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Assessment of Land Cover Changes 
in the Allala Watershed Based on Object 
Based Image Analysis Using Landsat 
and Sentinel-2 Images

Narimane Zaabar, Simona Niculescu, and Mustapha Kamel Mihoubi

Abstract The coastal city of Ténès, located in northwestern Algeria, is exposed to 
several natural hazards, such as floods, earthquakes, landslides, and forest fires. Due 
to human activities, socio-economic constructions, agricultural activities, and the 
resulting population acceleration, land cover and land use (LULC) dynamics in the 
city are changing over time. Hence, the understanding of LULC changes and its 
interactions with human activities and natural hazards is essential for appropriate 
land management and decision-making. In this study, we investigate LULC changes 
in the Allala watershed, including the city of Ténès, using remote sensing methods 
and Geographic Information System (GIS) tools. Object-based image analysis 
(OBIA) based on random forest (RF) and support vector machine (SVM) machine 
learning algorithms was performed to provide LULC classification maps, and then, 
LULC changes were assessed using GIS. In order to assess LULC changes, we used 
three images acquired using remote sensing, corresponding to 3 years; 1999, 2009, 
and 2020. A Sentinel-2 image and two Landsat images were used as input data in 
our methodology. Our LULC classification results showed that RF outperformed 
SVM on the three input data periods, with an overall accuracy of 95.6% obtained 
with the Sentinel-2 image. Given the changes over time, it is clear that the Allala 
watershed has undergone significant changes over the years, particularly an increase 
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in building infrastructure and agricultural land due to population and urbanization 
growth. Analyzing and mapping the trends of LULC changes in the study area pro-
vide a basis for strategic planning and managing, and results of LULC changes can 
be used as a decision support tool and provide further help in regional and national 
land management.

Keywords LULC changes · Allala watershed · Landsat images · Sentinel-2 · 
Object-based image analysis (OBIA) · RF · SVM

1  Introduction

Land use and land cover (LULC) is considered a critical environmental issue with 
global implications in environmental management and sustainable development 
[16, 32]. In fact, due to natural and artificial factors, LULC around the world is still 
undergoing considerable changes, most notably changes due to climate change, 
rapid urbanization (mainly in critical areas), population growth that requires urban 
agglomeration development, and the subsequent construction land expansion.

The coastal town of Ténès, located in northwestern Algeria, has observed an 
increase in changes in LULC due to diverse causes. Indeed, the region is exposed to 
ongoing natural disasters, such as earthquakes and landslides [2, 29], and natural 
hazards such as landscape degradation and flash floods [22] due to climate changes, 
which highly modify LULC dynamics because of the hydrological process of flash 
floods [13, 14]. At the same time, the region experiences significant deforestation 
and many forest fires, such as the one in 2014 [7]. As a part of a sustainable develop-
ment strategy and because of its privileged location, both historical and touristic, the 
city has integrated several projects based on human activities, socio-economic con-
structions, and agricultural activities. This implicates population growth and urban 
construction, as well as the evolution of agricultural areas and, in consequence, 
population acceleration, as factors that directly lead to changes in the LULC trends 
of the city over time. In this context, rapid data acquisition and detection of LULC 
changes are an essential element in environmental monitoring, urban planning, and 
sustainable development. Additionally, the understanding of LULC dynamics and 
changes, and its interactions with human activities and natural hazards, is essential 
for appropriate land management and decision-making improvements [37]. 
Furthermore, LULC changes and evolution information is considered critical for 
several environmental considerations, such as water resource management and nat-
ural hazard assessment [6, 27, 36, 40].

In recent decades, remote sensing has become more widespread in the scientific 
field and has emerged as a useful way to track LULC changes based on LULC clas-
sification techniques [10, 18, 24]. Pixel-based image analysis methods have been 
the most widely used to produce LULC maps [25, 30]. These methods consider only 
the spectral characteristics of the input image, which implies certain limitations of 
the produced classifications of LULC and any trend detection. These limitations 
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may be partially overcome by considering other image features in order to detect 
LULC classes with high accuracy [8, 9].

