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Abstract. Discovering and analysing business processes are important
tasks for organizations. Process mining bridges the gap between process
management and data science by discovering process models using event
logs derived from real-world data. Besides mandatory event attributes
like case identifier, activity, and timestamp, additional event attributes
can be present, such as human resources, costs, and laboratory values.
These event attributes can be modified by multiple events in a trace,
which can be classified as so-called dynamic event attributes. So far,
the process behaviour of event attributes is described in the form of
read/write operations or object-lifecycle states. However, the actual value
behaviour has not been considered yet. This paper introduces an app-
roach that allows to automatically detect changes in the actual values
of dynamic event attributes, enabling to identify changes between pro-
cess activities representing events with the same activity name. This can
help to confirm expected behaviour of dynamic event attributes, but
also allows deriving novel insights by identifying unexpected changes.
We applied the proposed technique on the MIMIC-IV real-world data
set on hospitalizations in the US and evaluated the results together with
a medical expert. The approach is implemented in Python with the help
of the PM4Py framework.
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1 Introduction

Businesses organizations seek to find valuable insights out of data stored in
information systems with the aim to improve their business processes. Today,
such information systems can include data about end-to-end processes or even
beyond that. Due to that fact, process mining was developed to understand the
actual execution of business processes, providing techniques for process discovery,
conformance checking, and enhancement [1].

In process discovery, the discovered process model can be analysed based
on the occurred events, their order, and frequency. Event logs might contain
additional data, so-called event attributes, providing further information about
an event, which can be used to enhance process models [10].
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Event attributes can be dynamic in the sense that they are stored in multiple
events, such as an order status or laboratory values, which evolve through the
process. As dynamic event attributes occur multiple times during the process,
understanding their development can be of interest [11]. So far, the process
behaviour of event attributes is described in the form of read/write operations
or object-lifecycle states [6,16].

However, there is still a lack of describing the actual value behaviour of
dynamic event attributes. For example, it might be of interest to see if a stay in
an intensive care unit (ICU) results in improved laboratory values of a patient
in the recovery ward. Thus, we can compare the laboratory values conducted in
the ICU to the ones in the recovery ward.

Therefore, this paper provides an approach to automatically detect changes
in dynamic event attributes, so that it is not only known if the values change
throughout the process, but also at which activity representing all events with
the same activity name and in which direction (increasing, decreasing).

The remainder of this paper is organized as follows. Section 2 provides related
work, and Sect. 3 introduces preliminaries. Section 4 presents the approach for
change detection in dynamic event attributes, and Sect. 5 applies the approach to
the MIMIC-IV real-world data set on hospitalizations. We discuss the approach
and its limitations in Sect. 6 before the paper is concluded in Sect. 7.

2 Related Work

The analysis of event attributes has been approached from different perspectives
in the literature.

A prominent application is the identification of decision rules, such as in data-
aware heuristic mining [16]. Regarding the exploration of event attributes, the
multi-perspective process explorer allows investigating the distribution of each
event attribute at each activity [18]. Data-enhanced process models add aggre-
gated information about event attributes, such as the mean value, to the process
model activities representing the events. In data-enhanced process models, the
selection of event attributes for detailed analysis is supported by allowing filter-
ing according to their process behaviour and the degree of variability through
the process [11]. In [6], the access to event attributes is described and annotated
to the process model, describing the data object lifecycle of each event attribute.

While there exist approaches trying to better explore and understand the
actual values of event attributes, there remains, to our knowledge, a lack of
understanding the changing behaviour of these values. The work describing the
data object lifecycle is already a step in this direction, but lacks support for
understanding the change of the actual values behind the event attributes.

Change detection is highly present in time series data, which refers to the
problem of finding abrupt changes in data when a property of the time series
changes [4]. In terms of process analysis, change detection has been applied to
detect and explain concept drifts. In [2], event attributes are used to explain
concept drifts, such as that a decrease in the age of customers led to an increase
in the prevalence of the email notification activity.
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However, time series change detection accepts only one value per time point,
which requires methods of aggregations when analysing groups, which is the
typical use case in process mining. This leads to information loss and lacks a
detailed representation of the analysed group [4].

