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Abstract. A deviation detection aims to detect deviating process
instances, e.g., patients in the healthcare process and products in the
manufacturing process. A business process of an organization is exe-
cuted in various contextual situations, e.g., a COVID-19 pandemic in
the case of hospitals and a lack of semiconductor chip shortage in the
case of automobile companies. Thus, context-aware deviation detection
is essential to provide relevant insights. However, existing work 1) does
not provide a systematic way of incorporating various contexts, 2) is tai-
lored to a specific approach without using an extensive pool of existing
deviation detection techniques, and 3) does not distinguish positive and
negative contexts that justify and refute deviation, respectively. In this
work, we provide a framework to bridge the aforementioned gaps. We
have implemented the proposed framework as a web service that can
be extended to various contexts and deviation detection methods. We
have evaluated the effectiveness of the proposed framework by conduct-
ing experiments using 255 different contextual scenarios.

Keywords: Context-aware deviation detection · Context · Deviation
detection · Process mining

1 Introduction

Deviation detection in process executions aims to identify anomalous executions
by distinguishing deviating behaviors from normal behaviors. A range of devi-
ation detection techniques for business processes has been proposed [4]. The
techniques are categorized as supervised and unsupervised ones. The former
defines normal behavior to identify deviations of recorded process executions
with respect to the specified normal behavior, whereas the latter identifies devi-
ations without such normal behaviors. Since many businesses lack the specifi-
cation of normal behavior, unsupervised deviation detection techniques recently
gained more attention [4].

As a process is executed in a specific context (e.g., COVID-19 Pandemic) that
affects the behavior of the execution, it is indispensable to consider the context
when detecting deviations [2]. In this regard, context-aware deviation detection
aims to classify a trace (i.e., a sequence of events by a process instance) to 1©
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context-insensitive normal meaning the trace is normal regardless of context, 2©
context-insensitive deviating meaning the trace is deviating regardless of context,
3© context-sensitive normal meaning the trace is deviating without considering
context but normal when considering context, and 4© context-sensitive deviating
meaning the trace is normal without considering context but deviating when
considering context.

Few approaches have been developed to (indirectly) solve the context-aware
deviation detection problem [4]. For instance, Pauwels et al. [15] extend Bayesian
networks to learn conditional probabilities for organizational contexts such as
roles of resources. Warrender et al. [17] propose a sliding-window based approach
that considers time-related context. Mannhardt et al. [12] conceptualize context
as data attributes of process instances.

However, each approach is tailored to consider limited aspects of contexts, not
providing a systematic way to extend the approach to consider various aspects of
contexts. Given a large space of possibly relevant contexts proposed in studies on
contexts (cf. Subsect. 2.2), we need a systematic framework to integrate context
to deviation detection.

Moreover, a framework to integrate a large number of existing deviation
detection methods with different strengths and weaknesses on varying assump-
tions is missing. Instead, the existing work is confined to a single method and
inherits the methods’ unique set of properties.

Furthermore, existing techniques do not distinguish positive and negative con-
texts. The former justifies deviations. For instance, COVID-19 Pandemic in a
healthcare process explains the long waiting time for admission, e.g., due to the
sudden increase in the number of patients. The latter refutes non-deviations.
“Crunch time” in a video game industry denies a normal throughput time of
the game development process, e.g., with the compulsory overwork by employees.
Existing work considers only negative contexts when integrating context into devi-
ation detection.

Fig. 1. An overview of the framework for context-aware deviation detection
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In this paper, we propose a framework based on post-processing mechanism to
systematically support the context-aware deviation by integrating the extensive
existing deviation detection methods and contexts. As shown in Fig. 1, the frame-
work consists of four components. First, deviation detection computes deviating
scores of traces, with which we can classify non-context deviating and non-context
normal traces. Next, context analysis computes positive and negative contexts
by aggregating context history. Afterwards, context link connects the context to
traces. Next, post-processing increases the deviation score of a trace with the
positive context of the trace and decreases it with the negative context. Using
the revised deviation score, we classify traces as context-normal and context-
deviating. Finally, we label a trace as one of 1©- 4© based on the non-context and
context classifications.

