number of threshold values taken over the dataset. By plotting the 
empirical ROC curve, it is easy to see that (5) is the same as the Mann-Whitney 
statistic—which is another form of the Wilcoxon rank-sum test [15, Chap. 4]— 
defined by: 

^AUC = 
1 

n1n2 

n2Σ  
j=1 

n1Σ  
i=1 

ψ 
(
h (xi |ω1) , h 

(
x j |ω2 
))

, (6a) 

ψ(a, b) = 

⎧⎨ 

⎩ 

1 a > b 
1/2 a = b 
0 a < b 

. (6b) 

It is interesting, as well, to know from the theory of U -statistics [25] that the esti-
mator (6) is the uniform minimum variance unbiased estimator (UMVUE) for the 
probability (2b) under the distribution (3). 

All the estimators given above have the nice property of converging to their cor-
responding population definitions, (1) and (2), as the size of the testing set goes 
to infinity. It is worth mentioning that each of the error estimators ê1 and ê2 in (4) 
is called a one-sample statistic, because its kernel I(·) requires only one observation 
from either distributions. However, the AUC estimator in (6) is a two-sample statistic 
since its kernel ψ(·, ·) requires two observations, one from each distribution. This is 
a fundamental difference between both estimators (statistics) which will be treated 
and explained carefully in the present chapter. 

1.3 Roadmap 

The rest of this chapter is organized as follows. Section 2 paves the road to the chapter 
by reviewing the nonparametric estimators for estimating the mean and variance of 
one-sample statistics, including the preliminaries of bootstraps and influence func-
tion. This section is a very concise review mainly of the work done in Hampel [16],
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Efron and Tibshirani [11], and Huber [21]. Section 3 switches gears and reviews the 
nonparametric estimators that estimate the mean and variance of a special kind of 
statistics, i.e., the error rate of classification rules. This section is a concise review of 
the work done mainly in Efron [8], and Efron and Tibshirani [13]. Section 4 explains 
how the nonparametric estimators that estimate the error rate, a one-sample statistic, 
can be extended to estimate the AUC, a two-sample statistic. It does so by provid-
ing theoretical parallelism between the two sets of estimators and showing that the 
extension is rigorous and not just an ad hoc application. Section 6 concludes the 
chapter and provides a discussion and an advice for practitioners. 

2 Nonparametric Methods for Estimating the Bias 
and the Variance of a Statistic 

Consider a statistic s that is a function of a dataset x : {xi , i = 1, . . . ,  n}, where 
xi 

i.i.d ∼ F . The statistic s is now a random variable and its variability comes from the 
variability of xi . Suppose that this statistic is used to estimate a real-valued parameter 
θ = f (F). Then θ̂ = s (x) has expected value E s(x) and variance Var s(x). The  
mean squared error (MSE) of the estimator θ̂ is defined as: 

MSE( ̂θ)  = E 
[
θ̂ − θ 
]2 

. (7) 

The root of the mean squared error (RMS) has the same units and is on the same 
scale of the original variable θ , and hence has more intuitive value. The bias of 
the estimator θ̂ = s (x) is defined by the difference between the true value of the 
parameter and the expectation of the estimator, i.e., 

biasF 
(
θ̂
) 

= EFs (x) − θ. (8) 

Then, it is known that, the MSE in (7) can be decomposed to: 

MSE( ̂θ)  = bias2 F 
(
θ̂
) 

+ VarF θ̂ . (9) 

A critical question is whether the bias and variance of the statistic s in (9) may be 
estimated from the available dataset? 

2.1 Bootstrap Estimate 

The bootstrap was introduced by Efron [5] to estimate the standard error of a statistic. 
The bootstrap mechanism is implemented by treating the current dataset x as a
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Fig. 1 Bootstrap mechanism: B bootstrap replicates are withdrawn (by sampling and replacement) 
from the original sample. From each replicate the statistic is calculated. (The idea behind this figure 
first appeared in [11, Fig. 6.1, pp. 48]) 

representation for the population distribution F ; i.e., approximating the distribution 
F by the MLE defined in (3). Then B bootstrap samples are drawn from that empirical 
distribution. Each bootstrap replicate is of size n, the same size as x, and is obtained 
by sampling with replacement. Then in a bootstrap replicate some case xi , in general, 
will appear more than once at the expense of another x j that will not appear. The 
original dataset will be treated now as the population, and the replicates will be 
treated as samples from the population. This situation is illustrated in Fig. 1. Each of 
these bootstrap replicates is denoted by x∗b, b = 1, . . . ,  B, and the corresponding 
bootstrap replications of the statistics θ̂ = s(x) itself are given by:
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θ̂ ∗b = s(x∗b ), b = 1, . . . ,  B, (10) 

The bootstrap estimate of bias and standard error are defined by: 

biasB( ̂θ)  = θ̂ ∗ − θ̂ ,  (11) 

ŜEB = 

[
1 

(B − 1) 

BΣ  
b=1 

[
θ̂ ∗b − θ̂ ∗

]2 ]1/2 
, (12) 

θ̂ ∗ = 
1 

B 

BΣ  
b=1 

θ̂ ∗b . (13) 

Either in estimating the bias or the standard error, the larger the number of bootstraps 
B the closer the estimate to the asymptotic value, i.e., 

lim 
B→∞ 

ŜEB ( ̂θ ∗) = SE F̂ ( ̂θ ∗). (14) 

For more details and some examples the reader is referred to [11, Chap. 6, 7, and 
10]. 

2.2 Jackknife Estimate 

Instead of replicating from the original dataset, a new set x(i) is created by removing 
the case xi from the dataset. Then the jackknife samples are defined by: 

x(i) = (x1, . . . ,  xi−1, xi+1, . . . ,  xn), i = 1, . . . ,  n, (15) 

and the n-jackknife replications of the statistic θ̂ are: 

θ̂(i) = s(x(i)), i = 1, . . . ,  n. (16) 

The jackknife estimates of bias and standard error are defined by: 

^biasJ = (n − 1)( ̂θ J − θ̂ ),  (17) 

ŜEJ = 

[
n − 1 
n 

nΣ  
i=1 

( ̂θ(i) − θ̂ J )2 
]1/2 

, (18) 

θ̂ J = 
1 

n 

nΣ  
i=1 

θ̂(i). (19)
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For motivation behind the factors (n − 1) and (n − 1)/n in (17) see  [11, Chap. 11]. 
The jackknife estimate of variance is discussed in detail in Efron [6] and Efron and 
Stein [10]. 

2.3 Bootstrap Versus Jackknife 

Usually, it requires up to 200 bootstraps to yield acceptable bootstrap estimates; (in 
special situations like estimating the uncertainty in classifier performance it may 
take up to thousands of bootstraps). Hence, this requires calculating the statistic θ̂ 
the same number of times B, as well. In the case of the jackknife, it requires only n 
calculations as shown in (16). If the sample size is smaller than the required number 
of bootstraps, the jackknife is more economical in terms of computational cost. 

In terms of accuracy, the jackknife can be seen to be an approximation to the 
bootstrap when estimating the standard error of a statistic [11, Chap. 20]. Thus, if the 
statistic is linear they almost give the same result; (the bootstrap gives the jackknife 
estimate multiplied by [(n − 1)/n]1/2). A statistic s(x) is said to be linear if: 

s(x) = μ + 
1 

n 

nΣ  
i=1 

α(xi ), (20) 

where μ is a constant and α(·) is a function. This also can be viewed as having one 
data point at a time in the argument of the function α. Similarly, the jackknife can be 
seen as an approximation to the bootstrap when estimating the bias. If the statistic 
is quadratic, they almost agree except in a normalizing factor . A statistic s(x) is 
quadratic if: 

s(x) = μ + 
1 

n

Σ  
1≤i≤n 

α(xi ) + 
1 

n2
Σ  

1≤i < j≤n 

β(xi , x j ). (21) 

An in-depth treatment of the bootstrap and jackknife, and their relation to each other, 
in mathematical detail is provided by Efron [7, Chaps. 1–5]. 

