
Machine Learning Assessment:
Implications to Cybersecurity

Waleed A. Yousef

Abstract After discussing the construction of machine learning (ML) algorithms in
the previous chapter, this chapter is dedicated to their assessment and performance
estimation (with an emphasis on classification assessment), a topic that is equally
important specially in the context of cyberphysical security design. The literature is
full of nonparametric methods to estimate a statistic from just one available dataset
through resampling techniques, e.g., jackknife, bootstrap and cross validation (CV).
Special statistics of great interest are the error rate and the area under the ROC curve
(AUC) of a classification rule. The importance of these resampling methods stems
from the fact that they require no knowledge about the probability distribution of
the data or the construction details of the ML algorithm. This chapter provides a
concise review of this literature to establish a coherent theoretical framework for
these methods that can estimate both the error rate (a one-sample statistic) and the
AUC (a two-sample statistic). The resampling methods are usually computationally
expensive, because they rely on repeating the training and testing of a ML algorithm
after each resampling iteration. Therefore, the practical applicability of some of
these methods may be limited to the traditional ML algorithms rather than the very
computationally demanding approaches of the recent deep neural networks (DNN).
In the field of cyberphysical security, many applications generate structured (tabular)
data, which can be fed to all traditional ML approaches. This is in contrast to the DNN
approaches, which favor unstructured data, e.g., images, text, voice, etc.; hence, the
relevance of this chapter to this field.

Keywords Assessment · Performance estimation · Resampling techniques · ROC
curve · Area under the ROC curve · Classification ·Machine learning · Deep neural
network · Unstructured data · Sample · Bootstrap · Nonparametric · Estimators

W. A. Yousef (B)
CS Department, HCILAB, Faculty of Computers and Artificial Intelligence, Helwan University,
Helwan, Egypt
e-mail: wyousef@fci.helwan.edu.eg

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
I. Traore et al. (eds.), Artificial Intelligence for Cyber-Physical Systems Hardening,
Engineering Cyber-Physical Systems and Critical Infrastructures 2,
https://doi.org/10.1007/978-3-031-16237-4_3

45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16237-4_3&domain=pdf
wyousef@fci.helwan.edu.eg
 854
57535 a 854 57535 a

mailto:wyousef@fci.helwan.edu.eg
https://doi.org/10.1007/978-3-031-16237-4_3
 -2047 62959
a -2047 62959 a

https://doi.org/10.1007/978-3-031-16237-4_3

46 W. A. Yousef

1 Introduction

1.1 Motivation

Consider a ML problem, where some models have been trained on a given dataset. It
is then required to know their performances, in terms of any performance measure,
on the population of testers. This is not only for the sake of assessing each of them,
but also to be able to select the best model among them. These different models
could even represent different instances of the same ML algorithm, with different
values of parameters (e.g., a KNN with different values of K), and it is required to
choose the best value for the current problem. The performance on the population of
testers is called the true performance, because this is the performance on the whole
population, not on a subset of it.

If the underlying probability distribution of the testers is known, e.g., from a priori
knowledge about the nature of the problem, the true performance can be calculated
mathematically. One of the first attempts in this direction was Fukunaga [14], where
he assumed the data follows a multinormal distribution, to find a closed-form expres-
sion of the error rate of a binary classification rule. An alternative to mathematical
calculations is simulating a very large dataset, from the assumed distribution, from
which a very accurate estimation of the true performance can be obtained.

The early work of Fukunuga was inspiring, from the theoretical point of view,
for the early community of pattern recognition and machine learning to understand
important theoretical properties and concepts. However, for real-life applications it is
very unusual that the assumption of multinormality, or any other assumption, hold. In
these situations, which are called nonparametric, or distribution-free, it is impossible
to derive either the true performance in closed form, or estimate it using a very large
simulated dataset. In such situations, the true performance must be estimated from a
single testing dataset (testers). The way we obtain such a testing dataset defines two
major paradigms, discussed next.

In Paradigm I, we only have one dataset t, usually called the design or construction
dataset, from which we have to make up a training dataset tr and a testing dataset
ts, such that t = tr ∪ ts. Otherwise, training and testing on the same dataset t would
provide a very optimistic estimate of the performance measure. This splitting is per-
formed iteratively using one of the resampling techniques, e.g., jackknife, bootstrap,
or cross validation. In each resampling iteration we get a different pair of training
and testing datasets, on which the algorithm will be trained and tested, respectively.
The results from these different iterations will be compiled together, as defined by
the resampling method, to provide a single estimate of the performance measure. It
is obvious that the performance estimation obtained from any of these methods will
vary with varying the design dataset t. This chapter is dedicated to reviewing this
paradigm, its different estimators, and the variance estimation of these estimators.

It is worth mentioning that fatal fallacies are committed by practitioners when
using this paradigm. For example, a very common mistake is using the whole dataset
t to learn some statistical properties of the different classes of the classification
problem, mistakenly naming this a data preprocessing step, using these properties

Machine Learning Assessment: Implications to Cybersecurity 47

to construct a classifier, then excluding this step from the resampling mechanism
afterwards. Although the correct way of performing preprocessing is explained in
textbooks (see, e.g.,Hastie et al. [20], Sect. 7.10.2), we still see this mistake in several
occasions in both academia and industry.

In Paradigm II, it is required, or even mandated (e.g., in several public-policy-
making or regulatory settings), to maintain what might be called the traditional
data hygiene of two independent datasets: the design dataset t, and a final testing
dataset TS, which is a sequestered testing dataset that has never been available to the
design procedure, but for just onetime final testing. Assessing a ML algorithm from
independent testing dataset is as simple as applying the estimators of the performance
measure of interest (Sect. 1.2) on the testing dataset. However, the estimator will then
have two sources of variability, the design and the testing datasets. The mathematical
details of this paradigm and the estimation of this variance are discussed in Yousef
et al. [34], Chen et al. [4], and not reviewed in our present chapter.

Although it may seem very safe to use this testing paradigm, some practitioners
abuse it as well. One possible common mistake is that they test several models on
this sequestered testing set, then they analyze the relative estimated performances.
Accordingly, these models are redesigned to improve their performance on the testing
set! Worse than this is keeping iterating this processes several times, which indeed
turns the independent sequestered testing dataset to be part of the training dataset,
indirectly through this human mental parsing of the results, which acts as a feedback
that guides the redesign process.

Nowadays, it is almost the default in the field of ML to leverage both paradigms
in the task of model assessment and selection. The available dataset is initially split
into two datasets:

1. the design dataset t, from which the ML algorithm is designed. This is conducted
via one of the resampling methods of paradigm I explained above. Usually, sev-
eral algorithms are used, and several parameters’ values are examined for each
algorithm. Then, the model with the best performance is chosen.

2. the sequestered testing dataset TS, on which the final chosen model from paradigm
I is assessed once and only once, without redesign. This is the final estimation of
the performance measure that should be reported, along with the estimation of its
variance.

It is worth mentioning that, there is a convention in the field to call the dataset ts that
is split from the design dataset t during the resampling process, a validation dataset
rather than a testing dataset, to reserve the word testing to the final testing datset TS
of paradigm II. However, in some applications, the converse is adopted; i.e., ts is
called the a testing dataset and TS is called a validation dataset. To avoid ambiguity,
any notation and expression should be defined clearly within any context.

What is introduced above is valid for any ML problem, whether it is regression
or classification, and for any performance measure, whether it is the error rate Err,
AUC, or any other. However, we emphasize below two very important issues.

(1) The true performance, which we discussed its estimation in this introduction
so far, is itself a random variable whose randomness arises from the randomness of

48 W. A. Yousef

the training dataset, as was explained in the previous chapter. Have we changed the
training dataset, the true performance would change. For example, and without loss of
generality (WLOG) but for the sake of illustration, suppose the whole design dataset
t is used as a training dataset tr and we are interested in the AUC as a performance
measure. Then, as was explained in the previous chapter, we should be interested in
the following:

1. AUCt: the true performance conditional on a particular training dataset t of a
specified size n.

2. EtAUCt: the expectation of true performance over the population of training
datasets of the same size n.

3. VartAUCt: the variance of the true performance over the population of training
datasets of the same size n.

(2) Regarding the meaning and utility of the performance measure, we emphasize
the importance of the ROC curve and its AUC as a summary measure [2, 18, 19],
where the former is a manifestation of the trade-off between the two types of error of
any binary classification rule. We always advocate for the use of the ROC or its AUC
since they are prevalence independent; i.e., they do not depend on a particular chosen
threshold, class prior probability, or misclassification costs. Adopting a performance
measure that is prevalence dependent, e.g., the overall accuracy or its many different
versions, can provide a misleading measure of the classification power of the clas-
sification algorithm, especially in classification problems that involve, for instance,
unbalanced data (different class size). Therefore, the present chapter assumes famil-
iarity with the ROC and its AUC, at the level provided in the previous chapter.
However, for the sake of completeness, all notations are tersely summarized in the
following subsection.

1.2 Notation

Consider the binary classification problem, where a classification rule η gives a score
of h(x) for the predictor x , and classifies it to one of the two classes by comparing
this score h(x) to a chosen threshold th. The observation x belongs to one of the two
classes with distributions Fi , i = 1, 2. The two error components of this rule (e1, or
the false negative fraction (FNF), and e2 or the false positive fraction (FPF)), along
with the risk, are given as follows:

FNF = e1 =
th{

−∞

fh (h(x)|ω1) dh(x), (1a)

FPF = e2 =
∞{

th

fh (h(x)|ω2) dh(x), (1b)

Machine Learning Assessment: Implications to Cybersecurity 49

R = c12 P1e1 + c21 P2e2. (1c)

The cost ci j , i, j = 1, 2 is the cost of classifying an observation as belonging to
class j whereas it belongs to class i ; cii = 0, which means there is no cost for correct
classification; and Pi is the prior probability of each class, i = 1, 2. The risk (1c) is
called the “error rate” Err, or probability of misclassification (PMC), when putting
c12 = c21 = 1, which is denoted by the 0-1 cost, or loss.

The receiver operating characteristics (ROC) curve is a plot of the true positive
fraction (TPF), which is 1 − FNF, versus the FPF. Then the area under the curve
(AUC) is given by:

AUC =
1{

0

TPF d(FPF). (2a)

= Pr
[
h(x)|ω2 < h(x)|ω1

]
, (2b)

which expresses how the classifier scores for class ω1 are stochastically larger than
those of class ω2.