To summarize, this paper provides the following contributions:

– We propose a framework to solve the context-aware deviation detection prob-
lem while integrating the existing deviation detection methods and contexts.

– We extend the context conceptualization with positive and negative contexts
that carry dedicated semantics for deviation detection.

– We implement a flexible and scalable web service supporting the framework
and evaluate the effectiveness of the framework with 225 simulated scenarios.

The remainder is organized as follows. We discuss the related work in Sect. 2.
Then, we present the preliminaries in Sect. 3. Next, we introduce the context-
awareness in Sect. 4 and a framework for integrating contexts and deviation
detection in Sect. 5. Afterward, Sect. 6 introduces the implementation of a web
application, and Sect. 7 evaluates the effectiveness of the proposed framework.
Finally, Sect. 8 concludes the paper.

2 Related Work

In this section, we introduce existing literature on unsupervised deviation detec-
tion of process executions and the context of business processes.

2.1 Unsupervised Deviation Detection

Unsupervised deviation detection is categorized into 1) process-centric, 2) profile-
based, 3) process-agnostic and interpretable, and 4) process-agnostic and non-
interpretable methods.

Process-Centric. [3] computes the conformance of traces to a process model
and classifies non-conforming traces as deviating. [5] refines the concept of like-
lihood graphs by mining small likelihood graph signatures from event data. A
deviation is determined by comparing the execution likelihood of a trace with
respect to a set of mined signatures and a reference likelihood. [8] discovers pro-
cess models using genetic algorithms and conducts conformance checking using
token-based replay to detect deviating traces.
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Profile-Based. [11] iteratively samples more normal sets of traces and profiles
each trace against the more normal set of traces. The result is a sorted list of
traces according to their profiles in the last iteration, which is used to partition
the event data into a set of normal traces and a set of deviating traces using a
deviation threshold.

Process-Agnostic and Interpretable. [15] extends Bayesian networks and
defines a conditional likelihood-based score using the extended bayesian network
on traces. All traces are then sorted according to the score, and the first k are
returned as deviating traces. [6] uses association rules. A set of anomaly detection
association rules specifying normal behavior is mined from the event data. A
trace is detected as deviating if its aggregate support is below the aggregate
support of its most similar trace in the event data with respect to the set of
anomaly detection association rules. [17] uses a sliding window-based approach to
extract frequency information over those windows. If a trace contains infrequent
windows, then it is deviating.

Process-Agnostic and Non-interpretable. [13] encodes traces in event data
using one-hot encoding and train autoencoder neural network with them. The
deviation of a trace is determined using the error the autoencoder makes in
predicting the trace. [14] further develops the application of neural networks to
event data by training a recurrent neural network to predict the next event in
integer-encoding based on the current event in a trace. The aggregate likelihood
of predicting the correct events is used to detect deviations.

Some of the unsupervised deviation detection methods provide room for han-
dling limited kinds of context but take method-dependent approaches such that
neither a general integration nor support for a systematic extension of context is
provided. In this work, we provide a general framework to integrate various unsu-
pervised deviation detection techniques with different strengths, weaknesses, and
assumptions to systematically extend them with contexts.

2.2 Context

In pervasive computing, especially for developing adaptive services, context is
conceptualized as the lower level of the abstraction of raw data [18]. Another
higher-level abstraction, called situation, is introduced to map one or multiple
contexts to semantically richer concepts such as users’ behaviors.

In business processes, a context is a multitude of concepts that affect the
behavior and performance of the process. [2] derives four levels of context that
should be considered during the analysis of processes to improve the quality of
results. [16] extends it and provides an ontology of contexts in BPM by conduct-
ing an extensive literature review of the context in BPM.

More ontological approaches have been proposed to specify context and sit-
uations. Generally, they categorize contexts into intrinsic and relational. [7] dif-
ferentiate between intrinsic and relational context whereby intrinsic context is
essential to the nature of the entity and relational context is inherent to the
relation of multiple entities. [9] develops a two-level framework for structuring
context, which is more coarse-grained than the four levels of [2].
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In this work, we merge relevant contexts of the earlier work and their catego-
rizations into an integrative context ontology that is aimed at extracting context
from event data.

