
Activity and Event Network Graph
and Application to Cyber-Physical
Security

Paulo Gustavo Quinan, Issa Traoré, and Isaac Woungang

Abstract The Activity and Event Network (AEN) is a new large graph model that
enables describing and analyzing continuously in real-time key security relevant
information about the operations of networked systems and data centers. The model
allows identifying long-term and stealthy attack patterns, which may be difficult to
capture using traditional approaches. The current chapter focuses on defining the
model elements and the underlying graph construction algorithms, and presents a
case study based on a cyberphysical security dataset.

Keywords Activity and event network · AEN graph · Graph model · Long-term
attack · Attack patterns · Stealthy attack · Graph construction algorithm ·
Cyber-physical security · Probability model · Framework · Architecture

1 Introduction

Recently, it was discovered that a state-sponsored hacker group has been infiltrating
the European Union’s (EU) diplomatic communications network for years, down-
loading thousands of sensitive cables. The attack ran undetected for a three-year
period and targeted more than 100 organizations and institutions, such as the United
Nations and ministries of foreign affairs and finance. The attack is a type of emerging
threat consisting of targeted and long-term campaigns delivered by skilled hackers
who have clearly defined objectives and relentlessly work towards achieving their
aims. These breaches can go undetected for a long period of time because of the
hackers’ ability to adapt to and escape defensive methods.

P. G. Quinan (B) · I. Traoré
University of Victoria, Victoria, Canada
e-mail: quinan@uvic.ca

I. Traoré
e-mail: itraore@ece.uvic.ca

I. Woungang
Ryerson University, Toronto, Canada
e-mail: iwoungan@ryerson.ca

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
I. Traore et al. (eds.), Artificial Intelligence for Cyber-Physical Systems Hardening,
Engineering Cyber-Physical Systems and Critical Infrastructures 2,
https://doi.org/10.1007/978-3-031-16237-4_10

217

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16237-4_10&domain=pdf
quinan@uvic.ca
 854 51016 a 854 51016
a

mailto:quinan@uvic.ca
itraore@ece.uvic.ca
 854 53894 a 854 53894
a

mailto:itraore@ece.uvic.ca
iwoungan@ryerson.ca
 854 57879 a 854 57879 a

mailto:iwoungan@ryerson.ca
https://doi.org/10.1007/978-3-031-16237-4_10
 -2047 62940
a -2047 62940 a

https://doi.org/10.1007/978-3-031-16237-4_10

218 P. G. Quinan et al.

Noticeably, there has been an evolution from volume-based attacks towards stealth
like low and slow style attacks. Although volumetric attacks often occur within a set
time frame, low and slow attacks rely on an ongoing stream of malicious requests and
have no distinct beginning or end. This makes their detection by current Intrusion
Detection Systems (IDSs) and Security Information and Event Management (SIEM)
tools challenging.

The Activity and Event Network (AEN) graph model is a new security knowledge
graph whose goal is to spearhead the development of a new generation of security
data analytics techniques that can gain better situational awareness of the threat
environment and allow detecting, responding and investigating sophisticated and
stealthy attacks using data from both the traditional security ecosystem and beyond
the organization perimeter. It leverages the large dynamic uncertain multigraph theory
to coherently express and analyse security data across various heterogeneous data
sources and meaningfully link seemingly innocuous and unrelated events to expose
hidden and long-term attack patterns. The purpose of the current chapter is to define
the AEN graph model elements and corresponding graph construction algorithms.
Furthermore, a cyberphysical security dataset is used to illustrate some of the threat
detection capability of the AEN model. One of the prime targets of long term attacks
are cyber-physical systems, where quite often security is treated as an afterthought
in system design and configuration.

The remainder of the chapter is structured as follows. Section 2 defines the theoret-
ical foundation of the AEN graph model. Section 3 presents the data sources used to
construct the graph. Section 4 defines the AEN graph model elements by presenting
the node and edge types involved. Section 5 gives an outline of the AEN underlying
probability model. Section 6 gives an overview of the AEN framework architecture
and present a case study based on BoT-IoT cyberphysical security dataset. Section 7
makes some concluding remarks.