To overcome this limitation, statistical tests allow comparing two timestamps
in more detail. For example, the Wilcoxon Signed-rank Test considers all val-
ues of the analysed group and ranks the differences between two timestamps to
answer the question, if there is a statistically significant change [15]. This form
of change detection is popular in the medical domain, where before-after com-
parisons are conducted. For example, [9] compares a laboratory value measured
at inpatient admission and 72 h after that.

In process mining, statistical tests are used to retrieve a variety of insights.
For example, the difference of event durations is assessed between two groups
in an emergency process [12], which is not a before-after comparison, but still
compares the difference of values in two groups. The same holds for process
variant comparison, where the event transition frequency is compared between
two process variants [19].

In this contribution, we propose to use statistical tests to detect changes of
event attributes in the process. In particular, we make use of the before-after
comparison of statistical tests to detect changes of dynamic event attributes
between process activities, which has not been conducted in process mining so
far to our knowledge.

3 Preliminaries

This paper builds on the contribution of Supporting Domain Data Selection in
Data-Enhanced Process Models [11], which starts with an event log. An event
log consists of sequences of events, which are grouped into traces. An event can
have an arbitrary number of additional event attributes. The following definition
is based on [17].

Definition 1 (Event log, Trace, and Event). Let V be the universe of all
possible values and EA be the universe of event attributes. An event e is a
mapping of event attributes to values, such as e ∈ EA → V . The universe of
events is defined as EU = EA → V . If an event e ∈ EU has no value assigned to
an event attribute eAt ∈ EA, it is denoted as e(eAt) = ⊥. A trace t ∈ EU

� is a
sequence of events, and T ⊆ EU

� represents the respective universe of traces, in
which all events are unique. An event log L is a set of traces, so L ⊆ T , where
each trace is unique as well. As events and traces are unique, we say, that two
traces t1, t2 ∈ L belong to the same trace variant tV ar ⊆ L, if the events in the
traces have the same activity ordering and number of events. We refer to TV ar

as the universe of trace variants.

Normally, an event represents an activity which is conducted within a certain
case at a given time, represented by a timestamp. These are treated as regular
event attributes in this contribution, so we assume activity, case, and timestamp.
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The event instances of a given trace are ordered by their timestamp and have
the same case. For simplicity, we assume that the timestamps of events in a trace
are never equal. We further assume, that the data type of one event attribute is
always the same for all events.

Given events ei �= ej in a given trace ti, let ei > ej represent a directly
follows relationship, if ej appears after ei and there does not exist an event ek in
ti which appears between ei and ej . Let ei � ej represent an eventually follows
relationship, if ej appears at any position after ei in ti.

Event attributes can be classified according to their process behaviour, which
is based on [11].

Definition 2 (Event Attribute Classification). Before an event attribute
eAt ∈ EA can be classified, the activities using the event attribute and the
average number of events using it per trace need to be identified.

Given an event attribute eAt ∈ EA in an event log L, the set eAtAct
represents

all activities in which the event attribute is used.

eAtAct
:= {e(activity) ∈ V | e(eAt) �= ⊥, e ∈ t, t ∈ L} (1)

With that, it is known which activities have an event attribute, but it remains
unclear whether an event attribute is changing during the process. Therefore,
eAtAvgTrace

describes the average number of events having the event attribute
per trace. First, the event log is filtered, so that only traces are included which
use the event attribute at least once:

LeAt
= {t ∈ L | (∃e ∈ t)[e(eAt) �= ⊥]} (2)

Then, the average number of occurrences of the event attribute per trace can
be calculated:

eAtAvgTrace
=

∑
t∈LeAt

∑
e∈t[e(eAt) �= ⊥]

|LeAt
| (3)

Three different process characteristics (pc) are defined based on the previ-
ously defined features |eAtAct

| and eAtAvgTrace
.

