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Preface

This volume contains all papers presented at the BPM Forum of the 20th International
Conference on Business Process Management (BPM 2022), held during September
11–16, 2022, in Münster, Germany. Similarly to previous years, the BPM Forum hosted
innovative research contributions characterized by their high potential to stimulate
interesting discussion and scientific debate, although not yet reaching the rigorous
technical quality criteria required to be presented at the main conference. In this sense,
the BPM Forum papers characterize themselves by novel ideas about emergent BPM
topics. This year, the conference received a total of 114 submissions, out of which 97
entered the review phase. The review process for each paper involved at least three
Program Committee members and one Senior Program Committee member. In the end,
23 papers were accepted, and 13 papers were invited to the BPM Forum (the latter being
compiled in this volume).

BPM 2021 offered a hybrid attendance mode, allowing participants to attend the
conference online or physically, thus providing the opportunity to connect again in
person. BPM 2022 strived for a full in-person celebratory 20th anniversary conference,
flanked by amultitude of events, such as the Blockchain, CEE, andRPA fora, workshops,
tutorials, and wonderful social events, that provided the opportunity for networking and
exchanging the latest research ideas. We would like to express our gratitude to Jörg
Becker as the General Chair of BPM 2022, together with the Organizing Committee
Chairs Katrin Bergener and Armin Stein and their group. The Münster team did an
invaluable job in planning and organizing an unforgettable conference, especially in
light of the still challenging times we are living in, with the high degree of uncertainty
this also adds to the organizational tasks.

We also thank the members of the Program Committees and the external reviewers.
They made a rigorous and extensive review procedure possible and thus enabled
the high-quality research output reflected by the papers in both the main confer-
ence and BPM Forum proceedings. Finally, we acknowledge our sponsors for their
support in making BPM 2022 happen: Celonis, SAP Signavio, and MR.KNOW as
platinum sponsors; cronos, Provinzial, and viadee as bronze sponsors; and Deutsche
Forschungsgemeinschaft (German Research Foundation, DFG), Springer, the Univer-
sity of Münster, and the European Research Center for Information Systems (ERCIS)
as academic sponsors.

September 2022 Claudio Di Ciccio
Remco Dijkman

Adela del Río Ortega
Stefanie Rinderle-Ma
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Why Do Banks Find Business Process
Compliance so Challenging? An Australian

Perspective

Nigel Adams(B), Adriano Augusto, Michael Davern, and Marcello La Rosa

University of Melbourne, Melbourne, Australia
naadam@student.unimelb.edu.au,

{a.augusto,m.davern,m.larosa}@unimelb.edu.au

Abstract. Banks play an intrinsic role in any modern economy, recycling cap-
ital from savers to borrowers. They are heavily regulated and there have been a
significant number of well publicized compliance failings in recent years. This is
despite Business Process Compliance (BPC) being both a well researched domain
in academia and one where significant progress has been made. This study seeks
to determine why Australian banks find BPC so challenging. We interviewed 22
senior managers from a range of functions within the four major Australian banks
to identify the key challenges. Not every process in every bank is facing the same
issues, but in processes where a bank is particularly challenged to meet its com-
pliance requirements, the same themes emerge. The compliance requirement load
they bear is excessive, dynamic and complex. Fulfilling these requirements relies
on impenetrable spaghetti processes, and the case for sustainable change remains
elusive, locking banks into a fail-fix cycle that increases the underlying complex-
ity. This paper proposes a conceptual framework that identifies and aggregates the
challenges, and a circuit-breaker approach as an “off ramp” to the fail-fix cycle.

1 Introduction

Banks play an intrinsic role in any modern economy, they recycle capital between savers
and borrowers and are tightly regulated. In the last five years, Australian regulators have
highlighted multiple compliance issues, particularly among the four major domestic
banks, many of which are business process related. This has led to: i) a Royal Commis-
sion [15]; ii) regulators issuing penalties exceeding A$2 billion1; iii) tightening execu-
tive accountability(See footnote 1); iv) more than A$8 billion in remediation costs and
a significant investment in compliance resources2; and v) the resignation of three CEOs
and two Chairmen of these banks.

It is not just Australian banks that struggle. Since 2008, US banks have been fined
$243bn for compliance-related events and the global cost of compliance for financial
services firms is equivalent to an 8% tax3.

1 https://www.austrac.gov.au, https://www.apra.gov.au.
2 https://home.kpmg/au/en/home.html, https://www.robertwalters.com.au.
3 https://www.ascentregtech.com/blog/the-not-so-hidden-costs-of-compliance/.

c© Springer Nature Switzerland AG 2022
C. Di Ciccio et al. (Eds.): BPM 2022, LNBIP 458, pp. 3–20, 2022.
https://doi.org/10.1007/978-3-031-16171-1_1
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4 N. Adams et al.

Academic interest in the field of business process compliance (BPC) traces its roots
back to corporate scandals at organizations such as Enron, HIH, AIG, Lehmann Broth-
ers and Société Générale along with the ensuing legislative changes (e.g., Dodd-Frank,
Sarbanes-Oxley) at the turn of the millennium. The overarching challenge for BPC is
to capture compliance requirements and check that business processes are operating in
line with these requirements. This implies a need to evaluate processes throughout the
BPC lifecycle: at design-time, run-time, and post-execution [14]. While research efforts
have focused on automating BPC, and significant progress has been made, there are still
several research gaps [14] and BPC is still highly manual and time consuming.

In this setting, this paper investigates the reasons why banks struggle to keep up with
BPC. We focus on the Australian banking context, and then discuss how the findings
are generalizable to other banking contexts.

To this end, first, we conducted a series of semi-structured interviews on BPC and
its challenges. Next, following the Gioia methodology [12], we thoroughly analyzed the
interview transcripts to identify factors inhibiting BPC. The interviews were conducted
with participants drawn from the four major Australian banks, namely Australia and
New Zealand Banking Group, Commonwealth Bank of Australia, National Australia
Bank, and Westpac Group. The participants had backgrounds in Operations, Risk &
Compliance, Technology, and Process Excellence.

In light of the above, this paper contributes a conceptual framework that identifies
and aggregates 23 concepts capturing various challenges emerging from the interviews
into seven key themes, which are further grouped into three aggregate dimensions.
These dimensions are symptomatic of a fail-fix cycle that is entangling the banks. Based
on this, the paper further suggests a circuit-breaker approach to address this cycle.

The remainder of this paper is structured as follows. Section 2 provides background
to the study, including the regulatory context for Australia’s major banks and the rel-
evant BPC literature. Section 3 outlines our research methodology, results, and analy-
sis. Section 4 discusses our findings while Sect. 5 presents the limitations of the study.
Section 6 concludes the paper and discusses avenues for future work.

2 Background and Related Work

To address our research question, an understanding of both the BPC literature and the
Australian banking context is required. Here, we provide a summary of both.

2.1 Business Process Compliance

BPC is a well researched area. A BPC solution comprises multiple elements, each with
a range of techniques proposed in the literature. At its core a BPC solution must demon-
strate: an ability to capture requirements [8]; an approach and a language to formalize
the rules [11,13]; an approach to represent the process [4,24]; a technique to check
compliance between the process and the rules [9,19] with regards to different process
perspectives [17]. There are also a range of supporting features that enhance BPC’s
value such as: business reporting [24]; violation handling [22]; feedback and root cause
analysis [25]; and change handling [21]. Most contributions focus on one or more of
these elements at a specific stage of the BPC lifecycle: design-time; run-time; and post-
execution (i.e., auditing) [14].
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Framework-oriented solutions provide the backbone for BPC efforts [14] and cover
a broad spectrum, from enterprise-wide, high-level risk management frameworks (e.g.,
COSO) to industry and function specific frameworks (e.g., Basel accords) to frame-
works that aim to solve a specific piece of the BPC puzzle, e.g., a taxonomy-based
framework in [26], or an evaluation framework in [20].

Managing BPC at design-time is a preventative strategy, concerned with ensuring
that processes comply with relevant rules and regulations prior to execution – either dur-
ing the design-process [13] or post-design but pre-execution [23]. Debate has centred
on approaches and languages that are expressive enough to handle the range and com-
plexity of compliance requirements [13] but are seen to be technically complex, and
those languages that are more business-user friendly (e.g., pattern-based approaches)
but potentially lack some of the expressiveness [11]. A range of techniques have been
used to represent the process, such as Petri nets, UML diagrams, BPEL models, how-
ever, BPMN models are becoming the most popular in industry.

Run-time methods verify compliance during the process execution, and typically
address aspects of BPC that cannot be verified and validated at design-time, e.g., “segre-
gation of duties” and “deadlines for completion” requirements [22]. Proposed solutions
fall into two broad categories: reactive, where compliance verifies progress-to-date [22];
and proactive monitoring, where progress-to-date knowledge is used to predict com-
pliance outcomes [18]. While there are a range of techniques to capture the run-time
process data, event streams are becoming the dominant approach [18,22]. However,
this is challenging for processes producing sparse event streams, and computationally
complex for processes producing large amounts of events in a short time.

Auditing is a post-execution strategy, traditionally both manual and based on sam-
pling, there is now a shift to continuous auditing. Some of the auditing approaches
covered in the BPC literature are based on process mining (PM) techniques [9,25,27],
these techniques benefit from reviewing a population of transactions instead of a sam-
ple. Database-driven solutions have also been proposed [1,16]. As a detective control,
auditing does not prevent compliance breaches, but can be useful to inform process
enhancements and also assess the impact of changed requirements.

While much progress has been made in BPC research, there are outstanding chal-
lenges to apply the techniques in real world scenarios [6,14]. There is a recognition
that the goal of automating BPC may be out of reach, with the focus now shifting to
facilitation rather than full automation [5].

2.2 Australian Banking Context

There are 98 banks operating in Australia, controlling A$5.2 trillion of assets4. The
four major banks account for 74% of these assets. Over the last five years, multiple
compliance breaches have been made public, highlighting a range of challenges the
banks face in trying to maintain process compliance.

The findings of the Royal Commission and other regulators include: the extent of
legislation banks are subject to; the difficulties banks have both understanding and
interpreting them; blurred lines of accountability and bureaucratic decision-making;

4 https://www.apra.gov.au.

https://www.apra.gov.au
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the extent of processing and administrative errors (A$239m repaid in mortgages alone);
poor processes; the age and complexity of product systems; a reactive approach to oper-
ational risk management and inability to detect systemic issues; a reliance on manual,
detective controls that do not operate end-to-end; issues not addressed in a timely man-
ner; trade-offs between funding compliance initiatives versus other initiatives; and an
inability to “join the dots” [2,3,15,28].

3 Methodology, Results, and Overview

In this section, first, we introduce the Gioia methodology [12] and discuss how we
applied it to the context of this study. Then, we report the results we obtained and
provide a broad overview before discussing the results in depth in the next section.

3.1 Methodology

In this study we applied the Gioia methodology [12], given its ability to bring “qualita-
tive rigor” to the conduct and presentation of inductive and abductive research. It pro-
vides guidelines to create a conceptual data structure comprising 1st Order Concepts
directly extracted from a set of interview transcripts, then analyzed and consolidated
into 2nd Order Themes, and finally distilled into Aggregate Dimensions. Specifically,
we executed the Gioia methodology by completing the following seven steps.

1. Develop Interview Protocol. First we developed an interview protocol to conduct
the interviews. Development of the protocol was informed by a review of the BPC lit-
erature and enriched by an understanding of the banking context. It started with three
introductory questions which sought participants views on what BPC meant, the impact
of the recent regulatory issues, and which teams were impacted. The heart of the inter-
view focused on: examples of the BPC issues the participants experienced, what they
would do in hindsight, how they thought the issues could be prevented, how they would
measure BPC performance, and the role they thought process mining could play to
address the issues.

2. Select Interviewees. The industry participants in this study (i.e., the interviewees)
were drawn from the authors’ network. 54 potential interviewees were approached and
22, one-hour, semi-structured interviews were conducted. The interviewees were pre-
dominantly Senior Managers, Heads of, and General Managers within the relevant orga-
nization. All had banking experience in the last five years with at least one of the four
major Australian banks. The average banking tenure (including international banking
experience) was 17 years, and half of the participants had worked for more than one
of the banks. Each of the banks was represented by at least five interviewees who had
worked there. The interviewee profile is shown in Fig. 1.

3. Conduct and Transcribe Interviews. We sent a Plain Language Statement to par-
ticipants prior to their interview, to provide them with context. All the interviews were
conducted over Zoom calls, between June and December 2021. Initial pilot interviews
were conducted with eight industry participants, to validate the line of questioning.
Each recorded interview was subsequently de-identified and transcribed.
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4. Code Transcripts. The interview transcripts were imported into Nvivo and a word
frequency count was run on the interviewees’ responses to identify key terms based
on both exact and stemmed word matches. The results were mixed. Some of the most
frequently used terms had ambiguous meaning. For example, the word “end” was fre-
quently referenced regarding end-to-end process – a salient term in this study, but it was
also used as a figure of speech, e.g., “at the end of the day”, “the end result”.

Fig. 1. Interviewee Profile

Hence, while the automated word frequency functionality provided some insight,
its usefulness was limited to providing a base list of frequently used terms. This was
addressed by manually coding the derived list of terms to each paragraph of the pilot
interview transcripts, where they were used in the relevant context. The terms were also
enhanced with participant-used synonyms. The result of this step created 152 codes,
with some paragraphs associated with as many as 22 codes.

The remaining 14 transcripts were subsequently coded. During this process an addi-
tional 17 terms were identified and added as new codes. No new codes were added for
the last three transcripts suggesting saturation had been reached. Each transcript was
coded to between 100 and 121 codes, with an average of 111 codes. The number of
references per transcript ranged between 401 and 734 with an average of 511.

5. Develop 1st Order Concepts. Following the initial coding, we then derived the 1st

Order Concepts through an iterative process. The 152 codes were consolidated by rely-
ing on the available data and the expertise of the authors of this paper. The first task was
to consolidate terms into synonymous concepts. For example, terms such as “audit”,
“QA, QC” were consolidated with terms like “controls” and “checks”. The results were
reviewed by two co-authors, who provided suggestions for refinement, and then another
iteration would start – until no other changes were proposed. This iterative approach
exposed two main concerns. First, some terms were applicable in a range of contexts,
e.g., the most frequently used term was “process”, but depending on the context it could
refer to process design, a specific banking process such as mortgage lending, or process
mining. Second, not all references to a term were indicative of a BPC challenge, e.g.,
some interviewees referred to a term in a favorable light. Taking these points into con-
sideration, further iterations resulted in the terms being consolidated into 23 1st Order
Concepts.
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6. Validate Coding. To validate the coding, four transcripts were randomly chosen and
coded separately to the 1st Order Concepts by two authors. Only the interviewee’s com-
ments that referred to a concept as a challenge were coded. The results were compared
for consistency, calculating the Cohen Kappa Coefficient (CKC) for each transcript [7].
The CKC measures inter-rate reliability allowing for chance agreement. The resulting
CKC, for each of the four transcripts, was between 90% and 93%, suggesting that there
was a high degree of consistency.

The few mismatches mainly related to the authors’ different expertise and back-
ground. A final round of validation was undertaken by the remaining two authors of
the study. In this case, they reviewed selected text extracts for each of the 1st Order
Concepts.

7. Develop 2nd Order Themes and Aggregate Dimensions. The final stage to generate
the output data structure was to derive the 2nd Order Themes and Aggregate Dimen-
sions. To do so, we followed an iterative process that leveraged the industry experience
of the first author5 alongside existing theory and literature.

3.2 Results

We describe the results in three layers: 1st Order Concepts, 2nd Order Themes, and
Aggregate Dimensions. We begin with a description of the 23 1st Order Concepts, and

Table 1. Resulting Data Structure from our analysis. The last two columns respectively report
the references per concept and the number of interviewees referencing a concept.

1st Order Concepts → 2nd Order Themes ⇒ Aggregate #

Dimensions Ref. Int.

Complex Model → Dynamic &
Complex Ecosystem

⇒ Complex & Dynamic Requirements Load 72 21

Regulatory Pressure Intensifying → 84 18

Disruptive Competition → 19 10

Frequently Changing Direction → 22 9

Multiple Requirement Types → Complex
Requirements

30 20

Translating Ambiguous Requirements → 37 14

Conflicting Objectives → 64 19

Inflexible, Disconnected Legacy Technology → Disjointed & Disparate
Process Foundations

⇒ Impenetrable Spaghetti Processes 71 21

Data Oasis, Information Mirage → 66 17

Fragmented Processes → 72 19

Inadequate & Ineffective Support → Hard to Follow
Processes

61 16

Too Many Exceptions → 38 17

“Band-Aids”, Patches & Workarounds → 51 19

Huge Scale → Resource Intensive
Processes, Prone to Fail

18 12

Partial Automation Relies on People → 72 21

Layers of Flawed Controls → 106 21

Lack of Knowledge & Experience → 117 20

System Monitored Not Processes → Decision-Making
Blind Spots

⇒ Elusive Case for Sustainable Change 29 13

Impaired Line of Sight → 92 20

Change Execution Credibility → 82 20

Short-Sighted Investment → 43 14

Unclear Accountability → Cultural Headwinds 86 20

Tick-the-Box Culture → 78 20

5 The first author is a former Senior Executive of two of the four banks studied, with more than 15 years of experience.
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then discuss how we aggregated them into the 2nd Order Themes and the Aggregate
Dimensions. The data structure summarizing our results is reported in Table 1.

1) Complex Model. The banking business model is complex. There are a large number
of products and services offered through multiple channels to a wide-range of customer
segments across multiple jurisdictions, which are organized around multiple business
units as part of an ecosystem dependent on many and varied 3rd party stakeholders. It
is not just the dimensions of the model but the interconnected web that they form, e.g.,
products and processes that cut across organizations, business units and segments, and
that are largely invisible and intangible. This complexity translates into a significant
number of requirements that must be captured in process design.

2) Regulatory Pressure Intensifying. Interviewees focused on the changing nature
of regulatory relationships, larger fines, more requirements and increasing scrutiny, or
as Interviewee-1 put it: “[...] it’s just a wave after wave of regulation”. Interviewees
also referenced: the cost of compliance impacting competition; the regulators’ product
knowledge limitations; the fact that the burden of compliance is being felt directly by
customers; the expanding role banks are expected to play helping police financial crime;
and the perception that the regulatory relationship with the banks is adversarial, whereas
a more collaborative approach is required to address many of the industry’s issues.

3) Disruptive Competition. Changing industry dynamics are also creating more
requirements. New players are not burdened by inflexible technology, are far more agile
– introducing new products and features at a faster rate – and in some cases are more
lightly regulated. This is seen to present a cost advantage to non-bank participants but
an increase in risk to the overall system.

4) Frequently Changing Leadership and Direction. Staffing, structure and strategy
changes, particularly at senior leadership levels, create work. It is not restricted to major
changes but also more routine business decisions such as individual leaders changing
roles, reducing project budgets or changing their risk appetite. These lead to a change
in objectives, projects being re-scoped in-flight and resources re-distributed.

5) Multiple Requirement Types. In terms of the types of requirements that must be
fulfilled, the initial response, for almost all participants, was to focus on regulatory obli-
gations and requirements. However, follow-up questions revealed that there are many
other types of requirements: industry codes of practice and standards; business policy;
contractual obligations; and, of course, customer requirements. Variation also affects
the necessity of a requirement (e.g., mandatory or “nice to have”), as well as the conse-
quences of failure (e.g., a significant fine or an adverse performance indicator).

6) Translating Ambiguous requirements. The way requirements are communicated is
not always clear. They can be contradictory, duplicated, written in ambiguous language
subject to both interpretation and translation, e.g., “We need to do the right thing”. In
some cases the requirements are not known or not communicated.

7) Conflicting Objectives. Interviewees referenced the focus on sales, responsiveness,
service level agreement targets (SLAs), cost efficiencies, and meeting the needs of
investors first as higher priorities than quality or compliance. Even the threat of larger
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fines is perceived to be insufficient to change the mindset. There is also conflict between
different teams in a bank highlighted by Interviewee-2: “[...] we’re supposed to be inno-
vative [...] but the brakes are put on by the compliance guys”.

8) Inflexible, Disconnected, Legacy Technology. The technology environment com-
prises a multitude of in-house built systems and others sourced from multiple vendors.
They are heavily customized, do not integrate easily, and are hard, slow and expensive
to change, or as Interviewee-18 put it: “We are sort of bound by the legacy system. To
make a simple change in the system, it is quite difficult.”Whereas Interviewee-5 stated:
“[As a roadblock] the one that springs to mind straightaway is integration. Our tech-
nology architecture is far from simple. There’s bits and pieces logged [sic] all over the
place.” Interviewees also referenced individual processes dependent on 30 applications
and a technology landscape with hundreds of disconnected systems.

9) Data Oasis, Information Mirage. While there is no shortage of data, classifying it
and accessing it, particularly at the right level of granularity, is not easy and there are
also integrity issues such as: duplication, blind-spots, missing data, or data getting lost
during migrations. Without unique identifiers and standards such as naming conven-
tions, data does not flow easily between technology assets and processes, and stitching
it together is expensive and time consuming.

10) Fragmented Processes. Processes are seen as something that occur within a func-
tion, not end-to-end. As the organization changes, the process boundaries also change.
Over many years this has led to significant fragmentation with bits of processes dis-
persed across many teams and limited understanding of how the component parts fit
together. Interviewee-8 stated: “[...] we’re constantly breaking up our processes to fit
with a design that’s based around where people work, not what they do”.

11) Inadequate & Ineffective Support. “They’ve got really complicated checklists that
they just don’t use.” (Interviewee-6) is one reference to the inadequacy of the tools and
documentation process participants are working with. Others include: process models
developed by people with limited process modeling skills, documentation that does not
exist, is not maintained or only covers the “happy path”. In other cases, process maps
are documented for the regulators, not for the teams operating the processes, or as an
overlay, not an integral part of the process. Interviewee-11 commented: “I know banks
spend a heap of time and heap of budget on documenting processes. But if you ask the
average person on the ground, they would say they’re not documented.”

12) TooMany Exceptions. Referring to a lending process, Interviewee-14 commented:
“You thought you had a 70% STP [straight-through-processing rate]. The reality is you
had 3% because the other 97% were taking one of the 56,000 variable pathways”.
The exceptions are typically driven by customizing siloed applications and insufficient
project funding or a need to meet a customer request quickly. Exceptions are also intro-
duced based on local considerations, e.g., the degree of latency or staff trying to navigate
an easier path through the process.

13) “Band-Aids”, Patches & Workarounds. Years of under investment and constant
tweaks, tinkering and point solutions have left processes strewn with workarounds,
patches, bottlenecks and hand-offs. With a “don’t fix’til it’s broken” mindset
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(Interviewee-10), the ensuing urgency leads to more patches and workarounds. It also
contributes to high rework rates and errors as the processes do not flow smoothly. Inade-
quate workflow was raised by multiple interviewees. Some refer to a workflow based on
email and collaboration tools, others comment that only part of the end-to-end process
has been workflow-enabled, negating the benefit.

14) Huge Scale. While the scale varies by process, the high volume of time-critical
transactions is frequently referenced, e.g. payments. Seasonality effects are also preva-
lent. It is not just high volumes; interviewees referenced the number of staff – between
30,000–50,000 per bank, instances of putting hundreds of risk controls, and concurrent
onboarding of 90+ new employees into a single team.

15) Partial Automation Relies on People. High-volume processes are only partially
automated, resulting in a significant number of manual, repetitive tasks. It is not just the
higher likelihood of errors, but the ability to absorb the degree of change and the lack of
audit trails/visibility that prove challenging. Interviewees see automation as a cure-all.

16) Layers of Flawed Controls. The second most referenced concept, adding more
controls is seen as the response to any problem. Many controls are after-the-fact and
manual, many are flawed (e.g., 4-eye checks), many rely on sampling. Some are so
complicated that they are not applied and the layering of controls mean that many are
never activated. The lack of preventative controls is attributed to the fact they would
slow the process down by multiple interviewees.

17) Lack of knowledge & experience. The most frequently referenced 1st Order Con-
cept is driven by: a loss of knowledge and experience as long-tenured staff leave; the
narrowing of focus to learn discrete tasks instead of the end-to-end process; the diffi-
culty in attracting talent to work with legacy technology; the time it takes to train new
people (up to twelve months); and the workload pressure the teams face.

18) Systems Monitored, Not Processes. Business activity monitoring and systems
monitoring are referenced by multiple interviewees, but while they may trigger alarms
in terms of queue depth and system performance they provide no indication of pro-
cess performance. Interviewee-3 commented: “So most of our [operational technology]
monitoring has a focus on system health and availability [...] in terms of monitoring
actual processes, we don’t really have that in place.”

19) Impaired Line-of-Sight. Metrics and reporting do not link business outcomes to
process performance and systems events. Different teams look at different metrics, with
different objectives, hence decision-making is challenging. Some interviewees believe
the data is there, but it has never been considered important enough to extract. Some
assert the data exists but does not translate into decision-making information. It is not
just about availability, but also about actionability for real-time decision-making.

20) Change Execution Credibility. With processes so dispersed and so many stake-
holders, getting buy-in, managing the various self-interest groups and capturing require-
ments up front is challenging. Communicating the change and the implications are also
seen by interviewees as gaps. Interviewees referenced projects running over budget and
then being re-scoped, typically leading to more workarounds. More worryingly were
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“improvement” projects that made things more complicated, unwittingly removed key
controls, did not deliver or did not actually fix the problem. As Interviewee-19 noted:
“I’ve been here 11 years and I have not known one [of 20 projects] fix the problem
statement that we need to fix.”Given the change process can be slow, unofficial, shadow
change processes also play a role – which leads to more tinkering.

21) Short-Sighted Investment. The reason for not progressing the business case is
typically referenced as: the investment is too high, the time to make the changes too
long, the benefits and potential value are unclear and too far in the future when results
are needed now. In other words, the sustainable, strategic business case does not stack
up relative to the alternative of more FTEs (Full Time Equivalent resources), patches
and remediation. Interviewee-11 added an additional insight: “Senior leaders [...] want
to work on the strategic stuff. I’m not sure processes are seen as strategic enough.”

22) Unclear Accountability. Accountability is confused, particularly with regards to
the three lines of defense model. One incident referenced involved an account owner,
an ATM network owner, a branch owner, a product owner, and a customer owner. There
was no reference to a process owner. Progress has been made, while the BEAR6 leg-
islation does not attribute process ownership directly, it at least makes it implicit, and
there has been investment in bolstering risk and compliance support resources. How-
ever, interviewees believe that this has led to accountability being removed one step
further from the source of risk. The propensity to engage more consultants and lawyers
has had the same effect.

23) Tick-the-Box culture.When asked who is responsible for compliance, “it’s every-
one’s job” was a common response, with the heightened scrutiny creating a sense of
nervousness. However, the message becomes confused and appears to lose momentum
as it filters down through the organizational hierarchy. Throughout the transcripts there
are references to BPC being perceived as a toll-gate, a “tick-the-box” exercise, people
mechanically following a process whether it is right or wrong to avoid blame – even
though consequence management is rare – people not challenging the status quo or
afraid to speak up and BPC tasks executed with a sense of complacency. It is not seen
as strategic but it is important to be seen to act.

Synthesizing these 23 1st Order Concepts together led to the identification of seven
2nd Order Themes. The complex business model, intensifying regulatory pressure, dis-
ruptive competitive landscape and the impact of leadership and directional changes
combine to highlight a Complex & Dynamic Ecosystem generating a significant number
of Complex Requirements – there are many different types, they are frequently ambigu-
ous, and they must cope with conflicting objectives and priorities. This requirement
load is imposed on Disjointed & Disparate Process Foundations, where the underlying
legacy technology is poorly integrated and inflexible, the data is plentiful, but hard to
access and limited in its ability to convey information, and processes are repeatedly
re-aligned to follow organizational structure changes. Additionally, the lack of support
materials and the extent of exceptions and repeated patching lead to Hard to Follow

6 The Banking Executive Accountability Regime establishes accountability obligations for
senior bank executives and directors.
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Processes. Despite such challenging foundations, the volume going through the pro-
cesses is significant, yet they are only partially automated and not error-proofed, hence
they are Resource Intensive Processes, Prone to Fail, exacerbated by the fact that there
is a lack of knowledge and experience. Not monitoring end-to-end processes thwarts
the ability to align process performance and business objectives, and with a poor track-
record executing change these Decision-Making Blind Spots hinder investment. There
are also Cultural Headwinds, where ownership and accountability for addressing the
issues is unclear and BPC is seen as a “tick-the-box” exercise, not a strategic endeavor.

These seven 2nd Order Themes were further consolidated into three Aggregate
Dimensions. A complex and dynamic ecosystem coupled with a high degree of require-
ments complexity leads to a Complex & Dynamic Requirements Load. This demand
on the organization is fulfilled by Impenetrable Spaghetti Processes, where resource
intensive processes are hard to follow, prone to fail and built on disjointed and dis-
parate process foundations. Decision-making blind spots across end-to-end processes
and cultural headwinds make for an Elusive Case for Sustainable Change. Together,
these dimensions provide insight into why the major banks find BPC challenging.

3.3 Overview

The purpose of this study is to understand why banks find BPC challenging. It should be
noted that bank processes are not homogeneous and interviewees also provided exam-
ples where some of the 1st Order Concepts were being, or had been addressed. How-
ever, for those processes experiencing BPC challenges, the results above represent the
common themes.

From this point on, we refer to individual 1st Order Concepts with a “C” and their
ID number as listed above. Overall, 48% of references were associated with the Impen-
etrable Process Spaghetti aggregate dimension, 29% with Elusive Case for Sustainable
Change, and 23% with Complex & Dynamic Requirements. The number of references
per 1st Order Concept ranged from 18 to 117 (see also Table 1), with the top five con-
cepts accounting for 34% of the references (C17, C18, C19, C22, C2 respectively) and
the top eleven accounting for 66%. 13 1st Order Concepts were referenced by more
than 18 of the interviewees, and only two concepts were referenced by less than half of
the interviewees (C4 and C3 respectively).

In terms of coding differences, with a limited number of exceptions, interviewees’
responses were relatively homogeneous. There were no material differences (within
±5% of the average) by gender and current role. Those with more than 25 years of
tenure focused less on Impenetrable Spaghetti Processes while those who had worked
in three of the banks placed more emphasis on Complex & Dynamic Requirements Load
(+8%) and less on Elusive Case for Sustainable Change (-9%). By function, Oper-
ations and Process Excellence interviewees focused more on Impenetrable Spaghetti
Processes (+8% and +6% respectively). The Risk & Compliance interviewees empha-
sized Complex & Dynamic Requirements Load (+10%) and Technology interviewees
favored Elusive Case for Sustainable Change (+7%). This was offset by Risk & Com-
pliance and Technology interviewees placing less emphasis on Impenetrable Spaghetti
Processes (−6% equally) and the Process Excellence interviewees focusing less on
Complex & Dynamic Requirements Load (−6%).
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The implications of these results are discussed in the next section.

4 Discussion

Some of the challenges associated with the 1st Order Concepts may sound familiar. The
BPC literature refers to: the difficulty in extracting and translating ambiguous require-
ments (C5, C6); the importance of process ownership and clear roles and responsibil-
ities (C22); aligned metrics and reporting (C19); managing scale (C14); incorporating
real-time monitoring (C18); the importance of managing change well (C20); the impor-
tance of proactive, preventative controls and compliance-driven design (C16); and the
relative merits of annotating (overlaying) versus integrating controls in process mod-
els (C11). The business process management (BPM) community is more than familiar
with the impact of variation (C12); the importance of good documentation (C11); ade-
quate training (C11); fit for purpose automation (C15); legacy integration (C8); and
data-connectivity issues (C9).

The BPC literature proposes many solutions to (partially) address these issues, and
it is tempting to suggest appointing a team of process professionals to at least fix the
process-related issues. However, as Interviewee-8 pointed out: “Every three to five
years the banks get rid of all their process improvement people.” Why is this the case?

Interviewees referenced the invisible, intangible nature of processes in banking,
making it harder to see when and where a process has failed. Others referenced the fact
that the banks do not control the end-to-end process (e.g., in payments and broker orig-
inated mortgages), hence, managing input quality with ecosystem partners is harder.
However, there are examples of solutions cited in the literature referencing common
bank processes – the same processes discussed by the interviewees: account opening,
lending, payments, and customer onboarding. Another interviewee referenced the fact
that there are risk people and operations people but no risk operations people. Again,
the BPC literature assumes that these are people with separate skill sets working col-
laboratively, as has been the case in the major banks, so there should be no impediment.

The answer may lie in four of the most referenced terms: “end-to-end”, “complex-
ity”, “perspective”, and “understand” with 154, 141, 205 and 270 references respec-
tively. The terms appear in multiple contexts, which have been assigned to the most
relevant 1st Order Concept, but the overarching theme is that, from the interviewees
perspective, end-to-end processes are so complex that people do not understand them.
Interviewee-1 summed it up by saying: “So I think this spaghetti, this complexity that
underpins very aged infrastructure with Band-Aids plastered across it. The lack of
knowledge. Who understands that [...] when it falls over? And people apply another
fix and another fix.” Interviewee-11 elaborates on this: “I think complexity comes from
[...] the fact that no one knows what’s going on”, while Interviewee-8 states: “Most
people [...] do not understand the fundamentals of what a process is” and also refers to
a short-sighted view of process.

This is supported by interviewee’s references to the inadequacy of the tools and
techniques used to help people understand their processes in the identification, discov-
ery, and analysis phases of the BPM lifecycle. Examples include: process maps that do
not reflect reality, a lack of modeling skills, a reliance on subject matter experts who
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do not understand their processes nor their requirements, time constraints that mean the
exceptions are not mapped, and the lack of performance data to inform the analysis of
the current state. Our observation is that interviewees find it hard to see and analyze the
system holistically, and people resort to solving in their own silos.

Moreover, when tasked with improvement, interviewees referenced three pathways:
i) the complexity is underestimated in the project and the cost and timelines blow out,
so the project is shut down; ii) the complexity is acknowledged in the project, cost is
incurred but results are not delivered in a timely manner, so the project is shut down;
and iii) an improvement to part of a process variant that is so immaterial no one notices.

Investment in a sustainable solution appears to be elusive. This can be attributed to:
limited progress-to-date, “siloed thinking”, an inability to “see” the intrinsic, system-
wide costs of the spaghetti processes, the difficulty in “selling” this type of business
case, the level of investment required to fix it and a nebulous benefit case. Hence, the
fail-fix approach persists, considering also the excessive requirements’ load, the com-
plexity increases. This fail-fix cycle emerged from the analysis of the interviewee tran-
scripts. Our conclusion is that, while there may be solutions to the 1st Order Concepts
individually, an effective solution requires a more holistic perspective, and hence a shift
to seeing those first order challenges through the lens of the 2nd Order Themes. We
elaborate this perspective in Fig. 2.

Our analysis of insights from the interviewees points to three fundamental chal-
lenges to break the cycle: i) end-to-end visibility; ii) effective collaboration across the
ecosystem to simplify requirements; and iii) developing a politically viable, sustainable
business case. In the following, we comment on each of these circuit breakers.

End-to-End Visibility. The first circuit breaker is to focus on end-to-end visibility. As
Interviewee-8 put it: “If you can’t see into your process, [...] you’re running blind.”
Banks must be able to see the complexity to chart a course to untangle the spaghetti.
However, this is not a traditional process discovery and analysis approach. The limita-
tions discussed above preclude the traditional approach in favor of automated process

Fig. 2. BPC fail-fix cycle
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discovery [10], a core process mining capability. Seeing all the exceptions, all the path-
ways, all the performance data associated with those pathways is essential to improve
transparency, enable visibility and enable analysts to view the system holistically. Most
interviewees were enthusiastic about the approach, and in some cases pilot process min-
ing projects were already underway.

The roadblock, as many interviewees pointed out, is accessing the event data across
end-to-end processes and addressing the data blind-spots when partially automated pro-
cesses reverted to manual tasks. Extract, transform and load (ETL) techniques and tools
have certainly advanced in recent years, but stitching together data without a common
identifier, with blended coarse- and fine-grain events, will require further work.

Assuming reliable end-to-end event logs can be generated, a criticism of the auto-
mated process discovery approach is that it tends to produce spaghetti models – 56,000
paths through a lending process is a case in point (Interviewee-14). While it is essential
to be able to see the full complexity, it is critical that techniques and tools also simplify
abstraction. Interviewees refer frequently to layers and perspectives. The Risk & Com-
pliance function want to see the process through the controls lens or the regulatory lens,
operational teams want to see the resource impacting flows and queues/bottlenecks. Our
observation is that automated process discovery tools should provide a single model,
capable of capturing the different user perspectives.

Interviewees reflected that leveraging event logs presents a range of other process
mining opportunities, particularly, online conformance checking and variant analysis
would help address C16 and C12, respectively, while automated process discovery also
enables the other circuit breakers.

Effective Collaboration Across the Ecosystem to Simplify Requirements. The sec-
ond circuit breaker is to simplify requirements. At present, requirements are treated
in silos, (e.g., regulatory requirements, codes of practice requirements, business policy
and customer requirements). However, there is a significant amount of overlap. A small
number of control patterns [11] can be implemented to cover the majority of require-
ments. Because there are so many of them that are added incrementally, it is difficult
to see through the control clutter and understand which ones are triggered in which cir-
cumstances and sequence. As Interviewee-15 put it: “You’ll have multiple risk controls
that are never activated, therefore they’re useless” and they go on to say “I think the
more controls you put in place, the higher the risk of any process, because you can add
complexity”. End-to-end visibility as described above will help users see the require-
ments complexity as well as understand its impact. It will also highlight the opportunity
to standardize requirements registers, and risk & control libraries. Hence, making it eas-
ier to consolidate and prioritize rules and controls across the portfolio of requirements.

There is also an opportunity to work with ecosystem participants including regula-
tors, industry bodies, and competitors to support simplification through standardization.
Throughout the interviewee transcripts there are references to a lack of standards such
as naming conventions and acronyms and terminology applied inconsistently. As well
as developing a more rigorous suite of standards, taxonomies and ontologies, it is also
critical to ensure that they are applied. An interviewee gave an example where member
banks could choose to apply a code (which would enable straight-through-processing)
but many chose to enter free text (which would generate an exception).
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Developing a Politically Viable, Sustainable Business Case. End-to-end process vis-
ibility also enables the third circuit breaker – developing a politically viable business
case for sustainable change. The fail-fix cycle is perpetuated not because of a lack of
funding and resources, but because the business case to address the issues sustainably
does not appear to be politically viable. Interviewees refer to the level of investment
required, the fact that senior leaders do not perceive BPC to be strategic, the lack of
process ownership (sponsorship), that product and process costs are not known and the
value of doing this well and sustainably are unclear. Leveraging the enhanced end-to-
end visibility, the task is to demonstrate the value of a strategic approach to BPC: the
impact of exceptions on the level of operating cost and risk capital held, the cost of re-
hiring and training people on broken processes, the opportunity cost of not being able
to absorb more change, the “tech debt” associated with hollowing out legacy systems
and keeping them on life support, the impact on product pricing of actually knowing
your costs. It is hard to answer these questions accurately in the major banks today.

The second part to this circuit breaker is to package up programs of work that can
deliver value in the financial periods the banks are beholden to. We asked interviewees
where would they start if they were in charge of addressing the issues. The majority
focused on piggy-backing off existing programs of work. They would select a process
that was material to the bank’s results, a significant pain-point for executives, one that is
fully funded and with a senior executive sponsor already in place. They were adamant it
should not be a program in its own right. The objective should be to enable an existing
program to deliver better outcomes faster by addressing the issues discussed.

5 Limitations of the Study

There are several potential limitations of this study: we only interviewed 22 current
and former staff members of Australia’s four major banks. These banks collectively
employ over 150,000 FTEs. However, the interviewees represent key categories of pro-
cess compliance stakeholders identified in the literature, namely Operations, Risk &
Compliance, Technology and Process Excellence. It is also important to note that satu-
ration was reached after 19 interviews.

In selecting our sample we wanted to ensure that interviewees were close enough
to the point of execution to produce detailed anecdotes, but not so close that they could
not see the broader context. To this end, the study focused on senior management. The
executive layers, we determined, were too far from the detail and the process opera-
tors’ focus was too narrow. Extending the study to cover other perspectives within the
hierarchy is a potential future work stream.

This case study focused on four Australian banks. There is a risk that the findings
cannot be inferred for other banks either within Australia or in other jurisdictions or
other financial services participants. However, the Royal Commission found similar
issues across the broader Australian financial services industry and other countries have
also experienced similar situations. While significant effort has been undertaken to val-
idate the results as described in the approach, there is still a degree of subjectivity in
interpreting the findings, where the experience of the first author was relied on.
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6 Conclusion

Through a series of semi-structured industry interviews, our study has identified 23
1st Order Concepts, linked to seven 2nd Order Themes and three Aggregate Dimensions
that help explain why major Australian banks find business process compliance so chal-
lenging. Challenges associated with some of the 1st Order Concepts are known and well
researched. The balance tend to be seen as organizational issues beyond the scope of
this type of study. The most frequently mentioned concerns refer to i) a lack of knowl-
edge and understanding of people involved in trying to establish and maintain business
process compliance, followed by ii) a lack of preventative controls, and iii) a lack of
visibility across end-to-end processes. However, our findings suggest that treating each
of these concerns as a stand-alone issue will not address the underlying problem – the
major banks have already tried this approach.

What makes our study different is the focus on addressing the overarching issue of
the intrinsic complexity. The current approach of the banks, particularly how they app-
roach process discovery and analysis, locks them into a negative fail-fix cycle of increas-
ing complexity, which demands a circuit-breaker. We propose three areas to focus on to
break the cycle: i) enhancing end-to-end visibility through automated process discov-
ery; ii) simplifying requirements across the ecosystem; iii) and developing a politically
viable, sustainable business case.

It is important to note that the results of our study do not imply that every process,
in each of the banks studied, exhibits all of these concerns. Counterexamples were also
provided by interviewees, and each 1st Order Concept should be seen as one end of a
spectrum. Future work will focus on developing a process profiling approach to help
banks determine the extent of the business process compliance challenge by process.
Further work is also required to determine the role of specific process mining tech-
niques such as conformance checking and variant analysis and how they can address
the challenges identified in this study.

Acknowledgments. We thank the interviewees who generously gave their time and shared their
thoughts to help produce this paper.
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Abstract. A wealth of techniques have been developed to help organizations
understand their processes, verify correctness against requirements and diagnose
potential problems. In general, these verification techniques allow us to check
whether a business process conforms or complies with some specification, and
each of them is specifically designed to solve a particular business problem at
a stage of the BPM lifecycle. However, the terms conformance and compliance
are often used as synonyms and their distinct differences in verification goals is
blurring. As a result, the terminology used to describe the techniques or the cor-
responding verification activity does not always match with the precise meaning
of the terms as they are defined in the area of verification. Consequently, confu-
sion of these terms may hamper the application of the different techniques and
the correct positioning of research. In this position paper, we aim to provide com-
prehensive definitions and a unified terminology throughout the BPM lifecycle.
Moreover, we explore the consequences when these terms are used incorrectly.
In doing so, we aim to improve adoption from research to practical applications
by clarifying the relation between techniques and the intended verification goals.

Keywords: Conformance · Compliance · Verification · Review

1 Introduction

Business process management (BPM) has adapted from supporting local rigid and
repetitive units of work in factory-based processes to loosely-coupled case based pro-
cesses in a wide range of different, and often regulated, business contexts. This evolu-
tion set in motion an increasing need to assess whether these business processes, sup-
ported by business process management tools, are free of error, performed as desired,
and follow regulations [14]. To address these distinct—but related—issues, many tech-
niques have been developed over the past decades to help organisations understand their
processes, verify correctness and diagnose potential problems [14]. Each of these tech-
niques is very specifically designed and tailored to solving a particular business problem
or question, and may be applied at different stages of the BPM lifecycle.

In general, these techniques for verification allow us to check whether a business
process conforms or complies with some specification, and often refer to the popular
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business process mining technique conformance checking and the verification of regu-
latory compliance in BPM. While there are surface similarities among the verification
problems and the activities specific to them, the terms have distinct meaning in the area
of verification and their use depends on whether only specifications or a specification
and implementation is involved in verification [15]. In everyday language, however,
the terms conformance and compliance are often used as synonyms, and their distinct
differences in verification goals is blurring. As a consequence, the terminology used to
describe the techniques or the corresponding verification activity does not always match
with the precise meaning of the terms as defined in the area of verification.

Due to the duality of the use of the conformance and compliance terms, several
issues have emerged. In science, the confusion of these terms has lead to (i) the wrong
motivation being given to justify the work, (ii) a wrong example being used to explain
the work, (iii) discussions of related work including irrelevant and excluding relevant
work, or (iv) evaluations comparing tools related to different perspectives. Moreover,
in practical settings the confusion of these terms may lead to (v) the wrong approach
being chosen and answering a question from a different perspective, (vi) the wrong
artifact being used for an approach, or (vii) the approach being performed at the wrong
stage of the BPM lifecycle. As a result, this inadvertently emerged mismatch between
techniques and terminology could harm transfer from research to practical applications,
possibly stagnating adoption of relevant approaches and new advances in the field.

In this position paper, we aim to provide comprehensive definitions of the two
notions, describe the activities related to them, and the BPM artifacts they apply to.

Method and Structure
To do so, we first define the key artifacts in the BPM lifecycle and introduce the con-
cept of verification in that context and the verification corresponding relations in Sect. 2.
Subsequently, we explore the existing goals of verification and the related verification
techniques for each goal in Sect. 3, discussing the intent and constraints of each verifica-
tion goal. Note that, as we define each of the above elements, many definitions refer to
the ISO/IEC/IEEE Systems and software engineering – Vocabulary standard [17]. Since
the vocabulary lists multiple alternative meanings of each term depending on its appli-
cation domain, throughout this paper we either directly use the variant that relates most
to the domains of verification and business process management, or a combination of
relevant variants. We do so, because these variants offer the best foundations required
for the discussion around the verification of conformance and compliance within the
BPM lifecycle. Next, Sect. 4 uses the provided definitions of artifacts and relations to
connect verification relations to verification goals and provide a structured overview,
highlighting potential areas that may cause confusion and propose a solution. Section 5
discusses the relevance of such a solution by providing examples of terminology and
verification goal mismatches and discussing potential consequences. Finally, the find-
ings are summarised in Sect. 6.

2 Verification and the Business Process Management Lifecycle

Validation and verification are well-known evaluation procedures used to investigate
whether a software or hardware product fulfills its intended purpose [17]. Validation
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investigates whether the product fulfills the needs of the user, that is, it tries to answer
if the correct product is being made. Verification, on the other hand, investigates if the
product matches with its specifications, or whether the product is being made correctly.

When applying formal methods of mathematics to verification, the procedure is
called formal verification. Formal verification entails proving or disproving the correct-
ness of a model with respect to a specification using formal methods of mathematics.
In this case, the model is a representation of the actual system (e.g., based on a spec-
ification), just like a business process model is a representation and specification of
the actual business process that is being performed. Note, however, that given differ-
ent verification approaches the model is not necessarily always represented by a busi-
ness process model. In fact—as we will observe later—sometimes the business process
model represents the specification of the verification approach instead. A specification
is defined as follows:

Definition 1 (Specification). A collection of statements that specify in a complete, pre-
cise, and verifiable manner, the requirements, design, behavior, or other characteristics
of a system or component, and—often—the procedures for determining whether these
provisions have been satisfied [17].
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Fig. 1.Verification techniques applied during the BPM life-
cycle.

The procedure of verifi-
cation is an important aspect
of the BPM lifecycle [6]. An
overview is given in Fig. 1,
where we map the business
process artifacts of the lifecycle—
represented by the circles—
with the verification techniques,
represented by the arrows con-
necting different artifacts. For
each verification technique, the
artifact used as the specification
is connected to the artifact used
to represent the model using an
arrow. For example, the design
properties (specification) are
verified against the business
process model (model) when
checking process correctness.
For completeness, two dashed
arrows representing the valida-
tion relations have also been
included. These relations are
outside of the scope of this
paper, which has a focus on verification within the BPM lifecycle alone.
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2.1 Business Process Management Artifacts Used for Verification

The BPM lifecycle uses and produces a number of artifacts that can be applied as the
model or specification during a number of useful verification techniques. We define and
discuss the relevant artifacts depicted in Fig. 1 as circles.

Before defining the relevant artifacts, however, we must first define the business
process itself. Informally, a business processes is a collaborations between actors that
achieve a specific value-added goal. Within a business process, actors perform activities
based on available data and using available resources. When referring to a business pro-
cess, we refer to the real life process—which may or may not be supported by software
systems or be described by a model. More formally:

Definition 2 (Business process). A partially ordered set of activities, performed by
actors using available resources and data, that achieve some desired objective of an
organization [17,19,20].

Within the BPM lifecycle, a business process is first described by a number of spec-
ifications (Definition 1) that describe individual sets of requirements. A requirement is
defined as follows:

Definition 3 (Requirement). Provision that contains criteria to be fulfilled [17].

These individual sets of requirements together define the system requirements. The
system requirements are depicted as the gray area in Fig. 1 and include the user require-
ments, design properties, and regulations. The system requirements are defined as fol-
lows:

Definition 4 (System requirements). A structured collection of requirements—
comprising functions, performance, design constraints, and attributes—of the system
and its operational environment and external interfaces [17].

The system requirements can consist of different sets of specifications, including (i)
the user requirements, (ii) the design properties of the chosen modeling method, and
(iii) the regulations as imposed by external authorities. The user requirements, design
properties, and regulations are defined as follows:

Definition 5 (User requirements). The requirements for use that provide the basis for
the design and evaluation of interactive systems to meet identified user needs [17].

Definition 6 (Design properties). The context-independent behavioral requirements of
the created model given the chosen modelling method [2,18].

Definition 7 (Regulations). Requirements, imposed by an authority, that establish the
legal and illegal behaviors and states for a specific domain and jurisdiction [17].

Given the system requirements (Definition 4), a model of the business process (Def-
inition 2) can be derived through the process of refinement. Such business process mod-
els can describe the business process along a number of different perspectives, including
the control flow, data, and resource perspectives. Moreover, business process models
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can be descriptive or prescriptive. A descriptive model describes the business process
as it is performed in the real world, while a prescriptive model describes the business
process as it should be performed [10]. The distinction is important since descriptive
and prescriptive models fulfill very different roles during verification, roles that should
be considered carefully. Another distinction can be made between procedural (or imper-
ative) process models and declarative process models. Procedural process models use
an imperative specification that describe step by step how a business process is per-
formed, while declarative process models describe what is performed using, often, a
logical representation. Note that declarative process models in many cases should be
seen as declarative process specifications instead, while the actual model obtained from
such a specification (sometimes also referred to as the declarative process model) is, in
fact, imperative in nature. Although a process model is a specification in itself, the terms
model and specification have distinct meaning in the area of verification and one should
be careful when referring to logical representations as models when applying verifi-
cation within the area of business process management. Sometimes, however, such a
paradigm shift is correct, but should always be treated with extreme care. A business
process model is defined as follows:

Definition 8 (Business process model). A (graphical) representation of a business
process that describes the typical business process instance in isolation by specifying
the elements of the business process and their relationships along the control flow, data,
and/or resource perspectives [5].

