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Sustainable agriculture is a rapidly growing field aiming at producing food and
energy in a sustainable way for humans and their children. Sustainable agriculture is
a discipline that addresses current issues such as climate change, increasing food and
fuel prices, poor-nation starvation, rich-nation obesity, water pollution, soil erosion,
fertility loss, pest control, and biodiversity depletion.

Novel, environmentally-friendly solutions are proposed based on integrated
knowledge from sciences as diverse as agronomy, soil science, molecular biology,
chemistry, toxicology, ecology, economy, and social sciences. Indeed, sustainable
agriculture decipher mechanisms of processes that occur from the molecular level to
the farming system to the global level at time scales ranging from seconds to
centuries. For that, scientists use the system approach that involves studying com-
ponents and interactions of a whole system to address scientific, economic and social
issues. In that respect, sustainable agriculture is not a classical, narrow science.
Instead of solving problems using the classical painkiller approach that treats only
negative impacts, sustainable agriculture treats problem sources.

Because most actual society issues are now intertwined, global, and fast-
developing, sustainable agriculture will bring solutions to build a safer world. This
book series gathers review articles that analyze current agricultural issues and
knowledge, then propose alternative solutions. It will therefore help all scientists,
decision-makers, professors, farmers and politicians who wish to build a safe
agriculture, energy and food system for future generations.
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Preface

Food security highly depends on the availability of plant nutrients such as phospho-
rus, yet rock phosphate reserves are expected to be exhausted in the next 50–100
years. Moreover, about 80% of the phosphorous fertilizers applied to soils become
unavailable to plants due to phosphorous fixation in iron and aluminum oxides in
acidic soils and with carbonates in alkaline soils. As a consequence, only 10–15% of
applied phosphorous is absorbed by crops. Therefore, there is a need for advanced
practices for improving phosphorus use efficiency. This book presents recently
developed biotechnological tools and management practices that can be used to
improve phosphorous use efficiency in agriculture (Fig. 1).

This book, entitled Phosphorus Use Efficiency for Sustainable Agriculture, is part
of the series Sustainable Agriculture Reviews. The first chapter, by Suh, reviews the
principles of permaculture, with focus on general guidelines allowing to invent
sustainable agricultural practices in harmony with society. Natural and commercial
sources of phosphatic fertilizers are presented in Chap. 2 by Abobatta et al. Chapter 3
by Zain et al. explains that organic phosphorous is an alternative to mineral phos-
phatic fertilizers. Adaptive responses of crop species against phosphorus deficiency
are discussed by Aslam et al. in Chap. 4. Then, Jehangir et al. discuss the use biochar
for sustainable phosphorus management in agroecosystems in Chap. 5. Chapter 6 by
Farooq reviews efficient phenotyping for assessing genotypic variation in phospho-
rus use efficiency. Biotechnological tools for improving phosphorus use efficiency
are presented in Chap. 7 by Malik et al. Riaz et al. detail the role of arbuscular
mycorrhizal fungi in plant phosphorus acquisition in Chap. 8. Chapter 9 by
Gabasawa explains that phosphorus cycle enzymes play a key role in alleviating
soil phosphorus deficiency. Enhancement of phosphorus nutrition by biological
nitrogen fixation in pastures is presented by Bello in Chap. 10.
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vi Preface

Fig. 1 Plants that have developed symbiotic association with mycorrhizal fungi in the root zone
grow better because mycorrhizal fungi produce hyphae. Hyphae are channels that allow to carry
nutrients from remote soils areas. (From Chap. 8 by Riaz et al.)
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Chapter 1
Permaculture Principles, Practices,
and Environmentalism

Jungho Suh

Abstract Permaculture emerged in the late 1970s as an alternative-agriculture
movement in Australia. Permaculture is a practical philosophy of how to work
with nature rather than against it. The underlying ethical principles of permaculture,
which are Earth care, people care and fair share, recognise the interdependence
between agriculture and the rest of the world and between humans and non-humans.
Permaculture is not just about growing food in a sustainable manner. Permaculture is
a system integrating the diverse functions of otherwise separate elements of the
human settlements including nutrients, species, farms, villages, industries, and
sectors. This chapter explores permacultural practices with real-world examples.
Permaculture ethics can be practiced at varying spatial scales. At the farming
household level, polyculture, crop rotations, and crop-livestock integration can be
implemented to maintain soil fertility in a closed nutrient cycle. At the household
level, low-impact and energy-efficient housing is carried out. At the community
level, permaculture has been the philosophical and design foundation of co-housing
or ecovillage movements. At the business level, permaculture offers the business
ethics of no waste of resources and corporate social responsibility. Permaculture
philosophy can be a guideline underlying a bioregional planning, which denies
human dominance over nature. This chapter also brings attention to the problem
associated with the dichotomous division of ecocentrism and technocentrism. As
represented in the Earth care ethical principle, permaculture is concerned for global
resource scarcities and environmental pollution. Thus, permaculture is often under-
stood to take the highly ecocentric environmental view. On the other hand, perma-
culture advocates for technological development that enables the use of renewable
energy sources. Thus, it is inappropriate to place permaculture environmentalism on
a linear spectrum of environmentalism where ecocentrism and technocentrism are
polarised.
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1.1 Introduction

Permaculture emerged in the late 1970s as an alternative-agriculture movement. It
primarily punctuates the renewing of soil fertility in a closed nutrient cycle. Mollison
and Holmgren (1978, p. 1) defined permaculture as ‘an integrated, evolving design
system of perennial or self-perpetuating plant and animal species useful to humans’.
Mollison (1988), Mollison and Slay (1991), and Holmgren (2002) expanded the
conceptual boundary of permaculture into a design system for creating sustainable
relationships between farms, housing, and infrastructure including water and energy
systems. Thus, permaculture is not just about organic gardening or farming but more
importantly about the organismic design of integrating the diverse functions of
otherwise separate elements of nutrients, species, farms, villages, industries, and
sectors (Smith 2011b; Ferguson and Lovell 2014).

Owing to the multi-facets and broad scope of permaculture, the thematic focus of
scholarly publications on permaculture varies from soil regeneration (Rhodes 2012)
and agroecology (Ferguson and Lovell 2014), to energy-efficient building design
(Seyfang 2010), ecovillages (Litfin 2014), and grassroots social initiatives (Ferguson
and Lovell 2015; Ulbrich and Pahl-Wostl 2019). Permaculture has provoked schol-
arly discourses on the relation of humans to non-humans, one of the main themes of
environmental philosophy. Thus, it was timely that Roux-Rosier et al. (2018) saw
permaculture as a set of practices, life philosophy, and social movement with the
predominant ethos being agro-ecologic, holistic-mythical, and eco-political, respec-
tively. Further to the wide scope of coverage, permaculture has been a theme that
threads together the key concepts in geography, including space, place, change, and
scale. Permaculture ethics can be practiced at the farm, the household, the commu-
nity, the industry, and the bioregional levels.

This chapter undertakes a comprehensive and critical review of the extant per-
maculture literature. The chapter first outlines permaculture ethics and design prin-
ciples from the texts written by the permaculture founders. Next, the chapter
provides an overview of the real-world applications of permaculture ethics and
design principles, as a living and evolving body of knowledge, ideas, and practice
employed by the permaculture practitioner community over the past several decades,
in food production, village-making, and social initiatives. This is followed by a
discussion of the holistic environmentalism embedded in permaculture philosophy
and applications. The chapter then brings attention to the limitations of the conven-
tional matrix approach that assigns scores to economic, environmental, and social
indicators to measure sustainability.
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1.2 Permaculture Ethics and Design Principles

The ethical principles of permaculture are a window through which one can grasp
what permaculture is about. The ethical principles of permaculture refer to broad,
generic, and underlying moral axioms (Mollison 1988; Mollison and Slay 1991;
Holmgren 2002): namely, Earth care; people care; and return of surplus to people
and the Earth. The ethic Earth care means caring for the natural environment
including all the diverse life forms that inhabit the planet, regardless of their
usefulness to humans. The people care ethic is derived from the Earth care ethic,
as manifested in Mollison and Slay (1991, p. 3): ‘Care for the Earth also implies care
for people so that our basic needs for food, shelter, education, satisfying employ-
ment, and convivial human contact is taken care of.’ The ethic return of surplus to
people and the Earth is often referred to as fair share ethic in short in the perma-
culture literature. The fair share ethic underscores that agriculture encompasses a
range of important social functions beyond food production. Thus, two threads of
meaning can be discerned from the fair share principle (Holmgren 2002). First, all
reasonable efforts are to be made to maintain or enhance the biological capacity of
the soil, for example, by recycling organic matter into natural fertilizers and by
avoiding the use of agrochemicals. Second, the surplus of permaculturally grown
food is distributed to the community and the region through any given distribution
system. It is not only surplus food that is to be returned to the Earth and people. It can
be the surplus of any resources that can be shared with fellow humans (Mollison and
Slay 1991).

Holmgren (2002) broke down the permaculture concept into a dozen permacul-
ture design principles as presented in Table 1.1. It is not coincidental that the first
permaculture design principle listed is observe and interact, which is also a very

Table 1.1 Permaculture
design principles (Holmgren
2002)

Observe and interact

Catch and store energy

Obtain a yield

Apply self-regulation and accept feedback

Use and value renewable resources and services

Produce no waste

Design from patterns to details

Integrate rather than segregate

Use small and slow solutions

Use and value diversity

Use edges and value the marginal

Creatively use and respond to change

Note that the permaculture design principles are not just guidelines
for agricultural practices, but manifest how humans can interact
with the environment. The sequence of the principles does not
indicate the order of importance. Rather, these principles are
correlated to one another



feng-shui idiom (Suh 2014). The feng-shui theory sees the Earth as a living organism
(Matthews 2019). It follows that human settlements, including the agricultural
cultivation of land, should be designed such that the right elements are placed in
the right places (Mollison and Slay 1991).
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The apply self-regulation and accept feedback principle warns that the occur-
rence of negative environmental externalities should be prevented by self-regulation.
This principle is associated with the concept of karma in Buddhism, the law of cause
and effect that everything is interconnected with everything else in the ever-
changing world. It should be noted that interconnectedness is the very first law of
Commoner’s (1971) four ecology laws and Hardin’s (1993) three human ecology
laws. Commoner’s four ecology laws are everything is connected to everything else;
everything must go somewhere; nature knows best; and there is no such thing as a
free lunch. Hardin’s three ecology laws are we can never do merely one thing; there
is no away to throw to; and the IPAT equation (Environmental Impact = Population
× Affluence × Technology).

Beyond the apply self-regulation and accept feedback principle, permaculture
pursues creating mutually beneficial linkages and relationships between elements:
that is, permaculture seeks to integrate rather than segregate diverse elements into a
system so that each element in the system can perform many functions and each of
the functions can be supported by many elements (Mollison and Slay 1991). The use
and value diversity principle recapitulates the importance of crop-livestock farming
systems. Polyculture is an application example of the use and value diversity
principle. Monoculture not only decreases insurance for yield but also is a major
source of crop vulnerability to a variety of pests and diseases that entails the
widespread use of toxic chemicals to control them (Mollison 1988; Holmgren 2002).

The use small solutions principle debunks the myth of ‘economies of scale’ that
large-scale production through specialisation and mechanisation always leads to
more physical output per unit of physical inputs. Traditional mixed farming systems
may be in favour of small-scale farming. However, small-scale mixed farms can be
more productive than large-scale monoculture farms when total output is used to
measure productivity (Rosset 1999). Permaculture prefers to set a limit to the food
production scale to the point beyond which the accompanying slow solution princi-
ple cannot be carried out. The use slow solutions principle is to ensure keeping farm
production perennial by maintaining soil fertility without agrochemicals. This prin-
ciple preaches the importance of a closed nutrient cycle, in which nutrients are
regenerated within a farm and no off-farm energy sources are imported.

The design from pattern to details principle dictates that detailed information on
the patterns of energy flows of the surrounding environment should be sought. This
principle posits that permaculturists are supposed to work with the natural surround-
ings by adapting the technical practices of permaculture. In other words, the methods
that execute the design principles of permaculture can vary depending on local
circumstances including soil types, climates, and hydrological and topographical
features (Mollison and Holmgren 1978; Holmgren 2002).
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1.3 Permaculture Practices Applied in Varying Spatial
Scales

Permaculture ethics and principles align with a wide range of sustainable living
practices in the realms of organic farming, low-impact housing, ecological commu-
nities, and grassroots social movements. Some practices have been initiated by
permaculturists, and some others have been guided by the permaculture founders
themselves. Table 1.2 collates permaculture ethics and applications carried out at
varying spatial scales.

The permaculture design principles presented in Table 1.1 are never meant to
apply to agricultural society only. Agriculture is considered both an industry of food
production and a cause of environmental concerns. Thus, permaculture postulates
that there is no environmental, economic, and social sustainability without sustain-
able agriculture. Permaculture design principles can be embodied in all levels of
human-environment interfaces. For example, the ‘closed nutrient cycle’ principle in
permaculture can be translated into ‘circular economy’ or ‘regenerative economy’
beyond the agricultural industry. The fair share ethic underscores ‘sharing economy’
or ‘localised economy’ (Krueger et al. 2017).

Permaculture advocates for transitioning to a regenerative economy where mate-
rial and energy resources are recycled, and a circular society where wealth, technol-
ogy, and knowledge are also circulated in a sustainable loop (Friant et al. 2020). The
use small and slow solution principle stands behind a localised economy.
Schumacher (1973) equated a Buddhist economy with a localised economy whereby
goods and services are produced from local resources to meet local needs. Norberg-
Hodge (1991) pointed out that it is absurd that consuming food grown in the other
side of the globe induces more products and jobs because of more transportation,
more use of fossil fuels, more chemical additives and preservatives while it increases
pollution and erases local culture. In this context, Norberg-Hodge (2019) put
forward that decentralised economies relying on local food and energy are a pathway
to making the world sustainable and to fixing the problems caused by the inhumane
global economic system.

Table 1.2 The scale of permaculture practices

Scale Key ethic Application

Farming or
gardening

Earth care Zoning; mixed farming; crop rotation; growing native
plant species; circular economy

Housing Earth care Microclimate insulation; feng-shui

Community Earth care; people
care; fair share

Community cohesion

Industry, soci-
ety, and region

Earth care; people
care; fair share

Bioregionalism; localised economy; grassroots social
initiatives; sharing economy; corporate social
responsibility

The permaculture design and ethical principles can be implemented in alternative economies
including a circular economy, and a sharing economy a localised economy in varying spatial scales
from the farming level to the regional planning level
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1.3.1 Food Production in Harmony with Nature

Many authors including Francis et al. (2003), Ferguson and Lovell (2014),
Hathaway (2016), and Krebs and Bach (2018) see permaculture as an agroecology
movement alternative to industrial agriculture. Agroecology maintains that a farm is
much greater than the mere sum of its individual crops and livestock (Pfeiffer 1938;
Gliessman 2007; Altieri et al. 2012). Like agroecology, permaculture places empha-
sis on polyculture, crop rotations, crop–livestock integration, and the regenerative
food production system (Pretty 2008; Francis and Porter 2011). While these perma-
culture farming practices are applicable in some climatic zones, there may be severe
limits on their applications in other areas such as in the prairies of North America or
the semi-arid plains of Australia (Tisdell 2005). Thus, agricultural practices of
permaculture need to be adapted to local climatic conditions (Mollison and
Holmgren 1978; Mollison and Slay 1991; Holmgren 2002).

According to permaculture design principles, the area immediately adjacent to the
residential house is the most suitable to be a kitchen garden. Plant and animal species
that require care and observation are located in the next zone of the vicinity. Main
crops and meat animals can be grown in the outer zone. Permaculture design
principles recommend that the farther outer zone or the area not suitable for crop
production can be reserved for timber production, forage or wildlife.

Integrated rice-duck farming is a typical application of the integrate rather than
segregate permaculture principle at the farm level. Ducklings feed on rice insects.
Duck paddling helps control the germination of weeds. Poultry manure contains a
high level of mineral nutrients including phosphorus, which is essential for the
growth of plants, and therefore can be recycled into phosphorus fertilizers (Mollison
and Slay 1991; Mollison 1996; Furuno 2001; Cordell and White 2013). Due to its
labour-intensiveness, however, integrated rice-duck farming is no longer widely
practised in Asia as it used to be (Suh 2015). Instead, seasonal differentiation of
rice and duck growing is practised, in which an army of ducks are used to sweep rice
paddy before ploughing to feed on rice residuals, and snail eggs that would devastate
rice plants.

Permaculture is not just a testimony to an ecologically sustainable and econom-
ically feasible farming system but has been adopted as a basis of food production
around the world. Real-world examples include the Food Forest (15 ha) in South
Australia, Ananda Suruci (4.8 ha) in Taiwan, and Solitude Farm (2.4 ha) at Auroville
in India. Although these farms are managed for commercial purposes, they have
brought about a variety of social benefits. They welcome volunteer workers called
‘willing workers on organic farms’, run permaculture design certificate courses on a
regular basis, and also organise open day events. Interacting with volunteer workers,
permaculture design certificate students, and agri-tourists, they have inspired future
permaculturists.

Remarkably, a group of permaculturists from Australia helped Cuba produce
food organically in the 1990s in the face of the shortages of fossil fuels and
agrochemicals which could not be imported due to the collapse of formerly the
Union of Soviet Socialist Republics (Gamble 2011; Cockrall-King 2012). The



permaculturists trained local smallholder farmers with permaculture farming tech-
niques. As a result, there emerged organopónicos, Cuban-style raised beds of
enriched soils (Levins 2005). An organopónico can be operated at the household
level or institutionalised into a cooperative organic farm as illustrated in Fig. 1.1
(Viljoen and Howe 2005; Newton 2020).
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Fig. 1.1 Organopónico Vivero Alamar, a cooperative urban organic farm of 11 hectares located in
a residential suburb in Havana, Cuba. The soil in the raised garden beds is prepared from earthworm
bins in the open air and under shade. The vegetables and fruits produced at the cooperative organic
farm are supplied to the regional hospitals and schools and also sold at the gate of the farm

Various types of small-scale urban agriculture have mushroomed, ranging from
public community gardens, private residential gardens, vertical gardens, and rooftop
gardens (Tornaghi 2013). Food scraps are returned to the soil and used as a natural
fertilize to grow food in a vegetable garden. Many community gardens in cities and
suburban areas are consciously managed in accordance with permaculture ethics and
principles (Holland 2004; Korsunsky 2019). Some studies (e.g. Brombin 2015; Suh
2018) found that gardening plots in suburban areas, regardless of their scale and
types, played a role of ‘contact zone’ where social capital such as social cooperation
and cohesion can be generated.

1.3.2 Low-Impact Housing

Permaculture is a design system for sustainable and low-impact housing (Seyfang
2010). Low-impact housing is considered an urban activity, reflecting the reality that
most people live in cities (Whitefield 2004). Low-impact housing equates to using



natural, recyclable, and local building materials, minimising energy needs, and
generating energy from renewable energy sources (Pickerill 2013). Building with
natural and locally available materials (e.g. mudbricks) is taken for granted in the
permaculture building design.
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Passive solar design in which houses largely heat and cool themselves can
significantly reduce the need for the use of electricity for cooling and heating.
Unfortunately, passive solar design may not be applicable in many suburban streets
because residential buildings are to be designed and constructed along the grid-
shaped streets regardless of solar orientation. Tree planting based on microclimate
and pattern analysis is an alternative passive solar design under this circumstance.
For example, a grapevine arbour growing on the north side of a house can contribute
to reducing household demand for extra cooling or heating because the plant pro-
vides shade in summer but not in winter in the southern hemisphere (Holmgren
2018).

Just as it is ideal to have a reserved zone for forestry or pasture at the farming
level, it is a norm in urban planning to secure green open space for multiple
purposes. For example, green open space in urban areas can have an effect on
mitigating urban heat waves. Sun and Chen (2017) found that increasing the volume
of green space would be an effective measure to regulate microclimate and alleviate
urban heat in the vicinity. Similarly, Grilo et al. (2020) echoed that an increase in
green space or green density would be able to significantly mitigate the urban heat
island phenomenon. These research findings indicate that the removal of green
infrastructure resulting in high-density housing settlements can in turn intensify
urban heat waves. It is implied that the ‘compact-city’ planning in favour of urban
infill to control urban sprawl should take into account its negative impacts on the
urban dwellers.

Low impact development is an innovative or rather radical housing development
movement pioneered in rural Britain in the 1990s (Pickerill and Maxey 2009). Low
impact development adopts permaculture approaches to housing, food production,
and everyday life. Pickerill and Maxey (2009) noted that the low-impact develop-
ment vision could be extended to urban locations. Indeed, permaculture emphasis on
energy saving has been reflected in building codes and standards being implemented
in the global North. For instance, the United Kingdom Code for Sustainable Homes
was introduced with a focus on energy saving and carbon dioxide emissions
(Pilkington et al. 2011). Likewise, all newly built residential homes and extensions
in Australia are required to meet energy efficiency building codes by combining the
measures to reduce heating and cooling loads with adequate ventilation air move-
ment, and the use of renewable energy sources (Barnett 2018). In response to this
urban policy trend and the growing public demand for eco-homes, many private
homebuilders have adopted permaculture principles in their building design and
construction process. Permaculture has also been the practical foundation of
retrofitting pre-existing buildings into more energy-efficient and sustainable settle-
ments, with solar panels and water tanks put in place.

Interestingly, Pilkington et al. (2011) made a comparison between a sample of
dwellers in contemporary eco-homes and a sample of permaculturists living in a
range of conventional house types. This research found that the average ecological



footprint per person amongst the permaculturists was significantly lower than that of
the residents at eco-home dwellings. This research concluded that the permacultural
consciousness and behaviour were more conducive to reducing domestic energy
demand rather than just living in a residential house that meets the energy-efficient
building requirements. In a similar token, Litfin (2014) posited that ‘consciousness’,
which refers to the awareness of one’s inner being in unity with humanity as a whole
and nature, is a driving force in moving towards a sustainable world.
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1.3.3 Permaculture Implementation at the Community Level

Permaculture-based ecological food production and energy-efficient housing have
been implemented collectively. For example, many co-housing communities were
designed and have been managed according to permaculture principles. Co-housing
amounts to sharing common spaces across independent housing units, reducing the
space needed by each of the member households, and eventually lowering the
ecological footprint per person. The concept of co-housing evolved into developing
affordable co-housing communities in the global North (Chatterton 2013; Temesgen
2020). Co-housing leads not only to sharing communal space but to proactively
invigorating the traditional sense of community life via regular functional meetings,
community gardening, and communal meals (McCamant and Durrett 2011).

Ecological village-making movements have emerged since the 1960s in response
to rapid urbanisation, and the erosion of traditional rurality, and community cohe-
sion. The ecovillage movement gained momentum in 1995 when the Global
Ecovillage Network was launched (Litfin 2014). The members of an ecovillage
live in the same place, sharing and pursuing ecological values and lifestyles. They
strive to create a sustainable society, demonstrate sustainable community develop-
ment, and diffuse their experiences and knowledge (LeVasseur 2013).

Due to the rise in land price and a lack of availability of land for establishing new
intentional ecovillages, the transformation of existing villages into ecovillages has
been triggered (Dawson 2013; Baker 2013). Like intentional communities, transition
communities are rooted in permaculture principles applied to the level of commu-
nity. Transition communities endeavour to move away from the reliance on fossil
fuels in the face of the limited stock of non-renewable energy sources and global
warming caused by burning them. Intentional communities and transition commu-
nities alike have been widespread globally.

Some communities such as Findhorn Foundation (Fig. 1.2) were initially more
motivated by spirituality than ecological tenets, and some others such as Totnes are
driven by low-impact and energy-efficient housing and lifestyle (Boudinot and
LeVasseur 2016). Whatever their primary purpose and focus were, however, spiri-
tuality and ecology movements converged in the 1990s. As a matter of fact, nature
can be seen as a living system as well as a spiritual being and these two perspectives
do not conflict with each other (Litfin 2014). Spiritual search for the inner identity of
human beings recognises their connectedness to all other creatures and entails deep



empathy with all living beings. It is no wonder that spiritual philosophy was infused
into permaculture and ecovillage movements, which committed to working with
nature rather than against it (Gibsone and Bang 2015).
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Fig. 1.2 A co-housing cluster within Findhorn Foundation, Scotland, with solar panels on the
roofs. The residents share communal spaces including a laundry, a kitchen for communal eating,
and a bike shed

The ecovillage pioneers around the world, including Auroville in India, Findhorn
in Scotland, Crystal Waters in Queensland, and Lebensgarten in Germany, have
become popular tourist destinations. Auroville alone had attracted about a hundred
thousand of tourists per year before the pandemic times. Ecovillages have induced
diverse types of tourism including spiritual tourism, agritourism, cultural tourism,
volunteer tourism, and educational tourism. Permaculture actions towards sustain-
able lifestyle are considered a new normal, thanks to the growing number of people
who are directly or indirectly engaged in the ecovillage movement (Shirani et al.
2015).

Permaculture hatched a new form of an intentional community called connected
backyard gardening in the 2000s in South Australia (Holmgren 2018). In a
connected backyard gardening scheme (Fig. 1.3), the backyard space of
neighbouring houses is connected through mutually accessible gates so that the
individual households can benefit from the sharing of resources such as labour,
knowledge, skills, shed, gardening tools, and time. Connected backyard gardening is
different from co-housing where more than one household shares a legally desig-
nated common area. A connected backyard gardening scheme does not involve
communal ownership or a community title. Connected backyard gardeners intend
to not only promote a sharing economy but also develop social links with neighbours
and make a community of place (Suh et al. 2022).
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Fig. 1.3 Joe’s Connected Backyard Garden located in a northern suburb of Adelaide, South
Australia. Several privately-owned plots of backyard are mutually accessible through gates as the
one shown in the photo. Not only are gardening tools and equipment shared, but also human
resources are in the connected backyard gardening scheme

1.3.4 Permaculture Beyond a Geographically Confined
Community

Permaculture has bred a myriad of grassroots initiatives and innovations worldwide
(Ulbrich and Pahl-Wostl 2019). First, permaculture has raised social consciousness,
spawning green technologies and an eco-friendly lifestyle (Vitari and David 2017).
Rob Hopkins in Totnes, England, who was one of the leading figures in the transition
town network movement, also taught permaculture design certificate courses at
Schumacher College (Smith 2011a). He explicitly accredited the transition town
movement to permaculture philosophy and principles (Aiken 2017; Henfrey 2018).
Second, permaculture per se as a set of innovative knowledge has become a
commodity and created new business opportunities. Genus et al. (2021) brought
attention to the phenomenon that permaculture inspired renewable-energy busi-
nesses, permaculture gardening, energy-efficient building design, and permaculture
education programs. Many pioneering ecovillages have offered various commercial



permaculture workshops and courses on a regular basis (Veteto and Lockyer 2008;
Henfrey and Ford 2018; Magnusson 2018; Brombin 2019). Third, permaculture
boosts a new age economy as opposed to the growth-oriented market economy,
scaling up the diffusion of permaculture practices to borderless communities beyond
the traditional geography concepts of space and place (Aiken 2012). Some inten-
tional communities such as Ecovillage at Ithaca have partnered with local govern-
ments and institutions to spread the ecological living practices beyond the physical
boundaries of ecovillages (Boyer 2015).
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The profit-maximisation goal of private businesses should be subject to environ-
mental impacts as private businesses are part of society, economy, and ecology.
Therefore, a corporation is responsible for social integrity and environmental sus-
tainability. Permaculture provides the underlying philosophy of the corporate social
responsibility concept, which can be played out into green investment (Kopnina
2017). A partnership between government and private enterprises can effectively
promote innovative green technology and a green economy with government
funding. An example of this is Toyota’s hybrid car manufacturing. Toyota helped
populate the environmental philosophy that the development of the right technolo-
gies is a gateway to solving environmental pollution and that corporations have the
responsibility to produce goods and services with eco-friendly technology
(de Burgh-Woodman and King (2013).

Permaculture resonates with bioregionalism. Like permaculture, bioregionalism
conveys the view that the doctrine of human dominance over nature is to blame for
most contemporary global and local environmental problems (Parsons 2013). Bio-
regionalism also shares the same view with eco-localism (Curtis 2003), which
proclaims that ‘we are what we eat’. Like bioregionalism, permaculture considers
that housing and food production should accord with the local climate, landform,
and energy flow (Holmgren 2002). Both permaculture and bioregionalism concur
that the benefits of localisation should not be overshadowed by those of
globalisation.

In the global South, permaculture is widely understood as equivalent to indige-
nous understanding and knowledge of the human-nature relationship (Veteto and
Lockyer 2008). In Cuba, permaculture has played a key role in laying the philo-
sophical foundation of the green social movement and breaking down the predom-
inant social mindset that pursues individual wealth and ignores environmental costs
(Caraway 2018). The permaculture movement in Cuba is deeply engaged in
reconnecting human beings to one another as well as the environment, assuring social
collaboration rather than competition. Similarly, small-scale farmers in El Salvador
have played a pioneering role in spreading traditional sustainable agriculture in the
situation where large-scale industrialised agriculture has contaminated water and soil
nationwide (Millner 2016). Permaculture is also seen as the foundation of the
pro-poor social movement in India (Fadaee 2019).

The fair share principle of permaculture inspires that innovative sharing econo-
mies are conducive to improving environmental quality and enhancing social



cohesion and economic well-being (Krueger et al. 2017). There are two types of
sharing economy: Namely, for-profit sharing and not-for-profit sharing (Lai et al.
2020). Examples of for-profit sharing include Airbnb and Uber. Examples of not-for-
profit sharing include bicycle repair training workshops, community gardening, food
swapping, street libraries, and the Grow Free network. Grow Free is a community
food exchange network organised in Australia to freely give away locally grown
organic produce, whereby locals can take what they need from a cart and leave what
they can on the cart which is managed by a Grow Free network participant house-
hold (Fig. 1.4). Many Grow Free cart stewards communicate with the public via the
Grow Free Facebook (https://www.facebook.com/groups/growfree/) so that who-
ever subscribes the Facebook can be informed of whatever posted about Grow Free
sharing or events.
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Fig. 1.4 A Grow Free cart placed near the gate of a residential suburban house in Adelaide, South
Australia. Seeds, seedlings, fruits, vegetables or even books are put on the shelves for free. The
grassroots initiative has spread into other states in Australia, contributing to the growth in urban
agriculture and sharing economy

The ‘sharing economy’ should not be confused with the ‘commons economy’
(Belk 2010; Schor and Attwood-Charles 2017; Miller 2020). The word ‘commons’
refers to ‘open access’ resources to which everyone has free access, but no party can
claim an exclusive access right. The sharing economy deals with resources for which
an individual, a group of individuals, or a state has exclusive ownership. Moreover,

https://www.facebook.com/groups/growfree/


sharing requires more mutual caring and generates a higher level of social cohesion
than exchanging does (Belk 2010).
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1.4 Permaculture Environmentalism

Permaculture has provided the practical as well as philosophical foundation of
ecological farming, low-impact housing, and small-scale grassroots collective
actions towards a green economy. A wide range of real-world examples of perma-
culture practices rejects that permaculture principles are applicable only to address
small-scale farming and therefore way too tiny to deal with massive global environ-
mental problems. With an emphasis on less domestic demand for energy from
non-renewable sources, permaculture is concerned for global resource scarcities
and environmental pollution. Permaculture also advocates for technological devel-
opment that enables the use of renewable energy sources. In this context, permacul-
ture denies the dichotomous worldview that separates ecocentrism and
technocentrism.

Figure 1.5 delineates a continuum between two poles of environmentalism
labelled deep ecology and cornucopian views. While the basic ideas of the taxonomy
in the original references remain intact, it is notable that the second column heading
‘environmental stewardship’ (Paterson 2003) replaces ‘self-reliance and soft tech-
nology’ in O’Riordan (1981). The cornucopian view (Simon 1980, 1981) holds that
increasing economic affluence is the driving force for technological advancement.
Environmental managerialism (Bryant and Wilson 1998) is a label for a moderately
technocentric environmental view that appropriate policy measures can remedy
market failure caused by the presence of externalities, non-excludability, or pris-
oner’s dilemmas (Redclift 1993).

Ecocentrism refutes the perception that human beings are the owners or managers
of the natural environment. From the ecocentric perspective, Daly (1993) argued that

Technocentrism

Deep ecology Environmental 
stewardship

Environmental 
managerialism

Cornucopian 
views

Gaianism Communalism Accommodation Intervention

Ecocentrism

O’Riordan (1981)

O’Riordan (1987)

Fig. 1.5 A spectrum of environmentalism (adapted from O’Riordan 1981, 1987). The economic,
environmental, and social dimensions of sustainability are all unavoidably interconnected from the
permaculture perspective. It is not possible to place permacultural environmentalism on a linear
spectrum of environmentalism where ecocentrism and technocentrism are polarised as in the
diagram



sustainable economic growth is an oxymoron, and human beings should be saved
from the dangerous path of materialistic economic growth. Deep ecology recognises
that all non-human creatures have their own right to exist independently of their use
value to human species and contends that human beings have no right to degrade
their natural habitats (Naess 1984; Kopnina 2013; Imran et al. 2014).
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Environmental stewards are not optimistic about the effects of technological
development or environmental policy instruments on the conservation of the natural
environment and therefore hold the view that there should be a fundamental change
in the materialistic human lifestyles. The environmental stewardship perspective is
shallow compared with the deep ecology perspective, but is radical when compared
with environmental managerialism. Thus, one can place environmental stewardship
between deep ecology and environmental managerialism as shown in Fig. 1.5
(Pepper 1984, 1996).

Although the spectrum of environmentalism is not to be interpreted as black and
white, the illustration gives an impression that the two umbrella environmental views
are contested in every aspect. The dichotomy or linear continuum is problematic
because it reduces sustainability to a matter of balancing between human well-being
and environmental protection. Worse still, the label ‘technocentrism’ is often con-
sidered to be synonymous with ‘anthropocentrism’, as opposed to ‘ecocentrism’.
Anthropocentrism takes a view that nature is valued for the benefits it has for human
beings. Anthropocentric environmentalism seeks to use natural resources to maxi-
mise human benefits because humans are regarded as the dominant force in nature
(Keiter 1994).

Owing to the Earth care ethic, permaculture is often understood as a form of
highly ecocentric environmentalism (Akhtar et al. 2015; Boudinot and LeVasseur
2016). On the other hand, the ethic people care contains anthropocentric concerns.
In the permaculture context, however, the Earth care and the people care principles
are complementary to each other. Permaculture takes care for the planet Earth, which
is the basis of every life. Moreover, the homocentric position of permaculture should
be distinguished from that of individualistic utilitarianism in that permaculture gives
priority to social equity and cohesion.

The fair share permaculture ethic manifests that community cohesion is integral
to sustainable development. This ethical principle is reflected in its advocacy of
communalism. Communalism upholds the communal property regime with faith in
the inherent character of humans to cooperate and their ability to realise what they
can achieve through cooperation (O’Riordan 1987). As in a traditional agricultural
society, sustainable agriculture requires cooperation amongst farming households.
Thus, permaculture stresses that sustainable agriculture and sustainable society are
interdependent.

The ethics and principles of permaculture highlight the limitations of focusing on
a single dimension or component of sustainability. The holistic approach of perma-
culture to sustainability is likened to systems ecology (Mollison and Holmgren
1978; Holmgren 2002; Ferguson and Lovell 2014), which posits that it is impossible
for humans to control the natural environmental system, and states they can only live
in harmony with it (Odum 1971, 1983). Odum (1971) brought attention to howmuch



People 

care

Fair 

share

Earth 

care

the industrialised system, reliant on fossil fuel energies, has departed from the
agrarian system where nutrients are metabolically recycled through human–nature
interactions. Taking a holistic worldview, permaculture accentuates the interconnec-
tivity between social, environmental, and economic dimensions of sustainability.
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The bottom line is that the permaculture principles recognise the interdependence
between agriculture and other industries and between humans and the rest of the
world. Anthropocentrism takes the view that humans can make rational use of
natural environments to meet their needs and to enhance their quality of life. By
contrast, ecocentrism makes a strong appeal to the importance of non-market values
of ecosystems for human well-being and asserts that human beings should not
degrade the Earth’s ecosystems and deplete natural resources. Permaculture calls
for a paradigm shift to holism from dualism that splits humanity and nature
(Ferguson and Lovell 2014). On one hand, permaculture maintains that human
beings are part of nature and can never be free of it. On the other hand, permaculture
does not deny the uniqueness of humanity and the intellectual power of human
beings.

Figure 1.6 illustrates that permaculture philosophy does not differentiate between
nature and humans as the latter is a component of the former. The permaculture
principles reflect one of Commoner’s (1971) four human ecology laws that every-
thing is connected to everything else. The Earth care ethic reflects the people care
ethic, and is reflected in the people care ethic. Further, the fair share ethic does not
detract from the Earth care or people care ethic. The interconnectedness of perma-
culture ethics resembles the metaphor of Indra’s Net, which is often cited to
symbolise the interpenetrating relationship between every existence in the world.
The concept of Indra’s Net that underlies Vedic cosmology has become the central
teaching of Buddhism that everything becomes simultaneously a cause and an effect
(Cook 2010; Daniels 2019). In Indra’s Net, the whole cosmos is reflected in every

Fig. 1.6 The
interconnectedness of the
permaculture ethics.
Permaculture ethical
principles deny the
dichotomous worldview that
separates human beings and
nature. Each of the three
permaculture ethical
principles feeds into and
stems from the others



part of it, and every part is present in the entire cosmos (Thiele 2011; Lim 2019).
Thiele (2011) introduced permaculture as an example of sustainability philosophy
that is in line with Indra’s Net perspective. In Thiele’s interpretation, permaculture is
equal to polyculture where all elements of a farm interact with one another. Plants
can be resources for animal species, animal manure becomes the source of natural
fertilizers for plant species.
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1.5 Conclusions

The world cannot continue to produce food with the productivist mindset that
focuses only on the maximisation of financial profits. Permaculture sees conven-
tional agriculture as a major source of global land degradation, which leads to the
destruction of the traditional human-nature relationship. Provided that the
non-market positive ecological benefits from permaculture practices are combined
with the saved external costs of agrochemicals, permaculture can trample on profit-
oriented industrial agriculture. Thus, it is evident to permaculturists that society
should introduce and implement post-productivist policy approaches to agriculture
and human settlements. Permaculture identifies that capital-intensive agriculture
and disintegrative rural communities are a twin problem. In other words, capital-
intensive agriculture led to adopting conventional agriculture, which accelerated the
erosion of the traditional sense of community.

From the permaculture perspective, agroecology, low-impact housing practices,
and building sustainable communities are not separate domains of sustainable
development. Likewise, Earth care, people care, and fair share are not separate
ethics. Agroecological farming is highly valued because ecologically healthy food
production is connected to the health of humans. In this context, permaculture
postulates that a sustainable community cannot be established without sustainable
agriculture.

There exists a spectrum of human attitudes towards the environment, including
cornucopian views, environmental managerialism, environmental stewardship,
and deep ecology. Permaculture sees the world as a continuum of organisms
interlinked to one another. This chapter maintains that it is inappropriate to
position permacultural environmentalism on a linear spectrum of environmentalism
presented in Fig. 1.5, which is often mistakenly interpreted as an ideological black-
and-white division. Permaculture denies the anthropocentric view that economic
prosperity is the key to achieving environmental and ecological sustainability.
Neither does permaculture support the ecocentric proposition that economic pros-
perity cannot go hand in hand with ecological sustainability and therefore should be
compromised to achieve the latter. Taking a holistic view of sustainability, perma-
culture is oriented towards the integration of the multi-dimensions of the sustain-
ability concept.

Permacultural environmentalism is not mere rhetoric but offers a solution to
human-induced global environmental and ecological problems. Permaculture ethics
and principles have boosted a new age of the economic system that incorporates a



circular economy, a sharing economy, and a localised economy. The Earth care
permaculture ethic calls for recycling and reusing the otherwise would-be wastes,
which leads to less production and consumption of goods and services that require
the exploitation of non-renewable resources. The people care ethic advocates for a
localised economy in that the permaculture ethic is primarily concerned about the
economic sustainability of a local community. The fair share ethic is embodied in
various grassroots community-building initiatives such as community gardening and
co-housing. The fair share ethic triggers innovative institutional reforms, for exam-
ple, small-scale development and localised and cooperative, as opposed to a com-
petitive growth-oriented, market economy, as a pathway to building a sustainable
world.
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Permaculture philosophy and principles inspired the establishment and evolution
of many ecovillages, which in turn have been a driver of permaculture education
through permaculture workshops and courses. Ecovillages have played a part in
indirect permaculture education as a number of people have visited ecovillages to
observe and learn what ecological living should look like. The new age economy
that features the ecovillage movement transcends physically confined community
regimes, via online or offline social networks of interested parties. The Grow Free
network in Australia is a typical example of creating a sharing economy across
borderless communities. Moreover, permaculture ethics have served vital social and
spiritual functions in developing countries including Cuba, El Salvador, and India.

After all, an alternative evaluation framework needs to be developed that echoes
Hardin’s (1993) systems ecology that one action cannot do merely one thing. This
means that any action brings multiple effects and that one should not treat a
sustainability action as if it is an independent variable. Despite persistent assertions
and voices to the contrary, the dichotomous analysis of sustainability is still preva-
lent in a vast body of sustainability literature. Consequently, policy-makers or city
planners are not properly informed of the dynamics and connectedness of all
elements of sustainability.

Permaculture is a design system with a focus on (re)building sustainable human
settlements in harmony with nature. Permaculture calls for internalising the external
costs of agrochemicals and for considering non-market positive ecological benefits
from permacultural food production based on permaculture principles. Agriculture is
multi-functional within an economic-social-ecological system. Consequently, per-
maculture concerns are extended to wider communities above and beyond agroeco-
logical food production, encompassing low-impact housing and sustainable
community rebuilding.
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Chapter 2
Sources and Solubilization of Phosphatic
Fertilizers

Waleed Fouad Abobatta, Amr Mahmoud Abdel Gawad,
Haythum M. Salem, Mohamed A. Abdel-Salam, and Taghred A. Hashim

Abstract Phosphorus is a major plant nutrient, yet phosphrus deficiency often
limits plant growth and yield. There are four forms of phosphorus in the soil such
as organic ohosphorus, soluble mineral ions of H2PO4

- and HPO4
2-, soluble or

adsorbed ions, and primary minerals. Phosphorus availability is controlled by
climate, soil texture, and cultivation. The quantity of soluble mineral phosphorus
in soil is usually low, and even when P fertilizers are added, phosphorus has a
tendency to become less soluble. There are three main kinds of phosphorus fertil-
izers: biological, organic and chemical fertilizers. Phosphorus may also added in
nanoparticles. Rock phosphate is a natural and cheap, and suits acid soils. In alkaline
conditions, phosphorus is commonly unsoluble, unless amendments such as sulfur,
organic matter, or phosphorus solubilizing bacteria are added to improve phosphorus
bioavailability. Overall, agricultural management practices are important for increas-
ing phosphorus availability for crops.

Keywords Phosphorus fertilizers · Rock phosphate · Phosphorus deficiency ·
Phosphorus availability · Phosphorus-solubilizing bacteria
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Mg magnesium
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Fe iron
Al aluminum
C/P carbon/phosphorus
USA United State of America
RP rock phosphate
EPSs exopolysaccharides
DCPD di-calcium phosphate di-hydrate
DCP di-calcium phosphate

2.1 Introduction

Nutrients may be classified on basis of their biochemical and physiological function
(Marschner 2012). Phosphorus belongs to the category of essential nutrients (Anwar
et al. 2017), which are responsible for the storage, and exchange of energy
(Amanullah et al. 2016a, b). Phosphorus is an irreplaceable plant nutrient that
performs a definite physiological role in plants (Taiz and Zeiger 2003; Johnston
and Dawson 2005; Ndakidemi and Dakora 2007). Phosphorus absence inhibits
plants growth (Epstein 2000) because of phosphorus participation as the main
component of energy compounds of adenosine diphosphate (ADP) and adenosine
triphosphate (ATP) (Marschner 2012; Taiz and Zeiger 2003; Jones Jr 2012) which
are responsible for controlling plant processes such as respiration and photosynthesis
(George et al. 2011; Karamesouti and Gasparatos 2017). Phosphorus promotes
healthy root and shoot growth, improves seed development, plant quality, and crop
productivity. Adequate phosphorus increases plant water use efficiency, improves
nitrogen and other nutrients efficiency, raises plant disease resistance and plant
tolerance to abiotic stresses (Amanullah et al. 2019; Brett 2017).

Phosphorus participates in the synthesis of phospholipids, proteins as well as
DNA and RNA nucleic acids (Taiz and Zeiger 2003; Jones Jr 2012). Phosphorus
enhances plant growth, maturity, fruiting, and seed formation (Ndakidemi and
Dakora 2007; Singh et al. 2011; Zafar et al. 2011; Hussain et al. 2012; Ndor et al.
2012; Latati et al. 2015; Karamesouti and Gasparatos 2017; Rahman et al. 2008;
Rotaru 2010; Hussain 2017; Fouda 2017). Phosphorus increases the size and number
of nodules, and the activity of the nitrogenase enzyme (Al-Niemi et al. 1998).
Phosphorus is critical in photosynthesis and N-fixation (Broughton et al. 2003;
Brear et al. 2013; Nyoki and Ndakidemi 2013; Latati et al. 2014) and promotes
root growth, length, and density (Lopez-Bucio et al. 2003; Desnos 2008) that
increase the availability of nutrients for plants (Shen et al. 2011.

Some inoculants of bacteria specializer in dissolving insoluble phosphate can be
used as biofertilizers and marketed under commercial names. Microphos is a com-
mercial fertilizer preparation, which contains viable microbial inoculants possessing
phosphorus solubilizing activity (Zaidi et al. 2009). Phosphate solubilizing



There are three types of phosphorus containing substances:

microorganisms are used as biofertilizers by selecting those which show solubiliza-
tion of insoluble phosphorus. After selecting the most powerful isolate, it is
subjected to identification and tested for phosphorus plant nutrition (Bashan et al.
2013). The ability to solubilize phosphorus is not necessarily correlated with the
ability to promote plant growth (Collavino et al. 2010). From the standpoint of plant
nutrition, plants mainly absorb phosphorus as orthophosphate ions (H2PO4

- and
HPO4

2-). Soluble organic phosphorus compounds are also present in soils but
usually in small contents.
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2.2 Phosphorus Forms

1. Humus (organic matter).
2. Phosphorus bound with Ca, Mg, Fe, and Al (inorganic compounds).
3. Phosphorus compounds are connected with cells of living matter (organic

and inorganic). Some soil microbes have a role in conversions of organic and
inorganic phosphorus forms through several mechanisms of solubilization and
mineralization (Khan et al. 2009) into plant-available forms.

The labile or the unstable phosphorus may be considered available fraction which
could be utilized by plants, that fraction contains the rapidly mineralizable organic
phosphorus, soluble mineral phosphorus, and sorbed phosphorus with low energy,
however, the non-labile or stable fraction which comprises of the organic phospho-
rus that is resistant to degradation, comparatively insoluble mineral phosphorus and
the high-energy sorbed phosphorus (Sanchez 2006). Plants absorb soluble phospho-
rus from the soil solution and that has resulted in replenishment from the labile
fraction, which is correspondingly replenished by the non-labile fraction (Sanchez
2006; Ryan et al. 2013) and that is called phosphorus buffering capacity.

