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Abstract. We suggest systems mining as the next step after process min-
ing. Systems mining starts with a more careful investigation of runs, and
constructs a detailed model of behavior, more subtle than classical pro-
cess mining. The resulting model is enriched with information about data.
From this model, a system model can be deduced in a systematic way.
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1 Introduction

Classical process mining methods as established in theory and practice start
out with event logs, generated by processes during their dynamic progression
[1,7]. Process mining is designed first of all to discover processes by extracting
knowledge from event logs. Each event in an event log is conceived as an activity
that has been performed in the process at the point in time given in the event
log, and is related to a particular case. Typically, the events of a case are totally
or weakly ordered and can be seen as an execution or run of the process.

The left side of Fig. 1 depicts the standard formal approach for understanding
an event log, a processes model, and a system, namely, behavior can be under-
stood as three different sets of symbol sequences [3]. In this paper, we propose to
follow a different route: there is no reason to assume that the events of a run are
totally or weakly ordered. Of course, a clock outside the run may timestamp a
run’s events. This induces an order; however, this order is irrelevant for a proper
understanding of a run. To the contrary, it spoils the causal order of events,
which orders two events a and b by a < b if and only if a is a prerequisite for
b. Of course, a < b implies each potential clock to timestamp a before b. But a
timestamped before b only implies that b is not a prerequisite for a. Or, in one
sentence: causality matters!

Additionally, systems to be mined are typically not monolithic, amorphous
or unstructured, but can best be described and understood as the composition
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Fig. 1. Classical process mining (left, source: [3]) and systems mining.

of different sub-systems. Hence, an understanding of the different modules of a
system is necessary while understanding the behavior of the system. Again, in
one sentence: composition matters!

Last, but not least, a system processes data. Data processing is not only
needed for the correct execution of processes, but also for the symbolic rep-
resentation of important objects, e.g. invoices, customers, agreements, orders,
products, and many more objects of interest. These objects need to be under-
stood and represented adequately while mining a system. Again, in one sentence:
objects matter!

In this contribution, by means of an example, we show how to mine not only
process models, but entire system models. This includes the integrated modeling
of architecture, statics, and dynamics of the world we live in (Fig. 1, right). To
this end, we combine the well-known techniques of Petri nets and abstract data
types with the recent composition calculus.

We motivate and exemplify a different notion of runs, by means of a case
study from the area of retail sale. Supported by some static aspects of a system,
such runs can be deduced from the system’s event logs. Note, that our paper
is purely conceptual. We do not provide an algorithm nor a software tool for
systems mining. Instead, our main contribution is the elaboration of the new
idea of systems mining based on the formal framework of HERAKLIT [5,6].

This paper starts with the presentation of the main idea of modules and
runs while unfolding a running case study (Sect.2). Sect.3 describes systems
nets and Sect.4 presents the main idea for mining a system module. Related
work is discussed in Sect. 5, Sect. 6 presents some conclusions.

2 Modules and Their Composition

Before presenting the (not too heavy) formal framework, we discuss a motivating
example that later will be extended to a full case study.

2.1 Example: Occurrence Modules of a Retail Business

We start with a small log, recording observations from the field, namely seven
events from a retail shop, as Fig. 2 shows. Each event has a unique name, a set of
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Nameof  involved involved time Nameof  involved involved time Nameof  involved involved time
the event  agents data stamp the event  agents data stamp the event  agents data stamp
shirt to vendor V1 shirt 1 Alice cashier 50€ & Bob pays  cashier Bob 170€ 4
take home  Alice pays Alice receipt voucher

shoes to vendor V2 shoes 2 hat not vendor V2 - 4 handing vendor V1 receipt 5
be ordered  Bob on offer Claire over Alice packed shirt

Vipacks  vendorV1 shirt 1
shirt

Fig. 2. Event log with seven events.

involved agents, a set of data, and a timestamp. Static inspection of the system
and the events of the log identifies siz agents: Two vendors V1 and V2, a cashier,
and three clients, Alice, Bob, and Claire. All events of the log, up to V1 packs
shirt, include two agents. For example, the shirt to take home event includes the
vendor V1 and the client Alice, jointly selecting a shirt for Alice. The shoes to
be ordered event includes the vendor V2 and the client Bob, jointly agreeing on
shoes, to be ordered from wholesale. The other events are intuitively obvious.