Software systems can support business processes in many different ways. Given a
business process model, software support may range from deployment of large infor-
mation systems, such as business process management systems or case management
systems, to individual software packages being used as each task is being performed
manually in an ad-hoc way. We refer to the collection of hardware and software systems
that support the business process as the implementation, which is defined as follows:

Definition 9 (Implementation). Result of translating a design into hardware compo-
nents, software components, or both, whose validity can be subject to test [15,17].

These software systems record information observed during execution of each pro-
cess instance, or case, of a business process in a so-called event log [3]. The information
captured in such event logs can be used to not only discover, monitor, and improve pro-
cesses as supported by the software systems, but also to verify their correct execution
against the requirements and regulations.

Definition 10 (Event log). A collection of traces, where each trace is an ordered
sequence of events observed and recorded during the execution of an instance/case of a
business process. Each event refers to an action performed by an actor or the support-
ing implementation at a particular time, for a particular case, and possibly includes
relevant data concerning that case [3].

2.2 Verification Relations

Given the process of verification, between the described artifacts two possible relations
can be proven: (i) relations that establish conformance, and (ii) relations that establish
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compliance. The first defines a relation between a specification and an implementation,
while the latter defines a relation between two specifications. More formally:

Definition 11 (Conformance). A relation between a specification and an implementa-
tion that holds when (observed behavior of) the implementation fulfills all requirements
of the specification (when the implementation conforms to the specification) [15,20].

Definition 12 (Compliance). A relation between two specifications, A and B, that
holds when specification A makes requirements which are all fulfilled by specification
B (when B complies with A) [15].

3 The Goals of Verification Within Business Process Management

Business processes are verified towards a number of different goals. Existing verifica-
tion techniques can be classified into those that have the goal of system conformance,
process conformance, model conformance, model compliance, or regulatory compli-
ance. Note that the strict definition of compliance (Definition 12) describes a relation
between two specifications and not a relation between a specification and implementa-
tion. As a result, the goals of system and process compliance are included under regu-
latory compliance. Each of these goals may have multiple supporting techniques. Such
techniques have the same goal, but often use different artifacts at different stages of the
BPM lifecycle. We discuss these goals and each related technique.

3.1 System Conformance

The verification of a system’s implementation against its specification in a process
model is referred to as system conformance. In this definition, the word conformance
refers only to the conformance relation of Definition 11 and not to the collection of
popular process mining techniques. In general, conformance is restricted to a limited
set of requirements to check against particular aspects and elements, or so-called con-
formance points. Accordingly, the implementation is verified against said conformance
points [20]. The technique is depicted in Fig. 1 as the arrow from model to implemen-
tation, and is defined as follows:

Definition 13 (System conformance checking). The process of verifying conformance
of the implementation towards the business process model.

System conformance checking is possible when the implementation is fully sup-
ported and automatized by a workflow engine. This type of verification can be applied
during different stages of the BPM lifecycle. During design time, the operation of
checking can either be reduced to the formal verification of the implementation, or
employs testing to ensure that the behavior of the implementation reflects the expected
behavior described by the process model. During runtime, typically the event log is used
as a proxy for the implementation. However, in general we cannot fully depend on event
log data for this purpose, as some computations can produce the same result for some
instances, but a model may require a particular type of implementation or calculation.
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3.2 Process Conformance

When verifying the behavior of an implementation (as observed in e.g. an event log)
against a process model, this is commonly referred to as process conformance checking
and describes the collection of popular process mining techniques that are either applied
online, at runtime, or after-the-fact. During runtime, there is no clear difference between
system conformance checking and process conformance checking; in general, process
conformance checking is a subcase of system conformance checking. The technique is
depicted in Fig. 1 by the arrow from model to event log, and is defined as follows:

Definition 14 (Process conformance checking). The process of verifying the confor-
mance of the observed behavior of the implementation, as recorded in the event log,
towards the business process model.

In this definition, the word conformance may refer to both the conformance rela-
tion (Definition 11) and the collection of popular mining techniques. The specification
is represented by a prescriptive normative process model that describes the intended
behavior based on best practices, business rules, company policies, legal requirements,
etc. The event log is again used as a proxy for the implementation, which implies that
the conformance points are limited to the tasks in the process and their contents. Pro-
cess conformance checking verifies whether the actual behavior of the system matches
the prescribed behavior of the normative model, identifies (un)common behavior and
new behavior that is not specified or allowed in the model, and reports on deviations.

One of the central concepts in process conformance checking is a so-called align-
ment, which describes a relation between a trace and an execution of a process model
as a sequence of moves, relating events in the event log to activities in the model [4,10].
The moves in an alignment can be either a move on log, a move on model, or a syn-
chronous move. An asynchronous move (i.e. a move on log or a move on model) incurs
a cost, so that the optimal alignment (i.e. the closest match possible between the event
log and the model) is defined as the alignment with the lowest total cost.

Another well-known approach uses a unified model of concurrent behavior called
event structures [11]. In this approach, the event log and process model are each con-
verted into an event structure, which are subsequently aligned via an error-correcting
synchronized product. This is specifically suitable in cases where compact context-
dependent feedback is required on deviations between the event log and process model.

3.3 Model Conformance

Event logs can be used as a specification to determine whether the process model pro-
vides an accurate depiction of the actual behavior, process or implementation. The ver-
ification technique used is still conformance checking, but we will refer to it as ‘con-
formance checking for repair’ to highlight the difference. The technique is depicted in
Fig. 1 as the arrow from event log to model, and is defined as follows:

Definition 15 (Conformance checking for repair). The process of verifying the con-
formance of the normative behavior of the business process model towards the observed
behavior of the implementation, as recorded in an event log.
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In this definition, the word conformance refers to that of the relation defined in Def-
inition 11. The relation of the process described here to the term conformance checking
(Definition 14) is also relevant, as it effectively reverses the artifacts to be verified:
the specification artifact is represented by the event log, whereas the model artifact
is represented by the (descriptive) process model. That is, conformance checking for
repair aims to identify scenarios where the model does not accurately describe the actual
behavior as observed in the event log, to subsequently alter, or ‘repair’, the model by
trying to incorporate the additional behavior observed from the event log. The idea is to
alter the model such that it improves the correspondence between the model and the log
as much as possible, usually by allowing inserting or skipping of activities. As such, the
approach searches for models that are optimal in terms of fitness. That is, the fraction
of behavior that is in the log but not possible according to the model is minimized.

Similar to process conformance, conformance for repair centralizes around the con-
cept of alignment, where alternatives are provided to amend the model that optimizes
the alignment such that the event log fits the repaired model at least as well as it fits the
original model (see e.g. [21]). Alternative approaches offer an incremental procedure,
where differences between the model and the log are presented to the user, who can
subsequently choose whether or not to repair the difference (see e.g. [7]).

3.4 Model Compliance

Business processes are generally modeled following a certain standard such as the Busi-
ness Process Model and Notation (BPMN) standard [16]. Standards like BPMN specify
the elements and relations between elements allowed within its specified graphical nota-
tion of a business process model, how each element behaves, and more. Consequently,
the used standard directly influences the design properties (Definition 6) of the model.
Model compliance aims to verify not only syntactic adherence of the business process
model to the used standard, but also semantic adherence to the design properties.

Correctness checking is the technique that verifies whether a process model is com-
pliant with its design properties, and includes well-known techniques such as workflow-
net soundness [1]. Note here that the term soundness specifically applies to correctness
properties of the Petri-net based workflow-nets and should only be used when an inter-
mediate workflow-net representation of the business process is used when establishing
correctness. The correctness technique is depicted in Fig. 1 by the arrow between the
business process model and design properties artifacts, and is defined as follows:

Definition 16 (Correctness checking). The process of verifying compliance of the
business process model towards the design properties.

When using this technique, the act of verification entails using the business pro-
cess model as the model for verification and checking it against a specification that
describes the design properties. In this definition, the word compliance refers directly
to the compliance relation of Definition 12 and not to that of regulatory compliance,
which is discussed in the next section.
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3.5 Regulatory Compliance

Companies are subject to large numbers of regulations (Definition 7) that affect the way
they do business. When asked by authorities, companies must be able to prove that they
comply with regulations, or be prepared to face large fines. In other words, they must
prove regulatory compliance:

Definition 17 (Regulatory compliance). Doing what has been asked or ordered, as
required by rule or law [17].

Regulatory compliance of business processes can be proven at different stages of
the BPM lifecycle, while using different artifacts. At each stage, different techniques are
required to verify whether a process model, a running instance of a process, or a process
log adheres to a set of relevant regulations. Here we specifically use the word adheres
because the different techniques, applied at the different stages of the BPM lifecycle,
define different types of relations, i.e., compliance or conformance (Definitions 11–12).

At design time, the implementation does not exist and there are no running instances
that generate data. Therefore, all that can be done is to check whether the specification
of the process model complies (Definition 12) with the specification stating the regula-
tions. In doing so, the technique attempts to prove compliance not only from the control
flow perspective, but also other perspectives using semantic annotations [22]. Although
it is possible to fully prove compliance of certain sets of regulations at design time,
in most cases this process should be considered a preventative measure that attempts
to mitigate the risk of violating the regulations. To ensure anything further, one must
also prove the process was actually followed when performed (e.g., by proving process
conformance). Nevertheless, the technique has no access to data from runtime instances
and, therefore, can often not cover the full set of regulations. The technique is depicted
in Fig. 1 by the arrow from regulations to model, and is defined as follows:

Definition 18 (Regulatory compliance checking). The process of verifying compli-
ance of the business process model towards the regulations in order to prove or disprove
regulatory compliance of the modelled behavior.

At runtime, data from running process instances can be used to determine whether
the enactment satisfies the conditions given by the regulations. The activity can be
understood as a conformance relation (Definition 11) where the conformance check
points fully cover the requirements mandated by the regulations. Even if the confor-
mance points cover the legal requirements, it is only possible to determine breaches
against the regulations based on the events observed till the time when regulatory com-
pliance (Definition 17) is checked by proving the conformance relation (Definition 11).
However, we cannot use conformance to check if the full instance will satisfy the legal
requirements, since—for the activities that have not been executed—we can only rely
on the specified business process model to prove the compliance relation (Definition 12)
for the remaining possible execution paths. The technique is illustrated in Fig. 1 by the
arrow from the regulations to the event log, and is defined as below. Note that the name
of the defined activity refers to regulatory compliance (Definition 17) even though the
activity defines a conformance relation (Definition 11). This observation lies at the core
of the discussion in the remainder of this position paper, and will be explored in detail.
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Definition 19 (Runtime regulatory compliance checking). The process of verifying
the conformance of the currently observed behavior, as recorded in the event log,
towards the regulations in order to prove or disprove regulatory compliance of the cur-
rently observed behavior.

After-the-fact regulatory compliance checking, known as auditing, has access to the
full instance data and can, therefore, prove regulatory compliance in its entirety. Using
only this approach, however, is a high risk endeavor that companies prefer to mitigate
as much as possible, because—at this point—any violation of the regulations that has
happened cannot be rolled back anymore. As a result, regulatory compliance verifi-
cation should occur at multiple stages of the BPM lifecycle to both mitigate risks of
violations and prove regulatory compliance. For auditing, we speak of a conformance
relation (Definition 11) where the set of conformance points cover the legal require-
ments to prove regulatory compliance (Definition 17). The technique is illustrated in
Fig. 1 by the arrow from the regulations to the event log, and is defined as follows:

Definition 20 (Auditing). The process of verifying the conformance of the observed
behavior towards the regulations in order to prove or disprove regulatory compliance.

4 Overview of the Relations and Goals of Verification

Within the area of BPM, the term business process conformance is mostly referred to
in the context of the popular mining technique, while the term business process compli-
ance generally refers to the context of regulatory compliance. In the context of verifica-
tion, however, conformance and compliance are defined in the contexts of their relations
(i.e., Definitions 11 and 12). When comparing perspectives, the use of the conformance
and compliance terms does not match, as the relation and the goal of verification are
used interchangeably. To highlight this mismatch between the verification relations and
their goals, Table 1 summarizes the verification techniques described in Sect. 3. The
table lists each technique together with the stage of the lifecycle it is applied, the arti-
facts used as the model and specification (i.e., Definitions 2–10), the type of relation
(i.e., Definitions 11 or 12), and the goal of verification (i.e., Sects. 3.1–3.5).

Table 1. Overview of verification techniques in the context of BPM.

Verification technique Lifecycle stage Model artifact Specification artifact Relation type Verification goal

System conformance checking Implement Implementation Prescriptive model Conformance System conformance

Conformance checking Enact Event log Prescriptive model Conformance Process conformance

Conformance checking Diagnose Event log Prescriptive model Conformance Process conformance

Conformance checking for repair Diagnose Descriptive model Event log Conformance Model conformance

Correctness checking Design Model Design properties Compliance Model compliance

Regulatory compliance checking Design Model Regulations Compliance Regulatory compliance

Regulatory compliance checking Enact Event log Regulations Conformance Regulatory compliance

Auditing Diagnose Event log Regulations Conformance Regulatory compliance

From Table 1, it can be observed that, between all verification techniques, only two
relations are compliance relations, and both of these techniques use the business process
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model as the model for verification. Secondly, out of the other six techniques that have
a conformance relation, only four have a conformance related goal. Finally, although
three different verification techniques have the goal of regulatory compliance, only one
has an actual compliance relation, while the others have conformance relations.

Given these observations, it is clear that there exists a gray area between the use
of the conformance and compliance keywords among the verification relations and
goals. The main ‘offenders’ are the techniques of regulatory compliance checking dur-
ing enactment and auditing. These techniques both define conformance relations with
the goal of checking regulatory compliance. Both these techniques were naturally devel-
oped out of the realization that proving a compliance relation between two specifica-
tions (i.e., model and regulations) could only provide so many preventative guarantees,
and that runtime data and temporal information is required for definitive and complete
results. It is not that these techniques are at fault. They very much prove regulatory
compliance while defining a conformance relation. The conformance relation does not,
suddenly, become a compliance relation when one has the goal of verifying regulatory
compliance, nor does the goal suddenly become verifying regulatory conformance.

Even though the compliance and conformance terms are effectively synonyms in
everyday language, it remains especially important that both research and applica-
tion have clearly defined lines between developed and applied techniques and their
related keywords. In literature, however, the conformance and compliance keywords are
increasingly used interchangeably, which may cause confusion around the positioning
and application of the different verification techniques within the research community
itself, as well as in their application areas.
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Fig. 2.Verification techniques applied during the BPM life-
cycle (continued).

To ameliorate the issue,
we must establish clear bound-
aries for the use of the con-
formance and compliance key-
words within the context of
verification during the BPM
lifecycle. Figure 2 illustrates a
step towards our proposed solu-
tion, featuring an additional
gray area compared to Fig. 1
that represents business process
execution. It includes the subset
of BPM lifecycle artifacts used
and created during enactment.

Given the additional area,
we can now see that we
can define correct boundaries
through the use of three key-
words instead of two. These
keywords are (i) compliance,
(ii), conformance, and (iii) reg-
ulatory compliance. That is,
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when we speak of compliance, we are applying verification using a specification from
the system requirements and the business process model as the model for verification.
On the other hand, when we speak of conformance, we are applying verification using
the business process model with artifacts within the business process execution area.
Finally, when we speak of regulatory compliance, we are applying verification using
the regulations as the specification and artifacts within the business process execution
area as the model for verification. Note that we use compliance (instead of regulatory
compliance) to cover the verification of a model against regulations. Although this cre-
ates an area of overlap, this is not harmful since it correctly refers to compliance on both
the relation and the regulatory goal. Moreover, when verifying (subsets of) the system
requirements against a more refined set of such requirements, or a business process
model against a more refined business process model, it is also compliance.

From this, it is clear that when using these three terms, it introduces clear boundaries
that should be used to distinguish between verification techniques applied within the
BPM lifecycle. The result is illustrated in Fig. 3, and should help both research and
application to position work, accurately describe requirements, and interpret results. For
example, consider an approach that obtains a business process model from an event log
using a process mining technique and checks system requirements (e.g., regulations or
user requirements) against the obtained model. That is, it obtains a model that describes
the business process as it is performed in the real world (i.e., a descriptive model) from
observed behavior of the implementation, and checks it against a specification. In this
case, the approach would be a regulatory compliance approach when it verifies against
regulations, a compliance approach when it verifies against design properties, and a
requirements validation approach when it checks user requirements.
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ing the BPM lifecycle.

Note that we are not propos-
ing the use of these key-
words over more specific terms.
Using more specific keywords
is always encouraged. That
is, using the keyword regula-
tory compliance over the key-
word compliance when verify-
ing regulations against the busi-
ness process model is entirely
correct. Instead, the proposed
keywords should always be the
highest level keywords used to
describe techniques in the rel-
evant areas. For instance, the
keyword conformance should
never be used to describe regu-
latory compliance even though,
at a higher level, the technique
describes a conformance rela-
tion. By following these guide-
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lines, the community is ensured of using non-conflicting terminology and the proper
positioning and application of techniques.

5 Discussion

The definition of clear boundaries between available techniques and tools is important
for both researchers and practitioners. For researchers, it is not only important to ensure
that the right terminology is used when describing their techniques and tools, but also
to assist practitioners to select the correct tool for its intended purpose. Furthermore,
such boundaries allow researchers to properly position their work, including the use
of examples, selection of relevant related work, and evaluating against relevant work.
For practitioners, on the other hand, it is important to ensure the validity of the results.
That is, to ensure that the applied technique or tool verifies what was intended to be
verified and be able to rely on the results and draw correct conclusions from those
results. Consequently, more precise terminology allows to select the right portfolio of
tools to collectively verify each aspect of the design and its implementation against each
aspect of the set of system requirements, including user requirements, design properties,
and regulations.

The question, however, remains whether some of the discussed techniques are pos-
sibly of value to the goals set for the other techniques. That is, we must discuss whether
we actually should make the proposed distinction, or whether this is merely an intel-
lectual issue. To do so, we discuss the relevance of some techniques to the goals set for
the other techniques. That is, we discuss whether the technique of process conformance
checking (Definition 14) is relevant to the goal of regulatory compliance (Sect. 3.5).
Similarly, we discuss whether the technique of regulatory compliance checking (Defi-
nition 18) is relevant to the goal of process conformance (Sect. 3.2), and finally, we dis-
cuss whether the technique of process conformance checking (Definition 14) is always
relevant to conformance from a legal point of view. In the remainder of this section, we
discuss these questions, highlight any advantages or limitations that such applications
yield, and present any analysis gaps that such applications may permit.

5.1 Should Process Conformance Be Used to Prove Regulatory Compliance?

As the popularity of process mining increased within the community, the idea slowly
evolved that proving a conformance relation between an event log and a business pro-
cess model can prove regulatory compliance. As such, the use of conformance checking
techniques has been suggested as valuable to, for instance, agile compliance manage-
ment [10] and GDPR [9]. Although technically conformance checking can be applied
to prove regulatory compliance, it should be made clear that this approach is not ideal
and can only prove regulatory compliance up to some point.

When using this approach, several strict conditions must be met, while results often
lead to non-obvious inconclusive outcomes. First, a prescriptive business process model
is required to check conformance. Second, this prescriptive model must be proven reg-
ulatory compliant using design time regulatory compliance checking (Definition 18).
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One should be careful to note that, although design time regulatory compliance check-
ing can check prescriptive models, it generally uses descriptive models. Third, the con-
formance checking must report any unfitting behavior. We must stress here that any
unfitting behavior is not necessarily a violation of regulations. It simply means that a
deviation was made from the possible executions described by the prescriptive model.
As a result, this type of checking effectively denies any form of process flexibility.

Therefore, regulatory compliance can be proven through conformance checking
by proving there is no unfitting behavior. However, it cannot prove that any unfitting
behavior is an actual violation of regulations. One would still require additional reg-
ulatory compliance checking or auditing to prove this. In addition, it can only prove
regulatory compliance along the control flow perspective, because the design time reg-
ulatory compliance checking techniques used to check the prescriptive model only has
access to design time information and lacks process enactment information, such as
data, resources, multiple instances etc. In this way, the limitations of the preventative
measure of design time regulatory compliance checking (Definition 18) is transferred
to an approach that in fact has process enactment information.

Although further model annotations of regulations are possible to consider other
perspectives than that of the control flow, these approaches edge more towards also
doing regulatory compliance checking while conformance checking, than just confor-
mance checking—and would still deny any process flexibility. On the other hand, con-
formance checking approaches that enable process flexibility by allowing a certain level
of unfitting behavior can never prove regulatory compliance without applying some
form of actual regulatory compliance checking. As a result, the approach of using con-
formance to check regulatory compliance will always remain sub-optimal and should
ideally be avoided. However, by continuing to use the keywords of conformance and
compliance interchangeably, or using regulatory compliance examples to position con-
formance work, this approach may become common within application areas despite
its non-ideal application.

5.2 Should Regulatory Compliance Be Used to Prove Process Conformance?

The application of regulatory compliance (Definition 18) to prove process conformance
may, at first sight, seem completely irrelevant. However, it is possible but requires an
unconventional approach. Again, it should be made clear that this approach is not ideal
and can only prove conformance up to some point. That is, the approach can only obtain
a degree of fitness and not a degree of precision. To obtain a degree of fitness of an event
log with respect to a process model using regulatory compliance, we must first obtain
a declarative specification of the prescriptive business process model. That is, we must
obtain a set of declarative rules (e.g., temporal logic expressions) that together describe
all possible paths within the business process model.

One example to automatically obtain such a declarative specification includes
obtaining an event structure from (sets of) process model(s) and extracting a specifica-
tion in the form of computation tree logic expressions [8]. Once a declarative specifica-
tion is obtained, execution traces of the business process (captured by the event log) can
be evaluated against the declarative specification using formal regulatory compliance
verification techniques such as existing model checking tools and packages [12,13].
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To obtain a degree of fitness for an execution trace, or all execution traces within the
event log, we can divide the number of satisfied temporal logic expressions by the total
number of temporal logic expressions being verified. In this way, the degree of fitness
decreases as more temporal logic expressions are violated.

Next to the degree of fitness, results include sets of satisfied and violated tempo-
ral logic expressions. Consequently, these results will be difficult to interpret by non-
experts. As a result, the approach to use regulatory compliance to check conformance is
non-ideal due to partial and difficult to interpret results, and should be avoided. By con-
tinuing to use the keywords of conformance and compliance as being interchangeable,
or using regulatory compliance examples to position conformance work, this approach
may, however, appear within application areas despite its non-ideal application.

5.3 Should Process Conformance Always Be Used to Prove Legal Conformance?

In a previous section, we gave a short outline how to use what we called process confor-
mance to prove regulatory compliance from the process oriented information systems
point of view. In this section, we are going to look at the issue from a legal point of view.
First of all, in legal documents there is often no real distinction between compliance and
conformance (and, sometimes the two english terms are translated to a single term in
other languages). The two terms both generically mean to obey to a set of prescriptions.
For instance, consider the proposal for the European Union’s Artificial Intelligence (AI)
Act. According to the current proposal, AI (and more generally) systems operating in
specific sectors have to comply with the Act, as the explanatory text recites:

“Those AI systems will have to comply with a set of horizontal mandatory
requirements for trustworthy AI and follow conformity assessment procedures
before those systems can be placed on the Union market.”

As we can see, the Act does not differentiate between the model of an AI system and its
implementation. Furthermore, the Act seems to indicate that compliance refers to the
behavior of day-to-day operations of the implementation; on the contrary, systems have
to obtain conformity certificates before the system is placed on the market or operates in
the European Union. Accordingly, conformance certificates are based on the evaluation
of the systems before the systems are deployed. This poses the question if process and
system conformance as understood in the business process community (as discussed in
the previous sections) offer suitable techniques for providing conformance certificates
for AI systems against the requirements set by the Act. The answer seems to be neg-
ative, since the requirements for conformance certificates appears to be closer to what
we called regulatory compliance. Thus, while some of the techniques and methodolo-
gies developed for business processes appear adequate for the AI Act, the terminology
used to describe them might not correspond to the terminology used by the legal and
business communities; therefore, there is risk that BPM solutions will not fit for some
applications or are evaluated with negative results, and effective techniques not to be
adopted, limiting the impact of BPM technology for this important market.
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6 Conclusion

The notions of conformance and compliance received substantial attention in the past
decade in the BPM community. Often the two terms are used interchangeably, both in
the field and in the broader community. However, from a technical point of view, they
have been proposed with a different meaning. In general, compliance and conformance
are two types of verification of systems, relating two BPM artifacts. In this paper, we
provided comprehensive definitions of the two notions and activities related to them
throughout the lifecycle of the development and deployment of process aware informa-
tion systems and the artifacts they apply to (i.e., design specifications and regulatory
frameworks, process models, implementations, and event log). While there are surface
similarities among the verification problems and the activities specific to one of them,
we discuss some of the reasons why, in general, effective methods for one particular
type of verification (e.g., conformance) cannot guarantee a successful verification for
a different type of relation (e.g., compliance). Accordingly, the discussion pointed out
the need for a uniform set of definitions (and this is what we attempted in this contri-
bution), and consequently, a unified terminology to present them. Finally, we addressed
the problem whether the notions used in the BPM community have a counterpart in
the wider audience, in particular, in the legal domain, where the terms are often used.
It turns out that the picture is not so clear, given that the notions are used with their
commonly understood meaning (corresponding essentially to what we call regulatory
compliance) and not with their technical meaning. The major observation is that when
interacting with external partners, first one has to understand what is the verification
problem to be addressed, and then to determine what are the technical capabilities to be
used. We believe that the discussions about the different techniques (and the shortcom-
ings of using other techniques) offer guidelines to see how to succeed in the tasks based
on BPM technology.
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Abstract. The widespread diffusion of Internet-of-Things (IoT) tech-
nologies is prompting organizations to rethink their business processes
(BPs) towards incorporating the data collected from IoT devices directly
into BP models for improved effectiveness and timely decision making.
Nonetheless, IoT devices are prone to failure due to their limitations in
terms of computational power and energy autonomy, leading to compro-
mise the availability and quality of the collected data, with the risk to
prevent the correct execution of the entire BP. To mitigate this issue,
resilience is a feature that any data-aware BP should support at design-
time, by focusing on the role of available - as an alternative to unreliable -
data as a resource for increasing BP robustness to failures. In this paper,
we formalize an approach for designing and evaluating resilient-aware BP
models in BPMN (Business Process Modeling and Notation) through a
maturity model that takes into account their degree of awareness through
levels of resilience, which can be computed using the provided formaliza-
tion. In addition, we show how to extend the metamodel of BPMN 2.0 to
address the proposed resiliency levels, and we investigate the feasibility
of the approach through a user evaluation.

1 Introduction

With the widespread diffusion of Internet-of-Things (IoT) technologies and the
exponential growth of generated data, it is becoming crucial for organizations to
rethink their business processes (BPs) towards incorporating the data collected
from IoT devices directly into BP models for improved effectiveness and data-
driven decision-making [8]. For instance, in the logistics domain, IoT devices
provide real-time monitoring of goods transportation in terms of their position or
state (e.g., temperature, humidity, etc.), enabling the underlying BPs to optimize
their operational efficiency. Nonetheless, when a BP becomes data-aware, there
are also some side effects in terms of BP reliability. Since IoT devices are prone
to failure due to their limitations in terms of computational power and energy
autonomy, the risk exists that they might deliver data of low quality or stop
working without any previous notice [10], preventing the correct BP execution.

In this context, a proper design of resilient BPs becomes fundamental.
Resilience concerns the “ability of a system to cope with unplanned situations in
c© Springer Nature Switzerland AG 2022
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order to keep carrying out its mission” [3]. Satisfying resilience requirements has
been often considered as a run-time issue. According to [9,14], many approaches
have been proposed to keep BPs running even when some unplanned exceptions
occur at run-time, by implementing ad-hoc countermeasures during the execu-
tion stage of the BP life-cycle. However, this requires to know precisely where
potential mistakes can manifest in the BP. This information, if not explicitly
documented in the BP model, may lead to a defective implementation of com-
pensatory strategies for such mistakes. As BP models can explicitly mark and
indicate data elements involved in the BP, we can pinpoint the resiliency issues
that BP might suffer directly at design-time. This means a shift of focus from
what to do in case of failures to what may be affected when a failure occurs.

The goal of this paper is to provide an approach for designing and evaluating
resilient-aware BP models where data are considered as “first class citizens”, by
driving the improvement of resilience to reduce the possible impact of failures
caused by missing/unreliable data due to improper human behavior and/or IoT
device errors. Specifically, we introduce a rigorous formalization of the approach
that is based on assessing at design-time how available data re-definitions can
possibly be exploited to design viable alternatives in the BP model to make
it more resilient at run-time. In this direction, a maturity model for resilience
awareness is proposed, based on a modeling notation extending BPMN (ISO/IEC
19510:2013 - Business Process Modeling and Notation). The maturity model is
organized in five resiliency levels, which can be computed using the provided
formalization and allow BP designers to model at an increasing degree of detail
how data should be defined to have resilient by-design BP models. In addition, to
capture the novel resiliency constructs introduced by our approach, we propose
an extension to the BPMN 2.0 metamodel [12] that was exploited to develop
a tool, called RES-BPMN, implementing our approach. Finally, we present the
results of a user evaluation performed to study the feasibility of the approach.

The rest of the paper is organized as follows. After a discussion of the related
work in Sect. 2, in Sect. 3 we introduce the main concepts of the BPMN notation
and we present a motivating running example. Section 4 specifies the proposed
maturity model and the resiliency levels. In Sect. 5, we show how to extend
the metamodel of BPMN to address the resiliency levels. Finally, in Sect. 6, we
investigate the feasibility of the approach and provide a critical discussion about
its general applicability, by tracing future work.

2 Related Work

Resilience engineering has its roots in the study of safety-critical systems [6],
which aim at ensuring that organizations operating in turbulent settings attain
high levels of safety despite a multitude of emerging risks and complex tasks.
In the BPM (Business Process Management) field, the concept of resilience has
been mainly tackled through the notions of BP flexibility [14] and risk-aware
BPM [20]. Research on BP flexibility has focused on four major needs to make
BPs robust to business changes, namely (i) variability [15], (ii) looseness [1], (iii)
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adaptation [9], and (iv) evolution [4]. However, the ability to deal with changes
makes BP flexibility a required, but not sufficient, means for building resilient
BPs. While BP flexibility produces “reactive” approaches that deal with excep-
tions at design-time by incorporating remedial strategies into the BP model, or
at run-time if any “known” disturbance arises, BP resilience requires “proactive”
techniques accepting and managing change “on-the-fly” rather than anticipating
it, to enable a BP to address new emerging and unforeseeable changes with the
potential to cascade [11]. On the other hand, while relatively close to the concept
of risk-aware BPM, which evaluates operational risks on the basis of historical
threat probabilities, resilient BPM shifts attention to the “realized risks” and
their consequences, to improve risk prevention and mitigation.

The amount of research works directly addressing BP resilience is quite lim-
ited. Among the most relevant, the work of Antunes [2] focuses on developing a
set of services integrating resilience support in BPM systems, including detec-
tion, diagnosis, recovery and escalation. The approach of Zahoransky [23] inves-
tigates the use of process mining to create probability distributions on the time
behavior of BPs, which are used as indicators to monitor the resiliency level at
run-time and indicate countermeasures if the level drops. The work [22] pro-
vides a framework and a set of measures based on the analysis of previous BP
executions to evaluate BP resilience. Finally, in our previous work [13], we devel-
oped a conceptual approach coupled with a maturity model to build multi-party
declarative BPs using OMG CMMN (Case Management Model and Notation).

If compared with the aforementioned papers, in this paper we rigorously
formalize a maturity model through BPMN to build resilient-aware BP models at
design-time by focusing on the reliability of data exchanged within the BP, which
is an aspect neglected in the literature. This makes our approach specifically
targeted to those BPs that require data awareness for their execution. While
data-aware BPM is a highly debated topic in the BPM literature (see [17] for a
summary), and it is considered as a major requirement to integrate BPM with
IoT technologies [8], here we do not develop a new approach to integrate data
into BP models. Conversely, we exploit (and slightly extend) the data features
available in BPMN to handle generic BP descriptions that could be immediately
implemented via customary BPMN technologies. In a nutshell, our target is to
provide a means for evaluating in advance the impact of data-driven disturbances
on the BP and improving BP resilience to failures.

3 Business Process Modeling Notation

BPMN provides a standard graphical notation for BP modelling, with an empha-
sis on control flow. It essentially defines a flowchart incorporating a range of
diverse components, including activity nodes, denoting business events or items
of work performed by humans or software applications, and control nodes captur-
ing the flow of control between activities. Activity nodes and control nodes can
be connected by means of a flow relation in almost arbitrary ways. BPMN also
enables to represent the information flowing through the BP, such as documents,
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Fig. 1. A core subset of BPMN modeling elements

e-mails and other objects that are read or updated by means of dedicated data
elements. As shown in Fig. 1, we take into account a (large) subset of BPMN ele-
ments including the data and control flow components considered in this paper.
Hereafter, we describe the syntax of a BP model defined with such components.

Definition 1 (BP model). A BP model specified in BPMN is a tuple N =
〈O,A,G, E ,F , C, Cond ,D, TIN , TOUT 〉, where:

– O is a set of flow objects, which can be partitioned into disjoint sets of activ-
ities A, gateways G and events E;

– A is a set of activities, which can be atomic (i.e., tasks) or sub-processes;
– G is a set of gateways, which can be partitioned into disjoint sets of par-

allel gateways GP for creating/synchronizing concurrent sequence flows, and
XOR decision gateways GR for selecting/joining a set of mutually exclusive
alternative sequence flows based on data-driven conditions;

– E is a set of events, which can be partitioned into disjoint sets of start events
Es, throw intermediate events Et

i (e.g., a message that is sent) or catch inter-
mediate events Ec

i (e.g., a message that arrives), and end events Ee;
– F ⊆ (O) x (O) is the sequence flow relation for connecting flow objects;
– C is a set of possible conditions that evaluate to true or false.
– Cond : F ∩ (GR x O) → C is a function that maps sequence flows emanating

from XOR decision gateways to conditions in C;
– D is a set of data elements, which can be partitioned into disjoint sets of data

objects Dob (i.e., local data flowing through the BP) and data stores Dst (i.e.,
persistent databases that can be queried/updated by BP activities/events);

– TIN ⊆ (Dob ∪ Dst) x (A ∪ Ee ∪ Et
i ) is the input association relation used

to link data elements to activities, end events or throw intermediate events.
– TOUT ⊆ (A ∪ Es ∪ Ec

i ) x (Dob ∪ Dst) is the output association relation used
to link activities, start events or catch intermediate events to data elements;

Without losing generality, we assume the behavior of BP models specified in
BPMN to be ruled by the semantics described in [5].
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3.1 Running Example

An example of a BP model is shown in Fig. 2. It represents a BP of a smart
distribution centre that exploits the data collected by smart devices to perform
quality control over perishable food products before distributing them in grocery
shops. This BP is part of a real-world case study presented in [21], which we have
extended adding the information about the data exchanged during the BP. The
anatomy of the BP, which starts when a new pallet of products is delivered to
the distribution center with a truck’s container, is as follows:

– First, a quick check of the products’ quality parameters (level of firmness,
color and possible damages) is performed employing an automated optical
sorter and by human operators through a visual analysis.

– Secondly, a sensor installed in the truck’s container scans the pallet labels
to obtain the products’ information (e.g., product name, variety, collection
date, etc.). Then, a second sensor captures the air temperature and humidity
values related to the transport conditions. This information is recorded in a
database and then used to evaluate the quality of the products.

– If the products’ quality is considered as not adequate, the pallet is discarded.
Conversely, if the quality of the products is good, the pallet is moved in the
distribution centre and its storage is registered. The pallet is also temporally
placed in a refrigerator room to prevent products’ deterioration.

– At this point, a randomly selected sample of products is chosen from the pallet
and analyzed in a laboratory to detect the presence of bacteria. If bacteria are
detected, an alarm is triggered to indicate that the pallet must be discarded.
Otherwise, the shipment procedure of the pallet starts.

– Finally, a last analysis is performed on the quality levels of the products in the
pallet (e.g., to check if the firmness is optimal). If the quality is evaluated as
not excellent, then the price of the products is dropped and the pallet is moved
to a priority area to speed up its shipment and avoid further deterioration.
When a truck is ready to start the distribution procedure, the pallet is loaded
in a container for its shipment, and the BP completes.

By analyzing the BP behaviour, it is evident that the reliability of the data
required to properly run the BP strongly depends on the reliability of the sensors
employed for data collection. Any malfunctioning problem in sensors’ behavior
or connection issue will negatively impact the decision making and, consequently,
the execution of the BP. According to [19], seven types of data flow anomalies
can be detected in a BP: redundant data, lost data, missing data, mismatched
data, inconsistent data, misdirected data, and insufficient data. We notice that
all these anomalies can be classified into two main categories of issues related to
the availability of data and their quality degree. In this direction, rather than
automatically detecting structural data flow anomalies (e.g., like is investigated
in [19]), we propose a maturity model that enables not only to uncover those
data whose (un)availability and (low) quality can prevent the BP execution, but
also suggests different countermeasures (weighted depending on the nature of
the raised issues and the magnitude of their impact) to mitigate these negative
effects and improve the BP resilience at design-time.
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Fig. 2. BP model of the running example

4 Maturity Model

In this section, we present a maturity model with the aim to classify BPs modeled
with BPMN in terms of their degree of resilience awareness. As shown in Fig. 3,
the maturity model provides 5 levels of resilience awareness, which are defined
on the basis of the ability of the BP to adjust itself to the possible unexpected
failures with preparedness strategies to increase resilience at design-time. Start-
ing from Level 0 (No Resilience Awareness), where resilience is not considered
in the BP design, the other levels have been developed based on the three cor-
nerstones of a resilient system as identified by [7]: Early detection (ED), Error
tolerant design (ETD) and Recoverability (REC). Specifically, Level 1 (Fail-
ure Awareness) refers to ED, i.e., the recognition of system’s weak signals that
could be precursors of abnormal events. Level 2 (Risk and Quality Awareness)
enforces ED by quantifying the impact of possible failures, and is the precon-
dition for Level 3 (Alternative Data Awareness), which implements (ETD) by
proposing alternative solutions that enable the system to still function well, but
at reduced efficiency and marginally decreased quality. Finally, Level 4 (Data
Recovery Awareness) refers to REC, which concerns the definition of recovery
strategies to recover the system back to a normal state of operations.

4.1 Level 0 - No Resilience Awareness

At this level, a BP is modeled reflecting the desired scenario where it is assumed
that all the data elements involved in the BP are available for its correct execu-
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Fig. 3. Maturity Model for designing resilient BPs

tion. This is the default situation in BPMN, where the presence of data elements
is considered as optional in a BP, i.e., a data element is supposed just to provide
information details on the BP flow, like happens in the BP of Fig. 2. Thus, at
this level, no support is given to resilience and no countermeasure is required.

4.2 Level 1 - Failure Awareness

At this level, the BP is modeled to make it resilient to possible sources of fail-
ure due to the unavailability of data elements, which might affect one or many
activities that are consuming/producing such data. To have a clear map of which
relevant data elements may be subject to failures, the BP designer is first required
to identify them in the BP model and label them with the tag 〈true,U,U〉. The
first tag parameter indicates that the data element will be considered relevant
for BP execution, i.e., its unavailability may affect the execution of the BP flow
objects to which it is connected. In the BPMN metamodel [12], this can be spec-
ified by turning the DataState parameter to true (see Sect. 5). If a data element
becomes relevant, the flow objects that consume that data can not be executed
until it becomes available. Similarly, a relevant data element produced by a flow
object is checked for availability in output when the execution of the flow object
completes. If the data element is not available, an error is thrown. In this paper,
we will use the boolean function State(d) that is true if a data element d ∈ D
is relevant. The second and the third tag parameters indicate, respectively, the
quality level and the risk of unavailability of the data element. Both are initially
set to U (i.e., Undefined) and have no impact at this level.

Once identified the relevant data elements, to make the BP model compli-
ant with Level 1, the BP designer must first indicate the “provenance” and the
“destination” of each relevant data object, i.e., which activity/start event/catch
intermediate event produces the data object and which activity/end event/throw
intermediate event consumes the data object. This can be done in BPMN exploit-
ing the Association relation. Similarly, for each relevant data store, it must be
specified at least a flow object that reads/updates data from/into it. Conse-
quently, a Level-1 compliant model can be formally defined as follows:
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Fig. 4. Level 1 (Failure Awareness) compliant BP model

Definition 2 (Level-1 compliant model). Let N = 〈O,A,G, E ,F , C,Cond ,
D, TIN , TOUT 〉 be a BP model. N is said to be a “Level-1 compliant model” iff,
for each d ∈ D with State(d) = true one of the following conditions holds:

– d ∈ Dob, and there exist x ∈ (A ∪ Es ∪ Ec
i ), y ∈ (A ∪ Ee ∪ Et

i ), ti ∈ TIN

and to ∈ TOUT such that ti = 〈d, y〉 and to = 〈x, d〉.
– d ∈ Dst and there exist y ∈ (A ∪ Ee ∪ Et

i ) and ti ∈ TIN such that ti = 〈d, y〉,
or x ∈ (A ∪ Es ∪ Ec

i ) and to ∈ TOUT such that to = 〈x, d〉.

Let us consider the BP of the running example. To increase the resiliency
level of the model we should set as relevant all those data whose unavailability
may lead to possible failures, i.e., the data collected by smart devices (e.g., Firm-
ness, Humidity, Temperature, etc.) or obtained after a visual/automated analy-
sis performed by human operators (e.g., Damages, Sample [analyzed]). Then, to
make the BP fully compliant with Level 1, we must check that the relevant data
objects are associated to their producer/consumer. Thus, we need to add an out-
put association from the data object Sample [analyzed] to the activities Activate
Alarm and Manage Shipment, as shown in Fig. 4. If this data object becomes
unavailable or unreliable, the risk exists that the alarm is wrongly triggered or
the shipment of products with bacteria is performed with severe effects.

4.3 Level 2 - Risk and Quality Awareness

While at Level 1 the BP designer declares which data elements are likely subject
to failures, at Level 2 there is a first attempt to concretely quantify the quality
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Fig. 5. Level 2 (Risk and Quality Awareness) compliant BP model

level and the risk of unavailability associated to such data elements. For the
sake of simplicity, in the rest of the paper we assume the quality level/risk of a
relevant data element bound to only four discrete values: U - Undefined, L -
Low, M - Medium, H - High. The pair of parameters quality level/risk enables
to build a kind of “criticality degree” that supports the BP designer to identify
those data elements that might have more impact in case they are unavailable or
have a poor quality. Note that, to switch from Level 1 to Level 2, it is required
that, for any relevant data element, the quality level/risk are both assigned to a
value different from U, i.e., they become objectively quantifiable. Of course, the
choice of the values to associate to both parameters depends on the domain under
observation. From a formal perspective, we introduce two functions Quality(d)
and Risk(d) returning the quality level and the risk of unavailability of a relevant
data element d ∈ D, and we define a Level-2 compliant model as follows.

Definition 3 (Level-2 compliant model). Let N = 〈O,A,G, E ,F , C,Cond ,
D, TIN , TOUT 〉 be a Level-1 compliant model. N is said to be a “Level-2 compliant
model” iff, for each d ∈ D with State(d) = true, then Quality(d) 	= U and
Risk(d) 	= U.

In the case of our running example, many data objects are the results of
activities performed automatically through the support of smart sensors sup-
ported by sophisticated software. For example, the first quality check involves
the use of an optical sorter to measure the firmness of the products contained in
the pallet and detect their color. Similarly, other sensors installed in the pallet
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Fig. 6. Novel modeling elements and annotators

or in the truck container allow for a precise detection of products’ information,
temperature and humidity ((H)igh data quality). However, the electronic com-
ponents of these devices are subject to deterioration due to their continuous
usage, requiring scheduled/ad-hoc maintenance actions in case of malfunction-
ing ((M)edium risk of data unavailability). This means that data objects Firm-
ness, Color, Product Info, Temperature and Humidity will be associated with the
label 〈true,M,H〉. Conversely, to identify damaged products, a visual inspection
is conducted, meaning a (potential) (M)edium quality level for the data object
Damages. Similarly, the quality of Sample [analyzed] depends by the specific
sample chosen, which leads to a (M)edium value for this parameter (cf. Fig. 5).

4.4 Level 3 - Alternative Data Awareness

Based on the information about the sources of failures and their potential
impacts, the BP designer can decide to include alternative data in the BP model.
Starting from the data elements with a higher risk of unavailability and lower
data quality, the BP designer specifies if there are alternative data sources and
how to reach them. To this aim, we introduce the function Alt(d), which asso-
ciates to a relevant data element d ∈ D an alternative data element dal ∈ D, or
the special keyword ‘X’ if no alternative exists for d. This enables us to define
data elements that act as primary data sources for some activities/events and
others that work as their alternatives. As shown in Fig. 6 and in Fig. 7, we rep-
resent an alternative data element through a new BPMN icon with a shape
identical to a “traditional” data element, but with a dashed border attached
to the primary data source. If the BP designer is aware that no alternative is
possible for a primary data, then the dashed border icon is labeled with ‘X’.

Definition 4 (Level-3 compliant model). Let N = 〈O,A,G, E ,F , C,Cond ,
D, TIN , TOUT 〉 be a Level-2 compliant model. N is said to be a “Level-3 compliant
model” iff, for each d ∈ D with State(d) = true, then: (i) there exists dal ∈ D
such that dal 	= d and Alt(d) = dal, or (ii) Alt(d) = X.

In our running example, we can associate the primary data objects having
some risk of unavailability with a “backup” alternative version of the data. For
example, if the optical sorter stops working, the human operators can employ
a portable penetrometer to measure the products’ firmness, and a spectropho-
tometer to perform color measurement based on spectral reflectance. Similarly,
temperature and humidity can be obtained through portable temperature and
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Fig. 7. Level-3 (Alternative Data Awareness) compliant BP model

humidity probes. Also the product information can be obtained employing a
manual scanner. Of course, using manual devices to perform continuous mea-
surements rather than automatic sensors can decrease the quality of the collected
data. This means that the alternative data objects Penetrometer Firmness, Spec-
tral Reflectance, Product Info via manual scan, Temperature probe measurement
and Humidity probe measurement will be associated with the label 〈true,L,M〉.
It is worth to notice that no alternatives exist for the data objects Damages,
Sample [selected] and Sample [Analyzed], i.e., the BP designer is declaring her
awareness that these data represent single point of failures (cf. Fig. 7).

4.5 Level 4 - Data Recovery Awareness

In the previous level, we have discussed how the presence of alternative data
allows us to substitute primary data sources if they are missing or unreliable.
However, the quality of an alternative data is usually lower than its original
counterpart, and sometimes this can be not adequate to progress with BP exe-
cution. To mitigate this issue, the final level of our maturity model pushes a
BP designer to specify remedial actions to improve the quality of a data to a
degree that is comparable to its original counterpart. These actions are triggered
employing a new modeling element, named data-driven error event, which can
be embedded in a event sub-process. In BPMN, event sub-processes are used
to capture global BP exceptions and define recovery procedures. We represent
a data-driven error event with a document marker within the event shape (see
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Fig. 8. Level-4 (Data Recovery Awareness) compliant BP model

Fig. 6). In our maturity model, we let the BP designer deciding if a data element
requires to be restored trough a recovery procedure; if this is the case, then the
icon of the data element to be recovered must be labeled with ‘R’. At this point,
to switch from Level 3 to Level 4, for any “recoverable” data element d ∈ D, a
data-driven error event ev ∈ Es is coupled with d and followed by a sub-process
including the remedial actions to adjust its quality. From a formal perspective,
we introduce the function Rev(d) that associates to d a data-driven error event
ev, or the special keyword “NR” if d is considered as not recoverable.

Definition 5 (Level-4 compliant model). Let N = 〈O,A,G, E ,F , C,Cond ,
D, TIN , TOUT 〉 be a Level-3 compliant model. N is said to be a “Level-4 compliant
model” iff, for each d ∈ D with State(d) = true, then: (i) there exist a data-
driven error event ev ∈ Es, an end event en ∈ Ee, a sub-process a ∈ A, an event
sub-process aes ∈ A, and two sequence flows f1 and f2 such that Rev(d) = ev,
f1 = (ev, a), f2 = (a, en), and {ev, f1, a, f2, en} ∈ aes, or (ii) Rev(d) = NR.

Concerning our running example, we can assume that if the optical sorter
stops working and the amount of pallets to be checked is too high, then employing
the portable penetrometer to measure the products’ firmness becomes too time
consuming for the human operators. Therefore, the BP designer can mark the
data object “Firmness” with a ’R’ and associate it to the data-driven error event
called “Firmness unreliable”. As shown in Fig. 8, this will trigger the starting of a
recovery procedure that, for example, instructs to move the pallet in another area
of the distribution center where an auxiliary optical sorter is located by restoring
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the availability and quality of the original data object “Firmness”. However,
the enactment of the recovery procedure requires additional time and effort
to be enacted, making it feasible only in exceptional cases. Of course, similar
considerations can be made for the other relevant data objects in the BP.

5 Extending BPMN

One key feature of BPMN relies on its well-defined metamodel that facilitates
BP model exchangeability and tool integration. In the BPMN 2.0 specification
document [12], the metamodel is represented by UML class diagrams, includ-
ing object classes with required and optional attributes. Since all valid BPMN
models must conform to the specifications of the metamodel, we need to extend
the BPMN metamodel inserting the novel elements to design resilient models.
In this direction, BPMN provides an “extension by addition” mechanism that
enables the definition and integration of domain-specific concepts and ensures
the validity of the BPMN core elements [18]. The following elements are needed
to specify valid BPMN extensions. An Extension Definition is a named group
of new attributes that can be used by BPMN elements, and consists of many
Extension Attribute Definitions that define the particular attributes, whose val-
ues can be defined by the Extension Attribute Value class. To exploit the exten-
sion capabilities of BPMN, we have customized the well-known procedure for the
methodical development of valid BPMN extensions provided by Stroppi in [18],
which consists of the following steps (RES-BPMN is the name of our extension):

1. define a CDME (Conceptual Domain Model of the Extension) as UML class
diagram that is able to capture the novel resiliency aspects;

2. define the RES-BPMN model based on the previous CDME model;
3. transform RES-BPMN into an XML Extension Definition Schema (EDS);
4. transform the XML EDS into an XML Schema Document.

Since our work mainly focuses on conceptual aspects and aims to create a
maturity model, only the first two steps of the procedure are shown here. First,
we identified a set of UML Class diagrams to be modified for capturing the novel
BPMN elements (cf. Fig. 6): Data Object, Data Store, Data Association and
Event. Then, for each of them, we created the CDME model, whose classes are
typed as standard BPMN Concepts. Finally, the RES-BPMN model was derived
by the application of the model transformation rules covering all possible CDME
configurations to extend the existing Class Diagrams. For the sake of space, we
focus here just on the extension of the Data Object Class Diagram (cf. Fig. 9).
The complete list of CDME models and UML Class diagrams is available in an
online appendix at: https://github.com/bpm-diag/RES-BPMN.