If the statistic is not smooth the jackknife will fail. Informally speaking, a statistic 
is said to be smooth if a small change in the data leads to a small change in the 
statistic. An example of a non-smooth statistic is the median. If the sample cases are 
ranked and the median is calculated, it will not change when a sample case changes 
unless this sample case bypasses the median value. Using the same argument, we 
can see that an example of a smooth statistic is the sample mean.
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2.4 Influence Function, Infinitesimal Jackknife, 
and Estimate of Variance 

The infinitesimal jackknife was introduced by Jaeckel [22]. The concept of the influ-
ence curve was introduced later by Hampel [16]. In the present context and for 
pedagogical purposes, the influence curve will be explained before the infinitesimal 
jackknife, since the former can be understood as the basis for the latter. 

Following Hampel [16], let R be the real line and s be a real-valued functional 
defined on the distribution F , which is defined on R. The distribution F can be 
perturbed by adding some probability measure (mass) on a point x . This should be 
balanced by a decrement in F elsewhere, resulting in a new probability distribution 
Gε,x defined by: 

Gε,x = (1 − ε)F + εδx , x ∈ R. (22) 

Then, the influence curve ICs,F (·) is defined by: 

ICs,F (x) = lim 
ε→0+ 

s ((1 − ε) F + εδx ) − s (F) 
ε 

. (23) 

It should be noted that F does not have to be a discrete distribution. A simple 
example of applying the influence curve concept is to consider the expectation 
s = 
{ 
x d  F(x) = μ. Substituting back in (23) gives:  

ICs,F (x) = x − μ. (24) 

The meaning of this formula is the following: the rate of change of the functional s 
with the probability measure at a point x is x − μ. This is how the point x influences 
the functional s. The influence curve can be used to linearly approximate a functional 
s, along with its variance, which is similar to taking up to only the first-order term 
in a Taylor series expansion (Appendix 7.2). 

It is important to state here that s should be a functional in F̂ that is an approxi-
mation to F , as was initially assumed in (23). If for example the value of the statistic 
s changes if every sample case xi is duplicated, i.e., repeated twice, this is not a 
functional statistic. An example of a functional statistic is the biased version of the 
variance estimate Σi (xi − x̄ i )2/n, while the unbiased version Σi (xi − x̄ i )2/(n − 1) 
is not a functional statistic. Generally, any approximation s( F̂) to the functional 
s(F), by approximating F by the MLE F̂ , obviously will be functional. In such a 
case the statistic s( F̂) is called the plug-in estimate of the functional s(F). Moreover, 
the influence function (IF) method for variance estimation is applicable only to those 
functional statistics whose derivative (73) exists. If that derivative exists, the statistic 
is called a smooth statistic; i.e., a small change in the dataset leads a small change in 
the statistic. For instance, although the median is a functional statistic in the sense 
that duplicating any sample case will result in the same value of the median, it is not 
smooth as described at the end of Sect. 2.3. A key reference for the IF is Hampel 
[17]. Appendix 7.2 shows an interesting connection to the jackknife estimate.
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3 Nonparametric Methods for Estimating the Error Rate 
of a Classification Rule 

The review provided in this section is a terse summary of the main work of Efron [8, 
11, 13]. In the previous section the statistic, or generally speaking the functional, was 
a function of just one dataset. For a non-fixed design, i.e., when the predictors of the 
testing set do not have to be the same as the predictors of the training dataset, a slight 
clarification for the previous notations is needed. The classification rule trained on 
the training dataset t will be denoted as ηt. Any new observation that does not belong 
to t will be denoted by t0 = (x0, y0). Therefore, the classification loss is given by 
L(y0, ηt(x0)). Any performance measure conditional on that training dataset will be 
similarly subscripted. Thus, all the performance measures should be subscripted t; 
and hence the risk and the error rate (1) should be denoted by Rt and Errt, respectively. 
In the sequel, for simplicity and WLOG, the 0-1 loss function will be used. In such 
a case the conditional error rate will be given by: 

Errt = E0F L (y0, ηt (x0)) , (x0, y0) ∼ F. (25) 

The expectation E0F is subscripted so to emphasize that it is taken over the obser-
vations t0 /∈ t. If the performance is measured in terms of the error rate and we are 
interested in the mean performance, not the conditional one, then it is given by: 

Err = EtErrt. (26) 

The expectation Et is the expectation over the training dataset t, which would be the 
same if we had written EF ; for notation clarity the former is chosen. 

Consider a classification rule ηt already trained on a training dataset t. A natural 
next question is, given that there is just a single dataset available, how to use this 
dataset in assessing the classifier performance as well? Said differently, how should 
one estimate, using only the available dataset, the true classification performance of 
a classification rule in predicting new observations; these observations are different 
from those on which the rule was trained. In this section, we will review the principal 
methods in the literature for estimating both the true error rate (25) and its mean (26) 
of a classification rule. 

3.1 Apparent Error 

The apparent error is the error of the fitted model when it is tested on the same 
training data. Of course it is downward biased with respect to the true error rate since 
it results from testing on the same information used in training [9]. The apparent 
error is defined by:
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Errt = E F̂ L(y, ηt(x)), (x, y) ∈ t (27a) 

= 
1 

n 

nΣ  
i=1 

[
Iĥt(xi |ω1)<th  + Iĥt(xi |ω2)>th  

] 
. (27b) 

Overfitting a classifier to minimize the apparent error is not the goal. The goal is 
to minimize the true error rate (25) or its mean (26). 

3.2 Cross Validation (CV) 

The basic concept of CV, as a resampling approach, has been proposed in different 
articles since the mid-1930s. The concept simply leans on splitting the data into two 
parts; the first part is used in design (or training) without any involvement of the 
second part. Then the second part is used to test the designed procedure; this is to 
test how the designed procedure will behave for new datasets. Stone [28] is a key  
reference for CV that proposes different criteria for optimization. 

CV can be used to assess the prediction error of a model or in model selection. 
The true error  rate  in  (25) is the expected error rate for a classification rule if tested 
on the population, conditional on a particular training dataset t. This performance 
measure can be approximated by the leave-one-out CV (LOOCV) by: 

Êrrcv1 t = 
1 

n 

nΣ  
i=1 

L (yi , ηt(i ) (xi )) , (xi , yi ) ∈ t. (28) 

This is done by training the classification rule on the dataset t(i) that does not include 
the case ti ; then testing the trained rule on that omitted case. This proceeds in “round-
robin” fashion until all cases have contributed one at a time to the error rate. There is 
a hidden assumption in this mechanism: the training dataset t will not change very 
much by omitting a single case. Therefore, testing on the omitted observation one at 
a time accounts for testing approximately the same trained rule on n new cases, all 
different from each other and different from those the classifier has been trained on. 
Besides this LOOCV, there are other versions named K -fold (or leave-n/K -out). In 
such versions the whole dataset is split into K roughly equal-sized subsets, each of 
which contains approximately n/K observations. The classifier is trained on K − 1 
subsets and tested on the left-out one; hence we have K iterations. It is clear that the 
LOOCV is a special case of the K -fold CV, where K = n. 

It is of interest to assess this estimator to see whether it estimates the conditional 
true error E

[
Êrrcv1 t − Errt 

]2 
, with small MSE, as was designed or not. Many simula-

tion results, e.g., Efron [8], show that there is only a very weak correlation between 
the CV estimator Êrrcv1 t and the conditional true error rate Errt. This issue is discussed 
in mathematical detail in the excellent paper by Zhang [35]. Those other estimators 
that are based on resampling as well, and will be reviewed below, are shown to have 
this same attribute. This very interesting (and perhaps surprising) result means the
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following: whether the estimator is designed to estimate the conditional performance 
or the mean performance it indeed estimates the latter because of the weak correlation 
with the former. 