Consequently, the use of object-based image analysis (OBIA) and machine 
learning classifiers has emerged in the remote sensing community as a way to better 
address LULC classification and change detection. This method considers the spec-
tral, textual, and contextual information of pixels. Recently, OBIA classification has 
now replaced conventional pixel-based methods and will facilitate land cover clas-
sification using high spatial resolution remote sensing imagery [8, 17, 38]. In addi-
tion, according to previous studies, this method has successfully provided the 
accurate classification of LULC changes using high- and very-high-resolution 
images [1]. provided LULC maps using Landsat images for 1985, 1990, 2000, 
2007, and 2014 for five cities of Saudi Arabia. The aim of their study was to assess 
the urban growth in these cities. LULC classification was carried out using an OBIA 
approach. The classified images were also used to predict LULC changes and the 
growth of urban areas for 2024 and 2034 using specific models. Changes were 
assessed through transition probabilities. Extreme Gradient Boosting (XGBoost)-
based informative feature selection and the random forest algorithm were used to 
ensure the OBIA classification. The results of LULC classification showed higher 
values of the overall accuracy (OA), up to 90%, which was very beneficial in assess-
ing LULC [20]. applied the OBIA method in order to classify LULC and evaluate 
the changes in the Cameron Highlands in Malaysia by taking advantage of the 
OBIA considerations of texture, shape, position, and digital number, as well as a 
series of band combinations. As remote sensing data, the authors used Landsat time 
series images from 2009 to 2019. Similarly, [28] mapped LULC changes in the core 
zone sand dune located in Indonesia using aerial images taken between 2015 and 
2020. The nearest neighbor algorithm was used for LULC classification after a seg-
mentation process. Analysis of the land use changes was carried out by comparing 
the land use classification results of 2015 and 2020.

The aim of this study is the assessment of the spatio-temporal patterns of LULC 
across the Allala watershed over a 21-year period (1999–2020), based on remote 
sensing methods and GIS applications. First, OBIA classification–based machine 
learning algorithms (random forest and support vector machine) were employed to 
map LULC over 3 years: 1999, 2009, and 2020. Then, based on the more accurate 
LULC maps, the assessment of LULC changes was conducted using post classifica-
tion analysis implemented using GIS applications.

2  Study Area

The study area is the Oued Allala watershed located in northern Algeria on the 
Mediterranean coast. The watershed covers a total area of 307 km2 with a length of 
35 km for its principal thalweg (Fig. 1). The area is situated between the maximum 
and minimum altitude, 989 m and 0 m, respectively, and includes Ténès City, a tour-
ist and port city and the second largest city in the Chlef Wilaya. The region is 
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Fig. 1 Location of the study area

influenced by the Mediterranean climate and is characterized by a warm and tem-
perate climate with significant precipitation in the winter months [39]. The average 
temperature is 18.6 °C and the average total annual rainfall is around 585 mm [22]. 
The Oued Allala watershed is an area with a high degree of landscape diversity, 
including the presence of human settlements, forests, and agricultural areas. The 
northern parts of the Allala catchment are covered by pine forest. Annual crops such 
as cereals cover the southern part of the watershed. This diversity in LULC classes 
necessitates an accurate classification and the monitoring of LULC changes.

In addition, as a part of the national strategy to combat natural hazards, specifi-
cally floods, the Ténès region was chosen for this study because of its regional 
importance, its geographical location, and its elevated risk of natural hazards, 
mainly floods. The analysis of LULC in this area is critical input information for 
flood vulnerability assessment.