As shown in Fig. 9, we introduced new attributes to the BPMN standard,
which are highlighted in bold. For failure awareness (Level 1), we exploit the
existing optional DataState attribute, which indicates that the unavailability
of a data object may affect the execution of the BP flow objects to which it is
connected. By default, its value is set to false. For risk and quality awareness

https://github.com/bpm-diag/RES-BPMN
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Fig. 9. RES-BPMN UML class diagram of data object class

(Level 2), we defined two attributes: risk_lev and quality_lev, which allow
respectively to capture the unavailability risk and quality level of a data object
through four values: U, L, M and H. By default, at Level 1, these attributes
are set to U, i.e., their values are unknown a-priori. Alternative data awareness
(Level 3) is captured with a boolean attribute isAlternative. In particular, for
a given data object, isAlternative can be set either to true if an alternative
version of the data exists (the association between a data and its alternative is
made explicit throw a new class DataAlternativeAssociation created within
the DataAssociation class) or false, i.e., there is no alternative for the data
object. Finally, data recovery awareness (Level 4) is addressed by setting the
attribute isRecoverable to true, which indicates that the BP designer can pro-
vide a recovery strategy for the data object through a data-driven error event.
This is captured within the Event class.

6 User Evaluation and Concluding Remarks

Extending the metamodel of BPMN has allowed us to develop a software tool,
called RES-BPMN, which implements our approach to systematically design
resilient BP models in BPMN and check their compliance with the different
levels of the maturity model. In the case of non compliance with a certain level,
the tool suggests the steps to refine the BP model to achieve the desired level of
resilience. RES-BPMN has been developed as an extension of bpmn.io, an open
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source BPMN web modeler provided by Camunda, and it is written in Javascript
using NodeJS framework on top of two libraries: diagram-js and bpmn-moddle.
Thus it can run into modern browsers requiring no server back-end. RES-BPMN
can be downloaded at: https://github.com/bpm-diag/RES-BPMN.

Being RES-BPMN the only tool available in the literature for the specifica-
tion of resilient-aware BP models in BPMN, no direct comparison was possible
against other BP modeling tools. For this reason, we opted to investigate the fea-
sibility of our approach through a usability evaluation of the user interface (UI)
of the tool coupled with a thinking-aloud session, where the users were asked to
explicitly execute a modeling task with an external evaluator observing them,
indicating the methodological issues found while interacting with the UI. The
users were selected from universities (2 professors and 4 PhD students), business
(2 managers) and manufacturing companies (2 managers), and declared to be
knowledgeable (60%), skilled (20%) or experts (20%) in BP modeling.

After a preliminary training session on introducing RES-BPMN, starting
from the (not-resilient) BP shown in Fig. 2 and its description, the users were
requested to systematically increase its resiliency level using the features and
feedback provided by the tool. All the users were able to complete their task
(providing different valid solutions) within the maximum available time (15min).
As soon as a user completed the task, we administered a SUS questionnaire [16].
SUS consists of 10 statements evaluated with a 5-point numerical scale that
ranges from 1 (“strongly disagree”) to 5 (“strongly agree”). At the end of the
questionnaire, an overall score is assigned to it. We compared the score against
the benchmark presented in [16], which associates to each range of the SUS score
a percentile ranking varying from 0 to 100, indicating how well it compares to
other 5,000 SUS observations performed in the literature. Since the obtained
average SUS score was 80.8, according to the benchmark, the tool’s usability
corresponds to a rank of A, which indicates a degree of usability almost excellent.

We also collected valuable insights about the practical applicability of the
approach during the thinking-aloud sessions. In particular, the users criticized
the absence of an indicator to quantify the distance between a BP model and the
complete achievement of a resiliency level. In this direction, as a future work, we
plan to develop such an indicator exploiting our formalization of resiliency levels
and measuring the number of modeling elements that are not compliant with
the definitions in Sect. 4. In addition, by associating the quality level and the
risk of unavailability of data elements with numeric weights, we can use them to
build a quantifiable “criticality value” that identifies the data that might have
more severe negative effects in case of their unavailability of low quality. This
value could enrich the above indicator to provide a better understanding of the
impact and the risks of a non-compliance with a resiliency level.

A second threat to the feasibility of the approach is about the practical
conditions and assumptions under which it can be considered as effective. In
particular, the users pointed out that the existence of alternatives might not be
always guaranteed; analogously, resilience might also be affected by other factors
different from data, like resource unavailability, temporal constraint violations,

https://github.com/bpm-diag/RES-BPMN
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etc. In this paper, we focused on the data as main source of failures affecting BP
resilience, and covering other potential factors is out of the scope of this work.
However, the investigation of such factors is in the list of future works.

To sum up, we believe that measuring the usability of the UI of RES-BPMN
is as a good preliminary indicator to validate the feasibility of our approach.
The resiliency levels introduced in this paper, being based on a well-known stan-
dard such as BPMN, go in the direction of providing a reference framework for
developing novel techniques and metrics to address BP resilience towards more
accurate quantitative analysis. Of course, a general acceptance of the maturity
model needs an extensive empirical evaluation of the approach.
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Abstract. In an increasingly data-rich environment, new opportunities for the
domain of Business Process Management are created based upon identifying,
interpreting, and acting on new and earlier signals. This shifts the focus from pro-
cess execution to process initiation. Process latency is defined as the time from
occurrence of a need to the start of the respective fulfillment process. Based on
a comprehensive literature review, secondary data from real-world case examples
and international focus groups, this paper classifies three strategies to reduce pro-
cess latency. For each of these three strategies, reactive and proactive approaches
are differentiated. This classification, in its core, serves as a tool for structured
ideation and thus, expands process designers’ toolset for explorativeBPM.Beyond
this, the paper contributes by conceptualizing process latency as a novel process
metric within the BPM discipline.

Keywords: Explorative BPM · Process latency · Event sensing · Event
processing

1 Introduction

As in many industries the threat of disruption increases, it is no longer sufficient to rely
on internal operational efficiency only for lasting success [1]. Organizations additionally
need to develop resilience, i.e., the ability to withstand disruptive external changes [2].
The implied challenge of running the present while building the future is conceptualized
in the so-called ambidextrous organization, fueled by the observation that exploiting
operational efficiency and exploring new business opportunities in parallel has become
a crucial success factor [3].

This development can also be observed in Business Process Management (BPM),
the holistic management discipline concerned with the description and design of how
work is performed in organizations [4, 5]. Traditionally, the exploitative perspective,
which employs a problem-focused approach and aims at continuous improvements, has
largely been the focus within BPM and respective tools have consequently reached a
substantial maturity [1]. However, against the backdrop of the aforementioned amplify-
ing relevance of the resilience and ambidexterity imperative, there have been recent calls
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for a more explicit consideration of an explorative perspective that supports the search
for new value propositions [6, 7]. This search is characterized by the quest for what else
is possible, a sharp contrast to the focus of exploitative BPM which concentrates on
resolving identified pain points within a process.

In today’s digital environment, it is especially a surge in the amount and accessibility
of available data that catalyzes entirely new process design options [8, 9]. This data-
intensity materializes in the context of BPM as manifestations of events (e.g., a door
is closed, a parcel has been dropped, a mobile device entered a geofenced area) that
were previously unnoticed. Each of these events comes with a potential signal that
might trigger a request for a business process. It therefore becomes an opportunity to
sense, interpret and act upon such external signals, if they are deemed relevant [10].
Organizations that master event sensing and subsequent processing can activate their
processes earlier and by this gain an edge in terms of time-to-process, i.e., they benefit
from low process latency [10].

This focus on and the increased opportunity to minimize process latency leads to two
fundamental new perspectives in the context of BPM. First, early event identification,
and not just process activities that can be eliminated, streamlined, and automated as
part of lean management or RPA initiatives, is becoming an additional focus of process
designers. Second, no longer is the process fulfillment time the only key temporal process
metric. Process latency, defined as the time from occurrence of a need to the start of the
respective fulfillment process, is becoming a relevant process metric in cases in which
a fast, proactive process execution creates a ‘first process advantage’. Therefore, the
research question of this paper is: How can process latency be reduced?

In order to address this question, we developed a classification of process latency
reduction strategies through a two-staged research methodology. First, we studied the
extant literature on process redesign and latency reduction strategies to build an a-priori
conceptualization. Second, we conducted a series of focus groups with global BPM
experts from academia and industry to identify case examples so we could empirically
assess its completeness, relevance and applicability and develop additional principles
for operationalization.

The remainder of this paper is structured as follows: Hereinafter, Sect. 2 introduces
the overall research context by providing a summary of the body of knowledge from
relevant disciplines. In Sect. 3, we outline the research methodology and the steps con-
ducted to answer the research question and to arrive at the desired classification. These
results are elaborated in depth in Sect. 4, which can hence be considered the core of
the paper. A discussion of the results, especially with regards to their applicability, is
given in Sect. 5, before Sect. 6 summarizes the main conclusions and outlines remaining
limitations as well as future research directions.

2 Research Context

2.1 Explorative BPM Techniques

Business Process Management revolves around understanding, managing, and trans-
forming how work is performed in an organization [4]. The foundational understanding
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of performing work is that it serves as a mechanism to create or add value. BPM spec-
ifies this in studying business processes, i.e., end-to-end chains of events and activities
that create value through transforming inputs into outputs [11]. For managing business
process performance, BPM offers a variety of different methods, techniques and tools
[4]. While the BPM discipline has matured significantly both in academia and practice
over the past decades, and as such has evolved into a holistic, professionalized manage-
ment approach [5], the exploitative perspective, i.e., a focus on addressing roadblocks
to high performing process performance, has been at its core [1]. Extending the focus
to opportunities, so-called explorative BPM, can still be considered a nascent discipline
[1]. Though the overall topic of explorative BPM is gaining popularity, as evidenced by
dedicated tutorials [6] and even a first proposal for a curriculum (see https://explorative-
bpm.com/), the actual body of knowledge on operational and well-defined explorative
process design techniques is still rather limited. One comprehensive approach for explo-
rative BPM is the Five Diamond Method, which captures business, innovation, purpose,
technologies as well as their overall integration [12]. However, the comprehensiveness
of this approach comes with compromises in terms of the specificity of its embedded
techniques. Its focus is also on extending the design space of a typical process scope as
opposed to the pre-process scope that constitutes process latency.

One of the first, more detailed contributions is the use of explorative patterns [13].
The in total seven patterns generate growth-related process design possibilities for exist-
ing business processes from an opportunity-centric lens [13]. These patterns provide
deductive guidance on how to expand a business process in the search for new value
propositions. However, a restriction to post-action coding of few salient cases and a lack
of contextualization limit their validity so far [13]. One pattern, called Process Initia-
tion, suggests the reduction of process latency or ‘time-to-process’ [13], but it does not
provide a sufficient level of detail for operationalization.

2.2 Process Latency

The general concept of latency as an interval between stimulation and response is well
known in various disciplines. While there are several definitions of the term, latency
commonly denotes the time that passes from the moment an event occurs until an appro-
priate response is generated and executed [14]. Hence, latency can be characterized as a
time period, or more specifically, a reaction time or ‘time to initiate’. As such, response
latency of probands is used in psychology to examine the strength of certain mental
connections and is, e.g., applied in the context of advertising and branding research
[15, 16]. In electronics engineering and computer science, response latency refers to the
delay of signal processing in a network [17]. Low latency implies that there are no or
almost no delays, which is critical for many applications – hence, significant research
efforts are being undertaken towards technical latency reduction [18]. One example for
low latencies determining successful strategies comes from the world of trading: Low-
latency trading activities, where responses to market events are automatically triggered
in milliseconds, can create profit opportunities through an advantage of relative speed
over other traders [14]. An edge in speed over competitors has been well researched
in the business and strategy field as a special case of competitive advantage. As an
early contribution, the concept of first-mover advantage formed around timely market
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entry [19], although its effects need to be interpreted in strong linkage to, among other
aspects, the resources possessed by the respective firm and other strategic decisions [20].
Equally emphasizing the value of speed and reduction of lead times to enable, e.g., faster
responses, time-based competition strategies summarize internal optimization activities
in the entire organization [21–23] and are thus closely related with exploitative BPM
approaches in terms of minimizing processing time.

In supporting internal decision making through IT systems and data, the Business
Intelligence (BI) discipline adopts a related focus on internal activities. There, the valueof
timely responses to relevant ‘business events’ is acknowledged through conceptualizing
a so-called ‘action distance’ [24]. Corresponding to the reaction time for initiating an
appropriate action following the event, it may be regarded synonymously to the concept
of latency as described above [24, 25]. Furthermore, it is commonly broken down into
three components [24]: The data latency occurs after the event has happened and until
the data is collected, stored, and ready for analysis. Subsequently, the analysis latency
addresses the time it takes for results to be generated and presented from the data.
As those two components are mainly driven by the supporting technology, they are
summarized as infrastructure latency [25]. Finally, the decision latency denotes the time
to initiate a response after the analysis results are available. Driven by the value of timely
information and related opportunity costs, as different courses of action may become
unavailable the higher the overall latency, BI research has addressed ways to reduce
action distance, e.g., through appropriate software systems [9].

Complementary, in the search for low response latencies and fast reaction times,
the sensing of signals has a significant role to play. From the introduced definition of
latency, it is evident that learning about an event is the key first step. In order to do so,
one must be able to identify and interpret the signals these events inevitably send out.
Those may range from fundamental body functions, like a raise in heart rate as physical
signal corresponding to a certain event, to sophisticated technological signals created
by sensors, e.g., from the interruption of a light barrier, which are usually coupled with
an underlying interpretation logic. When relying on existing signals, i.e. from events
that have already taken place, the key lever lies in optimizing the response: In the case
of low-latency trading, the market events and respective signals are commonly known
and traders engage in a “technological arms race” to execute appropriate actions the
fastest [14]. Same applies for the abovementioned reduction of infrastructure latency,
which equally depends on technological factors [24]. Those signals can be considered
lagging indicators, referring to them resulting from past actions or events and, thus,
being reactive in nature [26].

On the other hand, it becomes increasingly feasible to explore leading indicators
that aim to predict future developments and thus, are anticipating that certain events
are expected to take place [27]. As there is a natural degree of uncertainty to such
anticipations, which becomes greater the further into the future a prediction is to bemade
[28], leading signals can be considered ‘weaker’ than lagging ones.When there is not one
obvious event, the differentiation of occurring signals in lagging and leading, known for
example from performance management [26], is not always well defined, as it requires
specifying a certain cutoff moment that serves as the boundary between what would be
considered leading or lagging [29]. Nonetheless, moving towards predictive analyses
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based on sensing of earlier signals has the potential to create new value propositions for
both organizations and customers [28]. Organizations may adopt a proactive strategy to
conveniently deliver value before customers are even aware of corresponding needs or
have expressed them, respectively [30]. While explicit needs still have to be addressed
first, for lasting competitive advantage also proactive strategies are needed [30–32].
In such a proactive approach to the customer journey, customers are actively moved
and led along processes relevant for them instead of reactively following or reacting
to them [33]. For the service delivery model in the context of governmental services,
for example, related mechanisms are referred to as “flipping the service delivery model
from a reactive pull to a proactive push” [34, 35]. The technological progress in the form
of event monitoring and subscription solutions (e.g., in systems such as Salesforce or
Oracle, or as demonstrated byAmazon’s DashReplenishment program)makes proactive
services attainable and adds to the growing importance of addressing proactivity in the
public sector [36].

It is those rapid and continuously evolving technology advancements that drive the
pivotal importance of an ability to identify, capture and analyze weak signals from rich
datasets and act upon them in virtually all industries [10]. Consequently, access to data
and sufficient capabilities for its analysis are indispensable to establishing a ‘signal
advantage’ as a source of competitive advantage in the digital era [8, 10, 28].

Although these aforementioned concepts are generally addressingways of delivering
or adding value and thus, seem inherently relevant to the explorative BPM discipline, an
application to process redesign has so far been one-sided on processing time reduction.
As such, for business process analytics, event detection and analysis within the bound-
aries of the execution of a specific process (instance) is fundamental [25]. Meanwhile,
the exploration of process latency reduction opportunities, which materialize prior to the
process instantiation, has largely been neglected [13]. To provide guidance on related
strategies based upon process latency reduction activities, delving into the mechanisms
of how successful firms already reap the benefits of related actions seems promising
[37].

3 Research Methodology

In order to study ways in which organizations can engage in process latency reduction
activities, classifying such cases into different prototypical categories marks an auspi-
cious first step. Such classifications are effective in reducing the complexity of a topic as
to enable meaningful analysis [38]. Thus, they are especially useful in disciplines were
little knowledge about the subject is yet available [39], as it is the case for explorative
BPM and the novel concept of process latency [1, 13]. Consequently, classifications and
resulting frameworks are frequently utilized as a tool to describe and structure complex
subjects and, as such, have been well researched from a methodological point of view
[39].

One key finding is that a framework should be both grounded in theory and informed
by empirical observations [38]. While the first aspect should be addressed through care-
fully studying the extant literature from relevant disciplines, several options exist to
include empiricism. Among those, focus groups are a well-defined qualitative research
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methodology that allows to explore research subjects in detail by having a converging
discussion with about 4–12 qualified participants [40]. Hence, the focus group method-
ology is also referred to as a “group interview technique”, by which a substantial amount
of rich data can be collected in a comparatively short timeframe [41]. Another key advan-
tage is the openness of the format in combination with the opportunity for the researcher
to directly interact with the participants [40]. This is assumed to be vital in a field like
explorative BPM, a still nascent discipline, where the degree of novelty is high and thus,
the chance of misunderstandings might be, too.

Our applied research methodology involved an iterative approach to developing the
final results. The overall step-by-step procedure with three iterations over the course of
threemonths is summarized inTable 1. Each iteration consisted of a series of design activ-
ities, performed by the authors, followed by demonstration activities to assess the results
of the design phase. Those results take shape as intermediate versions of the aspired clas-
sification of process latency reduction strategies. While we refer to the online appendix
for the results of iterations one and two, the third and final iteration resulted in the clas-
sification presented in the following chapter. To guide the demonstration activities, we
relied on criteria from literature for both objective as well as subjective assessment. For
example, the categories should be unique with at least one object classified for each of
them. In addition, the last iteration before terminating the process should see no dimen-
sions or characteristics merged, split or added. As for subjective criteria, the categories
should be constructed in a robust and comprehensive, yet concise way. This combina-
tion of attributes is often referred to as MECE, i.e., mutually exclusive and collectively
exhaustive. Beyond that, it needs to be explanatory for one to actually capitalize on the
findings in subsequent research or application endeavours.

First, we studied the extant literature on the concept of latency and its conceptu-
alization and utilization in various disciplines to develop an initial understanding. The

Table 1. Applied development process

Iteration 1 2 3

Timeline Jul – Aug 2021 Aug 2021 Aug – Sep 2021

Design activities • Comprehensive
literature study on
latency concepts and
use

• Call for and reception
of first set of case
examples

• Initial analysis and 1st

version of
classification

• Complementary
literature study and
identification of add.
examples

• Revised 2nd version
of classification based
on new input and
discussion from first
round of focus groups

• Revised and modified
final version of
classification as well
as generalized
information based on
discussion from
second round of focus
groups

Demonstration
activities

• First round of focus
groups

• Second round of
focus groups

• Participant feedback
in written form and
personal interviews
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respective results have been presented in Sect. 2. To move towards a conceptualization
of forms of process latency reduction and to enable an understanding of how and which
new value is created through them, we then involved a global group of contributors for
two main purposes: (1) input of relevant case examples to be classified and (2) partic-
ipation in focus groups as part of the demonstration activities. The contributors were
identified via open invitation among the professional network of the authors on LinkedIn
in June 2021. In total, 18 participants expressed an interest to contribute. Each of them
was carefully assessed in terms of professional and academic expertise in BPM.

In selecting the overall pool of participants, we were mindful of ensuring geograph-
ical and gender balance as well as a good balance between BPM professionals and BPM
academics in different stages of their career. In result, 14 participantswere invited for con-
tribution of case examples and to take part in the focus group sessions. Table 2 provides
an overview about the demographics of the members of our focus groups. As described,
a vital part of the design activities within the first iteration was driven by the case exam-
ples contributedby theparticipants. Those served as references for the unit of analysis, the
study of reducing process latency. The initial set of case exampleswas examined and clas-
sified by the authors.As a guiding principle, the exampleswere analyzed on four different
levels: (1) What is the activity conducted by the organization in the example, i.e., which
action was taken to expand the value proposition, which business process is affected, and
which of its elements are added or changed? (2) Why is the activity conducted and how
is its success measured? (3) When is a certain activity applicable, i.e., what are related
context factors? (4) How do organizations make an activity work, i.e., what are related
success factors?

Table 2. Overview of focus group participants

No Role Industry Region Sex

1 Product Manager Retail Middle East m

2 Industry Analyst Consulting North America f

3 Assistant Professor Research Europe f

4 Managing Director Consulting Australia m

5 Associate Professor Research Southeast Asia f

6 Lead Business Analyst Banking Australia m

7 Head of Digitalization Chemicals Europe m

8 Independent Consultant Consulting Australia m

9 Full Professor Research Europe m

10 Associate Professor Research Europe m

11 Lead Operational Excellence Chemicals Europe f

12 Research Associate Research Europe m

13 Vice President Operations IT & Software Australia f

14 Manager Consulting Europe m
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After the completion of the initial design activities, the first evaluation in the form
of focus groups was conducted. The sessions were designed and conducted with respect
to and based on guidelines from relevant literature [40–43]. As for the second round
of focus groups, also this round was broken down into different sessions to cater for
time zone preferences and to keep the number of participants within the preferable
range. The authors served as moderators for the meetings. The sessions were recorded
(participants were asked for written consent anteriorly), transcribed and then analyzed
by the authors using an open coding procedure [40, 44], which generated the data basis
for the subsequent design activities. Specifically, after the first iteration, the feedback
of the participants showed that the categorization was not yet concise and explanatory
enough, as became implicitly evident, for example, from several clarifications that were
required during the discussions, with participants raising concerns about whether their
respective case examples had been classified appropriately.

The design activities in the second iteration comprised of a complementary literature
study and a subsequent identification of additional case examples from empirical and
theoretical sources, which added to the ones initially contributed by the participants
to form the final set of 28 case examples. Informed by the abovementioned feedback
from the first round of focus groups, we revised the classification and developed a
second version. From that, additional information was elicited through abstraction and
generalization, followed by a second round of focus groupswhich further added feedback
and insights.

Consequently, in the third and final iteration, additional modifications to the clas-
sification were made and the accompanying generalized information was revised and
expanded in the design phase, before the final feedback of potential users, i.e., the focus
group participants, concluded the demonstration phase of the third iteration. This mate-
rialized in the collection of explicit statements and feedback from the participants on
usefulness and usability, two key criteria for developing those kind of categorizations
[45]. Feedback was sent in written form, but also issued in two calls with immediate
follow-up discussions. The comments and statements led to minor adjustments in word-
ing and additions, however, there were no substantial changes made to the core structure,
that will now be presented in the following chapter. This underpinned the decision to
end after the third iteration.

4 Process Latency Reduction Strategies

Thefinal outcome represents a detailed description of process latency reduction strategies
by means of a set of 28 relevant case examples and their classification into three types.
Here, we will only elaborate on these resulting categories, which we refer to as process
latency reduction strategies. Formore details on the case examples and their classification
into the three strategies, please refer to the online appendix.

In general, all cases involve a reduction of process latency, i.e., the time from occur-
rence of a need to the start of the respective fulfillment process. Hence, the strategies
are differentiated based on which individual latency in terms of the generic customer
journey they influence. Figure 1 shows a visualization of a schematic customer journey
that was used as the starting point for conceptualization, as it is meant to represent the
status before a process latency reduction activity is conducted.
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Fig. 1. Generic customer journey before latency reduction

This understanding of the customer journey in a simplified and abstracted form,
which fits the purpose of describing and classifying sub-types, can be found in similar
forms in the literature [46]. The understanding of the notion of latency as a time needed to
perform such an action is shared with common definitions, as were introduced in Sect. 2.
More specifically, as process latency is understood as “time between the occurrence of
a demand and the initiation of the related process” [13], the event here can be viewed
synonymously to detectable state change implying a demand for action [25]. In our
applied definition of the concept, process latency consists of three individual activity
latencies. Such decomposition is also employed in the literature as discussed in Sect. 2.2
[24, 25]. Yet, we adopt a significantly different lens on the latency concept by aligning
it with the items of the generic customer journey:

Process Latency = tef = tea + tar + trf (1)

In the abstracted formula, txy represents an individual latency and hence, denotes the
time between x and y. The letters are taken from Fig. 1, with process latency being the
time from the event e, i.e., an occurrence of demand, to the start of the related fulfillment
process f . As becomes evident from this conceptualization, to reduce process latency
means reducing at least one of the individual activity latencies. This insight is central
to the classification of process latency reduction strategies presented in Fig. 2. The first
type is about the so-called awareness latency tea, the second one addresses the request
latency tar , while the last one concerns the fulfillment latency trf .

The awareness latency is reduced when the awareness is moved as close to the start
event as possible. For this, the organization needs to detect the start event and proactively
approach the customer. The activity “Create awareness” is added to the organization’s
layer of the customer journey. The following parts remain unchanged, as the customer
stays entirely in charge of triggering an eventual request. In creating it themselves, the
organization can ensure that the awareness happens earlier or even at all.

Fig. 2. Process Latency reduction types from a customer journey perspective

By that, new demand is generated, or as one participant expressed it: “It’s about
creating new instances that would not have occurred if they hadn’t been prompted in
some way.” Beyond that, it presents the organization as trusted adviser to the customer,
who gains a high degree of convenience. In extreme cases, a short awareness latency
can even fulfill preventive functions, especially when a potential unawareness of a need
(e.g., for a medical treatment) has severe consequences.
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For a reduced request latency, the request is moved as close to the customer’s aware-
ness as possible. As the customer detects the start event and is responsible for triggering
the request in the end, the role of the organization lies in making the request easy and
highly convenient, e.g., by introducing new ways of placing orders. The allocation of
activities along the customer journey is not altered. Again, the words of a participant
provide a succinct summary: “This was going to happen. The customer recognized that
they needed to do something. It’s just reducing the barriers to enable them to do it as
quickly as possible.”With a short request latency, the customer is unlikely to reconsider
the need or place it with a competitor and will rather choose the ‘path of least resistance’
instead. For extreme cases, like emergency calls, the request latency is inversely related
to the effectiveness of the response. Should, in the context of request latency reduction,
a high repetitiveness in customer behavior and increased trust be observed, it might be
possible to advance towards the third type.

A reduction of fulfillment latency, i.e., moving the start of the fulfillment process as
close to the event as possible, can entail the most significant changes. Ideally, awareness
and request evaporate for individual process instances, as the customer has previously
given a dedicated form of consent or mandate for a general relationship. It is up to the
organization to detect the start event and trigger an appropriate process, which often
corresponds to an automated execution. For individual instances, the customer does not
need to perform any kind of activity prior to receiving the fulfillment of a conscious
or unconscious need. Both organization and customer benefit from the bilateral relative
certainty of supply and demand with a maximum level of convenience for the customer.
In certain contexts, a processmight need to be triggered evenwhen awareness and request
are impossible. Here the automated execution can be of especially high value, e.g., when
an emergency call can be triggered although the customer itself is unconscious. Table 3
summarizes the introduced types of process latency reduction strategies including their
basic descriptions, key benefits along the three categoriesRevenue, Customer, NewValue
and selected representative examples.

Even within these types, there exist two common sub-types for all of them. These
relate to the previously introduced differentiation of lagging and leading signals, which
is not universally defined and depends on the choice of the key event that separates the
leading from the lagging domain [29]. Much alike, the applied definition of an event
leaves room for interpretation as to what exactly constitutes a ‘detectable change’.

Table 3. Process latency reduction strategies: Description, benefits and examples

Reduction of… Awareness latency Request latency Fulfillment latency

Description Awareness is moved
as close to event as
possible

Request is moved as
close to awareness as
possible

Fulfillment is moved
as close to the event
as possible

(continued)
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Table 3. (continued)

Reduction of… Awareness latency Request latency Fulfillment latency

Benefits Revenue Increased demand as
new instances are
created

Increased market
share, as request is
taken before
competitors might do
so

Recurring sales,
certainty of demand,
higher customer
lifetime value

Customer Convenience,
reduced search costs,
builds trust

Significantly easier
access to products and
services

Extreme convenience,
certainty of supply up
to prevention of
outages

New Value Preventive function,
if unawareness has
major consequences

Immediate request can
be critical to
successful service
delivery

Crucial when
awareness and/or
request are impossible

Examples Push notification in
case bank detects
unusual account
activity,
context-sensitive
proactive suggestions

One-click credit card
blocking in case
customer detects
unusual account
activity, voice-enabled
ordering

Immediate credit card
blocking in case bank
detects unusual
account activity,
continuous
replenishment

As a practical solution, the introduced types are classified into sub-types based
on whether the respective start event is considered to be the actual occurrence of a
need (‘immediate awareness/request/fulfillment’) or its prediction (‘predictive aware-
ness/request/fulfillment’). As previously discussed, such a prediction implies a degree
of uncertainty not present in the detection and analysis of past events, making these
events and their respective signals ‘weaker’ in nature.

The examples are distinguished accordingly. To illustrate the approach, consider the
first type, i.e., reduction of awareness latency. In the immediate form, the awareness is
created right when the potential need occurs. Context-sensitive proactive recommen-
dations, for example when traveling, fall into this category. In the predictive form, a
smart wearable device might suggest scheduling an appointment with a medical practi-
tioner based on predictive health data analytics, long before actual symptoms occur. It
is evident that especially the latter form requires entirely new signal and event sensing
capabilities [10]. Additionally, the earlier a prediction is to be made, the weaker the
respective signals will likely be. This raises important questions for the implementation
of process latency reduction strategies.

5 Discussion

The presented classification of process latency reduction strategies can help identifying
related opportunities that arise from these approaches for an individual organization.
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However, it is clear that the applicability of a certain type and thus, its evaluation and
implementation need to be regarded in the specific organizational context. Organizations
should generally think about whether a process could at all benefit from a lower latency,
e.g., because of a non-ideal start event with significant transaction cost, a highly com-
petitive environment with hard-fought market share distribution, or general opportunity
cost arising from courses of action that are only available for a certain amount of time
[9]. There might very well be processes where a process latency reduction only adds
minimal value, if any. At the same time, there will usually be costs associated with a
process latency reduction initiative, resulting from, e.g., investments needed for early
event sensing or implementation of respective systems. Naturally, a careful evaluation
of expected cost and benefit is required to inform a decision on different process latency
reduction strategies.

Moreover, to assess initial ideas, especially in situationswhere the uncertainty is high,
qualitative evaluation can be a useful remedy long before quantitative statements are
reasonable [45]. It is important to consider relevant context and success factors for this,
as numerous pitfalls may exist. Multiple perspectives have to be taken into account [45,
47]. This goes beyond the economic considerations outlined above. Examples include
customer acceptance, e.g., with regards to the necessary levels of customer trust that
needs to be established, and feasibility consideration, such as the access to relevant
data from existing or new sensors, and the related ability to create or detect early and
weak signals for a latency reduction to be implemented successfully. Akin to the use of
guiding questions in [45], it is not claimed here to present definitive decision guidelines,
but means to facilitate users in qualitative reflection.

As such, this work comes with implications for both practice and academia. In
practice, organizations eager to engage in opportunity-centric process redesign activities
may include the generic types and related examples as a tool for systemically ideating
and examining, which of their business processes may benefit from process latency
reduction in any form. For academia, the different latency reduction strategies add to the
conceptualization of process latency as a novel redesign metric within the still nascent
field of explorative BPM.

6 Conclusions, Limitations, and Future Work

Redesigning processes in the future is expected to be significantly more opportunity-
driven, as opposed to the problem-centric lens still dominant today. This explorative
approach is a response to an environment that is becoming increasingly opportunity-
and data rich. However, to turn data into value requires, among other aspects, capabil-
ities to sense and interpret respective signals, as well as to act upon them. A potential
source of value from an enhanced sensing ability, that may constitute a signal advan-
tage, lies in the potential to reduce process latency, which we defined as the time from
occurrence of a need to the start of the respective fulfillment process. To examine how
organizations may systematically be able to identify process latency reduction opportu-
nities, a classification based on extant literature and several real-world case examples
was developed, which differentiates three types of process latency reduction strategies
depending on which individual activity latency is addressed: By moving the awareness
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as close to the start event as possible and proactively making customers aware of poten-
tial needs, the awareness latency is reduced. For a reduced request latency, the request
is moved as close to the customer’s awareness as possible by facilitation of request
placement. The most significant changes occur when awareness and request evaporate
for individual process instances and the automated execution of fulfillment processes
reduces the fulfillment latency. For all types, another level of differentiation is introduced
by considering reactive or immediate and proactive or predictive strategies.

With process latency representing a novel redesign metric for BPM, naturally, a
set of limitations persists that indicate potential future research directions. While the
cooperation within an international expert group and a comprehensive view of extant
literature made it possible to expand the conceptual and empirical foundation for process
latency reduction with regards to [13], there are likely more relevant data to supply an
ongoing identification and classification of case examples into the presented strategies.
This may also be considered a form of additional evaluation. Furthermore, a rigorous
evaluation in a naturalistic setting, e.g., a detailed case study or workshop, could provide
insights on whether the prospected use of the classification is indeed helpful in generat-
ing opportunity-driven process redesign ideas. To support this, a structured procedural
guidance may be developed that embeds the process latency reduction approaches in
a holistic methodology. As a next step, also the applicability discussion needs to be
elaborated in terms of customer desirability, viability, and feasibility. Advancing the
integration with related business model innovation methodologies seems promising for
many of the aforementioned directions.

Data Availability. The full list of case examples classified, intermediate versions of the
classification within the iterative development approach, as well as a redacted version
of the participant feedback to the final result, can be accessed online under https://bit.
ly/3GVnheX.

Acknowledgements. The authors sincerely thank all participants of our global focus groups for
their time, valuable contributions and the provision of relevant case examples, without which this
work would not have been possible.
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Abstract. This study aims at identifying the differences and similarities between
existing process mining methodologies and process mining practitioner experi-
ences. Four existing process mining methodologies are critically reviewed and
compared with process mining project elements derived from process mining
practitioner experiences and available literature on process mining challenges and
enablers. In total 27 interviews with process mining experts of consultancy firms
and professionals at local governments have been conducted. Results show that
overall existing process mining methodologies lack focus on stakeholder involve-
ment, quantifying and selecting improvement actions, communicating quick wins
and results. Also considering organizational commitment and data availability as
prerequisites for processmining projects, process selection, vendor- and tool selec-
tion, acting on low familiaritywith processmining is lacking in variousmethodolo-
gies. Finally, creating a dashboard with flexibility to include self-selected KPIs
and metrics, and applying process mining on a continuous basis is considered
important by interviewees while is lacking in methodologies. In future research
on process mining methodologies it is recommended to take these elements into
account. This is expected to give process mining practitioners guidance and sup-
port in applying process mining in organizations and stimulate the adoption of
process mining in organizations.

Keywords: Process mining · Process mining methodology · Gap analysis · BPM

1 Introduction

Process mining is a technique that is designed to discover, monitor and improve actual
processes (i.e. not assumed processes) by extracting knowledge from event logs com-
monly available in today’s information systems [1]. Process mining is used to improve
performances of business processes and analyze compliance to business rules [1] and to
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achieve digital transformation in organizations [2, 3]. This technique is becoming more
popular [4] and the process mining market is growing fast. It is estimated that there are
approximately 35 processmining vendors offering processmining products and services.
The process mining market for new product license and maintenance revenue is valued
at $550 million in 2021, a 70% annual growth compared to 2020 [5]. Despite the market
growth of process mining, limited research exists on the effectiveness of application of
process mining in organizations [4, 6]. The majority of studies on process mining focus
on technical aspects of process mining, e.g. developing process mining techniques and
improving algorithms [7–9]. There is a clear imbalance between the amount of research
conducted on process mining applications on the one hand, and adoption in organiza-
tions and the increasing popularity and market growth of process mining on the other
hand [4, 10, 11]. Moreover, limited research exists on the application of process mining
project methodologies within organizations. These methodologies are important as they
give practitioners guidance and support in applying process mining in organizations,
stimulate the adoption of process mining in organizations, aid in sharing best practices
and prevent reinventing the wheel [12, 13]. Yet, to the best of our knowledge, existing
processminingmethodologies have only been scarcely validated in one or just a few case
studies [12–14]. As a result, it is difficult to assess to what extent existing process mining
methodologies effectively support the application of process mining in organizations.
Clearly, there is a need for a broader validation of current process miningmethodologies.

In this research the following research question has been developed; “What are the
differences and similarities between current process mining methodologies and process
mining practices at local governments and consultancy firms in the Netherlands?”. To
answer this research question, four existing process mining methodologies have been
critically reviewed and compared to processmining project elements derived frompracti-
tioner experiences with process mining. In total, 27 interviews have been conducted with
processmining experts of consultancy firms and professionals at local governments. This
allows for a broader perspective than the current limited amount of case studies avail-
able in literature to validate existing process mining methodologies [12–14]. Based on
this comparison, we identify gaps between existing process mining methodologies and
practitioners. Recommendations for improvements to (future) process mining method-
ologies are suggestedwith the aim to support the enhanced adoption and usage of process
mining in practice. The remainder of this paper is structured as follows. In Sect. 2 var-
ious process optimization methodologies, process mining methodologies and process
mining challenges and enablers are discussed. The used methodology is described in
Sect. 3. Section 4 includes the results and Sect. 5 includes the conclusion, limitations
and suggestions for future research.

2 Theoretical Background

This section provides an overview of related work on process optimization methodolo-
gies, process mining methodologies and enablers and challenges of adoption of process
mining in organizations. Given the vast amount of literature on business process opti-
mization and management, we do not strive for a comprehensive overview. Rather, we
present a selection of key studies that represent the main lines of research in these areas.
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We carried out an extensive search for process mining methodologies and enablers and
challenges, resulting in only a limited number of studies available in the literature. This
literature survey approach served our aim of illustrating and positioning process mining
methodologies and evaluating their use and validation in practice.

2.1 Process Optimization Methodologies

Business Process Reengineering (BPR) can be defined as the fundamental rethinking
and radical redesign of business processes to achieve dramatic improvements in critical,
contemporary measures of performance such as cost, quality, service and speed [15].
Based on a review on existing BPR methodologies, a BPR methodology for executing
BPR in organizations is developed [16]. The methodology analyses the as-is process
to identify bottlenecks in the current process, the design of a to-be process, and imple-
mentation of the reengineered process. It delivers continuous improvement by initiating
ongoing improvement measures. But the method lacks validation by organizations and
practitioners. Before starting a process optimization project, organizational readiness
and commitment is crucial. A significant need for the process to be reengineered is vital
[16]. Also, egalitarian leadership, collaborative working environment, top management
commitment, supportive management, and use of information technology are positive
indicators when assessing organizational readiness for BPR [17].

Business ProcessModelling (BPM) is the discipline that combines approaches for the
design, execution, control, measurement, and optimization of business processes. There
is a trend to increase focus on process monitoring, adjustment and process diagnosis
[1], simplicity, predictions, more extensive cooperation in organizations, anticipating
on customer needs and optimizing processes using design-by-doing and optimization
iterations [18]. BPM has distinct disadvantages. Factual process data is not always used
in redesigning processes and process related decisions. Various stages of BPM are not
supported in a systematic and continuous matter and only severe process problems will
trigger another iteration in the BPM life cycle when designing or improving the process
[1].

Data mining techniques aim to analyze large datasets to find unexpected relation-
ships, and summarize data in an understandable way [19]. The CRoss Industry Standard
Process for DataMining (CRISP-DM) and Sample, Explore,Modify,Model, andAssess
(SEMMA) are two widely used data mining methodologies [13]. Both methodologies
have limitations regarding the length of the process, selection of data, and needed knowl-
edge on data mining when executing a data mining project [20] and missing guidelines
for organizations on how to conduct deployment in datamining projects [21]. SEMMA is
considered highly technical and there is a lack of clarity on how to apply new knowledge
obtained by data mining. Both methodologies are very high-level, highly complicated
[22, 23] and provide little support for process mining methodologies [24]. The focus lies
on modelling by using elements such as Petri Nets and analysts are reluctant to use them
as they are discouraged by the method complexity, the work needed for preparation of
the mathematical model and the difficulty in comprehending and interpreting the results
[25, 26].
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2.2 Challenges and Enables of Process Mining in Organizations

In order to compare the process miningmethodologies identified above with experiences
and best practices, we describe process mining challenges and enablers of process min-
ing in organizations. The identified challenges focusmainly on event log and data quality
issues [10, 27, 28], selecting appropriate process mining processes [4, 29] and vendors
[11], business case calculation and implementation of improvement actions, and making
process mining a continuous effort in organizations [4]. These challenges have also been
mentioned in the process mining manifesto [30] which also includes improving under-
standability and usability by non-experts as key challenges. Identified enables of process
mining methodologies are actionable insights, confidence in process mining, perceived
benefits, and training and development [10], managerial support, project management
availability, resource availability, process mining expertise, and data and event log qual-
ity [31]. It has to be noted that these process mining challenges and enablers have not
been widely empirically validated. Expert views, case studies, surveys or field tests on
process mining enablers and challenges are scarce and not systematically studies.

2.3 Process Mining Methodologies

As data mining projects were not tailored towards process mining projects, the L*life
cycle model [1] was coined as one of the first process miningmethodologies. This model
focuses onprocessminingprojects of structured ‘lasagna’ processes. TheProcessMining
Project Methodology (PMPM) and the accompanying process mining life-cycle model
[12] was designed in response to the lack of process mining methodologies that provide
guidance how to apply process mining in practice. The authors of the PM2 methodology
[13] state that the main bottleneck of previous process mining methodologies was the
lack of iterative analysis which the authors considered vital. The process mining project
proposal [14] was developed as a response to [1, 12, 13]. Previously developed process
mining methodological approaches developed provide mostly generic guidelines, but do
not define the specific steps and tactics for the challenges that a practitioner must go
throughwhen facing a process redesign project through processmining [14]. The L* life-
cyclemodel stages neither reach the necessary level of detail, nor define the specific steps
to be followed when it comes to developing a process mining project [14]. The PMPM
methodology [12] does not deepen into key aspects such as project planning and data
preparation and extraction from the different information systems. The difference of the
process mining project proposal compared to previously mentioned methodologies [1,
12] is that it was developed using an engineering design sciencemethodology.Moreover,
it was evaluated in three case studies and emphasizes data preparation from different
data sources. In Table 1 we present an initial comparison of the methodologies discussed
in this section based on their structure, validation, and limitations mentioned in the paper
of the respective authors.
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Table 1. Initial comparison process mining methodologies.

Methodology L*Life cycle
model of Van
der Aalst [1]

PMPM of van der
Heijden [12]

PM2 of Van Eck, Lu,
Leemans, van der
Aalst [13]

PM project
proposal of
Aguirre, Parra and
Sepúlveda [14]

Structure Plan and
justify,
extract, create
control-flow
model and
connect event
log, create
integrated
process
model,
operational
support

Scoping, data
understanding,
event log creation,
process mining,
evaluation,
deployment

Planning, extraction,
data processing,
mining and analysis,
evaluation, process
improvement/support

Project definition,
data preparation,
process analysis,
process redesign

Validation of
use cases

RWS- and
WOZ process
not
specifically
linked to the
methodology

Invoicing process
at Rabobank NL

Purchasing process
for spare parts at IBM

Sales/distribution
at trading firm,
procurement at
university, legal
advisory process
consultancy firm

Limitations Not
mentioned

One use case,
limited to
invoicing process,
understandability,
no support
choosing process
mining techniques

Knowledge transfer.
Incorrect filtering and
aggregation, not
represent actual
process. Difficult
time-consuming
interpretation. Less
guidance process
selection

No uniformity in
the way data
sources record
business process
events.
Methodology is
perceived
technically biased
and difficult

3 Methodology

3.1 Practitioner and Expert Interviews

In order to gain in-depth insights in practitioner experiences in process mining projects,
semi-structured interviews have been conducted. Semi-structured interviews are suited
for gathering independent thoughts, allow for follow-up questions on unclear or interest-
ing answers and aid in examining uncharted territory with unknown possible direction
of answer given [32]. As there is limited research and validation conducted on the adop-
tion of process mining and process mining methodologies in organizations [2, 4, 11, 13,
14] semi-structured interviews provide the flexibility to explore this relatively under-
researched research topic and aid to the exploratory nature of this research. In total
19 interviews with professionals at 15 local governments are conducted. Using simple



Bridging the Gap Between Process Mining Methodologies 75

random sampling on all Dutch local governments, 9 local governments are selected.
The remaining 6 local governments are selected based on the personal network of the
researchers. Also, 8 experienced process mining experts working at consultancy firms
are interviewed. In total 5 of these interviewees were selected by conducting a Google
search on keywords ‘Process mining AND experts’, and ‘process mining AND consul-
tancy’. The remaining 3 interviewees were selected based on the personal network of
the researchers.

Using the identified stakeholders of the process mining methodology of [13] and
the processes that were analyzed in previous research as identified in Table 1, intervie-
wees were selected based on having knowledge of process steps identified in Table 1, or
were analysts responsible for analyzing processes in their organization. As a result, the
interviewees have a variety of roles, such as data-analysis, BI analyst, project manager,
financial controller, process manager, innovation consultant and process consultant. The
interviewees work in organizations of different sizes, ranging from large (500+ FTE),
to medium-sized (<500–500 FTE and smalls (<50 FTE). The interviews took place
between March 2021 and October 2021. Detailed information on the interviews is avail-
able upon request. As only a few studies area conducted into the adoption and usage of
process mining [4, 6] and process mining adoption and process mining methodologies
can still be considered in its infancy, the interview questions were of explorative nature.
Therefore, the interview questions focused on process mining familiarity, desired pro-
cess insights, process optimization- and mining bottlenecks, involved stakeholders and
the steps followed when executing process mining projects. All interviews were tran-
scribed and summarized. Every interview transcript is given an anonymous abbreviation.
For the local governments this ranges from LG1 until LG 19, the used abbreviations for
the expert interviews are E1 until E8. Parts of the interview transcripts were labeled
using the interview topics as described above. Next, similarities and differences were
identified between the various labeled interviewee transcripts, also taking into account
the role of the interviewees and organizational size.

3.2 Gap Analysis

A gap analysis is a tool or process to identify gaps, or differences between the organi-
zation’s current situation and expectation, or “what ought to be in place”. Gap analysis
indicates areas where managers should take action to narrow the gaps between current
situation and expectation, hence improving organizational effectiveness [33]. Gap anal-
ysis consists of identifying an organization’s needs, highlighting the gaps and implement
plans to fill the gaps. In this paper, organizational needs are identified by conducting
semi-structured interviews, and are deducted from the theoretical framework on current
process miningmethodologies and its limitations, and process mining enablers and chal-
lenges. Using this input relevant elements/criteria of a process mining methodology are
identified. These elements/criteria are clustered based on the stages of a process mining
project. Using these criteria, a gap analysis has been created in which the four process
miningmethodologies mentioned in Sect. 2.3 are compared against. Actual implementa-
tion of plans lies outside the scope of this paper. The gap analysis aids in systematically
assessing the extent to which current methodologies reflect process mining practice in
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organizations, and which steps or alterations can be made to (future) process mining
methodologies to improve connection with process mining practices in organizations.

4 Results

In the following the key outcomes of the semi-structured interviews are gap analysis are
included.

4.1 Local Government Professionals

Familiarity with Process Mining
Familiarity and experience with process mining projects is most often seen at large-
sized local governments. Process mining projects often initiate out of personal interest
in BI- or data analysis, driven by a passion for data and the need and urgency felt to
digitalize. Process mining is often at an explorative phase, resulting in isolated efforts
only known at BI departments. Process mining pilots often run for years mainly due to
data quality issues, lack of trust in process mining and no felt urgency of management in
processmining and process optimization.“It turned out to be very difficult to make a solid
business case for process mining, as management only notices the investment, and not the
added value and revenue that could be generated. All in all, it took approximately 2 years
before we could start” (LG3). Interviewees working at small-sized local governments
oftenwondered if their organizationwas ready for processmining.“The first impressions
is that process mining requires a kind of maturity that not all local governments have”
(LG8).

Desired Process Insights and Process Optimization Bottlenecks
The interviewees unanimously mentioned a need for more insights in actual process
steps, throughput time and reducing this throughput time to save cost and meet goals
in reducing throughput time. Compliance related matters such as segregation of duty
and execution of authorized activities were identified as valuable process insights. “Are
people doing the right thing, or are they violating their authorizations? This is impor-
tant, because we have rules for this in the municipality” (LG9). Experienced process
mining users mostly mined the financial processes because of data availability, expected
cost savings and compliance violations, not meeting process KPIs, understandability
of the process, and no involvement of many departments. Having knowledge about the
process before conducting a process mining project, management support, communi-
cating quick wins and improvement actions, and cooperation between stakeholders is
considered crucial and triggers analyses interpretations and improvement actions. The
main identified process mining bottlenecks are the time-consuming formatting of the
data for process mining, and missing- or incorrect insertion of data in the data source.
“People must be made aware of incorrect data registration and the consequences of not
registering the data properly must be communicated to the involved employees” (LG2).
Experienced process miners mention that the tools used only allow for the creation of a
single process mining map, while dashboarding with own selected KPIs and continuous
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monitoring is preferred. “We want to monitor improvements in lead time or failure to
follow the process in a dashboard, where findings are preferably expressed in time or
money savings” (LG12). The interviewees mentioned that process optimization is done
ad hoc, not at all, based on gut-feeling. Organizational bottlenecks for process mining
found are convincing the management board on the added value of process mining,
the complex IT landscape with many data sources, the unfamiliarity of process mining
in the organization, unclarity about responsibilities, unclarity about the actual process
steps due to lack of process step documentation, and finally the lack of organizational
urgency to digitalize the processes were mentioned “It is unknown how these processes
are currently monitored, that is hardly done. Not every team is in control. However, we
feel pressure to digitize processes and to improve process documentation” (LG7).

Stakeholder Involvement and Process Mining Methodologies
Involved stakeholders, or desired to be involved stakeholders mentioned in process
optimization- or process mining are the BI analysts who make the process map and con-
duct process analysis, the management board which approves the investment in process
mining resources, the IT department for advising on and implementation of applications
in the municipality application landscape and finally the process owners which analyze
results and steers improvement actions for their processes Remarkably, besides one local
government, the process mining efforts and analysis still remained at the BI department,
and a thorough analysis, implementation and setting up improvement actions together
with the identified stakeholders did not take place. Process mining methodologies were
not specifically followed.

