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Abstract The Activity and Event Network (AEN) is a new large graph model that 
enables describing and analyzing continuously in real-time key security relevant 
information about the operations of networked systems and data centers. The model 
allows identifying long-term and stealthy attack patterns, which may be difficult to 
capture using traditional approaches. The current chapter focuses on defining the 
model elements and the underlying graph construction algorithms, and presents a 
case study based on a cyberphysical security dataset. 
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1 Introduction 

Recently, it was discovered that a state-sponsored hacker group has been infiltrating 
the European Union’s (EU) diplomatic communications network for years, down-
loading thousands of sensitive cables. The attack ran undetected for a three-year 
period and targeted more than 100 organizations and institutions, such as the United 
Nations and ministries of foreign affairs and finance. The attack is a type of emerging 
threat consisting of targeted and long-term campaigns delivered by skilled hackers 
who have clearly defined objectives and relentlessly work towards achieving their 
aims. These breaches can go undetected for a long period of time because of the 
hackers’ ability to adapt to and escape defensive methods. 
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Noticeably, there has been an evolution from volume-based attacks towards stealth 
like low and slow style attacks. Although volumetric attacks often occur within a set 
time frame, low and slow attacks rely on an ongoing stream of malicious requests and 
have no distinct beginning or end. This makes their detection by current Intrusion 
Detection Systems (IDSs) and Security Information and Event Management (SIEM) 
tools challenging. 

The Activity and Event Network (AEN) graph model is a new security knowledge 
graph whose goal is to spearhead the development of a new generation of security 
data analytics techniques that can gain better situational awareness of the threat 
environment and allow detecting, responding and investigating sophisticated and 
stealthy attacks using data from both the traditional security ecosystem and beyond 
the organization perimeter. It leverages the large dynamic uncertain multigraph theory 
to coherently express and analyse security data across various heterogeneous data 
sources and meaningfully link seemingly innocuous and unrelated events to expose 
hidden and long-term attack patterns. The purpose of the current chapter is to define 
the AEN graph model elements and corresponding graph construction algorithms. 
Furthermore, a cyberphysical security dataset is used to illustrate some of the threat 
detection capability of the AEN model. One of the prime targets of long term attacks 
are cyber-physical systems, where quite often security is treated as an afterthought 
in system design and configuration. 

The remainder of the chapter is structured as follows. Section 2 defines the theoret-
ical foundation of the AEN graph model. Section 3 presents the data sources used to 
construct the graph. Section 4 defines the AEN graph model elements by presenting 
the node and edge types involved. Section 5 gives an outline of the AEN underlying 
probability model. Section 6 gives an overview of the AEN framework architecture 
and present a case study based on BoT-IoT cyberphysical security dataset. Section 7 
makes some concluding remarks. 

2 AEN Graph Theoretic Model 

To start describing the AEN model, it is important to consider the most basic con-
stituent elements of a network of interconnected devices like hosts, how they com-
municate with one another and that those elements have their own characteristics. 
The model, therefore, needs to incorporate those pieces of information. However, 
the data used to extract them might be incomplete, noisy or simply incorrect. That 
means the model must also be able to describe said uncertainty. 

Also of importance is the network’s dynamism: At any moment devices or hosts 
can be added or removed from the network; they can start or stop exchanging data; 
IP addresses can be recycled; devices can be infected and later be fixed, patched or 
updated etc. It follows that to be able to track the past existence of elements and 
their relationships through time, the model needs to maintain information on the 
time spans in which each element has existed. The dynamic graph model defined by 
Casteigts et al. [1] is used to formalize this control, with two changes: the first is
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that the model is expanded to combine probabilistic and temporal existence, while 
the second is the exclusion of latencies since they are negligible in the scope of this 
work. With that, important chronological relationships can be identified. 

To summarize, the graph model has the following characteristics: 

• Nodes have their own attributes. Thus nodes are labelled; 
• Nodes can have multiple relationships at the same time. Thus nodes can have 
multiple edges between them; 

• Relationships have a source and a destination. Thus edges are directed; 
• Relationships have their own properties. Thus edges are labelled; 
• Both relationships and nodes can be uncertain. Thus nodes and edges are weighed 
by probabilities of correctness, that is, that the information they represent is correct; 

• Nodes and edges change through time and have an existence time span; 
• Changes occur continuously; 
• Processing times and latencies are negligible. 