3  Material and Methods

Through a consecutive process, we mapped and assessed land cover/use changes in 
the Allala watershed for over 21 years. Remote sensing methods combined with 
GIS applications were both used. Both Landsat and Sentinel-2 data were acquired 
to establish the classification following two essential steps: (1) The object-based 
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Fig. 2 Workflow of the proposed methodology

image analysis (OBIA) method was applied to provide land cover/use maps with 
two machine learning algorithms, random forest (RF) and support vector machine 
(SVM). (2) Then, the assessment of LULC changes was conducted in ArcMap soft-
ware (version 10.8.1) by post-classification analysis and transition matrix genera-
tion (Fig. 2).

3.1  Object-Based Image Analysis (OBIA)

3.1.1  Data Acquisition and Preprocessing

Two different types of remote sensing images were acquired from the Landsat and 
Sentinel-2 sensors to detect LULC changes and facilitate classification. The two 
Landsat-5 Thematic Mapper (TM) images, with 30 m of resolution, were acquired 
on April 10, 1999, and May 8, 2009. Landsat-5 TM data are available with free 
access from the USGS Global Visualization Viewer (https://glovis.usgs.gov). The 
Landsat-5 TM images were already corrected.

The third image used is a Sentinel-2 image acquired on March 8, 2020, with 
atmospheric correction. Sentinel-2A contains 13 spectral bands, including four 
bands with 10 m spatial resolution, six bands with 20 m spatial resolution, and three 
bands with 60 m spatial resolution. A resampling into a spatial resolution of 10 m 
was applied in the Sentinel platform (SNAP) software before using the image in the 
classification process [37]. The dates were selected based on image quality (absence 
of cloud cover), availability, and the same season for the 3 years (1999, 2009, and 
2020), in order to better detect LULC changes. Auxiliary data, in the form of a digi-
tal elevation model (DEM) with 30  m resolution, was acquired to highlight the 
Oued Allala watershed.
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Based on very-high-resolution images, training and validation data were gener-
ated to process the classification. According to the Landsat-5 TM image resolution 
and study area analysis, five LULC classes were defined: built-up, forest, roads, 
cultivable lands, and barren lands.

3.1.2  Multi-resolution Segmentation

Because OBIA considers the spectral, textual, and contextual information of pixels, 
segmentation is an important step in this process. The segmentation process regroups 
neighboring pixels with similar characteristics. Indeed, for each image, using input 
spectral bands, the multi-resolution segmentation algorithm [4] was used to gener-
ate homogenous objects. Multi-resolution segmentation is a powerful algorithm 
designed to iteratively segment a satellite image into objects according to conditions 
imposed by the user [5]. In our case, using Trimble’s eCognition Developer 10.0, 
we applied a multi-resolution algorithm to the three input images to provide seg-
mentation layers. The identification of objects using this algorithm is built upon 
relative image object homogeneity or heterogeneity, based on spectral and shape 
criteria [12]. The size of objects is set by a scale parameter (in this study, the scale 
parameter = 30 for Landsat images and 10 for the Sentinel-2 image). Heterogeneity 
of objects is defined by shape and color parameters, in which their proportion is 
specified by the shape parameter (in this study, shape parameter = 0.1), which means 
that heterogeneity is influenced 10% by shape and 90% by color) [23, 26]. Similarly, 
the shape parameter is defined by two components, compactness and smoothness, 
in which their proportion is specified by the compactness parameter (in this study, 
compactness parameter = 0.9), which means that heterogeneity is influenced 90% 
by compactness and 10% by smoothness.