4.2 Process Mining Experts

The financial processes were mostly mined because of understandability of these pro-
cesses, urgency in the organization to improve the process, Lean Six Sigma projects and
the availability of data. “The starting point is always the company goals, and whether
data is available. In reality it turns out that 99% of the times this is the purchasing pro-
cess” (E2). Projects often focused on process discovery to gain insights in actual process
steps and throughput time.Reduction of throughput time and compliance-related insights
were mentioned, such as authorization of activities and segregation of duty. Enablers
of process mining in organizations found are the ability to make a dashboard with own
selectedKPIs, an affordable purchasing price of tools, simplicity of the tool (no program-
ming) and the ability to execute process mining on a continuous basis. Also mentioned
were using correct data, involvement of process owners to being able to interpret the
analysis and make changes in the organization, a data-driven culture, support of top-
managers, start small to gain trust and support, focus and dedication to the project, link
to business goals and communication of results in the organization to create enthusiasm
and familiarity with process mining. Using a workshop on (the added value of) process
mining to help clients interpret and read a process mining map was considered vital, as
often process stakeholders were not familiar with process mining and maps were not
considered easy to read and interpret. The bottleneck that was mentioned by all experts
was the data quality relating to incorrect data formats and the incomplete insertion of
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data in systems by employees. “It was difficult to get the data out of the systems, result-
ing in less trust in having good quality available data. The replies were often “we have
tried that before but it did not work” (E5). Sometimes process mining projects were
terminated due to unavailability of data. Other bottlenecks encountered in the execution
of a process mining project are the unfamiliarity with process mining hence showing the
added value of process mining, identifying process owners, working with fragmented
systems and various data sources, and not-well documented process descriptions.

Process mining projects frequently started with an explanation of process mining
and its added value to the various stakeholders involved. Research question and KPIs
were developed and sometimes linked to business goals. Most time-consuming was the
data extraction and cleaning. For the analysis often Disco or ProM was used, but also
UiPath and Minit were mentioned. The interviewees favored the ease of use of Disco
and the ability to make dashboards with UiPath and Minit, but were less satisfied with
some tools’ inability to include own selected KPIs in the dashboard, the high purchasing
price and the limited perceived ability to execute process mining on a continuous basis.
The analysis phase often started with the creation a rough sketch of a first dashboards,
followed by designing more detailed dashboards and discussing the outcome with the
customer and interpret the analyses. Bottlenecks were listed, and it was determined
together with the process owner which improvement actions would yield most result (in
time- and cost saving) and took least time to implement. After selection the improvement
actions, the improvements were implemented and monitored. At various stages of the
project, analysts, process owners and management was involved. What stands out is
that several iterative customer validation rounds took place at various project stages.
Validation was related to whether customers could relate to the data, to verify if the
dashboard answered the customer question and was understandable, and regarding the
conclusions drawn from process mining analyses. Validation took place multiple times
and has a iterative nature “We do not know the process as well as the process owners.
At the beginning we draw conclusions that were not recognized by the process owners.
Together with the process owner we validate whether they recognize our findings. This
is an ongoing iterative process” (E8).

4.3 Elements of Process Mining Methodologies

Combining the findings in the literature reported on in Sect. 2 and the interviews, the
elements that can be considered relevant in process mining projects can be derived (see
Table 2). The elements in italic were only identified in the interviews, the remaining
elements were identified in both the interviews and the theoretical section of this paper.
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Table 2. Relevant elements in a process mining project

Cluster Element

Before starting a process mining analysis Organizational willingness, Data availability,
Stakeholder involvement, Linking business goals to
PM projects, Process vendor selection, Process
selection, Process mining project goal, Desired
insights and KPI selection, Familiarity with process
mining

Process mining analysis Data extraction, Data preparation, Creation of
dashboard, Analysis of dashboard, Interpretation
of dashboard, Drawing conclusions

Improving processes Defining- Quantifying- Selecting and Monitoring
improvement actions

Project aspects Communicating business value using quick wins
and results, continuous effort, Iterative nature,
validation

4.4 Comparison Table Gap Analysis

To identify differences and similarities between existing process mining methodolo-
gies and process mining practitioner experiences, the identified elements of Table 2 are
used to compare the four identified process mining methodologies of the theoretical
framework on. Table 3 includes an overview on the differences and similarities of the
identified process mining methodology elements against the existing process mining
methodologies.

4.5 Gap Analysis

All methodologies include determining a project goal, formulating a problem definition
and research questions, and data extraction and preparation to be suitable for process
mining. Analyzing results and defining improvement actions is present in all method-
ologies. Not all methodologies focus explicitly on the involvement of stakeholders in
process mining projects and defining improvement actions. [1] focuses mainly on stake-
holder involvement in the phase where the project goals and questions are derived and
[12] includes theoretical scenarios of stakeholder involvement and mentions involving
an analysis, project leader and manager in the evaluation phase. Involvement of ana-
lysts, process owners, managers and IT specialists is more included in [13, 14]. Not all
methodologies focus on KPI specification and interpretation and drawing conclusions.
Only [14] strongly focus on the quantification and selection of improvement actions.
Findings in the theoretical framework [16, 17] and the interviews indicate that organiza-
tional willingness and data availability are crucial. Lack of these elements can even lead
to the termination or not setting up of processmining projects. It therefore is questionable
if and to what extent every organization is suitable for process mining projects. Also,
hardly any attention is paid to process vendor- tool- and process selection while these
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Table 3. Comparison framework process mining methodologies

Element L*Life-cycle
model [1]

PMPM [12] PM2 [13] PM project
proposal [14]

Org.
willingness

Not specifically
addressed

Not specifically
addressed

Not specifically
addressed

Not specifically
addressed

Data
availability

Not specifically
mentioned

Mentioned in
data-understanding,
data needs to be
available

Purchasing
process selected
because of good
data quality

Not specifically
addressed

Stakeholder
involvement

After initiating
the project,
event data,
objectives and
questions need
to be extracted
from systems,
domain experts
and
management

Theoretical
scenarios in various
sectors with doctor,
dept. manager,
project team, data
specialist,
employee. Roles
not specifically
included insteps in
methodology.
Roles of process
miner, project
leader, process
manager in step 5
in evaluation step.
Role of project
initiator mentioned
in case study

In stage 1:
Planning the
activity
composing
team: business
owner, business
experts, system
expert (IT) and
process
analysis.
Business expert
and process
expert are most
important and
part of step 1, 3
and 5. Analysis
done by analyst

Stakeholder insight
via process scope
diagram, project
definition and data
localization based
on interviews
stakeholders. Data
preparation
performed with
personnel of
company to
understand process
flow and localize
data. Improvement
actions defined
with personnel of
the company

Linking
business goals
to PM projects

Goals/questions
to be extracted
from systems,
domain experts,
management

Question-driven
projects (link KPIs
to process mining
project)

Identifying
research
questions but
not linked to
business goals

Only mentions that
PM projects must
impact business
performance
indicators

Vendor
selection

Not specifically
addressed

Step A3, no criteria
for vendor
selection.Focus on
Disco/ProM

PRoM used in
the case study

Not specifically
addressed

(continued)
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Table 3. (continued)

Element L*Life-cycle
model [1]

PMPM [12] PM2 [13] PM project
proposal [14]

Process
selection

Not specifically
addressed

Process
identification
mentioned but
refers to
understanding the
process and which
part of the process
is logged

Activity in step
1 and
achievability of
results is
influenced by
process
characteristics
and quality of
event data

Not specifically
addressed

Project goal 3 types of
projects:
data-driven,
question-driven
and goal-driven

Step A2l determine
the objective

Determining
research
questions

Focus on problem
definition of
process and
definition of
objective/questions
to be solved

Desired insights
and KPI
selection

Stage 4
mentions
detect, predict
and recommend
as activities

Stage A2 objective
determination
based on discovery,
conformance,
enhancement

No KPIs, focus
in stage 4 on
discovery,
conformance,
enhancement
analytics

Not specifically
addressed

Familiarity with
process mining

Start with
question-driven
projects when
organizations
do not have
experience

Not mentioned IBM case; a
basic
understanding
of PM is
beneficial for all
involved in
evaluation

Not mentioned

Data extraction
and preparation

Stage 1, process
of getting raw
data into
suitable event
logs described.
Prep. described

Event log creation.
Select data in terms
of context, time
frame, aspects.
Challenges on
amount of data and
tool available. Prep.
in cleaning,
constructing,
merging and
formatting

Stage 2
extraction, stage
3 preparation

Part of data prep.
stage, from the
source system.
Data extraction to
a csv file.
Preparation at
stage 2 data-
localization,
extraction, quality
analysis, cleaning,
data
transformation

(continued)
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Table 3. (continued)

Element L*Life-cycle
model [1]

PMPM [12] PM2 [13] PM project
proposal [14]

Creation of
process
dashboard

Not specifically
addressed

Not specifically
mentioned

Not specifically
mentioned, in
stage 4 process
analytics is
mentioned

Not specifically
addressed

Analysis of
dashboard

Activities of
stage 2 (extract)

Soundness,
validation in terms
of fitness,
precision,
generalization and
structure,
Accreditation by
initiator of the
project to evaluate
whether results are
interesting for
business goals

Stage 4 with 4
activities done
by process
analyst

Process discovery
(actual steps +
execution)
performance
analysis on cycle
time and rework
and bottlenecks,
and social network
analysis
(relationship
between resources
and activities)

Interpretation
and conclusion

Diagnose after
stage 2,
conclusion
mentioned after
stage 3 and 4 as
redesign and
adjust and
recommend

Accreditation step Diagnose and
focus on
understanding
the discovered
process model,
conclusion not
specifically
mentioned

Not specifically
addressed

Defining
improvement
actions

Mentioned Stage 5
identification on
how process can be
improved by
improvement
actions using
improvement
actions

Process
modifications is
separate project
and different
area of
expertise.
Improvements
measured in
another project

Mentioned in stage
4L identifying and
prioritizing actions

Quantify,
select, monitor
improvements

Not specifically
addressed

Monitoring
addressed in step
A6

Not specifically
addressed

Prioritizing
improvement
alternatives is
mentioned

(continued)
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Table 3. (continued)

Element L*Life-cycle
model [1]

PMPM [12] PM2 [13] PM project
proposal [14]

Communicating
quick
wins/results

Not specifically
addressed

Last step of the
process is
presenting the
project results to
the organization

Not specifically
mentioned, but
can be derived
from
verification and
validation phase

Not specifically
addressed

Continuous
effort

Not specifically
addressed

A16: decide on an
elaboration of the
process mining
project

Improvement
expected to
occur in specific
improvement
project

Not specifically
addressed

Iterative nature After stage 2, 3,
4 new or
adjusted KPIs
of objectives
can emerge

alter scope based
on data
understanding,
event log after
process mining,
conduct analysis
after evaluation

Iterative nature
of refining
research
questions, data
processing,
mining &
analysis and
evaluation

No iterative steps,
methodology
follows a linear
nature

Validation Not specifically
addressed

Verification of data
in system’s log on
trustworthy,
completeness,
semantics,
safeness.
Verification of
model with map,
validating on
representing the
real process and
accreditation

Verify findings
to original data
and system
implementation.
Validate
findings to
claims of
stakeholders.
Identify root
causes and
design ideas for
improvement

No specific
validation or
verification steps
mentioned.
Working with
people who
perform the
process to ensure
data corresponds
to the actual
execution of the
process

are identified process mining challenges in the theoretical framework [4, 11] and in the
interview results. Often Disco or ProM was used as a tool, but the choice of vendor and
tool selection lacks argumentation. And this is remarkable, as there are approximately 35
process mining vendors with associated tools [5]. Establishing familiarity with process
mining and efforts to increase the familiarity of process mining was only mentioned at
[13], while the theoretical framework [10, 30, 31] and the interview findings indicate the
challenge regarding the low level of familiarity with process mining in organizations.
Finally, the results indicated that creating a process mining dashboard with the flexibility
to include self-selected chosen KPIs and process mining projects as a continuous effort
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in the organization important is important, but is not part of the process mining method-
ologies. The methodologies of [1, 12] share least similarities with the process mining
project elements. These methodologies are relatively theoretical, do not explicitly iden-
tify various stakeholders in various stages of process mining projects, do not focus much
on vender- and process selection, quantification and selection of improvement actions
and especially [1] focus least on iteration, validation and process mining as a continuous
effort. Because of the iterative nature, stakeholder involvement, various validation efforts
and focus on quantification and selection of improvement actions, the methodologies of
[13, 14] have most similarities with process mining practitioner’s experience. But none
of the methodologies include all relevant elements as identified in this research.

5 Conclusion and Discussion

This study identifies the differences and similarities between existing process mining
methodologies and process mining practitioner experiences. Similar elements identi-
fied at both the practitioner experiences and the methodologies are goal determination,
problem definition and research questions, data extraction and preparation, analyzing
results and defining improvement actions. However, none of the existing process min-
ing methodologies include all process mining project elements as identified during this
research. These are among others tool-, vendor- and process selection, organizational
willingness, communication of quick wins, and quantification and selection of improve-
ment actions. This research contributes to understanding the gap between processmining
methodologies and practitioner experiences. The first limitation of this study concerns
the generalizability. The interviews were held with professionals and process mining
experts at local government agencies and consultancy firms. Hence, we provided only a
partial view on process mining initiatives. More research on process mining experiences
is needed adding to the completeness of process mining experiences and relevancy pro-
cess miningmethodologies. In addition, general recommendations weremade to process
mining methodologies indicating that there is one process mining methodology, while
different type of organizations might benefit from different process mining methodolo-
gies. Therefore we recommend the in the future to be developed process mining method-
ologies to be validated with more case studies in various sectors in order to increase the
generalizability of process mining project elements and methodologies identified in this
research. It is expected that including these elements derived from practitioner experi-
ences will aid in giving practitioners guidance and support in applying process mining in
organizations, stimulate the adoption of processmining in organizations, provide support
in overcoming currently identified process mining challenges and prevent reinventing
the wheel.

Acknowledgments. We would like to thank the interviewees for sharing their process mining
experiences with us. We also would like to thank the Twente Regio Deal, Saxion University of
Applied Sciences and Infotopics for support and funding.
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Abstract. We suggest systemsmining as the next step after process min-
ing. Systems mining starts with a more careful investigation of runs, and
constructs a detailed model of behavior, more subtle than classical pro-
cess mining. The resulting model is enriched with information about data.
From this model, a system model can be deduced in a systematic way.

Keywords: Systems composition · Data modeling · Behavior
modeling · Composition calculus · Algebraic specification · Systems
mining

1 Introduction

Classical process mining methods as established in theory and practice start
out with event logs, generated by processes during their dynamic progression
[1,7]. Process mining is designed first of all to discover processes by extracting
knowledge from event logs. Each event in an event log is conceived as an activity
that has been performed in the process at the point in time given in the event
log, and is related to a particular case. Typically, the events of a case are totally
or weakly ordered and can be seen as an execution or run of the process.

The left side of Fig. 1 depicts the standard formal approach for understanding
an event log, a processes model, and a system, namely, behavior can be under-
stood as three different sets of symbol sequences [3]. In this paper, we propose to
follow a different route: there is no reason to assume that the events of a run are
totally or weakly ordered. Of course, a clock outside the run may timestamp a
run’s events. This induces an order; however, this order is irrelevant for a proper
understanding of a run. To the contrary, it spoils the causal order of events,
which orders two events a and b by a < b if and only if a is a prerequisite for
b. Of course, a < b implies each potential clock to timestamp a before b. But a
timestamped before b only implies that b is not a prerequisite for a. Or, in one
sentence: causality matters!

Additionally, systems to be mined are typically not monolithic, amorphous
or unstructured, but can best be described and understood as the composition
c© Springer Nature Switzerland AG 2022
C. Di Ciccio et al. (Eds.): BPM 2022, LNBIP 458, pp. 89–104, 2022.
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Fig. 1. Classical process mining (left, source: [3]) and systems mining.

of different sub-systems. Hence, an understanding of the different modules of a
system is necessary while understanding the behavior of the system. Again, in
one sentence: composition matters!

Last, but not least, a system processes data. Data processing is not only
needed for the correct execution of processes, but also for the symbolic rep-
resentation of important objects, e.g. invoices, customers, agreements, orders,
products, and many more objects of interest. These objects need to be under-
stood and represented adequately while mining a system. Again, in one sentence:
objects matter!

In this contribution, by means of an example, we show how to mine not only
process models, but entire system models. This includes the integrated modeling
of architecture, statics, and dynamics of the world we live in (Fig. 1, right). To
this end, we combine the well-known techniques of Petri nets and abstract data
types with the recent composition calculus.

We motivate and exemplify a different notion of runs, by means of a case
study from the area of retail sale. Supported by some static aspects of a system,
such runs can be deduced from the system’s event logs. Note, that our paper
is purely conceptual. We do not provide an algorithm nor a software tool for
systems mining. Instead, our main contribution is the elaboration of the new
idea of systems mining based on the formal framework of Heraklit [5,6].

This paper starts with the presentation of the main idea of modules and
runs while unfolding a running case study (Sect. 2). Sect. 3 describes systems
nets and Sect. 4 presents the main idea for mining a system module. Related
work is discussed in Sect. 5, Sect. 6 presents some conclusions.

2 Modules and Their Composition

Before presenting the (not too heavy) formal framework, we discuss a motivating
example that later will be extended to a full case study.

2.1 Example: Occurrence Modules of a Retail Business

We start with a small log, recording observations from the field, namely seven
events from a retail shop, as Fig. 2 shows. Each event has a unique name, a set of
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Fig. 2. Event log with seven events.

involved agents, a set of data, and a timestamp. Static inspection of the system
and the events of the log identifies six agents: Two vendors V 1 and V 2, a cashier,
and three clients, Alice, Bob, and Claire. All events of the log, up to V 1 packs
shirt, include two agents. For example, the shirt to take home event includes the
vendor V 1 and the client Alice, jointly selecting a shirt for Alice. The shoes to
be ordered event includes the vendor V 2 and the client Bob, jointly agreeing on
shoes, to be ordered from wholesale. The other events are intuitively obvious.

From the perspective of agents it is intuitively obvious that for a given event
log, an agent is involved in a sequence of events, describing one of the potential
behaviors of the agent. For example, the event log in Fig. 2 implies the vendor V 1
be involved in three events: shirt to take home, V1 packs shirt, and handing over.
This behavior can automatically be deduced from the log. An event updates the
local state prior to its occurrence, and produces a local state as a result of its
occurrence. Technically, we represent this as a Petri net, as in Fig. 3 (a). Each
place (circle) denotes a local state; each transition (rectangle) denotes a step.
An agent’s behavior deduced from a log is very simple in structure; it can be
thought of as a classical sequence of states and steps.

Figure 3 shows the behaviors of all six agents, deduced from the log in Fig. 2.
Obviously, they are tightly interrelated, and this interrelation is now to be con-
structed explicitly. To do this, each behavior is embedded into a module in which
each transition is either inside the module, or in an interface of the module. Each
module has a left and a right interface. Graphically, a module is enclosed in a
rectangle with the left and right interface elements on the left and right margin,
respectively. The left and right interface of a module A is designated ∗A and A∗,
respectively. This way, Fig. 4 (a) shows the module V 2 of the vendor V 2. The
two transitions of the module are both located on the right interface, V 2∗. The
Claire module in Fig. 4 (b) places the transition of Claire’s module on the left
interface, ∗Claire.

The two modules are now composed into a new module, V 2 • Claire, shown
in Fig. 4 (c). To compose V 2 and Claire, we merge the transition with label hat
not on offer of V 2∗ with the equally labeled transition of ∗Claire. The resulting
transition goes inside V 2 • Claire. The transition with label shoes to be ordered
of V 2∗ goes to (V 2 • Claire)∗.

This example shows the general principle of the composition of two modules
A and B: Equally labeled elements of A∗ and ∗B are merged and go into the
interior of A•B. The other elements from A∗ and ∗B go to (A•B)∗ and ∗(A•B),
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Fig. 3. Agents and their behavior, elicited from the event log.

Fig. 4. Two modules and their composition.

respectively. This kind of composition motivates the distinction of right and left
interfaces: The running example exhibits an intuitive dichotomy between shop
modules (vendors and cashiers), and client modules. Shop modules interact with
client modules, so the interface elements of shop modules and of client modules
complement each other.
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Fig. 5. Composing another module. Fig. 6. Claire • Bob.

To continue, Fig. 5 (a) shows the module Bob of the client Bob from Fig. 3 (e).
As with the Claire module, its transitions lie in its left interface. We now compose
V 2 • Claire with Bob and obtain the module (V 2 • Claire) • Bob in Fig. 5(b).
Alternatively, we could have formed the module Claire•Bob first (Fig. 6) and then
module V 2 • (Claire •Bob). It is easy to see that the modules (V 2 •Claire) •Bob
and V 2•(Claire•Bob) are identical. We will see that in general, the composition
operator • is associative.

2.2 The Formal Framework of Modules

As usual, we represent a Petri net as a triple (P, T ;F ). We employ the usual
graphical representation with boxes, circles, and arrows. In this section, we recall
a special case of the composition calculus, and particularly occurrence modules
and their composition. The general case can be found in [5].

An interface over a set Λ of labels is a finite set R, with each element of R
carrying a label of Λ. We refrain from the general case of two or more equally
labeled interface elements here.

For two interfaces R and S, equally labeled elements r ∈ R and s ∈ S, are a
harmonic pair of R and S. A harmonic pair is labeled by the label of r and s.
The element s is a harmonic partner of r in S, and r is a harmonic partner of
s in R.

A module is a Petri net N = (P, T ;F ) together with two interfaces ∗N and
N∗ ⊆ P ∪ T , denoted as the left and the right interface of N . Nodes not in an
interface belong to the interior of N .

In graphical representations, the interior of N is surrounded by a box, with
the elements of the left and the right interface on its left and the right margin,
respectively, e.g. Fig. 4.
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We are now prepared for the fundamental definition of composing two mod-
ules:

Let A and B be two modules. For each node x of A or of B, let x′ = {x, y}
if {x, y} is a harmonic pair of A∗ and ∗B; let x′ = x if no harmonic pair of A∗

and ∗B contains x. Then the module A • B is defined as follows (each element
retains its label):

1. The nodes of A • B are all x′ such that x is a node of A or of B.
2. The edges of A • B are all (x′, z′), such that (x, z) is an edge of A or of B.
3. The left interface ∗(A • B):

(a) ∗A ⊆ ∗(A • B);
(b) For x ∈ ∗B holds: x ∈ ∗(A • B), if x has no harmonic partner in A∗.

4. The right interface (A • B)∗:
(a) B∗ ⊆ (A • B)∗;
(b) For x ∈ A∗ holds: x ∈ (A • B)∗, if x has no harmonic partner in ∗B.

Figures 4, 5 etc. show compositions of modules. Notice that, according to
this definition, ∗(A • B) or (A • B)∗ may acquire different elements with equal
labels. However, this never happens in this paper’s examples; further details can
be found in [5].

A fundamental property of composition is associativity, decisive for the
usability of modules and their composition. In fact, for any three modules A, B
and C holds:

(A • B) • C = A • (B • C). (1)

As a consequence, it makes sense to just write A•B•C. This property is a special
case of a more general notion of modules and their associative composition, as
discussed in [11].

Furthermore, there are clear criteria for the case of commutativity: for mod-
ules A and B holds

A • B = B • A (2)

if and only if no label occurs in ∗A ∪ A∗ as well as in ∗B ∪ B∗.
The nets in the examples of Sect. 2.1 all exhibit a particular structure: The

arcs form no cycles, and each place has at most one ingoing and one outgoing
arc:

A net N = (P, T ;F ) is an occurrence net if and only if:

1. The transitive closure of F , usually written as F+, is a strict partial order,
viz. irreflexive and transitive, on P ∪ T . We denote this relation as <N ;

2. for each p ∈ P there exists at most one arc shaped (t, p) and at most one arc
shaped (p, t).

A module is an occurrence module if and only if the underlying net is an occur-
rence net.

For two occurrence modules A and B, the composed module A•B is in general
not an occurrence module again. Figure 7 shows an example. This example shows
that the interior of A and B matters for this problem. Nevertheless, it can be
reduced to a problem of the induced order of interface elements:
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Fig. 7. Dissenting pairs.

Fig. 8. Three further modules.

With a, a′ ∈ A and b, b′ ∈ B, let {a, b} and {a′, b′} be harmonic pairs of A∗

and ∗B. They dissent if and only if either a <A a′ and b′ <B b, or a′ <A a and
b <B b′.

Then, for two occurrence modules A and B it holds: A • B is an occurrence
module if and only if A∗ and ∗B have no dissenting harmonic pairs. All compo-
sitions of occurrence modules in this paper yields an occurrence module again.

2.3 Completing the Example

We extend the example of Sect. 2.1 by modules for the remaining three agents of
Fig. 3, as in Fig. 8. Figure 9 shows compositions of these modules. Interestingly,
the module cashier • Alice in Fig. 9(a) is an example of a module with elements
in both the left and right interfaces. Finally, the module in Fig. 9(b) composes
all three modules.

We can now compose the composed module in Fig. 9(b) with the composed
module in Fig. 5(b), and obtain the composed module

V := V 1 • cashier • Alice • Bob • V 2 • Claire (3)

in Fig. 10. The two interfaces of this module do not contain any elements.
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Fig. 9. Two further module compositions.

Fig. 10. Behavioral module V := V 1 • cashier •Alice • V 2 • Claire • Bob.

From an abstract and more systematic point of view, the expression (3) is a
bit unattractive. It would be nicer to have the module trade := V 1•cashier•V 2,
with all interface elements on the right, and the module customers := Alice •
Claire • Bob with all interface elements on the left. The module V in (3) is
then written as trade•customers. Indeed, this is possible without any problems,
because the modules Alice and V 2 have disjoint interfaces. According to equation
(2), the sequence of the two modules V 2 and Alice in (3) can be swapped.

Summing up, the module V of Fig. 10 represents a typical single run of
a system. V provides insight into subtle details of the mutual relationship of
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the events of the joint behavior of the involved six agents. For example, in the
presented run, the joint events of the modules V 1, Alice and the cashier are
detached from the events of the modules of the other three agents. Bob waits
until the cashier is finished with Alice. But vendor V 2 and Alice are not related
at all to the cashier.

All this insight has been gained from the event log of Fig. 2, together with the
intuitively obvious idea that events of the business people will never be merged,
hence they come with elements in right interfaces only, and correspondingly,
events of the customers will never be merged, thus all come with elements in left
interfaces. The choice of left and right interface is motivated by the dichotomy
between shop modules (vendors and cashiers), and client modules. Of course,
right and left may be swapped here. So, the interface elements of shop modules
and of client modules complement each other.

2.4 Composing an Occurrence Module from Occurrence Atoms

Here we consider an alternative way of constructing occurrence modules. In
Sec. 2.3 we composed the run in Fig. 10 from the modules of the six behavioral
strands of agents, given in Fig. 3. Occurrence modules are frequently, but not
always, composed from modules generated by such agents. Alternatively, an
occurrence module can be generated from occurrence atoms. An occurrence atom
is a module that represents a single transition together with its surrounding arcs
and places. We denote the occurrence atom of a transition t by t. To correspond
to the previous representation of occurrence modules, we place the left interface
of an occurrence atom at the top and the right interface at the bottom of its
graphical representation.

Figure 11(a), (b) and (c) show the occurrence atoms of the transitions shirt to
take home, V1 packs shirt, and Alice pays take home of module V of Fig. 10. The
composition of the three occurrence atoms in Fig. 12 is identical to the upper left
part of module V . It is easy to see how the occurrence atoms of the remaining
four transitions of V can be generated, and that their composition yields the
entire module V . In fact, this is generally true: the occurrence atoms t of the
transitions t of an occurrence net N can be arranged as a sequence t1, . . . , tn
such that

N = t1 • · · · • tn. (4)

This representation will be used in the following sections.

3 System Models

So far, we showed how to deduce a single run from a given event log. Our aim,
however, is to deduce a system model from an event log. To this end, we need a
manageable kind of system models. Here we derive such system models.
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Fig. 11. Occurrence atoms

Fig. 12. Module M0: shirt to take home • V1 packs shirt • Alice pays take home

Many similar logs would yield many similar runs. Now we show how to
extrude a system model from a set of runs. In a first step, we concentrate on the
systematic management of involved data and functions.

3.1 Structures and Signatures

To cope with data and functions on data, we employ signatures and signature-
structures, well-known in mathematics from general algebra and first order
logic, and in informatics from algebraic specifications [12]. Figure 13 shows the
signature-structure S0 for the running example, consisting of eight sets and
four functions. Each set is finite and includes real or imagined objects such
as clients, vendors, cashiers, products, vouchers, wrapped items, but also more
abstract items such as money and descriptions of items. In the course of systems
mining, a structure like this should be provided by the provider of the logs. It
may also be deducible from the logs.

A symbolic representation of a system requires abstract, symbolic represen-
tations of structures such as in Fig. 13. This is achieved by means of signatures:
a signature Σ0 for a structure S includes sorted symbols: a symbol for each set
and each function of S. Figure 14 gives a signature, Σ0, for the above structure
S0. For the sake of simple notation, for each set and each function of S0 we write
the corresponding symbol of Σ0 in italic.
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Fig. 13. Structure S0, describing the sys-
tem’s data.

Fig. 14. Signature Σ0 and vari-
ables for the structure S0

Additionally, Fig. 14 shows sorted variables. Sorted symbols and variables
yield terms, such as f(z), or tuples of terms, such as (x, f(z)). A valuation β
of the variables assigns to each variable v an item β(v) of the structure S0. For
example, with β(x) = Alice, β(y) = V 1 and β(z) = shirt, the tuples (y, z) and
(x, f(z)) yield in S0 the tuples

β(y, z) = (V 1, shirt) and β(x, f(z)) = (Alice, 50e) (5)

3.2 System Atoms and Their Composition

In order to extrude a system model from a set of runs, we start from single occur-
rence atoms, extruding a more general model of system atoms. Figure 15 shows
an example: The atom shirt to take home of Fig. 11(a) (repeated in Fig. 15(a))
is re-written in Fig. 15(b): information about the vendor V1, the client Alice,
the item shirt, and the price 50 e moves from the module’s places to its arcs.
This representation is now conceived as an instantiation of the item to take home
module in Fig. 15(c). In this module, the constant arc inscriptions of Fig. 15(b)
are replaced by the variables x, y, and z, and terms f(z) and z. In Figs. 15(b)
and (c), the place inscriptions of the left (upper) interface places are conceived as
tokens of the Petri net. Then, the firing rule of Petri nets defines the tokens for
the right (lower) interface places. Figure 15(b) is now gained as the instantiation
of Fig. 15(c) by means of the above valuation β as in (5). Of course, different
valuations yield different instantiations of the item to take home system atom.
This way, Fig. 15(c) is a system atom, representing many occurrence atoms.

In analogy to Fig. 15(a), (b), and (c), Fig. 15(d), (e), and (f), generalizes the
V1 packs shirt occurrence atom as in Fig. 11(b). It is obvious how from the five
remaining occurrence atoms, the corresponding system atoms can be deduced.

Figure 16 composes the seven system atoms. This is a symbolic occurrence
module. Content wise, with the valuation β for all arc inscriptions, it is just a
different representation of the occurrence module V in Fig. 10. Denotations of
places and transitions have slightly been adjusted to better support intuition.
The place inscriptions of V are gained in Fig. 16 by the Petri net firing rule.
Further, Fig. 16 has a non-empty left and right interface, in contrast to Fig. 10.
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Fig. 15. Occurrence atoms and system atoms

3.3 Constructing a System Net from Symbolic Occurrence Modules

It is now possible to deduce a full-fledged Petri net model from the symbolic
occurrence module of Fig. 16: Just identify equally labeled places. The result-
ing system net is shown in Fig. 17. The tokens of Fig. 16 are collected on the
corresponding place of Fig. 17.

Figure 17 shows a high level Petri net. It specifies a lot of runs, depending
on the choice of the valuation β of the variables. Furthermore, now, even when
fixing the valuation β as above, each client with his description of an item may
now execute any of the three events item not on offer, item to be ordered and
item to take home, with any of the two vendors V 1 or V 2. This is a generalization
that suggests itself from the assumptions of the system.

3.4 Deriving a Net Schema

The system model in Fig. 17 fixes the sets of vendors, clients, and items. One
would prefer a specification that leaves these sets open, to be fixed as an interpre-
tation of those symbols by the user of the model. For this purpose, it suggests
itself to use fresh symbols, e.g. VE, CL, and CA, to be interpreted as sets of
vendors, clients, and cashiers, as initial tokens on the places available vendors,
clients with descriptions of items, and available cashiers, resp. However, this is
not exactly what we want: An interpretation of VE would, for example, interpret
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Fig. 16. Composed atoms: symbolic representation of the behavioral module V .

Fig. 17. System model M . Fig. 18. Schema: symbolic initial
marking.

the symbol VE by the set {V 1, V 2} as one token on the place available vendors.
Instead, we want two tokens, V 1 and V 2. This is represented by means of the
“elm”-notation, as in the net of Fig. 18 (more details in [5]).

4 How to Mine a System Model

The notions, concepts, and constructs described in the above sections suggest
to mine a system model starting from information on static system aspects such
as the architecture of the system, the data structures, and the involved agents.
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The data and the operations on the data are systematically represented in a
signature-structure. The architecture and the agents provide the background
for modeling dynamic aspects, i.e. for the derivation of occurrence modules as
models for runs, and finally system modules as models for the entire system.

4.1 From Logs to Runs

The first step identifies for each agent its sequential behavior from the log, and
constructs a distributed run from the agents’ behaviors:

1. From a given event log, for each agent identify in the log the events which
involve the agent. The sequence of those events constitute the behavior of the
agent in the log. Figures 2 and 3 show corresponding examples.

2. Turn the behavior of each agent into an occurrence module: each event either
belongs to the module’s interior part, or its left or its right interface. For an
element, adequate choice of the interface depends on the intended composition
with elements of other modules. Figures 4(a), and (b), 5(a), and 8(a), (b), and
(c) show examples.

3. Compose the agents’ occurrence modules: In general, an event of an event
log is involved in more than one agents’ behavioral module. Composition of
the modules yields a comprehensive occurrence module, i.e. partially ordered
run, as in Fig. 10.

4.2 From Runs to Systems

The second step identifies for each occurrence atom of a given partially ordered
run a system atom with terms over the given signature-structure as arc inscrip-
tions. From this representation, the sought system model is derived:

4. For each occurrence atom of the run, identify the involved agents and data
structures. Move this information from place inscriptions to arc inscriptions.
The arc inscriptions then are terms of the underlying signature structure.
Figure 15 shows examples.

5. In this representation of each occurrence atom, replace each constant symbol
by a variable. This yields a system atom.

6. Compose those system atoms, as in Fig. 16.
7. In this representation, merge equally denoted places. This yields the sought

system model, as in Fig. 17.
8. To achieve a purely schematic representation, replace the initial marking by

a symbolic marking, as in Fig. 18.

5 Related Work

The main concepts for the theoretical foundations of process mining are based
on the idea of grammar inference, grammar induction, or language identifica-
tion [9], which was originally proposed by [8]. Since these theoretical mod-
els do not adequately represent all interesting aspects of business processes,
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a plethora of enhanced formal frameworks are developed [1]. However, none
of these approaches are completely satisfactory because the role of causality,
subsystems, and data are not integrated and adequately covered. Besides the
theoretical work, many practical approaches originate from engineering process
modeling and mining systems [7]. However, these approaches lack a theoretical
foundation.

Recent work in the area of artifact-centric [4], object-centric process min-
ing [2], and agent system mining [13], addresses these lacks already. Although
these ideas clearly show improvements compared to the classical understanding
of systems, models, and logs as formal languages, they still do not provide a
satisfactory understanding of system architecture and the difference of abstract
and concrete data structures which are strongly needed for an integrated under-
standing of business systems. Additionally, our understanding of an agent is
rather general compared to the technical notion used by [13].

Although recent work acknowledges the need for representing causal struc-
tures, the choice is often not satisfactory. C.A. Petri formulated the concept of
distributed runs as early as the late 1970s [10]. It has been taken up again and
again, also under the names “true concurrency”, or “partial order semantics”,
but initially did not prevail over sequential processes. One of the reasons for this
was the comparatively complex technical apparatus for dealing with distributed
processes, combined with comparatively little benefit. Meanwhile, the basic ideas
of distributed runs are used in many contexts, e.g. partial order process min-
ing [14]. Furthermore, the composition calculus, as used in this contribution,
provides adequate and simple technical tools.

To cope properly with data aspects, and in particular to properly integrate
behavioral and data aspects in one formal framework, we resort to signature-
structures, the established formal basis of first order logic and algebraic speci-
fications [12]. Models of really big systems are gained by composing models of
subsystems. The composition calculus covers also this aspect, as developed in
[5].

6 Conclusion

Classical process mining assumes a run as a sequence of events and then tries
to solicit information about concurrent, independent event occurrences a and b
form the observation, that in many similar logs, a and b occur in either order.
We suggest to start considering a run as an unordered set of events, and then to
order them, as much as reasonable, by considering agents and the composition
of agents’ behavior. For example, the module V of Fig. 10 provides insight into
subtle details of the mutual relationship of the events of the joint behavior of
the involved six agents. In the presented run, the joint events of the modules
vendor V1, Alice and cashier are detached from the events of the modules of
the other three agents. Bob waits until the cashier is finished with Alice. But
vendor V 2 and Alice are not related at all to the cashier. All this has been
gained from the event log of Fig. 2, together with the intuitively obvious idea
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that the events of the trade components never should be merged, hence all go
to the right interfaces, and correspondingly the events of the customers should
never be merged, thus all go to the left interfaces. Of course, right and left may
be swapped here.

In this paper, we argue that causality, composition, and objects matter while
mining a system. We introduce the foundational concepts for conducting sys-
tem mining. In the future, more case studies need to be done and new tools
for supporting the main ideas of Heraklit have to be developed. So, in the
future, we speculate that the two academic worlds of data and process mining
will be complemented with and enhanced by systems mining allowing a deeply
integrated understanding of business processes.
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Abstract. With the growing number of devices, sensors and digital
systems, data logs may become uncertain due to, e.g., sensor reading
inaccuracies or incorrect interpretation of readings by processing pro-
grams. At times, such uncertainties can be captured stochastically, espe-
cially when using probabilistic data classification models. In this work we
focus on conformance checking, which compares a process model with an
event log, when event logs are stochastically known. Building on exist-
ing alignment-based conformance checking fundamentals, we mathemat-
ically define a stochastic trace model, a stochastic synchronous prod-
uct, and a cost function that reflects the uncertainty of events in a log.
Then, we search for an optimal alignment over the reachability graph
of the stochastic synchronous product for finding an optimal alignment
between a model and a stochastic process observation. Via structured
experiments with two well-known process mining benchmarks, we explore
the behavior of the suggested stochastic conformance checking approach
and compare it to a standard alignment-based approach as well as to an
approach that creates a lower bound on performance. We envision the
proposed stochastic conformance checking approach as a viable process
mining component for future analysis of stochastic event logs.

1 Introduction

Process mining relies on data that are typically stored in the form of event logs
and collections of traces where each trace is a sequence of events and activities
that were created following a process realization. Process mining tasks, such
as conformance checking, use event logs to achieve their goal (e.g., assessing to
what degree a process model and an event log conform) of improving the process
model that generates these logs.

The fourth industrial revolution [1], which is bridging our digital and phys-
ical worlds, is producing an abundance of event data from multiple sources
such as social media networks [2], sensors located within smart cities (e.g., the
‘Green Wall’ project in Tel Aviv and Nanjing), medical devices and much more.
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Differently from data within traditional information systems, these data may
involve uncertainty due to technical reasons such as sensor inaccuracy, the use
of probabilistic data classification models, data quality reduction during process-
ing, and low quality of data capturing devices. Human generated data may be
uncertain as well, due to fake news and mediator interventions.

In this work, we focus on process mining with Stochastically known (SK)
event data [3] where the probability distribution functions of the event data are
known.1 By way of motivation, consider a use-case of food preparation processes,
captured in video clips that are analyzed by a pre-trained Convolutional Neural
Network (CNN) to predict activity classes and their sequence within an observed
video. To extract the trace of the realized process, one can use the softmax layer
of the CNN to yield a discrete probability distribution of the predicted activity
classes in the observed video. This probabilistic knowledge, in turn, can serve
as a basis for an SK log. Specifically, we develop a conformance checking algo-
rithm over SK data. Building on existing alignment-based conformance checking
fundamentals, we mathematically define a stochastic trace model, a stochastic
synchronous product, and a cost function that reflects the uncertainty of events
in a log. Then, we search for an optimal alignment over the reachability graph
of the stochastic synchronous product to find an optimal alignment. The main
contributions of this work are:

1. We characterize and mathematically define the building blocks for stochastic
conformance checking, including a stochastic trace model and a stochastic
synchronous product.

2. We develop a novel conformance checking algorithm between a model and an
SK trace.

3. Using publicly available data sets, we evaluate the performance of stochastic
conformance checking and highlight unique features of our proposed algo-
rithm.

The rest of the paper is organized as follows. In Sect. 2, we develop the model
followed by presentation of our stochastic alignment algorithm (Sect. 3). Empir-
ical evaluation of the two is given in detail in Sect. 4. The related literature is
presented in Sect. 5 and the final section (Sect. 6) concludes the paper and offers
directions for future research.

2 Stochastic Trace Model

Uncertain data have recently become a subject of interest among the process
mining community [4–6]. Table 1 [3] presents a model/observation classification
scheme that is based on the number of models present in a log and whether the
log is deterministically or stochastically known. In this work we focus on Case
5, handling a Deterministically known (DK) process model and an SK trace,

1 It is also denoted as ‘weakly uncertain’ event data in the process mining literature;
see [4].
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where the decision-maker wishes to identify a conformance measure between the
process and the SK trace. While the suggested approach can be extended to
solve Case 7, we leave this extension as well as other cases for future work.

Table 1. Eight cases according to the characteristics of the process and observed log,
from Cohen and Gal [3]. The present paper focuses on Case 5 (highlighted).

Model (Data set) → Single process Multiple processes

↓ Observation (Log) DK SK DK SK

Deterministically Known (DK) 1 2 3 4

Stochastically Known (SK) 5 6 7 8

Following Cohen and Gal [3], we use DK to describe a given and known pro-
cess or event log, which is the common setting in the process mining literature.
An SK event log has at least one event attribute that can be characterized via
a probability distribution. Table 2 illustrates an SK trace, which we use as the
running example throughout the paper.

Table 2. SK data, which is aligned with Case 5 in Table 1 in [3].

Case ID Event ID Activity Timestamp

1 e1 {A : 1.0} 13-08-2020T12:00

1 e2 {B : 0.2, C : 0.8} 13-08-2020T14:55

1 e3 {D : 0.6, E : 0.2, F : 0.1, G : 0.1} 15-08-2020T17:39

1 e4 {F : 1.0} 15-08-2020T19:47

We now introduce our primary notation and related definitions. We consider
a finite set of activities A and a Petri net N with initial and final markings
mi and mf , respectively. The Petri net is composed of finite sets of places P ,
transitions T and flow relations F , which are directed edges among places and
transitions. Each transition is associated with an activity a ∈ A ∪ τ by the
labeling function λ : T → Aτ (Aτ ≡ A ∪ τ). τ is a silent activity separate from
the other activities in A. Differently from a DK trace that includes a sequence
of activities with probability 1, the activities in an SK trace are associated with
a probability function (e.g., the next transition may be ‘act1’ with probability p
or ‘act2’ with probability 1 − p). We reflect the stochastic nature of the traces
using a weight function W : T → (0, 1) that assigns a firing probability to each
transition.

Our modeling approach is inspired by a conformance checking algorithm [7]
(pp. 125–158) to align a DK trace and a model’s execution sequence such that the
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cost of dissimilarities is minimized. The algorithm by [7] cannot be used directly
with SK traces. Our proposed model, however, aims to provide this ability. In
what follows, we assume prior knowledge about alignment-based conformance
checking and related definitions (e.g., system net, process and trace models,
and synchronous product). We refer interested readers to [7] for a thorough
description of relevant definitions and methods. We start by defining a stochastic
trace model.

Definition 1 (Stochastic Trace Model). Let A ⊆ A be a set of activi-
ties, and σ ∈ A∗ a sequence over these activities. A stochastic trace model,
STN = ((P, T, F, λ,W ),mi,mf ) is a system net such that P = {p0, ..., p|σ|},
T ∈ {t11, ..., t|σ|nσ

}, F ⊆ (P ×T )∪(T ×P ) and W : T → (0, 1) | ∑ni

j=1 W (tij) =
1, ∀ 1 ≤ i ≤ |σ| where ni is the number of alternative transitions between place
pi−1 and pi. W (ti·) is a probability function assigning to each alternative tran-
sition j a firing probability. Additionally, let mi = [p0] and mf = [p|σ|].

Figure 1 offers a visual illustration of a stochastic trace model for our running
example from Table 2, where transition t11 is activity A, t21 and t22 are activi-
ties B and C, respectively, and so on. The stochastic trace model generalizes a
trace model by allowing a place i to have multiple incoming and outgoing edges
denoted by j, which lead to and from alternative transitions. Each transition
has a single outgoing edge from a place and a single incoming edge to a place.
Additionally, each transition is associated with a firing probability. For each
two places in the Petri net, the sum of firing probabilities of their alternative
transitions is 1.

Fig. 1. Stochastic trace model illustration

3 Stochastic Alignment Algorithm

A synchronous product combines process and trace models such that each pair
of transitions that are labeled with the same activity are denoted a synchronous
transition. Nonsynchronous transitions are represented by pairing an activity
with >> and are associated with a cost of 1. An optimal alignment between a
trace and a model is the execution sequence of the model for which the alignment
between the trace and the sequence has the lowest possible cost. De facto, this
is an execution sequence of the synchronous product model that produces the
lowest cost.
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While deterministic traces have a single execution sequence, for SK traces a
synchronous product procedure should align multiple model execution sequences
with multiple trace execution sequences. We search for the optimal alignment
using the reachability graph of the synchronous product. Towards this end, we
need to extend the standard version of a synchronous product by including
probability functions that capture the SK nature of the trace. The probability
functions assign a firing probability to each synchronous move of the trace and
the model. The probability of the synchronous move is equal to the probability
of the same transition in the stochastic trace model as defined next.

Definition 2 (Stochastic Synchronous Product).
Let

SN = ((PSN , TSN , FSN , λSN ),mSN
i ,mSN

f )

be a process model and

STN = ((PSTN , TSTN , FSTN , λSTN ,WSTN ),mSTN
i ,mSTN

f )

a stochastic trace model. The stochastic synchronous product SSN =
((P, T, F, λ,W ),mi,mf ) is a system net such that:

• P = PSN ∪ PSTN is the set of places,
• T = TMM ∪ TLM ∪ TSM ⊆ (TSN ∪ {>>}) × (TSTN ∪ {>>}) is the set of
transitions where >> denotes an SSN transition in which either the model or
the trace executes an activity and its counterpart does not, i.e., >>/∈ TSN ∪
TSTN , with

TMM = TSN × {>>} (model moves),
TLM = {>>} × TSTN (log moves), and
TSM = {(ti, tj) ∈ TSN × TSTN | λSN (ti) = λSTN (tj)} (synchronous

moves).
• F = {(p, (ti, tj)) ∈ P × T | (p, ti) ∈ FSN ∨ (p, tj) ∈ FSTN} ∪ {((ti, tj), p) ∈

T × P | (ti, p) ∈ FSN ∨ (tj , p) ∈ FSTN},
• mi = mSN

i + mSTN
i ,

• mf = mSN
f + mSTN

f and,
• ∀(ti, tj) ∈ T it holds that λ((ti, tj)) = (li, lj), where li = λSN (ti) if ti ∈

TSN , and li =>> otherwise; and lj = λSTN (tj), if tj ∈ TSTN , and lj =>>
otherwise. Finally,

• the probability function W : T → (0, 1) | WSSN (ti, tj) =
WSTN (tj),∀(ti, tj) ∈ TSSN : λSN (ti) = λSTN (tj) assigns firing probabili-
ties to transitions of synchronous moves.

The stochastic synchronous product is a combination of a process model that
may yield multiple execution sequences (traces) and a stochastically known trace
model that is noisy. Thus, the ‘real’ deterministic trace can be only deduced with
probability. The transitions of the stochastic synchronous product are a union of
synchronous and nonsynchronous transitions. To combine a process model and
a trace in a system net that represents the synchronous product, each pair of
transitions that are labeled with the same activity is added as a synchronous
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transition. Nonsynchronous transitions, which include a process (trace) activity
that cannot be matched with the same activity on the trace (model), are paired
with >>. Figure 2 illustrates the stochastic synchronous product of a model (its
starting place is P01) and the stochastic trace of our running example (its starting
place is P02). The first transition in both the model and the trace is given the
label “activity A” and thus, a new synchronous transition is created—namely,
transition (A,A). The original transitions both in the model and the trace are
paired with the symbol >> and are added to the new net as well.

We are now ready to introduce our algorithm, S-ABCC (Stochastic
Alignment-Based Conformance Checking), as a solution to the problem of find-
ing the lowest-cost execution sequence of the synchronous product. We observe
that this is equivalent to finding the shortest path over the synchronous prod-
uct’s reachability graph, where the sum of costs across path edges is the total
path length.

Fig. 2. Stochastic synchronous product illustration

Given an initial marking mi of a stochastic synchronous process model SSN ,
we denote the corresponding system net as N = (P, T, F, λ,W ) and its set of
reachable markings as RS(N). The reachability graph of N , denoted by RG(N),
is a graph in which the set of nodes is the set of markings RS(N) and the
edges correspond to firing transitions, where each edge in RG(N) corresponds
to a transition of the stochastic synchronous process SSN . Formally, an edge
(m1, t,m2) ∈ RS(N) × T × RS(N) exists, if and only if m1[t〉m2. The shortest
path from the initial to the final marking in RG(N) corresponds to the lowest-
cost execution sequence of SSN . We model the transition probabilities of the
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SK trace in the reachability graph by assigning weights (costs) to the edges as
discussed next.

Recall that SSN is the stochastic synchronous product of SN = ((PSN , TSN ,
FSN , λSN ),mSN

i ,mSN
f ) and a stochastic trace STN = ((PTN , TTN , FTN ,

λTN ,WTN ),mTN
i ,mTN

f ). For every synchronous move, transition t′ = (ti, tj)
in SSN and its corresponding edge e′ in RG(N), the cost of e′ is calculated by

Weight(e′) = 1 − e
1− 1

W (t′) , ∀ t′ = (ti, tj) ∈ TSSN | λSN (ti) = λSTN (tj) (1)

where W (t′) is the firing probability of transition t′, and 1 otherwise (W (e′) =
1, ∀ t′ = (t1, t2) ∈ TSSN | t′ ∈ TSN × {>>} ∨ {>>} × TSTN (model moves or
log moves, respectively)).

The cost function (Eq. 1) transforms firing probabilities into costs. We use
a monotonic, non-linear cost function such that each edge e′ in the reachability
graph RG(N) satisfies the following: 0 ≤ Weight(e′) ≤ 1. The monotonicity
property assures that if the probability assigned to a transition t is higher than
the probability of its alternative transition t′, W (t) > W (t′), it follows that for
the corresponding edges in the reachability graph (for synchronous moves) e and
e′ satisfy the following: Weight(e) < Weight(e′). In other words, the penalty
on transitions participating in synchronous moves is higher as they are more
uncertain. Before choosing the cost function, we experimented with other func-
tions that satisfy the monotonicity property such as Weight(e′) = −ln(W (t′))
and Weight(e′) = 1 − W (t′). The following property (which proof is omitted)
bounds the costs of synchronous moves.

