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Abstract Mycorrhizae are essential for the acquisition of phosphorus (P) and are
critical in the acquisition of nutrients that are not readily available to plants. Soil P
can be classified into organic and inorganic P. Plant nutrient uptake occurs in
two ways: the acquisition by root epidermis and root hairs, which is the direct root
absorption method; and mycorrhizal association. Arbuscular mycorrhizal fungi are
rhizosphere microorganism that are widely distributed in nature and have important
ecological functions. Arbuscular mycorrhizal fungi form a symbiosis with vascular
plant roots. Arbuscular mycorrhizal fungi provides plants with essential nutrients
including P and nitrogen, and at the same time obtains the required carbon from the
plant root system. This chapter presents the mechanisms of arbuscular mycorrhizal
fungi for the acquisition of P and promoting plant growth.
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Abbreviations

Ca Calcium

8.1 Introduction
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AMF Arbuscular mycorrhizal fungi

K Potassium
N Nitrogen
P Phosphorus
Pi Inorganic phosphate
Zn Zinc

Phosphorus (P) is a crucial macronutrient in the ecosystem, and essential for plants
(Khan et al. 2017; Iqbal et al. 2019a). The P in the soil that can be absorbed and
utilized by plants is called soil available P (Amanullah et al. 2019; Iqbal et al.
2019b). Many soils are deficient in P in a form usable by plants. As a result, P-based
fertilizers are often used for increasing agricultural output and to feed the world’s
rising population (Richardson 2001; Richardson et al. 2009). Since the soil has a
strong adsorption and fixation effect on P, the applied phosphate fertilizer can soon
be fixed by the soil, resulting in lower soil available P content, and soil P stress
greatly limits productivity (Richardson et al. 2009; Anwar et al. 2017). As a result,
this deposit of P in the soil, commonly known as “fixation,” increases the input cost
of phosphate fertilizer for producers, but it also brings environmental threats.

The use of manure-based fertilizers or organic fertilizers is not usually encour-
aged due to their cost, insufficient supply, and limited effectiveness in broad-scale
agricultural production. It is important to replace the P extracted by crops with a
sufficient P supply available to plants to make the farming system sustainable. As a
consequence, there is a buildup of net P in the soil, (Burkitt et al. 2007; Richardson
et al. 2009; Riaz et al. 2020), and a large portion of it remains in the soil. Therefore,
more in-depth knowledge of the methods by which plants may access soil P and/or
alter the quantity of P in the soil is also desired. The arbuscular mycorrhizal fungi are
considered an efficient strategy to supply P to plants in order to sus

8.2 Soil Phosphorus and Acquisition by Plant Roots

Phosphorus is acquired by plants as inorganic phosphate (Pi, H PO -, HPO 2-
2 4 4 , or

PO 3-
4 ) via the roots (Fig. ) (Plassard and Dell ). Unfortunately, P supply is

limited due to the poor diffusion rates of Pi (Shen et al. ), and aluminum
hydroxides and iron adsorb this P to calcium (Ca) in alkaline soil with different

2011
20108.1

tain agricultural
production under P deficient/stress conditions (Riaz et al. 2020).



present in the soil in a different environment (Lambers et al. . Furthermore, the2015)

mainly composed of monoesters (up to 90%), of which the concentration of diesters,
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Fig. 8.1 Phosphorus cycle illustration, sources, and plant uptake

solubility (Prietzel et al. 2016), and some of them are bonded to organic matter

amount of P that enters the soil by deposition is quite low. Thus, changes in P
availability are caused by weathering and P utilization in soils throughout the
geological aging process (Turner and Condron 2013). As a consequence, the quan-
tity of P available differs dramatically in various soils (Lang et al. 2016).

Most of the soil has a large amount of accumulated P (Amanullah et al. 2016a).
The total amount of P in the soil is made up of both organic and inorganic sources.
However, only a few plants can access this P (usually 1%). Most of the inorganic P is
absorbed by soil components, including clay, sesquioxide, and organic matter, or
appears in the form of precipitation of the mineral P (Amanullah et al. 2016b).
Organic P accounts for at least 30% to as much as 80% of the total P in the soil. It is

teichoic acid, and phosphonates are small (Condron et al. 1990). It was found that
monoester P is mainly a cationic derivative of phytate (mainly oxalate), and a small
part (5%) exists as sugar phosphate and diester P (phospholipids and nucleic acids).



orthophosphate by soil organic and inorganic P (Riaz et al. 2020).