Those characteristics define the graph as a Dynamic Uncertain Directed Multigraph. 
Formally, it is defined as the 11-tuple 

G = (N , E, s, t, ΣN , ΣE , 	ℓN , 	ℓE , T , πN , πE ) (1) 

where 

• N is the set of all nodes of the graph as mentioned above; 
• E is the set of edges representing relationships between nodes; 
• s : E → N , which assigns edges to their source nodes; 
• t : E → N , which assigns edges to their target nodes; 
• ΣN is a finite alphabet of available node labels; 
• ΣE is a finite alphabet of available edge labels; 
• 	ℓN : N → ΣN is a map describing the labels of nodes; 
• 	ℓE : E → ΣE is a map describing the labels of edges; 
• T ⊆ R+, that is, the time domain of the graph is in the positive real numbers; 
• πN : N × T → (0, 1], which assigns correctness probability values to nodes over 
time; 

• πE : E × T → (0, 1], which assigns conditional correctness probability values to 
edges over time given their endpoints. 

3 AEN Data Sources 

To construct the graph, heterogeneous data sources are used to extract data features 
capable of identifying nodes, relationships and their attributes. These involve both 
data sources available within the security perimeter as well as external data sources 
available through third-party services. Examples of internal data sources include
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network traffic logs, flow data, system logs, firewall logs, IDS alerts, anti-virus (AV) 
logs and email security logs, while examples of external data sources include Domain 
Name Server (DNS) queries and WHOIS. Of special note are the data sources which 
report security events or suspicious activity, like IDSes or SIEMs. Generically they 
are called detectors and their reports or logs are generically called alerts. 

The features extracted from the data sources can be divided into two categories 
related to how they are collected: 

1. First-order features, which are collected directly from the sources; 
2. Second-order features which are derived from the available data either by actively 

using different tools and services or by mining them into aggregates. 

First-order features can be further divided into two groups according to where they 
are sourced from: 

• Network, which are the more traditional data used by IDS derived by analysis 
of the network traffic. Its features are: IP Address, Transport Protocol, Transport 
Port, and Content-Type. 

• Application, which are the data collected from log analysis of known applica-
tions in the network and from service calls either to or from said applications 
in case those applications are programmed to provide such functionality. This 
would include data sources like hypervisor logs, syslogs and IDS alerts. Its fea-
tures are: Application, User, Authentication State, Attack Type, Alert Confidence, 
and Device fingerprint. 

Second-order features can also be further divided into two groups: 

• Third-Party, which are collected by actively contacting external services or per-
forming scans in order to collect more data about a certain entity. Its features 
are: Domain name, IP Address, Name server, Autonomous System Number (ASN), 
Location, Name, Email, and Operating System (OS). 

• Aggregates, which are mined from the aforementioned features and from the 
model itself and may consist of temporal or spatial aggregates. 

4 Graph Model Elements 

In this section, we present the AEN graph model elements, specifically the node and 
edge types involved, and provide some illustrative examples. By analyzing the first 
and second-order features described in the preceding section, it is possible to identify 
some distinguishable characteristics in them that give clues into how the graph can 
be constructed. The first one is how each feature can be better used to model the 
network. Some of them, like IP addresses and domain names, can form relationships 
among themselves. These features are the nodes of the graph and their relationships
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are the edges. On the other hand, features like protocol and port are better employed 
as descriptors of said relationships and, therefore, are used to define attributes of 
either nodes or edges. 

More generally, the nodes of the model are defined by any feature for which 
useful relationships could be formed, and the edges of the graph are defined by those 
relationships and their direction. The remaining features are used to define attributes 
of either nodes or edges. 

4.1 AEN Nodes 

Nodes can be classified into two distinct groups: 

• Active nodes: Also called actors, active nodes are nodes that can be a source, a 
target, or a stepping stone (i.e., intermediary) in an attack. Examples of actors are 
hosts (either labelled by IP addresses or domain names), users (usually identified 
by authenticators like user name and email address) and devices. Active nodes can 
be further divided into: 

– Internal actors, which belong to or are under the control of the organization; 
– External actors, which are located outside the perimeter of the organization. 