Property 1. The cost function (Eq. 1), f(x) = 1 − e1− 1
x , satisfies the following

properties for synchronous moves:

1. The cost of an edge in RG(N) approaches 0+ as the firing probability of its
transition approaches 1,

2. it approaches 1 as the firing probability of the transition approaches 0, and
3. 1 ≤ f(x) ≤ 0, ∀x ∈ (0, 1].

For the deterministic setting, the cost of each edge in RG(N) is either 0 or 1
and thus, the deterministic setting can be seen as a special case of our setting
with the firing probability of each transition set to 1. Given a stochastic syn-
chronous product SSN (Definition 2) and the cost function (Eq. 1), any shortest
path algorithm (e.g., Dijkstra [7]) can be applied to find the shortest (cheapest)
path from the initial to the final markings – this path corresponds to an opti-
mal alignment between the stochastic trace and the model. To illustrate, Fig. 3
presents the reachability graph of the stochastic synchronous product in Fig. 2
and the shortest path.

4 Empirical Evaluation

We evaluate S-ABCC against a standard alignment-based conformance and a
lower bound on the conformance cost [4]. We start with a description of the
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benchmark data sets (Sect. 4.1), followed by an explanation of the experiment
design (Sect. 4.2). We report on the outcome of the empirical evaluation in
Sect. 4.3.

Fig. 3. The reachability graph of the stochastic synchronous product in Fig. 2. The
red edges mark the optimal path after applying the Dijkstra algorithm. (Color figure
online)

4.1 The Datasets

We used two publicly available real-world datasets as a baseline for our experi-
ments: BPI 2019 and BPI 2012. The BPI 2019 data set contains over 1.5 million
events for purchase orders that were collected from a large international coat-
ings and paints company in the Netherlands. The dataset consists of over 250,000
traces relating to 42 activities performed by 627 users. The BPI 2012 dataset
consists of about 262,000 events and 13,000 applications for personal loans or
overdraft approvals held by a Dutch financial institute.

4.2 Data Preparation and Experiment Design

For each of the data sets, we discovered a baseline model using 15 randomly
chosen traces via the Inductive Miner (IM) algorithm and the PM4PY package.

Stochastic traces were generated from traces that were not utilized for model
discovery. We used 100 traces—15 for the model discovery while the remain-
ing 85 were transformed into stochastic traces. The transformation procedure
iterates over each trace, adding alternative transitions with random activities.
Both original and added transitions are assigned a firing probability. For exam-
ple, if the original log contained the following record: {CaseID : 1, EventId :
e1, Activity : A}, a possible corresponding stochastic record after adding tran-
sitions with random activities and firing probabilities is {CaseID : 1, EventId :
e1, Activity : [A : 0.4, B : 0.4, C : 0.2]}.

We control the following parameters when preparing the stochastic traces.

http://icpmconference.org/2019/icpm-2019/contests-challenges/bpi-challenge-2019/
https://www.win.tue.nl/bpi/doku.php?id=2012:challenge
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– Number of alternative transitions, Nt, varied between 2 and 4. Consider, for
example, Nt = 2, which is two alternative transitions for trace <A,B,C>.
Then for each of the three events, a second alternative transition is added
with an activity that is randomly chosen from the set of activities.

– Value of the firing probability assigned to the original transition in each set
of alternative transitions, Pf . This parameter is set to one of three values,
Pf ∈ (0.55, 0.75, 0.95). Since the sum of firing probabilities across each set of
alternative transitions equals 1, the leftover probability, 1 − Pf , is randomly
split between the other alternative transitions.

– Portion of the uncertain traces, Tp. When Tp = 0, the considered trace is
deterministic. We increased the parameter’s value in steps of 0.05. For each
iteration in which we increased Tp, we selected all the traces from the previous
iteration and randomly selected 5% of each trace transitions to be transformed
into alternative transitions. The selected 5% only included events without
alternative transitions to ensure that when Tp = 1, 100% of the trace events
would have alternative transitions.

We note, in passing, that the stochastic traces that we generated resemble
the stochastic output of neural networks for classifying activities in video clips
or of sensors for identifying observed signals (for more information, refer to [3]).

4.3 Results

Figure 4 demonstrates the sensitivity of the suggested approach to the distribu-
tion of the firing probabilities in the sense that changing the firing probability
affects the average conformance cost. Specifically, conformance cost decreases
with Pf as we get closer to the deterministic setting until it hits the red ‘+’
marker in Fig. 4 in which Pf = 1. In fact, the suggested model accommodates
the deterministic setting in the sense that when assigning Pf = 1, the suggested
model generates the same conformance cost as does conventional alignment-
based conformance checking. Under the suggested model, the optimal alignment
carries additional conformance costs compared to its deterministic counterpart
due to uncertainty. In a deterministic setting, synchronous moves do not induce
a cost, which makes sense since there is only a single trace path. Under an SK
setting, synchronous moves are associated with a non-negative cost due to uncer-
tainty on the trace path. The extra cost embodies the level of uncertainty for
each possible trace realization. We can argue that not accounting for uncertainty
costs would lead to a situation in which as the level of uncertainty increases (e.g.,
by having more transitions in parallel), the number of possible trace realizations
grows and thus we have a greater chance of finding a better conforming trace
that is associated with lower conformance costs. This situation is undesirable
unless we are seeking a lower bound on the conformance cost (see [4]).
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Fig. 4. Average conformance cost as as a function of the firing probability, Pf of
the original trace transition. We set Tp = 1, where each event in the original trace
included 2–4 alternative transitions – Nt ∈ (2, 3, 4). The ‘+’ marker corresponds to a
deterministic setting. (Color figure online)

Figure 5 presents the conformance cost as a function of the stochastic trace
portion size for the BPI 2012 data set (results for BPI 2019 showed similar ten-
dencies and are not included due to space considerations). Inspired by Pegoraro,
Uysal, and Van Der Aalst [4], the original traces were modified prior to adding
alternative transitions in one of four ways by: 1) randomly altering the activ-
ity label for 30% of the events; 2) randomly swapping 30% of the events with
either their successor or predecessor where first and last events in a trace were
only swapped with their successor and predecessor, respectively; 3) randomly
duplicating 30% of the trace events; and 4) all of the above modifications. After
applying a modification, we turn back to the general preprocessing procedure of
iteratively adding alternative transitions as detailed in Sect. 4.2. It can be seen
in Fig. 5 that the conformance cost of the SK traces increases with Tp. On the
other hand, the conformance cost of the lower bound, which does not account
for probabilities, decreases with Tp. This occurs because higher Tp values imply
more possible traces and thus additional alignment opportunities while the lower
bound does not consider the realization probability of these traces. The result is
that the gap, in conformance costs, between the lower bound and the suggested
approach that acknowledge uncertainty increases with Tp.

Next, we evaluated the conformance cost of traces with different lengths. For
this, the traces were sorted into groups according to their length, so that group
1 contains traces with a length of 0–9, group 2 contains traces with a length of
10–29 and so on. Following this, we randomly chose three traces from each group
(a total of 15 traces) and discovered a model from these traces. Each data point
in Fig. 6 represents the average conformance cost of all the traces that were used
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Fig. 5. Average conformance cost as a function of Tp, the trace portion with alternative
transitions for the four preprocessing modifications as evaluated for the BPI 2012 data
set. Different types of markers denote different Pf values and the lower bound; Nt = 2

for the evaluation, i.e., all the traces within a group excluding the traces that
were used for the model discovery. Figure 6 demonstrates that the conformance
cost is increasing with the trace length (apart from the lower bound, for the
same reasons explained earlier). The observed behavior follows from the fact that
longer stochastic traces have a higher number of possible realizations, which may
possibly lead to a better alignment, compared to shorter ones since the number
of realizations of a stochastic trace with Tp = 1 and Nt = 2 is 2n where n is the
length of the trace. We note that the additional cost from synchronous moves
outweighs, on average, the reduced cost that may result from a better alignment.
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Fig. 6. Average conformance cost as a function of the trace length; Nt = 2, Tp = 1,
Pf ∈ (0.55, 0.75, 0.95)

5 Related Work

Modeling uncertainty has been introduced in process mining only recently. Pre-
vious studies focused on uncertain data in the sense that some of the data are
missing or incorrect and uncertainty is not quantified via any probability distri-
bution. The common approach for dealing with such uncertainty is by prepro-
cessing the event log either by filtering out the affected traces or by repairing
existing values [8–13].

To the best of our knowledge, uncertainty in event logs was introduced explic-
itly for the first time in 2020 by Pegoraro, Uysal, and Van Der Aalst [4] who intro-
duced a new taxonomy of uncertainty on the attribute level. At this level, the val-
ues of the event attributes are not missing or incorrect but rather appear as a set
of possible values and in some cases, the likelihood of each possible value is known
or could be estimated. The authors defined two types of uncertainty—namely
strong uncertainty and weak uncertainty. The former relates to unknown prob-
abilities between the possible values for the attribute while the latter assumes
complete probabilistic knowledge in the form of a probability distribution. The
strong uncertainty setting has been addressed in multiple works. A conformance
checking technique was proposed by [5] to compute a lower bound on the con-
formance cost. Pegoraro, Uysal, and Van Der Aalst [6] described a discovery
technique based on uncertain logs that represent an underlying process. In [14]
and [15], the authors proposed an efficient way to construct behavior graphs,
which are a graphical representation of precedence relationships among events,
for logs with strong uncertain data. By using these graphs, one can discover
models from logs through methods based on directly-follows relationships such
as the inductive miner [6]. Van der Aa, Leopold, and Reijers [16] suggested a
way to calculate the probability of a trace with an uncertain event-to-activity
mapping. In a recent work, Bergami et al. [17], the authors suggested a technique
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to compute conformance cost for a probabilistic discovered model and determin-
istic traces. This work is the first to tackle the problem of conformance checking
with SK logs.

6 Conclusion and Future Work

We developed a conformance checking model for an SK trace in which probability
distribution functions are given. Such a setting may characterize situations in
which data logs originate from sensors or probabilistic models. Differently from
other conformance checking models, ours explicitly considers the probability
values and at the same time accommodates standard (deterministic) alignment-
based conformance checking.

When constructing the S-ABCC, in favor of model development, we defined a
stochastic trace model and a stochastic synchronous product. Using the stochas-
tic synchronous product and its set of reachable markings, we constructed the
corresponding reachability graph. By formulating a bounded non-linear cost
function that takes the firing probability as an input, we assigned costs to the
edges of the reachability graph that correspond to the stochastic synchronous
product. In a final step, we searched over the graph for the shortest (cheapest)
path, which represents an optimal alignment where the cost is the conformance
cost. Via structured experiments with two well-known benchmarks, we analyzed
the characteristics of S-ABCC and compared it to the deterministic alignment-
based conformance checking approach and to a lower bound on the conformance
cost. On average, the conformance cost of the stochastically known traces con-
verges to their deterministic counterparts as the firing probabilities approach
1. As expected, lower values of firing probability that imply higher uncertainty
correspond to higher conformance costs for the same traces. This phenomenon
is confirmed when the uncertainty increases due to larger uncertain trace por-
tions. Finally, we observed that conformance costs tend to be higher for longer
stochastic traces compared to shorter ones. This occurs because, in general,
longer traces may include more synchronous moves that have non-negative costs
in the stochastic settings.

This work opens up several interesting future research directions. The first is
to use the suggested conformance checking approach to restore the most likely
realization from SK traces. Possible applications may include improving the
accuracy of machine learning classifiers and cleaning errors in datasets. Another
direction is to find both upper and lower bounds on conformance cost. Finally, it
is worth exploring how different cost functions and search algorithms may affect
the performance of S-ABCC.

Acknowledgements. This research was supported by THE ISRAEL SCIENCE
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Abstract. One of the goals of process discovery is to construct, from a
given event log, a process model which correctly represents the underlying
system. As with any abstraction, one does not necessarily want to repre-
sent all possible behavior, but only the significant behavior. While various
discovery algorithms support this use case of discovering the significant
process behavior, proper evaluation measures for this use case appear to
be missing.

Therefore, this paper presents a new precision metric that quantifies
to what extent the discovered model contains significant system behavior.
Besides being a metric with a clear and intuitive interpretation, the metric
distinguishes itself in two other areas. Firstly, it introduces the concept of
α-significance, which only measures precision with respect to significant
behavior. Secondly, it is designed as a system measure and estimates the
precision with respect to the underlying system rather than the observed
log. This work introduces a new precision measure and a statistical estima-
tion method. Additionally, an empirical demonstration and evaluation of
the metric are provided, which creates initial insights and knowledge about
the performance and characteristics of the new measure. The results show
that the α-precision measure provides a solid foundation for future work
on developing quality measures for this particular use case.

Keywords: Process discovery · Precision · Stochastic process models

1 Introduction

Various information systems increasingly support current business processes,
and create a digital trail of process execution information. These digital trails
can be transformed into an event log, which records at a minimum the executed
activities and their order for each case. Given such event logs, the goal of process
discovery is then to discover a model representing the underlying process (also
called system) as closely as possible from the event log.

Event logs are only a sample of the possible process or system behavior.
Therefore, most process discovery algorithms try to generalize the observed
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behavior to capture the whole system behavior rather than the log behavior only.
At the same time, a system can contain a large amount of infrequent behavior
and trying to represent all this behavior in a single (visual) model quickly results
in non-interpretable spaghetti models.

Hence, we focus on the particular use case where one wants to rediscover only
the system’s significant—typical—behavior. Fortunately, various process discov-
ery algorithms exist that contain mechanisms and parameters that support this
use case. That is, discovery algorithms have introduced different ways to classify
and filter insignificant behavior: [18] classifies traces of the log as insignificant
if they traverse little-used parts of an intermediate behavior abstraction; [7,8]
classify little-used model edges as insignificant; [15,22] classify edges of a behav-
ior abstraction as insignificant based on frequency; [2,16] search for a most likely
model, thereby implicitly classifying behavior that does not fit that intermediate
result as insignificant; and [7] hides insignificant details in hierarchy.

Following the model-log-system quality paradigm in process mining [3], two
criteria exist to evaluate the quality of a process model against the system,
model-system fitness, and model-system precision. This paper focuses on model-
system precision, which quantifies to what extent the process model only contains
system behavior. Unfortunately, the existing precision measures fall short of the
presented use case for three reasons.

Firstly, existing precision measures do not distinguish between significant
(typical) and insignificant (infrequent) process behavior. Consequently, a model
that contains a lot of insignificant behavior is still considered to be very precise
by these measures, as long as that insignificant behavior is part of the system
or log.

Secondly, most precision measures are developed as model-log measures. Con-
sequently, they do not measure to what extent the model only contains behavior
from the system, but rather quantify to what extent the model only contains
behavior observed in the log. Research has also shown that these model-log mea-
sures have limited value when used as proxies for model-system measures [9].

Thirdly, many quality measures in process mining became so advanced over
time that an unambiguous interpretation of the precision value is no longer
possible. For many measures, the precision value has become a number that is
the result of complex computation. While it still correlates to the precision of
the model, it lacks a meaningful and unambiguous interpretation.

This research aims to design and introduce a new precision measure that
tackles these limitations and (indirectly) supports the use case of discovering
significant system behavior. The paper makes three main contributions:

– A first-of-its-kind precision measure is introduced, quantifying the amount
of significant behavior in a process model and providing measurement values
that have a meaningful and unambiguous interpretation.

– A statistical method based on Bayesian Inference is provided to efficiently
estimate the system precision based on a given event log.

– Initial empirical insights into the performance of this new precision measure
are provided, which opens up avenues for follow-up research.
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The following section provides basic notation and formalization for the
remainder of the paper. Section 3 then introduces the rationale, design, and
estimation method of the new precision measure. Subsequently, Sect. 4 provides
the empirical evaluation and discussion. Finally, after a brief overview of the
related work, the overall conclusions are provided in Sect. 6

2 Preliminaries

Activities and Traces. A process consists of activities that are represented
by their activity labels. The set of all possible activity labels in the system form
the activity alphabet A . A trace σi ∈ A ∗ is a sequence of activity labels, where
A ∗ is the set of all finite sequences over A . The length of a trace is represented
as |σi|.

System. The system S = (S, πS) represents the underlying process and consists
of two components. The first component is the support of the system S ⊆ A ∗

which consists of all traces that can be produced by the system. The second
component is the system probability distribution πS : S → (0, 1], which is a
categorical distribution and assigns a probability of occurrence πS(σi) to each
trace σi in the system support S, such that

∑
σi∈S πS(σi) = 1. The size of the

system corresponds to the number of traces σi in the system support and is
represented as K = |S|. Note that we thus assume S to be finite.

Log. The log L ∈ B(A ∗) is a multi-set of traces. The frequency of trace σi in
the log is denoted by nσi

, and N =
∑

σi∈L nσi
denotes the size of the log. Note

that, as we interpret the system as a categorical distribution over the system
support S, the log L is a sample of N drawings from this distribution πS .

Model. Two type of process models are considered: non-probabilistic and
stochastic process models. A non-probabilistic model does not hold any infor-
mation about the model probability πM (σi) of a trace σi and is simply a set of
traces M ⊆ A ∗. A stochastic process model M = (M,πM ) is more informative
as it consists of a set of traces M ⊆ A ∗ that represents the models support and
a model probability distribution πM : M → (0, 1] where πM (σi) represents the
probability of trace σi according to the model, such that

∑
σi∈M πM (σi) = 1.

The number of traces in the model is denoted as |M |.

3 Alpha Precision

The overall goal is to design a model-system precision measure for the use case
of discovering a process model which only contains significant system behavior.
Furthermore, the measure should meet the following three design requirements:

Requirement 1. The precision measure should quantify to which extent the
process model (only) contains significant process behavior.
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Requirement 2. The precision measure should quantify the precision of the
model with respect to the system.

Requirement 3. The precision measure should produce values that have an
unambiguous and human-interpretable meaning.

3.1 Rationale and Design

In order to meet the first two design requirements, the following definition first
introduces the concept of α-significance, which identifies a trace as significant if
its system probability πs(σi) exceeds a user-defined threshold α.

Definition 1 (α-significance). A trace σi is α-significant iff πs(σi) > α

Based on this concept, we can define the α-indicator function Iα.

Definition 2 (α-indicator function).

Iα(σi) =

{
1, if πS(σi) ≥ α

0, otherwise
(1)

For a stochastic model, M, α-precision Pα is then defined as the probability
that the model produces a trace that is α-significant.

Definition 3 (α-precision (stochastic model)). Let M be a stochastic pro-
cess model, then

Pα(M,S) =
∑

σi∈M

πM (σi)Iα(σi) (2)

For non-probabilistic models, α-precision is defined as the portion of α-
significant traces in the model M .

Definition 4 (α-precision (non-probabilistic model)). Let M be a non-
probabilistic process model, then

Pα(M,S) =
1

|M |
∑

σi∈M

Iα(σi) (3)

The third design requirement involves a meaningful and clear interpretation
of the new precision measure. In order to illustrate the interpretability of the
proposed α-precision, consider the following application scenario:

A data scientist wants to discover a process model from an event log that
contains the significant (typical) behavior. The goal is to understand the
standard way of working within the department and not depict exceptional
process executions in the process model. First, they set the α threshold
at 1%, which means that any trace that has a probability less than 1% is
considered non-significant. Next, the discovered stochastic model appears
to have an Pα = 0.8. This value tells her that 80% of the traces gener-
ated by this process model are expected to be significant, i.e., 80% of the
behavior produced by the model has a system probability πS(σi) greater
than 1%.
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Note how both the α-threshold and the α-precision have natural interpre-
tations that allow users to use context and domain-expertise to set a proper
threshold and interpret and evaluate precision levels found for their discovered
models. Also, note that in the case of a deterministic model, the interpretation
of the precision measure would only slightly change to the conclusion that 80%
of the traces contained in the model are significant.

3.2 Estimation Method

Calculating the α-precision is straightforward when the system S and the its
probability distribution πS are known. However, in real-life, one does not know
the system. The only available information is typically an event log—a limited
sample of the system’s behavior. Therefore, we introduce a method to estimate
the true α-precision from the available information in the log.

The general idea behind the method is to estimate the system probabilities
π̂S from the event log. Next, these estimates are used to estimate the indicator
function (cfr. Eq. 1), which subsequently is used to estimate the α-precision P̂α.
Thus, the estimation problem reduces to the estimation of the system probabil-
ities from the event log. The proposed method is based on Bayesian Inference
and inspired by the work of [10].

To infer knowledge about the system from the log, we need additional
assumptions about the system.

Assumption 1. The system contains a finite amount of behavior.

This assumption implies that the system has some mechanism that prevents
a process from being executed indefinitely. For business processes with humans
involved, this is a fair assumption.

Assumption 2. The system support is correctly defined.

This assumption restricts the modeling of uncertainty to the system prob-
ability density. The assumption that the system support is correctly defined
corresponds to the common assumption in statistics of correct model specifica-
tion. While it is hard to prove that the system support is defined correctly, it
is essential to realize that any theoretically possible trace is part of the system
support, no matter how small the probability of occurrence.

Assumption 3. The log is a representative sample from the system’s behavior

As the proposed method will rely on statistical inference, this assumption is
required to draw proper conclusions from the data for the underlying system.
Considering these assumptions, the α-precision can be estimated in four steps.

Step 1: Define the System Support. First, the system support S of the
system S needs to be specified. Under the assumption that the system behavior
is finite, the system support can be defined as a set of traces σi for which the
system probability πS(σi) > 0.



Alpha Precision: Estimating the Significant System Behavior in a Model 125

Step 2: Define a Prior Distribution over S. As indicated before, a system
S = (S, πS) consists of two components: its support and a probability function.
The latter can be defined as the vector πS = (πS(σ1), . . . , πS(σK)) of system
probabilities, where K is the size of the system.

However, because the actual system is unknown, we do not know the true cat-
egorical probability function. In order to model this uncertainty, we consider all
theoretically possible categorical probability functions for K possible outcomes
and assign a probability to each one of them. This is modeled as a Dirichlet
distribution [12].

From the perspective of Bayesian Inference, the first step is to encode the
prior belief about the system as the prior distribution. In this paper’s context,
the prior belief refers to the knowledge about the system probability function
πS before observing the data. Assuming that there is no specific information
to favor one probability function over the other, a flat Dirichlet distribution is
chosen as the prior. This distribution is equivalent to a uniform distribution over
all possible system probability distributions πS and achieved by setting all the
Dirichlet parameters θi to 1.

Step 3: Determine Posterior Distributions. The flat Dirichlet distribution
from the previous step represents our prior belief that all possible probability
functions πS are equally likely. However, once we have observed an event log,
we notice that some traces are more common than others, indicating that some
probability functions πS must be more likely than others.

Bayesian inference uses Bayes’ theorem to update our prior beliefs with the
evidence in the log, which results in a posterior distribution [6]. In most situ-
ations, the posterior distribution is not obtainable analytically unless the prior
distribution is conjugate to the likelihood distribution of the data. If this is the
case, the posterior distribution can be analytically calculated from the prior
distribution and the data.

Because the Dirichlet distribution is a conjugate prior to the multinomial
distribution and the event log is a multinomial distribution, the posterior distri-
bution is also a Dirichlet distribution. More specifically, the posterior distribution
will be a Dirichlet distribution with parameters θ′

i = θi +ni, where θi represents
the i-th parameter of the prior distribution and ni represents how often outcome
i was observed in the data.

Given a flat Dirichlet distribution as the prior distribution and our event log L
being a multi-set of traces σi, this results in the following posterior distribution:

πS |L ∼ Dir ((1 + nσ1 , . . . , 1 + nσK
)) (4)

Note that the posterior distribution assigns a probability to each possible
system probability distribution πS based on the evidence in the log.

Step 4: Estimate α-Precision. Now that the posterior distribution over all
possible system probability functions is known, the true system probability func-
tion can be estimated by taking the expected value of the Dirichlet posterior,
which is defined as follows:
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Definition 5. Let X = (X1, . . . XK) ∼ Dir(θ′), then the expected value of Xi is

E[Xi] =
θ′

i
∑K

k=1 θk

(5)

Given that the parameters of the posterior distribution are θ′
i = 1 + nσi

for
1 ≤ i ≤ K, we can estimate the system probabilities πS(σi) as follows:

∀σi ∈ S : ̂πS(σi) =
1 + nσi

∑K
k=1(1 + nσk

)
=

1 + nσi

K + N
(6)

Based on this estimator for system probability, we can subsequently estimate
the α-significance indicator function as follows:

̂Iα(σi) =

{
1, if ̂πS(σi) ≥ α

0, otherwise
(7)

Using this indicator function in Eqs. 2 and 3, for stochastic and non-
probabilistic models respectively, we can then estimate the α-precision. We will
denote this estimated precision as P̂α.

3.3 Estimating the System Support Size

Analyzing the final equations of the proposed estimation method reveals that
it requires two parameters: the α-significance level and the theoretical system
support size K. While the former can be freely chosen and should reflect the
domain expert’s interpretation of significance, the latter should preferably match
its theoretical value. Various approaches to estimate K can be devised. This
paper proposes two approaches—the unrestricted and restricted approach—and
motivates them both based on underlying assumptions.

The unrestricted approach is so-called because it does not strongly limit
the behavior that is included in the system support, except for the alphabet of
activity labels observed in the event log A and a user-defined maximum trace
length γ. It then defines the system support S as the set of all possible sequences
σi over A with a length |σi| ≤ γ. This approach assumes that the entire activity
alphabet has been observed and a maximum trace length exists. The rationale
behind the maximum trace length assumption is that the system would not allow
a process instance to keep ongoing indefinitely. Given the alphabet A and the
maximum trace length γ, the size of the system can be calculated as follows:
K =

∑γ
i=1 A

i.
The restricted approach can be seen as taking the system support S from

the first approach as its starting point but removing all traces that contain a
directly-follows relation not observed in the log. The assumption thus is that all
possible directly-follows relations have been observed in the log.

Suppose that the directly-follows relations are represented by a matrix D of
size |A | × |A | where Dij equals 1 if and only if it was observed in the log that
activity i of the alphabet was directly followed by the activity j, and 0 otherwise.
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Table 1. Parameters.

Parameter Values

System Alphabet length [4, 6, 8]

Max trace length [4, 6]

Log Log size [100, 500, 1000, 5000, 10000]

Model Discovery threshold [0.3, 0.4, 0.5, 0.6, 0.7]

# iterations 25

It follows naturally that the number of allowed sequences of length two is equal to
the sum over this matrix, i.e.,

∑
D Dij . Furthermore, assume a vector o of size |A |,

where oi is 1 if and only if activity i in the alphabet is a valid start activity, and 0
otherwise. The number of sequences of length one with a valid start activity is then
equal to the sum over vector o, i.e.,

∑
o oi. The number of sequences of length two

with a valid start activity is equal to the sum over oTD. This can be generalized
to oTDγ−1 for sequences of length γ. In order to limit the number of sequences to
specific final activities, a vector f of size |A | can be defined where fi is 1 if and only
if activity i is a valid end activity, and 0 otherwise. The scalar oTDγ−1f then equals
the total number of sequences of length γ with valid start and end points.1 As a
result, for the restricted approach, K =

∑γ
i=1 o

TDi−1f , which is computationally
easy to calculate. Note that the restriction of valid start and end activities can be
omitted without difficulty depending on the specific context.

4 Empirical Evaluation

This Section provides an empirical evaluation of the α-precision by means of a
controlled experiment and a application on real-life data. The goal is to provide
insights and knowledge claims about the behavior and performance of this newly
developed measure.

4.1 Unbiasedness Estimator

In this section, we describe a controlled experiment to analyze the unbiasedness
of the α-precision estimator. The experiment exists of the following six steps: (1)
Generate systems, (2) Generate logs, (3) Generate models, (4) Calculate actual
α-precision, (5) Calculate estimated α-precision, and (6) Analyze bias.

Generate Systems. First, different systems were generated using the alphabet
length and maximum trace lengths in Table 1 as input parameters. Each of the
system-traces is assigned a probability πS(σi).

1 In the specific case that γ = 1, D0 equals the identity matrix I, and thus oTD
γ−1

f =
oTf , which is the number of activities that are both valid start and end activities. This
is indeed equal to the number of valid sequences of length one.
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Because we want define the full system including probability distribution in
this supervised experiment, both the size of the alphabet and the maximum
possible trace length are kept relatively low. An alphabet of length 10 with a
maximum trace length of 8 leads to 1.23 × 109 possible systems sequences.

Generate Logs. For each of the systems, logs of different sizes (cfr. Table 1)
are generated, using the defined system probabilities for each trace.

Generate Models. Subsequently, a model is generated based on each system.
A discovery threshold is set to steer the amount of the system that is captured
by the model. A discovery threshold of 0.7 means that each trace has a 70%
probability to be included in the model.

To each of the traces that is included in the model, a probability is assigned in
order to turn it into a stochastic model as defined in Sect. 2. These probabilities
are independent from the system probabilities created in step 1, thereby making
sure no algorithm bias is introduced.

For each of the combinations of parameters listed in Table 1, we repeat this
process 25 times.

Calculate Actual α-Precision. Given that we know the actual system prob-
ability distribution πS , the actual α-precision can be computed using Eq. 2.
Because there is no domain expertise in this artificial setting to define the level
of α, a rule of thumb was used to set α equal to 1

K where K is the size of the
system support.

Calculate Estimated α-Precision. Given the model and log, we can then
estimate the α-precision by using Eq. 2 in combination with the estimated system
probabilities as defined in Eq. 6.

Next to the information provided in the model and the log, we need to define
the value of K and α. For K, the size of the system, we take the unrestricted
approach described in Step 1 of Sect. 3.2, where we consider all possible sequence
of the alphabet. Subsequently, α is also set to 1

K for the estimation.

Measure Bias. Given both the actual α-precision and the estimated α-
precision, we define the difference between the two as follows.

β = P̂α − Pα (8)

When the estimated α-precision is greater than the actual α-precision, the
bias as measured by β will be positive, and there is thus an overestimation. Oth-
erwise, β will be negative and the actual α-precision will thus be underestimated.

Results. In Fig. 1, it can be seen that the estimator underestimates the real
precision when the size of the log is relatively small compared to the size of
the system. For the system with size 340 (i.e. alphabet length of 4 and maxi-
mum trace length of 4), the estimator becomes unbiased when approximately
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1000 cases have been observed in the log. For larger systems, the biases only
approaches zero for logs of 10000 cases, while for the largest systems in the
experiment the estimators still shows a large bias at logs of size 10000.

Figure 2 shows the extent of bias specifically in relation to the ratio between
the log size and the system size. The vertical line indicates the where the ratio is
1, i.e. the number of different sequences in the system support equals the number
of observed traces in the log. It can be seen that the biases quickly decreases
when the ratio approaches 1, and then decreases more gradually toward zero for
ratios greater than 1.

System support size: 5460

Alphabet length: 4

Maximum trace length: 6

System support size: 55986

Alphabet length: 6

Maximum trace length: 6

System support size: 299592

Alphabet length: 8

Maximum trace length: 6

System support size: 340

Alphabet length: 4

Maximum trace length: 4

System support size: 1554

Alphabet length: 6

Maximum trace length: 4

System support size: 4680

Alphabet length: 8

Maximum trace length: 4
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Fig. 1. Bias ̂Pα − Pα for different sizes of the log and the system.

Table 2. BPIC’12 log - descriptive statistics.

Metric Value Metric Value

Number of activities 10 Number of traces 17

Number of events 60849 Max. trace length 8

Number of cases 13087 Avg. trace length 4.65
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4.2 Demonstration on Real-Life Event Logs

In this and the next section, the proposed method will be applied on real-life
event data. For this, data from the Business Process Intelligence Challenge 2012
is used [5]. Descriptive statistics for this event log can be found in Table 2.

Based on the log, a stochastic model has been discovered using the frequency
estimator [4] on a model discovered by the Directly Follows Model Miner [18].
The discovered model contains 6 different activity sequences, of which the prob-
ability varies between 0.029 and 0.509. In the analyses, we will both approach
the estimation from the starting point of a stochastic model (Eq. 2), as from the
starting point of a deterministic model (Eg. 3). In the latter case, we will ignore
the obtained probabilities and replace them with 1

|M | .
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0 10 20 30
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Fig. 2. Extent of bias in estimated alpha-precision in relation to the ratio between log
size N and system size K.

4.3 Impact of K and α

As discussed before, there are different approaches to define the size of the system
support K. In the unrestricted approach, where we look only at the length of
the alphabet and the maximum trace length, we get K =

∑8
i=1 10i = 1.11 ×

108. Given the fairly high structuredness of the data in question, this seems an
exuberant amount. If we therefore take the restricted approach instead, where
we only take into account sequences that adhere to the observed directly-follows
relations, start activities and end activities, the system support K ′ is only 32.
When we drop the start and end activity requirement, K ′′ equals 1539.

Figure 3 shows the value of P̂α for different values of K and different values
of α for both the stochastic and deterministic approach. It can be seen that the
estimated α-precision is relatively stable with respect to the value of K. Only
when K is increased to 50000 can noticeable differences in P̂α be seen.

Note that as the model only contains 6 different activity sequences, we can
see apparent jumps in the measured precision when α changes such that a traces
moved from insignificant to significant. For the deterministic model all jumps
are equal in size, while this is naturally not the case for the stochastic model.
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The biggest jump in the latter case happens when α drops below 0.05 (approx-
imately), and the trace with the highest probability according to the model
(0.509) becomes significant.

Impact of Significance Filtering. Figure 4 shows the values of P̂α for mod-
els discovery by the Inductive Miner infrequent [16] and Directly-follows miner
[18], with different setting for significance filtering. The higher the significance
parameter, the more significant behavior must be to make it into the model.

It can be seen that, for different values of alpha, when the significance param-
eters increases, so does the estimated precision. This provides implicit validation
that the proposed measure behaves as expected, as models with a stronger sig-
nificance filtering gets higher precision scores.
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Fig. 3. ̂Pα for different values of K and alpha.

Figure 4 also shows the potential of the α-precision to analyze and compare
various algorithms. The visual analysis shows that for the DFM-algorithm, the
evolution of precision with respect to the significance parameter is smoother than
for the Inductive Miner algorithm. This implies better control for significance
filtering in the former algorithm. This derives from the fact that Inductive miner
often results in the same model for various significance filtering levels. In the
extreme, the measured precision drops to zero for the DFM algorithm with the
filtering parameter set to 100, as this results in an empty model.

4.4 Discussion

Based on the design and empirical evaluation of the α-precision measure and
its estimation method, various knowledge insights can be constructed about the
precision measure.

The controlled experiment showed that the measure is unbiased when the
size of the log is sufficiently large in comparison with the system sizes. When
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Alpha: 0.02 Alpha: 0.03 Alpha: 0.04 Alpha: 0.05

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0.00

0.25

0.50

0.75

1.00

Significance filter parameter.

Pα

Discovery algorithm Directly−follows miner Inductive miner − infrequent

Fig. 4. ̂Pα for different values in the significance filtering parameter of [16] and [18],
and different values of α. Note that the values of the significance parameters for the
Directly-follows miner has been inverted for the sake of comparison. A small significance
parameter value means that only very insignificant behavior is removed by the discovery
algorithm, a large value means that only very significant behavior is retained by the
discovery algorithms.

there are fewer cases in the log than there are different activity sequences in the
system, a substantial underestimation is present. In those circumstances, the
estimated α-precision acts as a lower bound of the actual measure.

At the same time, the demonstration of the measure on real-life data shows
that the proposed measures behave as expected for different values of K, α
and the significance filter parameters of process discovery algorithms and holds
potential to evaluate process discovery algorithms aimed at discovering signifi-
cant behavior. While defining the system support size K is an important step
towards estimating the α-precision, it has been shown that the estimator is rel-
atively robust for changes in K.

An ongoing discussion in the field of process mining is that of (desirable)
properties (or axioms) of conformance measures [21]. However, the properties
studied in past research are not applicable to α-precision as most properties
are defined with respect to non-stochastic process models. The exception are
the eight properties for stochastic conformance checking defined in [17]. Unfor-
tunately, even these properties are not directly applicable because they relate
to log-model measures, while α-precision is a system-model measure. Neverthe-
less, we can derive four properties for the α-precision which are inspired by the
properties discussed in [17].

Property 1. The α-precision measure is deterministic.

This property relates directly to property P1 in [17] and holds as α-precision is
a function of the assumed system support size K, the α-significance level, the
log size N and the trace frequencies nσi

, which are all fixed at the start.
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Property 2. The α-precision measure depends only on the stochastic language
of the log and model and not on their representation.

This property refers directly to property P2 in [17] and holds naturally, as the
α-precision is calculated directly from the stochastic language of the log and
model.

Property 3. The α-precision measure returns values between 0 and 1.

This property relates directly to property P3 in [17]. Since the α-indicator func-
tion ̂Iα(x) is either 0 or 1 (cf. Eq. 7), it follows that the minimum and maximum
value of the α-precision (cf. Definitions 3 and 4) is also 0 and 1 and can only be
achieved when all α-indicator functions evaluate to 0 or 1 respectively.

Property 4. The α-precision measure asymptotically goes to 1 if (i) the model
only contains the α-significant system behavior, (ii) the log has the same stochas-
tic language as the system and (iii) the log size increases towards infinity.

This property is an adaptation of property P4 in [17] to the context of our
measure. If the log size N goes towards infinity, then the system probability
estimates (cf. Eq. 6) will go towards nσi

N . The latter equates to the true system
probabilities since the log and the system express the same stochastic language.
Consequently, if the model only contains α-significant system behavior, the indi-
cator function will evaluate to 1 for all traces in the model and the α-precision
measure will equate to 1.

The other properties P5, P7 and P8 in [17] are not directly applicable to
our measure. Properties P5, P6 and P8 are related to recall measures rather
than precision measures. While property P6 does relate to precision measures,
it focuses on a log-model relation which doesn’t have a clear analog counterpart
in the system-model context we are operating.

5 Related Work

In typical process mining projects, the system is unknown; thus, quality measures
(conformance checking techniques) have focused on the relationship between
model and log, rather than system and model. The quality of (non-stochastic)
models with respect to logs is typically measured using fitness, precision, gen-
eralization, and simplicity, where fitness is the fraction of behavior of the log
that is in the system, precision is the fraction of behavior in the model that was
observed in the log, generalization is the predicted fraction of future behavior
of the system that is in the model, and simplicity expresses the size or complex-
ity of the model to express its behavior [3]. Recently, the concept of precision
(and to a lesser extent generalization) has seen discussion in terms of desirable
properties such measures should possess [21]; however, this discussion has not
yet included unbiasedness with respect to unknown systems. Of these quality
dimensions, generalization aims to describe the system and could be seen as a
system-fitness measure [20]. Such log-based measures are not unbiased estima-
tors of system properties empirically [9]. Compared to these approaches, our
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proposed measure explicitly and understandably takes the significant behavior
of an unknown system into account.

For stochastic process models, quality measures include stochastic dis-
tance [13], stochastic precision and recall [17], and entropic relevance [19], how-
ever these do not aim to compare a model with an unknown system. While not
intended for the system-model context, it would be interesting to study the bias
of these techniques when applied in a system-model context, like [9,11].

The system has been the subject of study in process mining, as the ultimate
goal of process mining is to obtain insights into the system to improve it. Some
process discovery techniques guarantee to return a model that is the language
equivalent to the system, under some assumptions, such as the log being noise-
free or complete with respect to a particular abstraction of the system [1,14,23].
However, such techniques do not offer any guarantees when these assumptions
are not met; thus, it is a valuable exercise to have an unbiased estimator of the
relation between system and model.

6 Conclusions

In process mining, organizations aim to gain insights into their business pro-
cesses, which we refer to as systems, by discovering process models from event
logs. Typically, the quality of a process model is assessed with respect to an
event log, however we argue that it might be useful to compare a model to the
unknown system, based on its significant behavior. In this paper, we presented
a new precision metric that expresses the extent to which the model contains
significant system behavior, based on an α-significance level. We empirically
evaluated the new measure by showing that it can be unbiased under certain
assumptions and demonstrated its applicability and value on real-life event logs.

While the initial results indicate that this precision measure supports the
analysis of discovery algorithms aimed at discovering significant behavior, the
empirical analysis also shows that the construction of unbiased system estima-
tors is particularly challenging and requires future research to better understand
and remove this apparent bias. Important aspects to consider are a more realis-
tic definition of ground-truth systems in controlled experiments, as well as the
proper estimation of the system size when using the estimator. The impact of
prior configurations, which are currently uninformative, is another aspects that
requires further analyses.

Overall, we hope this work provides an initial yet solid foundation for further
research into system measures supporting the use case of discovering significant
behavior.
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Abstract. The rise of process data availability has recently led to the
development of data-driven learning approaches. However, most of these
approaches restrict the use of the learned model to predict the future
of ongoing process executions. The goal of this paper is moving a step
forward and leveraging available data to learning to act, by supporting
users with recommendations derived from an optimal strategy (measure
of performance). We take the optimization perspective of one process
actor and we recommend the best activities to execute next, in response
to what happens in a complex external environment, where there is no
control on exogenous factors. To this aim, we investigate an approach
that learns, by means of Reinforcement Learning, the optimal policy from
the observation of past executions and recommends the best activities
to carry on for optimizing a Key Performance Indicator of interest. The
validity of the approach is demonstrated on two scenarios taken from
real-life data.

Keywords: Prescriptive Process Monitoring · Reinforcement
Learning · Next activity recommendations

1 Introduction

In the last few years, a number of works have proposed approaches, solutions
and benchmarks in the field of Predictive Process Monitoring [3,14]. Predictive
Process Monitoring leverages the analysis of historical execution traces in order
to predict the unrolling of a process instance that has been only partially exe-
cuted. However, most of these efforts have not used the predictions to explicitly
support user with recommendations, i.e., with a concrete usage of these predic-
tions. In fact, there is a clear need of actionable process management systems [7]
able to support the users with recommendations about the best actions to take.

The overall goal of this paper is therefore moving a step forward, towards the
implementation of a learning to act system, in line with the ideas of Prescriptive
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Process Monitoring [8,17]. Given an ongoing business process execution, Pre-
scriptive Process Monitoring aims at recommending activities or interventions
with the goal of optimizing a target measure of interest or Key Performance Indi-
cator (KPI). State-of-the-art works have introduced methods for raising alarms
or triggering interventions, to prevent or mitigate undesired outcomes, as well
as for recommending the best resource allocation. Only few of them have tar-
geted the generation of recommendations of the next activity(ies) to optimize a
certain KPI of interest [2,9,25], such as, the cycle time of the process execution.
Moreover, none of them explicitly considers the process execution in the context
of a complex environment that depends upon exogenous factors, including how
the other process actors behave. In this setting, identifying the best strategy to
follow for a target actor, is not straightforward.

In this paper, we take the perspective of one target actor and we propose
a solution based on Reinforcement Learning (RL): to recommend to the actor
what to do next in order to optimize a given KPI of interest for this actor. To
this aim, we first learn, from past executions, the response of the environment
(actions taken by other actors) to the target actor’s actions, and we then leverage
RL to recommend the best activities/actions to carry on to optimize the KPI.

In the remainder of the paper after introducing some background concepts
(Sect. 2), we present two concrete Prescriptive Process Monitoring problems that
we have targeted (Sect. 3). Section 4 shows how a Prescriptive Process Monitor-
ing problem can be mapped into RL, while Sect. 5 applies the proposed RL app-
roach to the considered problems and evaluates its effectiveness. Finally, Sect. 6
and Sect. 7 present related works and conclusions, respectively.

2 Background

2.1 Event Logs

An event log consists of traces representing executions of a process (a.k.a. a
case). A trace is a sequence of events, each referring to the execution of an
activity (a.k.a. an event class). Besides timestamps, indicating the time in which
the event has occurred, events in a trace may have a data payload consisting of
attributes, such as, the resource(s) involved in the execution of an activity, or
other data recorded during the event. Some of these attributes do not change
throughout the different events in the trace, i.e., they refer to the whole case
(trace attributes); for instance, the personal data (Birth date) of a customer in a
loan request process. Other attributes are specific of an event (event attributes),
for instance, the employee who creates an offer (resource), which is specific of
the activity Create offer.

2.2 Prescriptive Process Monitoring

Prescriptive Process Monitoring [8,17] is a branch of Process Mining that
aims at suggesting activities or triggering interventions for a process execu-
tion for optimizing a desired Key Performance Indicator (KPI). Differently from
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Predictive Process Monitoring approaches, which aim at predicting the future
of an ongoing execution trace, Prescriptive Process Monitoring techniques aim
at recommending the best interventions for achieving a target business goal. For
instance, a bank could be interested in minimizing the cost of granting a loan
to a customer. In such a scenario, the KPI of interest for the bank is the cost of
the activities carried out by the bank’s personnel in order to reach an agreement
with the customer. The best actions that the bank should carry out to achieve
the business goal (reaching the agreement while minimizing the processing time)
can be recommended to the bank.

2.3 Reinforcement Learning

Reinforcement Learning (RL) [10,23] refers to techniques providing an intelli-
gent agent the capability to act in an environment, while maximizing the total
amount of reward received by its actions. At each time step t, the agent chooses
and executes an action a in response to the observation of the state of the
environment s. The action execution causes, at the next time step t + 1, the
environment to stochastically move to a new state s′, and gives the agent a
reward rt+1 = R(s, a, s′) that indicates how well the agent has performed. The
probability that, given the current state s and the action a, the environment
moves into the new state s′ is given by the state transition function P(s, a, s′).
The learning problem is therefore described as a discrete-time Markov Decision
Process (MDP), which is formally defined by a tuple M = (S,A,P,R, γ):

• S is the set of states.
• A is the set of agent’s actions.
• P : S × A × S → [0, 1] is the transition probability function. P(s, a, s′) =

Pr(st+1 = s′|st = s, at = a) is the probability of transition (at time t) from
state s to state s′ under action a ∈ A.

• R : S ×A×S → R is the reward function. R(s, a, s′) is the immediate reward
obtained by the transition from state s to s′ with action a.

• γ ∈ [0, 1] is a parameter that measures how much the future rewards are
discounted with respect to the immediate reward. Values of γ lower than 1
model a decision maker that discount the reward obtained in the more distant
future.1

An MDP satisfies the Markov Property, that is, given st and at, the
next state st+1 is conditionally independent from all prior states and
actions and it only depends on the current state, i.e., Pr(st+1|st, at) =
Pr(st+1|s0, · · · , st, a0, · · · , at).

The goal of RL is computing a policy that allows the agent to maximize the
cumulative reward. A policy π : S → A is a mapping from each state s ∈ S
to an action a ∈ A, and the cumulative reward is the (discounted) sum of the
rewards obtained by the agent while acting at the various time points t. The
1 In this paper we set γ = 1, hence equally weighting the reward obtained at each

action points of the target actor.
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value of taking the action a in state s and then continuing to use the policy π,
is the expected discounted cumulative reward of the agent, and it is given by
the state-action value function: Qπ(s, a) = Eπ(Σ∞

k=0γ
krk+t+1|s = st, a = at),

where rt+1 is the reward obtained at time t. The optimal policy π∗ dictates
to a user in state s to perform the action that maximises Q(s, ·). Hence, the
optimal policy π∗ maximises the cumulative reward that the user obtains by
following the actions recommended by the policy π∗. Action-value functions can
be estimated from experience, e.g., by averaging the actual returns for each state
(action taken in that state), as with Monte Carlo methods.

Different algorithms can be used in RL [23]. Among them we can find the
value and the policy iteration approaches. In the former the optimal action-value
function Q∗(s, a) is obtained by iteratively updating the estimate Qπ(s, a). In
the latter, the starting point is an arbitrary policy π that is iteratively evaluated
(evaluation phase) and improved (optimization phase) until convergence. Monte
Carlo methods are used in the policy evaluation phase for computing, given a
policy π, for each state-action pair (s, a), the action-value function Qπ(s, a).
The estimate of the value of a given state-action pair (s, a) can be computed
by averaging the sampled returns that originated from (s, a) over time. Given
sufficient time, this procedure can construct a precise estimate Q of the action-
value function Qπ. In the policy improvement step, the next policy is obtained
by computing a greedy policy with respect to Q: given a state s, this new policy
returns an action that maximizes Q(s, ·).

3 Two Motivating Scenarios

We introduce here the considered problem by showcasing two real processes that
involve one target actor, whose reward is to be maximised, and some more actors,
contributing to determine the outcome of the process (environment).

Loan Request Handling (Loans). In a financial institute handling loan requests,
customers send loan request applications and the bank decide either to decline
an application, or to request further details to the customer, or to make an offer
and start a negotiation with the customer. During the negotiation phase, the
bank can contact the customer and possibly change its offer to encourage the
customer to finally accept the bank’s offer.

The bank aims at maximizing its payoff by trying to sign agreements with
the customer, while reducing the costs of the negotiation phase, i.e., stopping
negotiations that will not end up with an agreement. The bank is therefore
interested to implement the best strategy to follow (actions) in order to maximize
its interest.

Traffic fine management (Fines). In a police department in charge to collect road
traffic fines, as in the scenario presented in [15], fines can be paid (partly or fully)
either immediately after the fine has been issued, or after the fine notification is
sent by the police to the offender’s place of residence, or when the notification
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is received by the offender. If the entire amount is paid, the fine management
process is closed. After being notified by post, the offender can appeal against
the fine through a judge and/or the prefecture. If the appeal is successful, the
case ends.

In such a setting, the police department aims at collecting the payment of
the invoice by the offender as soon as possible, so as to avoid money wastes due
to delays in payments or the involvement of the prefecture/judge. The depart-
ment indeed receives credits for fast payments, no credits for payments never
received and discredits for incorrect fines. The department is therefore inter-
ested to receive best action recommendations to maximize the received credits.

4 Mapping PPM to RL

We would like to support a target actor of interest in a process, such as, the
financial institute or the police department (see Sect. 3), by providing them with
recommendations for the best activities to execute in order to maximize their
profit and their credits, respectively. To this aim, we leverage RL, by transform-
ing the PPM problem of recommending the next activities to optimize a given
KPI, into an RL problem, where the agent is the actor we are supporting in
the decision making (e.g., the bank or the police department), and the environ-
ment is represented by the external factors—especially the activities carried out
by the other actors involved in the process execution (e.g., the customer or the
offender). We define our MDP so that:

• an action, to be recommended, is an activity of the actor of interest (agent)
(e.g., the bank activity Create offer);

• a state is defined by taking into account the following variables:
– the last activity executed by the actor of interest (e.g., the creation of

a new offer by the bank) or by the other actors defining the stochas-
tic response of the environment (e.g., the bank offer acceptance by the
customer);

– some relevant information about the history of the execution (e.g., the
number of phone calls between the bank and the customer);

– other aspects defining the stochastic response of the environment (e.g.,
the amount of the requested loan);

A state is hence represented by a tuple 〈LA,HF,EF〉, where LA is the last
activity executed by the actor of interest or by one of the other actors involved
in the process, HF is a vector of features describing some relevant informa-
tion of the process execution history and EF is a vector of features further
describing the environment response to the actions of the actor of interest.

• the reward function is a numerical value that transforms the KPI of interest,
computed on the complete execution, in a utility function at the level of single
action.