From the perspective of agents it is intuitively obvious that for a given event
log, an agent is involved in a sequence of events, describing one of the potential
behaviors of the agent. For example, the event log in Fig. 2 implies the vendor V1
be involved in three events: shirt to take home, V1 packs shirt, and handing over.
This behavior can automatically be deduced from the log. An event updates the
local state prior to its occurrence, and produces a local state as a result of its
occurrence. Technically, we represent this as a Petri net, as in Fig.3 (a). Each
place (circle) denotes a local state; each transition (rectangle) denotes a step.
An agent’s behavior deduced from a log is very simple in structure; it can be
thought of as a classical sequence of states and steps.

Figure 3 shows the behaviors of all six agents, deduced from the log in Fig. 2.
Obviously, they are tightly interrelated, and this interrelation is now to be con-
structed explicitly. To do this, each behavior is embedded into a module in which
each transition is either inside the module, or in an interface of the module. Each
module has a left and a right interface. Graphically, a module is enclosed in a
rectangle with the left and right interface elements on the left and right margin,
respectively. The left and right interface of a module A is designated *A and A*,
respectively. This way, Fig.4 (a) shows the module V2 of the vendor V2. The
two transitions of the module are both located on the right interface, V2*. The
Claire module in Fig.4 (b) places the transition of Claire’s module on the left
interface, *Claire.

The two modules are now composed into a new module, V2 e Claire, shown
in Fig.4 (c). To compose V2 and Claire, we merge the transition with label hat
not on offer of V2* with the equally labeled transition of *Claire. The resulting
transition goes inside V2 e Claire. The transition with label shoes to be ordered
of V2* goes to (V2 e Claire)*.

This example shows the general principle of the composition of two modules
A and B: Equally labeled elements of A* and *B are merged and go into the
interior of Ae B. The other elements from A* and *B go to (Ae B)* and (AeB),
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Fig. 3. Agents and their behavior, elicited from the event log.

Claire V2 e Claire

(a) module of vendor V2 (b) module of client Claire (c) module V2 e Claire

Fig. 4. Two modules and their composition.

respectively. This kind of composition motivates the distinction of right and left
interfaces: The running example exhibits an intuitive dichotomy between shop
modules (vendors and cashiers), and client modules. Shop modules interact with
client modules, so the interface elements of shop modules and of client modules
complement each other.
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V2 e Claire * Bob

Claire * Bob

I Bob pays I

Bob

Bob wif
voucher,

(a) module Bob (b) module (V2 e Claire)e Bob

Fig. 5. Composing another module. Fig. 6. Claire e Bob.

To continue, Fig. 5 (a) shows the module Bob of the client Bob from Fig. 3 (e).
As with the Claire module, its transitions lie in its left interface. We now compose
V2 e Claire with Bob and obtain the module (V2 e Claire) @ Bob in Fig. 5(b).
Alternatively, we could have formed the module Clairee Bob first (Fig. 6) and then
module V2 e (Clairee Bob). It is easy to see that the modules (V2 e Claire) @ Bob
and V2e(Clairee Bob) are identical. We will see that in general, the composition
operator e is associative.

2.2 The Formal Framework of Modules

As usual, we represent a Petri net as a triple (P,T; F'). We employ the usual
graphical representation with boxes, circles, and arrows. In this section, we recall
a special case of the composition calculus, and particularly occurrence modules
and their composition. The general case can be found in [5].

An interface over a set A of labels is a finite set R, with each element of R
carrying a label of A. We refrain from the general case of two or more equally
labeled interface elements here.