• Passive nodes: Nodes that carry some information or granular attributes for actors 
like DNS derived domain names and location nodes. 

There are different types of nodes with each type having different features, as follows: 

• Account: Represents an account in a system or application. It is derived from 
application and system logs and has the following properties: 

– Identifier 
– Application 

• Alert Group: Aggregation of related detector alerts, called raw alerts internally, 
that might be generated in a short time frame thus associated to a single event or 
attack. It has the following properties: 

– Protocol 
– Source IP 
– Source port 
– Destination IP 
– Destination port 
– Service 
– Classification 
– Start time 
– Stop time
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– Severity 
– Confidence 
– Alert count 

• Domain: Represents the domain name of an IP address. It is derived from a reverse 
DNS lookup of an IP address. When an IP address is identified, a DNS Reverse DNS 
lookup cycle is formed until the complete Domain/IP relationship is found. This 
is useful to identify attacks using Fast-Flux DNS and Algorithmically Generated 
Domains (AGDs). It has the following property: 

– Name 

• Host: Represents a network host that communicates with other hosts in the net-
work. It is an active node type and it is the most important node type of the model, 
from which almost all other elements originate. It is derived from different data 
sources like network data (packets or flow data), logs and alerts. It may be labelled 
with host-specific aggregates and historical information like if it was ever part of 
an attack, etc. It has the following property: 

– Identifier: Piece of information that can be used to consistently and uniquely 
identify a host though time, like IP address, MAC address, fingerprint or just a 
generic identifier value. Note that the IP address is not the ideal identifier for 
this case but given its ubiquity, it is used when other identifiers are not available. 

• IP Address: Represents an individual IP address. It can be a first-order feature, 
derived from network data, logs or alerts, or a second-order feature when it is 
derived from DNS lookups or Network Address Translation (NAT) table conver-
sions. It has the following property: 

– IP address 

• IP Range: Represents a range of IP addresses. It is derived from WHOIS queries 
and has the following property: 

– Classless Inter-Domain Routing (CIDR) block 

• Location: Represents a geographical location. It is derived from WHOIS queries 
or from IP geolocation services. It is useful to correlate hosts from similar locations 
and attribute attacks. It has the following property: 

– Tag: a combination of city, state/province, region and country according to what 
is available on the result of the query 

• Organization: Represents an organization which controls a range or IP addresses 
or owns domain names. It is derived from WHOIS queries and has the following 
property: 

– Name
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• Person: Represents a person who is listed as being an administrator or owner of a 
range of IP addresses, organization or domain names. It is derived from WHOIS 
queries and has the following properties: 

– Name 
– Email 

4.2 AEN Edges 

Each node type has different types of edges originating from and terminating in them. 
The different types of edges and their features (when applicable) are as follows: 

• Authentication Attempt Account → Host : Represents an authentication 
attempt of an account into a host. It has the following properties: 

– Timestamp 
– Source IP 
– Successful: Whether the authentication was successful or not 

• Triggered By AlertGroup → Host : Describes the source of an alert group 
• Used Host  → I P  Address: Expresses that a host used an IP address to send data 
• IP Located At I P  Address  → Location: Links an IP address to its location as 
defined by the WHOIS or geolocation query performed when the IP address was 
first added to the graph or when the relationship was considered stale 

• Part Of I P  Address  → I P  Range: Links an IP address with its IP range as 
defined by the WHOIS query performed when the IP address was first added to 
the graph or when the relationship was considered stale 

• Resolved To I P  Address  → Domain: Links an IP with its domain name as 
returned by the reverse DNS query performed when the IP address was first added 
to the graph or when the relationship was considered stale 

• Controls Organization → I P  Range: Expresses that an organization controls 
an IP Range as described by the WHOIS queries performed when the IP Range 
was first added to the graph or when the relationship was considered stale 

• Organization Located At Organization → Location: Links an IP address to 
its location as defined by the WHOIS query performed when the first IP belonging 
to the organization was first added to the graph or when the relationship was 
considered stale 

• Owns Person  → Domain: Represents an ownership relationship between a per-
son and a domain as described by the WHOIS query performed when an IP that 
resolved to this Domain was first added to the graph or when the relationship was 
considered stale 