2 AEN Graph Theoretic Model

To start describing the AEN model, it is important to consider the most basic con-
stituent elements of a network of interconnected devices like hosts, how they com-
municate with one another and that those elements have their own characteristics.
The model, therefore, needs to incorporate those pieces of information. However,
the data used to extract them might be incomplete, noisy or simply incorrect. That
means the model must also be able to describe said uncertainty.

Also of importance is the network’s dynamism: At any moment devices or hosts
can be added or removed from the network; they can start or stop exchanging data;
IP addresses can be recycled; devices can be infected and later be fixed, patched or
updated etc. It follows that to be able to track the past existence of elements and
their relationships through time, the model needs to maintain information on the
time spans in which each element has existed. The dynamic graph model defined by
Casteigts et al. [1] is used to formalize this control, with two changes: the first is

Activity and Event Network Graph and Application … 219

that the model is expanded to combine probabilistic and temporal existence, while
the second is the exclusion of latencies since they are negligible in the scope of this
work. With that, important chronological relationships can be identified.

To summarize, the graph model has the following characteristics:

• Nodes have their own attributes. Thus nodes are labelled;
• Nodes can have multiple relationships at the same time. Thus nodes can have
multiple edges between them;

• Relationships have a source and a destination. Thus edges are directed;
• Relationships have their own properties. Thus edges are labelled;
• Both relationships and nodes can be uncertain. Thus nodes and edges are weighed
by probabilities of correctness, that is, that the information they represent is correct;

• Nodes and edges change through time and have an existence time span;
• Changes occur continuously;
• Processing times and latencies are negligible.

Those characteristics define the graph as a Dynamic Uncertain Directed Multigraph.
Formally, it is defined as the 11-tuple

G = (N , E, s, t, ΣN , ΣE , 	ℓN , 	ℓE , T , πN , πE) (1)

where

• N is the set of all nodes of the graph as mentioned above;
• E is the set of edges representing relationships between nodes;
• s : E → N , which assigns edges to their source nodes;
• t : E → N , which assigns edges to their target nodes;
• ΣN is a finite alphabet of available node labels;
• ΣE is a finite alphabet of available edge labels;
• 	ℓN : N → ΣN is a map describing the labels of nodes;
• 	ℓE : E → ΣE is a map describing the labels of edges;
• T ⊆ R+, that is, the time domain of the graph is in the positive real numbers;
• πN : N × T → (0, 1], which assigns correctness probability values to nodes over
time;

• πE : E × T → (0, 1], which assigns conditional correctness probability values to
edges over time given their endpoints.

3 AEN Data Sources

To construct the graph, heterogeneous data sources are used to extract data features
capable of identifying nodes, relationships and their attributes. These involve both
data sources available within the security perimeter as well as external data sources
available through third-party services. Examples of internal data sources include

220 P. G. Quinan et al.

network traffic logs, flow data, system logs, firewall logs, IDS alerts, anti-virus (AV)
logs and email security logs, while examples of external data sources include Domain
Name Server (DNS) queries and WHOIS. Of special note are the data sources which
report security events or suspicious activity, like IDSes or SIEMs. Generically they
are called detectors and their reports or logs are generically called alerts.

The features extracted from the data sources can be divided into two categories
related to how they are collected:

1. First-order features, which are collected directly from the sources;
2. Second-order features which are derived from the available data either by actively

using different tools and services or by mining them into aggregates.

First-order features can be further divided into two groups according to where they
are sourced from:

• Network, which are the more traditional data used by IDS derived by analysis
of the network traffic. Its features are: IP Address, Transport Protocol, Transport
Port, and Content-Type.

• Application, which are the data collected from log analysis of known applica-
tions in the network and from service calls either to or from said applications
in case those applications are programmed to provide such functionality. This
would include data sources like hypervisor logs, syslogs and IDS alerts. Its fea-
tures are: Application, User, Authentication State, Attack Type, Alert Confidence,
and Device fingerprint.

Second-order features can also be further divided into two groups:

• Third-Party, which are collected by actively contacting external services or per-
forming scans in order to collect more data about a certain entity. Its features
are: Domain name, IP Address, Name server, Autonomous System Number (ASN),
Location, Name, Email, and Operating System (OS).