For two interfaces R and S, equally labeled elements » € R and s € 5, are a
harmonic pair of R and S. A harmonic pair is labeled by the label of r and s.
The element s is a harmonic partner of r in S, and r is a harmonic partner of
sin R.

A module is a Petri net N = (P, T; F) together with two interfaces *N and
N* C PUT, denoted as the left and the right interface of N. Nodes not in an
interface belong to the interior of N.

In graphical representations, the interior of N is surrounded by a box, with
the elements of the left and the right interface on its left and the right margin,
respectively, e.g. Fig. 4.



94 P. Fettke and W. Reisig

We are now prepared for the fundamental definition of composing two mod-
ules:

Let A and B be two modules. For each node x of A or of B, let 2’ = {z,y}
if {z,y} is a harmonic pair of A* and *B; let 2/ = z if no harmonic pair of A*
and *B contains z. Then the module A e B is defined as follows (each element
retains its label):

1. The nodes of A e B are all 2’ such that « is a node of A or of B.
2. The edges of A e B are all (2/,2'), such that (z, z) is an edge of A or of B.
3. The left interface (A @ B):
(a) "AC *(Ae B);
(b) For z € *B holds: « € *(A e B), if  has no harmonic partner in A*.
4. The right interface (A o B)*:
(a) B C (A B)"
(b) For x € A* holds: z € (A e B)*, if z has no harmonic partner in *B.

Figures4, 5 etc. show compositions of modules. Notice that, according to
this definition, (A e B) or (A e B)* may acquire different elements with equal
labels. However, this never happens in this paper’s examples; further details can
be found in [5].

A fundamental property of composition is associativity, decisive for the
usability of modules and their composition. In fact, for any three modules A, B
and C holds:

(AeB)e(C =Ae(Be(). (1)

As a consequence, it makes sense to just write Ae Be('. This property is a special
case of a more general notion of modules and their associative composition, as
discussed in [11].
Furthermore, there are clear criteria for the case of commutativity: for mod-
ules A and B holds
AeB=DBeA (2)

if and only if no label occurs in *A U A* as well as in *B U B*.

The nets in the examples of Sect. 2.1 all exhibit a particular structure: The
arcs form no cycles, and each place has at most one ingoing and one outgoing
arc:

A net N = (P, T;F) is an occurrence net if and only if:

1. The transitive closure of F', usually written as F'T, is a strict partial order,
viz. irreflexive and transitive, on P UT. We denote this relation as <y;

2. for each p € P there exists at most one arc shaped (¢, p) and at most one arc
shaped (p,t).

A module is an occurrence module if and only if the underlying net is an occur-
rence net.

For two occurrence modules A and B, the composed module AeB is in general
not an occurrence module again. Figure 7 shows an example. This example shows
that the interior of A and B matters for this problem. Nevertheless, it can be
reduced to a problem of the induced order of interface elements:
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Fig. 8. Three further modules.

With a, o’ € A and b, V' € B, let {a,b} and {a’,b’'} be harmonic pairs of A*
and *B. They dissent if and only if either a <4 a’ and ¥/ <g b, or @’ <4 a and
b<p v,

Then, for two occurrence modules A and B it holds: A e B is an occurrence
module if and only if A* and *B have no dissenting harmonic pairs. All compo-
sitions of occurrence modules in this paper yields an occurrence module again.

2.3 Completing the Example

We extend the example of Sect. 2.1 by modules for the remaining three agents of
Fig. 3, as in Fig.8. Figure 9 shows compositions of these modules. Interestingly,
the module cashier e Alice in Fig.9(a) is an example of a module with elements
in both the left and right interfaces. Finally, the module in Fig. 9(b) composes
all three modules.

We can now compose the composed module in Fig.9(b) with the composed
module in Fig. 5(b), and obtain the composed module

V := V1 e cashiere Alice e Bobe V2 e Claire (3)

in Fig. 10. The two interfaces of this module do not contain any elements.
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cashier * Alice

Erck ashirt

Alice pays

(a) module cashier * Alice (b) module vendor V1 « cashier + Alice

Fig. 9. Two further module compositions.