3.3 Bootstrap Methods for Error Rate Estimation 

The prediction error in (25) is a function of the training dataset t and the testing popu-
lation F . Bootstrap estimation can be implemented here by treating the empirical dis-
tribution F̂ as an approximation to the actual population distribution F . By replicating 
from that distribution one can simulate many training datasets t∗b, b = 1, . . . ,  B. 
For every replicated training dataset the classifier will be trained and then tested on 
the original dataset t. This is the simple bootstrap (SB) estimator approach [11, Sect. 
17.6] that was defined formally by: 

ÊrrSB  t = E∗ 

nΣ  
i=1 

L(yi , ηt∗ (xi ))/n, F̂ → t∗. (29) 

It should be noted that this estimator no longer estimates the true error rate (25) 
because the expectation taken over the bootstraps mimics an expectation taken over 
the population of trainers, i.e., it is not conditional on a particular training dataset. 
Rather, the estimator (29) estimates the expected performance of the classifier EFErrt. 
For a finite number of bootstraps, the expectation (29) can be approximated by: 

ÊrrSB  t = 
1 

B 

BΣ  
b=1 

nΣ  
i=1 

L (yi , ηt∗b (xi )) /n. (30) 

3.3.1 Leave-One-Out Bootstrap (LOOB) 

The previous estimator is obviously biased since the original dataset t used for testing 
includes part of the training data in every bootstrap replicate. Efron [8] proposed that, 
after training the classifier on every bootstrap replicate, it is tested on those cases 
in the set t that are not included in the training; this concept can be developed as 
follows. Equation (30) can be rewritten by interchanging the order of the double 
summation to give: 

ÊrrSB  t = 
1 

n 

nΣ  
i=1 

BΣ  
b=1 

L (yi , ηt∗b (xi )) 
/
B. (31) 

This equation is formally identical to (30) but it expresses a different mechanism for 
evaluating the same quantity. It says that, for a given point, the average performance
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over the bootstrap replicates is calculated; then this performance is averaged over all 
the n cases. Now, if every case ti is tested only from those bootstraps that did not 
include it in the training, a slight modification of the previous expression yields the 
leave-one-out bootstrap (LOOB) estimator: 

Êrr(1) 
t = 

1 

n 

nΣ  
i=1 

[ 
BΣ  

b=1 

I b i L (yi , ηt∗b (xi )) 
/ BΣ  

b'=1 

I b
' 

i 

] 
, (32) 

where the indicator function I b i equals one when the case ti is not included in the 
training replicate b, and zero otherwise. Efron and Tibshirani [13] emphasized a 
critical point about the difference between this bootstrap estimator and the LOOCV. 
The CV tests on a given sample case ti , having been trained just once on the remaining 
dataset. By contrast, the LOOB tests on a given sample case ti using a large number of 
classifiers that result from a large number of bootstrap replicates that do not contain 
that sample. This results in a smoothed cross-validation-like estimator. We explained 
and elaborated on this smoothness property in Yousef [30]. 

3.3.2 The Refined Bootstrap (RB) 

The SB and the LOOB, from their definitions, look like designed to estimate the mean 
true error rate (26) of a classifier. For estimating the true conditional error rate of a 
classifier, conditional on a particular training dataset, Efron [8] proposed to correct 
for the downward biased estimator Errt. Since the true error rate Errt can be written 
as Errt + (Errt − Errt), then it can be approximated by Errt + EF (Errt − Errt). The  
term (Errt − Errt) is called the optimism. The expectation of the optimism can be 
approximated over the bootstrap population. Finally the refined bootstrap approach, 
as named in Efron and Tibshirani [11, Sect. 17.6], gives the estimator: 

ÊrrRB  t = Errt + E∗(Errt∗( F̂) − Errt∗), (33) 

where Errt∗( F̂) represents the error rate obtained from training the classifier on 
all bootstrap replicates t∗ and testing on the empirical distribution F̂ . This can be 
approximated for a limited number of bootstraps by: 

ÊrrRB  t = Errt + 
1 

B 

BΣ  
b=1 

[ 
nΣ  

i=1 

L (yi , ηt∗b (xi )) /n − 
nΣ  

i=1 

L 
(
y∗ 
ib, ηt∗b (x

∗ 
ib)
) 
/n 

] 
. (34) 

3.3.3 The 0.632 Bootstrap 

If the concept used in developing the LOOB estimator, i.e., testing on cases not 
included in training, is used again in estimating the optimism described above, this
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gives the 0.632 bootstrap estimator. Since the probability of including a case ti in the 
bootstrap t∗b is given by: 

Pr(ti ∈ t∗b ) = 1 − (1 − 1/n)n ≈ 1 − e−1 = 0.632, (35) 

the effective number of sample cases contributing to a bootstrap replicate is approx-
imately 0.632 of the size of the training dataset. Efron [8] introduced the concept of 
a distance between a point and a sample in terms of a probability. Having trained 
on a bootstrap replicate, testing on those cases in the original dataset not included 
in the bootstrap replicate accounts for testing on a set far from the training one, i.e., 
the bootstrap replicate. This is because every sample case in the testing set has zero 
probability of belonging to the training dataset, i.e., very distant from the training 
dataset. This is a reason for why the LOOB is an upwardly biased estimator. Efron 
[8] showed roughly that: 

EF 
[
Errt − Errt 

] ≈ 0.632 EF 
[
Êrr(1) 

t − Errt 
] 
. (36) 

Substituting back in (33) gives the 0.632 estimator: 

Êrr(0.632) 
t = 0.368 Errt + 0.632 Êrr(1) 

t . (37) 

The proof of the above results can be found in Efron [8] and Efron and Tibshirani 
[11, Sect. 6]. 

The motivation behind this estimator as stated earlier is to correct for the downward 
biased apparent error by adding a piece of the upward biased LOOB estimator. But 
an increase in variance should be expected as a result of adding this piece of the 
relatively variable apparent error. Moreover, this new estimator is no longer smooth 
since the apparent error itself is unsmooth. 

3.3.4 The 0.632+ Bootstrap Estimator 

The 0.632 estimator reduces the bias of the apparent error. But for over-trained 
classifiers, i.e., those whose apparent error tends to be zero, the 0.632 estimator is 
still downward biased. Breiman et al. [3] provided the example of an overfitted rule, 
like 1NN where the apparent error is zero. If, however, the class labels are assigned 
randomly to the predictors the true error rate will obviously be 0.5. But substituting 
in (37) gives an estimate of 0.632 × 0.5 = 0.316. To account for this bias for such 
over-fitted classifiers, Efron and Tibshirani [13] defined the no-information error 
rate γ by: 

γ = E0Find  L (y0, ηt(x0)) , (38) 

where Find  means that x0 and y0 are distributed marginally as F but they are inde-
pendent. Or said differently, the label is assigned randomly to the predictor. Then for 
a training sample t, γ can be estimated by:
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γ̂ = 
1 

n2 

nΣ  
i=1 

nΣ  
j=1 

L 
(
yi , ηt(x j )

)
. (39) 

This means that the n predictors have been permuted with the n responses to produce 
n2 non-informative cases. In the special case of binary classification, let p̂1 be the 
proportion of the response classified as belonging to class 1. Also, let q̂1 be the 
proportion of the responses classified as belonging to class 1. Then (39) reduces to: 

γ̂ = p̂1(1 − q̂1) + (1 − p̂1) ̂q1. (40) 

Also define the relative overfitting rate: 

R̂ = 
Êrr(1) 

t − Errt 
γ̂ − Errt 

. (41) 

Efron and Tibshirani [13] showed that the bias of the 0.632 estimator for the case of 
over-fitted classifiers is alleviated by using a renormalized version of that estimator: 

Êrr(0.632+) 
t = (1 − ŵ)Errt + ŵ ̂Err(1) 

t , (42a) 

ŵ = 0.632 

1 − 0.368 R̂ 
. (42b) 

It is useful to express the 0.632+ estimator in terms of its predecessor, the 0.632 
estimator. Combining (37), (40), and (41) then substituting in (42a) yields: 

Êrr(0.632+) 
t = Êrr(0.632) 

t + ( ̂Err(1) 
t − Errt) 

0.368 · 0.632 · R̂ 
1 − 0.368 R̂ 

. (43) 

Efron and Tibshirani [13] consider the possibility that R̂ lies out of the region [0, 1]. 
This leads to their proposal of defining: 

Êrr(1)' 
t = min(Êrr(1) 

t , γ̂ ),  (44) 

R̂' = 
{ 

(Êrr(1) 
t − Errt)/( ̂γ − Errt) Err t < Êrr(1) 

t < γ  
0 otherwise 

, (45) 

to obtain a modification to (43) that finally becomes: 

Êrr 
(0.632+) 
t = Êrr (0.632) t + ( ̂Err(1)' 

t − Errt) 
0.368 · 0.632 · R̂' 

1 − 0.368 R̂' . (46)
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3.4 Estimating the Standard Error of Error Rate Estimators 