Phosphorus of organic residues of plants and animals and microbial cells are
sources of organic phosphorus that represent 30–70% of total phosphorus in arable
soils (Li et al. 2014), a wide diversity of microorganisms are able to degrade organic
matter releasing mineral phosphorus which becomes available for plant uptake
(Sanchez 2006). Nucleic acids and phospholipids decompose easily giving inositol
phosphate that is a curial component of humus (Haneklaus and Schnug 2016).
Mineralization is governed by many factors such as moisture content, tillage,
management, temperature, pH, and redox potential (Karamesouti and Gasparatos
2017). Released phosphorus is associated with phosphorus content in organic matter
as well as the microbial requirements of phosphorus (Marschner 2012). Mineraliza-
tion and immobilization of phosphorus depend on the carbon-phosphorus ratio in the
residues. Microorganisms affect phosphorus availability and are responsible for
organic matter decomposition, hence increasing the release of phosphate ions and
organic acids improves the solubility of phosphate compounds (Ryan et al. 2013.
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It provides exchangeable sites for holding phosphate ions (Johnston and Dawson
2005). Root exudates contain organic acids such as oxalic, citric, and galacturonic
acids which are capable of boosting the release of phosphate ions and increasing its
phosphorus availability (Haneklaus and Schnug 2016; Oburger et al. 2013).

2.3 Phosphorus Shortage

Phosphorus content in soil is affected by many factors including origin of the soil
(parent material), climate, soil texture (Nearing et al. 2005; Karamesouti and
Gasparatos 2017), and cultivated crops (Salem et al. 2014). Phosphorus depletion
in soils is attributed to the limited content of the element in the mineral of parent
material in addition to its tendency to form less soluble compounds (Smith et al.
2011). Soluble phosphorus is susceptible to loss by leaching (Ryan et al. 2013).
There may be cases of phosphorus toxicity to plant (Haneklaus and Schnug 2016).
Diagnosis of phosphorus toxicity in relation to plant growth is reflected in chlorosis
and necrosis (Silber et al. 2002).

Mineralization of organic matter, weathering, and dissolution of primary and
secondary minerals and phosphorus fertilizers are the sources of soluble phosphorus
in soil (Sanchez 2006). Unfortunately, the available ions of phosphorus–soluble
phosphorus–converted to less available forms because of adsorption, sorption, and
rainfall responses which are correlated with the predominance of cations such as
calcium, iron, and aluminum ions in addition to the pH value (Delgado and
Scalenghe 2008; Schnug and Haneklaus 2015; Karamesouti and Gasparatos 2017).

Under acidic conditions, soluble phosphorus precipitation through reacting with
the amorphous and hydrous oxides of iron and aluminum (Gasparatos et al. 2006;
McLaughlin et al. 2011; Shen et al. 2011). Either soluble in soil solution or the
adsorbed Fe/Al oxides which constitute an active coating on the surface of soil
colloids and clay mineral surfaces (Gérard 2016) producing various crystals of
minerals such as gibbsite, goethite, hematite, and ferrihydrite (Gasparatos et al.
2006).

Likewise, in the presence of calcium carbonates either neutral or calcareous soils,
calcium cations dominate the phosphorus availability and forming a low soluble
compounds of calcium phosphate (Iqbal et al. 2017; Bastounopoulou et al. 2011)
monocalcium phosphate, dicalcium phosphate dihydrate, and hydroxyapatite or
fluorapatite (Ryan et al. 2013). Under calcareous soil conditions, phosphorous is
captured because of its reaction with calcium carbonate (Iqbal et al. 2019), which
reduces soluble calcium phosphate (Osemwotai et al. 2005; Shen et al. 2011).
Adsorbed and precipitated phosphate are inversely proportional to the size of
calcium carbonate particles due to increasing of the specific surface area (Milića
et al. 2019; Von Wandruszka 2006).

Clay minerals retain phosphate ions tightly (Devau et al. 2010), and the phosphate
ions react with the clay silicate minerals through the substitution reactions between
hydroxyl and phosphate ions particularly in 1:1 clay minerals as kaolinite.



Soil water is one of the factors, which affect P diffusion through the soil, the
optimum water tension is 33 kPa (0.33 bar) that supplies the maximum availability
of phosphorus. Increasing soil temperature is associated with increased kinetic
reaction consequently a quick equilibration among phosphorus pools (soluble,
labile, and non-labile), resulting in accelerated replenishment of soluble P (Sanchez
2006).

2.4 Solubilization of Rock Phosphate

Rock phosphate is used as a natural fertilizer. However, the slow release of soluble
phosphorus from it supplies adequate requirements to complete the growth cycle
(Hellal et al. 2019). Some Egypt Governorates such as Qena, Deshna, cretaceous
rock phosphate are applied by farmers as phosphorus fertilizer that they get from
adjacent hills. Therefore, it is well known that:
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(a) Cultivated soils in Egypt have slightly alkaline with pH range of 7.8–8.2, and so, they
are not suitable to use rock phosphate, which requires acidic pH.

(b) Application of mineral fertilizers has many adverse environmental effects on cultivated
soils. Industrial fertilizer’s application leads to many chemical and mineralogical
changes, which will disturb this ecological equilibrium (Elmaadawy et al. 2015).

Globally rock phosphate is represented as a naturally occurring geological material
that contains one or more phosphate minerals suitable for commercial use. It is well
known that about 75% of the world’s phosphate resources are from sedimentary,
marine rock phosphate deposits, 15–20% from igneous and weathered deposits, and
only 1–2% from biogenic resources. Due to weathering, there are five main types of
phosphate sources in the world that include marine phosphate deposits, igneous
phosphate deposits, metamorphic deposits, biogenic deposits, and phosphate
deposits.

Types of phosphate minerals in the mineral environment include:

(1) Fluorapatite (Ca10 (PO4)6F2), in igneous and metamorphic environments, as in
carbonatites and mica pyroxenites.

(2) Hydroxyapatite (Ca10(PO4)6(OH)2), in igneous and metamorphic environments and
biogenic deposits, e.g., in bone deposits.

(3) Carbonate-hydroxy-apatites (Ca10(PO4,CO3)6(OH)2), on islands and in caves, as part of
birds and bat excrements, guano.

(4) Francolite (Ca10NaMg(PO4)6(CO3)F2), carbonate-substituted apatite present in marine
environments, and a much smaller extent in weathering environments for instance over
carbonatites (Van Straaten 2002).

About 80–90% of the worldwide phosphorus total demand was directed to agricul-
ture and food production fields (Reyes and Allsopp 2012). Where phosphorus
deficiency leads to a reduction of crop yield. Mined rock phosphate is extensively
used in agriculture. Global production percentage was higher in China (39%), the
USA (16%), Morocco and Western Sahara (15%), and Russia (6%). Jordan, Egypt,
and Tunisia produce 3% of the global production (Marjolein et al. 2012).



The world’s annual phosphate production in 2012 was about 217 million tons,
and the global reserves were about 67 billion tons (Elmaadawy et al. 2015). The
present phosphate reserves may cover the world’s requirements of phosphates for
more than 100 years with respect to the increase in world population. Egypt has
about 4% of the world’s phosphate reserves (2.78 billion tons) and produces about
3% of the world’s phosphate production (about 6 million tons per year).

The localities of rock phosphate in Egypt are:
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(1) Along the Red Sea Coast from Safaga to Quseir land stretch.
(2) The Nile Valley between Idfu and Qena and particularly near Sebaiya and El

Mahammid, at Gabel Abu Had and WadiQena which have more economic deposits,
(3) Western Desert at Abu Tartur plateau between the Kharga and Dakhla oases.

The rock phosphate of these regions are associated with iron or sulphides. The
phosphorite spreading from Bahariya Oasis to Sinai has no economic potential (Salib
2006).

The organic acids simultaneously solubilized the rock phosphate (Vassileva et al.
2000). Biologically phosphorous solubilization depends on two main factors:

(a) Mode of biocatalyst applications (free or encapsulated cells).
(b) The initial concentration of rock phosphate in the cultivated medium.

Furthermore, there are two main routes used for the solubilization of rock phosphate
as follow:

1. Partial acidulation.
2. Complete acidulation, which is performed by organic or mineral acids.

In the partial dissolution route, one-third of the phosphate material is acidulated by
acids to produce soluble mono-calcium phosphate, which is known in the fertilizer
industry as superphosphate, which is important for increasing the available phos-
phorus from rock phosphate and improving crop yield from the phosphorus-
deficient soil.

Khalil (2013( reported that, application of rock phosphate and different soil
amendments as sulphur or phosphate dissolving bacteria inoculation individually
or together had a significant effect on broad bean yield and its quality, increased
nitrogen, phosphorus, and potassium contents in straw and seeds of broad bean. The
highest nutrient contents were found when the plants are fertilized with a mixture of
RP and different soil amendments.

Badr and Taalab (2005) studied the release of phosphorus from RP through
composting using organic materials and its effect on corn growth and they found
that the concentration of total phosphorus was significantly enhanced in the final
product as organic materials decreased during composting compared to control
where no phosphorus was added. Where phosphorus from rock phosphate was
solubilized and transformed into available forms during composting.

Husnain et al. (2014) found that ogun rock phosphate had a similar effect as
nitrogen, phosphorous, and potassium 20-10-10 when applied with organic manures
and urea for plant production. Whereas, reactive rock phosphate improved soil
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fertility and maize crop productivity. In addition, Moroccan rock phosphate
contained the highest citric acid extractable phosphate as compared to other rock
phosphate tested and was the most effective in increasing maize production. Fila-
mentous fungi such as Aspergillus and Penicillium species are widely used as
producers of organic acids, applied directly into the soil to solubilize the rock
phosphate. Inoculation of phosphate-solubilizing fungi and mycorrhizal fungi
improves the physicochemical, biochemical, and biological properties of rock
phosphate-amended soil (Kumari and Phogat 2008; Santi et al. 2000).

In this respect, rock phosphate dissolution by microorganisms directly affects the
fertility of soils. Hellal et al. (2013) produced compost from rice straw enriched with
rock phosphate and inoculated with Aspergillus niger, Trichoderma viride, and or
farmyard manure. The resulting composts were evaluated as organic phosphate
fertilizers for maize plants in pot experiments. The results showed that a higher
amount of soluble phosphorus was attained from composts inoculated with Asper-
gillus niger plus Trichoderma viride with or without farmyard manure. Produced
composted rice straw was much better than the superphosphate in sustaining maize
with available phosphorous (Reyes et al. 2006).

Zhong and Huang (2005) reported that bacteria, fungi, and yeast can play
important roles in phosphorus solubilization. Where phosphate-dissolving microbes
can enhance the solubilization of phosphors to a varying extent. In addition, acids,
acid phosphates, and alkaline phosphates have synergic effects on phosphate
dissolution.

Mycorrhizal enzyme activities increase in soils enriched with microorganisms. In
addition, soil microorganisms, so-called mycorrhiza helper bacteria are known to
stimulate mycelia growth of mycorrhizal fungi that can affect the arbuscular
mycorhiza formation and function (Alguacil et al. 2008; El Tarabily et al. 2008).

AbdelHakam (2011) concluded that rock phosphate from red sea sediments could
be used with compost of plant residues or chicken manure mixed with certain
microorganisms as a phosphorus fertilizer to improve the phosphorus status and
rare earth elements in the clay soil and consequently the phosphorus availability and
uptake by wheat plants. Rasha (2014) confirmed that rock phosphate inoculated with
bacteria and mycorrhizae proved the appropriate technology to use rock phosphate
and organic waste for continuous crop production as well as supporting a healthier
environment.

2.5 Availability of Phosphorus and Implications
on Agriculture Systems

The appropriate rates of phosphorus application increase fertilizer use efficiency
(Karamesouti and Gasparatos 2017). The soil content of phosphorus did not change
where phosphorus was applied at rates equivalent to plant uptake (Haneklaus and
Schnug 2016). Rowe et al. (2016) concluded that elevating the efficiency of
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phosphorus fertilization depends on applying adequate phosphorus rates, whereby
plants are able to utilize them. Applying slow-release fertilizers is an effective choice
particularly in acid soils (Karamesouti and Gasparatos2017).

Using polymer-coated fertilizers, inoculation of microorganisms, liquid foliar
sprays mitigate phosphorus fixation and microbial immobilization (Withers et al.
2014).

The proper time of phosphorus application is important in increasing the efficacy
of phosphorus fertilization (Officer et al. 2009) Applying phosphate fertilizers
pre-cultivation is not expected to achieve the desired outcome under the humidity
conditions hence the phosphate ions will be lost through fixation (Pagani et al. 2013).
Phosphate fertilization should be done during the early growth of plants during root
propagation (Karamesouti and Gasparatos 2017; Schroder et al. 2011). This encour-
ages photosynthesis and plant growth (Pagani et al. 2013).

Management practices are important in elevating fertilizer phosphorus use effi-
ciency. Meanwhile, phosphorus fertilization should be scheduled during plant
growth particularly the initial period of growth during root propagation (Abobatta
2018; Schroder et al. 2011) that encourage photosynthesis thus reflecting on yield
and yield components (Pagani et al. 2013). In addition, applying the phosphate
fertilizer around the root zone increases its uptake by plants (Karamesouti and
Gasparatos 2017). Surface and subsurface placement of phosphorus and injection
of liquid phosphorus within the rhizosphere zone increase plant absorption particu-
larly in calcareous high pH soils or soils of high iron and aluminum oxides (Pagani
et al. 2013). The broadcast application does not provide the optimum distribution of
phosphorus fertilizers (Schroder et al. 2011).

2.6 Rock Phosphate as a Natural Fertilizer

Rock phosphate sources are natural minerals that require minimum metallurgical
processing. As natural compounds, they can be used in organic agriculture. It is
suitable for direct application and can be more efficient than water-soluble phosphate
fertilizers in terms of phosphorus recovery by plants under such conditions. In
addition, natural or indigenous rock phosphate is usually cheap. Due to their
extremely variable and complex chemical composition, rock phosphate is a source
of several nutrients other than phosphorus. Although these advantages, it has some
limitations as observed by Zapata and Roy (2004).

Sedimentary rock phosphate show a very complex structure, have extremely
variable chemical constituents and may contain elements such as heavy metals and
even radionuclides. The long-term dissolution kinetics of rock phosphate determined
with formic acid and citric acid showed slow reaction initially (0–20 min) because of
the presence of free calcium carbonate (Abdollatif et al. 2009).

Soil properties and plant characters affected the dissolution rate of rock phos-
phate. Whereas, chemical composition and particle size of rock phosphate control
their reactivity. Sedimentary rock phosphate is generally most reactive and suitable
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for direct application. Calcium carbonate can reduce the rate of rock phosphate
dissolution in some soils. The rate of rock phosphate application needs to be based
on the soil phosphorus status as indicated by soil test (Perrott and Wise 2000).

Phosphorous solubilization efficiency of all the sources of the rock phosphate
samples is applied to the sand and calcareous soils attained; generally, its highest
values in the second week thereafter tended to decrease with time up to the sixth
week (AbdelHakam 2011).

2.7 Processing Affect Phosphorus Availability for Plants

There are various processing that affects phosphorus availability for different plants.
Figure 2.1 explains some processing that enhances phosphorus availability for a
plant like phosphate mineralization, weathering, desorption, and dissolution
(Amanullah et al. 2021). While there are other processes that affect negatively
phosphorus available for different crops include immobilization, adsorption, precip-
itation, and runoff & erosion.

Fig. 2.1 Factors that influence phosphorus absorption
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2.7.1 Phosphate Mineralization

Mineralization is a process through which organic phosphorus in soil is converted
into inorganic phosphorus with the help of soil microbes. Immobilization is the
reverse of mineralization. During immobilization, inorganic phosphorus forms are
converted back to organic forms and are absorbed into the living cells of soil
microbes. Immobilization naturally happens when crop residues are incorporated
into the soil. As crop residues decompose, more phosphorus becomes available in
the soil solution through mineralization. Mineralization and immobilization pro-
cesses are biological processes, they are highly influenced by soil moisture, temper-
ature, pH, organic carbon to organic phosphorus ratio of crop residues, microbial
population, etc. (Spohn and Kuzyakov 2013).

2.7.2 Adsorption and Desorption

Adsorption is fast and reversible in nature, a process in which phosphorus present in
soil solution is attached/bound to the surface of soil particles. The phosphorus
binding takes place on clay surfaces or the iron (Fe) and aluminum (Al) oxides
and hydroxides present in the soil.

Soils with higher iron and aluminum oxides concentrations have a greater ability
to adsorb phosphorus than soils with relatively low iron and aluminum oxides. Also,
soil clay content favors phosphorus adsorption. Soils with greater clay content have
higher adsorption capacity than coarse-textured sandy soils (Sun et al. 2020; Khan
et al. 2017).

2.7.3 Weathering, Precipitation, and Dissolution

Weathering is a process in which minerals break down over time and release
phosphorus in the soil solution for plant uptake. Apatite is a primary mineral, very
stable and resistant to weathering. Therefore, phosphorus is released very slowly
compared to secondary phosphorus minerals such as calcium, iron, or aluminum
phosphates.

Precipitation is a process by which metal ions such as Al3
+ and Fe3

+ (these ions
are dominant in acidic soils) and Ca2

+ (dominant in calcareous soils) react with soil
phosphate ions to form minerals such as Al-, Fe-, or Ca-phosphates. Precipitation
is a slow process and involves a permanent change into metal phosphates. These
metal phosphates can release phosphorus in soil solution upon dissolution, but the
release rate is very slow.

A dissolution is a form of weathering when the phosphate minerals dissolve and
release phosphate back into the soil solution (Compton et al. 2000).



Phosphorus is lost from the soil in different ways like:
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(a) Crop/plant uptake.
(b) Runoff and erosion.
(c) Leaching.

Surface runoff is the main path for phosphorus loss (dissolved and eroded soil
particles) from the soil surface. Leaching is the loss of soluble phosphorus (minimal
compared to surface runoff) from sub-surface soil as water penetrates vertically
down the soil profile (Withers et al. 2001).

2.8 Factors Influence Availability of Phosphorus

There are different elements that affect phosphorus availability in soil solution
include:

(a) Organic stock

Organic matter mineralization leads to the release of available forms of phosphorus
for the plant into soils. Where organic molecules will compete with phosphate
adsorbed to soil surfaces and will reduce phosphorus retention.

(b) Clay content

The higher clay content of the soil has a high phosphorus withholding capacity
because clay particles have a very large surface area per unit volume that easily
adsorb phosphorus.

(c) Soil mineralogy

Phosphorus adsorption capacity is affected by the mineral composition of the soil.
For example, soils with a high content of Al3+ and Fe3+also tend to have the greatest
phosphorus adsorption capacity.

(d) Soil pH

Maximum phosphorus availability detected pH between 6 and 7. At lower pH, acidic
soils have larger amounts of Al3+ and Fe3+ bonded strongly with phosphate.
Whereas, higher pH alkaline soils phosphate tends to precipitate with calcium.

(e) Other factors

Phosphorus mineralization from organic matter decomposition is affected by tem-
perature, moisture, and soil aeration. For example, in warm, humid climates organic
matter decomposes faster compared to cool dry climates.
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2.9 Biodiversity of Phosphate Dissolving Microorganisms

Soil microorganisms have the ability to convert unavailable organic phosphorus
compounds into available simple inorganic forms. Several bacterial and fungal
species can increase phosphorus availability in soil and are used as biofertilizers
and known as phosphate solubilizing microorganisms (Table 2.1). The bacterial
species phosphate solubilizing bacteria or phosphate dissolving bacteria, while the
fungal ones are phosphate-solubilizing fungi. Phosphorus solubilizing bacteria in
soil constitute 1 to 50% and fungi solubilizing ones constitute 0.1–0.5% of total soil
microorganisms (Wakelin et al. 2004). Aspergillus and Penicillium fungi are pre-
dominant phosphate solubilizing microorganisms and can be isolated from the
rhizosphere and non-rhizosphere (Zaidi et al. 2009).

The potential phosphate solubilizing activity for various microorganisms such as
bacillus, pseudomonas, actinomycetes, and mycorrhizae was characterized. Also,
rhodococcus, arthrobacter, serratia, chryseobacterium, gordonia, phyllobacterium,
delftia sp. (Chen et al. 2006), Azotobacter (Kumar et al. 2001), Enterobacter,
Pantoea, and Klebsiella (Chung et al. 2005), Vibrio proteolyticus, Xanthobacter
agilis (Vazquez et al. 2000) are known as phosphate solubilizers. Moreover, sym-
biotic nitrogen-fixing rhizobia such as Rhizobium leguminosarum (Abril et al. 2007)
also showed phosphorus solubilizing activity (Zaidi et al. 2009). Several phosphate-
solubilizing bacteria have also been isolated from stressed environments for example
Kushneria sinocarni (halophilic bacteria) isolated from the sediment on the eastern
coast of China, which may be useful in salt-affected agricultural soils (Zhu et al.
2011).

Fungi with phosphate dissolving activity represent 0.1–0.5% of total fungal
counts. They are characterized by retaining their activity upon repeated
sub-culturing under laboratory conditions compared to phosphorus solubilizing
bacteria. In addition, soil fungi are able to cross long distances more easily than
bacteria and hence, may be more important to phosphorus solubilization in soils

Table 2.1 Phosphate dissolving microorganisms

Type Species

Mycorrhizae Vascular Arbuscular Mycorrhizae (Glomus sp.)

Actinomycetes Streptomyces

Fungi Trichoderma viridae, Aspergillus awamori, A. niger, A. tereus, A. flavus,
A. nidulans, A. foetidus, A. wentii. Fusarium oxysporum, Chaetomium
globosum

Bacteria Azospirillum brasilense, Bacillus sp., Bacillus circulans, B.cereus,
B. megaterium,B. polymyxa, B. subtilis, Bradyrhizobium sp., Brevibacterium
sp., Pseudomonas sp., P putida, P. fluorescens, Thiobacillus ferroxidans,
T. thioxidans, Rhizobium meliloti, Xanthomonas sp.

Cyanobacteria Anabena sp., Calothrix braunii, Nostoc sp., Scytonema sp.,
aModified from Sharma et al. (2013)



(Kucey 1983). In general, phosphorus solubilizing fungi are known to produce more
acids than bacteria with superior phosphorus solubilizing activity (Venkateswarlu
et al. 1984).

Aspergillus, Penicillium, and Trichoderma are the most representative filamen-
tous fungi that solubilize phosphate (Fenice et al. 2000; Khan and Khan 2002;
Altomare et al. 1999). Regarding yeasts, Gizaw et al. (2017) reported that Phichia
norvegensis, Cryptococcus albidus var aerius, Candida etchellsii, Cryptococcus
albidus var albidus, Rhodotrula aurantiacaA, Rhodotorula aurantiaca B, Crypto-
coccus luteolus, Cryptococcus albidus var diffluens, Cryptococcus terreus A.
recorded phosphate solubilizing activity. Their phosphate-solubilizing index (PSI)
ranges 1.72–3.35 after 15 days of incubation. Phichia norvegensis and Cryptococ-
cus albidus var aerius were superior in phosphate solubilization 3.35 and 3.2 PSI
respectively. Therefore, these species can be the candidate and exploited after further
evaluation as biofertilizers for teff productivity.

Phosphate-solubilizing fungi are expected to be present widespread, many are
usually detected in agricultural soils such as Penicillium sp., and Aspergillus sp. they
known to increase plant growth by 5–20% after inoculation (Sharma et al. 2013).

Actinomycetes are a group of soil microorganisms characterized by their ability
to survive in extreme environments (e.g. drought) and also possess other potential
benefits such as phosphate solubilization, antibiotic and phytohormone-like com-
pounds productions that benefit plant growth, there are about 20% of actinomycetes
have phosphate solubilizing activity, such as Streptomyces and Micromonospora
(Hamdali et al. 2008a, b).

In addition, under alkaline soil conditions arbuscular mycorrhizal fungi have an
important role in improving the growth and productivity of citrus orchards (Abobatta
2019a). Furthermore, Widada et al. (2007) reported that using a combination of
arbuscular mycorrhizal fungi and rhizobacteria has positive effects on plant growth
in acid soil.

Sims and Pierzynski (2005) studied the mechanism of phosphorus solubilization
by phosphate solubilizing microorganisms and they recognized the main methods of
the soil phosphorus cycle that affect soil solution phosphorus concentrations as
follow:
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(1) dissolution– precipitation (mineral equilibria).
(2) sorption– desorption (interactions between phosphorus in solution and soil solid

surfaces).
(3) mineralization–immobilization (biologically mediated conversions of P between inor-

ganic and organic forms).

Phosphate solubilizing bacteria increases the prospects of using phosphatic rocks in
crop production. Where its efficiency increased through co-inoculation with other
beneficial bacteria and mycorrhiza as biofertilizers to improve plant growth and
increase crop productivity. There are several mechanisms for microbial phosphate
solubilization including; production of organic acid and phosphatase enzyme, bio-
logical phosphorus mineralization, stimulating phosphorus solubilizing inoculants
that may contribute significantly to plant phosphorus uptake (Khan et al. 2009). Soil



microorganisms have a significant role in the soil phosphorus cycle (i.e. dissolution–
precipitation, sorption–desorption, and mineralization– immobilization). Therefore,
phosphate solubilizing microorganisms represent a source of phosphorus to plants
upon its release from dead cells. As a result, changes in environmental conditions
such as drought, freezing, and thawing, can result in a sudden increasing available
phosphorus in the solution due to an unusually high proportion of microbial cell lysis
(Butterly et al. 2009).
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Inorganic phosphorus solubilization occurs mainly by organic acid production as
a product of the microbial metabolism that leads to lowering the pH. Enhancing
chelation of the cations bound to phosphorus, competing with phosphorus for
adsorption sites on the soil, by forming soluble complexes with metal ions associated
with insoluble phosphorus (Ca, Al, Fe) and thus phosphorus is released (Trolove
et al. 2003; Maliha et al. 2004; Zaidi et al. 2009). Detection of organic acids
produced by phosphorus solubilizing microorganisms by high-performance liquid
chromatography and enzymatic methods (Whitelaw 2000). Yi et al. (2008) studied
the role of polysaccharides in the microbial mediated solubilization of phosphorus,
exopolysaccharides (EPSs) are polymers consisting mainly of carbohydrates
excreted by some bacteria and fungi onto the outside of their cell walls (Sutherland
2001). Soil microorganisms can solubilize and mineralize phosphorus from inor-
ganic and organic pools of total soil phosphorus. The use of phosphate-solubilizing
microorganisms for better crop productivity besides sustaining soil health.

2.10 Manufacture of P Fertilizers

Plant growth requires an adequate concentration of phosphorus which is replenished
by phosphorus fertilization (Haneklaus and Schnug 2016; Karamesouti and
Gasparatos 2017). Promoting phosphorus sustainability and increasing its fertilizer
use efficiency requires consideration of the appropriate dose, the proper time, and the
application method (McLaughlin et al. 2011; Pagani et al. 2013; Schroder et al.
2011; Withers et al. 2014). Source of phosphorus fertilizers include three
bio-fertilizers, organic fertilizers, and chemical fertilizers. Bio-fertilizers are micro-
organisms, which increase phosphorus. Mycorrhiza is a fungus that can be in
symbiotic association with a green plant (Karamesouti and Gasparatos 2017). It
plays an important role in increasing plant growth and producing high biomass,
encouraging mineral nutrition, particularly phosphorus (Sharma et al. 2008).
Phosphorus-solubilizing bacteria, which include Proteobacteria, Bacillus,
Ramlibacter, and Lysobacter increase phosphorus availability by secreting acids,
which solubilizes insoluble phosphorus (Zhang et al. 2021).

Chemical fertilization constitutes applying water-soluble or less soluble salts to
soil, its efficacy depends on soil reaction (Karamesouti and Gasparatos 2017).
Phosphate rock minerals such as apatite have total phosphorus of 70 to 180 g
phosphorus kg-1 (UNIDO/IFDC 1998). Reserves of rock phosphate in Australia,
Brazil, Canada, Egypt, Jordan, Morocco, China, Russia, Senegal, South Africa,

https://08101skeb-1106-y-https-www-sciencedirect-com.mplbci.ekb.eg/topics/agricultural-and-biological-sciences/lysobacter


Syria, Togo, Tunisia are 82, 260, 5, 100, 1500, 5700, 200, 80, 1500, 100, 60, 100,
1100 million Mg respectively, while other countries have 950 million Mg (Van
Kauwenbergh 2010).
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In calcareous soils, phosphate ions initially precipitate as di-calcium phosphate
di-hydrate (DCPD) which is converted to di-calcium phosphate (DCP); acidic
fertilizers play a crucial role in dissolving calcium compounds (Sanchez 2006).
rock phosphate is a very effective choice in acidic soils (Johnston and Syers
1998). Low water-solubility orslow-release phosphorus fertilizers reduce phosphate
leaching. Some fertilizers are coated with polymers to reduce the direct contact
phosphorus fixers.

Other phosphorus chemical fertilizers are wet-process phosphoric acid, normal
superphosphate, concentrated super-phosphate including doublesuperphosphate or
triple superphosphate all of which provide phosphorus only. Other soluble phos-
phorus fertilizers which provides other nutrients bedside phosphorus include mono-
ammonium phosphate, and di-ammonium phosphate contains nitrogen besides
phosphorus (Van Kauwenbergh 2010). There are fertilizers that provide potassium
along with phosphorus.

2.10.1 Nano Fertilizers

Nano-fertilization is a promising technique, which provides the fertilizer material in
nanoparticles with a size less than 100 nm. This size is of extremely high activity
surface (Abobatta 2019b; SSSAJ 2015; Janmohammadi et al. 2016; Naderi and
Danesh-Shahraki 2013; Rameshaiah and Jpallavi 2015). Such size renders the
fertilizer easily dispersed and diffused in soil with great resistance to fixation (Naderi
and Danesh-Shahraki 2013). It provides a slow-release source of fertilizer that
supplies plants with nutrients for a prolonged time (Rameshaiah and Jpallavi
2015). Many studies referred to the efficiency of applying nano-hydroxyapatite
(HA-NPs) as a promising alternative source of phosphorus (Mikhaka et al. 2016;
Doe 2015; Liu and Lal 2014). Nano forms elevate the fertilizer use efficiency of
phosphorus, also, the slow release increases the availability of phosphorus
(Kottegoda et al. 2011, Montalvo et al. 2015; Taşkın et al. 2018). Besides applying
low rates of nano fertilizer instead of the high rates of ordinary fertilizers, decreases
the cost of phosphorus fertilization (Taskin et al. 2018).

2.11 Conclusion

Phosphorus is one of the main elements for plant nutrition, therefore, phosphorus
deficiency inhibits plant growth. Phosphorus exists in different forms in the soil,
such as organic phosphorus, adsorbed phosphorus, soluble phosphorus, and phos-
phate primary minerals. There are different factors that affect phosphorus availability



in soils such as parent material, climate, organic matter, soil texture, and insensitive
cultivation. Several microorganisms enhancing phosphate solubilization include
bacteria, fungi, actinomycetes, and mycorrhizae.
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Phosphorus fertilization provides adequate plant requirements, the phosphorus
fertilizers include bio-fertilization, organic fertilization, and chemical fertilization. In
addition, rock phosphate is suitable for acidic soils. While, under alkaline soil
conditions the application of conditioners such as compost, organic manure, phos-
phorus soluble microorganisms, and plant waste could increase the efficiency of rock
phosphate as phosphatic fertilizer. Furthermore, nano-fertilization is a promising
technique for phosphorus fertilization, so, nanoparticles hydroxyapatite is consid-
ered a promising alternative source of phosphorus that promotes the growth and
productivity of plants.

References

AbdelHakam MR (2011) Studies on solubilization and fertilization by phosphate ores and behavior
of their associated elements in some Egyptian soils. Unpublished Ph. D Thesis, Soil Science
Department, Faculty of Agriculture, Ain Shams University, Egypt

Abdollatif G, Ardalan M, Tehrani MM, Hosseini HM, Karimian N (2009) Solubility test in some
rock phosphates and their potential for direct application in soil. World Appl Sci J 6(2):182–190

Abobatta WF (2018) Impact of hydrogel polymer in agricultural sector. Adv Agric Environ Sci
1(2):59–64. https://doi.org/10.30881/aaeoa.00011

Abobatta WF (2019a) Arbuscular mycorrhizal and citrus growth: overview. Acta Sci Microbiol
2(6):14–17

Abobatta WF (2019b) Nano materials and soil fertility. J Soil Sci Plant Physiol 1(2):110
Abril A, Zurdo-Pineiro JL, Peix A, Rivas R, Velazquez E (2007) Solubilization of phosphate by a

strain of rhizobium leguminosarum bv. Trifolii isolated from Phaseolus vulgaris in El Chaco
Arido soil (Argentina). In: Velazquez E, Rodriguez-Berrueco C (eds) Developments in plant
and soil sciences. Springer, Dordrecht, pp 135–138. https://doi.org/10.1007/978-1-4020-5765-
6_19

Alguacil MM, Caravaca F, Azcón R, Roldán A (2008) Changes in biological activity of a degraded
Mediterranean soil after using microbially-treated dry olive cake as a biosolid amendment and
arbuscular mycorrhizal fungi. Eur J Soil Biol, vol 44, p 347

Al-Niemi TS, Kahn ML, TRMD (1998) Phosphorus uptake by bean nodules. Plant Soil 198:71–78.
https://doi.org/10.1023/A:1004200903458

Altomare C, Norvell WA, Borjkman T, Harman GE (1999) Solubilization of phosphates and
micronutrients by the plant growth promoting and biocontrol fungus Trichoderma harzianum
Rifai 1295–22. Appl Environ Microbiol 65:2926–2933. https://doi.org/10.1128/AEM.65.7.
2926-2933.199

Amanullah S-u-T K, Asif I, Shah F (2016a) Growth and productivity response of hybrid rice to
application of animal manures, plant residues and phosphorus. Front Plant Sci 7:1440. https://
doi.org/10.3389/fpls.2016.01440

Amanullah AS, Asif I, Shah F (2016b) Foliar phosphorus and zinc application improve growth and
productivity of maize (Zea mays L.) under moisture stress conditions in semi-arid climates. J
Microb Biochem Technol 8:5. https://doi.org/10.4172/1948-5948.1000321

Amanullah AI, Adil K, Shah K, Azizullah S, Brajendra P, Shah K, Asim M (2019) Integrated
management of phosphorus, organic sources, and beneficial microbes improve dry matter
partitioning of maize. Commun Soil Sci Plant Anal 50(20):2544–2569. https://doi.org/10.
1080/00103624.2019.1667378

https://doi.org/10.30881/aaeoa.00011
https://doi.org/10.1007/978-1-4020-5765-6_19
https://doi.org/10.1007/978-1-4020-5765-6_19
https://doi.org/10.1023/A:1004200903458
https://doi.org/10.1128/AEM.65.7.2926-2933.199
https://doi.org/10.1128/AEM.65.7.2926-2933.199
https://doi.org/10.3389/fpls.2016.01440
https://doi.org/10.3389/fpls.2016.01440
https://doi.org/10.4172/1948-5948.1000321
https://doi.org/10.1080/00103624.2019.1667378
https://doi.org/10.1080/00103624.2019.1667378


2 Sources and Solubilization of Phosphatic Fertilizers 41

Amanullah AI, Asim M, Abdel RA, Azizullah S, Brajendra P (2021) Plant residues, beneficial
microbes and integrated phosphorus management for improving hybrid maize ( Zea mays L.)
growth and total biomass. Ann Trop Res 43(1):6–34. https://doi.org/10.32945/atr4321.2021

Anwar S, Muhammad F, Asif I, Muhammad I, Mazhar I, Madeeha A, Brajendra P (2017)
Phosphorus management improve productivity of wheat varieties under semiarid climates.
Journal of Pharmacognosy and. Phytochemistry SP1:259–263

Badr MA, Taalab AS (2005) Release of phosphorus from rock phosphate through composting using
organic materials and its effect on corn growth. Bull Natl Res Cent (Cairo) 30:629–638

Bashan Y, Kamnev AA, de Bashan LE (2013) A proposal for isolating and testing phosphate-
solubilizing bacteria that enhance plant growth. Biol Fertil Soils 49:1–2. https://doi.org/10.
1007/s00374-012-0756-4

Bastounopoulou M, Gasparatos D, Haidouti C, Massas I (2011) Chemical fractionation and
sorption of phosphorus in Greek inceptisols. J Agric Sci Technol 1(A1):33–38

Brear EM, Day DA, Smith PMC (2013) Iron: an essential micronutrient for the legume-rhizobium
symbiosis. Front Plant Sci 4:359. https://doi.org/10.3389/fpls.2013.00359

Brett H (2017) CCA, and originally published in the IFA Cooperator magazine (vol. 83, no. 2)
Summer 2017. Brett is a Certified Crop Advisor (CCA) with IFA Agronomy

Broughton JW, Hernandez G, Blair M, Beebe S, Gepts P, Van derleyden J (2003) Beans
(Phaseolusspp) model food legumes. Plant Soil 252:55–128. https://doi.org/10.1023/
A:1024146710611

Butterly CR, Bunemann EK, McNeill AM, Baldock JA, Marschner P (2009) Carbon pulses but not
phosphorus pulses are related to decrease in microbial biomass during repeated drying and
rewetting of soils. Soil Biol Biochem 41:1406–1416. https://doi.org/10.1016/j.soilbio.2009.
03.018

Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing
bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil
Ecol 34:33–41. https://doi.org/10.1016/j.apsoil.2005.12.002

Chung H, Park M, Madhaiyan M, Seshadri S, Song J, Cho H, Sa T (2005) Isolation and
characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of
Korea. Soil Biol Biochem 37:1970–1974. https://doi.org/10.1016/j.soilbio.2005.02.025

Collavino MM, Sansberro PA, Mroginski LA, Aguilar OM (2010) Comparison of in vitro solubi-
lization activity of diverse phosphate-solubilizing bacteria native to acid soil and their ability to
promote Phaseolus vulgaris growth. Biol Fertil Soils 46:727–738. https://doi.org/10.1007/
s00374-010-0480-x

Compton J, Mallinson D, Glenn CR, Filippelli G, Föllmi K, Shields G, Zanin Y (2000) Variations
in the global phosphorus cycle. https://archives.datapages.com/data/sepm_sp/SP66/Variations_
in_the_Global_Phosphorus_Cycle.pdf

Delgado A, Scalenghe R (2008) Aspects of phosphorus transfer from soils in Europe. J Plant Nutr
Soil Sci 171(4):552–575. https://doi.org/10.1002/jpln.200625052

Desnos T (2008) Root branching responses to phosphate and nitrate. Curr Opin Plant Bio 11:82–87.
https://doi.org/10.1016/j.pbi.2007.10.003

Devau N, Le Cadre E, Hinsinger P, Gerard F (2010) A mechanistic model for understanding root-
induced chemical changes controlling phosphorus availability. Ann Bot (Lond) 105:1183–
1197. https://doi.org/10.1093/aob/mcq098

Doe J (2015) Efficacy of hydroxyapatite nanoparticles as a P fertilizer in Andisols and Oxisols. CSA
News 60:14

EL Tarabily KA, Nassar AH, Sivasithamparam K (2008) Promotion of growth of bean (Phaseolus
vulgaris L.) in a calcareous soil by a phosphate-solubilizing, rhizosphere competent isolate of
microspore endolithica. Appl Soil Ecol 39(2):161–171. https://doi.org/10.1016/j.apsoil.2007.
12.005

Elmaadawy KHG, Ezz El Din M, Khalid AM, Abouzeid A (2015) Mineral industry in Egypt–part II
non-metallic commodities rock phosphates. J Mining World Express 4:1–18

https://doi.org/10.32945/atr4321.2021
https://doi.org/10.1007/s00374-012-0756-4
https://doi.org/10.1007/s00374-012-0756-4
https://doi.org/10.3389/fpls.2013.00359
https://doi.org/10.1023/A:1024146710611
https://doi.org/10.1023/A:1024146710611
https://doi.org/10.1016/j.soilbio.2009.03.018
https://doi.org/10.1016/j.soilbio.2009.03.018
https://doi.org/10.1016/j.apsoil.2005.12.002
https://doi.org/10.1016/j.soilbio.2005.02.025
https://doi.org/10.1007/s00374-010-0480-x
https://doi.org/10.1007/s00374-010-0480-x
https://archives.datapages.com/data/sepm_sp/SP66/Variations_in_the_Global_P%09hosphorus_Cycle.pdf
https://archives.datapages.com/data/sepm_sp/SP66/Variations_in_the_Global_P%09hosphorus_Cycle.pdf
https://doi.org/10.1002/jpln.200625052
https://doi.org/10.1016/j.pbi.2007.10.003
https://doi.org/10.1093/aob/mcq098
https://doi.org/10.1016/j.apsoil.2007.12.005
https://doi.org/10.1016/j.apsoil.2007.12.005


42 W. F. Abobatta et al.

Epstein E (2000) The discovery of the essential elements. In: Kung S-D, Yang S-F (eds) Discov-
eries in plant biology, vol 3. World Scientific, Singapore, pp 1–16. https://doi.org/10.1142/
9789812813503_0001

Fenice M, Seblman L, Federici F, Vassilev N (2000) Application of encapsulated Penicillium
variabile P16 in solubilization of rock phosphate. Bioresour Technol 73:157–162. https://doi.
org/10.1016/S0960-8524(99)00150-9

Fouda KF (2017) Effect of phosphorus level and some growth regulators on productivity of faba
bean (Vicia Faba L.). Egypt J Soil Sci 57(1):73–87. https://doi.org/10.21608/ejss.2017.3593

Gasparatos D, Haidouti C, Haroulis A, Tsaousidou P (2006) Estimation of phosphorus status of soil
Fe-enriched concretions with the acid ammonium oxalate method. Commun Soil Sci Plant Anal
37(15–20):2375–2387. https://doi.org/10.1080/00103620600819891

George TS, Fransson A-M, Hammond JP, White PJ (2011) Phosphorus nutrition: rhizosphere
processes, plant response and adaptations. In: Bünemann EK, Oberson A, Frossard E (eds)
Phosphorus in action. Springer, Heidelberg, pp 245–227. https://doi.org/10.1007/978-3-642-
15271-9_10

Gérard F (2016) Clay minerals, iron/aluminum oxides, and their contribution to phosphate sorption
in soils. Geoderma 262:213–226. https://doi.org/10.1016/j.geoderma.2015.08.036

Gizaw B, Tsegay Z, Tefera G, Aynalem E (2017) Phosphate solubilizing yeast isolated and
characterized from teff rhizosphere soil collected from gojam; Ethiopia. J Bacteriol. Mycol
Open Access 5:218–223. https://doi.org/10.15406/jbmoa.2017.05.00120

Hamdali H, Bouizgarne B, Hafidi M, Lebrihi A, Virolle MJ, Ouhdouch Y (2008a) Screening for
rock phosphate solubilizing Actinomycetes from Moroccan phosphate mines. Appl Soil Ecol
38:12–19. https://doi.org/10.1016/j.apsoil.2007.08.007

Hamdali H, Hafidi M, Virolle MJ, Ouhdouch Y (2008b) Growth promotion and protection against
damping-off of wheat by two rock phosphate solubilizing actinomycetes in a deficient soil under
greenhouse conditions. Appl Soil Ecol 40:510–517. https://doi.org/10.1016/j.apsoil.2008.
08.001

Haneklaus S, Schnug E (2016) Assessing the plant phosphorus status. In: Schnug E, De Kok LJ
(eds) Phosphorus in agriculture 100% zero. Springer, Dordrecht, pp 95–125. https://doi.org/10.
1007/978-94-017-7612-7_6

Hellal FA, Nagumo F, Zewainy RM (2013) Influence of phosphor-compost application on phos-
phorus availability and uptake by maize grown in red soil of Ishigaki Island, Japan. Agric Sci
4(2):102–109

Hellal F, El-Sayed S, Zewainy R, Amer A (2019) Importance of phosphate pock application for
sustaining agricultural production in Egypt. Bull Natl Res Cent 43(1):1–11. https://doi.org/10.
1186/s42269-019-0050-9

Husnain SR, SutriadiT NA, Sarwani M (2014) Improvement of soil fertility and crop production
through direct application of rock phosphate on maize in Indonesia. Procedia Eng 83:336–343.
https://doi.org/10.1016/j.proeng.2014.09.025

Hussain RM (2017) The effect of phosphorus in nitrogen fixation in legumes. Agric Res Tech. Open
Access J 5(1):555652. https://doi.org/10.19080/ARTOAJ.2017.04.555654

Hussain A, Ali A, Noorka IR (2012) Effect of phosphorus with and without rhizobium inoculation
in nitrogen and phosphorus concentration and uptake by Mungbean (Vigna radiate L). J Agric
Res 50(1):49–57

Iqbal A, Amanullah, Asad A, Mazhar I, Ikramullah I (2017) Integrated use of phosphorus and
organic matter improve fodder yield of Moth bean (Vigna aconitifolia (Jacq.) under irrigated and
dryland conditions of Pakistan. J AgriSearch. 4(1):10–15. https://doi.org/10.21921/jas.v4i1.
7412

Iqbal I, Amanullah, Meizhen S, Zahir S, Madeeha A, Mazhar I (2019) Integrated use of plant
residues, phosphorus and beneficial microbes improve hybrid maize productivity in semiarid
climates. Acta Ecol Sin 39:348–355. https://doi.org/10.1016/j.chnaes.2018.09.005

https://doi.org/10.1142/9789812813503_0001
https://doi.org/10.1142/9789812813503_0001
https://doi.org/10.1016/S0960-8524(99)00150-9
https://doi.org/10.1016/S0960-8524(99)00150-9
https://doi.org/10.21608/ejss.2017.3593
https://doi.org/10.1080/00103620600819891
https://doi.org/10.1007/978-3-642-15271-9_10
https://doi.org/10.1007/978-3-642-15271-9_10
https://doi.org/10.1016/j.geoderma.2015.08.036
https://doi.org/10.15406/jbmoa.2017.05.00120
https://doi.org/10.1016/j.apsoil.2007.08.007
https://doi.org/10.1016/j.apsoil.2008.08.001
https://doi.org/10.1016/j.apsoil.2008.08.001
https://doi.org/10.1007/978-94-017-7612-7_6
https://doi.org/10.1007/978-94-017-7612-7_6
https://doi.org/10.1186/s42269-019-0050-9
https://doi.org/10.1186/s42269-019-0050-9
https://doi.org/10.1016/j.proeng.2014.09.025
https://doi.org/10.19080/ARTOAJ.2017.04.555654
https://doi.org/10.21921/jas.v4i1.7412
https://doi.org/10.21921/jas.v4i1.7412
https://doi.org/10.1016/j.chnaes.2018.09.005


2 Sources and Solubilization of Phosphatic Fertilizers 43

Janmohammadi M, Amanzadeh T, Sabaghnia N, Dashti S (2016) Impact of foliar application of
nano micronutrient fertilizers and titanium dioxide nanoparticles on the growth and yield
components of barley under supplemental irrigation. Acta Agriculturae Slovenica 107(2):
265–276. https://doi.org/10.14720/aas.2016.107.2.01