The factors that affect the accumulation and transformation of several kinds of
organic and inorganic P in the soil are intricate and are exaggerated by numerous
challenging courses. The desorption or dissolution of inorganic P from the reservoir
of total soil P is required, as is the mineralization of organic P, in order to release
ortho-P into the soil solution and make inorganic P more readily available for plant
uptake (Amanullah et al. 2021). However, the proportional role of organic P in
supplying ortho-P for plant uptake and mobilizing P directly from soil mineral
components remains unidentified (Frossard et al. 2000).

Plant roots uptake P in orthophosphate anions from the soil solution, and are
absorbed by P transporters in the roots. The concentration of ortho-P (usually 5 μM)
in the soil solution is very low in the majority of soils, and the soil solution P must be
quickly replenished from other soil P pools. Therefore, the shortage of P in plants is
caused by a low concentration of ortho-P in the soil solution, a slow rate of P
diffusion in the soil, and a limited potential for P replenishment in the soil solution
(Conyers and Moody 2009). The concentration of ortho-P in the soil solution is
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influenced by a variety of physical and chemical parameters (Conyers and Moody
2009). P absorbed by plants from soil is dependent not only on the diffusion rate of
orthophosphate into the roots (Barber 1995) but also on the growth of the root
system, which will allow it to intercept additional sources of P. The low P diffusion
from soil to root fundamentally reduces P absorption and inhibits plant growth
(Silberbush and Barber 1983; Tinker and Nye 2000). As a result, the application
of phosphate fertilizer is beneficial to plant growth by increasing the diffusion rate of
P to roots and promoting the development of roots in unexploited soil (Wissuwa
2003).

The maximum concentration of plant-available P is typically present in the
0–0.10 m surface layer of the soil profile. In a study on traits related to the absorption
of more P by wheat, it was found that the density of root length in the topsoil was the
most significant P absorption attribute. Furthermore, since the majority of the P is
found in the topsoil, drying this layer will impair the absorption of P, resulting in
“nutrient deficiency”. However, when it comes to relatively fixed nutrients in the soil
(such as P) and plants competing for the same nutrient, the situation is different, and
root proliferation may be the most effective way to develop nutrient-rich patches.

8.2.1 Microorganism in the Acquisition of Phosphorus

Microorganisms mediate the supply of P to plants by a number of methods, includ-
ing direct root expansion (Mycorrhizal association), and increased mobilization of

A significant
quantity of fixed P assets is also present in the microbial biomass, which, according
to estimates, contributes to about 5% of the total P in the soil. Microorganisms can
easily immobilize P from soil solutions and fertilizers, but they often release large
amounts of P back into the soil in the form of orthophosphate or organic forms that
are readily mineralized are examples of such substances, which may be utilized by



very fast, and P turnover may occur regardless of the size of the microbial pool.

contrast, the unique relationship between roots and mycorrhizal fungi and their role

are just a few of the initiatives (López-Arredondo et al. ). AMF inoculation2014
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the plant (Oberson and Joner 2005). The P turnover rate in biomass of microbes is

Higher turnover rates were reported in unfertilized soils containing organic inputs,
particularly soils that have received readily accessible carbon e.g., glucose. This
means that the ability of microorganisms that supply P to plants in the root zone has
been significantly improved.

In the rhizosphere, a significant quantity of metabolizable carbon originates from
plant roots (Kouno et al. 2002). A variety of bacteria and fungi has been discovered
that soil microbes can mineralize organic P and dissolve precipitated inorganic
P. These bacteria and fungi have the potential to offer significant pathways for the
release of P from different soil P pools. Related microbes have been isolated and
utilized as inoculants in the industrial setting in a few instances. Further understand-
ing of rhizosphere microorganisms and their contribution to plant P nutrition is
essential (Chen et al. 2002). Although the content of organic and inorganic P in the
root zone is significantly reduced, when compared to plant systems, the proportional
involvement of microbes in these activities is still unclear (George et al. 2002). In

in plant P uptake has been widely known. Mycorrhizal fungi form an interrelation-
ship with most plant species.

