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Editorial for Special Issue: European Spatial 
Data for Coastal and Marine Remote Sensing

Within the framework of the European Copernicus program, satellite data are effort-
lessly accessible to the scientific community, companies, and public. At the same 
time, the massive availability of digital data in various forms (spatialized or not) and 
across different fields opens new avenues of research and applications. Recent 
advances in the radiometric, spatial, temporal, and spectral resolution of sensors, as 
well as new data processing approaches in remote sensing, provide an extremely 
valuable set of tools for monitoring and mapping the various characteristics of 
marine, coastal, and aquatic systems (macroalgae, seagrasses, temperate reefs, coral 
reefs, salt marshes, mangroves, peatlands, aquatic vegetation, river systems, estuar-
ies, deltas, etc.). It is crucial to increase coastal monitoring efforts in light of the 
growing number of studies highlighting the impacts of climate change, and in par-
ticular the sea-level rise that will radically redefine the physical state of the near-
shore zone in the twenty-first century [2, 4]. In addition to climatic factors, there are 
also constraints on marine services imposed by the growth of coastal human popula-
tions, whose number is expected to nearly double by mid-century [1]. In conjunc-
tion with population growth, the exploitation of coastal resources has produced 
increasingly dramatic changes to coastal and inland aquatic habitats over the past 
100 years [3].

In this special issue, 11 long papers, 6 short papers of original research and 3 
abstracts of keyspeakers were published on topics covering a wide range of remote 
sensing applications, including marine, coastal, and aquatic ecosystems’ monitor-
ing and biodiversity management, coastal wetlands, nearshore land cover changes, 
deep learning and artificial intelligence innovations, marine, coastal and aquatic 
geomorphology, and coastal risk management. This special issue also provides new 
methodologies for optimizing the combined use of satellite/airborne data and field 
measurements for a comprehensive approach. Using satellite images of different 
spatial and temporal scales and applying innovative methods, several different types 
of coastal environments (bays, estuaries, sandy, and muddy systems) and several 
key parameters (vegetation, wind, etc.) and morphologies (shorelines, mud banks, 
wetlands) were analyzed and studied.
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Harid et al. identify coccolithophores blooms of Holococcolithophora sphaeroi-
dea in Algiers Bay from in situ and satellite observations (Modis data) over a period 
of 16 years (2003–2018). For the processing and analysis of the satellite images, a 
remote sensing reflectance index for coccolithophores (Cocco-Index) is used. The 
Cocco-Index proposed in this paper is based on a remote sensing reflectance (RSR) 
threshold between the green (531 nm, 547 nm, and 555 nm) and blue (443 nm, 
469 nm, and 488 nm) bands of the MODIS sensor. This topic would benefit from 
further studies on the interactions between biological, physical, chemical, and envi-
ronmental factors in the coccolithophore bloom areas.

Collin et al. investigate continuous mapping of salt marshes based on the normal-
ized difference vegetation index (NDVI) ranges at three spatial and two temporal 
scales using Sentinel-2 (10 m), Dove (3 m), and unmanned aerial vehicle (UAV) 
(0.03 m) images. The NDVI ranges of the Sentinel-2 and Dove images were tracked 
with a five- and four-year lag, respectively. The NIR band of the UAV imagery was, 
therefore, modeled (R2NIR = 0.98) using a three-layer neutral network (NN) pre-
diction based on red, green, and blue reflectance imagery, which in turn was cali-
brated/validated/tested by the bands of the Dove imagery. The 100-fold increase in 
pixel size allowed for the detection of decimeter-scale salt marsh and tidal flat 
objects.

Mury et al. investigate the contribution of near-infrared (NIR) and mid-infrared 
(MIR) bands from multispectral UAV and WorldView-3 (WV-3) super-spectral (SS) 
satellite imagery for mapping coastal ecomorphological features using two super-
vised classification algorithms, Maximum likelihood (ML) and support vector 
machine (SVM). They propose various combinations of spectral bands, visible + 
NIR and visible + MIR, evaluated by overall accuracy (OA) scores, for the classifi-
cation of ecomorphological features. Their results show the significant contribution 
of the NIR and MIR bands for mapping coastal ecogeomorphological features. 
They also show that adding the NIR bands to the RGB band combination signifi-
cantly increases the OA scores of the classifications (by +4.99% and +6.54%, with 
the ML and SVM algorithms, respectively). Adding the MIR bands to the combina-
tion of these bands provides classifications with even higher OA (up to 99.1% and 
98.4%), demonstrating the suitability of the MIR bands for mapping coastal ecogeo-
morphological features.

Gadal et al. perform an analysis of coastal changes based on the use of Landsat 
remote sensing data sets from the 1980s to the 2020s, combined with EU geo-
graphic databases and land use plans in the coastal areas of Kaliningrad Oblast, 
Lithuania, and Latvia. Territorial dynamics are modeled using the GEOBIA pack-
age with object-oriented classification and machine learning algorithms (maximum 
likelihood, minimum distance to means, and parallelepiped classifiers) applied to 
multispectral images from the Landsat 5™ and Landsat 8 OLI satellites. The results 
were compared with the CCI Land Cover databases from 1995 and 2015.

Zaabar et al. examine LULC changes in the Allala watershed, including the city 
of Ténès (Algeria), using satellite images from 1999 (Landsat image), 2009 (Landsat 
image), and 2020 (Sentinel-2 image). In this study, the image processing and analy-
sis is based on object-oriented classification (OBIA) using random forest (RF) and 
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support vector machine (SVM) machine learning algorithms. Subsequently, the 
LULC changes were evaluated using GIS (analysis of LULC transition matrix). 
Their results show that RF outperforms SVM on all three input data periods, with 
an overall accuracy of 95.6% obtained with the Sentinel-2 image.

Modoosoodun Nicolas et al. investigate bathymetry predictions using Pleiades 
multispectral satellite data from around Europa Island, which is a coral island in the 
Mozambique Channel. The authors explore the possibility of using very high- 
resolution multispectral satellite data with a neural network architecture inspired by 
U-Net deep learning to infer bathymetry estimates. A 1  m resolution airborne 
LiDAR data set is used as ground truth to train the model. The predicted bathymetry 
values could potentially be incorporated into electronic navigational charts. Accurate 
results are obtained for estimating bathymetry in shallow waters, with the average 
absolute error not exceeding 1.5 m in this case. The authors show that this U-Net 
inspired deep learning technique is capable of predicting water depth from very 
high-resolution satellite data.

Boussetta et  al. perform an assessment of the vulnerability distribution of the 
NE-SE coast of Jerba (Tunisia) and highlight the areas that are likely to be most 
affected by future sea-level rise by analyzing geophysical and socioeconomic vari-
ables processed by remote sensing approaches. They integrate remote sensing and 
GIS methods through supervised classification using an object-oriented approach 
combined with the random forest machine-learning algorithm (OBIA-RF). Their 
results provide baseline data on coastal zone physical processes and land use. They 
have found that 63% of the coastline of the northeast coast of the island has a high 
to very high degree of vulnerability. On the other hand, 37% of the coastline of the 
southeast of the island has a low to medium vulnerability.

Lam et al. propose an approach using random forest methodology on sentinel 
images from between 2019 and 2022 to assess the changes in the forest, planted to 
prevent saltwater intrusion and coastal erosion, outside the dike surrounding the 
coast of the Vietnamese Mekong Delta. The authors apply a method to overcome the 
shortcomings of optical data in identifying areas of forest loss and forest restoration. 
First, the satellite image data was converted into two-dimensional row and column 
matrix data. Each row is an object to be analyzed (pixel, object), and each column 
is the value of features (spectral value, vegetation value, backscatter value, observa-
tion data, etc.). Through pre-processing, optical and radar data were integrated into 
one dataset per year, leading to four datasets corresponding to the four observation 
years of 2019 to 2022. Each dataset has nine columns corresponding to three visible 
color bands, one near infrared band, altitude data, two polarization (VV and VH), 
the vegetation index (NDVI), and the observation column (class). The random for-
est method was found to be effective in identifying forested and non-forested areas 
with accuracies greater than 90%.

Rabehi et al. propose the spatial monitoring of the dynamics of Palm Beach in 
Algeria using the Algerian Alsat2 satellite archive (high spatial resolution (2.5 m)). 
They performed an evaluation “before,” “during,” and “after” coastal protective 
measures, using several spectral detection algorithms of the coastline (supervised 
spectral angle matching index and morphological mean filter, and unsupervised 
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using principal/independent component analysis and NDWI normalized difference 
water index). The quality of this shoreline evaluation is compared to a DGPS refer-
ence shoreline in order to obtain the overall accuracy. Monitoring enables the quan-
titative observation of the behavior of the beach and thus allows the qualification of 
the degrees of effectiveness of these breakwaters. However, the performed monitor-
ing does not take into account exceptional erosion episodes, such as storms or sea-
sonal erosion.

Ngan et al. investigate the possibilities of assessing the current state of the shore-
line and the effects of erosion on the shoreline in Vinh Chau City  – Soc Trang 
Province, Vietnam. Using Landsat images from the years 2005 to 2022, they com-
pare the shorelines obtained to the ones seen on Google™ Earth Pro. Google™ 
Earth images from the years 2006 to 2020 are then used to digitize the specific 
beach part of the Vinh Chau shoreline. The shoreline positions were used to deter-
mine the variation in the location of the shoreline and calculate possible erosion and 
accretion zones and rates of the spatial extent of the sandy beach using the digital 
shoreline analysis system (DSAS). The results are based on wave measurements 
over a short period of time, so it is not possible to come to a conclusion on the wave 
reduction effectiveness of current measures over the long term. Continuous moni-
toring during different wind seasons is needed to have a more accurate assessment 
of the effectiveness of wave reduction.

Bengoufa et al. propose an efficient method for the detection and extraction of 
coastal indicators. They use a satellite image classification approach, based on a 
deep learning algorithm, optimized and adapted to the extraction of a hydrodynamic 
and a biological coastline indicator. They use a very high-resolution Pleiades image, 
cut into sub-regions, and analyzed by a convolution kernel of size 3*3. Following 
the image processing and analysis by classification, they obtained a very high global 
accuracy of 92%. These results were validated by comparing them to the field sur-
veys (reference) acquired on the same day as the satellite image acquisition. With a 
run-up (horizontal wave excursion) of 0.6 m, the confidence interval for the deep 
learning method was estimated at ±0.42 m.

 In the Category of Short Articles, There Are Six Articles

James et al. propose to evaluate the evolution of a polder (Beaussais’ polder located 
at the bottom of Beaussais’ Bay on the French Emerald Coast) in the context of 
coastal management by drone. Using multi-spectral spectral bands (RGB, red-edge, 
RE, and near infrared, NIR) at very high resolution, they examine the importance of 
landscape cover variations by calculating several indicators, the normalized differ-
ence vegetation index (NDVI), the normalized difference water index (NDWI), and 
the soil adjusted vegetation index (SAVI).

Boussetta et al. study the possibility of improving the monitoring of sandy coasts 
by satellite observation (Ten Landsat images and two Sentinel-2 images) by 
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applying CNN (convolutional neural network) and digital shoreline assessment sys-
tem (DSAS) algorithms.

Caline et  al. propose a coastal characterization of complex but representative 
morpho-sedimentary patterns of the seabed in Saint Malo Bay using very high- 
resolution topo-bathymetric LiDAR data, their morphometric derivatives, sonar, 
and sediment samples.

Bulot et al. present a method for mapping using a Shannon index of benthic geo-
biodiversity as a whole, using continuous morphometric predictors derived from a 
combination of VHR topo-bathymetric LiDAR data, discrete underwater imagery 
responses, and 10-neural network prediction. The study took place in Saint-Malo 
Bay, along the coast from Saint-Briac-sur-Mer to La Pointe du Grouin.

Ternon et al. investigate the effect of local (~100 m2) habitat components such as 
habitat architecture, substrate composition, and benthic community, as well as the 
value of photogrammetry versus visual observation on the fish community. The 
study was conducted in Saint-Malo Bay (Brittany, France).

Collin et al. propose an approach to spatially assess and augment the potential of 
natural coastal defenses using a combination of very high resolution terrain classi-
fication and network modeling. The bathymetric terrain, derived from a state-of-the- 
art LiDAR survey, was enhanced by a topographic position index (TPI) based 
classification. The study took place in Saint-Malo’s lagoon, core of the French 
Emerald Coast, located on the Brittany coast of the English Channel, west of Mont- 
Saint- Michel Bay and south of Jersey Island.

Plouzané-Brest, France Simona Niculescu
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Detection of Coccolithophore Bloom 
Episodes in Algiers Bay Using Satellite 
and In Situ Analysis

Romaissa Harid, Hervé Demarcq, Shara Amanouche, Malik Ait-Kaci, 
Nour-El-Islam Bachari, and Fouzia Houma

Abstract In Algiers Bay, coccolithophore blooms of Holococcolithophora sphaer-
oidea species were identified from in situ observations during August 2003, July–
August 2013, July 2015, and July 2017. This study determines for the first time in 
Algiers Bay the episodes of coccolithophore blooms from 2003 to 2018 using satel-
lite and in situ observations. In addition, a new coccolithophore remote sensing 
reflectance index (Cocco-Index) is presented, which aims to detect the presence of 
coccolithophore bloom from satellites in space and time. It was applied to 16 years 
of data from the Moderate Resolution Imaging Sensor (2003–2018). From 2003 to 
2018, the coccolithophore bloom appeared yearly in Algiers Bay but with a remark-
able seasonal variability, developing mainly in winter and rarely in summer. This 
work is the first demonstration of applying a coccolithophore index for this region 
over such a large timescale
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1  Introduction

Coccolithophores species dominate primary production in oligotrophic areas [37, 
42], trapping CO2 and modifying the carbon cycle [8]. Additionally, the coccolitho-
phore may result in artifacts into 14C-derived physiological values [28]. The shells 
of these species are deposited on the seafloor and eventually become part of the 
marine fossil archive. Coccolithophores are interesting microorganisms that can be 
used to understand the causes of changes in the global climate. Coccolithophores 
largely appear in the marine environment. Generally, they have two equal or sub- 
equal smooth flagella and an extracellular envelope with one or more layers of 
organic shells associated with inorganic compounds located outside the organism 
(Fig. 1).

The shape and structure of coccolithophores play several roles in the marine 
ecosystem, such as marine biochemical reactions. Calcification produces bicarbon-
ate (HCO3) used in the photosynthesis process. Moreover, these species regulate the 
light field. They reflect ultraviolet rays away from the cell, protecting them from 
photodamage and living near the surface waters. In addition, depending on their 
shape, they could refract the light toward the inside of the cell, which allows them 
to harvest light in deep water. The coccolithophores species represent a very high 
diversity in the hot oligotrophic areas [44]. They represent around 50% of the oce-
anic carbon pump in the offshore domain [40] and are a major producer of particu-
late inorganic carbon (PIC) in the pelagic zone of oceanic regimes [4, 25].

In ocean color remote sensing, the spectral response of limestone species (such 
as coccolithophores) is characterized by a high back-scattering capacity caused by 
their limestone shells. The identification of coccolithophore species during bloom 
episodes requires signal discrimination from the back-scattering properties of opti-
cally significant particles [1, 2, 5, 6, 17–19, 24, 35]. Several satellite sensors are 
dedicated to measuring the ocean color signal, allowing daily observation of marine 

Fig. 1 The cell structure of coccolithophores species
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surfaces globally. Various techniques have been used to detect coccolithophores 
from space, such as spectral band ratio algorithms, indexes based on remote sensing 
reflectance (Rrs) ratios [3], and coccolithophore pixel classification [35]. Moore 
et al. [30] extended an optical water-type classification scheme (developed in [29]) 
by adding a new coccolithophore bloom class created from extracted satellite Rrs. 
The remote sensing reflectance (Rrs) is the basic product of the ocean color sensors 
[21]. The Rrs defines the water-leaving radiance normalized by the sun in the verti-
cal without atmosphere, relative to the incident irradiance of the sun at the zenith.

Several studies have used suspended particulate matter (SPM) as the most suit-
able element to quantify when detecting coccolithophore blooms. Perrot et al. [36] 
identified coccolithophore blooms from space using a spectral method to discrimi-
nate the SPM fraction corresponding to coccoliths from a total non-algal SPM sig-
nal. Moore et al. [30] used a key difference between the coccolithophore bloom and 
SPM: the peak wavelength for the reflected light, which is 555 nm for SPM and 
490 nm for coccolithophore bloom. In the same wavelength range, Balch et al. [4] 
included the back-scattering due to coccolithophores at 443 and 555 nm to quantify 
the PIC concentration from space in the same wavelength range.

Coccolithophore blooms have specific bio-optical properties, which helps distin-
guish them from spaceborne sensors. Remote sensing reflectance classification 
techniques are often used to detect the presence of coccolithophore blooms [1]. 
Most phytoplankton species have a common spectral response curve and cannot be 
identified individually from the space [23]. Some species, however, have unique 
spectral response curves that enable their identification. Coccolithophores are a spe-
cial class of phytoplankton. They grow and deposit calcium carbonate shells outside 
their cells when they bloom. Coccolithophores can impact the sensing signal used 
to estimate the chlorophyll-a concentrations by standard empirical algorithms [11, 
16, 22].

To study the coccolithophore bloom episodes in Algiers Bay, we used an 
approach based on two complementary methods: in situ and satellite observations. 
The first aim of this work is to study the coccolithophore bloom episodes observed 
several times in Algiers Bay based on in situ observations. Few studies on cocco-
lithophore species in Algiers Bay have been published to date. However, other data 
sources, such as satellite observations, can be used to monitor the flowering of coc-
colithophores. The in situ observations were monitored in space and time from sat-
ellite data. A coccolithophore index based on remote sensing reflectance was also 
established to define for the first time in Algiers Bay the coccolithophore bloom 
pixel in the corresponding observations between 2003 and 2018.

2  Study Area

Algiers Bay is located in the central part of the Algerian coast (Africa). It extends 
over 70 km of the coastline, between Caxine Cape in the west, Matifou Cape in the 
east, the Mediterranean Sea in the north, and Algiers City in the south (Fig. 2). Two 
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Fig. 2 Sentinel-2 map presentation of the Algiers Bay (the points in yellow are the in situ sampled 
stations on July 19, 2017)

main wadis flow into the bay, the El-Harrach wadi and the El-Hamiz wadi, whose 
flow is very low [15]. Some coastal protection agencies monitor potentially danger-
ous microalgae in Algiers Bay, such as Agence de la Protection et de la Promotion 
du Littoral Algérois (APPL).

3  Materials and Methods

3.1  In Situ Data

We collected water samples (4 in situ stations (Fig. 2)) on the day of bloom onset 
and preserved them in a Lugol’s solution to determine the species responsible for 
the bay coloration on July 19, 2017. In the laboratory, the samples were sedimented 
in the special phytoplankton tubes. They were then analyzed under an inverted 
microscope of type ZEIZZ using the NF EN 15204 method (Utermöhl method) 
[33], under an objective of Χ40. Figure 2 shows the coccolithophore bloom during 
July 2017 from Sentinel-2 MSI data.

3.2  Satellite Data Acquisition

We used the MODerate resolution Imaging Sensor (MODIS)/AQUA Level-2 data 
from NASA’s Ocean Color Web [32] to study the coccolithophore bloom episodes 
in the Algiers Bay between 2003 and 2018. The MODIS makes daily observations 
in Algiers Bay. This study used the MODIS Rrs in the visible wavelengths (412, 
443, 469, 488, 531, 547, 555, 645, 667, 678 nm) to define a coccolithophore bloom 
index. The data set consists of 5844 daily observations through 15,020 individual 
orbits of Rrs MODIS Level-2 data. All data were re-projected in a rectangular grid 
of 1 km between 36.2°N 38°N and 2.1°E 4.1°E.

R. Harid et al.
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3.3  Coccolithophore Bloom Index (Cocco-Index)

The ocean color remote sensing provides large spatial and temporal observations in 
the Algiers Bay, enabling us to detect from space the episodes of the coccolitho-
phore bloom in the time series. Therefore, we used the optical proprieties to develop 
an index to detect the episodes of coccolithophore bloom from satellite observations 
between 2003 and 2018  in Algiers Bay. To our knowledge, the coccolithophore 
remote sensing reflectance index for Algiers Bay proposed in this work is the first 
presented in the literature. It aims to detect the coccolithophore bloom from the 
daily MODIS data.

The Cocco-Index proposed in this paper is based on a threshold of Rrs between 
the green (531 nm, 547 nm, and 555 nm) and the blue (443 nm, 469 nm, and 488 nm) 
bands for the MODIS. These thresholds (Eq. 1) are fixed according to the maximum 
values of Rrs, which increase uniformly in the blue and green bands [13].

The Cocco-Index determines the position of bloom pixels (BPs) by calculating 
the intersection between the Rrs ≥ 0.008 in the blue band and the Rrs ≥ 0.004 in the 
green band, as shown in the following formula:

 
Cocco Index Rrs blue Rrs green

Rrs

Rrs

Rrs

Rmax

� � � � � � �
� �� 0 008 0 004. .

rrsmax

�  
(1)

After several tests, the thresholds 0.004 (in green) and 0.008 (in blue) were fixed. 
There are no quality flags applied to the reflectance data. Figure 3 shows that the 
SPM and coccolithophore spectral response difference is marked with Rrs values 
and bands. This index aims to determine the BPs of coccolithophore from the stan-
dard Rrs MODIS Level-2 data (so that everyone can use it, even beginners in remote 
sensing).

4  Results

4.1  Coccolithophore Bloom Episodes in the Algiers Bay 
from In Situ Observations

Our analysis’s first quantitative and qualitative results reveal that the yellowish col-
oration in Algiers surface water during July 19, 2017, was caused by the prolifera-
tion of the Holococcolithophora sphaeroidea species. The maximum bloom 
concentration is 65*106 cells/liter. Higher concentrations were also observed in 
August 2003 in Algiers by 4.7*108 cells/liter [20]. The green color shown in Fig. 2 
reflects the high back-scattering of the limestone shell of the coccolithophore.

Historical Holococcolithophora sphaeroidea episodes were determined from the 
literature. However, in 2003, scientists signaled the first appearance of the 
Holococcolithophora sphaeroidea bloom (coccolithophores species) in Algiers Bay 
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Fig. 3 Spectral signature of Chl-a, SPM, and coccolithophore bloom in the Algerian coastal 
waters. The Rrs used in this figure are the MODIS Level-2 data and correspond to the coccolitho-
phore bloom day of Algiers Bay in August 12, 2003 [20]. (a) Rrs versus wavelengths in three dif-
ferent water categories: (i) Cas-1 waters in green curves, (ii) Cas-2 waters (coastal waters of 
Annaba Bay) in brown curves, and (iii) coccolithophore bloom waters (coastal waters of the 
Algiers Bay) in blue curves. (b) Spatial distribution of Rrs for each wavelength on the coccolitho-
phore bloom day of Algiers Bay (August 12, 2003). (c) Spatial distribution of Rrs for each wave-
length in Annaba Bay (August 12, 2003)

Table 1 Coccolithophore bloom episodes in Algiers Bay from in situ observations

Episode Month Year Author Bloom species

E1 August 2003 Illoul et al. (2008) Holococcolithophora sphaeroidea 
(coccolithophore species)

E2 July and 
August

2013 APPL (2013) Holococcolithophora sphaeroidea 
(coccolithophore species)

E3 July 2013 APPL (2013) Holococcolithophora sphaeroidea 
(coccolithophore species)

E4 July 2017 Present study Holococcolithophora sphaeroidea 
(coccolithophore species)

[20]. This bloom appeared in the Mediterranean Sea for the first time in 2001 in 
Spain [7] and Algeria in August 2003 [20]. The other episodes were observed dur-
ing August and July 2013, July 2015 (APPL, personnel communication), and July 
2017 (our work). Table  1 summarizes the episodes of the Holococcolithophora 
sphaeroidea bloom between 2003 and 2018 observed from in situ measurements in 
Algiers Bay.

R. Harid et al.
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4.2  Monitoring and Spectral Response of E1, E2, and E3

We used satellite observations to monitor the spatial and temporal extent of the 
episodes listed in Table 1. The MODIS data corresponding to the in situ observa-
tions (Table 1) corresponds available to 2003, 2013, and 2015 episodes (not avail-
able for July 2017). In August 2003, the bloom was detached from the coast and 
moved toward the offshore area (Fig.  4a–c). However, during the 2013 episode 
(Fig. 5), the bloom remained attached to the coast and was propagated eastward by 
a cyclonic eddy [41] (Fig. 5a–c). Finally, during 2015 episode (Fig. 6), the bloom 
remained inside the bay, while a small plume was (Fig. 6i) detached from the coast 
to the bay’s northeast (Fig. 6a–d).

Fig. 4 Monitoring of coccolithophore bloom during August 2003 from MODIS satellite data (a–
c). From d–m are the Rrs of August 12, 2003, at 412, 443, 469, 488, 531, 547, 555, 645, 667, and 
687 nm wavelengths, respectively

Detection of Coccolithophore Bloom Episodes in Algiers Bay Using Satellite and…
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Fig. 5 Monitoring of coccolithophore bloom during July and August 2013 from MODIS satellite 
data (a–c). From d to m are the Rrs of August 02, 2013, at 412, 443, 469, 488, 531, 547, 555, 645, 
667, and 687 nm wavelengths, respectively

Figures 4, 5, and 6 indicates the Rrs in the visible wavelengths during E1, E2, 
and E3, respectively. Elevated Rrs signal at the green and blue bands is observed for 
each episode (see Figs. 4, 5, and 6). The maximum Rrs (for all wavelengths) inside 
the Algiers Bay represents the BPs, but with a different number of BPs for each 
band (see the Rrs matchup in Figs. 4, 5, and 6). The early works on the optical prop-
erties of coccolithophore blooms have also shown high Rrs in the blue and green 
bands [5, 6, 18].

However, the number of BPs in the green bands is higher than in the blue bands 
(Figs. 4, 5, and 6). The maximum values of Rrs are observed at wavelengths 488 nm 
and 531 nm, respectively (Figs. 4g, h, 5g, h, and 6h, i). The blue curve in Fig. 3a 
shows this difference, but the maximum number of BPs is observed at the 555 nm 
band (see Figs. 4j, 5j, and 6k).

R. Harid et al.
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Fig. 6 Monitoring of coccolithophore bloom during July 2015 from MODIS satellite data (a–c). 
From d to m are the Rrs of July 28, 2015, at 412, 443, 469, 488, 531, 547, 555, 645, 667, and 
687 nm wavelengths, respectively

4.3  Cocco-Index of E1, E2, and E3

The Cocco-Index was applied to the Rrs corresponding to the in situ observations of 
coccolithophore blooms during the first episode (E1 in Table 1) and successfully 
detected the BP positions of E1, E2, and E3. Figure 7 indicates the results obtained. 
Therefore, this index can be applied to the daily MODIS Level-2 data in the Algiers 
Bay surface waters.

Detection of Coccolithophore Bloom Episodes in Algiers Bay Using Satellite and…
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Fig. 7 Cocco-Index corresponding to the bloom episodes cited in Table 1

R. Harid et al.
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Fig. 8 Coccolithophore bloom episodes in the Algiers Bay between 2003 and 2018 from MODIS 
observations

4.4  Coccolithophore Bloom Episodes in the Algiers Bay  
(from 2003 to 2018)

From 2003 to 2018, the Cocco-Index appeared yearly in Algiers Bay but with 
remarkable seasonal variability (Fig. 8). Figures reflecting the days when cocco-
lithophore blooms were detected for the episodes in Fig. 8 were illustrated in Harid 
[14] and can be downloaded from https://doi.org/10.5281/zenodo.6612047.

The results indicate that the coccolithophore blooms appear in winter and rarely 
in summer (Fig. 8). This bloom was observed during December of each year from 
2003 to 2018, except in 2015 (Fig. 8). On the other hand, this bloom was observed 
almost every year in January and February (Fig. 8). During June, the bloom was 
developed only in 2006 and 2011 (Fig. 8). Generally, the coccolithophore bloom is 
observed for three successive months every year (Fig. 8).

Detection of Coccolithophore Bloom Episodes in Algiers Bay Using Satellite and…

https://doi.org/10.5281/zenodo.6612047


12

5  Discussion

The limestone shell of the coccolithophore species is characterized by a high back- 
scattering of light, resulting in the characteristic elevated Rrs in the 488 nm and 
555 nm wavebands. In the red wavelengths, the Rrs is the weakest compared to the 
other bands [27, 31] (Figs. 4, 5, and 6). However, the BP identified by our Cocco- 
Index corresponds to the high concentration of particulate inorganic carbon (PIC) 
downloaded from NASA’s Ocean Color Web [32] for each episode (data not shown 
in this paper). In contrast, the Cocco-Index can only determine and calculate the 
area of BP, which matches coccolithophore bloom.

The proliferation of coccolithophore species is more characteristic of the Algiers 
Bay in winter than in summer (Fig. 8). Probably, the winter mixing water caused by 
eddies [26] favors the proliferation of this species. Moreover, the coccolithophore 
class dominates the identified phytoplankton species in the Mediterranean Sea [34]. 
The Algerian basin represents less than 3% of the BPs of coccolithophore compared 
to the rest of the global oceans [30].

It is important to note that the surface waters of Algiers Bay suffer from pollution 
[39] due to human activity (harbor and industry) and very significant urbanization 
in the coastal area [38]. Figure 2 indicates that this bay is semi-closed. It traps nutri-
ents inside its waters, favoring coccolithophore blooms’ proliferation.

During the summer, Algiers Bay is characterized by the influence of a very high 
level of human activity. The El-Harrach and El-Hamiz wadis (Fig. 2) and certain 
domestic and industrial inputs flow directly into the bay, thus increasing its nutri-
ents. The increase in sea surface temperature over several days causes water strati-
fication [12] and can explain the coccolithophore bloom episodes observed during 
the summer of 2003, 2006, 2011, 2013, 2014, 2015, and 2017 (see Table  1 and 
Fig. 8) in Algiers Bay. However, the Holococcolithophora sphaeroidea tolerate the 
high temperatures and intense oligotrophic marine environments of the 
Mediterranean Sea [9, 10, 43] such as the Algerian Basin [15] and are more abun-
dant in subsurface seawater [10].

6  Conclusion

Based on the results obtained in this study, we can now identify the occurrence of 
the coccolithophore bloom from ocean color remote sensing data in the surface 
waters of Algiers Bay. This approach is useful when we cannot collect in situ sam-
ples to identify and monitor the coccolithophore bloom. The proposed index is lim-
ited to detecting coccolithophore blooms and not other phytoplankton groups. We 
cannot apply this index to the entire Algerian coastal waters because it was created 
using the spectral response, which is only specific to the Algiers Bay surface waters.

The study of this bloom’s seasonal and interannual variability in large time series 
of observations allowed us to better predict the future impact of climate change. In 

R. Harid et al.
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Algiers Bay, coccolithophore bloom episodes were marked yearly (from 2003 to 
2018), generally more observed in winter.

In conclusion, satellite data are a good tool for monitoring coccolithophore 
blooms in Algiers Bay. Bloom episodes appear in the Bay at least two or three times 
a year. However, this work should be followed by studies on the interactions between 
biological, physical, chemical, and environmental factors in the coccolithophore 
bloom areas.
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Multiscale Spatiotemporal NDVI Mapping 
of Salt Marshes Using Sentinel-2, Dove, 
and UAV Imagery in the Bay 
of Mont- Saint- Michel, France

Antoine Collin, Dorothée James, Antoine Mury, Mathilde Letard, 
Thomas Houet, Hélène Gloria, and Eric Feunteun

Abstract Salt marshes offer a plethora of ecosystem services such as biodiversity 
support, ocean–climate change regulation, ornithology recreo tourism or plant gath-
ering by hand. They undergo significant worldwide losses due to their conversion 
into crop fields and to their spatial compression between rising sea levels and 
armored shorelines. Their management requires multiscale spatiotemporal analysis 
to detect interrelated patterns and processes. This research innovatively studies con-
tinuous salt marsh mapping, based on normalized difference vegetation index 
(NDVI) ranges, across three spatial and two temporal scales. Sentinel-2 (10  m), 
Dove (3 m), and unmanned airborne vehicle (UAV) (0.03 m) imagery were used to 
progressively refine spatial resolutions over dynamic areas (extending from hun-
dreds, tens, and a couple of km2, respectively). NDVI ranges from Sentinel-2 and 
Dove imagery were monitored with a lag of 5 and 4 years, respectively. Contrary to 
spaceborne imagery, UAV imagery lacked a near-infrared (NIR) band. The UAV 
NIR band was thus modelled (R2

NIR = 0.98) using a three-layered neutral network 
(NN) prediction based on red, green, and blue reflectance imagery, itself calibrated/
validated/tested by Dove imagery bands (R2

red = 0.88, R2
green = 0.84, and R2

blue = 0.90). 
The 100-fold increase in pixel size allowed to detect the decimeter-scale objects of 
salt marshes and tidal flats. The multiscale NDVI ranges were associated with 
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microphytobenthos and topographically low, medium, and high salt marsh vegeta-
tion, including the opportunistic Elymus genus. The combination of the NDVI val-
ues derived from the Sentinel-2, Dove, and UAV imagery enabled to survey a region 
while detecting subtle features of salt marshes, providing an updated toolbox for 
managers.

Keywords High to very high temporal resolution · High to ultra-high spatial 
resolution · Spatiotemporal analysis · NDVI · Neural network modelling · NIR

1  Introduction

Salt marshes consist of tidal wetlands at the land–sea temperate interface in which 
complex interactions between shoots, roots, soil, and freshwater and seawater pro-
cesses occur [19]. These critical habitats provide numerous ecosystem services, 
such as the biodiversity niche support (e.g., sentinel and umbrella plant species, 
benthic molluscs and crustaceans, insects, migratory and sedentary birds, and fish 
nursery within tidal channels), ocean–climate change regulation (hydrodynamic 
barrier against erosion and submersion, land fertilizer recycler, carbon sink [thus 
their nickname of “blue carbon,” shared with mangroves and seagrasses]), ornithol-
ogy recreo tourism, or plant gathering by hand [23, 31]. Since the Holocene with the 
birth and emergence of agriculture, these fertile areas were globally converted into 
crop fields. Nowadays, coastal eutrophication continues to the reduction of salt 
marsh extent and the deterioration in their ecological condition [11]. Despite these 
pressures, some of these ecosystems have remained stable in the face of sea level 
rise [20]. Elsewhere, significant losses of salt marshes have been observed, for 
example, in China [15], affecting the sediment budget and even tide [13]. In the 
context of global warming and associated increase in land and sea surface tempera-
tures, poleward shifts of mangroves may entail possible competition with salt 
marshes in America and Australasia [34].

Given their considerable ecosystem services and pressures that may lead to dete-
rioration and losses, salt marshes require frequent investigation of their biophysical 
envelope area and fragmentation rate. Regional monitoring using a finer-resolution 
imagery of their spatial patterns is necessary to quantify and determine the rate of 
change of their endogenous and exogenous drivers. Cartographically, salt marshes 
were represented by a dedicated symbol on maps since the beginning of the eigh-
teenth century [14]. Following the ground triangulation of salt marshes over more 
than two centuries, the 1950s airborne photographs improved the geolocation of 
their areal extent along with the advent of landscape ecology [33]. The addition of 
airborne near-infrared (NIR) information led to the interpretation of salt marshes’ 
net primary productivity [35], paving the way to the implementation of the NIR sen-
sor on a spaceborne platform dedicated to vegetation mapping (Landsat-4, [16]). 
One of the vegetation indices, which uses a ratio of the difference between the red 
(R) and NIR bands with their sum, is the normalized difference vegetation index 
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(NDVI). It has been applied to Landsat-1 over the Great Plains of the United States 
of America since the 1970s [32]. The NDVI-based Landsat series have enabled the 
monitoring of salt marshes across four decades, provided with (resampled) 60 m to 
(native) 30 m pixel size [24]. More recently, the optical Sentinel-2 sensor, launched 
in 2015, enabled the NDVI to be computed at 10 m spatial resolution provided with 
a 5-day revisit at the equator (compared to an approximate 16-day revisit of 
Landsat-8 at the equator), offering valuable time series datasets to use in change 
detection of the extent and ecological condition of the salt marsh vegetation [36]. 
Since 2016, the Dove nanosatellites [29], each carrying a four-band optical sensor 
(RGB-NIR), embodied a technological leap given its daily revisit at 3  m pixel 
size [7].

The spaceborne observation of the extent and ecological condition of salt marshes 
has also benefited from an increase in both spatial and spectral resolution with the 
WorldView-3 sensor, providing five visible, three NIR and eight mid-infrared, 
bands at 0.3 m pixel size [4, 5]. Usually restricted to active very-fine-scale spatial 
resolution, such as airborne topographic and/or bathymetric Light Detection and 
Ranging (LiDAR) data [3], the height and species composition of the salt marsh 
vegetation could be mapped using neural network (NN) predictive modelling [4]. 
By providing a higher spatial resolution, the three-band sensor carried by the 
unmanned aerial vehicle (UAV) can capture natural-colored (RGB) imagery at an 
ultra-high resolution, ranging from 0.01 m to 0.1 m pixel size [25]. The disadvan-
tage of using such consumer-grade UAVs may reside in the necessary addition of 
the NIR band to the main RGB camera, decreasing its relative cost-effectiveness. 
The predicted NIR band improved the separability of various types of vegetation, 
such as salt marshes, soils, sediments, and water types. A recent study has showed 
how to predict the NIR reflectance values from the existing RGB reflectance values 
using a fully connected NN spatially explicit model [8].

Because remote sensing is a nexus of trade-offs, today’s spaceborne regional and 
high-spatial resolution imagery suffers from the coarseness of the grain size, while 
airborne local and ultra to very high spatial resolution imagery loses from the small-
ness of the scene. Even if those spatial specificities have been upgraded along with 
the temporal and spectral resolution, there is still no optimal sensor to spectrally 
discriminate submeter salt marshes’ structural and functional patterns at the weekly 
interval.

This research aims to test an original multiscale, spatiotemporal continuous 
mapping approach, based on progressive NDVI spatial enhancement over the most 
dynamic areas, to:

 – Monitor the change in extent and ecological condition of salt marshes at high 
spatial resolutions

 – Predict the reflectance values of the NIR band for the UAV sensor, to enable the 
calculation of NDVI, at ultra-high spatial resolution

over one of the largest salt marsh zones that exist in Europe, namely, the Bay of 
Mont-Saint-Michel, France (Fig. 1).

Multiscale Spatiotemporal NDVI Mapping of Salt Marshes Using Sentinel-2, Dove…
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Fig. 1 Location of the study site hosting one of the largest extent of salt marsh in Europe: the Bay 
of Mont-Saint-Michel between Normandy and Brittany regions (France)

The objectives of the study are:

 – To compare the changes in NDVI for salt marsh over a period of 4 and 5 years, 
using the 3 m Dove and 10 m Sentinel-2 imagery, respectively

 – To produce 0.03  m spatially explicit NIR reflectance values and then derive 
NDVI values from the multi-layered NN learning developed with the UAV-borne 
senseFly RGB predictors and Dove responses

Spatial–temporal–spectral resolutions of the sensors and transferability of the 
modelling approach will be discussed in a context of salt marshes’ monitoring and 
management.

2  Methodology

The methodological development of this research referred to a large-scale salt marsh 
area, very susceptible to encompass the spectral variability of various plants and 
soils, for the sake of transferability to other salt marshes. Technologically, Sentinel-2, 
Dove, and UAV sensors used in this study consist of the remote sensing sensors that 
are increasingly used by scientists and managers.

2.1  Study Area

Salt marshes of the Bay of Mont-Saint-Michel lie along Normandy and Brittany in 
France (48°38′05″N; 1°30′36″W). Covering an extent of dozens of km2 in the high-
est part of the intertidal area (only submerged during high spring tides), these tidal 
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coastal ecosystems receive freshwater influence from the three main rivers in the 
east (the Sée, Sélune, and Couesnon rivers) and are subject to a clockwise gyre in 
the west (Fig.  2). That spatial heterogeneity, therefore, ranges from an estuarine 
ecosystem in the east, which is hydrologically very dynamic, to a bay system in the 
west, which, in comparison, is much calmer. Those salt marshes are classified as a 
natural heritage site by the UN Educational, Scientific, and Cultural Organization 
(UNESCO) in 1979, and benefit from European protection as Natura 2000 sites for 
both “Habitats” and “Birds” directives. Birdlife International also describes the bay 
and its salt marshes as an “important zone for bird conservation.” On a national 
scale, they are inventoried and listed as “natural zones for ecology, flora, and fauna.”

Those salt marshes host extensive human activities, ranging from livestock farm-
ing to hunting of waterbirds, for example, of which the impacts and pressures are 
evident from the reticulated pathways and artificial shallow water bodies across the 
area (Fig. 3).