• Aggregates, which are mined from the aforementioned features and from the
model itself and may consist of temporal or spatial aggregates.

4 Graph Model Elements

In this section, we present the AEN graph model elements, specifically the node and
edge types involved, and provide some illustrative examples. By analyzing the first
and second-order features described in the preceding section, it is possible to identify
some distinguishable characteristics in them that give clues into how the graph can
be constructed. The first one is how each feature can be better used to model the
network. Some of them, like IP addresses and domain names, can form relationships
among themselves. These features are the nodes of the graph and their relationships

Activity and Event Network Graph and Application … 221

are the edges. On the other hand, features like protocol and port are better employed
as descriptors of said relationships and, therefore, are used to define attributes of
either nodes or edges.

More generally, the nodes of the model are defined by any feature for which
useful relationships could be formed, and the edges of the graph are defined by those
relationships and their direction. The remaining features are used to define attributes
of either nodes or edges.

4.1 AEN Nodes

Nodes can be classified into two distinct groups:

• Active nodes: Also called actors, active nodes are nodes that can be a source, a
target, or a stepping stone (i.e., intermediary) in an attack. Examples of actors are
hosts (either labelled by IP addresses or domain names), users (usually identified
by authenticators like user name and email address) and devices. Active nodes can
be further divided into:

– Internal actors, which belong to or are under the control of the organization;
– External actors, which are located outside the perimeter of the organization.

• Passive nodes: Nodes that carry some information or granular attributes for actors
like DNS derived domain names and location nodes.

There are different types of nodes with each type having different features, as follows:

• Account: Represents an account in a system or application. It is derived from
application and system logs and has the following properties:

– Identifier
– Application

• Alert Group: Aggregation of related detector alerts, called raw alerts internally,
that might be generated in a short time frame thus associated to a single event or
attack. It has the following properties:

– Protocol
– Source IP
– Source port
– Destination IP
– Destination port
– Service
– Classification
– Start time
– Stop time

222 P. G. Quinan et al.

– Severity
– Confidence
– Alert count

• Domain: Represents the domain name of an IP address. It is derived from a reverse
DNS lookup of an IP address. When an IP address is identified, a DNS Reverse DNS
lookup cycle is formed until the complete Domain/IP relationship is found. This
is useful to identify attacks using Fast-Flux DNS and Algorithmically Generated
Domains (AGDs). It has the following property:

– Name

• Host: Represents a network host that communicates with other hosts in the net-
work. It is an active node type and it is the most important node type of the model,
from which almost all other elements originate. It is derived from different data
sources like network data (packets or flow data), logs and alerts. It may be labelled
with host-specific aggregates and historical information like if it was ever part of
an attack, etc. It has the following property:

– Identifier: Piece of information that can be used to consistently and uniquely
identify a host though time, like IP address, MAC address, fingerprint or just a
generic identifier value. Note that the IP address is not the ideal identifier for
this case but given its ubiquity, it is used when other identifiers are not available.

• IP Address: Represents an individual IP address. It can be a first-order feature,
derived from network data, logs or alerts, or a second-order feature when it is
derived from DNS lookups or Network Address Translation (NAT) table conver-
sions. It has the following property:

– IP address

• IP Range: Represents a range of IP addresses. It is derived from WHOIS queries
and has the following property:

– Classless Inter-Domain Routing (CIDR) block

• Location: Represents a geographical location. It is derived from WHOIS queries
or from IP geolocation services. It is useful to correlate hosts from similar locations
and attribute attacks. It has the following property:

– Tag: a combination of city, state/province, region and country according to what
is available on the result of the query

• Organization: Represents an organization which controls a range or IP addresses
or owns domain names. It is derived from WHOIS queries and has the following
property:

– Name

Activity and Event Network Graph and Application … 223

• Person: Represents a person who is listed as being an administrator or owner of a
range of IP addresses, organization or domain names. It is derived from WHOIS
queries and has the following properties:

– Name
– Email

4.2 AEN Edges

Each node type has different types of edges originating from and terminating in them.
The different types of edges and their features (when applicable) are as follows:

• Authentication Attempt Account → Host : Represents an authentication
attempt of an account into a host. It has the following properties:

– Timestamp
– Source IP
– Successful: Whether the authentication was successful or not

• Triggered By AlertGroup → Host : Describes the source of an alert group
• Used Host → I P Address: Expresses that a host used an IP address to send data
• IP Located At I P Address → Location: Links an IP address to its location as
defined by the WHOIS or geolocation query performed when the IP address was
first added to the graph or when the relationship was considered stale

• Part Of I P Address → I P Range: Links an IP address with its IP range as
defined by the WHOIS query performed when the IP address was first added to
the graph or when the relationship was considered stale

• Resolved To I P Address → Domain: Links an IP with its domain name as
returned by the reverse DNS query performed when the IP address was first added
to the graph or when the relationship was considered stale

• Controls Organization → I P Range: Expresses that an organization controls
an IP Range as described by the WHOIS queries performed when the IP Range
was first added to the graph or when the relationship was considered stale

• Organization Located At Organization → Location: Links an IP address to
its location as defined by the WHOIS query performed when the first IP belonging
to the organization was first added to the graph or when the relationship was
considered stale

• Owns Person → Domain: Represents an ownership relationship between a per-
son and a domain as described by the WHOIS query performed when an IP that
resolved to this Domain was first added to the graph or when the relationship was
considered stale

• Session Host → Host : Represents a communication session between two hosts
on the same protocol, ports and within a certain activity time window. Its direction

224 P. G. Quinan et al.

is based on who initiated the connection. It is primarily an aggregation of network
data, but data from other sources like logs and alerts that can be used to identify
such communication is also used in order to fill up possible gaps in the network
data available. It has the following properties:

– Start time
– Stop time
– Protocol
– Source port
– Destination port
– Source size: Sum of the length of all packets from source to destination
– Destination size: Sum of the length of all packets from destination to source
– TCP state: Only applicable for TCP packets, it describes the state of the TCP
connection as of the last packet belonging to this session, that is, if the connection
has been established (handshake completed), finished or has only ever started
but not been established

– Packet count: The number of packets exchanged between the hosts as part of
the session

– Fragmented packet count: The number of fragmented packets exchanged
between the hosts as part of the session

– Alert count: The number of alerts generated as part of the session

5 AEN Probability Model

5.1 Probability Model Definition

The basic probability assignment involved in the AEN model consists of the proba-
bility of correctness, π , for graph elements (nodes and edges) and feature confidence.
At inception, each graph element is assigned an correctness probability which stems
from the originating data.

Most graph elements are derived from data that in some way can be categorized
as deterministic; like when packets related to a TCP handshake between two hosts
are received, the model can be certain that those two hosts are communicating and
in what direction, or when an application reports that an authentication attempt was
made for a certain account there is no doubt regarding the application or the account
being used. In these cases, π is trivial and set to 1, or more technically to 1 − ∈,
where ∈ represents the inherent probability the data injected into the system has been
faked, tampered or corrupted.

On the other hand, a few data sources are inherently imperfect, which introduces
a layer of uncertainty to the nodes, relationships and attributes they generate and thus
must be taken into consideration. Examples of these data sources include IDSes or
other detectors, user/device fingerprinting schemes, geolocation services etc. More

Activity and Event Network Graph and Application … 225

Fig. 1 Example of probability modelling in the AEN graph and the resulting most probable sub-
graph derivation

than that, in some cases the data have a higher probability of being faked or spoofed,
like a stray IP packet not part of a established communication between two hosts
which is more likely to have a spoofed source address. In these cases, the correctness
probability for the graph elements will correspond to the expected accuracy of the
data.

As an example, consider the hypothetical scenario where the geolocation service
assigns for a given IP address 90% probability of it being from Hungary and 10%
probability of it being from Poland at a given point in time t ∈ T . Based on that, one
IP Address node and two Location nodes will be added to the graph. The two countries
exist beyond any doubt so their π are set to 1. Likewise, the IP address, at least as
a member of the set of all possible IP addresses, also exists, and is therefore also
assigned π = 1. From there, one edge between the IP Address and each of the two
Location nodes constrained to t are also added with their probability of correctness
being set to the respective probability returned by the geolocation service. In such a
manner, both possible, but conflicting, relationships can be modelled and, at a later
point, used as part of different inference processes.