Arbuscular mycorrhizal fungi (AMF) are very beneficial to several plant species.
The main advantage of mycorrhizal interaction for the absorption of P and a number
of other nutrients is that it has the potential to enhance the surface area of plant roots,
which can extract a larger volume of soil (Fig. 8.2). Mycorrhizae have the potential
to improve the use of organic P and use of nutrient-rich regions (Riaz et al. 2020).
Because P is a macronutrient, it involves a significant effect on productivity
(Becquer et al. 2014). Even if inorganic P concentrations are low in the soil, plants
have limited ability to use it. Plants have evolved a number of strategies for dealing
with the P shortages in their environment, including strengthening the soil-root
interaction to boost P transport and establish a symbiotic partnership with AMF

seems to boost nitrogen (N) and P absorption, which results in greater plant
development and growth (Balliu et al. 2015). According to Garcés-Ruiz et al.
(2017) and Begum et al. (2019), P absorption in the AMF inoculation maize was
much improved than in control treatments. AMF has been revealed to improve
seedling weight in Leymuschinensis by increasing, intercellular CO2, contents of
water and N, and P (Lin et al. 2018). It is believed that AMF inoculation speeds up
the uptake and transfer of nutrients specifically P (Zarei et al. 2006; Clausing and
Polle 2020). The present data support the notion that the management of P uptake by
mycorrhizal interaction is critical for the provision of root P. Dalla Costa et al. (2021)
confirmed that AMF significantly increased the nutrient use efficiency of apples. The
inoculation ofG. albidawith acerola cherry enhanced the nutrient use efficiency of P
(Balota et al. 2011), while nutrient use efficiency of N, P, and potassium (K) was
reduced in olive trees after Funneliformis mosseae was introduced (Porras-Soriano
et al. 2009). So, the AMF affects the nutrient use efficiency of woody plant species as
well. A significant increase in nutrient use efficiency in mycorrhizal plants was seen



in plants growing in the presence of Acaulospora morrowiae and Gigaspora albida
in the absence of 50% P. When growing under carbon-limiting circumstances, the
buildup of P on AMF hyphae might be ninefold more than on the roots (Hammer
et al. 2011). P was improved if shoot of non-mycorrhizal plants by threefold in
relation to mycorrhizal plants, demonstrating that AMF enhances nutrient acquisi-
tion underneath restrictive P soil conditions and control the delivery of P to plant
metabolism within narrow boundaries (Nazeri et al. 2014). As a result of the
increased nutrient use efficiency due to AMF inoculation, the requirement for
fertilization is reduced, which has an influence on both production costs and
environmental pollution.

Due to low soil nutrient levels, AMF is also believed to have a significant role in
plant P nutrients in other low-P input systems (Ryan et al. 2000). Different plants
depend on mycorrhizal infection to varying degrees, and the P status of the plant as
well as the availability of P in the soil influence the degree of infection of the host. In
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Fig. 8.2 Plant growth difference between mycorrhizal and nonmycorrhizal plants



agricultural systems with large amounts of accessible soil P for plants, the plants’
need for mycorrhizal infections is also substantially decreased. When the mycorrhi-
zal plant has almost no nutritional benefit in the absorption of P, AMF (although it is
widely referred to as a beneficial symbiont) can harm the growth of the plant by
consuming host carbon (Ryan et al. 2000). In the colder subtropical crop growing
areas of northeastern Australia, where the input of phosphate fertilizer is low, to
obtain sufficient nutrients for various crops, high levels of AMF colonization are
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often required.

8.2.2 Role of Arbuscular Mycorrhizal Fungi
in the Acquisition of Phosphorus

The improvement of P efficiency is essential to encourage plant development, crop
yields, and decrease the environmental pollution. The soil microbial resources can
efficiently relieve P stress in the soil environment (Cibichakravarthy et al. 2015),
among which AMF can improve the absorption of P, by the mycorrhizal plant via
infecting plant roots which then increase the nutritional status of plants, promote
their growth and development, and increase stress resistance (Table (Xie et al.