What have been reviewed above are several resampling methods: the CV, 0.632, and 
0.632+ estimate the conditional error rate of a classification rule, conditional on that 
training dataset; and the LOOB estimates the mean error rate, where the expectation 
is taken over the population of training datasets. Regardless of what the estimator is 
designed to estimate, it is still a function of the current dataset t, i.e., it is a random 
variable. If, e.g., the LOOB estimator Êrr(1) 

t is considered, it estimates a constant real-
valued parameter E0FEF L(y0, ηt(x0)) with expectation taken over all the trainers and 
then over all the testers, respectively; this is the overall mean error rate. Yet, Êrr(1) 

t is a 
random variable whose variability comes from the finite size of the available dataset. 
If the classifier is trained and tested on a very large number of observations, this 
would approximate training and testing on the entire population, and the variability 
would shrink to zero. This also applies for any performance measure other than the 
error rate. So, we are interested now in estimating Vart Êrr

(1) 
t , the variance of the 

estimator, not estimating VartErrt, the variance of the true performance. 
The next question then is, having estimated the mean performance of a classifier: 

what is the associated uncertainty of this estimate. Said differently: an estimate of 
the variance of this estimator be obtained from the same training dataset? Efron 
and Tibshirani [13] proposed the use of the IF method (Sect. 2.4), to estimate the 
uncertainty (variability) in Êrr(1) 

t . The reader is alerted that estimators that incorporate 
a piece of the apparent error are not suitable for the IF method. Such estimators are 
not smooth because the apparent error itself is not smooth. 

By recalling the definitions of Sect. 2.4, Êrr(1) 
t is now the statistic s( F̂). To simplify 

notation, the error L(yi , ηt∗b (xi )) may be denoted by Lb 
i , and define the following 

notation: 

lb · = 
1 

n 

nΣ  
i=1 

I b i L
b 
i , (47) 

Also, define N b i to be the number of times the case ti is included in the bootstrap b. 
Then, it has been proven in Efron and Tibshirani [12] that the IF of such an estimator 
is given by: 

∂s( F̂ε,i ) 
∂ε 

|||||
ε=0 

= (2 + 1 

n − 1 
)( Êi − Êrr(1) 

t ) + 
n
Σ  B 

b=1 (N 
b 
i − N̄ i )I b iΣ  B 

b=1 I 
b 
i 

. (48) 

Combining (78) and (48) gives an estimation to the uncertainty in Êrr(1) 
t .
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4 Nonparametric Methods for Estimating the AUC 
of a Classification Rule 

In the present section, we extend the study carried out in Efron [8], Efron and Tibshi-
rani [13], and summarized in Sect. 3, to construct nonparametric estimators for the 
AUC (a two-sample statistic) analogue to those of the error rate (a one-sample statis-
tic). Although some previous experimental comparative studies [26, 27, 32] were  
conducted to compare some of these resampling-based AUC estimators, in particular 
the 0.632 versions, there was no theoretical justification of using these estimators for 
the AUC. We provide here a full account of the different versions of bootstrap esti-
mators reviewed in Sect. 3 and show how they can be formally extended to estimate 
the AUC. 

4.1 Construction of Nonparametric Estimators for AUC 

Before switching to the AUC, some more elaboration on Sect. 3 is needed. The SB 
estimator (29) can be rewritten as: 

ÊrrSB  t = E∗EF̂ 

[
L(ηt∗ (x), y)|t∗] . (49) 

Since there would be some observation overlap between t and t∗, this approach suf-
fers an obvious bias as was introduced in that section. This was the motivation behind 
interchanging the expectations and defining the LOOB (Sect. 3.3.1). Alternatively, 
we could have left the order of the expectation but with testing on only those obser-
vations in t that do not appear in the bootstrap replication t∗, i.e., the distribution 
F̂ (∗). The parenthesis notation (∗) refers to excluding from F̂ , in the testing stage, 
the training cases t∗ that were generated from the bootstrap replication. We call the 
resulting estimator Êrr(∗) 

t , which we define formally by: 

Êrr(∗) 
t = E∗E F̂ (∗) 

[
L(ηt∗ (x), y)|t∗] (50) 

We can give the inner expectation the notation Errt∗b ( ̂F (∗) ), and rewrite the estimator 
as: 

Êrr(∗) 
t = E∗Errt∗b (F̂ (∗) ) (51a) 

= 
1 

B 

BΣ  
b=1 

[ 
NΣ  
i=1 

I b i L(ηt∗b (xi ), yi )
/ NΣ  

i '=1 

I b i ' 

] 
, (51b) 

where the indicator I b i equals one if the observation ti is excluded from the bootstrap 
replication t∗b, and equals zero otherwise. The inner expectation in (50) is taken over 
those observations not included in the bootstrap replication t∗, whereas the outer 
expectation is taken over all the bootstrap replications.
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Analogously to Sect. 3, and to what has been introduced above, we can define 
several bootstrap estimators for the AUC. The start is the SB estimate, which can be 
defined as: 

^AUC 
SB  

t = E∗AUCt∗ ( ̂F), F̂ → t∗ (52a) 

= E∗ 

⎡ 

⎣ 1 

n1n2 

n2Σ  
j=1 

n1Σ  
i=1 

ψ(  ̂ht∗ (xi ), ĥt∗ (x j )) 

⎤ 

⎦ , xi ∈ ω1, x j ∈ ω2. (52b) 

This averages the Mann-Whitney statistic over the bootstraps, where AUCt∗ (F̂) 
refers to the AUC obtained from training the classifier on the bootstrap replicate t∗ 

and testing it on the empirical distribution F̂ . In the approach used here, the boot-
strap replicate t∗ preserves the ratio between n1 and n2, which is called stratification. 
That is, the training sample t is treated as t = t1 ∪ t2, t1 ∈ ω1, t2 ∈ ω2; then n1 
cases are replicated from the first-class sample and n2 cases are replicated from the 
second-class sample to produce t∗1 and t∗2 respectively, where t∗ = t∗1 ∪ t∗2 . This was 
not needed when the performance measure was the error rate since it is a statistic that 
does not operate simultaneously on two different sets of observations as the Mann-
Whitney statistic does (in U -statistic theory [25], error rate and Mann-Whitney are 
called one-sample and two-sample statistics respectively). The expectation (52a) is  
approximated by averaging over a finite number of bootstrap: 

^AUC 
SB  

t = 
1 

B 

BΣ  
b=1 

AUCt∗b (F̂), (53) 

The same motivation behind the estimator (32) can be applied here, i.e., testing 
only on those cases in t that are not included in the training dataset t∗b, in order to 
reduce the bias. This can be carried out in (53) without interchanging the summation 
order. The new estimator is named ^AUC 

(∗) 

t , where the parenthesis notation (∗) refers 
to the exclusion, in the testing stage, of the training cases that were generated from 
the bootstrap replication. Formally, we define this as: 

^AUC 
(∗) 

t = E∗AUCt∗b (F̂
(∗) ) (54a) 

= 
1 

B 

BΣ  
b=1 

⎡ 

⎣ 
n2Σ  
j=1 

n1Σ  
i=1 

ψ(  ̂ht∗ (xi ), ĥt∗ (x j ))I 
b 
i I 

b 
j 

/ n1Σ  
i '=1 

I b i ' 
n2Σ  
j '=1 

I b j ' 

⎤ 

⎦ . (54b) 

The RB and 0.632 estimators can be introduced here in the same way it was used 
for the true error rate (Sect. 3.3.3) as:  

^AUC 
RB  

t = AUCt + E∗ 
[
AUCt∗( ̂F) − AUCt∗ 

] 
. (55)
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Then, if testing is carried out on cases excluded from the bootstraps, analogously 
to the 0.632 estimator of the error rate, this gives rise to the 0.632 estimator of the 
AUC: 

^AUC 
(0.632) 

t = 0.368 AUCt + 0.632 ^AUC 
(∗) 

t . (56) 

It should be noted that this estimator is designed to estimate the true AUC for a clas-
sifier trained on the dataset t (the classifier performance conditional on the training 
dataset t). This is on contrary to the estimator (54) that estimates the mean perfor-
mance of the classifier (this is the expectation over the training dataset population 
for the conditional performance). 