V1« cashier ¢ Alice « Bob « V2 « Claire

Fig. 10. Behavioral module V := V'1 e cashier e Alice e V2 o Claire @ Bob.

From an abstract and more systematic point of view, the expression (3) is a
bit unattractive. It would be nicer to have the module trade .= V1ecashiereV?2,
with all interface elements on the right, and the module customers := Alice e
Claire o Bob with all interface elements on the left. The module V in (3) is
then written as trade e customers. Indeed, this is possible without any problems,
because the modules Alice and V2 have disjoint interfaces. According to equation
(2), the sequence of the two modules V2 and Alice in (3) can be swapped.

Summing up, the module V' of Fig.10 represents a typical single run of
a system. V provides insight into subtle details of the mutual relationship of
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the events of the joint behavior of the involved six agents. For example, in the
presented run, the joint events of the modules V1, Alice and the cashier are
detached from the events of the modules of the other three agents. Bob waits
until the cashier is finished with Alice. But vendor V2 and Alice are not related
at all to the cashier.

All this insight has been gained from the event log of Fig. 2, together with the
intuitively obvious idea that events of the business people will never be merged,
hence they come with elements in right interfaces only, and correspondingly,
events of the customers will never be merged, thus all come with elements in left
interfaces. The choice of left and right interface is motivated by the dichotomy
between shop modules (vendors and cashiers), and client modules. Of course,
right and left may be swapped here. So, the interface elements of shop modules
and of client modules complement each other.

2.4 Composing an Occurrence Module from Occurrence Atoms

Here we consider an alternative way of constructing occurrence modules. In
Sec. 2.3 we composed the run in Fig. 10 from the modules of the six behavioral
strands of agents, given in Fig.3. Occurrence modules are frequently, but not
always, composed from modules generated by such agents. Alternatively, an
occurrence module can be generated from occurrence atoms. An occurrence atom
is a module that represents a single transition together with its surrounding arcs
and places. We denote the occurrence atom of a transition ¢ by ¢. To correspond
to the previous representation of occurrence modules, we place the left interface
of an occurrence atom at the top and the right interface at the bottom of its
graphical representation.

Figure 11(a), (b) and (c) show the occurrence atoms of the transitions shirt to
take home, V1 packs shirt, and Alice pays take home of module V of Fig. 10. The
composition of the three occurrence atoms in Fig. 12 is identical to the upper left
part of module V. It is easy to see how the occurrence atoms of the remaining
four transitions of V' can be generated, and that their composition yields the
entire module V. In fact, this is generally true: the occurrence atoms t of the
transitions ¢ of an occurrence net N can be arranged as a sequence t1,...,tn
such that

N=tie -0t (4)

This representation will be used in the following sections.

3 System Models

So far, we showed how to deduce a single run from a given event log. Our aim,
however, is to deduce a system model from an event log. To this end, we need a
manageable kind of system models. Here we derive such system models.
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Fig. 11. Occurrence atoms

cashier
available
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Fig. 12. Module MO: shirt to take home e V1 packs shirt e Alice pays take home

Many similar logs would yield many similar runs. Now we show how to
extrude a system model from a set of runs. In a first step, we concentrate on the
systematic management of involved data and functions.

3.1 Structures and Signatures

To cope with data and functions on data, we employ signatures and signature-
structures, well-known in mathematics from general algebra and first order
logic, and in informatics from algebraic specifications [12]. Figure 13 shows the
signature-structure Sy for the running example, consisting of eight sets and
four functions. Each set is finite and includes real or imagined objects such
as clients, vendors, cashiers, products, vouchers, wrapped items, but also more
abstract items such as money and descriptions of items. In the course of systems
mining, a structure like this should be provided by the provider of the logs. It
may also be deducible from the logs.