AMF forms a mutually beneficial symbiotic partnership with most plants in2014).
8.1)

more than 80% of terrestrial plant roots (Hooker et al. 1992; Sharif and Claassen
2011; Manaut et al. 2015). In the soil, AMF combines with plant roots to form
mycorrhiza, which can form a dense mycelial network system, which has an impact
on the morphological structure, physiology, and cell level of mycorrhizal plants,
which improve plant water metabolism and nutritional status and increase plant
stress resistance (Liu et al. 2014), among which AMF improves the absorption and
utilization of P by plants, which has attracted the attention of many researchers
(Chen et al. 2017).

AMF help mycorrhizal plants in absorbing P in the soil, and plants provide some
products of photosynthesis to help the growth and development of AMF, that is,
AMF and plants form arbuscular branches in the mycorrhizal symbiosis (Fig. 8.3)
(Smith et al. 2011; Smith and Smith 2011). Rice, in a symbiotic relationship with
AMF, absorbs more than 70% of the P available (Yang et al. 2012). As the amount of
P present in the soil rises, the efficacy of the AMF symbiosis and P translocation
diminishes as well (Miao et al. 2009). Compared with plant roots, AM fungi increase
the root surface area of plants and increase the absorption area of nutrients, which
ultimately promotes plant growth (Sharif and Claassen 2011). The capacity of
mycorrhizal plants to absorb and use P is considerably greater than that of
non-mycorrhizal plants, and this difference is substantial (Cui et al. 2019). AMF
stimulates the roots of the mycorrhizal plant to produce acid phosphatase and
organic acids, activates some insoluble P, and improves plant P acquisition. For
example, polyphosphate can be utilized by florae through the transformation of
polyphosphatase, which can alleviate the deprivation of P in the rhizosphere of
plants.
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Table 8.1 Arbuscular mycorrhizal fungi in the uptake of phosphorus under different stress
conditions

Serial
number

Arbuscular mycorrhizal
fungi Plant type

Stress
condition Effect References

1 Rhizophagus
irregularis

Zea mays Low
phosphorus

Larger root hair and AMF
inoculation increased P
uptake

Ma et al.
(2021)

2 Rhizolive consortium Picholine
Marocaine

Nutrient
deficiency
and
Verticillium
wilt

AMF increased Ca, K,
Na, and P uptake

Boutaja
et al.
(2020)

3 Claroideoglomus
etunicatum,
Rhizophagus
intraradices,
Funneliformis mossea

Glycine
max

P- depriva-
tion under
field
conditions

AMF enhanced the soy-
bean growth under P
deficient condition

Adeyemi
et al.
(2021)

4 Glomus species Zea mays Regulation
of P and Zn

AMF increased plant
growth parameters

Saboor
et al.
(2021)

5 Glomus intraradices (Fenugreek) Drought
stress

AMF showed good effect
on diosgenin content and
has significant effect on P
uptake

Irankhah
et al.
(2021)

6 Arbuscular mycorrhizal
fungi

Zea mays Zn deficient
and toxic
condition

AMF increased Zn con-
tents under bother Zn
deficient and toxic
conditions

Saboor
and Ali
(2021)

7 Funneliformis mosseae Zea mays Red soil,
rainfall

Reduces p losses He et al.
(2021)

8 Glomus intraradices Zea mays Field
condition

Increased P
concentrations

Cozzolino
et al.
(2013)

9 Glomus intraradices Hordeum
vulgare

Uranium
stress

AMF enhanced the P
uptake while decreased
uranium uptake

Chen et al.
(2005)

10 Funneliformis mosseae Zea mays N/A AMF enhanced the P
uptake

Sawers
et al.
(2017)

11 Mixture of AMF strains Glycine
max

Natural field
conditions

Increased plant growth
parameters and enhanced
nutrient uptake

Adeyemi
et al.
(2020)

12 Glomus intraradices
Scutellospora
calospora, Glomus
mosseae

Vitis
vinifera

Two soils
with
contrasting
P levels

AMF enhanced P, Ca and
S uptake,

Schreiner
(2007)

13 Arbuscular mycorrhizae Triticum
aestivum

Calcareous
soil, Zn
uptake

AMF and P application
affected Zn uptake in
plant parts

Zhang
et al.
(2016)