2.2  Imagery Source and Processing

This research adopts a top-down approach by progressively focusing on the most 
dynamic salt marshes with the simultaneous increase in pixel size and decrease in 
scene size. This could be deemed as a downscaling from 10 m Sentinel-2 to 3 m 
Dove, in turn, to 0.03 m UAV imagery. The continuous mapping of this multiscale 
study is facilitated by ranges of NDVI values derived for these images.

Fig. 2 Sentinel-2 RGB values of the Bay of Mont-Saint-Michel, France, acquired on (a) 18 March 
2016 and (b) 1 April 2021, respectively

Multiscale Spatiotemporal NDVI Mapping of Salt Marshes Using Sentinel-2, Dove…
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Fig. 3 Dove Planetscope PS2 RGB values of the core of the study site acquired on (a) 1 June 2017 
and (b) 3 May 2021

2.2.1  Satellite Sentinel-2

Monitoring of the entire salt marshes, at the scale of the whole bay, relied on two 
Sentinel-2A multispectral imager (MSI) datasets, collected on 18 March 2016 
(Fig. 2a) and 1 April 2021 (Fig. 2b). The B (492 ± 33 nm), G (560 ± 18 nm), R 
(665 ± 15 nm), and NIR (833 ± 53 nm) wavebands were processed at 10 m pixel 
size. The NDVI values were calculated from the R and NIR bands.

Imagery was downloaded as a L1C product, which is geometrically and radio-
metrically corrected to the top of atmosphere (TOA) reflectance. Using the 
Sentinel-2 toolbox (SNAP v.8), the atmosphere effect was calculated to convert the 
TOA reflectance in bottom of atmosphere (BOA) reflectance (i.e., the L2A product).

NDVI values were then computed for both dates following Eq. 1 [32]:

 
NDVI NIR Red NIR RedBOAref BOAref BOAref BOAref� �� � �� �/

 
(1)

where NIRBOAref and RedBOAref corresponded to the Sentinel-2A bands centered at 
833 and 665 nm, respectively.
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The 5-year diachronic analysis established the per-pixel difference of the NDVI 
values from each image. These image dates were chosen to be the most distant 
while being captured at the closest seasonal time, here in the early spring.

2.2.2  Nanosatellite Dove

Based on large-scale Sentinel-2A information, the largest and most dynamic salt 
marsh area (centered at 48°38'N; 1°35'W on Fig. 2) was examined at a finer scale 
using hypertemporal Dove imagery [7], from Planet Labs. Two Dove imagery, pro-
vided with the Planetscope PS2 camera, were acquired on 1 June 2017 (Fig. 3a) and 
3 May 2021 (Fig. 3b). The B (485 ± 30 nm), G (545 ± 45 nm), R (630 ± 40 nm), and 
NIR (820 ± 40 nm) wavebands were examined at 3 m spatial resolution. Geometric 
and radiometric corrections were applied to obtain the orthorectified BOA reflec-
tance. NDVI values was also calculated for each date, and then the 4-year difference 
was mapped.

A third Dove image (Fig. 4a) was retrieved for the most extensive and dynamic 
salt marsh area along the coast (centered at 48°37'50"N; 1°36'35" on Fig. 3) to serve 
as spectral responses of the NN predictive modelling, involving RGB predictors 
from UAV. The image was taken on 11 July 2020 to be the closest to the UAV flight 
conducted on 8 July 2020 (Fig. 4b), which featured the same spectral and spatial 
specificities and geometric and radiometric corrections, as previously mentioned.

2.2.3  Unmanned Aerial Vehicle

By investigating the medium-scale Dove Planetscope PS2 information, the chang-
ing zone was further analyzed at the local scale using the ultra-high-resolution UAV- 
borne senseFly “sensor optimized for drone application” (SODA) sensor. This 
5472 × 3648-pixel camera was mounted on a fixed-wing eBee UAV [26], whose 
flight mission was planned at 120 m height above mean sea level corresponding to 
a 0.03 m pixel size on the ground. The survey took place on 8 July 2020, 3 days 
before the Dove acquisition.

As a conventional visible camera, the SODA sensor captured RGB wavebands in 
the form of digital numbers (DN) coded into eight bits.

2.3  Predicting the NIR at the UAV Scale

The NIR constitutes a compulsory term to solve for the NDVI formula. That wave-
band, slightly longer than the visible gamut, exists for the Sentinel-2 and Dove sat-
ellite sensors, but not for the UAV camera. By implementing a nonlinear regression, 
the Dove NIR BOA reflectance values’ response could be predicted from the UAV 
RGB DN predictors, using artificial NN models [8].
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Fig. 4 RGB values derived from (a) Dove Planetscope PS2 imagery, acquired on 11 July 2020 and 
(b) unmanned airborne vehicle SODA, acquired on 8 July 2020
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2.3.1  Two-Scaled Spectral Datasets

The potential to accurately simulate the NIR BOA reflectance for the UAV sensor 
depends on the sampling strategy (Fig. 5).

The proposed procedure started with a stack of the Dove NIR-RGB BOA reflec-
tance with the UAV RGB DN using the co-registration. For each spectral satellite 
reflectance band to be predicted, a relevant pixel sampling was carried out:

 – Slicing the spectral band into 75 equal reflectance ranges
 – Saving the sliced areas as regions of interest
 – Calculating and extracting the mean values for the four satellite sensors and three 

UAV bands per slice
 – Randomly dividing the output matrix into 25 training, 25 test, and 25 valida-

tion samples

2.3.2  Neural Network Regression

The estimation of the reflectance values in the NIR at BOA from the UAV RGB DN 
required the predictions of the R, G, and B BOA reflectances. Based on the band- 
specific stratified sampling, the NN model built a fully connected one-layer percep-
tron, whose (hidden) layer was composed of a single (hidden) neuron (or node) 
[17]. For each neuron, a sigmoid activation function, defined as a hyperbolic tangent 
function (TanH), was generated as a linear regression of the RGB predictors (Eq. 2):

Fig. 5 Flowchart describing how a 3 m satellite Dove Planetscope PS2 near-infrared imagery 
(bottom of atmosphere reflectance) can be spatially enhanced at 0.03 m pixel size, using 0.03 m 
unmanned airborne vehicle natural-colored imagery (digital numbers) and a three-layer neural 
network calibrated/validated/tested by the satellite Planetscope blue–green–red–near- 
infrared imagery
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NN X w X Ci i i� � � �

 
(2)

where NN(Xi) is the predicted BOA reflectance of the Xi spectral band Xi, wi is the 
sigmoid activation function of the DN spectral band, and C is an offset (see the first 
hidden layer in Fig. 5).

Once the RGB datasets were properly estimated at the BOA reflectance level 
(see the second layer in Fig. 5), the NIR BOA reflectance could have been modelled 
using a hidden layer with a single neuron linked with the three predicted RGB BOA 
reflectance values (see the third layer in Fig. 5).

3  Results

The innovative multiscale continuous mapping of salt marshes in the Bay of Mont- 
Saint- Michel relied, first, on the diachronic analysis of the 5-year and 4-year change 
in the NDVI using 10 m Sentinel-2 and 3 m Dove imagery, respectively, and second, 
on the prediction of the NDVI, using the 0.03  m UAV along with a NIR NN 
modelling.

3.1  Changes in the Normalized Difference Vegetation 
Index Values

3.1.1  Satellite Sentinel-2

The calculation of the NDVI products based on Sentinel-2A imagery showed diver-
gences between 18 March 2016 (Fig. 6a) and 1 April 2021 (Fig. 6b) at the extent of 
the full study area. The sea level was different due to the variation in the tide sched-
ule. Crop fields, bushes, trees, and salt marshes were conspicuously more vivid in 
March 2016 than in April 2021, as can be seen from the dominance of red color in 
the March 2016 image. In fact, the number of NDVI ranges >0 covered an area of 
241.6 km2 and 214.4 km2 for March 2016 and April 2021, respectively. By examin-
ing the NDVI ranges >0 with a 0.2 lag interval, the surface area was generally geo-
graphically more extensive in March 2016 than in April 2021:

 – 111.2 km2 versus 92.0 km2 for the [0–0.2] range
 – 53.9 km2 versus 50.4 km2 for the [0.2–0.4] range
 – 53.2 km2 versus 54.1 km2 for the [0.4–0.6] range
 – 23.3 km2 versus 17.8 km2 for the [0.6–0.8] range

Focused on salt marshes (see the masking in Fig. 7), the distribution of the NDVI 
values varied between March 2016 and April 2021. NDVI values <0 spanned over 
smaller areas in March 2016 (1.1 km2) than in April 2021 (1.6 km2). On the contrary, 
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Fig. 6 NDVI values of the study site derived from the Sentinel-2 imagery acquired on (a) 18 
March 2016 and (b) 1 April 2021, respectively

the NDVI values >0 extended over a slightly larger overall area in March 2016 
(59 km2) than in April 2021 (58.5 km2). However, this average concealed trends at 
the NDVI range level with a predominance in 2021 compared to 2016, except for 
the medium positive NDVI range:

 – 27.4 km2 versus 25.4 km2 for the [0–0.2] range
 – 24.6 km2 versus 29.7 km2 for the [0.2–0.4] range
 – 6.2 km2 versus 3.7 km2 for the [0.4–0.6] range
 – 0.3 km2 versus 0.2 km2 for the [0.6–0.8] range.

The difference in NDVI between the early springs of 2021 and 2016 (Fig. 7) was 
characterized by a slight increase in negative and very high positive [0.6–0.8] NDVI 
values, a stronger augmentation for low [0–0.2] and high positive [0.4–0.6] NDVI 
values, and a marked decline in medium positive [0.2–0.4] NDVI values.

The white rectangle on Fig. 7 outlined the area provided with the deepest con-
trast in the salt marsh 2016–2021 change, which was further examined with the 
Dove imagery.

3.1.2  Nanosatellite Dove

The calculation of the NDVI products based on Dove Planetscope PS2 revealed 
distinctions between 1 June 2017 (Fig. 8a) and 3 May 2021 (Fig. 8b) on the medium 
scale of the most dynamic salt marsh. The NDVI values seemed, at first sight, to 
decrease in that 4-year period, as attested by the loss in the orange color in May 
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Fig. 7 Difference in the NDVI values of the Sentinel-2 imagery between 1 April 2021 and 18 
March 2016. The white rectangle identifies the dynamic area that was further investigated with the 
Dove Planetscope PS2 imagery

Fig. 8 Dove Planetscope PS2 NDVI values of the core of the study site acquired on (a) 1 June 
2017 and (b) 3 May 2021, respectively
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Fig. 9 Difference in the NDVI values derived from the Dove Planetscope PS2 imagery between 3 
May 2021 and 1 June 2017. The black polygon identifies the salt marsh area that was surveyed by 
an unmanned airborne vehicle on 8 July 2020

2021. The easternmost salt marsh zone has eroded to the benefit of a river channel 
(48°38'N; 1°31'30"W). In contrast, the central western front has evidently pro-
graded (48°38'N; 1°36"W).

NDVI ranges <0 decreased (from 11.2 km2 in June 2017 to 11.1 km2 in May 
2021), whereas NDVI ranges >0 waxed (from 14.55 km2 in June 2017 to 14.64 km2 
in May 2021). By examining NDVI ranges >0 at the 0.2 lag, the surface area was 
much wider in 2021 than in 2017 for the [0–0.2] range (10.2 km2 versus 1.7 km2) 
but was more cramped for both the [0.2–0.4] range (4.4 km2 versus 10.4 km2) and 
the [0.4–0.6] range (0.005 km2 versus 2.46 km2).

The difference in NDVI between the late springs of 2021 and 2017 (Fig. 9) was 
characterized by a slight rise in negative [0.6–0.8] NDVI values, the greatest 
increase for low positive [0–0.2] NDVI values, and a tangible decrease in the 
medium [0.2–0.4] and high [0.4–0.6] positive NDVI values.

The black rectangle in Fig. 9 delineated the hybrid area of interest provided with 
obvious losses and gains in NDVI values in the salt marsh during the period from 
2017 to 2021. That zone was further investigated with the ranges of NDVI values 
derived from the UAV imagery.

3.2  Prediction of the Normalized Difference Vegetation 
Index Values

3.2.1  Unmanned Aerial Vehicle Near-Infrared

The study of NDVI spatial patterns was not trivial and required one to be able to 
predict a NIR band at a fine scale for the UAV sensor. Based on a previous develop-
ment established on NN predictive modelling of the NIR reflectance value from 
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Table 1 Results of the neural network predictive modelling for each spectral band as a function of 
the randomly divided datasets

Spectral band Test
R2 RMSE

Blue 0.90 51.26
Green 0.84 68.55
Red 0.88 82.70
Near-infrared 0.98 162.73

UAV RGB predictors [8], the UAV NIR BOA reflectance values were predicted 
from the UAV RGB BOA reflectance values, themselves predicted from the Dove 
RGB BOA reflectance values. Table 1 summarized the performance of the three 
individual RGB predictions, as well as the final NIR prediction. The RGB BOA 
reflectance values were considered well predicted (by the one-neuroned one-layered 
model) because they achieved coefficients of determinations (R2) ranging from 0.84 
to 0.90. The NIR BOA reflectance values were very well predicted by its three- 
neuroned one-layered NN model, with an R2 attaining a maximum value of 0.98.

The predicted values of the RGB NN models were combined to predict the NIR 
BOA reflectance values (using the Dove Planetscope PS2 imagery, Fig. 10a), fol-
lowing the formula:

 

NIRBOAref

BOAref

� � �

� � � �

2755 53 2025 37

0 5 12 12 0 02 0 01

. .

(tan . . . .H B �� � �� �� �G RBOAref BOAref0 02.
 

(3)

where all NIR, R, G, and B variables correspond to the predicted BOA reflectance 
spectral variables.

The equation was then applied to the UAV pixel to predict the NIR BOA reflec-
tance at a higher spatial resolution (Fig. 10b). Although the general spatial patterns 
were qualitatively similar between the 3 m and 0.03 m NIR BOA products, such as 
for artificial water bodies for hunting and tidal flats, the 100-fold magnification 
details calculated for the salt marsh allowed elucidating the complex network of 
sheep and hunters’ pathways and also the higher vegetation reflectance values at the 
front and around the water bodies. Conversely, the more subtle reflectance signa-
tures allowed identifying Dove homogeneous vegetated areas that were decomposed 
in a larger diversity of plant reflectance values, thus taxonomy and/or phenology.

The creation of the NIR BOA reflectance band on the Dove (Fig. 10a) and UAV 
(Fig. 10b) made the NDVI calculation possible (Fig. 11a, b, respectively). At the 
level of the salt marsh area, the spatial variability of the NDVI associated with the 
innovative UAV-based imagery was obviously much stronger than this tied to the 
Dove-based data, labeled with larger even areas. To highlight the great information 
enhancement derived from the UAV, a zoom-in was realized (the small black rect-
angles in Fig. 11), incontrovertibly contrasting the homogeneity of the 3 m Dove 
NDVI values, hardly fluctuating, with the tremendous complexity of the 0.03 m 
UAV NDVI values.
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Fig. 10 NIR values derived from (a) Dove Planetscope PS2 bottom of atmosphere reflectance 
(BOA), acquired on 11 July 2020, and (b) predicted BOA reflectance for the UAV, from the 8 July 
2020 acquisition
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Fig. 11 NDVI values derived from the (a) Dove 3 m Planetscope PS2 imagery, acquired on 11 
July 2020, and (b) SODA 0.03 m UAV, collected on 8 July 2020. The black rectangles correspond 
to close-ups
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Quantitatively, the number of NDVI ranges and the surface area covered within 
ranges (defined at the 0.2 lag) conspicuously varied from the Dove to UAV prod-
ucts. The Dove dataset ranged from [−0.2–0] to [0.8–1.0], encapsulating six ranges, 
while the UAV comprised seven ranges, adding the [−0.4−0.2] to the previous ones. 
Even if the relative distribution within common ranges followed the same tendency 
for both datasets, the UAV detected more negative, medium, and extreme positive 
NDVI ranges at the detriment of the high and very high positive ranges.

4  Discussion

4.1  Salt Marsh Spatiotemporal Patterns

4.1.1  Satellite-Based Salt Marsh Spatial Analysis

According to the results derived from the 10 m Sentinel-2 NDVI classification, the 
surface covered by vegetation tends to average 59 km2 for the whole Bay of Mont- 
Saint- Michel, thus including the coastal ecosystems of Brittany and Normandy. 
That area encompassed subareas associated with diverse NDVI ranges, such as low, 
medium, high, and very high values. Some of the low values of NDVI [0–0.2] might 
stem from the phytoplankton flourishing on the narrow tidal flats and channels [38], 
wandering in salt marsh meadows. A large but not exclusive part of the medium 
NDVI range [0.2–0.4] could emerge from the topographically low salt marsh plant 
genera, such as Spartina, Salicornia, and Suaeda [12, 30]. Likewise, the high NDVI 
range [0.4–0.6] partly arose from the topographically medium salt marsh flagship 
species Halimione portulacoides [5]. Finally, the very high NDVI range [0.6–0.8] 
might contain the spectral signatures of the topographically high salt marsh genera, 
such as Puccinellia, Festuca, Aster, and Limione [1, 27]. In that latter NDVI range 
could also be integrated the genus Elymus [37], which tends to thrive over the topo-
graphically medium and high salt marsh at the detriment of traditional species and 
genera [39]. That Elymus expansion, between 1984 and 2013, within the Bay of 
Mont-Saint-Michel, was hypothesized as an ecological response of the watershed 
change in agricultural land use, thus in eutrophication (especially nitrates).

The previous authors established that salt marshes extended over 42 km2 in 2013 
based on a thorough photo-interpretation. Our NDVI products overestimated those 
findings by 18 km2. However, by keeping medium, high, and very high NDVI ranges 
(those actually related to salt marsh vegetation) and simply removing the half of the 
surface covered by the low NDVI range [0–0.2], which was very likely to merge 
microphytobenthos and sparse topographically low salt marsh vegetation, the results 
reached 46 km2.

On the scale of the most dynamic salt marsh, the 3 m Dove NDVI mapping, 
issued from slicing in 2017, clearly shed light on the predominance of the negative 
and positive medium NDVI ranges, compared to the low and high NDVI ranges. 
Therefore, the enhancement of spatial resolution could better discriminate the 
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microphytobenthos from the topographically low salt marsh vegetation, provided 
that the salt marsh analyzed by Dove was representative of all salt marshes exam-
ined by Sentinel-2.

Inaccuracies derived from the manual outline of older studies and our NDVI 
continuous indicator could be further overcome by implementing a supervised clas-
sification at a very high resolution using machine learning [4], including deep 
learning [9].

4.1.2  Satellite-Based Salt Marsh Temporal Change

At the bay scale, the change in NDVI values’ ranges between 2016 and 2021 under-
lined a trend of salt marsh expansion around the three river mouths (east), a diminu-
tion south of Mont-Saint-Michel, and a development slightly westward (see Fig. 7). 
The latter erosion/accretion salt marsh movement could be explained by the flush-
ing effect of the recently built (2009) dam just south of Mont-Saint-Michel. The 
overall salt marsh progradation, during those 5 years, forms the recent part of an 
expansion process, observed since the first aerial photographs in 1947: 2021 
(46 km2, our study), 2013 (42 km2, [39]), 1996 (24.2 km2, [2]), 1980 (21.8 km2, [2]), 
and 1947 (12.9 km2, [2]). The time series assessment at that bay scale will be duly 
enriched with the high temporal resolution provided by the 5-day 10 m Sentinel-2 
to identify the stability or the variability in the velocity of the salt marsh general 
progradation and local erosion/accretion, facing anthropogenic changes [22].

The diachronic analysis of the 5-year (Sentinel-2) NDVI time series has unveiled 
that the early spring salt marshes at the bay scale gained topographically low 
([0–0.2], +2.1 km2) and high ([0.4–0.6], +2.5 km2; [0.6–0.8], +0.1 km2) salt marsh 
vegetation, but lost the medium ([0.2–0.4], −5.1 km2) one. This pattern might be 
explained by the trend in H. portulacoides loss with the benefit of the low salt 
marsh, which prograded, and of the high, even very high vegetation, Elymus, puta-
tively boosted by eutrophication.

The NDVI change of the representative salt marsh between late spring 2017 and 
middle spring 2021 (Dove results) was also characterized by an increase in low salt 
marsh vegetation ([0–0.2], +8.5 km2), a decrease in medium salt marsh vegetation 
([0.2–0.4], −6  km2), but a contrasting decline in high vegetation ([0.4–0.6], 
−2.5 km2), compared to Sentinel-2 results. This reduction in high vegetation could 
be corroborated with the fact that the focused salt marsh did not well represent the 
spread of Elymus insofar as the studied area was relatively remote from the three 
rivers likely to convey the excessive nitrate inputs. The variation in the high vegeta-
tion associated with high NDVI values could also be due to the phenological relative 
distance occurring between late spring (1 June 2017) and middle spring (3 
May 2021).

The increase in low salt marsh vegetation could also be reinforced by the natural 
landward migration of the crescent-shaped sandy dunes that are visible in Fig. 9 
(west). Originating from a 2  km2 seaward biogenic reef (located in the lower 
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intertidal area, close to the subtidal limit), erected by the honeycomb worm 
Sabellaria alveolata [6], sediment pulses of calcareous sand are actuated by the 
combination of stormy waves and strong tidal currents, crossing the intertidal area 
on average of 30 years [10]. When the biogenic sandy dunes get closer to the salt 
marsh forefront (hundreds of meters), the hydrodynamic conditions become calmer 
[27], which triggers an increase of rate sedimentation, in turn, facilitating the colo-
nization of the pioneer salt marsh species, such as Spartina, Salicornia, and Suaeda 
genera. Like with Sentinel-2, the very high temporal resolution Dove satellites 
embody key imagery to build continuous time series that have the potential to neatly 
link the ecology of the most extensive animal reef construction in Europe, seaward, 
with one of the broadest vegetal meadows in Europe, landward, through a mobile 
landform.

4.2  Modelling the Extent of Salt Marsh 
at an Ultra-High Resolution

4.2.1  Spectral Predictive Modelling at Ultra-High Resolution

The great performance of the predicted NN modelling of the NIR BOA reflectance 
values helped to produce the NDVI at an unprecedented spatial resolution over salt 
marshes of the Bay of Mont-Saint-Michel. That scientific advancement enabled 
both the detection of an NDVI range [−0.4–0.2], invisible to Dove imagery, and the 
better pixel distribution in the NDVI ranges, by eroding the high and very high posi-
tive ranges and by meliorating the negative, medium, and extreme positive ranges: 
[0–0.2], −1.2  ha; [0.2–0.4], 29.5  ha; [0.4–0.6], −85.8  ha; [0.6–0.8], −82.6  ha; 
[0.8–1.0], +36.9 ha. Those refinements will straightforwardly enhance the diagnosis 
of the ecological structuration and functioning of salt marshes, laying the founda-
tion of a sound spatialized ecological state indicator.

That indicator would be even more robust if it relied on additional spectral bands, 
such as the red edge (RE), “squeezed” between the R and the NIR, which is encom-
passed in the SuperDove PS2.SD satellite imagery. Furthermore, the SuperDove 
PSB.SD imagery even captures the purple, called coastal blue [431–452  nm], B 
[465–515  nm], two G [513–549 and 547–583  nm], yellow [600–620  nm], R 
[650–680 nm], RE [697–713 nm], and NIR [845–885 nm] bands. Along with the 
0.3  m six-band Pléiades Neo and the 0.3  m eight-band WorldView-2 and 
WorldView-3, the 3  m PSB.SD imagery modelled at the UAV scale holds great 
promise to create optical multispectral ultra-high resolution imagery at low cost. An 
even cost-efficient alternative would be to downscale the visible and NIR spectral 
bands tied to Sentinel-2 at the UAV pixel size, while bearing in mind that the scaling 
process will not shift imagery from 3 m (or 0.3 m) to 0.03 m, but from 10 m to 
0.03 m, which could lie on a strong assumption of the spectro-spatial continuity.
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4.2.2  Predictive Modelling of Vegetation Height at Ultra-High Resolution

The NN predictive modelling of the NIR and other spectral optical bands will aid in 
elaborating ecological indicators such as vegetation, soil, or water continuous indi-
ces. Calibrated and validated by topographic LiDAR height, NN modelling even 
successfully predicted salt marsh vegetation height and elevation [4]. Despite its 
reference status to monitor coastal elevation [28] and species composition [3], an 
airborne LiDAR survey remains costly. Spaceborne LiDAR, such as the topo- 
bathymetric ICESat-2, could be a much more affordable solution to sample the 
height and elevation of salt marsh, while keeping in mind that the footprint approxi-
mately reaches 10 m diameter [21]. Otherwise, the height and elevation could also 
be calculated using the photogrammetric procedure with the UAV planning survey 
[18]. In addition to the multispectral UAV-scaled BOA reflectance bands (see 
above), the information of vegetation height and elevation will have a great poten-
tial to provide decisive cues to classify the salt marsh at the species level.

5  Conclusion

This paper sheds light on the NDVI-based salt marsh mapping using a spatiotempo-
ral multiscale process based on state-of-the-art remote sensing technologies, from 
the 10 m Sentinel-2A MSI through the 3 m Dove Planetscope PS2 to the 0.03 m 
UAV imagery.

The Sentinel-2 and Dove multispectral BOA reflectance values helped to moni-
tor NDVI ranges at the bay (hundreds of km2) and the salt marsh (tens of km2) 
scales, respectively. Their high and very high temporal resolution enabled them to 
build diachronic analysis across five (2016–2021) and four (2017–2021) years, 
respectively. Findings of both scales were discussed in the continuity of older stud-
ies, as well as hydrological, hydrodynamic, ecological, and socio-economic drivers. 
The NDVI ranges were discussed to discriminate microphytobenthos and topo-
graphically low, medium, and high salt marsh vegetation, including the opportunis-
tic Elymus genus.

NDVI values were very satisfactorily modelled at the UAV scale (a few km2) 
using a three-layer NN prediction, providing the final NIR and the intermediate 
RGB BOA reflectance values, calibrated/validated/tested by the Dove BOA reflec-
tance values (R2

NIR = 0.98, R2
red = 0.88, R2

green = 0.84, and R2
blue = 0.90). The 100-fold 

gain in pixel size not only allowed to seize the decimeter-scale objects of salt 
marshes and tidal flats but also allowed to better distribute the NDVI values, by 
increasing the negative, medium, and extreme positive values, which were underes-
timated, and by decreasing the high and very high positive values, which were over-
estimated by the 3 m Dove BOA reflectance values.
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Contribution of Near- and Mid-Infrared 
Wavebands to Mapping Fine-Scale Coastal 
Ecogeomorphological Features

Antoine Mury, Antoine Collin, Dorothée James, and Mathilde Letard

Abstract Coastal ecogeomorphological features support remarkable biodiversity 
and provide a wide variety of ecosystem services: cultural services (recreation, tour-
ism facilities), provisioning services (agricultural production, pastoralism), and 
regulating services, including carbon sequestration and natural protection against 
coastal erosion and marine flooding. Therefore, mapping these coastal features with 
very high spatial resolution is a major challenge to their preservation and to face the 
challenges of global change. In this study, the contribution of the near-infrared 
(NIR) and mid-infrared (MIR) bands from multispectral drone and super-spectral 
(SS) WorldView-3 (WV-3) satellite images was used to map coastal ecogeomorpho-
logical features using two supervised classification algorithms: maximum likeli-
hood (ML) and support vector machine (SVM). Various combinations of spectral 
bands, visible + NIR and visible + MIR, evaluated through the overall accuracy 
(OA) scores, for the classification of ecogeomorphological features revealed the 
significant contribution of the NIR and MIR bands to the mapping of coastal fea-
tures. The addition of the NIR bands to the RGB band combination significantly 
increased the OA scores of the classifications (by +4.99% and +6.54%, with the ML 
and SVM algorithms, respectively). The addition of MIR bands to the combination 
of these bands provides classifications with even higher OAs (up to 99.1% and 
98.4%), demonstrating the relevance of MIR bands for the mapping of coastal 
ecogeomorphological features.
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1  Introduction

The exceptional contribution of ecosystem services provided by the coastal systems 
of the Bay of Mont-Saint-Michel (BMSM) has been well documented [14, 17, 22]. 
The ecogeomorphological characteristics of these wetlands, such as their floristic 
compositions, their root systems, and their ability to reduce the waves’ height 
through their densities, are critical to ensure the resilience of the landscape against 
deleterious climate change impacts and also protection of indigenous societies 
against coastal hazards [13, 18–20]. In addition, coastal wetlands support a wide 
range of ecological infrastructure and biodiversity assets, recognized through vari-
ous national and international treaties. In Europe, this includes, for example, the 
European “birds” (council directive 2009/147/EC) and “habitats” (council directive 
92/43/EEC) directives. In doing so, coastal wetlands were selected for inclusion in 
protected areas, such as Natura 2000, natural zones of ecological interest, and the 
Ramsar Convention on wetlands of international importance. Therefore, the identi-
fication and mapping of ecogeomorphological features are carried out as prelimi-
nary steps toward the management and preservation of natural environments.

Recognized as a UN Educational, Scientific, and Cultural Organization World 
Heritage Site since 1979 (whc.unesco.org), the BMSM constitutes an important 
biodiversity reserve and a real regional wealth. In fact, it offers local communities a 
wide range of benefits in terms of ecosystem services.

Previously, two coastal ecogeomorphological features of the BMSM have been 
mapped, including the biogenic reefs of Sabellaria alveolata [8, 9] and salt marshes 
[19], both using remote sensing methods based on Light Detection and Ranging 
(LiDAR) and satellite or unmanned aerial system (UAS) data. But no study to date 
has focused on mapping the complex set of ecomorphological systems at the land–
sea interface. However, a global understanding of spatial dynamics over time is 
necessary given the existing interactions between the ecogeomorphological entities, 
as illustrated by the notion of “windows of opportunity” [3, 12].

In this study, the contribution of the novel bands from the spaceborne, super- 
spectral WorldView-3 (WV-3) satellite imagery to the visible red-green-blue (RGB) 
bands combination is evaluated for the very high-resolution (VHR) mapping of 
ecogeomorphological features, through two conventional classification algorithms, 
ML and SVM, in order to identify the most useful spectral bands combination for 
mapping, regardless of the algorithm used.

A. Mury et al.
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2  Methodology

2.1  Study Site

The BMSM (France) is located in the Brittany–Normandy Gulf between the 
Cotentin Peninsula and the northern coast of Brittany called the “Emerald Coast.” 
This bay, subjected to a megatidal regime, belongs to the top six areas that host the 
world’s highest tide [1]. The bay stretches from the Dol Marsh polder by the Duchess 
Anne’s dike in the south to a virtual line between the point of Grouin and the point 
of Granville in the north. In the south, extensive salt marshes of approximately 
42 km2 [24] offer coastal protection by acting as natural barriers against extreme 
tidal action. In addition to these salt marshes, the bay also houses original geomor-
phological features called “shelly ridges,” which were formed in part by thanatoce-
nosis from calcareous bivalve shells mixed with siliciclastic sediments. Salt marshes 
and ridges play an important ecological role by sheltering protected species such as 
Charadrius alexandrines [LC] (www.iucnredlist.org) and offering natural protec-
tion. This study area is a 0.1 km2 area within the bay, which contains coastal salt 
marshes and ridges, such as wetlands and ecogeomorphological features that 
deserve to be mapped more accurately (Fig.  1) for a full understanding of their 
shapes and dynamics. The mapping of these different features, whether plant (salt 
marshes) or sedimentary (mudflats, as well as the different stages of evolution of the 
shelly ridges), constitutes a major action of bringing awareness to their 
preservation.

2.2  Imagery Data

The areal extent of the ecogeomorphological features of the landscape, including 
shelly ridges and mudflats, as well as wetlands, were mapped using a single 
Worldview–3 (WV-3) image, acquired by the European Spatial Agency (ESA) in 
February 10, 2019. The WV-3 optical sensor offers one panchromatic band and 16 
multispectral bands (Fig. 2), of which eight range from visible to NIR:

Band Wavelength (nm)

Coastal [C] 400–450
Blue [B] 450–510
Green [G] 510–580
Yellow [Y] 585–625
Red [R] 630–690
Red edge [RE] 705–745
Near-infrared 1 [NIR1] 770–895
Near-infrared 2 [NIR2] 860–1040

eight from MIR to shortwave infrared [SWIR]:

Contribution of Near- and Mid-Infrared Wavebands to Mapping Fine-Scale Coastal…
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Fig. 1 (a) General location of the study site in the Bay of Mont-Saint-Michel and (b) overview of 
the study area

A. Mury et al.
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Fig. 2 Line plot of the relative response of the 16 spectral bands of the WorldView-3 space-
borne sensor

Band Wavelength (nm)

Shortwave infrared 1 [SWIR1] 1195–1225
Shortwave infrared 2 [SWIR2] 1550–1590
Shortwave infrared 3 [SWIR3] 1640–1680
Shortwave infrared 4 [SWIR4] 1710–1750
Shortwave infrared 5 [SWIR5] 2145–2185
Shortwave infrared 6 [SWIR6] 2185–2225
Shortwave infrared 7 [SWIR7] 2235–2285
Shortwave infrared 8 [SWIR8] 2295–2365

at 0.3, 1.2, and 3.7 m pixel size, respectively (www.digitalglobe.com).
Super-spectral (SS) images underwent three pre-processing steps, and the influ-

ence of the atmosphere was corrected (top of atmosphere, TOA) for each image. 
The radiometric correction of the SS images consists in converting the numerical 
radiance values into TOA reflectance values. The reflectance is calculated according 
to the radiance/irradiance (solar) ratio. The images were also geometrically cor-
rected. The spatial resolution of the imagery was then resampled to that of the pan-
chromatic band (0.3  m) using the Gram–Schmidt pan-sharpening procedure. An 
ultrahigh resolution (<0.03  m) UAS georeferenced orthophoto mosaic (achieved 
using Pix4d mapper software) with bands centered in the red (660 ± 30 nm), green 
(545 ± 35 nm), and blue (480 ± 30 nm) ranges of the electromagnetic spectrum was 
used to validate the classification of coastal features that were mapped using WV-3.

Contribution of Near- and Mid-Infrared Wavebands to Mapping Fine-Scale Coastal…
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2.3  Class Identification

Seven ecogeomorphological classes, which can be divided into two main catego-
ries, (i) plant features (including three sub-categories, natural and pastured salt 
marshes and tidemark plant debris) and (ii) sedimentary features (including four 
sub-categories, shelly ridges, shelly outwashes, in-process shelly ridges, and mud-
flats) (Fig. 3), were identified using georeferenced ground-truth photographs and 

Plant  features

Natural salt marsh

Pastured salt marsh

Tide-mark plant debris

Sedimentary
features

Shelly ridge

Shelly outwash

In-process shelly ridge

Mudflat

Fig. 3 Photographs showing the seven coastal ecogeomorphological sub-classes and two main 
classes used in this study
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the UAS imagery. A series of 2000 regions of interest, single pixels from a single 
WV-3 image for each class, was manually selected in the form of spectrally homo-
geneous polygons (Fig. 4). This data set was split into 50% calibration and 50% 
validation pixels for each class.

Fig. 4 Location map of the selected pixels as regions of interest for each of the seven fine-scale 
classes related to coastal ecogeomorphological features

Contribution of Near- and Mid-Infrared Wavebands to Mapping Fine-Scale Coastal…



46

2.4  Pixel-Based Supervised Classification

Two supervised classification algorithms based on statistical learning theory were 
compared: the common and fast ML and the complex-solving but time-consuming 
SVM. ML is a probabilistic method, assuming that the statistics for each class in 
each band are normally distributed, and which calculates the probability that a given 
pixel belongs to a specific class. Each pixel is assigned to the highest probabil-
ity class.

SVM is a non-probabilistic, non-parametric binary multiclassifier that separates 
the classes with a decision surface (hyperplane), maximizing the margin between 
the classes (see [15] for further details).

Five classification scenarios were compared based on a selection of the WV-3 
spectral bands (i) using the RGB spectral bands only, (ii) RGB and NIR, (iii) 
visible to SWIR4, (iv) from visible to NIR plus SWIR5 to SWIR8, and (v) all of 
the WV-3 bands. The best model was firstly considered where the classification 
results attained the highest overall accuracy (OA) and secondly when also con-
sidering the maximum producer’s accuracy (PA) for each ecogeomorphologi-
cal class.

3  Results and Discussion

3.1  Identification of the Best Model Based 
on Overall Accuracy

The classifications of the visible RGB bands presented an OA of 89% and 87% for 
the ML and SVM algorithms, respectively. The addition of the other visible bands 
(coastal [C] and the yellow [Y] bands) and optical bands (NIR1 and NIR2) of the 
WV-3 imagery for the classification increased the OA scores to 94% and 93.6%, 
respectively. The addition of the first four SWIR bands to the eight previous bands, 
resulted in OAs of 98.2% and 98.3%, respectively, while the addition of the last four 
SWIR bands to the optical bands’ combination attained OA values of 97.9% and 
98.2% for the ML and SVM algorithms, respectively. Finally, the use of all 16 spec-
tral bands of the WV-3 satellite imagery, for the mapping of the seven ecogeomor-
phological classes, maximized the OAs to 99.1% and 98.4% for the ML and SVM 
algorithms, respectively (Figs. 5 and 6).

OAs obtained from the ML and SVM differed on average by only 0.68% with 
the OA values in all classification scenarios (Fig. 5). Based on the comparative 
OAs reached by both algorithms for the various classification scenarios, the ML 
algorithm using all of the WV-3 bands was the best model (OA  =  99.1%) 
(Figs. 5 and 6).

A. Mury et al.
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Fig. 5 Line plot of the overall accuracies (OAs) obtained for each of the five classification sce-
narios (1) Red-Green-Blue [RGB], (2) RGB-Coastal [C]-Yellow [Y]-Near Infrared [NIR], (3) 
RGB-C-Y-NIR-Shortwave Infrared [SWIR] 1–4, (4) RGB-C-Y-NIR-SWIR5-8, and (5) all 16 
bands and two classification algorithms. (Maximum likelihood, ML, and support vector machine, 
SVM, algorithms)

3.2  Class-Level Accuracy

3.2.1  Best Model for Classification of the Plant Features

In terms of classifications of the plant features, the classification results of natural 
salt marshes using the RGB bands only resulted in PA values of 96.5% and 94.1% 
for the ML and SVM algorithms, respectively. The PAs attained 99.7% and 98.9%, 
respectively, with the addition of the other visible bands and NIR bands and 99.8% 
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Fig. 6 Maps resulting from the various classification scenarios and two classification algorithms 
used to map the coastal ecogeomorphological features of the Bay of Mont-Saint-Michel
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and 100% when the SWIR1 to SWIR4 bands were added to this previous combina-
tion. The PA values were 99.7% and 99.2%, respectively, when SWIR5 to SWIR8 
were included with the RGB-C-Y-RE-NIR band combination classification scenario 
and maximized to a PA of 99.9% and 100%, respectively, when all 16 bands of the 
WV-3 imagery were used (Fig. 7).

Fig. 7 Bar graphs of the producer’s accuracy obtained for plant feature classifications, using max-
imum likelihood (ML) and support vector machine (SVM) algorithms and several bands’ combi-
nations (1) Red-Green-Blue [RGB], (2) RGB-Coastal [C]-Yellow [Y]-Near Infrared [NIR], (3) 
RGB-C-Y-NIR-Shortwave Infrared [SWIR] 1–4, (4) RGB-C-Y-NIR-SWIR5-8, and (5) all 
16 bands

Contribution of Near- and Mid-Infrared Wavebands to Mapping Fine-Scale Coastal…
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PA values obtained for pastured salt marshes increased from 98.8% for the ML 
algorithm to 98% for the SVM classifications using only the RGB bands, to 100% 
for both classification algorithms when including the NIR bands (Fig. 7).

The classification accuracy for the tidemark plant debris class followed the same 
trend as the salt marshes: from PAs attaining 87.3% with ML and 81.8% with SVM 
in the RGB classification scenario to 98.1% for both algorithms, with the addition 
of the NIR bands. The PA values increased to 99.5% and 99.7% for the ML and 
SVM classification scenarios, respectively, when the SWIR1 to SWIR4 bands were 
added to the RGB-NIR band classification scenario. The PA values decreased 
slightly when SWIR5 to SWIR8 bands were included, instead of SWIR1 to SWIR4, 
with 99% for ML and 99.2% for SVM. Finally, the PA was maximized at 99.9% for 
ML and 99.7% for SVM, when all 16 spectral bands of the WV-3 images were used 
(Fig. 7).

3.2.2  Sedimentary Feature Classifications

The classification of mudflats from the RGB bands resulted in PA scores of 92.4% 
and 92.9% for the ML and SVM algorithms, respectively. When the other visible 
bands and the NIR bands were added, this PA reached 95.5% and 98.4%, respec-
tively. The addition of the first four SWIR bands allowed to reach 95.7% for the ML 
algorithm and 99.6% for the SVM algorithm (Fig. 8).