If the distributions F1 and F2 are not known, a setup that is called nonparametric
or distribution-free, any performance measure can be estimated only numerically
from a given dataset, called the testing dataset. This is regardless of the testing
paradigm, i.e., whether this testing dataset is obtained by simulation, resampling, or
sequestering. This is done by assigning equal probability mass for each observation:

F̂ : mass
1

n
on ti , i = 1, . . . , n, (3)

where n is the size of the testing dataset. Lemma 1 shows that this is the maximum
likelihood estimator (MLE) of the distribution F .

In this case the performance measures (1) can be obtained as follows.

^FNF = ê1 =
1

n

nΣ
i=1

Ih(xi |ω1)<th (4a)

^FPF = ê2 =
1

n

nΣ
i=1

Ih(xi |ω2)>th (4b)

^R(η) = 1

n
(c12 ê1 n1 + c21 ê2 n2) . (4c)

The indicator function Icond equals 1 or 0 when the Boolean expression cond is true
or false, respectively. The values n1 and n2 are the number of observations in the two
classes respectively, and P̂1 and P̂2 are the estimated a priori probabilities for each
class.

50 W. A. Yousef

As the the two components TPF and FPF defined a single operating point on
the ROC, the two components ^TPF(= 1 − ^FNF) and ^FPF give one point on the
empirical (estimated) ROC curve. To draw the complete curve in the nonparametric
situation, the classifier’s sore is calculated for each point of the available dataset.
Then all possible thresholds are considered in turn, i.e., the threshold values between
every two successive scores. At each threshold value a point on the ROC curve is
calculated. Then the AUC (2a) can be estimated from the empirical ROC curve using
the trapezoidal rule:

^AUC =
1

2

nthΣ
i=2

(FNFi − FNFi−1) (TPFi + TPFi−1), (5)

where nth is the number of threshold values taken over the dataset. By plotting the
empirical ROC curve, it is easy to see that (5) is the same as the Mann-Whitney
statistic—which is another form of the Wilcoxon rank-sum test [15, Chap. 4]—
defined by:

^AUC =
1

n1n2

n2Σ
j=1

n1Σ
i=1

ψ
(
h (xi |ω1) , h

(
x j |ω2
))

, (6a)

ψ(a, b) =

⎧⎨

⎩

1 a > b
1/2 a = b
0 a < b

. (6b)

It is interesting, as well, to know from the theory of U -statistics [25] that the esti-
mator (6) is the uniform minimum variance unbiased estimator (UMVUE) for the
probability (2b) under the distribution (3).

All the estimators given above have the nice property of converging to their cor-
responding population definitions, (1) and (2), as the size of the testing set goes
to infinity. It is worth mentioning that each of the error estimators ê1 and ê2 in (4)
is called a one-sample statistic, because its kernel I(·) requires only one observation
from either distributions. However, the AUC estimator in (6) is a two-sample statistic
since its kernel ψ(·, ·) requires two observations, one from each distribution. This is
a fundamental difference between both estimators (statistics) which will be treated
and explained carefully in the present chapter.

1.3 Roadmap

The rest of this chapter is organized as follows. Section 2 paves the road to the chapter
by reviewing the nonparametric estimators for estimating the mean and variance of
one-sample statistics, including the preliminaries of bootstraps and influence func-
tion. This section is a very concise review mainly of the work done in Hampel [16],

Machine Learning Assessment: Implications to Cybersecurity 51

Efron and Tibshirani [11], and Huber [21]. Section 3 switches gears and reviews the
nonparametric estimators that estimate the mean and variance of a special kind of
statistics, i.e., the error rate of classification rules. This section is a concise review of
the work done mainly in Efron [8], and Efron and Tibshirani [13]. Section 4 explains
how the nonparametric estimators that estimate the error rate, a one-sample statistic,
can be extended to estimate the AUC, a two-sample statistic. It does so by provid-
ing theoretical parallelism between the two sets of estimators and showing that the
extension is rigorous and not just an ad hoc application. Section 6 concludes the
chapter and provides a discussion and an advice for practitioners.

2 Nonparametric Methods for Estimating the Bias
and the Variance of a Statistic

Consider a statistic s that is a function of a dataset x : {xi , i = 1, . . . , n}, where
xi

i.i.d ∼ F . The statistic s is now a random variable and its variability comes from the
variability of xi . Suppose that this statistic is used to estimate a real-valued parameter
θ = f (F). Then θ̂ = s (x) has expected value E s(x) and variance Var s(x). The
mean squared error (MSE) of the estimator θ̂ is defined as:

MSE(̂θ) = E
[
θ̂ − θ
]2

. (7)

The root of the mean squared error (RMS) has the same units and is on the same
scale of the original variable θ , and hence has more intuitive value. The bias of
the estimator θ̂ = s (x) is defined by the difference between the true value of the
parameter and the expectation of the estimator, i.e.,

biasF
(
θ̂
)

= EFs (x) − θ. (8)

Then, it is known that, the MSE in (7) can be decomposed to:

MSE(̂θ) = bias2 F
(
θ̂
)

+ VarF θ̂ . (9)

A critical question is whether the bias and variance of the statistic s in (9) may be
estimated from the available dataset?

2.1 Bootstrap Estimate

The bootstrap was introduced by Efron [5] to estimate the standard error of a statistic.
The bootstrap mechanism is implemented by treating the current dataset x as a

52 W. A. Yousef

Fig. 1 Bootstrap mechanism: B bootstrap replicates are withdrawn (by sampling and replacement)
from the original sample. From each replicate the statistic is calculated. (The idea behind this figure
first appeared in [11, Fig. 6.1, pp. 48])

representation for the population distribution F ; i.e., approximating the distribution
F by the MLE defined in (3). Then B bootstrap samples are drawn from that empirical
distribution. Each bootstrap replicate is of size n, the same size as x, and is obtained
by sampling with replacement. Then in a bootstrap replicate some case xi , in general,
will appear more than once at the expense of another x j that will not appear. The
original dataset will be treated now as the population, and the replicates will be
treated as samples from the population. This situation is illustrated in Fig. 1. Each of
these bootstrap replicates is denoted by x∗b, b = 1, . . . , B, and the corresponding
bootstrap replications of the statistics θ̂ = s(x) itself are given by:

Machine Learning Assessment: Implications to Cybersecurity 53

θ̂ ∗b = s(x∗b), b = 1, . . . , B, (10)

The bootstrap estimate of bias and standard error are defined by:

biasB(̂θ) = θ̂ ∗ − θ̂ , (11)

ŜEB =

[
1

(B − 1)

BΣ
b=1

[
θ̂ ∗b − θ̂ ∗

]2]1/2
, (12)

θ̂ ∗ =
1

B

BΣ
b=1

θ̂ ∗b . (13)

Either in estimating the bias or the standard error, the larger the number of bootstraps
B the closer the estimate to the asymptotic value, i.e.,

lim
B→∞

ŜEB (̂θ ∗) = SE F̂ (̂θ ∗). (14)

For more details and some examples the reader is referred to [11, Chap. 6, 7, and
10].

2.2 Jackknife Estimate

Instead of replicating from the original dataset, a new set x(i) is created by removing
the case xi from the dataset. Then the jackknife samples are defined by:

x(i) = (x1, . . . , xi−1, xi+1, . . . , xn), i = 1, . . . , n, (15)

and the n-jackknife replications of the statistic θ̂ are:

θ̂(i) = s(x(i)), i = 1, . . . , n. (16)

The jackknife estimates of bias and standard error are defined by:

^biasJ = (n − 1)(̂θ J − θ̂), (17)

ŜEJ =

[
n − 1
n

nΣ
i=1

(̂θ(i) − θ̂ J)2
]1/2

, (18)

θ̂ J =
1

n

nΣ
i=1

θ̂(i). (19)

54 W. A. Yousef

For motivation behind the factors (n − 1) and (n − 1)/n in (17) see [11, Chap. 11].
The jackknife estimate of variance is discussed in detail in Efron [6] and Efron and
Stein [10].

2.3 Bootstrap Versus Jackknife

Usually, it requires up to 200 bootstraps to yield acceptable bootstrap estimates; (in
special situations like estimating the uncertainty in classifier performance it may
take up to thousands of bootstraps). Hence, this requires calculating the statistic θ̂
the same number of times B, as well. In the case of the jackknife, it requires only n
calculations as shown in (16). If the sample size is smaller than the required number
of bootstraps, the jackknife is more economical in terms of computational cost.

In terms of accuracy, the jackknife can be seen to be an approximation to the
bootstrap when estimating the standard error of a statistic [11, Chap. 20]. Thus, if the
statistic is linear they almost give the same result; (the bootstrap gives the jackknife
estimate multiplied by [(n − 1)/n]1/2). A statistic s(x) is said to be linear if:

s(x) = μ +
1

n

nΣ
i=1

α(xi), (20)

where μ is a constant and α(·) is a function. This also can be viewed as having one
data point at a time in the argument of the function α. Similarly, the jackknife can be
seen as an approximation to the bootstrap when estimating the bias. If the statistic
is quadratic, they almost agree except in a normalizing factor . A statistic s(x) is
quadratic if:

s(x) = μ +
1

n

Σ
1≤i≤n

α(xi) +
1

n2
Σ

1≤i < j≤n

β(xi , x j). (21)

An in-depth treatment of the bootstrap and jackknife, and their relation to each other,
in mathematical detail is provided by Efron [7, Chaps. 1–5].

If the statistic is not smooth the jackknife will fail. Informally speaking, a statistic
is said to be smooth if a small change in the data leads to a small change in the
statistic. An example of a non-smooth statistic is the median. If the sample cases are
ranked and the median is calculated, it will not change when a sample case changes
unless this sample case bypasses the median value. Using the same argument, we
can see that an example of a smooth statistic is the sample mean.

Machine Learning Assessment: Implications to Cybersecurity 55

2.4 Influence Function, Infinitesimal Jackknife,
and Estimate of Variance

The infinitesimal jackknife was introduced by Jaeckel [22]. The concept of the influ-
ence curve was introduced later by Hampel [16]. In the present context and for
pedagogical purposes, the influence curve will be explained before the infinitesimal
jackknife, since the former can be understood as the basis for the latter.