The 0.632+ estimator ^AUC 
(0.632+) 

t develops from ^AUC 
(0.632) 

t in the same way as
Êrr(0.632+) 

t developed from Êrr(0.632) 
t in Sect. 3.3.4. There are two modifications to the 

details. The first regards the no-information error rate γ ; it can be proven that the 
no-information AUC is given by γAUC = 0.5 (Lemma 2). The second regards the 
definitions (44), which should be modified to accommodate for the AUC. The new 
definitions are given by: 

^AUC 
(0.632+) 

t = ^AUC 
(0.632) 

t + ( ^AUC (∗)' 
t − AUCt) 

0.368 · 0.632 · R̂' 

1 − 0.368 R̂' , (57a) 

^AUC 
(∗)' 
t = max

( ̂
AUC 

(∗) 

t , γAUC 
)
, (57b) 

R̂' = 

{ 
(^AUC(∗) 

t −AUCt) 
(γAUC−AUCt) 

if AUC t > ^AUC 
(∗) 
t > γAUC 

0 otherwise 
. (57c) 

To this end, we have constructed the AUC nonparametric estimators analogue 
to those of the error rate. Some of them, mainly the 0.632+ estimator, will have 
the least bias [13]. However, all of these estimators are not “smooth” and not eli-
gible for the variance estimation via, e.g., the IF method (Sects. 2.4 and 3.4). The 
only estimator that may seem smooth, is the star versions Êrr(∗) 

t and ^AUC 
(∗) 

t . How-
ever, the inner components Errt∗b (F̂ (∗) ) and AUCt∗b ( ̂F (∗) ) are unsmooth themselves, 
because the classifier is trained on just one dataset. Applying the influence function 
enforces distributing the differential operator ∂/∂ε, of the IF, over the summation to 
be encountered by these unsmooth components. 

4.2 The Leave-Pair-Out Boostrap (LPOB) ^AUC 
(1,1) 

, 
Its Smoothness and Variance Estimation 

The above discussion suggests introducing an analogue to Êrr(1) 
t for measuring the 

performance in AUC. This estimator is motivated from (52a) the same way the 
estimator Êrr(1) 

t was motivated from (31). The SB estimator (52a) can be rewritten as:
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^AUC 
SB  

t = 
1 

n1n2 

n2Σ  
j=1 

n1Σ  
i=1 

E∗ψ(  ̂ht∗ (xi ), ĥt∗ (x j )) (58) 

= 
1 

n1n2 

n2Σ  
j=1 

n1Σ  
i=1 

BΣ  
b=1 

[
ψ(  ̂ht∗b (xi ), ĥt∗b (x j ))

/
B
]
. (59) 

In words, the procedure is to select a pair (one observation from each class) and cal-
culate for that pair the mean—over many bootstrap replications and training—of the 
Mann-Whitney kernel. Then, average over all possible pairs. This procedure will be 
optimistically biased because sometimes the testers will be the same as the trainers. 
To eliminate that bias, the inner bootstrap expectation should be taken only over those 
bootstrap replications that do not include the pair (ti , t j ) in the training. Under that 
constraint, the estimator (58) becomes the leave-pair-out bootstrap (LPOB) estimator: 

^AUC 
(1,1) 

t = 
1 

n1n2 

n2Σ  
j=1 

n1Σ  
i=1 

^AUCi, j , (60a) 

^AUCi, j = 
BΣ  

b=1 

I b j I 
b 
i ψ(  ̂ht∗b (xi ), ĥt∗b (x j ))

/ BΣ  
b'=1 

I b
' 

j I 
b' 
i . (60b) 

The two estimators ^AUC 
(∗) 

t and ^AUC 
(1,1) 

t produce very similar results; this is expected 
since they both estimate the same thing, i.e., the mean AUC. However, the inner com-
ponent ^AUCi, j of the estimator ^AUC 

(1,1) 

t also enjoys the smoothness property of Êrr(1) 
t . 

4.3 Estimating the Standard Error of AUC Estimators 

The only smooth nonparametric estimator for the AUC so far is the LPOB estima-
tor (60). Yousef et al. [33] discusses how to extend the approach of estimating the 
uncertainty in the error rate estimator using the IF method (Sect. 3.4) to estimate 
the uncertainty of this estimator, where interested readers may be referred to for all 
mathematical details and experimental results that show that the IF method provides 
almost unbiased estimation for the standard error of the LPOB estimator. 

5 Illustrative Numerical Examples 

5.1 Error Rate Estimation 

Efron [8] and Efron and Tibshirani [13] provide comparisons of their proposed 
estimators (discussed in Sect. 3). They ran many simulations considering a variety of
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Table 1 Average of RMS error of each estimator over 24 experiments run by Efron and Tibshirani 

[13]. The estimator Êrr 
(1) 
t is the next to the estimator Êrr 

(0.632+) 
t with only 2.5% increase in RMS 

Estimator Average RMS 

Errt 0 

Êrr(1) t 0.083 

Êrr(0.632) t 0.101 

Êrr(0.632+) 
t 0.081 

Errt 0.224 

classifiers and data distributions, as well as real datasets. They assessed the estimators 
in terms of the RMS, the root of the experimental MSE: 

MSE = EMC (Êrrt − Errt)2 (61a) 

= 
1 

G 

GΣ  
g=1 

( ̂Errtg − Errtg )2 , (61b) 

where Êrrtg is the estimator (any estimator) conditional on a training dataset tg , 
and Errtg is the true prediction error conditional on the same training dataset. The 
number of MC trials G in their experiments was 200. The following statement is 
quoted from Efron and Tibshirani [13]: 

The results vary considerably from experiment to experiment, but in terms of RMS error the 
0.632+ rule is an overall winner. 

This conclusion was without stating the criterion for deciding the overall winner. It  
was apparent from their results that the 0.632+ rule is the winner in terms of the 
bias—as was designed for. We calculated the average of the RMS of every estimator 
across all the 24 experiments they ran; Table 1 displays these averages. The estimators
Êrr(1) 

t and Êrr
(0.632+) 
t are quite comparable to each other with only 2.5% increase in the 

average RMS of the former. We will show below in Sect. 5.2 that the AUC estimators 
exhibit the same behavior but with magnified difference between the two estimators. 

5.2 AUC Estimation 

We carried out different experiments to compare the three bootstrap-based esti-
mators ^AUC 

(∗) 

t , ^AUC 
(.632) 

t , and ^AUC 
(.632+) 

t considering different dimensionalities, dif-
ferent parameter values, and training set sizes. All experiments provided consis-
tent and similar results. Here, in this section, we illustrate the results when the 
dimensionality p = 5, for multinormal 2-class data, with Σ1 = Σ2 = I, μ1 = 0, 
μ2 = c1, and c is an adjusting parameter to adjust the Mahalanobis distance
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Table 2 Comparison of the different bootstrap-based estimators of the AUC. They are comparable 
to each other in the RMS sense, ^AUC 