Johnston AE, Dawson CJ (2005) Phosphorus in agriculture and in relation to water quality.
Agricultural Ndakidemi Industries Confederation, Peterborough, UK

Johnston AE, Syers JK (eds) (1998) Nutrient management for sustainable crop production in Asia.
CAB International, Wallingford

Jones JB Jr (2012) Chapter: 11 major essential plant elements in plant nutrition and soil fertility
manual, 2nd edn. Taylor & Francis Group, New York

Karamesouti M, Gasparatos D (2017) Sustainable management of soil phosphorus in a changing
world in a changing world. In: Rakshit A et al (eds) Adaptive soil management: from theory to
practices, pp 189–214. https://doi.org/10.1007/978-981-10-3638-5_9

Khalil A (2013) A significance of some soil amendments and phosphate is solving bacteria to
enhance the availability of phosphate in calcareous soil. ISRN Soil Science, Article ID 438949,
7 p

Khan MR, Khan SM (2002) Effect of root-dip treatment with certain phosphate solubilizing
microorganisms. Bioresour Technol 85(2):213–215. https://doi.org/10.1016/S0960-8524(02)
00077-9

Khan AA, Jilani G, Akhtar MS, Naqvi SMS, Rasheed M (2009) Phosphorus solubilizing bacteria:
occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1(1):48–58

Khan FU, Asad AK, Asif I, Akhtar A, Mazhar I, Madeeha A, Muhammad FJ, Brajendra P (2017)
Effеct of phosphorus and rhizobium inoculation on yield and yield components of mungbеan. J
Pharmacogn Phytochem SP1:252–258

Kottegoda N, Munaweera I, Madusanka N, Karunarante V (2011) A green slow-release fertilizer
composition based on urea-modified hydroxyapatite nanoparticles encapsuled wood. Curr Sci
101:73–78

Kucey RMN (1983) Phosphate solubilizing bacteria and fungi in various cultivated and virgin
Alberta soils. Can J Soil Sci 63:671–678. https://doi.org/10.4141/cjss83-068

Kumar V, Behl RK, Narula N (2001) Establishment of phosphate- solubilizing strains of Azoto-
bacter chroococcum in the rhizosphere and their effect on wheat cultivars under greenhouse
conditions. Microbiol Res 156:87–93. https://doi.org/10.1078/0944-5013-00081

Kumari K, Phogat VK (2008) Rock phosphate: its availability and solubilization in the soil–a
review. Agric Rev 29(2):108–116

Latati M, Blavet D, Alkama N, Laoufi H, Drevon J, Gérard F, Pansu M, Ounane SM (2014) The
intercropping cowpea-maize improves soil phosphorus availability and maize yields in an
alkaline soil. Plant Soil 385:181–191. https://doi.org/10.1007/s11104-014-2214-6

Latati M, Bargaz A, Belarbia B, Lazali M, Benlahrech S, Tellah S, Kaci G, Drevon J, Ounane SM
(2015) The intercropping common bean with maize improves the rhizobial efficiency, resource
use and grain yield under low phosphorus availability. Eur J Agron 72:80–90. https://doi.org/10.
1016/j.eja.2015.09.015

Li L, Tilman D, Lambers H, Zhang FS (2014) Plant diversity and overyielding: insights from below
ground facilitation of intercropping in agriculture. New Phytol 203:63–69

Liu RQ, Lal R (2014) Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine
max). Sci Rep 4:5686. https://doi.org/10.1038/srep05686

Lopez-Bucio J, Cruz-Ramırez A, Herrera-Estrella L (2003) The role of nutrient availability in
regulating root architecture. Curr Opin Plant Biol 6:280–287. https://doi.org/10.1016/S1369-
5266(03)00035-9

Maliha R, Samina K, Najma A, Sadia A, Farooq L (2004) Organic acids production and phosphate
solubilization by phosphate solubilizing microorganisms under in vitro conditions. Pak J Biol
Sci 7:187–196

Marjolein R, Jong S, Polchar J, Lingemann S (2012) Risks and opportunities in the global rock
phosphate market. In: The Hague Centre for Strategic Studies (HCSS)

https://doi.org/10.14720/aas.2016.107.2.01
https://doi.org/10.1007/978-981-10-3638-5_9
https://doi.org/10.1016/S0960-8524(02)00077-9
https://doi.org/10.1016/S0960-8524(02)00077-9
https://doi.org/10.4141/cjss83-068
https://doi.org/10.1078/0944-5013-00081
https://doi.org/10.1007/s11104-014-2214-6
https://doi.org/10.1016/j.eja.2015.09.015
https://doi.org/10.1016/j.eja.2015.09.015
https://doi.org/10.1038/srep05686
https://doi.org/10.1016/S1369-5266(03)00035-9
https://doi.org/10.1016/S1369-5266(03)00035-9


44 W. F. Abobatta et al.

Marschner H (2012) Mineral nutrition of higher plants, 3rd edn. Academic, Elsevier, London, pp
1–651

McLaughlin MJ, McBeath TM, Smernik R, Stacey SP, Ajiboye B, Guppy C (2011) The chemical
nature of P accumulation in agricultural soils—implications for fertiliser management and
design: an Australian perspective. Plant Soil 349(1–2):69–87. https://doi.org/10.1007/s11104-
011-0907-7

Mikhaka A, Sohrabia A, Kassaeeb MZ, Feizian M (2016) Synthetic nanozeolite/
nanohydroxyapatite as a phosphorus fertilizer for German chamomile (Matricaria chamomilla
L.). Indus Crops Prod 95:444–452. https://doi.org/10.1016/j.indcrop.2016.10.054

Milića S, Ninkova J, Zeremskia T, Latkovićb D, Šeremešićb S, Radovanovićc V, Žarkovićc B
(2019) Soil fertility and phosphorus fractions in a calcareous chernozem after a long-term field
experiment. Geoderma 339:9–19. https://doi.org/10.1016/j.geoderma.2018.12.017

Montalvo D, McLaughlin MJ, Degryse F (2015) Efficacy of hydroxyapatite nanoparticles as
phosphorus fertilizers in Andisols and Oxisols. Soil Sci Soc Am J 79:551–558. https://doi.
org/10.2136/sssaj2014.09.0373

Naderi MR, Danesh-Shahraki A (2013) Nanofertilizers and their roles in sustainable agriculture. Int
J Agric Crop Sci 5(19):2229–2232

Ndakidemi PA, Dakora FD (2007) Yield components of nodulated cowpea (Vignaunguiculata) and
maize (Zea mays) plants grown with exogenous phosphorus in different cropping systems. Aust
J Exp Agric 47:583. https://doi.org/10.1071/EA05274

Ndor E, Dauda N, Abimuku E, Azagaku D, Anzaku H (2012) Effect of phosphorus fertilizer and
spacing on growth, nodulation count and yield of cowpea (Vignam unguiculata (L) Walp) in
Southern Guinea Savanna Agro-ecological Zone, Nigeria. Asian J Agric Sci 4:254–257

Nearing M, Kimoto A, Nichols MH, Ritchie JC (2005) Spatial patterns of soil erosion and
deposition in two small, semiarid watersheds. J Geophys Res Earth Surf 110:F0420. https://
doi.org/10.1029/2005JF000290

Nyoki D, Ndakidemi PA (2013) Economic benefits of Bradyrhizobium japonicum inoculation and
phosphorus supplementation in cowpea (Vigna unguiculata (L) Walp) grown in northern
Tanzania. Am J Res Commun 1(11):173–189

Oburger E, Jones DL, Wenzel WW (2013) Phosphorus saturation and pH differentially regulate the
efficiency of organic acid anion-mediated P solubilization mechanisms in soils. Plant Soil 341:
363–382. https://doi.org/10.1007/s11104-010-0650-5

Officer S, Armstrong R, Norton R (2009) Plant availability of phosphorus from fluid fertiliser is
maintained under soil moisture deficit in non-calcareous soils of South-Eastern Australia. Aust J
Soil Res 47(1):103–113. https://doi.org/10.1071/SR08090

Osemwotai O, Ogboghodo IA, Aghimien EA (2005) Phosphorus retention in soils of Nigeria – a
review. Agric Rev 26:148–152

Pagani A, Sawyer JE, Mallarino AP (2013) Site-specific nutrient management for nutrient man-
agement planning to improve crop production, environmental quality, and economic return.
Iowa State University, International Plant Nutrition Institute, The Fertilizer Institute and Nutri-
ent, USDA-NRCS

Perrott KW, Wise RG (2000) Determination of residual reactive rock phosphate in soil. Com Soil
Sci Plant Anal 31:1809–1824. https://doi.org/10.1080/00103620009370539

Rahman MM, Bhuiyan MMH, Sutradhar GNC, Paul AK (2008) Effect of phosphorus, molybde-
num and rhizobium inoculation on yield and yield attributes of Mungbean. International Journal
of Sustain Crop Prod 3:26–33

Rameshaiah GN, Jpallavi S (2015) Nano fertilizers and nano sensors–an attempt for developing
smart agriculture. Int J Eng Res Gen Sci 3(1):314–320

Rasha RA (2014) Effect of compost and bio fertilizers application on phosphorus availability of
rock phosphate. Ph.D (Soil Sciences). Cairo University, Egypt

Reyes T, Allsopp M (2012) Phosphorus in agriculture, problems and solutions Greenpeace research
laboratories, Technical Report (Review)

https://doi.org/10.1007/s11104-011-0907-7
https://doi.org/10.1007/s11104-011-0907-7
https://doi.org/10.1016/j.indcrop.2016.10.054
https://doi.org/10.1016/j.geoderma.2018.12.017
https://doi.org/10.2136/sssaj2014.09.0373
https://doi.org/10.2136/sssaj2014.09.0373
https://doi.org/10.1071/EA05274
https://doi.org/10.1029/2005JF000290
https://doi.org/10.1029/2005JF000290
https://doi.org/10.1007/s11104-010-0650-5
https://doi.org/10.1071/SR08090
https://doi.org/10.1080/00103620009370539


2 Sources and Solubilization of Phosphatic Fertilizers 45

Reyes I, Valery A, Valduz S, Anoun H (2006) Phosphate-solubilizing microorganisms isolated
rhizospheric and bulk soils of colonizer plants at an abandoned rock phosphate mine. Plant Soil
287:69–75. https://doi.org/10.1007/978-1-4020-5765-6_8

Rotaru V (2010) The effects of phosphorus application on soybean plants under suboptimal
moisture conditions. Lucrari Ştiinţifice 53:27–30

Rowe H, Withers PJA, Baas P, Chan NI, Doody D, Holiman J, Jacobs B, Li H, MacDonald GK,
McDowell R, Sharpley AN, Shen J, Taheri W, Wallenstein M, Weintraub MN (2016) Integrat-
ing legacy soil phosphorus into sustainable nutrient management strategies for future food,
bioenergy and water security. Nutr Cycl Agro Ecosyst 104:393–412. https://doi.org/10.1007/
s10705-015-9726-1

Ryan J, Ibrikci H, Sommer R, Rashid A (2013) Phosphorus: agricultural nutrient. In: Encyclopedia
of environmental management. Taylor and Francis, New York, Published online 2091–2099

Salem AK, El-Harty EH, Ammar MH, Alghamdi SS (2014) Evaluation of faba bean (Vicia faba L.)
performance under various micronutrient foliar applications and plant spacing. Life Sci J 11(10):
1298–1304

Salib RM (2006) Phosphate in the Arab world and its potentiality as a secondary source of uranium.
Review Article, NMA, Cairo, p 2006 https://doi.org/10.1186/s42269-019-0050-9

Sanchez CA (2006) Chapter 3. Phosphorus. In Barker and Pilbeam (eds). 2006. Handbook of Plant
Nutrition. Taylor and Francis Group

Santi LP, Goenadi DH, Siswanto IS (2000) Solubilization of insoluble phosphates by Aspergillus
niger. Menara Perkebunan 68(2):37–47

Schnug E, Haneklaus N (2015) Uranium in phosphate fertilizers—review and outlook. In: Merkel
BJ, Arab A (eds) Uranium—past and future challenges, pp 123–130. https://doi.org/10.1007/
978-3-319-11059-2_14

Schroder JJ, Smit AL, Cordell D, Rosemarin A (2011) Improved phosphorus use efficiency in
agriculture: a key requirement for its sustainable use. Chemosphere 84(6):822–831. https://doi.
org/10.1016/j.chemosphere.2011.01.065

Sharma J, Ogram AV, Al-Agely A (2008) Mycorrhizae: implications for environmental remedia-
tion and resource conservation. Environmental Horticulture Department, Florida Cooperative
Extension Service, Institute of Food and Agricultural Sciences, University of Florida USA

Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable
approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2(1):1–14.
https://doi.org/10.1186/2193-1801-2-587

Shen J, Yuan L, Zhang J, Li H, Bai Z, Chen X, Zhang W, Zhang F (2011) Phosphorus dynamics:
from soil to plant. Plant Physiol 156(3):997–1005. https://doi.org/10.1104/pp.111.175232

Silber A, Ackerman A, Bar-Tal A, Levkovitch I, Matsevitz-Yosef T, Swartzberg D, Granot D (2002)
Interrelationship between phosphorus toxicity and sugar metabolism in Verticordiaplumose
L. Plant Soil 245:249–260

Sims JT, Pierzynski GM (2005) Chemistry of phosphorus in soil. In: Tabatabai AM, Sparks DL
(eds) Chemical processes in soil, SSSA book series 8. SSSA, Madison, pp 151–192. https://doi.
org/10.2136/sssabookser8.c2

Singh A, Baoule A, Ahmed H, Dikko A, Aliyu U, Sokoto M, Alhassan J, Musa M, Haliru B (2011)
Influence of phosphorus on the performance of cowpea (Vigna unguiculata (L) Walp.) varieties
in the Sudan savanna of Nigeria. Agric Sci 2:313–317. https://doi.org/10.4236/as.2011.23042

Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant
phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular
mycorrhizal roots have important implications for understanding and manipulating plant phos-
phorus acquisition. Plant Physiol 156:1050–1057. https://doi.org/10.1104/pp.111.174581

Spohn M, Kuzyakov Y (2013) Phosphorus mineralization can be driven by microbial need for
carbon. Soil Biol Biochem 61:69–75. https://doi.org/10.1016/j.soilbio.2013.02.013

SSSAJ (2015) Efficacy of hydroxyapatite nanoparticles as a P fertilizer in Andisols and Oxisols.
Soil Sci Soc Am J, scientists from the Fertilizer Technology Research Centre, University of
Adelaide, Australia. https://doi.org/10.4225/55/5955a36fa7514

https://doi.org/10.1007/978-1-4020-5765-6_8
https://doi.org/10.1007/s10705-015-9726-1
https://doi.org/10.1007/s10705-015-9726-1
https://doi.org/10.1186/s42269-019-0050-9
https://doi.org/10.1007/978-3-319-11059-2_14
https://doi.org/10.1007/978-3-319-11059-2_14
https://doi.org/10.1016/j.chemosphere.2011.01.065
https://doi.org/10.1016/j.chemosphere.2011.01.065
https://doi.org/10.1186/2193-1801-2-587
https://doi.org/10.1104/pp.111.175232
https://doi.org/10.2136/sssabookser8.c2
https://doi.org/10.2136/sssabookser8.c2
https://doi.org/10.4236/as.2011.23042
https://doi.org/10.1104/pp.111.174581
https://doi.org/10.1016/j.soilbio.2013.02.013
https://doi.org/10.4225/55/5955a36fa7514


46 W. F. Abobatta et al.

Sun T, Deng L, Fei K, Zhang L, Fan X (2020) Characteristics of phosphorus adsorption and
desorption in erosive weathered granite area and effects of soil properties. Environ Sci Pollut
Res 27(23):28780–28793. https://doi.org/10.1007/s11356-020-08867-1

Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology
147:3–9. https://doi.org/10.1099/00221287-147-1-3

Taiz L, Zeiger E (2003) Plant Physiology. 3rd edition, Panima Publishing Corporation, New Delhi
Banglore 1–690

Taskin MB, Sahin E, Taskin H, Atakol O, Inal A, Gunes A (2018) Effect of synthetic nano-
hydroxyapatite as an alternative phosphorus source on growth and phosphorus nutrition of
lettuce (Lactuca sativa L.) plant. J Plant Nutr 41(9):1148–1115. https://doi.org/10.1080/
01904167.2018.1433836

Trolove SN, Hedley MJ, Kirk GJD, Bolan NS, Loganathan P (2003) Progress in selected areas of
rhizosphere research on P acquisition. Aust J Soil Res 41:471–499. https://doi.org/10.1071/
SR02130

UNIDO/IFDC (1998) Fertilizer manual, Kluwer Academic Publishers, Dordrecht, 615 p
Van Kauwenbergh SJ (2010) World phosphate rock reserves and resources. International Fertilizer

Development Center (IFDC), Muscle Shoals
Van Straaten P (2002) Rocks for crops: agrominerals of sub-Saharan Africa. ICRAF, Nairobi
Vassileva M, Azcon R, Barea JM, Vassilev N (2000) Rock phosphate solubilization by free and

encapsulated cells of Yarowiali polytica. Process Biochem 35:693–697. https://doi.org/10.1016/
S0032-9592(99)00132-6

Vazquez P, Holguin G, Puente M, Lopez-cortes A, Bashan Y (2000) Phosphate solubilizing
microorganisms associated with the rhizosphere of mangroves in a semi-arid coastal lagoon.
Biol Fertil Soils 30:460–468. https://doi.org/10.1007/s003740050024

Venkateswarlu B, Rao AV, Raina P, Ahmad N (1984) Evaluation of phosphorus solubilization by
microorganisms isolated from arid soil. J Indian Soc Soil Sci 32:273–277

Von Wandruszka R (2006) Phosphorus retention in calcareous soils and the effect of organic matter
on its mobility. Geochem Trans 7(1):6. https://doi.org/10.1186/1467-4866-7-6

Wakelin SA, Warren RA, Harvey PR, Ryder MH (2004) Phosphate solubilization by Penicillium
sp. closely associated with wheat roots. Biol Fertil Soils 40:36–43. https://doi.org/10.1007/
s00374-004-0750-6

Whitelaw MA (2000) Growth promotion of plants inoculated with phosphate solubilizing fungi.
Adv Agron 69:99–151. https://doi.org/10.1016/S0065-2113(08)60948-7

Widada J, Damarjaya DI, Kabirun S (2007) The interactive effects of arbuscular mycorrhizal fungi
and rhizobacteria on the growth and nutrients uptake of sorghum in acid soil. In: Rodriguez-
Barrueco C (ed) Velazquez E. First international meeting on microbial phosphate Solubilization
Springer, pp 173–177

Withers PJ, Edwards AC, Foy RH (2001) Phosphorus cycling in UK agriculture and implications
for phosphorus loss from soil. Soil Use Manag 17(3):139–149. https://doi.org/10.1111/j.
1475-2743.2001.tb00020.x

Withers PJ, Sylvester-Bradley R, Jones DL, Healey JR, Talboys PJ (2014) Feed the crop not
the soil: rethinking phosphorus management in the food chain. Environ Sci Technol 48(12):
6523–6530. https://doi.org/10.1021/es501670j

Yi Y, Huang W, Ge Y (2008) Exopolysaccharide: a novel important factor in the microbial
dissolution of tricalcium phosphate. World J Microbiol Biotechnol 24:1059–1065

Yli-Halla M, Schick J, Kratz S, Schnug E (2016) Determination of plant available P in soil. In:
Schnug E, De Kok LJ (eds) Phosphorus in agriculture 100% zero. Springer, Dordrecht, pp
63–94. https://doi.org/10.3390/agronomy10071039

Zafar M, Abbasi M, Rahim N, Khaliq A, Shaheen A, Jamil M, Shahid M (2011) Influence of
integrated phosphorus supply and plant growth-promoting rhizobacteria on growth, nodulation,
yield and nutrient uptake in Phaseolus vulgaris. Afr J Biotechnol 10:16793–16807. https://doi.
org/10.5897/AJB11.1395

https://doi.org/10.1007/s11356-020-08867-1
https://doi.org/10.1099/00221287-147-1-3
https://doi.org/10.1080/01904167.2018.1433836
https://doi.org/10.1080/01904167.2018.1433836
https://doi.org/10.1071/SR02130
https://doi.org/10.1071/SR02130
https://doi.org/10.1016/S0032-9592(99)00132-6
https://doi.org/10.1016/S0032-9592(99)00132-6
https://doi.org/10.1007/s003740050024
https://doi.org/10.1186/1467-4866-7-6
https://doi.org/10.1007/s00374-004-0750-6
https://doi.org/10.1007/s00374-004-0750-6
https://doi.org/10.1016/S0065-2113(08)60948-7
https://doi.org/10.1111/j.1475-2743.2001.tb00020.x
https://doi.org/10.1111/j.1475-2743.2001.tb00020.x
https://doi.org/10.1021/es501670j
https://doi.org/10.3390/agronomy10071039
https://doi.org/10.5897/AJB11.1395
https://doi.org/10.5897/AJB11.1395


2 Sources and Solubilization of Phosphatic Fertilizers 47

Zaidi A, Khan MS, Ahemad M, Oves M, Wani PA (2009) Recent advances in plant growth
promotion by phosphate-solubilizing microbes. In: Khan MS et al (eds) Microbial strategies
for crop improvement. Springer, Berlin/Heidelberg, pp 23–50

Zapata F, Roy RN (2004) Rock phosphate for sustainable agriculture. FAO Fertilizer and Plant
nutrition Bulletin, Rome

Zhang Y, Li Y, Wang S, Umbreen S, Zhou C (2021) Soil phosphorus fractionation and its
association with soil phosphate-solubilizing bacteria in a chronosequence of vegetation resto-
ration. Ecol Eng 164(106208):1–11. https://doi.org/10.1016/j.ecoleng.2021.106208

Zhong C, Huang W (2005) Comparison in P solubilizing effect between different phosphorus
solubilizing microbes and variation of activities of their phosphates. Acta Pedologica Sin 42:
286–294

Zhu F, Qu L, Hong X, Sun X (2011) Isolation and characterization of a phosphate-solubilizing
halophilic bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the coast of Yellow Sea
of China. Evid Base Complement Altern Med 615032:6. https://doi.org/10.1155/2011/615032

https://doi.org/10.1016/j.ecoleng.2021.106208
https://doi.org/10.1155/2011/615032


Chapter 3
Organic Phosphorous as an Alternative
to Mineral Phosphatic Fertilizers

Muhammad Zain, Muhammad Adeel, Noman Shakoor,
Muhammad Arslan Ahmad, Saliha Maqbool, Jiusheng Li,
Shafeeq Ur-Rahman, Ming Xu, Asif Iqbal, Waqar Afzal Malik,
and Aiwang Duan

Abstract Phosphorous is an essential macronutrient required for plant growth.
However, phosphorous is deficient in most soils and is moderately available to
plants. The use of mineral phosphorous fertilizer has highly contributed in feeding
the increasing world population by supporting high crop yield. However, edaphic
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processes cause phosphorous to be immobilized in soil, thus decreasing phosphorous
availability for plants uptake. This low phosphorous use efficiency of mineral
phosphorous fertilizer and the depletion of phosphate reserves are major issues
calling for alternatives such as organic phosphorus. This chapter reviews phospho-
rous reserves and production in different countries, sources of organic phosphorous,
testing techniques of organic phosphorous, and positive effects of organic phospho-
rous on crop productivity and soil health.
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Keywords Organic phosphorous · Mineral phosphorous · Testing techniques · Soil
health · Crop productivity

Abbreviations

Mt Million tons
Pg Petagrams
lbs Pound
K Kelvin
ppt Parts per trillion
ppb Parts per billion
ha-1 Per hectare
cm Centimeter

3.1 Introduction

From bullets to fertilizers, phosphorus has become a key player in human existence
(Sharpley et al. 2018). Phosphorous is a vital element for plant development as
phosphorous is essential to cellular function (Anwar et al. 2017). Ultimately all
living beings intake phosphorous either directly or indirectly via food sources from
soil (Bünemann 2015). Phosphorous is an important part of the phospholipids that
are made up of cell membranes, genetic code carriers (deoxyribonucleic acid and
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ribonucleic acid), and intracellular energy transfer (adenosine triphosphate)
(McLaren et al. 2020). Phosphorus is a key nutrient in food production and is a
non-renewable resource (Cordell et al. 2009). There is no alternative available to
replace phosphorous, so solutions regarding P deficiency must come from either less
consumption of phosphorous, more efficient consumption and reuse, and minimal
losses in the chain from mining to the dining table (Sarvajayakesavalu et al. 2018).
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Phosphorous is present in both organic and inorganic forms in soil (Amanullah
et al. 2016a, b). Inorganic phosphorous include apatite as the most prevalent primary
phosphorous mineral; secondary phosphorous mineral comprises amorphous alumi-
num and various calcium and iron phosphates (Bünemann 2015; McLaren et al.
2020). Organic phosphorus mainly includes orthophosphate esters, including inosi-
tol phosphates, orthophosphate diesters, organic polyphosphates, and phosphonates
(Pierzynski et al. 2005). Figure 3.2 presents different forms of organic phosphorous
and the relative distribution percentage in nature (Table 3.2). Orthophosphate esters
(esters of phosphoric acid) are not reactive at neutral pH range in soils, but hydrolyze
instantly at higher pH range and in the availability of phosphatase enzymes
(Amanullah et al. 2019, 2021). Phosphoric acid is a comparatively strong acid,
and pK value is around 2 with an ionizable proton. This is the reason behind the
complete ionizing of orthophosphate esters at the pH range of common soils.
Organic phosphorus makes covalent bonding and the highest oxidation state is
phosphorus (Paraskova 2014).

3.2 Global Inorganic Phosphorous Status and Challenges

Worldwide production of inorganic phosphorous fertilizers will reach a maximum
peak in 2033 and 1/3 of that peak will level by the end of this century (Craswella
et al. 2010). According to some recent statistics, the utilization of inorganic fertil-
izers was 197.5 Mt. in the world and China is the world’s leading user, consuming
35% of the world’s total inorganic fertilizers. In the last few decades, the application
of inorganic fertilizer in China increased from 12.69 Mt. to 60.23 Mt. (Cui et al.
2021). However, the efficiency of phosphorous inorganic fertilizers has been
decreasing year by year since 1985.

Inorganic phosphorous is continuously depleting and 70% of phosphorous global
production is currently created from reserves which will be finished in the next
100 years and continuously increasing demand for inorganic phosphorous will result
in a significant global production deficit (Khan et al. 2017). Table 3.1 presents the
country-wise data of phosphorous reserves and their production. The demand for
rock phosphate – phosphorus pentoxide – will increase from 176 Mt. in 2010 to
262 Mt. by 2050 (Oumnih et al. 2017). The average growth rate is predicted to be 1%
per year before leveling off in 2100, then 0% growth rate per year between 2050 and
2100. This scenario will result in a production deficit of over 200 Mt. per year by
2075, which is much greater than the current production rate of phosphorous
fertilizer.



Country Reserves (000 Mt)
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Table 3.1 Country-wise data of phosphorous reserves and their production in the world

Mine production (000 Mt)

2018 2019

United states 25,800 23,000 1,000,000

Algeria 1200 1200 2,200,000

Australia 2800 2700 1200,000

Brazil 5740 5300 1,700,000

China 120,000 110,000 3,200,000

Egypt 5000 5000 1,300,000

Finland 989 1000 1000,000

India 1600 1600 46,000

Israel 3550 3500 62,000

Jordan 8020 8000 1000,000

Kazakhstan 1300 1300 260,000

Mexico 1540 1500 30,000

Morocco 34,800 36,000 50,000,000

Peru 3900 3700 210,000

Russia 14,000 14,000 600,000

Saudi Arabia 6090 6200 1,400,000

Senegal 1650 1600 50,000

South Africa 2100 1900 1400,000

Syria 100 2000 1,800,000

Togo 800 800 30,000

Tunisia 3340 3000 100,000

Uzbekistan 900 900 100,000

Vietnam 3300 5500 30,000

Other countries 970 1000 770,000

World Total (round) 249,000 240,000 69,000,000

Table 3.2 Sources of organic
phosphorous fertilizers in the
agriculture system

Organic source Total phosphorous (%)

Poultry manure 0.5–1.5

Sewage sludge 0.4–2.5

Compost 0.2–0.5

Green manure 0.2–0.5

Wood ash 2–5

Fish meal 5–10

Bone meal 20–30

Rock phosphate 17–26

This scenario demands alternative options of phosphorous sources and more
sustainable utilization of phosphorous reserves. Organic phosphorous has recently
emerged as the best alternative to minimize inorganic phosphorous consumption.
This chapter presents the biological cycling and forms of organic phosphorous,



available testing techniques of organic phosphorous, commercially available organic
phosphorous fertilizers, and impacts on agricultural crops.
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Furthermore, we have presented some solid facts to consider organic phospho-
rous as an alternative to inorganic phosphorous in the context of delaying peak
phosphorous production.

3.3 Phosphorus in the Soil Agriculture System

The phosphorus cycle is slow compared to other nutrients biogeochemical cycles
due to P trace amounts available in the atmospheric phase. Phosphorous tends to
move from terrestrial soil to surface water and end up in oceans, where phosphorous
deposits in a long-term sink (Margenot et al. 2017).

Pools and processes of phosphorous dynamics understanding in the agricultural
system can help in sustainable phosphorous management (Fig. 3.1) (Frossard et al.
1995). Soil phosphorous exists in both inorganic and organic forms. In soil systems,
phosphorous exists as phosphates. Orthophosphate is the simplest phosphate, has the
chemical formula of PO4

3-. Other forms are hydrogen phosphate (HPO4
2-) and

H2PO
4- (dihydrogen phosphate). The soil phosphorous can be categorized into three

sub-pools. The total global pool size is estimated as 40.6 ± 18 Pg phosphorous in the
top half meter comprising of 3.6 ± 3 Pg phosphorous for labile phosphorous, 8.6 ± 6
Pg phosphorous for organic phosphorous, 3.2 ± 2 Pg phosphorous for inorganic
phosphorous, and 12.2 ± 8 for occluded phosphorous (Yang et al. 2013). The labile
inorganic phosphorous represents the most readily available phosphorous for plants
but generally in small amounts. The organic phosphorous contains both the easily
mineralized phosphorous and more stable phosphorous (Iqbal et al. 2019a, b).
Inorganic phosphorous is held on mineral surfaces in soil by adsorption with a
much slower rate of dissolution compared to labile phosphorous. Occluded phos-
phorous represents the fraction that is not available to plants (Condron et al. 2005;
Pierzynski et al. 2005).

Major pools of inorganic phosphorous and non-living organic phosphorous are
relatively constant in size. However, the smaller pools like soil solution and micro-
bial biomass contain both forms of phosphorous which can fluctuate in size as
presented by the arrows in Fig. 3.1.

3.4 Organic Phosphorus Fertilizer

Scientists have made big progress with help of farmers in understanding phospho-
rous fate and transport in many environmental sectors but mainly have failed to give
new products and/or application techniques that are extensively accepted and that
massively improve the plant acquisition productivity (Iqbal et al. 2017). However,
under a specific environment, important progressions have been attained. For



example, usage of liquid phosphates formulation in extremely calcareous soils has
reduced the precipitation as meagerly soluble calcium phosphate minerals. But in
other attempts like co-application of the humic ingredients, use of nanoparticles, or
sorption of the double-layered hydroxides have not given the required results which
were necessary to continue the economically increasing crop yields without any
other environmental cost (Weeks and Hettiarachchi 2019).
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Fig. 3.1 Pools and pathways in phosphorous cycling in agricultural systems

To enrich the soil physicochemical properties and soil health, management
applications such as crop residue incorporation, manure application have been
adopted (Wang et al. 2015). Sustainable cropping systems may include the com-
bined use of organic fertilizers (crop residues or manure) and inorganic fertilizer
efforts to enhance microbial activities and ecosystem functioning in nutrients pro-
visioning to growing plants (Drinkwater and Snapp 2007). For example, dairy
manure and inorganic fertilizer used as organic and inorganic soil modifications
can restore soil organic carbon and soil health (Mandal et al. 2007; Wang et al.
2008). Phosphorous application through organic amendments substantially
improves the soil carbon retention resulting in higher crop harvests, preserving
carbon in the surface soil, and rise crop yields (Papadopoulos et al. 2014). Further-
more, soil organic phosphorous amendments could decrease the dependency on
inorganic fertilizers (Bhattacharyya et al. 2015). Thus, modifying soil with appro-
priate organic phosphorous input could be a better strategy to improve soil carbon
and soil health through active microbial community structure under low fertility as
well as in shallow soils (Yuan et al. 2014). Dry matter and other organic phospho-
rous inputs provide the essential plant nutrients through improved soil aggregations



and aeration, adding organic matter, and maintaining soil pH particularly in acidic
soils (Dong et al. 2012; Hirzel and Walter 2008; Yan et al. 1996).

3 Organic Phosphorous as an Alternative to Mineral Phosphatic Fertilizers 55

A 2 years field trial showed that inorganic and organic phosphorous inputs
considerably influenced the soil’s biological and chemical characteristics, the com-
position of soil microbes, and abundance in silage corn production systems in
podzolic soil in boreal climate. The results propose that P1 treatment in which dry
matter with higher phosphorus pentoxide, carbon, and nitrogen was used markedly
promoted active microbial community arrangement and abundance, soil available
phosphorous and acid phosphatase as respective to control, and P2 treatment in
which inorganic phosphorous amendment was used. Redundancy analyses also
demonstrated a strong association among P1 and P2 treatments, acid phosphatase,
soil available phosphorous, total bacterial phospholipids fatty acids, total phospho-
lipids fatty acids, and fungi suggesting that organic phosphorous amendment could
be a sustainable management practice and effective strategy for attaining higher
forage yield of silage corn in podzolic soils under boreal climate (Ali et al. 2019).

On average, the phosphorous concentration is 24 lbs. phosphorus pentoxide per ton
in beef feedlot manure, and dairymanure has 18 lbs. phosphorus pentoxide per ton. Yet,
it is important to test themanure to estimate the exact amount howmuch phosphorous is
present. Dairymanure and composted feedlot are also basic sources of available organic
phosphorous. Microbial digestion during the composting process decreases the volume
by one-third to one-half, hence enhancing the phosphorous content. Furthermore,
composting has the lowest costs per unit of phosphorous for transportation. The level
of nutrients differs in compost-based on the source material used to produce the organic
phosphorous fertilizer. According to Davis et al. (2002), the mean phosphorous con-
centration for dairy manure compost in New Mexico, Colorado, and Utah are 22 lbs.
phosphorus pentoxide per ton of compost. After the well finished composting it is
necessary to note that cured compost should not have a strong ammonia odor and should
have smelled “earthy”. Additionally, the nutrients in cured compost are stabilized and
that provides a low release of available phosphorous to plant.

Phosphorus sources approved for application in organic agriculture systems have
various properties that affect phosphorous availability and management. Common
phosphorous approved sources include cover crops, rock phosphate, soil organic
matter, manure, bone meal, guano, compost, rock phosphate, and mycorrhizal fungi
(Fig. 3.2) all of which are commonly used in research. Bone meal and guano are
among the less commonly mentioned phosphorous sources but can have a high
phosphorous concentration (ranging from 7–12% to 1–9%, respectively) (Nelson
and Janke 2007).

3.5 Testing Techniques of Organic Phosphorous

The determination of organic phosphorus is the main challenge from environmental
samples due to that still there are no direct quantities determination methods. Mostly
organic phosphorus is estimated by indirectly, calculating the difference between



inorganic phosphorus and total phosphorus measurement (Turner et al. 2005). As
well as, organic phosphorus pools define after a sequential extraction of various
bounds inorganic phosphorus compounds is performed (Psenner 1988).

56 M. Zain et al.

Fig. 3.2 Sources of organic phosphorous in agriculture

Phosphorus exists in nature in both forms such as organic and inorganic with
various states, such as solid particles or in a solution that is associated with soil and
sediments or merged into plants constituents. Additionally, organic phosphorus may
have a variety of chemical forms e.g. soluble (orthophosphate), condensed organic
and inorganic phosphorus, particles forms, for example, minerals and organic/mixed
forms in complexes, clays, and hydroxides. Phosphorus can be found in cell/
organelles of living organisms such as cell membranes, deoxyribonucleic acid, and
proteins as well as in synthetic organic phosphorus compounds i.e. herbicides,
insecticides, and plant growth regulators (Condron et al. 2005). Furthermore, those
compounds have quite various chemical properties, for example, some are soluble in
water, while others are fats-soluble as well as some of these are stables, that enable
their storage in soil, other forms are easily available. That is meaning that they may
be converted by micro-organisms from complex forms of phosphorus to simple
forms (Stewart and Tiessen 1987; Williams et al. 1967). Therefore, it is necessary to
have precise methods which can measure the qualitative and quantities of the various
types of phosphorus from one another, so that’s why their behavior can be studied.
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The analytical procedure of organic phosphorus determination includes many
various steps such as samples collection, preparation of samples, analysis,
processing the data, and explanation of results. Additionally, the sampling pro-
cedures and sample preparation are the main part of the analysis of organic phos-
phorus, since they can give rise to major variability in the results. The first step of
testing organic phosphorus is sampling. During the sampling, it is important to write
down the sampling location, types, quantity, and number of samples to be collected,
and the actual procedure of sampling. Because the sample is representative of
specific sites, as well as during the analysis less than 1 g of samples are used.
Various kinds of samples are used for the examination of organic phosphorus viz.
soil, sediment and compost samples.

Another important way for the preparation of the sample is the extraction
procedure in which the compound is isolated from the matrix. The basic objective
of this step is to isolate the analyte from complex samples, clean the analyte from
interfering compounds and pre-concentrate the analytes to a specific level which can
be analyzed by the selective method of analysis (Harris 2010).

Sequential extraction is a basic method used for the measurement of phosphorus
in environmental samples applied for various forms of phosphorus and their chem-
ical binding. The samples were exposed to the extractants for enhancing strength,
both acidic and basic in all fractionation methods. Some extractants applied in the 1st

fractionation method are ammonium fluoride, ammonium chloride, sodium hydrox-
ide, and sulfuric acid.

The fractions of samples could be separated, depending on the solubility of
phosphorus, into pools of available phosphorus, aluminum, calcium/iron-bound
phosphorus, and depending upon the method, refractory phosphorus, residual phos-
phorus, and recalcitrant phosphorus. In 1957, Chang and Jackson developed the first
comprehensive method (Chang and Jackson 1958), which has been extensively used
and modified by others (Fife 1959; Williams et al. 1967). Additionally, to determine
different inorganic phosphorus pools, that allow to indirectly estimate organic
phosphorus by measuring the variance between inorganic phosphorus before and
after digestion of the sodium hydroxide extract. Although, the disadvantage of this
procedure was that it might not assess plant available or organic phosphorus, which
incidentally was also labile phosphorus fraction.

The current fractionation method, that designed exactly for the measurement of
organic phosphorus, was proposed by Bowman and Cole in 1978 (Bowman and
Cole 1978). The uniqueness in this procedure was differentiated between labile,
moderately available, resistant, and acid non-soluble phosphorus. Hedley et al.
(1982) combined the original method (method of Jackson and Chang) with the
organic phosphorus method (method of Bowman and Cole) for the identification
of ten various phosphorus fractions, which included organic, inorganic, and micro-
bial phosphorus. New extractants are used in order to enhance the extraction efficacy
of organic phosphorus such as sodium bicarbonate, hydrogen peroxide, and
hydrochloric acid. Sequential fractionation methods are still used today because
are well described and easy to perform with basic laboratory equipment.
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Nuclear magnetic resonance spectroscopy is an advanced technique in which
a variety of samples of organic phosphorus (31 phosphorus) nuclear magnetic
resonance are measured (Cade-Menun 2005). In 1980, Newman and Tate first
applied this technique to the quantification of P in grassland soils (Newman et al.
1980). This procedure differentiates the groups of phosphorus based on specific
frequencies of resonance that are comparative to an applied magnetic field and can
distinguish between polyphosphate, pyrophosphate, orthophosphate, monoesters,
orthophosphate, phosphonates, and orthophosphate diesters (Reitzel et al. 2006).
The benefits of this method can detect and calculate the signals of multiple
phosphorus-containing compounds simultaneously and differentiate between com-
pounds with alike structural information. This technique has high detection limits
with poor sensitivity. The shortcoming of this technique is the particular extraction
method in which solvent extract with higher pH that can alter the structure of
chemical compounds and hydrolyze labile one as well as in nuclear magnetic
resonance technique has some chemical shift such as the orthophosphate diester
region, can overlap and resolve very poor. Moreover, this technique is also time-
consuming.

Spectrophotometry is a technique in which chemical concentration is
measured by light (Harris 2010). Conventionally phosphorous was measured spec-
trophotometrically by the molybdenum blue technique proposed by Murphy and
Riley (1962). This method is also called molybdate reactive phosphorus. The
principle of this method is the available phosphate (PO4

3-) in the sample react
with the molybdate (MoO2-

4) ions in the acidic condition that makes molybdo
phosphoric acid.

The acid is then reduced, either with tin chloride (SnCl) or ascorbic acid
(C6H8O6), to form a molybdenum blue complex, which can be observed calorimet-
rically (Jarvie et al. 2002). The colour intensity is directly proportional to the
concentration level of phosphate that formed blue complexes, preferably all the
free phosphate is available. Nevertheless, the origination of blue complexes is
slow or incomplete colour production that leads to underestimation of inorganic
phosphorous. The colour development is speed up with the inclusion of antimony
(III) as a catalyst. The basic advantage of this method is that it is less expensive, easy
to perform, and has good sensitivity and low detection limits. The drawback of this
procedure is that subject to intervention from complex matrices, for example, soil.
As well as some complexes may be formed with other elements (chromium, arsenic,
and silicon) rather than phosphorous such as blue molybdate complex (Blomqvist
et al. 1993; Jarvie et al. 2002). When the phosphorous was measured from soil
extracts (mineral soil) by this method, there is some risk in results by overestimating
in creating false positives from the matrix (Jarvie et al. 2002). Furthermore, this
method was planned to estimate the inorganic orthophosphate phosphorous, whereas
it has also been shown to possibly comprise loosely bound organic and inorganic
phosphorous (Stevens 1979). To solve this difficulty and evade over-elaborating
the results, discriminating extraction may be applied as a preceding molybdenum
reactive phosphorous quantifications procedure.

https://cn.bing.com/search?q=define+nevertheless&FORM=DCTRQY
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Induced coupled plasma is also called the atomic spectroscopy method in which
in the presence of high temperature a substance is cracked down into atoms (Harris
2010). Ionize argon gas is used to gain high temperatures (6000–10,000 K). Induced
coupled plasma is mostly coupled with mass spectrometry and atomic emission
spectroscopy. The basic benefits of induced coupled plasma-mass spectrometry and
induced coupled plasma-atomic emission spectroscopy have a capacity to measure
multi-elements, as well as detection limit is very low, ppt (parts per trillion) range of
mass spectrometry and ppb (parts per billion) range of atomic emission spectros-
copy. Although, the disadvantage of induced coupled plasma-mass spectrometry and
induced coupled plasma-atomic emission spectroscopy, these both can’t distinguish
between the elements and whole molecule in various oxidation states. Additionally,
still, today induced coupled plasma-atomic emission spectroscopy is commonly
used for the determination of inorganic phosphorous, for example, total phosphorus
quantification.

Ion-exchange chromatography is an analytical method in which constituents with
an observed sample are isolated from one another based on their distribution ratios in
both phases i.e. stationary phase and mobile phase (Rieman and Walton 2013). This
chromatography technique is useful for the determination of inositol phosphorous
(Cooper et al. 2007; Ruiz-Calero and Galceran 2005). In ion-exchange chromatog-
raphy depend on the interaction between the functional group of the column with
phosphate ion.

Mass spectrometry is an important analytical method that is used for the qualita-
tive and quantities of analytes in various kinds of samples (Ardrey 2003; Downard
and Morrissey 2007; Ruiz-Calero and Galceran 2005). By using mass spectrometry
to analyze any samples that can be ionized. The advantages of mass spectrometry are
that analysis requires a small size of the sample with high sensitivity.

3.6 Impact of Organic Phosphorous on Soil

Numerous studies have reported the application of organic material for the improve-
ment of soil characteristics and have found markedly beneficial effects on soil
properties under various types of soil (Mondini et al. 2008; Tejada et al. 2006;
Zingore et al. 2008; Zhang and Fang, 2007). For instance, Bouajila and Sanaa (2011)
conducted an experiment in Tunisia and used different rates (40, 80, and 120 tons
ha-1) of farmyard manure and household waste. He found an increase in soil
nitrogen content, organic carbon and reported that the soil quality improvement
was dose-dependent. He further documented that the water infiltration rate under
manure treatment was nearly twice as compared to the control plots. The addition of
the organic materials in the soil results in an increase in soil porosity and a decrease
in the soil bulk density, hence organic material affected the soil water holding
capacity (Bronick and Lal 2005). Guo et al. (2016) used cattle manure compost
and found that soil organic matter was increased by 87% at 0–20 cm soil depth. The
positive effect of organic matter was reported by Rawls et al. (2003) as the organic



matter affects the soil structure composition, water retention, and soil adsorption
properties.
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Sanchez-Monedero et al. (2004) experimented and compared the green manure-
treated soil with untreated soil. They found that green manure-treated soil stored
7–14% more carbon and 22–36% more organic carbon storage than untreated soil
and chemical fertilizer-treated soil. Application of organic manure notably enhanced
the soil pH than that of control soil (Zhang and Fand, 2007). They further investi-
gated that the soil treated with organic manure had more stable water aggregates,
saturated hydraulic conductivity, and low bulk density as opposed to chemical
fertilizer treated and untreated soil. Thus, Zhang and Fang (2007) concluded based
on their experiment that fertilizer source is an important distinguishing aspect that
affects the soil properties.

Condron et al. (2005) reported that in most soils, organic phosphorous is 30–65%
of the total phosphorous. However, in a wide range of soils with medium to long
term (5–25 years) field trials of different phosphorous inputs, it was found that
5–52% of the total phosphorous was in moderately labile and labile organic phos-
phorous pools as reported by Negassa and Leinweber (2009). To better utilize the
soil organic phosphorous for its maximum agricultural benefit, first, we should
understand the processes which are involved in its mobilization and accumulation.
Organic phosphorous is mainly comprised of orthophosphate monoesters and dies-
ters, while the polyphosphates and phosphonates may not be in huge quantity
(Condron et al. 2005). The phosphate monoesters are classified into two groups;
labile monoesters which are breakdown products of deoxyribonucleic acid and
ribonucleic acid and consist of nucleotides, inositol phosphates which are storage
complex presented in the plant cells. While phosphate diesters originate from the
plant detritus and the microbial cells and are consist of nucleic acids in
deoxyribonucleic acid and ribonucleic acid form. Polyphosphates and phosphonates
originate from the microbial biomass along with the phosphate diester and their
presence in soil is an indication of phosphorous cycling by microbes (Turner et al.
2003).