Following Hampel [16], let R be the real line and s be a real-valued functional
defined on the distribution F , which is defined on R. The distribution F can be
perturbed by adding some probability measure (mass) on a point x . This should be
balanced by a decrement in F elsewhere, resulting in a new probability distribution
Gε,x defined by:

Gε,x = (1 − ε)F + εδx , x ∈ R. (22)

Then, the influence curve ICs,F (·) is defined by:

ICs,F (x) = lim
ε→0+

s ((1 − ε) F + εδx) − s (F)
ε

. (23)

It should be noted that F does not have to be a discrete distribution. A simple
example of applying the influence curve concept is to consider the expectation
s =
{
x d F(x) = μ. Substituting back in (23) gives:

ICs,F (x) = x − μ. (24)

The meaning of this formula is the following: the rate of change of the functional s
with the probability measure at a point x is x − μ. This is how the point x influences
the functional s. The influence curve can be used to linearly approximate a functional
s, along with its variance, which is similar to taking up to only the first-order term
in a Taylor series expansion (Appendix 7.2).

It is important to state here that s should be a functional in F̂ that is an approxi-
mation to F , as was initially assumed in (23). If for example the value of the statistic
s changes if every sample case xi is duplicated, i.e., repeated twice, this is not a
functional statistic. An example of a functional statistic is the biased version of the
variance estimate Σi (xi − x̄ i)2/n, while the unbiased version Σi (xi − x̄ i)2/(n − 1)
is not a functional statistic. Generally, any approximation s(F̂) to the functional
s(F), by approximating F by the MLE F̂ , obviously will be functional. In such a
case the statistic s(F̂) is called the plug-in estimate of the functional s(F). Moreover,
the influence function (IF) method for variance estimation is applicable only to those
functional statistics whose derivative (73) exists. If that derivative exists, the statistic
is called a smooth statistic; i.e., a small change in the dataset leads a small change in
the statistic. For instance, although the median is a functional statistic in the sense
that duplicating any sample case will result in the same value of the median, it is not
smooth as described at the end of Sect. 2.3. A key reference for the IF is Hampel
[17]. Appendix 7.2 shows an interesting connection to the jackknife estimate.

56 W. A. Yousef

3 Nonparametric Methods for Estimating the Error Rate
of a Classification Rule

The review provided in this section is a terse summary of the main work of Efron [8,
11, 13]. In the previous section the statistic, or generally speaking the functional, was
a function of just one dataset. For a non-fixed design, i.e., when the predictors of the
testing set do not have to be the same as the predictors of the training dataset, a slight
clarification for the previous notations is needed. The classification rule trained on
the training dataset t will be denoted as ηt. Any new observation that does not belong
to t will be denoted by t0 = (x0, y0). Therefore, the classification loss is given by
L(y0, ηt(x0)). Any performance measure conditional on that training dataset will be
similarly subscripted. Thus, all the performance measures should be subscripted t;
and hence the risk and the error rate (1) should be denoted by Rt and Errt, respectively.
In the sequel, for simplicity and WLOG, the 0-1 loss function will be used. In such
a case the conditional error rate will be given by:

Errt = E0F L (y0, ηt (x0)) , (x0, y0) ∼ F. (25)

The expectation E0F is subscripted so to emphasize that it is taken over the obser-
vations t0 /∈ t. If the performance is measured in terms of the error rate and we are
interested in the mean performance, not the conditional one, then it is given by:

Err = EtErrt. (26)

The expectation Et is the expectation over the training dataset t, which would be the
same if we had written EF ; for notation clarity the former is chosen.

Consider a classification rule ηt already trained on a training dataset t. A natural
next question is, given that there is just a single dataset available, how to use this
dataset in assessing the classifier performance as well? Said differently, how should
one estimate, using only the available dataset, the true classification performance of
a classification rule in predicting new observations; these observations are different
from those on which the rule was trained. In this section, we will review the principal
methods in the literature for estimating both the true error rate (25) and its mean (26)
of a classification rule.

3.1 Apparent Error

The apparent error is the error of the fitted model when it is tested on the same
training data. Of course it is downward biased with respect to the true error rate since
it results from testing on the same information used in training [9]. The apparent
error is defined by:

Machine Learning Assessment: Implications to Cybersecurity 57

Errt = E F̂ L(y, ηt(x)), (x, y) ∈ t (27a)

=
1

n

nΣ
i=1

[
Iĥt(xi |ω1)<th + Iĥt(xi |ω2)>th

]
. (27b)

Overfitting a classifier to minimize the apparent error is not the goal. The goal is
to minimize the true error rate (25) or its mean (26).

3.2 Cross Validation (CV)

The basic concept of CV, as a resampling approach, has been proposed in different
articles since the mid-1930s. The concept simply leans on splitting the data into two
parts; the first part is used in design (or training) without any involvement of the
second part. Then the second part is used to test the designed procedure; this is to
test how the designed procedure will behave for new datasets. Stone [28] is a key
reference for CV that proposes different criteria for optimization.

CV can be used to assess the prediction error of a model or in model selection.
The true error rate in (25) is the expected error rate for a classification rule if tested
on the population, conditional on a particular training dataset t. This performance
measure can be approximated by the leave-one-out CV (LOOCV) by:

Êrrcv1 t =
1

n

nΣ
i=1

L (yi , ηt(i) (xi)) , (xi , yi) ∈ t. (28)

This is done by training the classification rule on the dataset t(i) that does not include
the case ti ; then testing the trained rule on that omitted case. This proceeds in “round-
robin” fashion until all cases have contributed one at a time to the error rate. There is
a hidden assumption in this mechanism: the training dataset t will not change very
much by omitting a single case. Therefore, testing on the omitted observation one at
a time accounts for testing approximately the same trained rule on n new cases, all
different from each other and different from those the classifier has been trained on.
Besides this LOOCV, there are other versions named K -fold (or leave-n/K -out). In
such versions the whole dataset is split into K roughly equal-sized subsets, each of
which contains approximately n/K observations. The classifier is trained on K − 1
subsets and tested on the left-out one; hence we have K iterations. It is clear that the
LOOCV is a special case of the K -fold CV, where K = n.

It is of interest to assess this estimator to see whether it estimates the conditional
true error E

[
Êrrcv1 t − Errt

]2
, with small MSE, as was designed or not. Many simula-

tion results, e.g., Efron [8], show that there is only a very weak correlation between
the CV estimator Êrrcv1 t and the conditional true error rate Errt. This issue is discussed
in mathematical detail in the excellent paper by Zhang [35]. Those other estimators
that are based on resampling as well, and will be reviewed below, are shown to have
this same attribute. This very interesting (and perhaps surprising) result means the

58 W. A. Yousef

following: whether the estimator is designed to estimate the conditional performance
or the mean performance it indeed estimates the latter because of the weak correlation
with the former.

3.3 Bootstrap Methods for Error Rate Estimation

The prediction error in (25) is a function of the training dataset t and the testing popu-
lation F . Bootstrap estimation can be implemented here by treating the empirical dis-
tribution F̂ as an approximation to the actual population distribution F . By replicating
from that distribution one can simulate many training datasets t∗b, b = 1, . . . , B.
For every replicated training dataset the classifier will be trained and then tested on
the original dataset t. This is the simple bootstrap (SB) estimator approach [11, Sect.
17.6] that was defined formally by:

ÊrrSB t = E∗

nΣ
i=1

L(yi , ηt∗ (xi))/n, F̂ → t∗. (29)

It should be noted that this estimator no longer estimates the true error rate (25)
because the expectation taken over the bootstraps mimics an expectation taken over
the population of trainers, i.e., it is not conditional on a particular training dataset.
Rather, the estimator (29) estimates the expected performance of the classifier EFErrt.
For a finite number of bootstraps, the expectation (29) can be approximated by:

ÊrrSB t =
1

B

BΣ
b=1

nΣ
i=1

L (yi , ηt∗b (xi)) /n. (30)

3.3.1 Leave-One-Out Bootstrap (LOOB)

The previous estimator is obviously biased since the original dataset t used for testing
includes part of the training data in every bootstrap replicate. Efron [8] proposed that,
after training the classifier on every bootstrap replicate, it is tested on those cases
in the set t that are not included in the training; this concept can be developed as
follows. Equation (30) can be rewritten by interchanging the order of the double
summation to give:

ÊrrSB t =
1

n

nΣ
i=1

BΣ
b=1

L (yi , ηt∗b (xi))
/
B. (31)

This equation is formally identical to (30) but it expresses a different mechanism for
evaluating the same quantity. It says that, for a given point, the average performance

Machine Learning Assessment: Implications to Cybersecurity 59

over the bootstrap replicates is calculated; then this performance is averaged over all
the n cases. Now, if every case ti is tested only from those bootstraps that did not
include it in the training, a slight modification of the previous expression yields the
leave-one-out bootstrap (LOOB) estimator:

Êrr(1)
t =

1

n

nΣ
i=1

[
BΣ

b=1

I b i L (yi , ηt∗b (xi))
/ BΣ

b'=1

I b
'

i

]
, (32)

where the indicator function I b i equals one when the case ti is not included in the
training replicate b, and zero otherwise. Efron and Tibshirani [13] emphasized a
critical point about the difference between this bootstrap estimator and the LOOCV.
The CV tests on a given sample case ti , having been trained just once on the remaining
dataset. By contrast, the LOOB tests on a given sample case ti using a large number of
classifiers that result from a large number of bootstrap replicates that do not contain
that sample. This results in a smoothed cross-validation-like estimator. We explained
and elaborated on this smoothness property in Yousef [30].