Figure 1 depicts a sample graph based on the above scenario with (a) showing the
full graph representing the 2 conflicting relationships and (b) showing the resulting
“most probable graph” derivation. Future data might result in updated values and
thus different derivation results.

In the above scenario, all probabilities are equivalent to probabilities of existence,
however, that is not always the case. Consider now an alert added to the graph. Short
of an attacker being able to inject a false alert into the system, the model can be sure
that the alert exists and was generated by the detector. Therefore, its probability of
existence is equal to 1 − ∈. That, however, doesn’t properly represent the uncertainty
regarding the alert. Instead, what is important in this case is describing the probability
of the alert being correct, that is, not a false alarm.

Generally, a detector can be considered as a binary classifier that classifies events
as either malicious (or at least suspicious) or benign and generates alerts when an
event is classified as malicious. As a classifier, the detector has an accuracy which
underpins the probability of correctness of the alerts it generates. Moreover, some
detectors will also provide a confidence score for the alert which can be used to
further refine the alert’s probability.

226 P. G. Quinan et al.

Therefore, to calculate π for an alert, we first need to define its expected accu-
racy. There are different levels of granularity that can be used when performing the
accuracy calculation. The coarsest grain (and simplest) calculation would be to cal-
culate the precision (Positive Predicted Value—PPV) of the detector as a whole by
evaluating it against different datasets and use that as the surrogate. The precision is
used in this case because it describes the ratio of true positives among all predicted
positive elements, in other words, it is congruent to the probability of a predicted
positive observation (an alert in our case) being a true positive.

This is simple but the values obtained may be too generic and thus not as useful.
A finer grained approach would be to group alerts based on a common factor and
calculate the accuracy for each group separately. The grouping can be done in several
different ways like by severity, by family of attacks, by individual attack type inside
a family or even by individual rules or anomaly metrics. These would provide more
specific probability values but on the other hand would require much more data in
order to be calculated meaningfully. If there are no examples or not enough examples
of a given alert in the datasets, then the respective values cannot be calculated using
this approach or at least not calculated meaningfully. In these cases, the general
detector accuracy would have to be used.

In cases where a confidence score is available, we compute the alert probability
by combining the detector accuracy and the confidence score into a probability value
through score calibration. The score calibration process is described in more detail
in a separate report [10].

Finally, recall that alerts are not added directly to the graph, instead, similar alerts
of the same type, origin and target that occur in a short time frame are grouped into
alert groups. In most cases, all alerts of the same type will have the same π , hence,
the probability of any alert can be used as the probability of the group. The exception
to that is cases where different alerts have different confidence scores. In those cases,
to obtain π of an alert group A from it’s constituent alerts Ai we pick the probability
of the alert with the highest confidence. Formally, π(A) is defined as:

π(A) = n
max
i=1

π(Ai) (2)

The probability of correctness serves as a starting point to inferences, derivation or
other types of analyses in the graph as seen in the following sections.

5.2 Probability Model Usage and Application

It is expected that the basic probability assignment (i.e. alert probability) will be fed
to the model by leveraging the threat detection systems (IDSes, AVs, anti-phishing
systems) already available in the organization. However, this is not required. Regard-
less of whether there are some pre-existing IDSes in the organization, the AEN will
provide independently its own threat detection schemes which encompass attack fin-

Activity and Event Network Graph and Application … 227

gerprinting, graph clustering and unsupervised statistical threat detection and that
will be fed back to the model. As a result, the AEN threat detection scheme will
also provide some of the classification schemes mentioned in the above probability
model. As new threats are discovered by the AEN threat detection schemes, alerts
will be generated and incorporated in the graph model along with the alerts gener-
ated by other pre-existing schemes if applicable. Although the AEN threat detection
schemes could leverage the alerts generated by pre-existing schemes, it is our goal,
currently, to keep them separate to ensure the independence of the AEN schemes. In
future work, we will explore how pre-existing alerts information can be leveraged
by the AEN threat detection schemes for detection purpose.