Actions, states and reward function can be defined for each specific prob-
lem by leveraging the information contained in the event log and some domain
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Fig. 1. Architecture of the RL solution

knowledge. The activities we are interested to recommend and those describing
the stochastic response of the environment can be extracted from the event log.
The relevant information about the history of the process execution can also
be extracted from the event log, with some domain-specific pre-processing (e.g.,
counting the number of phone calls between the bank and the customer). The
stochastic responses of the environment to the actor’s actions can also be mined
from the event log through trace attributes (e.g., the amount of the requested
loan). Finally, information contained in event logs can be used to estimate the
reward function for each state transition and action (e.g., in case the reward func-
tion is related to the process/event cycle time, the average duration of events of
a certain type can be used to estimate the reward of a given state).

Figure 1 shows the architecture of the RL-based solution designed to solve
the problem of recommending the next best activities to optimize a certain KPI.
The input is an event log containing historical traces related to the execution of
a process, and some domain knowledge, specifying the KPI of interest and the
information that allows for the identification of actions, states and of the reward
function. There are three main processing phases:

• preprocessing phase: the event log is preprocessed in order to learn a repre-
sentation of the environment (i.e., the MDP). First, the event log is cleansed
and the domain knowledge leveraged in order to annotate it. In detail, the
event log is (i) filtered in order to remove low-frequency variants (with occur-
rence frequency lower than 10%) and activities that are not relevant for the
decision making problem; (ii) enriched with attributes obtained by aggregat-
ing and preprocessing information related to the execution; (iii) annotated by
specifying the agent’s activities to be considered as actions; attributes and
environment activities to be used for the state definition; attributes to be
used for the computation of the reward function.
Once the event log has been enriched and annotated, it can be used for build-
ing the MDP that defines the RL problem. To this aim, we start from the
scenario-specific definition of action and state and, by replaying the traces in
the event log, we build a directed graph, where each node corresponds to a
state and each edge is labelled with the activity allowing to move from one
node state to the other. Moreover, for each edge, the probability of reach-
ing the target node (computed based on the number of traces in the event
log that reach the corresponding state) and the value of the reward function
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are computed. Each edge is hence mapped to the tuple (s, a, s′,P(s′|s, a),R)
where s is the state corresponding to the source node of the edge, a is the
action used for labelling the edge, s′ is the state corresponding to the target
node of the edge, P(s′|s, a) is computed as the percentage of the traces that
reach the state s′ among the traces that reach state s and execute a, and R
is the value of the reward function.

• RL phase: the RL algorithm is actually applied to compute the optimal policy
π∗; in this paper we used policy iteration with Monte Carlo methods.

• runtime phase: given an empty or ongoing execution trace, the policy is
queried by the recommender system to return the best activities to be exe-
cuted next.

5 Evaluation of the Recommendation Policy

We investigate the capability of the proposed approach to recommend the process
activities that allow the target actor to maximize a KPI of interest, i.e., the
optimal policy π∗, (i) when no activity has been executed yet, that is, the whole
process execution is recommended; (ii) at different time steps of the process
execution (i.e., at different prefix lengths), that is, when only a (remaining)
part of the process execution is recommended. We hence explore the following
research questions:

RQ1 How does the recommended sequence of activities (suggested by the opti-
mal policy π∗) perform in terms of the KPI of interest when no activity
has been executed yet?

RQ2 How does the recommended sequence of activities (suggested by the opti-
mal policy π∗) perform in terms of the KPI of interest at a given point of
the execution?

Unfortunately, the complexity of evaluating recommendations in the Pre-
scriptive Process Monitoring domain is well known [6]. It relates to the difficulty
to estimate the performance of recommendations that have possibly not been
followed in practice. In order to answer our research questions, we therefore
approximate the value of the KPI of interest (i) by leveraging a simulator (sim-
ulation evaluation); (ii) by looking at similar executions in the actual event log
(test log evaluation). In the next subsections we describe the dataset (Sect. 5.1),
we detail the experimental setting (Sect. 5.2), and we finally report the evalua-
tion results (Sect. 5.3).

5.1 Datasets

We have used two real-world publicly-available datasets that, describing the
behaviour of more than one actor, allow us to take the perspective of one of
them (target): the BPI Challenge 2012 event log [4] (BPI2012) and the Road
Traffic Fine Management event log [13] (Fines2015).
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Table 1. Dataset description

Dataset Trace # Variant # Event # Event class # Avg. trace length

BPI2012 13087 4366 262200 36 20
Fines2015 150370 231 561470 11 5

The BPI Challenge 2012 dataset relates to a Dutch Financial Institute. The
process executions reported in the event log refer to an application process for
personal loan (see the Loans scenario in Sect. 3). In this scenario we want to
optimize the profit of the bank (agent), i.e., to minimize the cost C of granting
a loan to a customer (environment) while maximizing the interest I of the bank
granting the loan. To this aim, we define the KPI of interest for a given execution
e as the difference between the amount of interest (if the bank offer is accepted
and signed by the customer, namely if the activity Offer accepted occurs in
the trace) and the cost of the employees working time, that is, the value of the
KPI for the execution e is KPIBPI2012(e) = I(e)−C(e). The amount of interest
depends on the amount class of the loan request: low (amount ≤ 6000), medium
(6000 < amount ≤ 15000) and high (amount > 15000). For the low class, the
average interest rate is 16%, for the medium class, the average interest rate is
18%, while for the high class is 20%.2 The cost of the employees’ working time
is computed assuming an average salary of 18 euros/h.3

The second dataset collects data related to an information system of the
Italian police. The information system deals with the management of road traffic
fines procedures, starting from the fine creation, up to the potential offender’s
appeal to the judge or to the prefecture (see the Fines scenario described in
Sect. 3). Here, we want to maximize the credits received by the police department
(agent) based on the fine payments received by the offender (environment). The
department receives 3, 2 or 1 credits if the fines are fully paid within 6, within 12
months, or after 12 months respectively; it does not receive any credits if the fine
is not fully paid, while it receives a discredit if the offender appeals to a judge
or to the prefecture and wins, since these cases correspond to a money waste
of the police authority. The KPI value for the execution e is KPIFines2015(e),
corresponding to the number of credits received for the execution.

Table 1 shows the number of traces, variants, events, event classes and average
trace length of the considered datasets. Table 2 illustrates the MDP components
for the two scenarios: the main MDP actions; the main MDP state components,
i.e., the last activity (LA), the historical features (HF) and the environment
features (EF); as well as the reward , including the main attributes used for its
computation.4

2 The information on the average interest rate is extracted from the BPI2017 [5]
dataset which contains data from the same financial institution.

3 We estimate the average salary of a bank employed in the Netherlands from https://
www.salaryexpert.com/salary/job/banking-disbursement-clerk/netherlands.

4 The complete MDP description is available at tinyurl.com/2p8aytrb.

https://www.salaryexpert.com/salary/job/banking-disbursement-clerk/netherlands
https://www.salaryexpert.com/salary/job/banking-disbursement-clerk/netherlands
http://www.tinyurl.com/2p8aytrb
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For example, Table 3 shows how a trace related to the Fines scenario is pre-
processed and transformed into an annotated trace, and then into MDP actions,
states and rewards. The trace activities are annotated according to whether
they have been carried out either by the agent or by the environment, and
the attributes 2months (the bimester since the fine creation), amClass (the fine
amount class) and payType (type of payment performed) are computed. In the
MDP construction step, the agent’s activities (with the bimester interval5) are
used as actions, while the state is built by leveraging the last executed activity
(LA), the 2months and the amClass attributes. The reward is not null when the
payment is finally received and since in this trace the full payment is received
after 6 months, 2 credits are awarded.

Once the log is enriched it is passed to the MDP generation step. We build
two MDPs: the MDPBPI2012 for the Loan request handling scenario (with 982
states and 15 actions) and the MDPFines2015 for the Traffic fine management
scenario (with 215 sates and 70 actions).

5.2 Experimental Setting

In order to answer our research questions, the two event logs have been split in
a training part, which is used in the RL phase, and a test part, which is used
for the evaluation of the learned policy. For evaluating the computed policies,
since in this setting both training and test set size can impact the evaluation
results, we use two different splitting criteria (defining the percentage of event
log used for the training and the test set): (i) 60%–40% (60% of the traces for
the training set and 40% for the test set) and (ii) 80%–20% (80% for the training
and 20% for the testing). For the evaluation of the optimal policy obtained by
RL and for answering our two research questions, two different evaluations have
been carried out: a simulation evaluation and a test log evaluation.

The simulation evaluation uses a Monte Carlo simulation similar to the one
used in the training phase, but, differently from the training phase, where the
MDP is obtained from the training log, here a test MDP, obtained from the
test log, is leveraged to simulate the environment response. In this simulation,
the optimal policy obtained from the RL approach is compared, in terms of the
KPI of interest, against a random policy and against a policy corresponding to
the most frequent decisions made by the actor in the actual traces. The value
of the reward for each of the simulated policy is computed as the average over
100.000 simulated cases. This evaluation provides a preliminary answer to the
first research question RQ1.

The test log evaluation aims at comparing the optimal policy obtained from
RL with the actual policies used in the process. It is used for answering both
our research questions. For RQ1, we focus on the policy recommended when
no activity has been executed yet. In this setting, we compare the value of the

5 The MDP actions in this scenario take into account, besides the activity name, also
the 2-month interval (since the creation of the fine) in which the activity has been
carried out (2months).
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Table 2. MDP for the Loan request handling and the Traffic fine management scenar-
ios.

Scenario MDP description

Loans Action Bank activities: loan acceptance, loan rejection, offer
creation and delivery, requests for

customer response

State LA Last activity of the agent (bank) or of the environment
(customer)

Customer activities: application cancellation, offer sent
back to the bank, offer acceptance

HF call# # of bank calls after the offer is sent

miss# # of requests for missing information

offer# # of offers to the customer

reply# # of customer replies to the offer

fix True if wrong inputs in the application are fixed

EF amClass Loan amount class: low (≤6000), medium and
high (>15000)

Reward attr. duration Activity average duration

amClass Loan amount class

granted Whether the loan has been granted

The reward is computed for each MDP state so that
the reward of the complete

execution corresponds to the value of the KPIBPI2012
for that execution.a

Fines Action (See footnote 5) Police department activities: fine creation and delivery,
penalty increase

and request for credit collection

State LA Last activity of the agent (police department) or of the
environment (offender)

Offender activities: appeal to the Prefecture or to the
Judge, payment

HF 2months Number of two-month intervals since the
creation of the fine

EF amClass Fine amount class: low (amount <50), high
(amount ≥50)

Reward attr. 2months Number of two-month intervals since the
creation of the fine

payType Type of payment (null, partial, full or appeal)

The reward is computed for each MDP’s state so that
the reward of the complete

execution corresponds to the value of the KPIFines2015
for that execution.

aThe component of the reward for an MDP state s related to the interest of the bank is multiplied by

a coefficient c(n) =
(n/λ)2

1+(n/λ)2
that depends on the number of occurrences n of the event log traces

that pass through the specific MDP edge with outgoing state s. c goes to 1 when n grows. Here λ is a
parameter that can be opportunely tuned, we selected λ = 3 which corresponds to the median number of
edge occurrences in the MDP. This factor is needed to discourage during the RL training the exploitation
of some actions that have a positive reward but have low statistic reliability.

Table 3. Example of the transformation of a trace in the corresponding MDP compo-
nents.

Trace Enriched trace MDP

Activity Timestamp Amount 2months amClass Actor payType Action Next state Reward

Create fine 13/1/21 40 0 Low Agent – Create fine-0 〈Create fine, 0, low〉 0

Send fine 24/1/21 40 0 Low Agent – Send fine-0 〈Send fine, 0, low〉 0

Add penalty 18/3/21 60 1 High Agent – Add penalty-1 – –

Payment 25/7/21 60 3 High Env. Full – 〈Payment, 3, high〉 2
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Table 4. Results of the simulation evaluation for the Loan request handling and the
Traffic fine management scenarios.

Scenario Splitting criterion Policy Avg. KPI Offer
accepted/full
Payment

Loans 60%–40% Random 36.8 1.4%

Customary 1497.5 38.9%

Optimal 1727 53.7%

80%–20% Random 35.7 1.5%

Customary 1710.5 43.5%

Optimal 1965.1 61.7%

Fines 60%–40% Random 1.02 36.9%

Customary 1.12 41.7%

Optimal 1.17 42.3%

80%–20% Random 0.84 30.0%

Customary 0.97 35.0%

Optimal 1.05 37.1%

KPI of interest for the traces in the test event log that follow the optimal policy
(from the first activity) (i) with the value of the KPI of interest of all the traces
in the event log, and (ii) with the value of the KPI of interest of the traces in
the event log that do not follow the recommended optimal policy. For RQ2, we
focus on the policy recommended for ongoing executions, i.e., when some activity
has already been executed. We hence consider, for each trace in the test event
log, all its prefixes and separately analyze each of them, as a potential ongoing
execution. For each prefix p of a trace t in the test event log we compare the
value of the KPI of interest of the trace t once completed against an estimation
of the value of the KPI obtained following the optimal policy from that execution
point forward. The estimation is obtained by averaging the KPI values of the
traces in the log that have the same prefix as the reference prefix p and follow
the optimal policy from there on.

5.3 Results

In this section we report the results of the two scenarios related to the event logs
described in Sect. 5.1. For both scenarios, as described in Sect. 5.2, we show (i)
the results related to the evaluation of the complete optimal policy (RQ1) by
reporting first the simulation evaluation and then the test log evaluation; and
(ii) the results related to the evaluation of the optimal policy on the test log
assuming that some events have already been executed (RQ2).

Research Question RQ1 . Table 4 reports the results related to the simulation
evaluation for both the Loan request handling and the Traffic fine management
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scenarios. For both splitting criterion (60%–40% and 80%–20%) and for each
policy analysed, the average KPI value is displayed together with the percentage
of executions for which the bank offer has been accepted by the customer (or
the fines have been fully paid by the offender). The policies analysed are: the
random policy (Random), the policy selecting the most frequent action in the
log for each state (Customary) and the optimal (Optimal) policy.

The rows related to the Loan request handling scenario (Loans) show that for
both splitting criteria, the optimal policy (Optimal) generates an average KPI
value much higher than the one obtained with a random policy (Random), but
also higher than the one obtained with a policy characterized by frequently taken
actions (Customary). This result confirms that the proposed Optimal policy
actually outperforms the policy that is frequently taken in the actual traces,
which is considered to be an “optimal” policy by the target agent. Different
optimal (and Customary) policies are returned with different splitting criteria.
When learning with a larger training set and simulating on a smaller test set, the
average KPI value increases, for the Optimal and the Customary policy, while
slightly decreases for the Random policy. Moreover, the table also shows the
percentage of traces that, based on the policy simulations, are finally accepted
by the customer. By changing the data splitting criteria, the effect is similar to
that observed for the average KPI value for the Optimal and the Customary
policy, with a percentage of accepted offers raising from around 39% to 43%
for the Customary policy and from around 53% to more than 60% with the
Optimal policy. An almost null increase is observed instead for the Random
policy.

The results related to the Traffic fine management scenario are similar to
the results of the loan scenario, as shown in the row Fines of Table 4. As for
the loan scenario, also in this case, for both splitting criteria, the optimal policy
returns higher average KPI values (and hence lower money waste) and produces
a higher percentage of traces with fully paid fines than the Random and the
Customary policies. Also in this case, the difference between the Optimal
and the Customary policy confirms that the proposed recommendation policy
improves the policy actually used in practice. In this scenario, however, the
difference in terms of percentage of traces for which fines have fully been paid
between the optimal and the random policy is lower than for the Loan request
handling case. This is possibly due to the overall higher percentage of traces in
the Fines2015 event log for which the fines have been fully paid (40%) with
respect to the percentage of traces in the BPI2012 log for which the loan offer
has been accepted by the customer (17%), as well as to the higher number of
actions of MDPFines2015 with respect to the number of actions of MDPBPI2012.
Moreover, differently from the Loan request handling scenario, there is an overall
decrease in terms of average KPI value and of traces with fully paid fines when
using a larger training set and a smaller test set (80%–20% splitting criterion).

Table 5 shows the results related to the test log evaluation. For each of the
two scenarios and for each splitting criterion, we report the number of traces, the
average KPI value, as well as the percentage of traces for which the offer has been
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Table 5. Results related to the test log evaluation for the Loan request handling and
the Traffic fine management scenario.

Scenario Splitting criterion Traces Trace # Avg KPI Offer
accepted/full
Payment

Loans 60%–40% All 5197 583.3 16.1%

Optimal P. 1384 (26.6%) 1249.7 34.4%

Non-Optimal P. 3813 (73.4%) 341.5 9.4%

80%–20% All 2600 537.2 14.3%

Optimal P. 753 (29%) 1082.2 30.4%

Non-Optimal P. 1847 (71%) 315.1 7.7%

Fines 60%–40% All 59946 1.11 40.5%

Optimal P. 22665 (37.8%) 2.68 90.9%

Non-Optimal P. 37281 (62.2%) 0.15 9.9%

80%–20% All 29973 0.96 34.7%

Optimal P. 9243 (30.8%) 2.76 92.7%

Non-Optimal P. 20730 (69.2%) 0.16 8.9%

accepted (or the fines have been fully paid) for (i) all traces in the test set (All),
(ii) the traces in the test set that follow the optimal policy (Optimal P.); (iii)
the traces in the test set that do not follow the optimal policy (Non-Optimal
P.).

The results of the test log evaluation for the Loan request handling scenario
(Loans) confirm the results obtained with the simulation evaluation. For both
splitting criteria, indeed, the average KPI value of the traces following the opti-
mal policy (Optimal P.) is higher than the average KPI value of all the traces
(All), which in turn is higher than the average KPI value of the traces that
do not follow the optimal policy (Non-Optimal P.). The traces following the
optimal policy generate an average bank profit of more than 500 euros higher
than the average bank profit of all the traces in the event log, as well as of
more than 750 euros higher than the average bank profit of the traces that do
not follow the optimal policy. The same ranking is obtained if the compared
approaches are ordered by the percentage of traces for which the offer by the
bank has been accepted by the customer: around 30% for the traces following
the optimal policy, around 15% for all traces, and less than 10% for the traces
not following the optimal policy. No major differences can be observed between
the two splitting criteria, except for a small decrease of the average KPI value
and of the percentage of accepted offers.

Similarly to the Loan request handling scenario, also in the Traffic fine man-
agement scenario (rows Fines in Table 5) the results of the test log evaluation
confirm the findings of the simulation evaluation. Indeed, for both splitting cri-
teria, the traces following the optimal policy (Optimal P.) obtain an average
KPI value higher than the average KPI value of all the traces (All), which in
turn is higher than the average KPI value of the traces that do not follow the
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optimal policy (Non-Optimal P.). The traces following the optimal policy can
produce an average credit value of more than 1 credit higher than the average
credit value of all the traces in the event log, as well as of more than 2 credits
higher than the average credit value of the traces that do not follow the optimal
policy. The trend is also similar for the percentage of traces for which the fine is
fully paid. Around 90% of the traces that follow the optimal policy are able to
get fully paid fines for both the splitting criteria. While, as in the Loan request
handling , the percentage of traces with a fully paid fine decreases from the 40%
test event log to the 20% event log for the All and Non-Optimal P. policies,
for Optimal P. the percentage of traces for which the full payment is received
is higher for the 20% than for the 40% test event log.

The above results of the two scenarios clearly show that, when no activity
has been executed before the target agent starts following the recommendations,
the sequence of next activities suggested by the optimal policy generates an
average value for the KPI of interest higher than a random policy and than a
policy following the most frequently taken actions and, on average, higher than
the average KPI value obtained by the actual executions in the test event log
(RQ1). No clear trends can be observed for different splitting criteria.

Research Question RQ2 . As described in Sect. 5.2, we also evaluate the optimal
policies at different prefix lengths, that is, by assuming that a part of the exe-
cution has already been carried out, before the target agent starts adopting the
optimal policy. Figure 2 and Fig. 3 show the average delta KPI value for each
prefix length, as well as the prefix occurrence per prefix length. The delta KPI
value for each trace and prefix length is computed as the difference between the
KPI value obtained by following the optimal policy from that prefix on and the
KPI value of the complete trace related to that prefix.

The plot corresponding to the Loan request handling scenario (Fig. 2a) shows
that for both splitting criteria and for prefix lengths up to 18 there is an average
positive delta KPI value, while for longer prefixes a negative or almost null
average KPI values are observed. These results can be explained by the low
number of traces with length higher than 18 in the test event logs, as it is shown
in Fig. 2b.

In the Traffic fine management scenario, the plot in Fig. 3a shows a relatively
high delta average KPI value for short prefixes (prefixes of length 1 and 2), while
the average delta KPI value starts decreasing for traces of prefix length 3. Also
in this case, as for the other scenario, the decrease in terms of delta KPI value
is mainly due to an overall decrease of the number of traces after prefix 3 (see
Fig. 3b). Differently from the Loan request handling scenario, as already observed
during the discussion of RQ1, the average delta KPI value obtained with the
80%–20% splitting criterion is higher than the one obtained with the 60%–40%
splitting criterion, except that for prefix length 3.

In conclusion, these results confirm that even when considering ongoing exe-
cutions, the recommended sequence of next activities suggested by the proposed
optimal policy generates higher average KPI values than the ones obtained by
actual executions in the test event log (RQ2).
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(a) average delta KPI value (b) number of traces for each prefix

Fig. 2. Prefix analysis for the Loan request handling scenario.

(a) average delta KPI value (b) number of traces for each prefix

Fig. 3. Prefix analysis for the Traffic fine management scenario.

Beyond the performance perspective, we briefly comment here on the plau-
sibility of the optimal policies obtained. The major contributions of the policies
for the two cases are clear and reasonable. In the Loan request handling scenario
the policy advises to accept more loan applications, so as to increase the num-
ber of possible accepted loans. Moreover, it advises to increase the interaction
between the bank and the customer, with the creation of multiple offers and the
subsequent call to the customer. In the Traffic fine management scenario the
policy advises to send the fine early to the offender, so as to raise the probability
that he/she pays the fine on time.

6 Related Work

The state-of-the-art works related to this paper pertain to two fields: Prescriptive
Process Monitoring and Reinforcement Learning. The section is hence structured
by first presenting Prescriptive Process Monitoring related works and then Rein-
forcement Learning state-of-the-art works, applied to process mining problems.

Several Prescriptive Process Monitoring techniques have been recently pro-
posed in the literature. Focusing on the type of interventions that the approaches
recommend [12], we can roughly classify existing work in Prescriptive Process
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Monitoring in three main groups: (i) those that recommend different types
of interventions to prevent or mitigate the occurrence of an undesired out-
come [8,17,18,20,24]; (ii) those that take a resource perspective and recommend
a resource allocation [19,22]; (iii) those that provide recommendations related
to the next activity to optimize a given KPI [2,9,25].

The approach presented in this paper falls under this third family of prescrip-
tive process monitoring approaches. Only a small amount of research has been
done in this third group of works. Weinzierl et al. in [25] discuss how the most
likely behavior does not guarantee to achieve the desired business goal. As a solu-
tion to this problem, they propose and evaluate a prescriptive business process
monitoring technique that recommends next best actions to optimize a specific
KPI, i.e., the time. Gröger et al. in [9] present a data-mining driven concept of
recommendation-based business process optimization supporting adaptive and
continuously optimized business processes. De Leoni et al. in [2] discuss Process-
aware Recommender (PAR) systems, in which a prescriptive-analytics compo-
nent, in case of executions with a negative outcome prediction, recommends the
next activities that minimize the risk to complete the process execution with a
negative outcome. Differently from these state-of-the-art works, however, in this
work we take the perspective of one of the actors of the process and we aim at
optimizing a domain-specific KPI of interest for this actor by leveraging an RL
approach.

In the literature, only few RL approaches have been proposed for facing
problems in the process mining field. Silvander proposes using Q-Learning with
function approximation via a deep neural network (DQN) for the optimization
of business processes [21]. He suggests defining a so called decay rate to reduce
the amount of exploration over time. Huang et al. employ RL for the dynamic
optimization of resource allocation in business process executions [11]. Metzger
et al. propose an alarm-based approach to prevent and mitigate an undesired
outcome [17]. They use online RL to learn when to trigger proactive process
adaptations based on the reliability of predictions. Although all these works use
RL in the process mining field, none of them use it for recommending the next
actions to perform in order to optimize a certain KPI of interest, as in this work.

Finally, some works have applied RL and Inverse Reinforcement Learning
(IRL) approaches to recommend the next actions on temporal data [16] or on
data constrained by temporal constraints [1].

7 Conclusion

In this paper we have proposed the use of RL in the solution of the problem
of computing next activity recommendations in Prescriptive Process Monitoring
problems.

Differently from other state-of-the-art works our model handles non deter-
ministic processes, in which only part of the activities are actually actionable and
the rest of them are, from the target actor point of view, stochastically selected
by the system environment. This is a common situation in multi-actors pro-
cesses. By taking the decision making perspective of one of the actors involved
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in a process (target actor), we first learn from past executions the behaviour
of the environment and we then use RL to recommend the best activities to
carry on in order to optimize a measure of interest. The obtained results show
the goodness of the proposed approach in comparison to the policy used by the
actor, i.e., without using recommendations.

We plan to extend this approach by including in the MDP state the raw
information related to the history of the process execution, so as to automate
as much as possible the pre-processing phase of our computational pipeline.
However, in that case the consequent increase of the state space dimension and
its cardinality would require the usage of state generalisation techniques, such
as, those implemented with Deep Reinforcement Learning or by applying smart
clustering techniques. Moreover, we would like to explore the possibility to use
declarative constraints for defining and enforcing domain knowledge constraints.
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Abstract. Discovering and analysing business processes are important
tasks for organizations. Process mining bridges the gap between process
management and data science by discovering process models using event
logs derived from real-world data. Besides mandatory event attributes
like case identifier, activity, and timestamp, additional event attributes
can be present, such as human resources, costs, and laboratory values.
These event attributes can be modified by multiple events in a trace,
which can be classified as so-called dynamic event attributes. So far,
the process behaviour of event attributes is described in the form of
read/write operations or object-lifecycle states. However, the actual value
behaviour has not been considered yet. This paper introduces an app-
roach that allows to automatically detect changes in the actual values
of dynamic event attributes, enabling to identify changes between pro-
cess activities representing events with the same activity name. This can
help to confirm expected behaviour of dynamic event attributes, but
also allows deriving novel insights by identifying unexpected changes.
We applied the proposed technique on the MIMIC-IV real-world data
set on hospitalizations in the US and evaluated the results together with
a medical expert. The approach is implemented in Python with the help
of the PM4Py framework.
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1 Introduction

Businesses organizations seek to find valuable insights out of data stored in
information systems with the aim to improve their business processes. Today,
such information systems can include data about end-to-end processes or even
beyond that. Due to that fact, process mining was developed to understand the
actual execution of business processes, providing techniques for process discovery,
conformance checking, and enhancement [1].

In process discovery, the discovered process model can be analysed based
on the occurred events, their order, and frequency. Event logs might contain
additional data, so-called event attributes, providing further information about
an event, which can be used to enhance process models [10].
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Event attributes can be dynamic in the sense that they are stored in multiple
events, such as an order status or laboratory values, which evolve through the
process. As dynamic event attributes occur multiple times during the process,
understanding their development can be of interest [11]. So far, the process
behaviour of event attributes is described in the form of read/write operations
or object-lifecycle states [6,16].

However, there is still a lack of describing the actual value behaviour of
dynamic event attributes. For example, it might be of interest to see if a stay in
an intensive care unit (ICU) results in improved laboratory values of a patient
in the recovery ward. Thus, we can compare the laboratory values conducted in
the ICU to the ones in the recovery ward.

Therefore, this paper provides an approach to automatically detect changes
in dynamic event attributes, so that it is not only known if the values change
throughout the process, but also at which activity representing all events with
the same activity name and in which direction (increasing, decreasing).

The remainder of this paper is organized as follows. Section 2 provides related
work, and Sect. 3 introduces preliminaries. Section 4 presents the approach for
change detection in dynamic event attributes, and Sect. 5 applies the approach to
the MIMIC-IV real-world data set on hospitalizations. We discuss the approach
and its limitations in Sect. 6 before the paper is concluded in Sect. 7.

2 Related Work

The analysis of event attributes has been approached from different perspectives
in the literature.

A prominent application is the identification of decision rules, such as in data-
aware heuristic mining [16]. Regarding the exploration of event attributes, the
multi-perspective process explorer allows investigating the distribution of each
event attribute at each activity [18]. Data-enhanced process models add aggre-
gated information about event attributes, such as the mean value, to the process
model activities representing the events. In data-enhanced process models, the
selection of event attributes for detailed analysis is supported by allowing filter-
ing according to their process behaviour and the degree of variability through
the process [11]. In [6], the access to event attributes is described and annotated
to the process model, describing the data object lifecycle of each event attribute.

While there exist approaches trying to better explore and understand the
actual values of event attributes, there remains, to our knowledge, a lack of
understanding the changing behaviour of these values. The work describing the
data object lifecycle is already a step in this direction, but lacks support for
understanding the change of the actual values behind the event attributes.

Change detection is highly present in time series data, which refers to the
problem of finding abrupt changes in data when a property of the time series
changes [4]. In terms of process analysis, change detection has been applied to
detect and explain concept drifts. In [2], event attributes are used to explain
concept drifts, such as that a decrease in the age of customers led to an increase
in the prevalence of the email notification activity.
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However, time series change detection accepts only one value per time point,
which requires methods of aggregations when analysing groups, which is the
typical use case in process mining. This leads to information loss and lacks a
detailed representation of the analysed group [4].

To overcome this limitation, statistical tests allow comparing two timestamps
in more detail. For example, the Wilcoxon Signed-rank Test considers all val-
ues of the analysed group and ranks the differences between two timestamps to
answer the question, if there is a statistically significant change [15]. This form
of change detection is popular in the medical domain, where before-after com-
parisons are conducted. For example, [9] compares a laboratory value measured
at inpatient admission and 72 h after that.

In process mining, statistical tests are used to retrieve a variety of insights.
For example, the difference of event durations is assessed between two groups
in an emergency process [12], which is not a before-after comparison, but still
compares the difference of values in two groups. The same holds for process
variant comparison, where the event transition frequency is compared between
two process variants [19].

In this contribution, we propose to use statistical tests to detect changes of
event attributes in the process. In particular, we make use of the before-after
comparison of statistical tests to detect changes of dynamic event attributes
between process activities, which has not been conducted in process mining so
far to our knowledge.

3 Preliminaries

This paper builds on the contribution of Supporting Domain Data Selection in
Data-Enhanced Process Models [11], which starts with an event log. An event
log consists of sequences of events, which are grouped into traces. An event can
have an arbitrary number of additional event attributes. The following definition
is based on [17].

Definition 1 (Event log, Trace, and Event). Let V be the universe of all
possible values and EA be the universe of event attributes. An event e is a
mapping of event attributes to values, such as e ∈ EA → V . The universe of
events is defined as EU = EA → V . If an event e ∈ EU has no value assigned to
an event attribute eAt ∈ EA, it is denoted as e(eAt) = ⊥. A trace t ∈ EU

� is a
sequence of events, and T ⊆ EU

� represents the respective universe of traces, in
which all events are unique. An event log L is a set of traces, so L ⊆ T , where
each trace is unique as well. As events and traces are unique, we say, that two
traces t1, t2 ∈ L belong to the same trace variant tV ar ⊆ L, if the events in the
traces have the same activity ordering and number of events. We refer to TV ar

as the universe of trace variants.

Normally, an event represents an activity which is conducted within a certain
case at a given time, represented by a timestamp. These are treated as regular
event attributes in this contribution, so we assume activity, case, and timestamp.
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The event instances of a given trace are ordered by their timestamp and have
the same case. For simplicity, we assume that the timestamps of events in a trace
are never equal. We further assume, that the data type of one event attribute is
always the same for all events.

Given events ei �= ej in a given trace ti, let ei > ej represent a directly
follows relationship, if ej appears after ei and there does not exist an event ek in
ti which appears between ei and ej . Let ei � ej represent an eventually follows
relationship, if ej appears at any position after ei in ti.

Event attributes can be classified according to their process behaviour, which
is based on [11].

Definition 2 (Event Attribute Classification). Before an event attribute
eAt ∈ EA can be classified, the activities using the event attribute and the
average number of events using it per trace need to be identified.

Given an event attribute eAt ∈ EA in an event log L, the set eAtAct
represents

all activities in which the event attribute is used.

eAtAct
:= {e(activity) ∈ V | e(eAt) �= ⊥, e ∈ t, t ∈ L} (1)

With that, it is known which activities have an event attribute, but it remains
unclear whether an event attribute is changing during the process. Therefore,
eAtAvgTrace

describes the average number of events having the event attribute
per trace. First, the event log is filtered, so that only traces are included which
use the event attribute at least once:

LeAt
= {t ∈ L | (∃e ∈ t)[e(eAt) �= ⊥]} (2)

Then, the average number of occurrences of the event attribute per trace can
be calculated:

eAtAvgTrace
=

∑
t∈LeAt

∑
e∈t[e(eAt) �= ⊥]

|LeAt
| (3)

Three different process characteristics (pc) are defined based on the previ-
ously defined features |eAtAct

| and eAtAvgTrace
.

pc(eAt) =

⎧
⎪⎨

⎪⎩

static, |eAtAct
| = 1, eAtAvgTrace

= 1
semi − dynamic, |eAtAct

| > 1, eAtAvgTrace
= 1

dynamic, |eAtAct
| ≥ 1, eAtAvgTrace

> 1

⎫
⎪⎬

⎪⎭

4 Approach

In this contribution, the goal is to describe the changing behaviour of dynamic
event attributes through a process. To clarify that, Table 1 illustrates an example
event log mimicking a hospital process. Besides the mandatory entries, it contains
laboratory values in the form of event attributes. As these are associated to
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multiple activities and occur multiple times per trace, these are classified as
dynamic event attributes. Thus, these are suited for the analysis steps proposed
in this paper.

Before the approach is presented, we clarify what kind of change we intend
to detect. Our idea is to bring meaning behind the timestamps in the form of
activity names and allow identifying, how activities potentially influence the
values of event attributes. Therefore, we say that an event attribute changes not
if it changes at an arbitrary point of time, but when there is a change in the
values between activities. On top of this, we want to achieve this by considering
all values of the respective activities.

Table 1. Example event log describing a high level hospital process having laboratory
values as event attributes

Case ID Activity Timestamp Bicarbonate value Creatinine value

1 Admit to hospital 1 140 0.7

1 Treat in medical ward 2 200 0.7

1 Discharge patient 3 120 0.8

2 Admit to hospital 1 135 0.6

2 Treat in ICU 2 100 0.6

2 Discharge patient 3 150 0.7

Looking at the example event log in Table 1, there is a difference in the devel-
opment of the Bicarbonate laboratory value, dependent on which ward is visited
during the hospital process. While it increases in the “Treat in Medical Ward”
activity, it decreases in the “Treat in ICU” ward. In the following approach, we
identify these changes not in single traces, but make statements for all traces in
the event log, deriving a common behaviour of dynamic event attributes in the
process.

4.1 The Three Dimensions of Change

In this contribution, a three-dimensional perspective is suggested to identify
changes in dynamic event attributes, which is illustrated in Fig. 1.

The first dimension on the x-axis is the event attribute, because it is the
goal of this paper to understand the behaviour of event attributes. The second
dimension on the y-axis shows all directly follows and eventually follows relations
in the event log, which represent the points of change in the process. Lastly, the z-
axis adds information about changes in trace variants, which provides additional
context to the relation information on the y-axis. This information is important
to preserve the process context, as it might be the case that the process before
and after any relation might have an influence on the behaviour of an event
attribute.

We start formalizing this construct by defining a change detection cube:
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Fig. 1. The three dimensions of change

Definition 3 (Change Detection Cube). We define a change detection cube
(CDCL) for a given event log L ⊆ T as a set of change analysis cells (cac), such
that CDCL := EAL

× DFR+
L × TV arL , where EAL

⊆ EA is the set of event
attributes being assigned a value �= ⊥ at any event e ∈ t, t ∈ L and DFR+

L ⊆ V ×
V is the transitive closure of directly follows relationships, such that it contains
the eventually follows relationships as well. The elements of DFR+

L consist of
the respective activity names, so if ei > ej , (ei(activity), ej(activity)) ∈ DFR+

L

and if ei � ej , (ei(activity), ej(activity)) ∈ DFR+
L . TV arL ⊆ TV ar refers to the

set of all trace variants in L.

A change analysis cell cac ∈ CDCL represents one cell in the cube, such
that cac = (eAt ∈ EAL

, rel ∈ DFR+
L , tV ar ∈ TV arL). One cell in the cube refers

to a single change detection, for example, looking at Table 1, the Bicarbonate
value between the activities “Treat in Medical Ward” and “Discharge Patient”
decreases in a trace variant in which the activity “Admit to hospital” is included.

The idea of analysing three-dimensional data in a cube perspective goes back
to on-line analytical processing (OLAP), where so-called OLAP cubes were intro-
duced, which can be of higher dimensions as well [8]. These allow operations,
which can be applied on the change detection cube:

– Slice: Reduces the cube to a two-dimensional view by selecting a specific value
for one dimension, such as the analysis of all changes for one event attribute

– Dice: Creates a sub-cube where specific values for all dimensions can be spec-
ified, e.g., analyse all changes for a subset of event attributes

– Pivot: Rearranges the dimensions, such that event attributes and relations
swap their axis

– Drill up/down: Changes the level of aggregation in the dimensions, e.g., trace
variants could be merged together

With CDCL defined, each element cac ∈ CDCL refers to a change detection
analysis, which is defined next.

Definition 4 (Change Detection Analysis). Given an event log L ⊆ T with
its respective change detection cube CDCL, we define a change detection analysis
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(CDA) as a function mapping each cac ∈ CDCL to a pair of two values repre-
senting the result of the change analysis, such that CDAL = CDCL → V × V .

The result of the change analysis consisting of a two-value pair is generated
by statistical tests, which are described next.

4.2 Change Detection as a Before-After Comparison

Given a change detection cube CDCL for a given event log L ⊆ T , we propose
to detect changes for each change analysis cell cac ∈ CDCL with its elements
eAt ∈ EAL

, rel ∈ DFR+
L , and tV ar ∈ TV arL . The relation rel in a cell consists

of two activity names (a1, a2) of which the events are in a directly follows or
eventually follows relationship.

To detect changes, we need to derive the respective event attribute values of
eAt for both activities (a1, a2) from the trace variant tV ar ∈ TV arL . For that, we
define a multiset EAVcac for each change analysis cell cac, in which the elements
consist of event attribute value pairs (ei(eAt), ej(eAt)) with ei(activity) = a1,
ej(activity) = a2, and ei(eAt), ej(eAt) �= ⊥, where the traces including the events
ei, ej are in the respective trace variant tV ar ⊆ L. If the respective events are
directly following, we only consider directly follows relations in the traces, as it
could be the case that a trace includes the directly follows relationship and at
some point an eventually follows relationship of both events. Thus, there can be
cases where a separate analysis of directly and eventually follows relations makes
sense, which could be solved by treating these as separate relations in DFR+

L ,
where one is the directly follows and the other the eventually follows relation.

Further, this approach might lead to multiple entries for one case, if the
trace includes loops containing the same directly follows or eventually follows
relationship. This is intended, as we are interested in the changing behaviour
between both activities. However, it could be interesting to investigate the loop-
ing behaviour in more detail, such that a value tends to change in the first
occurrence of the relation, but remains constant after that. This could be imple-
mented by adding a loop index to each change analysis cell, resulting in separate
change analysis cells for each loop iteration. For example, if the relation (a, b)
occurs twice in a trace, one could analyse the changing behaviour for the first
and second occurrence of (a, b) separately.

With EAVcac representing event attribute value changes for a change analysis
cell cac ∈ CDCL, there exist multiple event attribute values for both activities,
given that there are multiple traces related to the change analysis cell. Under-
standing the changing behaviour between two sets of values is a typical use case
in the field of statistical analysis, especially before-after comparisons, e.g., the
comparison of laboratory values between two timestamps [9]. As this approach
investigates the behaviour of directly follows and eventually follows relation-
ships, we can perform such a before-after comparison for each change analysis
cell cac ∈ CDCL.

We will now introduce statistical tests used for comparing event attribute
values in cac ∈ CDCL.
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4.3 Statistical Tests

To conduct statistical tests, two hypotheses need to be provided. First, the null
hypothesis states that there is no difference between two samples. These two
samples are the event attribute values of two activities represented by EAVcac.
Thus, the null hypothesis says, that there is no change in the event attribute
values. The task of the statistical test is to either reject or confirm the null
hypothesis. By rejecting the null hypothesis, the alternative hypothesis, saying
that there is a change in the event attribute values, can be confirmed. We can
never say that there is a change for each sample taken, but provide a probability
that a given result would occur under the null hypothesis [21]. This probability
is the p-value. Thus, the lower the p-value, the lower the chance, that a given
sample is not changing. That is the reason why a significance threshold α is used
to reject the null hypothesis, which is typically 0.05.

If multiple tests are conducted on the same samples, which is the case when
multiple event attributes are analysed for the same relation and trace variant,
α can be adjusted by performing a Bonferroni correction [5]. For example, if
10 event attributes are under analysis, one would divide α by 10, resulting in
α = 0.005. We will not determine a concrete α, but suggest using 0.05 with
the option to apply Bonferroni correction, as the application of the correction
method depends on the analysis goal. For example, if one wants to determine,
if there is no change in any event attribute (universal null hypothesis), the cor-
rection should be applied [5].

Choosing the appropriate statistical test is based on three factors. The first
factor is the event attribute type, which is either continuous or categorical.
We will use the method proposed in [11] to identify the variable type of event
attributes in event logs by comparing the total number of values vs. the amount
of unique values of a variable. Second, the distribution of data is important. As
we cannot make any assumptions about the distribution of each event attribute,
we make use of so-called non-parametric tests. Lastly, the relation between the
samples under comparison needs to be considered, which is either paired or
unpaired. In our case, we have paired samples, because the event attribute val-
ues from both activities come from the same case and are not independent.
Considering these factors, we end up with the Wilcoxon Signed-rank Test for
continuous event attributes and the Stuart-Maxwell Test for categorical event
attributes [20].

Wilcoxon Signed-Rank Test. Given a change analysis cell cac ∈ CDCL with
its event attribute values EAVcac, the Wilcoxon Signed-rank test performs pair-
wise comparison of each element (ei(eAt), ej(eAt)) ∈ EAVcac, given that eAt is
continuous. The test makes use of the Simple Difference Formula, which results
in the difference between the proportion of favourable and unfavourable pairs
RBC = f − u, the so-called matched-pairs rank-biserial correlation, whereas
favourable/unfavourable represent the pairs where the differences have the same
sign (increasing or decreasing) [15]. As we do not test for a specific direction, we
will speak of increasing/decreasing instead of favourable/unfavourable. Table 2
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demonstrates an example, where all pairs in EAVcac are compared according to
their difference in the activities specified in cac. The test calculates each dif-
ference, which is shown in the “Change” column. Dependent on the degree of
change, ranks are assigned, where increasing/decreasing changes are differenti-
ated in the respective column.

Table 2. Wilcoxon Signed-Rank Test example

Case ID Treat in ICU Discharge patient Change Increasing Decreasing

1 150 200 50 5 –

2 140 160 20 3 –

3 100 110 10 1 –

4 150 135 −15 – 2

5 150 180 30 4 –

6 200 185 −15 – 2

As mentioned before, the test considers the rank sums, which are 13 for the
increasing and 4 for the decreasing pairs. RBC is then the relative difference of
both, which is 13/17–4/17 = 0.523. It can take values between −1 and 1, depen-
dent on whether the majority of changes are increasing or decreasing. Thus, it
does not only consider if there is a difference in one direction, but also provides
information about how many of the major changes go into the respective direc-
tion. In combination with a p-value, we can say, that the difference is statistically
significant as well.

The major advantage of this test is its simplicity, with its comprehensible
calculation of the difference between two groups. Additionally, its result is direc-
tional, which automatically identifies an increasing or decreasing behaviour [15].

Stuart-Maxwell Test. If the event attribute eAt is categorical, the Stuart-
Maxwell test, which is also called the Generalized McNemar test, can be used
to identify changing behaviour. In comparison to McNemar, this test can deal
with an arbitrary amount of categories [23]. Tests for categorical variables use
so-called contingency tables, which represent the transition frequency from one
category to the others for before-after comparison. Table 3 illustrates an example
of a contingency table of a variable with three categories. It can be seen, for
example, that there are 100 cases, where the event attribute remains high and
that the event attribute changes from high to normal in 50 cases.

The test checks for so-called marginal homogeneity. Marginal homogeneity
refers to equality between one or more of the row marginal proportions and the
corresponding column proportions [23]. For example, the category high in Table 3
has no marginal homogeneity, because the proportion of the row is different to
the proportion of the column including the respective category (first row(50)
vs. first column(0) without high/high). The test checks this for all categories
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Table 3. Contingency table example

– High Normal Low

High 100 50 0

Normal 0 50 25

Low 0 0 75

and results in a p-value p and a chi-squared value χ2, indicating a change in
the respective variable or not, whereas p provides information about statistical
significance and χ2 gives information about how marginal proportions are not
homogeneous. Thus, the higher the proportion are not homogeneous, the higher
the change in the categories. The exact calculation will not be covered in this
paper, but is conducted as described in [23].

The results of the statistical tests of each change analysis cell cac ∈ CDCL

will be represented as a change detection analyses, such that CDAL(cac) = (p, t),
where the test-statistic t is RBC for continuous event attributes and χ2 for
categorical event attributes.

4.4 Connecting Continuous and Categorical Event Attributes

The differentiation between continuous and categorical event attributes enforces
a separate analysis of both. Nevertheless, some event attributes might be con-
nected to each other. A categorical event attribute could describe different states
for a continuous event attribute, such as being high, normal, or low. A promi-
nent example are laboratory values, which have these states in addition to their
plain value. Thus, there is one attribute for the continuous laboratory value
and another one for the categorical laboratory value in the event log. Another
example are sensor data, such as temperature measurements etc. Thus, we pro-
pose to connect continuous and categorical event attributes by creating a link
between change analysis cells cac ∈ CDCL. This allows to identify, whether
a changing behaviour in a continuous event attribute is also represented in
the respective categorical event attribute and the other way around. Thus, we
define EACL = CDCL → CDCL as an event attribute connection, linking the
respective change analysis cells. If there exists no connection, we denote that as
EACL(cac) = ⊥.

The linking has to be performed manually, as we do not know of any stan-
dardized naming of event attributes in event logs. For example, one could name
them equally and assign a variable type to them, which would make the connec-
tion trivial.

Next, the proposed approach is evaluated on a real-world healthcare data
set, derived from the MIMIC-IV database.
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5 Evaluation

The proposed approach was implemented in Python with the help of the PM4Py
framework1 [7]. The relevance of this approach is illustrated in a medical environ-
ment, where we generated an event log from the Medical Information Mart for
Intensive Care IV (MIMIC-IV) database. The reason for choosing this database
is its richness of data, allowing to generate event logs with multiple dynamic
event attributes.

5.1 Dataset

MIMIC-IV is a relational database including hospital processes of different
patients, with procedures performed, medications given, laboratory values taken,
image analysis conducted, and more. Its purpose is to support research in health-
care and is therefore publicly available [14].

The event log extracted from MIMIC-IV incorporates a high-level process,
describing department visits of patients during their hospital stay, such as emer-
gency department or intensive care unit (ICU). The event log contains 3447 hos-
pital process instances with 13795 events of acute kidney failure (AKF) patients.
AKF was chosen together with a medical expert, because of its high prevalence
and its measurable disease progression by kidney specific laboratory values.

For each department visit, the event log provides up to 62 event attributes,
including laboratory values and demographic information. 56 event attributes
represent laboratory values, which are classified as dynamic. 28 dynamic event
attributes are continuous and 28 are categorical. The categorical laboratory val-
ues store information about abnormality of the respective continuous value.
Thus, we present an event log with multiple dynamic event attributes being
on different scales with a balance between categorical and continuous event
attributes.

5.2 Results

We applied the proposed approach on the event log introduced above. The result-
ing change detection cube CDCL can be explored with our artefact. The artefact
supports the proposed OLAP operations (Slice, Dice, Pivot, and Drill up/down),
where we decided to always slice the cube to enable the exploration of the change
analysis results. Therefore, we end up with a two-dimensional event attribute
change matrix. Figure 2 illustrates an arbitrary view of CDCL, showing a sub-
cube with continuous event attributes chosen together with the medical expert
and relations having the most changes. The cube was sliced and drilled down
to represent all trace variants. Further views, which also consider trace variants,
are provided in the already mentioned GitHub repository.

Each cell in the matrix represents one change analysis cell cac ∈ CDCL and
the number inside displays the test-statistic of the change detection analysis

1 https://github.com/jcremerius/Change-Detection-in-Dynamic-Event-Attributes.

https://github.com/jcremerius/Change-Detection-in-Dynamic-Event-Attributes
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Fig. 2. Change Detection Analysis, illustrating an Event Attribute Change Matrix
with the significant event attribute changes and a detailed view of one cell with the
connection to the respective categorical event attribute.

CDAL(cac), which is the RBC value for continuous event attributes. The colour
of the cell illustrates the change direction, where blue is decreasing and red
is increasing. The cell is blank, if there is no statistical evidence for a change
according to the given significance threshold α, which is 0.05 in this case.

The transition between the department visits is shown as relations on the
y-axis of the matrix. Emergency department is not listed, as it does not contain
any dynamic event attributes. The matrix shows, that the laboratory values
change differently dependent on the patient’s progress through the hospital. For
example, we observe no value changes of creatinine between pre-ICU and ICU
treatment, whereas it decreases after the ICU stay significantly. On the other
hand, the values of calcium tend to decrease in the ICU and increase after that.
The developed artefact allows displaying significant changes in a process model,
which is shown in Fig. 3, presenting significant changes of calcium.

One can also analyse a change analysis cell in more detail by clicking on
it in the matrix, which is shown in Fig. 2 on the right-hand side, where the
cell marked with the black box is selected. The figure shows the test results in
more detail and illustrates the event attribute connection EACL, where the cell
of the continuous event attribute “Creatinine” is connected to the respective
categorical event attribute “Abnormal Creatinine”. The graph nodes show the
respective categories, which are “abnormal high” and “normal”. The arrows are
annotated with the amount of samples changing their state. As the degree of
change is high with 21% from “abnormal high” to “normal”, the categorical test
ended up with a p-value so close to 0 that it is displayed as being 0. This shows
the importance of the test-statistic, because the p-value only says, that a change
is present, but not how high the degree of change is. Thus, the change in the
continuous event attribute results in a change in the categorical event attribute
as well.

To verify the attribute value changes, we looked into medical literature and
asked a medical expert for consultation. Urea nitrogen and creatinine are estab-
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Fig. 3. Directly-Follows Graph enhanced with event attribute changes. The edge labels
show the event attribute name with its RBC value and sample size. The colours illus-
trate the value direction, where blue is decreasing and red is increasing. The ends of
the edges show the mean value of the event attribute at the respective activity. (Color
figure online)

lished parameters for renal recovery and are expected to decrease after ICU
treatment [22]. Additionally, bicarbonate use in the ICU for treatment of anion-
gap metabolic acidosis avoids the need for dialysis, which is generally the first-
line therapy for acidosis [13]. That explains the increase of bicarbonate and the
decrease of anion gap after ICU treatment. The value behaviour of calcium is
an interesting observation, as it decreases in the ICU and increases after that,
resulting in no significant change between pre-ICU and post-ICU treatment.
Together with the medical expert, we found out, that decreased calcium levels
(Hypocalcemia) are expected in ICU patients [3], which explains that develop-
ment. Other attributes not being shown in Fig. 2 were also discussed, such as the
glucose value, which did not make much sense, as it tends to change frequently.
These attributes require a more fine granular process to make sense for observa-
tion through a process. However, the event attributes mentioned above do not
tend to change frequently and can be compared department wise.