PA values for shelly ridges with the RGB bands’ combination attained 93.9% 
and 93.5% for the ML and SVM classification scenarios, respectively. These scores 
were 95.3% for both algorithms with the addition of the other visible and NIR bands 
to the RGB bands and then maximized to 96.3% and 96.5%, respectively, when the 
first four SWIR bands were added to the classification scenario. Thereafter, the 
replacement of the SWIR1 to SWIR4 bands by the SWIR5 to SWIR8 bands resulted 
in PA scores of 96.1% and 96.5%, respectively. Finally, PA scores were 95% for ML 
and 96.4% for SVM, respectively, using all 16 of WV-3’s spectral bands (Fig. 8).

The results of the classification of shelly outwashes, the RGB bands’ combina-
tion offered PA scores of 74.1% and 71.6% for the ML and SVM algorithms, 
respectively. The scores obtained with the addition of the C, Y, and NIR bands were 
79.9% using the ML algorithm and 78.1% using the SVM algorithm. The integra-
tion of the first four SWIR bands then achieved PAs of 99.2% and 97.6%, respec-
tively. The classification using the SWIR5 to SWIR8 bands in addition to the 
combination of the visible and NIR bands, resulting in PA values of 98.4% and 
96.2%, respectively, for the two algorithms tested. These PA scores maximized to 
99.6% and 97.6%, respectively, when all of the spectral bands of the WV-3 imagery 
are used (Fig. 8).

Finally, the PA for in-process shelly ridges attained 80.3% for ML and 77.6% for 
SVM when using the RGB bands only and then 89.7% and 86.5%, respectively, for 
ML and SVM, with the addition of the other visible and NIR bands. The PAs of each 
algorithm reached 93.5% and 95.3%, respectively, when the SWIR1 to SWIR4 
bands were added to the classification scenario. The PAs then attained 94.5% and 
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Fig. 8 Bar graphs of the producer’s accuracy obtained for sedimentary feature classifications 
using maximum likelihood (ML) and support vector machine (SVM) algorithms and several 
bands’ combinations (1) Red-Green-Blue [RGB], (2) RGB-Coastal [C]-Yellow [Y]-Near Infrared 
[NIR], (3) RGB-C-Y-NIR-Shortwave Infrared [SWIR] 1–4, (4) RGB-C-Y-NIR-SWIR5-8, and (5) 
all 16 bands
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97%, respectively, when the SWIR5 to SWIR8 bands were used rather than bands 
SWIR1 to SWIR4. Finally, the PA maximized to 95.5% for ML and 95.7% for 
SVM, when all of the spectral bands of WV-3 were used (Fig. 8).

The contribution of the RE and NIR bands to the improvement of the overall 
classification of the coastal ecogeomorphological features, as well as the accuracy 
for individual features, was clear. Indeed, the addition of the RE and NIR bands 
increases the producer’s accuracy by 5% and 6.5% on average while using ML and 
SVM algorithms, respectively. In fact, in the case of the classifications of the plant 
features category (natural salt marshes, pastured salt marsh, and tidemark plant 
debris), the most important increases in PA score were attributable to the addition of 
the C, Y, RE, and NIR bands to the RGB bands’ combination, regardless of the 
algorithm used. For example, the classification accuracy of the salt marsh class 
increased by 3.2% and 4.8% for ML and SVM, respectively, with the addition of 
these spectral bands. PA scores are also grown for pastured salt marshes (+1.2% for 
ML and 2% for SVM) and for tidemark plant debris (+10.8% for ML and +16.3% 
for ML) (Fig. 9).

The contribution of the RE and NIR bands to the classification of these plant 
coastal features can be attributed to the high sensitivity of the RE to a medium to 
high level of chlorophyll content of plants, whereas the NIR highlights the vegeta-
tion structure [6, 7, 9, 10, 20].

This contribution of the RE and NIR to the improvement of coastal feature map-
ping at a fine scale, in general, is also valid to sedimentary features, although the OA 
and PA only increased by between 1.4% and 9.4% (Fig. 9). The addition of C, Y, 
RE, and NIR bands showed increases in PA values for all classes: mudflat by 
between 3% and 6% (+3.1% when using the ML algorithm and +5.5% when using 
the SVM algorithm), shelly ridges (+1.4% and +1.8%, respectively), shelly out-
washes (+5.8% and +6.5%, respectively), and in-process shelly ridges (+9.4% and 
+8.9%, respectively) (Fig. 9). However, in addition to the improvement resulting 
from using the RE and NIR bands in the classification scenarios, the use of the 
SWIR bands improved the OA and PAs of sedimentary features. For example, the 
addition of the SWIR1 to SWIR4 bands to the visible-RE-NIR-band combinations 
increased the PA score of mudflat classification by 0.2% (ML) and 1.2% (SVM) 
compared to those attained in the classification scenario of the RGB-C-Y-RE-NIR- -
band combination. The same trends were visible with shelly ridges and in-process 
shelly ridge classification scenarios. In the case of the shelly outwashes class, how-
ever, the SWIR bands improved the PA with an increase in PA by 25.1% for ML and 
26% for SVM in the RGB-RE-NIR-SWIR1-4-band classification, compared to the 
increase in PA of 5.8% with the ML algorithm and +6.5% with the SVM algorithm 
when using the RGB-NIR band scenarios (Fig. 9).

These satisfactory performances for sediment feature classifications were 
explained by the fact that SWIR bands allowed determination of several physical 
and chemical soil properties through reflectance spectroscopy [2, 4, 5, 16, 21, 23].

Regarding the PA scores attained by each class, for both the ML and SVM algo-
rithms, all 16 spectral bands of the WV-3 imagery were used, and four of them 
presented values lower than the OA: mudflats (98% with the ML algorithm), shelly 
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Fig. 9 Bar plots showing the increase in the producer’s accuracy for each individual coastal 
ecogeomorphic feature class, using one of five classification scenarios. Two algorithms were used 
in the scenarios, namely, the maximum likelihood (ML) and support vector machine (SVM), while 
several band combinations were included (1) Red-Green-Blue [RGB], (2) RGB-Coastal [C]-Yellow 
[Y]-Near Infrared [NIR], (3) RGB-C-Y-NIR-Shortwave Infrared [SWIR] 1-4, (4) RGB-C-Y-NIR-
SWIR5- 8, and (5) all 16 bands
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ridges (95% for ML and 96.4% for SVM, respectively), shelly outwashes (97.6% 
for SVM), and in-process shelly ridges (95.5% and 95.7% for ML and SVM, 
respectively).

Recurrent spectral confusion between these classes is reflected in the relatively 
low PA scores of the confusion matrices of each model, with Table 1 showing the 
confusion matrix of the optimum model. Here it is clear that all pixels belonging to 
the plant feature classes are correctly assigned, while in the case of the sedimentary 
features, 98.8% of the pixels of the “mudflat” class are correctly assigned, the 
remaining 1.2% being incorrectly assigned to the “shelly outwash” (1%) and “in- 
process shelly ridge” (0.2%) classes.

This can also be observed in the case of the “shelly ridge” and “in-process shelly 
ridge” classes for which 98% and 96.9% of the pixels are correctly assigned. In the 
case of the “shelly ridge” class, there is a spectral confusion with the “tidemark 
plant debris” (0.8%), “in-process shelly ridge” (0.7%), and “shelly outwash” (0.5%). 
The “in-process shelly ridge” class also show spectral confusion of 2.6% with the 
“shelly outwash” class and 0.5% with the “shelly ridge” class.

Existing spectral confusions between the several classes found their explanations 
in the physical similarities of these sedimentary features (mix of fine sediments and 
coarse shell debris, in different proportions for each class).

The results of producer’s accuracy presented previously (Figs. 6 and 7) showed 
some trends on the contribution of the different parts of the electromagnetic spec-
trum to the classification of coastal ecogeomorphological features, be it plant or 
sedimentary features.

Class
Natural 

salt 
marsh

Pastured 
salt 

marsh

Tide
mark 
plant 
debris

Mudflat Shelly 
ridge

Shelly 
outwash

In 
process 
shelly 
ridge

Natural salt 
marsh 100 0 0 0 0

Pastured salt 
marsh 0 100 0 0 0 0 0

Tide mark 
plant debris 0 0 100 0 0.8

Mudflat 0 0 0 98.80 0

Shelly ridge 0 0 0 0 98.0 .5

Shelly 
outwash 0 0 0 1.0 0.5 10 .6

In process 
shelly ridge 0 0 0 0.2 0.7 0 96.9

Total 100 100 100 100 100 100 100

0 0

0 0

 Confusion matrix of the optimum model (maximum likelihood using the 16 WorldView-3 

0 0

0 0

0 2

Table 1
spectral bands)
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4  Conclusion

The use of the WorldView-3 satellite imagery, in particular the red-edge, NIR, and 
SWIR bands, has offered improved mapping of coastal ecomorphological features 
in the Bay of Mont-Saint-Michel, France. The ML algorithm attained the best clas-
sification results using all the spectral bands (maximum overall accuracy of 99.1%), 
while the support vector machine algorithm resulted in 98.4%.

The different combinations of bands experimented shed light on the interest of 
the different parts of the electromagnetic spectrum for the classification of coastal 
features, both plant and sedimentary. Thus, it appears, in accordance with the litera-
ture, that the spectral bands in the near-infrared range are particularly relevant for 
the mapping of different vegetation classes (natural salt marsh, pastured salt marsh, 
and tidemark plant debris) [11]. In effect, the addition of these spectral bands, par-
ticularly the red edge and NIR, to the three traditional bands of the visible spectrum, 
red, green, and blue, increases the individual producer’s accuracies of these plant 
feature classes by between 1.2% and 16.3% (Fig. 9).

For the sedimentary features, the addition of the RE, NIR, and SWIR improved 
the OA and individual PA of the classification.

These increases in accuracy could be explained by the spectral properties of 
SWIR bands, which allow us to study the soil characteristics through reflectance 
spectroscopy.

Finally, from the different results obtained in this study, it emerges that the joint 
use of the NIR and SWIR spectral bands in addition to the visible spectrum bands 
offers the best classification results. The contribution of each of these ranges of the 
infrared spectrum is particularly significant and their complementarity is undeni-
able for the study of natural coastal sites with both plant and sedimentary systems.

This work, carried out on a geographically restricted area, presents a generic 
methodology and results that can be applied to the whole of the Bay of Mont-Saint- 
Michel and to other geographical sectors, on the condition that the phase of acquir-
ing ground truths, in particular their spatial distribution, is adapted to the different 
study sites.
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Monitoring Land Cover Change 
in the Southeastern Baltic Sea Since 
the 1980s by Remote Sensing

Sébastien Gadal and Thomas Gloaguen

Abstract The political, economic, and social changes associated with the collapse 
of the Soviet Union at the end of the 1980s led to major land cover and land-use 
changes in the southeastern Baltic Sea coastal regions. These changes (demilitariza-
tion of the coasts, end of collective ownership, specialization of economic activities, 
etc.) are characterized by a fast process of coastalization with the growth of urban 
areas, coast suburbanization, and the decrease of agricultural land. At the same time, 
we observe the implementation of protected natural areas at the regional level and 
through cross-border cooperation with international organizations (UNESCO, 
European Union [EU], etc.). Both processes have an important impact on the man-
agement of the coastlines of Latvia, Lithuania, and Russia. The analysis of the 
coastal changes is based on the use of Landsat remote sensing data series from the 
1980s to 2020 combined with EU geographic databases and the land-use plans. The 
comparative analysis of the land cover changes in the Oblast of Kaliningrad, 
Lithuanian, and Latvian coastal zones allows us to understand the impacts of the 
three different planning policies since the end of the 1980s. The territorial dynamics 
are modelled using the GEOBIA package with object-oriented classification and 
machine-learning algorithms (maximum likelihood, minimum distance to means, 
parallelepiped classifiers) applied to the Landsat 5 TM and Landsat 8 OLI satellite 
multispectral images. The produced land cover maps are compared with the Climate 
Change Initiative Land Cover of the European Space Agency from 1995 to 2015.
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1  Introduction

In recent years, the southeastern Baltic (Fig. 1) has been characterized by significant 
changes. The land cover maps made using remote sensing show the transformations 
of the coastal zones of Kaliningrad Oblast, Lithuania, and Latvia. Jūrmala (Latvia) 
is one of the emblematic examples of a significant illegal real estate investment due 
to the environmental impact of private Russian citizens destroying the dunes of the 
coastal zones during the 2010s. Several of the projects built villas directly on the 
dunes. The number of abandoned houses since the Latvian restoration of indepen-
dence are the object of strong real estate speculation [2], contributing as well to the 
gentrification of the coastal zone. Jūrmala is emblematic of this current develop-
ment in the southeastern Baltic Sea, i.e., a progressive littoralization of their 
coastal region.

Fig. 1 Definition of the coastal zone studied

S. Gadal and T. Gloaguen
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The dynamics of coastalization modelled here are common with others observed 
around coastal lands of the world at the global scale with a high concentration of 
populations and economic activities [1, 18]. However, the particularity of the south-
eastern Baltic region is related to the context of political, social, economic, and 
cultural changes due to the collapse of the Soviet Union [11]. The transition to a 
market economy led to “a chaotic territorial development” and has made “perma-
nent penetration of intensification of urban process” [19].

Furthermore, the redistribution of the expropriated lands and properties after the 
Soviet Union induced conflicts between public and private interests. Moreover, due 
to the inexperience of the inhabitants with land-use regulations, many cases of abuse 
occurred, especially from the newcomers. They did not respect the legislation, such 
as limiting access to the coastline, and took part in behaviors that national and inter-
national laws try to limit as much as possible, such as reconstructions not adapted to 
the specificities of the coastal landscape and natural processes, using natural 
resources, etc., [19]. The spatial analysis modelling of the coastal changes of the 
southeastern Baltic provides a global diagnostic of the environmental and territorial 
impacts. It is based on the quantification of land-use changes, using remote sensing 
Landsat 5 TM and Landsat 8 OLI archives series from 1987 to 2020 based on the 
GEOBIA approach. The cartographies of the land cover changes are merged with 
the land-use policies implemented for coastal environmental management in the 
context of the transition from the Soviet regime to a liberal system.

2  Context

The societal and political concerns about the Baltic coastline vulnerabilities went 
hand in hand with a growing awareness of the pressures stemming from increasing 
human activities, which themselves have undergone rapid political, social, and eco-
nomic change in recent decades [4, 5].

2.1  The Soviet Period: Military Control 
and Economic Specialization

The coastal territories of the southeastern Baltic Sea of the Soviet Union were heav-
ily controlled; as they were the border territories of the Soviet Union, these territo-
ries were militarized, and the restricted access limited the numbers of inhabitants on 
the shores [18, 19].

At the same time, the Soviet economic system undertook the policy of economic 
planning specialization with the development of activities related to fishing, tour-
ism, shipbuilding, and the port industry giving the coastal zone a function of an 
interface [10].

Monitoring Land Cover Change in the Southeastern Baltic Sea Since the 1980s…
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The second investments in terms of economic development concerned agricul-
ture, with the collectivization of lands in the 1940s. In Latvia, the economic and 
territorial collectivization of agriculture generated massive moves of the popula-
tions to the cities, for example [16].

2.2  Liberalization and Gradual Coastalization 
of the Southeastern Baltic Countries

The collapse of the USSR in the early 1990s led to an increasing concentration of 
economic activities in the coastal regions. The Latvian and Lithuanian coastal zones 
contribute 5% and 12% of national GDP, respectively [5, 10, 21].

The economic sectors became more specialized. Traditional activities such as 
small-scale fishing or local farm agriculture units were replaced by heavy industrial 
manufacturers, ports, and tourism. The opening of the local economy to the Baltic 
area and the European Union after the countries gained independence accelerated 
this process [4, 8, 10, 13, 19, 21].

The “economic growth and increase of population are reflected in the landscape 
by an increase of construction and a decrease of natural territories” [16].

Because of the capacities of Earth observation satellite images to measure the 
territorial changes, the modelling of land-use change by remote sensing helps to 
capture these rapid economic, demographic, and territorial transformations.

3  Methodology

3.1  Definition of the Coastal Zone Study Area

One of the main problems in coastal research is the delimitation of the coastline and 
its region of influence. A buffer zone of 100 km was used to delimitate the coastal 
area from the coastline (marine and lagoon) (Fig. 1).

This method of determining the coastal area was developed by Fedorov et al. 
[10] in their study analyzing the impacts of the sea interface on the economic and 
urban development of Kaliningrad Oblast.

The estimated area of sea influence based on their model is 100 km from the 
coastline. This area of sea influence is calculated spatially from the administrative 
units used by the European Union (level 3). Some areas are not administratively 
considered by the EU to be coastal zone territories even though their distance from 
the coast is only about 50 km.

S. Gadal and T. Gloaguen
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3.2  Data Acquisition

The spatial land change monitoring is based on the Landsat 5 TM and Landsat 8 
OLI satellite multispectral image archives of the Earth Explorer platform (http://
earthexplorer.usgs.gov).

Landsat is today the only archive offering free-access, remote sensing data that 
allows for modelling the land cover change transformations from the mid-1970s till 
today. It offers a spatial resolution of 30 x 30 m since the launch of Landsat 4 in 
1983. The southeastern Baltic coastal zone landscape structures and areas are 
matched with a spatial resolution of 30 m. The spatial resolution of 30 x 30 m is 
considered efficient for monitoring all the geographic objects of the coastal zone 
that organize and structure the landscapes.

The analysis used the 7 bands covering the visible, near infrared, and middle 
infrared (SWIR 1 and SWIR 2). Because of the spatial resolution of 80 m, we did 
not select the Landsat 1–3 MSS images from the 1970s to 1983. The Landsat scenes 
cover the study area from the border of Poland with the Kaliningrad Oblast to the 
Latvian–Estonian border. To improve the level of land-use object detection and rec-
ognition, the selected scenes covered the end of spring, summer, and the beginning 
of the autumn seasons from May to October. The intensity of light received on the 
land surface, seasonally, is at its highest during these months of the year. Snow and 
cloud covers are limited during this period, and the chlorophyll activity improved 
the capacities of detection among the geographic objects composing the land-use 
classes.

A temporal interval of 10 years was determined to analyze the land cover change 
dynamics with a total of 24 scenes (Table 1). Six Landsat scenes are required to 
cover the entire coastal region studied.

We used Landsat level-1 and level-2 satellite image archives with a calibration 
level set to surface reflectance (top of canopy), eliminating artefacts related to the 
atmosphere (e.g., humidity, aerosols), to the intensity of light received on the Earth’s 
surface, and to the geometric offset from the observation area.

3.3  Method of Analysis of Land-Use Change

The land-use changes analysis is based on a GEOBIA approach that aims to study 
“geographical entities or phenomena through delineating and analysis image- 
objects rather than individual pixels” [7]. This approach leads us to use a segment- 
based classification to identify the different modes of land use. This method 
facilitates the interpretation of land-use changes and allows for a more accurate 
representation of landscape features than a classification based on the original pix-
els. Figure 2 summarizes the different steps of the method.

Monitoring Land Cover Change in the Southeastern Baltic Sea Since the 1980s…

http://earthexplorer.usgs.gov
http://earthexplorer.usgs.gov


64

Date of acquisition Processing date
Mission Landsat

WRS coordinates Kappa
indexYear Month/day dayYear Month/ Path Row

1987

10/12

2017 02/10 L5

187

02 .91

02 .90

02 .94

10/1 89
02 .92
02

02 .93

1997

08/20

2018

02/25

L5

187

02 .96

02 .92

02 .93

05/14 02/19 189

02 .97

02 .97
02 .95

2009

08/21

2016

10/22

L5

187

02 .94

02 .92

02 .94

05/31 10/25 189

02 .95

02 .96
02 .93

2020

05/31

2020

06/08

L8

187

02 .91

02 .92

02 .93

09/18 10/06 189

02 .94

02 .93

02 .94

0 0

1 0

2 0

0 1
0 0
1 0.92

2 0

0 0

1 0

2 0

0 0

1 0
2 0

0 0

1 0

2 0

0 0

1 0
2 0

0 0

1 0

2 0

0 0

1 0

2 0

Table 1 Landsat satellite images used in land cover processing

Fig. 2 Methodological scheme of the treatments applied in this study

3.3.1  Pre-processing

The identification of potential cloud cover in satellite image archives is a necessary 
step to take advantage of the data they offer. For this purpose, we use the F-Mask 
algorithm from Landsat level-1 images to perform an automated raster containing 
land surfaces, water surfaces, clouds with the associated shadows, and snow 
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surfaces. These last three elements are extracted and merged into new rasters used 
as masks for classifications. This operation is applied to each scene with the same 
WRS coordinates, regardless of the year. This operation allows the calculation of 
statistics from the classifications based on the same area between the different years 
of the period analyzed.

3.3.2  Image Segmentation

The image segmentation constitutes the first step of the production of land-use 
maps/land-use change by object-oriented classification. The segmentation is pro-
cessed using a color composite combining the near-infrared, mid-infrared 1, and 
blue bands (Table 2 and Fig. 3). This allows the best identification of the geographi-
cal objects of the analysis, i.e., water surfaces, forest surfaces, agricultural surfaces, 
urban surfaces, and bare surfaces.

These color compositions are used in the segmentation to create object-oriented 
land uses composed of group pixels sharing a spectral similarity. The algorithm 
requires a tolerance threshold that defines the level of generalization of the segmen-
tation identifying the land uses. A low similarity tolerance produces homogenous 
segments, while a high similarity tolerance produces heterogeneous and generalized 
segmentation (Fig. 4).

3.3.3  Object-Oriented Land-Use Classification

The color compositions were used as a reference for the field survey. The  geographic 
knowledge acquired during the field surveys are contributing to the creation of vec-
tor ROI training sites on the segmented images. About 30 ROI training sites were 
determined for each land-use class, the number of which should vary between 20 
and 40 for accurate classification. Then, different supervised classifiers, including 
parallelepiped, minimum distance, maximum likelihood, Fisher LDA, and k-nearest 
neighbor (KNN), were tested and compared (Fig. 5).

Table 2 Color compositions used for land-use classification

Canals Band number Spectral band Wavelength

Landsat 8

Red 5 Near-infrared 0.85–0.88 μm
Green 6 Mid-infrared 1 1.57–1.65 μm
Blue 2 Blue 0.45–0.51 μm
Landsat 5

Red 4 Near infrared 0.77–0.90 μm
Green 5 Mid-infrared 1 1.55–1.75 μm
Blue 1 Blue 0.45–0.52 μm

Monitoring Land Cover Change in the Southeastern Baltic Sea Since the 1980s…
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Fig. 3 Color composition of a Landsat image for land cover studies. Example with a Landsat 5 
image with “natural color” composition (a) and color composition with bands 4, 5, and 1 (b). They 
allow the identification of urbanized surfaces (orange), water surfaces (black), agricultural surfaces 
(blue and green), forest surfaces (dark green), and bare surfaces (white)

The accuracy of the different classifiers is evaluated by comparing the inter-
preted image and geographic ROI sites described during the surveys. These geo-
graphic sites of accuracy control integrate both field knowledge and GIS databases.

A comparative analysis of the classification methods is performed. The kappa 
indices of each classifier show that the “maximum likelihood” is the most efficient 
of them with a value of 0.94 (Table 3). A majority rule algorithm is applied in each 
segment to determine its class from the classification performed with “maximum 
likelihood” and to create a segment-based classification.

3.3.4  Post-processing

The common region of interest among the different scenes and dates covering the 
same study area is extracted based on the same WRS coordinates. The statistics 
obtained from the classifications are based on the same area and make it possible to 
compare land use between different years.

4  Results

Based on the segment-based classifications, the statistics of the land-use cover were 
produced for 1987, 1997, 2009, and 2020. The results obtained show a clear trend 
of the territorial transformations “footprinted” by the land-use maps despite a vari-
ability of values obtained due to the spatial accuracy errors (see Part 5. Discussion). 
Maps are compared with maps from 1995 to 2015 from the Climate Change 
Initiative (CCI) Land Cover database of the European Space Agency (ESA) [9] with 
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Fig. 4 Examples of different tolerance values used for segmentation. On a “natural color” compo-
sition (a), segmentation was performed with a tolerance value of 20 (b), 50 (c), and 100 (d). The 
tolerance value chosen for the study is 20

a resolution of 300 × 300 m. Compared to our land-use classes focused on agricul-
tural, forestry, and urban areas, the CCI Land Cover databases also include other 
classes such as grassland, sparse vegetation, and wetlands.

4.1  Significant and Distinctive Trends Toward 
Coastal Urbanization

In Latvia, a clear dominance of urbanized areas can be observed in the zone closest 
to the shore (Table 4). For example, in 2020, the urban areas represent 13% of the 
0–25  km band compared to less than 5% for the 25–50  km, 50–75  km, and 
75–100 km bands. In the same way, the CCI Land Cover databases show that in 
2015, the rate of urban areas was 1.7% for the 0–25 km band compared to less than 
0.5% for the other bands (Table  4). The Latvian coast is “the most densely 
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Fig. 5 Extracts of land-use maps obtained using different supervised algorithms. Example of land 
use in the Riga region (Latvia) with (a) Fisher, (b) KNN, (c) maximum likelihood, (d) minimum 
distance, (e) parallelepiped classifications

Table 3 Kappa indices in the supervised classifications used

1 Fisher LDA 2 KNN 3 Maximum likelihood 4 Minimum distance 5 Parallelepiped

Average 
of kappa 
indices

0.91 0.88 0.94 0.88 0.62

populated coastal area in the Baltics” with half of the country’s population concen-
trated there [5, 18]. However, there are still relatively unoccupied areas with low 
building density, especially in the Gulf of Riga [18].

The results of classification indicate that one-third of the coastal region is occu-
pied by forests (Table 4), although their area has decreased between 8% and 20% 
for the period 1987–2020. While the trend of decreasing forest area is confirmed by 
the CCI Land Cover databases (decrease between 6% and 10% for the period 
1995–2015), the area of forests could be underestimated as it covers almost two- 
thirds of the coastal region. Indeed, according to CCI data, the proportion of forest 
area in each coastal strip varies between 57% and 70% in 1995 and between 51% 
and 66% in 2015 (Table 4).

On the other hand, agricultural areas have increased slightly: the rates of changes 
are 3–9% between 1987 and 2020 compared with 10–13% for the CCI Land Cover 
databases for the period 1995–2015.
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In Lithuania, urbanization is the main geographic trend dynamic observed in the 
0–25 km band and the 75–100 km band. Except for the 1987 results, the urban areas 
vary between 7% and 15% from 1997 to 2020  in the 0–25  km and 75–100  km 
coastal bands compared to 2% and 6% in the 25–50  km and 50–75  km bands 
(Table 5). The concentration of urban areas in the coastal region can be explained, 
in part, by the short length of the coastline—less than a hundred kilometers [21]. 
However, the increase of urban areas between 1987 and 2020 took place outside the 
most coastal band (0–25  km). Surface covered has more than doubled for the 
25–50 km, 50–75 km, and 75–100 km bands, but it is difficult to have accurate sta-
tistics because of the large variability in values observed between these 2 years 
(Table 5). Moreover, the same trend is visible with the CCI Land Cover databases 
for the period 1995–2015, which shows that the smallest increase is observed in the 
0–25 km band (14% increase between 1995 and 2015 compared to 24–115% for 
other bands). In general, the coastal area has experienced less urban development 
than the rest of the country (48% growth for the coastal zone against 88% for the 
rest of the country between 1995 and 2015).

Forest cover has remained generally stable: the variation is between −1% and 
2% for the bands between 0 and 75 km from 1987 to 2009 (2020 shows abnormally 
low data). The CCI Land Cover databases confirm this relative stability with evolu-
tion of 3–9% between 1995 and 2015.

For agricultural land, the classification results show a net decline of between 9% 
and 23% between 1987 and 2009 (the 2020 data is unusually high). The CCI Corine 
Land databases show the same trend but with much lower rates of change, 2–4% 

Segment-based classification results CCI Corine Land Cover Databases

Year Coastal strip Forest
area

Urbanised
areas

Agricultural
land Year Forest

area
Urbanised

area
Agricultural

land

1987

37.14 11.69 33.78

37.63 4.75 46.24

32.07 4.16 53.98

41.24 4.79 43.07

1997

29.38 31.14 22.40

1995

69.83 1.12 19.93

33.24 17.36 34.18 62.04 0.23 30.61

34.94 7.65 42.99 56.91 0.16 35.95

46.22 4.12 36.68 69.55 0.48 20.88

2009

33.67 12.12 36.96

35.37 2.67 49.34

34.68 2.13 52.96

47.89 1.85 37.10

2020

34.10 13.12 34.82

2015

65.63 1.74 22.61

34.29 4.50 48.01 56.61 0.47 34.59

28.37 2.90 56.17 51.44 0.30 39.69

33.17 3.07 47.02 64.07 0.11 23.60

(1987–2020) (1995–2015)

0–25 km

0–25 km

0–25 km

25–50 km

25–50 km

25–50 km

50–75 km

50–75 km

50–75 km

75–100 km

75–100 km

75–100 km

0–25 km

25–50 km

50–75 km

75–100 km

Table 4 Share of land-use classes by coastal zoning in Latvia with classification database 
(1987–2020) and CCI Land Cover databases (1995–2015)
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between 1995 and 2015. Both the classifications and the CCI Corine Land database 
show that the most significant decline is in the most coastal band.

In the Oblast of Kaliningrad, many urban areas are in the coastal strip. For exam-
ple, the CCI Land Cover databases show that in 2015, the rate of urban areas was 
3% for the 0–25 km band compared to less than 0.6% for the other bands (Table 6). 
The results of our classifications show the same trend, although the results fluctuate. 
In 2020, the urban area in the 0–25 km band was more than double any other band 
(Table 6). Indeed, more than 80% of the population of the Oblast lived in a coastal 
strip of about 50 km [10].

The most significant changes are realized in the strips near the coastline. Urban 
areas have almost doubled in the 25–50 km band between 1997 and 2020. The CCI 
Land Cover databases show that this increase is highest in the 0–25  km band 
between 1995 and 2015 (Table 6).

Agricultural lands have decreased between 4% and 15% from 1995 to 2015 
according to the CCI Land Cover databases, while the decrease is measured between 
30% and 65% over the period 1987–2020 according to our classification results.

Forests have increased in area by 23–42% between 1995 and 2015 according to 
the CCI Land Cover databases, while the variations range from −2% to 53% 
between 1987 and 2020 according to the classification results.

Clearly, the variability of the data produced from the object-oriented classifica-
tions (Table 6) prevents the proposal of robust conclusions. But the results show 
similar evolutions between the two datasets and are like those observed in Lithuania 
regarding forest and agricultural areas.

Segment-based classification results CCI Corine Land Cover Databases

Year Coastal strip Forest
area

Urbanised
areas

Agricultural
land Year Forest area Urbanised

area
Agricultural

land

1987

69.73 4.13 20.77

75.30 1.04 21.36

77.04 0.58 19.57

19.04 3.04 74.17

1997

62.21 15.33 17.29

1995

28.46 2.11 59.30

69.12 6.72 19.77 29.51 0.39 55.91

70.52 6.84 17.91 35.54 0.44 47.39

19.14 11.47 62.43 23.23 0.36 67.86

2009

71.14 10.07 15.95

74.90 3.59 19.24

78.04 2.01 17.23

22.18 9.32 64.58

2020

75.56 7.12 14.68

2015

31.01 2.40 57.08

30.25 6.14 57.04 30.50 0.49 54.59

31.66 5.80 53.76 36.62 0.60 45.95

19.48 10.33 66.10 23.97 0.78 66.67

(1987–2020) (1995–2015)

0–25 km

25–50 km

50–75 km

75–100 km

0–25 km

25–50 km

50–75 km

75–100 km

0–25 km

25–50 km

50–75 km

75–100 km

0–25 km

25–50 km

50–75 km

75–100 km

Table 5 Share of land-use classes by coastal zoning in Lithuania with classification database 
(1987–2020) and CCI Land Cover databases (1995–2015)
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4.2  Evolution of Land Use, Territorial Development, 
and Planning Policies

Results from land-use classifications and CCI Corine Land Cover databases provide 
clear trends that highlight the importance of planning and development policies and 
their effectiveness.

The legislation during the Soviet Union, created in the early 1980s, aimed to 
control the “location of recreational places for the national economy objects and 
arrangement of such territories […]”, thus allowing a balance between environmen-
tal protection and the development of economic activities [16].

Since the restoration of independence, the legislative framework for environ-
mental protection, especially in coastal areas, has evolved differently in the Baltic 
countries and the Oblast of Kaliningrad.

In Lithuania and Russia, we observed a stabilization or increase of the forest 
cover, while in Latvia, there has been a decrease in recent years (see Sect. 3.1). In 
the latter, this loss could be associated with “excessive exploitation of natural 
resources” caused by agricultural and forestry activities, despite considerable prog-
ress in environmental regulation, particularly since Latvia’s accession to the 
European Union [14, 17]. The naturally protected coastal areas are also the main 
tool for environmental preservation, but the lack of management plans and insuffi-
cient funding limits the effectiveness; forestry contributes to more than 6% of 
Latvia’s GDP but only half of the country’s forests are certified for sustainable 

Segment-based classification results CCI Corine Land Cover Databases

Year Coastal strip Forest
area

Urbanised
areas

Agricultural
land Year Forest area Urbanised

area
Agricultural

land

1987

22.80 7.11 58.28

70.45 0.91 27.23

59.89 2.34 35.63

52.76 1.51 44.26

1997

17.58 24.91 44.95

1995

29.98 1.6 6.97

66.05 5.20 25.88 19.29 0.3 4.66

59.61 6.89 30.81 16.33 0.3 8.70

64.63 2.02 31.91 19.01 0.1 6.70

2009

27.00 19.47 40.74

78.70 2.43 16.84

73.55 3.46 21.49

68.96 0.74 29.02

2020

23.46 27.03 41.04

2015

36.95 3.3 8.56

69.34 10.56 18.81 27.30 0.67 66.33

69.17 10.57 18.91 21.20 0.47 73.90

80.79 2.24 15.52 21.88 0.1 3.53

(1987–2020) (1995–2015)

0–25 km

25–50 km

50–75 km

75–100 km
0–25 km

25–50 km

50–75 km

75–100 km

0–25 km

25–50 km

50–75 km

75–100 km

0–25 km

25–50 km

50–75 km

75–100 km

7 5

5 7

4 7

2 7

2 4

7 7

Table 6 Share of land-use classes by coastal zoning in Kaliningrad Oblast with classification 
database (1987–2020) and CCI Land Cover databases (1995–2015)
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management, which is lower than the averages of other OECD countries with a high 
forest cover [17].

In Lithuania, natural processes such as reforestation of wetlands, mainly swamps, 
in part, explain these results [15]. However, this growth of forest cover is mainly 
related to the forest “recovery” programs: forestry companies engage in replanting 
when they clear land, which led to “forest management in Lithuania […] rather 
intensive and sustainable during the last decades” [15, 20, 21]. The forest growth 
has been at the expense of abandoned agricultural plots [15].

This decline in agricultural land has been observed since the 1950s following 
policies of nationalization and collectivization of the land [15]. However, since the 
restoration of independence, the agricultural sector has lost a lot of its economic 
value: This has resulted in a decrease in the number of agriculture workers, and the 
abandonment of farms and land fields [19]. In Lithuania and in the Kaliningrad 
Oblast, these dynamics are observed through remote sensing and the CCI Land 
Cover databases [15, 21].

The decrease in agriculture led to the development of second homes, which has 
resulted in the increase of urban areas in the coastal strip for the three countries [19]. 
Most of the urban areas in Latvia and Russia are close to the coastline. Considering 
only the coastal zone, the classification data indicates that 48% and 63% of urban 
areas are concentrated in the 0–25 km band in Russia and Latvia in 2020. In com-
parison, the CCI Land Cover databases show that this rate reaches 80% and 70% in 
2015. This concentration is due to the presence of large cities like Riga, Jūrmala, 
Kaliningrad, and Baltiysk. While an increase in urban areas has been observed, 
spatial variations of this extension can be also observed.

The weak legislation due to “lack of definition of the main pressures on biodiver-
sity” [17] could explain that urbanization is spreading in the most coastal strip of 
Latvia and Russia, reflecting an “uncontrolled construction of buildings on the sea-
shore, in connection with the development of tourism activities” [14].

Compared to the Oblast of Kaliningrad (Russia) where there is no independent 
legislation specific to coastal areas (the source of multiple conflicts of interest), the 
increase of urbanized areas in the most coastal strip in Latvia is less significant. It 
reflects the relative effectiveness of protected areas, present on half of the coastline, 
as a brake for urbanization growth [1, 3, 16].

However, the development of protective legislation has been eventful and has 
allowed “the illegal use of natural resources and quite often also degrading of natu-
ral territories.” Moreover, the entry into the European Union (2004) allowed the 
implementation of new planning legislation with the follow-up of European envi-
ronmental directives [5, 16].

In contrast, the increase of urbanized areas is mainly located outside the 0–25 km 
band in Lithuania (see Sect. 3.1) with a regular and continuous growth, showing a 
“well-developed legal basis for the spatial planning” in this country [20, 21]. In 
general, the Lithuanian legislation is well developed in giving priority to the protec-
tion of natural coastal processes and landscapes [13, 19, 22].

Several laws define the management and use of coastal zones of Lithuania. The 
Law of Coastal Strip (2002) is based on the principles of sustainable development: 
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the development of economic activities while ensuring the protection of the envi-
ronment and exploited natural resources [22]. The aim is to limit construction within 
a hundred-meter strip from the coastline and to regulate work on properties, their 
renovation, and restoration; the coasts are state property whose anthropic activities 
must be regulated [19].

Another important law is the Law on Spatial Planning (1995). It aims to protect 
emblematic landscapes and biodiversity, as well as cultural and natural heritage by 
promoting “sustainable development” and “reasoned urbanization” of the Lithuanian 
territory. This law defines the compatibility of the various urban planning docu-
ments and the “requirements of the decision of territorial planning process” [12].

In the southeastern Baltic countries, the implementation of specific legislation 
for coastal zones has been influenced by the development of international strategies 
and programs such as the Helsinki Convention (definition of environmental protec-
tion objectives) or the recommendation of the European Parliament and the 
European Council concerning the implementation of Integrated Coastal Zone 
Management, which implies an articulation of the different planning tools and doc-
uments between multiple actors and scale of intervention [13].

5  Discussion

5.1  Limitations of Coastal Zone Management Policies

In Lithuania, the environmental protection laws are considered too restrictive for the 
economic activities in protected areas [19]. Planning policies based on “integrated” 
management are difficult to apply when public and private interests are divergent, 
especially in unprotected areas of the coastline such as in Giruliai or Melnragė 
(Lithuania), where the interests of private landowners override existing national and 
local legislation [19].

These policies require significant financial, technical, and human resources to be 
fully effective, but these are currently still insufficient [22].

For example, former military sites and collective farms were privatized in the 
early 1990s in Latvia with independence. In the absence of management strategies, 
there have been many cases of abuse. Insufficient funding did not allow the state to 
acquire these lands, which were degraded despite providing minimal environmental 
protection during the Soviet period [5, 16]. In Lithuania, expenditure to preserve 
coastal dunes amounts to almost 15,000 euro per kilometer of coastline and justifies 
limited action on critical sections only [19].

Similarly, in Russia, the lack of funding leads to an increasing number of human 
settlements that are now vulnerable to erosion, for example [6].
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5.2  Limits of Supervised Classification by GEOBIA Approach

The main analysis of the dynamics of the coastal changes was made using remote 
sensing and the CCI Land Cover databases.

Numerous spatial accuracy errors were identified due to the use of automated 
processing to carry out the land-use classification.

The spatial accuracy errors identified are at the origin of significant variations in 
the results of land-use cartographies and statistics generated despite kappa indices 
greater than 0.90. These data do not allow us to determine the fine impact of the end 
of the Soviet system on the evolution of land use, especially in the first years after 
independence.

These errors of accuracy to the land field reality are linked to difficulties in iden-
tifying certain land-use classes, particularly the smallest urban entities (villages) 
and suburban residential areas because of the Landsat 5 TM and Landsat 8 OLI 
spatial resolution of 30 × 30 m (Fig. 6).

The spatial resolution of the Landsat 5 TM satellite images limits the level of 
detection of isolated habitats not covering an area of 900 m2. The use of the pan-
chromatic band with a resolution of 15 m of Landsat 8 OLI images can improve the 
spatial accuracy level of the urban areas. However, to standardize the processing 
and the comparability of the land use produced among the dates, pansharpening 
(fusion of multispectral data of 30 m with the panchromatic band of 15 m spatial 
resolution), possible only with Landsat 8 OLI data, was not applied.

Despite the use of remote sensing data in the chlorophyll optimum (spring and 
summer) for the improvement of the spectral separability among geographic objects 
such as the urban areas and agricultural lands, spectral confusions persist. They are 
visible between bare soil and some agricultural plots (Fig. 7), between some agri-
cultural plots and urban areas (Fig.  8), and between some forest and agricul-
tural plots.