3.3.2 The Refined Bootstrap (RB)

The SB and the LOOB, from their definitions, look like designed to estimate the mean
true error rate (26) of a classifier. For estimating the true conditional error rate of a
classifier, conditional on a particular training dataset, Efron [8] proposed to correct
for the downward biased estimator Errt. Since the true error rate Errt can be written
as Errt + (Errt − Errt), then it can be approximated by Errt + EF (Errt − Errt). The
term (Errt − Errt) is called the optimism. The expectation of the optimism can be
approximated over the bootstrap population. Finally the refined bootstrap approach,
as named in Efron and Tibshirani [11, Sect. 17.6], gives the estimator:

ÊrrRB t = Errt + E∗(Errt∗(F̂) − Errt∗), (33)

where Errt∗(F̂) represents the error rate obtained from training the classifier on
all bootstrap replicates t∗ and testing on the empirical distribution F̂ . This can be
approximated for a limited number of bootstraps by:

ÊrrRB t = Errt +
1

B

BΣ
b=1

[
nΣ

i=1

L (yi , ηt∗b (xi)) /n −
nΣ

i=1

L
(
y∗
ib, ηt∗b (x

∗
ib)
)
/n

]
. (34)

3.3.3 The 0.632 Bootstrap

If the concept used in developing the LOOB estimator, i.e., testing on cases not
included in training, is used again in estimating the optimism described above, this

60 W. A. Yousef

gives the 0.632 bootstrap estimator. Since the probability of including a case ti in the
bootstrap t∗b is given by:

Pr(ti ∈ t∗b) = 1 − (1 − 1/n)n ≈ 1 − e−1 = 0.632, (35)

the effective number of sample cases contributing to a bootstrap replicate is approx-
imately 0.632 of the size of the training dataset. Efron [8] introduced the concept of
a distance between a point and a sample in terms of a probability. Having trained
on a bootstrap replicate, testing on those cases in the original dataset not included
in the bootstrap replicate accounts for testing on a set far from the training one, i.e.,
the bootstrap replicate. This is because every sample case in the testing set has zero
probability of belonging to the training dataset, i.e., very distant from the training
dataset. This is a reason for why the LOOB is an upwardly biased estimator. Efron
[8] showed roughly that:

EF
[
Errt − Errt

] ≈ 0.632 EF
[
Êrr(1)

t − Errt
]
. (36)

Substituting back in (33) gives the 0.632 estimator:

Êrr(0.632)
t = 0.368 Errt + 0.632 Êrr(1)

t . (37)

The proof of the above results can be found in Efron [8] and Efron and Tibshirani
[11, Sect. 6].

The motivation behind this estimator as stated earlier is to correct for the downward
biased apparent error by adding a piece of the upward biased LOOB estimator. But
an increase in variance should be expected as a result of adding this piece of the
relatively variable apparent error. Moreover, this new estimator is no longer smooth
since the apparent error itself is unsmooth.

3.3.4 The 0.632+ Bootstrap Estimator

The 0.632 estimator reduces the bias of the apparent error. But for over-trained
classifiers, i.e., those whose apparent error tends to be zero, the 0.632 estimator is
still downward biased. Breiman et al. [3] provided the example of an overfitted rule,
like 1NN where the apparent error is zero. If, however, the class labels are assigned
randomly to the predictors the true error rate will obviously be 0.5. But substituting
in (37) gives an estimate of 0.632 × 0.5 = 0.316. To account for this bias for such
over-fitted classifiers, Efron and Tibshirani [13] defined the no-information error
rate γ by:

γ = E0Find L (y0, ηt(x0)) , (38)

where Find means that x0 and y0 are distributed marginally as F but they are inde-
pendent. Or said differently, the label is assigned randomly to the predictor. Then for
a training sample t, γ can be estimated by:

Machine Learning Assessment: Implications to Cybersecurity 61

γ̂ =
1

n2

nΣ
i=1

nΣ
j=1

L
(
yi , ηt(x j)

)
. (39)

This means that the n predictors have been permuted with the n responses to produce
n2 non-informative cases. In the special case of binary classification, let p̂1 be the
proportion of the response classified as belonging to class 1. Also, let q̂1 be the
proportion of the responses classified as belonging to class 1. Then (39) reduces to:

γ̂ = p̂1(1 − q̂1) + (1 − p̂1) ̂q1. (40)

Also define the relative overfitting rate:

R̂ =
Êrr(1)

t − Errt
γ̂ − Errt

. (41)

Efron and Tibshirani [13] showed that the bias of the 0.632 estimator for the case of
over-fitted classifiers is alleviated by using a renormalized version of that estimator:

Êrr(0.632+)
t = (1 − ŵ)Errt + ŵ ̂Err(1)

t , (42a)

ŵ = 0.632

1 − 0.368 R̂
. (42b)

It is useful to express the 0.632+ estimator in terms of its predecessor, the 0.632
estimator. Combining (37), (40), and (41) then substituting in (42a) yields:

Êrr(0.632+)
t = Êrr(0.632)

t + (̂Err(1)
t − Errt)

0.368 · 0.632 · R̂
1 − 0.368 R̂

. (43)

Efron and Tibshirani [13] consider the possibility that R̂ lies out of the region [0, 1].
This leads to their proposal of defining:

Êrr(1)'
t = min(Êrr(1)

t , γ̂), (44)

R̂' =
{

(Êrr(1)
t − Errt)/(̂γ − Errt) Err t < Êrr(1)

t < γ
0 otherwise

, (45)

to obtain a modification to (43) that finally becomes:

Êrr
(0.632+)
t = Êrr (0.632) t + (̂Err(1)'

t − Errt)
0.368 · 0.632 · R̂'

1 − 0.368 R̂' . (46)

62 W. A. Yousef

3.4 Estimating the Standard Error of Error Rate Estimators

What have been reviewed above are several resampling methods: the CV, 0.632, and
0.632+ estimate the conditional error rate of a classification rule, conditional on that
training dataset; and the LOOB estimates the mean error rate, where the expectation
is taken over the population of training datasets. Regardless of what the estimator is
designed to estimate, it is still a function of the current dataset t, i.e., it is a random
variable. If, e.g., the LOOB estimator Êrr(1)

t is considered, it estimates a constant real-
valued parameter E0FEF L(y0, ηt(x0)) with expectation taken over all the trainers and
then over all the testers, respectively; this is the overall mean error rate. Yet, Êrr(1)

t is a
random variable whose variability comes from the finite size of the available dataset.
If the classifier is trained and tested on a very large number of observations, this
would approximate training and testing on the entire population, and the variability
would shrink to zero. This also applies for any performance measure other than the
error rate. So, we are interested now in estimating Vart Êrr

(1)
t , the variance of the

estimator, not estimating VartErrt, the variance of the true performance.
The next question then is, having estimated the mean performance of a classifier:

what is the associated uncertainty of this estimate. Said differently: an estimate of
the variance of this estimator be obtained from the same training dataset? Efron
and Tibshirani [13] proposed the use of the IF method (Sect. 2.4), to estimate the
uncertainty (variability) in Êrr(1)

t . The reader is alerted that estimators that incorporate
a piece of the apparent error are not suitable for the IF method. Such estimators are
not smooth because the apparent error itself is not smooth.

By recalling the definitions of Sect. 2.4, Êrr(1)
t is now the statistic s(F̂). To simplify

notation, the error L(yi , ηt∗b (xi)) may be denoted by Lb
i , and define the following

notation:

lb · =
1

n

nΣ
i=1

I b i L
b
i , (47)

Also, define N b i to be the number of times the case ti is included in the bootstrap b.
Then, it has been proven in Efron and Tibshirani [12] that the IF of such an estimator
is given by:

∂s(F̂ε,i)
∂ε

|||||
ε=0

= (2 + 1

n − 1
)(Êi − Êrr(1)

t) +
n
Σ B

b=1 (N
b
i − N̄ i)I b iΣ B

b=1 I
b
i

. (48)

Combining (78) and (48) gives an estimation to the uncertainty in Êrr(1)
t .

Machine Learning Assessment: Implications to Cybersecurity 63

4 Nonparametric Methods for Estimating the AUC
of a Classification Rule

In the present section, we extend the study carried out in Efron [8], Efron and Tibshi-
rani [13], and summarized in Sect. 3, to construct nonparametric estimators for the
AUC (a two-sample statistic) analogue to those of the error rate (a one-sample statis-
tic). Although some previous experimental comparative studies [26, 27, 32] were
conducted to compare some of these resampling-based AUC estimators, in particular
the 0.632 versions, there was no theoretical justification of using these estimators for
the AUC. We provide here a full account of the different versions of bootstrap esti-
mators reviewed in Sect. 3 and show how they can be formally extended to estimate
the AUC.

4.1 Construction of Nonparametric Estimators for AUC

Before switching to the AUC, some more elaboration on Sect. 3 is needed. The SB
estimator (29) can be rewritten as:

ÊrrSB t = E∗EF̂

[
L(ηt∗ (x), y)|t∗] . (49)

Since there would be some observation overlap between t and t∗, this approach suf-
fers an obvious bias as was introduced in that section. This was the motivation behind
interchanging the expectations and defining the LOOB (Sect. 3.3.1). Alternatively,
we could have left the order of the expectation but with testing on only those obser-
vations in t that do not appear in the bootstrap replication t∗, i.e., the distribution
F̂ (∗). The parenthesis notation (∗) refers to excluding from F̂ , in the testing stage,
the training cases t∗ that were generated from the bootstrap replication. We call the
resulting estimator Êrr(∗)

t , which we define formally by:

Êrr(∗)
t = E∗E F̂ (∗)

[
L(ηt∗ (x), y)|t∗] (50)

We can give the inner expectation the notation Errt∗b (̂F (∗)), and rewrite the estimator
as:

Êrr(∗)
t = E∗Errt∗b (F̂ (∗)) (51a)

=
1

B

BΣ
b=1

[
NΣ
i=1

I b i L(ηt∗b (xi), yi)
/ NΣ

i '=1

I b i '

]
, (51b)

where the indicator I b i equals one if the observation ti is excluded from the bootstrap
replication t∗b, and equals zero otherwise. The inner expectation in (50) is taken over
those observations not included in the bootstrap replication t∗, whereas the outer
expectation is taken over all the bootstrap replications.