(.632+) 
t is almost unbiased, and all are weakly correlated with 

the true conditional performance AUCt 

Estimator Mean SD RMS RMSAM ρ Size 

AUCt 0.6181 0.0434 0 0.0434 1.0000 

^AUC(∗) 
t 0.5914 0.0947 0.0973 0.0984 0.2553 

^AUC(0.632) 
t 0.7012 0.0749 0.1128 0.1119 0.2559 20 

^AUC(0.632+) 
t 0.6431 0.0858 0.0906 0.0894 0.2218 

AUCt 0.8897 0.0475 0.2774 0.2757 0.2231 

AUCt 0.6231 0.0410 0 0.0410 1.0000 

^AUC(∗) 
t 0.5945 0.0947 0.0956 0.0990 0.2993 

^AUC(0.632) 
t 0.6991 0.0763 0.1066 0.1077 0.3070 22 

^AUC(0.632+) 
t 0.6459 0.0846 0.0863 0.0876 0.2726 

AUCt 0.8788 0.0499 0.2615 0.2606 0.2991 

AUCt 0.6308 0.0400 0 0.0400 1.0000 

^AUC(∗) 
t 0.5991 0.0865 0.0897 0.0922 0.2946 

^AUC(0.632) 
t 0.6971 0.0701 0.0961 0.0965 0.2997 25 

^AUC(0.632+) 
t 0.6442 0.0817 0.0815 0.0828 0.2758 

AUCt 0.8656 0.0471 0.2406 0.2395 0.2833 

AUCt 0.6359 0.0358 0 0.0358 1.0000 

^AUC(∗) 
t 0.6035 0.0840 0.0874 0.0901 0.2904 

^AUC(0.632) 
t 0.6962 0.0688 0.0906 0.0915 0.2934 28 

^AUC(0.632+) 
t 0.6479 0.0792 0.0785 0.0802 0.2719 

AUCt 0.8554 0.0472 0.2253 0.2246 0.2747 

AUCt 0.6469 0.0343 0 0.0343 1.0000 

^AUC(∗) 
t 0.6170 0.0750 0.0792 0.0807 0.2746 

^AUC(0.632) 
t 0.6997 0.0623 0.0818 0.0817 0.2722 33 

^AUC(0.632+) 
t 0.6553 0.0761 0.0752 0.0766 0.2656 

AUCt 0.8419 0.0439 0.2010 0.1999 0.2434 

AUCt 0.6571 0.0308 0 0.0308 1.0000 

^AUC(∗) 
t 0.6244 0.0711 0.0753 0.0783 0.3185 

^AUC(.632) 
t 0.6981 0.0598 0.0710 0.0725 0.3167 40 

^AUC(.632+) 
t 0.6595 0.0739 0.0707 0.0739 0.3092 

AUCt 0.8246 0.0431 0.1735 0.1730 0.2923 

AUCt 0.6674 0.0271 0 0.0271 1.0000 

^AUC(∗) 
t 0.6357 0.0654 0.0690 0.0727 0.3534 

^AUC(.632) 
t 0.6995 0.0556 0.0615 0.0642 0.3570 50 

^AUC(.632+) 
t 0.6685 0.0690 0.0646 0.0690 0.3522 

AUCt 0.8091 0.0406 0.1473 0.1474 0.3517 

AUCt 0.6808 0.0217 0 0.0217 1.0000 

^AUC(∗) 
t 0.6533 0.0546 0.0602 0.0611 0.2451 

^AUC(.632) 
t 0.7053 0.0471 0.0527 0.0531 0.2488 66 

^AUC(.632+) 
t 0.6840 0.0568 0.0556 0.0569 0.2477 

AUCt 0.7946 0.0355 0.1195 0.1192 0.2499 

(continued)
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Table 2 (continued) 

Estimator Mean SD RMS RMSAM ρ Size 

AUCt 0.6965 0.0158 0 0.0158 1.0000 

^AUC(∗) 
t 0.6738 0.0454 0.0483 0.0507 0.3422 

^AUC(.632) 
t 0.7119 0.0399 0.0405 0.0428 0.3492 100 

^AUC(.632+) 
t 0.7004 0.0452 0.0426 0.0453 0.3448 

AUCt 0.7772 0.0312 0.0860 0.0866 0.3596 

AUCt 0.7141 0.0090 0 0.0090 1.0000 

^AUC(∗) 
t 0.6991 0.0298 0.0327 0.0334 0.2288 

^AUC(.632) 
t 0.7205 0.0272 0.0273 0.0279 0.2291 200 

^AUC(.632+) 
t 0.7170 0.0285 0.0279 0.0286 0.2294 

AUCt 0.7573 0.0228 0.0487 0.0489 0.2277 

Δ = 
[
(μ1 − μ2)

'Σ−1(μ1 − μ2)
]1/2 = c2 p. We adjust c to keep a reasonable inter-

class separation of Δ = 0.8. When the classifier is trained, it will be tested on a 
pseudo-infinite test set, here 1000 cases per class, to obtain a very good approxi-
mation to the true AUC for the classifier trained on this very training dataset; this 
is called a single realization or a Monte-Carlo (MC) trial. Many realizations of the 
training datasets with same n are generated over MC simulation to study the mean 
and variance of the AUC for the Bayes classifier under this training set size. The 
number of MC trials is 1000 and the number of bootstraps is 100. It is apparent 
from Fig. 2 that the ^AUC 

(∗) 

t is downward biased. This is a natural opposite of the 
upward bias observed in Efron and Tibshirani [13] when the performance measure 
was the true error rate as a measure of incorrectness, by contrast with the true AUC 

Fig. 2 Comparison of the 
three bootstrap estimators, 
^AUC 

(∗) 
t , ^AUC 

(0.632) 
t , and  

^AUC 
(0.632+) 
t for 5-feature 

predictor. The ^AUC 
(∗) 
t is 

downward biased, while the 
^AUC 

(0.632) 
t is an over 

correction for that bias. 
^AUC 

(0.632+) 
t is almost the 

unbiased version of the 
^AUC 

(0.632) 
t . The figure first 

appeared in Yousef et al. [32] 
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Table 3 Average of RMS error of each estimator over the 10 experiments displayed in Table 2. 

The estimator ^AUC 
(∗) 
t is the next to ^AUC 

(0.632+) 
t with only 9% increase in RMS 

Estimator Average RMS 

AUCt 0 
^AUC 

(∗) 
t 0.07347 

^AUC 
(0.632) 
t 0.07409 

^AUC 
(0.632+) 
t 0.06735 

AUCt 0.17808 

as a measure of correctness. The ^AUC 
(.632) 

t is designed as a correction for ^AUC 
(∗) 

t ; it  
appears in the figure to correct for that but with an over-shoot. The correct adjustment 
for the remaining bias is almost achieved by the estimator ^AUC 

(.632+) 

t . The ^AUC 
(.632) 

t 
estimator can be seen as an attempt to balance between the two extreme biased 
estimators, ^AUC 

(∗) 

t and AUCt. However, it is expected that the component of AUCt 

that is inherent in both ^AUC 
(0.632+) 

t and ^AUC 
(0.632) 

t increases the variance of these two 
estimators that my compensate for the decrease in the bias. Therefore, we assess all 
estimators in terms of the RMS, the root of the MSE defined in (61), and report the 
results in Table 2. In addition, we average the RMS of these estimators over the 10 
experiments of Table 2 and list the average in Table 3. It is evident that the 0.632+ 
is slightly the overall winner with only 9% decrease in RMS if compared to the 
^AUC 

(∗) 

t estimator. This almost agrees with the same result obtained for the error rate 
estimators and reported in Table 1. 

In addition to the RMS, Table 2 compares the estimators in terms of the RMS 
around mean (RMSAM ): the root of the mean squared difference between an estimate 
and the mean performance (the mean over all possible training sets), instead of the 
conditional performance (conditional on a particular training set). The motivation 
behind that is explained next. The estimators ^AUC 

(∗) 

t and ^AUC 
(1,1) 

t seem, at least from 
their formalization, to estimate the mean AUC of the classifier (this is the analogue 
of Êrr(∗) 

t and Êrr(1) 
t ). However, the basic motivation for the ^AUC 

(.632) 

t and ^AUC 
(.632+) 

t 
is to estimate the AUC conditional on the given dataset t (this is the analogue of
Êrr(.632) 

t and Êrr(.632+) 
t ). Nevertheless, as mentioned in Efron and Tibshirani [13] and 

detailed in Zhang [35] the CV, the basic ingredient of the bootstrap based estimators, 
is weakly correlated with the true performance on a sample by sample basis. This 
means that no estimator has a preference in estimating the conditional performance. 
Section 5.3 elaborates more on this phenomenon.
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Fig. 3 The lack of correlation (or the weak correlation) between the bootstrap-based estimators and 
the true conditional performance. Every line connects the true performance of the classifier trained 
on  a data set  ti and the estimated value. The figure represents 15 trials of the 1000 MC trials. Two 
nearby values of true performance may correspond to two widely separated estimates on different 
sides of the mean 

5.3 Components of Variance and Weak Correlation 

Many simulation results, e.g., Efron [8], Efron and Tibshirani [13], show that there is 
only a weak correlation between the CV estimator and the conditional true error rate 
Errt. This issue is discussed in mathematical detail in the excellent paper by Zhang 
[35], which therefore concludes that the CV estimator should not be used to estimate 
the true error rate of a classification rule conditional on a particular training data set. 
Other estimators discussed in the present article have this same attribute, since they 
have the same resampling ingredient of the CV estimator and “we would guess, for 
any other estimate of conditional prediction error” (Sect. 7.12, [20]). We provide 
our simple mathematical elaboration as follows. Denote the true performance of 
the classification rule conditional on the training set t (whether Errt, AUCt, or any  
other performance measure) by St, the unconditional performance by Et St, and an 
estimator of either of them by Ŝt. For easier notation we can unambiguously drop 
the subscript t and decompose the MSE as 