Fig. 6 Difficulties in identifying the village of Darbėnai (Lithuania)
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Fig. 7 Spectral confusions with agricultural plots considered as bare soil

Fig. 8 Spectral confusions with agricultural plots considered as urbanized areas

The use of the F-Mask algorithm was not sufficient to eliminate the cloud cover 
from the satellite images. The clouds and their shadows are the cause of multiple 
spectral confusions with urbanized areas, which are overestimated on certain dates 
of satellite image acquisitions (Fig. 9).

The choice of segment-based classification with the use of a majority rule algo-
rithm to smooth the results in segments causes a significant loss of information for 
certain land-use classes such as urban areas, for example, especially in peri-urban 
areas (Fig. 10).

Furthermore, despite the use of Landsat level-2 satellite images, the differences 
linked to the radiometry and the atmospheric properties of the satellite images did 
not allow for a homogeneous radiometric result (Fig. 11), making it difficult to dis-
criminate and detect each type of geographical object.
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Fig. 9 Incomplete removal of cloud cover in supervised classification

Fig. 10 Segmentation effects on supervised classifications
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Fig. 11 Differences between atmospheric and radiometric properties of two separate 
Landsat scenes

6  Conclusion

The study of the land cover changes between 1987 and 2020 in the coastal regions 
of the countries of the southeastern Baltic Sea has highlighted a generalized phe-
nomenon of coastalization, characterized by the progressive concentration of popu-
lation and economic activities on the coastal zone, especially since the end of the 
Soviet Union.

We performed classifications based on the maximum likelihood classifier after 
comparing the performance of different supervised classification methods for the 
years 1987, 1997, 2009, and 2020 from Landsat 5 TM and Landsat 8 OLI satellite 
image archives. The use of the majority rule algorithm produces segment-based 
classifications for a more accurate representation of landscape features. The results 
were compared with the CCI Land Cover databases from 1995 to 2015.

They showed a stabilization in agricultural areas in Latvia but a decline in 
Lithuania and in the Kaliningrad Oblast, which is associated with the privatization 
of land and the decreasing economic interest in agriculture.

Economic activities related to tourism and the naval industry have benefited from 
the intensification of international trade caused by the transition to a liberal system. 
This movement has gone hand in hand with significant development of urbanized 
areas characterized by peri-urbanization through the appropriation of second homes, 
workers’ housing, or the development of illegal buildings.

The natural areas such as forest areas grew, and they are dependent on the imple-
mentation of management and protection policies to safeguard them. The protection 
policies and implementations may differ among each Baltic state and the Oblast of 
Kaliningrad (Russia) due to the legislative, technical, and legal “vacuum” after the 
end of the Soviet Union. This “vacuum” has been resolved, thanks to the accession 
to the European Union, but also by the following of several international 
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conventions and directives promoting sustainable development, reconciling envi-
ronmental protection and economic activities: the Helsinki Convention, recommen-
dation of the European Parliament and of the Council on Integrated Coastal Zone 
Management, etc.

Finally, this study has highlighted the usual limits of automated remote sensing 
techniques, which reveal problems in the recognition and detection of certain geo-
graphical objects, spectral confusions, and errors related to the processing of images 
with different radiometric and atmospheric properties, etc. Segment-based classifi-
cations reflecting a GEOBIA approach show limits in terms of modelling the small-
est urban entities (peri-urban housing, secondary houses, allotments, etc.). This 
method will undoubtedly demonstrate its relevance with the use of satellite images 
with a resolution of about ten meters, such as the Sentinel 2 MSI images.
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Assessment of Land Cover Changes 
in the Allala Watershed Based on Object 
Based Image Analysis Using Landsat 
and Sentinel-2 Images

Narimane Zaabar, Simona Niculescu, and Mustapha Kamel Mihoubi

Abstract The coastal city of Ténès, located in northwestern Algeria, is exposed to 
several natural hazards, such as floods, earthquakes, landslides, and forest fires. Due 
to human activities, socio-economic constructions, agricultural activities, and the 
resulting population acceleration, land cover and land use (LULC) dynamics in the 
city are changing over time. Hence, the understanding of LULC changes and its 
interactions with human activities and natural hazards is essential for appropriate 
land management and decision-making. In this study, we investigate LULC changes 
in the Allala watershed, including the city of Ténès, using remote sensing methods 
and Geographic Information System (GIS) tools. Object-based image analysis 
(OBIA) based on random forest (RF) and support vector machine (SVM) machine 
learning algorithms was performed to provide LULC classification maps, and then, 
LULC changes were assessed using GIS. In order to assess LULC changes, we used 
three images acquired using remote sensing, corresponding to 3 years; 1999, 2009, 
and 2020. A Sentinel-2 image and two Landsat images were used as input data in 
our methodology. Our LULC classification results showed that RF outperformed 
SVM on the three input data periods, with an overall accuracy of 95.6% obtained 
with the Sentinel-2 image. Given the changes over time, it is clear that the Allala 
watershed has undergone significant changes over the years, particularly an increase 
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in building infrastructure and agricultural land due to population and urbanization 
growth. Analyzing and mapping the trends of LULC changes in the study area pro-
vide a basis for strategic planning and managing, and results of LULC changes can 
be used as a decision support tool and provide further help in regional and national 
land management.

Keywords LULC changes · Allala watershed · Landsat images · Sentinel-2 · 
Object-based image analysis (OBIA) · RF · SVM

1  Introduction

Land use and land cover (LULC) is considered a critical environmental issue with 
global implications in environmental management and sustainable development 
[16, 32]. In fact, due to natural and artificial factors, LULC around the world is still 
undergoing considerable changes, most notably changes due to climate change, 
rapid urbanization (mainly in critical areas), population growth that requires urban 
agglomeration development, and the subsequent construction land expansion.

The coastal town of Ténès, located in northwestern Algeria, has observed an 
increase in changes in LULC due to diverse causes. Indeed, the region is exposed to 
ongoing natural disasters, such as earthquakes and landslides [2, 29], and natural 
hazards such as landscape degradation and flash floods [22] due to climate changes, 
which highly modify LULC dynamics because of the hydrological process of flash 
floods [13, 14]. At the same time, the region experiences significant deforestation 
and many forest fires, such as the one in 2014 [7]. As a part of a sustainable develop-
ment strategy and because of its privileged location, both historical and touristic, the 
city has integrated several projects based on human activities, socio-economic con-
structions, and agricultural activities. This implicates population growth and urban 
construction, as well as the evolution of agricultural areas and, in consequence, 
population acceleration, as factors that directly lead to changes in the LULC trends 
of the city over time. In this context, rapid data acquisition and detection of LULC 
changes are an essential element in environmental monitoring, urban planning, and 
sustainable development. Additionally, the understanding of LULC dynamics and 
changes, and its interactions with human activities and natural hazards, is essential 
for appropriate land management and decision-making improvements [37]. 
Furthermore, LULC changes and evolution information is considered critical for 
several environmental considerations, such as water resource management and nat-
ural hazard assessment [6, 27, 36, 40].

In recent decades, remote sensing has become more widespread in the scientific 
field and has emerged as a useful way to track LULC changes based on LULC clas-
sification techniques [10, 18, 24]. Pixel-based image analysis methods have been 
the most widely used to produce LULC maps [25, 30]. These methods consider only 
the spectral characteristics of the input image, which implies certain limitations of 
the produced classifications of LULC and any trend detection. These limitations 
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may be partially overcome by considering other image features in order to detect 
LULC classes with high accuracy [8, 9].

Consequently, the use of object-based image analysis (OBIA) and machine 
learning classifiers has emerged in the remote sensing community as a way to better 
address LULC classification and change detection. This method considers the spec-
tral, textual, and contextual information of pixels. Recently, OBIA classification has 
now replaced conventional pixel-based methods and will facilitate land cover clas-
sification using high spatial resolution remote sensing imagery [8, 17, 38]. In addi-
tion, according to previous studies, this method has successfully provided the 
accurate classification of LULC changes using high- and very-high-resolution 
images [1]. provided LULC maps using Landsat images for 1985, 1990, 2000, 
2007, and 2014 for five cities of Saudi Arabia. The aim of their study was to assess 
the urban growth in these cities. LULC classification was carried out using an OBIA 
approach. The classified images were also used to predict LULC changes and the 
growth of urban areas for 2024 and 2034 using specific models. Changes were 
assessed through transition probabilities. Extreme Gradient Boosting (XGBoost)-
based informative feature selection and the random forest algorithm were used to 
ensure the OBIA classification. The results of LULC classification showed higher 
values of the overall accuracy (OA), up to 90%, which was very beneficial in assess-
ing LULC [20]. applied the OBIA method in order to classify LULC and evaluate 
the changes in the Cameron Highlands in Malaysia by taking advantage of the 
OBIA considerations of texture, shape, position, and digital number, as well as a 
series of band combinations. As remote sensing data, the authors used Landsat time 
series images from 2009 to 2019. Similarly, [28] mapped LULC changes in the core 
zone sand dune located in Indonesia using aerial images taken between 2015 and 
2020. The nearest neighbor algorithm was used for LULC classification after a seg-
mentation process. Analysis of the land use changes was carried out by comparing 
the land use classification results of 2015 and 2020.

The aim of this study is the assessment of the spatio-temporal patterns of LULC 
across the Allala watershed over a 21-year period (1999–2020), based on remote 
sensing methods and GIS applications. First, OBIA classification–based machine 
learning algorithms (random forest and support vector machine) were employed to 
map LULC over 3 years: 1999, 2009, and 2020. Then, based on the more accurate 
LULC maps, the assessment of LULC changes was conducted using post classifica-
tion analysis implemented using GIS applications.

2  Study Area

The study area is the Oued Allala watershed located in northern Algeria on the 
Mediterranean coast. The watershed covers a total area of 307 km2 with a length of 
35 km for its principal thalweg (Fig. 1). The area is situated between the maximum 
and minimum altitude, 989 m and 0 m, respectively, and includes Ténès City, a tour-
ist and port city and the second largest city in the Chlef Wilaya. The region is 
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Fig. 1 Location of the study area

influenced by the Mediterranean climate and is characterized by a warm and tem-
perate climate with significant precipitation in the winter months [39]. The average 
temperature is 18.6 °C and the average total annual rainfall is around 585 mm [22]. 
The Oued Allala watershed is an area with a high degree of landscape diversity, 
including the presence of human settlements, forests, and agricultural areas. The 
northern parts of the Allala catchment are covered by pine forest. Annual crops such 
as cereals cover the southern part of the watershed. This diversity in LULC classes 
necessitates an accurate classification and the monitoring of LULC changes.

In addition, as a part of the national strategy to combat natural hazards, specifi-
cally floods, the Ténès region was chosen for this study because of its regional 
importance, its geographical location, and its elevated risk of natural hazards, 
mainly floods. The analysis of LULC in this area is critical input information for 
flood vulnerability assessment.

3  Material and Methods

Through a consecutive process, we mapped and assessed land cover/use changes in 
the Allala watershed for over 21 years. Remote sensing methods combined with 
GIS applications were both used. Both Landsat and Sentinel-2 data were acquired 
to establish the classification following two essential steps: (1) The object-based 
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Fig. 2 Workflow of the proposed methodology

image analysis (OBIA) method was applied to provide land cover/use maps with 
two machine learning algorithms, random forest (RF) and support vector machine 
(SVM). (2) Then, the assessment of LULC changes was conducted in ArcMap soft-
ware (version 10.8.1) by post-classification analysis and transition matrix genera-
tion (Fig. 2).

3.1  Object-Based Image Analysis (OBIA)

3.1.1  Data Acquisition and Preprocessing

Two different types of remote sensing images were acquired from the Landsat and 
Sentinel-2 sensors to detect LULC changes and facilitate classification. The two 
Landsat-5 Thematic Mapper (TM) images, with 30 m of resolution, were acquired 
on April 10, 1999, and May 8, 2009. Landsat-5 TM data are available with free 
access from the USGS Global Visualization Viewer (https://glovis.usgs.gov). The 
Landsat-5 TM images were already corrected.

The third image used is a Sentinel-2 image acquired on March 8, 2020, with 
atmospheric correction. Sentinel-2A contains 13 spectral bands, including four 
bands with 10 m spatial resolution, six bands with 20 m spatial resolution, and three 
bands with 60 m spatial resolution. A resampling into a spatial resolution of 10 m 
was applied in the Sentinel platform (SNAP) software before using the image in the 
classification process [37]. The dates were selected based on image quality (absence 
of cloud cover), availability, and the same season for the 3 years (1999, 2009, and 
2020), in order to better detect LULC changes. Auxiliary data, in the form of a digi-
tal elevation model (DEM) with 30  m resolution, was acquired to highlight the 
Oued Allala watershed.
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Based on very-high-resolution images, training and validation data were gener-
ated to process the classification. According to the Landsat-5 TM image resolution 
and study area analysis, five LULC classes were defined: built-up, forest, roads, 
cultivable lands, and barren lands.

3.1.2  Multi-resolution Segmentation

Because OBIA considers the spectral, textual, and contextual information of pixels, 
segmentation is an important step in this process. The segmentation process regroups 
neighboring pixels with similar characteristics. Indeed, for each image, using input 
spectral bands, the multi-resolution segmentation algorithm [4] was used to gener-
ate homogenous objects. Multi-resolution segmentation is a powerful algorithm 
designed to iteratively segment a satellite image into objects according to conditions 
imposed by the user [5]. In our case, using Trimble’s eCognition Developer 10.0, 
we applied a multi-resolution algorithm to the three input images to provide seg-
mentation layers. The identification of objects using this algorithm is built upon 
relative image object homogeneity or heterogeneity, based on spectral and shape 
criteria [12]. The size of objects is set by a scale parameter (in this study, the scale 
parameter = 30 for Landsat images and 10 for the Sentinel-2 image). Heterogeneity 
of objects is defined by shape and color parameters, in which their proportion is 
specified by the shape parameter (in this study, shape parameter = 0.1), which means 
that heterogeneity is influenced 10% by shape and 90% by color) [23, 26]. Similarly, 
the shape parameter is defined by two components, compactness and smoothness, 
in which their proportion is specified by the compactness parameter (in this study, 
compactness parameter = 0.9), which means that heterogeneity is influenced 90% 
by compactness and 10% by smoothness.

3.1.3  OBIA Classification–Based Machine Learning Classifiers

Machine learning algorithmes are widely used in remote sensing community to 
LULC change detection [11, 17, 33] based on multiple algorithms, namely, RF, 
SVM, and maximum likelihood, are widely used to detect changes in LULC. In our 
study, machine learning algorithms were taught the classification step through gen-
erated training samples data. Two classifiers were applied in this stage, RF and 
SVM. RF is a non-parametric algorithm that performs on multiple decision trees. 
Each decision tree is constructed using a bootstrap sample driven by different sub-
sets. Each unique set of trees is then applied in order to classify the image, resulting 
in the final classification, which is a collection of multiple trees and which assigns 
classes by majority voting. The RF algorithm is simple to execute and only two 
parameters need to be set up: the number of trees and the number of features in each 
split. Regarding classification using the SVM algorithm, it is based on the linear 
function kernel. The principle of this algorithm is to find a hyperplane that separates 
two classes. The values closed to the hyperplane are the support vectors. The two 
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essential parameters of this algorithm are parameter C that controls the complexity 
of the classifier and parameter γ that controls the number of carrier vectors to obtain 
the best hyperplane [21].

3.2  LULC Map Validation

The validation of LULC maps is an indispensable step that confirms the precision 
of the used methods and the possibility of their use for LULC change assessments. 
The validation of LULC classified images was conducted through the confusion 
matrix using validation data. From the confusion matrix, we calculated the coeffi-
cients typically utilized in accuracy assessments, the kappa index, and the overall 
accuracy (OA). The producer’s accuracy (PA) and user’s accuracy (UA) of the 
LULC classes were also derived. The PA for a given LULC class shows the proba-
bility that a pixel assigned to that class in the ground data will be assigned to that 
class in the LULC map. The UA shows the conditional probability that a pixel clas-
sified into this class in the LULC map will be classified into this class in the ground 
data [35].

3.3  LULC Change Detection

Based on the three final LULC maps of 1999, 2009, and 2020, changes were 
assessed using the MC method implemented in Arc GIS used to generate the transi-
tion matrix of LULC classes. The MC model is a stochastic process [31, 34] that 
assigns the probability of the transition of land cover classes from one class to 
another. LULC changes for the studied area were recorded over two periods, 
1999–2009 and 2009–2020. At the same time, a transition matrix was calculated for 
both periods using a combination of two classified images. A transition area matrix 
was also computed using a probability matrix. Area transition represents the total 
area (in cells) forecasted to change from one LULC class to another over the pre-
scribed number of time units [33].

4  Results

4.1  Accuracy Assessment of LULC Classification

The accuracy assessment results of LULC classifications indicate high overall accu-
racies for both the Sentinel-2 and Landsat-5 input images. Table 1 illustrates the 
results of the overall accuracies (OA) and the kappa coefficient of the LULC 
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classified images for 1999, 2009, and 2020. As well, when the algorithms were 
compared, higher accuracies were obtained with the RF algorithm applied to the 
Sentinel-2 image (2020), with an OA of 96.6% and kappa coefficient of 0.95. In 
addition, LULC classification with the Landsat image (1999) also resulted in a high 
accuracy, with an OA of 96.2% and a kappa coefficient of 0.95. Regarding the SVM 
algorithm, the OA and kappa results were also relatively high, with the higher result 
obtained using the 2009 Landsat image, with an OA of 94.9% and kappa of 0.93.

Regarding LULC class accuracies (UA and PA) (Table 1), with respect to the 
2020 LULC classification–based RF classifier, the UA and the PA of cultivable 
land, roads, and barren land were both high at more than 98%. However, built-up 
and forest were relatively poorly classified in terms of UA and PA accuracies. 
Moreover, for the 2009 LULC classification, built-up and forest were well classified 
in terms of UA (97.8% and 100%, respectively). Cultivable lands and roads had UA 
values of 94.6% and 92.7%, respectively. Similarly, for the 1999 LULC classifica-
tion, forest, roads, and barren lands were highly classified in terms of UA, with 
99.8% for both forest and roads and 99.9% for barren land.

Considering SVM classifications over the 3 years, UA values were significantly 
less than RF values. As well, for the 2020 LULC classification, cultivable land and 
roads were highly classified in terms of UA, with 90.7% and 86.8%, respectively. 
However, built-up and barren land were relatively poorly classified; the UA was 
54% for built-up and 77% for barren land. For 1999, the LULC classification using 
the SVM algorithm, forest and barren lands were highly classified, with UA values 
of 90% for forest and 85.6% for barren land. For the 2009 LULC classification, for-
est and cultivable lands were well classified compared to other classes, with an UA 
up to 99% for both classes. Cultivable land and roads for this year stand as poorly 
classified, with a low UA value (up to 66%).

Overall, comparing both remote sensing data types used to produce LULC maps 
based on machine learning classifiers (RF and SVM), RF gives higher results, in 

Table 1 Accuracy assessment of classification

Class
Metrics
(%)

1999 2009 2020
RF SVM RF SVM RF SVM

Built-up UA 98.1 80.9 97.8 91 97.7 54.9
PA 99.9 92.7 93.8 98.9 100 96.6

Forest UA 99.8 90 100 99 97.71 81.7
PA 92.6 86.7 92.2 99.9 100 86.8

Roads UA 99.8 81.5 92.7 66.7 99.8 88
PA 93.02 72.1 99.8 99.9 100 77.1

Cultivable land UA 88.2 71.3 94.6 95.3 98 82.9
PA 98.9 84.6 94.6 87.2 90.9 90.7

Barren land UA 99.9 85.6 95 95.1 100 77.8
PA 99.8 56.3 88.4 91 90 54.8

OA 96.2 81.9 94.9 94.5 96.6 76.2
Kappa 0.95 0.7 0.93 0.93 0.96 0.7
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particular with Sentinel-2 data, 0.4% higher than the OA of the 1999 Landsat clas-
sification, and 1.7% higher than the OA of the 2009 Landsat classification. Regarding 
SVM, the higher result was obtained with the Landsat image for 2009, with a sig-
nificant percentage difference of 18.3% compared to the one of 2020 and 12.6% 
compared to the 1999 SVM results. Between the two algorithms, regardless of the 
type of input image, RF outperformed SVM by 20.4% for 2020, 0.4% for 2009, and 
14.3% for 1999.

4.2  Analysis of LULC Changes

The LULC classification maps for the years 1999, 2009, and 2020 are illustrated in 
Fig.  3. Notably, LULC has undergone considerable changes between 1999 and 
2020. Additionally, according to the results of area calculations for each LULC 
class represented in Table  2, changes in LULC trends were observed for all 
LULC types.

Indeed, in 1999, the Allala watershed was dominated by cultivable land area, 
with a percentage of 53%, followed by barren lands (28%), forest (16.1%), built-up 
(1.7%), and roads (0.3%).

In 2009, considerable changes were noted in LULC trends, with the amount of 
land devoted to roads significantly increasing (from 0.2% to 12.2%) for the total 
area. Similarly, the built-up class increased remarkably (Fig. 3 and Table 2). In con-
trast, the barren class has undergone a significant decrease (from 28.4% to 13%) for 
the total area.

In 2020, there was a similar decrease for the barren land class, down to 8.7% for 
the total area. In parallel, roads and built-up continued to increase, and there was a 
slight increase in cultivable lands area (from 48.8% to 49.9%). A slight decrease 
also was observed in forests (from 18.4% to 14%) for the total LULC area.

Over the 3 years, cultivable lands stand as the dominant class in terms of surface 
area as compared to other classes. In addition, during the studied period (1999–2020), 
the Allala watershed saw considerable changes in LULC classes, where a decrease 
in some classes corresponded to an increase in others. These changes can be better 
explained by analyzing the LULC transition matrix.

4.3  Analysis of LULC Transition Matrix

Detailed results of the LULC transition matrices from 1999 to 2009 and 2009 to 
2020 are shown in Tables 3 and 4. The analysis of the LULC transition matrices 
indicates significant trends in LULC transitions from one LULC type to another. 
According to Table 3 (1999–2009), a high transition rate was observed in the forest 
class, which converted into cultivable lands with 773.4  ha, cultivable lands into 

Assessment of Land Cover Changes in the Allala Watershed Based on Object Based…



90

Fig. 3 LULC classification of 1999, 2009, and 2020

Table 2 LULC class areas

1999 2009 2020

Area (ha) % of total area
Area 
(ha) % of total area

Area 
(ha) % of total area

Built-up 537.2 1.7 2339.3 7.6 3720.1 12.1
Forest 4957.4 16.1 5652.2 18.4 4300.1 14
Roads 96.7 0.3 3736 12.2 4714.1 15.4
Cultivable land 16387.8 53.4 15,001 48.8 15307.5 49.9
Barren land 8726.6 28.4 3979 13 2664 8.7
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Table 3 Transition matrix for 1999–2009 period

LULC classes (1999) (ha)
LULC classes (2009) (ha)
Built-up Forest Roads Cultivable lands Barren lands Total

Built-up 359.7 15.8 30.5 34.9 92.6 533.4
Forest 14 3659 131.1 773.4 368.5 4946
Roads 7.7 7.1 10.7 27.1 43.9 96.5
Cultivable lands 373.7 1344.1 2373.7 6294.7 5989.5 16375.7
Barren lands 1577.3 611.9 1185.5 3180.7 2152.8 8708.2
Total 2332.3 5637.9 3731.6 10310.7 8647.3 30659.8

Table 4 Transition matrix for 2009–2020 period

LULC classes 2009 (ha)
LULC classes 2020 (ha)
Built-up Forest Roads Cultivable lands Barren land Total

Built-up 977.5 20.3 486.7 119.0 729.8 2333.4
Forest 338.0 3186.8 176.3 1436.8 502.9 5640.8
Roads 570.9 122.6 833.3 898.0 1307.5 3732.3
Cultivable lands 1173.6 624.3 1664.9 4698.2 2153.8 10314.9
Barren land 652.9 341.7 1544.1 1896.6 4214.0 8649.3
Total 3713.0 4295.8 4705.3 9048.6 8908.0 30670.8

barren lands with 5989.5 ha, and barren lands to roads, built-up, and cultivable lands 
with 1185.5 ha, 1577.3 ha, and 3180.7 ha, respectively.

Regarding transitions between 2009 and 2020 (Table  4), the most significant 
transitions were reported for forest into cultivable lands with 1436.8 ha for the total 
forest area, barren land into cultivable lands with 1896.6 ha and roads with 1544.1 ha, 
and cultivable lands into barren lands, roads, and built-up with 2153.8 ha, 1664.9 ha, 
and 1173.6 ha, respectively.

5  Discussion

In this study, we aimed to map and detect LULC changes in the Allala watershed for 
over 21 years. Both the OBIA method based on machine learning classifiers and Arc 
GIS applications were used in the analysis of two Landsat images and one Sentinel-2 
image. These images were gathered using remote sensing techniques and covered 
the years 1999, 2009, and 2020. The LULC classes in question were: built-up, for-
est, barren land, roads, and cultivable lands. Furthermore, in order to achieve the 
best possible accuracies in the change detection step, two machine learning algo-
rithms were tested: RF and SVM. The best of both was used to detect LCLU 
changes.

The RF and SVM machine learning algorithms both achieved good results, with 
an overall accuracy ranging from 76% to 96%. In addition, the RF algorithm outper-
formed SVM in all LCLU classifications, regardless of the remote sensing types 
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Fig. 4 Area of LULC classes of the total area (ha) over 1999, 2009, and 2020

used in the classification process. This is mentioned in several studies, for instance, 
[3, 15, 19, 38]. In our case, the optimization of parameters of the used classifiers has 
allowed us to obtain better results with high values of the overall accuracy. 

Additionally, our experiments exhibited that RF performed better on the 
Sentinel-2 image than on the Landsat images and gives the highest value of the 
overall accuracy (up to 96%). These results confirm the efficacy and robustness of 
this algorithm when applied to this type of data, particularly for LULC mapping 
[39, 40]. In addition, this is strongly explained by the spatial resolution effect.

By UA and PA calculations (Table 1), the accuracy of the classes has also been 
evaluated within each algorithm for the 3 years. As well, for 1999 and 2020, built-up 
and barren land were well detected with RF, with UA and PA values at more than 
96%. For 2009, forest was well classified with an UA and a PA of more than 92%. 
However, the worst class in terms of UA and PA was barren lands with values close 
to 54%. However, despite the high values of the overall precision of some classes 
especially roads. This class was not well delineated and took up a large area com-
pared to other classes. This is due to the effect of the segmentation of the satellite 
image and in particular the “scale” parameter which generated large segments 
which then affected the final classification.

Considering the results of LULC change detection over the two periods, 
1999–2009 and 2009–2020, as observed from the final LULC maps (Fig.  3), in 
addition to the results shown in Table 2 and Fig. 4, the Allala watershed has under-
gone different change trends over the studied years. Additionally, according to tran-
sition matrix results over 1999–2009 and 2009–2020 (Tables 3 and 4), the LULC is 
progressively transitioning from one LULC class to another.

Obviously, a great increase in area of both built-up and roads is observed, which 
is explained by the population growth and subsequent urbanization. This also facili-
tated the transition of some classes to built-up and roads. This increase was offset by 
a big decrease in the barren land class, 15.4% from 1999 to 2009 and 4.3% from 

N. Zaabar et al.



93

2009 to 2020. Specifically, the change rate is more significant during the 1999–2009 
period. These results are logical, as Ténès City has been under constant urban con-
struction over the last decades.

As well, the forest class has decreased by 2.1% from 1999 to 2020. This is 
explained by the degradation of watershed ecosystems and the many forest fires this 
region has experienced. Furthermore, the cultivable land class, which occupies the 
largest proportion of the total watershed area (53.4% in 1999), has decreased by 
4.6% from 1999 to 2009 and then increased by 1.1% from 2009 to 2020. This is 
generally related to the harvest season when satellite images were acquired.

Moreover, forest area has been converted into barren land (7.7%) and cultivable 
land (15.6%). Regarding transitions between 2009 and 2020, the most important 
transitions were reported for forest into cultivable lands (16%) and barren land into 
built-up (18%), roads (14%), and cultivable lands (37%). This is explained by the 
forest degradation in the Allala watershed.

6  Conclusion

This study mapped and assessed land use and land cover changes in the Oued Allala 
watershed for over 21 years. The OBIA approach applied on two Landsat-5 TM 
images, taken in 1999 and 2009, and one Sentinel-2 image from 2020 enabled the 
identification of the changes in LULC and the distribution of area classes in the total 
watershed area for over 21 years. Consequently, machine learning classifiers applied 
with OBIA obtained higher accuracies of LULC classification (>90% overall accu-
racy). Specifically, the RF machine learning classifier outperformed SVM with all 
data over the 3 years (> 96%). In addition, the proposed methodology combined 
remote sensing results with Geographic Information System (GIS) tools in order to 
assess LULC changes efficiently.

According to the results of LULC change detection, Oued Allala has undergone 
many changes over time. These results confirm that the region has undergone many 
environmental changes in recent decades due to the growth in population, urbaniza-
tion, and the evolution of agricultural areas. Notable changes include an increase in 
building (15.4%), cultivable land (1.1%), and road (10.9%) classes and a decrease 
in forests (4.4%) and barren land (4.3%). Hence, the change rate is more significant 
in the 1999–2009 period. These statistics are logical, as Ténès City was still under 
urban construction during this period. However, analyzing the transition matrix 
results showed that the most significant transitions were reported for forest into 
cultivable lands (16%), which is confirmed by the deforestation in the region. Barren 
land also transited into built-up (18%), roads (14%), and cultivable lands (37%).

Analyzing and mapping the trends of LULC changes in the studied area provide 
a basis for strategic planning, managing, and protection decision-making, and the 
results of LULC change analysis can be used as a decision support tool and further 
help in regional and national land management.
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Deep Learning–Based Bathymetry 
Mapping from Multispectral Satellite Data 
Around Europa Island

Khishma Modoosoodun Nicolas, Lucas Drumetz, Sébastien Lefèvre, 
Dirk Tiede, Touria Bajjouk, and Jean-Christophe Burnel

Abstract Bathymetry studies are important to monitor the changes occurring in 
coastal topographies, to update navigation charts, and to understand the dynamics 
of the marine environment. Satellite-derived bathymetry enables rapid mapping of 
large coastal areas through measurement of optical penetration of the water column. 
In this study, bathymetry prediction is investigated using Pleiades multispectral sat-
ellite data. This research work explores the possibility of using very-high-resolution 
multispectral satellite data with a deep learning U-Net-inspired neural network 
architecture to infer bathymetry estimates around Europa Island (22o20′S, 40o22′E), 
which is a coralline island in the Mozambique Channel. This study is among the 
first to provide an overview suitable for bathymetry mapping using a deep learning 
approach based on optical satellite data. An airborne light detection and ranging 
(LiDAR) dataset of 1 m resolution is used as ground truth to train the model. From 
experiments, the overall accuracy evaluation of the model shows a good relationship 
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(R2 = 0.99, standard error = 0.492) between the predicted and reference depth values 
that satisfy the International Hydrographic Organization (IHO) S-57 Category of 
Zone of Confidence (CATZOC) levels A1, A2, B, and C (IHO, 2014). These pre-
dicted bathymetry values could potentially be incorporated into electronic naviga-
tional charts. The image reconstruction shows accurate results to estimate bathymetry 
in the shallow waters with mean absolute error not exceeding 1.5 m in that case. The 
U-Net-inspired deep learning technique exhibits promising outcomes to predict 
water depth from very-high-resolution satellite data to operate bathymetry mapping 
automatically over a wide area.

Keywords Bathymetry mapping · Europa Island · Pleiades satellite · LiDAR · 
Deep learning · U-Net architecture · Remote sensing

1  Introduction

Bathymetry refers to the science of determining the depth of the water column in 
relation to sea level. Information on the topography of the seafloor is one of the 
essential parameters that is required to plan for any man-made construction or activ-
ity in the coastal zones. Detailed bathymetry data also provide essential information 
that can be used for habitat mapping [16] and studies on the distribution of benthic 
fauna [17]. Remote sensing techniques can provide repeated high-resolution 
bathymetry data for extensive ocean areas at low cost. These remotely sensed data 
are measured from remote platforms such as satellites, planes, or drones. Airborne 
laser bathymetry (ALB), such as light detection and ranging (LiDAR) systems, used 
in this study has gained popularity recently and possesses the advantages of being 
less time-consuming as compared to traditional methods to measure bathymetry in 
shallow and clear coastal waters [13]. In spite of its performance, this technique 
remains expensive for operational monitoring use.

Deciphering shallow-water depth by the analysis of multispectral and hyperspec-
tral satellite images is called satellite-derived bathymetry (SDB). Since the 1970s, 
several studies have been undertaken using multispectral images to infer water 
depth [6, 14, 15, 19, 20, 22, 24, 26]. Depth information from ocean areas that were 
previously inaccessible by boats can be easily obtained by satellite images. These 
methods enable rapid mapping of large coastal areas through measurement of opti-
cal penetration of the water column. In this study, water depth estimation is investi-
gated via a deep learning approach by training a model to learn mapping Pleiades 
1B multispectral satellite data to bathymetry estimates coming from airborne 
LiDAR around the Europa Island. Both datasets are resampled to 1 m spatial resolu-
tion. Thus, at inference time, bathymetry estimates can be obtained using only the 
trained model and multispectral data. There are only a few, very recent publications 
that describe oceanic bathymetry mapping using different deep learning methods [1, 
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21, 25, 29]. This research study will contribute toward a new approach to derive 
SDB that could be used to update navigational charts around Europa Island. This 
study will further support the Indian Ocean sea Turtle (IOT) project to study the 
functional environmental habitat for marine turtles [12].

2  Aim and Objectives

We investigate bathymetry mapping using a U-Net-inspired deep learning approach 
to infer water depth estimation from Pleiades satellite imagery around Europa Island.

The main objectives of this study are as follows:

• Develop a deep learning architecture to find and learn a relationship between the 
optical image and the LiDAR-derived bathymetry data to estimate water depth.

• Validate optical satellite–derived bathymetry using airborne LiDAR dataset as 
ground truth.

• Perform evaluation for bathymetry estimation and compare with IHO standards.
• Produce bathymetry prediction maps from the deep learning U-Net- 

inspired model.

3  Study Area and Data Sources

The study site is the Europa Island that is a territory of France, located in the 
Mozambique Channel (Fig. 1). The island is situated at 22o20′S, 40o22′E and is sur-
rounded by a fringing reef with a total area of 30 km2. A mangrove forest covers 
over 700 hectares around an open lagoon in Europa Island [18].

Table 1 shows the data sources used in this study. A Pleiades 1B multispectral 
optical satellite image is used as input image for estimating bathymetry. The Pleiades 
image was acquired on 29 July 2013 with no cloud coverage. The image was pan-
sharpened and resampled to 1  m spatial resolution. The bathymetric data  was 
acquired on 21 February 2012 from an airborne topo-bathymetry LiDAR survey and 
was carried out in the framework of Litto3D program. The LiDAR data has a very 
high spatial resolution of 1 m and allows deriving a Digital Terrain Model (WGS84 
georeferenced DTM) of both land and sea. For the whole island, the LiDAR DTM 
value ranges from −40 m below to 16.8 m above sea level. The LiDAR data was 
randomly split into a training and a validation dataset in the processing phase. It 
should be noted that the LiDAR image used for the study has been processed for 
tidal corrections by SHOM (Service Hydrographique et Océanographique de la 
Marine) according to IHO standards.
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Fig. 1 Map of Europa Island, Mozambique Channel (true color Pleiades satellite image pansharp-
ened and resampled to 1 m resolution)

Table 1 Satellite and airborne data sources

Data type
Acquisition 
date

No. of spectral bands 
(μm) Resolution

Dimension 
(pixels)

Pleiades 1B Satellite 
Imagery (multispectral)

2013-07-29 4
 Blue (0.43–0.55)
Green (0.50–0.62)
Red (0.59–0.71)
NIR (0.74–0.94)

2 m 5033 × 5194

Pleiades 1B Satellite 
Imagery (Panchromatic)

2013-07-29 1
(0.47–0.83)

0.5 m 20128 × 20775

Lidat airborne data 2012-02-21 1 1 m 9000 × 10000
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4  Methodology

To solve bathymetry mapping automatically and at a higher level of accuracy, deep 
learning methods have recently been explored. The prediction of depth maps from 
RGB images using deep learning, a related task, was performed by Eigen et al. [7]. 
This concept has been used as a reference in our study whereby a convolutional 
neural network and regression method were used to produce the bathymetry predic-
tions. A U-Net-inspired convolutional neural network architecture is used to address 
the research question of bathymetry estimation from space. The proposed U-Net 
model uses a single satellite image as input and one ground truth single image, both 
divided into batches of input/output image patches. We rely on an existing network 
tailored for depth map prediction from RGB single image using NYU Depth V2 
dataset [5] that comes with a publicly available GitHub repository [9]. We then 
adapt this existing algorithm to the specific problem of bathymetry estimation. 
While our task is related to U-Net semantic segmentation, a depth value is assigned 
to each pixel of the image to predict bathymetry, leading us to solve a regression 
problem instead of a classification one. To fine-tune the network, several experi-
ments were run to evaluate the best result where the hyperparameters, activation 
functions, and optimizers were set. The deep learning U-Net-inspired model was 
implemented using Python programming with the PyTorch framework accelerated 
using graphics processing units (GPU).

The overall research pipeline used in this study is shown in Fig. 2. Pre-processing 
of the datasets (image calibration and pansharpening) has been conducted before 
training our model.

Fig. 2 Workflow of the bathymetry prediction from pre-processing to training and testing the 
U-Net-like model

Deep Learning–Based Bathymetry Mapping from Multispectral Satellite Data…



102

4.1  Image Pre-processing

The input data that is to be fed into the deep learning network is the multispectral 
optical imagery with four spectral bands (red, blue, green, and near infrared). The 
pre-processing steps are performed in ArcGIS Pro version 2.7.

The multispectral data is calibrated into top of atmosphere (ToA) reflectance 
values using an apparent reflectance function followed by a pansharpening process. 
This is done to reduce any variations so as to yield accurate and reliable water 
depths. The apparent reflectance function calibrates the digital number (DN) values 
in the Pleiades imagery by adjusting reflectance or brightness in the image by using 
the sun elevation, acquisition date, sensor gain and bias, and sun angle correction 
for each band to derive the ToA reflectance.

A pansharpening process is carried out to improve the spatial resolution of the 
Pleiades satellite image that is used as input image for the study [28]. The pansharp-
ened image is obtained by a fusion of the very-high-resolution panchromatic image 
(0.5 m) with the lower-resolution multiband Pleiades image (2 m). The computation 
is performed in ArcGIS Pro by using the Gram–Schmidt algorithm [23]. Ultimately, 
this process ensures that the deep neural network better extracts the spatial features 
from the Pleiades image.

In order to feed the input image in the deep learning network, it should have the 
same dimension and spatial resolution as the ground truth (LiDAR) dataset. A resa-
mpling of the input Pleiades image is done to match the same image dimension of 
the LiDAR data (10,000 by 9000 pixels and spatial resolution of 1 m). As resam-
pling technique, a bilinear interpolation, useful for continuous data values, is 
performed.

Since we are interested in bathymetry, we need to discard land areas in the image 
so they do not perturb the training. To determine the water mask, we threshold the 
DTM to 3 m and consider all pixels with elevation lower than 3 m as belonging to 
the water mask. The mask was visually assessed by comparing it with the normal-
ized difference water index (NDWI) illustrated in Eq. 1. NDWI is a remote sens-
ing–based indicator sensitive to the change in the water content of leaves [8]. The 
NDWI is defined as the relative difference between the Green and NIR channels.

 

NDWI
Xgreen Xnir

Xgreen Xnir
�

�� �
�� �  (1)

4.2  Network Architecture

Both the LiDAR and the resampled multispectral image have the same spatial reso-
lution of 1 m and a dimension of 10,000 by 9000 pixels. A patch generator is imple-
mented to divide the images into 64 by 64 small water-only input/output pairs of 
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patches, based on the derived water mask. They are transformed using a min–max 
scaler normalization to ensure stable training, before being fed to the network that 
processes batches of multispectral/LiDAR patches.