• Session Host  → Host : Represents a communication session between two hosts 
on the same protocol, ports and within a certain activity time window. Its direction
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is based on who initiated the connection. It is primarily an aggregation of network 
data, but data from other sources like logs and alerts that can be used to identify 
such communication is also used in order to fill up possible gaps in the network 
data available. It has the following properties: 

– Start time 
– Stop time 
– Protocol 
– Source port 
– Destination port 
– Source size: Sum of the length of all packets from source to destination 
– Destination size: Sum of the length of all packets from destination to source 
– TCP state: Only applicable for TCP packets, it describes the state of the TCP 
connection as of the last packet belonging to this session, that is, if the connection 
has been established (handshake completed), finished or has only ever started 
but not been established 

– Packet count: The number of packets exchanged between the hosts as part of 
the session 

– Fragmented packet count: The number of fragmented packets exchanged 
between the hosts as part of the session 

– Alert count: The number of alerts generated as part of the session 

5 AEN Probability Model 

5.1 Probability Model Definition 

The basic probability assignment involved in the AEN model consists of the proba-
bility of correctness, π , for graph elements (nodes and edges) and feature confidence. 
At inception, each graph element is assigned an correctness probability which stems 
from the originating data. 

Most graph elements are derived from data that in some way can be categorized 
as deterministic; like when packets related to a TCP handshake between two hosts 
are received, the model can be certain that those two hosts are communicating and 
in what direction, or when an application reports that an authentication attempt was 
made for a certain account there is no doubt regarding the application or the account 
being used. In these cases, π is trivial and set to 1, or more technically to 1 − ∈, 
where ∈ represents the inherent probability the data injected into the system has been 
faked, tampered or corrupted. 

On the other hand, a few data sources are inherently imperfect, which introduces 
a layer of uncertainty to the nodes, relationships and attributes they generate and thus 
must be taken into consideration. Examples of these data sources include IDSes or 
other detectors, user/device fingerprinting schemes, geolocation services etc. More
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Fig. 1 Example of probability modelling in the AEN graph and the resulting most probable sub-
graph derivation 

than that, in some cases the data have a higher probability of being faked or spoofed, 
like a stray IP packet not part of a established communication between two hosts 
which is more likely to have a spoofed source address. In these cases, the correctness 
probability for the graph elements will correspond to the expected accuracy of the 
data. 

As an example, consider the hypothetical scenario where the geolocation service 
assigns for a given IP address 90% probability of it being from Hungary and 10% 
probability of it being from Poland at a given point in time t ∈ T . Based on that, one 
IP Address node and two Location nodes will be added to the graph. The two countries 
exist beyond any doubt so their π are set to 1. Likewise, the IP address, at least as 
a member of the set of all possible IP addresses, also exists, and is therefore also 
assigned π = 1. From there, one edge between the IP Address and each of the two 
Location nodes constrained to t are also added with their probability of correctness 
being set to the respective probability returned by the geolocation service. In such a 
manner, both possible, but conflicting, relationships can be modelled and, at a later 
point, used as part of different inference processes. 

Figure 1 depicts a sample graph based on the above scenario with (a) showing the 
full graph representing the 2 conflicting relationships and (b) showing the resulting 
“most probable graph” derivation. Future data might result in updated values and 
thus different derivation results. 

In the above scenario, all probabilities are equivalent to probabilities of existence, 
however, that is not always the case. Consider now an alert added to the graph. Short 
of an attacker being able to inject a false alert into the system, the model can be sure 
that the alert exists and was generated by the detector. Therefore, its probability of 
existence is equal to 1 − ∈. That, however, doesn’t properly represent the uncertainty 
regarding the alert. Instead, what is important in this case is describing the probability 
of the alert being correct, that is, not a false alarm. 

Generally, a detector can be considered as a binary classifier that classifies events 
as either malicious (or at least suspicious) or benign and generates alerts when an 
event is classified as malicious. As a classifier, the detector has an accuracy which 
underpins the probability of correctness of the alerts it generates. Moreover, some 
detectors will also provide a confidence score for the alert which can be used to 
further refine the alert’s probability.
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Therefore, to calculate π for an alert, we first need to define its expected accu-
racy. There are different levels of granularity that can be used when performing the 
accuracy calculation. The coarsest grain (and simplest) calculation would be to cal-
culate the precision (Positive Predicted Value—PPV) of the detector as a whole by 
evaluating it against different datasets and use that as the surrogate. The precision is 
used in this case because it describes the ratio of true positives among all predicted 
positive elements, in other words, it is congruent to the probability of a predicted 
positive observation (an alert in our case) being a true positive. 