MSE(Ŝ, S) = E(Ŝ − S)2 (62a) 

= E(Ŝ − ES)2 + Var(S) − 2Cov(Ŝ, S). (62b) 

Then, by normalizing with the standard deviations we get: 

MSE(Ŝ, S) 
σSσŜ 

= 
MSE(Ŝ, ES) 

σSσŜ 
+ 

σS 

σŜ 
− 2ρŜS. (63)
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Table 4 Estimating the uncertainty in the estimator that estimates the difference in performance 
of two competing classifiers, the LDA and the QDA. The quantity M represents AUC1 for LDA, 
AUC2 for QDA, and Δ for the difference 
Metric M LDA QDA Δ 
E Mt 0.7706 0.7163 0.0543 

SD Mt 0.0313 0.0442 0.0343 

E M̂ (1,1) 0.7437 0.6679 0.0758 

SD M̂ (1,1) 0.0879 0.0944 0.0533 

E ŜD M̂ (1,1) 0.0898 0.1003 0.0708 

SD ŜD M̂ (1,1) 0.0192 0.0163 0.0228 

This equation relates four crucial components to each other: 

• MSE(Ŝ, S)
/
σSσŜ , the normalized MSE of Ŝ, if we see it as an estimator of the 

conditional performance S. 
• MSE(Ŝ, ES)

/
σSσŜ , the normalized MSE of Ŝ, if we see it as an estimator of the 

expected performance ES (and therefore called MSE around the mean). 
• σS 
/
σŜ , the standard deviation ratio between S and Ŝ. 

• ρŜS , the correlation coefficient between S and Ŝ. 

From (63), an estimator Ŝ is a good candidate to estimate S than ES if its MSE(Ŝ, S) 
is less than its MSE(Ŝ, ES). Then, it is the responsibility of the correlation coefficient 
ρŜS  to be high enough to cancel σS 

/
σŜ and a portion of MSE(Ŝ, ES). Unfortunately, 

this is not the case as we illustrate experimentally in Table 2, which provides all 
quantities of the decomposition (63). It is obvious from the values that RMS(Ŝ, S) 
and RMS(Ŝ, ES) are very close to each other because the quantity σS 

/
σŜ − 2ρŜS ≃ 

0.413 − 2 × 0.290 = −0.167 (on average over the 10 experiments shown in the 
table). Moreover, in some cases, e.g., the first experiment, it goes as low as −0.052. 
The correlation between Ŝ and S is weak to cast Ŝ as an estimate to S, although it 
is designed to estimate it! For more illustration, Fig. 3 visualizes the components in 
Eq. (63) and the numbers in Table 2. This figure shows 15 realizations of the 1000 MC 
trials of the same experiment above. On the right, are the true values of S when trained 
on these different 15 training sets. On the left, are the corresponding 15 estimated 
values of Ŝ. The lines provide links between the true values and the corresponding 
estimates. This figure shows that two nearby true values of S are likely to have two  
widely separated estimated values Ŝ on different sides of the mean. This visually 
illustrates the lack of correlation (or the weak correlation) between the estimators 
and the true conditional performance.
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5.4 Two Competing Classifiers 

If the assessment problem is how to compare two classifiers, rather than the individual 
performance, then the measure to be used is either the conditional difference 

Δt = AUC1t − AUC2t , (64) 

or the mean, unconditional, difference 

Δ = E Δt = E 
[
AUC1t − AUC2t 

] 
, (65) 

where, we defined them for the AUC just for illustration with immediate identical 
treatment for other measures. Then it is obvious that there is nothing new in the 
estimation task, i.e., it is merely the difference of the performance estimate of each 
classifier, i.e.,

Δ̂ = ^EAUC1t − ^EAUC2t , (66) 

where each of the two estimators in (66) is obtained by any estimator. A natural 
candidate, from the point of view of the present chapter is the LPOB estimator 
^AUC 

(1,1) 
—because of both the smoothness and weak correlation issues discussed so 

far. 
Then, how to estimate the uncertainty (variance) of Δ̂. This is very similar to 

estimating the variance in ^EAUCt. There is nothing new in estimating Var Δ̂. It is  
obtained by replacing ^AUC 

(1,1) 
, in Yousef et al. [33], by the statistic Δ̂ in (66). For 

demonstration, typical values are given in Table 4, for comparing the linear and 
quadratic discriminants, where the training set size per class is 20 and number of 
features is 4. 

6 Discussion and Conclusion 

In this chapter, the very important topic of the assessment of ML algorithms is 
reviewed, with an emphasis on the nonparametric assessment of classification rules. 
The topic is quite important to many fields and applications, in particular cyberphys-
ical security, where ML algorithms are almost ubiquitous. We started with reviewing 
the basic nonparametric methods for estimating the bias and variance of a statistic. 
Then, we reviewed the basic resampling-based methods for estimating the error rate 
of a classification rule. Departing from that, we extended these estimators from esti-
mating the error rate (a one-sample statistic) to estimating the AUC (a two-sample 
statistic). This extension is theoretically justified, and not just an ad hoc applica-
tion. Among these estimators, we identified those that are smooth and eligible for 
estimating their standard error using the IF method.



74 W. A. Yousef

It was interesting to see, through the whole chapter, the connection among dif-
ferent resampling-based estimators. It is worth mentioning that, in addition to the 
conventional K -fold CV, there are other versions and variants, which are usually 
used in an ad hoc way by many practitioners. The formalization of these versions 
and variants, and the mathematical connection among them, along with their con-
nection to the bootstrap-based estimators, all can be established in the same spirit 
and approach followed in the present chapter. However, many of them are unsmooth 
except possibly the repeated CV, which is partially smooth and suitable for the IF 
method [30, 31]. 

With this rich variety of estimators, a practitioner may legitimately wonder about 
the “optimal” estimator (in terms of any optimality criterion) that should be sys-
tematically used. There are three aspects, on which we can base our comparison: 
accuracy, uncertainty estimation, and computational efficiency. 

In terms of accuracy, it is surprising to know that, from the few number of com-
parative studies available in the literature, there is no overall winner among these 
estimators. All of them have comparable accuracy, measured in terms of RMS, with 
a little superiority of the 0.632+ bootstrap estimator. In addition, and most impor-
tantly, all estimators have a weak correlation with the true conditional performance 
(e.g., Errt, the conditional error rate, or AUCt, the conditional AUC), a phenomenon 
that allows them to be eligible only for estimating the mean true performance (e.g., 
EtErrt or EtAUCt), where the mean is taken over the population of training datasets 
as explained through the chapter. Said differently, the performance estimation that 
a practitioner obtains using, e.g., the CV, is not an estimation of the performance of 
this very trained ML algorithm; rather, it is an estimation of the mean performance 
of this algorithm had we trained it on all possible training datasets of the same size! 
We quote from [20, Sect. 7.12]: 

This phenomenon also occurs for bootstrap estimates of error, and we would guess, for any 
other estimate of conditional prediction error. 

In terms of the variance estimation of these estimators (not the estimation of the 
variance of the algorithm itself), only a few of them are smooth and candidates for a 
sophisticated method like the IF. The ordinary K -fold CV is not among those! Rather, 
only the computationally expensive version of it, the repeated CV, is partially smooth 
as mentioned above. 