Another observation was, that patients visiting surgical departments have
a stronger tendency to value changes in anion gab, bicarbonate, and calcium,
represented by a higher RBC value, which could also be confirmed by the medical
expert.

This presentation shows, that dynamic event attribute changes with their
direction of change can be identified, allowing to derive additional insights out
of data stored in event logs.

6 Discussion

This paper proposes an approach to detect changes in dynamic event attributes
through the process by applying statistical tests on event attributes, relations,
and trace variants. With that, we provide a method to analyse the behaviour of
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dynamic event attributes and allow identifying in which activities value changes
occur.

We have shown an example use case in the healthcare domain and could
confirm expected laboratory value behaviour, which was evaluated with a med-
ical expert. As statistical tests are broadly accepted in the medical domain, it
was possible to explain how we detect changes to the medical expert, who could
understand the p-value and test statistics. We discussed, that a more fine gran-
ular process could bring additional insights, such as the comparison of different
treatment paths and their laboratory value developments, allowing to evaluate,
if different treatment activities have different effects on the patient’s state.

However, we see potential for other application domains and do not want to
limit the application to the healthcare domain. For example, other data intensive
processes, such as manufacturing processes with sensor data, like temperature
or vibration, could be of interest when looking at different manufacturing steps
of one or multiple machines.

This contribution suggests identifying changes in three dimensions, which
leads to a high amount of statistical tests conducted. Thus, we see one limi-
tation in the exploration of changes, which is so far solved by looking at the
statistical significant changes only from a two-dimensional perspective. Loops
bring more complexity as well by adding more trace variants and relations when
one is interested in comparing different loop iterations. Therefore, other per-
spectives or methods reducing cognitive load could be more suitable for different
use cases. For example, when analysing loops, one could cluster the respective
loop iterations according to their changing behaviour. The same holds for trace
variants, which could be clustered as well.

Furthermore, the changes could be described in more detail by considering
other aspects, such as time, resources, or other event attributes. For example,
the longer one activity takes, the higher the difference between activities or the
other way around. Additionally, changes in event attributes could be correlated
with each other, such as creatinine and urea nitrogen in the evaluation.

The usage of statistical tests enables a detailed analysis of two samples, but
requires a sufficient sample size as well. In general, the higher the sample size,
the better the expressibility (power) of the test. Additionally, these tests cannot
say that there is a guaranteed change for any given process instance, but can
only give an indication that there is a non-random change in the given samples.
Thus, there are almost always cases showing a changing behaviour and others
do not. Understanding why some change and others do not is also not covered
by us.

It should also be noted, that the statistical tests detect changes which go into
one direction, such as from normal to high, resulting in a different distribution
of the categories or continuous values. However, when we have changes in both
directions, such as 50 from normal to high and 50 from high to normal, the
marginal proportion is the same and no change would be detected. The same
holds for continuous tests, where the RBC value would be close to 0 in this
case. As the goal of this paper is to derive a common behaviour of dynamic
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event attributes in the process, this property suits us well. However, it might
be interesting to investigate this kind of change and derive characteristics of
increasing and decreasing cases.

In general, we see different use cases for change detection in dynamic event
attributes. Besides exploring changes, one could also use this method to derive
interesting variables for time-series machine learning tasks, such as process out-
come prediction, by identifying process sensitive event attributes. Additionally,
the changing behaviour could be used as a feature for decision mining, trace
clustering or concept drift detection.

7 Conclusion and Future Work

This contribution researches methods to detect changes in dynamic event
attributes from a three-dimensional perspective, represented as a change detec-
tion cube. This allows to understand the process behaviour of their actual values,
as it can be seen between which process activities the values change. We see this
method as a step forward to connect data-science with process science, allowing
an even more comprehensible analysis of the data represented in event logs.

Future work could focus on enhancing the methodology by explaining the
changes in more detail, for example, the correlation with other event attributes,
such as time, or deriving characteristics of changing and non-changing cases.
Additionally, other dimensions of change could be researched and evaluated
regarding their suitability for different use cases. Lastly, the analysis of loop-
ing behaviour and trace variants could be improved by applying clustering, for
example.
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Abstract. Process models are designed to describe the required tasks to achieve
a desired business goal. These models can be verified to be compliant with addi-
tional requirements, like regulations and business requirements. This means that
process models can be designed and verified to behave according to some desired
requirements. However, it is possible that some of the outcomes at runtime devi-
ate from the design predictions of the model, which would render the model and
the compliance verification obsolete. In this paper, we propose an approach aim-
ing at detecting such runtime deviations through representing the tasks’ outcomes
as data ranges. When a deviation is detected, the approach re-evaluates compli-
ance of the model given the unexpected outcomes during the execution, and if
necessary and possible it adapts the remainder of the model’s execution to pre-
emptively avoid breaching the requirements.

Keywords: Business process compliance · Data ranges · Decidability ·
Runtime monitoring

1 Introduction

Former United States of America president Dwight D. Eisenhower once said “In prepar-
ing for battle I always found that plans are useless but planning is essential”. Part of the
reason behind this quote is that rarely things go as planned, hence as they were designed
they are often useless, but they can still be adapted to the current situation.

Process models are often used to describe plans, in other words the required steps
to achieve a desired goal. Properties of these models have been studied in the past,
such as for instance soundness [1], and compliance with respect to some given require-
ments [12]. Adapting to unpredicted situations has also received some attention: Maggi
et al. [14] propose an approach based on DECLARE [17] and finite-state automata to
identify unexpected scenarios where violations occur and if possible adapting them to
address such violations.

In this paper, we study the problem of identifying unexpected behaviours and
addressing the associated possible violations. We categorise unexpected behaviours of
a model as the unexpected outcome of executing a task. Data is commonly used to
describe the outcomes of executing a task, and we can identify unexpected outcomes
when such do not align with the initial description. However when data is involved,
decidability becomes an issue that needs consideration too, as shown by Bagheri Hariri
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et al. [4]. When the variables using to describe the outcomes of executing the tasks have
an infinite domain of possible values that can be assigned to them, then the number of
possible executions of the process models requiring to be checked also becomes infinite,
leading the problem to become undecidable.

In this paper, we address the decidability issue by restricting the domains and col-
lapsing the representation of these variables into ranges. Additionally, we show how
process models decided to be compliant at design time can be adjusted when at runtime
deviations over the expected behaviour are detected, leading to requirement violations.

The remainder of this paper is structured as follows. In Sect. 2, we position our
work against existing research in the area of compliance and process adaptation. Next,
Sect. 3 provides a formal background to process models and the regulatory framework
for compliance. Subsequently, Sect. 4 describes the notion of full compliance in detail,
while Sect. 5 formally defines runtime detection of deviations. Section 6 presents our
method for repair of potential deviations to prevent compliance violations. Finally, we
summarise our work in Sect. 7.

2 Related Work

Process models are designed so that they describe the allowed and required behaviour to
achieve a business goal, while fulfilling all internal requirements (e.g. design properties,
company policies) and external requirements (e.g. regulations). As such, these process
models are typically ensured to be compliant by design, using various design-time com-
pliance techniques [10,19]. However, even assuming the actual behaviour of a process
perfectly follows the normative process model, design-time correctness can only be
guaranteed to a certain extent, as it cannot take into account runtime data. Although
some approaches exist that take conditions into account and prove design-time compli-
ance under those conditions [9], the actual behaviour is only known upon execution.
Therefore, in most cases design-time verification should be considered a preventative
measure that attempts to mitigate the risk of violating the requirements, as real-life
execution may encounter deviations from the design.

Conformance checking is a procedure comparing executions as recorded in event
logs with the desired behaviour as specified in the underlying process models to identify
such deviations [2]. Regulations could be partially specified as models, allowing con-
formance techniques to identify mismatches with the actual executions. Nevertheless,
these approaches are again predominantly control-flow [2,6,7]. Some approaches have
been developed to verify event logs on their data as well. This after-the-fact analysis
to prove compliance including the data perspective is referred to as auditing. However,
none of these approaches have the ability to dynamically adapt running instances to
either correct or prevent potential violations.

This is distinctly different from model repair, where the model is altered to more
accurately reflect the actual behaviour as observed in an event log, usually by allowing
inserting or skipping of activities (see e.g. [3,18]). As such, the approach tries to opti-
mise the model in terms of fitness, i.e. minimising the fraction of behaviour that is in
the log but not possible according to the model. Although this allows to adapt processes
based on insights from execution data (see e.g. [3], this is still a design-time approach
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that predominantly focuses on control-flow based adaptations and does not prevent a
violation of requirements for running instances.

To facilitate runtime adaptation and repair, techniques from the field of automated
planning have been integrated to allow dynamic on-the-fly reconfiguration of instances
(see e.g. [5,14,16]). In these techniques, the domain is prespecified by means of actions
(or tasks), which each have a set of corresponding preconditions (i.e. conditions that
need to be satisfied prior to execution) and effects (representing the changes to the envi-
ronment after execution). Using a predicate representing the goal to be achieved, auto-
mated planning aims to find a sequence of actions that achieve that goal starting from a
given initial state. This approach has been applied in the field of business process man-
agement for the purpose of runtime process adaptation, where an external disruption
or change in the data would cause the process to no longer be able to achieve its goal
when following the process model [5]. As such, it is deployed to adapt the running pro-
cess instance to still successfully achieve the intended goal where possible. Planning
approaches require a fully specified domain, including pre-specifying every task that
is potentially required to ‘fix’ the issue and may not be applicable in situations where
information completeness can not be guaranteed [15,16]. As such, it cannot provide
suggestions on the data and its effects on future states. Additionally, the computational
complexity on large data domains is typically high, resulting in a limited applicability
in complex environments.

The preventative runtime approach presented in this paper uses data ranges to reduce
the risk of non-compliance, while at the same time addressing the decidability issue.

3 Background

In this paper, we consider a simplified view of the process models we are evaluating.
We consider process models as the set of their possible executions as illustrated by
Definition 1, as the approach we propose in this paper to detect and address runtime
deviations of the models does not need to consider the process’ structure, but it focuses
on its executions.1

Definition 1 (Process Model). Given a process model P, we refer to the set of its exe-
cutions as Σ(P), where each execution ε is represented as an ordered sequence of tasks
as follows: ε = (t1, t2, . . . , tn).

When proving whether a process model is fully compliant with some given regu-
latory requirements, each execution of the model must satisfy the requirements, repre-
sented as obligations, as described in Definition 2.

Definition 2 (Full Compliance). Given a process P and a set of regulatory require-
ments represented as a set of obligations O, P is fully compliant with respect to O if
and only if every execution of P satisfies each obligation in O.

1 We intentionally keep the definition of the base components of the problem abstract, as this
allows the paper to focus on discussing the core issue: detecting and repairing runtime devia-
tions in process models. As an additional bonus, using abstract descriptions to define the base
components gives the proposed approach the flexibility to be applied to components fitting the
features required by these abstract descriptions.
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3.1 Satisfying Obligations

We use obligations to represent the regulatory requirements2 that a process model must
satisfy in order to be fully compliant. In particular, we use achievement and mainte-
nance obligations, and we describe how these are satisfied in Definition 3.

Definition 3 (Achievement and Maintenance Obligations).
An obligation, defined as O t〈π,τ,δ 〉, is represented by the following elements:

– A condition τ and a deadline δ , determining the in force intervals of an execution
where the obligation’s requirement (π) has to be checked. An in force interval is
identified in an execution between states satisfying the condition (τ) and states sat-
isfying the deadline (δ ).

– A requirement π describing the satisfying condition that needs to be satisfied at least
once within an in force interval when the type (t) of the obligation is an achievement
(written as Oa), or that needs to be satisfied in each state when the type is mainte-
nance (written as Om).

3.2 Executions and States

The elements of the obligations are evaluated along an execution to determine whether
the obligation is satisfied by that particular execution. In particular, these elements
are evaluated over the sequence of states describing an execution, where each state
describes the situation holding after the execution of one of the tasks representing
the execution. As an execution is a sequence of tasks, each task is associated with a
state holding after its execution. Consequently, we can also consider an execution as a
sequence of states.

The state of an execution after the execution of one of its tasks depends of the previ-
ous state and on the effects of the executed task. The effects of executing a tasks can be
Boolean propositions, as well as variables. These are added to the previous execution’s
state when the task is executed. We use expected ranges to represent the possible values
associated to a variable that can be obtained by the execution of a task, as shown in
Definition 4. A similar approach has been adopted earlier by Knuplesch et al. [13] to
deal with large domains.

Definition 4 (Variables and Execution’s States). The state of an execution can con-
tain the following types of variables:

propositional the value of such variables can be either true or false and are represented
by their value in the state, and the effects of the tasks, which updates the value
contained in the execution’s state.

numerical the value of these variables can be a number within a given interval. We
represent this interval as [a,b] in both the state and effects of the task’s execution,
where a is the lower bound and b is the upper bound. In general, we can consider

2 Note that obligations are not limited to represent and model regulatory requirements. For
instance, an organisation could model the production requirements that a process must ful-
fil in each of its executions as obligations.
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that the effects of executing a task alters the values in the state by increasing or
decreasing them according to value assumed by the task’s execution, and which is
specified in the process specification. More complex interaction between effects and
state variables can also be described in the process specification.

The advantage of using expected ranges is that we do not need to represent a differ-
ent execution for each of the possible value, and the execution’s states keep track of the
values of the variables as intervals of possible values. This allows us to represent a sin-
gle sequence of states for each possible sequence of tasks instead of having to explicitly
consider the possible individual instantiations of the variables, and the combinatorial
possible different sequences of states, which would quickly lead to the analysis of the
possible executions to be intractable.

Example 1: Truck’s Delivery Journey
Let us consider an example where a process model represents the possible delivery
journeys of a truck. The process model shown in Fig. 1 represents these journeys, where
a complete execution of the model represents a delivery journey of the truck, and a
single task in the model represents a segment of the journey. The process model contains
4 possible executions: (t1, t2), (t1, t4), (t3, t2), and (t3, t4), corresponding to 4 possible
delivery journeys.

Fig. 1. Truck’s delivery process model.

An expected outcome is asso-
ciated to each task. In this
case, this represents the expected
amount of hours required by the
truck to travel the journey’s seg-
ment represented by the task,
and consists of a range included
between a minimum and maxi-
mum value. When a task is exe-
cuted (i.e. the truck travels the
corresponding journey’s segment) the amount of time is added to journey’s time vari-
able.

Finally, suppose that the truck is required to complete its journey within 5 h. We can
verify whether this requirement is violated by checking the model, and in this case it
is immediate to see that each execution of the model complies with the requirement, as
the most time consuming routes ((t1, t2) and (t3, t2)) take between 2 and 4 h.

4 Full Compliance of Process Models

In this section, we describe how regulatory compliance of process models can be proven
to be fully compliant with some given regulatory requirements expressed as obligations
as discussed in Sect. 3.

To prove whether a process model is fully compliant, various techniques can be
used, some focusing on analysing the structure of the models, like the approach pro-
posed in [11], and others focusing on analysing the possible executions, like the Regor-
ous approach [8] for instance. In this paper, we do not propose our own approach, but
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a protocol exploiting an existing compliance solution that focuses on proving full com-
pliance of a process model through the analysis of its executions.

Here we outline the required properties for such a solution to be used in the proposed
methodology to not only prove full compliance of a process model at design time, but
also to both identify runtime deviations and if it is possible address them.

4.1 Compliance Checking: Required Properties

1. The procedure evaluates each execution of the process model independently.
Discussion. A procedure evaluating the executions of the model has the advan-

tage of disregarding the process’ structure. That is, as long as a process model
can generate a finite set of possible executions, these approaches are capable
of evaluating the model by parsing the set. From a computational complexity
perspective, the disadvantage of such approaches is that the amount of possible
theoretical executions per model are either combinatorial with respect to the size
of the model3 or infinite when loops in the process models are unbounded.

2. When evaluating an execution, represented by the sequence of states constructed by
the execution of the sequence of tasks, each obligation constituting the regulatory
requirements is checked independently over the execution’s states.
Discussion. Verifying an obligation over an execution is linear in complexity with

respect to the length of the execution, as the components of the obligations need
to be checked in each state sequentially. Checking the components of an obli-
gation generally corresponds to evaluating the truth value of a logical formula
over one of its interpretation, which can be safely assumed to be computation-
ally easy.4 Obligations are usually independent from each other, meaning that
when given a set that needs to be checked over an execution, each obligation
can be verified on its own and the individual results can be easily aggregated.5

Finally, evaluating the obligations individually also allows to pinpoint exactly
where in the executions of the model the runtime violations occur. This addi-
tional information can be later used for further analysis aimed at addressing
these regulatory issues, such as for instance adjusting the process model to avoid
states where violations of the requirements occur.

3 In practical scenarios it can be considered that the amount of possible executions of a model
to be evaluated to be tractable. However, it must be taken into account that when heavy paral-
lelisation is used, then the number of possible executions can become to large to be evaluated
successfully.

4 We would like to point out that it is still possible to have obligations whose components’
verification is complex and can be associated to some more convoluted logics, however for the
sake of clarity and simplicity we disregard these borderline cases in the present paper.

5 Note that some more complex types of obligations may have their elements relate to the state
of other obligations, such as for instance compensations, where the trigger of that kind of
obligation corresponds to the violation of another. However, when these related obligations are
organised in sequences and do not have circular relations, the verification procedure can still
independently evaluate such sequences of related obligations and later aggregate the results.
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An approach having the features mentioned above is sufficient to verify whether a
process model is fully compliant with respect to a set of obligations representing the reg-
ulatory requirements. An approach having these properties is for instance Regorous [8],
but other approaches having the same properties can be also used to determine compli-
ance at design time. Furthermore we discuss in Sect. 5 how the same approaches can be
reused to identify runtime deviations and determine whether they can be addressed.

5 Detecting Runtime Deviations

In Sect. 4 we have shown how a procedure with some specific properties can be used
to prove that a process is fully compliant. A fully compliant process guarantees that
each execution of a process model, whose task’s execution conforms with the expected
values represented by the ranges, is compliant with the regulatory requirements.

Given the problem specifications as described in Sect. 3, a deviation, a discrepancy
from the expectations during an execution can be the following:

1. The order of the tasks being executed does not conform with the possible orders
allowed by the structure of the process model.

2. The outcomes of completing one or more tasks during an execution of the model are
not within the expected ranges specified at design time.

When either occur, the sequences of states resulting from the unexpected execution
are not guaranteed to comply with the given regulatory requirements. In case of 1. the
runtime execution wanders off from what is being expected by the process model, and
the remainder of the execution cannot be predicted as it does not follow the process
model’s structure. Because of the unpredictability of this case, we focus on the second
type of deviation, where the order of execution of the tasks is still one of the expected
ones by the model’s structure, but the outcome of executing a task resulted outside of
the expected ranges. In the remainder of this section, we describe how to analyse the
deviation to determine whether this can potentially lead to a violation. Additionally,
in Sect. 6 we show for potential violations, how to analyse the deviation to determine
whether and how the remainder of the execution can be adjusted to prevent these possi-
ble violations.

5.1 Detection

When a process model is being executed, its ongoing execution can be considered as
a partial execution, corresponding to the prefix of one of the possible executions of
the model. A deviation from the expected executions is defined and represented as
described by Definition 5

Definition 5 (Deviation). Given a process model P and one of its partial executions
εp = t0, . . . , tn, where tn is the most recently executed task in εp, and we use ev(tn) to
represent the variables’ values representing the outcome of executing the task tn.

The execution of tn in εp is a deviation if and only if:
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– ev(tn) �∈ ex(tn), where ex(tn) are the set of ranges representing the expected outcomes
from the execution of tn as defined at design time of P.

We represent the deviation as d(εp,Δ), where Δ is the description of the effects
discrepancies leading to ev(tn) �∈ ex(tn).

Identifying a deviation means that this particular execution is not among the ones
that have been checked against the regulatory requirements during the compliance eval-
uation of the model. Thus, such execution cannot be guaranteed to be compliant, and
further evaluations are required to determine that.

5.2 Assessment

After detecting a deviation during the execution of a process, it becomes desirable to
determine how it impacts the ongoing execution. In other words it is desirable to deter-
mine whether the deviation can lead to violations of the regulatory requirements.

We can determine whether a deviation (d(εp,δ )) can lead to violations in the con-
tinuation of the execution of the process (P) through the following steps:

1. Construct the remainder process6 P′ from P and d(εp,δ ), such that the following
property holds:
– ∀ε ∈ Σ(P) where εp is a prefix of ε , ∃ε ′ ∈ Σ(P′): (εp+ ε ′) ∈ Σ(P).

2. Check whether the remainder process (P′) is fully compliant7 with the regulatory
requirements with the process’ state holding after εp as the process starting state. If
P′ is not fully compliant, then there exists at least a possible future continuation of
the execution εp that leads to a violation due to the deviation.

When checking the remainder process for full compliance using a procedure having
the properties requested in Sect. 4.1, we know that each obligation representing the reg-
ulatory requirements is evaluated individually. This means that during the compliance
checking process, when a violation is detected, it is immediate to identify the violated
obligation. As the procedure evaluates the sequences of tasks and states representing
the executions of the process model, the procedure also allows to identify the exact exe-
cution state where the violation occurs, which we can further analyse to determine the
cause of the violation.

As checking compliance of a remainder process corresponds to analysing the pre-
dicted possible continuations of the execution where a deviation occurred, with further
analysis we can try to determine whether it is possible to adjust the outcome ranges in
the remainder process to avoid violating the given obligations. We describe this repa-
ration procedure to prevent predicted possible violations in Sect. 6.

6 Given the running partial execution εp of P, the associated remainder process P′ represents
with its possible executions the possible continuations of εp as determined in P.

7 Any technique used to check compliance of the original process can be reused to verify com-
pliance for the remainder process.
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Example 2: Truck’s Journey: Deviation
Let us consider a runtime execution of the truck’s journey process model shown in
Example 1. Let us assume that in this runtime execution, the first task being executed
is t1 and the returned outcome to be 3. That is, the truck took 3 h to travel this journey’s
segment, and the time taken was longer than the amount predicted at the design time of
the process model. The execution of t1 is classified as a deviation, and the remainder
model (Fig. 2) is used to evaluate its effects.

Fig. 2. Truck’s remainder model.

A remainder model describes the possible con-
tinuations of an ongoing execution, in this case of
the deviating execution where t1 has executed and
the deviation was detected. Because of the outcome
of executing t1, the starting state of the remainder
model has its journey_time variable set to 3. Eval-
uating compliance of the remainder model against
the requirement that the truck is required to com-
plete its journey within 5 h, we can immediately
see that executing t2 leads to journey_time= [4,5].
This means that the detected deviation can potentially lead to a violation of the require-
ment in case the amount of hours to travel in t2 is 2 h.

We can try to avoid the predicted violation by adjusting the estimated outcomes in
the remainder model. Reducing the expected outcome range of t2 to [1,1] leads to the
remainder model to fully comply with the requirement. That is, continuing the execution
with the adjustment in mind would always be compliant with the requirements, unless
further deviations occur, which would potentially require additional analysis.

6 Reparation

Considering a remainder model following from a deviation, which has shown to contain
some violations in its executions, a reparation consists of modifying the ranged vari-
ables representing the outcomes of executing the tasks of the remainder model in such a
way that no violations occur if possible.8 If some of the violations cannot be prevented,
then we consider the model, and in turn the deviation, to be not repairable.

6.1 Computational Complexity

The reparation problem entails finding a range assignment for each of the ranged vari-
ables in each of the tasks of the model in such a way that the resulting executions satisfy
each of the obligations representing the regulatory requirements.

In theory, the possible ranges that can be assigned to the variables representing the
outcomes of the tasks are unbounded, meaning that there are infinite ways in which
these ranges can be assigned to the variables. This can lead to an infinite search space

8 The reparation problem presents many similarities with the constraint satisfaction problems,
which can be described as the problems of finding the values assignments of some variables
such that the resulting state satisfies some given constraints.
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for the problem’s solution, which can be an issue when using a naive algorithm blindly
looking into the search space for one fitting the constraints, as there are no guarantees
that the algorithm would ever terminate.

In the remainder of this section, we focus on describing how to handle the vast-
ness of the search space of the problem. First, we discuss some obligations’ evaluation
orders and preferences over alternative alterations options to reduce the search space
required to be explored. Second, we introduce a procedure adopting these preferences
and evaluation orders.

6.2 Effective Evaluation

We now introduce and discuss the individual features that our proposed practical app-
roach to repair violations originating from runtime deviations.

Iterative Detection and Handling of Violations. The first and least surprising feature
concerns how to detect which alterations are required to be performed over the model.
The worst scenario in this case would be an approach picking a random solution from
the search space and then evaluate whether the solution fits the requirements.

A better way to explore the search space instead of blindly looking at the possi-
bilities, is to look at the solutions tied to solving some of the violations that affect the
executions of the model. This is achieved by iterating over the obligations and for each
of them determine whether the model violates them. For each detected violation we can
then apply the changes required to address it. This effectively limits the exploration of
the search space to those affecting at least some of the existing violations.

Fig. 3. Simple linear model.

This way of iterating over the detected viola-
tions and altering the process to fix them presents
some problems that need to be considered. When
altering the process to fix a violation, there exists
the possibility that the change introduces violations
for other obligations. As a result, each obligation
should be re-checked over the process after each
change, and the potential for live-locks implies that
in some cases the reparation procedure would not
terminate (Example 3).

Example 3: Live-Lock on Repair
Consider two obligations: Om

1 (a== 1,b< 10,⊥) and Oa
2 (c== 1,b ≥ 10,⊥), and the

linear remainder model shown in Fig. 3, where the effects of executing a task are anno-
tated above the task itself. Above Start, we annotate the starting state of the execution
of the model, namely a and c having value 1, and b having value 0. For the sake of the
example, let us assume that c = 1 in the starting state is the result of a deviation. The
starting state of the remainder model sets in force both obligations O1 and O2. With
only t1 manipulating the value of b, we have that O1 is satisfied, as the value will be
added up to at most 9, while O2 cannot be satisfied as the value will never go above 9.
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Repairing the violation of O2 consists of setting the outcome of t1 to b : +[10,10],
which allows to satisfy the requirement. However, it is immediate to see that the adjust-
ment introduces a violation for O1. Fixing the violation of O1 would violate O2 again,
causing the procedure to enter a live-lock loop.

Avoid Re-evaluation. When changes are introduced in a model, obligations need to
be re-evaluated to determine whether the new configuration complies with them, even
those that have already been evaluated. This is computationally expensive and can in
the worst case scenario lead to live-locks as shown in Example 3.

To avoid re-evaluating obligations that have already been evaluated on the model,
we constrain the allowed alterations to the ones that ensures that the compliance state
of obligations already evaluated does not change. We achieve this by not allowing alter-
ations that target variables that can affect the compliance state of obligations that have
already been checked. In other words, when an obligation is checked and its violations
repaired, the variables influencing the compliance state of that obligation cannot be
altered by further reparations.

By preventing some variables to be altered, the search space is greatly reduced,
which comes with both positive and negative consequences: on the positive side, any
constraint reducing the explorable search space improves the performances of algo-
rithms trying to find solutions. However, these constraints also run the risk of possibly
hiding some of the solutions in spaces that are no longer explorable. To minimise the
amount of non-explorable solutions, we use an evaluation order that minimise the con-
straints over further reparations.

Maximise Repair Options. To avoid re-evaluation we can consider that the variable
influencing the compliance state of an obligation to be locked from further changes
after that obligation has been evaluated and its violations repaired. These locked vari-
ables hinder the possibilities of repairing further obligations, as fewer options remain
available, as some are not an option because of some locked variables.

For every pair of obligations being evaluated, to minimise the impact of locked
variables, the obligation locking fewer variables for the other should be evaluated and
repaired earlier. This means that the impact on the ability of repairing violations for the
obligation evaluated later is lower. Between two obligations we can define the relatively
least restricted as the one being influenced by the higher number of variables that are
not influencing the other obligation (Definition 6 and Definition 7). The least restricted
obligation should be verified later than the other, as it would retain more options to
repair the eventual violations. Additionally, note that when the sets of variables influ-
encing two obligations are completely disjoint, then these obligations are independent
and their relative evaluation order is irrelevant.

Definition 6 (Related Variables). Given an obligation O(r, t,d), let the function s
return the ranged variables involved in the evaluation of the element of an obligation,
such as for instance s(r) returns the ranged variables involved in the evaluation of the
trigger of O . Furthermore, we define: s(O) = s(r)∪ s(t)∪ s(d).
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Definition 7 (Altering Relations). Given two obligations O1(r, t,d) andO2(r, t,d),O1

is altering related to O2 if and only if: s(O1)∩ s(O2) �= /0.
We use sr(O1,O2) = s(O1)∩ s(O2) to refer to the set of relation sets between two

obligations.

Finally, from Theorem 1 we know that we cannot have circular relations. Thus,
considering the set of ordering relations between pairs of obligations as a partial ordered
set, then there exists always at least a total order satisfying the partial order.

Theorem 1 (Non-circularity). Given three sets A,B, and C, the following set of prop-
erties is inconsistent:

1. |A\B| > |B\A|
2. |B\C| > |C \B|
3. |C \A| > |A\C|

Proof.
We can rewrite the three inequalities using the labels shown in Fig. 4 to refer to the
various parts of the intersections between the sets A, B, and C as follows:

1. |a∪ e| > |b∪ f |
2. |b∪d| > |c∪ e|
3. |c∪ f | > |a∪d|

A

B C

a

b c

g
d e

f

Fig. 4. Set intersections.

As the sets labelled in Fig. 4 are disjoint, we can
rewrite the system using numeric variables (main-
taining the same label) referring directly to the car-
dinality of the intersections as follows:

(i) a+ e> b+ f
(ii) b+d > c+ e
(iii) c+ f > a+d

The obtained inequalities system is a contradic-
tion:

1. (i) can be rewritten as a> b+ f − e
2. (ii) can be rewritten as b− e> c−d
3. (iii) can be rewritten as c+ f −d > a
4. From 1. and 3. and transitivity: c+ f −d> b+ f −ewhich simplifies to c−d> b−e
5. 2. and 4. are contradictory.

Having shown that the system of inequalities has no solution, we have proven that
Theorem 1 is correct. �
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Minimise Change. When altering a set of ranged variables to prevent a violation in
the model, the preferred set to be used is the one that produces the least, and the safest
alterations. Fewer alterations are preferred because they maintain the behaviour closer
to the original. For this reason, when multiple alteration options are available to prevent
a violation in a model, the one involving the fewer variables to be altered is the one that
should be preferred.9

We consider safer alterations as a secondary preference measure. Preventing the
violation of an obligation can be done by dealing with either of its elements: the trigger,
deadline, or requirement. We discuss in Definition 8 how each element can be influ-
enced by altering some ranged variables and how the effects lead to preventing the
violation.

Definition 8 (Repair Options).
There are three options to repair a violation. Considering that a violation of an

obligation is related to one of the in force instances of the obligation itself, we list the
three repair options below:

1. Preventing the trigger: adjust the range of an outcome of a task’s execution to pre-
vent the satisfaction of the obligation’s trigger. This adjustment prevents the instance
of the obligation to come in force, in turn preventing its violation.

2. Fixing the requirement: adjust the range of an outcome of a task’s execution to
satisfy the obligation’s requirement. For achievement obligations this would try to
manipulate the execution’s states to construct one satisfying the requirement before
the deadline determining the violation. Differently for maintenance obligation, this
option aims at preventing the state where the requirement fails.

3. Manipulating the deadline: adjust the range of an outcome of a task’s execution to
change the state satisfying the obligation’s deadline. For achievement obligations
this consists of changing the execution’s states to postpone the state in which the
deadline is satisfied, hence preventing the identified violation. For maintenance obli-
gations this consists of anticipating the deadline to an earlier state, which allows to
avoid the state in which the requirement failed to be maintained.

We discuss in Definition 9 which of the elements should be preferred as the alter-
ation target, and this additional preference order can be used as a secondary preference
in addition to the cardinality of the change.

Definition 9 (Repair Choices Order). Depending on the type of the obligation we
provide and motivate an intuition based preference order in which the repair options
should be applied to try to fix a violation.

Achievement

1. Fixing the requirement: this is the preferred method as it allows to successfully ter-
minate the in force instance of the obligation and avoid the violation at the state
where the deadline occurs.

9 For simplicity, we consider as the measure of the alteration only the cardinality of the set
of variables altered, and not the magnitude. However, both measures should be considered
when deciding which alteration is the least impacting on the current behaviour, and we plan to
investigate this in our future research.
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2. Preventing the trigger: this is the second preferred method as it prevents the coming
in force of the instance. This is less preferable than fixing the requirement as pre-
venting the trigger may be actually just delaying it, hence not avoiding the violation
in the same execution state, and requiring another repair round.

3. Manipulating the deadline: the least preferred option for achievement obligations,
as this simply delays the evaluation of the in force instance, keeping it in an unknown
state and potentially requiring later along the execution to repair another violation
related to the same in force instance.

Maintenance

1. Manipulating the deadline: for maintenance obligations this is the preferred method,
as it would allow to terminate the in force instance successfully in an earlier state
than the one where the identified violation occurs.

2. Preventing the trigger: this is not the most preferable choice for the same reason as
for achievement obligations.

3. Fixing the requirement: the least preferred option as it brings the in force instance
into an unknown state, and leaving it vulnerable to future violations along the con-
tinuation of the execution.

6.3 A Practical Approach

We proceed with the algorithm to identify violations given a deviation, and subse-
quently repair them following the principles discussed in Sect. 6.2.

Algorithm 1 (Identify). Given a remainder process P, and a set of obligations O:

1. Compute the Altering Relations (Definition 7) partial order of O
2. Sort O according to the partial orders indentified
3. For each obligation O in O

(a) Evaluate compliance(P,O)10

i. If a violation v is detected:
A. Repair the remainder process: repair(P,v)
B. If the result of repair is unrepairable, then terminate with failure,
C. otherwise return to 3.(a) to evaluate O over the repaired remainder

process
ii. Otherwise add the variables influencing O to the set of locked variables

(LV) and proceed with the next obligation in O
4. Terminate with successful repair of each violation introduced by the deviation

Algorithm 1 evaluates each obligation over the remainder model, and for each viola-
tion a reparation is performed. Note that when a violation is identified and repaired, the
obligation is re-evaluated to determine if additional violations exist. As the remainder
model is repaired as soon a violation is detected for an obligation, the same obliga-
tion needs to be evaluated again to verify that no further violations exist. The algorithm

10 Note that this does not refer to a particular compliance checking approach, but any approach
satisfying the properties described in Sect. 4.1 can be used.
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either terminates with a failure when a violation cannot be repaired, or successfully after
having verified that each obligation is not violated by the repaired remainder model.

The time complexity of Algorithm 1 is mainly governed by the size of the obli-
gations being checked (3.) and the complexity of the compliance checking algorithm
being applied (3.a). Assuming the latter to be linear with respect to the executions of
the model leads the algorithm to require |O| × |Σ(P)| iterations. We must also con-
sider the complexity of repair (Algorithm 2), which in the worst case corresponds to
a number of iterations equal to the length of the execution being evaluated. Leading to
the updated time complexity: |O|× |Σ(P)|× |ε| where |ε| is the maximal length of an
execution belonging to P.

Algorithm 2 (Repair).Given a set of locked variables LV, a remainder process P, and
a violation v, where v contains the following data:

– The obligation O violated
– The execution ε identifying the violation

1. Identify the repair options RO from options(ε,v)11
2. Remove from RO each option containing variables in LV

3. If RO is empty, terminate with unrepairable
4. Otherwise:

(a) Select the minimal12 repair option ro in RO
(b) Apply the repair ro to P and return the repaired process for further evaluation

Algorithm 2 determines the possible options involving non-locked variables to
repair the detected violation, and the option minimising change is selected as the repair
candidate. When no repair options are available, the process is determined to be unre-
pairable given the detected violation for the deviation being investigated. Determining
the repair options involve investigating the available ones, and excluding the ones that
cannot be used due to locked variables. The computational complexity of determining
this set is related to the size of the possible options: |RO|.

The proposed approach limits the search space of the problem thanks to a combina-
tion of locking variables from being changed further, and specifying an order in which
the obligations are evaluated. However, the current limits may exclude some genuine
solutions to be considered, and in the worst case scenario13 it could happen that the
only existing solutions are excluded by the limitations over the search space. We plan
to investigate refinements for this restriction when extending this approach.

11 We do not provide a detailed definition for the procedure identifying the possible repair options
given a violation resulting from a behavioural deviation. While this is definitely an interesting
problem that we plan to tackle in our future research, it can be considered an orthogonal
problem and to minimise the scope of the paper we keep the focus on the main procedure,
while assuming this auxiliary procedure as given for now.

12 That is, we consider the smallest cardinality and when multiple options are still available, the
order used in Definition 9 is used to further reduce the amount of candidates.

13 This can be the case where deviations during an execution leads to a large amount of failures
for many obligations governing the model. More general cases would be represented by small
deviations leading to a few violations that can be then resolved by iterating the approach a
limited number of times.
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7 Summary

In this paper, we investigated the problem of detecting runtime deviations of process
models and dealing with the eventual resulting violations. We discussed the major com-
putational issues when dealing with such problem, namely the vast search space in
which algorithms need to look for a solution. We also outlined some procedures that
exploit properties of the problem to reduce this search space, in particular preventing
the risk of live-locks by evaluating the required obligations in a specific order and avoid-
ing to have to re-evaluate them.

Our approach relies on full compliance, which means that executing a model with
such property would always satisfy the specified requirements. While requiring full
compliance is generally more restrictive than partial compliance, this allows us to treat
these models as fire and forget entities that can be executed without further supervision
from the user, while the proposed repair approach allows these models to adapt to some
unforeseen scenarios automatically.

To the best of our knowledge this is a first approach dealing with the problem of
adapting process models to detected runtime deviations during their execution, and
while the currently proposed approach is quite coarse, it outlines the relevant features
of the problems, which we plan to tackle again in our future research to provide a finer
and more precise solution.
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Abstract. A deviation detection aims to detect deviating process
instances, e.g., patients in the healthcare process and products in the
manufacturing process. A business process of an organization is exe-
cuted in various contextual situations, e.g., a COVID-19 pandemic in
the case of hospitals and a lack of semiconductor chip shortage in the
case of automobile companies. Thus, context-aware deviation detection
is essential to provide relevant insights. However, existing work 1) does
not provide a systematic way of incorporating various contexts, 2) is tai-
lored to a specific approach without using an extensive pool of existing
deviation detection techniques, and 3) does not distinguish positive and
negative contexts that justify and refute deviation, respectively. In this
work, we provide a framework to bridge the aforementioned gaps. We
have implemented the proposed framework as a web service that can
be extended to various contexts and deviation detection methods. We
have evaluated the effectiveness of the proposed framework by conduct-
ing experiments using 255 different contextual scenarios.

Keywords: Context-aware deviation detection · Context · Deviation
detection · Process mining

1 Introduction

Deviation detection in process executions aims to identify anomalous executions
by distinguishing deviating behaviors from normal behaviors. A range of devi-
ation detection techniques for business processes has been proposed [4]. The
techniques are categorized as supervised and unsupervised ones. The former
defines normal behavior to identify deviations of recorded process executions
with respect to the specified normal behavior, whereas the latter identifies devi-
ations without such normal behaviors. Since many businesses lack the specifi-
cation of normal behavior, unsupervised deviation detection techniques recently
gained more attention [4].

As a process is executed in a specific context (e.g., COVID-19 Pandemic) that
affects the behavior of the execution, it is indispensable to consider the context
when detecting deviations [2]. In this regard, context-aware deviation detection
aims to classify a trace (i.e., a sequence of events by a process instance) to 1©
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context-insensitive normal meaning the trace is normal regardless of context, 2©
context-insensitive deviating meaning the trace is deviating regardless of context,
3© context-sensitive normal meaning the trace is deviating without considering
context but normal when considering context, and 4© context-sensitive deviating
meaning the trace is normal without considering context but deviating when
considering context.

Few approaches have been developed to (indirectly) solve the context-aware
deviation detection problem [4]. For instance, Pauwels et al. [15] extend Bayesian
networks to learn conditional probabilities for organizational contexts such as
roles of resources. Warrender et al. [17] propose a sliding-window based approach
that considers time-related context. Mannhardt et al. [12] conceptualize context
as data attributes of process instances.

However, each approach is tailored to consider limited aspects of contexts, not
providing a systematic way to extend the approach to consider various aspects of
contexts. Given a large space of possibly relevant contexts proposed in studies on
contexts (cf. Subsect. 2.2), we need a systematic framework to integrate context
to deviation detection.

Moreover, a framework to integrate a large number of existing deviation
detection methods with different strengths and weaknesses on varying assump-
tions is missing. Instead, the existing work is confined to a single method and
inherits the methods’ unique set of properties.

Furthermore, existing techniques do not distinguish positive and negative con-
texts. The former justifies deviations. For instance, COVID-19 Pandemic in a
healthcare process explains the long waiting time for admission, e.g., due to the
sudden increase in the number of patients. The latter refutes non-deviations.
“Crunch time” in a video game industry denies a normal throughput time of
the game development process, e.g., with the compulsory overwork by employees.
Existing work considers only negative contexts when integrating context into devi-
ation detection.

Fig. 1. An overview of the framework for context-aware deviation detection
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In this paper, we propose a framework based on post-processing mechanism to
systematically support the context-aware deviation by integrating the extensive
existing deviation detection methods and contexts. As shown in Fig. 1, the frame-
work consists of four components. First, deviation detection computes deviating
scores of traces, with which we can classify non-context deviating and non-context
normal traces. Next, context analysis computes positive and negative contexts
by aggregating context history. Afterwards, context link connects the context to
traces. Next, post-processing increases the deviation score of a trace with the
positive context of the trace and decreases it with the negative context. Using
the revised deviation score, we classify traces as context-normal and context-
deviating. Finally, we label a trace as one of 1©- 4© based on the non-context and
context classifications.

To summarize, this paper provides the following contributions:

– We propose a framework to solve the context-aware deviation detection prob-
lem while integrating the existing deviation detection methods and contexts.

– We extend the context conceptualization with positive and negative contexts
that carry dedicated semantics for deviation detection.

– We implement a flexible and scalable web service supporting the framework
and evaluate the effectiveness of the framework with 225 simulated scenarios.

The remainder is organized as follows. We discuss the related work in Sect. 2.
Then, we present the preliminaries in Sect. 3. Next, we introduce the context-
awareness in Sect. 4 and a framework for integrating contexts and deviation
detection in Sect. 5. Afterward, Sect. 6 introduces the implementation of a web
application, and Sect. 7 evaluates the effectiveness of the proposed framework.
Finally, Sect. 8 concludes the paper.

2 Related Work

In this section, we introduce existing literature on unsupervised deviation detec-
tion of process executions and the context of business processes.

2.1 Unsupervised Deviation Detection

Unsupervised deviation detection is categorized into 1) process-centric, 2) profile-
based, 3) process-agnostic and interpretable, and 4) process-agnostic and non-
interpretable methods.

Process-Centric. [3] computes the conformance of traces to a process model
and classifies non-conforming traces as deviating. [5] refines the concept of like-
lihood graphs by mining small likelihood graph signatures from event data. A
deviation is determined by comparing the execution likelihood of a trace with
respect to a set of mined signatures and a reference likelihood. [8] discovers pro-
cess models using genetic algorithms and conducts conformance checking using
token-based replay to detect deviating traces.
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Profile-Based. [11] iteratively samples more normal sets of traces and profiles
each trace against the more normal set of traces. The result is a sorted list of
traces according to their profiles in the last iteration, which is used to partition
the event data into a set of normal traces and a set of deviating traces using a
deviation threshold.

Process-Agnostic and Interpretable. [15] extends Bayesian networks and
defines a conditional likelihood-based score using the extended bayesian network
on traces. All traces are then sorted according to the score, and the first k are
returned as deviating traces. [6] uses association rules. A set of anomaly detection
association rules specifying normal behavior is mined from the event data. A
trace is detected as deviating if its aggregate support is below the aggregate
support of its most similar trace in the event data with respect to the set of
anomaly detection association rules. [17] uses a sliding window-based approach to
extract frequency information over those windows. If a trace contains infrequent
windows, then it is deviating.

Process-Agnostic and Non-interpretable. [13] encodes traces in event data
using one-hot encoding and train autoencoder neural network with them. The
deviation of a trace is determined using the error the autoencoder makes in
predicting the trace. [14] further develops the application of neural networks to
event data by training a recurrent neural network to predict the next event in
integer-encoding based on the current event in a trace. The aggregate likelihood
of predicting the correct events is used to detect deviations.

Some of the unsupervised deviation detection methods provide room for han-
dling limited kinds of context but take method-dependent approaches such that
neither a general integration nor support for a systematic extension of context is
provided. In this work, we provide a general framework to integrate various unsu-
pervised deviation detection techniques with different strengths, weaknesses, and
assumptions to systematically extend them with contexts.

2.2 Context

In pervasive computing, especially for developing adaptive services, context is
conceptualized as the lower level of the abstraction of raw data [18]. Another
higher-level abstraction, called situation, is introduced to map one or multiple
contexts to semantically richer concepts such as users’ behaviors.

In business processes, a context is a multitude of concepts that affect the
behavior and performance of the process. [2] derives four levels of context that
should be considered during the analysis of processes to improve the quality of
results. [16] extends it and provides an ontology of contexts in BPM by conduct-
ing an extensive literature review of the context in BPM.

More ontological approaches have been proposed to specify context and sit-
uations. Generally, they categorize contexts into intrinsic and relational. [7] dif-
ferentiate between intrinsic and relational context whereby intrinsic context is
essential to the nature of the entity and relational context is inherent to the
relation of multiple entities. [9] develops a two-level framework for structuring
context, which is more coarse-grained than the four levels of [2].
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In this work, we merge relevant contexts of the earlier work and their catego-
rizations into an integrative context ontology that is aimed at extracting context
from event data.

3 Preliminaries

Definition 1 (Event). Let Ue be the universe of events, Let Uatt={act, case,
time, . . . } be the universe of attribute names. For any e ∈ Ue and att ∈ Uatt :
#att(e) is the value of attribute att for event e, e.g., #time(e) indicates the
timestamp of event e.

Definition 2 (Trace). A trace is a finite sequence of events σ ∈ U
∗
e such that

each event appears only once, i.e., ∀1≤i<j≤|σ| σ(i) �= σ(j). Given σ ∈ U
∗
e and

e ∈ Ue , we write e ∈ σ if and only if ∃1≤i≤|σ| σ(i) = e. We define elem ∈ U
∗
e →

P(Ue) with elem(σ) = {e ∈ σ}.
Definition 3 (Event Log). An event log is a set of traces L ⊆ U

∗
e such that

each event appears at most once in the event log, i.e., for any σ1, σ2 ∈ L such
that σ1 �= σ2 : elem(σ1) ∩ elem(σ2) = ∅. Given L ⊆ U

∗
e , we denote E(L) =⋃

σ∈L elem(σ).

Definition 4 (Time Window). Let Utime be the universe of timestamps.
Utw = {(ts, te ∈ Utime × Utime | ts ≤ te} is the set of all possible time win-
dows. duration ∈ Utw → R maps a time window to a real valued representation
of the difference between the its start and end in the granularity of seconds.

For tw = (ts, te), πs(tw) = ts and πe(tw) = te. For instance, tw1 =
(2022-01-01 00:00:00, 2022-01-08 00:00:00) is a time window where πs(tw1) =
2022-01-01 00:00:00, πe(tw1) = 2022-01-08 00:00:00, and duration(tw1) = 604800 (sec-
onds). Note that, in the remainder, we denote 604800 as week .

A time span of an event log with length l is a collection of non-overlapping
time windows of the event log that have the equal duration of l.

Definition 5 (Time Span). Let l ∈ R be a time span length. Let L ∈ U
∗
e be

an event log. tmin(L) = mine∈E(L)#time(e), tmax (L) = maxe∈E(L)#time(e), and
nl(L) = �(tmax (L)−tmin(L))/l. span l(L) = {(tmin(L)+(k−1) ·l, tmin(L)+k ·l) | 1 ≤
k ≤ nl(L)}. For any e ∈ E(L), twl,L(e) = tw s.t. πs(tw) ≤ #time(e) ≤ πc(tw).

Assume that event log L contains traces that consist of events between
2022-01-01 00:00:00 and 2022-01-15 00:00:00. tmin(L) = 2022-01-01 00:00:00, tmax (L) =
2022-01-15 00:00:00, and nweek (L) = 2. spanweek (L) contains two time windows
tw1 = (2022-01-01 00:00:00, 2022-01-08 00:00:00) and tw2 = (2022-01-08 00:00:00, 2022-01-15
00:00:00).

4 Context-Aware Deviation Detection

In this section, we introduce a context-aware deviation detection problem and
explain an ontology of contexts for context-aware deviation detection.
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4.1 Context-Aware Deviation Detection Problem

First, a deviation detection problem is to compute a function that labels traces
either with label deviating or with label normal. All known deviation detection
methods implicitly or explicitly use some form of scoring of traces score that is a
mapping of traces to some real number (cf. Subsect. 2.1). A threshold τ is used
to decide the label. We conceptualize deviating traces as traces scored above τ .

Definition 6 (Deviation Detection). Let L be an event log. Let S = [0, 1]
be a range of all possible score values and τ ∈ S be a threshold value. A score
function score ∈ L → S maps traces to score values. detectscore ∈ L → {d, n}
is a deviation detection using score such that, for any σ ∈ L, detectscore(σ) = d
if score(σ) > τ . detectscore(σ) = n otherwise.

Instead of the two-class labeling problem, a context-aware deviation detection
problem is a four-class labeling problem. Table 1 describes the four classes with
two dimensions: non-context and context. The non-context deviating (d) and nor-
mal (n) correspond to the two classes of the deviation detection problem, whereas
context-deviating (dc) and context-normal (nc) indicate that a trace is deviat-
ing and normal, respectively, when considering context. First, context-insensitive
deviating (i.e., d → dc) indicates that a trace is both non-context deviating and
context-deviating. Second, context-sensitive deviating (i.e., n→ dc) denotes that
a trace is non-context normal, but context-deviating. Third, context-sensitive
normal (i.e., d → nc) indicates that a trace is non-context deviating, but context-
normal. Finally, context-insensitive normal (i.e., n→ nc) denotes that a trace is
both non-context normal and context-normal.

Table 1. Four classes in a context-aware deviation detection problem

σ ∈ U
∗
e Context

Deviating (dc) Normal (nc)

Non-context Deviating (d) Context-insensitive deviating (d → dc) Context-sensitive normal (d → nc)

Normal (n) Context-sensitive deviating (n → dc) Context-insensitive normal (n → nc)

Definition 7 (Context-Aware Deviation Detection Problem). Given
L ⊆ U

∗
e , compute a function that labels traces with context-insensitive deviat-

ing, context-sensitive deviating, context-sensitive normal, or context-insensitive
normal, i.e., c-detect ∈ L → {d → dc, n→ dc, d→ nc, n→ nc}.