Application of organic manure with nitrogen, phosphorous, and potassium sig-
nificantly increased the soil organic matter, Olsen phosphorous and soil total phos-
phorous by 1, 3, and 2 times as compared to the alone nitrogen, phosphorous, and
potassium treatment and by 2, 17, and 4 times than that of control treatment
respectively as found by Ahmed et al. (2019) in his study at three different sites.
Silva et al. (2017) compared the effects of rock phosphates and triple superphosphate
on the microbial community in maize crop and found that Massilia and
Herbaspirillum, which belongs to Oxalobacteraceae was enriched in rock phosphate
amended soil than triple superphosphate treated soil. The second most abundant
microbes were Klebsiella and were in rock phosphate amended soil. The Bacillus
species and Burkholderia species were also higher in rock phosphate treated soil than
that of the triple superphosphate amended soil. Makela et al. (2020) investigated that
decrease in rhizosphere and soil pH due to synthetic fertilizer is might be because of
the acidic nature of synthetic fertilizer that may contain ammonium ions. However,
meat bone meal and digestate contain the organic matter that may buffer soil



pH. Mondini et al. (2008) found that soil amendment with meat and bone meal
caused a significant increase, about 50% of the added nitrogen in nitrate (NO3

-) and
ammonium (NH4

+) enhanced the microbial content, biomass, and activity as a
function of application rate.
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3.7 Impact of Organic Phosphorous on Crops

The effects of organic phosphorous on the crops varied based on the different
organic phosphorous sources and their application level. Furlani et al. (1987)
conducted an experiment and found that organic sources of phosphorous such as
phenyl phosphates, glyceryl, and ethyl ammonium significantly improved the dry
matter and phosphorous contents of plants as compared to the inorganic phospho-
rous sources like ferric, potassium dihydrogen, aluminum phosphates, and calcium.
Makela et al. (2020) reported that meat bone meal has higher shoot biomass and
phosphorous uptake in spelt wheat as compared to the synthetic phosphorous
fertilizer. Ali et al. (2019) reported that the application of dairy manure with
phosphorus pentoxide enhanced active microbial community composition, biochem-
ical attributes, and the forage production of silage corn.

Vinci et al. (2018) reported that treatment with fungus inoculation and compost
not only increased the plant growth and phosphorous uptake but also improved the
expression of metabolites that are related to photosynthetic activity. Interestingly,
the combination of inorganic fertilizer with Trichoderma was less effective and
depicted a decrease in nitrogen content and plant biomass. Organic fertilizer treat-
ment with a combination of fungi has more beneficial effects on plants than alone
organic fertilizer application. El Kinany et al. (2019) conducted an experiment and
reported that after 12 months of plant growth which were transplanted into
arbuscular mycorrhizae fungus amended compost had more biomass (shoot and
root biomass), mineral nutrient contents, and chlorophyll contents than that of the
plants which are grown without compost addition.

Taskin et al. (2018) compared the organic phosphorous source (nano-
hydroxyapatite) with phosphoric acid in their study and found that nano-hydroxyapatite
enhanced the phosphorous contents in lettuce by 13% and shoot biomass of lettuce by
11% than that of the phosphoric acid. Nano-hydroxyapatite was foliar applied on the
baobab (Adansonia digitata) seedlings and it was noted that phosphorus contents, dry
biomass, and leaf chlorophyll contents were increased by 55% and 38%, by 90% and
35%, and by 88% and 19% as compared to the monoammonium phosphate and
diammonium phosphate respectively (Soliman et al. 2016).

Abdel-Hamid et al. (2003) investigated the relative residues effectiveness of
superphosphate and phosphate rock. They reported that superphosphate has greater
relative residues effectiveness as compared to phosphate rock. Furthermore, he
found that the wheat crop effectively obtained phosphorous from phosphate residues
because of its low phosphorous requirement. The relative residues effectiveness
values for wheat and sesame plants were 0.11–0.52 and 0.02–0.24 respectively. The



relative residues values based on dry matter yield differed from the values based on
phosphorous contents. Thus, based on these findings it is recommended that phos-
phate rock should be mixed with organic manures for application in the soil as slow
release. Badr and Taalab (2005) studied the effects of phosphorous release from
phosphate rock on the growth of corn and found that total phosphorous concentra-
tion was significantly increased in the final product by decreasing organic matter as
compared to the control treatment or the treatment with no phosphorous application.
It was also observed that phosphate rock phosphorous was transformed and solubi-
lized into available form during the composting.
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Akande et al. (2011) experimented on the ogun phosphate rock and organic waste
(urea, cow dung, compost, poultry manure) to evaluate its effects on the growth and
yield of the two varieties of kenaf. The treatments used were nitrogen, phosphorous,
potassium, ogun phosphate rock, and urea, ogun phosphate rock and cow dung,
ogun phosphate rock and poultry manure, ogun phosphate rock, and compost, and
they were compared with no-fertilizer application treatment. They reported that the
application of phosphorous markedly enhanced the kenaf seed yield and plant
height. The plants which were treated with nitrogen, phosphorous, potassium were
taller than the plants with no fertilizer application. Rochayati et al. (2014) conducted
a field experiment and investigated the response of reactive phosphorous rock on
maize crop and soil health. It was found that reactive phosphate rock significantly
increased maize crop productivity and soil fertility. They further reported that
Moroccan phosphate rock has more citric acid than the other tested phosphate
rocks and is most suitable for increasing maize productivity.

3.8 Conclusion

An organic production system may improve the soil organic contents, fertilizer
uptake by plants, and the cycling of fertilizer. Given the importance of organic
phosphorous for plants and soil, we have found that organic phosphorous is more
beneficial as compared to mineral phosphorous. Primary organic phosphorous
sources are phosphate rock, compost, and manure. Based on our literature review,
it was observed that the application of organic phosphorus significantly improved
soil health and crop productivity. Phosphate rock is more effective at low pH soil of
less than 5.5 and under low calcium concentration. Compost and manure-based
phosphorous had more phosphorous availability to plants ranging from the
70–100%. On the other hand, in sense of economic considerations, local availability
and the amount of phosphorous required to meet the crop need will play an important
role in the final decision of producer to use the organic phosphorous alone or in
combination with mineral fertilizers.
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Chapter 4
Adaptive Responses of Crop Species Against
Phosphorus Deficiency

Mehtab Muhammad Aslam, Aisha Lawan Idris, Eyalira Jacob Okal,
and Muhammad Waseem

Abstract Phosphorus (P) is necessary for plant growth and productivity. P defi-
ciency leads to huge yield losses, and continuous depletion of P in industrial
agriculture is becoming a major issue of food security. Moreover, most P is not
readily available for plants, thus restricting plant growth. Therefore, P uptake
efficiency should be enhanced by identifying key root traits, genes or beneficial
microbial associations involved in P uptake. In this chapter we review crops
responses to P deficiency, the mechanisms of P acquisition and P homeostasis,
response of root exudation to P deficiency, and microbial communities that favor
P acquisition. More than 80% of plants establish a symbiotic associations to improve
nutrient acquisition ability, ultimately improving plant growth and yield. Plants have
evolved an array of strategies to overcome P scarcity-related problems.

Keywords P deficiency · Root exudates · Soil microbes · Plant growth

4.1 Introduction

Phosphorus (P) is one of the key plant macronutrients needed to maintain plant
growth and productivity, but its limited availability negatively affects crop yield
(Lambers et al. 2008; Khan et al. 2017). Its deficiency not only restricts P uptake and
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remobilization but also limits the uptake of other essential nutrients including
magnesium (Mg) and potassium (K) (Loneragan and Webb 1993; Karthika et al.
2018). P stress threatens global food security but also substantially reduces crop
yield (Brown et al. 2013). However, the provision of food to the ever-growing
population relies on improved crop production. Thus, an appropriate amount of
nutrients (P, nitrogen; N, K, sulfur; S) availability is essential to obtain optimal crop
yield. To overcome P deficiency related problems and improve crop yield, an
excessive amount of P fertilizers are consumed every year (White 2009). High
uses of P fertilizer in the agricultural soils led to P saturation and resulted in
eutrophication (Amanullah et al. 2016a, b), while low P still restricts crop growth
and yield in several regions of the world (Carpenter 2005; MacDonald et al. 2011;
Mekonnen and Hoekstra 2018; He et al. 2020). P fertilizers obtained from rock P
reserves are the irreversible source of P led to the gradually depletion of P-rock
reserves. To fulfill the agricultural P demands and saving P reserves without
damaging the environment is became a key challenge of concern (MacDonald
et al. 2011; Cordell and White 2015; Pang et al. 2018).
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In response to P limitation, plants evolved a series of physiological, morpholog-
ical, biochemical, and molecular adaptations to enhance their access to P acquisition
(Plaxton and Tran 2011). Root exudate modulates soil pH containing P mobilizing
compounds, including organic acids, phosphatases, and protons, consequently lead
to enhance P availability (Hinsinger et al. 2003; Chen et al. 2006; Mäkelä et al.
2020). Several mechanisms have been adapted to acquire P through colonization of
plant roots with soil microbiota. For instance, plants survive in a microbe-rich
ecosystem where they communicate with diverse commensal, pathogenic, and
beneficial microbes. Mechanisms by which plants respond to beneficial and patho-
genic microbes have attracted substantial attention among plant and microbial
researchers (Amanullah et al. 2019, 2021). Maize is reported to develop mycorrhiza
and increases lateral root growth under P deficiency (Gavito and Miller 1998; Zhu
and Lynch 2004). Similarly, buckwheat exhibited the potential ability to extend root
structure under low-P (Grant et al. 2001). White lupin is capable of developing
cluster roots (Almeida et al. 2020; Aslam et al. 2021a, b), and exudate organic acids
to maximize P uptake under P limitation (Watt and Evans 1999; Lambers et al. 2006;
Müller et al. 2015). Wheat, maize, and oilseed rape roots have been reported to
secrete malic acid under nutrient starvation (Hinsinger 2001). Therefore, increased
exudation of P mobilizing components can facilitate P uptake and regarded as an
important strategy to improve crop growth performance under low P conditions
(Anwar et al. 2017; Iqbal et al. 2017). In this book chapter we elucidated the
mechanisms of P acquisition, mobilization, and root exudate mediated P absorption.
Moreover, we also discussed the crop adaptation strategies to low P including,
morphological, genetic modifications, and plant behavior to subterranean
environment.
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4.2 Crops Adaptive Responses to Phosphorus Starvation

Crops have evolved a complex array of adaptive strategies to overcome P deficiency
problem (Zhang et al. 2014; Kanno et al. 2016). Indeed, roots are critical to uptake
water and nutrient from their surrounding soil and exhibit a range of root develop-
mental modification traits to adapt against several abiotic stresses. Plant root adap-
tive traits play a critical role in maintaining the terrestrial ecosystem and its
responses to rapidly fluctuating environments (Iversen et al. 2015). The alteration
of root traits is an effective mechanism to improve crop growth with an increased P
uptake capability (Niu et al. 2013). More than 80% of plants establish arbuscular
mycorrhiza fungi (AMF) association with plant roots to improve the ability of
nutrient acquisition. A wide pyramid of research had been reported on genotypic
modification of crops sensitive to P deficiency that allow root architecture modifi-
cations to stimulate P uptake (Gahoonia et al. 2001; Lynch and Brown 2001;
Hermans et al. 2006; Ling et al. 2008).

4.2.1 Modifications of Root Architecture

Root architectural modifications play a vital role in soil exploration at a broader scale
and are considered a powerful vehicle to ameliorate P uptake efficiency (Lynch
1995). Roots are the primitive crops organ that acquires nutrients and water, and also
perceive stress-related signals from the rhizosphere (Gahoonia and Nielsen 2004). In
addition to morphological changes roots also provide more surface area to acquire
inorganic P (Pi) from low P soils (Fig. 4.1a). A growing body of evidence indicates
that root architectural modifications play a significant role in P uptake mechanisms
(Lambers et al. 2006). Crop roots generally respond to P starvation through accu-
mulating a high ratio of carbon in the roots, subsequently improved root growth, root
hairs, increased lateral root development, and Pi acquisition (Vance et al. 2003; Li
et al. 2007). Root shape and structure describe the range of the components that
constitutes root architecture and their subsequent associations (Hodge et al. 2009).
Accumulating evidence demonstrated that Arabidopsis and white lupin have been
used as model crops to investigate root structural and genetic modifications to Pi
deprivation. For instance, white lupin inhibits cluster root formation in P-sufficient
solution but induces cluster root formation and increases root elongation with
abundant root hairs under P deficient solution, resulting in increased root area
(Cheng et al. 2011a, b; Funayama-Noguchi et al. 2015). Similarly, P starvation
attenuates primary root length, stimulates lateral root length, and promotes root hair
growth in numerous crop species (Linkohr et al. 2002; López-Bucio et al. 2003; Sun
et al. 2014) suggesting the significant role of root architectural modifications to
acquire more Pi from the soil. An array of studies evidenced that upon Pi starvation
root architectural modification concomitant with genotypic adaptation thereby facil-
itating P uptake ability (Jain et al. 2007; Heuer et al. 2017; Soumya et al. 2021).
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Fig. 4.1 Crop responses to phosphorus deficiency and availability. (a) Phosphorus deficiency
modulates root architecture through lateral root formation and abundances of root hairs. (b)
Alternation in root-associated microbiota assist P uptake and improve overall plant growth (c)
Transcriptional regulation and activation of a certain type of root-associated transporter proteins and
complexes also facilitate P uptake (left panel). In the right panel under optimum P in soil, enzymatic
activity in root for P and transcriptional regulation of root-associated complexes suppressed causing
shallow root architecture and reduced plant growth. Pi (inorganic phosphorus), LR (lateral root),
PHO (phosphate), TATA (Goldberg-Hogness box)
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4.2.2 Root Associated-Microbial Modulation

Crops harbor a mesmerizing microbial community associated with their roots and
exist in the rhizospheric region collectively considered as root microbial association
(Pascale et al. 2020). When crops encountered P deficiency they employ a range of
strategies to modulate microbial community (Iqbal et al. 2019a, b) including exu-
dation pattern, microbial mucilage, structural modulation, and the coordinated
defense responses (Harrison 2012; Castrillo et al. 2017). Therefore, to mitigate P
deficiency responses, one of the common strategies is the establishment of crop-root-
soil association (Fig. 4.1b) (Fabiańska et al. 2019). Crop root-microbial association
is a unique trait to be involved in improving plant growth (Pant et al. 2015).
Recently, an increasing number of evidences supported that crop root secretions
greatly modulate soil microbial community under nutrient variability (Pant et al.
2015; Hacquard et al. 2016; Zhong et al. 2020). For instance, P availability controls
the secretion of strigolactone which overwhelms arbuscular mycorrhiza fungi asso-
ciation, encourages root colonization (Akiyama et al. 2005), and assist in P trans-
portation to the host crop. Similarly, P deficiency triggers the secretion of secondary
metabolites having an elite antimicrobial activity like phenylpropanoid,
glucosinolates, and flavonoids strengthen the crop’s immunity (Pant et al. 2015).
Altogether, these interpretations suggest that P deficiency and adaptations of crops to
P deficiency responses determine structural modification in the root microbiome.

Soil microbes are known to attribute to several crops growth-related processes
such as nitrogen-fixing ability, soil stability, soil exploration, and nutrient accessi-
bility (Meena et al. 2018). Beneficial soil microbes release enzymes into the rhizo-
sphere that mobilize soil nutrients such as acid phosphatases (APases). APases are
capable of converting immobile organic P (P0) into Pi to make it readily accessible
for a plant to absorb. As a result, microbes can improve nutrient accessibility and
ultimately enhance nutrient uptake and improve plant growth (Chen et al. 2017;
Meena et al. 2018). The inoculation of plant roots with beneficial microbes has
attracted substantial interest in maintaining agricultural sustainability and reduces
excessive input of synthetic fertilizers. Hence, exploring the interrelationships
between plants, rhizosphere, microbes, and the environment would be of great
importance in understanding their contribution and responses to drought tolerance.

Soil microorganisms contribute to many vital functions for plant growth and
productivity, including (i) nitrogen fixation, (ii) aggregate stability, and (iii) nutrient
accessibility to the plants. Soil microorganisms release enzymes that solubilize
nutrients during decomposition and mineralization converting immobile nutrients
stored in organic matter into inorganic forms available for plants uptake (Singh et al.
2011). Consequently, soil microorganisms can enhance nutrient availability and
therefore increase plant nutrient uptake (Richardson and Simpson 2011a, b). Fol-
lowing this concept, incubating plant roots with beneficial microorganisms has
attracted considerable interest in maintaining agricultural sustainability and reducing
synthetic fertilizer consumption. To understand plant roots-microbial ecological
interaction and to assess the activity and persistence of beneficial microbial



inoculants within the rhizosphere. Soil microbes play a critical role in P uptake, laid
the basic foundation for generating P efficient crops, sustainable agriculture, and an
improved ecosystem. It has been shown that phosphorus deficient favorably modu-
lates the soil microbial composition compared to phosphorus sufficient (Fabiańska
et al. 2019), suggesting that the plants rapidly consume Pi. Therefore, it is necessary
to identify plant novel traits or specific drought-resistant beneficial bacteria related to
phosphate solubilization and drought tolerance.
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4.2.3 Gene Expression Induced by Phosphorus Starvation

Phosphorus starvation modulates gene expression causing distinct morphological
and physiological alteration. Modulated gene expression is supposed to be because
of the interaction of cis-regulatory elements, regulate promoter and other DNA
binding transcription factors (Li et al. 2012). It is well documented that several
genes including RNases, phosphatases, β-glucosidase, P transporters, and others
with uncharacterized functions are induced under P deficiency (Guo et al. 2013).
A key positive regulator, PHO4 encodes helix-loop-helix domain that controls the
expression of several genes, P transporters, and phosphatases (Fig. 4.1c) (Yoshida
et al. 1989). Under inorganic Pi sufficiency, two negative regulators PHO80 and
PHO85 render PHO4 inactive through hyper-phosphorylate, while under Pi defi-
ciency another PHO regulon member PHO81 impedes the activity of PHO80/85,
thus permitting PHO4 to interact with specific promoter sequences (Bun-ya et al.
1996; Secco et al. 2012).

4.3 Mechanisms of Phosphorus Acquisition
and Homeostasis

Nitrogen, P, and S are vital macroelements that are frequently acquired from the soil
solution to allow for plant growth and development (Maathuis 2009). Being an
important component of various organic compounds, such as nucleic acids, ATP,
nicotinamide adenine dinucleotide phosphate, sugar phosphates, phospholipids, and
phosphoproteins. P plays an essential role in major plant processes comprising of
biosynthesis of nucleic acid and phospholipid, photosynthesis, energy transfer and
respiration (Battini et al. 2017; Sakuraba et al. 2018). Hence, plants need to acquire P
to allow for efficient utilization and maintenance of homeostasis and metabolism in
various habitats (Sakuraba et al. 2018).

Due to the fact that Pi which is the principal soluble source of P is available at
reduced concentrations that are unevenly allotted and almost immobile in soils, its
acquisition by plants is problematic (Maathuis 2009). More specifically in the tropics
and subtropics, its insufficiency is considered a major limiting factor in crop



productivity (Ramaekers et al. 2010). High concentrations of P cause immobilization
and precipitation with other soil minerals, such as iron (Fe) and aluminum (Al) in
acid soils and calcium (Ca) in alkaline soils. Little amount (<1%) is directly
available for uptake by the plant (Battini et al. 2017). In most cases, the absorption
of P by plants from soils is in the forms of primary orthophosphate (Pi) ion (HPO4

2-)
and secondary Pi ion (HPO4

2-), and Pi ions react easily with clay, Fe, and Al
compounds within the soils. Therefore, the abundance of P available for plant uptake
in every habitat varied. Hence, plants often under P-deficiency need to adapt to the
nutrient insufficiency of their living environment (Sakuraba et al. 2018). For sus-
tainable production of crops with high yields, it is imperative to apprehend plants P
acquisition and homeostasis mechanisms (Fig. 4.2).
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Fig. 4.2 Aspects of phosphorus and other nutrient use efficiency in crops mediated by nutrient
transporters, root exudates, associated symbiosis, and bacterial communities, and root-nodule
bacteria for phosphorus and soluble nutrient remobilization, translocation, liberating stored phos-
phorus/nutrients for remobilization

4.3.1 Phosphorus Acquisition

There is a rapid progression in molecular characterization of the signaling pathways
associated with P homeostasis. The regulatory mechanisms describing the integrated



signaling cascade involved in vast responses of plants to P starvation, encompassing
root Pi acquisition have been revealed (Liu et al. 2009). For instance, the transcrip-
tional activators PHR1, PHL, and SPX (regulatory proteins) proteins play an impor-
tant role in this mechanism. Various key Pi starvation-responsive genes such as
PHT1;1, IPS1-miRNA399, PHR1, and PHL1; MYB-like GARP (GOLDEN2,
ARR-B, Psr1) TFs bind to cis-acting regulatory elements thereby inducing their
expression (Rubio et al. 2001; Bari et al. 2006; Bustos et al. 2010) (Table 4.1). Pi
abundance hinders SPX proteins interacts with PHR1, PHL1 by interacting with the
SPX-inositol polyphosphate complex. Meanwhile, when PHR1 and PHL1 are free,
they activate Pi starvation-responsive genes under low-P (Puga et al. 2014). The
interaction of nitrate sensor NRT1.1B with a phosphate signaling repressor SPX4
has been well described in rice. Nitrate perception stabilizes the NRT1.1B–SPX4
complex causing ubiquitination and degradation of SPX4 by recruiting NRT1.1B
interacting protein 1 (NBIP1). PHR2, a key TF of phosphate signaling is then
translocated to the nucleus thereby causing transcriptional activation of P utilization
genes (Hu et al. 2019).
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Genome evolution of white lupin has shown that cluster root formation under
low-P. Soil-P remobilization, carbon fixation, and cellular P translocation are essen-
tial pathways for high PUE. Auxin modulation is especially vital for cluster root
formation by relating LaABCG36 and LaABCG37 genes (Xu et al. 2020). Recently,
LaABCG29 was reported to enhance P use when subjected to soil drying and P
deficiency by increased root growth and rhizosheath formation in rice (Aslam et al.
2021a, b). The source of N, P, or S compounds of many plant species will support the
normal growth of plants for limiting plant life span. Hence, even under unfavorable
conditions, efficient root uptake is an absolute need for N, P, and S homeostasis in
the plant (Maathuis 2009). Even though there is a significant difference in the root
architecture of monocots and dicots, root traits correlated with intensified P acqui-
sition are the main and common adaptive means among all vascular plant species
(Niu et al. 2013). Therefore, maximal and continued soil exploration by proliferation
and extension of the various root types with a preference for those roots that are
metabolically effective and obtain P avidly is the major strategy for P acquisition
utilized by plants (Ramaekers et al. 2010).

In addition, an abundance of plant root-associated microbiota is a sustainable
means for exploiting and mobilizing soil P pool (Battini et al. 2017). In microbial
biomass, the assimilation and accumulation of P is a vital building block for
important cellular functions. In a situation whereby P is not directly available but
there is adequate availability of other nutrients such as C and N, soil microorganisms
effectively acquire and/or mobilize P from the environment to fulfill their needs
(Raymond et al. 2021). For instance, the capacity of Paenibacillus illinoisensis IB
1087 and Pseudomonas extremaustralis IB-Ki-13-1A strains to mobilize phosphates
was assessed. The bacterial inoculation to soil improve the level of P concentration
in wheat plants, mobile phosphorus concentration within the soil was increased,
further indicating their efficiency in enhancing the acquisition of phosphorus com-
pounds (Kudoyarova et al. 2017). In maize plants, growth and P uptake was
improved by arbuscular mycorrhiza fungi through the mycorrhizal pathway.
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Table 4.1 Some important mechanisms regulated by phosphorus in plants

Pi homeostasis Mechanism Means References

Acquisition Molecular Activation of P responsive genes;
PHT1, PHT1;1, IPS1 and
miRNA399, transcriptional activa-
tors PHR1/2 and PHL1, PHR2
Proteins interaction; nitrate sensor
NRT1 and phosphate signaling
repressor SPX4), and activities of
SPX protein.

Rubio et al. (2001), Bustos et al.
(2010), Puga et al. (2014)
Hu et al. (2019)
Niu et al. (2013), Xu et al. (2020)
Maathuis (2009), Ramaekers
et al. (2010)
Battini et al. (2017), Kudoyarova
et al. (2017), Aslam et al. (2019)
Selvi et al. (2017), Kalayu (2019)
Bargaz et al. (2016) and Battini
et al. (2017)

Morphological
(root
architecture)

Cluster root formation
Efficient root uptake

Ecological Interaction of plant with root-
associated microbiota such as
Paenibacillus illinoisensis IB
1087 and Pseudomonas
extremaustralis IB-Ki-13-1A
strains, Arbuscular mycorrhizal
fungi (AMF) Streptomyces
sp. W94, Piriformospora indica.
Hydrolysis of insoluble organic
and inorganic P compounds to
soluble P form by PSMs

Inter-cropping Legume-cereal intercrops
enhanced rapid root growth and
higher P uptake (wheat and
chickpea, faba bean and wheat,
wheat and soybean)

Translocation Molecular
(Pi transporters)

Allocation of pi ions by plants, pi
transporters (PHTs) including
PHT1/2/3/4/5 to organelles and
tissues
Phosphate transporter-1;3
(OsPHT1;3).

Rubio et al. (2001), Misson et al.
(2004), Chen et al. (2008),
Młodzińska and Zboińska (2016),
Wang et al. (2017), Parra-Almuna
et al. (2018), Sakuraba et al.
(2018) and Chang et al. (2019)

Remobilization Cellular
processes

Remodeling of root architecture at
physiological and biochemical
levels, improving organic acid
excretion, encourage symbiosis
Activities of acid phosphatases,
ribonucleases and cell wall modifi-
cation
Lipid bilayer remodeling, smaller
P-esters in senescing organs, and
hydrolysis of RNA

López-Arredondo et al. (2014)
Yun and Kaeppler (2001), Tossi
et al. (2009), Zhu et al. (2015)
(Dissanayaka et al. (2018)
Rubio et al. (2001), Uauy et al.
(2006), Dai et al. (2012), Gao
et al. (2017) and Yu et al. (2020)

Molecular Reprogramming transcriptional
responses by OsPAP26 protein,
PHR1 and AtMYB62, R2R3 MYB
TF, OsMYB2P-1, R2R3 MYB TF,
MYB103, NAM-B1 transcription
factors

Root exudation
under P
deficiency

Morphological Release of organic acids and/or
acid phosphatases by plant roots.
Increased concentration of amino
acids and organic acids including
tartaric, malic and succinic acids in
root exudates

Marschener (1998)
Zhou et al. (1998), Tawaraya
et al. (2014)
Louw-Gaume et al. (2017), He
et al. (2020)

(continued)
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Increased carboxylates (oxalate)
and acid phosphatases (secreted-
APases), and tartrate exudation
Release of large amounts of
organic acid anions
Increased exudation of organic acid
anions (OAs) including Citrate,
iso-citrate, and malate in the root
surfaces

Streptomyces sp. W94 efficiently facilitates P uptake by hyphae from a root-free soil
compartment (Battini et al. 2017). Piriformospora indica establishes a mutual
alliance with plant roots reminiscent under P limitation to promote plant growth
by making available Pi through solubilizing soil inaccessible organic P Po) (Aslam
et al. 2019). More so, phosphate solubilizing microbes (PSMs) have the ability of
hydrolyzing Po and Pi insoluble phosphorus compounds to soluble Pi form which is
easy for plants absorption. Provision of ecofriendly and economically sound
approach by fungal genera (Penicillium and Aspergillus), bacterial genera (Bacillus,
Pseudomonas, and Rhizobium), actinomycetes, and arbuscular mycorrhiza fungi.
Phosphate solubilizing microbes pave the way to overcoming P scarcity and its
subsequent uptake by plants (Kalayu 2019). In addition, seed or soil inoculated
phosphate solubilizing microbes including Bacillus sp., Aspergillus sp., Pseudomo-
nas sp., and Penicillium sp. enhanced solubilization of fixed and applied phosphates
within the soil thereby increasing crop yield. In phosphate deficient soils, these
phosphate solubilizing microbes are effective as biofertilizers in improving the
yields of crop (Selvi et al. 2017).
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Table 4.1 (continued)

Pi homeostasis Mechanism Means References

Zhou et al. (1998) and Almeida
et al. (2020)

However, intercrops are advantageous to both intercropped species such as
legume-cereal offer niche differentiation effectual development of restrictive
resources, and optimize rhizosphere biochemical (Bargaz et al. 2016). For instance,
wheat and chickpea, faba bean and wheat, deficient resources acquisition, including
P and water were significantly stimulated by legume nodulation (Betencourt et al.
2012; Bargaz et al. 2016). Moreover, in a similar instance, legume-cereal intercrops
facilitated rapid root growth associated with higher P acquisition and were confined
to cereal as compared to legume (Battini et al. 2017). P starvation-mediated root
morphological and biochemical changes proportional to microbial diversity suggest
positive rhizosphere heterogeneity and contribute to an enhanced aerial biomass and
nutrient (P and N) acquisition in inter- and mono-cropped wheat and soybean
(Betencourt et al. 2012). However, natural phyB variants had been shown to be
essential for low Pi acquisition as demonstrated in Arabidopsis (Sakuraba et al.
2018). It has shown that microbes are integral to P acquisition in plants. Therefore,
understanding the mechanisms underlying the acquisition and delivery of P facili-
tated by microbes is critical for apprehension of this interaction. This may provide
more valuable insights and serve as the basis for breeding crops that are highly
efficient in Pi acquisition and utilization.
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4.3.2 Phosphorus Translocation

The acquisition and homeostasis of Pi rely on processes regulated by Pi transporters,
known to be grouped into five families: PHT1, PHT2, PHT3, PHT4, and PHT5
(Wang et al. 2017). Following the absorption of Pi ions from the soil by the plants, Pi
transporters (PHTs) allocate these ions to organelles and tissues (Sakuraba et al.
2018). For instance, PHT1s located within the plasma membrane (PM) function in Pi
acquisition from the soil (Wang et al. 2018). This has been demonstrated in
Arabidopsis, where PHT1 genes had been highly expressed in roots (Chen et al.
2008). Pi is distributed within the plant against chloroplasts, mitochondria, golgi,
and vacuole by the concerted activities of PHT2, PHT3, PHT4, and PHT5 family
members (Wang et al. 2017), which has also been described in Arabidopsis and rice
(Młodzińska and Zboińska 2016). Mutation of PHT1-1 and PHT1-4 decreased Pi
uptake to 20% and 40%, respectively, as compared to the wild type (Misson et al.
2004; Chen et al. 2008; Młodzińska and Zboińska 2016).

There is complexity in the expression pattern of PHT1 genes, but many of them
had been induced rapidly due to P limitation. The promoter of PHT1 genes has a
P1BS-like cis-element that is essential for response to P-starvation (Table 4.1)
(Rubio et al. 2001). In ryegrass (Lolium perenne), deficiency of P and the toxicity
of aluminum resulted in up-regulation of LpPHT1 and LpPHT4 P transporters
(Parra-Almuna et al. 2018). Pi uptake, translocation, and remobilization have been
shown to be mediated by Pi transporter, OsPHT1;3 was highly expressed in young
leaf blades and the basal region of the shoot much obviously in roots and old leaf
blades of rice plant (Chang et al. 2019). Pi transporters play a pivotal role in Pi
homeostasis, thus genetic manipulation of plants (especially those that are severely
affected due to Pi deficiency) to express Pi transporters genes may enhance Pi
utilization.

4.3.3 Phosphorus Re-Mobilization

To curtail P deficiency and survive during its scarcity, plants have evolved various
strategies including remodeling of root architecture at physiological and biochemical
levels, root exudates, scavenging enzymes, activating membrane-associated P trans-
porters, and symbiosis (López-Arredondo et al. 2014). In addition to improving the
efficiency of P-nutrition, plant-internal engagement of acid phosphatases, ribonu-
cleases, cell wall modification, and internally sequestered P can be remobilizing by
plants under P limitation (Yun and Kaeppler 2001; Ticconi and Abel 2004; Zhu et al.
2015; Wang et al. 2018).

Under P deficiency, P in older leaves is remobilized to younger growing and other
active sinks. At molecular level, several transcription factors (TFs) have been
described to be reprogramming transcriptional responses of plant to P deficiency
(Table 4.1) (Yu et al. 2020). Myeloblastosis (MYB) TFs constitute one of the largest



gene families that are essential for plants response under P deficiency. For example,
in Arabidopsis, AtPHR1 and AtMYB62 are involved in the transcriptional response to
P deficiency (Rubio et al. 2001; Devaiah et al. 2009). In rice, an R2R3 MYB TF,
OsMYB2P-1, improves the plant’s tolerance to P starvation (Dai et al. 2012).
Similarly, in cabbage (Brassica oleracea), MYB103 has been involved in cell wall-
based P remobilization under P deficiency by regulating ethylene production
(Yu et al. 2020). In wheat grains, the NAC family TF, NAM-B1 plays an essential
role in P remobilization (Uauy et al. 2006). In rice, OsPAP26 protein encoded by the
purple acid phosphatase gene could remobilize Pi from senescing to younger leaves
and utilize organic P under leaf senescence and deprivation of Pi, with an increase in
abundance of OsPAP26 (Gao et al. 2017). In another instance, lipid-bilayer
remodeling coupled with the hydrolysis of RNA and smaller P-esters in senescing
organs triggered P remobilization (Dissanayaka et al. 2018).
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4.4 Plant Root Exudation Under Phosphorus Deficiency

The release of a vast number of compounds by plant roots into the soil is termed root
exudation. These exudates take part in numerous biotic and abiotic interactions
(Preece and Peñuelas 2020). However, plant nutritional status affected the compo-
sition of root exudates derived from plant metabolites (Tawaraya et al. 2018). Root
exudation might be a nutrient starvation responsive strategy. For instance, P, Fe, and
Zn deficiencies lead to the release of organic acids, acid phosphatases, or
phytosiderophores by some species (Marschener 1998).

In response to P deficiency, active released and increased in concentrations of
various metabolites including amino acids and organic acids in root exudates had
been observed in soybean roots. Some of these metabolites are tricarboxylic acid
(TCA) cycle intermediates, possibly accelerating carbon flow to the TCA cycle in
P-deficient soybean root (Tawaraya et al. 2014). In radish plants, an increase in
organic acid (including tartaric, malic, and succinic acids) exudation under P defi-
ciency was noted (Zhang et al. 1997). In sweet potato cultivars, internal P is used
effectively under P deficiency, it preferably allocates carbon to shoots, enhancing
arbuscular mycorrhiza fungi and release of organic acid, instead of increasing the
root mass or forming specialized root structures (Minemba et al. 2019). In signal
grass and ruzigrass, carboxylates (oxalate) and acid phosphatases (secreted-APases)
exudation increased with reduced P concentrations of the plant (Louw-Gaume et al.
2017). It has been shown that more than 33% of the metabolites are exudated by the
roots of O. sativa under P deficiency, indicating the active release of metabolites in
response to P deficiency by rice roots (Tawaraya et al. 2018). Under a low supply of
P to the soil, the roots of alfalfa released more carboxylates (mainly tartrate) and
phosphatase to the rhizosheath (He et al. 2020). Under P deflation, the discharge of
high amounts of organic acid anions from specialized root structures (cluster or
proteoid roots) to mobilize and acquire sparingly soluble phosphates from a
restricted soil volume had been demonstrated in white lupin (Zhou et al. 2020). In



response to low P availability, tropical grasses including Urochloa ruziziensis
(ruzigrass), Megathyrsus maximus (Guinea grass), and U. brizantha (palisade
grass), acquired P from gypsite and hematite by exudation organic acid anions
such as citrate, malate, and iso-citrate in the soil surrounding root (Almeida et al.
2020). Crop production relies on sufficient P supply for plant growth. Molecular, and
morphological traits of P acquisition are integral to P use by plants, however, much
understanding of microbial behaviors that lead to root exudation is another promis-
ing means that will ensure P availability to plants.
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4.5 Microbial Symbiotic Associations

Phosphate solubilizing microorganisms (PSM) employ varied biochemical pro-
cesses to carry out the process. The microbes release different organic acids and
enzymes to catalyze P conversion. Furthermore, studies have shown that P solubi-
lizing microbes (PSMs) do not reflect in the laboratory condition as in the exact soil
condition and have limitations since the soil in the fields is inhabited with many
different microbes (Gyaneshwar et al. 2002). In a typical natural field condition, the
process of solubilizing P is achieved by diverse microbes which interact by releasing
varied metabolites (Fig. 4.2). The microbes therefore cohesively function in symbi-
otic relationships in the rhizosphere enabling plants to achieve maximum production
by creating availability of nutrients in the soil (Bargaz et al. 2018).

Biofertilizers are often supplemented with a combination of both N and P
supplementing microorganisms. Understanding microbial symbiotic relationships
are key in designing and developing microbial-based biofertilizers formulations.
Application of phosphate solubilizing microbes and arbuscular mycorrhiza fungi is
generally associated with uptake of P in higher plants and increased yields in cereals
and vegetables (Wu et al. 2012; Sawers et al. 2017; Bargaz et al. 2018). Kyei-
Boahen et al. (2017) showed that rhizobia inoculated together with P fertilizer,
Bradyrhizobium, agronomic efficiency was significantly enhanced compared to
individual inoculants. Furthermore, fertilized field soil consisting of two mutualistic
isolates, Ensifer meliloti and Ensifer medicae, was reported to confer higher benefits
on Medicago lupulina (Simonsen et al. 2015).

4.6 Microbial Communities Mediated Phosphorus
Dynamics

Microbial communities were reported to recycle soil P thereby, enhance P availabil-
ity in soil and also contribute to plant P nutrition. In recent years, understanding the
role of soil microbes in the P cycle has been on the rise due to the high deficiencies in
soil P across the world and the high costs of P fertilizer (Mitra et al. 2020). The use of



microorganisms to enhance P availability in soil therefore emerged as the most
suitable in promoting sustainable agriculture (Richardson and Simpson, 2011a, b).
Microorganisms mainly solubilize HPO4

2- by producing organic acids such as
gluconate, formic acid, citrate, oxalate, ketogluconate, lactate, succinate, pyruvate,
malate, fumarate, glycolate, and acetic acids (Mardad et al. 2013), indicating the
potential role of root secretion and microbial association to assist P dynamics.

82 M. M. Aslam et al.

According to Alam et al. (2002), bacteria are more effective in the solubilization
of P than fungi species. Bacilli are among the most common soil bacteria that are
involved in P acquisition (Fig. 4.2). Several studies have reported the ability of
Bacillus species including B. subtilis, B. fusiformis, B. cereus, B. megaterium,
B. thuringiensis, B. pumilus, B. chitinolyticus, B. macerans, B. coagulans, and
B. mycoides contribute to P solubilization (Sharma et al. 2013; Meena et al. 2016;
Ahmad et al. 2019). In a study by Sharma et al. (2015), B. licheniformis were shown
to solubilize P in a medium containing insoluble tri-calcium P. Similarly, Delfim
et al. (2018) demonstrated that inoculation of wheat plants with HPO4

2- solubilizing
B. thuringiensis was reported to increase P in the rhizosphere (11%), up-to 67%
increase in aerial tissues, and 75% increase of P in root tissues. Bacillus mainly
carries out P solubilization by producing organic acids especially acetic acids and
lactic acids which chelate the cations bound on the insoluble phosphate (Saeid et al.
2018). Inoculation of B. firmus shown to significantly enhance P content in grains
and to progressively increase P availability in soils with rock phosphate (Datta et al.
1982). Thus implies that Bacillusmay play a critical role in both P solubilization and
acquisition, and can also be used to enhance crop production and nutrition grown in
soils with lower levels of P.

Pseudomonas strains have been described as effective solubilizers of HPO4
2-,

while P. putida, P. striata, P. fluorescens, was reported to increase the yield,
seedling length, nutrient availability, and uptake of P in soybean, corn, and chickpea
(Sharma et al. 2007; Yazdani et al. 2009). According to Buch et al. (2008), the
majority of bacteria which include Pseudomonas solubilize P by producing gluconic
acid from extracellular glucose in a reaction that is catalyzed by periplasmic glucose
dehydrogenase. Henri et al. (2008) reported the ability of three P. flourescens strains
to solubilize three different HPO4

2- of Al, Ca, and Fe supplemented to growth
media. Most studies consider P. flourescens strains as important P solubilizing
bacteria that inhabit roots of plants and they possess bio-fertilizing and biocontrol
properties (Qureshi et al. 2012).

Accordingly, B. tuberum, B. unamae, B. silvatlantica, B. mimosarum, and
Sinorhizobium meliloti exhibited inorganic P solubilizing activity in the media
supplemented with glucose as the carbon source. Bulkhoderia species possess an
acid phosphatase gene (AcpA) used for the breakdown of P complexes. Several
studies have reported the ability of various phosphobacteria to enhance P availability
in soil and improve crop yield. Wu et al. (2009), was able to isolate 14 different
phosphobacteria from eutrophic aquatic ecosystem and investigated their prospects
as biofertilizers. Some of the identified bacteria in the study include Aureobacterium
resistents, Acidovorax temperans, Achromobacter xylosoxidans, Chryseobacterium
sp., Enterobacteria sp., Acinetobacter sp., and Proteus sp. which were reported to
produce organic acids which are involved in P solubilization.
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4.7 Conclusion

P deficiency is a major limiting nutritional stress affecting crop growth and produc-
tivity. Root architectural modifications play an imperative role in the acquisition of
immobile P through the increased lateral root, root hair development, and soil
strength. In addition, root-microbial associations can significantly contribute to
improve nutrient uptake efficiency by reducing the extensive use of fertilizers.
Moreover, a PHO4 regulon binds with key cis-regulatory elements to control the
expression of P responsive genes, could potentially increase the PUE of crops by
using alternative P sources from the soil. The adoption of crop species to P
deficiency may use as a key adaptation tool to reduce the application of exogenous
P fertilizers and improve agriculture sustainability.
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Chapter 5
Biochar for Sustainable Phosphorus
Management in Agroecosystems

Komel Jehangir, Muhammad Riaz, RashidMahmood, andMuhammad Arif

Abstract Global production systems need revolutionary changes to meet food
security while sustaining agroecosystems. Plants require macro- and micro-nutrients
for their growth, development, and reproduction. As a consequence, crop production
depends mainly on the availability of mineral nutrients provided as fertilizers. After
nitrogen, phosphorous is the second most important growth-limiting macro-nutrient.
Therefore, new agricultural practices are needed to improve phosphorus uptake.
Here we review the role of biochar, a carbon neutral recycled material, as amend-
ment to soils, in improving phosphorus availability. Biochar is an organic amend-
ment produced by pyrolyzing biomass. Biochar amendments increase soil organic
carbon contents and improve soil physical, chemical, and biochemical properties,
which in turn leads to better soil fertility and quality. Biochar influences soil
phosphorous dynamics by modulating the chemical and biochemical pathways of
phosphorous cycling. Biochar addition has increased soil phosphorous content,
resulting in higher phosphorous uptake and crop productivity in various cropping
systems. Moreover, integrating biochar amendments with organic and mineral
phosphorous fertilizers can enhance phosphorous uptake by plants and crop
productivity.
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Most of the phosphorous fertilizers are naturally obtained from phosphate rocks
via mining, which is a natural and non-renewable source. The use of phosphorous in
the agricultural field has been increased since 1950s in order to meet the food and
energy demands of the growing population. It becomes available to plants only in
inorganic form and is sparingly mobile in soil (Amanullah et al. ). More-
over, the orthophosphate ions are highly reactive and become unavailable to plants
due to reaction with aluminum (Al) or iron (Fe) in acidic soils and calcium (Ca),
potassium (K), magnesium (Mg), and sodium (Na) in alkaline soils or microbial
immobilization (Zhu et al. ). Therefore, higher phosphorous concentrations
from mineral phosphorous fertilizer become unavailable to plants under alkaline
and acidic conditions, making phosphorous the most important limiting macronu-
trient (Nash et al. ; Amanullah et al. If the phosphorous fixed in soils
could become available to plants globally, it would be sufficient for crop production
for the next 100 years. The fixed amount of phosphorous fertilizer in the soil is
sufficient to run off all the losses regarding freshwater bodies e.g. eutrophication
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5.1 Introduction

Agroecosystems are fundamental elements of food security as they are the key
determinant of food availability. According to FAO (2003), “food security is the
situation that occurs when all population, always, have physical, social and eco-
nomic access to safe, sufficient and nutritious food that fulfill their dietary needs and
food preferences for healthy active life”. Therefore, the components of multi-layered
food security concept include food production, food access, food utilization, and
food stability. Despite the substantial evidence that the “green revolution” increased
crop yields of major grain crops (maize, rice, and wheat) many-folds, sustaining and
improving crop production requires fundamental changes at the crop, farm, and
landscape levels (Fischer and Edmeades 2010; Spiertz 2012). New concepts and
progress in improving crop production systems need to focus on factors to optimize
yields by understanding climatic, soil, water, and nutrient (nitrogen, phosphorus, and
potassium) constraints.

Phosphorous is among the growth limiting essential macronutrients in agricul-
tural and natural ecosystems, and hence phosphorous is intrinsically linked to global
food security (Cordell et al. 2009; Ashley et al. 2011; Glaser and Lehr 2019a, b;
Rafique et al. 2020). Therefore, the quality and quantity of crop production generally
depend on phosphorous fertilizer (Anwar et al. 2017; Amanullah et al. 2021).
However, the overall use of mineral phosphorous fertilizers is greatly uneven on a
global scale. The suboptimal application of mineral phosphorous fertilizers often
results in low crop production and yields particularly in developing countries
(Takahashi and Anwar 2007; Iqbal et al. 2019a, b). In contrast, in some regions in
the world including Europe and China, phosphorous fertilizers are applied at much
higher rates which results in phosphorous accumulation in soils (Cordell and White
2014). Nevertheless, the high rate of phosphorous is often recommended to increase
phosphorous uptake by plants, phosphorous use efficiency, and crop yields (Withers
et al. 2018; Swaney and Howarth 2019).



(Bennett et al. ). Therefore, it becomes imperative to find new and advanced
phosphorous cycling mechanisms and new strategies which can help to optimize
phosphorous to plants so that food production is enhanced to meet food security
(Rafique et al. ). There are many techniques to support sustainable intensifica-
tion in relation to phosphorous fertilization:

2019

2001
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• Improvement in soil quality to increase phosphorous nutrition of plants at critical
growth stages;

• Management of soil fertility to enhance phosphorous availability to crops under
diverse conditions; and,

• Development of phosphorous fertilizers that ensure optimum phosphorous avail-
ability to plants.

Maximum phosphorous supply to plants could be achieved by improving phospho-
rous fertilizers’ traits and functionality, crop characteristics, and soil quality that
controls soil and plant interactions (Iqbal et al. 2017). In addition to soil and crop
properties, fertilization regimes determine better crop yields (Khan et al. 2017).
Higher amounts of phosphorous result in the accumulation of phosphorous in the
soil, which leads to phosphorous leaching and runoff, and eutrophication of surface
waters (Daniel et al. 1998). In tropical soils, high soil organic carbon content is used
as an indicator of soil quality and is related to phosphorous availability (Sousa et al.
2017). In African regions, the deficiency of phosphorous in the soil is commonly
found which contributes to lesser yields of crops (Cordell and White 2014). Due to
this, adequate and sustainable use of phosphorous fertilizers is required most impor-
tantly to increase the production of crops of future and reduce the hazards of the
environment.