3.1.3  OBIA Classification–Based Machine Learning Classifiers

Machine learning algorithmes are widely used in remote sensing community to 
LULC change detection [11, 17, 33] based on multiple algorithms, namely, RF, 
SVM, and maximum likelihood, are widely used to detect changes in LULC. In our 
study, machine learning algorithms were taught the classification step through gen-
erated training samples data. Two classifiers were applied in this stage, RF and 
SVM. RF is a non-parametric algorithm that performs on multiple decision trees. 
Each decision tree is constructed using a bootstrap sample driven by different sub-
sets. Each unique set of trees is then applied in order to classify the image, resulting 
in the final classification, which is a collection of multiple trees and which assigns 
classes by majority voting. The RF algorithm is simple to execute and only two 
parameters need to be set up: the number of trees and the number of features in each 
split. Regarding classification using the SVM algorithm, it is based on the linear 
function kernel. The principle of this algorithm is to find a hyperplane that separates 
two classes. The values closed to the hyperplane are the support vectors. The two 
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essential parameters of this algorithm are parameter C that controls the complexity 
of the classifier and parameter γ that controls the number of carrier vectors to obtain 
the best hyperplane [21].

3.2  LULC Map Validation

The validation of LULC maps is an indispensable step that confirms the precision 
of the used methods and the possibility of their use for LULC change assessments. 
The validation of LULC classified images was conducted through the confusion 
matrix using validation data. From the confusion matrix, we calculated the coeffi-
cients typically utilized in accuracy assessments, the kappa index, and the overall 
accuracy (OA). The producer’s accuracy (PA) and user’s accuracy (UA) of the 
LULC classes were also derived. The PA for a given LULC class shows the proba-
bility that a pixel assigned to that class in the ground data will be assigned to that 
class in the LULC map. The UA shows the conditional probability that a pixel clas-
sified into this class in the LULC map will be classified into this class in the ground 
data [35].

3.3  LULC Change Detection

Based on the three final LULC maps of 1999, 2009, and 2020, changes were 
assessed using the MC method implemented in Arc GIS used to generate the transi-
tion matrix of LULC classes. The MC model is a stochastic process [31, 34] that 
assigns the probability of the transition of land cover classes from one class to 
another. LULC changes for the studied area were recorded over two periods, 
1999–2009 and 2009–2020. At the same time, a transition matrix was calculated for 
both periods using a combination of two classified images. A transition area matrix 
was also computed using a probability matrix. Area transition represents the total 
area (in cells) forecasted to change from one LULC class to another over the pre-
scribed number of time units [33].

4  Results

4.1  Accuracy Assessment of LULC Classification

The accuracy assessment results of LULC classifications indicate high overall accu-
racies for both the Sentinel-2 and Landsat-5 input images. Table 1 illustrates the 
results of the overall accuracies (OA) and the kappa coefficient of the LULC 
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classified images for 1999, 2009, and 2020. As well, when the algorithms were 
compared, higher accuracies were obtained with the RF algorithm applied to the 
Sentinel-2 image (2020), with an OA of 96.6% and kappa coefficient of 0.95. In 
addition, LULC classification with the Landsat image (1999) also resulted in a high 
accuracy, with an OA of 96.2% and a kappa coefficient of 0.95. Regarding the SVM 
algorithm, the OA and kappa results were also relatively high, with the higher result 
obtained using the 2009 Landsat image, with an OA of 94.9% and kappa of 0.93.

Regarding LULC class accuracies (UA and PA) (Table 1), with respect to the 
2020 LULC classification–based RF classifier, the UA and the PA of cultivable 
land, roads, and barren land were both high at more than 98%. However, built-up 
and forest were relatively poorly classified in terms of UA and PA accuracies. 
Moreover, for the 2009 LULC classification, built-up and forest were well classified 
in terms of UA (97.8% and 100%, respectively). Cultivable lands and roads had UA 
values of 94.6% and 92.7%, respectively. Similarly, for the 1999 LULC classifica-
tion, forest, roads, and barren lands were highly classified in terms of UA, with 
99.8% for both forest and roads and 99.9% for barren land.

Considering SVM classifications over the 3 years, UA values were significantly 
less than RF values. As well, for the 2020 LULC classification, cultivable land and 
roads were highly classified in terms of UA, with 90.7% and 86.8%, respectively. 
However, built-up and barren land were relatively poorly classified; the UA was 
54% for built-up and 77% for barren land. For 1999, the LULC classification using 
the SVM algorithm, forest and barren lands were highly classified, with UA values 
of 90% for forest and 85.6% for barren land. For the 2009 LULC classification, for-
est and cultivable lands were well classified compared to other classes, with an UA 
up to 99% for both classes. Cultivable land and roads for this year stand as poorly 
classified, with a low UA value (up to 66%).