3 Preliminaries

Definition 1 (Event). Let Ue be the universe of events, Let Uatt={act, case,
time, . . . } be the universe of attribute names. For any e ∈ Ue and att ∈ Uatt :
#att(e) is the value of attribute att for event e, e.g., #time(e) indicates the
timestamp of event e.

Definition 2 (Trace). A trace is a finite sequence of events σ ∈ U
∗
e such that

each event appears only once, i.e., ∀1≤i<j≤|σ| σ(i) �= σ(j). Given σ ∈ U
∗
e and

e ∈ Ue , we write e ∈ σ if and only if ∃1≤i≤|σ| σ(i) = e. We define elem ∈ U
∗
e →

P(Ue) with elem(σ) = {e ∈ σ}.
Definition 3 (Event Log). An event log is a set of traces L ⊆ U

∗
e such that

each event appears at most once in the event log, i.e., for any σ1, σ2 ∈ L such
that σ1 �= σ2 : elem(σ1) ∩ elem(σ2) = ∅. Given L ⊆ U

∗
e , we denote E(L) =⋃

σ∈L elem(σ).

Definition 4 (Time Window). Let Utime be the universe of timestamps.
Utw = {(ts, te ∈ Utime × Utime | ts ≤ te} is the set of all possible time win-
dows. duration ∈ Utw → R maps a time window to a real valued representation
of the difference between the its start and end in the granularity of seconds.

For tw = (ts, te), πs(tw) = ts and πe(tw) = te. For instance, tw1 =
(2022-01-01 00:00:00, 2022-01-08 00:00:00) is a time window where πs(tw1) =
2022-01-01 00:00:00, πe(tw1) = 2022-01-08 00:00:00, and duration(tw1) = 604800 (sec-
onds). Note that, in the remainder, we denote 604800 as week .

A time span of an event log with length l is a collection of non-overlapping
time windows of the event log that have the equal duration of l.

Definition 5 (Time Span). Let l ∈ R be a time span length. Let L ∈ U
∗
e be

an event log. tmin(L) = mine∈E(L)#time(e), tmax (L) = maxe∈E(L)#time(e), and
nl(L) = �(tmax (L)−tmin(L))/l. span l(L) = {(tmin(L)+(k−1) ·l, tmin(L)+k ·l) | 1 ≤
k ≤ nl(L)}. For any e ∈ E(L), twl,L(e) = tw s.t. πs(tw) ≤ #time(e) ≤ πc(tw).

Assume that event log L contains traces that consist of events between
2022-01-01 00:00:00 and 2022-01-15 00:00:00. tmin(L) = 2022-01-01 00:00:00, tmax (L) =
2022-01-15 00:00:00, and nweek (L) = 2. spanweek (L) contains two time windows
tw1 = (2022-01-01 00:00:00, 2022-01-08 00:00:00) and tw2 = (2022-01-08 00:00:00, 2022-01-15
00:00:00).

4 Context-Aware Deviation Detection

In this section, we introduce a context-aware deviation detection problem and
explain an ontology of contexts for context-aware deviation detection.
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4.1 Context-Aware Deviation Detection Problem

First, a deviation detection problem is to compute a function that labels traces
either with label deviating or with label normal. All known deviation detection
methods implicitly or explicitly use some form of scoring of traces score that is a
mapping of traces to some real number (cf. Subsect. 2.1). A threshold τ is used
to decide the label. We conceptualize deviating traces as traces scored above τ .

Definition 6 (Deviation Detection). Let L be an event log. Let S = [0, 1]
be a range of all possible score values and τ ∈ S be a threshold value. A score
function score ∈ L → S maps traces to score values. detectscore ∈ L → {d, n}
is a deviation detection using score such that, for any σ ∈ L, detectscore(σ) = d
if score(σ) > τ . detectscore(σ) = n otherwise.

Instead of the two-class labeling problem, a context-aware deviation detection
problem is a four-class labeling problem. Table 1 describes the four classes with
two dimensions: non-context and context. The non-context deviating (d) and nor-
mal (n) correspond to the two classes of the deviation detection problem, whereas
context-deviating (dc) and context-normal (nc) indicate that a trace is deviat-
ing and normal, respectively, when considering context. First, context-insensitive
deviating (i.e., d → dc) indicates that a trace is both non-context deviating and
context-deviating. Second, context-sensitive deviating (i.e., n→ dc) denotes that
a trace is non-context normal, but context-deviating. Third, context-sensitive
normal (i.e., d → nc) indicates that a trace is non-context deviating, but context-
normal. Finally, context-insensitive normal (i.e., n→ nc) denotes that a trace is
both non-context normal and context-normal.