A symbolic representation of a system requires abstract, symbolic represen-
tations of structures such as in Fig. 13. This is achieved by means of signatures:
a signature Xy for a structure S includes sorted symbols: a symbol for each set
and each function of S. Figure 14 gives a signature, X, for the above structure
So. For the sake of simple notation, for each set and each function of Sy we write
the corresponding symbol of X in italic.
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sets
M: {Alice, Bob, Clara} set of clients pil—W
V: {C1, C2} set of vendors P =[Zforzel.
C: {c1} set of cashiers
I: {hat, shoes, shirt} set of items vil - v set symbols function variables
v(z)=<z>forzel M: clients symbols x: clients
P: {1€, 2€, ..., 1000€} amounts of money V: vendors fl—P y: vendors
V: {<hat>, <shoes>, <shirt>} set of vouchers 2=l C: cashiers '., Y z: items
W: {[hat], [shoes], [shirt]} set of wrapped items 2=z I: items p: | v 2: description
I: {hat, shoes, shirt} set of descriptions of items P: prices v.. I : I B of item z
. V: vouchers - ) c: cashier
functions W: wrapped items
f:il—P f(shoes) = 200€ I: descriptions of
f(hat) = 100€ f(shirt) = 50€ items
Fig. 13. Structure Sy, describing the sys- Fig. 14. Signature X, and vari-
tem’s data. ables for the structure Sp

Additionally, Fig. 14 shows sorted variables. Sorted symbols and variables
yield terms, such as f(z), or tuples of terms, such as (x, f(z)). A valuation 3
of the variables assigns to each variable v an item ((v) of the structure Sy. For
example, with 8(z) = Alice, B(y) = V1 and ((z) = shirt, the tuples (y, z) and
(z, f(2)) yield in Sy the tuples

By, z) = (V1, shirt) and B(z, f(z)) = (Alice, 50€) (5)

3.2 System Atoms and Their Composition

In order to extrude a system model from a set of runs, we start from single occur-
rence atoms, extruding a more general model of system atoms. Figure 15 shows
an example: The atom shirt to take home of Fig.11(a) (repeated in Fig. 15(a))
is re-written in Fig. 15(b): information about the vendor V1, the client Alice,
the item shirt, and the price 50 € moves from the module’s places to its arcs.
This representation is now conceived as an instantiation of the item to take home
module in Fig. 15(c). In this module, the constant arc inscriptions of Fig. 15(b)
are replaced by the variables z, y, and z, and terms f(z) and z. In Figs. 15(b)
and (c), the place inscriptions of the left (upper) interface places are conceived as
tokens of the Petri net. Then, the firing rule of Petri nets defines the tokens for
the right (lower) interface places. Figure 15(b) is now gained as the instantiation
of Fig.15(c) by means of the above valuation 8 as in (5). Of course, different
valuations yield different instantiations of the item to take home system atom.
This way, Fig. 15(c) is a system atom, representing many occurrence atoms.

In analogy to Fig. 15(a), (b), and (c), Fig. 15(d), (e), and (f), generalizes the
V1 packs shirt occurrence atom as in Fig. 11(b). It is obvious how from the five
remaining occurrence atoms, the corresponding system atoms can be deduced.

Figure 16 composes the seven system atoms. This is a symbolic occurrence
module. Content wise, with the valuation § for all arc inscriptions, it is just a
different representation of the occurrence module V in Fig. 10. Denotations of
places and transitions have slightly been adjusted to better support intuition.
The place inscriptions of V' are gained in Fig. 16 by the Petri net firing rule.
Further, Fig. 16 has a non-empty left and right interface, in contrast to Fig. 10.
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(a) occurrence atom shirt to take
home from Fig. 11
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available shirtto
take home

with item z
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cription z of item z

B(item to
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(b) Instantiation p of the items to
take home atom

vendors y with item z
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vendors y cription z of item z

o item to @
take home

with money

with item z f(z) for item z

(c) system atom jtem to take home: generali-
zation of the shirt to take home module.