Biochar is a carbon-rich organic amendment produced from pyrolysing the
biomass waste under limited or no supply of oxygen. Biochar developed from
crop residues such as rice husk and corncob has generally low nitrogen and phos-
phorous contents (Liu et al. 2019). Reduction in soil phosphorous content was
observed when animal manure biochar was added to the soil (Wu et al. 2013).
This could be due to the bonding of phosphorous with multivalent metal cations
present in biochar (Dai et al. 2016). Therefore, it is apparent that nitrogen and
phosphorous are supplied to soils from organic and inorganic inputs after biochar
application. The studies on the combined application of biochar with inorganic
fertilizer and organic fertilizer such as compost or poultry manure have shown
promising positive effects on soil properties, nutrient availabilities, and crop yields
(Naeem et al. 2018).

5.2 Phosphorus Dynamics in Soils

If the fixed phosphorous in soils is made available to plants on a global scale, it will
be adequate to sustain crop production for the next 100 years (Zhu et al. 2018).
However, the mobilization of this fixed soil phosphorous above crop requirements



can be lost via leaching and surface runoff into freshwater bodies and cause algal
growth and eutrophication (Bennett et al. 2001; Siddique and Robinson 2003).

96 K. Jehangir et al.

The alkaline or acidic soils differ substantially in their chemical reactions relating
to phosphorous availability in soils (Ara et al. 2018). Therefore, for sustainable crop
production, site-specific phosphorous management is recommended. The situation
of phosphorous availability is generally aggravated in the arid and semi-arid region
soils because the soils are composed of calcareous parent material which is rich in
Mg, K, Ca, and Na salts along with soluble bicarbonate (HCO3) and carbonate (CO3)
and produces hydroxyl radicals (OH-) that lead to increase in soil pH in the range of
7.5–8.5. As a result, the retention of phosphorous in alkaline soil is dominated by
precipitation reactions, clay minerals, and the adsorption to calcium carbonate
(Naeem et al. 2013).

Improving phosphorous mobilization and supply to the root zone on a sustainable
basis by integration of physiological and morphological strategies can be proven an
effective measure to maximize the plant root efficiency to access and acquire
phosphorous more easily from the rhizosphere. Moreover, the uptake and utilization
of phosphorous by the plants play an important role in the determination of the
overall crop yield.

The phosphorous present in soil generally exists in different organic or inorganic
chemical forms. These chemical forms are different from each other in their behavior
and function in soils (Turner et al. 2007). Inorganic phosphorous accounts for
35–70% of total phosphorous in soil (Harrison 1987). Stengite, apatite sand variscite
are primary minerals and are very stable, and phosphorous release from these
minerals is a slow process that occurs via weathering. This phosphorous is inade-
quate to meet the demands of plant growth. However, appetites are proved to be
relatively enough for plant growth in acidic soil. Secondary minerals, such as Ca, Al,
and Fe phosphates differ from each other in their pH, rates of dissolution, and size of
mineral particles (Pierzynski et al. 2005; Oelkers and Valsami-Jones 2008). The
solubility of Al and Fe phosphate is directly proportional to soil pH, but the
solubility of Ca decreases when the pH value is increased to 8 (Hinsinger 2001).
By desorption reactions, the adsorbed AlP and Al oxides can be released. The
organic or inorganic forms of phosphorous generally exist in equilibrium with
each other representing that they are sparingly available and stable to plant-available
aluminum pools such as soil solution aluminum and labile aluminum.

In acidic soils, aluminum is absorbed by oxides of Fe and Al and available
hydroxides such as hematite, goethite, and gibbsite (Parfitt 1989). Phosphorous is
absorbed on the surface of the clay resulting in the formation of various complexes
when bounded with oxides of Fe and Al. At soil pH of 4–9 protonated and
non-protonated bidentate surface, complexes are likely to coexist; however, in acidic
soil conditions, protonated bidentate soil complex is more dominant (Arai and
Sparks 2007). Aluminum and Fe oxides along with clay minerals have large surface
areas which facilitate phosphorus adsorption. Therefore, the absorption of phospho-
rous in the soil can be enhanced by increasing the ionic strength of the soil solution.
As a result, soil phosphorous can be occulated in nanopores which are frequently
found in Al and Fe oxides which makes soil phosphorous unavailable to plants (Arai



and Sparks 2007). In neutral-to-calcareous soils, soil phosphorous retention is
enhanced by precipitation reactions (Lindsay et al. 1989). Moreover, soil phospho-
rous can also be adsorbed on the surface of Ca carbonate (Larsen 1967) and clay
minerals (Devau et al. 2010). Phosphate precipitates with Ca, generating dicalcium
phosphate that is available to plants, and ultimately, it can be transformed into more
stable forms such as octocalcium phosphate and hydroxyapatite which are less
available to plants at alkaline pH (Arai and Sparks 2007). Soil physico-chemical
properties are thus the most important determinant of soil phosphorous transforma-
tions and its availability to plants.
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5.3 Biochar as a Soil Amendment

Biochar is a charcoal-like organic material that is produced by the pyrolysis of
biomass with or without the presence of oxygen, which has a porous structure and
great surface area (Lehmann and Rondón 2006; Atkinson et al. 2010). Besides
higher surface area, biochar has high carbon contents which is resistant to decom-
position via biochemical transformations, and it is of great importance for environ-
mental scientists and agronomists. Biochar is generally used in agricultural and
environmental applications because it is established that the biochar amendments
increase soil organic carbon contents, improve soil physico-chemical and biological
properties, provide essential nutrients to the soil, reduce greenhouse emissions, and
facilitate the remediation of soil contaminated with organic and inorganic pollutants
such as heavy metals (Hagemann et al. 2018; Kong et al. 2018). After application to
soils, biochar reacts with soil particles through a wide array of reactions that include
oxidation-reduction, acid-base, adsorption-desorption, dissolution, and precipitation
reactions (Joseph et al. 2010). Many studies have confirmed that the application of
biochar to soil improves soil fertility, enhances the production of crops, and pro-
motes carbon sequestration (Lehmann 2007; Atkinson et al. 2010; Sohi 2010). The
various qualities of biochar e.g. higher adsorption capacity, greater surface area
coverage and presence of various contents of mineral nutrients (nitrogen, phospho-
rous, potassium, calcium, and magnesium), ion exchanges capacities make it a
suitable material for soil and environmental applications under the wide majority
of conditions (Lehmann and Joseph 2015). However, the application of biochar for
benefits other than soil carbon sequestration can become non-consistent considering
the complex properties of biochar amendments and soils to which they are applied
particularly in terms of economic feasibility. For example, biochar obtained from
manure and crop residues can be a good source of soil organic carbon and plant
available nutrients (Mukherjee and Lal 2014). Glaser et al. (2002) also argued that
biochar production and application to soil can be an effective and efficient strategy to
improve soil organic carbon contents.

The addition of biochar to soils influences soil microbial activity and their
functions, and resultantly, has enormous effects on soil nitrogen and phosphorous
cycling by altering soil physical and chemical properties (Hagemann et al. 2017).



Effects of biochar on nitrogen cycling are evident as it increases nitrate and ammo-
nium retention and reduced nitrogen losses to the environment from leaching and
gaseous emissions (Cao et al. 2017). Moreover, biochar can modify the biochemical
reactions pertaining to the soil phosphorous cycle such as mineralization and
immobilization of organic and inorganic phosphorus present in the soil that directly
control solubility, adsorption, and availability of phosphorous in the soil. However,
given the differences in nature and properties of various biochar amendments, it is
imperative to optimize the biochar production and application with a view of
improving phosphorous availability, and reducing its loss to the environment to
avoid pollution of the aquatic environment.
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Biochar has a strong potential to alter the sorption and availability of phosphorous
in soil by using different mechanisms such as changes in soil pH, adsorption of
phosphorous ions, and precipitation of phosphorous minerals. Phosphorous can be
sorbed on compounds and functional groups formed at biochar surface during
pyrolysis that contain elements such as Mg, Ca, Fe and Al which may alter
phosphorous availability in soils (Yao et al. 2013; Joseph et al. 2015; Shepherd
et al. 2017), Highly porous structure of biochar is generally linked with enhanced
water retention in soils (Singh et al. 2010). Biochar amendments can also increase
root arbuscular mycorrhizal interactions to increase soil phosphorous availability
(Vanek and Lehmann 2015; Zwetsloot et al. 2016). Thus, the changes mediated to
the soil environment after the application of biochar can also alter the structure of the
microbial community and this has a great effect on phosphorous mineralization and
solubilization (Fox et al. 2014; De Oliveira Mendes et al. 2014; Deb et al. 2016). The
increase in nutrient availability from biochar can improve seed germination, plant
growth, and crop yields (Van Zwieten et al. 2010). Therefore, biochar also acts as a
soil conditioner that enhances plant growth by supplying nutrients efficiently and
increasing crop yields (Verheijen et al. 2009; Spokas et al. 2012). Biochar amend-
ments improve soil physical, chemical, and biological functions in a wide variety of
soils which enhance nutrient availabilities, soil organic carbon, water retention, and
crop productivity while reducing greenhouse gas emissions to make the cropping
systems climate-resilient.

5.4 Biochar and Soil Phosphorus Dynamics

5.4.1 Biochar-Mediated Effects on the Soil Phosphorus Cycle

Phosphorous is produced naturally in soil by the biogeochemical cycle from the
hydrolysis of organic phosphorus and solubilization of inorganic phosphate which is
mediated by the action of plant roots, root symbionts, and free-living microorgan-
isms by releasing organic acids and hydrolytic enzymes (Fig. 5.1). Ortho-
phosphorous in the soil can diffuse to nearby plant roots or can be intercepted by
high affinity arbuscular mycorrhizal fungi transporters which, then, can transfer it to
the host plant. The application of biochar to soil can change solubilization and
hydrolysis reactions, and also the ortho phosphorous transport by mycorrhiza.
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Fig. 5.1 Soil phosphorous cycle at the soil-plant interphase. P: Phosphorous

The hydrolysis of organic phosphorous can be mediated by extracellular enzymes
such as phytase, phospholipase, and phosphatase which are produced naturally by
plant roots and microorganisms present in the soil. Phosphorous mineralization
directly depends on the microbial biomass and activity of enzymes, and the biochar
addition to soil can enhance the process of phosphorous mineralization by increasing
the microbial biomass (Masto et al. 2013). Lehmann et al. (2011) showed that
biochar increased microbial biomass three-fold that resulted in a 21% increase in
phosphorous availability in soil. Similar effects of biochar on soil phosphorous
availability were found in a 20-day incubation study by Gul et al. (2015). However,
these effects strongly depend on the nature of biochar amendments. For example,
Mitchell et al. (2015) found that soil microbial biomass content was higher when
crop residue and manure biochars were added to soil than with the wood biochar.
This could be due to higher nutrient and labile carbon contents of crop residue and
manure biochars than wood biochar. Gul et al. (2015) showed that microbial biomass
increased from 13% to 80% within the range of fine-textured to coarse-textured soils
amended with �8–160 ton ha-1 of manure- and crop-based slow pyrolysis biochars
(production temperatures 350–700 °C). As the demand for microbial biomass was
high so there was more possibility of sustaining ortho phosphate’s metabolic func-
tions. A soil with biochar and with a high concentration of microbial biomass could
have a higher rate of phosphorous mineralization and hence phosphorous availability
in soil (Masto et al. 2013).

The modification of soil pH is another way that influences phosphorous hydro-
lysis, the higher the pH of soil there would be more alkaline phosphatase activity (Jin
et al. 2016). A study by Du et al. (2014) reported ~2 to ~3 times increase in
phosphatase activity in the surface soil under summer maize and winter wheat



rotation that received four annual applications of the corncob biochar (360 °C
pyrolysis temperature). In another study, Jin et al. (2016) found that the swine
manure biochar (slow pyrolyzed at 400 °C) application at 25 ton ha-1 rate increased
the alkaline phosphomonoesterase activity by 28.5% in clay soil due to an increase in
soil pH from 6.8 to 7.6 whereas the alkaline phosphomonoesterase activity almost
increased to double in the silt loam soil after application of the same biochar which
increased soil pH from 5.3 to 5.9. In the same study, the authors found that the
activity of phosphomonoesterase acid decreased in both soils suggesting the possible
shift in the soil microbial community which can be related to the buffering of pH or
input of nutrients from biochar made with swine manure. It was then concluded that
the application of biochar is in favor of hydrolysis of organic phosphorous in the soil,
which was due to larger demand of ortho-phosphate and production of extracellular
enzyme by the microbial community of soil or due to modification in pH of the soil
which results in an increase in activity of alkaline phosphatase. Thus, biochar
amendments can be optimized to improve phosphorous availability in both acidic
and alkaline soils. This can also be achieved by co-applying biochar with other
organic amendments such as animal manures.
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5.4.2 Effects of Biochar and Phosphorus on Crop
Productivity

Biochar application improves soil physical, chemical, and biological properties
which improve plant growth and development but these effects of biochar amend-
ments vary strongly both on spatial and temporal scales. Jeffery et al. (2011) found
that only 25–40% changes in plant production were observed after biochar addition
to soils under diverse soil, crop, and environmental conditions. This reflects that
biochar amendments yield different benefits which depend on biochar types, eco-
logical conditions, and crop types (Lehmann and Joseph 2015). In mesic and humid
zones, more research is conducted on a relative basis to explore the potential of
biochar in improving soil nutrients and crop production. For example, in the humid
tropics of Amazonia, biochar was used in combination with different fertilizers that
resulted in better soil fertility and crop yields (Steiner et al. 2008). This was because
of improvements in soil properties from biochar application in these highly weath-
ered soils.

Phosphorus availability and phosphorous fertilizer use efficiency generally
depend on soil properties. Plants depend on the continuous replenishment of phos-
phate ions in the soil solution. Moreover, phosphorous fertilizer when applied in a
significant amount becomes unavailable to plants because phosphorous strongly
sorbs to the soil particles and associated nutrients. The low availability of phospho-
rous is a global problem that results in reduced production of crops (Richardson and
Simpson 2011; Syers et al. 2011). A significant body of knowledge reports the
outcome of the different experiments and practices which were conducted to



enhance the availability of phosphorous for plants under different soil and environ-
mental conditions (Shenoy and Kalagudi 2005; Simpson et al. 2011; Table 5.1).
Recent studies have suggested that biochar can increase phosphorous availability to
crops both from organic and inorganic phosphorous fertilizer under diverse climatic
conditions (Shen et al. 2016; Yeboah et al. 2016). However, manure-derived
biochars are better in improving soil phosphorous availability than wood-
and residue-based biochars because they have higher phosphorous contents. Under-
standing the effects of biochar amendments on soil phosphorous dynamics can
provide an opportunity to find ways to enhance soil phosphorous availability in
agroecosystems.
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5.4.3 Effects of Biochar on Soil Phosphorus Dynamics

The application of biochar to soil has been shown to improve nutrient uptake and
reduce nutrient leaching in various soil environments (Yoo and Kang 2012; Haider
et al. 2015; Abbas et al. 2017). As a result, biochar is proved to have the potential to
combat abiotic stress in plants by enhancement in nutrient uptake by plants as well as
other mechanisms (Abbas et al. 2018; Rehman et al. 2020). The multifarious
characteristics and functions of biochar amendments play a key role in soil phos-
phorous dynamics (Fig. 5.2). Biochar improves phosphorous availability in various
soil environments with different magnitudes (Rizwan et al. 2016). In some cases,
biochar amendments contain fractions of plant-available phosphorous, but it
depends on the nature of feedstocks used to develop biochar and pyrolysis condi-
tions, and application of such biochar can improve the availability of phosphorous in
soils (Atkinson et al. 2010; Rehman et al. 2018). In calcareous soil, biochar improves
phosphorous availability as biochar changes the soil microbial community and hence
the chemical composition and processes that govern the phosphorous availability
(Schneider 2012; Deb et al. 2016). However, the application of biochar can have
both negative and positive effects on P dynamics in soils. Liu et al. (2017) reported
that the rice hull biochar amendments at 40 ton ha-1 rate to red clay soil and alkaline
soil increased the phosphorous availability by 53% and 33%, respectively.

Bai et al. (2015) concluded that biochar made from poultry litter at an application
rate of 10 ton ha-1 increased the soil bioavailable phosphorous by >1000-fold.
Moreover, various studies have shown that the biochar could increase the phospho-
rous content of the soil, while the other studies claimed that biochar obtained from
maize straw, flax straw, and willow stems do not increase the phosphorous avail-
ability of soil (Li et al. 2016; Amendola et al. 2017). In contrast, some studies have
shown that biochar can even reduce the phosphorous content in soil (Chintala et al.
2014; Vasconcelos et al. 2017). The mechanisms of positive and negative effects of
phosphorous bioavailability in biochar amended soils are not clearly understood.
However, it is reasonable to speculate that the effects of biochar on the phosphorous
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bioavailable in soils is controlled by the inherent properties of both the biochar
(e.g. pH and total phosphorous contents) and soil characteristics such as soil pH, soil
inorganic and organic phosphorous fractions, soil type, ionic strength, and native
microbial diversity. Therefore, the biochar amendments are being developed to suit
local soil and crop conditions which can be integrated within the crop fertilization
regimes.
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Fig. 5.2 Mechanisms of biochar-mediated changes in soil phosphorous dynamics. P: Phosphorous
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5.4.4 Interactions of Biochar with Organic and Inorganic
Phosphorus Fertilizers

When combinations of mineral and organic fertilizers are applied to soil, they
improve soil quality by increasing soil organic carbon and macronutrients contents
such as nitrogen, phosphorous, and potassium which increase plant growth and
yields, and reduce negative impacts of mineral fertilizers on the soil environment,
and also reduces the cost of production (Xia et al. 2017). Application biochar to soil
enhances nitrogen and phosphorous availability in soils particularly applied with
organic-inorganic fertilizers (Zhao et al. 2014; Arif et al. 2017). For example, Arif
et al. (2017) showed that application of biochar with mineral and organic fertilizers
improved wheat and maize yields by increasing nitrogen and phosphorous avail-
ability and soil organic carbon contents in nutrient-depleted alkaline calcareous soils.
Biochar can increase soil phosphorous contents and availability to plants which
increase the productivity of crops especially in areas where the soil is less fertile
(Blackwell et al. 2010; Subedi et al. 2016). Moreover, the incorporation of biochar
into the soil can increase phosphorous availability through direct phosphorous
release by acting as a phosphorous source (Christel et al. 2016). However, the effects
of biochar amendments on soil phosphorous dynamics directly depend on soil types
(Scott et al. 2014). For example, biochar is more beneficial in increasing soil
phosphorous availability in acidic soils than in alkaline soils (Parvage et al. 2013).
Biochar rate is an important factor that determines its effects on phosphorous
availability and crop production (Blackwell et al. 2010). Moreover, the biochar
developed from animal manures supplies more phosphorous for the growth of plants
than those derived from plants (Liang et al. 2014). In a field experiment, the biochar
made from different feedstock has shown potential to increase soil phosphorous
availability and crop productivity in highly weathered soils (Macdonald et al. 2014).
Improving nutrient use efficiency promote crop yields and reduces nutrient losses to
the environment particularly nitrogen and phosphorous (Zhang et al. 2010; Wang
et al. 2012). Blackwell et al. (2010) found the improvement in wheat yield and
phosphorous availability in southwestern Australia under dry weather when biochar
made from wood chip was applied.

5.5 Biochar, Phosphorus Use Efficiency and Crop
Productivity

Phosphorus use efficiency in an agroecosystem can be defined as the dimensionless
ratio of the mass of harvested phosphorous in crop biomass to the mass of total
phosphorous inputs in specific time duration for a specific crop (Zhang et al. 2020).
Phosphorus use efficiency in crop production means that the conversion ratio of the
total phosphorous inputs into useful plant exports, e.g. harvested crop biomass.
Therefore, phosphorous use efficiency in the crop production system is an important



indicator for measuring the phosphorous management status in the agricultural
production system and its effects on food security and environmental protection
(MacDonald et al. 2011; Wu et al. 2016a, b).
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The low availability of phosphorous in soils is considered a major problem
globally, especially in areas with less vegetation and low soil fertility (Syers et al.
2011). In order to deal with this issue, different agronomic practices have been
suggested to enhance soil phosphorous availability and phosphorous use efficiency
under different environmental conditions (Simpson et al. 2011). Moreover, relatively
little work has been done to explore the potential of biochar to increase phosphorous
use efficiency from organic and inorganic fertilizers. Biochar can increase soil
phosphorous availability and phosphorous use efficiency because it can reduce
phosphorous adsorption on Fe-oxides or by acting as a direct source of phosphorous
to plants particularly at higher biochar application rates (Li et al. 2011). However, it
is important to optimize the biochar rate for higher phosphorous use efficiency
before large-scale application to increase crop yield. The more amount of biochar
as amendment of soil is unfeasible at large scale because of uncertain increasing of
crop yield (Liu et al. 2017). Glaser et al. (2015) suggested that the use of biochar
with mineral fertilizer was a better option than the use of mineral fertilizer only. This
was also suggested that the production of granulated biochar with phosphorous
fertilizer can be a viable option to improve soil phosphorous in tropical soils.
Therefore, combining water-soluble phosphorous fertilizer with biochar can improve
phosphorous uptake by plants and phosphorous use efficiency. Recent studies have
strongly suggested that biochar can increase phosphorous use efficiency when
combined with organic-inorganic fertilizers such as Arif et al. (2021) found that
biochar addition with organic and inorganic fertilizers improved soil phosphorous
availability, soil organic carbon, and phosphorous use efficiency in maize
agroecosystem under irrigated semi-arid climate. This study also suggested that
the application of biochar with organic and inorganic phosphorous fertilizer was
economically a profitable option. Similarly, Arif et al. (2017) also reported higher
phosphorous availability and phosphorous use efficiency in wheat-maize cropping
systems under a semi-arid environment by integrating biochar with organic and
inorganic fertilizers. Biochar amendments improve phosphorous use efficiency by
increasing soil organic carbon contents which increase soil phosphorous availability
and phosphorous use efficiency leading to better soil fertility and quality on a long-
term basis.

5.6 Conclusion

Phosphorus is the second most important macronutrient after nitrogen which limits
crop production and threatens food security on a global scale. Availability of
phosphorous in the soil is also challenging in a variety of soils under diverse climatic
conditions. Biochar is organic amendments developed from biomass waste by
pyrolysis process under limited or no supply of oxygen. Among other practices,



biochar is gaining popularity to improve phosphorous availability in both alkaline
and acidic nature soils. Biochar amendments developed from manure and crop
residues are better options to improve soil phosphorous availability, phosphorous
use efficiency, and crop production than wood-based biochars. Recent studies have
also confirmed that the application of biochar amendments to improve soil phos-
phorous contents can also be an economically viable option particularly if biochar is
combined with organic and inorganic fertilizers. However, the scale of biochar
applicability remains a major challenge for its use in agricultural production.
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Chapter 6
Phenotyping for Assessing Genotypic
Variation in Phosphorus Use Efficiency

Amjad Farooq, Waqas Shafqat Chattha, Muhammad Tehseen Azhar,
Azeem Iqbal Khan, and Amir Shakeel

Abstract Phosphorus is a key element for improving yield and quality of crop
plants. Since phosphorus is poorly available in the soil rhizosphere, phosphorus
stress occurs in susceptible crop plants. Phosphorus use efficiency may be improved
by adapting phenotyping characters such as root, shoot, plant height, canopy struc-
ture, rhizosphere, photosynthesis, chlorophyll contents, biomass, and leaf area index.
Here we review sensors for plant phenotyping and applications. Phenotyping assess-
ment can be done using red, green and blue wavelength cameras, multispectral and
hyperspectral imaging cameras, and thermal infrared cameras. In some plants, young
leaves, meristems, flowers, transfer approximately half of the phosphorus back to the
xylem. The proliferation of the lateral and shallow roots in rice may enhance the
exploration of inorganic phosphate in the topsoil. Many plant species use arbuscular
mycorrhizal fungi to promote foraging and access to phosphorus. Vegetative and
physiological traits are closely linked to phosphorus use efficiency. Phosphorus-
efficient genotypes can be used for developing crop varieties by plant breeding.
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DSM Digital surface phenotype
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EVI Enhanced vegetation index
GNDVI Green normalized difference vegetation index
LAI Leaf area index
LiDAR Light sensors and distance sensors
NDRB Normalized differential red boundary
NDVI Normalized difference vegetation index
NGRDI Normalized green-red difference index
NIR Near-infrared
Nut% Nutrient percentage
NutHI Nutrient harvest index
P Phosphorus
PC Principal components
Pi Inorganic phosphate
PSI Phosphate starvation-inducing
RGB Red green and blue
RMSE Relative mean square error
RS Root structure
RVM Vector machine
SfM Structure of motion
SPAD Soil plant analysis development
UAV Unmanned aerial vehicle
Y. seed Seed yield

6.1 Introduction

Phosphorus is an important nutrient for crop production, mainly synthesized from
phosphate rock in the form of mineral fertilizers (Anwar et al. 2017; Amanullah et al.
2016a, b). The development of phosphorus-tolerant crop varieties can increase the
efficiency of phosphorus use, which is a key contribution to sustainable crop
production (Iqbal et al. 2019a, b). The seed yield of crop plants, Y.seed, is based
on the relationship between the nutrient use efficiency and the total nutrients
accumulated in the plant, Nut accum, and the nutrient harvest index: NutHI, the
distribution ratio of the total accumulated nutrients in the plant.

There are several vegetative and physiological mechanisms, which may be
evaluated under phosphorus use efficiency. The major phenotyping components –
vegetative and physiological – may be affected by root, root shoot ratio, soil
conditions, etc. Special attention is paid to the roots phenotypes that are directly
involved in phosphorus use efficiency. Under field conditions, the pressure gener-
ated by some soils will negatively affect the structural characteristics of the root
system, which in turn affects the absorption of phosphorus, other nutrients, and
water by crops (Khan et al. 2017; Amanullah et al. 2019).
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Since phosphorus levels in different plant stages and plant parts are genetically
complex (polygenic) traits affected by management and environmental factors
(Amanullah et al. 2021; Iqbal et al. 2017). Therefore, the root structure is based on
the adaptability characteristics of phosphorus uptake and crop yield. In addition,
crop phenotyping is used to evaluate the long-term effects of phosphorus-efficient
varieties, soil phosphorus levels, and crop production systems. Currently, several
components of interdisciplinary research work are using the genetic diversity of
plant phenotypes to develop new phosphorus-efficient crop varieties and planting
systems.

Response to phosphorus deprivation, phosphorus is the main component of
nucleic acids, phospholipids, phosphoproteins, and metabolites. All these molecules
are involved in the physiological aspects of plant growth and development
(Maathuis 2009; Mehra et al. 2018). The availability of different macronutrients in
the soil is relatively higher than the concentration of soluble inorganic phosphate
(Pi). This is due to its complex physical and chemical properties, making phosphorus
the main limiting factor for plant growth (Schachtman et al. 1998). Phosphorus has
low availability in the soil and slow diffusion, making its concentration in the soil
solution of the root zone low (Pierre and Parker 1927). Plants are usually susceptible
to phosphorus stress and adopt different survival mechanisms. Phosphorus is very
important to the growth and development of plants, and its absorption and utilization
need to be regulated. Under normal environmental conditions, the concentration of
cytosolic phosphorus remains constant (Raghothama 1999), although short-term
fluctuations are observed (Pratt et al. 2009). The transport of phosphate between
and within various cells mainly occurs through membrane-bound transporters.

When phosphorus is abundant, its absorption rate may increase and exceed plant
requirements. In this case, most crops prevent phosphorus poisoning by reducing the
soil’s absorption of phosphorus or increasing the storage of phosphorus in vacuoles
(Schachtman et al. 1998). Some plant species, namely creeping hack, blue lupine,
and underground clover, have a lower ability to down-regulate inorganic phosphate
absorption during periods of high inorganic phosphate supply and exhibit symptoms
of toxicity (Lambers and Plaxton 2015). Contrary to the situation under limited
phosphorus conditions, some plants maintain cytosolic phosphorus levels in a
variety of ways, that is, promoting external phosphorus, increasing absorption,
circulation, and increasing consumption of non-essential phosphorus-containing
molecules (Pratt et al. 2009). For example, OsPAP21b secreted from rice roots
hydrolyzes the combined organic phosphorus source, thereby increasing the avail-
ability of soluble phosphorus (Mehra et al. 2017). This process takes place in three
locations: above ground, roots, and rhizosphere, but the exact sequence and com-
prehensive effects are still unclear. In the case of shoots and roots, these processes
occur on different biological scales, including morphology, anatomy, physiology,
and biochemistry. This chapter reviews efficient phenotyping methods for improv-
ing the phosphorus use efficiency in crop plants.
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6.2 Shoots

The vacuolar/cytoplasmic deficiency of phosphate stock reduces photosynthesis and
ultimately inhibits plant growth and development (Foyer and Spencer 1986). Obvi-
ous symptoms of phosphorus deficiency include delayed growth and development of
branches, dark to blue-green branches and leaves, weak/fine stems, low tillering rate,
low pollination rate, few flowers, delayed maturation, poor grain quality, and low
biological activity. Production (Kennelly et al. 2012). Phosphorus stress inhibits the
natural opening of stomata and compartmentalization of phosphorus into the cyto-
plasm and chloroplasts, which may be caused by metabolic processes (Hernandez
and Munne-Bosch 2015; Pratt et al. 2009). In the absence of phosphorus, old leaves
will age to mobilize phosphorus into young leaves, meristems, flowers, and seeds
(Smith 2002). In addition, plants under stress may transfer approximately half
phosphorus of phloem-derived back into the xylem (Jeschke et al. 1997). The
physiological mechanism of releasing vacuolar-bound phosphate may not be suffi-
cient to compensate for the decrease in cytoplasmic inorganic phosphate levels
(Jouhet et al. 2004; Zhang et al. 2014). In addition, the genetic expression for
shoot specific and development was also observed (Hammond et al. 2003). For
example, it has been shown that the expression of the OsHAD1 gene in buds
increases phosphatase activities under low phosphorus in rice plants (Pandey et al.
2017). However, the molecular mechanism for local phosphorus detecting and signal
transduction in shoots is still unclear.

Advances in high-throughput genotyping have provided rapid and inexpensive
genomic information for tailoring the crop cultivars with the best genetic makeup.
Though genotyping pay more attention to genotypic selection, they still require
accurate phenotypic data. The phenotypic advancement is essential for the develop-
ment of reproduction using traditional, molecular, and transgenic products.

6.3 Roots

Different crop plants have acquired adaptability to phosphorus-deficient root mor-
phology and exudation ability (Niu et al. 2013). The phosphorus utilization rate in
the root structure is still low, and some developmental changes have been adopted,
namely increasing root length and expanding root surface area, including root hair
length and density (cluster root) (Benjamin et al. 2011; Niu et al. 2013). Different
varieties of the same crop reveal different root responses for phosphorus deficiency
(Haling et al. 2018).

Generally, root structure is controlled by developmental and hormone-related
genes (Jung and Susan 2013). Similarly, phosphate is required for cell division in
growing organs, and its magnitude depends on the phosphate starvation-inducing
(PSI) gene (Lai et al. 2007). Under low phosphorus conditions, it will reduce root
cell elongation and root meristem cells (Ticconi et al. 2009), resulting in a decline in



primary root growth of Arabidopsis. The primary roots meristem decreases, a mitotic
activity that may shift to the formation of lateral roots to increase their number
(Sanchez-Calderon et al. 2005). Then each lateral root may behave like a tap root,
which will further grow more lateral roots (Lopez-Bucio et al. 2002). The prolifer-
ation of the lateral root system may result in a shallow root system, which enhances
the better exploration of inorganic phosphate in the topsoil (Williamson et al. 2001).
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It has recently been reported that in rice, the RMD1 gene controls the crown and
root angle under low-phosphorus conditions in the soil. It has been observed that the
expression of the RMD1 gene increases the response to low phosphorus, resulting in
shallow roots, thereby improving phosphorus foraging ability (Huang et al. 2018).
Root hair proliferation has characterized the response to phosphate stress, and it is
also controlled by a series of cellular and genetic processes (Schiefelbein and
Somerville 1990; Foreman and Dolan 2001). During the period of phosphorus
deficiency, the appearance of root hairs near the root tip enhances the root surface
area, thereby promoting the phosphorus level (Ma et al. 2001).

Studies on Arabidopsis and rice revealed root hair elongation, which was
observed under low phosphate conditions as an adaptive response controlled by
auxin (Bhosale et al. 2018; Giri et al. 2018). The levels of respiratory and metabolic
activity in these cells indicate that in the absence of phosphate, the length of root
hairs increases (Bates and Lynch 2000). When these root hair cells may die due to
nutrition, they are used elsewhere in the plant. Similarly, certain plant species like
Casuarinaceae, Leguminosae, Myricaceae, and Amoeba, form root clusters (Shane
and Lambers 2005). Therefore, it is known that internal phosphate can regulate the
formation of clusters/secondary roots (Niu et al. 2013). However, increasing inor-
ganic phosphate absorption reduces the clustering of secondary roots, preventing
energy and material investment in their growth. Therefore, it is very important to
understand the response of each tissue against phosphate stress including the epi-
dermis, periphery, and cortex, which will produce long root hairs. Therefore, the
phosphorus uptake by lateral roots and aerated tissues is used elsewhere in the plant
(He et al. 1992; Ma et al. 2003). Many adaptations regarding architecture, anatomy,
and molecular mechanisms remain unclear.

6.4 Rhizosphere

Plants can reply to phosphate stress by changing the biochemical composition of the
rhizosphere (Javot et al. 2007). This may involve the exudation of organic anions
(malic acid, citric acid, and oxalic acid), enzymes (phosphatase, phytase), phenolic
acid, protons, and other molecules (Richardson et al. 2011). In general, exudation
increase the dissolution from insoluble phosphate to soluble compounds by com-
peting with cationic phosphate partners and releasing inorganic phosphate ions from
organic compounds (Dakora and Phillips 2002; Tomscha et al. 2004). Some exu-
dates also promote the growth of soil microorganisms by providing carbon sources
and acting as chemical attractants (McNear and Jr. 2003; Czarnecki et al. 2013).



These microorganisms act as inorganic phosphate traps for plants or may release
exudates, dissolving organic and inorganic phosphate compounds (Richardson et al.
2011). In plant species, the fungal symbionts, arbuscular mycorrhizal fungi (AMF),
get food nutrition and access to phosphorus and other nutrients. Arbuscular mycor-
rhizal fungi grows in root cells and extends the hyphae into the soil, eventually
forming a seed root-hyphae network (Smith et al. 2011). The inorganic phosphate of
the roots of mycorrhizal fungi developing colonies is 3–5 times higher than that of
non-mycorrhizal fungi.
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In response to phosphorus deficiency, strigolactone exuded from lotus roots and
rice enhances the colonization of arbuscular mycorrhizal fungi mycelial branches
and roots, thereby increasing the exploration of phosphorus (Besserer et al. 2006;
Akiyama et al. 2006). During arbuscular mycorrhizal fungi colonization, some
inorganic phosphate transporters are inhibited, especially in the epidermis. Although
several phosphate starvation-inducing genes are activated, namely P-type H+-
ATPase, mycorrhizal-induced inorganic phosphate transporter, and phosphatase
(Zhang et al. 2014). In addition, with the higher availability of phosphorus in the
soil root zone, the AMF colonization rate decreases, which may be due to the
increase in internal/cellular phosphate (Smith et al. 2011). The benefits of arbuscular
mycorrhizal fungi are not so obvious in plants with longer root hairs, which may be
an increase in cytoplasmic inorganic phosphate (Schweiger et al. 1995). In addition
to absorbing inorganic phosphate, arbuscular mycorrhizal fungi also affects root
structure by promoting lateral root formation (Chen et al. 2017). The mechanism of
arbuscular mycorrhizal fungi colonization and its related effects on inorganic phos-
phate absorption and root structure have been strongly advocated (George et al.
1995; Gutjahr and Paszkowski 2013). Additional information provides more infor-
mation about the dynamics of phosphorus in the soil.

6.5 Different Sensors for Plant Phenotyping

Different sensor types have different characteristics and functions. The spatial and
spectral resolution and sensor cost characteristics should be considered according to
the specific application. The red-green-blue (RGB) images have three types of
bands: red, green, blue, and, while multispectral images have multiple bands,
which are usually visible in the near-infrared spectral region. The hyperspectral
images contain up to thousand continuous bands in the visible as well as near-
infrared regions. Therefore, it is worth studying the potential effects of different
sensors on the high-yield phenotype of plants.

Each sensor type has its advantages and disadvantages. It is highly recommended
to practice appropriate sensors for a specific trait and use proper algorithms to build a
more powerful phenotype. Swinfeld et al. (2019) proposed two linear phenotypes,
which can fit the training data well and provide different skew modes. A non-linear
phenotype describing the height deflection from the top of the canopy might be
generated the best results. Some researchers used vegetation factors as another



predictor to improve yield phenotyping (Geipel et al. 2014). The image resolution
along with higher resolution can provide accurate phenotype recognition accuracy
(Holman et al. 2016).
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James and Robson (2014) suggested inserting the oblique image into the image at
the lowest point, which may improve the perceptual accuracy of the 3D phenotype.
Maimaitijiang et al. (2017) found that the best detection of nitrogen and chlorophyll
a + b in soybeans can be achieved by combining data from different sensors such as
red-green-blue, multispectral and thermal pigments. In addition, after taking drone
images, ground data should be collected efficiently. For example, collecting leaf area
index (LAI) data immediately after acquiring drone images to improve the accuracy
of maximum solar angle detection (Mathews and Jensen 2013). Based on this sensor
research, it is important to find that leaf area index prediction depends on the
variability of the phenological stage, because the total canopy and low density
may improve the accuracy of leaf area index detection. In addition, a few samples
in the exercise kit help improve accuracy.

Images of plants mean more than “photography”. The purpose of the images is to
measure the phenotype through the interaction between light and plants, such as
reflex photons, absorption photons, or transmitted photons. Each component of plant
cells and tissues is specific to the wavelength Absorbance, reflectance, and trans-
mittance characteristics. Images with different wavelengths are used for different
aspects of plant phenotyping (Table 6.1).

RGB cameras are digital cameras that are used to capture true-color images in the
color spectrum. It is a cheap light sensor that can be easily installed on drones for
data collection. Based on red-green-blue cameras, the 3D geometry of red-green-
blue images can be used to create plant surface phenotypes to detect plant heights
(Bendig et al. 2014). It provides information in the three bands in the form of blue,
red, and green. Red-green-blue images of leaves, leaf area index, plant height,
biomass, yield, etc. are often used to analyze plant phenotypes. The flow diagram
for red-green-blue cameras analysis has been illustrated in Fig. 6.1.

6.5.1 Multispectral Imaging Cameras

The multispectral imaging camera can connect the interference filters in the front
lens to transmit or block specific light. Multispectral image sensors can deliver
various valuable bands, invisible in the near-infrared spectral region. Therefore,
yield, biomass, nitrogen, and phosphorus content, etc. can be predicted by multi-
spectral images. The multispectral image shows six bands, and the number of bands
varies from sensor to sensor. Multispectral image sensors are usually small in size
and light in weight, making it easy to work on drones.

However, the multispectral imaging data have few bands which are not contin-
uous and show limited information.
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Table 6.1 Comparison of different imaging techniques for plant phenotyping

Phenotyping
technique

Phenotype
parameters

RGB imaging RGB cameras The system
measures RGB
color informa-
tion with per
pixel depth
information.

Gray or color value
images

Plant biomass,
shoot shape,
growth dynamics
and color index,

Hyperspectral
imaging

Near-infrared
instruments,
spectrometers,
hyper spectral
cameras, ther-
mal cameras

Crop vegetation
cycles, indoor
time series
experiments

Continuous or dis-
crete spectra

Leaf and canopy
health status; leaf
and canopy water
status; coverage
density; leaf
growth; panicle
health
Status

Thermal
imaging

Near-infrared
cameras,

Pixel-based
map of surface
temperature in
the infrared
region

Whole shoot or leaf
tissue, time series

Canopy tempera-
ture, infestation of
insects on grain

Near infrared
imaging

Near-infrared
cameras, multi-
spectral line
scanning cam-
eras, active
thermography

Continuous or
discrete spectra
for each pixel in
the near-
infrared region

Time series or
single-time point
analyses of shoots
and canopies,
single-point assess-
ment of seeds

Leaf area index,
water contents
composition
parameters for
seeds

Visible light
imaging

Cameras sensi-
tive in the visi-
ble spectral
range

Whole organs
or organ parts,
time series

Colored value
images

Shoot biomass,
growth dynamics,
panicle traits, yield
traits, root archi-
tecture, early
embryonic axis
growth, height,
imbibition and
Germination rates,
flowering time size
morphology,

Laser imaging Laser scanning
instruments
with widely dif-
ferent ranges

Whole-shoot
time series at
various
resolutions

Depth maps, 3D
point clouds

Shoot biomass and
structure, canopy
structure

RGB (red, green, and blue wavelengths) cameras
Li et al. (2014) and Liu et al. (2017)

6.5.2 Hyperspectral Imaging Cameras

Hyperspectral imaging cameras have increased the number of bands along with
maximum information that can be available from its images. It is a costly sensor that



can offer thousands of bands in the visible light and near infrared spectrum. It has
continuous spectrum information. In case of hyperspectral imaging, each pixel has
spatial and spectral characteristics. It has wider applicability in different research
fields (Xie et al. 2017). There are generally four types of hyperspectral imaging
cameras, namely (a) point scan, (b) line scan, (c) area scan, and (d) single scan
(Wu and Sun 2013). The lines scanning is the most common in hyperspectral
imaging cameras. The working of hyperspectral imaging cameras is highly compli-
cated irrespective of multispectral imaging and wavelength sensors. This makes
working on the drone more difficult. Most hyperspectral imaging research is
conducted in laboratories and greenhouses. Hyperspectral imaging is commonly
used for phenotypic plant characteristics, such as height, biomass, and chlorophyll
contents, amount of nutrients absorption in leaves.
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Fig. 6.1 Plant phenotyping using red-green-blue (RGB) wavelength cameras

6.5.3 Thermal Infrared Imaging Cameras

Thermal imaging cameras are commonly used during drought stress to assess crop
water status, after detecting plant’s canopy temperature (Zarco-Tejada et al. 2012;
Sepulveda-Reyes et al. 2016; Park et al. 2017; Santesteban et al. 2017; Poblete et al.
2018; Bian et al. 2019). Thermal images provide information’s about canopy
temperature, concerning plant transpiration under stress conditions and plant water
status. The hot water pressure index can be calculated from the thermal image. The
measurements of canopy temperature through drone-based thermal infrared imaging



sensor, show the difference between irrigations levels. So, it is much useful for
agronomists to manage irrigations schedule according to pressure. Light sensors and
distance sensors such as light detection and ranging (LiDAR) emit their light energy.
LiDAR can work efficiently during nighttime as compared to other sensors (Andujar
et al. 2019). LiDAR sensors can make 3D canopy structures of plants and further
estimate the plant height and biomass (Wang et al. 2017a, b).
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6.6 Application of Plant Phenotyping

Compared with traditional phenotyping analysis, drone-based plant phenotyping
analysis has several advantages. It is worth noting that many functions can be
measured using drone-based technology.

6.6.1 Yield Phenotyping

The assessment of crop yield is a very important phenotypic trait. The radio-
controlled helicopters are used for multispectral images to estimate rice yield
(Swain et al. 2010). Various studies determined spectro-radiometers of wavelength
350–2350 nm were used to measure spectral reflectance of soil. The drones are used
for normalized difference vegetation index (NDVI) based on the coefficient of
determination (R2 = 0.897). Finally, the correlation between the unmanned aerial
vehicle (UAV) based NDVI value and the output is 0.728. Similarly, spectral
observations collected through drone-based red-green-blue sensors are used to
evaluate maize yield (Geipel et al. 2014). The phenotypes are created using a
vegetative index with the highest R2 = 0.74.

Multispectral images along with red-green-blue data were collected from the field
and drone after monitoring the maize growth at various phosphorus concentrations.
It was observed that vegetation index is correlated with grains yield and highly
correlated with leaves phosphorus contents (Gracia-Romero et al. 2017). Multispec-
tral images with different wavelengths (red = 520–570 nm, green = 600–690 nm &
NIR= 750–850 nm) were obtained using drones to examine sunflower achene yield,
total biomass, and level of nitrogen. Normalized difference vegetation index (NDVI)
was measured with multispectral images during different dates. The comparison
based on different images data collected at different times with several resolutions
showed accuracy in results (Vega et al. 2015). Therefore, drones during higher
flights may save time and may reduce the number of images. The reported NDVI
is closely related to yield, aboveground biomass, and biomass nitrogen content. The
above studies indicate that red-green-blue or multispectral imaging can be used to
predict yield. Therefore, the recommendations of both sensors for phenotypic
analysis of plant yield are better respectively. Unmanned aerial vehicle-based sen-
sors are used for different plant characteristics, namely biomass, altitude, leaf area
index, and chlorophyll contents.
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6.6.2 Biomass Phenotyping

Plants producing above-ground plants parts are an important indicator reflecting the
growth and light use efficiency which is important for carbon storage in the form of
biomass (Swinfeld et al. 2019). Therefore, several research on plant biomass has
been conducted using drone-based sensors. The spectral data collected by drones is
used to estimate the dry biomass of wheat (Honkavaara et al. 2013). Digital surface
phenotype (DSM) is also used to calculate biomass estimates and vegetation height.
However, it has no linear relationship with dry biomass. The poor results may be due
to the low signal-to-noise ratio along with the narrow band in the wheat study on
fresh and dry biomass, as well as the other three traits viz., leaf area index (LAI),
nitrogen levels, and plant height (Schirrmann et al. 2016). Red-green-blue image
obtained through drone first converted into color spaces for distinguishing the area of
plant population and empty soil. The pixel density is also calculated on red-green-
blue images, namely the ratio of blue-green and the ratio of red-blue channels. A
simple correlation of image index and biophysical characters increases with plant
growth. The estimated yield height from the image is also closely related to the fresh,
dried biomass, leaf area index, and measured height of each part. The correlation
between the measured unmanned aerial vehicle production height and the dry
biomass is weak, appearing in the first stage. This is due to maximum dry biomass
being stored within leaves, not in the stem, and not also in many early leaves. At each
stage, the correlation between nitrogen concentration and all biophysical parameters
is weak.

Additionally, the principal components (PC) were analyzed for the image traits
and determined as independent variables for linear regression of phenotype. Bio-
physical characters come under the values i.e., R2 = 0.70–0.97 and 0.73–0.99 for
verification data. However, the relationship between nitrogen and PCs is very low
(R2 = 0.22–0.65). Red-green-blue images collected by drones are also used to detect
barley biomass (Brocks and Bareth 2018). The author uses crop surface phenotyping
(CSM) to plot the maximum height of the plant canopy. Plant height collected from
red-green-blue images may be used to justify the 3D monitoring system for biomass
study (dry biomass; R2 = 0.55–0.79, and fresh biomass; R2 = 0.34–0.61).