Table 1. Four classes in a context-aware deviation detection problem

σ ∈ U
∗
e Context

Deviating (dc) Normal (nc)

Non-context Deviating (d) Context-insensitive deviating (d → dc) Context-sensitive normal (d → nc)

Normal (n) Context-sensitive deviating (n → dc) Context-insensitive normal (n → nc)

Definition 7 (Context-Aware Deviation Detection Problem). Given
L ⊆ U

∗
e , compute a function that labels traces with context-insensitive deviat-

ing, context-sensitive deviating, context-sensitive normal, or context-insensitive
normal, i.e., c-detect ∈ L → {d → dc, n→ dc, d→ nc, n→ nc}.

4.2 Context-Awareness

Based on existing work on contexts of business processes introduced in Subsect.
2.2, we provide context ontology for context-aware deviation detection in Fig. 2.
First, intrinsic context is inherent to an event. The intrinsic contexts resource
and data correspond to the organizational and data perspectives for a single
event. The waiting time context represents the average waiting time of an event.
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Fig. 2. An ontology of business process context for deviation detection [2,7,9,16].

Thus, the information of waiting time contexts can be used to capture unusually
long delays for events.

Next, relational context is inherent to the relation of multiple events. The
relational contexts workload, waiting time and capacity utilization represent con-
text information that is measured (extracted) by relating multiple events of the
data. The workload context represents event counts of various selections for
a given time window. The capacity utilization context represents workloads of
resources or locations of events by counting the respective events that were
recorded during the time window of the context, e.g., the capacity utilization of
a finance department. Therefore, the information of capacity utilization contexts
can be used to capture unusually high workloads of resources.

Finally, external context is not directly attributable to events, but still affects
them. The external context pandemics represents the outbreak of infectious dis-
ease, e.g., COVID-19 pandemic. As an external context is not directly measurable
on event data, either additional data has to be used, or it has to be represented
by another measurable relational context caused by the external context, e.g., a
hygienic products shop experiences exceptionally large demand during the first
worldwide outbreak of Corona pandemic such that the workload context captures
the unusual demand increase and, thus, the external context pandemic.

5 Framework for Context-Aware Deviation Detection

This section introduces a framework based on post-processing mechanism. We
explain each of the four components described in Fig. 1 with a running example:
1) deviation detection, 2) context analysis, 3) context link, and 4) post process-
ing.

5.1 Running Example

Figure 3 shows a running example of an order management process. It describes
events of the process for two weeks under 1) the context of high workload (i.e.,
many events during the week) in week 1 and 2) the context of overwork (i.e.,
many events during the weekend) in week 2. The context of high workload is
considered as a positive context, i.e., the context justifies deviating traces in week
1, producing more context-normal traces. In contrast, we consider the context
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of overwork as a negative context, i.e., the context refutes normal traces in week
2, producing more context-deviating traces in week 2.

Fig. 3. A running example of context-aware deviation detection for the time win-
dow week 1 (w1) and week 2 (w2). (a) The context history of L1 in w1 shows work-
load of 1100 (total number of events in w1 ) and overwork of 40 (total number of
events during weekend in w1 ), respectively. (b) Assume workload is a positive mea-
sure, workloadmax = 1200, and workloadmin = 200. By aggregating positive (blue) and
negative (red) measures in w1 with min-max normalization, we compute the context
in w1, i.e., positive context of 0.9 and negative context of 0.2. (c) We first connect the
context to events (as denoted by gray dotted lines) and then connect the context to
a trace by computing the maximum positive and negative contexts of its events. σ2

has the positive context of 0.9 (i.e., the maximum positive context of its events) and
the negative context of 0.9 (i.e., the maximum negative context). (d) The non-context
deviating score of σ1 is 0.6 (> τ , i.e., non-context deviating), but its revised deviation
score is 0.37 (≤ τ , i.e., context-normal). Thus, σ1 is context-sensitive normal.
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5.2 Context Analysis

We analyze context in two steps. First, we compute context history based on
event logs. A context history describes the value of different measures (e.g.,
workload and overwork) in different time windows.