pc(eAt) =

⎧
⎪⎨

⎪⎩

static, |eAtAct
| = 1, eAtAvgTrace

= 1
semi − dynamic, |eAtAct

| > 1, eAtAvgTrace
= 1

dynamic, |eAtAct
| ≥ 1, eAtAvgTrace

> 1

⎫
⎪⎬

⎪⎭

4 Approach

In this contribution, the goal is to describe the changing behaviour of dynamic
event attributes through a process. To clarify that, Table 1 illustrates an example
event log mimicking a hospital process. Besides the mandatory entries, it contains
laboratory values in the form of event attributes. As these are associated to
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multiple activities and occur multiple times per trace, these are classified as
dynamic event attributes. Thus, these are suited for the analysis steps proposed
in this paper.

Before the approach is presented, we clarify what kind of change we intend
to detect. Our idea is to bring meaning behind the timestamps in the form of
activity names and allow identifying, how activities potentially influence the
values of event attributes. Therefore, we say that an event attribute changes not
if it changes at an arbitrary point of time, but when there is a change in the
values between activities. On top of this, we want to achieve this by considering
all values of the respective activities.

Table 1. Example event log describing a high level hospital process having laboratory
values as event attributes

Case ID Activity Timestamp Bicarbonate value Creatinine value

1 Admit to hospital 1 140 0.7

1 Treat in medical ward 2 200 0.7

1 Discharge patient 3 120 0.8

2 Admit to hospital 1 135 0.6

2 Treat in ICU 2 100 0.6

2 Discharge patient 3 150 0.7

Looking at the example event log in Table 1, there is a difference in the devel-
opment of the Bicarbonate laboratory value, dependent on which ward is visited
during the hospital process. While it increases in the “Treat in Medical Ward”
activity, it decreases in the “Treat in ICU” ward. In the following approach, we
identify these changes not in single traces, but make statements for all traces in
the event log, deriving a common behaviour of dynamic event attributes in the
process.

4.1 The Three Dimensions of Change

In this contribution, a three-dimensional perspective is suggested to identify
changes in dynamic event attributes, which is illustrated in Fig. 1.

The first dimension on the x-axis is the event attribute, because it is the
goal of this paper to understand the behaviour of event attributes. The second
dimension on the y-axis shows all directly follows and eventually follows relations
in the event log, which represent the points of change in the process. Lastly, the z-
axis adds information about changes in trace variants, which provides additional
context to the relation information on the y-axis. This information is important
to preserve the process context, as it might be the case that the process before
and after any relation might have an influence on the behaviour of an event
attribute.

We start formalizing this construct by defining a change detection cube:
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Fig. 1. The three dimensions of change

Definition 3 (Change Detection Cube). We define a change detection cube
(CDCL) for a given event log L ⊆ T as a set of change analysis cells (cac), such
that CDCL := EAL

× DFR+
L × TV arL , where EAL

⊆ EA is the set of event
attributes being assigned a value �= ⊥ at any event e ∈ t, t ∈ L and DFR+

L ⊆ V ×
V is the transitive closure of directly follows relationships, such that it contains
the eventually follows relationships as well. The elements of DFR+

L consist of
the respective activity names, so if ei > ej , (ei(activity), ej(activity)) ∈ DFR+

L

and if ei � ej , (ei(activity), ej(activity)) ∈ DFR+
L . TV arL ⊆ TV ar refers to the

set of all trace variants in L.

A change analysis cell cac ∈ CDCL represents one cell in the cube, such
that cac = (eAt ∈ EAL

, rel ∈ DFR+
L , tV ar ∈ TV arL). One cell in the cube refers

to a single change detection, for example, looking at Table 1, the Bicarbonate
value between the activities “Treat in Medical Ward” and “Discharge Patient”
decreases in a trace variant in which the activity “Admit to hospital” is included.