This is simple but the values obtained may be too generic and thus not as useful. 
A finer grained approach would be to group alerts based on a common factor and 
calculate the accuracy for each group separately. The grouping can be done in several 
different ways like by severity, by family of attacks, by individual attack type inside 
a family or even by individual rules or anomaly metrics. These would provide more 
specific probability values but on the other hand would require much more data in 
order to be calculated meaningfully. If there are no examples or not enough examples 
of a given alert in the datasets, then the respective values cannot be calculated using 
this approach or at least not calculated meaningfully. In these cases, the general 
detector accuracy would have to be used. 

In cases where a confidence score is available, we compute the alert probability 
by combining the detector accuracy and the confidence score into a probability value 
through score calibration. The score calibration process is described in more detail 
in a separate report [10]. 

Finally, recall that alerts are not added directly to the graph, instead, similar alerts 
of the same type, origin and target that occur in a short time frame are grouped into 
alert groups. In most cases, all alerts of the same type will have the same π , hence, 
the probability of any alert can be used as the probability of the group. The exception 
to that is cases where different alerts have different confidence scores. In those cases, 
to obtain π of an alert group A from it’s constituent alerts Ai we pick the probability 
of the alert with the highest confidence. Formally, π( A) is defined as: 

π(A) = n 
max 
i=1 

π(Ai ) (2) 

The probability of correctness serves as a starting point to inferences, derivation or 
other types of analyses in the graph as seen in the following sections. 

5.2 Probability Model Usage and Application 

It is expected that the basic probability assignment (i.e. alert probability) will be fed 
to the model by leveraging the threat detection systems (IDSes, AVs, anti-phishing 
systems) already available in the organization. However, this is not required. Regard-
less of whether there are some pre-existing IDSes in the organization, the AEN will 
provide independently its own threat detection schemes which encompass attack fin-
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gerprinting, graph clustering and unsupervised statistical threat detection and that 
will be fed back to the model. As a result, the AEN threat detection scheme will 
also provide some of the classification schemes mentioned in the above probability 
model. As new threats are discovered by the AEN threat detection schemes, alerts 
will be generated and incorporated in the graph model along with the alerts gener-
ated by other pre-existing schemes if applicable. Although the AEN threat detection 
schemes could leverage the alerts generated by pre-existing schemes, it is our goal, 
currently, to keep them separate to ensure the independence of the AEN schemes. In 
future work, we will explore how pre-existing alerts information can be leveraged 
by the AEN threat detection schemes for detection purpose. 

Currently, we use the AEN probability model mainly for threat assessment and 
visualization, and providing underlying context and explanatory information. This 
is based on the concept of threat horizon and reverse threat horizon. 

The horizon of node u can be understood to be the set of all possible nodes which 
u could have affected or exchanged data with. In the case of an attack, all the nodes 
for which a direct journey exists are nodes that the attacker could have compromised 
directly, even if only temporarily. On the other hand, nodes for which only indirect 
journey exists can only have been compromised if somewhere along the journey the 
attacker was able to permanently compromise the system either through some kind 
of outbound connection to its servers or through the installation of an automated 
malware. 

That demonstrates the importance and capacity of the horizon in regards to the 
forensic analysis of the network. It provides a complete view of the network from the 
point of view of the originating node and defines what could possibly be within its 
reach should it be a threat to the network. In other words, the horizon can be viewed 
as the subset of nodes which can be threatened by another node. 