Phenotyping of peas and oats performed by red-green-blue cameras that mounted
on the drone to examine their biomass (Jannoura et al. 2015). The collected images
were observed as normalized to the green-red difference index (NGRDI), which is
based on the reflectance of green and red and subtracted from the true colour image.
It is used to observe crop growth stages and above-ground biomass with nutritional
levels. This study discussed a relationship between the normalized green-red differ-
ence index (NGRDI) along with above-ground dry biomass i.e., 0.65 for peas, 0.55
for peas/oats, and 0.55 for oats. 0.74. NGRDI is also positively correlated with plant
biomass, 0.59 for peas, 0.58 for peas/oats, and 0.78 for oats.

According to the research results, the spatial variation map of upper-ground
biomass was observed, which is significant for the management of each site. The
map will enable farmers and researchers to discover and monitor the growth of crops,



namely biomass, and diseases. The spatial pattern of biomass, monitor plant changes
throughout the field, and adopt appropriate strategies based on the visual maps.
However, traditional/older sensors may not be able to capture deep canopy obser-
vations effectively. Therefore, LiDAR is used to collect maximum canopy informa-
tion. The LiDAR can offer sufficient soil reflection to produce digital terrain
phenotyping of trees and forests. The LiDAR can perform data collection during
the night, making this technology more robust. The airborne LiDAR estimates
changes in forest carbon stocks. In this study, we present the association between
soil storage-estimated carbon storage and LiDAR indicators. The total R2 value of
carbon is 0.74 and the R2 value of above-ground biomass is 0.81. Thus, the study
shows that unmanned aerial vehicle-based LiDAR can estimate plant biomass.
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6.6.3 Plant Height Phenotyping

Among various crops, plant height is directly correlated with crop yield and acts as a
major location for carbohydrate storage (Holman et al. 2016; Hassan et al. 2019).
This is an important indicator about biomass and yield prediction during different
growing stages of canopy structure (Aasen et al. 2015). The traditional method of
measuring plant height with a meter-rod, is laborious, time-consuming, and least
efficient. The drone’s technology along with sensors may capture images of crop
plants from the field to estimate plant height. There are several studies conducted on
unmanned aerial vehicle remote sensing technology for measuring plant height. The
combined application of unmanned aerial vehicle-based red-green-blue images and
ground-based LiDAR is used to estimate wheat crop height (Holman et al. 2016
Madec et al. 2017).

Unmanned aerial vehicle technology determined the best results i.e., R2 yield
height is 0.99 and R2 ground LiDAR is 0.97. Then using digital surface phenotype to
create a spatial variability map of the field scale and individual crop height. The
results show that the proficiency of drone technology can produce high-quality and
large amounts of phenotypic information. Consequently, red-green-blue and LiDAR
both are important for measuring the plant height under field conditions. Plant height
assessment of barley through red-green-blue image shows growth variability
(Bendig et al. 2013, 2014). It is believed that plant height measured through drones
may be a good marker of above-ground biomass. LiDAR is also used to collect tree
height by placing the multi-rotor unmanned aerial vehicle platform for collecting
height, position, and canopy width of trees (Wallace et al. 2012). The evaluation
cloud points are generated by the unmanned aerial vehicle-LiDAR technique, and
the relative mean square error (RMSE) is 0.34 m (horizontal) and 0.14 m (vertical).

Generally, the standard deviation of the height generated by the point cloud is
0.05 m and the standard deviation is 0.44 m, while the standard deviation for canopy
width is 0.25 m. Among the plant characteristics, height and canopy diameter may be
used for the selection of new varieties in breeding programs. Therefore, Diaz-Varela
et al. (2015) studied the use of an improved red-green-blue camera mounted on a



unmanned aerial vehicle to predict height and canopy diameter. Modify the RGB
camera to obtain the near-infrared band after removing the internal infra-red filter.
Digital surface phenotype is created by image reconstruction of the structure of
motion (SfM). The results showed relative RMSE value of the tree and hedge level
was between 6.55% and 19.24%. The relative RMSE of crown diameter was
12.96–18.83%.

6 Phenotyping for Assessing Genotypic Variation in Phosphorus Use Efficiency 127

Hyperspectral imaging is also used in place of red-green-blue and LiDAR that can
provide more information about bands of spatial characteristics. This hyperspectral
imaging technique is used to predict the plant height parameter of barley using a
visual map of wavelength between 450–950 nm (Aasen et al. 2015). The vegetative
growth assessment through hyperspectral vegetation index also predicts chlorophyll,
leaf area index, and green biomass. During low light/darkness LiDAR can be more
powerful than red-green-blue. LiDAR is more expensive and complicated. The data
analysis is much complicated using this hyperspectral image sensor system. How-
ever, it is estimated that red-green-blue and LiDAR sensors both can be used for the
reliable assessment of plant height.

6.6.4 Leaf Area Index Phenotyping

The leaf area index (LAI) is calculated by the total leaf area per unit canopy area of
the plant. Leaves are the most important characteristics in crop plants, which directly
correlates with food synthesis and contributes to increasing crop yield. The leaf is the
best indicator of plant health, and nutritional status (Liu et al. 2010; Wang et al.
2017b). It is studied that leaf area index is associated with the number of photosyn-
thates that produce under photosynthesis (Potgieter et al. 2017). Therefore, several
studies were conducted for the phenotyping of leaf area index using drone-based
sensors. Three bands, green, blue, and near infra-red measure by cameras installed
on the drone for assessing wheat production (Hunt et al. 2010). A positive correla-
tion between leaf area index (R2 = 0.85) and Green Normalized Difference Vege-
tation Index (GNDVI) was observed.

Subsequent results showed that these three bands, green, blue, and near infrared,
have been used for production forecasts in different crops. The multi-spectral images
(red, green, blue, and near infra-red) collected through drones were also used to
estimate the leaf area index of sorghum (Potgieter et al. 2017). The enhanced
vegetation index (EVI) and normalized difference vegetation index (NDVI) are
assessed using spectral bands to analyze the plants per unit area, leaf area index,
and canopy size. The vegetation indexes (NDVI and EVI) during the growth stage
(before and during flowering) are closely related to the leaf area index. In addition,
the growth patterns of sorghum genotypes are also used to determine the aging
process of the crop. Senescence information at different growth stages is the best
signal for breeders to screen out green genotypes as tolerant under water shortage
conditions.
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The normalized differential red boundary (NDRB) is used to determine the level
of aging, which is closely related to chlorophyll content and photosynthetic activity.
NDRB plays a key role to determine aging patterns for selecting the green geno-
types. This study shows that high-throughput phenotyping following unmanned
aerial vehicle-based can help to maximize yield after improving genotypes. Leaf
area index phenotyping is predicted by many geneticists using red-green-blue
images such as leaf area index in onion was predicted through red-green-blue images
collected by drones (Corcoles et al. 2013). The association of leaf area index with
plant canopy is calculated by three different phenotypes of leave and canopy like
linear, polynomial, and exponential. The first two phenotypes indicate that R2 is
equal to 0.847 and 0.839, respectively.

Compared with traditional phenotyping methods used to measure leaf area index,
drone-based phenotyping is time-saving. In another study, using drone-based red-
green-blue images to check visualization of grape canopy leaf area index, the result
was predicted as R2 = 0.57. A 3D map created by structure of motion contains
information about the vineyard. Red-green-blue images are most reliable for esti-
mating leaf area index. Red-green-blue sensors are simple and easy to operate
through drones and are recommended for phenotyping of leaf area index. Significant
phenotypic variation in the leaf area index helps to adopt appropriate management
strategies for improving the trait.

6.6.5 Chlorophyll Phenotyping

Chlorophyll contents are associated with the photosynthesis process and healthy
plants have their higher contents to synthesize more photosynthates. Therefore,
chlorophyll contents determine the rate of photosynthesis in leaves and photosyn-
thetic products of plants (Peng et al. 2011). Chlorophyll content plays an important
role in crop plants during different stresses to boost up nutritional status and crop
yield (Martinelli et al. 2015; Maimaitijiang et al. 2017). The chemistry of chloro-
phyll molecule, reveals some chemical groups, including CIH and CO. Therefore,
the variations in these chemical groups like CIH, OeH, NIH, and CO can be
observed in the near infrared spectral region for detecting chlorophyll-a in a pheno-
type of the plant. Various studies have been conducted for assessing the chlorophyll
phenotype following the vegetation index getting from multispectral and
hyperspectral imaging.

Chlorophyll phenotyping using the drones with red-green-blue and near-infrared
cameras, produce thermal and multispectral images to calculate the chlorophyll
contents in oat crop (Elarab et al. 2015). The phenotypic analysis of the chlorophyll
concentration was also performed using a correlation vector machine (RVM). The
program first measures the Soil plant analysis development (SPAD) value and then
uses the eq. CCI = 1 + 0.00119 × SPAD 2.67 to calculate the Chlorophyll
Concentration Index (CCI) based on SPAD. Finally, chlorophyll (μmol × m-

2) = -132 + 146 × (CCI 0.43) can be used to calculate the chlorophyll mass of



each leaf area. Various parameters, namely leaf area index, normalized difference
vegetation index (NDVI), and heat are input variables to identify chlorophyll
contents. NDVI, leaf area index, and chlorophyll with different values are displayed
in different colors, based on the visual map, to discover and monitor changes in
plants under field conditions.
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In addition to the chlorophyll contents, this assay is also used for predicting
phenotyping of traits like leaf area index and total biomass produced. Therefore, the
combination of multispectral and thermal data can predict phenotyping of biochem-
ical parameters including nitrogen and chlorophyll contents. For different biophys-
ical parameters, leaf area index uses a combination of multispectral and thermal data
for phenotypic analysis which provides color rendering, canopy shape, temperature,
and biomass as the best predictor. They also calculate the phenotype of plant
vegetation, which can provide information about plant density and structure.
Hyperspectral images between wavelength 340–764 nm were collected by drones
that can predict chlorophyll contents in rice cultivars (Uto et al. 2013). The results
showed that the chlorophyll index may be associated with the density of chlorophyll
contents. Hyperspectral imaging is effective due to the sensitive spectral wavelength
for chlorophyll contents estimation. Therefore, phenotyping data of multispectral
and thermal images determine the best results for chlorophyll contents prediction.

6.6.6 Phenotyping of Other Traits

Phenotyping of traits helps improve the knowledge, skills of plant breeders and
biologists. Choosing stress-resistant cultivars can help increase farmers’ yield and
income. Therefore, some studies use drone-based sensors to focus on plant stress
traits. The various water stress levels are assessed through multispectral thermal
images that may range from 530 to 800 nm wavelength (Baluja et al. 2012).
Assessment of thermal images of plant height and stomatal conductance index is
used to assess water contents in stem and leaf cells. Different researchers have
pointed out that thermal imaging can be the short-term answer to assess the state
of the water body, whereas normalized difference vegetation index (NDVI) can be
the long-term answer. Then, phenotyping of stem water potential and leaf stomatal
conductance can be used for the health analysis of crop plants. Therefore, drone-
based thermal imaging technology has been used for phenotypic analysis of changes
in the moisture status of different fruit trees like almonds, apricots, peaches, lemons,
and oranges (Gonzalez-Dug et al. 2013). According to the visual map of crop
situation/health farmers can adopt precise strategies accordingly. Structure of motion
technology is used to obtain digital surface phenotype from each plant. Digital
surface phenotype then obtains information about the affected and missing vines
in the form of grayscale images. The results showed that 9.5% and 7.3% of the plants
were affected, respectively, and lack of vines, which cause abiotic stress affected
16.8% of the plants in total.



130 A. Farooq et al.

The biological stress-like diseases may analyze through unmanned aerial vehicle-
based sensors following the multispectral images with a blue wavelength between
430 to 470 nm, green from 530 to 570 nm, red from 630 to 670 nm, and near infrared
between 810–850 nm, and hyperspectral images from 397 to 995 nm. Unmanned
aerial vehicle-based red-green-blueimages are also used to estimate the canopy size
and canopy senescence in some crops (Makanza et al. 2018). The vitality of crops
can be controlled according to the shape of the canopy and the senescence of the
canopy. This is a physiological process that can be used as an indicator of the
robustness and speed of crop canopy measurement and is significantly affected by
genetic characteristics. According to the results, the total canopy area has medium to
high heritability. In addition, the other four characteristics, namely dry, yellow and
green canopy, all showed moderately heritability values. Studies have shown that
effective high throughput phenotyping based on unmanned aerial vehicle imaging,
by which at large scale ideal plants can be selected for ideal type breeding. All
studies prove that the use of drone sensors/cameras is useful for analyzing the best
tolerant characteristics against biotic and abiotic stresses.

6.7 Conclusion

Phosphorus is the main component of phospholipids, nucleic acids, metabolites, and
phosphoproteins. All these molecules are involved in the physiological aspects of
plant growth and development. Plant phenotype is still the bottleneck for selecting
genotypes with higher phosphorus utilization efficiency. The main challenge is to
produce an accurate phenotype. An accurate phenotype will produce correct data and
interpretation. With the development of new sensors, an additional task is to develop
a phenotypic system that can easily use by new types of sensors.
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Chapter 7
Advanced Biotechnological Tools
for Improving Phosphorus Use Efficiency
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Abstract Phosphorous is an essential element for physiological and biochemical
activities of living cells. Soil is the main source of plant phosphorous, but soils
usually contain low levels of readily available phosphorous. As a consequence,
phosphorous fertilizers are added to soils to enhance crop yields, though this is not
a sustainable solution because fertilizer resources such as phosphate rock are deplet-
ing. Therefore there is a need for techniques to improve phosphorus use efficiency.
Here we review biotechnological tools to improve phosphorus use efficiency. Plant
physiological traits can be adapted by the utilization of phosphate transporters,
membrane lipid remodeling to drive remobilization, targeting signaling pathways,
and phenotyping and other genetic approaches. Biofertilization is also proving an
efficient way to enhance phosphorus use efficiency. Phosphorous use efficiency can
also be improved by transcriptomic and metabolomics.
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7.1 Introduction

Phosphorous is an essential element of every living cell, as phosphorus is required
for their physiological and biochemical activities (Roberts and Johnston 2015; Iqbal
et al. 2019a). The salient role of phosphorous in plants is protein metabolism and
energy transfer (Fageria et al. 2010). Phosphorous is crucial for plant’s structural
integrity and regulation of metabolism as it is a potential component of adenosine
triphosphate, nucleic acid, and phospholipids (Vance 2011; Amanullah et al. 2019).
Plants obtain a large amount of phosphorous from the soil solution as phosphate ions
(Amanullah et al. 2016a, b). But they are present in a very limited concentration in
the soil, typically around 10–5 M. They are removed with crop harvesting and
should be replaced to eradicate nutrient depletion and soil degradation.

The constant supply of readily available phosphorous in the soil is needed to
maintain its concentration which can be taken up by the roots (Anwar et al. 2017;
Iqbal et al. 2019b). This constant supply is maintained due to phosphorous fertilizers
which come from the ores of phosphate rock, a nonrenewable and limited resource
(Amanullah et al. 2021). According to Van Kauwenbergh (2010) and International
Fertilizer Development Center, these exploitable reserves may last for about
300–400 years. Most of these phosphate rock reserves are mainly present in
Morocco, followed by the USA, and China (Van Kauwenbergh 2010). This unequal
global distribution is a grave concern.

Excessive phosphorous fertilization is being used in agricultural practices to
ensure proper supply as approximately 5.7 billion hectares of land have poor
available phosphorous for sustainable cropping (Fageria et al. 2017). Phosphorus
mining then becomes the concern for low input cropping systems while, in the high
input cropping system, higher phosphorous fertilizer demand is the reason for
concern (Khan et al. 2017; Safdar et al. 2021).

Another important factor that increases the demand for phosphorous fertilizer is
the removal of almost 10 million tons of phosphorous across the globe each year by
harvested produce (Lott et al. 2000). Grain crops are the major culprit for phospho-
rous removal at harvest (Lott et al. 2001). Lott et al. (2009) reported that about 85%
of phosphorous applied as fertilizer is removed from the fields through harvest
produce each year. Phosphorous increases tillering and pods in cereals and legumes
(Fageria et al. 2008; Fageria and Filho 2007) and its deficiency makes plants more
susceptible to some diseases (Hay 1998) and thus, a large number of phosphate
fertilizers are needed to improve crop yield (Withers et al. 2014).

Phosphorous is one of the most important limiting nutrient factors for plant
growth. The deficiency of plant available phosphorous is the main constrain in
plant growth in over 5.7 billion hectares of land globally (Batjes 1997). A large
amount of soil phosphorous is locked up in recalcitrant organic phosphate fractions



or nonlabile inorganic phosphorous pools in the form of complexes with calcium in
alkaline soil and with iron (Fe2+) or aluminum (Al 3+) in acid soils. Attempts at
amelioration of this situation are the utilization of phosphorous fertilizers (Baligar
et al. 2001; Rose and Wissuwa 2012).
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Thus, improvement of phosphorus utilization efficiency is the need of the hour
although it is a highly complex character that complements phosphorous uptake and
ultimately results in the better yield of grain (Rose and Wissuwa 2012). There is a
significant phenotypic variation of phosphorus use efficiency in the various genotype
of the same species (Ozturk et al. 2005; Yuan et al. 2017). Phosphorus use efficiency
can be improved by either increasing uptake capacity or optimizing its utilization
(Parentoni & Souza Júnior 2008). Different approaches are needed to improve the
phosphorus use efficiency for high and low input agricultural systems. For low input
conditions, crops with high-affinity inorganic phosphate uptake potential and high
internal phosphorus use efficiency are needed (Rose and Wissuwa 2012).

Breeding programs based on high throughput genomic approaches are needed to
improve food production and thus overcome the use of fertilizers and other agro-
chemicals (López-Arredondo et al. 2013). Phosphorus use efficiency is an important
index in determining the applied fertilizer by a crop species (Fageria et al. 2013).

Phosphorous efficiency mainly comprises phosphorous uptake efficiency and
phosphorus use efficiency. Phosphorus use efficiency is not widely understood as
compared to phosphorous uptake efficiency and many factors are responsible for
this. The first and foremost reason is that the researchers failed to address is the
definition of phosphorus use efficiency (Rose and Wissuwa 2012; Shenoy and
Kalagudi 2005). According to Wang et al. (2010), phosphorous uptake efficiency
is the propensity of plants to obtain inorganic phosphate from the soil, and phos-
phorus use efficiency is the capacity for biomass production measuring absorbed
phosphorous (Wang et al. 2010).

7.2 Definition of Phosphorus Use Efficiency

Along with the poor definition, phosphorous deficiency of plants, multiple defini-
tions, acronyms, and terms are used by various authors, for example, phosphorous
utilization efficiency (Sepehr et al. 2009), and internal phosphorous utilization
efficiency (Rose et al. 2011). The lack of specific terminology given for this specific
criterion and range of definitions are unequivocally the reason for some apparent
contradictions in the literature and made it more difficult to draw some conclusions.
In this chapter, phosphorus use efficiency is defined as the biomass produced per unit
phosphorus accumulated in tissue, and phosphorus efficiency relevance is defined as
grain yield per unit of phosphorus accumulated in above-ground plant material.

The most cogent criteria used to quantify the internal phosphorus use efficiency is
broadly classified into those having agronomic relevance and physiological rele-
vance. If criteria measure the grain yield as a component, then phosphorus efficiency
relevance has more agronomic implications as compared to phosphorus use



efficiency measurement as it has no strong direct agronomic application. Phospho-
rous fertilizer use efficiency is approximately 10% in wheat and mostly applied
phosphorous is fixed in the soil (Schröder et al. 2011).
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7.3 Important Traits for Enhancing Phosphorus Use
Efficiency

Plants have developed highly advanced mechanisms and regulatory systems to
access and control nutrient hemostasis. They have evolved adaptive mechanisms
in response to inorganic phosphorus deficiency, and transudation of organic acids to
solubilize phosphorous complexes and phytases and phosphatases to access organic
phosphorous (Hammond et al. 2004; López-Arredondo and Herrera-Estrella 2012).
In rice (Oryza sativa), the phosphorus use efficiency is about 25% which gives a
wide scope for improvement (Dobermann and Fairhurst 2000). In the rice production
system, aluminium toxicity is the main constrain as it inhibits root growth and
phosphorus use efficiency only then can be improved when plants are aluminium
toxicity tolerant (Haefele et al. 2014).

A premise of this chapter is to identify loci and superior alleles within germplasm
and use marker-assisted introgression to breed high-yielding varieties with specific
phosphorus use efficiency traits/genes by using advanced biotechnological tools to
improve the phosphorus use efficiency of modern crop cultivars, at present.

7.4 Physiological Traits Related to Phosphorus Use
Efficiency

A wide range of physiological traits is involved in phosphorus use efficiency. These
traits enhance phosphorus use efficiency by phosphorus scavenging and uptake and
optimizing allocation within the plant. Some of these physiological responses are
compounded and some are relatively straightforward and can be assessed for
breeding purposes.

For the uptake of released phosphorous, high-affinity phosphate transporters and
transporter proteins situated in cell membranes are up-regulated at the low phospho-
rous level. Internal phosphorus use efficiency improvement leads to rich resource-
efficient use of phosphorous than increased phosphorous uptake efficiency. A broad
range of metabolic integrations is intricated in phosphorus use efficiency. The main
aspect of phosphorus use efficiency is the potent mobilization of phosphorous within
the plants. It includes recycling phosphorus from senescing parts of plants to actively
growing tissues and from vacuoles (Akhtar et al. 2008). Seedlings obtain stored
phosphorus from seeds at the early growth phase (White and Veneklaas 2012). Seed
phosphorus concentration can be decreased through harvest index in grain by using
breeding efforts. But with decreased phytate level, seed vigor is affected.
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Phosphatases are also important in phosphorus use efficiency as well as phos-
phorous uptake efficiency because they are involved in internal phosphorous
reallocation in plants. Little work is done on internally localized phosphatases, but
Tang et al. (2013) reported LaSAP1 expression has been increased in white lupin.
High-affinity transporters also play an integral part in internal phosphorous mobili-
zation, for example, specific transporter genes are upregulated in sensing tissue
(Vance et al. 2003).

7.4.1 Utilization of Phosphate Transporters for Breeding
Phosphorous Efficient Plants

From inorganic phosphorous uptake to its translocation within a plant is coordinated
by a set of proteins having phosphate transport activities. Inorganic phosphorous
distribution within the plants by translocation into mitochondria, chloroplasts, and
golgi apparatus is mediated by PHT2, PHT3, and functionally diverse PHT4 gene
family. Other transporter families have also been facilitated by transgenic
approaches (Ai et al. 2009; Wang et al. 2012; Zhang et al. 2015). The regulation
of phosphate transporters gene expression, function, and intracellular localization are
multilayered and highly sophisticated (Gu et al. 2016). The regulatory genes which
are affecting inorganic phosphorous homeostasis by direct or indirect regulation of
phosphate transporters at different levels are targeted mostly at the transcriptional,
post-transcriptional, translational, and post-translational levels.

According to the literature, overexpression of phosphate transporters might be
propitious to a larger extent (Heuer et al. 2017). For breeding phosphorous efficient
genetically modified crops, phosphorus use efficiency has practically more potential
than phosphorous uptake efficiency in fertilized plants (Gu et al. 2016). Phosphorous
uptake efficiency is more important in inorganic phosphorous-deficient soils. In
various studies, phosphorus use efficiency is neglected and more concentration is
given to measure inorganic phosphorous accumulation, inorganic phosphorous
uptake, and both of these factors are used in determining the changes in inorganic
phosphorous homeostasis (Rose et al. 2011).

Inorganic phosphorus transporters influence phosphorus use efficiency as they are
related to inorganic phosphorous recycling, but phosphorus use efficiency is a more
complicated trait. Under phosphorous-deficient conditions, the efficiency of meta-
bolic shifts like alternative pathways of cytosolic glycolysis and mitochondrial
electron transport chain and substitution of phospholipids by polar lipids (Hammond
and White 2008).

To overcome the gap betweenmolecular mechanisms and the practical application of
phosphate transporters to improve phosphorus use efficiency in plants, some strategies
can be taken into account. One strategy includes overexpression of some genes results in
enhanced growth and yields under low inorganic phosphorous conditions (Wu et al.
2013) while some other genes hinder the growth. Tissue-specific promoters can be used



along with constitutive strong promotors. Promoters with shoot-specific expressions
should be considered (Li et al. 2015). In the second strategy, inorganic phosphorous
-starvation specific promotors should be used to reduce the inorganic phosphorous
toxicity caused by inorganic phosphorous over accumulators to regulate phosphate
transporters gene expression. OsPHT1;6, the rice promotor is a potential candidate as
it gives inorganic phosphorous -starvation specific expression in monocots as well as in
dicots and can be used in crops cultivated in inorganic phosphorous -starvation condi-
tions (Li et al. 2014). In the third strategy, artificial promotors can be designed by fusing
minimal promotors with DNA fragments or cis-elements to generate inorganic phos-
phorous -starvation specific expression (Lota et al. 2013). In the fourth strategy, the
genomic copy number of a single gene of a specific trait responsible for phenotypic
variation can be considered. Native promotors of some phosphate starvation-induced
phosphate transporters genes that mimic increased gene copy numbers should be used
but not the ono-native promotors as they produce unfavorable side effects and change
the gene spatio-temporal expression. For example, Ruan et al. (2015) reported that AT-
type-PIBS has a better affinity for OsPHR2.
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To engineer the plants under inorganic phosphorous-deficient conditions, having
the ability to maximize the usage of inorganic phosphorous reserve in plants can be
done by re-orchestrating the gene expression profile. Thus, normal shoot growth is
achieved in this way. Arabidopsis pho1–4 mutant has provided the proof for this
theory (Wege et al. 2016).

7.4.2 Membrane Lipid Remodeling to Drive Phosphorous
Remobilization

In response to inorganic phosphorous starvation, membrane phospholipids are
substituted by lipids lacking phosphorous in major plants species including culti-
vated crops (Plaxton and Carswell 2018). Lipids remodeling pathway consists of
many steps and any step can be targeted to modify the metabolic pathway to lower
the phosphorous requirement and enhance the phosphorus use efficiency. Mainly
phospholipids are targeted in membranes and replaced by sulfolipids and
galactolipids (Lambers et al. 2012) because these are the hallmark of phosphorous
-starvation (Tjellström et al. 2008). Transcription of genes related to the manufacture
of sulfolipids and galactolipids is up-regulated in inorganic phosphorous-deficient
leaves of A. thaliana (Morcuende et al. 2007). In phosphorous-free polysaccharides,
mainly cellulose is targeted for adaptation of cell walls in low phosphorous condi-
tions (Byrne et al. 2011).

In Proteaceae species, adapted to phosphorous impoverished landscapes, lipid
remodeling takes place in mature leaves (Kuppusamy et al. 2014). Maintenance of a
high level of phospholipids during leaf growth and development is a necessity. Rice
genotype constructed by lipidome and transcriptome can express lipid remodeling
genes under low inorganic phosphorous conditions (Mehra et al. 2016). The fact that



phospholipids concentration decrease from 46.0% to 9.6% from young to mature
leave can be used to develop the mechanism to increase phosphorus use efficiency in
crop plants (Lambers et al. 2012).

7 Advanced Biotechnological Tools for Improving Phosphorus Use Efficiency 143

7.4.3 Signaling Pathways

Under stressed conditions, signaling pathways and hormones are potent integrators
in plants (Chiou and Lin 2011). Auxins and ethylene signaling take part in lateral
root initiation mainly under low phosphorus conditions, however, cytokinin produc-
tion is suppressed in low phosphorus conditions and it inhibits phosphorus
starvation-induced (PSI) genes. When phosphorus mobilization is reduced from
roots to shoots, shoot growth is inhibited even in the presence of vacuolar phospho-
rus pools. Veneklaas et al. (2012) suggested that phosphorus use efficiency can be
enhanced by targeting these signaling pathways and hormones to make more
efficient utilization of the shoot’s phosphorus pool. For example, in Arabidopsis,
modifying the gene expression of PHOI, uncoupling of shoot growth and phospho-
rus deficiency can be obtained. Strigolactones enhance mycorrhizal branching.
Sugar signaling and phosphorus responsiveness are also connected. Hammond and
White (2011) proposed that under low phosphorus conditions, starch formation is
increased in shoots due to decreased photosynthesis. Phosphorus-responsive genes
are activated upon the increase of the root to shoot ratio. This ratio is increased when
sugar is allocated in roots after reaching into the phloem (Chiou and Lin 2011).

7.5 Phenotyping

To obtain plants with improved phosphorus use efficiency, high throughput selection
of the desired genotype is requisite. Although field trials are the main thing, but these
traits are hindered by variable environmental conditions which can provide false-
positive results, or which can obscure the desired genetic variations. More controlled
conditions overcome this issue and provide more clear results of phosphorus use
efficiency linked traits in the tested plants. The plants should be cultivated in such a
way that makes the assessment of traits easier and more reliable.

Soil and water-based systems are used in the cultivation of transgenic plants. In
soil-based systems, the simple system is based on the pots in greenhouses with
controlled conditions and different systems can be used to control the experimental
conditions, for example, the system used previously by scientists (Da Silva and
Gabelman, 1992). Rhizosphere study container technique (Zoysa et al. 1999),
robotic rhizotron system (Nagel et al. 2012) for automatic imaging of both roots
and shoots, and (Fang et al. 2009) recorded the total root system by coupling
transport root growth medium with phytagel with 3D laser scanning.
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The water-based system comprised of hydroponic culture techniques. From the
simplest hydroponic culture technique, applied hydro-aeroponics (Lrsquo et al.
2012) to ingested-based hydroponics can be used on the plants. The ingested-
based concept is more appropriate for phosphorus use efficiency than phosphorous
uptake efficiency as the scavenging ability of the root system will not contribute to
phosphorus use efficiency.

7.6 Genetics and Breeding to Improve the Phosphorus Use
Efficiency

In recent research, plenty of quantitative trait loci for phosphorous efficiency and
associated phenotypic have been found and mapped for wheat under field trials
(Su et al. 2009), hydroponic cultures (Zhang and Wang 2015), and pot trials (Ryan
et al. 2015; Su et al. 2006). The main objective is to locate the stable and important
quantitative trait loci clusters that can be employed in quantitative trait loci cloning
and crop breeding program mainly in most cultivated crops (Yuan et al. 2017).

Identification of targeted quantitative trait loci for a specific trait is a key point in
boosting the phosphorus use efficiency of plants. Plants in a deficient phosphorous
environment, improve their phosphorus use efficiency through reduction of organic
phosphate pools, by alternative metabolic pathways, lipids remodeling, and enhanc-
ing phosphorous distribution from senescing tissues to developing tissue for maxi-
mum plant biomass production (Fig. 7.1) and allocation to seed yield (Chen et al.
2011; Wiel et al. 2016). Phosphorous uptake efficiency and phosphorus use effi-
ciency differ substantially among and within species which can be manifested to
improve crops by breeding. With the help of genetic mapping, complex traits are
dissected into quantitative trait loci to get elite varieties with improved phosphorus
use efficiency. Biotechnological tools for example marker-associated selection and
other genetic engineering techniques are more efficient, precise, and easier than
conventional breeding (Wang et al. 2019).

7.6.1 Mapping Populations

To map quantitative trait loci to improve phosphorus use efficiency in various crops,
primary mapping populations including recombinant inbred lines or double haploid
lines and advanced mapping populations including introgression lines and chromo-
somes segment substitution lines have been constructed. These constructs increase
the precision of quantitative trait loci mapping by removing the diverse genetic
background (Chao et al. 2015; Li et al. 2009; Zhang et al. 2014; Zhao et al. 2013).
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Fig. 7.1 Physiological phosphorous utilization efficiency is improved by limiting organic phos-
phorous pools via lipid remodeling, alternative metabolic pathways, and phosphorous redistribution
from senescing tissues to developing tissues. Another strategy is to maximize biomass allocation to
harvest index

7.6.2 Molecular Marker and Genetic Linkage Map

With regard to previous literature, simple sequence repeat, amplified fragment length
polymorphism, random amplified polymorphic DNA, and restriction fragment
length polymorphism have been used originally to construct the genetic linkage
maps for phosphorus use efficiency related characteristics. But, recently, with state-
of-the-art technologies, single nucleotide polymorphism markers have been used
more broadly. For example, to genotype 202 lines of the BnaTNDH population, the
60 K Brassica Infinium single nucleotide polymorphism array (Illumina, USA) is
being utilized (Zhang et al. 2016).

By using whole-genome sequencing, the bulk segregation analysis has widely
been used to identify targeted traits to improve phosphorus use efficiency in many
plants (Fu et al. 2015; Hua et al. 2016; Lu et al. 2014).

Genome-wide association study has also been used extensively for mapping
phosphorus-efficient genes. Genome-wide association study has some advantages
over other technologies as it increases the reliability of quantitative trait loci map-
ping and detection efficacy. But this method has some restrictions too due to
complex population structures and false-positive results are obtained and due to



low diversity, there is a reduction in the statistical capability of association analysis
(Flint-Garcia et al. 2005). Association analysis along with linkage analysis are being
used to identify targeted genes for desired traits in recent research (Flint-Garcia et al.
2005; Liu et al. 2015; Xiao et al. 2017).
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7.6.3 Breeding of Phosphorous-Efficient Crop Varieties

Most identified quantitative trait loci affecting phosphorus use efficiency-related
characteristics are environmental dependent, so there are limited, robust quantitative
trait loci for effective mapping and cloning. There are limited marker-associated
breeding programs to enhance phosphorus use efficiency because of epistatic inter-
action among quantitative trait loci and identified quantitative trait loci with very
limited effect. Though, multiple system atrophy has been reported as most effective
for introgression of stable quantitative trait loci of good impact (Miklas et al. 2006;
Wang et al. 2019).

The major constrain to improve crop efficiency is the limited knowledge regard-
ing the genetics of phosphorus use efficiency (Wang et al. 2010), mainly due to the
confounding effect of phosphorous uptake efficiency on phosphorus use efficiency
(Rose et al. 2011). A recent review of literature on this topic suggests that a better
insight on the molecular mechanism of phosphorus use efficiency can be obtained by
calculating phosphorus use efficiency indices based on the metabolically active
phosphorous pools (Rose et al. 2011) and quantitative trait loci related to phosphorus
use efficiency should be identified under conditions in which phosphorus use
efficiency should be equal for cultivars understudies (Veneklaas et al. 2012).

For producing plants with improved phosphorus use efficiency, targeted traits
associated with phosphorus use efficiency are investigated using high throughput
technology, and most commonly used are hydroponic culture systems at the seedling
stage (Adu et al. 2014; Dupuy et al. 2017; Shi et al. 2013) and rhizoboxes are used to
determine root surface area (RSA) at maturation stage (Li et al. 2017). Automatic
phenotyping platforms are being used to determine the above-ground traits of plants
(Fig. 7.2). In the second step, to determine appropriate population genotype, next-
generation sequencing technologies are being used commonly to boost efficiency in
a limited time (Crossa et al. 2017). In the third step, casual genes of targeted
quantitative trait loci are identified through targeted mutations (Zhu et al. 2017) or
transcriptomics. In the fourth step, by using marker-assisted selection approaches
flanking markers or functional markers of major quantitative trait loci are used in
breeding programs. In the last step, novel crop genotypes are tested in the field trials
with reduced phosphorous input. Some successful examples are present in the
literature (Gao et al. 2020; Wissuwa et al. 2015) in which knowledge of targeted
quantitative trait loci for phosphorus use efficiency improvement has been achieved
but more novel plant varieties with greater phosphorus use efficiency are needed of
the hour to overcome the problems of food security and agriculture sustainability.
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Fig. 7.2 Classical breeding and modern biotechnological approaches for improving phosphorous
use efficiency

7.7 Genes Related to Phosphorus Use Efficiency

A broad array of the genes to enhance phosphorus use efficiency can be identified by
using complementary DNA (cDNA) libraries (Tian et al. 2007), microarrays, and
mutations in phosphorous utilization. In recent years, genes involved in phosphorus



use efficiency are identified in tomato, maize, wheat, and rice (López-Arredondo
et al. 2014). To increase phosphorus use efficiency, genes involved in transcription
factors, signal transduction, hormonal pathways, metabolic pathways, and genes
related to proteins involved in phosphorous scavenging mainly phosphorus trans-
porters and acid phosphatases, are targeted. These identified genes linked to phos-
phorus use efficiency can be characterized by integrating them into other plants.
However, their balance expression for the optimal effect might not be forthright
because no genetically modified phosphorus use efficiency crop variant has been
reported in the commercial pipeline.
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7.8 Microbial Inoculants, Biofertilization and Phosphate
Fertilizers

Dryland agriculture can use biofertilizers more efficiently (Clair and Lynch 2010)
and there will be more dryland areas globally due to ongoing climate change so there
is a need for biofertilizers to combat these challenges.

To optimize the effectiveness of phosphorous fertilizers, a technology established
on metabolic engineering has been used to allow plants to metabolize phosphite.
This technique converts phosphite to inorganic phosphate through the expression of
bacterial phosphite oxidoreductase in plants which enables plants to produce inor-
ganic phosphate for their growth and reproduction (López-Arredondo and Herrera-
Estrella 2012). Phosphite uses the same tri-phosphate as inorganic phosphate
although, cellular machinery cannot use phosphite as they don’t have the enzyme
needed to convert it into inorganic phosphate. These transgenic crops have the
ability to express phosphite oxidoreductase, they can outcompete weeds as weeds
cannot use phosphite as their phosphorous source, and thus there is no need to apply
herbicides for weed control in these plants (López-Arredondo et al. 2014).

Field trials have been conducted to determine the robustness of the phosphite
system in different soil types. In these trials, phosphite inhibited the growth of
naturally occurring weeds and these weeds could not give competition to
phosphonate dehydrogenase,-engineered plants (Heuer et al. 2017). This technology
has been reported for transgenic Nicotiana tabacum and Arabidopsis transgenic
plants.

7.9 Conclusion

An array of genotypic along with phenotypic traits have been assessed for enhanced
phosphorus use efficiency in a broad array of crops. Quantitative trait loci have been
identified for these traits and have been successfully used in different breeding
approaches. Knowledge of genes involved in phosphorus use efficiency has been
reported using marker-assisted breeding approaches. The economical and



sustainable advanced biotechnological approaches may be utilized to improve the
phosphorus use efficiency in plants. These approaches may include metabolic shifts
like using alternative pathways for cytosolic glycolysis and mitochondrial electron
transporter. There is also a need for more work on lipid remodeling to enhance
phosphorus use efficiency, particularly the replacement of phospholipids by
galactolipids and sulpholipids. Still very little is known about the mechanisms of
how to improve phosphorus use efficiency and this knowledge gap has to be filled to
make commercial genetically modified phosphorus efficient plants to make sustain-
able global phosphorous cycle.
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Chapter 8
Role of Arbuscular Mycorrhizal Fungi
in Plant Phosphorus Acquisition
for Sustainable Agriculture

Muhammad Riaz, Muhammad Tehseen Azhar, Muhammad Kamran,
Omar Aziz, and Xiurong Wang

Abstract Mycorrhizae are essential for the acquisition of phosphorus (P) and are
critical in the acquisition of nutrients that are not readily available to plants. Soil P
can be classified into organic and inorganic P. Plant nutrient uptake occurs in
two ways: the acquisition by root epidermis and root hairs, which is the direct root
absorption method; and mycorrhizal association. Arbuscular mycorrhizal fungi are
rhizosphere microorganism that are widely distributed in nature and have important
ecological functions. Arbuscular mycorrhizal fungi form a symbiosis with vascular
plant roots. Arbuscular mycorrhizal fungi provides plants with essential nutrients
including P and nitrogen, and at the same time obtains the required carbon from the
plant root system. This chapter presents the mechanisms of arbuscular mycorrhizal
fungi for the acquisition of P and promoting plant growth.
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Abbreviations

Ca Calcium

8.1 Introduction
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AMF Arbuscular mycorrhizal fungi

K Potassium
N Nitrogen
P Phosphorus
Pi Inorganic phosphate
Zn Zinc

Phosphorus (P) is a crucial macronutrient in the ecosystem, and essential for plants
(Khan et al. 2017; Iqbal et al. 2019a). The P in the soil that can be absorbed and
utilized by plants is called soil available P (Amanullah et al. 2019; Iqbal et al.
2019b). Many soils are deficient in P in a form usable by plants. As a result, P-based
fertilizers are often used for increasing agricultural output and to feed the world’s
rising population (Richardson 2001; Richardson et al. 2009). Since the soil has a
strong adsorption and fixation effect on P, the applied phosphate fertilizer can soon
be fixed by the soil, resulting in lower soil available P content, and soil P stress
greatly limits productivity (Richardson et al. 2009; Anwar et al. 2017). As a result,
this deposit of P in the soil, commonly known as “fixation,” increases the input cost
of phosphate fertilizer for producers, but it also brings environmental threats.

The use of manure-based fertilizers or organic fertilizers is not usually encour-
aged due to their cost, insufficient supply, and limited effectiveness in broad-scale
agricultural production. It is important to replace the P extracted by crops with a
sufficient P supply available to plants to make the farming system sustainable. As a
consequence, there is a buildup of net P in the soil, (Burkitt et al. 2007; Richardson
et al. 2009; Riaz et al. 2020), and a large portion of it remains in the soil. Therefore,
more in-depth knowledge of the methods by which plants may access soil P and/or
alter the quantity of P in the soil is also desired. The arbuscular mycorrhizal fungi are
considered an efficient strategy to supply P to plants in order to sus

8.2 Soil Phosphorus and Acquisition by Plant Roots

Phosphorus is acquired by plants as inorganic phosphate (Pi, H PO -, HPO 2-
2 4 4 , or

PO 3-
4 ) via the roots (Fig. ) (Plassard and Dell ). Unfortunately, P supply is

limited due to the poor diffusion rates of Pi (Shen et al. ), and aluminum
hydroxides and iron adsorb this P to calcium (Ca) in alkaline soil with different

2011
20108.1

tain agricultural
production under P deficient/stress conditions (Riaz et al. 2020).



present in the soil in a different environment (Lambers et al. . Furthermore, the2015)

mainly composed of monoesters (up to 90%), of which the concentration of diesters,
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Fig. 8.1 Phosphorus cycle illustration, sources, and plant uptake

solubility (Prietzel et al. 2016), and some of them are bonded to organic matter

amount of P that enters the soil by deposition is quite low. Thus, changes in P
availability are caused by weathering and P utilization in soils throughout the
geological aging process (Turner and Condron 2013). As a consequence, the quan-
tity of P available differs dramatically in various soils (Lang et al. 2016).

Most of the soil has a large amount of accumulated P (Amanullah et al. 2016a).
The total amount of P in the soil is made up of both organic and inorganic sources.
However, only a few plants can access this P (usually 1%). Most of the inorganic P is
absorbed by soil components, including clay, sesquioxide, and organic matter, or
appears in the form of precipitation of the mineral P (Amanullah et al. 2016b).
Organic P accounts for at least 30% to as much as 80% of the total P in the soil. It is

teichoic acid, and phosphonates are small (Condron et al. 1990). It was found that
monoester P is mainly a cationic derivative of phytate (mainly oxalate), and a small
part (5%) exists as sugar phosphate and diester P (phospholipids and nucleic acids).



orthophosphate by soil organic and inorganic P (Riaz et al. 2020).

The factors that affect the accumulation and transformation of several kinds of
organic and inorganic P in the soil are intricate and are exaggerated by numerous
challenging courses. The desorption or dissolution of inorganic P from the reservoir
of total soil P is required, as is the mineralization of organic P, in order to release
ortho-P into the soil solution and make inorganic P more readily available for plant
uptake (Amanullah et al. 2021). However, the proportional role of organic P in
supplying ortho-P for plant uptake and mobilizing P directly from soil mineral
components remains unidentified (Frossard et al. 2000).

Plant roots uptake P in orthophosphate anions from the soil solution, and are
absorbed by P transporters in the roots. The concentration of ortho-P (usually 5 μM)
in the soil solution is very low in the majority of soils, and the soil solution P must be
quickly replenished from other soil P pools. Therefore, the shortage of P in plants is
caused by a low concentration of ortho-P in the soil solution, a slow rate of P
diffusion in the soil, and a limited potential for P replenishment in the soil solution
(Conyers and Moody 2009). The concentration of ortho-P in the soil solution is

158 M. Riaz et al.

influenced by a variety of physical and chemical parameters (Conyers and Moody
2009). P absorbed by plants from soil is dependent not only on the diffusion rate of
orthophosphate into the roots (Barber 1995) but also on the growth of the root
system, which will allow it to intercept additional sources of P. The low P diffusion
from soil to root fundamentally reduces P absorption and inhibits plant growth
(Silberbush and Barber 1983; Tinker and Nye 2000). As a result, the application
of phosphate fertilizer is beneficial to plant growth by increasing the diffusion rate of
P to roots and promoting the development of roots in unexploited soil (Wissuwa
2003).

The maximum concentration of plant-available P is typically present in the
0–0.10 m surface layer of the soil profile. In a study on traits related to the absorption
of more P by wheat, it was found that the density of root length in the topsoil was the
most significant P absorption attribute. Furthermore, since the majority of the P is
found in the topsoil, drying this layer will impair the absorption of P, resulting in
“nutrient deficiency”. However, when it comes to relatively fixed nutrients in the soil
(such as P) and plants competing for the same nutrient, the situation is different, and
root proliferation may be the most effective way to develop nutrient-rich patches.

8.2.1 Microorganism in the Acquisition of Phosphorus

Microorganisms mediate the supply of P to plants by a number of methods, includ-
ing direct root expansion (Mycorrhizal association), and increased mobilization of

A significant
quantity of fixed P assets is also present in the microbial biomass, which, according
to estimates, contributes to about 5% of the total P in the soil. Microorganisms can
easily immobilize P from soil solutions and fertilizers, but they often release large
amounts of P back into the soil in the form of orthophosphate or organic forms that
are readily mineralized are examples of such substances, which may be utilized by



very fast, and P turnover may occur regardless of the size of the microbial pool.

contrast, the unique relationship between roots and mycorrhizal fungi and their role

are just a few of the initiatives (López-Arredondo et al. ). AMF inoculation2014
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the plant (Oberson and Joner 2005). The P turnover rate in biomass of microbes is

Higher turnover rates were reported in unfertilized soils containing organic inputs,
particularly soils that have received readily accessible carbon e.g., glucose. This
means that the ability of microorganisms that supply P to plants in the root zone has
been significantly improved.

In the rhizosphere, a significant quantity of metabolizable carbon originates from
plant roots (Kouno et al. 2002). A variety of bacteria and fungi has been discovered
that soil microbes can mineralize organic P and dissolve precipitated inorganic
P. These bacteria and fungi have the potential to offer significant pathways for the
release of P from different soil P pools. Related microbes have been isolated and
utilized as inoculants in the industrial setting in a few instances. Further understand-
ing of rhizosphere microorganisms and their contribution to plant P nutrition is
essential (Chen et al. 2002). Although the content of organic and inorganic P in the
root zone is significantly reduced, when compared to plant systems, the proportional
involvement of microbes in these activities is still unclear (George et al. 2002). In

in plant P uptake has been widely known. Mycorrhizal fungi form an interrelation-
ship with most plant species.