The idea of analysing three-dimensional data in a cube perspective goes back
to on-line analytical processing (OLAP), where so-called OLAP cubes were intro-
duced, which can be of higher dimensions as well [8]. These allow operations,
which can be applied on the change detection cube:

– Slice: Reduces the cube to a two-dimensional view by selecting a specific value
for one dimension, such as the analysis of all changes for one event attribute

– Dice: Creates a sub-cube where specific values for all dimensions can be spec-
ified, e.g., analyse all changes for a subset of event attributes

– Pivot: Rearranges the dimensions, such that event attributes and relations
swap their axis

– Drill up/down: Changes the level of aggregation in the dimensions, e.g., trace
variants could be merged together

With CDCL defined, each element cac ∈ CDCL refers to a change detection
analysis, which is defined next.

Definition 4 (Change Detection Analysis). Given an event log L ⊆ T with
its respective change detection cube CDCL, we define a change detection analysis
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(CDA) as a function mapping each cac ∈ CDCL to a pair of two values repre-
senting the result of the change analysis, such that CDAL = CDCL → V × V .

The result of the change analysis consisting of a two-value pair is generated
by statistical tests, which are described next.

4.2 Change Detection as a Before-After Comparison

Given a change detection cube CDCL for a given event log L ⊆ T , we propose
to detect changes for each change analysis cell cac ∈ CDCL with its elements
eAt ∈ EAL

, rel ∈ DFR+
L , and tV ar ∈ TV arL . The relation rel in a cell consists

of two activity names (a1, a2) of which the events are in a directly follows or
eventually follows relationship.

To detect changes, we need to derive the respective event attribute values of
eAt for both activities (a1, a2) from the trace variant tV ar ∈ TV arL . For that, we
define a multiset EAVcac for each change analysis cell cac, in which the elements
consist of event attribute value pairs (ei(eAt), ej(eAt)) with ei(activity) = a1,
ej(activity) = a2, and ei(eAt), ej(eAt) �= ⊥, where the traces including the events
ei, ej are in the respective trace variant tV ar ⊆ L. If the respective events are
directly following, we only consider directly follows relations in the traces, as it
could be the case that a trace includes the directly follows relationship and at
some point an eventually follows relationship of both events. Thus, there can be
cases where a separate analysis of directly and eventually follows relations makes
sense, which could be solved by treating these as separate relations in DFR+

L ,
where one is the directly follows and the other the eventually follows relation.

Further, this approach might lead to multiple entries for one case, if the
trace includes loops containing the same directly follows or eventually follows
relationship. This is intended, as we are interested in the changing behaviour
between both activities. However, it could be interesting to investigate the loop-
ing behaviour in more detail, such that a value tends to change in the first
occurrence of the relation, but remains constant after that. This could be imple-
mented by adding a loop index to each change analysis cell, resulting in separate
change analysis cells for each loop iteration. For example, if the relation (a, b)
occurs twice in a trace, one could analyse the changing behaviour for the first
and second occurrence of (a, b) separately.

With EAVcac representing event attribute value changes for a change analysis
cell cac ∈ CDCL, there exist multiple event attribute values for both activities,
given that there are multiple traces related to the change analysis cell. Under-
standing the changing behaviour between two sets of values is a typical use case
in the field of statistical analysis, especially before-after comparisons, e.g., the
comparison of laboratory values between two timestamps [9]. As this approach
investigates the behaviour of directly follows and eventually follows relation-
ships, we can perform such a before-after comparison for each change analysis
cell cac ∈ CDCL.

We will now introduce statistical tests used for comparing event attribute
values in cac ∈ CDCL.
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4.3 Statistical Tests

To conduct statistical tests, two hypotheses need to be provided. First, the null
hypothesis states that there is no difference between two samples. These two
samples are the event attribute values of two activities represented by EAVcac.
Thus, the null hypothesis says, that there is no change in the event attribute
values. The task of the statistical test is to either reject or confirm the null
hypothesis. By rejecting the null hypothesis, the alternative hypothesis, saying
that there is a change in the event attribute values, can be confirmed. We can
never say that there is a change for each sample taken, but provide a probability
that a given result would occur under the null hypothesis [21]. This probability
is the p-value. Thus, the lower the p-value, the lower the chance, that a given
sample is not changing. That is the reason why a significance threshold α is used
to reject the null hypothesis, which is typically 0.05.