The formation of mycorrhiza is affected by soil P levels. When the soil suffers
from low P stress, the P supply can be increased by applying P fertilizers to promote
plant growth and development; but when the P level exceeds a certain limit, it will
inhibit the growth of AMF (Liu et al. In soils having high fixing ability and
low P, AMF can mineralize organic P or help plants effectively use insoluble
inorganic P, improving the availability of P in the rhizosphere soil. Therefore,
inoculation with AMF can effectively promote changes in soil P form and the uptake
of nutrients by the host, and colonization with appropriate AMF can better promote
the conversion of soil P in the direction that is beneficial to the mycorrhizal plant
absorption. AMF promotes the uptake of P by plants. AMF and P facilitated
improvements of N. tabacum traits during drought circumstances were shown to
be connected with higher absorption of important mineral ions, including N, K,
and P, according to the research of (Begum et al. 2020).

2014).
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Fig. 8.3 Mechanisms of phosphorus uptake by arbuscular mycorrhizal fungi



AM fungi and plants have a certain level of sensitivity when they establish a
symbiotic relationship. Based on results from a bait-plant method (Delavaux et al.
2017) discovered there were statistically noteworthy correlations between AMF and
soil P (negative), N (positive), and rarefied tree diversity (Positive), indicating that
soil P and N nutrient have had an impact on AMF levels. Fall et al. (2015) found that
after 4 months of experiment in sterilized soil and under greenhouse conditions,
grass seedlings colonized by AMF produced considerably more total biomass as
compared to non-inoculated plants. Franco et al. (2019) demonstrated for the first
time that AMF influences the mobilization of P, Fe, Ca, B, Zn, Mn, K, Cu, Mg,
and N, in gymnosperms. A significant decrease in nutrient absorption (NPK) was
seen in non-inoculated plants due to drought.
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Plants infected with AMF had elevated levels of NPK, which was similar to
earlier studies on the subject (Calvo-Polanco et al. 2014). The studies showed a
considerable upsurge in the absorption of important nutrients such as NPK, magne-
sium, and Ca under normal and shortage irrigation circumstances due to AMF
addition (Abbaspour et al. 2012; Armada et al. 2015). Sitko et al. (2019) have
proven that increasing the accessibility of P increases the growth of maize by
increasing the intake of other important minerals such as K, magnesium, and
Ca. This increase in mineral uptake may be attributed to the effects of minerals on
the morphology and hydraulics of roots, respectively (Armada et al. 2015). AM
fungal isolate produced favorable results in apple micro when colonized by 4 differ-
ent isolates of AMF with varying amounts of P (Dalla Costa et al. 2021). Indigenous
AMF in the soil has the most significant promotion effect on plants. At present,
research on the improvement of P uptake by the mycorrhizal plant by AMF has been
extensively carried out, and the research on improving crop yield and the plant
survival rate has made great progress, but the research on the mechanism is still in its
infancy.

8.2.3 Arbuscular Mycorrhizal Fungi Effect on the Roots
of Mycorrhizal Plants

AMF are abundant in the environments. They can form a symbiosis with plants-
arbuscular mycorrhizas, thereby changing the plant’s root morphology and
expanding the range of nutrient absorption by the root system, in that way enhancing
the mycorrhizal plant absorption and utilization of nutrients such as P and N. After
the plant is infected by AMF, its biomass increases, and the root morphology of the
plant changes (Liu et al. 2014).

AM-plants have two mechanisms for extracting P from soil solution at a fast rate
and with great efficiency. The root epidermis and root hairs are responsible for direct
P uptake in the plant body and in the 2nd pathway which is facilitated by AM, P is
absorbed by exterior AM hyphae and delivered to colonized root cortical cells
through the AM route (Smith and Smith 2011). Furthermore, mycorrhizal hyphae



can collect soil P, which is inaccessible to the majority of nonmycorrhizal plants
(Aparna et al. 2011; Sharif and Claassen 2011). As a result, the formation of
mycorrhizal symbiosis with suitable fungus species may be used as an alternative
technique for reducing plant P deficit. AMF regulates plant auxin signaling pathways
by secreting sesquiterpenes to encourage mycorrhizal plants’ lateral root growth

increased primary and secondary lateral roots in the root system (Chen et al.
When subjected to environmental stress, the roots of plants inoculated with

AMF will be adjusted accordingly to enhance plant resistance. For example, under
2017).