Currently, we use the AEN probability model mainly for threat assessment and
visualization, and providing underlying context and explanatory information. This
is based on the concept of threat horizon and reverse threat horizon.

The horizon of node u can be understood to be the set of all possible nodes which
u could have affected or exchanged data with. In the case of an attack, all the nodes
for which a direct journey exists are nodes that the attacker could have compromised
directly, even if only temporarily. On the other hand, nodes for which only indirect
journey exists can only have been compromised if somewhere along the journey the
attacker was able to permanently compromise the system either through some kind
of outbound connection to its servers or through the installation of an automated
malware.

That demonstrates the importance and capacity of the horizon in regards to the
forensic analysis of the network. It provides a complete view of the network from the
point of view of the originating node and defines what could possibly be within its
reach should it be a threat to the network. In other words, the horizon can be viewed
as the subset of nodes which can be threatened by another node.

Under this optics, the horizon of a node u is here defined as its Threat Horizon,
denoted as

−−→
T Hu , and defined as the subset of N in which all elements are reachable

from u. Formally:

−−→
T Hu ⊆ N , −−→

T Hu = {w ∈ N : u ↝ w} (3)

Inversely, the Reverse Threat Horizon of a node v, denoted as
←−−
T Hv , identifies, from

the point of view of a target node, which network nodes could have attacked and
compromised it. It is defined as the subset of N in which all elements can reach v.
Formally:

←−−
T Hv ⊆ N , ←−−

T Hv = {w ∈ N : w ↝ v} (4)

The Threat Horizon can be used as a starting point of any node specific analysis.
The first step is to select the best source node for the Threat Horizon, which is
characterized by its power to link distinct attacks together. Therefore, the selection,
when available, of owners, common domains or users might result in a combined
Threat Horizon of multiple attacks.

228 P. G. Quinan et al.

The same applies for identifying the target node of the Reverse Threat Horizon.
Generically, those nodes are called the focal points of analysis.

By using the basic probability model defined above for the AEN model we can
derive probability measures for the threat horizon and reverse threat horizon, and use
these values to guide threat assessment, visualization, and forensic analysis. This is
an ongoing work that will be presented in more details in future papers.

6 Graph Construction and Framework Implementation

6.1 Framework Architecture

The system architecture of the AEN framework is depicted in Fig. 2.
The central component of the system is the AEN Engine, which is responsible for

maintaining the AEN graph. It provides key functionalities like processing and aggre-
gating incoming data through data receivers, attack fingerprint matching, proactive
third-party data collection to supplement other incoming data, anomaly detection
and the probabilistic model underlying the AEN graph.

The engine stores the graph in a custom-made, in-memory, graph database with
capabilities to add, update, remove and search for graph elements. Persistence is
obtained via frequent storage of snapshots which can be reloaded from the disk
in case of a failure or to review a previous graph state. These snapshots can also
be shared with other tools and systems that provide other auxiliary operations or
functionalities like visualization of the graph or scalability via read replicas.

Both the engine and the graph database are implemented in Java and are executed
in a single process which allows for direct memory access of the graph elements,
thus avoiding any extra serialization overhead.

The engine provides two operation modes. The first one is the online mode, in
which real-time data is continuously collected from external machines and devices
by a client application which then pre-processes and sends the live data to the engine.

Fig. 2 AEN system architecture

Activity and Event Network Graph and Application … 229

Table 1 Bot-IoT files used in experiment

Type Name

Data exfiltration IoT_Dataset_data_theft__00002_20180618111101.pcap

Data exfiltration IoT_Dataset_data_theft__00013_20180618112736.pcap

OS scan IoT_Dataset_OSScan__00001_20180521140502.pcap

OS scan IoT_Dataset_OSScan__00003_20180521150020.pcap

Service scan IoT_Dataset_ServiceScan__00007_20180515133133.pcap

Service scan IoT_Dataset_ServiceScan__00007_20180521224912.pcap

UDP DDos IoT_Dataset_UDP_DDoS__00019_20180604180729.pcap

The second one is the offline mode, in which previously collected data is added to
the graph directly. In both cases, AEN Engine uses data ingestion queue which sorts
the data chronologically and controls the flow of data.