If multiple tests are conducted on the same samples, which is the case when
multiple event attributes are analysed for the same relation and trace variant,
α can be adjusted by performing a Bonferroni correction [5]. For example, if
10 event attributes are under analysis, one would divide α by 10, resulting in
α = 0.005. We will not determine a concrete α, but suggest using 0.05 with
the option to apply Bonferroni correction, as the application of the correction
method depends on the analysis goal. For example, if one wants to determine,
if there is no change in any event attribute (universal null hypothesis), the cor-
rection should be applied [5].

Choosing the appropriate statistical test is based on three factors. The first
factor is the event attribute type, which is either continuous or categorical.
We will use the method proposed in [11] to identify the variable type of event
attributes in event logs by comparing the total number of values vs. the amount
of unique values of a variable. Second, the distribution of data is important. As
we cannot make any assumptions about the distribution of each event attribute,
we make use of so-called non-parametric tests. Lastly, the relation between the
samples under comparison needs to be considered, which is either paired or
unpaired. In our case, we have paired samples, because the event attribute val-
ues from both activities come from the same case and are not independent.
Considering these factors, we end up with the Wilcoxon Signed-rank Test for
continuous event attributes and the Stuart-Maxwell Test for categorical event
attributes [20].

Wilcoxon Signed-Rank Test. Given a change analysis cell cac ∈ CDCL with
its event attribute values EAVcac, the Wilcoxon Signed-rank test performs pair-
wise comparison of each element (ei(eAt), ej(eAt)) ∈ EAVcac, given that eAt is
continuous. The test makes use of the Simple Difference Formula, which results
in the difference between the proportion of favourable and unfavourable pairs
RBC = f − u, the so-called matched-pairs rank-biserial correlation, whereas
favourable/unfavourable represent the pairs where the differences have the same
sign (increasing or decreasing) [15]. As we do not test for a specific direction, we
will speak of increasing/decreasing instead of favourable/unfavourable. Table 2
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demonstrates an example, where all pairs in EAVcac are compared according to
their difference in the activities specified in cac. The test calculates each dif-
ference, which is shown in the “Change” column. Dependent on the degree of
change, ranks are assigned, where increasing/decreasing changes are differenti-
ated in the respective column.

Table 2. Wilcoxon Signed-Rank Test example

Case ID Treat in ICU Discharge patient Change Increasing Decreasing

1 150 200 50 5 –

2 140 160 20 3 –

3 100 110 10 1 –

4 150 135 −15 – 2

5 150 180 30 4 –

6 200 185 −15 – 2

As mentioned before, the test considers the rank sums, which are 13 for the
increasing and 4 for the decreasing pairs. RBC is then the relative difference of
both, which is 13/17–4/17 = 0.523. It can take values between −1 and 1, depen-
dent on whether the majority of changes are increasing or decreasing. Thus, it
does not only consider if there is a difference in one direction, but also provides
information about how many of the major changes go into the respective direc-
tion. In combination with a p-value, we can say, that the difference is statistically
significant as well.

The major advantage of this test is its simplicity, with its comprehensible
calculation of the difference between two groups. Additionally, its result is direc-
tional, which automatically identifies an increasing or decreasing behaviour [15].

Stuart-Maxwell Test. If the event attribute eAt is categorical, the Stuart-
Maxwell test, which is also called the Generalized McNemar test, can be used
to identify changing behaviour. In comparison to McNemar, this test can deal
with an arbitrary amount of categories [23]. Tests for categorical variables use
so-called contingency tables, which represent the transition frequency from one
category to the others for before-after comparison. Table 3 illustrates an example
of a contingency table of a variable with three categories. It can be seen, for
example, that there are 100 cases, where the event attribute remains high and
that the event attribute changes from high to normal in 50 cases.