(Sugiyama and Yazaki 2014). The mycorrhization of clover plants significantly
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drought stress, citrus inoculated with Funneliformis mosseae significantly improved
root growth parameters including root volume, root area, and root diameter (Liu et al.
2016).

Different types of AMF have differences in the colonization time and coloniza-
tion effect of the mycorrhizal plant. The higher the adaptability of the two, the
greater the contribution of AMF to the mycorrhizal plant. Because there are often
multiple strains in the natural environment, molecular biology methods must be used
to determine whether the infection impact of AMF on the mycorrhizal plant is better
than that of a single strain when used in a mixed application of different strains, in
order to be more in line with ecology. The extra-root hyphae, arbuscular branches,
and vesicles produced by inoculation with AMF can expand the absorption range
and promote the acquisition of P. A five-year field study was conducted on Lonicera
confusa colonized by AMF, G. intraradices, and G. etunicatum. AM inoculation
resulted in substantial increases in the number of new branches, crown diameter, and
plant height. The concentrations of P in leaves and flowers rose, and the absorption
of nutrients by plants increased after the administration of AM (An-Dong et al.
2013). The majority of dicotyledons often respond positively to AM inoculation,
with improvements in growth and enhanced P absorption, as opposed to cereal
crops, which are often believed to be nonresponsive (Grace et al. 2009). Gao et al.
(2020) reported that AMF species have a strong symbiotic relationship i.e.,
Rhizophagus irregularis with the cotton.

The expression of specific phosphate transporter family genes and phosphate in
cotton biomass were both dramatically increased during the symbiotic relationship
between AMF and cotton. These data indicate the advantages of AMF-based
inoculation on the uptake of P in cotton. It is important to note that trait flexibility,
or the capacity of a species to modify the values of its traits in response to changing
environmental circumstances, is an important component influencing a plant’s
capacity to endure environmental stress (Callaway et al. 2003). Fort et al. (2015)
discovered that Fabaceae family increased their root/shoot ratio and root surface
phosphatase activity when there was a lack of P available. AMF also affect the
flexibility of root characteristics. According to a meta-analysis, AMF often increase
biomass and length of the root while decreasing the ratio of root/shoot in most cases
(Veresoglou et al. 2012), however, the mycorrhizal impact on root/shoot ratio
remained non-significant. Additionally, Ryan et al. (2016) discovered that AMF
dramatically reduced the root mass ratio of Trifolium subterraneum.



A large number of experiments (Guo et al. 2011) have proved that the supply of
different concentrations and forms of P can cause significant changes in plant root
morphology, including total root length, main root length, lateral root length, root
projection area, specific surface area, and volume. When plants are subjected to
low-P stress, the root system will undergo morphological changes under the influ-
ence of genetic factors, and the root system changes involved in different plants and
different genotypes are complex.
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8.2.4 Uptake Mechanism of Soil Phosphorus by Mycelium

Arbuscules are considered to be the most critical part of the symbiosis system. It is
the place where AMF and the mycorrhizal plant exchange substances, and is
regarded as the core of the functional structure of AMF (Gutjahr and Parniske
2017). The arbuscule double-membrane structure separates and combines the
AMF and the mycorrhizal plant. From the aspect of form, AMF is located on the
side of the arbuscule membrane, and the mycorrhizal plant is located on the side of
the arbuscule precursor plasma membrane; from the functional aspect, the double
membrane structure is the ion channel and the transporter attached to it are the places
for material exchange between symbionts. After the arbuscule branches mature into
the plant cells, the survival time is only 1–3 days before they begin to senesce and
die. At the same time, the host cells return to the most primitive state and can be
colonized by new arbuscule branches which export mineral nutrients while acquiring
carbon sources to maintain symbiotic efficiency (Gutjahr and Parniske 2017).
Compared with the direct acquisition of plant roots, mycelium has more advantages.
Due to its huge biomass and surface area, it enhances the interaction with the soil and
expands the absorption range of the mycorrhizal plant roots.