Definition 8 (Context History). Let Umeasure = {workload , overwork , . . . }
be the universe of measure names. Uch = Utw � (Umeasure � R) is the universe
of context history. Let L be an event log and l ∈ R a time span length. ch l(L) ∈
Uch is the context history in L with time span of l.

Figure 3(a) shows the context history of L1 with time span length week , i.e.,
chweek (L1). It contains the measures of workload and overwork. For instance,
chweek (L1)(w1 )(workload) = 1100 and chweek (L1)(w1 )(overwork) = 40.

A context consists of positive and negative context scores. They describe the
overall positive/negative contexts in a time window with a value ranging from 0
to 1, respectively. The closer the value is to 1, the stronger the respective context
is. We compute the context in a time window using context measures in the con-
text history of the time window. To this end, we 1) normalize context measures
in the time window, 2) distinguish positive and negative context measures, 3)
aggregate positive and negative context measures with different weights (i.e., the
importance of measures).

Definition 9 (Context). Let L be an event log and l ∈ R a time span length.
type ∈ Umeasure → {pos,neg} maps measures to pos and neg, w ∈ Umeasure →
R maps measures to weights, and norm ∈ Umeasure → (R → [0, 1]) maps
measures to normalization functions that assign values ranging from 0 to 1 to
measure values. ctxl,L ∈ spanl(L) � [0, 1]2 is a context such that, for any
tw ∈ dom(ctxl,L), ctxl,L(tw) = (pc, nc) with

– pc =
∑

m∈dom(chtw
l,L)∧type(m)=pos

w(m)·norm(m)(chtw
l,L(m))/w(m) and

– nc =
∑

m∈dom(chtw
l,L)∧type(m)=neg

w(m)·norm(m)(chtw
l,L(m))/w(m)

, where chtw
l,L = ch l(L)(tw).

The example in Fig. 3 assumes norm1, type1, and w1. First, norm1 uses min-
max normalization for each measure, e.g., with the maximum workload of 1200,
the minimum workload of 200, the maximum overwork of 120, and the minimum
overwork of 20. Moreover, type1 classifies workload as a positive context measure
and overwork as a negative context measure, i.e., type1(workload) = pos and
type1(overwork) = neg . Finally, w1 assigns the weights of 10 and 5 to workload
and overwork, respectively, i.e., w1(workload) = 10 and w1(overwork) = 5.

Figure 3(b) shows context ctxweek ,L1 . The positive context in time window
w1 is w1(workload)·norm1(workload)(1200)/w1(workload) = 10·0.9/10 = 0.9. The negative
context in w1 is w1(overwork)·norm1(overwork)(200)/w1(overwork) = 5·0.2/5 = 0.2. Note
that, in the example, the weight does not play its role since we only use one
positive and one negative context measure.
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5.3 Linking Context to Traces

To connect context to traces, we first link context to events. An event is con-
nected to the context of the time window that the event belongs to.

Definition 10 (Context-Event Link). Let L be an event log and l ∈ R a
time span length. A context-event link, elink l,L ∈ E(L) → [0, 1]2, maps events
to positive and negative contexts such that, for any e ∈ E(L), elink l,L(e) =
ctx l,L(twl,L(e)).

As depicted in Fig. 3(c) by gray dotted lines, e1, e2, and e3 by σ1 and
e4 and e5 by σ2 are connected to ctxweek ,L1(w1 ), i.e., elinkweek ,L1(e1) =
ctxweek ,L1(w1 ) = (0.9, 0.2), etc.

The context of a trace is determined by the context of its events. In this
work, we define the maximum positive and negative context of the events of a
trace as the context of the trace.

Definition 11 (Context-Trace Link). Let L be an event log and l ∈ R a time
span length. tlink l,L ∈ L → [0, 1]2 maps traces to positive and negative contexts
s.t., for any σ ∈ L, tlinkl,L(σ) = (max({pc ∈ [0, 1] | ∃e∈elem(σ) (pc, nc) =
elinkl,L(e)}),max({nc ∈ [0, 1] | ∃e∈elem(σ) (pc, nc) = elinkl,L(e)})).