The test checks for so-called marginal homogeneity. Marginal homogeneity
refers to equality between one or more of the row marginal proportions and the
corresponding column proportions [23]. For example, the category high in Table 3
has no marginal homogeneity, because the proportion of the row is different to
the proportion of the column including the respective category (first row(50)
vs. first column(0) without high/high). The test checks this for all categories
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Table 3. Contingency table example

– High Normal Low

High 100 50 0

Normal 0 50 25

Low 0 0 75

and results in a p-value p and a chi-squared value χ2, indicating a change in
the respective variable or not, whereas p provides information about statistical
significance and χ2 gives information about how marginal proportions are not
homogeneous. Thus, the higher the proportion are not homogeneous, the higher
the change in the categories. The exact calculation will not be covered in this
paper, but is conducted as described in [23].

The results of the statistical tests of each change analysis cell cac ∈ CDCL

will be represented as a change detection analyses, such that CDAL(cac) = (p, t),
where the test-statistic t is RBC for continuous event attributes and χ2 for
categorical event attributes.

4.4 Connecting Continuous and Categorical Event Attributes

The differentiation between continuous and categorical event attributes enforces
a separate analysis of both. Nevertheless, some event attributes might be con-
nected to each other. A categorical event attribute could describe different states
for a continuous event attribute, such as being high, normal, or low. A promi-
nent example are laboratory values, which have these states in addition to their
plain value. Thus, there is one attribute for the continuous laboratory value
and another one for the categorical laboratory value in the event log. Another
example are sensor data, such as temperature measurements etc. Thus, we pro-
pose to connect continuous and categorical event attributes by creating a link
between change analysis cells cac ∈ CDCL. This allows to identify, whether
a changing behaviour in a continuous event attribute is also represented in
the respective categorical event attribute and the other way around. Thus, we
define EACL = CDCL → CDCL as an event attribute connection, linking the
respective change analysis cells. If there exists no connection, we denote that as
EACL(cac) = ⊥.

The linking has to be performed manually, as we do not know of any stan-
dardized naming of event attributes in event logs. For example, one could name
them equally and assign a variable type to them, which would make the connec-
tion trivial.

Next, the proposed approach is evaluated on a real-world healthcare data
set, derived from the MIMIC-IV database.
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5 Evaluation

The proposed approach was implemented in Python with the help of the PM4Py
framework1 [7]. The relevance of this approach is illustrated in a medical environ-
ment, where we generated an event log from the Medical Information Mart for
Intensive Care IV (MIMIC-IV) database. The reason for choosing this database
is its richness of data, allowing to generate event logs with multiple dynamic
event attributes.

5.1 Dataset

MIMIC-IV is a relational database including hospital processes of different
patients, with procedures performed, medications given, laboratory values taken,
image analysis conducted, and more. Its purpose is to support research in health-
care and is therefore publicly available [14].

The event log extracted from MIMIC-IV incorporates a high-level process,
describing department visits of patients during their hospital stay, such as emer-
gency department or intensive care unit (ICU). The event log contains 3447 hos-
pital process instances with 13795 events of acute kidney failure (AKF) patients.
AKF was chosen together with a medical expert, because of its high prevalence
and its measurable disease progression by kidney specific laboratory values.

For each department visit, the event log provides up to 62 event attributes,
including laboratory values and demographic information. 56 event attributes
represent laboratory values, which are classified as dynamic. 28 dynamic event
attributes are continuous and 28 are categorical. The categorical laboratory val-
ues store information about abnormality of the respective continuous value.
Thus, we present an event log with multiple dynamic event attributes being
on different scales with a balance between categorical and continuous event
attributes.