Overall, comparing both remote sensing data types used to produce LULC maps 
based on machine learning classifiers (RF and SVM), RF gives higher results, in 

Table 1 Accuracy assessment of classification

Class
Metrics
(%)

1999 2009 2020
RF SVM RF SVM RF SVM

Built-up UA 98.1 80.9 97.8 91 97.7 54.9
PA 99.9 92.7 93.8 98.9 100 96.6

Forest UA 99.8 90 100 99 97.71 81.7
PA 92.6 86.7 92.2 99.9 100 86.8

Roads UA 99.8 81.5 92.7 66.7 99.8 88
PA 93.02 72.1 99.8 99.9 100 77.1

Cultivable land UA 88.2 71.3 94.6 95.3 98 82.9
PA 98.9 84.6 94.6 87.2 90.9 90.7

Barren land UA 99.9 85.6 95 95.1 100 77.8
PA 99.8 56.3 88.4 91 90 54.8

OA 96.2 81.9 94.9 94.5 96.6 76.2
Kappa 0.95 0.7 0.93 0.93 0.96 0.7
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particular with Sentinel-2 data, 0.4% higher than the OA of the 1999 Landsat clas-
sification, and 1.7% higher than the OA of the 2009 Landsat classification. Regarding 
SVM, the higher result was obtained with the Landsat image for 2009, with a sig-
nificant percentage difference of 18.3% compared to the one of 2020 and 12.6% 
compared to the 1999 SVM results. Between the two algorithms, regardless of the 
type of input image, RF outperformed SVM by 20.4% for 2020, 0.4% for 2009, and 
14.3% for 1999.

4.2  Analysis of LULC Changes

The LULC classification maps for the years 1999, 2009, and 2020 are illustrated in 
Fig.  3. Notably, LULC has undergone considerable changes between 1999 and 
2020. Additionally, according to the results of area calculations for each LULC 
class represented in Table  2, changes in LULC trends were observed for all 
LULC types.

Indeed, in 1999, the Allala watershed was dominated by cultivable land area, 
with a percentage of 53%, followed by barren lands (28%), forest (16.1%), built-up 
(1.7%), and roads (0.3%).

In 2009, considerable changes were noted in LULC trends, with the amount of 
land devoted to roads significantly increasing (from 0.2% to 12.2%) for the total 
area. Similarly, the built-up class increased remarkably (Fig. 3 and Table 2). In con-
trast, the barren class has undergone a significant decrease (from 28.4% to 13%) for 
the total area.

In 2020, there was a similar decrease for the barren land class, down to 8.7% for 
the total area. In parallel, roads and built-up continued to increase, and there was a 
slight increase in cultivable lands area (from 48.8% to 49.9%). A slight decrease 
also was observed in forests (from 18.4% to 14%) for the total LULC area.

Over the 3 years, cultivable lands stand as the dominant class in terms of surface 
area as compared to other classes. In addition, during the studied period (1999–2020), 
the Allala watershed saw considerable changes in LULC classes, where a decrease 
in some classes corresponded to an increase in others. These changes can be better 
explained by analyzing the LULC transition matrix.