As shown in Fig. 3(c), σ1 has the positive context of 0.9 and negative context
of 0.2, i.e., tlinkweek ,L1(σ1) = (0.9, 0.2), since the maximum positive context of
its events, i.e., e1, e2, and e3, is 0.9 and the maximum negative context is 0.2.
tlinkweek ,L1(σ2) = (0.9, 0.9), since the maximum positive context of its events,
i.e., e4, e5, and e6, is 0.9 and the maximum negative context is 0.9.

5.4 Post Processing

Post-processing function revises the non-context deviating score of a trace using
the positive and negative context of the trace. The positive context decreases
the deviating score, whereas the negative context increases it.

Definition 12 (Post Processing). Let L be an event log, l ∈ R a time span
length, and score a score function. postl,L,score ∈ L × [0, 1]2 → [0, 1] maps a
trace, a positive degree, and a negative degree to revised score such that, for any
σ ∈ L, αpos ∈ [0, 1], and αneg ∈ [0, 1], postl,L,score(σ, αpos , αneg) = score(σ) −
score(σ) · αpos · pc + (1 − score(σ)) · αneg · nc where (pc,nc) = tlink l,L(σ).

In Fig. 3(d), σ1 has the deviation score of 0.6, i.e., score1 (σ1) = 0.6. Given
σ1, αpos = 0.5 and αneg = 0.5, postweek ,L1 ,score1 revises the deviating score to a
new score of 0.37, i.e., 0.6 − 0.6 · 0.5 · 0.9 + (1 − 0.6) · 0.5 · 0.2 = 0.37.

Finally, a context-aware detection function labels traces with the four
context-aware classes described in Table 1, based on the non-context deviating
score and revised deviating score.
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Definition 13 (Context-Aware Detection). Let L be an event log and
l ∈ R a time span length. Let score be a score function. Let αpos , αneg ∈ [0, 1]
be positive and negative degrees and τ ∈ S be a threshold. c-detect ∈ L →
{d → dc, n→ dc, d→ nc, n→ nc} maps traces to context-aware labels such that
for any σ ∈ L:

c-detect(σ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d → dc if detectscore(σ) = d and post l,L,score(σ, αpos , αneg ) > τ

n → dc if detectscore(σ) = n and post l,L,score(σ, αpos , αneg ) > τ

d → nc if detectscore(σ) = d and post l,L,score(σ, αpos , αneg ) ≤ τ

n → nc if detectscore(σ) = n and post l,L,score(σ, αpos , αneg ) ≤ τ

As shown in Fig. 3(d), given τ = 0.5, αpos = 0.5, and αneg = 0.5, c-detect
(σ1) = d → nc since detectscore1 (σ1) = d and postweek ,L1,score1 (σ1, α

pos , αneg) =
0.37 ≤ τ . Furthermore, c-detect(σ3) = n→ dc since detectscore1 (σ2) = n and
postweek ,L1,score1 (σ2, α

pos , αneg) = 0.63 > τ .

6 Implementation

The framework for context-aware deviation detection is implemented as a cloud-
based web service with a dedicated user interface. The implementation is avail-
able at https://github.com/janikbenzin/contect along with the source code, a
user manual, and a demo video. It consists of four functional components: (1)
context analysis, (2) deviation detection, (3) context-aware deviation detection,
and (4) visualization.

Fig. 4. A screenshot of Scatter visualization. By varying the degree of positive and
negative context, we can deduce the adequate degree of positive and negative context
to be used for the context-aware deviation detection.

https://github.com/janikbenzin/contect
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First, the context analysis component supports the computation of the con-
text history and context. The context introduced in Fig. 2 have been imple-
mented including workload, weekend, waiting time, and capacity utilization.

Second, the deviation detection component implements four deviation detec-
tion methods that correspond to representatives of four respective categories
introduced in Subsect. 2.1. For process-centric methods, we adapt the two-step
approach in [8] by using Inductive miner [10] for process discovery and align-
ment [1] for conformance checking. For profile-based approaches, Profiles [11] has
been implemented, while ADAR [6] and Autoencoder [13] have been implemented
as process-agnostic & interpretable/non-interpretable approaches, respectively.
Next, the context-aware deviation detection component implements the post
processing and the context-aware deviation detection function.