The current implementation supports network traffic data, either raw or flow data,
some syslogs, IDS alert logs from Snort, Zeek and custom alerts derived from Kit-
sune’s anomaly detection output and pre-collected IP addresses information derived
from DNS and WHOIS queries, which the engine can also actively query for if the
data is not available.

6.2 Case Study Based on a Cyperphysical Security Dataset

To better demonstrate the functionalities and capabilities of the AEN Graph, we
performed an experiment using the BoT-IoT dataset [2–7], provided by the Cyber
Range Lab of the University of New South Wales (UNSW) Canberra, which consists
of legitimate and simulated Internet of Things (IoT) network traffic, along with
different botnet attacks.

The graph was generated using a subset of the dataset with 1.4 GB of pcap data
comprising part of the available UDP-based DDoS, OS scans, service scans and data
exfiltration attacks. Table 1 lists the selected files. This data resulted in a graph with
236 nodes, including 56 hosts, and 337, 349 edges, including 337, 073 sessions.

Figure 3 shows a zoomed out visualization of most of the resulting graph. Blue
nodes are hosts while the edges between them are sessions. To help visualization,
multiple edges between the same nodes are combined into a single, thicker, edge.
Note how the graphical representation of the data clearly shows a cluster of activ-
ity around a few hosts with high inter-connectivity and outside of that a host with
high centrality that initiated connections to several different hosts. It’s those kind of
patterns that can be identified by matching algorithms to expose otherwise hard to
identify relationships between hosts and anomalous or known malicious behaviours.

By zooming in and adding labels to the graph elements, it is possible to see in
more detail how the different node types are interconnected through the different
edges. Figure 4 shows that visualization.

230 P. G. Quinan et al.

Fig. 3 Zoomed out AEN graph sample derived from the BoT-IoT dataset

Fig. 4 Zoomed in AEN graph sample derived from the BoT-IoT dataset

To label the graph, we derived host labels from the dataset’s flow-level labels such
that any host is labelled as malicious if it originated any flow labelled as being part
of an attack. Out the 56 hosts in the graph, 8 are labelled as malicious, a prevalence
of 14.3%.

As a base of comparison, we first ran the data used to build the graph through
Snort IDS using the rules available on its website for registered users. To classify
hosts, we followed a similar rule based on the Snort alerts, with hosts that were the
source of any alert being classified as malicious by Snort.

The results show a high number of errors, with it only being able to correctly
classify 4 out of the 8 malicious hosts and 34 out of the 48 benign hosts. A high
number of type II errors is expected given that Snort is a signature based IDS but on
the other hand, the high number of false positives (type I errors) was not expected
for the same reason. Table 2 presents the resulting confusion matrix.

Activity and Event Network Graph and Application … 231

Table 2 Confusion matrix of the Snort IDS

Predicted

Malicious Benign

Actual Malicious 4 (50%) 4 (50%)
Benign 14 (29%) 34 (71%)

Table 3 Confusion matrix of the AEN’s anomaly detection algorithms

Predicted

Malicious Benign

Actual Malicious 8 (100%) 0 (0%)
Benign 4 (8%) 44 (92%)

More specifically, the performance of the Snort IDS for the dataset is thus: Sen-
sitivity of 50%, specificity of 71%, precision of 22% and negative prediction rate of
89%. That gives a F1-score of 0.3 and a Matthews Correlation Coefficient (MCC)
of 0.15.

Afterwards, we executed the anomaly detection algorithms of the AEN [9] against
the generated graph and followed the simple classification rule in which each host
identified as anomalous was classified as malicious.

The anomaly detection algorithms were able to identify all 8 hosts as anomalous
but also identified further 4 benign hosts as anomalous. Table 3 presents the resulting
confusion matrix.

Compared to the results obtained by Snort, our algorithms exhibited a much higher
performance with a sensitivity of 100%, specificity of 92%, precision of 67% and
negative prediction rate of 100%. Furthermore, the F1-score is 0.8 and the MCC is
0.78.