Under this optics, the horizon of a node u is here defined as its Threat Horizon, 
denoted as 

−−→
T Hu , and defined as the subset of N in which all elements are reachable 

from u. Formally: 

−−→
T Hu ⊆ N , −−→

T Hu = {w ∈ N : u ↝ w} (3) 

Inversely, the Reverse Threat Horizon of a node v, denoted as 
←−−
T Hv , identifies, from 

the point of view of a target node, which network nodes could have attacked and 
compromised it. It is defined as the subset of N in which all elements can reach v. 
Formally: 

←−−
T Hv ⊆ N , ←−−

T Hv = {w ∈ N : w ↝ v} (4) 

The Threat Horizon can be used as a starting point of any node specific analysis. 
The first step is to select the best source node for the Threat Horizon, which is 
characterized by its power to link distinct attacks together. Therefore, the selection, 
when available, of owners, common domains or users might result in a combined 
Threat Horizon of multiple attacks.
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The same applies for identifying the target node of the Reverse Threat Horizon. 
Generically, those nodes are called the focal points of analysis. 

By using the basic probability model defined above for the AEN model we can 
derive probability measures for the threat horizon and reverse threat horizon, and use 
these values to guide threat assessment, visualization, and forensic analysis. This is 
an ongoing work that will be presented in more details in future papers. 

6 Graph Construction and Framework Implementation 

6.1 Framework Architecture 

The system architecture of the AEN framework is depicted in Fig. 2. 
The central component of the system is the AEN Engine, which is responsible for 

maintaining the AEN graph. It provides key functionalities like processing and aggre-
gating incoming data through data receivers, attack fingerprint matching, proactive 
third-party data collection to supplement other incoming data, anomaly detection 
and the probabilistic model underlying the AEN graph. 

The engine stores the graph in a custom-made, in-memory, graph database with 
capabilities to add, update, remove and search for graph elements. Persistence is 
obtained via frequent storage of snapshots which can be reloaded from the disk 
in case of a failure or to review a previous graph state. These snapshots can also 
be shared with other tools and systems that provide other auxiliary operations or 
functionalities like visualization of the graph or scalability via read replicas. 

Both the engine and the graph database are implemented in Java and are executed 
in a single process which allows for direct memory access of the graph elements, 
thus avoiding any extra serialization overhead. 

The engine provides two operation modes. The first one is the online mode, in 
which real-time data is continuously collected from external machines and devices 
by a client application which then pre-processes and sends the live data to the engine. 

Fig. 2 AEN system architecture
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Table 1 Bot-IoT files used in experiment 

Type Name 

Data exfiltration IoT_Dataset_data_theft__00002_20180618111101.pcap 

Data exfiltration IoT_Dataset_data_theft__00013_20180618112736.pcap 

OS scan IoT_Dataset_OSScan__00001_20180521140502.pcap 

OS scan IoT_Dataset_OSScan__00003_20180521150020.pcap 

Service scan IoT_Dataset_ServiceScan__00007_20180515133133.pcap 

Service scan IoT_Dataset_ServiceScan__00007_20180521224912.pcap 

UDP DDos IoT_Dataset_UDP_DDoS__00019_20180604180729.pcap 

The second one is the offline mode, in which previously collected data is added to 
the graph directly. In both cases, AEN Engine uses data ingestion queue which sorts 
the data chronologically and controls the flow of data. 

The current implementation supports network traffic data, either raw or flow data, 
some syslogs, IDS alert logs from Snort, Zeek and custom alerts derived from Kit-
sune’s anomaly detection output and pre-collected IP addresses information derived 
from DNS and WHOIS queries, which the engine can also actively query for if the 
data is not available. 

6.2 Case Study Based on a Cyperphysical Security Dataset 

To better demonstrate the functionalities and capabilities of the AEN Graph, we 
performed an experiment using the BoT-IoT dataset [2–7], provided by the Cyber 
Range Lab of the University of New South Wales (UNSW) Canberra, which consists 
of legitimate and simulated Internet of Things (IoT) network traffic, along with 
different botnet attacks. 

The graph was generated using a subset of the dataset with 1.4 GB of pcap data 
comprising part of the available UDP-based DDoS, OS scans, service scans and data 
exfiltration attacks. Table 1 lists the selected files. This data resulted in a graph with 
236 nodes, including 56 hosts, and 337, 349 edges, including 337, 073 sessions. 

Figure 3 shows a zoomed out visualization of most of the resulting graph. Blue 
nodes are hosts while the edges between them are sessions. To help visualization, 
multiple edges between the same nodes are combined into a single, thicker, edge. 
Note how the graphical representation of the data clearly shows a cluster of activ-
ity around a few hosts with high inter-connectivity and outside of that a host with 
high centrality that initiated connections to several different hosts. It’s those kind of 
patterns that can be identified by matching algorithms to expose otherwise hard to 
identify relationships between hosts and anomalous or known malicious behaviours. 