vendors y with item z

B(vendor
packs
item

vendors y wit

packed items p(z)

vendors y with
packed items p(z)

(e) Instantiation p of the
vendor packs item atom

(f) systems module vendor packs item:
generalization of the VI packs item atom

(d) occurrence atom V1 packs
shirt from Fig. 11

Fig. 15. Occurrence atoms and system atoms

3.3 Constructing a System Net from Symbolic Occurrence Modules

It is now possible to deduce a full-fledged Petri net model from the symbolic
occurrence module of Fig.16: Just identify equally labeled places. The result-
ing system net is shown in Fig.17. The tokens of Fig.16 are collected on the
corresponding place of Fig. 17.

Figure 17 shows a high level Petri net. It specifies a lot of runs, depending
on the choice of the valuation 3 of the variables. Furthermore, now, even when
fixing the valuation (8 as above, each client with his description of an item may
now execute any of the three events item not on offer, item to be ordered and
item to take home, with any of the two vendors V1 or V2. This is a generalization
that suggests itself from the assumptions of the system.

3.4 Deriving a Net Schema

The system model in Fig. 17 fixes the sets of vendors, clients, and items. One
would prefer a specification that leaves these sets open, to be fixed as an interpre-
tation of those symbols by the user of the model. For this purpose, it suggests
itself to use fresh symbols, e.g. VE, CL, and CA, to be interpreted as sets of
vendors, clients, and cashiers, as initial tokens on the places available vendors,
clients with descriptions of items, and available cashiers, resp. However, this is
not exactly what we want: An interpretation of VE would, for example, interpret
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) clients x b clients x . clients x
available with des- availabe with des- available with des-
vendors y cription z of cashiers ¢ iption z of vendors y

(Bob, shoes) )item

available
vendors y

client pays
take home

clients x with
money f(z)

finished clients x

finished clients x available

available finished clients x .
cashiers ¢ vendors y

vendors y

Fig. 16. Composed atoms: symbolic representation of the behavioral module V.

system model schema

available

clients x
with des-
Cription z of
item z

available
vendors.

clients x with
‘money f{z)
for voucher

clients x with
money (2)

availabe
cashie

xv(z)

(x, v(2))

finished clients x

finished clients x

Fig. 17. System model M. Fig. 18. Schema: symbolic initial
marking.

the symbol VE by the set {V'1,V2} as one token on the place available vendors.
Instead, we want two tokens, V1 and V2. This is represented by means of the
“elm”-notation, as in the net of Fig. 18 (more details in [5]).

4 How to Mine a System Model

The notions, concepts, and constructs described in the above sections suggest
to mine a system model starting from information on static system aspects such
as the architecture of the system, the data structures, and the involved agents.
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The data and the operations on the data are systematically represented in a
signature-structure. The architecture and the agents provide the background
for modeling dynamic aspects, i.e. for the derivation of occurrence modules as
models for runs, and finally system modules as models for the entire system.

4.1 From Logs to Runs

The first step identifies for each agent its sequential behavior from the log, and
constructs a distributed run from the agents’ behaviors:

1. From a given event log, for each agent identify in the log the events which
involve the agent. The sequence of those events constitute the behavior of the
agent in the log. Figures2 and 3 show corresponding examples.

2. Turn the behavior of each agent into an occurrence module: each event either
belongs to the module’s interior part, or its left or its right interface. For an
element, adequate choice of the interface depends on the intended composition
with elements of other modules. Figures4(a), and (b), 5(a), and 8(a), (b), and
(c) show examples.

3. Compose the agents’ occurrence modules: In general, an event of an event
log is involved in more than one agents’ behavioral module. Composition of
the modules yields a comprehensive occurrence module, i.e. partially ordered
run, as in Fig. 10.