Finally, we also performed matches against our attack fingerprint database as
described in [8]. As in the other cases, host classification adhered to the simple rule
where a host was classified as malicious if it was reported as matching by the detector.
In this case, that meant the host was identified as being the source of an attack pattern
that matched any of the stored fingerprints.

Like Snort, the fingerprint were able to correctly classify the same 4 out of the 8
malicious hosts. However, it did not misclassify any of the 48 benign hosts, which is
expected given that (a) it is by nature signature based and (b) only a few fingerprints
are available. Table 4 presents the resulting confusion matrix.

Compared to the results obtained by Snort, the fingerprint matching also showed
a much higher performance with a sensitivity of 50%, specificity of 100%, precision
of 100% and negative prediction rate of 92%. Furthermore, the F1-score is 0.67 and
the MCC is 0.68.

232 P. G. Quinan et al.

Table 4 Confusion matrix of the fingerprint matching

Predicted

Malicious Benign

Actual Malicious 4 (50%) 4 (50%)
Benign 0 (0%) 48 (100%)

When compared with the anomaly detection, it showed a better false positive
rate compared to a worst false negative error which is natural given their different
characteristics and shows they can be complimentary.

7 Conclusion

The AEN graph model is a new paradigm that allows the capture and analysis of the
activities and events involved in the operation of networked systems and data centers.
In the current chapter, we have defined the graph model elements and provided an
overview of the underlying probability model. While the focus of the current chapter
is on graph construction only, future papers will present in more detail our approaches
for threat detection using the AEN graph model.

References

1. Casteigts A, Flocchini P, Quattrociocchi W, Santoro N (2012) Time-varying graphs and
dynamic networks. Int J Parallel Emergent Distrib Syst 27(5):387–408

2. Koroniotis N (2020) Designing an effective network forensic framework for the investigation
of botnets in the Internet of Things. Ph.D. thesis, UNSW Canberra

3. Koroniotis N, Moustafa N (2020) Enhancing network forensics with particle swarm and deep
learning: the particle deep framework. In: International conference on artificial intelligence
and applications

4. Koroniotis N, Moustafa N, Schiliro F, Gauravaram P, Janicke H (2020) A holistic review of
cybersecurity and reliability perspectives in smart airports. IEEE Access 8:209802–209834

5. Koroniotis N, Moustafa N, Sitnikova E (2020) A new network forensic framework based on
deep learning for internet of things networks: a particle deep framework. Futur Gener Comput
Syst 110:91–106

6. Koroniotis N, Moustafa N, Sitnikova E, Slay J (2018) Towards developing network forensic
mechanism for botnet activities in the iot based on machine learning techniques. In: Hu J, Khalil
I, Tari Z, Wen S (eds) Mobile networks and management. Springer International Publishing,
Cham, pp 30–44

7. Koroniotis N, Moustafa N, Sitnikova E, Turnbull B (2018) Towards the development of realistic
botnet dataset in the internet of things for network forensic analytics: Bot-iot dataset

8. Nie C, Quinan PG, Traoré I, Woungang I (2022) Intrusion detection using a graphical fingerprint
model. In: 2022 22nd IEEE international symposium on cluster, cloud and internet computing
(CCGrid), pp 806–813

Activity and Event Network Graph and Application … 233

9. Quinan PG, Traore I, Gondhi UR, Woungang I (2022) Unsupervised anomaly detection using
a new knowledge graph model for network activity and events. In: Renault E, Boumerdassi
S, Mühlethaler P (eds) Machine learning for networking. Springer International Publishing,
Cham, pp 117–130

10. Yousef WA, Traore I, Briguglio W (2022) Classifier calibration: with application to threat
scores in cybersecurity. IEEE Trans Dependable Secure Comput, pp 1–1

	 Activity and Event Network Graph and Application to Cyber-Physical Security
	1 Introduction
	2 AEN Graph Theoretic Model
	3 AEN Data Sources
	4 Graph Model Elements
	4.1 AEN Nodes
	4.2 AEN Edges

	5 AEN Probability Model
	5.1 Probability Model Definition
	5.2 Probability Model Usage and Application

	6 Graph Construction and Framework Implementation
	6.1 Framework Architecture
	6.2 Case Study Based on a Cyperphysical Security Dataset

	7 Conclusion
	References