64 W. A. Yousef

Analogously to Sect. 3, and to what has been introduced above, we can define
several bootstrap estimators for the AUC. The start is the SB estimate, which can be
defined as:

^AUC
SB

t = E∗AUCt∗ (̂F), F̂ → t∗ (52a)

= E∗

⎡

⎣ 1

n1n2

n2Σ
j=1

n1Σ
i=1

ψ(̂ht∗ (xi), ĥt∗ (x j))

⎤

⎦ , xi ∈ ω1, x j ∈ ω2. (52b)

This averages the Mann-Whitney statistic over the bootstraps, where AUCt∗ (F̂)
refers to the AUC obtained from training the classifier on the bootstrap replicate t∗

and testing it on the empirical distribution F̂ . In the approach used here, the boot-
strap replicate t∗ preserves the ratio between n1 and n2, which is called stratification.
That is, the training sample t is treated as t = t1 ∪ t2, t1 ∈ ω1, t2 ∈ ω2; then n1
cases are replicated from the first-class sample and n2 cases are replicated from the
second-class sample to produce t∗1 and t∗2 respectively, where t∗ = t∗1 ∪ t∗2 . This was
not needed when the performance measure was the error rate since it is a statistic that
does not operate simultaneously on two different sets of observations as the Mann-
Whitney statistic does (in U -statistic theory [25], error rate and Mann-Whitney are
called one-sample and two-sample statistics respectively). The expectation (52a) is
approximated by averaging over a finite number of bootstrap:

^AUC
SB

t =
1

B

BΣ
b=1

AUCt∗b (F̂), (53)

The same motivation behind the estimator (32) can be applied here, i.e., testing
only on those cases in t that are not included in the training dataset t∗b, in order to
reduce the bias. This can be carried out in (53) without interchanging the summation
order. The new estimator is named ^AUC

(∗)

t , where the parenthesis notation (∗) refers
to the exclusion, in the testing stage, of the training cases that were generated from
the bootstrap replication. Formally, we define this as:

^AUC
(∗)

t = E∗AUCt∗b (F̂
(∗)) (54a)

=
1

B

BΣ
b=1

⎡

⎣
n2Σ
j=1

n1Σ
i=1

ψ(̂ht∗ (xi), ĥt∗ (x j))I
b
i I

b
j

/ n1Σ
i '=1

I b i '
n2Σ
j '=1

I b j '

⎤

⎦ . (54b)

The RB and 0.632 estimators can be introduced here in the same way it was used
for the true error rate (Sect. 3.3.3) as:

^AUC
RB

t = AUCt + E∗
[
AUCt∗(̂F) − AUCt∗

]
. (55)

Machine Learning Assessment: Implications to Cybersecurity 65

Then, if testing is carried out on cases excluded from the bootstraps, analogously
to the 0.632 estimator of the error rate, this gives rise to the 0.632 estimator of the
AUC:

^AUC
(0.632)

t = 0.368 AUCt + 0.632 ^AUC
(∗)

t . (56)

It should be noted that this estimator is designed to estimate the true AUC for a clas-
sifier trained on the dataset t (the classifier performance conditional on the training
dataset t). This is on contrary to the estimator (54) that estimates the mean perfor-
mance of the classifier (this is the expectation over the training dataset population
for the conditional performance).

The 0.632+ estimator ^AUC
(0.632+)

t develops from ^AUC
(0.632)

t in the same way as
Êrr(0.632+)

t developed from Êrr(0.632)
t in Sect. 3.3.4. There are two modifications to the

details. The first regards the no-information error rate γ ; it can be proven that the
no-information AUC is given by γAUC = 0.5 (Lemma 2). The second regards the
definitions (44), which should be modified to accommodate for the AUC. The new
definitions are given by:

^AUC
(0.632+)

t = ^AUC
(0.632)

t + (^AUC (∗)'
t − AUCt)

0.368 · 0.632 · R̂'

1 − 0.368 R̂' , (57a)

^AUC
(∗)'
t = max

(̂
AUC

(∗)

t , γAUC
)
, (57b)

R̂' =

{
(^AUC(∗)

t −AUCt)
(γAUC−AUCt)

if AUC t > ^AUC
(∗)
t > γAUC

0 otherwise
. (57c)

To this end, we have constructed the AUC nonparametric estimators analogue
to those of the error rate. Some of them, mainly the 0.632+ estimator, will have
the least bias [13]. However, all of these estimators are not “smooth” and not eli-
gible for the variance estimation via, e.g., the IF method (Sects. 2.4 and 3.4). The
only estimator that may seem smooth, is the star versions Êrr(∗)

t and ^AUC
(∗)

t . How-
ever, the inner components Errt∗b (F̂ (∗)) and AUCt∗b (̂F (∗)) are unsmooth themselves,
because the classifier is trained on just one dataset. Applying the influence function
enforces distributing the differential operator ∂/∂ε, of the IF, over the summation to
be encountered by these unsmooth components.

4.2 The Leave-Pair-Out Boostrap (LPOB) ^AUC
(1,1)

,
Its Smoothness and Variance Estimation

The above discussion suggests introducing an analogue to Êrr(1)
t for measuring the

performance in AUC. This estimator is motivated from (52a) the same way the
estimator Êrr(1)

t was motivated from (31). The SB estimator (52a) can be rewritten as:

66 W. A. Yousef

^AUC
SB

t =
1

n1n2

n2Σ
j=1

n1Σ
i=1

E∗ψ(̂ht∗ (xi), ĥt∗ (x j)) (58)

=
1

n1n2

n2Σ
j=1

n1Σ
i=1

BΣ
b=1

[
ψ(̂ht∗b (xi), ĥt∗b (x j))

/
B
]
. (59)

In words, the procedure is to select a pair (one observation from each class) and cal-
culate for that pair the mean—over many bootstrap replications and training—of the
Mann-Whitney kernel. Then, average over all possible pairs. This procedure will be
optimistically biased because sometimes the testers will be the same as the trainers.
To eliminate that bias, the inner bootstrap expectation should be taken only over those
bootstrap replications that do not include the pair (ti , t j) in the training. Under that
constraint, the estimator (58) becomes the leave-pair-out bootstrap (LPOB) estimator:

^AUC
(1,1)

t =
1

n1n2

n2Σ
j=1

n1Σ
i=1

^AUCi, j , (60a)

^AUCi, j =
BΣ

b=1

I b j I
b
i ψ(̂ht∗b (xi), ĥt∗b (x j))

/ BΣ
b'=1

I b
'

j I
b'
i . (60b)

The two estimators ^AUC
(∗)

t and ^AUC
(1,1)

t produce very similar results; this is expected
since they both estimate the same thing, i.e., the mean AUC. However, the inner com-
ponent ^AUCi, j of the estimator ^AUC

(1,1)

t also enjoys the smoothness property of Êrr(1)
t .

4.3 Estimating the Standard Error of AUC Estimators

The only smooth nonparametric estimator for the AUC so far is the LPOB estima-
tor (60). Yousef et al. [33] discusses how to extend the approach of estimating the
uncertainty in the error rate estimator using the IF method (Sect. 3.4) to estimate
the uncertainty of this estimator, where interested readers may be referred to for all
mathematical details and experimental results that show that the IF method provides
almost unbiased estimation for the standard error of the LPOB estimator.

5 Illustrative Numerical Examples

5.1 Error Rate Estimation

Efron [8] and Efron and Tibshirani [13] provide comparisons of their proposed
estimators (discussed in Sect. 3). They ran many simulations considering a variety of

Machine Learning Assessment: Implications to Cybersecurity 67

Table 1 Average of RMS error of each estimator over 24 experiments run by Efron and Tibshirani

[13]. The estimator Êrr
(1)
t is the next to the estimator Êrr

(0.632+)
t with only 2.5% increase in RMS

Estimator Average RMS

Errt 0

Êrr(1) t 0.083

Êrr(0.632) t 0.101

Êrr(0.632+)
t 0.081

Errt 0.224

classifiers and data distributions, as well as real datasets. They assessed the estimators
in terms of the RMS, the root of the experimental MSE:

MSE = EMC (Êrrt − Errt)2 (61a)

=
1

G

GΣ
g=1

(̂Errtg − Errtg)2 , (61b)

where Êrrtg is the estimator (any estimator) conditional on a training dataset tg ,
and Errtg is the true prediction error conditional on the same training dataset. The
number of MC trials G in their experiments was 200. The following statement is
quoted from Efron and Tibshirani [13]:

The results vary considerably from experiment to experiment, but in terms of RMS error the
0.632+ rule is an overall winner.

This conclusion was without stating the criterion for deciding the overall winner. It
was apparent from their results that the 0.632+ rule is the winner in terms of the
bias—as was designed for. We calculated the average of the RMS of every estimator
across all the 24 experiments they ran; Table 1 displays these averages. The estimators
Êrr(1)

t and Êrr
(0.632+)
t are quite comparable to each other with only 2.5% increase in the

average RMS of the former. We will show below in Sect. 5.2 that the AUC estimators
exhibit the same behavior but with magnified difference between the two estimators.

5.2 AUC Estimation

We carried out different experiments to compare the three bootstrap-based esti-
mators ^AUC

(∗)

t , ^AUC
(.632)

t , and ^AUC
(.632+)

t considering different dimensionalities, dif-
ferent parameter values, and training set sizes. All experiments provided consis-
tent and similar results. Here, in this section, we illustrate the results when the
dimensionality p = 5, for multinormal 2-class data, with Σ1 = Σ2 = I, μ1 = 0,
μ2 = c1, and c is an adjusting parameter to adjust the Mahalanobis distance

68 W. A. Yousef

Table 2 Comparison of the different bootstrap-based estimators of the AUC. They are comparable
to each other in the RMS sense, ^AUC