5.2 Results

We applied the proposed approach on the event log introduced above. The result-
ing change detection cube CDCL can be explored with our artefact. The artefact
supports the proposed OLAP operations (Slice, Dice, Pivot, and Drill up/down),
where we decided to always slice the cube to enable the exploration of the change
analysis results. Therefore, we end up with a two-dimensional event attribute
change matrix. Figure 2 illustrates an arbitrary view of CDCL, showing a sub-
cube with continuous event attributes chosen together with the medical expert
and relations having the most changes. The cube was sliced and drilled down
to represent all trace variants. Further views, which also consider trace variants,
are provided in the already mentioned GitHub repository.

Each cell in the matrix represents one change analysis cell cac ∈ CDCL and
the number inside displays the test-statistic of the change detection analysis

1 https://github.com/jcremerius/Change-Detection-in-Dynamic-Event-Attributes.

https://github.com/jcremerius/Change-Detection-in-Dynamic-Event-Attributes
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Fig. 2. Change Detection Analysis, illustrating an Event Attribute Change Matrix
with the significant event attribute changes and a detailed view of one cell with the
connection to the respective categorical event attribute.

CDAL(cac), which is the RBC value for continuous event attributes. The colour
of the cell illustrates the change direction, where blue is decreasing and red
is increasing. The cell is blank, if there is no statistical evidence for a change
according to the given significance threshold α, which is 0.05 in this case.

The transition between the department visits is shown as relations on the
y-axis of the matrix. Emergency department is not listed, as it does not contain
any dynamic event attributes. The matrix shows, that the laboratory values
change differently dependent on the patient’s progress through the hospital. For
example, we observe no value changes of creatinine between pre-ICU and ICU
treatment, whereas it decreases after the ICU stay significantly. On the other
hand, the values of calcium tend to decrease in the ICU and increase after that.
The developed artefact allows displaying significant changes in a process model,
which is shown in Fig. 3, presenting significant changes of calcium.

One can also analyse a change analysis cell in more detail by clicking on
it in the matrix, which is shown in Fig. 2 on the right-hand side, where the
cell marked with the black box is selected. The figure shows the test results in
more detail and illustrates the event attribute connection EACL, where the cell
of the continuous event attribute “Creatinine” is connected to the respective
categorical event attribute “Abnormal Creatinine”. The graph nodes show the
respective categories, which are “abnormal high” and “normal”. The arrows are
annotated with the amount of samples changing their state. As the degree of
change is high with 21% from “abnormal high” to “normal”, the categorical test
ended up with a p-value so close to 0 that it is displayed as being 0. This shows
the importance of the test-statistic, because the p-value only says, that a change
is present, but not how high the degree of change is. Thus, the change in the
continuous event attribute results in a change in the categorical event attribute
as well.

To verify the attribute value changes, we looked into medical literature and
asked a medical expert for consultation. Urea nitrogen and creatinine are estab-
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Fig. 3. Directly-Follows Graph enhanced with event attribute changes. The edge labels
show the event attribute name with its RBC value and sample size. The colours illus-
trate the value direction, where blue is decreasing and red is increasing. The ends of
the edges show the mean value of the event attribute at the respective activity. (Color
figure online)

lished parameters for renal recovery and are expected to decrease after ICU
treatment [22]. Additionally, bicarbonate use in the ICU for treatment of anion-
gap metabolic acidosis avoids the need for dialysis, which is generally the first-
line therapy for acidosis [13]. That explains the increase of bicarbonate and the
decrease of anion gap after ICU treatment. The value behaviour of calcium is
an interesting observation, as it decreases in the ICU and increases after that,
resulting in no significant change between pre-ICU and post-ICU treatment.
Together with the medical expert, we found out, that decreased calcium levels
(Hypocalcemia) are expected in ICU patients [3], which explains that develop-
ment. Other attributes not being shown in Fig. 2 were also discussed, such as the
glucose value, which did not make much sense, as it tends to change frequently.
These attributes require a more fine granular process to make sense for observa-
tion through a process. However, the event attributes mentioned above do not
tend to change frequently and can be compared department wise.

Another observation was, that patients visiting surgical departments have
a stronger tendency to value changes in anion gab, bicarbonate, and calcium,
represented by a higher RBC value, which could also be confirmed by the medical
expert.