By zooming in and adding labels to the graph elements, it is possible to see in 
more detail how the different node types are interconnected through the different 
edges. Figure 4 shows that visualization.
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Fig. 3 Zoomed out AEN graph sample derived from the BoT-IoT dataset 

Fig. 4 Zoomed in AEN graph sample derived from the BoT-IoT dataset 

To label the graph, we derived host labels from the dataset’s flow-level labels such 
that any host is labelled as malicious if it originated any flow labelled as being part 
of an attack. Out the 56 hosts in the graph, 8 are labelled as malicious, a prevalence 
of 14.3%. 

As a base of comparison, we first ran the data used to build the graph through 
Snort IDS using the rules available on its website for registered users. To classify 
hosts, we followed a similar rule based on the Snort alerts, with hosts that were the 
source of any alert being classified as malicious by Snort. 

The results show a high number of errors, with it only being able to correctly 
classify 4 out of the 8 malicious hosts and 34 out of the 48 benign hosts. A high 
number of type II errors is expected given that Snort is a signature based IDS but on 
the other hand, the high number of false positives (type I errors) was not expected 
for the same reason. Table 2 presents the resulting confusion matrix.
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Table 2 Confusion matrix of the Snort IDS 

Predicted 

Malicious Benign 

Actual Malicious 4 (50%) 4 (50%) 
Benign 14 (29%) 34 (71%) 

Table 3 Confusion matrix of the AEN’s anomaly detection algorithms 

Predicted 

Malicious Benign 

Actual Malicious 8 (100%) 0 (0%) 
Benign 4 (8%) 44 (92%) 

More specifically, the performance of the Snort IDS for the dataset is thus: Sen-
sitivity of 50%, specificity of 71%, precision of 22% and negative prediction rate of 
89%. That gives a F1-score of 0.3 and a Matthews Correlation Coefficient (MCC) 
of 0.15. 

Afterwards, we executed the anomaly detection algorithms of the AEN [9] against  
the generated graph and followed the simple classification rule in which each host 
identified as anomalous was classified as malicious. 

The anomaly detection algorithms were able to identify all 8 hosts as anomalous 
but also identified further 4 benign hosts as anomalous. Table 3 presents the resulting 
confusion matrix. 

Compared to the results obtained by Snort, our algorithms exhibited a much higher 
performance with a sensitivity of 100%, specificity of 92%, precision of 67% and 
negative prediction rate of 100%. Furthermore, the F1-score is 0.8 and the MCC is 
0.78. 

Finally, we also performed matches against our attack fingerprint database as 
described in [8]. As in the other cases, host classification adhered to the simple rule 
where a host was classified as malicious if it was reported as matching by the detector. 
In this case, that meant the host was identified as being the source of an attack pattern 
that matched any of the stored fingerprints. 

Like Snort, the fingerprint were able to correctly classify the same 4 out of the 8 
malicious hosts. However, it did not misclassify any of the 48 benign hosts, which is 
expected given that (a) it is by nature signature based and (b) only a few fingerprints 
are available. Table 4 presents the resulting confusion matrix. 

Compared to the results obtained by Snort, the fingerprint matching also showed 
a much higher performance with a sensitivity of 50%, specificity of 100%, precision 
of 100% and negative prediction rate of 92%. Furthermore, the F1-score is 0.67 and 
the MCC is 0.68.



232 P. G. Quinan et al.

Table 4 Confusion matrix of the fingerprint matching 

Predicted 

Malicious Benign 

Actual Malicious 4 (50%) 4 (50%) 
Benign 0 (0%) 48 (100%) 

When compared with the anomaly detection, it showed a better false positive 
rate compared to a worst false negative error which is natural given their different 
characteristics and shows they can be complimentary. 

7 Conclusion 

The AEN graph model is a new paradigm that allows the capture and analysis of the 
activities and events involved in the operation of networked systems and data centers. 
In the current chapter, we have defined the graph model elements and provided an 
overview of the underlying probability model. While the focus of the current chapter 
is on graph construction only, future papers will present in more detail our approaches 
for threat detection using the AEN graph model. 
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