4.3  Analysis of LULC Transition Matrix

Detailed results of the LULC transition matrices from 1999 to 2009 and 2009 to 
2020 are shown in Tables 3 and 4. The analysis of the LULC transition matrices 
indicates significant trends in LULC transitions from one LULC type to another. 
According to Table 3 (1999–2009), a high transition rate was observed in the forest 
class, which converted into cultivable lands with 773.4  ha, cultivable lands into 
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Fig. 3 LULC classification of 1999, 2009, and 2020

Table 2 LULC class areas

1999 2009 2020

Area (ha) % of total area
Area 
(ha) % of total area

Area 
(ha) % of total area

Built-up 537.2 1.7 2339.3 7.6 3720.1 12.1
Forest 4957.4 16.1 5652.2 18.4 4300.1 14
Roads 96.7 0.3 3736 12.2 4714.1 15.4
Cultivable land 16387.8 53.4 15,001 48.8 15307.5 49.9
Barren land 8726.6 28.4 3979 13 2664 8.7
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Table 3 Transition matrix for 1999–2009 period

LULC classes (1999) (ha)
LULC classes (2009) (ha)
Built-up Forest Roads Cultivable lands Barren lands Total

Built-up 359.7 15.8 30.5 34.9 92.6 533.4
Forest 14 3659 131.1 773.4 368.5 4946
Roads 7.7 7.1 10.7 27.1 43.9 96.5
Cultivable lands 373.7 1344.1 2373.7 6294.7 5989.5 16375.7
Barren lands 1577.3 611.9 1185.5 3180.7 2152.8 8708.2
Total 2332.3 5637.9 3731.6 10310.7 8647.3 30659.8

Table 4 Transition matrix for 2009–2020 period

LULC classes 2009 (ha)
LULC classes 2020 (ha)
Built-up Forest Roads Cultivable lands Barren land Total

Built-up 977.5 20.3 486.7 119.0 729.8 2333.4
Forest 338.0 3186.8 176.3 1436.8 502.9 5640.8
Roads 570.9 122.6 833.3 898.0 1307.5 3732.3
Cultivable lands 1173.6 624.3 1664.9 4698.2 2153.8 10314.9
Barren land 652.9 341.7 1544.1 1896.6 4214.0 8649.3
Total 3713.0 4295.8 4705.3 9048.6 8908.0 30670.8

barren lands with 5989.5 ha, and barren lands to roads, built-up, and cultivable lands 
with 1185.5 ha, 1577.3 ha, and 3180.7 ha, respectively.

Regarding transitions between 2009 and 2020 (Table  4), the most significant 
transitions were reported for forest into cultivable lands with 1436.8 ha for the total 
forest area, barren land into cultivable lands with 1896.6 ha and roads with 1544.1 ha, 
and cultivable lands into barren lands, roads, and built-up with 2153.8 ha, 1664.9 ha, 
and 1173.6 ha, respectively.

5  Discussion

In this study, we aimed to map and detect LULC changes in the Allala watershed for 
over 21 years. Both the OBIA method based on machine learning classifiers and Arc 
GIS applications were used in the analysis of two Landsat images and one Sentinel-2 
image. These images were gathered using remote sensing techniques and covered 
the years 1999, 2009, and 2020. The LULC classes in question were: built-up, for-
est, barren land, roads, and cultivable lands. Furthermore, in order to achieve the 
best possible accuracies in the change detection step, two machine learning algo-
rithms were tested: RF and SVM. The best of both was used to detect LCLU 
changes.

The RF and SVM machine learning algorithms both achieved good results, with 
an overall accuracy ranging from 76% to 96%. In addition, the RF algorithm outper-
formed SVM in all LCLU classifications, regardless of the remote sensing types 
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Fig. 4 Area of LULC classes of the total area (ha) over 1999, 2009, and 2020

used in the classification process. This is mentioned in several studies, for instance, 
[3, 15, 19, 38]. In our case, the optimization of parameters of the used classifiers has 
allowed us to obtain better results with high values of the overall accuracy. 

Additionally, our experiments exhibited that RF performed better on the 
Sentinel-2 image than on the Landsat images and gives the highest value of the 
overall accuracy (up to 96%). These results confirm the efficacy and robustness of 
this algorithm when applied to this type of data, particularly for LULC mapping 
[39, 40]. In addition, this is strongly explained by the spatial resolution effect.