It terms of the computational aspects, the bootstrap-based estimators are computa-
tionally expensive. If compared to the conventional K -fold CV, which requires only 
K iterations of both training and testing, the former require hundreds of bootstrap 
replications. Because the majority of recent ML applications involve both massive 
datasets and complex algorithms, including DNN that is very computationally expen-
sive, it is obvious that the CV may be more practical than the bootstrap-based estima-
tors. However, for some other fields, e.g., cyberphysical security, many applications 
produce tabular (structured) data. Tabular data are more suitable for the traditional 
and less computationally expensive ML algorithms. Therefore, serious practitioners 
in these fields and applications may need to keep all of these estimators in their 
toolbox. Moreover, it is quite prudent to see a future benchmark that compiles these
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estimators, along with different datasets from a wide range of applications, in a single 
comprehensive comparative study. 
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7 Appendix 

7.1 Proofs 

Lemma 1 The maximum likelihood estimation (MLE) for the probability mass func-
tion under nonparametric distribution, given a sample of n observations, is given 
by: 

F̂ : mass 1 
n 
on ti , i = 1, . . . ,  n. (67) 

Proof The proof is carried out by maximizing the likelihood function l( f ) = 
n|| 

i=1 
pi , 

which can be rewritten under the constraint
Σ  

i pi = 1, using a Lagrange’s multiplier, 
as: 

l( f ) = 
n|| 

i=1 

pi + λ 

( 
nΣ  

i=1 

pi − 1 

) 

. (68) 

The likelihood (68) is maximized by taking the first derivative and setting it to zero 
to obtain: 

∂l( f ) 
∂p j 

= 
|| 

i /= j 

pi + λ set= 0, j = 1, . . . ,  n. (69) 

These n equations along with the constraint
Σ  

i pi = 1 can be solved straightfor-
wardly to give p̂i = 1 n , i = 1, . . . ,  n, which completes the proof. ◻ 

Lemma 2 The no-information AUC is given by γAUC = 0.5. 

Proof γAUC, an analogue to the no-information error rate γ , is given by (2a) but with 
TPF and FPF given under the no-information distribution E0F (see Sect. 3.3.4). There-
fore, assume that there are n1 and n2 observations from class ω1 and ω2, respectively. 
Assume also for a fixed threshold th  the two quantities that define the error rate are 
TPF and FPF. Also, assume that the sample observations are tested by the classifier 
and each sample has been assigned a decision value (score). Under the no-information 
distribution, consider the following. For every decision value ht(xi ) assigned for 
the observation ti = (xi , yi ), create new n1 + n2 − 1 observations; all of them have
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the same decision value ht(xi ), while their responses are equal to the responses of 
the rest n1 + n2 − 1 observations t j , j /= i . Under this new sample that consists of 
(n1 + n2)2 observations, it is quite easy to see that the new TPF and FPF for the same 
threshold th  are given by FPF0F̂,th  = TPF0F̂,th  = (TPF · n1 + FPF · n2)/(n1 + n2). 
This means that the ROC curve under the no-information rate is a straight line with 
slope equal to one; this directly gives γAUC = 0.5. 

7.2 More on Influence Function (IF) 

Assume that there is a distribution G near to the distribution F ; then under some 
regularity conditions(see, e.g., [21], Chap. 2) a functional s can be approximated as: 

s(G) ≈ s(F) + 
{ 

ICs,F (x) dG(x). (70) 

The residual error can be neglected since it is of a small order in probability. Some 
properties of (70) are: { 

ICT,F (x) dF(x) = 0, (71) 

and the asymptotic variance of s(F) under F , following from (71), is given by: 

VarFs(F) ≃ 
{ [

ICT ,F (x)
]2 

dF(x), (72) 

which can be considered as an approximation to the variance under a distribution G 
near to F . Now, assume that the functional s is a functional statistic in the dataset 
x = {xi : xi ∼ F, i = 1, . . . ,  n}. In that case the influence curve (23) is defined for 
each sample case xi , under the true distribution F as: 

Ui (s, F) = lim 
ε→0 

s(Fε,i ) − s(F) 
ε

= 
∂s(Fε,i ) 

∂ε 

||||
ε=0 

, (73) 

where Fε,i is the distribution under the perturbation at observation xi . Equation (73) 
is called the IF. If the distribution F is not known, the MLE F̂ of the distribution F 
is given by (3), and as an approximation F̂ may substitute for F in (73). The result 
may then be called the empirical IF [24], or infinitesimal jackknife [22]. In such an 
approximation, the perturbation defined in (22) can be rewritten as: 

F̂ε,i = (1 − ε) F̂ + εδxi , xi ∈ x, i = 1, . . . ,  n. (74) 

This kind of perturbation is illustrated in Fig. 4. 
It will often be useful to write the probability mass function of (74) as:
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Fig. 4 The new probability 
masses for the dataset x 
under a perturbation at 
sample case xi obtained by 
letting the new probability, at 
xi exceed the new probability 
at any other case xi by, ε 

f̂ε,i (x j ) = 
{ 1−ε 

n + ε j = i 
1−ε 
n j /= i . (75) 

A very interesting case arises from (75) if  −1/(n + 1) is substituted for ε. In this  
case the new probability mass assigned to the point x j=i in (75) will be zero. This 
value of ε simply generates the jackknife estimate discussed in Sect. 2.2, where the 
whole observation is removed from the dataset. 

Substituting F̂ for G in (70) and combining the result with (73) gives the IF  
approximation for any functional statistic under the empirical distribution F̂ . The  
result is: 

s( F̂) = s(F) + 
1 

n 

nΣ  
i=1 

Ui (s, F) + Op(n
−1 ) (76a) 

≈ s(F) + 
1 

n 

nΣ  
i=1 

Ui (s, F). (76b) 

The term Op(n−1) reads “big-O of order 1/n in probability”. In general, Un = 
Op(dn) if Un/dn is bounded in probability, i.e., Pr{|Un|/dn < kε} > 1 − ε ∀ ε >  0. 
This concept can be found in [1, Chap. 2]. Then the asymptotic variance expressed 
in (72) can be given for s(F) by: 

VarFs = 
1 

n 
EFU

2 (xi , F), (77) 

which can be approximated under the empirical distribution F̂ to give the nonpara-
metric estimate of the variance for a statistic s by: 

V̂ar F̂ s = 
1 

n2 

nΣ  
i=1 

U 2 
i (xi , F̂). (78)
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7.3 ML in Other Fields 

In this section we provide very brief miscellanea from other fields for the reader to 
see a bigger picture of this chapter. As already was mentioned, ML is crucial to many 
applications. For example, in the medical imaging field, a tumor on a mammogram 
must be classified as malignant or benign. This is an example of prediction, regardless 
of whether it is done by a radiologist or by a computer aided detection (CAD) 
software. In either case, the prediction is done based on learning from previous 
mammograms. The features, i.e., predictors, in this case may be the size of the tumor, 
its density, various shape parameters, etc. The output, i.e., response, is categorical and 
belongs to the set: G = {benign, malignant}. There are so many such examples 
in biology and medicine that it is almost a field unto itself, i.e., biostatistics. The 
task may be diagnostic as in the mammographic example, or prognostic where, for 
example, one estimates the probability of occurrence of a second heart attack for 
a particular patient who has had a previous one. All of these examples involve a 
prediction step based on previous learning. A wide range of commercial and military 
applications arises in the field of satellite imaging. Predictors in this case can be 
measures from the image spectrum, while the response can be the type of land, crop, 
or vegetation of which the image was taken. 

Some expressions and terminology of ML belong to some fields and applications 
more than the others. E.g., it is conventional in medical imaging to refer to e1 as 
the false negative fraction (FNF), and e2 as the false positive fraction (FPF). This is 
because diseased patients typically have a higher output value for a test than non-
diseased patients. For example, a patient belonging to class 1 whose test output value 
is less than the threshold setting for the test will be called “test negative”, while the 
patient is in fact in the diseased class. This is a false negative decision; hence the 
name FNF. The situation is reversed for the other error component. 

The importance of the AUC is natural and unquestionable in some applications 
than others. The equivalence of the area under the empirical ROC and the Mann-
Whitney-Wilcoxon statistic is the basis of its use in the assessment of diagnostic tests; 
see Hanley and McNeil [19]. Swets [29] has recommended it as a natural summary 
measure of detection accuracy on the basis of signal-detection theory. Applications of 
this measure are widespread in the literature on both human diagnosis and computer-
aided diagnosis, in medical imaging [23]. In the field of machine learning, Bradley 
[2] has recommended it as the preferred summary measure of accuracy when a single 
number is desired. These references also provide general background and access to 
the large literature on the subject. 

Even the mistakes committed by some practitioners are obvious in some fields 
more than others. E.g., in DNA microarrays, these mistakes are fatal and produce 
very fragile results. This is because of the very high dimensionality of the problem 
with respect to the amount of available dataset. A more elaborate assessment phase 
should follow the design and construction phase in such ill-posed applications.
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