The U-Net network architecture (Fig. 3) was chosen as a base model to perform 
a semantic regression approach as it helps in better prediction of pixel-wise water 
depth value. U-Net architecture and variants became popular for the semantic seg-
mentation task. This is due to their fully convolutional nature and their capacity to 
pass through information at different spatial scales, thanks to skip connections, 
added on top of a convolutional encoder/decoder architecture. The encoder uses 
pooling operations to progressively reduce the dimensionality of the features, while 
the decoder uses transposed convolution layers to retrieve an image with the same 
dimensions as the input. The training ran for 50 epochs with batch size of 128, an 
ADAM optimizer, and ReLU activation function at a learning rate of 0.001. In this 
research work, a scale invariant error loss function (Eq. 2) as proposed by Eigen 
et  al. [7] is used in training the model. In Eq. 2, y* denotes the predicted water 
depth, y is the ground truth image, n is the number of pixels, di is the difference 
between the absolute values and the ground truth, and λ  =  0.5 a regularization 
parameter set similar to Eigen et al. [7].
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Learning is performed to find the best combination of model hyperparameters that 
aims at minimizing the loss function from the training optical image and its related 
target (ground-truth DTM). This is done by drawing random batches of data sam-
ples and their associated targets to subsequently compute the gradients of the loss 

Fig. 3 Proposed U-Net-inspired architecture for bathymetry prediction
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with respect to the network parameters on the chosen batch size (thanks to auto-
matic differentiation provided by PyTorch). Eventually, the U-Net model inference 
is evaluated to assess the bathymetry predictions.

4.3  Model Evaluation

One of the main challenges for solving depth regression problems is defining an 
appropriate loss function. Following the various pixel-wise regression research 
studies for depth estimation that have shown promising results using standard 
regression loss [2], we chose to rely on the mean absolute (L1) (Eq. 3) and root- 
mean- square loss (L2) (Eq. 4). The mean absolute error (MAE) (L1) is the com-
monly used loss for depth estimation that is directly interpretable in terms of 
distance [2]. These water depth predictions produced from the U-Net network are 
evaluated as mean absolute error and root mean squared error (RMSE) values to 
determine how far the predictions matched with the ground truth. The MAE and 
RMSE are calculated for individual patches and globally for all patches of the train-
ing and testing datasets as described below.
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5  Results and Discussion

The proposed U-Net-inspired architecture took around 2 hours at 50 epochs for the 
model to converge. The result of an 80/20 ratio of train/test split provided a total 
number of 2632 samples. Randomly chosen, 64 by 64 patches are fed into the U-Net 
network with 2105 patches as training set and 527 patches as testing set, respec-
tively. Figure 4 shows the overall accuracy evaluation of the model in the test set 
that indicates a good relationship (R2 = 0.99, standard error = 0.492) between the 
predicted and actual depth values where most of the average MAEs range 
below 1.5 m.

Some patches of the predicted water depth are observed to fit well with the 
ground-truth water depth having low-average MAE value. In some patches, for 
example, patch ID 60 (Fig. 5), high deviation in the average MAE is observed. The 
few wrongly predicted patches are mostly located in the shallow regions of the 
lagoon that could be due to the differences in substrate types (seagrass beds, sand, 
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Fig. 4 Scatterplot of predicted values against actual values

Fig. 5 Accuracy comparison according to IHO S-57 CATZOC level for the predicted and actual 
depth at Europa Island

and corals). Different substrates have different reflectance values, and this could 
influence the depth prediction in these shallow waters. Similar findings in shallow 
coastal areas have also been reported to have low accuracies [3, 27, 30, 31].

5.1  International Hydrographic Organization (IHO) Standards

The International Hydrographic Organization (IHO) standards can be used to evalu-
ate the accuracy of bathymetric surveys. The IHO S-57 standard puts forward 
Category of Zone of Confidence (CATZOC) levels. This is used to define depth 
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accuracy specifications for specific depth ranges, which are incorporated into elec-
tronic navigational charts to provide an indication of navigational safety to mari-
ners, especially in shallow areas [10, 11]. The CATZOC indicator considers the total 
vertical uncertainty and total propagated uncertainty of the hydrographic data, 
together with the survey’s seafloor coverage. Then, these data are merged with an 
algorithm to organize bathymetric values in one of the five categories, namely, A1, 
A2, B, C, D, and U [10, 11].

Table 2 provides an overview of the accuracy requirements (MAE) for each 
CATZOC level for depths up to 30 m. Each CATZOC is integrated in Electronic 
Chart and Display Information System (ECDIS) and represented as a series of stars 
in the Electronic Navigational Charts. The IHO S-57 CATZOC standards have been 
used in previous studies to check whether the estimated depths can be included in 
navigational charts [4, 29].

From the experiments, most of the predicted water depth patches fall under the 
IHO S-57 Category of Zone of Confidence (CATZOC) levels A1, A2, B, and C 
(Fig. 5). It was observed that 38.4% of patches fall in A1 standard, 51.4% meet the 
A2 and B standard, and only 10.2% fall in the C level (Table 2). Only one patch with 
a MAE of 4.029 m did not meet the CATZOC standard, which might be located in 
shallow or turbid waters. These predicted bathymetry values could potentially be 
incorporated into electronic navigational charts.

The ground-truth and predicted water depth for each patch with its correspond-
ing average MAE are illustrated in Fig. 5. From the observed results, the predicted 
water depth (orange line) is seen to be fluctuating along with the ground-truth water 
depth (blue line). Some patches of the predicted water depth are observed to fit well 
with the ground-truth water depth (low-average MAE), but for some patches, for 
example, ID 3, 33, 60, and high deviation in the average MAE are observed, leading 
to overestimating the predicted depth.

5.2  Reconstruction of Bathymetry Prediction Map

With our U-Net-inspired deep learning method, the global spatial structure of the 
bathymetries around Europa Island is seen to be well preserved while performing 
the reconstructed prediction map as shown in Fig. 6 and Fig. 7. We note low MAE 
values in the shallow waters and this gets higher in deeper waters (Fig. 8), thus con-
firming visually that our U-Net-like method exhibits reliable overall results with 
respect to Table 2.
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Table 2 Depth ranges for IHO CATZOC levels

CATZOC level Depth range (m) Required accuracy (± m) Number of patches (%)

A1 0–10 0.6 48 38.4
10–30 0.8 20

A2 and B 0–10 1.2 69 51.4
10–30 1.6 22

C 0–10 2.5 13 10.2
10–30 3.5 5

Fig. 6 Predicted bathymetry map around Europa Island
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Fig. 7 Ground-truth bathymetry map around Europa Island

6  Conclusion

In this research work, a U-Net-like deep learning technique is used to estimate 
bathymetry around Europa Island from a multispectral Pleiades image and trained 
using LiDAR data. The prediction of bathymetry values from a single image was a 
challenging task, but it has been accomplished successfully using our U-Net- 
inspired model.

Our model achieves positive results to predict bathymetry using the multispectral 
optical data. Except for one, all the predicted bathymetry patches satisfy the IHO 
S-57 CATZOC standards. This shows promising results that once replicated at a 
larger scale and generalized to different datasets, our model could potentially be 
used in electronic navigational charts for Europa Island. In order to evaluate the 
reliability of the proposed architecture, the mean absolute error (MAE) and root- 
mean- squared error (RMSE) were used to assess the bathymetry predictions. It can 
be observed that the predicted values compared to the actual values show a good 
relationship. An overall accuracy evaluation of the model shows a good relationship 
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Fig. 8 Bathymetry mean absolute error map around Europa Island

(R2 = 0.99, standard error = 0.492). Most of the average MAE values range below 
1.5 m. Nearly 38.4% of patches fall in A1 standard, 51.4% meet the A2 and B stan-
dard, and only 10.2% fall in the C CATZOC level, which mean that the predicted 
bathymetry values can potentially be incorporated into electronic navigational charts.

To sum up, this research work is addressing bathymetry mapping using a deep 
learning approach, which is beneficial to provide depth estimation in remotely inac-
cessible areas. Such information can provide bathymetry information for a wide 
area in the ocean to better understand the topography of the seabed. Bathymetry 
studies are important to understand the dynamics of the marine environment, which 
is a crucial component in terms of both sediment transport and distribution of marine 
species. It is imperative to monitor the changes occurring in the coastal topogra-
phies in order to update navigation charts, validate hydrodynamics models, and 
undertake long-term wave forecasting to limit damages and save lives during 
extreme events such as coastal flooding. Although this technique has shown promis-
ing results to predict water depth, improvement on the model needs to be under-
taken as future works.
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Among possible directions for improving our model, we can mention the use of 
data augmentation techniques before training the model by changing the scale, 
rotating or flipping the images in order to increase the number of samples, and 
observing how the model behaves. Moreover, we can consider more advanced loss 
functions. Finally, it would be interesting to assess our model on other geographi-
cal areas.
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Assessment of Coastal Vulnerability 
to Erosion Risk Using Geospatial 
and Remote Sensing Methods  
(Case of Jerba Island, Tunisia)

Amina Boussetta, Simona Niculescu, Soumia Bengoufa, Hajer Mejri, 
and Mohamed Faouzi Zagrarni

Abstract Located in the southeast of Tunisia, Jerba is considered a premier tourist 
destination offering beautiful sandy beaches. Since 1960, the island has undergone 
significant socio-economic transformations due to its tourism boom. Beach tourism 
is extremely popular among the population, which has contributed to an intensifica-
tion of coastal vulnerability, wherein the beaches are threatened with disappearance. 
This work aims to identify the causes of coastal vulnerability and measure it based 
on different geophysical and socio-economic variables using the coastal vulnerabil-
ity index (CVI) developed by Gornitz (Vulnerability of the US to future sea level 
rise, Coastal Zone, Proceedings of the 7th Symposium on Coastal and Ocean 
Management, American Society of Civil Engineers, 1345–1359, 1991). This allows 
us to identify the most vulnerable sites and to establish maps and data for coastal 
management purposes. The results obtained show 63% (14 km) of the coastline of 
the northeast coast of the island has a high to very high degree of vulnerability. 
Moreover, 37% of the coastline of the southeast of the island has a low to moderate 
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vulnerability or about 22 km of the entire coastline. The quantitative measures relat-
ing to this coastal vulnerability can aid to fortify the coast against a rise in sea level.

Keywords CVI · Erosion · Island · Jerba · OBIA · Remote sensing · RF · 
Vulnerability

1  Introduction

An unquestionable consequence of global warming is the alarming sea-level rise 
(SLR). In fact, the International Panel on Climate Change [29] predicts that SLR 
will be 0.63–1.01  m by 2100, which would be twice as fast as that which has 
occurred over the last 100 years. In the Mediterranean basin, the Gulf of Gabes in 
the southeast of Tunisia is one of the areas among the most affected by SLR, accel-
erating in this area much faster than the global average, estimated locally at 5.7 mm/
year [24].

The concentration of population and economic activities around the coast makes 
coastal erosion a global concern [3]. The Tunisian coastal area makes up nearly a 
quarter of the territory and contains four-fifths of the urban population and a third of 
the rural population of Tunisia, whose total population is estimated at 11.82 million 
[27]. This area would face major socio-economic and environmental difficulties if 
no assessment of the vulnerability of coastal areas and potential adaptation mea-
sures are undertaken in the years to come. Among the degraded shorelines are the 
coasts of the Gulf of Gabes, with its 750 km of shoreline, including the islands of 
Jerba and Kerkennah, which represents 58% of the Tunisian shoreline [22]. With an 
area of 514 km2, the island of Jerba is densely populated with a population of 163, 
726 [27]. Jerba started attracting tourists in the 1960s and has become one of the 
most popular destinations in the region. The rapid development of tourist facilities 
(more than 130 hotels) and the increase in population in these coastal areas have led 
to several coastal problems.

The coastline is a highly complicated and fragile environment [20]. It is in per-
petual and rapid change [6, 31], and therefore, natural dynamics, extreme weather 
hazards, and anthropogenic factors make coastal areas particularly vulnerable. 
Coastal pressure induces complications and the disturbance of coastal areas [8]. 
This situation has motivated research on the concept of vulnerability in order to 
make it measurable. Therefore, the coastal vulnerability index (CVI) calculation 
was developed by Gornitz [9] and has subsequently been improved at different 
scales by numerous studies [1]. In the present study, three geological and two physi-
cal variables and a socio-economic factor are used.

The aim of this study is to apply multiple approaches in order to assess the 
coastal vulnerability of Jerba Island using remote sensing methods and the 
Geographic Information System (GIS). The availability of remotely sensed data is 
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emerging as one of the best means for terrestrial monitoring [14]. Starting with a 
Landsat-5 image using the Thematic Mapper (TM) sensor (resolution equal to 
30  m), the Copernicus platform development and Theia then offered new open- 
access Sentinel-2 optical images, with improved spatial resolution (10 m) and satel-
lite revisit time (5  days). However, although Sentinel-2 images offer better 
characteristics, very little research has been done to evaluate their potential in 
detecting and monitoring the shoreline to measure coastal vulnerability. Spatial 
remote sensing, especially the extraction of geographical objects by automatic clas-
sification methods, is becoming an important global scientific tool applied in the 
broad field of environmental sciences [30].

The aim of this study is to identify the causes of coastal vulnerability, measure 
them on the basis of different geophysical and socio-economic variables from the 
calculation of CVI, and identify the most vulnerable sites in the studied area. The 
integrated methods will build databases on coastal areas and their dynamic pro-
cesses that will help managers in planning, decision-making, and development of 
coastal cities.

2  Study Area

Jerba, located in the Gulf of Gabes in southeastern Tunisia, is the largest Tunisian 
island on the North African coast, located 2 km from the mainland, 58 km east- 
southeast of Gabes, and 23  km north-northwest of Zarzis, at a northern latitude 
between 33°57′0.56" and 33°37'46.82" and an eastern longitude between 
10°45′38.43" and 11°3'53.802". It covers an assembly of three maps at the scale of 
1/50.000, with a surface area of 514 km2 and boasts a 150 km shoreline.

The island is 30 km long and 20 km wide and covers 50,000 ha, plus 3000 ha of 
marshes and intertidal zones.

Along the southwestern side, the island is linked to the mainland between Ajim 
and the peninsula of Djorf by a ferry, and on the southeast side, it connects to the 
peninsula of Zarzis by the Roman road El Kantara, 7.5 km long (Fig. 1).

3  Methodology

Our approach focuses on a calculation of the coastal vulnerability index (CVI) by 
integrating variables adapted to the microtidal coasts of the western Mediterranean 
basin. In this study, the adopted formulation of the CVI includes six geophysical 
and socio-economic variables: shoreline change (a), geomorphology (b), slope (c), 
wave height (d), mean tidal range (e), and land use (f). These data were collected 
from a combination of sources, including field surveys, satellite images, topographic 
maps, a Shuttle Radar Topographic Mission, and various research papers.
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Fig. 1 Cartographic assembly covering the study area

3.1  Treatment

The analysis of the Landsat and Sentinel satellite imagery provided a variety of data 
that were used to process the variables chosen for the CVI model in a socio- 
ecosystemic environment. The variables were integrated into a GIS to calculate the 
CVI, after being ranked according to their impact on the coastal environment. 
Therefore, the entire coastline was digitized and converted into a database [10] 
(Fig. 2).

3.1.1  Shoreline Change

The multi-temporal and multi-sensor analysis of satellite images (Landsat-5 and 
Sentinel-2B) was based on several remote sensing approaches. The automatic detec-
tion of shoreline features was done through supervised classification by an object- 
oriented approach, OBIA, combined with either the Random Forest or Decision 
Tree Forest RF_Object machine learning algorithms. The automatic extraction 
method was done in four steps:

Segmentation This allows the capture of well-defined regions or features of an 
object that can be distinguished from each other. The Mean Shift Segmentation 
(MSS) algorithm was applied using the Orfeo ToolBox OTB software. Three 
 parameters were determined: spatial radius (sr), range radius (rr), and minimum 
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Fig. 2 Working methodology and data processing approach (Table 1). Ranges for the vulnerabil-
ity ranking of the variables used along the coast of Jerba

region size (mrs). For the Sentinel-2021 image, these parameters were set to 10, 
0.05, and 20, respectively. For the Landsat-1989 image, these were set to 10, 0.01, 
and 5 (Table 2).

Zonal statistics The zonal statistical algorithm of the QGIS software allows the 
calculation of classification variables for all the parcels contained within a vector 
layer (QGIS_zonal statistics). Each variable corresponds to the average of the pixel 
values for each feature. In our case, four statistics were computed: minimum, maxi-
mum, average, and standard deviation.

Training and Classification Training was performed using the TrainVectorClassifier 
module of the OTB software. This module enables the Random Forest algorithm to 
do the classification. Then, the prediction of the classes on the objects resulting 
from the segmentation was carried out using the Vector Classifier tool.

Cross-validation was performed on the validation samples, which correspond to 
20% of the plots in the ground-truth database. A confusion matrix was computed 
each time to generate the kappa index, which gives global measures of quality, and 
the global accuracy index, which reflects the classification performance. The extrac-
tion of the shorelines themselves was done using a Geographic Information System 
(GIS). These shorelines have zigzag-like patterns, giving a non-real representation 
of their geometric nature. The smoothing was done by the Smooth Line tool of the 
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Table 1 Ranges for the vulnerability ranking of the variables used along the coast of Jerba

Ranking of coastal vulnerability index
Variables Very low Low Moderate High Very high

Shoreline change  
(m/yr)

>2.0 1.0–2.0 1.0− +1.0 −1.1−−2.0 <−2.0

Geomorphology Rocky Medium cliffs Low 
cliffs

Cobble beaches Sand 
beaches

Slope (%) >12 12–9 9–6 6–3 <3
Wave height (m) <0.55 0.55–0.85 0.85–1.05 1.05–1.25 >1.25
Mean tidal range (m) >6.0 4.0–6.0 2.0–3.99 1.0–1.99 <0.99
Land use Water 

bodies
Natural 
meadow

Forest Agricultural 
activity

Urban area

Table 2 Setting parameters

MSS
Satellite images sr rr mrs

Landsat 1989 10 0.01 5
Sentinel 2021 10 0.05 20

Fig. 3 Shoreline extraction from Sentinel image 15/01/2021

ArcGIS software. Then, the evolution rate was calculated by the End Point Rate 
(EPR) method of the Digital Shoreline Analysis System extension (DSAS), which 
allows the measurement of the distance between two successive shorelines. To vali-
date the results, they were compared to those produced (Fig. 3).

3.1.2  Geomorphology

The interaction between hydrodynamic processes and geological formations repre-
sents the coastal zone morphology [11]. Therefore, determination of the landforms 
is very useful in measuring the vulnerability of the studied area. The topographic 
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coverage of the island of Djerba was obtained by digitizing and assembling two 
digital elevation models (DEMs) obtained from the Shuttle Radar Topographic 
Mission (SRTM) data of the United States Geological Survey (USGS). These two 
DEMs were merged with data from topographic maps at a scale of 1:50,000, cover-
ing the coast studied, and were interpolated and correlated under a Geographic 
Information System (GIS) to develop an altitude map. In addition, field surveys 
were conducted along the entire coastline to collect data on geomorphological 
features.

3.1.3  Slope

The slope map was made using the “Slope” extension of the ArcGis® 10.4 software 
from the DEMs. It highlights terrains, whose slope varies between 0° and 2.29°. The 
slope values were reclassified into four to be representative of the mostly flat terrain 
in the study area. The majority of the terrain is characterized by a low slope value 
between 0 and 4%, wherein the average slope value is equal to 3.49%. The low 
topography extends into the submarine domain by an extensive and shallow conti-
nental shelf with an isobath of −10 m located at an average of 3 km from the shore.

3.1.4  Significant Wave Height

Wave height is related to the wind regime. In this study, the data were derived from 
measurements made by the synoptic station of the airport of Djerba–Zarzis. The 
annual distribution of winds indicates a high average of east winds (47%), followed 
by west winds (28%). The eastern coastline of Jerba is dominated by a regime of 
swells generated by local winds, which means the swell activity is seasonal. In par-
ticular, winter swells are quite notable, with the highest coming from the north and 
the longest swells arriving from the north-northeast and northeast. Waves of more 
than 4 m high have been recorded in the northeast sector of the island [21]. According 
to HIDROTECNICA PORTUGUESA (HP 1959), a wave of 4 m, 8 s generates a 
current of 4 m/s by 2 m depth and 2 m/s by 6 m depth [11].

3.1.5  Mean Tidal Range

Based on the tidal regime, microtidal coasts (<1 m) have a very high vulnerability, 
and macrotidal coasts (>6 m) a very low vulnerability [28]. The tide all along the 
coast of Jerba is a regular, semi-diurnal type.
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3.1.6  Land Cover

Object-based image analysis OBIA, applied on the Sentinel-2 image (2021), is the 
method that was adopted to classify our study area. OBIA is based on image objects 
that are made up of pixels with the same or similar information [7]. Previous field 
knowledge is necessary in order to perform supervised classification of high- 
resolution images [26]. In this regard, several field surveys were conducted over 
different periods during 2018, which gave us the opportunity to visualize the land 
cover along the coastline. Then, the selection of samples is assessed each time based 
on a high-resolution Google Earth image. Using this method, regions of interest 
(ROI) were defined in the Sentinel-2 image: water, wet sand, dry sand, urban, and 
vegetation. The Mean Shift Segmentation (MSS) algorithm of the Orfeo ToolBox 
(OTB) software was used to separate the image into segments with high correlation. 
Finally, the classification was performed by applying the Random Forest (RF) algo-
rithm. A prior optimization of the parameters is essential for each step. The param-
eters were fixed by the cross-validation method. Two indices were calculated each 
time: the kappa index, which gives global measures of quality, and the overall accu-
racy (OA) index, which reflects the classification performance. They respected the 
order of 0.94 and 0.93, which means that 94% of ground-truth variables were well 
classified.

3.2  Coastal Vulnerability Index (CVI) Calculation

In the present study, three geological variables (shoreline change, geomorphology, 
and slope), two physical variables (mean tidal range, significant wave height), and a 
socio-economic factor (land cover) were used to calculate the coastal vulnerability 
index. These key variables were then aggregated into a single index, using the fol-
lowing mathematical formula (see Eq.  1). The CVI was applied to quantify the 
contribution of each variable to the coastal vulnerability of the study area. The CVI 
is based on the definition of semi-quantitative scores with a scale of 1 to 5 where a 
value of 1 indicates a low contribution to the coastal vulnerability of a specific key 
variable for the study area, while a value of 5 indicates a high contribution.

  
CVI

a b c d e f
=

. . . . .

6  
(1)

where (a) is the shoreline change, (b) is geomorphology, (c) is the slope, (d) is the 
wave height, (e) is the mean tidal range, and (f) is the land use.
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4  Results

The northeastern shoreline, which extends for about 22 km and is highly urbanized, 
is the most dynamic sector of the island and the most affected by the degradation of 
the natural environment. These coastal areas are particularly vulnerable due to natu-
ral dynamism and extreme storms. The results show that 63% of the shoreline of the 
northeast and southeast coasts of the island shows a high to a very high degree of 
vulnerability. It also reveals that the wide sandy coasts (a length of 8 km and width 
of 700 m) are less vulnerable to erosion risk.

Integrated approaches combining remote sensing and GIS methods have signifi-
cantly optimized time and effort and provided technological solutions to create a 
database on coastal areas and their dynamic processes [2].

4.1  The Shoreline Variable

Our study area was divided into two coastal areas to simplify the estimation of shore-
line evolution and to facilitate their interpretation, analysis, and presentation; the sandy 
spit of Ras Rmel and the sandy beaches of the northeast-southeast coast of the island 
(sector A and sector B) (Fig.  4). The results showed a strong correlation between 

Fig. 4 The eastern coasts of Jerba Island (a), Ras Rmel sandy spit, and (b) sandy beaches
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Fig. 5 Results with the OBIA method and calculation of evolution rate with EPR method; (a) 
accretion rate, (b) erosion rate

Table 3 Erosion/accretion rates between 1989 and 2021

RF_Object Digitalization
EPR (1989–2021) Sandy beaches Sandy spit Sandy beaches Sandy spit

MIN −4.81 +34.74 −4.06 +37.33
MAX +1.12 +39.32 +2.37 +39.97
MEAN −1.8 +37.11 −1.2 +38.24

RF_Object and digitization (Table 3), which highlights the strong performance and 
relevance of machine learning algorithms for coastal land cover class recognition.

During a period of 32 years (1989–2021) and after applying a global margin of 
error for the adopted methodologies, it is revealed that the sandy spit has experi-
enced strong accretion, with an annual average of about +37.11 m/year (Figs. 5a and 
6). Therefore, it was assigned a value of 1. The elongation of the spit is considered 
to be a consequence of the erosion of the beaches located further south and the 
transport of sediments by the most active longshore drift directed toward the north-
west. The annual input provided by the longshore drift is estimated at 30,000 m3 
(STUDI-SOGREAH, 2002) [11].

Sandy beaches have suffered widespread erosion in different parts of the NE-SE 
coast of the island (Fig. 5b and 7). The average and maximum rates were − 1.8 and 
+ 1.12 m/year, respectively. Therefore, they were assigned a value of 5. This degra-
dation is explained by the strong anthropic pressure weakening the shoreline. The 
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Fig. 6 Evolution rate of Ras Rmel sandy spit between 1989 and 2021

concentration of facilities and seaside activities on the coast makes it vulnerable to 
an accelerated rise in sea level.

4.2  The Geomorphology Variable

Topographically, Jerba is characterized by a succession of plateaus and plains with 
an average altitude of 20 m (Fig. 6), with the highest point being Dhahret Guellala, 
whose southern part reaches 53 m. The plateaus have an irregular surface with a 
series of slope breaks.

The topography of the plains is defined by a flat and narrow coastal fringe and by 
low altitudes, often less than 5 m or even 2 m, which explains the existence of seb-
khas and chotts (APAL, 2018). Low elevation coastal landforms (<10 m), especially 
sandy beaches, are assigned a value of 5 (very high vulnerability) [1, 18] (Fig. 8).

4.3  The Slope Variable

Areas with slopes less than 1.5%, including beaches, are more susceptible to sedi-
ment transport by longshore drift [1, 12]. The consequences of sea action on a 
steeply sloping shoreline are negligible, unlike a gently sloping shoreline, where 
any rise in sea level would flood large areas of land. Therefore, the shoreline is 
expected to retreat more rapidly on low slopes than on high slopes [1], which is why 
weighted values of 5 are assigned to our study area (Fig. 9).

Assessment of Coastal Vulnerability to Erosion Risk Using Geospatial and Remote…



124

-6.25

-4.6875

-3.125

-1.5625

0.

1.5625

1 12 23 34 45 56 67 78 89 10
0

11
1

12
2

13
3

14
4

15
5

16
6

17
7

18
8

19
9

21
0

22
1

23
2

24
3

25
4

E
P

R
 (

m
/y

)

Transects

Accretion Erosion

Fig. 7 Evolution rate of the sandy beaches of the northeast and southeast coast of Jerba island 
between 1989 and 2021

Fig. 8 Altitude map of Jerba
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Fig. 9 Map of slopes and bathymetry of the island of Jerba

4.4  The Wave Height Variable

According to general studies of coastal protection against marine erosion (HP, 
1995–1997), based on the modeling of winds in the Mediterranean and waves gen-
erated on the entire Tunisian coastline, the significant decadal height of swell is 
4.8 m over a period of 9.9 s. More recently (IHE, 2007), using the “UK Met Office 
EuropeanWave Model (UKMO-EWM)” numerical model, which is managed by the 
British Meteorological Office (MetOffice), the 10-year significant swell height is 
4.3 m over a period of 9.5 s. This explains the erosive action of the swell and the 
longshore drift. Therefore, since coasts with very high significant wave heights are 
assigned the status of very high risk coasts [25], a value of 5 was assigned in our 
study (very high vulnerability).

4.5  Mean Tidal Range

The Mediterranean basin exhibits a microtidal regime. According to HP 1995–1997, 
the southeast sector of the island (Aghir) is characterized by a significant average 
tide, equal to 0.8 m during spring tides and 0.2 m during neap tides. There is a sig-
nificant difference in tidal height between the northeast of Djerba and the southeast 
(Aghir). According to the Environmental Impact Assessment (EIA, 2015) report, 
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the average tide during spring tides and neap tides near Houmet Souk (northeast) is 
about 1.1 m and 0.2 m, respectively. Therefore, a weighted value of 5 was assigned.

4.6  The Land Use Variable

The overall analysis has shown that the studied shoreline is highly urbanized in the 
northeast and southeast sectors of the island. This is evident by the multiplication of 
hotels (more than 130 hotels) and the destruction of the coastal dunes for construc-
tion purposes. The shoreline on the southeast side of the island displays a very 
segmented layout because of the multiplication of groins (more than 25 groins), 
which, in general, only displaces the damage caused to other neighboring sectors. 
These developments have increased the vulnerability of the coast. Therefore, a 
weighted value of 5 has been assigned to them, while a value of 1 has been assigned 
to the sandy spit, which is considered as a wetland and classified as a Ramsar site 
(Fig. 10).

Fig. 10 Northeast (a) and southeast (b) coastal fringe land use map
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4.7  Coastal Vulnerability Index (CVI)

The variables described above each contribute equally to coastal vulnerability. 
Equation (1), developed by [19], provides a wide range of values. It identifies the 
variables that are most critical to coastal vulnerability. The lowest and highest val-
ues of the CVI are 10.2 and 51.03, respectively (Fig. 11). Following the range gen-
erated by this index, our study area, which extends over a linear distance of 22 km, 
is categorized into four classes: very high, high, moderate, and low vulnerability 
(Fig. 12).

The results of the statistical classification of the CVI reveal that the very high 
vulnerability class is the most significant, comprising 45.45% of the coastline (CVI 
of 51.03). Its heavily urbanized coasts are mainly located in the northeast of the 
island (Fig. 11a). The coastal areas of high vulnerability correspond to 18.18% of 
the coastline, concentrated on the sandy spit (CVI of 42.36).

Fig. 11 Coastal vulnerability index of Jerba Island: (a) northeast and (b) southeast coast
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Fig. 12 Graphic presentation of the degree of vulnerability as a percentage of the coastline

The summary map of the CVI reveals that the moderate and low vulnerability 
classes are mainly in the southeast sector of the island, with values of CVI of 25.9 
and 10.2, respectively (Fig. 11b). In addition, 27.27% of the values show a medium 
degree of vulnerability, and 9.09% show a low degree. These areas are undergoing 
accretion, the main reason for which could be the continued installation of dikes. 
There were about twenty dikes for a coastline of about 5 km in 1999 [5].

5  Discussion

The objective of this study was to develop an efficient method for measuring coastal 
vulnerability and to identify the most vulnerable sites. DVI, complemented by 
direct fieldwork, appears to be effective in quantifying this vulnerability. It should 
be noted that the DVI is influenced by both geophysical variables and socio- 
economic factors. These variables were chosen according to the location and char-
acteristics of the coast [15]. In this work, six variables were processed through 
remote sensing data. Following a five-degree weighting system, the heterogeneity 
of these variables was eliminated according to well-defined intervals [1]. Thanks to 
the integrated methods of remote sensing and GIS, the results obtained from a data-
base on the coastal relief and its dynamic mechanisms [13], enabling a good future 
for integrated management of the coastline.

The coastline and land cover were determined using the RF machine learning 
algorithm. Preliminary analyses via field surveys, visual inspections of very-high- 
resolution satellite images, and a digitizing approach were performed to validate the 
performance of this algorithm. Several recent studies on the accuracy of machine 
learning algorithms for coastline detection have been published, including Bengoufa 
et al. [2], Kumar et al. [16], and McAllister et al. [17].

In order to assess the level of vulnerability of socio-economic activities to ero-
sion risk and to obtain more in-depth results, the land use variable was incorporated 
into the CVI. This allowed us to promote good coastal planning in order to foster 
sustainable coastal management and development.

A. Boussetta et al.
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Nevertheless, this study highlights the lack of data, especially very high resolu-
tion data and tide gauge data, and the need for further research. These limitations are 
compounded by the fact that the results of the index calculation do not offer the 
accuracy of detailed field studies. Nevertheless, fieldwork, remote sensing, and GIS 
allow for the development of a local CVI tailored to field conditions.

Vulnerability refers to the ability of territories to respond to hazards, as well as 
their ability to adapt in the longer term [4]. In our case study, and with a perspective 
of spatialization of risks, we attempt to assess the vulnerability of the coastline of 
the island of Jerba, facing the risk of coastal erosion.

This assessment shows a very large distribution of vulnerability especially in the 
northeast sector of the island. This sector has undergone the strongest urbanization 
since the tourist boom experienced by the region. The developments on the seafront 
are massive and continuous [23]. The destruction of coastal dunes, as well as beach 
and tourist activities, has stopped the transport of continental sand that naturally 
nourishes the beaches. Therefore, the damage and consequences of coastal erosion 
will be all the more significant. The sandy beaches, in the absence of preventive 
measures, will therefore be exposed to increasingly intense erosion leading to their 
disappearance. If coastal preservation in this region is the goal, it will be necessary 
in the future to define a distance to be respected for the hard constructions on the 
shore. This will affect future approaches in management and the redevelopment of 
the public maritime domain.

Our study area suffers from numerous hazards, a high concentration of impact 
factors on the coastal fringe, weak risk management in the field of urban planning, 
and the lack of awareness of these issues of the inhabitants. The CVI remains a basic 
index that can be improved by integrating other types of variables such as structural 
factors that include risk management and the relationship of the population to risk.

6  Conclusion

The integrated methods of remote sensing and GIS and the supervised classification 
by an object-oriented approach combined with the Random Forest machine learning 
algorithm (OBIA-RF) have provided basic data on the physical processes of coastal 
areas and land use.

The coastal vulnerability index adapted to the Mediterranean coasts, which takes 
into account six variables, shows its efficacy in obtaining a quantitative measure of 
coastal vulnerability.

Based on geophysical and socio-economic variables processed by remote sens-
ing methods, this work presents the results of an assessment of the vulnerability 
repartition of the NE-SE coast of Jerba and highlights the areas that are likely to be 
the most affected by future sea-level rise. Four categories of vulnerability, extracted 
from the sum of variables, have been classified: low, medium, high, and very high 
vulnerability.
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We have found that 63% of the coastline of the northeast coast of the island has 
a high to very high degree of vulnerability. Moreover, 37% of the coastline of the 
southeast of the island has a low to moderate vulnerability.

The CVI allows scientists to assess the possibility of physical changes due to 
continued sea-level rise along the coastal areas. In particular, it is of great impor-
tance in that it can provide a good database for prospective studies of sustainable 
management projects. These results can, however, be improved for future purposes 
by feeding other types of data into the CVI calculation sub-indices, in combination 
with very high spatial resolution satellite data. Indeed, the assessment of the vulner-
ability degree enables an understanding of the characteristics of coastal environ-
ments for a good integrated management.
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A Random Forest Approach for Evaluating 
Forest Cover Changes Outside Dikes 
with Sentinel Images

Nguyen Chi Lam, Hiep Xuan Huynh, Simona Niculescu, Quynh Do Nguyen, 
and Ngan Chau Vo Nguyen

Abstract The dike surrounding the coast of the Vietnamese Mekong Delta (VMD) 
helps prevent saltwater intrusion and coastal erosion. In order to preserve these 
dikes, an area of protective forest is planted outside them, helping to maintain and 
strengthen them. Therefore, monitoring the change in the area of planted forest 
outside the dike will help to assess the stability of and possible threats to the coastal 
area and ecosystem. In this paper, using Sentinel remote sensing images, we pro-
pose a new approach; applying the Random Forest technique to assess the changes 
in the planted forest outside the dike. The experimental results obtained on a typical 
coastal area of the Vietnamese Mekong Delta will help to clearly identify the threats 
and the evolution of the coastline through the changes in forest area outside the dike.

Keywords Forest cover · Random forests · Sea dike · Sentinel image · Thread

1  Introduction

The Mekong Delta plays an important role in both agriculture and aquaculture for 
the whole of Vietnam. However, the coastal zone of the Vietnamese Mekong Delta 
(VMD) region is sensitive to the impact of not only human activities but also cli-
mate change [6]. These impacts are predicted to cause increased intensity and 
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frequency of erosion and/or accretion in the coastal zone of the delta [11]. Several 
researchers have carried out studies on the erosion and/or accretion processes and 
subsequently suggested the solutions required to minimize any damage to infra-
structure and farmland caused by sediment dynamics [13]. Besset et al. [1] con-
firmed that the coastal mangrove forest plays a key role in sea dike protection and 
land preservation. In this context, satellite images were used to assess the transfor-
mation and impact of any implementation projects to the coastal zones, in general, 
and the VMD coastal zone in particular [2, 15].

Monitoring land use changes by using satellite images is an oft-used approach 
[7, 8]. However, the combined technique of using radar and optic data may be chal-
lenging in some land cover studies, especially in forest cover studies. This paper 
aims to monitor the change in coastal mangrove forest cover through the use of 
bagging—Random Forest algorithms using Sentinel images—and then determine 
the optimal method to assess the forest cover changes by time series analysis.

This study focuses on the coastline of the Bac Lieu Province, which is located in 
the southeast coastal area in the VMD. According to Lappe et  al. [9], Bac Lieu 
Province is the third ranking in coastline erosion among the seven coastal provinces 
in the delta.

The paper is organized as follows: Section 2 presents the Sentinel-1 and 
Sentinel-2 images along with the pre-processing techniques performed. Section 3 
introduces the methodology used to transform the Sentinel images into the matrix 
data with the rows representing pixels and the columns representing the bands/attri-
butes obtained. Section 4 models the matrix data obtained from using a machine 
learning algorithm, Random Forest, on the Sentinel images. Section 5 models some 
important scenarios to evaluate the forest restoration and deforestation in three 
recent years. Finally, we conclude and present some discussions for future research.

2  Sentinel Imagery

2.1  Sentinel-1

The Sentinel-1 mission currently consists of two polar-orbiting satellites, 
Sentinel-1A and Sentinel-1B (1B currently inactive), which operate day and night, 
sensing with a C-band synthetic aperture radar instrument operating at a center fre-
quency of 5.405 GHz, allowing the acquisition of imagery regardless of weather or 
light conditions. There are future plans to add to the satellite network, providing 
data until at least 2037. The Sentinel-1 satellite network acquires synthetic aperture 
radar (SAR) data in single or dual polarization with a revisit time of 6 days. The two 
types of Sentinel-1 level-1 data produced are distributed by the Copernicus Open 
Access Hub: Ground Range Detected (GRD) and Single Look Complex (SLC).

The standard generic workflow to pre-process Sentinel-1 GRD data is presented 
in Fig.  1. The workflow was created in order to be used within the Sentinel 
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Calibration

Terrain correction

Terrain correction

Speckle filtered

Conversion to dB

Fig. 1 Pre-processing the 
Sentinel-1 images with the 
SNAP toolbox

application platform (SNAP), a common architecture for all Sentinel satellite tool-
boxes. The pre-processing workflow consists of four processing steps, designed to 
best reduce error propagation in subsequent processes.

2.1.1  Calibration

Calibration is the procedure that converts digital pixel values to radiometrically cali-
brated SAR backscatter. The information required to apply the calibration equation 
is included within the Sentinel-1 GRD product. Specifically, a calibration vector 
included as an annotation in the product allows for the simple conversion of image 
intensity values into sigma nought values. The calibration reverses the scaling factor 
applied during level-1 product generation and applies a constant offset and a range- 
dependent gain, including the absolute calibration constant.

2.1.2  Speckle Filtering

Speckle, appearing in SAR images as granular noise, is due to the interference of 
waves reflected from many elementary scatters [10]. Speckle filtering is a procedure 
wherein the image quality is increased by reducing speckle. When such a procedure 
is done at an early SAR data processing stage, speckle is not propagated in subse-
quent processes (i.e., terrain correction or conversion to dB). Speckle filtering is not 
advisable when there is an interest in the identification of small spatial structures or 
image texture, since it might remove such information. For visual interpretation, the 
refined filter has been found to be superior compared to other single product speckle 
filters because of its ability to preserve edges, linear features, and point target and 
texture information [10].
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2.1.3  Range Doppler Terrain Correction

Range Doppler Terrain Correction SAR data are generally sensed with a varying 
viewing angle greater than 0 degrees, resulting in images with some distortion 
related to side-looking geometry. Terrain corrections are intended to compensate for 
these distortions so that the geometric representation of the image will be as close 
as possible to the real world. Range Doppler Terrain Correction corrects geometric 
distortions caused by topography, such as foreshortening and shadows, using a digi-
tal elevation model to correct the location of each pixel.

2.1.4  Conversion to dB

As the last step of the pre-processing workflow, the unitless backscatter coefficient 
is converted to dB using a logarithmic transformation.

2.2  Sentinel-2

Sentinel-2 is a European wide-swath, high-resolution, multispectral imaging mis-
sion. The Sentinel-2 array consists of two satellites: Sentinel-2A was launched in 
2015 and Sentinel-2B in 2017. Two additional satellites (Sentinel-2C and 
Sentinel-2D) are slated to launch in 2024. These two additional satellites will cut the 
revisit time in half. The full mission, with the twin satellites flying in the same orbit 
but phased at 180°, is designed to give a high revisit frequency of 5 days at the equa-
tor. The orbital swath width is 290 km.

The twin satellites of Sentinel-2 provide continuity of Spot and Landsat-type 
image data, contribute to ongoing multispectral observations, and are used to the 
benefit of worldwide services and applications such as land management, agricul-
ture and forestry, disaster control, humanitarian relief operations, risk mapping, and 
security.