(.632+)
t is almost unbiased, and all are weakly correlated with

the true conditional performance AUCt

Estimator Mean SD RMS RMSAM ρ Size

AUCt 0.6181 0.0434 0 0.0434 1.0000

^AUC(∗)
t 0.5914 0.0947 0.0973 0.0984 0.2553

^AUC(0.632)
t 0.7012 0.0749 0.1128 0.1119 0.2559 20

^AUC(0.632+)
t 0.6431 0.0858 0.0906 0.0894 0.2218

AUCt 0.8897 0.0475 0.2774 0.2757 0.2231

AUCt 0.6231 0.0410 0 0.0410 1.0000

^AUC(∗)
t 0.5945 0.0947 0.0956 0.0990 0.2993

^AUC(0.632)
t 0.6991 0.0763 0.1066 0.1077 0.3070 22

^AUC(0.632+)
t 0.6459 0.0846 0.0863 0.0876 0.2726

AUCt 0.8788 0.0499 0.2615 0.2606 0.2991

AUCt 0.6308 0.0400 0 0.0400 1.0000

^AUC(∗)
t 0.5991 0.0865 0.0897 0.0922 0.2946

^AUC(0.632)
t 0.6971 0.0701 0.0961 0.0965 0.2997 25

^AUC(0.632+)
t 0.6442 0.0817 0.0815 0.0828 0.2758

AUCt 0.8656 0.0471 0.2406 0.2395 0.2833

AUCt 0.6359 0.0358 0 0.0358 1.0000

^AUC(∗)
t 0.6035 0.0840 0.0874 0.0901 0.2904

^AUC(0.632)
t 0.6962 0.0688 0.0906 0.0915 0.2934 28

^AUC(0.632+)
t 0.6479 0.0792 0.0785 0.0802 0.2719

AUCt 0.8554 0.0472 0.2253 0.2246 0.2747

AUCt 0.6469 0.0343 0 0.0343 1.0000

^AUC(∗)
t 0.6170 0.0750 0.0792 0.0807 0.2746

^AUC(0.632)
t 0.6997 0.0623 0.0818 0.0817 0.2722 33

^AUC(0.632+)
t 0.6553 0.0761 0.0752 0.0766 0.2656

AUCt 0.8419 0.0439 0.2010 0.1999 0.2434

AUCt 0.6571 0.0308 0 0.0308 1.0000

^AUC(∗)
t 0.6244 0.0711 0.0753 0.0783 0.3185

^AUC(.632)
t 0.6981 0.0598 0.0710 0.0725 0.3167 40

^AUC(.632+)
t 0.6595 0.0739 0.0707 0.0739 0.3092

AUCt 0.8246 0.0431 0.1735 0.1730 0.2923

AUCt 0.6674 0.0271 0 0.0271 1.0000

^AUC(∗)
t 0.6357 0.0654 0.0690 0.0727 0.3534

^AUC(.632)
t 0.6995 0.0556 0.0615 0.0642 0.3570 50

^AUC(.632+)
t 0.6685 0.0690 0.0646 0.0690 0.3522

AUCt 0.8091 0.0406 0.1473 0.1474 0.3517

AUCt 0.6808 0.0217 0 0.0217 1.0000

^AUC(∗)
t 0.6533 0.0546 0.0602 0.0611 0.2451

^AUC(.632)
t 0.7053 0.0471 0.0527 0.0531 0.2488 66

^AUC(.632+)
t 0.6840 0.0568 0.0556 0.0569 0.2477

AUCt 0.7946 0.0355 0.1195 0.1192 0.2499

(continued)

Machine Learning Assessment: Implications to Cybersecurity 69

Table 2 (continued)

Estimator Mean SD RMS RMSAM ρ Size

AUCt 0.6965 0.0158 0 0.0158 1.0000

^AUC(∗)
t 0.6738 0.0454 0.0483 0.0507 0.3422

^AUC(.632)
t 0.7119 0.0399 0.0405 0.0428 0.3492 100

^AUC(.632+)
t 0.7004 0.0452 0.0426 0.0453 0.3448

AUCt 0.7772 0.0312 0.0860 0.0866 0.3596

AUCt 0.7141 0.0090 0 0.0090 1.0000

^AUC(∗)
t 0.6991 0.0298 0.0327 0.0334 0.2288

^AUC(.632)
t 0.7205 0.0272 0.0273 0.0279 0.2291 200

^AUC(.632+)
t 0.7170 0.0285 0.0279 0.0286 0.2294

AUCt 0.7573 0.0228 0.0487 0.0489 0.2277

Δ =
[
(μ1 − μ2)

'Σ−1(μ1 − μ2)
]1/2 = c2 p. We adjust c to keep a reasonable inter-

class separation of Δ = 0.8. When the classifier is trained, it will be tested on a
pseudo-infinite test set, here 1000 cases per class, to obtain a very good approxi-
mation to the true AUC for the classifier trained on this very training dataset; this
is called a single realization or a Monte-Carlo (MC) trial. Many realizations of the
training datasets with same n are generated over MC simulation to study the mean
and variance of the AUC for the Bayes classifier under this training set size. The
number of MC trials is 1000 and the number of bootstraps is 100. It is apparent
from Fig. 2 that the ^AUC

(∗)

t is downward biased. This is a natural opposite of the
upward bias observed in Efron and Tibshirani [13] when the performance measure
was the true error rate as a measure of incorrectness, by contrast with the true AUC

Fig. 2 Comparison of the
three bootstrap estimators,
^AUC

(∗)
t , ^AUC

(0.632)
t , and

^AUC
(0.632+)
t for 5-feature

predictor. The ^AUC
(∗)
t is

downward biased, while the
^AUC

(0.632)
t is an over

correction for that bias.
^AUC

(0.632+)
t is almost the

unbiased version of the
^AUC

(0.632)
t . The figure first

appeared in Yousef et al. [32]

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Asymptotic Comparison for Estimators Performance

1/n

A
U

C

True
(*)
.632
.632+
Apparent

70 W. A. Yousef

Table 3 Average of RMS error of each estimator over the 10 experiments displayed in Table 2.

The estimator ^AUC
(∗)
t is the next to ^AUC

(0.632+)
t with only 9% increase in RMS

Estimator Average RMS

AUCt 0
^AUC

(∗)
t 0.07347

^AUC
(0.632)
t 0.07409

^AUC
(0.632+)
t 0.06735

AUCt 0.17808

as a measure of correctness. The ^AUC
(.632)

t is designed as a correction for ^AUC
(∗)

t ; it
appears in the figure to correct for that but with an over-shoot. The correct adjustment
for the remaining bias is almost achieved by the estimator ^AUC

(.632+)

t . The ^AUC
(.632)

t
estimator can be seen as an attempt to balance between the two extreme biased
estimators, ^AUC

(∗)

t and AUCt. However, it is expected that the component of AUCt

that is inherent in both ^AUC
(0.632+)

t and ^AUC
(0.632)

t increases the variance of these two
estimators that my compensate for the decrease in the bias. Therefore, we assess all
estimators in terms of the RMS, the root of the MSE defined in (61), and report the
results in Table 2. In addition, we average the RMS of these estimators over the 10
experiments of Table 2 and list the average in Table 3. It is evident that the 0.632+
is slightly the overall winner with only 9% decrease in RMS if compared to the
^AUC

(∗)

t estimator. This almost agrees with the same result obtained for the error rate
estimators and reported in Table 1.

In addition to the RMS, Table 2 compares the estimators in terms of the RMS
around mean (RMSAM): the root of the mean squared difference between an estimate
and the mean performance (the mean over all possible training sets), instead of the
conditional performance (conditional on a particular training set). The motivation
behind that is explained next. The estimators ^AUC

(∗)

t and ^AUC
(1,1)

t seem, at least from
their formalization, to estimate the mean AUC of the classifier (this is the analogue
of Êrr(∗)

t and Êrr(1)
t). However, the basic motivation for the ^AUC

(.632)

t and ^AUC
(.632+)

t
is to estimate the AUC conditional on the given dataset t (this is the analogue of
Êrr(.632)

t and Êrr(.632+)
t). Nevertheless, as mentioned in Efron and Tibshirani [13] and

detailed in Zhang [35] the CV, the basic ingredient of the bootstrap based estimators,
is weakly correlated with the true performance on a sample by sample basis. This
means that no estimator has a preference in estimating the conditional performance.
Section 5.3 elaborates more on this phenomenon.

Machine Learning Assessment: Implications to Cybersecurity 71

Fig. 3 The lack of correlation (or the weak correlation) between the bootstrap-based estimators and
the true conditional performance. Every line connects the true performance of the classifier trained
on a data set ti and the estimated value. The figure represents 15 trials of the 1000 MC trials. Two
nearby values of true performance may correspond to two widely separated estimates on different
sides of the mean

5.3 Components of Variance and Weak Correlation

Many simulation results, e.g., Efron [8], Efron and Tibshirani [13], show that there is
only a weak correlation between the CV estimator and the conditional true error rate
Errt. This issue is discussed in mathematical detail in the excellent paper by Zhang
[35], which therefore concludes that the CV estimator should not be used to estimate
the true error rate of a classification rule conditional on a particular training data set.
Other estimators discussed in the present article have this same attribute, since they
have the same resampling ingredient of the CV estimator and “we would guess, for
any other estimate of conditional prediction error” (Sect. 7.12, [20]). We provide
our simple mathematical elaboration as follows. Denote the true performance of
the classification rule conditional on the training set t (whether Errt, AUCt, or any
other performance measure) by St, the unconditional performance by Et St, and an
estimator of either of them by Ŝt. For easier notation we can unambiguously drop
the subscript t and decompose the MSE as

MSE(Ŝ, S) = E(Ŝ − S)2 (62a)

= E(Ŝ − ES)2 + Var(S) − 2Cov(Ŝ, S). (62b)

Then, by normalizing with the standard deviations we get:

MSE(Ŝ, S)
σSσŜ

=
MSE(Ŝ, ES)

σSσŜ
+

σS

σŜ
− 2ρŜS. (63)

72 W. A. Yousef

Table 4 Estimating the uncertainty in the estimator that estimates the difference in performance
of two competing classifiers, the LDA and the QDA. The quantity M represents AUC1 for LDA,
AUC2 for QDA, and Δ for the difference
Metric M LDA QDA Δ
E Mt 0.7706 0.7163 0.0543

SD Mt 0.0313 0.0442 0.0343

E M̂ (1,1) 0.7437 0.6679 0.0758

SD M̂ (1,1) 0.0879 0.0944 0.0533

E ŜD M̂ (1,1) 0.0898 0.1003 0.0708

SD ŜD M̂ (1,1) 0.0192 0.0163 0.0228

This equation relates four crucial components to each other:

• MSE(Ŝ, S)
/
σSσŜ , the normalized MSE of Ŝ, if we see it as an estimator of the

conditional performance S.
• MSE(Ŝ, ES)

/
σSσŜ , the normalized MSE of Ŝ, if we see it as an estimator of the

expected performance ES (and therefore called MSE around the mean).
• σS
/
σŜ , the standard deviation ratio between S and Ŝ.

• ρŜS , the correlation coefficient between S and Ŝ.