Arbuscular mycorrhizal fungi (AMF) are very beneficial to several plant species.
The main advantage of mycorrhizal interaction for the absorption of P and a number
of other nutrients is that it has the potential to enhance the surface area of plant roots,
which can extract a larger volume of soil (Fig. 8.2). Mycorrhizae have the potential
to improve the use of organic P and use of nutrient-rich regions (Riaz et al. 2020).
Because P is a macronutrient, it involves a significant effect on productivity
(Becquer et al. 2014). Even if inorganic P concentrations are low in the soil, plants
have limited ability to use it. Plants have evolved a number of strategies for dealing
with the P shortages in their environment, including strengthening the soil-root
interaction to boost P transport and establish a symbiotic partnership with AMF

seems to boost nitrogen (N) and P absorption, which results in greater plant
development and growth (Balliu et al. 2015). According to Garcés-Ruiz et al.
(2017) and Begum et al. (2019), P absorption in the AMF inoculation maize was
much improved than in control treatments. AMF has been revealed to improve
seedling weight in Leymuschinensis by increasing, intercellular CO2, contents of
water and N, and P (Lin et al. 2018). It is believed that AMF inoculation speeds up
the uptake and transfer of nutrients specifically P (Zarei et al. 2006; Clausing and
Polle 2020). The present data support the notion that the management of P uptake by
mycorrhizal interaction is critical for the provision of root P. Dalla Costa et al. (2021)
confirmed that AMF significantly increased the nutrient use efficiency of apples. The
inoculation ofG. albidawith acerola cherry enhanced the nutrient use efficiency of P
(Balota et al. 2011), while nutrient use efficiency of N, P, and potassium (K) was
reduced in olive trees after Funneliformis mosseae was introduced (Porras-Soriano
et al. 2009). So, the AMF affects the nutrient use efficiency of woody plant species as
well. A significant increase in nutrient use efficiency in mycorrhizal plants was seen



in plants growing in the presence of Acaulospora morrowiae and Gigaspora albida
in the absence of 50% P. When growing under carbon-limiting circumstances, the
buildup of P on AMF hyphae might be ninefold more than on the roots (Hammer
et al. 2011). P was improved if shoot of non-mycorrhizal plants by threefold in
relation to mycorrhizal plants, demonstrating that AMF enhances nutrient acquisi-
tion underneath restrictive P soil conditions and control the delivery of P to plant
metabolism within narrow boundaries (Nazeri et al. 2014). As a result of the
increased nutrient use efficiency due to AMF inoculation, the requirement for
fertilization is reduced, which has an influence on both production costs and
environmental pollution.

Due to low soil nutrient levels, AMF is also believed to have a significant role in
plant P nutrients in other low-P input systems (Ryan et al. 2000). Different plants
depend on mycorrhizal infection to varying degrees, and the P status of the plant as
well as the availability of P in the soil influence the degree of infection of the host. In

160 M. Riaz et al.

Fig. 8.2 Plant growth difference between mycorrhizal and nonmycorrhizal plants



agricultural systems with large amounts of accessible soil P for plants, the plants’
need for mycorrhizal infections is also substantially decreased. When the mycorrhi-
zal plant has almost no nutritional benefit in the absorption of P, AMF (although it is
widely referred to as a beneficial symbiont) can harm the growth of the plant by
consuming host carbon (Ryan et al. 2000). In the colder subtropical crop growing
areas of northeastern Australia, where the input of phosphate fertilizer is low, to
obtain sufficient nutrients for various crops, high levels of AMF colonization are
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often required.

8.2.2 Role of Arbuscular Mycorrhizal Fungi
in the Acquisition of Phosphorus

The improvement of P efficiency is essential to encourage plant development, crop
yields, and decrease the environmental pollution. The soil microbial resources can
efficiently relieve P stress in the soil environment (Cibichakravarthy et al. 2015),
among which AMF can improve the absorption of P, by the mycorrhizal plant via
infecting plant roots which then increase the nutritional status of plants, promote
their growth and development, and increase stress resistance (Table (Xie et al.

AMF forms a mutually beneficial symbiotic partnership with most plants in2014).
8.1)

more than 80% of terrestrial plant roots (Hooker et al. 1992; Sharif and Claassen
2011; Manaut et al. 2015). In the soil, AMF combines with plant roots to form
mycorrhiza, which can form a dense mycelial network system, which has an impact
on the morphological structure, physiology, and cell level of mycorrhizal plants,
which improve plant water metabolism and nutritional status and increase plant
stress resistance (Liu et al. 2014), among which AMF improves the absorption and
utilization of P by plants, which has attracted the attention of many researchers
(Chen et al. 2017).

AMF help mycorrhizal plants in absorbing P in the soil, and plants provide some
products of photosynthesis to help the growth and development of AMF, that is,
AMF and plants form arbuscular branches in the mycorrhizal symbiosis (Fig. 8.3)
(Smith et al. 2011; Smith and Smith 2011). Rice, in a symbiotic relationship with
AMF, absorbs more than 70% of the P available (Yang et al. 2012). As the amount of
P present in the soil rises, the efficacy of the AMF symbiosis and P translocation
diminishes as well (Miao et al. 2009). Compared with plant roots, AM fungi increase
the root surface area of plants and increase the absorption area of nutrients, which
ultimately promotes plant growth (Sharif and Claassen 2011). The capacity of
mycorrhizal plants to absorb and use P is considerably greater than that of
non-mycorrhizal plants, and this difference is substantial (Cui et al. 2019). AMF
stimulates the roots of the mycorrhizal plant to produce acid phosphatase and
organic acids, activates some insoluble P, and improves plant P acquisition. For
example, polyphosphate can be utilized by florae through the transformation of
polyphosphatase, which can alleviate the deprivation of P in the rhizosphere of
plants.
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Table 8.1 Arbuscular mycorrhizal fungi in the uptake of phosphorus under different stress
conditions

Serial
number

Arbuscular mycorrhizal
fungi Plant type

Stress
condition Effect References

1 Rhizophagus
irregularis

Zea mays Low
phosphorus

Larger root hair and AMF
inoculation increased P
uptake

Ma et al.
(2021)

2 Rhizolive consortium Picholine
Marocaine

Nutrient
deficiency
and
Verticillium
wilt

AMF increased Ca, K,
Na, and P uptake

Boutaja
et al.
(2020)

3 Claroideoglomus
etunicatum,
Rhizophagus
intraradices,
Funneliformis mossea

Glycine
max

P- depriva-
tion under
field
conditions

AMF enhanced the soy-
bean growth under P
deficient condition

Adeyemi
et al.
(2021)

4 Glomus species Zea mays Regulation
of P and Zn

AMF increased plant
growth parameters

Saboor
et al.
(2021)

5 Glomus intraradices (Fenugreek) Drought
stress

AMF showed good effect
on diosgenin content and
has significant effect on P
uptake

Irankhah
et al.
(2021)

6 Arbuscular mycorrhizal
fungi

Zea mays Zn deficient
and toxic
condition

AMF increased Zn con-
tents under bother Zn
deficient and toxic
conditions

Saboor
and Ali
(2021)

7 Funneliformis mosseae Zea mays Red soil,
rainfall

Reduces p losses He et al.
(2021)

8 Glomus intraradices Zea mays Field
condition

Increased P
concentrations

Cozzolino
et al.
(2013)

9 Glomus intraradices Hordeum
vulgare

Uranium
stress

AMF enhanced the P
uptake while decreased
uranium uptake

Chen et al.
(2005)

10 Funneliformis mosseae Zea mays N/A AMF enhanced the P
uptake

Sawers
et al.
(2017)

11 Mixture of AMF strains Glycine
max

Natural field
conditions

Increased plant growth
parameters and enhanced
nutrient uptake

Adeyemi
et al.
(2020)

12 Glomus intraradices
Scutellospora
calospora, Glomus
mosseae

Vitis
vinifera

Two soils
with
contrasting
P levels

AMF enhanced P, Ca and
S uptake,

Schreiner
(2007)

13 Arbuscular mycorrhizae Triticum
aestivum

Calcareous
soil, Zn
uptake

AMF and P application
affected Zn uptake in
plant parts

Zhang
et al.
(2016)



The formation of mycorrhiza is affected by soil P levels. When the soil suffers
from low P stress, the P supply can be increased by applying P fertilizers to promote
plant growth and development; but when the P level exceeds a certain limit, it will
inhibit the growth of AMF (Liu et al. In soils having high fixing ability and
low P, AMF can mineralize organic P or help plants effectively use insoluble
inorganic P, improving the availability of P in the rhizosphere soil. Therefore,
inoculation with AMF can effectively promote changes in soil P form and the uptake
of nutrients by the host, and colonization with appropriate AMF can better promote
the conversion of soil P in the direction that is beneficial to the mycorrhizal plant
absorption. AMF promotes the uptake of P by plants. AMF and P facilitated
improvements of N. tabacum traits during drought circumstances were shown to
be connected with higher absorption of important mineral ions, including N, K,
and P, according to the research of (Begum et al. 2020).

2014).
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Fig. 8.3 Mechanisms of phosphorus uptake by arbuscular mycorrhizal fungi



AM fungi and plants have a certain level of sensitivity when they establish a
symbiotic relationship. Based on results from a bait-plant method (Delavaux et al.
2017) discovered there were statistically noteworthy correlations between AMF and
soil P (negative), N (positive), and rarefied tree diversity (Positive), indicating that
soil P and N nutrient have had an impact on AMF levels. Fall et al. (2015) found that
after 4 months of experiment in sterilized soil and under greenhouse conditions,
grass seedlings colonized by AMF produced considerably more total biomass as
compared to non-inoculated plants. Franco et al. (2019) demonstrated for the first
time that AMF influences the mobilization of P, Fe, Ca, B, Zn, Mn, K, Cu, Mg,
and N, in gymnosperms. A significant decrease in nutrient absorption (NPK) was
seen in non-inoculated plants due to drought.
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Plants infected with AMF had elevated levels of NPK, which was similar to
earlier studies on the subject (Calvo-Polanco et al. 2014). The studies showed a
considerable upsurge in the absorption of important nutrients such as NPK, magne-
sium, and Ca under normal and shortage irrigation circumstances due to AMF
addition (Abbaspour et al. 2012; Armada et al. 2015). Sitko et al. (2019) have
proven that increasing the accessibility of P increases the growth of maize by
increasing the intake of other important minerals such as K, magnesium, and
Ca. This increase in mineral uptake may be attributed to the effects of minerals on
the morphology and hydraulics of roots, respectively (Armada et al. 2015). AM
fungal isolate produced favorable results in apple micro when colonized by 4 differ-
ent isolates of AMF with varying amounts of P (Dalla Costa et al. 2021). Indigenous
AMF in the soil has the most significant promotion effect on plants. At present,
research on the improvement of P uptake by the mycorrhizal plant by AMF has been
extensively carried out, and the research on improving crop yield and the plant
survival rate has made great progress, but the research on the mechanism is still in its
infancy.

8.2.3 Arbuscular Mycorrhizal Fungi Effect on the Roots
of Mycorrhizal Plants

AMF are abundant in the environments. They can form a symbiosis with plants-
arbuscular mycorrhizas, thereby changing the plant’s root morphology and
expanding the range of nutrient absorption by the root system, in that way enhancing
the mycorrhizal plant absorption and utilization of nutrients such as P and N. After
the plant is infected by AMF, its biomass increases, and the root morphology of the
plant changes (Liu et al. 2014).

AM-plants have two mechanisms for extracting P from soil solution at a fast rate
and with great efficiency. The root epidermis and root hairs are responsible for direct
P uptake in the plant body and in the 2nd pathway which is facilitated by AM, P is
absorbed by exterior AM hyphae and delivered to colonized root cortical cells
through the AM route (Smith and Smith 2011). Furthermore, mycorrhizal hyphae



can collect soil P, which is inaccessible to the majority of nonmycorrhizal plants
(Aparna et al. 2011; Sharif and Claassen 2011). As a result, the formation of
mycorrhizal symbiosis with suitable fungus species may be used as an alternative
technique for reducing plant P deficit. AMF regulates plant auxin signaling pathways
by secreting sesquiterpenes to encourage mycorrhizal plants’ lateral root growth

increased primary and secondary lateral roots in the root system (Chen et al.
When subjected to environmental stress, the roots of plants inoculated with

AMF will be adjusted accordingly to enhance plant resistance. For example, under
2017).

(Sugiyama and Yazaki 2014). The mycorrhization of clover plants significantly
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drought stress, citrus inoculated with Funneliformis mosseae significantly improved
root growth parameters including root volume, root area, and root diameter (Liu et al.
2016).

Different types of AMF have differences in the colonization time and coloniza-
tion effect of the mycorrhizal plant. The higher the adaptability of the two, the
greater the contribution of AMF to the mycorrhizal plant. Because there are often
multiple strains in the natural environment, molecular biology methods must be used
to determine whether the infection impact of AMF on the mycorrhizal plant is better
than that of a single strain when used in a mixed application of different strains, in
order to be more in line with ecology. The extra-root hyphae, arbuscular branches,
and vesicles produced by inoculation with AMF can expand the absorption range
and promote the acquisition of P. A five-year field study was conducted on Lonicera
confusa colonized by AMF, G. intraradices, and G. etunicatum. AM inoculation
resulted in substantial increases in the number of new branches, crown diameter, and
plant height. The concentrations of P in leaves and flowers rose, and the absorption
of nutrients by plants increased after the administration of AM (An-Dong et al.
2013). The majority of dicotyledons often respond positively to AM inoculation,
with improvements in growth and enhanced P absorption, as opposed to cereal
crops, which are often believed to be nonresponsive (Grace et al. 2009). Gao et al.
(2020) reported that AMF species have a strong symbiotic relationship i.e.,
Rhizophagus irregularis with the cotton.

The expression of specific phosphate transporter family genes and phosphate in
cotton biomass were both dramatically increased during the symbiotic relationship
between AMF and cotton. These data indicate the advantages of AMF-based
inoculation on the uptake of P in cotton. It is important to note that trait flexibility,
or the capacity of a species to modify the values of its traits in response to changing
environmental circumstances, is an important component influencing a plant’s
capacity to endure environmental stress (Callaway et al. 2003). Fort et al. (2015)
discovered that Fabaceae family increased their root/shoot ratio and root surface
phosphatase activity when there was a lack of P available. AMF also affect the
flexibility of root characteristics. According to a meta-analysis, AMF often increase
biomass and length of the root while decreasing the ratio of root/shoot in most cases
(Veresoglou et al. 2012), however, the mycorrhizal impact on root/shoot ratio
remained non-significant. Additionally, Ryan et al. (2016) discovered that AMF
dramatically reduced the root mass ratio of Trifolium subterraneum.



A large number of experiments (Guo et al. 2011) have proved that the supply of
different concentrations and forms of P can cause significant changes in plant root
morphology, including total root length, main root length, lateral root length, root
projection area, specific surface area, and volume. When plants are subjected to
low-P stress, the root system will undergo morphological changes under the influ-
ence of genetic factors, and the root system changes involved in different plants and
different genotypes are complex.
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8.2.4 Uptake Mechanism of Soil Phosphorus by Mycelium

Arbuscules are considered to be the most critical part of the symbiosis system. It is
the place where AMF and the mycorrhizal plant exchange substances, and is
regarded as the core of the functional structure of AMF (Gutjahr and Parniske
2017). The arbuscule double-membrane structure separates and combines the
AMF and the mycorrhizal plant. From the aspect of form, AMF is located on the
side of the arbuscule membrane, and the mycorrhizal plant is located on the side of
the arbuscule precursor plasma membrane; from the functional aspect, the double
membrane structure is the ion channel and the transporter attached to it are the places
for material exchange between symbionts. After the arbuscule branches mature into
the plant cells, the survival time is only 1–3 days before they begin to senesce and
die. At the same time, the host cells return to the most primitive state and can be
colonized by new arbuscule branches which export mineral nutrients while acquiring
carbon sources to maintain symbiotic efficiency (Gutjahr and Parniske 2017).
Compared with the direct acquisition of plant roots, mycelium has more advantages.
Due to its huge biomass and surface area, it enhances the interaction with the soil and
expands the absorption range of the mycorrhizal plant roots.

The average diameter of the mycelium is smaller than that of the root system.
Therefore, it can enter the soil pores that the root system cannot penetrate (Qiang-
Sheng et al. ). The extra-root hyphae (often called extra hyphae, extraradical
hyphae, or mycelium.) can replace the root hair to uptake P. However, because the
specific surface area of hyphae in roots is far less than that of arbuscule branches,

2011

although intracellular hyphae and intercellular hyphae are also involved in the
transfer of P, their transport efficiency is not as good as that of arbuscule branches.
Since AMF and plants do not have firm specificity when forming symbiosis, when
the extra-root hyphae encounter other plants during the outward extension process,
the root system will be infected again to form a hyphae network (Kytöviita et al.
2003). These mycelial networks can transfer nutrients between the same species and
different plants and play an important role in the process of nutrient transfer between
plants and natural nutrient cycling (Yao et al. 2003). The mycelial network infects
different plants and connects plants with different nutritional statuses to transmit
nutrients so that the distribution of nutrient resources forms a dynamic balance
(Simard et al. 2003).



). In a symbiotic system, the P transporters2012

Under the premise of the difference in P nutrition between donor and recipient
plants, the uptake of P can also be completed through the migration of the hyphae
network. In an environment where soil nutrients are relatively scarce, the transfer
effect of mycelium on P is more significant. Increased P fertilization, protracted
fallow periods, and the growth of non-host crops may result in a reduction in
mycorrhizal inoculum levels. The use of appropriate AMF in agricultural systems
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is essential because it not only makes use of the biopotential for effective P mining
and uptake, but also minimizes P fertilizer usage and contamination in the environ-
ment. Regardless of the P levels in the soil, inoculating maize plants with AMF lead
to a significant enhancement in P absorption as well as grain output (Zhang et al.
2012). AMF and strains that infect effectively, use less carbon, and deliver more P to
the host are other key considerations for selecting crop species-preferred AMF and
strains.

8.2.5 Arbuscular Mycorrhizal Fungi Modulate
the Expression of Phosphorus Related Genes

P deficiency in the mycorrhizal plant encourages infection and AMF symbiosis.
AMF induces high-affinity P transporter expression in itself and plants roots to
enhance the uptake of available P in the soil and transport it to the desired part of
the plant (Table 8.2) (Karandashov and Bucher 2005). At present, there are three
kinds of P transporters detected in AMF: GvPT, GiPT, and GmosPT. When
subjected to low P stress, the extra-root hyphae will increase the expression of the
P transporter gene and promote P absorption in the soil. When P is transported from
hyphae to arbuscule branches, AMF induces the expression of some members of the
mycorrhizal plant’s Pht 1 family on the plasma membrane of the arbuscule precursor
to enhance the plant’s uptake of P in mycorrhiza, such as inoculation on Medicago
truncatula, G. radiata significantly enhanced the expression of certain P transporters
in arbuscule branches (Fiorilli et al. 2013).

OsPHT1.11 is the first AM-specific P transporter identified in rice, and a homol-
ogous (MEDtr; PHT1.4) in Medicago truncatula (Paszkowski et al. 2002).
OsPHT1.11 is also required for the establishment of AMF symbiosis in rice. Both
OsPHT1.11 and OsPHT1.13 are essential for the establishment of an AMF symbi
osis, indicating that grasses have developed a particular strategy for P acquisition via
symbiosis with the AMF (Sun et al.

-

of AMF influence P absorption and the expression levels of the transporter genes in
the mycorrhizal plant. In the root periphery, mycorrhiza-inducible PHT1 is involved
in P absorption, and its loss causes P deficit in the plant (Rausch and Bucher 2002;
Tian et al. 2013). In relation to non-infected control, AMF infection increases
ZmPHT1.3 expression 44-fold and reduces ZmPHT1.6 expression 135-fold in
maize (Tian et al. 2013). AMF colonization also has an effect on auxin and ethylene
levels in the mycorrhizal plant, which are important regulators of lateral root and root
hair formation (Rubio et al. 2009).



Name Transporter Fungal/plant References

The mycorrhizal plant can absorb substantial amounts of P nutrients via symbi-
osis with fungus. Both symbiosis and mycorrhizal P absorption are unaffected by
tomato PHT1.4 (a tomato homolog of the PHT1.11) (Bari et al. 2006). In dicots,
direct P absorption is the dominant mode of absorption. The isolation of StPT3
protein from potato mycorrhiza enhanced P absorption (Rausch et al. 2001). The
expression of MtPT4 P transporter gene was significantly enhanced after the
mycorrhization of Medicago truncatula (Pumplin and Harrison 2009). Through
gene sequence and transcription analysis of multiple plants, it is found that there
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Table 8.2 Transporters in plants and arbuscular mycorrhizal fungi involved in nutrient uptake

Sr.
No

1 Glomus mosseae GmosPT Fungal phosphorus
transporter

Balestrini et al. (2007)

2 Lotus japonicus LjAMT2;2 Plant N transporters Guether et al. (2009)

3 Glomus
intraradices

GiPT Fungal phosphorus
transporter

Maldonado-Mendoza et al.
(2001)

4 Lotus japonicus LjPT4 Plant phosphorus
transporter

Volpe et al. (2016)

5 Solanum
lycopersicum

StPT3 Plant phosphorus
transporter

Rausch et al. (2001)

6 Glycine max GmAMT4.1 Plant N transporters Kobae et al. (2010)

7 Petunia hybrida PhPT5 Plant phosphorus
transporter

Breuillin et al. (2010)

8 Oryza sativa OsPT2,
6, 11

Plant phosphorus
transporter

Paszkowski et al. (2002)

9 Gigaspora
margarita

GigmPT Fungal phosphorus
transporter

Xie et al. (2016)

10 Medicago
truncatula

AMT2;3 Plant N transporters Breuillin-Sessoms et al.
(2015)

11 Medicago
truncatula

MtPT4 Plant phosphorus
transporter

Breuillin Sessoms et al.
(2015)

12 Glomus
intraradices

GintAMT 2, Fungal N transporter Perez Tienda et al. (2011)

13 Glomus
versiforme

GvPT Fungal phosphorus
transporter

Harrison and Vanbuuren
(1995)

are differences in the number of Pht 1 family members in different plants, and the
regulation mechanism of Pht1 family genes by AMF is also different, such as
A. thaliana and rice genome determination. It was shown that there were 9 and
11 Pht 1 transporter family members for soil available P uptake and plant P transport
(Goff et al. 2002), among the 11 Pht 1 transporter family members of rice, OsPT11
was only used when AMF invaded.

Through the study of the P transporter promoter in Arabidopsis thaliana (Mudge
et al. 2002), it was found that the Pht1; 3 and Pht1; 4 promoters in this family are
responsible for the uptake of P from the soil by the roots of the plant. Chiou et al.
(2001) studied specific binding alfalfa and found that when P is deficient, it



determine whether the infection impact of AMF on the mycorrhizal plant is better
than that of a single strain when used in a mixed application of different strains, to be
more in line with ecology.

stimulates the roots to increase the abundance of MtPT1 P transporter, and this
protein is significantly related to the P concentration in rhizosphere soil. These genes
will respond when P is deficient, but there is no obvious positive correlation with
AMF infection, and they may even be inhibited due to the establishment of a
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symbiotic relationship. For example, the MtPT2 gene in Medicago truncatula
inoculated with fungi (Harrison et al. 2002) and the ZEAma: Pht1; 3 genes after
maize mycorrhization (Benedetto et al. 2005).

8.3 Conclusion

Phosphate rock deposits are expected to be depleted in the next 80–100 years, and
the inherent inadequacy of phosphate fertilizers is low. It is important to improve the
P absorption efficiency of agricultural plants and agricultural systems. Agricultural
practices, such as using soluble P fertilizers instead of poorly soluble fertilizers,
designing fertilizer granules, and using liquid P fertilizers instead of granular
fertilizers (highly Ca) should all be improved and all these are examples of methods
for improving phosphate fertilizer absorption efficiency. Research has worked on the
relationship between annual crops and AMF inoculation in the greenhouse. A deeper
knowledge of the interplay between AMF and perennial plants, particularly under
natural field conditions, is necessary to investigate its potential. AMF and plants
have a certain degree of selectivity when they establish a symbiotic relationship.
Different types of AMF may have completely different effects on the same plant.
Indigenous AMF in the soil has the most significant promotion effect on plants.
Different types of AMF have differences in the colonization time and colonization
effect of the mycorrhizal plant. The higher the adaptability of the two, the greater the
contribution of AMF to the mycorrhizal plant. Because there are often multiple
strains in the natural environment, molecular biology methods must be used to
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Chapter 9
Phosphorus Cycle Enzymes to Remedy Soil
Phosphorus Deficiency

Alhassan Idris Gabasawa

Abstract Phosphorus is indispensable for the production of crops and is the most
expensive of all macro-nutrients. Phosphatase enzymes allow to maintain the soil
phosphorus fertility, notably in phosphorus-deficient soils. Some soil properties
impair phosphorus utilization by crops. For instance, sesquioxides in acidic soils
fix phosphorus into insoluble iron and aluminium precipitates and, in turn, make
phosphorus unavailable to plants. This chapter reviews phosphorus-cycle enzymes
with focus on remedying problems of soil phosphorus fertility. Soils contain up to
100–3000 mg P kg-1 soil, mostly in orthophosphate forms. Phosphorus in agricul-
tural soil solution usually ranges from 0.01 to 3.0 mg P kg-1. About 30–65% of the
total soil phosphorus is present in organic forms. Most soil organic P is present in
organic complexes that must be cleaved by enzymes to release inorganic P available
for plant uptake. Dynamics of water-soluble and labile soil organic phosphorus
fractions in the rhizosphere are connected with the activities of the extracellular
phosphatase enzymes. The amount of phosphorus available in the soil solution
represents a small portion of plants’ need. Therefore, soil P should be constantly
solubilized by abiotic and biotic processes, including enzymatic hydrolyses, to
provide available P to plants.

Keywords Acid phosphatase · Alkaline phosphatase · Phosphorus · Phosphorus
cycle enzymes
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9.1 Introduction

Phosphorus is a fundamental element for rhizobium bacteria in the transformation of
atmospheric nitrogen (N2) into an ammonium (NH4), the plant-available nitrogen
form (Anwar et al. 2017; Khan et al. 2017; Amanullah et al. 2021). Rhizobium is
capable of synthesizing nitrogenase, an enzyme that catalyzes the conversion of
dinitrogen (N2) into two ammonia (NH3) particles. An effective nodule is pink
coloured which is due to the presence of a protein called leghaemoglobin. This
uncommon protein is composed of iron (Fe) and molybdenum (Mo) and functions in
restricting oxygen thereby ensuring a nodule environment that is relatively low in
oxygen. This judiciously allows the bacteria (rhizobium) to grow and conveniently
fix atmospheric nitrogen. As an important energy source, phosphorus gets included
when an adenosine diphosphate (ADP) is formed due to a conversion of 16 mole-
cules of adenosine triphosphate (ATP) when every molecule of atmospheric nitrogen
is reduced to ammonia (NH3). The photosynthetic process generated adenosine
triphosphate is stored for plants’ subsequent utilization. Via its essential functions
in plants as an energy source, phosphorus, in phosphates form, impacts nodule
development. Suboptimal phosphorus level, on the other hand, limits root develop-
ment, photosynthetic process, sugar translocation, and other functions that, directly
and/or indirectly, control leguminous nitrogen fixation capacities.

Availability of phosphates for plants’ assimilation, from phytate, is strictly
subject to its (phytate’s) hydrolysis by phosphatases, which term is a general name
that is being used in describing a wide array of groups of soil enzymes that are
responsible for a hydrolytic breakdown of various ester-phosphate bonds of organic
anhydrides of orthophosphoric acid (H3PO4) and other phosphates into inorganic
phosphatic types (Iqbal et al. 2017). Rhizosphere phosphatase types may either be
from soil microorganisms or plant roots that were believed to have been playing
essential functions in fertilizer phosphorus cycles in the soil ecosystems. This was as
duly perceived via their interrelationships with plant growth vis-à-vis phosphorus
stressed environments (Amanullah et al. 2016a, b). They are also a vital indicator of
fertile soils as they affect the acquisition and use efficiency of phosphorus in plants
(Iqbal et al. 2019a, b).

9.2 Soil Enzymes

9.2.1 Soil Enzymes and Enzyme Activity

Nutrient cycling in soils involves physical, chemical, and biochemical reactions. The
biochemical processes are mediated by microorganisms, plant roots, and soil animals
(Tabatabai 1994b). All biochemical reactions are catalyzed by enzymes, which are
proteins with catalytic properties due to their power of specific activation. Enzymes
are substances that, without undergoing permanent alteration, cause chemical



reactions to proceed at faster rates (Tabatabai 1994b). All metabolic processes of all
living materials (microbes, animals, or plant roots) in the soil depend on these
processes. Many classes of enzymes exist, such as respiratory (concerned with
energy generation) and those concerned with cell synthesis. Soil enzyme production
and its control on nutrient availability and soil fertility are controlled by the factors
influencing soil microbial activity (Sinsabaugh et al. 1993). The microbial enzymatic
activity contribution to phytate hydrolysis within the rhizosphere is insignificant.
This is in comparison to root-derived enzymes mediated breakdown of the enzymes
(Martin 1973). Availability of organic compounds for soil organisms is needed for
the effective decomposition of pesticide residues, which mechanisms are termed
co-oxidation. Soil reaction may, on the other hand, influence enzymatic sorption
while its (the soil pH) effect on the enzymatic sorption has only been currently
realized to be an important measurement tool for phosphatase activity (Li et al.
2004).
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On the other hand, soil enzyme activity makes information on its biochemical
processes available. It is a pH and microbial biomass regulated (Dick et al. 1988)
process. The activity of soil enzyme is a time variable that is limited by a supply of
substrate availability (Degens 1998). It may also provide a useful interrelationship
between carbon processing and the composition of a given microbial community
(Waldrop et al. 2000). Soil enzymatic activity information being utilized in deter-
mining microbiological features of soils are paramount for soil health and quality
and in detecting soil changes (González et al. 2007) and are therefore soil degrada-
tion “sensors” as they readily concatenate soil microbial status (Aon and Colaneri
2003) and physicochemical information (Baum et al. 2003). They are also part of the
cycling and availability of plant nutrients to crops and can be utilized as one of the
important soil functioning indices (Nannipieri et al. 2003).

9.2.2 Nitrogen Cycle Enzymes

Nitrogen cycle enzymes are called amidohydrolases. There exist diverse
amidohydrolases in the soil all of which involvement in hydrolyzing added organic
and native nitrogen to soils (Tabatabai 1994a) is clearly important and essential in
maintaining soil fertility (Wick et al. 1998). They also catalyze the hydrolysis of
substrates with peptide bonds, using simple peptides and dipeptides (Pascual et al.
1997). More so, Wick et al. (1998) suggested that the proteolytic potential of soil,
which they reflect, indicates their capacity to degrade proteins. Among these,
however, amidase, urease L-asparaginase, and L-glutaminase are the most important
as reported by Tabatabai (1994a).
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9.2.2.1 Ureases

The enzyme, urease, is accountable for urea fertilizers’ hydrolysis, after application
into the soil, to ammonia (NH3) and carbon dioxide (CO2) with the resultant soil
reaction (pH) rise (Andrews et al. 1989). This results into a rapid nitrogen loss to the
atmosphere via NH3 volatilization (Simpson and Freney 1988). Urease activities in
soils have received a lot of attention due to this role, ever since it was first reported
by Rotini (1935). This process is considered vital in the regulation of nitrogen supply
to plants after urea fertilization. Majorly, soil urease originates from plants (Polacco
1977) and microorganisms found as both intra- and extra-cellular enzymes (Burns
1986). Zantua and Bremner (1977) reported that the plants- or microorganisms-
extracted urease, on the other hand, is rapidly degraded by proteolytic enzymes in
the soil. This suggests a significant fraction of ureolytic activity in the soil being
carried out by extracellular urease, which is stabilized by immobilization on organic
and mineral soil colloids. The soil urease activity is influenced by many factors,
including soil depth, amendments, cropping history, organic matter content, heavy
metals, and such environmental factors as temperature (Yang et al. 2006).

9.2.2.2 Amidase

The soil enzyme amidase catalyzes amides and ammonia hydrolysis and the
corresponding carboxylic acid and acts on such bonds as carbon-nitrogen but for
linear amides peptide bonds. It is specifically for aryl and aliphatic amides, which
cannot act as substrates as reported by Kelly and Clarke (1962). The enzyme is in
wide distribution in nature and it is being detected in microbes and animals (Bray
et al. 1949). It is also reported to be available in the foliage of maize (Zea mays L.),
sorghum (Sorghum bicolor L.), Alfalfa (Medicago sativa L.), and soybean (Glycine
max L.) by Frankenberger and Tabatabai (1980a, b, 1982). Amongst the microbes
that were shown to have amidase activity include: yeast (Joshi and Handler 1962),
bacteria (Clarke 1970), and fungi (Hynes 1975). Cantarella and Tabatabai (1983)
reported that the substrates of the amidase enzyme are rich sources of nitrogen for
plant assimilation.

9.2.2.3 L-Asparaginase

The activity of the L-Asparaginase enzyme was first detected in soils by Drobni’K
(1956). The enzyme is reported as catalyzing L-aspartic acid and ammonia hydro-
lysis. It is in wide distribution in nature. Wriston (1971) reported its detection both in
microbes and plants and the enzyme has also been shown to widely vary in different
strains of microbes.
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9.2.2.4 L-Glutaminase

The enzyme L-Glutaminase is one of the amidohydrolases that play a significant role
in nitrogen supply to plants. It is a hydrolase that specifically acts upon all carbon-
nitrogen bonds but for linear amides peptide bonds. The reaction that is catalyzed by
the enzyme includes L-glutamine hydrolysis to yield ammonia and L-glutamic acid.
L-Glutaminase has been reported to have been detected in many animals (Sayre and
Roberts 1958), microbes (Imada et al. 1973), and plants (Bidwell 1974). The ones
detected in plants and microbes are, however, the most probable L-glutaminase
activity sources in the soil, although Roberts et al. (1972) reported the main source
as being microbial.

9.2.2.5 Proteases

The nitrogen cycle enzymes Proteases play a significant role in soil nitrogen
mineralization as reported by Ladd and Jackson (1982). It is, therefore, a vital
process that regulates the quantity of plant-available nitrogen and, consequently,
plant growth and development. The enzyme, within the soil, is reported by
Nannipieri et al. (1996) to generally be related to organic and inorganic colloids.
The level of activity of this extracellular enzyme may be an indication of the
biological capacity of a given soil for the enzymatic conversion of the substrate,
which is independent of the extent of microbial activity. It also plays a vital role in
the microbial ecology activities of the ecosystem (Burns 1982).

9.3 Phosphorus Cycle Enzymes

The general name phosphatase has been employed to describe a wide group of
enzymes catalyzing esters and anhydrides of H3PO4 hydrolysis (Schmidt and
Laskowski 1961). Phosphatases include phosphoric monoester hydrolases, phos-
phoric diester hydrolases, triphosphoric monoester hydrolases, enzymes that act
upon phosphoryl-containing anhydrides, and such enzymes that act on
phosphorus-nitrogen bonds as phosphoamidase. Phosphomonoesterases (i.e., acid
and alkaline phosphatases), have extensively been studied. The enzymes are classi-
fied as acid and alkaline phosphatases due to the optimum activities they respectively
show under acid and alkaline ranges (Speir and Ross 1978). Many structural and
enzymatic adaptations have been developed by plants in order to adapt to low
phosphate availability. Acid phosphatases transcription activity, which tends to
increase under phosphorus-limited conditions (Ndakidemi 2006) is an example of
such adaptations.
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9.3.1 Phosphomonoesterases

As earlier stated, phosphomonoesterases happened to be the soil phosphatases that
are studied most. The phosphomonoesterases such as acid phosphatase
(orthophosphoric monoester phosphohydrolase, EC 3.1.3.2) and alkaline phospha-
tase (orthophosphoric monoester phosphohydrolase, EC 3.1.3.1) are classified
according to the optimum pH of their activities. This readily varies towards acid
and alkaline ranges, respectively for the two phosphomonoesterases (Dick 2011).
Phosphomonoesterases are particularly known to hydrolyze a variety of such
phosphomonoesters in the soil as p-nitrophenyl phosphate, phenylphosphate,
β-glycerophosphate, and β-naphthyl phosphate. The general equation involved in
the hydrolysis of phosphomonoesters into orthophosphates in the presence of acid or
alkaline phosphatase as a catalyst is:

Where R represents either alcohol or phenol groups or nucleosides (Privat de Garilhe
1967).

As earlier partly introduced, they are classified into five, as follows:
(i) phosphoric monoester hydrolases, (ii) phosphoric diester hydrolases and (iii)
triphosphoric monoester hydrolases. The other two are (iv) enzymes acting on
phosphoryl-containing anhydrites, and (v) such enzymes acting upon phosphorus-
nitrogen bonds as the phosphoamidases (Florkin and Stortz 1964). A phosphatase is
generally, an enzyme that removes a phosphate group from its substrate by hydro-
lyzing phosphoric acid monoesters into a phosphate ion and a molecule with a free
hydroxyl group, as explained by Makoi and Ndakidemi (2008).

Specifically, and in terms of soil environment, phosphatase indicates an enzymes
group that produces inorganic phosphate forms by hydrolytically breaking a wide
array of ester-phosphate bonds of anhydrides of orthophosphoric acid (H3PO4) and
organic phosphates (Harrison 1983). Yadav and Tarafdar (2003) reported that such
types of phosphatases as phytases can increase the dephosphorylation (hydrolysis)
rate in organic phosphorus (Po).

Rhizosphere phosphatases may either be of soil microbial origin (Richardson
et al. 2001) or plant roots’ (Hayes et al. 1999). The hydrolysis of soil organic
phosphorus is chiefly mediated by the soil microbial activity (Li et al. 1997),
although roots of plants still have phytase and phosphatase activities as reported
by Tarafdar and Jungk (1987). Phosphatases are known to play significant roles in
phosphorus cycles within soil environments (Speir and Ross 1978). This is as
evidenced by their correlation with plant growth and phosphorus starvation. Other
than being a good soil fertility indicator, phosphatases also significantly contribute to
various systems of the soil (Eivazi and Tabatabai 1977; Dick et al. 2000). Whenever
a soil phosphorus deficiency symptom is perceived, for example, secretion of acid
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phosphatase by plant roots is enhanced in order to increase solubilization and
remobilization of phosphates, thereby promoting the plants’ ability to adapt to the
noxious phosphorus-deprived situation (Karthikeyan et al. 2002). These enzymes,
therefore, affect the phosphorus-acquisition and phosphorus-use efficiency poten-
tials of crop plants. This was in part reaffirmed by a study of Gabasawa et al. (2012),
as indicated in Tables 9.1 and 9.2 below.
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They also catalyze the hydrolysis of phosphorus-ester bonds from organic matter,
resulting in the release of inorganic phosphorus, as reported by Garcia et al. (1995).
They are the key enzymes in phosphorus cycling in soils (Pascual et al. 1998). They
show changes in the quantity and quality of soil phosphorated substrates (Rao and
Tarafdar 1992). The aforesaid enzymes are good at releasing phosphates from extra-
cellular and cellular organic compounds as, respectively, reported by Duff et al.
(1994) and Bariola et al. (1994) at different stress levels.

Table 9.1 Effect of ground-
nut cultivar and phosphorus
rate on acid and alkaline
phosphatases (μmol g-1 soil
ha-1)

Treatment Acid phosphatase Alkaline phosphatase

Cultivar (C)
SAMNUT 10 0.0044a 44.52a

SAMNUT 11 0.0042a 37.99a

SAMNUT 21 0.0030c 14.56c

SAMNUT 22 0.0035b 29.11b

SAMNUT23 0.0040ab 19.34c

SE± 1.7E-4 2.220

Phosphorus (kg P2O5 ha
-1)

0 0.0035b 23.09b

60 0.0041a 35.12a

SE± 1.0E-4 1.404

Interaction
G × ** **

**Significant at 1% level of probability; Means followed by the
same letter(s) within treatment in a column do not differ signifi-
cantly according to Duncan’s multiple range test

Table 9.2 Interaction of
groundnut cultivar and phos-
phorus rate on acid phospha-
tase activity (μmol g-1 soil
ha-1)

Phosphorus rate (kg P2O5 ha
-1)

Cultivar (C)
SAMNUT 10 0.0049ab 0.0038cd

SAMNUT 11 0.0049ab 0.0035de

SAMNUT 21 0.0023f 0.0036de

SAMNUT 22 0.0026f 0.0044bc

SAMNUT 23 0.0027f 0.0053a

SE± 2.38E-4

Means followed by the same letter(s) within treatment in a column
do not differ significantly according to Duncan’s multiple range
test
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The activities of phosphate transporters are increased to optimize uptake and
remobilization of phosphate in phosphorus-deficient plants. The amount of acid
phosphatase secreted by plants is genetically controlled and differs with crop species
and varieties as well as crop management practices (Wright and Reddy 2001).

It was reported by Yadav and Tarafdar (2001) that several studies indicated the
quantity of secreted enzymes by legumes as being higher than that by cereals to the
tune of up to 72%. Chickpea roots, for example, secreted higher quantities of acid
phosphatase than maize. The acid and alkaline phosphatase activity was observed to
correlate with organic matter in various studies (Aon and Colaneri 2003).

9.3.1.1 Acid and Alkaline Phosphatases

Acid and alkaline phosphatases, in particular, hydrolyze the ester bonds that bind
phosphorus to carbon (that is, C-O-P ester bonds) available in organic matter. In the
process, inorganic phosphorus is summarily discharged from the phosphorus that is
bound organically, such as dead root systems, leaf litter other organic debris without
an accompanying C release (Harrison 1983). Phosphorus from organic sources can
then be utilized by the plant after it must have been phosphatase-hydrolyzed (George
et al. 2002).

Acid Phosphatase

Acid phosphatase is a type of enzyme, used to free attached phosphate groups from
other molecules during digestion. It is stored in lysosomes and functions when these
fuse with endosomes, which are acidified while they function; therefore, it has an
acid pH optimum (Baldwin et al. 2001). These enzymes are also used by soil
microorganisms to access organically bound phosphate nutrients. An assay on the
rates of activity of these enzymes may be used to ascertain biological demand for
phosphates in the soil (Dick et al. 2000). Acid phosphatase secreted from roots was
increased under phosphorus-deficient conditions (Hayes et al. 1999) and in hydro-
ponic and soil cultures (Li et al. 2003, 2007) and, consequently, the hydrolysis of
phytate was also increased.

Alkaline Phosphatase

Alkaline phosphatase is a hydrolase enzyme in charge of detaching phosphate
groups from many molecule types, such as alkaloids, nucleotides, and proteins.
The phosphate group detachment process is termed dephosphorylation. Alkaline
phosphatases, as hinted by the name, are highly effective in alkaline environments
(Baldwin et al. 2001). Therefore, it has been attributed to soil bacteria, due to its
absence from the rhizosphere of axenically grown plants (Tarafdar and Claassen
1988). Its activity was also reported to be highest in soils that contained increased



amounts of organic matter and it was least in soils with little or no organic matter
addition (Joner and Jakobsen 1995).
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9.3.1.2 Soil Phosphatase Activity

The use of certain crop plants tends to enhance the activity of phosphatase for the
fact that acid phosphatase and other exudates are secreted by their roots (Jones 1998)
just the way cultivation of some plant types may change potential phosphatase
activity in soils. Studies indicated that plants living in phosphorus-deprived soils
do actively secrete enzymes into their rhizosphere (Ozawa et al. 1995). Yadav and
Tarafdar (2001) reported, in a study, that plants, especially in phosphorus-limiting
soils, are known to secrete acid phosphatase immediately after roots emergence.
Phosphatases are, probably, best known for their capacity for nucleic acid degrada-
tion (Razzell and Khorana 1959). This explains their obvious significance in the
transformation and cycling of phosphorus in the soil. Acosta-Martinez and Tabatabai
(2000) also reported soil pH and inductive enzymes as affecting their synthesis
strongly.

It was observed in a study by Gabasawa (2021) that there were differences
between two Nigerian agro-ecological zones, in terms of groundnut yields. This
was due to acid and alkaline phosphatase activity differences of the agro-ecologies as
respectively indicated in Figs. 9.1 and 9.2.

Quality of soil organic matter may, however, dictate the rate of extracellular
phosphatase production, with the aid of arbuscular mycorrhizal fungi (AMF) hyphae
as the activity phosphate is chiefly controlled by the availability of organic phos-
phorus to hydrolytic breakdown (Stewart and Tiessen 1987; Joner and Jakobsen
1995). Hence, the capacity of roots to secrete phosphatase extracellularly may
readily be aroused when simply hydrolyzable substrates are available (Tarafdar
and Claassen 1988). It may, however, be muffled by non-hydrolyzable organic
phosphorus forms, as observed by Azcon and Elatrash (1997). Phosphatase activities
may also be markedly influenced by the host plant (Azcon and Elatrash 1997) and
the species of fungi available (Rao and Tarafdar 1993). An even increased phos-
phates’ activity is, however, more commonly observed in the rhizosphere as reported
by Tarafdar and Jungk (1987). Roots of plants that have a higher phosphatase
activity also have greater chances of utilizing soil organic phosphorus (Helal
1990). This activity does not, however, directly serve as a phosphorus-status mea-
surement, it rather suggests a potential release of phosphorus from organic sources as
reported by McCallister et al. (2002). Phosphatase enzymes, which majorly originate
from microbes, are broadly spread in nature thereby playing a significant function in
the phosphorus nutrition of plants (Tabatabai 1994b). Also, they play very essential
roles in chemically inclined transformations that aid orthophosphate discharge from
diverse organic phosphorus compounds (Cookson 2002). Phosphatases persist in
soils, due probably to humic materials’ adsorption and hence they might be repre-
sentatives of an important soil property history. Their evaluation might suggest a
summed estimate of potential in phosphorus mineralization (McCallister et al. 2002).



Phosphatase is higher in the topsoil and the rhizosphere. This is where the majority
of the just-produced and less humified soil organic matter mostly exists (Tarafdar
et al. 2001) and plays vital roles in the plants and microbial phosphorus acquisition,
and consequently, in its cycling within the soil environment as observed by
Nadgórska-Socha et al. (2006).
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Fig. 9.1 Genotype by phosphorus versus location interaction on acid phosphatase activity

Fig. 9.2 Genotype by phosphorus versus location interaction on alkaline phosphatase activity



9 Phosphorus Cycle Enzymes to Remedy Soil Phosphorus Deficiency 187

9.3.2 Role of Fertilizer Phosphorus in Biological Nitrogen
Fixation

Fertilizer phosphorus is a fundamental element for rhizobium bacteria that trans-
forms atmospheric nitrogen into ammonium (NH4), which is the plant-available
form of nitrogen. Rhizobium is capable of synthesizing the nitrogenase enzyme,
which catalyzes the atmospheric nitrogen conversion into the two ammonia (NH3)
particles. The pinkish colour peculiar to viable nodule (called effective), is due to a
protein presence that is known as leghaemoglobin. This uncommon iron (Fe)- and
molybdenum (Mo)- contained protein functions in restricting oxygen thereby ensur-
ing nodule with a low oxygen environment. This permits the bacteria to live
comfortably and fix atmospheric nitrogen. Phosphorus gets included as an important
source of energy when the 16 adenosine triphosphate molecules are converted into
an adenosine diphosphate due to the reduction of every atmospheric nitrogen
molecule into ammonia. The adenosine triphosphate is generated during the photo-
synthesis process when light energy is converted and stored as adenosine triphos-
phate for later utilization by the plant. Phosphorus impacts nodule development via
its essential functions in plants as a source of energy. Suboptimal phosphorus levels
limit root development, photosynthetic process, sugar translocation, and other func-
tions that, directly and/or indirectly, control leguminous nitrogen fixation capacities.
The important practice of liming acidic soils to 6.5–7.0 pH range is important to the
phosphorus and symbiotic nitrogen fixation relationship. It improves the accessibil-
ity of soil phosphorus for plant assimilation and makes the soil environment more
conducive for such beneficial bacteria as the diverse strains of rhizobium.