4.2 From Runs to Systems

The second step identifies for each occurrence atom of a given partially ordered
run a system atom with terms over the given signature-structure as arc inscrip-
tions. From this representation, the sought system model is derived:

4. For each occurrence atom of the run, identify the involved agents and data
structures. Move this information from place inscriptions to arc inscriptions.
The arc inscriptions then are terms of the underlying signature structure.
Figure 15 shows examples.

5. In this representation of each occurrence atom, replace each constant symbol
by a variable. This yields a system atom.

6. Compose those system atoms, as in Fig. 16.

7. In this representation, merge equally denoted places. This yields the sought
system model, as in Fig. 17.

8. To achieve a purely schematic representation, replace the initial marking by
a symbolic marking, as in Fig. 18.

5 Related Work

The main concepts for the theoretical foundations of process mining are based
on the idea of grammar inference, grammar induction, or language identifica-
tion [9], which was originally proposed by [8]. Since these theoretical mod-
els do not adequately represent all interesting aspects of business processes,



Systems Mining with HERAKLIT: The Next Step 103

a plethora of enhanced formal frameworks are developed [1]. However, none
of these approaches are completely satisfactory because the role of causality,
subsystems, and data are not integrated and adequately covered. Besides the
theoretical work, many practical approaches originate from engineering process
modeling and mining systems [7]. However, these approaches lack a theoretical
foundation.

Recent work in the area of artifact-centric [4], object-centric process min-
ing [2], and agent system mining [13], addresses these lacks already. Although
these ideas clearly show improvements compared to the classical understanding
of systems, models, and logs as formal languages, they still do not provide a
satisfactory understanding of system architecture and the difference of abstract
and concrete data structures which are strongly needed for an integrated under-
standing of business systems. Additionally, our understanding of an agent is
rather general compared to the technical notion used by [13].

Although recent work acknowledges the need for representing causal struc-
tures, the choice is often not satisfactory. C.A. Petri formulated the concept of
distributed runs as early as the late 1970s [10]. It has been taken up again and
again, also under the names “true concurrency”, or “partial order semantics”,
but initially did not prevail over sequential processes. One of the reasons for this
was the comparatively complex technical apparatus for dealing with distributed
processes, combined with comparatively little benefit. Meanwhile, the basic ideas
of distributed runs are used in many contexts, e.g. partial order process min-
ing [14]. Furthermore, the composition calculus, as used in this contribution,
provides adequate and simple technical tools.

To cope properly with data aspects, and in particular to properly integrate
behavioral and data aspects in one formal framework, we resort to signature-
structures, the established formal basis of first order logic and algebraic speci-
fications [12]. Models of really big systems are gained by composing models of
subsystems. The composition calculus covers also this aspect, as developed in

[5]-

6 Conclusion

Classical process mining assumes a run as a sequence of events and then tries
to solicit information about concurrent, independent event occurrences a and b
form the observation, that in many similar logs, a and b occur in either order.
We suggest to start considering a run as an unordered set of events, and then to
order them, as much as reasonable, by considering agents and the composition
of agents’ behavior. For example, the module V of Fig. 10 provides insight into
subtle details of the mutual relationship of the events of the joint behavior of
the involved six agents. In the presented run, the joint events of the modules
vendor V1, Alice and cashier are detached from the events of the modules of
the other three agents. Bob waits until the cashier is finished with Alice. But
vendor V2 and Alice are not related at all to the cashier. All this has been
gained from the event log of Fig.2, together with the intuitively obvious idea
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that the events of the trade components never should be merged, hence all go
to the right interfaces, and correspondingly the events of the customers should
never be merged, thus all go to the left interfaces. Of course, right and left may
be swapped here.

In this paper, we argue that causality, composition, and objects matter while
mining a system. We introduce the foundational concepts for conducting sys-
tem mining. In the future, more case studies need to be done and new tools
for supporting the main ideas of HERAKLIT have to be developed. So, in the
future, we speculate that the two academic worlds of data and process mining
will be complemented with and enhanced by systems mining allowing a deeply
integrated understanding of business processes.
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