This presentation shows, that dynamic event attribute changes with their
direction of change can be identified, allowing to derive additional insights out
of data stored in event logs.

6 Discussion

This paper proposes an approach to detect changes in dynamic event attributes
through the process by applying statistical tests on event attributes, relations,
and trace variants. With that, we provide a method to analyse the behaviour of
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dynamic event attributes and allow identifying in which activities value changes
occur.

We have shown an example use case in the healthcare domain and could
confirm expected laboratory value behaviour, which was evaluated with a med-
ical expert. As statistical tests are broadly accepted in the medical domain, it
was possible to explain how we detect changes to the medical expert, who could
understand the p-value and test statistics. We discussed, that a more fine gran-
ular process could bring additional insights, such as the comparison of different
treatment paths and their laboratory value developments, allowing to evaluate,
if different treatment activities have different effects on the patient’s state.

However, we see potential for other application domains and do not want to
limit the application to the healthcare domain. For example, other data intensive
processes, such as manufacturing processes with sensor data, like temperature
or vibration, could be of interest when looking at different manufacturing steps
of one or multiple machines.

This contribution suggests identifying changes in three dimensions, which
leads to a high amount of statistical tests conducted. Thus, we see one limi-
tation in the exploration of changes, which is so far solved by looking at the
statistical significant changes only from a two-dimensional perspective. Loops
bring more complexity as well by adding more trace variants and relations when
one is interested in comparing different loop iterations. Therefore, other per-
spectives or methods reducing cognitive load could be more suitable for different
use cases. For example, when analysing loops, one could cluster the respective
loop iterations according to their changing behaviour. The same holds for trace
variants, which could be clustered as well.

Furthermore, the changes could be described in more detail by considering
other aspects, such as time, resources, or other event attributes. For example,
the longer one activity takes, the higher the difference between activities or the
other way around. Additionally, changes in event attributes could be correlated
with each other, such as creatinine and urea nitrogen in the evaluation.

The usage of statistical tests enables a detailed analysis of two samples, but
requires a sufficient sample size as well. In general, the higher the sample size,
the better the expressibility (power) of the test. Additionally, these tests cannot
say that there is a guaranteed change for any given process instance, but can
only give an indication that there is a non-random change in the given samples.
Thus, there are almost always cases showing a changing behaviour and others
do not. Understanding why some change and others do not is also not covered
by us.

It should also be noted, that the statistical tests detect changes which go into
one direction, such as from normal to high, resulting in a different distribution
of the categories or continuous values. However, when we have changes in both
directions, such as 50 from normal to high and 50 from high to normal, the
marginal proportion is the same and no change would be detected. The same
holds for continuous tests, where the RBC value would be close to 0 in this
case. As the goal of this paper is to derive a common behaviour of dynamic
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event attributes in the process, this property suits us well. However, it might
be interesting to investigate this kind of change and derive characteristics of
increasing and decreasing cases.

In general, we see different use cases for change detection in dynamic event
attributes. Besides exploring changes, one could also use this method to derive
interesting variables for time-series machine learning tasks, such as process out-
come prediction, by identifying process sensitive event attributes. Additionally,
the changing behaviour could be used as a feature for decision mining, trace
clustering or concept drift detection.

7 Conclusion and Future Work

This contribution researches methods to detect changes in dynamic event
attributes from a three-dimensional perspective, represented as a change detec-
tion cube. This allows to understand the process behaviour of their actual values,
as it can be seen between which process activities the values change. We see this
method as a step forward to connect data-science with process science, allowing
an even more comprehensible analysis of the data represented in event logs.

Future work could focus on enhancing the methodology by explaining the
changes in more detail, for example, the correlation with other event attributes,
such as time, or deriving characteristics of changing and non-changing cases.
Additionally, other dimensions of change could be researched and evaluated
regarding their suitability for different use cases. Lastly, the analysis of loop-
ing behaviour and trace variants could be improved by applying clustering, for
example.
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