2.2.1  Sentinel-2 Bands

The Sentinel-2 array carries the multispectral imager (MSI). This sensor delivers 13 
spectral bands ranging from 10 to 60 m pixel size (Table 1).

 1. The blue (B2), green (B3), red (B4), and near-infrared (B8) channels have a 
10 m resolution.

 2. Next, its red edge (B5), near-infrared NIR (B6, B7, and B8A), and shortwave 
infrared SWIR (B11 and B12) have a ground sampling distance of 20 m.

 3. Finally, its coastal aerosol (B1) and cirrus bands (B10) have a 60 m pixel size.
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Table 1 Sentinel-2 bands

Band Resolution (m) Central wavelength (nm) Description

B1 60 443 Ultra blue (coastal and aerosol)
B2 10 490 Blue
B3 10 560 Green
B4 10 665 Red
B5 20 705 Visible and near infrared (VNIR)
B6 20 740 VNIR
B7 20 783 VNIR
B8 10 842 VNIR
B8a 20 865 VNIR
B9 60 940 Shortwave infrared (SWIR)
B10 60 1375 SWIR
B11 20 1610 SWIR
B12 20 2190 SWIR

2.2.2  Sentinel Band Combinations

The use of specific band combinations enables the extraction of specific information 
from an image. For example, there are band combinations that can highlight geo-
logical, agricultural, or vegetation features in an image. The Sentinel Playground 
allows the online testing of different band combinations. Below are described two 
of the band combinations that were most relevant to our work, though other combi-
nations are certainly possible.

Natural Color (B4, B3, B2)

The natural color band combination uses the red (B4), green (B3), and blue (B2) 
channels. Its purpose is to display imagery the same way our eyes see the world 
(“true color”). Healthy vegetation appears green, while urban features often appear 
white and grey. Finally, water is a shade of dark blue depending on how clean it is 
(Fig. 2).

Color Infrared (B8, B4, B3)

The color infrared band combination is meant to emphasize healthy and unhealthy 
vegetation. The near-infrared (B8) band is sensitive to chlorophyll reflection. In the 
frequently used false-color band combination R, G, B and B8, B4, B3, the NIR band 
is displayed on the red channel, leading to vegetation being shown in red in this 
combination, bare soil and urban features in white, and water in blue (Fig. 3).
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Fig. 2 Natural color on the coastal zone of Bac Lieu Province on the Sentinel-2 image acquired 
on January 31, 2022

Fig. 3 Color infrared on the Bac Lieu coastline on January 31, 2022
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3  From Sentinel Data to Matrix

The satellite image data needs to be converted into two-dimensional row and col-
umn matrix data. Each row is an object to be analyzed (pixel, object), while each 
column is the value of the features (spectral value, vegetation value, backscatter 
value, observation data, etc.). Figure 4 describes an algorithm that converts data 
from remote sensing images into a matrix dataset for image analysis.

In order to improve the analysis results for this paper, the normalized difference 
vegetation index (NDVI) was used and integrated with the data into the dataset.

 
NDVI

NIR Red

NIR Red
=

−
+  

(1)

The NDVI value is calculated from the difference between the infrared and red 
spectrum holding values. That value represents the density of vegetation; the higher 
the value (closer to 1) the higher the density, and vice versa, the lower the value 
(closer to −1), the less vegetation there is at the specified location [14].

The matrix is two-dimensional, m × n, where:

Row P = {p1, p2, p3… pM}, pk is a pixel in images with n value attribute.
Column A = {a1, a2… an}, aj is an attribute of pixels.

Begin

Download Sentinel 1, Sentinel 2 images

Pre-processing Sentinel 1 images

Collocation Sentinel 1 and Sentinel 2 in raster file

Export the pixel in raster file to matrix 2D in CSV file

End

Fig. 4 From Sentinel data to matrix
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In this paper, there are nine columns in the matrix:

• Blue    S2B2         Band 2 of Sentinel-2
• Green    S2B3        Band 3 of Sentinel-2
• Red     S2B4         Band 4 of Sentinel-2
• NIR    S2B8         Band 8 of Sentinel-2
• Elevation  srtm 3Sec       SRTM elevation
• Sigma VV S1 VV        Polarization VV
• Sigma VH S1 VH        Polarization VH
• NDVI    Normalized difference   Vegetation index
• Class    Observation data    Others or forest

4  Sentinel as a Random Forest

4.1  Decision Tree

Each pixel is represented as a 9-tuple information packet with a decision attribute 
(CLASS). The other information is the conditional attributes of ID, BLUE, GREEN, 
RED, NIR, ELEVATION, VH, VV, and NVDI.

The value of each attribute is what partitions the remote sensing image into dif-
ferent regions [4, 5]. The decision tree/classification tree obtained is used to predict 
the pixel class that most commonly occurs in the training pixel dataset (region par-
titioned with the same class) (Fig. 5).

The remote sensing region is divided into predictor space, with distinct and non- 
overlapping regions, using the residual sum of squares (RSS) error calculation. For 
example, with Q regions:

 

RSS CLASS CLASS
region

region= −( )
= ∈ ( )

( )∑ ∑
q

Q

i q
i q

1

2


 

(2)

Fig. 5 An example of a decision tree obtained from a remote sensing dataset
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The splitting indices for each conditional attribute are the Gini index or entropy.

As pqk
  is the proportion of training pixels in the qth region of kth class. The Gini 

value is computed by:

 

Ginivalue = −( )
=
∑
q

Q

qk qkp p
1

1 

 

(3)

The entropy value is computed by:

 

Entropyvalue = ( )
=
∑
q

Q

qk qkp p
1

 log

 

(4)

4.2  Bootstrap

The bootstrap method [5] is used to estimate the standard errors of the coefficient 
from a linear regression fit. The bootstrap is a sampling technique with replacement 
(each pixel can occur more than one in the bootstrap dataset).

If B is a remote sensing dataset and T bootstraps are produced, B1, B2, B3… BT 
with T corresponding estimates of ê1, ê2, ê3… êT, then the standard error of these 
bootstraps is computed as:
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4.3  Bagging

Bagging, or bootstrap aggregation [3, 5] is used with remote sensing data to reduce 
the high variance of the decision trees obtained. In other words, we compute the 
average of a set of pixels in order to reduce variance (high variance will occur if we 
split the training dataset into parts randomly). Each bootstrap is used to construct a 
decision tree with all the attributes and a majority vote is performed.

With T bootstraps and f i trainingdata( )  being the prediction of a training data-
set, the final predictions will be computed as:

 
f trainingdata trainingdatabagging ( ) = ( )

=
∑� �1

1T
f

i

T
i

 
(6)
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4.4  Random Forest

The Random Forest algorithm [3, 5] is used for bagging, with random sample attri-
butes equivalent to the square root of the number of total attributes.

5  Experiment

5.1  Dataset

Bac Lieu’s coastal area has a length of 54.6 km, where erosion and sedimentation 
both occur erratically by natural and human factors. Both the government and the 
people have proposed projects to protect the local coastal area, including planting 
projects and the restoration of protective forests outside the sea dike of Bac Lieu 
Province. Due to the frequent changes in protective coastal forests, we have selected 
the Hiep Thanh and Vinh Trach Dong Communes of Bac Lieu Province as the main 
regions of interest, as seen in Fig. 6.

Fig. 6 Coast of Bac Lieu Province
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Table 2 Acquisition dates of used Sentinel data

Year Sentinel-1 Sentinel-2

2019 31/01/2019 31/01/2019
2020 21/01/2020 21/01/2020
2021 08/02/2021 09/02/2021
2022 20/01/2022 21/01/2022

Table 3 An example of the matrix dataset

id Blue Green Red NIR Elevation VV VH NDVI Class

0 588 1040 984 962 −6.637 0 0 −0.011 0
1 617 1080 1180 1003 −6.362 0 0 −0.081 0
2 559 966 1002 659 −6.090 0 0 −0.206 0
3 311 557 502 2414 −1.424 0 0 0.655 1
4 193 436 340 2510 −1.395 0 0 0.761 1
5 303 564 582 2434 −1.735 −16 −10 0.614 1

Cloud-free satellite image data was collected during the dry season in the VMD 
region. Between 2019 and 2022, one optical image and one radar image were col-
lected (Table 2).

Through pre-processing, optical and radar data were integrated into one dataset 
per year, leading to four datasets corresponding to the four observation years of 
2019 to 2022. Each dataset has nine columns corresponding to three visible color 
bands, one near infrared band, altitude data, two polarization VV and VH, vegeta-
tion index (NDVI), and the observation column (class) as presented in Table 3.

5.2  Tools

The SAR images were pre-processed to different formats using the SnAPS toolbox. 
QGIS is used to construct ground-truth images for the process of generating moni-
toring data and displaying results. The Random Forest algorithm was run in Python.

6  Results

6.1  Accuracy of the Random Forest Model by Year

A machine learning model, bagging Random Forest, was built in Python and trained 
with the datasets of each year from 2019 to 2022. The accuracy of the model is 
shown in Table 4. Compared to previous studies, the accuracy in this study is very 
high and in line with related studies.
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Table 4 Accuracy of the Random Forest model from 2019 to 2022

Year Other areas (%) Forest area (%) Overall (%)

2019 99.63 64.84 98.17
2020 99.61 66.88 98.28
2021 99.66 71.46 98.64
2022 99.68 65.53 98.53

Table 5 Estimated forest area by year of 2019 to 2022

Year Forest area (ha) Others areas (ha)

2019 402.59 9134.41
2020 388.60 9148.40
2021 347.45 9189.55
2022 321.87 9215.13

6.2  Forest Area by Year from 2019 to 2022

According to Table 5, the area of protective forest has decreased year by year. This 
corresponds with the fact that protective forest is very difficult to preserve, although 
the government has implemented many forest restoration projects. The protective 
forest in this area is strongly affected by the wave impact from the sea.

Comparing pairs of images from two consecutive years, the types and rates of 
changes were assessed. The observed changes were restored forest areas, lost forest 
areas, and the areas that remained constant. The highest forest loss occurred between 
2020 and 2021, with 10.6%, while the lowest forest loss rate of 3.5% occurred 
between 2020 and 2019.

6.3  Forest Restoration from 2020 to 2022

The area of restored forest between 2020 and 2022 is shown in Table 6. From the 
results, we can see that the restored forest area gradually decreases through the years 
2019–2021 but then recovers strongly in 2021–2022. However, based on the ratio 
between the restored forest area and the total forest area of each year, the ratios 
slightly increase from year 2020 to 2021 with more than 3% and then jump up two-
fold in 2022.

Indeed, on April 1, 2021, the Vietnamese prime minister issued Decision No. 
524/QD-TTg, approving the “Planting a billion trees from 2021 to 2025” project 
[16]. According to the project, by the end of 2025, at least one billion trees will be 
planted, of which 690 million trees will be scattered in urban and rural areas, and 
310 million trees concentrated in protective forests, specialized forests, and new 
production forests. The aim of the project is to contribute to the protection of the 
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Table 6 The forest area restored from 2020 to 2022

Year Restoration area (ha) Forest area (ha) Ratio (%)

2020 11.90 388.60 3.06
2021 10.83 347.45 3.12
2022 20.82 321.87 6.47

Table 7 The deforestation from 2020 to 2022

Year Deforestation area (ha) Forest area (ha) Ratio (%)

2020 25.89 388.60 6.66
2021 51.98 347.45 14.96
2022 46.40 321.87 14.42

ecological environment, improve the landscape, cope with climate change, develop 
socio-economic factors, improve the quality of people’s life and development, and 
contribute to the sustainable development of the country. Based on this policy 
guideline, Bac Lieu Province has concentrated on planting protective forests, which 
led to the rapidly increasing forest restoration rate from 2021 to 2022.

6.4  Deforestations from 2020 to 2022

The deforestation status shows the lowest loss in 2022 and similar high losses in 
both 2020 and 2021 (Table 7). The ratio of deforestation area in 2020, 6.66%, was 
more than double that of the forest restoration ratio in the same year. The situation 
became worse in 2021 with 14.96% of deforestation area comparing to 3.12% res-
toration rate, but in 2022, the situation improved slightly, with a deforestation rate 
of 14.42% versus a restoration rate of 6.47%.

Interestingly, developing intensive shrimp culture areas in Bac Lieu Province has 
led to the conversion of natural mangrove forests into shrimp ponds, especially in 
the 1990s [12]. Due to the high economic return, more farmers have started cultivat-
ing shrimp, and so they changed their land use from agricultural land and/or forest 
land into aquacultural land. So, despite multiple efforts from national, provincial, 
and local authorities, the protective forest area along the coastline is still in decline.

Figure 7 shows an important correlation between the restoration and destruction 
of protective forests, in which the most damage is seen from 2020 to 2021, and the 
years from 2021 to 2022 show a rapid increase in forest recovery (twice as much as 
in 2020–2021). At the same time, the area of deforestation also decreased. The dif-
ference ratio between the forest restoration area and deforestation area was the high-
est in 2021, but the decrease in 2022 shows the impact that Decision No. 524/
QD-TTg has had. Despite all efforts by the government to restore and preserve the 
protective forests in the region, the total area of protective forest has decreased by 
about 20% in only 4 years.
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Fig. 7 A comparison between restoration area and deforestation area

7  Conclusion and Discussion

For this study, Sentinel-1 and Sentinel-2 images were integrated to detect changes 
in the protective coastal forest coverage in the Vietnamese Mekong Delta between 
2019 and 2022. This is a new method used to try to overcome the shortcomings of 
optical data. A Random Forest classification approach was used to identify areas of 
forest loss and forest restoration. The Random Forest method has been shown to be 
effective in determining forested and non-forested areas, with accuracies of over 
90%. The data for the years 2019–2022 show that during the three observed time 
periods (2019–2020, 2020–2021, and 2021–2022), the areas where new forest was 
detected ranged between 11.9 and 20.82 ha, while at the same time the areas of 
detected forest loss ranged between 25.89 and 51.98 ha. This means that there is a 
net loss of protective forest in this area, due to various factors. This result contrib-
utes to the assessment of the current status of the protective forest and the effective-
ness of government projects on restoration and protection of protective forests in 
Bac Lieu Province.
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Spatial Monitoring of Coastal Protection 
DikesCase Study of the Touristic Beach 
“Palm Beach, West Algiers, Algeria”

Walid Rabehi, Otmani Housseyn, Mohamed Amine Bouhlala, Sarah Kreri, 
Oussama Benabbou, Mohammed El Amin Larabi, and Hadjer Dellani

Abstract Seaside tourism is one of the most accessible summer activities for the 
population, especially on the coast of metropolitan cities. A typical example from 
the southern Mediterranean is Palm Beach, Algeria, one of the most populated 
beaches of the Algerian capital, where intense seasonal human traffic combined 
with the depletion of local sediments contributes to an intensification of coastal ero-
sion. The entire beach was affected until the authorities started to build protective 
breakwaters. The objective of this work is, therefore, to establish a spatial monitor-
ing of the dynamics of this beach, thanks to the Algerian Alsat2 satellite archives. 
The evaluation will be applied “before,” “during,” and “after” the construction using 
several spectral algorithms of detection of the shoreline. The monitoring will allow 
the quantitative observation of the behavior of the beach and thus to qualify the 
degrees of effectiveness of these breakwaters. It is also a question of determining 
the effectiveness of the high spatial resolution imagery (2.5 m) of this national opti-
cal sensor in the measurement of macro-erosion phenomena in order to generalize 
this approach to the entire Algerian coast in the future.
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1  Introduction

The coastal environment is a complex ecosystem, composed of a multitude of natu-
ral factors that interact to maintain a stable balance [2]. This balance is permanently 
under stress and is often disturbed by several direct factors; anthropogenic, as 
urbanization, obstruction dams, sand theft or physical such hydrodynamic which is 
increasing by global climate change [13], but also indirect factors such as current 
modification caused frequently by inappropriate coastal defense facilities [30].

In Algeria, coastal erosion is a national issue and is more frequent on the sandy 
beach [4]. Moderate erosion to extreme erosion (causing complete extinction of 
beaches) [18] affects the whole 1600 km country coastlines, and as a reaction, sev-
eral protection facilities have been established in touristic areas and large coastal 
cities [8, 28]. This coastal fringe is the most attractive area in Algeria and contains 
60% of the Algerian population (in only 10% of the total Algerian area), demon-
strating the socioeconomic pressures on this sensitive area [29].

Spatial monitoring of coastal areas by remote sensing techniques allows several 
possibilities of quantification of erosion/accretion balance [24, 33] and beach 
behavior especially before and after the establishment of coastal protection facilities 
(dikes, breakwaters, groynes); this allows to assess the quality of those protections 
and preconize alternative solution for decision-makers, for a better sustainabil-
ity [10].

Coastline detection can be provided by several remote sensing techniques, 
meanly with optical images and aerial photography [34], starting with classical 
pixel classifier approaches (maximum likelihood, support vector machine, K-means) 
[35] showing some important radiometric confusion. Other approaches became 
more popular such as object-based approach [6] or more specifically filter-based 
methods applied in spectral break between land and sea [26]. Other experimental 
methods exist but are less popular such stereoscopy or using interferometric syn-
thetic aperture radar data (InSAR) [32]. However, all those approaches even if they 
provide a time gain remain less precise than the Differential Global Positioning 
System (DGPS) coastline approach [24].

The more efficient optical data, widely used for coastline monitoring, are high 
resolution data such QuickBird/Ikonos data [11], aerial photography [34], or more 
recently Pleiades images, which has a spatial resolution lower than 1 m allowing to 
assess the micro-erosion (such as seasonal shoreline dynamics), but remain eco-
nomically expensive especially for developing countries such Algeria where 
research funding is limited.

The Algerian Space Agency through the National Spatial Program (2006–2020) 
detains two optical satellites in orbit “Alsat 2A and Alsat 2B” [15], which provide 
scenes with 2.5 m resolution, lower than QuickBird/Pleiades commercial satellites 
(which can assess micro-erosion), but allow to detect macro-erosion case of large 
beaches, which is a frequent phenomenon in Algerian coasts (large erosion case 
loss, storm impacts, beach extinction).
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The aim of this work is to perform a spatial assessment of beach dynamics in the 
west of the Algerian capital (the touristic beach “Palm Beach/west Algiers”), using 
specific spectral filtering approaches (basing on the near-infrared insensitivity) 
never experimented in the south Mediterranean shore. This beach is under extreme 
human pressure and has been protected by fives dikes in 2013, as it undergoes high 
erosion episodes [3] in the last year, and faced in the last decade a risk of complete 
extinction.

This work will provide a spatial coastline monitoring (before and after protec-
tion) using the Algerian satellite Alsat 2, in order to assess this “macro-erosion,” and 
will contribute to evaluate the efficiency of this spatial sensor (2.5 m) compared to 
classical in situ tools such as DGPS campaign, which is more precise but with a 
higher cost (time/budget) [6].

2  Study Area

The area of interest is located in the west of Algiers in the bay of Bousmail, between 
the Sidi Fredj touristic port and the Sable d’Or beach in Zéralda [5]. By the term 
“Palm Beach,” we also include Azur Beach in the west (due to its proximity and its 
natural continuity with our interest area); the area is also limited by two rivers that 
are both arms of the Mazafran River (Fig. 1).

After the high erosion episodes (2006–2011), local authorities started building 
six marine dikes (Fig. 2) with the following characteristics:

• Width of the central concrete structure: 6 m
• Length of the central concrete structure: 95 m
• Width of riprap surface: 3–5 m
• Size of composite rocks: 1–2 m
• Height of the structure: emergent, 1–1.5; submerged, 1 m

Later, those dikes start creating a new sediment accumulation area (called 
Tombolo, or sediment barrier), which is assessed in this study (Fig. 3).

3  Methodology

The pre-processing of the Alsat 2 optical images included pansharpening and radio-
metric correction to produce an optimal reflectance pixels of 2.5  m resolution. 
Image analysis included shoreline extraction using several spectral approaches 
(supervised spectral angle matching index and morphological mean filter) and unsu-
pervised using principal component analysis (PCA)/independent component analy-
sis (ICA) and normalized difference water index (NDWI). Once the water–land 
classes are identified, the wet pixel is analyzed using an unmixing algorithm to 
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Fig. 1 Study area (West Algiers, Algeria)

Fig. 2 Dikes’ structure
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Fig. 3 New extended beach (sand Tombolo)

Fig. 4 Overall methodology
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identify clearly the shoreline and delineate the beach area. The quality of this shore-
line product is compared to a DGPS reference shoreline in order to obtain the over-
all accuracy (Fig. 4).

Once the best algorithm is identified (after assessing all the approaches individu-
ally), we produced multitemporal evolution of the beach area between 2013 (before 
protection) and 2014 in the middle of work protection and in the end 2021 (after the 
work’s end “state of stability”).

3.1  Data Set and Pre-processing

In this study, Alsat 2 images were used with multispectral (10 m) and panchromatic 
(2.5 m) bands. The characteristics are presented in Table 1.

Before being corrected, the image of Alsat 2A encoded in 10 bits is converted 
into luminance (radiance) values [9] expressed in W/(m2 × sr × μm), by applying the 
following calibration equation:

 L DN g L� ��� �. _1 0  (1)

with L as the radiance, DN as the digital numbering, and g and L_0 as calibration 
coefficient (gain and bias).

Then, in the second step, the scene is converted to reflectance value using the 
FLAASH module [19] on the ENVI 5.6 © software using a filter specific to 
NAOMI-1 sensor.

3.2  SAM: Spectral Angle Matching

The spectral angle is used because of its spectral rupture ability (best radiometric 
ratio between two spectral bands).It is an n dimension angle where each dimension 
is a spectral band (based on reflectance values). If the angles are smaller, this 

Table 1 Alsat 2 data characteristics

Satellite scene Resolution Bands
Wavelength 
(nm)

Alsat 2A
Acquisition date: 11/10/2013
27/09/2014
29/01/2021
Source: Algerian Space Agency (ASAL)
   Elementary scene: 17,5 × 17,5 Km 

(306,25 km2)
   Revisit time: 3 days with 30° angle

10 m Band 1 – blue 450 ± 520
Band 2 – green 530 ± 590
Band 3 – Rred 620 ± 690
Band 4 – Nnear 
infrared

760 ± 890

2.5 m Panchromatic 450 ± 745
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indicates a closer match to the reference band [20]; the filter produced is mainly 
based on the near-infrared band and its combination with other bands.

3.3  Median Filter

The median filter is a non-linear morphological filter, which allows a better preser-
vation of the edges of kernel filters. The filter acts by ranking all pixel reflectance 
values in the window and then takes the median values (instead of the mean) [12] 
for a better identification of the spectral breaks and class separability.

3.4  Spectral Unmixing

Typical spectral unmixing techniques aim at unsupervised extracting, from pixels 
considered optical remote sensing data, pure material (also called endmember) 
spectra, and inferring the proportion (also called abundance fraction) of each of 
these spectra in each pixel of that data [7].

In this contribution, an unsupervised linear spectral unmixing technique, by 
means of the standard multiplicative nonnegative matrix factorization [22] tech-
nique initialized by the vertex component analysis [7] approach, is used to unmix 
the considered multispectral data only on the wet area that corresponds to the con-
tact “water–land” zone. This unsupervised unmixing process is feasible and relevant 
[16] since the objective here is to unsupervisedly extract only two endmember 
(water and land) spectra and their abundance fractions from the used four spectral 
bands of the considered multispectral data. Then, the shoreline is estimated by ana-
lyzing obtained abundance fractions of the two considered endmembers.

3.5  Principal Component Analysis (PCA)

Principal component analysis (PCA) is a classical approach of dimensionality 
reduction [27]. Its efficiency is widely proved for noise elimination in remote sens-
ing [31]. It provides for remote sensing classification and orthogonal axes who dem-
onstrate the uncorrelated bands and where the spectral variance is the key element, 
to provide the best radiometric separability.

Spatial Monitoring of Coastal Protection DikesCase Study of the Touristic Beach “Palm…
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3.6  Independent Component Analysis (ICA)

Independent component analysis (ICA) is an efficient approach of empirical data 
separation, based on the non-Gaussian assumption of the independent data sources. 
No prior information is needed. IC transformation can distinguish features of inter-
est even when they occupy only a small portion of the pixels in the image [17].

In contrast to correlation-based transformations such as principal component 
analysis (PCA), ICA not only decorrelates the signals (second-order statistics) but 
also reduces higher-order statistical dependencies [21].

3.7  Normalized Difference Water Index (NDWI)

The normalized difference water index (NDWI) was developed for the extraction of 
water features from Landsat imagery [23] using near infrared and blue and is very 
efficient in natural landscapes (forests, natural coasts) but is judged less efficiently 
in the artificial coastal landscape (radiometric confusion between water and artifi-
cial classes such as bitumen) [1, 14].

4  Results

The land–sea transect analysis in the derived image (Fig. 5a) produced by the mean 
filter algorithm shows significant variability (increasing from land to sea). The 
anchorage area is clearly marked by a clear radiometric rupture (Fig. 5b).

The other indicator generated from the supervised approach is the spectral angle, 
which demonstrates tendencies opposite to the previous index (MF), with more 
positive on land and decreases going offshore, and the break is present but less 
marked than the previous index (Fig. 6).

For the ratio between the two previous indicators, the general overview displays 
a lot of spectral noise “heterogeneity” (Fig. 7a). However, the morphological index 
MF provides more influence to the result (slight growth while going out to the sea), 
but the break “land–sea” is, however, less marked than the two independent spectral 
indexes (Fig. 7b).

Spectral unmixing provides acceptable quality for pixels where abundance is up 
to 70% but still has some difficulties with the turbidity area, which, however, does 
not obstruct the extraction of a relatively correct shoreline (Fig. 8).

Regarding the unsupervised approaches and without any prior user learning, the 
NDWI spectral index displays a clear discrimination between beach and sea 
(Fig. 9a), and even if this image contains confusion with urban objects, the index 
provides one of the best results for the coastline, reinforced by the spectral break 
(see the diagram of spectral profile, Fig. 9b).

W. Rabehi et al.
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Fig. 5 Mean filter map (a) and spectral transect (b)

Fig. 6 Spectral angle map (a) and spectral transect (b)
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Fig. 7 Ratio “SAM/MF” map (a) and spectral transect (b)

For the principal component analysis (Fig. 10a), it is the first correlation axis that 
allows the best land–sea difference (Fig. 10b); it thus groups together the majority 
of statistical variances, and there is, however, a clear visual absence of sensitivity 
toward water turbidity (muddy water, clear water, etc.).

For the last approach, which is, like the previous one, an effective approach of 
dimensionality reduction, the land–sea break is marked with a lower quality than 
the PCA (Fig. 11a) with also a kind of confusion between the sea and the bare inte-
rior soils. The second and third correlation axis of the ICA displays the clearest 
land–sea breaks (Fig. 12b).

4.1  Shorelines’ Variants

After computing the previous spectral variants in order to produce the best visual 
distinction between land and sea, shorelines are created manually as a GIS Shapefile 
from each variant map (Fig. 12).

The reference shoreline is produced by ground surveys using a Differential 
Global Positioning System (DGPS) using the real-time kinematic (RTK) approach 
[24], and this technique offers the most precise tool of shoreline detection (centi-
metric precision) [6]. The shoreline measurement has been produced by the Algerian 
Littoral Promotion and Protection Agency (APPL-Algeria).

W. Rabehi et al.



159

Fig. 8 Spectral unmixing abundance/endmember map

Considering the spatial sensitivity of the Alsat 2 scene (2.5 m × 2.5 m) and for 
the accuracy assessment purposes, a buffer area is produced from each shoreline 
vector file and clipped with the reference shoreline. The overall accuracy statistics 
are synthesized in Fig. 13 below.

The principal component analysis is the classifier that provides the best accuracy 
followed by the NDWI spectral index. Furthermore, the spectral angle mapper pro-
vides the lowest accuracy values, and this is due to their excessive sensitivity of 
muddy water in the “surf zone.”

Most of the confusion over the exact location of the surf zone is due to the turbid-
ity of this contact zone but also the coarseness of the pixel (2.5 m × 2.5 m); however, 

Spatial Monitoring of Coastal Protection DikesCase Study of the Touristic Beach “Palm…



160

Fig. 9 NDWI map (a) and spectral transect (b)

Fig. 10 PCA map (a) and spectral transect (b)

W. Rabehi et al.



161

Fig. 11 ICA map (a) and spectral transect (b)

even if it is identical, the different shorelines are similar in the path shape of the line 
on the majority of the beach (Fig. 14).

In a specific location of the beach, the ICA particularly confused the turbid water 
(Fig. 15a), and this location (proximity of the last protection structure) is a false 
land positive by ICA approach (Fig. 15b).

The statistical analysis of spectral break variability was computed from the three 
proximity pixels located in the break area (on either side of water and land), using a 
mathematical subtraction of the reflectance values (Fig. 16).

The result matches partially with the accuracy results where PCA and NDWI 
approaches are the ones that provide the best spectral break “land–water.”

4.2  Beach Dynamic Analysis

The PCA provides the best shoreline extraction from the optical Alsat 2 images; 
thus, the surface of the beaches was digitized (Fig. 17). Table 5 below shows also 
the area statistics for the beach evolution (Table 2).

The before-construction period (2013) was characterized by a relatively small 
area (4.38 hectares), reflecting the very vulnerable situation of the beach (in con-
stant erosion for over 10 years).

Spatial Monitoring of Coastal Protection DikesCase Study of the Touristic Beach “Palm…
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Fig. 12 Shorelines’ comparison

W. Rabehi et al.
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Fig. 13 Shorelines’ accuracy

Fig. 14 Global path similarity

The year 2014 (start of works) demonstrates a slight increase, but which is not 
necessarily linked to the start of the beach stabilization but rather to the contribution 
of artificial sediment and solid deposits of materials (sand, gravel, rocks) and also to 
the decrease in touristic attendance of the beach due to the construction works.

The year 2021 (5 years after the end of the works) displays a very strong increase 
in the surface of the beach (+ 400%) where the effects of current attenuation by the 
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Fig. 15 Area of total discord: (a) Alsat2 image and (b) ICA index

Table 2 Area evolution of the beach

2013 2014 2021

Beach area (hectares) 43,805 48,205 22,9606

new protection structures (as well as the artificial sediment supply) have contributed 
to a significant gain in beach area and high relative stability.

5  Conclusion

The present analysis demonstrates a remarkable recovery of the beach after the 
installation of the protection structures confirming the correct analysis of the hydro-
dynamic context; however, the performed monitoring does not take into account the 
exceptional erosion episodes (storm, seasonal erosion).

Supervised approaches show relatively poor results (SAM, MF, ratio), which are 
probably due to the sampling process that tends to generalize the significant spectral 
variability; we can also point to the coarseness of the spatial resolution of the pixel 

W. Rabehi et al.
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Fig. 16 Spectral break diagram (land to water)

(2.5 m), which has quite brutal spectral breaks; we also note that the turbidity of the 
breaking wave zone at the shore also produces a considerable spectral noise.

Spectral unmixing even not widely used for multispectral data had provided in 
this study through the pixel endmembering and abundance acceptable results for the 
radiometric separation between land and water in the wet area closely compared to 
the two most efficient approaches (PCA and NDWI).

The non-exhaustiveness of the tested algorithms in this contribution is also 
linked to the choice of a simplistic and reproducible indicator on a large scale (quest 
for future generalization) but also to the local state of the art where certain methods 
have already been applied (object-based segmentation, SVM, Random Forest clas-
sifiers) but on a different spatial resolution.

The methodology can also be improved in a next phase in combination with 
multisource data, in particular, active sensor radar and the technical possibility of 
producing Alsat 2 stereoscopic scenes by producing a digital elevation model to 
provide a new discriminating information in relation with the beach-end bank.

Spatial Monitoring of Coastal Protection DikesCase Study of the Touristic Beach “Palm…
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Fig. 17 Multitemporal evolution of the beach
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Overall, the adopted approach can be the subject of an effective decision-support 
tool for the integrated management of the coastline and the local actors, in particu-
lar, through the deployment of Alsat imagery for the entire Algerian coastline.
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Monitoring Shoreline Changes 
in the Vietnamese Mekong Delta Coastal 
Zone Using Satellite Images and Wave 
Reduction Structures

Tran Van Ty, Dinh Van Duy, Huynh Thi Cam Hong, 
Nguyen Dinh Giang Nam, Huynh Vuong Thu Minh, Lam Van Thinh, 
Nguyen Vo Chau Ngan, and Nguyen Hieu Trung

Abstract This study aimed to assess the current state of the shoreline and the 
effects of erosion on the shoreline in Vinh Chau Town, Soc Trang Province, Vietnam. 
Satellite image overlays were used to quantify the variation in the shoreline as a 
result of erosion caused by changes in wave action. In addition, the wave measure-
ments were implemented at three representative shoreline protection sections (sea 
dike, mangrove forest belt, and the breakwater) to evaluate the wave height reduc-
tion at the shoreline. The results showed that erosion affected approximately 23 km 
(32%) of 72 km coastline of the study area. The erosion penetrates the land area 
from −16.9 to −3.0 m/year (Landsat images) and −11.68 to −7.95 m/year (Google 
Earth images); the coastline recession increases every year, leading to the gradual 
loss of mangrove forests and also farmland. The wave measurement shows the 
effectiveness in wave height reduction of the mangrove forest and the constructed 
breakwater to protect the sea dike. Wave height reduces more than 50% when pass-
ing through the mangrove forest belt, corresponding to a maximum height (Hmax) of 
62.3%, 1/10 Hmax at 55.3%, and 1/3 Hmax at 54%. For the constructed breakwater, the 
wave reduction efficiencies recorded due to Hmean are 72.18% and 1/10 Hmax are 
73.16% and reach 72.47% with 1/3 Hmax. The results are based on wave measure-
ment over a short time period; thus, it is not possible to conclude about the wave 
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reduction efficiency of the current measures in the long term. It is necessary to 
monitor continuously and with different wind seasons to have a more accurate 
assessment of wave reduction efficiency.

Keywords Beach volume change · Shoreline erosion/accretion · Vinh Chau Town 
· Soc Trang Province · Wave height reduction

1  Introduction

The Mekong River is one of the longest rivers in the world, with almost 3000 km 
from its source in Tibet to the sea. The Mekong Delta begins at Phnom Penh in 
Cambodia, where the Mekong River meets the Tonle Sap River and the Bassac 
River tributaries. In Vietnam’s territorial waters, the Mekong River divides into six 
main tributaries. The Bassac River divides into three main tributaries to form the 
nine dragons of the outer Vietnam Mekong Delta (VMD). The VMD region pro-
duces a considerable amount of rice and fish products and is the home of nearly 20% 
of the national population.

Being formed mainly on the geological setting of marine, river, and marsh sedi-
ments, combined with anthropogenic activities such as dam construction and sand 
mining [1, 5], the VMD has faced continuous natural/unnatural erosion impacts on 
both the riverbank and shoreline [2, 19]. Indeed, the total number of erosions on the 
VMD river and canal network is up to 665 points, with a total erosion length of 
1048 km [12] that takes into account 1.15% of a total length of 91,000 km canal 
network [18]. Particularly in Soc Trang Province, a previous study by Pham [22] 
recorded 11.5  km coastline deposited among the eastern coordinates of 
610,000–630,000 m (WGS-84) from the year 1965 to 2008. In some cases, the ero-
sion features were associated with events that have caused the loss of human life, 
loss of productive aqua-agricultural land, and damage to infrastructure facilities.

For shoreline erosion in the VMD, there are several related studies conducted by 
national and international scholars. The earliest study on erosion in the VMD was 
undertaken using field survey—an expensive method—in November 2003 [5]. The 
study recognizes the large scale of erosion problems in the Mekong Delta, which are 
associated with many social and economic implications and consequences. In 
improving the understanding of occurrence and proposed solutions for river net-
works in the VMD, Hung [13] combined remote sensing (RS) and Geographical 
Information Systems (GIS) with mathematical models to quantify and predict ero-
sion and sedimentation dynamics. Anthony et al. [2] applied high-resolution SPOT 
5 satellite images to study shoreline erosion and land loss between 2003 and 2012, 
and they recorded that erosion affects over 50% of the once strongly advancing, 
over 600 km long delta shoreline. Another study using Landsat satellite images for 
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the period of 1950 to 2014 showed progressively increasing of delta erosion, espe-
cially along the muddy East Sea coast, whereas the river mouth areas have shown a 
fluctuating trend of sediment supply [4]. Lately, Thuy et al. [27] recorded the largely 
changed of accretion and erosion processes in time and space of the Bassac and 
Mekong Rivers using MIKE 21 simulations as these processes are a combination of 
hydrological and sedimentation alterations due to upstream damming, sand mining, 
climate change, and sea level rise.

Besides that, wave reduction efficiencies of different structures were achieved by 
both site survey and measurement and modeling. Recently, Ty et al. [21] used the 
method of map overlaying in combination with field survey to assess the changes of 
coastal line and to evaluate the reduction of wave height through the Busadco break-
water at the eastern coastline of the Ca Mau Province for the period of 2008–2018. 
The results show that coastal erosion has been occurring very fast (on average about 
50 m/year), and the Busadco structure reduces wave height of 1/10 Hmax, 1/3 Hmax, 
and Hmean at about 63%, 64%, and 67%, respectively. Loi et  al. [15] used the 
AWH-USB to measure the wave pressure and then calculated the wave height 
through the mangrove forest at Tran De District, Soc Trang Province. They recorded 
that the coastal mangrove forest could reduce the tidal wave during both the high 
and low tide periods; the denser the forest structure, the greater the ratio of wave 
reducing and the lower the coefficient of wave reduction. Mai et al. [16] applied 
non-hydrostatic model Simulating Waves till Shore (SWASH) to assess wave reduc-
tion efficiency of bamboo fencing in Nha Mat Ward, Bac Lieu City. The results 
showed that a fence with 50% porosity reduced wave height by 11–72%, while a 
fence with 90% porosity reduced 29% wave height. An earlier study by Bao [3] 
defined minimum mangrove band width for coastal protection from waves in the 
Can Gio District of Ho Chi Minh City. The wave height was measured manually. He 
stated that wave height reduction depends on initial wave height, cross-shore dis-
tances, and mangrove forest structures.

As we can see, the mentioned studies solely focused to assess coastline erosion 
status or to evaluate the wave reduction efficiency of various structures but did 
not combine these topics. In addition, for administrative management purposes, 
local authorities need to quantify beach volume changes, but this information 
does not exist yet. According to Hanson and Kraus [10], to predict the beach 
changes over time, several models are available, ranging from detailed, micro-
process-based two- dimensional and three-dimensional models to more engineer-
ing-office-oriented one-dimensional shoreline response (1-line) models and 
beach profile change models. Among the 1-line models, the GENESIS model has 
been applied more widely than any other model, exceeding installation at more 
than 1000 sites worldwide [9].

This study applied Landsat and Google satellite images from 2005 to 2022 to 
monitor the coastline erosion and to quantify changes of beach volume in Vinh 
Chau Town, Soc Trang Province. In addition, the study aimed to evaluate the 
shoreline protection potential of some current wave control structures at this 
study site.
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2  Material and Methods

2.1  Study Area

The study was carried out in the Soc Trang Province, located on the eastern coast of 
the VMD region with 72 km of coastline (Fig. 1). Affected by a dynamic process of 
accretion and erosion created by the flow regime of the Mekong River and its sedi-
ment load, the tidal regime of the Vietnamese East Sea, and the prevailing monsoon 
winds, some parts of the coastline in Vinh Chau Town have experienced loss of 
valuable agricultural land due to natural and unnatural accelerated erosion processes 
[28], while in other parts of the region, accretion has occurred [14]. The mangrove 
forest belt that extends over 1900 ha of Soc Trang coastal zone has contributed to 
coastal protection between 1990 and 2000, but then, the forest disappeared due to 
rampant cutting leading to severe coastline erosion  [23]. To reduce the negative 

Fig. 1 Study area in Vinh Chau Town, Soc Trang Province, Vietnam, relative to the Vietnamese 
Mekong Delta region
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impacts of the waves on people and farmland and shoreline recession on the Vinh 
Chau coastline, since 1995, a 55.89 km sea dike was built behind the mangrove for-
est belt as a second defense to protect the coastline [6].

Together with other provinces located in the coastal zone of the VMD region, the 
Soc Trang Province has been facing a rapidly growing shrimp production, espe-
cially in 2015–2019 with a yearly average increase of 9% of white leg shrimp and 
1.2% black tiger shrimp installations [8]. The shrimp farming area extended through 
conversion of both coastal crop land [26] and mangrove forest [22]. As a result, the 
protection function of mangrove forest belt along the shoreline was reduced. Since 
1995, an increase in the number and spatial extent of erosion in the vicinity of the 
sea dike and mangrove forest belts in coastal zone of Soc Trang Province has been 
recorded [23].