From (63), an estimator Ŝ is a good candidate to estimate S than ES if its MSE(Ŝ, S)
is less than its MSE(Ŝ, ES). Then, it is the responsibility of the correlation coefficient
ρŜS to be high enough to cancel σS

/
σŜ and a portion of MSE(Ŝ, ES). Unfortunately,

this is not the case as we illustrate experimentally in Table 2, which provides all
quantities of the decomposition (63). It is obvious from the values that RMS(Ŝ, S)
and RMS(Ŝ, ES) are very close to each other because the quantity σS

/
σŜ − 2ρŜS ≃

0.413 − 2 × 0.290 = −0.167 (on average over the 10 experiments shown in the
table). Moreover, in some cases, e.g., the first experiment, it goes as low as −0.052.
The correlation between Ŝ and S is weak to cast Ŝ as an estimate to S, although it
is designed to estimate it! For more illustration, Fig. 3 visualizes the components in
Eq. (63) and the numbers in Table 2. This figure shows 15 realizations of the 1000 MC
trials of the same experiment above. On the right, are the true values of S when trained
on these different 15 training sets. On the left, are the corresponding 15 estimated
values of Ŝ. The lines provide links between the true values and the corresponding
estimates. This figure shows that two nearby true values of S are likely to have two
widely separated estimated values Ŝ on different sides of the mean. This visually
illustrates the lack of correlation (or the weak correlation) between the estimators
and the true conditional performance.

Machine Learning Assessment: Implications to Cybersecurity 73

5.4 Two Competing Classifiers

If the assessment problem is how to compare two classifiers, rather than the individual
performance, then the measure to be used is either the conditional difference

Δt = AUC1t − AUC2t , (64)

or the mean, unconditional, difference

Δ = E Δt = E
[
AUC1t − AUC2t

]
, (65)

where, we defined them for the AUC just for illustration with immediate identical
treatment for other measures. Then it is obvious that there is nothing new in the
estimation task, i.e., it is merely the difference of the performance estimate of each
classifier, i.e.,

Δ̂ = ^EAUC1t − ^EAUC2t , (66)

where each of the two estimators in (66) is obtained by any estimator. A natural
candidate, from the point of view of the present chapter is the LPOB estimator
^AUC

(1,1)
—because of both the smoothness and weak correlation issues discussed so

far.
Then, how to estimate the uncertainty (variance) of Δ̂. This is very similar to

estimating the variance in ^EAUCt. There is nothing new in estimating Var Δ̂. It is
obtained by replacing ^AUC

(1,1)
, in Yousef et al. [33], by the statistic Δ̂ in (66). For

demonstration, typical values are given in Table 4, for comparing the linear and
quadratic discriminants, where the training set size per class is 20 and number of
features is 4.

6 Discussion and Conclusion

In this chapter, the very important topic of the assessment of ML algorithms is
reviewed, with an emphasis on the nonparametric assessment of classification rules.
The topic is quite important to many fields and applications, in particular cyberphys-
ical security, where ML algorithms are almost ubiquitous. We started with reviewing
the basic nonparametric methods for estimating the bias and variance of a statistic.
Then, we reviewed the basic resampling-based methods for estimating the error rate
of a classification rule. Departing from that, we extended these estimators from esti-
mating the error rate (a one-sample statistic) to estimating the AUC (a two-sample
statistic). This extension is theoretically justified, and not just an ad hoc applica-
tion. Among these estimators, we identified those that are smooth and eligible for
estimating their standard error using the IF method.

74 W. A. Yousef

It was interesting to see, through the whole chapter, the connection among dif-
ferent resampling-based estimators. It is worth mentioning that, in addition to the
conventional K -fold CV, there are other versions and variants, which are usually
used in an ad hoc way by many practitioners. The formalization of these versions
and variants, and the mathematical connection among them, along with their con-
nection to the bootstrap-based estimators, all can be established in the same spirit
and approach followed in the present chapter. However, many of them are unsmooth
except possibly the repeated CV, which is partially smooth and suitable for the IF
method [30, 31].

With this rich variety of estimators, a practitioner may legitimately wonder about
the “optimal” estimator (in terms of any optimality criterion) that should be sys-
tematically used. There are three aspects, on which we can base our comparison:
accuracy, uncertainty estimation, and computational efficiency.

In terms of accuracy, it is surprising to know that, from the few number of com-
parative studies available in the literature, there is no overall winner among these
estimators. All of them have comparable accuracy, measured in terms of RMS, with
a little superiority of the 0.632+ bootstrap estimator. In addition, and most impor-
tantly, all estimators have a weak correlation with the true conditional performance
(e.g., Errt, the conditional error rate, or AUCt, the conditional AUC), a phenomenon
that allows them to be eligible only for estimating the mean true performance (e.g.,
EtErrt or EtAUCt), where the mean is taken over the population of training datasets
as explained through the chapter. Said differently, the performance estimation that
a practitioner obtains using, e.g., the CV, is not an estimation of the performance of
this very trained ML algorithm; rather, it is an estimation of the mean performance
of this algorithm had we trained it on all possible training datasets of the same size!
We quote from [20, Sect. 7.12]:

This phenomenon also occurs for bootstrap estimates of error, and we would guess, for any
other estimate of conditional prediction error.

In terms of the variance estimation of these estimators (not the estimation of the
variance of the algorithm itself), only a few of them are smooth and candidates for a
sophisticated method like the IF. The ordinary K -fold CV is not among those! Rather,
only the computationally expensive version of it, the repeated CV, is partially smooth
as mentioned above.

It terms of the computational aspects, the bootstrap-based estimators are computa-
tionally expensive. If compared to the conventional K -fold CV, which requires only
K iterations of both training and testing, the former require hundreds of bootstrap
replications. Because the majority of recent ML applications involve both massive
datasets and complex algorithms, including DNN that is very computationally expen-
sive, it is obvious that the CV may be more practical than the bootstrap-based estima-
tors. However, for some other fields, e.g., cyberphysical security, many applications
produce tabular (structured) data. Tabular data are more suitable for the traditional
and less computationally expensive ML algorithms. Therefore, serious practitioners
in these fields and applications may need to keep all of these estimators in their
toolbox. Moreover, it is quite prudent to see a future benchmark that compiles these

Machine Learning Assessment: Implications to Cybersecurity 75

estimators, along with different datasets from a wide range of applications, in a single
comprehensive comparative study.

Acknowledgements The author is grateful to the U.S. Food and Drug Administration (FDA) for
funding a very early stage of this chapter, and to Dr. Kyle Myers for her support. In his memorial,
special thanks and gratitude to Dr. Robert F. Wagner, the supervisor and the teacher, or Bob Wagner,
the big brother and friend. He reviewed a very early version of this chapter before he passed away.

7 Appendix

7.1 Proofs

Lemma 1 The maximum likelihood estimation (MLE) for the probability mass func-
tion under nonparametric distribution, given a sample of n observations, is given
by:

F̂ : mass 1
n
on ti , i = 1, . . . , n. (67)

Proof The proof is carried out by maximizing the likelihood function l(f) =
n||

i=1
pi ,

which can be rewritten under the constraint
Σ

i pi = 1, using a Lagrange’s multiplier,
as:

l(f) =
n||

i=1

pi + λ

(
nΣ

i=1

pi − 1

)

. (68)

The likelihood (68) is maximized by taking the first derivative and setting it to zero
to obtain:

∂l(f)
∂p j

=
||

i /= j

pi + λ set= 0, j = 1, . . . , n. (69)

These n equations along with the constraint
Σ

i pi = 1 can be solved straightfor-
wardly to give p̂i = 1 n , i = 1, . . . , n, which completes the proof. ◻

Lemma 2 The no-information AUC is given by γAUC = 0.5.

Proof γAUC, an analogue to the no-information error rate γ , is given by (2a) but with
TPF and FPF given under the no-information distribution E0F (see Sect. 3.3.4). There-
fore, assume that there are n1 and n2 observations from class ω1 and ω2, respectively.
Assume also for a fixed threshold th the two quantities that define the error rate are
TPF and FPF. Also, assume that the sample observations are tested by the classifier
and each sample has been assigned a decision value (score). Under the no-information
distribution, consider the following. For every decision value ht(xi) assigned for
the observation ti = (xi , yi), create new n1 + n2 − 1 observations; all of them have

76 W. A. Yousef

the same decision value ht(xi), while their responses are equal to the responses of
the rest n1 + n2 − 1 observations t j , j /= i . Under this new sample that consists of
(n1 + n2)2 observations, it is quite easy to see that the new TPF and FPF for the same
threshold th are given by FPF0F̂,th = TPF0F̂,th = (TPF · n1 + FPF · n2)/(n1 + n2).
This means that the ROC curve under the no-information rate is a straight line with
slope equal to one; this directly gives γAUC = 0.5.

7.2 More on Influence Function (IF)

Assume that there is a distribution G near to the distribution F ; then under some
regularity conditions(see, e.g., [21], Chap. 2) a functional s can be approximated as:

s(G) ≈ s(F) +
{

ICs,F (x) dG(x). (70)

The residual error can be neglected since it is of a small order in probability. Some
properties of (70) are: {

ICT,F (x) dF(x) = 0, (71)

and the asymptotic variance of s(F) under F , following from (71), is given by:

VarFs(F) ≃
{ [

ICT ,F (x)
]2

dF(x), (72)

which can be considered as an approximation to the variance under a distribution G
near to F . Now, assume that the functional s is a functional statistic in the dataset
x = {xi : xi ∼ F, i = 1, . . . , n}. In that case the influence curve (23) is defined for
each sample case xi , under the true distribution F as:

Ui (s, F) = lim
ε→0

s(Fε,i) − s(F)
ε

=
∂s(Fε,i)

∂ε

||||
ε=0

, (73)

where Fε,i is the distribution under the perturbation at observation xi . Equation (73)
is called the IF. If the distribution F is not known, the MLE F̂ of the distribution F
is given by (3), and as an approximation F̂ may substitute for F in (73). The result
may then be called the empirical IF [24], or infinitesimal jackknife [22]. In such an
approximation, the perturbation defined in (22) can be rewritten as:

F̂ε,i = (1 − ε) F̂ + εδxi , xi ∈ x, i = 1, . . . , n. (74)

This kind of perturbation is illustrated in Fig. 4.
It will often be useful to write the probability mass function of (74) as:

Machine Learning Assessment: Implications to Cybersecurity 77

Fig. 4 The new probability
masses for the dataset x
under a perturbation at
sample case xi obtained by
letting the new probability, at
xi exceed the new probability
at any other case xi by, ε

f̂ε,i (x j) =
{ 1−ε

n + ε j = i
1−ε
n j /= i . (75)

A very interesting case arises from (75) if −1/(n + 1) is substituted for ε. In this
case the new probability mass assigned to the point x j=i in (75) will be zero. This
value of ε simply generates the jackknife estimate discussed in Sect. 2.2, where the
whole observation is removed from the dataset.