Finally, the visualization component supports an analysis view for each devi-
ation detection method. Each analysis view consists of three visualizations: tabu-
lar, scatter, and calendar. Tabular visualizes the most deviating traces by sorting
them based on the deviation score, the proximity to being relabelled as context-
normal, etc. Scatter shows a 3D-scatter plot of the deviation score, positive
context, and negative context, as shown in Fig. 4. As the number of deviating
traces can be large, the k-Medoids clustering algorithm is applied to all deviat-
ing traces such that the user can analyze the medoids to understand the whole
space of deviating traces more efficiently (depicted as first to fourth and seventh
legend entry in Fig. 4). Moreover, by varying the positive and negative degrees,
we can analyze the effect of the context on the deviation detection. Calendar
visualizes the context over time by aggregating contexts by time and plotting
them over the time span.

7 Evaluation

This section evaluates the proposed framework using the implementation in
Sect. 6. To this end, we conduct four case studies using deviation detection meth-
ods: Inductive, Profiles, ADAR, and Autoencoder. In each case study, we compare
the performance of context-aware deviation detection and context non-aware devi-
ation detection in 225 different simulated scenarios. In the rest of this section, we
first introduce a detailed experimental design and then report the results.

7.1 Experimental Design

As depicted in Fig. 5, the evaluation follows a four step pipeline: data generation,
simulation scenario injection, framework application, and evaluation of results.

First, the data generation uses CPN Tools1 to simulate an order management
process. Next, we inject four different types of deviating events into the gener-
ated event data and label them as non-context deviating: 1) Rework randomly
adds an event to a trace with the activity that has already occurred, 2) Swap

1 www.cpntools.org.

www.cpntools.org
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randomly swaps the timestamp of two existing events, 3) Replace resource ran-
domly replaces the resource of an event with a different resource, and 4) Remove
randomly removes an existing event from the data. To understand the effect of
the amount of deviations on the classification result, the evaluation injected 2%,
5%, or 10% deviations equally distributed among the four types.

Fig. 5. An overview of the experimental design

Afterward, we inject four contextual scenarios as follows.

1. For workload scenario, we randomly select a week and add additional orders
in the week. We consider it as a positive context and, thus, the non-context
deviating events of the selected week are relabelled to context-normal.

2. For capacity utilization performance scenario, we randomly assign vacations
and sick leaves to resources, lowering the capacity of the process. It is consid-
ered as a positive context, and non-context deviating events associated with
the reduced capacity resource are relabelled to context-normal.

3. For waiting time, all events of randomly chosen days are randomly delayed.
It is considered a negative context, and all of the delayed events that are
non-context normal or context-normal are labeled as context-deviating.

4. For overwork scenario, we shift the random percentage of events during week-
days to Saturday and Sunday. It is regarded as a negative context, and all
shifted events that are non-context normal or context-normal are relabelled
to context-deviating.

To determine the strength of the relationship between positive contexts and
deviations, we use % context attributable parameter that determines how many
traces are affected by positive contextual scenarios, i.e., non-context deviating
events are relabelled to context-normal. We include it as the second parameter
for experiments with values ranging from 0% to 100% as depicted in Fig. 5.

225 experiments per case study (3 ∗ 3 ∗ 5 ∗ 5) result from the parameters as
shown in Fig. 5, i.e., three event datasets, three % events deviating parameters
and the five % context attributable parameters per positive contextual scenario.
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Next, we apply the proposed framework and compute context-aware detec-
tion results. Hyperparameter grid search is applied to find the best combination
of positive and negative degrees for the post function.