In response to the acceleration of coastal erosion, the local authority constructed 
a 1400 m concrete dike (breakwater) in the most eroded part of the coastline. The 
breakwater was built with a distance of 150 m in front of the sea dike for wave 
energy reduction testing purpose. The construction works started in June 2019 and 
finished on December of the same year.

2.2  Data Collection

2.2.1  Landsat Image Analysis of Shoreline Position

To quantify the variation in erosion features along the shoreline at Vinh Chau Town, 
Soc Trang Province, Landsat images from the years 2005 to 2022 were collected, 
pre-processed and analyzed. In this study, Landsat 5 Thematic Mapper (TM) 
Collection 2 Level 1 and Landsat 8 Operational Land Imager (OLI) and Thermal 
Infrared Sensor (TIRS) Collection 1 Level 1 were downloaded from US Geological 
Survey (USGS) server (https://earthexplorer.usgs.gov/). Details of the Landsat 
images are presented in Table 1.

Images downloaded from GoogleTM Earth Pro (http://www.google.com/earth/
version/#earth- pro) were used in this study to compare with the shoreline variations 
obtained from the Landsat images. The GoogleTM Earth images have a better spa-
tial resolution (1 m spatial resolution), but a smaller spatial extent each.

Table 1 Landsat images used to assess the variation in erosion along the shoreline and river 
mouths of the VMD

Year Path-row Satellite sensor Spatial resolution (m)

2005 125–53/54 Landsat 5 TM 30
2009 125–53/54 Landsat 5 TM 30
2015 125–53/54 Landsat 8 OLI/TIRS 30
2020 125–53/54 Landsat 8 OLI/TIRS 30
2022 125–53/54 Landsat 8 OLI/TIRS 30

Monitoring Shoreline Changes in the Vietnamese Mekong Delta Coastal Zone Using…
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2.2.2  GoogleTM Earth Images

GoogleTM Earth images from the years 2006 to 2020 were used to digitize the 
specific beach part of the Vinh Chau shoreline (Table 2).

2.3  Data Pre-processing

2.3.1  Landsat Image Analysis of Shoreline Position

The steps undertaken for the image pre-processing are presented in Fig. 2.
First, tiles of the Landsat images of the same year were mosaicked without atmo-

spheric correction. Next, the images were stacked in ENVI 5.3 (https://www.l3har-
risgeospatial.com/Software- Techology/ENVI) and the Rotate/Flip function was 
used to clip the region of interest (ROI), which contains only the 72 km long shore-
line along the Vinh Chau Town. Subsequently, the stacked images were imported to 
ArcMap 10.8 software (https://arcgis_desktop.en.downloadastro.com/) for shore-
line extraction. From these, the shoreline positions were used to determine the vari-
ation in the location of the shoreline and calculate possible erosion and accretion 
zones and rates of the spatial extent of the sandy beach using the digital shoreline 
analysis system (DSAS) according to the guideline of Himmelstoss et al. [11]. In 
addition, the longshore sediment transport rate (LSTR) was calculated using the 
theory of the 1-line model [10].

2.3.2  GoogleTM Earth Image Analysis

As the GoogleTM Earth images are not in the same geometric frame, they were 
georectified using the Registration function of the Map tool in ENVI 5.3. Then, the 
corrected images were used to extract the shoreline positions in ArcMap 10.8 and 
calculate the shoreline change rate in DSAS as mentioned by Dolan et al. [7]. The 
method to analyze GoogleTM Earth image in this study was taken from the previous 
study of Malarvizhi et al. [17].

Table 2 Details of the GoogleTM Earth images in Universal Transverse Mercator (UTM)

Acquisition time Sources Resolution (m) Projection

04/12/2006 Maxar Technologies 1.0 UTM
08/04/2014 French Space Agency (CNES)/Airbus 1.0 UTM
09/06/2017 CNES/Airbus 1.0 UTM
09/03/2018 CNES/Airbus 1.0 UTM
15/02/2019 Maxar Technologies 1.0 UTM
14/11/2020 Maxar Technologies 1.0 UTM

T. Van Ty et al.
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Landsat image download 

Mosaicking of scenes

Clipping ROI

Classification

Shoreline extraction as polylines

Fig. 2 Overview of Landsat image processing and analysis framework

2.3.3  Wave Measurements

Equipment: To measure wave pressures, the INFINITY AWH-USB data logger 
(https://www.jfe- advantage.co.jp/eng/assets/img/products/ocean- infinity/
INFINITY- WH(E)_2016611.pdf) was installed in three sections of the shoreline, 
namely, A, B, and C. The sensors were attached to an iron pole and set submerged 
in the water body during flood tide to ensure the water layer was at least 20 cm 
above the sensors. The AWH-USB is provided with a storage memory capacity that 
allows for 0.1  s sampling intervals and wave height observations from short- to 
long-period waves.

Measurements of wave pressure were done at several locations. Wave pressures 
at section A and section B were measured on May 31, 2019, and June 2, 2019, 
respectively, to compare the wave reduction effectiveness of the mangrove forest 
belt and the sea dike. Wave pressure in section C was measured on January 15, 
2020, to assess the wave height reduction through the breakwater. The installation 
of sensors and measurements varied across the three different sections (Fig. 3):

• Section A: The sea dike. Three sensors were installed at points 1, 2, and 3 with a 
50 m distance between these three points and the shore. The water pressure was 
recorded at each point, and then, wave heights were calculated.

• Section B: The mangrove forest belt. Three sensors were installed (without, thin, 
and dense mangrove belt, respectively, at points 3, 2, and 1). The distance 
between the three points and the shore is about 50 m. The water pressure was 
recorded at each point, and then, wave heights were calculated.

• Section C: The concrete breakwater. Only two sensors were installed at a dis-
tance of 15 m in front (point 2) and behind (point 1) the breakwater. Water pres-
sure was recorded, and then, wave heights were calculated.

Monitoring Shoreline Changes in the Vietnamese Mekong Delta Coastal Zone Using…
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Fig. 3 Study sections and positions of wave measure equipment installation
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Fig. 3 (continued)
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2.4  Data Analysis

2.4.1  Change in Beach Volume

Understanding the sediment transport process along the coast is essential for better 
management and sustainability of this coastal zone [24]. For this reason, the change 
in beach volume where most erosion occurred (recorded from Landsat images) was 
evaluated based on GoogleTM Earth images covering 1.5 km of shoreline at the 
Vinh Chau coast. The shoreline profile was divided into nine cross sections (Fig. 4) 
to calculate the shoreline change rate indicated as a (m/year). The shoreline change 
rates in each cross section were calculated based on the temporal variation of the 
shoreline positions using the linear regression rate (LRR) method in DSAS.

The beach volume change was calculated by applying the theory of the 1-line 
model [9], in which the beach profile was assumed to move uniformly, as illustrated 
in Fig. 6. In this context, DB is the height of the berm (landward limit of the beach 
berm) and DC is the depth of closure (seaward limit of the active beach profile).

Based on the idea of 1-line model, a contour line can be used to adequately rep-
resent the beach plan shape for the calculation of the beach volume change, assum-
ing the beach is sandy, not rocky, or with pebbles. This approach provides a simple 
link between the shoreline change and the spatial variation of the longshore sedi-
ment transport rate as the equation:

 � � � � �V x y D�  (1)

Fig. 4 The specific location to calculate the longshore sediment transport rate
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where Δx is the distance along the coast (m), Δy is the distance offshore (m), 
D = DB + DC (m), and ΔV is the change in beach volume (m3/year).

2.4.2  Wave Height Calculations

Wave reduction assessment: The wave reduction efficiency was evaluated according 
to the national standard TCVN 12261:2018 hydraulic structures, coastal protection 
structures, design requirements for groin and detached breakwater [20].

 

� � ��
�

�
�

�

�
�1 100

H
H

t

s

%

 (2)

where Ht is the wave height at point 3 and Hs is the wave height at points 2 and 1.
Data analysis: All recorded data were compiled and analyzed to calculate the 

wave values of Hmax, Hmean, 1/10 Hmax, and 1/3 Hmax, which represent the maxi-
mum, the mean, and the average of 10% and 33.3%, the highest wave height, 
respectively.

3  Results and Discussion

3.1  Results from Remote Sensing Images

3.1.1  Shoreline Changes from Landsat Images

The shoreline changes from the Landsat images between 2005 and 2022 are pre-
sented in Figs. 5 and 6. The analysis of shoreline position shows that significant 
erosion occurred about 8  km (Rectangular 1) from the border between the Soc 
Trang Province and Bac Lieu Province (from the eastern coordinates WGS-84 of 
588,000 m to 596,000 m). The erosion rate varies from −16.9 to −3.0 m/year.

Another part of the shore showed predominant sediment accretion along the 
middle part of the shore from the eastern coordinates WGS-84 of 600,000 m to 
620,000 m (Rectangular 2). The accretion rates vary from 45 to 80 m/year in the 
period 2005–2014, between 25 and 52 m/year in the period 2014–2022. Currently, 
the floodplain width at this part is about 600–810 m, creating an excellent zone to 
plant mangrove forest for coastline protection and maintenance purposes.

3.1.2  Shoreline Changed from Google Images

The results of the change in the shoreline from the years 2006 to 2020 using 
GoogleTM Earth images are presented in Fig. 7.

Monitoring Shoreline Changes in the Vietnamese Mekong Delta Coastal Zone Using…
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Fig. 5 Shoreline positions from 2005 to 2022

Fig. 6 The shoreline changes from 2005 to 2022

T. Van Ty et al.
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Fig. 7 Shoreline change from 2006 to 2020

It should be noted that only the shoreline positions for the years 2006, 2014, and 
2020 are presented for the legible purpose. As can be seen in the figure, the shore-
line has significantly retreated from the years 2006 to 2014 at distances of 70–140 m. 
During the period from 2014 to 2020, the shoreline retreated at smaller distances of 
10–50 m.

3.2  Changes in Beach Volume

In Table 3, the shoreline change rate derived from GoogleTM Earth images varies 
from −11.68 to −7.95 m/year. These results are in line with the results obtained 
from Landsat images (−16.9 to −3.0 m/year).

The coefficient of determination R2 values ranged from 0.8 to 0.98, which shows 
the close relationship between the offshore distance in each cross section by year (y) 
and year of study (t). Figure 8 presents the very high close relationship of y and t of 
the cross-section 1-1.

The change in beach volume was calculated using the shoreline change rate pre-
sented in Table 4 and Fig. 9. Negative values of the change in beach volume indicate 
that erosion occurred along the beach. The changes in beach volume ranged from 
3000 to 7000 m3/year.

Based on the changes in beach volume in this study, the LSTR value can be cal-
culated to understand the erosion mechanism of the coastal zone. This can be done 
by taking the breakwater as a boundary where LSTR = 0 and integrating the changes 
in beach volume to find LSTR along the beach [25].
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Table 3 Calculated shoreline change rate along the coastline

Cross section Alongshore distance x (m) Shoreline change rate a (m/year) R2

1–1 0 −7.95 0.98
2–2 200 −10.44 0.94
3–3 400 −8.58 0.98
4–4 600 −8.48 0.86
5–5 800 −8.16 0.97
6–6 1000 −11.68 0.93
7–7 1200 −9.44 0.90
8–8 1400 −8.76 0.89
9–9 1520 −10.75 0.80

Fig. 8 Relationship between y and t of the 1–1 cross section

Table 4 Beach volume changes along the study coastline

Alongshore distance
x (m)

Beach volume change
ΔV (m3/y)

100 −5518
300 −5707
500 −5119
700 −4992
900 −5953
1100 −6338
1300 −5460
1460 −3512

T. Van Ty et al.
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Fig. 9 Erosion/accretion rates at studied cross sections

3.3  Results on Wave Height and Wave Reduction

3.3.1  Wave Characteristics

The wave characteristics in sections A, B, and C are shown in Fig. 10. During the 4 
hours of continuous recording of the water pressure (and thus calculated wave 
height), the wave height at different points of the three sections has changed. The 
recorded water height reflects the tidal regime of the East Coast (semi-diurnal tide). 
At the mangrove forest belt and breakwater sections (sections B and C), the recorded 
water level (wave height) further offshore is greater than the wave height near the 
coastline, showing that the wave height after passing through the mangrove forest 
belt or the breakwater has decreased significantly.

• At the sea dike (section A), the number of waves with height less than 10 cm 
accounts for the majority, and it decreases gradually from point 3 to point 2 and 
point 1. Wave height decreases in this section because of the slope (although very 
gentle), creating bottom friction in the direction of the wave to the shoreline, thus 
reducing the wave energy. At point 3, the wave height greater than 10 cm accounts 
for about 10%, and the wave height of 15 cm is about 5%. When the wave enters 
point 1, the wave height of more than 10 cm is about 10%.

• At the mangrove forest belt (section B), it can be seen that the number of waves 
with a height greater than 10 cm decreased significantly from point 3 to point 1. 
At point 3, a wave height greater than 10 cm accounts for approximately 10%; 
when a wave enters point 1, the wave height greater than 10 cm almost does not 
exist due to the wave reduction effect of the mangrove forest belt.

• At the breakwater (section C), there was a significant difference between wave 
height in point 1 and point 2. In front of the breakwater (point 2), it shows that 
the wave height ranging from 160 to 190 cm represents the majority. The wave 
heights are of 40–50 cm after passing through the breakwater (point 1). It shows 
that the wave height is significantly different between point 2 and point 1.
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Fig. 10 Wave characteristics at all study sections
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Fig. 11 Recorded water levels at section C

There was a difference in the wave height between the wave recorded in sections A, 
B, and C. The highest waves were measured in section C (Figs. 10 and 11), which 
occurred in the middle of January of the year. Indeed, November to April is a dry 
season in the VMD region, when the northeast monsoon wind is dominant with 
maximum wind speeds of 5–8 m/s. During this period, the wind intensity is the 
highest, causing high-intensity waves to hit the coastline at 45–50°. Therefore, the 
wave energy reduction was calculated in percentage values.

3.3.2  Wave Height Reduction

Wave height reduction in sections A, B and C is shown in Fig. 12. It shows the wave 
height reduction when entering the sea dike (section A) from point 3 to point 1 cor-
responding to Hmax is about 36.8%, 1/10 Hmax is about 34.4%, and 1/3 Hmax is about 
26.4% of actual measured data.

In the mangrove forest belt (section B), the wave reduction efficiency of the for-
est is relatively high from point 3 to point 1, matching Hmax about 62.3% and 1/10 
Hmax about 55.3% and reaching about 54% to 1/3 Hmax of actual measured data. 
Indeed, the wave height decreases by more than 50% when passing through the 
mangrove forest belt.

Wave height reducing efficiencies of the breakwater were the highest within the 
three measures. It is evaluated with the mean wave heights of Hmean, 1/3 Hmax, and 
1/10 Hmax, and it can be seen that the breakwater wave reduction efficiencies are not 
significantly different. They are 72.18, 73.16, and 72.47%, respectively.
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Fig. 12 Wave height reduction in various sections

4  Conclusion

Landsat satellite images and the GoogleTM Earth images can be used to study 
coastal erosion at Vinh Chau Town, Soc Trang Province, of the VMD region. The 
results showed comparable ranges of shoreline change from both types of images. 
In addition, the volume of beach changes that satisfies the need of local authorities 
was also defined by the 1-line model.

The wave measurement results show the benefits of wave energy reduction struc-
tures. Moving about a 150 m distance, the wave height decreases by about 30%. In 
comparison, the mangrove forest belt decreases the wave height by more than 50%, 
and the constructed breakwater has a better cut wave height by up to more than 70%.

5  Recommendations

The wave measurement results are based on the data collected and measured over a 
short period, so they cannot be used to conclude the effectiveness of the mangrove 
forest belt or the constructed breakwater in reducing wave energy in a general man-
ner. Therefore, it is necessary to have a longer monitoring period (constantly over a 
year to capture different wind seasons) to have a more accurate assessment of the 
effectiveness of wave energy reduction through coastal forest.
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In addition, forest characteristics such as density, stem and root height, and root 
area significantly influence the efficiency of wave energy reduction. Therefore, fur-
ther research can consider the above effects on the wave energy reduction efficiency.
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Automatic Detection of Hydrodynamical 
and Biological Indicators of the Shoreline 
Using a Convolutional Neural Network

Soumia Bengoufa, Simona Niculescu, Mustapha Kamel Mihoubi, 
Rabah Belkessa, and Katia Abbad

Abstract The launch of satellites equipped with sensors in the optical range of the 
electromagnetic spectrum has greatly facilitated the mapping and monitoring of 
coastal areas for risk prediction. Thus, the frequent updating of information for 
monitoring purposes is possible. It is, therefore, a modern alternative to traditional 
methods, namely, photogrammetry and in situ investigation. The objective of this 
work is to define an efficient and validated method for the detection and extraction 
of shoreline indicators. It is the first indication of validation for a satellite image 
classification approach, based on a deep learning algorithm, optimized and adapted 
to the extraction, a hydrodynamic and biological indicator of the shoreline. The 
convolutional neural network (CNN) architecture was designed and adapted in 
order to extract the target shoreline indicators. A Pleiades image of very high resolu-
tion was used, sliced into sub-regions, and analyzed by a convolution kernel of size 
3*3. The classification results have revealed a very high accuracy of 92%. A valida-
tion process was undertaken by comparing the results to field surveys (reference) 
acquired on the same day as the satellite image acquisition. With a run-up (horizon-
tal wave excursion) of 0.6 m, the confidence interval for the deep learning method 
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was estimated to be ± 0.42 m, which is quite small, revealing the good accuracy of 
the method tested. A large panel of users could reproduce these methods in an auto-
matic and standard way, which should allow the updating of a possible database 
shared between involved parties in an efficient way.

Keywords Convolutional neural network (CNN) · Deep learning · Shoreline 
detection · High water level · Marine lichen

1  Introduction

The coastal fringe is a space characterized by its permanent mobility on the scale of 
geological and human time. Today, this coastal fringe is heavily exploited and has 
become a territory at risk due to marine submersion and erosion hazards, which are 
evident on a global scale. Luijendijk et al. [16] derive an updated global assessment 
of erosion phenomenon. It is estimated that from 1984 to 2016, approximately 24% 
of the world’s sandy beaches were subjected to very high erosion. Cliff coasts, 
which can only form by recession, must also be taken into account when discussing 
erosion.

The spatiotemporal analysis of shoreline position is among the most validated 
approaches for the characterization of the erosion phenomenon [7]. This analysis 
can be effectively carried out through the use of multitemporal aerial photography 
data, Geographic Information System (GIS) tools, and satellite image processing 
[21]. Historically, detection of the shoreline has been carried out by direct approaches 
on the ground or indirectly using an iconographic data (aerial photographs, images, 
maps, etc.) [7]. Several studies have examined the potential of satellite imagery to 
detect and assess shoreline evolution. Optical imagery has been shown to offer more 
practical approaches to detect the position of shoreline at different spatial and tem-
poral scales [2, 12], especially with the development of very high resolution (VHR) 
multispectral sensors.

Although the relevance of the processing results is directly related to the resolu-
tion and type of satellite data, the development of accurate techniques for the detec-
tion of the shoreline position is ongoing. The most common techniques for shoreline 
detection were either the ground survey or manual digitization, the latter still being 
in common use. However, shoreline position detection and delineation are a tedious 
task and highly subjective when using traditional ground survey methods or the 
manual approach. The alternative is to use more automatic image processing tech-
niques, such as supervised and unsupervised image classification. These (semi) 
automatic techniques are needed to update and extract shoreline data and make 
coastal land cover mapping more accessible.

Recently, several machine and deep learning algorithms have been successfully 
adopted for remote sensing applications [19]. This process translates human cogni-
tion to machine intelligence in a more sophisticated way [10]. Bengoufa et al. [5, 6] 
have attempted to assess the robustness of machine learning algorithms, i.e., the 
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support vector machine and random forest (RF) algorithms, for the automatic detec-
tion of sandy shorelines. However, there are several shoreline indicators, the choice 
of which depends on the context and the objectives of the study and the geomorpho-
logical type of the coastline.

The shoreline is supposed to represent a linear boundary between the marine and 
terrestrial domains, but this remains problematic due to the heterogeneity of the 
identification criteria (geomorphology, tidal conditions, vegetation, etc.). Indeed, it 
is not a theoretical definition of the shoreline, which can be generalized to all envi-
ronments, which should be given, but a “functional” definition of the coastal fringe 
according to the type of coast and the monitoring objectives [17]. Shoreline detec-
tion and definition have been the subject of several studies [7, 8, 20]. Boak and 
Turner [7] identified 19 generic shorelines based on 45 surveyed indicators. Indeed, 
the effectiveness of automatic methods for the detection of several types of shore-
line has not been sufficiently studied. Indeed, through a comparative approach, we 
attempt in this work to evaluate the contribution of multispectral images and deep 
learning algorithms for the delineation detection and extraction of two commonly 
used indicators of shoreline.

2  Methodological Approach

2.1  Shoreline Indicator

The detection and analysis of the shoreline position require, first of all, a definition 
and understanding of the concept of a “shoreline.” In our case, the term “shoreline 
indicators” is used. In fact, the choice of a shoreline indicator should meet the main 
conditions for recognition, which are the following:

 1. Easily and uniformly recognizable on black and white and color images.
 2. Linearly continuous along the beach.
 3. Variations in its position along the beach due to water level changes are minimal.

In order to choose adequate shoreline indicators, an analysis of the geomorpho-
logical type of coastline existing in our study area was performed. Our study area is 
located on the western coastline of Algeria, in the Mostaganem province, 400 km 
west of the capital Algiers. It boasts a 124 km long coastline, an interesting land-
scape, and geomorphological diversity (Fig.  1). The geomorphological analysis 
revealed the existence of wide sandy beaches and low cliffs and artificial coastline.

Indeed, two shoreline indicators have been chosen, a hydrodynamic indicator for 
sandy coasts and a biological indicator for low cliff coastlines. Furthermore, for the 
artificial coastline, the terrestrial edge was taken as the target shoreline indictor.
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Fig. 1 Coastal geomorphological types in the study area (western Algeria)

Fig. 2 Shoreline indicators. (a) Hydrodynamical indicator for sandy beaches, high water level 
(yellow) (Bengoufa et al. 2021a). (b) Biological shoreline indicator for rocky cliffs, black lichen 
(yellow)

2.1.1  Hydrodynamical Indicator

The high water level (HWL) was found adequate as a hydrodynamic indicator of the 
shoreline for the sandy coast (Fig. 2). For a microtidal coast, HWL can be the same 
as the wet/dry sand limit [7], which can be detected on ground or satellite imagery. 
In the latter, the high reflectance of the sand results in high luminance. When sub-
merged in sea water, the beach appears darker in the image. It thus has different grey 
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values at infrared wavelengths, forming interpretative signals, which allows for 
effective detection on satellite images.

2.1.2  Biological Indicator

Furthermore, the supra-littoral level of the low cliffy coasts is characterized by the 
presence of black lichens. The literature refers to a species that could be the one 
detected in the field, Verrucaria amphibia, or V. maura, which appears as a black 
band on the rocky substrate (Fig. 2). Indeed, the upper limit of this band is consid-
ered a good biological/botanical indicator of the cliffy shoreline [8].

2.2  Data Set

In this study, we test the shoreline extraction performance of a deep learning model, 
i.e., convolutional neural network (CNN), on satellite images of the studied area. 
We attempt to assess the performance of an automatic technique of shoreline extrac-
tion by comparing it to in situ techniques. For that, very high resolution images from 
the Pleiades satellite were used (Table 1).

Moreover, in situ data were collected the same day as the Pleiades images acqui-
sition and used to train, test, and validate the CNN model. The field trips were spe-
cially scheduled to coincide with the Pleiades image acquisition missions (1 July 
2019) in order to assess the contribution and limitations of remote sensing in extract-
ing fundamental information for monitoring coastal evolution. Thus, topographic 
surveys were carried out by a differential GPS (DGPS), whose measurements are 
made with centimetric precision.

The DGPS consists of a base GPS receiver, positioned on a point whose coordi-
nates are precisely known (with a very high degree of accuracy) and another mobile 
GPS. The surveys were carried out with a type of real-time (instantaneous) coordi-
nate measurement in real-time kinematic (RTK) mode.

For the shoreline indicator surveys, the point acquisition interval was one sec-
ond in continuous topo (Fig. 3). The ground-truth data of the shoreline were com-

pared to shorelines extracted by remote sensing methods, by calculating the 

Table 1 Spectral and spatial resolutions of Pleiades images

Band
Pleiades
Wavelength (nm) Resolution (m)

B1 (blue) 430–550 2
B2 (green) 500–620 2
B3 (red) 590–710 2
B4 (near infrared) 740–940 2
B5 (panchromatic) 480–830 0.5
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Fig. 3 Field surveys of shoreline indicators along different types of environments; (a) sandy coast, 
(b) low cliff coast

distances between the same indicators from each method (remote sensing and field 
survey).

2.3  Convolutional Neural Network Architecture

The convolutional neural network (CNN) [15] was used to process the Pleiades 
images. It is a deep learning algorithm adopted in a wide range of aspects of image 
processing [14]. The architecture of the CNN is a series of convolution and max- 
pooling layers. In this study, the CNN prediction model (Fig. 5) was designed and 
trained using eCognition software. A Pleiades image was used as an input, sliced 
into sub-regions or tiles, and analyzed by a convolution kernel of size 3*3.

The analysis of the image features by this kernel is a filtering operation with an 
association of weights to each pixel to produce a feature map. These represent very 
specific features used to determine classes for each shoreline indicator detection 
criteria: water, dry sand, and wet sand for HWL detection and water, black lichen, 
soil, and vegetation for biological indicator detection. In each class, each unit is 
connected to patches in the feature maps of the previous layer by shared weight 
matrices.

A data set of training sample points was used to create sample patches selected 
from the input image pixels (Fig. 4).

To choose an adequate sample size, we took into consideration the dimensions of 
the target classes (e.g., the lichen class for cliff coast, the wet sand class for 
sandy coast).

After a cross-validation process, the CNN architecture was fed with 4 × 4 sample 
size patches. Given this small size, there were two hidden layers (Fig. 5), with a 

S. Bengoufa et al.



197

Fig. 4 Representation of the training sample points (in red)

Fig. 5 Presentation of the architecture of the CNN model used (eCognition, 2020)

convolution kernel size of 3 × 3 and then 1 × 1. A max-pooling layer with a 2 × 2 
kernel size was used after the first convolution layer. The role of max-pooling is to 
merge semantically similar features. It is a non-linear top-down sampling technique 
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that uses the maximum value of each cluster in the previous layer to reduce the loss 
of information in the subsequent convolution layers.

In addition, a patch size of 50 and 5000 training steps resulted in good perfor-
mance. A cross-validation process revealed that the optimal training rate is 0.0006. 
It should be noted that an inadequate learning rate can either increase the time of the 
learning process (at a low rate), which could lock the network into local minima, or 
decrease it (at a high rate), but the network might not reach the minima. Therefore, 
in both cases, it is possible to obtain incorrect weights.

After a cross-validation process, CNN architecture was designed for each shore-
line indicator type. After a final classification, the results were converted to a poly-
line format in order to select and thus extract the target shoreline indicators.

2.4  Accuracy Assessment

In order to assess the accuracy of the CNN model in terms of shoreline indicator 
extraction, a comparison of its performance to another machine learning algorithm, 
the random forest algorithm, was performed. Thus, along with the analysis of the 
overall accuracy index, the shoreline indicators extracted from both methods were 
compared to the in situ reference data. That is to say, a calculation of the distance 
between the shorelines from the random forest and CNN models and the reference 
in situ shoreline was made, using the digital shoreline analysis system (DSAS) 
(Fig. 6).

Some uncertainties relating to the improvement of image location accuracy, 
DGPS accuracy, mean slope, and tide level may lead to a deviation of the extracted 
shoreline from the in situ shoreline. Therefore, an estimation of the confidence 
interval should be performed. The maximum total uncertainty is given by the square 
root of the sum of the squares of the values of the error sources:

 RMS Rmax GPS2 2+ +  (1)

where RMS is the georeferencing accuracy of the images, Rmax is the maximum 
run-up, and GPS is the accuracy of in situ data (±0.03 m).

In order to evaluate the influence of the improved image localization accuracy, 
the root mean square (RMS) error was estimated using ground control points (GCP). 
Furthermore, even though the differences in hydrodynamic conditions at the time of 
acquisition of the remote sensing images and the field surveys used for validation 
(5 hours apart in the case of Pleiades) theoretically have a negligible effect in the 
case of a microtidal coast (the tidal range is insignificant by 0.17 m according to Ali 
[1]), it makes sense to estimate the uncertainty and the influence of wave run-up on 
the horizontal position of the shoreline in order to validate the HWL extraction 
method. To this end, a hydrodynamic characterization was performed.
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Fig. 6 Distance calculation (using DSAS Net Shoreline Movement-NSM) between the automati-
cally extracted and the reference (in situ) shorelines

2.4.1  Hydrodynamic Characterization

After extracting the shoreline vectors for the sandy coastline (hydrodynamic indica-
tor), we calculated the maximum run-up and the maximum horizontal wave excur-
sion. Indeed, a numerical simulation of the hydrodynamical process was performed 
using the DHI MIKE 21 model in order to calculate the maximum run-up. The 
run-up is calculated as a function of the average slope of the beach (tanβ), the aver-
age height (Hmo), and the wavelength of the swell (Hmo and Lo) [13]. The use of these 
three variables has been simplified based on Iribarren’s ξo number (or surf similarity 
parameter) [4]:
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where Hmo is the mean wave height, Lo is the offshore wavelength, and Tm02 is the 
mean period of the swell.

The slope of the beach was calculated based on in situ topographic measure-
ments from the top of the dune to about half a meter below the sea level. The inter-
tidal beach slope was considered invariant in our study and was calculated from the 
average profile along the outer face of the berm.

The offshore wave data (Hmo and Tm02) were acquired by numerical simulation 
using the DHI MIKE 21 model. This type of simulation takes into account local 
wave generation due to wind. At the time of the DGPS survey of the shoreline, the 
offshore wave height was 0.2 m for a period of 8 s according to the hydrodynamic 
database developed for the Algerian coast by Amarouche et al. [3].

The horizontal wave excursion requires the conversion of the estimated run-up 
(vertical) elevation into an associated horizontal variation using the beach slope.

3  Results

The shorelines extracted as a result of the application of the CNN model using 
Pleiades optical images are presented in (Fig. 7).

This is a (semi-) automatic extraction method of the two shoreline indicators 
most effectively used to monitor coastal dynamics and characterize erosion phe-
nomenon. Indeed, an image classification based on a deep learning model has been 
undertaken using, as a training data set, in situ samples collected on the same day as 
the acquisition of satellite images. The classes assigned for the image classification 
process were highlighted with an accuracy of 92%.

The shoreline indicators extracted from the Pleiades images (Fig. 7) were com-
pared to the reference shoreline from the classical in situ methods. This comparison 
allows the validation of the deep learning models tested in this study.

Some uncertainties related to image location, GPS accuracy, and tide level may 
lead to a deviation of the extracted shoreline from the in situ shoreline. In order to 
quantify the influence of improved image georeferencing accuracy, the root mean 
square error (RMSE) was estimated using ground control points (GCP). The result-
ing RMSE was less than one-half of the pixel size (RMSE = 0.25 m). In addition, 
the GPS used for the in situ survey has centimetric accuracy (±0.03 m), comparable 
to other sources of uncertainty.

The main sources of error are greater for the hydrodynamic indicator due to its 
fluctuating nature. It was difficult to schedule an image acquisition on the same day 
as the in situ measurements without an interval of a few hours (five-hour interval). 
Considering the tidal effects, this interval could affect the accuracy of the validation 
procedure.
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Fig. 7 Extracted shorelines by the CNN model. (a) Hydrodynamic indicator for sandy shorelines 
(HWL); (b) biological indicator for cliffy coasts (black lichen)
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The tidal effect depends on the slope of the beach, which defines the maximum 
wave run-up. Considering average offshore wave heights of 0.75 m, for an average 
beach slope of 5°, we found that ξo = 0.73 (Eq. 2), the run-up = 0.6, and thus, the 
total confidence interval ≈ 0.42 m calculated by the Eq. (1).

4  Discussion

The analysis of satellite data used to be the exclusive domain of researchers. Today, 
the increased availability and accessibility of satellite data, combined with powerful 
analytical tools, have democratized data innovation. This has opened up new pos-
sibilities for exploiting data and converting it into meaningful information. The 
increasing availability of satellite data has transformed the way we use remote sens-
ing analysis to understand and monitor the coastal dynamic, to better prevent the 
coastal hazards and achieve the Sustainable Development Goals (2030 target).

The shoreline is a key information for erosion hazard characterization. It can be 
identified by several physical indicators detectable on remote sensing images (veg-
etation boundaries, water/sand boundary, cliff edge, and high water level [HWL]). 
For the assessment of shoreline changes, the sandy beach survey, and coastal ero-
sion characterization, the HWL, which corresponds to the highest limit reached by 
seawater, was the most used physical indicator. This indicator has historically been 
detected using manual digitization, though recently several authors have attempted 
to detect and extract this indicator using a more automated technique. In this work, 
we tested the performance of a deep learning model, i.e., CNN for the automatic 
extraction of the HWL. It should be noted that the CNN model achieved a good 
performance for the detection in the classification process, with an accuracy index 
of about 92%.

Furthermore, as the rocky cliffs are more complex and heterogeneous, the bio-
logical indicator was used for these sections. The chosen indicator is somewhat 
difficult to detect because of its fit in a rather narrow band along the coast at the foot 
of the cliffs. It is a widely used indicator relating to the black lichen belt. This com-
plexity turned out to have little effect, as the CNN model was able to detect this 
indicator with good accuracy (91.6%).

We evaluated the contribution of the CNN model by comparing it to a machine 
learning algorithm, random forest, and compared the results to a reference in situ 
shoreline. The performance of deep learning algorithms is superior to that of 
machine learning. Indeed, it has been found that 76% of the shoreline extracted by 
the CNN model is located within one meter (1 m) of the reference (in situ) shore-
line, as compared to 63% for the RF model (Fig. 8). However, the understanding of 
these algorithms and their interpretation is generally limited at this time [9, 18]. 
Therefore, the major point to consider is the difficulties of interoperability when 
using these algorithms. It can be said that the better the learning of an algorithm, the 
more difficult its interpretation (Fig. 9).
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Fig. 8 Hydrodynamical simulation and wave heights calculated using the DHI MIKE 21 model

Fig. 9 Percentage of the extracted shoreline within 1 m of the reference shoreline (in situ)

Our methods were tested on a microtidal coast, with insignificant tidal range 
(0.17 m) [1]. In the case of shoreline detection for a macrotidal coast, this method 
would not be suitable without including an accurate estimation of the tidal range.

5  Conclusion

The present work is a contribution to the study of the coastal erosion risk through 
the detection of essential information, the shoreline indicator. We focus on method-
ological development based on the contribution of new remote sensing methods and 
highlight the progress that has been made in the use of high spatial resolution satel-
lite data and artificial intelligence methods (deep learning).

Automatic Detection of Hydrodynamical and Biological Indicators of the Shoreline…



204

For shoreline detection, in situ measurements remain the most widely used 
method for shoreline detection, considered a key factor for various applications. 
However, this method is time consuming and requires logistical and human 
resources with high cost and field expertise. Thus, the objective of this work was to 
determine an operational, reproducible, and less subjective method for shoreline 
detection. It was shown in this study that the processing of Pleiades images using 
the CNN model offered an immediate overview of the shoreline position, providing 
an alternative for coastal monitoring. The confidence interval has been estimated to 
be less than 1 pixel of the image by taking into consideration several sources of error.

The comparative study of two algorithms used for image processing revealed the 
need for further methodical development efforts in order to improve the reliability 
of remote shoreline monitoring and extraction. The classification based on the CNN 
model showed higher accuracy as compared to the random forest model and could 
be replicated by a variety of users involved in coastal issues. It should be noted that 
the results were obtained on a microtidal coast, with insignificant tidal conditions.

Coastal monitoring using new deep learning algorithms adapted to image pro-
cessing could significantly optimize the time and costs of traditional methods and 
reduce the subjective component of manually digitizing shorelines from images. In 
addition, many research areas could benefit from improved shoreline extraction, 
such as coastal vulnerability assessments, erosion rate estimations, the development 
of numerical hydrodynamic models, environmental risk analysis, marine spatial 
planning, coastal management, and engineering. Furthermore, a graphical interface 
could then be developed for the model, which could also be integrated with the 
image processing software to allow interactive operations to improve the results.

Acknowledgments This study is supported by the ERASMUS+ Jean Monnet Chair, European 
Spatial Studies of Sea and Coastal Zones -599967-EPP-1-2018-1-FR-EPPJMO-CHAIR.

References

1. Ali R (2016) Traitement du signal marégraphique par analyse harmonique pour la détermina-
tion d’une référence altimétrique pour l’Algérie. BSG 19:2–10

2. Almonacid-Caballer J, Sánchez-García E, Pardo-Pascual JE, Balaguer-Beser AA, Palomar- 
Vázquez J (2016) Evaluation of annual mean shoreline position deduced from Landsat imag-
ery as a mid-term coastal evolution indicator. Mar Geol 372:79–88. https://doi.org/10.1016/j.
margeo.2015.12.015

3. Amarouche K, Akpınar A, Bachari NEI, Houma F (2020) Wave energy resource assessment 
along the Algerian coast based on 39-year wave hindcast. Renew Energy 153:840–860. https://
doi.org/10.1016/j.renene.2020.02.040

4. Battjes JA (1974) Surf Similarity 1:26–26. https://doi.org/10.9753/icce.v14.26
5. Bengoufa S, Niculescu S, Mihoubi MK et al (2021) Machine learning and shoreline monitor-

ing using optical satellite images: case study of the Mostaganem shoreline, Algeria. J Appl 
Remote Sensing 15. https://doi.org/10.1117/1.JRS.15.026509

6. Bengoufa S, Niculescu S, Mihoubi M et  al (2021) Rocky Shoreline extraction using 
a deep learning model and object-based image analysis. Int Arch Photogrammetry 

S. Bengoufa et al.

https://doi.org/10.1016/j.margeo.2015.12.015
https://doi.org/10.1016/j.margeo.2015.12.015
https://doi.org/10.1016/j.renene.2020.02.040
https://doi.org/10.1016/j.renene.2020.02.040
https://doi.org/10.9753/icce.v14.26
https://doi.org/10.1117/1.JRS.15.026509


205

Remote Sensing Spatial Inform Sci XLIII-B3-2021:23–29. https://doi.org/10.5194/
isprs- archives- XLIII- B3- 2021- 23- 2021

7. Boak EH, Turner IL (2005) Shoreline definition and detection: a review. J Coast Res 
21:688–703. https://doi.org/10.2112/03- 0071.1

8. Bonnot-Courtois C, Levasseur JE, Denantes S (2013) Reconnaissance de la limite terrestre 
du domaine maritime  : intérêt et potentialités de critères morpho-sédimentaires et bota-
niques. CETMEF

9. Campos-Taberner M, García-Haro FJ, Martínez B et  al (2020) Understanding deep learn-
ing in land use classification based on Sentinel-2 time series. Sci Rep 10:17188. https://doi.
org/10.1038/s41598- 020- 74215- 5

10. Gibril MBA, Idrees MO, Shafri HZM, Yao K (2018) Integrative image segmentation optimiza-
tion and machine learning approach for high quality land-use and land-cover mapping using 
multisource remote sensing data. JARS 12:016036. https://doi.org/10.1117/1.JRS.12.016036

11. Hegde AV, Akshaya BJ (2015) Shoreline transformation study of Karnataka coast: Geospatial 
approach. Aquatic Procedia, Int Conf Water Res Coastal Ocean Eng (ICWRCOE’15) 
4:151–156. https://doi.org/10.1016/j.aqpro.2015.02.021

12. Hunt J (1959) Design of Seawalls and Breakwaters. J Waterways Harbors Division 85:123–152
13. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444. https://doi.

org/10.1038/nature14539
14. Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document 

recognition. Proc IEEE 86:2278–2324. https://doi.org/10.1109/5.726791
15. Luijendijk A, Hagenaars G, Ranasinghe R, Baart F, Donchyts G, Aarninkhof S (2018) The 

state of the World’s beaches. Sci Rep 8:6641. https://doi.org/10.1038/s41598- 018- 24630- 6
16. Mallet C, Michot A, La Torre Y et al (2012) Synthèse de référence des techniques de suivi du 

trait de côte – Rapport. BRGM
17. Montavon G, Samek W, Müller K-R (2018) Methods for interpreting and understanding deep 

neural networks. Digit Signal Proc 73:1–15. https://doi.org/10.1016/j.dsp.2017.10.011
18. Niculescu S, Billey A Jr, H.T.-O.-A. (2018) Random forest classification using Sentinel-1 

and Sentinel-2 series for vegetation monitoring in the Pays de Brest (France). In: Remote 
Sensing for Agriculture, Ecosystems, and Hydrology XX. Presented at the Remote Sensing for 
Agriculture, Ecosystems, and Hydrology XX, International Society for Optics and Photonics, 
p. 1078305. https://doi.org/10.1117/12.2325546

19. Robin M (2002) Télédétection et modélisation du trait de côte et de sa cinématique. In: Baron- 
Yelles N, Goeldner-Gionella L, Velut S (eds) Le littoral, regards, pratiques et savoirs. Etudes 
offertes à Fernand VERGER. Edition Rue d’Ulm/Presses universitaires de l’Ecole Normale 
Supérieure, Paris, pp 95–115

20. Toure S, Diop O, Kpalma K, Maiga AS (2019) Shoreline detection using optical remote sens-
ing: a review. ISPRS Int J Geo Inf 8:75. https://doi.org/10.3390/ijgi8020075

Automatic Detection of Hydrodynamical and Biological Indicators of the Shoreline…

https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-23-2021
https://doi.org/10.5194/isprs-archives-XLIII-B3-2021-23-2021
https://doi.org/10.2112/03-0071.1
https://doi.org/10.1038/s41598-020-74215-5
https://doi.org/10.1038/s41598-020-74215-5
https://doi.org/10.1117/1.JRS.12.016036
https://doi.org/10.1016/j.aqpro.2015.02.021
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/5.726791
https://doi.org/10.1038/s41598-018-24630-6
https://doi.org/10.1016/j.dsp.2017.10.011
https://doi.org/10.1117/12.2325546
https://doi.org/10.3390/ijgi8020075


207

Very High-Resolution Monitoring 
and Evaluation of Tidal and Ecological 
Restoration in Beaussais’ Bay

Dorothée James, Antoine Collin, Antoine Mury, Mathilde Letard, O. Legal, 
and Alysson Lequilleuc

Keywords Tidal restoration · UAV · Diachronic monitoring · Multispectral · 
NDVI · NDWI · SAVI

1  Introduction

Since the Middle Ages, man has tried to expand the surface of his territory on the 
sea by draining the coastal marshes through the polderization process [1]. These 
recently-conquered lands were intended for agriculture and grazing. However, the 
current climate change and the latest projections of the IPCC (AR6) suggest an 
issue in this territorialization [4].