4.2 Context-Awareness

Based on existing work on contexts of business processes introduced in Subsect.
2.2, we provide context ontology for context-aware deviation detection in Fig. 2.
First, intrinsic context is inherent to an event. The intrinsic contexts resource
and data correspond to the organizational and data perspectives for a single
event. The waiting time context represents the average waiting time of an event.
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Fig. 2. An ontology of business process context for deviation detection [2,7,9,16].

Thus, the information of waiting time contexts can be used to capture unusually
long delays for events.

Next, relational context is inherent to the relation of multiple events. The
relational contexts workload, waiting time and capacity utilization represent con-
text information that is measured (extracted) by relating multiple events of the
data. The workload context represents event counts of various selections for
a given time window. The capacity utilization context represents workloads of
resources or locations of events by counting the respective events that were
recorded during the time window of the context, e.g., the capacity utilization of
a finance department. Therefore, the information of capacity utilization contexts
can be used to capture unusually high workloads of resources.

Finally, external context is not directly attributable to events, but still affects
them. The external context pandemics represents the outbreak of infectious dis-
ease, e.g., COVID-19 pandemic. As an external context is not directly measurable
on event data, either additional data has to be used, or it has to be represented
by another measurable relational context caused by the external context, e.g., a
hygienic products shop experiences exceptionally large demand during the first
worldwide outbreak of Corona pandemic such that the workload context captures
the unusual demand increase and, thus, the external context pandemic.

5 Framework for Context-Aware Deviation Detection

This section introduces a framework based on post-processing mechanism. We
explain each of the four components described in Fig. 1 with a running example:
1) deviation detection, 2) context analysis, 3) context link, and 4) post process-
ing.

5.1 Running Example

Figure 3 shows a running example of an order management process. It describes
events of the process for two weeks under 1) the context of high workload (i.e.,
many events during the week) in week 1 and 2) the context of overwork (i.e.,
many events during the weekend) in week 2. The context of high workload is
considered as a positive context, i.e., the context justifies deviating traces in week
1, producing more context-normal traces. In contrast, we consider the context
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of overwork as a negative context, i.e., the context refutes normal traces in week
2, producing more context-deviating traces in week 2.

Fig. 3. A running example of context-aware deviation detection for the time win-
dow week 1 (w1) and week 2 (w2). (a) The context history of L1 in w1 shows work-
load of 1100 (total number of events in w1 ) and overwork of 40 (total number of
events during weekend in w1 ), respectively. (b) Assume workload is a positive mea-
sure, workloadmax = 1200, and workloadmin = 200. By aggregating positive (blue) and
negative (red) measures in w1 with min-max normalization, we compute the context
in w1, i.e., positive context of 0.9 and negative context of 0.2. (c) We first connect the
context to events (as denoted by gray dotted lines) and then connect the context to
a trace by computing the maximum positive and negative contexts of its events. σ2

has the positive context of 0.9 (i.e., the maximum positive context of its events) and
the negative context of 0.9 (i.e., the maximum negative context). (d) The non-context
deviating score of σ1 is 0.6 (> τ , i.e., non-context deviating), but its revised deviation
score is 0.37 (≤ τ , i.e., context-normal). Thus, σ1 is context-sensitive normal.
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5.2 Context Analysis

We analyze context in two steps. First, we compute context history based on
event logs. A context history describes the value of different measures (e.g.,
workload and overwork) in different time windows.

Definition 8 (Context History). Let Umeasure = {workload , overwork , . . . }
be the universe of measure names. Uch = Utw � (Umeasure � R) is the universe
of context history. Let L be an event log and l ∈ R a time span length. ch l(L) ∈
Uch is the context history in L with time span of l.

Figure 3(a) shows the context history of L1 with time span length week , i.e.,
chweek (L1). It contains the measures of workload and overwork. For instance,
chweek (L1)(w1 )(workload) = 1100 and chweek (L1)(w1 )(overwork) = 40.

A context consists of positive and negative context scores. They describe the
overall positive/negative contexts in a time window with a value ranging from 0
to 1, respectively. The closer the value is to 1, the stronger the respective context
is. We compute the context in a time window using context measures in the con-
text history of the time window. To this end, we 1) normalize context measures
in the time window, 2) distinguish positive and negative context measures, 3)
aggregate positive and negative context measures with different weights (i.e., the
importance of measures).

Definition 9 (Context). Let L be an event log and l ∈ R a time span length.
type ∈ Umeasure → {pos,neg} maps measures to pos and neg, w ∈ Umeasure →
R maps measures to weights, and norm ∈ Umeasure → (R → [0, 1]) maps
measures to normalization functions that assign values ranging from 0 to 1 to
measure values. ctxl,L ∈ spanl(L) � [0, 1]2 is a context such that, for any
tw ∈ dom(ctxl,L), ctxl,L(tw) = (pc, nc) with

– pc =
∑

m∈dom(chtw
l,L)∧type(m)=pos

w(m)·norm(m)(chtw
l,L(m))/w(m) and

– nc =
∑

m∈dom(chtw
l,L)∧type(m)=neg

w(m)·norm(m)(chtw
l,L(m))/w(m)

, where chtw
l,L = ch l(L)(tw).

The example in Fig. 3 assumes norm1, type1, and w1. First, norm1 uses min-
max normalization for each measure, e.g., with the maximum workload of 1200,
the minimum workload of 200, the maximum overwork of 120, and the minimum
overwork of 20. Moreover, type1 classifies workload as a positive context measure
and overwork as a negative context measure, i.e., type1(workload) = pos and
type1(overwork) = neg . Finally, w1 assigns the weights of 10 and 5 to workload
and overwork, respectively, i.e., w1(workload) = 10 and w1(overwork) = 5.

Figure 3(b) shows context ctxweek ,L1 . The positive context in time window
w1 is w1(workload)·norm1(workload)(1200)/w1(workload) = 10·0.9/10 = 0.9. The negative
context in w1 is w1(overwork)·norm1(overwork)(200)/w1(overwork) = 5·0.2/5 = 0.2. Note
that, in the example, the weight does not play its role since we only use one
positive and one negative context measure.
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5.3 Linking Context to Traces

To connect context to traces, we first link context to events. An event is con-
nected to the context of the time window that the event belongs to.

Definition 10 (Context-Event Link). Let L be an event log and l ∈ R a
time span length. A context-event link, elink l,L ∈ E(L) → [0, 1]2, maps events
to positive and negative contexts such that, for any e ∈ E(L), elink l,L(e) =
ctx l,L(twl,L(e)).

As depicted in Fig. 3(c) by gray dotted lines, e1, e2, and e3 by σ1 and
e4 and e5 by σ2 are connected to ctxweek ,L1(w1 ), i.e., elinkweek ,L1(e1) =
ctxweek ,L1(w1 ) = (0.9, 0.2), etc.

The context of a trace is determined by the context of its events. In this
work, we define the maximum positive and negative context of the events of a
trace as the context of the trace.

Definition 11 (Context-Trace Link). Let L be an event log and l ∈ R a time
span length. tlink l,L ∈ L → [0, 1]2 maps traces to positive and negative contexts
s.t., for any σ ∈ L, tlinkl,L(σ) = (max({pc ∈ [0, 1] | ∃e∈elem(σ) (pc, nc) =
elinkl,L(e)}),max({nc ∈ [0, 1] | ∃e∈elem(σ) (pc, nc) = elinkl,L(e)})).

As shown in Fig. 3(c), σ1 has the positive context of 0.9 and negative context
of 0.2, i.e., tlinkweek ,L1(σ1) = (0.9, 0.2), since the maximum positive context of
its events, i.e., e1, e2, and e3, is 0.9 and the maximum negative context is 0.2.
tlinkweek ,L1(σ2) = (0.9, 0.9), since the maximum positive context of its events,
i.e., e4, e5, and e6, is 0.9 and the maximum negative context is 0.9.

5.4 Post Processing

Post-processing function revises the non-context deviating score of a trace using
the positive and negative context of the trace. The positive context decreases
the deviating score, whereas the negative context increases it.

Definition 12 (Post Processing). Let L be an event log, l ∈ R a time span
length, and score a score function. postl,L,score ∈ L × [0, 1]2 → [0, 1] maps a
trace, a positive degree, and a negative degree to revised score such that, for any
σ ∈ L, αpos ∈ [0, 1], and αneg ∈ [0, 1], postl,L,score(σ, αpos , αneg) = score(σ) −
score(σ) · αpos · pc + (1 − score(σ)) · αneg · nc where (pc,nc) = tlink l,L(σ).

In Fig. 3(d), σ1 has the deviation score of 0.6, i.e., score1 (σ1) = 0.6. Given
σ1, αpos = 0.5 and αneg = 0.5, postweek ,L1 ,score1 revises the deviating score to a
new score of 0.37, i.e., 0.6 − 0.6 · 0.5 · 0.9 + (1 − 0.6) · 0.5 · 0.2 = 0.37.

Finally, a context-aware detection function labels traces with the four
context-aware classes described in Table 1, based on the non-context deviating
score and revised deviating score.
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Definition 13 (Context-Aware Detection). Let L be an event log and
l ∈ R a time span length. Let score be a score function. Let αpos , αneg ∈ [0, 1]
be positive and negative degrees and τ ∈ S be a threshold. c-detect ∈ L →
{d → dc, n→ dc, d→ nc, n→ nc} maps traces to context-aware labels such that
for any σ ∈ L:

c-detect(σ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d → dc if detectscore(σ) = d and post l,L,score(σ, αpos , αneg ) > τ

n → dc if detectscore(σ) = n and post l,L,score(σ, αpos , αneg ) > τ

d → nc if detectscore(σ) = d and post l,L,score(σ, αpos , αneg ) ≤ τ

n → nc if detectscore(σ) = n and post l,L,score(σ, αpos , αneg ) ≤ τ

As shown in Fig. 3(d), given τ = 0.5, αpos = 0.5, and αneg = 0.5, c-detect
(σ1) = d → nc since detectscore1 (σ1) = d and postweek ,L1,score1 (σ1, α

pos , αneg) =
0.37 ≤ τ . Furthermore, c-detect(σ3) = n→ dc since detectscore1 (σ2) = n and
postweek ,L1,score1 (σ2, α

pos , αneg) = 0.63 > τ .

6 Implementation

The framework for context-aware deviation detection is implemented as a cloud-
based web service with a dedicated user interface. The implementation is avail-
able at https://github.com/janikbenzin/contect along with the source code, a
user manual, and a demo video. It consists of four functional components: (1)
context analysis, (2) deviation detection, (3) context-aware deviation detection,
and (4) visualization.

Fig. 4. A screenshot of Scatter visualization. By varying the degree of positive and
negative context, we can deduce the adequate degree of positive and negative context
to be used for the context-aware deviation detection.

https://github.com/janikbenzin/contect
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First, the context analysis component supports the computation of the con-
text history and context. The context introduced in Fig. 2 have been imple-
mented including workload, weekend, waiting time, and capacity utilization.

Second, the deviation detection component implements four deviation detec-
tion methods that correspond to representatives of four respective categories
introduced in Subsect. 2.1. For process-centric methods, we adapt the two-step
approach in [8] by using Inductive miner [10] for process discovery and align-
ment [1] for conformance checking. For profile-based approaches, Profiles [11] has
been implemented, while ADAR [6] and Autoencoder [13] have been implemented
as process-agnostic & interpretable/non-interpretable approaches, respectively.
Next, the context-aware deviation detection component implements the post
processing and the context-aware deviation detection function.

Finally, the visualization component supports an analysis view for each devi-
ation detection method. Each analysis view consists of three visualizations: tabu-
lar, scatter, and calendar. Tabular visualizes the most deviating traces by sorting
them based on the deviation score, the proximity to being relabelled as context-
normal, etc. Scatter shows a 3D-scatter plot of the deviation score, positive
context, and negative context, as shown in Fig. 4. As the number of deviating
traces can be large, the k-Medoids clustering algorithm is applied to all deviat-
ing traces such that the user can analyze the medoids to understand the whole
space of deviating traces more efficiently (depicted as first to fourth and seventh
legend entry in Fig. 4). Moreover, by varying the positive and negative degrees,
we can analyze the effect of the context on the deviation detection. Calendar
visualizes the context over time by aggregating contexts by time and plotting
them over the time span.

7 Evaluation

This section evaluates the proposed framework using the implementation in
Sect. 6. To this end, we conduct four case studies using deviation detection meth-
ods: Inductive, Profiles, ADAR, and Autoencoder. In each case study, we compare
the performance of context-aware deviation detection and context non-aware devi-
ation detection in 225 different simulated scenarios. In the rest of this section, we
first introduce a detailed experimental design and then report the results.

7.1 Experimental Design

As depicted in Fig. 5, the evaluation follows a four step pipeline: data generation,
simulation scenario injection, framework application, and evaluation of results.

First, the data generation uses CPN Tools1 to simulate an order management
process. Next, we inject four different types of deviating events into the gener-
ated event data and label them as non-context deviating: 1) Rework randomly
adds an event to a trace with the activity that has already occurred, 2) Swap

1 www.cpntools.org.

www.cpntools.org
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randomly swaps the timestamp of two existing events, 3) Replace resource ran-
domly replaces the resource of an event with a different resource, and 4) Remove
randomly removes an existing event from the data. To understand the effect of
the amount of deviations on the classification result, the evaluation injected 2%,
5%, or 10% deviations equally distributed among the four types.

Fig. 5. An overview of the experimental design

Afterward, we inject four contextual scenarios as follows.

1. For workload scenario, we randomly select a week and add additional orders
in the week. We consider it as a positive context and, thus, the non-context
deviating events of the selected week are relabelled to context-normal.

2. For capacity utilization performance scenario, we randomly assign vacations
and sick leaves to resources, lowering the capacity of the process. It is consid-
ered as a positive context, and non-context deviating events associated with
the reduced capacity resource are relabelled to context-normal.

3. For waiting time, all events of randomly chosen days are randomly delayed.
It is considered a negative context, and all of the delayed events that are
non-context normal or context-normal are labeled as context-deviating.

4. For overwork scenario, we shift the random percentage of events during week-
days to Saturday and Sunday. It is regarded as a negative context, and all
shifted events that are non-context normal or context-normal are relabelled
to context-deviating.

To determine the strength of the relationship between positive contexts and
deviations, we use % context attributable parameter that determines how many
traces are affected by positive contextual scenarios, i.e., non-context deviating
events are relabelled to context-normal. We include it as the second parameter
for experiments with values ranging from 0% to 100% as depicted in Fig. 5.

225 experiments per case study (3 ∗ 3 ∗ 5 ∗ 5) result from the parameters as
shown in Fig. 5, i.e., three event datasets, three % events deviating parameters
and the five % context attributable parameters per positive contextual scenario.
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Next, we apply the proposed framework and compute context-aware detec-
tion results. Hyperparameter grid search is applied to find the best combination
of positive and negative degrees for the post function.

Table 2. Evaluation results from four case studies

Context-non-aware deviation detection αpos = αneg = 0 Context-aware deviation detection αpos , αneg optimized Difference

Inductive Accuracy 0.389118 0.426846 −0.037728

Avg. class accuracy 0.326856 0.311832 −0.015024

Precision 0.248691 0.293496 −0.044805

Recall 0.389118 0.426846 −0.037728

Autoencoder Accuracy 0.385035 0.425686 −0.040651

Avg. class accuracy 0.311249 0.312451 −0.001202

Precision 0.235668 0.369101 −0.133433

Recall 0.385035 0.424996 −0.039961

Profiles Accuracy 0.363995 0.406368 −0.042373

Avg. class accuracy 0.293880 0.292083 −0.001797

Precision 0.220972 0.332658 −0.111686

Recall 0.363995 0.404011 −0.034061

ADAR Accuracy 0.351544 0.395066 −0.043522

Avg. class accuracy 0.291969 0.289284 −0.002685

Precision 0.229760 0.334021 −0.104261

Recall 0.351544 0.385152 −0.033608

7.2 Experimental Results

First, we report average results for each case study in Table 2, showing that the
consideration of positive/negative context is effective in the context-aware devi-
ation detection. The first column in Table 2 shows the performance of context-
non-aware deviation detection with αpos and αneg both set to 0. The second
column in Table 2 shows the performance of context-aware deviation detection
with positive αpos and negative degree αneg both optimized through the hyper-
parameter grid search. The third column shows the performance difference of
the proposed approach with respect to the baseline.

In the case study using Inductive, the accuracy of 0.389118 is improved by
0.037728 to 0.426846, the average class accuracy of 0.326856 is slightly reduced
by 0.015024 to 0.311832, the precision of 0.248691 is boosted by 0.044805 to
0.293496 and the recall of 0.389118 is upgraded by 0.037728 to 0.425686. The
other three case studies also show performance improvements in terms of accu-
racy, precision, and recall similar to Inductive and a decrease in average class
accuracy. In particular, the results are significantly more precise with the frame-
work’s context-aware deviation detection than for deviation detection.

Second, Fig. 6 shows two confusion matrices in Fig. 6 for Inductive and
Autoencoder, summing the confusion matrix of each experiment. The confu-
sion matrix for Autoencoder is representative for Profiles and ADAR, showing
similar results. The context-awareness generally improves the performance in
all case studies by improving the detection of context-sensitive deviating traces,
but not by detection of context-sensitive normal traces. With respect to context-
sensitive normal, the framework’s context-awareness has most of the time does
not correctly predict the context-sensitive normal traces (0 out of 9,194 + 9,389
+ 2,798 = 21,381 context-sensitive normal traces for Inductive and 83 out of
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6,306 + 11,173 + 83 + 3,678 = 21,240 traces for Autoencoder). With respect
to context-sensitive deviating, the framework’s context-awareness performs sig-
nificantly better for the context-sensitive deviating traces with 54,186 of 72,021
+ 36,952 + 0 + 54,187 = 163,160 correctly predicted traces (Inductive) and
with 47,951 of 50,485 + 60,529 + 452 + 47,951 = 159,417 correctly predicted
traces (Autoencoder).

(a) Inductive
(b) Autoencoder

Fig. 6. Confusion matrices summed over all 225 experiments of the respective context-
aware deviation detection method

8 Conclusion

In this paper, we proposed a framework to support context-aware deviation
detection. The proposed framework can incorporate any existing unsupervised
deviation detection methods with varying strengths and weaknesses and enhance
them with various contextual aspects. We have implemented the framework as
an extensible web service with a dedicated user interface. Moreover, we have
evaluated the effectiveness of the framework by conducting experiments using
representative deviation detection methods in different contextual scenarios.

This work has several limitations. First, the proposed framework introduces
several parameters that possibly affect the detection results, e.g., the negative
and positive degree of post function, the threshold of score function, etc. Sec-
ond, the framework is dependent on the performance of the deviation detection
method. Third, using an event log as the input, the framework only indirectly
measures external contexts.

Besides addressing the above limitations, in future work, we plan to extend
the framework to support the root cause analysis of context-aware deviations.
We can analyze the relevant context of context-aware deviating instances and
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trace back the relevant context measure, e.g., high workload. Moreover, we plan
to extend the framework to consider contexts of different time window lengths,
e.g., context in week, day, and hour. Another direction of future work is to
develop different post functions to improve the performance of the context-aware
deviations.
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Abstract. Prescriptive process monitoring approaches leverage histori-
cal data to prescribe runtime interventions that will likely prevent nega-
tive case outcomes or improve a process’s performance. A centerpiece of a
prescriptive process monitoring method is its intervention policy: a deci-
sion function determining if and when to trigger an intervention on an
ongoing case. Previous proposals in this field rely on intervention policies
that consider only the current state of a given case. These approaches
do not consider the tradeoff between triggering an intervention in the
current state, given the level of uncertainty of the underlying predic-
tive models, versus delaying the intervention to a later state. Moreover,
they assume that a resource is always available to perform an interven-
tion (infinite capacity). This paper addresses these gaps by introducing
a prescriptive process monitoring method that filters and ranks ongo-
ing cases based on prediction scores, prediction uncertainty, and causal
effect of the intervention, and triggers interventions to maximize a gain
function, considering the available resources. The proposal is evaluated
using a real-life event log. The results show that the proposed method
outperforms existing baselines regarding total gain.

Keywords: Prescriptive process monitoring · Causal inference ·
Uncertainty

1 Introduction

Prescriptive Process monitoring (PrPM) is a family of process mining meth-
ods that trigger runtime actions to optimize a process’s performance [6,14].
PrPM methods use event logs describing past business process executions to
train machine learning (ML) algorithms for two goals. First, the trained ML
models predict how an instance of the process (a.k.a. case) will unfold. For
example, whether the case leads to a positive outcome (e.g., a customer is satis-
fied) or a negative outcome (e.g., a customer launches a complaint) [20]. Second,
PrPM methods use ML to assess the effect of triggering an action (herein called
an intervention) on the probability of a negative outcome or a performance
measure.
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Recently, various PrPM methods have been proposed [2,6,14,18]. These
methods, however, implement intervention policies based on predictions of neg-
ative outcomes without considering the uncertainty of these predictions. Also,
they trigger an intervention when the predicted probability of a negative out-
come is above a threshold, without considering potential increases or decreases
in this predicted probability that may occur as the case unfolds further. Finally,
these methods do not consider the fact that there are limited resources available
to perform the recommended interventions.

In this paper, we address the following problem: Given a set of cases, and
given a type of intervention that generally decreases the likelihood of a negative
case outcome. How do we select the cases for which applying the intervention
(now or later) maximizes a gain function, considering the available resources to
perform interventions? Here, the gain function considers the tradeoff between
the cost of applying the intervention to a case and the cost of negative outcomes.

To address this problem, we first apply an ensemble-based predictive model
to estimate the negative outcome probability for each case, and we estimate
the associated uncertainty. Using a causal model, we then determine the causal
effect of applying an intervention on the negative outcome probability. We then
use the negative outcome probability, the uncertainty, and the estimated causal
effect and apply a filtering and ranking mechanism to identify cases for which
an intervention would be most profitable (highest gain). We also consider the
tradeoff (i.e., opportunity cost) between triggering an intervention in the current
state, given the level of uncertainty of the predictive model, versus postponing
the intervention to a later state. The paper reports an empirical evaluation
comparing the proposed approach against state-of-the-art baselines.

The following section motivates the proposed method. Section 3 then presents
background concepts and related work. Section 4 explains the proposed method,
while Sect. 5 discusses the empirical evaluation. Finally, Sect. 6 concludes and
discusses future work directions.

2 Motivating Example

In a loan origination process, a case starts when a customer submits his doc-
uments to obtain a loan. Then a process worker (or an employee) verifies the
submitted documents. When they are valid, the employee sends an offer to the
customer via different channels, such as phone calls or emails. This case ends pos-
itively when the customer accepts the offer and receives the loan, or negatively
when the customer declines the offer or the employee rejects the application.

The principal concern arises when cases end negatively, leading to less payoff.
One way to deal with this could be to predict negative cases based on prediction
scores. Then trigger an alarm to take a proactive action or an intervention, e.g.,
making a follow-up call, when the prediction score exceeds a certain threshold.

However, this strategy could be ineffective. Suppose an intervention policy
where interventions are triggered to cases that are likely to end negatively based
on low-quality prediction scores. Also, all employees are occupied and cannot
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immediately perform the intervention for all cases. Additionally, triggering inter-
ventions without considering their effect could be misleading since they may
provide low or negative impact when utilized.

A more proper method is to quantify the prediction uncertainty to estimate
how sure predictive models are with the prediction scores. Moreover, measuring
the causal effect of utilizing interventions and considering the availability of
resources. Another step that may enhance the overall payoff could be considering
the tradeoff between triggering interventions now versus postponing them for a
later state. In this paper, we discuss this method and evaluate its performance.

3 Background and Related Work

3.1 Predictive Process Monitoring

Predictive process monitoring (PPM) [12] is a complementary set of process
mining methods to predict how ongoing cases will end. A PPM technique may,
for instance, predict the remaining time for an ongoing case to be executed
entirely [22], the following action or activity to be executed [15], or the outcome
w.r.t group of outcomes, e.g., positive or negative [20]. This paper focuses on
the latter technique, known as an outcome-oriented PPM.

Recent outcome-oriented PPM methods estimate the prediction scores, i.e.,
probability of negative outcomes, for ongoing cases and classify them positively
or negatively. If the prediction scores exceed a threshold, e.g., above 0.5, the
ongoing case is considered more likely to end negatively.

However, outcome-oriented PPM methods focus only on making predictions
as accurate as possible, regardless of the quality of the predictions. These meth-
ods rely on several case bucketing techniques [4], e.g., a single bucket where cases
are made in the same bucket and train one ML algorithm instead of several. Also,
they rely on various feature encoding techniques [20] to map each case into a fea-
ture vector to train the ML algorithm. For instance, an aggregate encoding in
which all events from the beginning of the case are considered. Thus, several
aggregate functions may be used to the values an event has carried through-
out the case. Also, a handful of possible inter-case features are extracted [10]
to enrich the training of ML or deep learning (DL) algorithms [11]. Still, these
techniques aim to improve the performance of the prediction scores and ignore
quantifying the prediction quality via measuring prediction uncertainty.

To the best of our knowledge, only one work from the literature considers
estimating the model’s prediction uncertainty explicitly, tackling another PPM
task, i.e., remaining time [24]. They learn the prediction uncertainty with arti-
ficial neural networks and a Monte Carlo (MC) [7] dropout technique that is
unreliable for out-of-distribution data (i.e., where there is an input case from a
region very far from the trained data) and computationally expensive [1].

Metzger et al. [14] introduces an approach to measure the reliability of pre-
diction scores using an ensemble of DL classifiers at different process states. This
approach does not discuss the estimation of the prediction uncertainty ignoring
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the situation of out-of-distribution input. Moreover, where predictive models
provide several prediction scores for the same input, i.e., outcomes overlap.

3.2 Prescriptive Process Monitoring

Prescriptive process monitoring (PrPM) methods go beyond predictions to pre-
scribe runtime interventions to prevent or mitigate negative outcome effects.
These methods aim to improve the performance of business process executions
by determining if and when to trigger an intervention to maximize a payoff.

Diverse PrPM methods have been proposed. Metzger et al. [14] suggest using
ongoing cases prediction scores and their reliability estimate with a reinforcement
learning technique to discover when to trigger runtime interventions. Another
work by Fahrenkrog et al. [6] proposes triggering one or more alarms when cases
are more likely to end negatively, followed by an intervention.

Both the work of Metzger et al. and that of Fahrenkrog et al. identify cases
that need intervention. They assume that resources are unbounded and consider
only the current state of a given case to determine when to intervene. Instead,
we study the tradeoff between intervening now or later based on the current and
future prediction scores. Thus, we identify the most profitable case and assign
resources to it, considering that resources are limited.

Weinzerl et al. [23] suggest a PrPM method to recommend the next best
activity from a list of possible activities with a higher preference for a pre-defined
KPI. Khan et al. [11] introduce a memory-augmented neural net approach to
recommend the most suitable path (meaning a set of activities until the comple-
tion of the process) based on pre-specified KPIs. Both the work of Weinzerl et
al. and that of Khan et al. do not discuss an exact idea of interventions or when
to trigger them to maximize payoff.

3.3 Causal Inference

Causal Inference (CI) [25] is a set of methods to predict what would occur if we
adjust the process during its execution time by finding a cause-effect relationship
between two variables, i.e., an intervention (T ) and an outcome (Y).

CI methods mainly unfold into two categories [8]. The first category is struc-
tural causal models (SCMs), a multivariate statistical analysis method explor-
ing structural relationships between dependent and independent variables. It
depends mainly on discovering and building a causal graph by domain experts.

The second category is potential outcome frameworks (a.k.a., the Neyman-
Rubin Causal Model). A statistical analysis method that does not require a pre-
built causal graph like the SCMs and relies on the concept of potential outcomes.
We use this category in this paper to automatically estimate the causal effect (or
conditional average treatment effect (CATE)) of intervention on negative cases
instead of manually building causal graphs.

For example, in a loan-origination process, a customer would have a loan if he
received an intervention (T), e.g., a follow-up call three days after receiving the
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first offer; otherwise, he would have a different outcome (Y), e.g., offer declined.
Accordingly, to measure the CATE of having a follow-up call, we need to com-
pare Y for the same customer when receiving the follow-up call, i.e., T = 1, and
not receiving the follow-up call, i.e., T = 0.

Recent work uses the potential outcome method to estimate the CATE of
utilizing interventions. Specifically, in [2], the Authors introduce a PrPM tech-
nique to measure the effect of intervention at an individual case level to reduce
the cycle time of the process. It targets another PPM problem and considers
only one process execution state; it also assumes that resources are unbounded.

In our previous work [18], we propose a PrPM method that utilizes the
potential outcome method and a resource allocator technique in the outcome-
oriented PPM to allocate resources to cases with max gain. That work considers
only a given case’s current state and triggers interventions when the prediction
score and the causal effect exceed a threshold. However, we did not discuss the
tradeoff between triggering an intervention now, given the level of uncertainty
of the underlying predictive models versus later.

4 Approach

The proposed PrPM method consists of two main phases, training and testing,
see Fig. 1. In the training phase, we train two ML models, i.e., predictive and
causal. While in the testing phase, we present filtering and ranking techniques to
determine the most profitable case. Then, decide when to trigger an intervention
for the selected case to maximize a gain function-considering ongoing cases’
current and future state scores, uncertainty estimation, and resource availability.

4.1 Training Phase

We first prepare the process execution data; then, we construct an ensemble-
based predictive model to estimate the prediction scores, i.e., the probability of
cases likely to end negatively and quantify the prediction uncertainty. Further,
we build a causal model to estimate the CATE.

Event Log Preprocessing. This step is vital for PPM or PrPM tasks. In
PPM, it includes data cleaning, prefix extraction, and prefix encoding see Fig. 2.
These steps have been discussed in Teinemaa et al. [20], and we follow their
suggestions here. We first pre-process the log to dismiss incomplete cases and
then extract length k from every case that results in a so-called prefix log. This
prefix extraction ensures that our training data is equivalent to the testing data.
Finally, we encode each trace prefix into a feature vector (X) to train the pre-
dictive ensemble model, see Fig. 2.

While in PrPM, one further step is needed to analyze and understand the
data and the business objective to identify an intervention T that could positively
impact an outcome Y . Moreover, determining what other variables (W : a.k.a.
confounders) affect the intervention and outcome.
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Ensemble Model. We construct an outcome-oriented predictive model (a clas-
sification problem from an ML perspective) via ensemble learning [5], as shown in
Fig. 2. The principal assumption of ensemble learning is constructing one robust
predictive model from several weak ones. Accordingly, the overall prediction
scores performance would be superior where overfitting and the chance of get-
ting a local minimum are avoided, which has two advantages to our work. First,
it ensures that we will accurately predict the probability of negative outcomes,
i.e., the prediction score. Second, it allows estimating the prediction uncertainty.

A single classifier in the ensemble is a probabilistic model clsi : f(X,Puouti).
X is the input feature vector, and the Puouti is the estimated probability of cases
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likely to end with negative outcomes where i ∈ {1,m}, and m is the number of
classifiers in the ensemble. We then define the prediction score as the average of
individual classifiers’ prediction scores (avgpred), as shown in Eq. 1. The following
step is to estimate the prediction uncertainty.

avgpred =
∑m

i=1 Puouti

m
(1)

There are two sources of uncertainties where predictive models become unsure
about predictions [9]. The first source is data (or aleatoric) uncertainty (σ). It is
a property of the distribution that generates cases, and it occurs when outcomes
overlap or there is noise in the underlying data distribution. The second source
is knowledge (or epistemic) uncertainty (ρ). It is a property of the predictive
model’s learning parameters and arises due to a lack of model knowledge. It
appears when there is out-of-distribution input. Both sources form the prediction
uncertainty, i.e., total uncertainty (totaluncer), see Eq. 2.

totaluncer = σ + ρ (2)

The proper level of σ is defined as entropy of the actual underlying data
distribution [13]. Here, the entropy is the average level of surprise or uncertainty
inherent in the possible outcomes. It is calculated for a random variable S with
c in C discrete states, see Eq. 3, where P (c) is the probability of c to occur.

Entropy(S) = −
∑

c∈C

P (c) log(P (c) (3)

However, we do not have access to the actual underlying data distribution,
but our model is probabilistic and is trained on this data. So measuring the
entropy of our probabilistic model, i.e., trained using negative log-likelihood, esti-
mates the level of σ. In particular, we obtain a distribution over outcome labels
from individual classifiers in the ensemble for a given case, and σ is the average
entropy of the individual prediction scores, as shown in Eq. 4.

σ =
∑m

i=1 Entropy(Puouti)
m

(4)

Furthermore, we rely on the Bayes rule [19] to estimate the ρ [13]. Assume
we obtain a posterior over model parameters that give us the distribution over
likely models that have generated the data. Accordingly, models sampled from
the obtained distribution agree on data they have seen and provide similar pre-
dictions, indicating low ρ. However, if the models do not understand the input,
they provide diverse predictions and strongly disagree, indicating high ρ. Thus, ρ
is the mutual information between the models’ parameters and the predictions.

Similarly, the total uncertainty is the entropy of the average prediction, see
Eq. 5. To exemplify the estimation of the prediction uncertainty (totaluncer),
suppose we show the ensemble of classifiers several kinds of input. (1) We give
input that all classifiers understand and yield the exact prediction scores. Conse-
quently, classifiers are confident about their prediction scores, and the totaluncer
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is minimum. (2) We show input that all classifiers understand and generate iden-
tical predictions but high entropy distribution over outcomes; then, classifiers are
uncertain with high σ. (3) We show the ensemble something none of the clas-
sifiers understand; hence, all classifiers yield different prediction scores because
the input comes from a very far region from the training data. Thus, the ensem-
ble is very diverse with high entropy because we average various probability
distributions together, then classifiers are uncertain with high ρ.

totaluncer = Entropy(avgpred) (5)

In addition to the ensemble model that estimates avgpred and totaluncer in the
training phase, we train a causal model to measure the CATE. In particular, we
utilize an orthogonal random forest (ORF) algorithm because it reasonably deals
with high-dimensional variable spaces. Thus, it is beneficial since the process
execution logs have numerous event attributes with categorical values.

Estimating the CATE means we evaluate the difference between the prob-
ability of a negative outcome if we intervene and if we do not intervene. The
higher the differences, the stronger the effect of the intervention. For explana-
tion, we recall the motivating example in Sect. 2, where the goal was to improve
the performance of a loan origination process by raising the number of success-
ful applications. Accordingly, we would give customers who are likely to decline
the first offer another offer in a way that affects the probability of declining the
first offer positively. Then we estimate what would happen for the probability of
negative outcome when we send customers a second offer and when we do not.

4.2 Testing Phase

We first use the trained ensemble and causal models to obtain avgpred, totaluncer,
and CATE scores for ongoing cases. Then, we use these scores to filter ongoing
cases into candidate ones and rank them to choose the most profitable case to
maximize a gain function. We consider that resources are bounded and compare
ongoing cases’ current and future state scores.

Filtering. At run time, new events of ongoing cases keep coming continuously,
and we first collate them via a prefix collator to accumulate the sequence of
events. Thus, at any point in time, we could have one or multiple ongoing cases
that we choose from which one is the most profitable to trigger the intervention.
Hence, ongoing cases need to be filtered to minimize the search space.

We use avgpred, totaluncer, and CATE scores to filter ongoing cases into can-
didate ones. The essence of these scores varies from one to another. The avgpred
gives information about whether ongoing cases are likely to end negatively or
not. At the same time, the totaluncer shows how sure the model is with its pre-
dictions. It ranges from 0 to 1, where the predictive model is entirely certain or
uncertain, respectively. Moreover, the CATE is crucial to any PrPM technique,
representing the expected impact of utilizing intervention on an ongoing case,
e.g., when CATE is above 0, it impacts positively.
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All the above mentioned scores (avgproba, totaluncer, CATE) are vital to
determining candidate cases from which we will choose the most profitable.
However, there are two other critical aspects to determine when to intervene
and to define the most profitable case; how the estimated scores will change in
the following state and whether resources are available or not.

Future State Scores Estimation. Considering only the current state scores
of ongoing cases regardless of investigating what would occur in the future could
be misleading. Because if we decide not to intervene, maybe it will be more
effective to achieve higher gain when we utilize the intervention later than now,
or we will be more sure about the prediction of the outcome and decide not to
intervene at all. So, discovering what will happen in the future of ongoing cases
allows deciding whether to intervene now or later.

To estimate what will happen in the future state, we predict the avgpred,
CATE, and totaluncer in the future. So for each score, we will have two values:
one representing the current state (c_avgpred, c_CATE, c_totaluncer) and the
other representing the future (f_avgpred, f_CATE, f_totaluncer). We follow a
technique inspired by the k-nearest neighbors (KNN) [16] algorithm to get scores
representing the future state, given the degree of similarity and frequency.

We look at previous cases similar to the ongoing one at the next prefix. For
example, in a given case at prefix 4, we want to know what will happen at prefix 5.
Then, we capture similar prefixes and define an aggregate score, i.e., the weighted
average. We consider the degree of similarity using Euclidean distance to the
current prefix, their frequency because higher frequency means more weight and
the scores for all similar prefixes. Accordingly, scores representing the future
state (f_avgpred, f_CATE, f_totaluncer) of ongoing cases are the weighted
average from similar previous prefixes. The next step is to use current and future
estimates to rank candidate cases and select the most profitable.

Rank and Retrieve the Best Case. To define the most profitable case, we
first distinguish between gain and adjusted gain. The gain is the benefits we
attain at one state only, either current or future, and it means we estimate
two gains, one for the current state (c_gain) and the other for the future state
(f_gain). In contrast, the adjusted gain (adjgain) is the benefits we attain con-
sidering current and future states. We use the adjgain as a decision function to
determine whether to intervene now or later.

Triggering interventions may come with benefits and, at the same time, comes
at a cost. The costs can vary from one process to another. However, for a given
case cid, there is generally a cost for applying the intervention (cost(cid, Ti=1)))
when T = 1 and not applying the intervention (cost(cid, Ti=0)) when T = 0.

The cost of not applying the intervention describes how much we lose if the
negative outcome occurs, and it relies on the avgpred and cost of negative out-
comes (cuout), as shown in Eq. 6. In contrast, the cost of utilizing the intervention
refers to how much we decrease the probability of negative outcomes considering
the intervention cost (cT1), see Eq. 7, which assumes CATE is reliable. Costs are
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mainly identified via domain knowledge; however, we assume that the cT1 is less
than the cuout to obtain meaningful results.

cost(cid, Ti=0) = avgpred ∗ cuout (6)

cost(cid, Ti=1) = (avgpred − CATE1) ∗ cuout + cT1 (7)

The corresponding gain (gain(cid, Ti=1)) from utilizing the intervention on
cid is the benefits that allow the highest cost reduction in Eq. 8

gain(cid, Ti=1) = cost(cid, T0) − cost(cid, Ti=1) (8)

We estimate the current state gain (c_gain(cid, Ti=1)) using scores from the
ensemble and causal models, see Eq. 9. In contrast, the gain for the future state
(f_gain(cid, Ti=1)) is based on the weighted average scores from previous similar
prefixes, see Eq. 10.

c_gain(cid, Ti=1) = c_cost(cid, T0) − c_cost(cid, Ti=1) (9)

f_gain(cid, Ti=1) = f_cost(cid, T0) − f_cost(cid, Ti=1) (10)

Determining the gain for candidate cases’ current and future states is vital
to define the adjusted gain. To explain the adjusted gain, we first define an
opportunity cost that measures what we lose when choosing between two or more
alternatives-for example, utilizing the intervention now or later. The opportunity
cost (oppcost) is the difference between the gain we could achieve in the future
state of a given case and the gain in the current state, as shown in Eq. 11.

oppcost = f_gain(cid, Ti=1) − c_gain(cid, Ti=1) (11)

Given the opportunity cost, we define the adjusted gain as the payoff (or
gain) we acquire from utilizing the intervention on candidate cases considering
current and future states. It is the difference between the c_gain(cid, Ti=1) and
the oppcost, as shown in Eq. 12. Thus, we define the most profitable case as the
one with the highest adjgain, which means the lowest oppcost.

adjgain = c_gain(cid, Ti=1) − oppcost (12)

For example, suppose we filtered ongoing cases into three candidates (see
Table 1) eligible for the intervention. Also, there is an available resource to do
the intervention; we need to choose which one is more suitable to intervene now
or later. If we consider only the gain from the current state, we assign resources
to cid = A and treat it now. However, If we think about the gain from the future
state, we observe that later we can achieve more gain if we do not intervene and
previously assigned resources to cid = A inaccurately. Hence, it is more beneficial
to allocate resources to cid = B and apply the intervention now since we might
lose current gain later. Thus, using the adjusted gain to decide when to intervene
could enhance the performance of PrPM.

Selecting the best or most profitable case can be judged efficiently based on
the adjusted gain to maximize the total gain. However, triggering interventions
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Table 1. An example of defining gain.

cid c_gain(cid, Ti=1) f_gain(cid, Ti=1) oppcost Adju Decision

A 7 12 5 3 Wait
B 5 1 −4 9 Treat
C 3 3 0 3 Neutral

as often as we want and immediately is impossible since resources are bounded
in practice, which is the last aspect we need to consider.

Resource Allocator. Monitoring resources and assigning them to cases that
need intervention is critical. The resource allocator checks the availability of
resources. Once the most profitable case is selected and a free resource is avail-
able, we assign that resource to the selected case and block it for a certain
time, i.e., treatment duration (Tdur). The number of available resources and the
time required to perform the intervention could be identified via domain knowl-
edge [18].

5 Evaluation

To verify the effectiveness and relevance of the proposed method, we experi-
mentally investigate whether we can learn when to trigger an intervention to
maximize the total gain at the run time, considering the tradeoff between inter-
vening now or later. We compare our results to baselines that consider either
predictive models without quantifying the prediction uncertainty [6,14] or only
the current case’s execution state scores [2,18] as state-of-the-art baselines by
addressing the following research questions:

RQ1. To what extent does taking into account the current uncertainty predic-
tion enhance the total gain?

RQ2. To what extent does taking into account the derivative of the uncertainty
prediction and the adjusted gain enhance the total gain?

5.1 Dataset

We use a real-life event log, named BPIC2017 1, publicly available from the
4TU.ResearchData. The log describes the execution of a loan origination process,
and we choose this log for several reasons. First, it contains a clear notion for
outcome definition and interventions utilized to show our method’s efficiency.
Second, this log contains 31, 413 applications and 1, 202, 267 events, which is
large enough and frequently used for predictive and prescriptive methods.

1 https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b.

https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
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The BPIC2017 log is characterized by various case and event attributes,
and we include all of them in our experiments. Additionally, we extracted other
essential critical features in our work, such as the number of sent offers, event
number, and additional temporal features.

We used all original and extracted attributes as input for ensemble and
causal models in the preprocessing step. Then we defined case outcomes based
on the end state of cases, i.e., “A_Pending” state means positive outcome and
“A_canceled or A_Denied” means negative outcome. After that, we defined the
intervention that positively impacts the negative outcome as sending a second
offer (or “Creat_Offer” activity) to all customers who received only one offer.
Accordingly, we denoted cases with T = 1 based on the number of offers sent to
each, i.e., cases that receive only one offer. Then, we extracted length prefixes
no more than the 90th percentile for each case to avoid bias from lengthy cases.
Finally, we used an aggregate encoding to encode the extracted prefixes.

5.2 Experimental Setup

The experiments show our method’s effectiveness during operation time with two
main objectives: deciding when to intervene, either now or later, and selecting
the most profitable case among all candidates to maximize the total gain.

We adapted an ensemble model based on a Gradient Boosting Decision Tree
(GBDT) method to estimate the avgpred and totaluncer. In particular, we used
Catboost [17], an open-source GBDT library with several tools to quantify the
prediction uncertainty and automatically handle categorical features.

Catboost is trained with a negative log-likelihood loss and Langevin optimiza-
tion [21] to ensure global conversion instead of a local optimum and generate
an ensemble of several independent GBDT. Additionally, we used the follow-
ing parameters during training: ensemble size of 50, a learning rate of 0.05, a
subsample of 0.82, and a max tree depth of 12.

Catboost returns a probability distribution over the case outcomes. This
distribution is based on a given model version, i.e., on the seed used to initialize
the model parameters before training. So we train the same model using different
seed initialization and evaluating these models on the same input to obtain
the avgpred and its totaluncer. We use an ORF algorithm implemented in the
EconMl2 to train a causal model to estimate the CATE.

We follow the machine learning workflow to train both ensemble and causal
models. We temporally split the data into training (60%), validation (20% ), and
testing (20%) sets. Training and validation sets are used to train and tune model
parameters, while the testing set is used to evaluate the model’s performance.

During the testing time, we follow the configurations shown in Table 2. First,
ongoing cases are filtered into candidates. We filter cases based on the estimated
probability of avgpred >0.5 to ensure that cases are highly probable to end
negatively and CATE >0 to guarantee that intervention has a positive impact.

2 https://github.com/microsoft/EconML.

https://github.com/microsoft/EconML


When to Intervene? A PrPM Method 219

Table 2. Parameter settings of the introduced method

avgproba CATE totaluncer Δtotaluncer #Resources cuout cT1 Tdur (sec)

>0.5 >0 < 0.25, 0.5, 0.75 < 0, −0.5, −0.1, −0.15, −0.2, −0.25, −0.3 1, 2, ...10 20 1 Fixed = 60 Normal ∈ {1, 60} Exponential ∈ {1, 60}

Additionally, we filter cases using the totaluncer to see how sure the predictive
model is with the predictions. The estimated totaluncer ranges from 0, where the
model is certain, to 1, which is entirely uncertain. We experiment with three
thresholds (see Table 2) when considering only the current state of cases.

On the other hand, we use the oppcoast or adjgain when we consider both
current and future states of ongoing cases. At the same time, with and without
a derivative of the total uncertainty (Δtotaluncer), representing the difference
between c_totaluncer and f_totaluncer. Accordingly, we filter cases based on
the c_avgpred and c_CATE and then select the case with the highest adjgain
with and without Δtotaluncer when it is below 0 or negative values (see Table 2),
which means the predictive model becomes more uncertain in the future state.

5.3 Results

We show results here based on one Tdur distribution, i.e., fixed. Since the nor-
mal distribution achieves similar results to the fixed in terms of the total gain
and is higher than the exponential distribution as the variability is higher in the
latter. Also, we observed that the behavior for different thresholds for totaluncer
and Δtotaluncer is the same, i.e. when we lower the threshold, fewer cases are
treated with no substantial effect on the total gain per case. Hence, we present
results using one threshold, i.e., the higher value for totaluncer < 0.75 and
Δtotaluncer < 0. However, The full results of experimenting with all thresholds
and Tdur distributions are available in supplementary material3.

To discuss RQ1, we consider only the current state scores of ongoing cases.
Then, examine how the total gain evolves when adding the current prediction
uncertainty (c_totaluncer) to the filtering step. Besides the estimated predic-
tion score (c_avgproba ) and the causal effect (c_CATE). We compare this to
baselines shown in [3,18], where only the avgproba and CATE are set, see Fig. 3a.

The results in Fig. 3a explain that adding the current prediction uncertainty
improves the total gain when the available resources exceed 80%. Also, the base-
line treats more cases with less total gain (as shown in the supplementary (see
Footnote 3)). In contrast, adding the current prediction uncertainty allows effi-
cient allocation of resources since fewer cases are treated but with a higher total
gain than the baseline. Because considering the current prediction uncertainty
does not trigger the intervention until the predictive model becomes more sure
about its predictions and achieves higher total gain.

3 https://zenodo.org/record/6381445#.YjwaFfexWuA.

https://zenodo.org/record/6381445#.YjwaFfexWuA
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Fig. 3. The total gain progress under the same number of available resources.

Turning to discuss RQ2, we consider two states’ scores of ongoing cases, i.e.,
current and future, to estimate the oppcost and the adjgain and their impacts
on the total gain. Hence, we decide when to intervene and allocate the available
resources to ongoing cases based on two things: first, cases with the maximum
adjgain only, and second, cases with the maximum adjgain and the Δtotaluncer <
0. We compare this method to the baseline in RQ1 and consider the current
prediction uncertainty only, see Fig. 3b.

The results in Fig. 3b show that the total gain is highly affected by the
trade off of current and future state scores under the same quantity of con-
sumed resources. The proposed method achieves a significant improvement in
terms of the total gain and outperforms the baselines (cf. Fig 3a). We found
that considering the adjgain as a decision function to determine when to inter-
vene is more efficient than considering it with the Δtotaluncer. Still, considering
the derivative of the prediction uncertainty could achieve a higher gain when
the available resources are below 10%. Because when the number of available
resources increases, more cases are treated without ensuring that the totaluncer
is sufficient.

The proposed PrPM method results in Fig. 3 demonstrate a higher total
gain than the baselines. Accordingly, estimating the prediction uncertainty of
the underlying predictive model and analyzing the tradeoff between triggering
an intervention now versus later based on the adjusted gain and the opportunity
cost can optimize the performance of PrPM methods, hence, business processes.
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5.4 Threats to Validity

Our method’s evaluation has an external validity threat (lack of generalizability)
because of its dependence on only one dataset. Accordingly, the evaluation is
vague and needs more experiments using other logs to be followed up.

We assume that CATE is accurate and will reduce the probability of negative
outcomes. Also, the intervention will be triggered only once for each ongoing
case. Accordingly, there is a threat to ecological reality where cases may be
treated more than once via multiple interventions. Moreover, the CATE may
not represent the natural causal effect because of unobserved confounders.

The experiments’ setup used one feature encoding technique and did not dis-
cuss the selection bias of the causal model due to variables that affect both the
outcome and the intervention. Utilizing other encoding and selection bias tech-
niques is a hint for future work to improve the performance of PrPM methods.

6 Conclusion and Future Work

We presented a prescriptive monitoring method to determine if and when an
intervention should be triggered on ongoing cases to maximize a gain function.
The method leverages an ensemble model to estimate the probability of negative
case outcomes and the associated prediction uncertainty. They are combined
with a causal model to assess the effect of an intervention on the case outcome.
These estimates and a filtering and ranking method are embedded in a resource
allocator. It assigns resources to perform interventions to maximize total gain,
considering the tradeoff between intervening now or later. An initial evaluation
shows that taking into account the possible future states of ongoing cases and
the level of prediction uncertainty leads to a higher gain than baselines that rely
only on the current state of each case.

The proposed prescriptive method does not include constraints on when an
intervention may be triggered. In practice, it is often not possible to trigger an
intervention at any point in a case. For example, sending a second loan offer
to a customer who has already accepted an offer at another bank is counter-
productive. A direction for future work is to extend the approach with temporal
rules on the interventions and consider these rules in the intervention policy.

The proposed method is limited to handling one type of intervention. Also,
an intervention is applied at most once to a case. Lifting these restrictions is
another direction for future work.

Reproducibility. The implementation and source code of the method, together
with instructions to reproduce the evaluation, can be found at: https://github.com/
mshoush/prescriptive-monitoring-uncertainty.
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