Table 2. Evaluation results from four case studies

Context-non-aware deviation detection αpos = αneg = 0 Context-aware deviation detection αpos , αneg optimized Difference

Inductive Accuracy 0.389118 0.426846 −0.037728

Avg. class accuracy 0.326856 0.311832 −0.015024

Precision 0.248691 0.293496 −0.044805

Recall 0.389118 0.426846 −0.037728

Autoencoder Accuracy 0.385035 0.425686 −0.040651

Avg. class accuracy 0.311249 0.312451 −0.001202

Precision 0.235668 0.369101 −0.133433

Recall 0.385035 0.424996 −0.039961

Profiles Accuracy 0.363995 0.406368 −0.042373

Avg. class accuracy 0.293880 0.292083 −0.001797

Precision 0.220972 0.332658 −0.111686

Recall 0.363995 0.404011 −0.034061

ADAR Accuracy 0.351544 0.395066 −0.043522

Avg. class accuracy 0.291969 0.289284 −0.002685

Precision 0.229760 0.334021 −0.104261

Recall 0.351544 0.385152 −0.033608

7.2 Experimental Results

First, we report average results for each case study in Table 2, showing that the
consideration of positive/negative context is effective in the context-aware devi-
ation detection. The first column in Table 2 shows the performance of context-
non-aware deviation detection with αpos and αneg both set to 0. The second
column in Table 2 shows the performance of context-aware deviation detection
with positive αpos and negative degree αneg both optimized through the hyper-
parameter grid search. The third column shows the performance difference of
the proposed approach with respect to the baseline.

In the case study using Inductive, the accuracy of 0.389118 is improved by
0.037728 to 0.426846, the average class accuracy of 0.326856 is slightly reduced
by 0.015024 to 0.311832, the precision of 0.248691 is boosted by 0.044805 to
0.293496 and the recall of 0.389118 is upgraded by 0.037728 to 0.425686. The
other three case studies also show performance improvements in terms of accu-
racy, precision, and recall similar to Inductive and a decrease in average class
accuracy. In particular, the results are significantly more precise with the frame-
work’s context-aware deviation detection than for deviation detection.

Second, Fig. 6 shows two confusion matrices in Fig. 6 for Inductive and
Autoencoder, summing the confusion matrix of each experiment. The confu-
sion matrix for Autoencoder is representative for Profiles and ADAR, showing
similar results. The context-awareness generally improves the performance in
all case studies by improving the detection of context-sensitive deviating traces,
but not by detection of context-sensitive normal traces. With respect to context-
sensitive normal, the framework’s context-awareness has most of the time does
not correctly predict the context-sensitive normal traces (0 out of 9,194 + 9,389
+ 2,798 = 21,381 context-sensitive normal traces for Inductive and 83 out of
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6,306 + 11,173 + 83 + 3,678 = 21,240 traces for Autoencoder). With respect
to context-sensitive deviating, the framework’s context-awareness performs sig-
nificantly better for the context-sensitive deviating traces with 54,186 of 72,021
+ 36,952 + 0 + 54,187 = 163,160 correctly predicted traces (Inductive) and
with 47,951 of 50,485 + 60,529 + 452 + 47,951 = 159,417 correctly predicted
traces (Autoencoder).

(a) Inductive
(b) Autoencoder

Fig. 6. Confusion matrices summed over all 225 experiments of the respective context-
aware deviation detection method

8 Conclusion

In this paper, we proposed a framework to support context-aware deviation
detection. The proposed framework can incorporate any existing unsupervised
deviation detection methods with varying strengths and weaknesses and enhance
them with various contextual aspects. We have implemented the framework as
an extensible web service with a dedicated user interface. Moreover, we have
evaluated the effectiveness of the framework by conducting experiments using
representative deviation detection methods in different contextual scenarios.

This work has several limitations. First, the proposed framework introduces
several parameters that possibly affect the detection results, e.g., the negative
and positive degree of post function, the threshold of score function, etc. Sec-
ond, the framework is dependent on the performance of the deviation detection
method. Third, using an event log as the input, the framework only indirectly
measures external contexts.

Besides addressing the above limitations, in future work, we plan to extend
the framework to support the root cause analysis of context-aware deviations.
We can analyze the relevant context of context-aware deviating instances and



Detecting Context-Aware Deviations in Process Executions 205

trace back the relevant context measure, e.g., high workload. Moreover, we plan
to extend the framework to consider contexts of different time window lengths,
e.g., context in week, day, and hour. Another direction of future work is to
develop different post functions to improve the performance of the context-aware
deviations.
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