Tidal restoration is one of the possible mankind’s adaptations facing the sea-level 
rise by letting the water recover its place [3].

The Conservatoire du Littoral is coordinating the European Life Adapto project 
(https://www.lifeadapto.eu/). The objective is to experiment flexible shoreline man-
agement on 10 experimental sites (nine in metropolitan France and one in French 
Guyana). Satellite or manned aerial monitoring of coastal ecosystems are widely 
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used for their continuous spatial coverage (several hectares or square kilometers) 
and their large spectrum [2].

The monitoring of the coastline by unmanned aerial vehicles (UAV) is in a grow-
ing trend due to its ease of deployment [6]. The UAV allows to monitor a coastal 
ecosystem with a very high temporality. However, red-green-blue (RGB) cameras 
equipping UAV limit the possibilities of discrimination of the landscape coverage 
like soil or vegetation [5].

This original study proposes to evaluate the evolution of a polder within the 
framework of the flexible management of the coastline by UAV. Using multispectral 
(RGB, red edge [RE], and near infrared [NIR]) spectral wavebands at very high 
resolution, we examine how significant the variation of the landscape coverage will 
be detected using geospatial indices.

2  Methodology

Beaussais’ polder is located at the bottom of Beaussais’ bay on the French Emerald 
Coast (48°35'N; 2°09'W). This land reclaimed from the sea is protected from the 
impact of the marine weather by a vegetated dike in front of which a salt meadow 
has developed. The central part of the polder is anthropized and exploited as agri-
cultural and grazing land. The polderization of the Beaussais’ site began in the six-
teenth century with the construction of the Digues aux Moines and the draining of 
the marsh. The assaults of the waves have recently (March 2020) created a breach 
in the dike allowing the sea to enter the polder.

Three UAV planned surveys and ground-truth campaigns have been conducted 
on February 19, 2021, on September 3, 2021, and on February 8, 2022. A DJI 
Phantom 4 (P4PROV2) equipped with a 20 M-pixel RGB camera (4864 × 3648 
pixels) acquired 1415 photographs. A 1.2 M-pixel Parrot Sequoia+ multispectral 
sensor (1280 × 960 pixels for each camera; G, R, RE, NIR) completed the acquisi-
tion with 8165 photographs collected.

Simultaneously to the aerial acquisitions, nine ground control points (GCPs) 
were positioned on the polder and collected with a Topcon centimetric D-GNSS 
Hiper V and a Topcon datacontroller FC 500.

From the aerial images, RGB, RE and NIR orthomosaics were generated by 
photogrammetry using the Pix4D software at 0.1  m and 0.06  m pixel size, 
respectively.

Orthomosaics were individually georeferenced from the nine GCPs in ArcGIS 
software and were stacked on one single layer.

The stacked RGB, RE and NIR orthomosaics consisted of the foundation for the 
calculation of land cover index (Fig.  1): normalized difference vegetation index 
(NDVI), normalized difference water index (NDWI), and soil-adjusted vegetation 
index (SAVI).

At the study site scale, indices’ variances were computed between the three peri-
ods to map the evolution.
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Fig. 1 (a) Normalized difference vegetation index (NDVI) variance, (b) normalized difference 
water index (NDWI) variance, and (c) soil-adjusted vegetation index (SAVI) variance

At the local scale, a transect was extracted to finely assess the evolution of 11 
stations along a transect line for each land cover index and for each campaign 
according to a west–east gradient, from sea to land (Fig. 2). Standard deviations and 
means were computed and compared for NDVI (Fig. 3).
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Fig. 2 Zoom of the location of the 11 stations extracted along a west–east transect

Fig. 3 NDVI means and standard deviations for the three campaigns
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3  Results and Discussion

The variance of the three land cover indices (NDVI, NDWI and SAVI) indicates 
changes in vegetation and mineral cover of the polder (Fig. 1). Given the variance 
measures the statistical distance of the indices from the mean, a high variance value 
indicates a high dispersion of the pixels from the mean for the three campaigns.

The polder land cover has been modified by the successive marine submersion 
through the increasingly large breach. Furthermore, at the scale of the NDVI classes, 
the standard deviation is higher within the same class for the February 2021 cam-
paign. For the other two dates, the pixel values are less scattered. Two hypotheses 
can explain this phenomenon: the phenology and the modification of the vegetation 
types (halophytic vegetation vs. non-halophytic vegetation).
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1  Introduction

Sandy coasts are often marked by an intense recession of the shoreline [1]. Recent 
advances in the radiometric, spatial, temporal, and spectral resolution of sensors 
have provided a valuable tool set for innovative coastal data processing methods. It 
has been demonstrated that satellite imagery, as well as new remote sensing meth-
ods, can provide more practical approaches to the mapping and monitoring of 
coastal environments.

The evolution, or rate of change, of the coastline is an important parameter that 
indicates the accretion/erosion pattern in a coastal area [3]. The calculation of his-
torical dynamics and monitoring of shoreline change in the studied area were per-
formed using data captured by remote sensing methods. In this regard, this study 
highlights the different image processing techniques, including image classifica-
tion, which can be applied to study the coastal environment. Machine learning and 
deep learning algorithms, such as the neural networks and random forest algorithm, 
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have recently been successfully adopted for remote sensing applications [5, 6]. 
However, Toure et al. [7] claimed that the suitability of these methods for shoreline 
detection has not yet been sufficiently studied. This work focuses on the detection, 
extraction, and historical study of coastline positions from satellite data processing. 
The use of Geographic Information System (GIS) tools, and the geostatistical cal-
culation tool Digital Shoreline Analysis System (DSAS), enables the quantification 
of erosion and accretion rates and facilitates the description of evolutionary trends 
in our study area over 32 years, covering three periods. This study aims to validate 
precise techniques for monitoring sandy coasts.

2  Methodology

In the Gulf of Gabes, Jerba, the largest island in North Africa, is an island of 514 km2 
with 150 km of coastline. It is located in the southeast of Tunisia at a northern lati-
tude between 33°57′0.56" and 33°37’46.82" and an eastern longitude between 
10°45′38.43" and 11°3’53.802" (Fig. 1). The island of Jerba boasts the most beauti-
ful sandy beaches, which gives it significant recreational interest. The eastern coast 

Fig. 1 Geographic location of the study area
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of the island of Jerba has long been the subject of intensive touristic development 
due to its attractive natural potential.

In order to extract shoreline features from satellite images (Fig.  1), the band 
ratioing method, an integrated convolutional neural network (CNN) method, and 
the development of machine learning algorithms were the techniques used in this 
study. Using the digital shoreline assessment system (DSAS), statistical parameters 
were derived to estimate erosion rates. Two types of satellite data were used for the 
extraction and diachronic analysis of the shoreline evolution along the sandy 
beaches of Jerba Island.

Ten Landsat images were used, downloaded free of charge in GeoTIFF format 
via the USGS Earth Explorer website (http://www.earthexplorer.usgs.org). As well, 
two Sentinel-2 images with a processing level of 2A and 2B were downloaded via 
their platform (Muscat Distribution Workshop). For this work, the images with the 
“flat reflectance” band were chosen. All the satellite images have zero cloud cover.

Supervised classification requires a user to instruct the system by designating 
areas of the image as representative samples of the classes to be extracted. The clas-
sification is thus preceded by a learning process. In order to instruct the system, it is 
necessary to have a good knowledge of the land use. For this, we need ground-truth 
data. A ground truth is a set of guaranteed exact data on the observed land use. It is 
achieved by close observations in the field. The classes are as follows: for the 
Sentinel image: (1) water, (2) wet sand, (3) dry sand, (4) urban, and (5) vegetation; 
for the Landsat image: (1) water, (2) sand, (3) vegetation, and (4) others.

In a GIS, the shoreline indicator is digitized and then overlaid to compare its 
position with other older shorelines. Rates of change can be calculated automati-
cally with special tools such as the DSAS. Three methods in particular were applied: 
end point rates (EPR), linear regression (LR), and net shoreline movement (NSM), 
which represents the metric distances between two shorelines (Fig. 2) [4].

3  Results and Discussion

The knowledge and monitoring of the shoreline and/or the evolution of the coastal 
fringe is an essential element in the prevention of coastal hazards [2] and the assess-
ment of the vulnerability of our study area. As such, it is critical to use data with 
high resolution and employ good accuracy techniques in order to obtain relevant 
results. The ( semi- ) automatic extraction results were then compared to those 
obtained by manual digitizing of the coastline considered as reference line 
(Fig. 3). The OBIA-RF algorithm better corresponds to the in situ measurements 
and appears to have fewer ambiguities in the classifications and fewer errors for the 
wet soil class: a fundamental class considered as an essential indicator for the detec-
tion of the shorelines of sandy beaches (Fig. 2). The results show a general trend of 
erosion (89% for the coastline). The statistics revealed that the study area, with the 
exception of the sandy spit, has experienced an intense and alarming level of erosion.
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Fig. 2 Shoreline extraction results from Sentinel image (2021): (a) OBIA-RF, (b) OBIA-CNN, 
(c) PBIA-RF
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Fig. 3 (a) Shoreline smoothing and (b) transect generation and NSM
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New Insights into the Shallow 
Morpho- Sedimentary Patterns Using 
High- Resolution Topo-Bathymetric Lidar: 
The Case Study of the Bay of Saint-Malo

Bruno Caline, Antoine Collin, Yves Pastol, Mathilde Letard, 
and Eric Feunteun

Abstract A detailed morpho-sedimentological map of this bay, derived from the 
calibrated lidar rasterization with field data, provides new insights into the relation-
ships between the nature and morphology of the sediment bodies and their overall 
distribution within this megatidal bay protected by numerous islands and 
rocky shoals.

Keywords Sedimentology · Geomorphology · Macrotidal environment · High- 
resolution mapping · Marine geomorphometry

1  Introduction

Ocean–climate changes entail rapid movements of sedimentary stocks along the 
coast that need to be well understood and mapped at high resolution to cope with the 
shoreline erosion and marine submersion [3].
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Fig. 1 Airborne lidar topo-bathymetric survey of the Bay of Saint-Malo (May 30, 2018)

The mapping of the coastal seabed is conventionally ensured by acoustic sur-
veys, provided with multibeam and side-scan sonars. This kind of survey can be 
strongly impeded by shallow depths, which make the navigation dangerous even 
impossible [6]. Recently, satellite-derived bathymetry has proven to be useful and 
accurate enough to retrieve both seabed topography and composition [4]. However, 
this regional technique but fine-scale technique is greatly constrained by the water 
clarity.

Overcoming the active sound and the passive light surveys, the airborne lidar 
system provided with a topo-bathymetric sensor has the capabilities to seamlessly 
scan the land–sea continuum at very high resolution at three times the Secchi 
depth [5].

We propose a novel coastal characterization of the complex but representative 
morpho-sedimentary seabed patterns using the latest very-high-resolution topo- 
bathymetric lidar data, its morphometric derivatives, and sonar and sediment sam-
ples across the Bay of Saint-Malo (Fig. 1).

2  Study Site

The study site is located in the southern sector of the Normandy–Brittany Gulf in 
the English Channel. As part of the Côte d’Emeraude shoreline in Brittany, the 
studied area is centered in the walled city of Saint-Malo and extends from the Pointe 
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du Décollé in the west to the Pointe de la Varde in the East and includes the Cézembre 
Island in the north. This bay is characterized by a number of physical and biological 
specificities, which result in a unique marine environment along the Brittany coast: 
a megatidal regime with tidal range reaching 13.5 m, very shallow waters (less than 
30 m deep) with numerous islands and rocky headlands, strong tidal currents and 
major wave action controlled by dominantly western winds, numerous sediment 
types due to a wide range in grainsize and carbonate content [1], the occurrence of 
an incised valley inherited to the paleo-Rance river, various benthic habitats that 
result in high biodiversity, and well-developed sand shoals and bars with various 
bedforms generated by high hydrodynamics.

3  Topo-Bathymetric Lidar Acquisition

The topo-bathymetry acquisition, piloted by the Shom (French hydrographic office), 
took place during the Brittany survey of the bays of Mont-Saint-Michel and Saint- 
Malo. The campaign from Pointe du Grouin to Saint-Briac was carried out on May 
30, 2018. The system used for the survey was a HawkEye III (Sweden) combining 
three lidars (“topo,” “shallow,” and “deep” sensors) and two cameras. The “topo” is 
used for the topographic area and the sea surface. The “shallow” works less than 
10 m deep and the “deep” sensor can achieve 50 m in very clear waters. During this 
outing, 25 m deep was reached. The full coverage of the area was very satisfactory 
(only two gaps in the La Petite Porte channel). Topographic data had a density of 12 
pts/m2. Bathymetric shallow and deep data reached 1.5 pt/m2 and 0.4 pt/m2, respec-
tively. The data acquisition and processing were carried out by the Shom coastal 
altimetry team as part of the Litto3D® project [7], with the RGF93 datum, projected 
on Lambert93, and vertically referenced to the IGN69.

4  Sonar and Sediment Samples

In addition to the newly acquired topo-bathymetric lidar data of the bay of Saint- 
Malo, field acquisition including echosounder and side-scan sonar profiles, seabed 
photography and sediment dredging have been carried out on May 2021.

Calibrating the lidar prediction, those ancillary datasets allow revisiting the mor-
phology and nature of the seabed within this highly variable depositional environ-
ment. The main depositional bodies investigated are: shallow water sand shoals, 
deeper water pebbly channels, wide rocky substrate, and sheet-like accumulation of 
red algae (maërl beds).

New Insights into the Shallow Morpho-Sedimentary Patterns Using High-Resolution…
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5  Preliminary Results

The bay of Saint-Malo is featured with a unique depositional model for cold tem-
perate shallow waters [2]. This new facies model highlights the high percentage of 
carbonate grains in the sediments due to the enhanced biodiversity of the benthic 
habitats. A detailed morpho-sedimentological map of this bay, derived from the 
calibrated lidar rasterization with field data, provides new insights into the relation-
ships between the nature and morphology of the sediment bodies and their overall 
distribution within this megatidal bay protected by numerous islands and 
rocky shoals.
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Spatial Modeling of the Benthic 
Biodiversity Using Topo-Bathymetric 
Lidar and Neural Networks

Angéline Bulot, Antoine Collin, Mathilde Letard, Eric Feunteun, Loic Le 
Goff, Yves Pastol, and Bruno Caline

Keywords Coastal mapping · Shannon diversity index · Non-linear regression · 
Bay of Saint-Malo

1  Introduction

The rich biodiversity of bays and estuary areas provides numerous services to 
human populations including food support, agricultural amendments [3], and tour-
ism. These ecosystems are also the first players in coastal protection and erosion 
control [1]. In a global climate change context, the loss of biodiversity is critically 
depleting these ecosystem contributions. On the Channel French coast, bays and 
estuaries show large sediment cover variations especially in unique human- modified 
areas like the Rance estuary [5]. Calculating a discrete Shannon index eases the 
modelling of the benthic diversity by quantifying the proportion of each biological 
and geological class. Accurate descriptions of coastal basin structures are thus pro-
posed using Shannon index evaluations [4].
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Sonar and satellite imagery techniques enable the mapping of coastal areas, 
which are accessible by boat and where turbidity remains low, respectively [2]. The 
very-high-resolution (VHR) bathymetric lidar technique offers a more precise 
description of the shallow and deep seabed coverage, shedding light on regional 
benthic areas.

The present study aims at innovatively mapping a whole benthic geobiodiversity 
Shannon index, by means of morphometric continuous predictors derived from a 
combination of VHR topo-bathymetric lidar data, underwater imagery discrete 
response, and a 10-neuroned neural network prediction.

2  Methodology

The study is taking place in the Bay of Saint-Malo, along the coast from Saint- 
Briac- sur-Mer (48°38.196 N, 2°08.132 W) to La Pointe du Grouin (48°41.846 N, 
1°53.940 W). Six marine imagery missions enabled access to a total of 212 location 
points in May 2021 (Fig. 1). At each sampling point, the GPS location was indicated 
by a Garmin eTrex 10 and an underwater video was acquired with a HERO 3+ 
GOPRO camera, fixed on a 25 × 25 cm2 photoquadrat. The camera was lowered 
until the photoquadrat landed on the seabed. The topo-bathymetric airborne lidar 
campaigns (May, 2, 2018 – July, 4, 2018) enabled the bathymetric measurement and 
the seafloor habitat mapping of the bay. The Leica HawkEye III lidar tool provided 
a digital terrain model (DTM) derived from a point cloud with a spatial resolution 
of 2 m. The density of the point cloud was 0.4 point/m2 for the deep channel and 1 
points/m2 for the shallow channel. Establishing a geobiological classification 
(Table 1) of all the structures observed inside the photoquadrat allowed calculation 
of the global Shannon index of the marine area (Eq. 1).

Fig. 1 Study area: the Bay of Saint-Malo, France
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Table 1 Biological and geological classes used in the study

Geological class name Photoquadrat
Biological
class name Photoquadrat

Boulder Seaweed

Cobble–pebble Seagrass

Gravel Shells

Sand

 
I x X x X

i
i i� � � � � �� �
/ ln /

 
(1)

where I is the Shannon geobiodiversity index, xi is the proportion of each class, 
and X is the total proportion of the geobiological classes.

The biological diversity and the geological diversity were also computed by cal-
culating the proportions of biological and geological classes. With a dataset of 19 
morphometric features, linear algorithms and non-linear algorithms, including neu-
ral networks, were tested to find the model that best describes the distribution of the 
global geobiodiversity index within the bay of Saint-Malo. The number of lidar- 
derived features used, the number of hidden neurons (with hyperbolic tangent acti-
vation function), and the number of tests the algorithm performed were the 
parameters used to refine the models. The prediction models were either discarded 
or retained depending on their coefficient of determination R2.

3  Results and Discussion

With the maximum of 19 lidar parameters involved, linear regression models fail to 
predict the geobiodiversity with an averaged R2 of 0.15, whereas non-linear parti-
tion models offer a much better prediction with an averaged R2 of 0.70. In the case 
of neural network algorithms, increasing the number of tests moderately enhances 
the previous propositions with an average R2 of 0.76. Increasing the number of hid-
den neurons gives the more satisfactory model: while the prediction with a single 
neuron has an averaged R2 of 0.23, it becomes really accurate with 10 neurons 
(R2 = 0.98). The same models with the sole biodiversity or geodiversity Shannon 
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Fig. 2 Map of benthic geobiodiversity of the bay of Saint-Malo

index suggest the prediction models are better with the geodiversity index values. 
Some of the lidar features have a bigger influence on the Shannon index predictions 
such as elevation, ruggedness, valley depth, and exposition: with only these four 
features, neural network models are able to calculate the geobiodiversity index with 
an average R2 coefficient of 0.55. However, maximizing the number of morphomet-
ric parameters clearly refines the predictions: for linear and non-linear models, the 
accuracy of the predicted values distinctly increases with the number of predictors. 
Using the best hyperbolic tangent 10-neuron model with all the 19 morphometric 
parameters, an original map of the current benthic geobiodiversity of the bay of 
Saint-Malo was built (Fig. 2). It offers an overview of the spatial distribution of the 
geological and biological structures.

Further studies based on Shannon index should be based on a wider range of 
geobiological classes. In this work, the limited number of biological structures may 
explain the less satisfactory predictions of the biodiversity index. Better results 
could be obtained by considering species of seaweed individually as opposed to 
being grouped together. The same goes for seagrasses. Finally, it would be useful to 
sample the seabed at several depths: the geobiodiversity sample inside the photo-
quadrat was sometimes not representative enough of the surrounding environment. 
Capturing and classifying the habitats at 15 m height from the seafloor is likely to 
better match with the underwater imagery geolocation (Table 2).
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Table 2 Name and description of the morphometric parameters used in the study

Name Definition Name Definition

Angle Angle between the topographic 
surface and the plane defined by 
cutting lines

Relief Values of the 3 pixel colors 
calculated with landform 
values

CLdip Angle of cutting lines dip Ruggedness Index of terrain heterogeneity
CLdipdir Angle of cutting line dip direction Slope Angle to the horizontal, on 

the whole segment
Elevation Value in the numerical terrain 

model
Slope height Distance from top to bottom 

of a steep landform
Exposition Angle between the surface and 

incoming light
Slope 
position

Relative position of steep 
landforms

Half slope Angle to the horizontal, on the 
half segment

Shading

Landforms Index of topographic type areas TPI Value of gray pixel scale
MRRTF Index of ridge top flatness Valley depth Index of topographic position
MRVBF Index of valley bottom flatness Distance from the bottom of 

a valley to the top of a base 
channel network

Normalized 
height

Altitude value bounded by the 
altitude above drain culmination 
and below summit culmination

Wind 
exposition

Index of windward situation
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1  Introduction

Fish face multiple environmental pressures acting as multiscale filters structuring 
the community [6]. Study of the effect of local (~100 m2) habitat components such 
as habitat architecture, substrate composition, and benthic community on fish com-
munity is still limited because of the technical difficulties to sample reliable 
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descriptors of all these habitat components. Nevertheless, the effect of the 3D archi-
tecture, especially the complexity, has been highlighted to act as an important vari-
able, locally structuring fish communities and leading to an increase in diversity 
(species richness and Shannon index) and quantity (total density and biomass) of 
fish [1]. Photogrammetry is extending to submarine environment and allows to pro-
duce very fine information of the architecture and substrate composition [5], as well 
as of the benthic community [4]. The influence of the different habitat components 
(i.e., architecture, substrate composition, and benthic community) on the structure 
of fish community is here investigated, as well as the interest of photogrammetry in 
comparison to visual observation (Fig. 1).

2  Methodology

The sampling area is located in the Saint-Malo’s bay (Brittany, France). Tree dis-
tinct coastal rocky reefs (2.5–4.5 nautical miles apart from each other) have been 
sampled by scuba diving with 2 target depths: −8 and −13 corrected at the lowest 
astronomical tide level. Fish communities and habitats were described on 120 m2 
georeferenced transects (30 m long, 4 m wide) subdivided in 3 successive sections 
of 40 m2. Two replicates (transects) were sampled when possible, for each depth on 
each site, totaling 12 transects (spatial sampling units).

Fish communities were described through visual census, noting the abundance, 
size, and species of each demersal and cryptobenthic fish. Four temporal replicates 
were carried out (2 in June–July 2020 and 2 in September–October 2020) returning 
to the same transect, thanks to visual signposts that were deployed.

Habitat was sampled only once (period). Habitat components were categorized 
into three distinct components, each of which being described by photogrammetry 
and visual observation (Fig.  1). Architecture (Fig.  1a) was described by various 
geomorphological descriptors computed from the digital surface model (DSM) pro-
duced by the 3D photogrammetric model or visually estimating the slope or degree 
of complexity (score from 1, flat, to 4, very complex) in 2 m × 2 m quadrats. The 
substrate composition (Fig. 1b) was mapped through a supervised classification (8 
typological classes: bedrock, big/medium/small boulder, pebble, gravel, sand, arti-
ficial [5]) of the photogrammetric model allowing calculation of various landscape 
descriptors. Visual observation enabled listing the different substrate typologies (the 
same classes as by photogrammetry) in 2 m × 2 m quadrats. Benthic community 
was sampled with a process of stratified (by typological classes) virtual quadrat 
(0.09 m2) random projection, stratified random point projection, and photo identifi-
cation of morphotypes (modified from the CATAMI classification [3]). Circalittoral 
algal and faunal belts (vertical zonation adapted from [2]) were determined in 
2 m × 2 m quadrats through visual observation.

The top 10 habitat descriptors structuring fish assemblage were identified by 
coupling random and gradient forest and autocorrelation analysis. Partitioning vari-
ance analyses were conducted to highlight the variability in fish community 
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Fig. 1 Overview of environmental variables obtained with photogrammetry (on the left) and 
visual observation (on the right) to study the habitat (a–c) and fish community (d) relationship. 
Three habitat components are distinguished: architecture (a), substrate composition (b), and ben-
thic community (benthos; c). (© O. Bianchimani, V. Danet, Q. Ternon and E. Feunteun)
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explained exclusively (or commonly) by (1) local habitat components, (2) the spa-
tial variability at broad (reef) and intermediate scales (depth), and (3) the temporal 
variability (season). Subsequently, explained variance by local habitat components 
was partitioned into (1) architecture, (2) substrate composition, and (3) benthic 
community. A final random and gradient forest analysis was conducted, pooling the 
top 10 relevant descriptors of each component, in order to highlight those that 
explained the greatest fish variability. The methodology (photogrammetry or visual 
observation) employed for the description was considered for this last analysis in 
order to highlight the one that performed well.

3  Preliminary Results

The habitat and spatiotemporal information explained 35% of the fish assemblage 
variance with 18% exclusively explained by habitat components (Fig. 2). All of the 
habitat information looks to structure fish assemblage with only 3–4% of the vari-
ance explained exclusively by the different habitat components. The architectural 
descriptors of the habitat complexity (slope, roughness, and slope of the slope) have 
an impact on the assemblage of fish (Fig. 3). However, the substrate composition 
described by photogrammetry was the most important information of the fish 
assemblage variability, especially descriptors of bedrock and pebble patches. To the 
opposite, sand proportion, algal belt, and complexity index, all visually described, 
were of less importance. Further analysis are currently run to explore the influence 
of habitat on univariate fish variables as total density, biomass, or diversity. Those 
results strongly support the interest of photogrammetry to study fish/habitat rela-
tionship at the local scale and opens perspectives for a larger-scale contextualization 
and modelling of fish community structure.

Fig. 2 Variance partitioning for the fish assemblage. Habitat is distinguished from the temporal 
and spatial information (top) and then divided in its three components (bottom). Values indicate the 
variance explained by each group (values <0 not shown)
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Fig. 3 Ranking the importance of habitat descriptors for the fish assemblage. Environmental vari-
ables are discriminated based on the type of information (components) they describe: architecture 
in grey, benthic community in green, and substrate composition in red. The methodology employed 
to obtain each environmental variable is symbolized with pictograms for each bar: camera for 
photogrammetry and eye for visual observation
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Protection Using Bathymetric Lidar, 
Terrain Classification, Network Modelling: 
Reefs of Saint-Malo’s Lagoon?

Antoine Collin, Yves Pastol, Mathilde Letard, Loic Le Goff, 
Julien Guillaudeau, Dorothée James, and Eric Feunteun

Abstract The coastal areas are the theatre of increasing erosion and submersion 
risks by gathering growing hazards and exposures. Nature-based resilience is here 
mapped at 2 m spatial resolution using a novel fusion of morpho-bathymetry clas-
sification, derived from airborne bathymetric LiDAR, and graph-based network 
modelling. Connectivity results were discussed in light of coastal management. 
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Simulation · Nature-based protection · Coastal risks
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1  Introduction

The coastal areas have become a hallmark of the anthropocenic changes, composed 
of global ocean–climate stresses and local man-induced disturbances [1]. Seaward 
waves, induced by increasingly acute storms or cyclones, are likely to produce 
extreme sea levels when combined with high tides and sea-level rise [2]. Those 
levels entail severe issues on shores where landward dwellings are thriving at an 
unprecedented pace. In turn, escalations of hazards and exposures fuel a surge of 
risks, but that might be diminished with the protection of natural systems [3].

Conventional methods to quantify and map that nature-based adaptation, facing 
coastal risks, rely on hydrodynamic modelling whose spatial resolution is frequently 
too coarse for local managers and decision-makers and whose differential equations 
are too complex to solve over regional areas at fine scale [4].

We propose here an original easy-to-implement approach to spatially evaluate 
and increase the potential of the natural coastal defenses using a combination of 
very high-resolution terrain classification with network modelling. The bathymetric 
terrain, derived from a cutting-edge LiDAR survey, was enhanced by a topographic 
position index (TPI)-based classification. The graph-based network modelling 
firstly characterized the spatial patterns of the reefs and secondly simulated the 
addition of artificial reefs to optimize the protection against seaward waves.

2  Methodology

2.1  Study Area

Saint-Malo’s lagoon, core of the French Emerald Coast (48°40’N; 2°03’W), is 
located on the Brittany coast of the English Channel, west of Mont-Saint-Michel’s 
bay and south of Jersey Island. Bathed of shallow waters (3–5 m depth below the 
chart datum, the lowest astronomical tide) covered by silt-to-gravel sediments, the 
lagoon is crossed by a deep channel (20 m depth) and punctuated by emerging rocky 
islets and islands (Fig. 1).

2.2  Bathymetric LiDAR

LiDAR data were collected on May 30, 2018, using an airborne dual green system: 
Leica HawkEye III for deep (>5 m, 0.4 point/m2) and Chiroptera for shallow (<5 m, 
1.5 point/m2) measurements. Data were processed and referenced at RGF93/
Lambert 93 + IGN 69 by the Shom coastal altimetry team (Litto3D®).
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Fig. 1 Bathymetric map of Saint-Malo’s lagoon derived from the airborne LiDAR HawkEye III 
acquired on May 30, 2018 (RGF93/Lambert 93 + IGN69)

2.3  Morpho-Bathymetry Classification

The LiDAR point cloud was rasterized at 2 m and terrestrial parts (above the coast-
line, the highest astronomical tide) were masked out. The resulting digital depth 
model constituted the input layer to compute morphometric features (freeware 
SAGA), such as topographic position index (TPI), and TPI-based classification 
(Fig. 2) in the form of four main classes: midslope ridges, upper slopes, plains, and 
midslope drainages.

2.4  Graph-Based Network Modelling

The class of the midslope ridges (Fig. 3a) was deemed as Saint-Malo’s lagoon land-
forms that have the potential to ensure coastal protection from seaward hazards and 
to host highly suitable habitats for biocenoses [5]. The graph- based network of the 
midslope ridges’ patches was modelled (Fig.  3b, freeware Graphab) following a 
threshold of 200 m distance, assumed to be a boundary length for sufficiently dif-
fracting swells to significantly reduce wave height. Optimized locations of patches 
were simulated based on the computation of the equivalent connectivity metric 
(Fig. 4).
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Fig. 2 Saint-Malo’s lagoon LiDAR maps of the topography position index–based classification in 
the form of four classes

3  Results and Discussion

3.1  Network of the Ridges

The midslope ridges’ patches covered 2.35 km2 (2.53% of the surveyed area, Fig. 1). 
Those patches, evenly distributed, were provided with two additional tangible spa-
tial patterns: a double arch, elongating in a southwest–northeast orientation on the 
western part, and a gap, longitudinally oriented in the central part (facing Saint- 
Malo’s city) (Fig. 3). The identification of the double arch in the modelled network 
might explain the Gallo-Roman implementation and growth of Saint-Malo’s city, 
naturally protected from the dominant northwestern winds and swells. The patch 
add simulation successfully filled the natural barrier gaps by prioritizing the eastern 
closure (#1) and the central reinforcement (#2) (Fig. 4).
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Fig. 3 Saint-Malo’s lagoon LiDAR maps of the (a) midslope ridges’ class and (b) the graph-based 
network of that class thresholded at a 200 m distance

3.2  Transferability and Biodiversity

The methodology could be transferred to stakeholders tasked with nature-based 
adaptation of coastal reef zones at risk, where bathymetric maps are available, given 
the terrain classification and the network modelling are run under easy-to-use free-
ware. Moreover, it opens interesting perspectives for seascape ecology: analyzing 
effects of the complexity of the reef patterns to biocenosis organization and ecosys-
tem functions.
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Fig. 4 (a) Locations and (b) equivalent connectivity contributions of the five most contributing 
patches in the midslope ridges’ class network
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 Imaging Spectroscopy and Coastal Oil Spills: Examples 
from the Deepwater Horizon

Dar A. Roberts

Abstract Coastal wetlands provide numerous ecosystem services such as flood 
and storm protection, have some of the highest levels of productivity on earth, and 
form critical nurseries for many marine organisms. They have also been subject to 
significant loss due to development, aquaculture, coastal pollution, and the adverse 
impacts of sea level rise. Coastal oil spills can be particularly damaging including 
several large spills in the Persian Gulf, the Gulf of Mexico, and the coasts of most 
major continents.

Keywords Imaging Spectroscopy and Coastal Oil Spills: Examples from the 
Deepwater Horizon: Coastal Oils spills; Deepwater Horizon; Imaging spectros-
copy; Map wetland species

Imaging spectroscopy has considerable potential for improving our ability to 
map baseline conditions prior to a spill and the amount, distribution, and thickness 
of oil and quantify the damage to coastal environments. In this talk, I review poten-
tial applications of imaging spectroscopy based on experiences during the Deepwater 
Horizon. Between April 20 and July 15, 2010, an estimated 4.4 million barrels of oil 
leaked from the Macondo well, making the Deepwater Horizon the second largest 
oil spill ever observed and the largest in US history. In response to the spill, the 
airborne visible infrared imaging spectrometer (AVIRIS) was deployed from high- 
altitude and low-altitude platforms four times in 2010, with repeat flights in 2011 
and 2012.
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Teams from multiple institutions initiated studies with several key objectives 
including the following:

 1. To quantify the spectral properties of oil as it varied by thickness and emulsion 
properties

 2. To map the distribution and volume of oil using imaging spectrometry
 3. To map coastal wetland plant species and oil-impacted coastline
 4. To quantify oil impacts as it varied by species
 5. Using 2011 and 2012 data, to quantify longer-term impacts on oiled coastline

In this talk, I summarize key aspects of this work, including a discussion of oil 
spectroscopy; the use of canonical discriminant analysis and linear discriminant 
analysis to map wetland species; the use of multiple endmember spectral mixture 
analysis to map oiled vegetation, non-photosynthetic vegetation, and green vegeta-
tion fractions; and repeat studies in 2011 and 2012 quantifying post-oiling impacts. 
Spectroscopic analysis demonstrated the ability to map both the thickness and 
emulsion of oil. Plant species were mapped at accuracies ranging from 82 and 88% 
and maps of oiled coastline agreed well with field observations. Spectroscopy was 
particularly important for discriminating oiled vegetation from non-photosynthetic 
vegetation. Initial oil penetration into marshlands was shown to be low, typically 
less than 10.5 m. However, oiled coastline was subject to higher levels of loss, more 
than double the rate of uncontaminated sites in 2011 and 2012 AVIRIS data. I con-
clude discussing the potential benefits of a spaceborne imaging spectrometer.
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 Modeling Approach for Meso-Habitat Detection on Coastal 
Ecosystems by Very High-Resolution UAV Imagery 
and Field Survey

Emiliano Agrillo, Federico Filipponi, Riccardo Salvati, Alice Pezzarossa,  
and Laura Casella

Abstract Earth observation (EO) data, derived from remote and proximal sensing 
(e.g., Uunmanned Aaerial Vvehicle [UAV]), have been recently demonstrated to be 
essential tools for the ecosystem monitoring and habitat mapping, combining high 
technological and methodological procedures for applied ecology. Research based 
on EO data analyses often tend to focus on image processing techniques, neglecting 
the development of a detailed sampling design scheme needed for an exhaustive 
habitat detection.

Keywords Proximal sensing; Habitat classification; Supervised machine learning 
classification; Coastal monitoring; UAV; OBIA; Coastal ecosystem

This paper shows the results of a novel approach for mapping coastal dune habi-
tats at a local scale, using a supervised machine learning model (SMLM), through the 
combination of vegetation plot sampling scheme, synergic use of multi-sensor spec-
tral imagery (UAV-VHR) and environmental predictors (e.g., LiDAR), object- based 
image analysis (OBIA), and landscape metrics analysis. Proposed approach was 
tested in a protected area, established to preserve notable habitats along the Italian 
Tyrrhenian coast. Detailed sampling scheme was designed and carried out during 
spring and summer in 2019, combining simultaneously UAV flight acquisition and 
field vegetation survey data, collected at high-precision positioning technique Global 
Navigation Satellite Systems (GNSS) and real-time kinematic (RTK).

The calibrated classification model achieved an overall accuracy of 78.6 % (stan-
dard error 4.33), allowing to accurately classify and map five coastal habitats, 
according to EUNIS classification, which were further verified through a fully inde-
pendent validation field survey. Results demonstrate that very high-resolution 
(VHR) imageries, combined with specific field survey schemes, can be exploited to 
train classification models used for the detection of plant communities (i.e., meso- 
habitat) and plant species at a local scale. The high accuracy of the calibrated model 
configures this approach as a low-cost methodology for restoration plans. Our find-
ings demonstrate that UAV-VHR data is a valid tool to produce high-spatial- 
resolution information in sand beach ecosystems, giving ecology research a new 
way for responsive, timely, and cost-effective ecosystem monitoring.
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 Coastal Vulnerability and Climate Change Adaptation 
in South Africa: Remote Sensing Challenges 
and Opportunities

Melanie Lück-Vogel

Abstract South Africa is nestled between the Atlantic, the Southern, and the Indian 
Ocean. Its coast is about 3,000  km long and comprises 300 estuaries. Its coast 
stretches across three bioclimatic regions, namely, the Ccool Ttemperate Ssouthwest, 
a Wwarm Ttemperate Ssouth, and a Ssubtropical Eeast. Accordingly, natural coastal 
vegetation includes desertlike sparse low shrubs on the west coast, dense evergreen 
fynbos shrublands in the south, and subtropical thickets and coastal forests in the east.

Keywords Coastal vulnerability and climate change adaptation in South Africa: 
Remote sensing challenges and opportunities: South Africa; Coastal zones; Remote 
sensing data; Challenges and opportunities

Being a very attractive environment for economic and leisure activities, the pop-
ulation in the coastal zone and the related land use pressure are extremely high: In 
South Africa, about 40% of the population lives within 60 km of the ocean, and in 
2011, an estimated 3.5 million South Africans resided within 5–7 km of a coastline, 
and 60% of these people were in the four densely populated metropolitan areas. 
Populations in coastal municipalities grew by approximately 1.8 million people 
between 2001 and 2011, and this rate, which far exceeds national growth rates in 
other areas, continues to date.

This continued growth increasingly forces urban sprawl into spaces affected by 
coastal dynamics and predicted climate impacts such as increased storm frequency 
and intensity and sea level rise.

Both human development pressure and predicted climate change impact alert to 
the need of effective integrated spatial planning and geospatial vulnerability assess-
ments and preservation of natural coastal environments and the services these eco-
systems provide.

South Africa has embraced this challenge and is conducting various projects that 
will provide information to guide decision-making in these challenging and com-
plex fields.

This presentation will give examples on these projects, how they included geo-
spatial data and remote sensing data, and the perceived challenges and opportuni-
ties. The presentation will touch on satellite-derived bathymetry and wave patterns, 
cloud-based multispectral vegetation mapping on a national scale, degradation 
assessment of green infrastructure for coastal protection purposes, technical hybrid 
approaches for climate change–related coastal flood and erosion risk, etc. The main 
challenges perceived for the effective use of remote sensing data for coastal applica-
tions in South Africa are the relatively narrow coastal zones (satellite resolution 
limitations), the high seasonal dynamics, the high turbidity of coastal waters, and 
the common limitations in technical capabilities and internet accessibility.
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