Substituting F̂ for G in (70) and combining the result with (73) gives the IF
approximation for any functional statistic under the empirical distribution F̂ . The
result is:

s(F̂) = s(F) +
1

n

nΣ
i=1

Ui (s, F) + Op(n
−1) (76a)

≈ s(F) +
1

n

nΣ
i=1

Ui (s, F). (76b)

The term Op(n−1) reads “big-O of order 1/n in probability”. In general, Un =
Op(dn) if Un/dn is bounded in probability, i.e., Pr{|Un|/dn < kε} > 1 − ε ∀ ε > 0.
This concept can be found in [1, Chap. 2]. Then the asymptotic variance expressed
in (72) can be given for s(F) by:

VarFs =
1

n
EFU

2 (xi , F), (77)

which can be approximated under the empirical distribution F̂ to give the nonpara-
metric estimate of the variance for a statistic s by:

V̂ar F̂ s =
1

n2

nΣ
i=1

U 2
i (xi , F̂). (78)

78 W. A. Yousef

7.3 ML in Other Fields

In this section we provide very brief miscellanea from other fields for the reader to
see a bigger picture of this chapter. As already was mentioned, ML is crucial to many
applications. For example, in the medical imaging field, a tumor on a mammogram
must be classified as malignant or benign. This is an example of prediction, regardless
of whether it is done by a radiologist or by a computer aided detection (CAD)
software. In either case, the prediction is done based on learning from previous
mammograms. The features, i.e., predictors, in this case may be the size of the tumor,
its density, various shape parameters, etc. The output, i.e., response, is categorical and
belongs to the set: G = {benign, malignant}. There are so many such examples
in biology and medicine that it is almost a field unto itself, i.e., biostatistics. The
task may be diagnostic as in the mammographic example, or prognostic where, for
example, one estimates the probability of occurrence of a second heart attack for
a particular patient who has had a previous one. All of these examples involve a
prediction step based on previous learning. A wide range of commercial and military
applications arises in the field of satellite imaging. Predictors in this case can be
measures from the image spectrum, while the response can be the type of land, crop,
or vegetation of which the image was taken.

Some expressions and terminology of ML belong to some fields and applications
more than the others. E.g., it is conventional in medical imaging to refer to e1 as
the false negative fraction (FNF), and e2 as the false positive fraction (FPF). This is
because diseased patients typically have a higher output value for a test than non-
diseased patients. For example, a patient belonging to class 1 whose test output value
is less than the threshold setting for the test will be called “test negative”, while the
patient is in fact in the diseased class. This is a false negative decision; hence the
name FNF. The situation is reversed for the other error component.

The importance of the AUC is natural and unquestionable in some applications
than others. The equivalence of the area under the empirical ROC and the Mann-
Whitney-Wilcoxon statistic is the basis of its use in the assessment of diagnostic tests;
see Hanley and McNeil [19]. Swets [29] has recommended it as a natural summary
measure of detection accuracy on the basis of signal-detection theory. Applications of
this measure are widespread in the literature on both human diagnosis and computer-
aided diagnosis, in medical imaging [23]. In the field of machine learning, Bradley
[2] has recommended it as the preferred summary measure of accuracy when a single
number is desired. These references also provide general background and access to
the large literature on the subject.

Even the mistakes committed by some practitioners are obvious in some fields
more than others. E.g., in DNA microarrays, these mistakes are fatal and produce
very fragile results. This is because of the very high dimensionality of the problem
with respect to the amount of available dataset. A more elaborate assessment phase
should follow the design and construction phase in such ill-posed applications.

Machine Learning Assessment: Implications to Cybersecurity 79

References

1. Barndorff-Nielsen OE, Cox DR (1989) Asymptotic techniques for use in statistics. Chapman
and Hall, New York

2. Bradley AP (1997) The use of the area under the ROC curve in the evaluation of machine
learning algorithms. Pattern Recogn 30(7):1145

3. Breiman L, Friedman J, Olshen R, Stone C (1984) Classification and regression trees.
Wadsworth International Group, Belmont

4. Chen W, Gallas BD, Yousef WA (2012) Classifier variability: accounting for training and
testing. Pattern Recogn 45(7):2661–2671

5. Efron B (1979) Bootstrap methods: another look at the Jackknife. Ann Stat 7(1):1–26
6. Efron B (1981) Nonparametric estimates of standard error: the Jackknife, the bootstrap and

other methods. Biometrika 68(3):589–599
7. Efron B (1982) The Jackknife, the bootstrap, and other resampling plans. Society for Industrial

and Applied Mathematics, Philadelphia
8. Efron B (1983) Estimating the error rate of a prediction rule: improvement on cross-validation.

J Am Stat Assoc 78(382):316–331
9. Efron B (1986) How biased is the apparent error rate of a prediction rule? J Am Stat Assoc

81(394):461–470
10. Efron B, Stein C (1981) The Jackknife estimate of variance. Ann Stat 9(3):586–596
11. Efron B, Tibshirani R (1993) An introduction to the bootstrap. Chapman and Hall, New York
12. Efron B, Tibshirani R (1995) Cross validation and the bootstrap: estimating the error rate of a

prediction rule. Technical report 176, Stanford University, Department of Statistics
13. Efron B, Tibshirani R (1997) Improvements on cross-validation: the .632+ Bootstrap method.

J Am Stat Assoc 92(438):548–560
14. Fukunaga K (1990) Introduction to statistical pattern recognition, 2nd edn. Academic Press,

Boston
15. Hájek J, Šidák Z, Sen PK (1999) Theory of rank tests, 2nd edn. Academic Press, San Diego
16. Hampel FR (1974) The influence curve and its role in robust estimation. J Am Stat Assoc

69(346):383–393
17. Hampel FR (1986) Robust statistics?: the approach based on influence functions. Wiley, New

York
18. Hanley JA (1989) Receiver operating characteristic (ROC) methodology: the state of the art.

Crit Rev Diagn Imaging 29(3):307–335
19. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating

characteristic (ROC) curve. Radiology 143(1):29–36
20. Hastie T, Tibshirani R, Friedman JH (2009) The elements of statistical learning: data mining,

inference, and prediction, 2nd edn. Springer, New York
21. Huber PJ (1996) Robust statistical procedures, 2nd edn. Society for Industrial and Applied

Mathematics, Philadelphia
22. Jaeckel L (1972) The infinitesimal jackknife. Memorandum, MM 72-1215-11, Bell Lab Murray

Hill
23. Jiang Y, Nishikawa RM, Schmidt RA, Metz CE, Giger ML, Doi K (1999) Improving breast

cancer diagnosis with computer-aided diagnosis. Acad Radiol 6(1):22–33
24. Mallows C (1974) On some topics in robustness. Memorandum, MM 72-1215-11, Bell Lab

Murray Hill, NJ
25. Randles RH, Wolfe DA (1979) Introduction to the theory of nonparametric statistics. Wiley,

New York
26. Sahiner B, Chan HP, Petrick N, Hadjiiski L, Paquerault S, Gurcan MN (2001) Resampling

schemes for estimating the accuracy of a classifier designed with a limited data set. In: Medical
image perception conference IX, airlie conference Center, Warrenton VA, 20–23

27. Sahiner B, Chan HP, Hadjiiski L (2008) Classifier performance prediction for computer-aided
diagnosis using a limited dataset. Med Phys 35(4):1559

80 W. A. Yousef

28. Stone M (1974) Cross-validatory choice and assessment of statistical predictions. J Roy Stat
Soc: Ser B (Methodol) 36(2):111–147

29. Swets JA (1986) Indices of discrimination or diagnostic accuracy: their ROCs and implied
models. Psychol Bull 99:100–117

30. Yousef WA (2019) A leisurely look at versions and variants of the cross validation estimator.
arXiv preprint arXiv:1907.13413

31. Yousef WA (2021) Estimating the standard error of cross-validation-based estimators of clas-
sifier performance. Pattern Recogn Lett 146:115–145

32. Yousef WA, Wagner RF, Loew MH (2004) Comparison of non-parametric methods for assess-
ing classifier performance in terms of ROC parameters. In: Proceedings of 33rd applied imagery
pattern recognition workshop, 2004. IEEE Computer Society, pp 190–195

33. Yousef WA, Wagner RF, Loew MH (2005) Estimating the uncertainty in the estimated mean
area under the ROC curve of a classifier. Pattern Recogn Lett 26(16):2600–2610

34. Yousef WA, Wagner RF, Loew MH (2006) Assessing classifiers from two independent data
sets using ROC analysis: a nonparametric approach. IEEE Trans Pattern Anal Mach Intell
28(11):1809–1817

35. Zhang P (1995) Assessing prediction error in nonparametric regression. Scand J Stat 22(1):83–
94

arXiv:1907.13413
 5251 4954 a 5251 4954 a

http://arxiv.org/abs/1907.13413

	 Machine Learning Assessment: Implications to Cybersecurity
	1 Introduction
	1.1 Motivation
	1.2 Notation
	1.3 Roadmap

	2 Nonparametric Methods for Estimating the Bias and the Variance of a Statistic
	2.1 Bootstrap Estimate
	2.2 Jackknife Estimate
	2.3 Bootstrap Versus Jackknife
	2.4 Influence Function, Infinitesimal Jackknife, and Estimate of Variance

	3 Nonparametric Methods for Estimating the Error Rate of a Classification Rule
	3.1 Apparent Error
	3.2 Cross Validation (CV)
	3.3 Bootstrap Methods for Error Rate Estimation
	3.4 Estimating the Standard Error of Error Rate Estimators

	4 Nonparametric Methods for Estimating the AUC of a Classification Rule
	4.1 Construction of Nonparametric Estimators for AUC
	4.2 The Leave-Pair-Out Boostrap (LPOB) ModifyingAbove upper A upper U upper C With caret Super Subscript left parenthesis 1 comma 1 right parenthesisAUC"0362AUC(1,1) , Its Smoothness and Variance Estimation
	4.3 Estimating the Standard Error of AUC Estimators

	5 Illustrative Numerical Examples
	5.1 Error Rate Estimation
	5.2 AUC Estimation
	5.3 Components of Variance and Weak Correlation
	5.4 Two Competing Classifiers

	6 Discussion and Conclusion
	7 Appendix
	7.1 Proofs
	7.2 More on Influence Function (IF)
	7.3 ML in Other Fields

	References