The average diameter of the mycelium is smaller than that of the root system.
Therefore, it can enter the soil pores that the root system cannot penetrate (Qiang-
Sheng et al. ). The extra-root hyphae (often called extra hyphae, extraradical
hyphae, or mycelium.) can replace the root hair to uptake P. However, because the
specific surface area of hyphae in roots is far less than that of arbuscule branches,

2011

although intracellular hyphae and intercellular hyphae are also involved in the
transfer of P, their transport efficiency is not as good as that of arbuscule branches.
Since AMF and plants do not have firm specificity when forming symbiosis, when
the extra-root hyphae encounter other plants during the outward extension process,
the root system will be infected again to form a hyphae network (Kytöviita et al.
2003). These mycelial networks can transfer nutrients between the same species and
different plants and play an important role in the process of nutrient transfer between
plants and natural nutrient cycling (Yao et al. 2003). The mycelial network infects
different plants and connects plants with different nutritional statuses to transmit
nutrients so that the distribution of nutrient resources forms a dynamic balance
(Simard et al. 2003).



). In a symbiotic system, the P transporters2012

Under the premise of the difference in P nutrition between donor and recipient
plants, the uptake of P can also be completed through the migration of the hyphae
network. In an environment where soil nutrients are relatively scarce, the transfer
effect of mycelium on P is more significant. Increased P fertilization, protracted
fallow periods, and the growth of non-host crops may result in a reduction in
mycorrhizal inoculum levels. The use of appropriate AMF in agricultural systems
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is essential because it not only makes use of the biopotential for effective P mining
and uptake, but also minimizes P fertilizer usage and contamination in the environ-
ment. Regardless of the P levels in the soil, inoculating maize plants with AMF lead
to a significant enhancement in P absorption as well as grain output (Zhang et al.
2012). AMF and strains that infect effectively, use less carbon, and deliver more P to
the host are other key considerations for selecting crop species-preferred AMF and
strains.

8.2.5 Arbuscular Mycorrhizal Fungi Modulate
the Expression of Phosphorus Related Genes

P deficiency in the mycorrhizal plant encourages infection and AMF symbiosis.
AMF induces high-affinity P transporter expression in itself and plants roots to
enhance the uptake of available P in the soil and transport it to the desired part of
the plant (Table 8.2) (Karandashov and Bucher 2005). At present, there are three
kinds of P transporters detected in AMF: GvPT, GiPT, and GmosPT. When
subjected to low P stress, the extra-root hyphae will increase the expression of the
P transporter gene and promote P absorption in the soil. When P is transported from
hyphae to arbuscule branches, AMF induces the expression of some members of the
mycorrhizal plant’s Pht 1 family on the plasma membrane of the arbuscule precursor
to enhance the plant’s uptake of P in mycorrhiza, such as inoculation on Medicago
truncatula, G. radiata significantly enhanced the expression of certain P transporters
in arbuscule branches (Fiorilli et al. 2013).

OsPHT1.11 is the first AM-specific P transporter identified in rice, and a homol-
ogous (MEDtr; PHT1.4) in Medicago truncatula (Paszkowski et al. 2002).
OsPHT1.11 is also required for the establishment of AMF symbiosis in rice. Both
OsPHT1.11 and OsPHT1.13 are essential for the establishment of an AMF symbi
osis, indicating that grasses have developed a particular strategy for P acquisition via
symbiosis with the AMF (Sun et al.

-

of AMF influence P absorption and the expression levels of the transporter genes in
the mycorrhizal plant. In the root periphery, mycorrhiza-inducible PHT1 is involved
in P absorption, and its loss causes P deficit in the plant (Rausch and Bucher 2002;
Tian et al. 2013). In relation to non-infected control, AMF infection increases
ZmPHT1.3 expression 44-fold and reduces ZmPHT1.6 expression 135-fold in
maize (Tian et al. 2013). AMF colonization also has an effect on auxin and ethylene
levels in the mycorrhizal plant, which are important regulators of lateral root and root
hair formation (Rubio et al. 2009).