By UA and PA calculations (Table 1), the accuracy of the classes has also been 
evaluated within each algorithm for the 3 years. As well, for 1999 and 2020, built-up 
and barren land were well detected with RF, with UA and PA values at more than 
96%. For 2009, forest was well classified with an UA and a PA of more than 92%. 
However, the worst class in terms of UA and PA was barren lands with values close 
to 54%. However, despite the high values of the overall precision of some classes 
especially roads. This class was not well delineated and took up a large area com-
pared to other classes. This is due to the effect of the segmentation of the satellite 
image and in particular the “scale” parameter which generated large segments 
which then affected the final classification.

Considering the results of LULC change detection over the two periods, 
1999–2009 and 2009–2020, as observed from the final LULC maps (Fig.  3), in 
addition to the results shown in Table 2 and Fig. 4, the Allala watershed has under-
gone different change trends over the studied years. Additionally, according to tran-
sition matrix results over 1999–2009 and 2009–2020 (Tables 3 and 4), the LULC is 
progressively transitioning from one LULC class to another.

Obviously, a great increase in area of both built-up and roads is observed, which 
is explained by the population growth and subsequent urbanization. This also facili-
tated the transition of some classes to built-up and roads. This increase was offset by 
a big decrease in the barren land class, 15.4% from 1999 to 2009 and 4.3% from 
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2009 to 2020. Specifically, the change rate is more significant during the 1999–2009 
period. These results are logical, as Ténès City has been under constant urban con-
struction over the last decades.

As well, the forest class has decreased by 2.1% from 1999 to 2020. This is 
explained by the degradation of watershed ecosystems and the many forest fires this 
region has experienced. Furthermore, the cultivable land class, which occupies the 
largest proportion of the total watershed area (53.4% in 1999), has decreased by 
4.6% from 1999 to 2009 and then increased by 1.1% from 2009 to 2020. This is 
generally related to the harvest season when satellite images were acquired.

Moreover, forest area has been converted into barren land (7.7%) and cultivable 
land (15.6%). Regarding transitions between 2009 and 2020, the most important 
transitions were reported for forest into cultivable lands (16%) and barren land into 
built-up (18%), roads (14%), and cultivable lands (37%). This is explained by the 
forest degradation in the Allala watershed.

6  Conclusion

This study mapped and assessed land use and land cover changes in the Oued Allala 
watershed for over 21 years. The OBIA approach applied on two Landsat-5 TM 
images, taken in 1999 and 2009, and one Sentinel-2 image from 2020 enabled the 
identification of the changes in LULC and the distribution of area classes in the total 
watershed area for over 21 years. Consequently, machine learning classifiers applied 
with OBIA obtained higher accuracies of LULC classification (>90% overall accu-
racy). Specifically, the RF machine learning classifier outperformed SVM with all 
data over the 3 years (> 96%). In addition, the proposed methodology combined 
remote sensing results with Geographic Information System (GIS) tools in order to 
assess LULC changes efficiently.

According to the results of LULC change detection, Oued Allala has undergone 
many changes over time. These results confirm that the region has undergone many 
environmental changes in recent decades due to the growth in population, urbaniza-
tion, and the evolution of agricultural areas. Notable changes include an increase in 
building (15.4%), cultivable land (1.1%), and road (10.9%) classes and a decrease 
in forests (4.4%) and barren land (4.3%). Hence, the change rate is more significant 
in the 1999–2009 period. These statistics are logical, as Ténès City was still under 
urban construction during this period. However, analyzing the transition matrix 
results showed that the most significant transitions were reported for forest into 
cultivable lands (16%), which is confirmed by the deforestation in the region. Barren 
land also transited into built-up (18%), roads (14%), and cultivable lands (37%).

Analyzing and mapping the trends of LULC changes in the studied area provide 
a basis for strategic planning, managing, and protection decision-making, and the 
results of LULC change analysis can be used as a decision support tool and further 
help in regional and national land management.
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