Name Transporter Fungal/plant References

The mycorrhizal plant can absorb substantial amounts of P nutrients via symbi-
osis with fungus. Both symbiosis and mycorrhizal P absorption are unaffected by
tomato PHT1.4 (a tomato homolog of the PHT1.11) (Bari et al. 2006). In dicots,
direct P absorption is the dominant mode of absorption. The isolation of StPT3
protein from potato mycorrhiza enhanced P absorption (Rausch et al. 2001). The
expression of MtPT4 P transporter gene was significantly enhanced after the
mycorrhization of Medicago truncatula (Pumplin and Harrison 2009). Through
gene sequence and transcription analysis of multiple plants, it is found that there
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Table 8.2 Transporters in plants and arbuscular mycorrhizal fungi involved in nutrient uptake

Sr.
No

1 Glomus mosseae GmosPT Fungal phosphorus
transporter

Balestrini et al. (2007)

2 Lotus japonicus LjAMT2;2 Plant N transporters Guether et al. (2009)

3 Glomus
intraradices

GiPT Fungal phosphorus
transporter

Maldonado-Mendoza et al.
(2001)

4 Lotus japonicus LjPT4 Plant phosphorus
transporter

Volpe et al. (2016)

5 Solanum
lycopersicum

StPT3 Plant phosphorus
transporter

Rausch et al. (2001)

6 Glycine max GmAMT4.1 Plant N transporters Kobae et al. (2010)

7 Petunia hybrida PhPT5 Plant phosphorus
transporter

Breuillin et al. (2010)

8 Oryza sativa OsPT2,
6, 11

Plant phosphorus
transporter

Paszkowski et al. (2002)

9 Gigaspora
margarita

GigmPT Fungal phosphorus
transporter

Xie et al. (2016)

10 Medicago
truncatula

AMT2;3 Plant N transporters Breuillin-Sessoms et al.
(2015)

11 Medicago
truncatula

MtPT4 Plant phosphorus
transporter

Breuillin Sessoms et al.
(2015)

12 Glomus
intraradices

GintAMT 2, Fungal N transporter Perez Tienda et al. (2011)

13 Glomus
versiforme

GvPT Fungal phosphorus
transporter

Harrison and Vanbuuren
(1995)

are differences in the number of Pht 1 family members in different plants, and the
regulation mechanism of Pht1 family genes by AMF is also different, such as
A. thaliana and rice genome determination. It was shown that there were 9 and
11 Pht 1 transporter family members for soil available P uptake and plant P transport
(Goff et al. 2002), among the 11 Pht 1 transporter family members of rice, OsPT11
was only used when AMF invaded.

Through the study of the P transporter promoter in Arabidopsis thaliana (Mudge
et al. 2002), it was found that the Pht1; 3 and Pht1; 4 promoters in this family are
responsible for the uptake of P from the soil by the roots of the plant. Chiou et al.
(2001) studied specific binding alfalfa and found that when P is deficient, it



determine whether the infection impact of AMF on the mycorrhizal plant is better
than that of a single strain when used in a mixed application of different strains, to be
more in line with ecology.

stimulates the roots to increase the abundance of MtPT1 P transporter, and this
protein is significantly related to the P concentration in rhizosphere soil. These genes
will respond when P is deficient, but there is no obvious positive correlation with
AMF infection, and they may even be inhibited due to the establishment of a
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symbiotic relationship. For example, the MtPT2 gene in Medicago truncatula
inoculated with fungi (Harrison et al. 2002) and the ZEAma: Pht1; 3 genes after
maize mycorrhization (Benedetto et al. 2005).

8.3 Conclusion

Phosphate rock deposits are expected to be depleted in the next 80–100 years, and
the inherent inadequacy of phosphate fertilizers is low. It is important to improve the
P absorption efficiency of agricultural plants and agricultural systems. Agricultural
practices, such as using soluble P fertilizers instead of poorly soluble fertilizers,
designing fertilizer granules, and using liquid P fertilizers instead of granular
fertilizers (highly Ca) should all be improved and all these are examples of methods
for improving phosphate fertilizer absorption efficiency. Research has worked on the
relationship between annual crops and AMF inoculation in the greenhouse. A deeper
knowledge of the interplay between AMF and perennial plants, particularly under
natural field conditions, is necessary to investigate its potential. AMF and plants
have a certain degree of selectivity when they establish a symbiotic relationship.
Different types of AMF may have completely different effects on the same plant.
Indigenous AMF in the soil has the most significant promotion effect on plants.
Different types of AMF have differences in the colonization time and colonization
effect of the mycorrhizal plant. The higher the adaptability of the two, the greater the
contribution of AMF to the mycorrhizal plant. Because there are often multiple
strains in the natural environment, molecular biology methods must be used to
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