9.4 Biological Nitrogen Fixation

Biological nitrogen fixation is the process in which, in the presence of nitrogenase,
atmospheric nitrogen (N=N) is reduced to ammonia. Nitrogenase is, however, a
biological catalyst that is found, naturally, only in certain microbes such as the
symbiotic Rhizobium and Frankia, or the free-living Azotobacter (Brockwell et al.
1995). Biological nitrogen fixation is the principal source of agricultural nitrogen
input into agrarian systems (Gabasawa and Yusuf 2012). Rhizobia (synonymously
called nitrogen-fixing bacteria) (Moreira et al. 2008), are symbiotic bacteria that
evolve on the roots of specific legume hosts thereby forming new organs, called
nodules. Within these nodules, the bacteria proliferate, differentiate into bacteroids,
and subsequently fix the atmospheric nitrogen into NH3 as highlighted by Denarie
et al. (1992).

The biological nitrogen fixation process is brought about by both free-living soil
microorganisms and symbiotic associations of microorganisms with higher plants.



Groundnut, like other leguminous counterparts, fixes atmospheric nitrogen by sym-
biotically working with the root nodules rhizobia. The rhizobia initially infect root
hairs of the legume to produce these nodules (Tate 1995), and the nodule becomes an
abode for the bacteria. It is from the nodules that the bacteria now access their energy
via their plant host thereby taking free atmospheric nitrogen from the soil air and
process same into combined nitrogen. In return, however, the plant receives the fixed
nitrogen from the nodules and from which it produces food and forage protein.
Biological nitrogen fixation is, therefore, an efficient source of nitrogen (Peoples
et al. 1995a, b).
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About 100–200 kg of atmospheric nitrogen fixed by groundnuts per hectare under
diverse field conditions has been reported by Boddey et al. (1990). Both, the amount
of atmospheric nitrogen fixed and the proportion of total crop nitrogen derived from
atmospheric nitrogen-fixation, can, however, be controlled by a cultivated variety
(Giller et al. 1987) and/or water deficit level (Peoples et al. 1992). Some studies
revealed that the amount of atmospheric nitrogen-fixed exceeded the pod growth
nitrogen need; hence, the atmospheric nitrogen-fixed leftover available in the veg-
etative parts would be distributed into the soil following pod harvest (McDonagh
et al. 1993). Other studies have, contrarily, hinted at the fact that despite the elevated
atmospheric nitrogen-fixation levels, net nitrogen-balance that follows pod harvest
can be negative such that nitrogen reserves in the soil can be exhausted due to
Arachis cropping (Peoples et al. 1992). Some locally sourced soybean varieties were
observed to have obtained larger percent nitrogen derived from the atmosphere (%
Ndfa) (65%) than Nasoko (53%), an ‘improved’ variety, in a study by van Vugt et al.
(2018) in which variability in percent nitrogen derived from the atmosphere, atmo-
spheric nitrogen-fixed and grain yields were compared.

9.4.1 The Nitrogen Fixation Process

The element nitrogen or ‘azote’, meaning ‘without life’, as Antonie Lavoisier called
it about 200 years ago, has proved to be anything but lifeless, as it is a component of
poisons, explosives, food, and fertilizers (Schoot Uiterkamp 1990). The atmosphere
contains about 1015 tonnes of atmospheric nitrogen, and the nitrogen cycle involves
the transformation of some 3 × 109 tonnes of atmospheric nitrogen year-1 on a
global basis as reported by Postgate (1982). However, transformations, like atmo-
spheric nitrogen-fixation, are not exclusively biological. Fertilizer industries provide
very important quantities of chemically fixed nitrogen. Lightning also provides,
probably, about 10% of the global fixed-nitrogen supply (Havlin et al. 1999).
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9.4.2 Significance of Biological Nitrogen Fixation to Soil
Fertility

Much land has been degraded worldwide due to agronomic practices during tillage,
bush burning, fertilizer and pesticides applications, and other human influences
(Balfour 1977), and it is time to stop the destructive uses of land and to institution-
alize a serious reversal of land degradation (Burris 1994). Biological nitrogen
fixation plays a key role in land remediation. The total per annum input of nitrogen
from biological nitrogen fixation into the terrestrial environment ranged from 139 to
175 million tonnes of nitrogen as reported by Burns and Hardy (1975) and Paul
(1988). The biological associations in arable lands account for a range between 25%
and 30%. This represents 35–44 million tonnes of nitrogen as reported by Sprent and
Sprent (1990). The symbiotic system of rhizobia and legumes associations has the
highest quantitative impact on the nitrogen cycle. This is a gigantic avenue for fixed
nitrogen contribution to soil ecosystems from the legumes (Tate 1995). The plant’s
benefit from bacterial nitrogen fixation appears to be highest in symbiosis, for
example, between legumes and rhizobia, while associative bacteria do not form
nodules but use plant exudates (Cristina et al. 2007).

9.4.3 Nitrogen-Fixing Organisms

Microbial atmospheric nitrogen-fixation can take place in association with higher
plants and/or the free-living state (Jones and Jacobsen 2005a). The mechanisms of
atmospheric nitrogen-fixation appear to be quite similar in most atmospheric
nitrogen-fixing procaryotes (Zahran et al. 1995), however, the atmospheric
nitrogen-fixation mechanism can, biochemically, in its simplified form be written
as follows:

This mechanism, above, indicates that atmospheric nitrogen-fixing systems can
survive in nitrogen-deficient soils. Adenosine triphosphate is the source of energy
necessary for the cleavage and reduction of atmospheric nitrogen into ammonia
(NH3). In rhizobia, for instance, adenosine triphosphate results from oxidative
degradation of sugars and related molecules. These sugars are produced, during
photosynthesis, by the host plant, and then transferred to the root nodules. In general,
therefore, for each gram of atmospheric nitrogen fixed by rhizobium, the plant fixes
1–20 grams of carbon, via photosynthesis. This is an indication that biological
nitrogen fixation requires additional energy which can be used to produce more



photosynthates in NO3-fed plants. However, the extra energy cost of atmospheric
nitrogen-fixation can be safely carried by a majority of field-grown legumes, with
little or no production loss (Takishima et al. 1989).
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All organisms capable of fixing atmospheric nitrogen (that is, converting the
stable nitrogen in the atmosphere into a biologically useful form) belong to a
biological group named prokaryotes. A wide range of organisms can fix atmospheric
nitrogen, however, only a very small proportion of species are capable of doing
so. Zahran et al. (1995) reported that an estimated 87 spp. in 2 genera of Archaea,
38 genera of bacteria, and 20 genera of Cyanobacteria have been identified as
Diazotrophs that are capable of fixing atmospheric nitrogen. This wide variety of
Diazotrophs guarantees one or two representatives in most of the ecological niches
and also ensures ready replenishment of lost nitrogen (Sprent and Sprent 1990).

9.4.4 Factors Limiting Biological Nitrogen Fixation

Interactions between microsymbionts and plants are complicated by numerous
environmental factors/conditions included in climatic, edaphic, and managerial
issues. A rhizobium-legumes symbiosis may excellently be achieved in loamy but
not sandy soils, in a sub-humid but not the Sahel region, or in tilled but not zero-
tilled plots, and/or vice-versa. These factors may either affect the microsymbionts,
the host plants, or both, such that crop production level can be not higher than that
allowed by the highest limitation factor (Brockwell et al. 1995).

9.4.4.1 Physical Constraints

• Temperature: Surface soil temperature in some parts of the tropics can occasion-
ally reach 65–70 °C and that of the sub-surface (at 5 cm depth) can be above 50 °
C (Dudeja and Khurana 1989). This temperature can sufficiently be as high as to
restrict germination and destroy a lot of bacteria. Although lots of cyanobacterial
species can form akinetes (spore types), which are highly desiccation-resistant,
most of the free-living heterotrophic rhizobia and other atmospheric nitrogen-
fixers are seldom heat resistant. This surmises that deleterious soil temperatures
can destroy a majority of the surface layer bacteria, although all the same, some
rhizobia can survive for some periods in dry soil temperature under 70 °C
(Marshal 1964). Clay particles and soil organic matter are, however, a helpful
refuge for bacteria against the desiccative high temperature such that sandy soils
are types commonly with high temperatures (Giller and Wilson 1991).

In Samaru, northern Guinea savannah of Nigeria, for example, a rhizobial population
of only 4–40 cells g-1 of soil was found in the upper 5 cm depth of the soil, whilst a
population of up to 104 cells g-1 of soil was observed at a 20–25 cm depth by Day
et al. (1978). In general terms, therefore, bacteria are less tolerant to high



temperatures in moist than dry soils. Higher temperatures can restrict root nodula-
tion, and consequently, prevent atmospheric nitrogen-fixation activities of legumes
(Day et al. 1978) even when soil insulates the root nodules against the highest
deleterious temperatures (Giller and Wilson 1991).
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• Soil texture: As stated under temperature (above), depending on how finely
textured soil is, the piercing heat due to high temperatures can, more or less, be
insulated from vulnerably reaching the bacteria such that clay soils are best at
protecting the rhizobia against the harsh solar rays, whereas sandy soils are
relatively the worst.

• Drought: Rhizobial population in the soil is proportional to soil moisture (Bushby
and Marshal 1977). Stressful drought affects atmospheric nitrogen-fixation of
legumes, negatively, as the atmospheric nitrogen-fixation rate is more sensitive to
soil moisture content reductions than such other processes as photosynthesis,
transpiration, or leaf growth. Deep rooting grain legumes, such as cowpea,
relatively do well in water-stressed environments than their shallow rooting
counterparts if they successfully penetrate deeply before the drought starts or
become noxious (Sinclair et al. 1987).

• Soil salinity and sodicity: Saline soils are measured as having electrical conduc-
tivity (EC) of >4 dS m-1 or due to mismanaged irrigation practices (Nortcliff
1988), while sodic soils are those as sodium (Na)-rich as to constraint growth
and/or development of most crop plants that may or may not be saline. The soil
reaction of both saline and sodic soils is normally>8.5, which property can result
in a reduced availability of phosphorus, iron (Fe), zinc (Zn), manganese (Mn),
and boron (B) needed for plant growth. Water stress, due to osmotic potential, is,
however, the main problem with saline soils. Salinity-caused is more permanent
than drought-caused as the former is always over when the drought is gone
(Sprent 1984). The legumes hosting the rhizobia are very much more sensitive
to saline conditions than the rhizobia themselves, as some (rhizobial) strains are
adapted to saline conditions, although they still are sensitive to salt stress in a
prevailing alkaline soil reaction condition. The ions of chloride (Cl-1) are
exceptionally deleterious to rhizobial survival (Elsheikh and Wood 1989).

Sprent (1984) reported that groundnut nodulation is, relatively, not sensitive to
salinity effect due, probably, to the mode of rhizobial infection that is a direct
type. A wild relative of pigeon pea (Cajanus cajan), Atylosia platycarpa, is also
more insensitive to salinity such that no setback is observed in its nodule record even
at NaCl and CaCl2 salinities of up to 8 dS m-1 while even at 12 dS m-1, effective
nodules were still observed to be formed. The nodulation in C. cajan was, however,
reduced even at 4 dS m-1 as reported by a study of Subbarao et al.’s (1990b). Once
its initial nodulation is successfully completed, C. cajan can also grow in higher
(8 dS m-1) saline soil conditions without symptoms of injurious consequences
featuring on development or functioning of the next nodule as observed by Subbarao
et al. (1990a).
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• Waterlogging: As rhizobia are normally aerobic, a waterlogged soil condition
that necessitates a rapid use of free oxygen by organic substrates, especially at
high soil temperatures, threatens a habitable environment for the rhizobia. Nev-
ertheless, some strains of Bradyrhizobium and Rhizobium meliloti possess dis-
similatory nitrate reductase, an enzyme that functions as an acceptor of electrons.
This enables the bacteria to thrive in oxygen-depleted environments (Daniel et al.
1982). Lack of oxygen is also a major constraint to root respiration, as it can result
in an immediate loss of nitrogenase activity (Witty et al. 1986). Even legumes that
can grow in waterlogged conditions such as Aeschynomene and Sesbania some
species, their root nodules do not develop in watered conditions. Stem nodules
are, however, not affected even by submerged conditions, presumably, as oxygen
is transported to the nodules via Lacunae within the shoot (Eaglesham and
Ayanaba 1984).

de Willigen and van Noordwijk (1989) reported that some legumes can still transfer
some air (oxygen-laden) to their roots from the shoot; while some roots respond,
adaptively, to increase oxygen supply from shoot to themselves as their root porosity
is increased. Nodules can also develop enlarged “lenticels” and a thick cortex which
assist in an exchange of gasses across the surface of nodules (Minchin and
Summerfield 1976). Accumulation of Mn and Fe, to a toxic level, that may inhibit
rhizobia and plants, are among others, additional hitches related to water-logged
environments (Giller et al. 1989a).

9.4.4.2 Chemical Constraints

• Toxicity:
• Soil acidity: Low soil reaction (pH) is important, especially, in tropical soils,

which are majorly acidic, and the problem can arise, either, from low pH survival
medium troubles or that of chemical changes in soil, which is caused by high
acidity, especially due to large amounts of aluminium (Al) or Fe and Mn in
solution, on one hand, and decreased phosphorus and molybdenum; and the lack
of calcium (Ca), in most acidic soils as reported by Giller and Wilson (1991).
Low soil reaction (pH) is reported to usually affect bacterial symbionts, although
there are still those that can regulate the pH of their internal environment as
reported by O’Hara et al. (1989). This category is reported to have a higher rate of
survival potential under the prevailing low pH. A number of Bradyrhizobium
strains were, for example, tested to be more Al tolerant than their Bradyrhizobium
japonicum counterparts as observed by Johnson and Wood (1990).

Arachis hypogaea and Vigna unguiculata are reported to be the lowest soil pH
tolerant legumes. This is, especially, in comparison to Phaseolus vulgaris and/or
Glycine max (Munns 1978), although A. hypogaea still indirectly suffer some
problems, in the acid soil, due to the high need of pod for Ca, which is deficient in
such (acid) soils. High available nitrogen levels can, in addition, greatly retard



nitrogen fixation because the plant, automatically, stops releasing a chemical that
attracts the bacteria to the roots, and the plant, consequently, disallows nodules
formation (Jones and Jacobsen 2005b).
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• Nutrient deficiencies: Deficiency in nutrients that are critical for the growth and
development of plants and/or bacteria can tantamount to tremendous declination
in the number and physical features of the root nodules that are to be formed
including its size, and hence the fixed atmospheric nitrogen amounts. In majorly
weathered and highly leached acid soils, many essential nutrients (e.g., phospho-
rus and molybdenum) are deficient as they are bound into plant-unavailable
forms, whereas other nutrients, like Fe and Zn, are inherently unavailable at
high soil reaction conditions. Nutrient deficiency can, however, be in vogue in
semi-neutral pH soils due to leaching or continuous cropping (Giller and Wilson
1991). Guerinot (1991) reported that several such other nutrients as
micronutrients (for example cobalt, boron, copper, or molybdenum) can be
deficient, thereby limiting nodulation and therefore constraining the biological
nitrogen fixation.

• Pollution: Edwards (1989) and Roberts (1991) reported that a number out of the
various agricultural pesticides can have deleterious repercussions on rhizobial
survival and, consequently, the legumes’ nodulation. Graham et al. (1980),
therefore, cautioned rhizobia inoculators to pay unique attention while inoculat-
ing seed coats of legumes and while applying agrochemicals to the seed surface.
Polluting agricultural soils, with sewage sludges that are contaminated with
heavy metals, has drastically and completely undermined atmospheric nitrogen-
fixation in many crops. Giller et al. (1989b) emphasized that this is sequel to the
vulnerability of rhizobium to the toxic features of heavy metals.

9.4.4.3 Biological Constraints

The fixation process, in the atmospheric nitrogen-fixing system, is strongly related to
the physiological state of host-plant, such that pruned and lopped leguminous plants,
for example, have a decreased photosynthetic ability (Thies et al. 1995). It impairs
atmospheric nitrogen-fixation and can cause nodule decay, which in turn results in
the shedding of a big number of root zone rhizobia as observed by Brockwell et al.
(1995). The absence of the required rhizobium, presence of crop competition,
nematodes, and insects are some other biotic factors that drastically limit atmo-
spheric nitrogen-fixation in an otherwise efficient nitrogen-fixing legume as reported
by Thies et al. (1995). According to Roughley (1985), competition and antagonism,
from other organisms, are also highly influential in the thriving chances of free-
living atmospheric nitrogen-fixing rhizobia.
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9.5 Nitrogen-Phosphorus Dynamics and Root Nodulation

The capacity of leguminous crops to improve soil nitrogen fertility may be hampered
by low concentrations of inherently available soil phosphorus (Buresh et al. 1997).
This is because good nodulation and atmospheric nitrogen-nitrogen fixation levels,
among which soil nitrogen fertility depends, require huge amounts of phosphorus
(Giller 2001). Knowledge of phosphorus dynamics in the soil is, therefore, funda-
mental in predicting its bioavailability and the risk of its transport from soil to water
bodies (Zheng et al. 2004). Lajtha and Harrison (1995) highlighted that plants adopt
two main strategies to promote nitrogen and phosphorus acquisition and use,
including (a) those directed towards the improved acquisition and/or uptake, and
(b) those targeted to conserve use.

9.5.1 Root and Root Nodules

Nitrogenase, as earlier mentioned, is an enzyme that is very sensitive to oxygen.
Limited oxygen condition is identified via compartmentation in cyanobacteria
(through heterokysts in Anabaena azollae), active respiration (in Azotobacter),
synthesis of leghaemoglobin in a macro-molecule synthesized by the symbiotic
partners (i.e., rhizobia and host plant). The rhizobium synthesizes the ‘haeme’
portion; and the plant, the ‘globine’. Like human haemoglobin, leghaemoglobin
fixes O2. It is responsible for the red or brown colour of active (that is: nitrogen-
fixing) nodules. Non-nitrogen-fixing nodules have white or green nodule contents
when the globine has degenerated as reported by Tripathl and Psychas (1992).
Generally, therefore, nodules’ effectiveness can best be evaluated by the degree of
pink, brown or red colouration of atmospheric nitrogen-fixing bacteroid and; would,
consequently, not be considered when classifying currently active nodulation
(Peoples et al. 1989; Tripathl and Psychas 1992).

9.5.2 Chlorophyll Content of Plant Leaf

Chlorophyll, one of the most vital plants’ chelates, has the capacity of directing solar
energy into chemical energy through the photosynthesis process. In addition to being
a plant nitrogen status indicator, chlorophyll content (CC) is also an important leaf
senescence indicator (Noodén et al. 1997). The chlorophyll content can also be
adjusted due to response to possible stresses of the environment (Neufeld et al.
2006). Several CC examining methods exist, including the extraction method, which
involves extraction of the chlorophyll in a solvent followed by spectrophotometric



in-vitro measurements. This method is, however, laborious, costly, destructive, and
time-consuming. Alternatively, however, the use of chlorophyll meters (e.g., the
SPAD-502, from Spectrum Technologies, Plainfield, Illinois, USA), provides a
quick, non-destructive and simple method for estimating the chlorophyll content
of a given leaf (Xiong et al. 2015).
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Chlorophyll meter, therefore, provides a non-destructive and rapid diagnosis of
plant nitrogen status is easily applicable even in field experiments (Uddling et al.
2007; Vollmann et al. 2011) and has widely been tested for many crops (Turner and
Jund 1991; Follett et al. 1992; Peterson et al. 1993; Varvel et al. 1997). Chlorophyll
meter measurements of a crop are correlated with its petiole nitrate-nitrogen, leaf
nitrogen, and yield, and they (the measurements) are less variable than petiole nitrate
(Bronson et al. 2001). Enhanced mineral nutrition is known to assist in increased
chlorophyll content of plants and consequently helps in achieving a higher photo-
synthetic rate (Feng et al. 2002). A close interrelationship exists between the content
of chlorophyll of plants versus their nitrogen concentration (Richardson et al. 2001).
This implies the possibility of using its measurement to compliment atmospheric
nitrogen-fixation measurement (Vollmann et al. 2010).

Using soil plant analysis development (SPAD) meter to assess leaf chlorophyll
concentration has, relatively, become common, although calibrating SPAD meter
readings into direct units of chlorophyll concentration remains difficult. A compre-
hension of the relationship between these two parameters, as necessity is another
hitch (Markwell et al. 1995). Diverse studies have estimated the SPAD readings and
chlorophyll content relationships per leaf area in different plant species. This rela-
tionship (between SPAD readings and chlorophyll content per leaf area) has, how-
ever, been found to differ widely among plant species, and even within the same
species in some cases (Uddling et al. 2007; Parry et al. 2014; Lin et al. 2015). This
difference is presumed to be due to variation in conditions of measurement (Hoel and
Solhaug 1998) and to leaves’ structural differences that cause a difference in
reflection and/or scattering effects of light. About 80% of leaf nitrogen is attributed
to chloroplasts and about 50% of the leaf nitrogen is utilized in photosynthetic
proteins in leaves. Only 0.5–1.5% of the leaf nitrogen is, however, allocated to
chlorophyll, depending on the growth environment and species of plant (Le Roux
et al. 1999). An increased leaf nitrogen content allocated to chlorophyll–protein
complexes, due to decreased irradiance has been reported for many plant species
(Evans and Poorter 2001). More so, the allocation ratio of leaf nitrogen to chloro-
phyll is reported to be affected by nitrogen supplementation conditions (Makino and
Osmond 1991). Comprehending the leaf characteristics and environmental factors’
effects on the SPAD readings, and the relationship between chlorophyll content and
leaf nitrogen content per leaf area will be questions of critical importance when the
SPAD is used to guide nitrogen management practices in agriculture systems.
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9.6 Conclusion

Phosphorus occurs in soils as mineral phosphates as well as organic compounds. The
importance of organic phosphorus in plant nutrition is reported to still be relatively
vague. However, it is reported to possibly account for about 30–80% of the total
agricultural phosphorus in soils. The soil organic phosphorus sources, on the other
hand, must first be hydrolyzed by phosphatases before judiciously being assimilated
by the plant, thereby circumventing against noxious phosphorus deficiency.
Legumes’ access to phosphorus may, therefore include an increase in acid phospha-
tase (orthophosphoric monoester phosphohydrolase; EC 3�1.3�2) secretion, espe-
cially under phosphorus-deficient conditions. There is also reported hydrolysis of
mono-ester soil organic phosphorus at low soil reaction (pH), and hence an increased
availability of orthophosphate. Acid phosphatases are known to differ from alkaline
phosphatases by displaying an optimal enzyme activity below pH 7�0, and by
generally being characterized by low substrate specificity. As such, a wide range
of plants and/or plant tissues show a non-specific acid phosphatase enzyme activity.
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Chapter 10
Phosphorus Nutrition Enhancement
of Biological Nitrogen Fixation in Pastures
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Abstract Nitrogen (N) is the most limiting plant nutrient in agroecosystems. The
increasing use of N-containing fertilizers increases greenhouse gas emissions and
groundwater contamination. Biological nitrogen fixation is an eco-friendly source of
N that can reduce the use of mineral fertilizers. Biological nitrogen fixation poten-
tially accounts for half of the total N on earth and has been reported to supply
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approximately 50–128 × 109 kg N year-1 in different agroecosystems. However,
optimal biological nitrogen fixation depends on phosphorus (P) nutrition. For
instance, the conversion of dinitrogen to ammonia by nitrogenase enzyme depends
on P as adenosine triphosphate. Here, we review the role of P in biological nitrogen
fixation with focus on the increase in the productivity of pasture crops, and the use of
mycorrhization in pastures. Mycorrhization, the symbiotic association between
arbuscular mycorrhizal fungi and plants, can account for 80% of total P uptake by
plants. Mycorrhization provides optimal soil P required for N transfer from N2-fixing
forage legumes to non-N2 and N2-fixing forage grasses during intercropping.
Intercropping N2-fixing forage legumes and non-legumes can fix up to 16–-
124 kg N ha-1 and contribute about 475–700 kg N ha-1 year-1 on pasture fields.
Further, the inclusion of N2-fixing and P-mobilizing forage crop species with
non-N2-fixing and non-P-mobilizing species facilitates root interaction and acquisi-
tion of N and P. The association of pasture crop mixtures, arbuscular mycorrhizal
fungi, and N2-fixing bacteria further promotes crops’ tolerance to biotic and abiotic
stresses.
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Keywords Biological nitrogen fixation · Phosphorus · Arbuscular mycorrhizal
fungi · Pasture productivity · Legumes · N2-fixing bacteria · Non-N2-fixing forage
crops · P-mobilizing pasture species · Tripartite association

Abbreviations

N Nitrogen
N2 Dinitrogen
NH4

+ Ammonium
NO3

- Nitrate
P Phosphorus

10.1 Introduction

Biological nitrogen (N) fixation is a globally known eco-friendly source of N in
agroecosystems that can reduce the contribution of agriculture to climate change.
Biological N fixation harnesses the abundant atmospheric dinitrogen (N2) for crops
utilization and improved productivity of the agroecosystems (Gupta et al. 2019). The
biological N fixation process involves the conversion of N2 to ammonia (NH3) by
microbes, mainly bacteria, with the aid of an enzyme known as nitrogenase
(Galloway et al. 2008; Sprent 2009; Bargaz et al. 2018; Taylor et al. 2020).
Biological N fixation accounts for approximately half of the total N on earth and
serves as the most abundant source of natural N in the terrestrial biosphere (Angus
and Grace 2017; Ramírez-Puebla et al. 2019; Taylor et al. 2020). The adoption of



biological N fixation-promoting practices in cropping systems could drastically
reduce the use of N-containing chemical fertilizers and consequently prevent the
loss of an excessive amount of mineral N into the environment (Foley et al. 2011;
Lannetta et al. 2016; Sulieman and Tran 2016; Mahmud et al. 2020). Thus, increased
exploration of biological N fixation in agroecosystems could be a highly viable and
healthy option in providing adequate N for increased crop productivity compared to
the excessive use of inorganic fertilizers.
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Pastures cover about 68% of the global agricultural fields (FAO 2019) and are one
of the terrestrial landscapes where biological N fixation could reach its climax
(Vitousek et al. 2013). Pasture fields offer important ecological functions and
services including biomass production, carbon sequestration, climate regulation,
and conservation of crops’ and microorganisms’ biodiversity (Jimoh et al. 2020).
Pasture crops mainly provide forages for livestock and are well adapted to broad
climatic conditions (Allen et al. 2011; Mahmud et al. 2020). Several pasture legumes
and grasses can fix a substantial amount of N (Neyra and Döbereiner 1977;
Bustamante et al. 2006; Lopez-Hernandez et al. 2006; Herridge et al. 2008; Cech
et al. 2010; Marques et al. 2017; Aguirre et al. 2020). Despite biological N fixation
being an eco-friendly source of large amounts of renewable N, it is still an under-
exploited phenomenon in pasture fields (Peoples et al. 2009a). Hence, there is a need
for the deliberate exploitation of biological N fixation in pastures for optimal
productivity and sustainable ecosystem functioning.

Many reports of biological N fixation-driven increase in crop productivity suggest
that optimal phosphorus (P) availability is important for optimal biological N
fixation (Ormeño-Orrillo et al. 2013; Khan et al. 2017; Míguez-Montero et al.
2020). For example, several studies have indicated that low biological N fixation
under low P was reversed when P inputs were increased (Benner and Vitousek 2012;
Alkama et al. 2012; Míguez-Montero et al. 2020). The underlying mechanism is
adduced to the essentiality of P on optimum performance of N2-fixing bacteria
within the rhizosphere (Aziz et al. 2016; Bello et al. 2018; Rurangwa et al. 2018).
In addition, P plays regulatory functions in N cycling in the agroecosystems which
also have impacts on biological nitrogen fixation (Smith 1992). As P is the most
limiting plant nutrient after N (Amanullah et al. 2016a, b; Pérez-Fernández et al.
2017; Lopez-Delacalle et al. 2020), inadequate P nutrition disrupts carbon cycling
within plants, reduces nutrient uptake (Iqbal et al. 2019), causes poor nodule
membrane biosynthesis, and increases the permeability of the nodule to oxygen
which all consequently leads to poor biological N fixation (Ribet and Drevon 1995;
Vance et al. 2001; Jemo et al. 2017). Hence, to optimize the impacts of biological N
fixation in the agroecosystems, there is a need for an increased understanding of the
processes and factors inhibiting or promoting biological N fixation due to low or
optimal P availability.

Among all the known sources of P for improved plant growth, mycorrhization,
the symbiotic associations between arbuscular mycorrhiza fungi and plants has high
ecological importance (Sawers et al. 2017; Iqbal et al. 2017; Amanullah et al. 2019).
Arbuscular mycorrhizal fungi are obligate symbionts that form extra radical hyphae
on plant roots and thus increase the surface area of the root for the improved
acquisition of immobile nutrients, including P, from the rhizosphere (Farzaneh



et al. 2009; Wang et al. 2017). In addition to arbuscular mycorrhizal fungi, other
P-solubilizing microorganisms enhance P availability and uptake from the soil
through association with plant roots (Bello 2021). The provision of P by arbuscular
mycorrhizal fungi and P-solubilizing microorganisms is achieved by the hydrolysis
of organic P-pools to inorganic P forms (H2PO4

- and HPO4
-2) that are readily

available for plant uptake (Bello 2021). Consequently, arbuscular mycorrhizal fungi
are complementary sources of P that could enhance biological N fixation in the
agroecosystems, however, arbuscular mycorrhizal fungi contributions to biological
N fixation and associated processes, e.g., N cycling, have not been adequately
studied in pastures. This could be partly due to under-exploitation of the biological
N fixation potentials, uneven distribution of N2-fixers, and/or under-exploitation of
mycorrhizal association in P nutrition. Despite the ecological importance of
arbuscular mycorrhizal fungi, it is important to note that the addition of a little
amount of inorganic P, like single super phosphate, further enhances the contribution
of arbuscular mycorrhizal fungi to crop productivity (Bello and Yusuf 2021).
Therefore, there is a need for more scientific investigations to increase our under-
standing of how arbuscular mycorrhizal fungi associations under low to moderate P
soil conditions could promote biological N fixation and productivity in pastures.
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Here, we reviewed how optimal P availability could optimize biological N
fixation in pasture systems for improved forage productivity. We further discussed
how biological N fixation could be enhanced via intercropping and crop rotation
between forage legumes and grasses under different soil P conditions. The recent
advances in biological N fixation, mycorrhization, and potential merits of the
tripartite symbiotic association involving pasture crops, N2-fixing bacteria, and
arbuscular mycorrhiza in improving forage productivity are also discussed. Conclu-
sively, we anticipate that this review would trigger an increase in empirical studies to
unravel the detailed physiological, biochemical, agronomic, and genetic mecha-
nisms, as well as microbial associations regulating the influence of P on biological
N fixation in pastures.

10.2 Potentials of Biological Nitrogen Fixation in Pasture
Swards

Biological N fixation is a cheap, sustainable, and environment-friendly phenomenon
that could supply a significant amount of N required for optimum functioning and
service delivery of agroecosystems (Herridge et al. 2008; Peoples et al. 2009b;
Lazali and Bargaz 2017; Taylor et al. 2020). Galloway et al. (2004) estimated that
about 128 × 109 kg N year-1 is fixed through biological N fixation worldwide.
Similarly, Herridge et al. (2008) reported an estimate of 50–70 × 109 kg N year-1 in
global cropping systems. Vitousek et al. (2013) recently reported that biological N
fixation contributed 58 × 109 kg N year-1 in terrestrial ecosystems. Thus, there is a
high potential for sufficient N provision in pastures through the increased exploita-
tion of biological N fixation.
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10.2.1 Types of Biological Nitrogen Fixation

10.2.1.1 Symbiotic Biological Nitrogen Fixation

Symbiotic biological N fixation involves a mutual relationship between microbes,
mostly from rhizobium genus, and plants such as legumes to fix atmospheric
dinitrogen into the agroecosystems. It is a conserved association controlled by
biochemical and genetic pathways, e.g., the encoding of nitrogenase enzyme com-
plex by nif genes (Mahmud et al. 2020). In symbiotic biological N fixation, nodules
containing substances such as nutrients from both the microbes and plants are
formed by the host plant as a medium of exchanging the plant’s photosynthates
for the microbe’s N (Graham and Vance 2003; Unkovich et al. 2008; Udvardi and
Poole 2013). Biological N fixation by legumes is a natural source of N, and a
deliberate introduction of N2-fixing legumes into pastures could enormously
increase available soil N via rhizodeposition of the fixed N, and the decomposition
of roots and nodules (Khan et al. 2002; Dahal et al. 2018). Cumulatively, symbiotic
biological N fixation simultaneously nourishes crops with the required N during
growth and increases the amount of available N in the soil.

The biological N fixation-driven increase in the soil available N increases assim-
ilation of N into the organic components of plant cells such as nucleic acids and
proteins (Unkovich et al. 2008; Sengupta et al. 2011; Pérez-Fernández et al. 2016;
Míguez-Montero et al. 2020). Biological N fixation-driven increase in soil available
N also improves the productivity and quality of forage crops in N limiting ecosys-
tems (Nasto et al. 2014). Several studies have demonstrated that symbiotic biological
N fixation can contribute almost an equal amount of N as N-containing chemical
fertilizers in pastures (Ta and Faris 1988; McNeill and Fillery 2008; Unkovich et al.
2010; Schlesinger and Bernhardt 2013). Unlike nitrogenous fertilizers, some of the
N from symbiotic biological N fixation that remain in the soils as organic matter are
less susceptible to leaching and volatilization (Reckling et al. 2016; Mahmud et al.
2020). Harnessing optimal symbiotic biological N fixation is vital for ecologically
sustainable N-cycling and improved functioning of the terrestrial ecosystems
(Gerber et al. 2010; Taylor et al. 2020). Thus, symbiotic biological N fixation
between rhizobia and leguminous crops should be promoted in pastures for optimal
agroecosystem functioning.

10.2.2 Non-symbiotic Biological Nitrogen Fixation
in Pastures

The non-symbiotic biological N fixation also has the potential to contribute signif-
icantly to N inputs in pastures. Unlike the symbiotic biological N fixation, the
non-symbiotic or free-living or associative biological N fixation does not necessarily
require an intimate connection between the microbes and host plants. Associative



N2-fixing bacteria live around the root of the plants, mainly grasses or non-legumes,
or as endophytes to access photosynthates from the plants in exchange for N
(Pankievicz et al. 2015). Examples of free-living bacteria genera are Azospirillum,
Azotobacter, Klebsiella, Beijerinckia, Burkholderia, Clostridium, Herbaspirillum,
Nitrosospira, Cyanobacteria, Pseudomonas, and Paenibacillus (Baldani et al. 2000;
Van Dommelen et al. 2009; Setten et al. 2013; Bageshwar et al. 2017; Bargaz et al.
2018; Rosenblueth et al. 2018; Morris and Schniter 2018; Table 10.1). Several
studies have reported the contributions of the non-symbiotic biological N fixation
in pastures. For example, forage grasses in association with free-living, associative,
and endophytic bacteria in tropical grasslands reportedly fix 14–42 × 109 kg N
annually (Cleveland et al. 1999; Herridge et al. 2008). Studies have also shown that
non-symbiotic biological N fixation contributed about 35%, 55–78%, 31.4%, and
27% N required by maize (Alves et al. 2015), sorghum (Barros et al. 2020), sorghum
genotype BRS655 (Santos et al. 2017), and rice (Rodrigues et al. 2008) crops,
respectively. Cereal crops such as sorghum, maize, and rice are among the major
crops that are capable of non-symbiotic biological N fixation and are sometimes
sowed as pasture crops. Therefore, more efforts should be geared towards the
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Table 10.1 Nitrogen-fixing forage grasses and their microbial partners

Forage grass(es) Microbial partner(s) References

Leptochloa fusca L. Kunth Azoarcus sp. BH72 Hurek et al. (2002)

Panicum coloratum L. Bambatsi,
Chloris gayana L. Katambora, and
Digitaria eriantha Steud. cv. Premier

Burkholderia sp. and
Polaromonas
naphthalenivorans

Gupta et al. (2019)

Sorghum bicolor L. (forage
genotype)

Burkholderia kururiensis
(16 and 109) and
Herbaspirillum seropedicae
(ZMS176)

Santos et al. (2017)

Brachiaria brizantha, B. decumbens,
and B. humidicola

Azospirillum amazonense,
Azospirillum lipoferum and
Azospirillum brasilense

Reis et al. (2001)

Panicum maximum

Digitaria decumbens Spirrillum lipoferum Neyra and Döbereiner
(1977)

Triticum aestivum cv. Schöndorfer Azospirillum brasilense FP2 Stets et al. (2015)

Zea mays and Herbaspirillum seropedicae
ZAE94

Alves et al. (2015)

Cynodon dactylon (coastcross-1) Azospirillum brasilense (Ab-v5
and Ab-v6)

Aguirre et al. (2020)

Pennisetum purpureum Herbaspirillum frisingense
84B-DSM13129

Kirchhof et al. (2001)

Oryza sativa Azospirillum amazonense Y2 Rodrigues et al.
(2008)

Axonopus affinis, Andropogon
lateralis, Paspalum notatum, and
Aristida laevis

Azotobacter sp. (A. paspali),
Azospirillum sp. and
Herbaspirillum sp.

Marques et al. (2017)
and Döbereiner and
Campelo (1971)



improvement and discovery of non-symbiotic biological N fixation associations that
could result in significant N inputs in pastures.
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Fig. 10.1 Nitrogen transfer from N2-fixing forage legume and grass to non-N2-fixing forage grass
in an intercropped pasture system. (a) N2-fixing forage legume, (b) N2-fixing forage grass growing
optimally due to an adequate supply of P, and (c) non-N2-fixing forage grass growing optimally
under low chemical N fertilizer input. (d) Increased N in the rhizosphere of N2-fixing forage legume
due to the decomposition of the entire root system, including the nodules; abundance of N-rich root
exudates such as amino acids, ureides, and peptides; and rhizodeposition of fixed N2. (e) N transfer
from N2-fixing legume to N2-fixing grass, (f) N transfer from N2-fixing legume to non-N2-fixing
grass, and (g) additional N transfer from N2-fixing grass to non-N2-fixing grass. (h) Under optimal P
conditions, balanced N cycling is achieved by optimal utilization of N in the agroecosystem for
increased fodder production. N2, N, and P represent dinitrogen, nitrogen, and phosphorus,
respectively

There are indications that the amount of N2 fixed through non-symbiotic biolog-
ical N fixation is usually less efficient than symbiotic biological N fixation, insuffi-
cient to meet the needs of crops, and varies with genotype and environment (Bargaz
et al. 2018; Rosenblueth et al. 2018; Barros et al. 2020). However, the symbiotic
biological N fixation by forage legumes, e.g., Centrosema pubescence, Medicago
sativa, Trifolium repens, Glycine max, rotated or intercropped with grasses could
augment the N from non-symbiotic biological N fixation (Thilakarathna et al. 2016;
Clúa et al. 2018; Fig. 10.1). The availability of P could also potentially increase N
inputs derived from non-symbiotic biological N fixation since P is a core component
of the nitrogenase enzyme which regulates both the symbiotic and non-symbiotic
biological N fixation (Postgate 1998). Consequently, there is a need for an in-depth
understanding of how simultaneous exploitations of both non-symbiotic and sym-
biotic biological N fixation under varying levels of soil P availability affect N2

fixation and pastures productivity. Therefore, it is suggested that non-symbiotic
biological N fixation should be explored alongside symbiotic biological N fixation
and eco-friendly sources of P for enhanced N2 fixation and sustainable pasture
productivity.
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10.3 Optimization of Biological Nitrogen Fixation
in Low-Input Agriculture

10.3.1 Optimizing Biological Nitrogen Fixation via
Intercropping and Crop Rotation Systems

The cultivation of high N-demanding forage grasses, e.g., Lolium perenne or
Pennisetum purpureum, with high biological N fixation legumes and grasses is a
promising technique for a balanced N cycling in pastures (Aldana and Berendse
1997; Martha et al. 2004; Anglade et al. 2015; Fig. 10.1). Intercropping increases
soil fertility level of cultivated pastures via N transfer from ‘N donors’, e.g.,
N2-fixing forage legumes and grasses to ‘N receivers’, e.g., non-N2-fixing or high
N-demanding forage grasses (Thilakarathna et al. 2016). The N2 fixed via biological
N fixation in mixed pastures is useful to the host plants and other companion or
follow-on crops that are grown in rotation through below-ground N transfer (Bullock
1992; Loreau and Hector 2001; Giller 2001; Fustec et al. 2010). The N-donors
transfer the fixed N2 through decomposition of the entire root systems, including the
nodules and exudation of N-rich substances like ureide and amino acids from the
legume roots (Heichel et al. 1981; Ledgard and Steele 1992). About 16–-
124 kg N ha-1 has been reportedly fixed in intercropping systems involving different
forage legumes, e.g., pea, faba bean, pigeonpea and rice bean, and non-legumes, e.g.,
sorghum, barley, oat, and maize (Danso et al. 1987; Rerkasem et al. 1988; Cowell
et al. 1989; Jensen 1996; Adu-Gyamfi et al. 1997). In the absence of high
N-demanding grasses, the fixed N2 from N2-fixing legumes could be lost to the
environment via volatilization of nitrous oxide (N2O) or nitrate leaching which leads
to the contamination of groundwater. Thus, the intercropping of N2-fixing and
non-N2-fixing species and/or rotation could promote optimum N cycling in the
agroecosystems (Fig. 10.1).

Multispecies swards are known to be more productive than the monocultures due
to the complementarity, niche differentiation, e.g., nutrient acquisition, and inter-
specific facilitation, e.g., nutrient availability, between the crop species (Hector et al.
1999; Hauggaard-Nielsen and Jensen 2005; Li et al. 2014; Suter et al. 2015; Lannetta
et al. 2016). For instance, the presence of shallow-rooted legumes, e.g., soybean, in
mixed pastures could offer more P benefits to deep-rooted grasses, e.g., ryegrass, by
avoiding competition for subsoil P acquisition. More importantly, some investiga-
tions have further suggested that biological N fixation from intercropping or rotation
could completely halt the use of N fertilizer and its contribution to greenhouse gasses
e.g., NO2, methane – CH4, and carbon dioxide – CO2, emission (Van Kessel and
Hartley 2000; Rochester et al. 2001; Hauggaard-Nielsen et al. 2012; Barneze et al.
2020). Lannetta et al. (2016) reported that a rye-clover mixture added a higher
amount of N (475–700 kg N ha-1 year-1) into the cropping system than that (150–-
350 kg N ha-1 year-1) obtained from chemical N fertilizer application. It has also
been estimated that N transfer from companion forage legumes through below-
ground processes could contribute about 73% of N need for forage grasses in



mixed pasture fields (Thilakarathna et al. 2016). Although, low N transfer in some
mixtures like red clover-bluegrass (Thilakarathna et al. 2012) and pea-oat intercrop
(Van Kessel and Hartley 2000) indicate the need for the identification of best pairs to
promote functional diversity under different climatic conditions or environments.
Overall, harnessing the benefits of growing different species of forage crops in
pastures would lead to better utilization of ecological resources and interrelation-
ships for improved pasture productivity with less or no chemical N inputs.
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10.4 Optimizing Biological Nitrogen Fixation in Pastures
via Ecofriendly Phosphorus Nutrition

Phosphorus (P) plays essential roles in different plant physiological processes,
including photosynthesis, respiration, root development, seed production, and cell
division as well as improved biological N fixation (Murrell and Munson 1999;
Krishnaraj and Dahal 2014; Chekanai et al. 2018). P in the form of adenosine
triphosphate plays an important role in the formation of nodules and the active
transport of N in the form of nitrate (NO3

-) or ammonium (NH4
+) to plant roots

(Lopez-Delacalle et al. 2020). P deficiency affects the productivity of N2-fixing
legumes-microbes association due to the high adenosine triphosphate requirement
for nitrogenase reaction (Ritchie et al. 1998; Vitousek and Field 1999; Cabeza et al.
2014; Sulieman and Tran 2015). P deficiency often leads to a reduced rate of
metabolism, nutrient acquisition, and utilization as well as a reduction in the growth
and yield of pasture legumes (Goufo et al. 2017; Jemo et al. 2017; Fig. 10.2). Its
addition alleviates the negative impacts of high soil N on biological N fixation in
pastures (Smith 1992). The synergy between P and symbiotic N2-fixing bacteria
increases nodulation, N2 fixation and improves productivity in pastures (Verma and
Singh 2008; Messele and Pant 2012; Nyoki and Ndakidemi 2014; Kyei-Boahen
et al. 2017; Bargaz et al. 2018; Table 10.2). Therefore, achieving a high biological N
fixation efficiency and an improved overall plant growth requires optimal P
availability (Fig. 10.2).

10.4.1 Inclusion of Phosphorus-Mobilizing Species
in Pasture Swards

One of the important strategies for optimizing biological N fixation, in low-input
agriculture, is the inclusion of P-efficient or P-mobilizing species in pasture swards.
P-efficient legumes can grow optimally under a low soil available P condition
because they have root systems that enhance access to the low P-pool in soils.
It has been suggested that harnessing the organic P-pool of pastures or grasslands
could provide adequate inorganic P required for optimum plant performance (Nash



(continued)
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Table 10.2 Effects of P on biological nitrogen fixation systems for improved forage crop
productivity

Forage crop
N2-fixing
bacteria Source of P Output References

Common bean
(Phaseolus
vulgaris)

Rhizobium
tropici

Single
superphosphate

Increased nodula-
tion, biomass, and
grain yield

Chekanai
et al.
(2018)

Rhizobium
tropici CIAT899
and PR-F81

Ammonium
dihydrogen phos-
phate
(NH4H2PO4)

Improved nodula-
tion and N2 fixation

Chagas
et al.
(2010)

Rhizobium
tropici CIAT899

Potassium
dihydrogen phos-
phate (KH2PO4)

Increased leaf area,
whole plant dry
weight, nodule bio-
mass, shoot and root
P content

Olivera
et al.
(2004)

Soybean (Glycine
max)

Bradyrhizobium
japonicum

Triple
superphosphate

Increased nodula-
tion, growth, and
grain yield

Tarekegn
and Kibret
(2017)

Bradyrhizobium
japonicum
(USDA 110)

Potassium
dihydrogen phos-
phate (KH2PO4)

Increased nitroge-
nase activity, nodu-
lation, P and N
assimilation, and
biomass production

Israel
(1987)

Groundnut
(Arachis
hypogaea)

Bradyrhizobium
yuanmingense

Triple
superphosphate

Increased nodula-
tion, haulm, pod,
and seed yield

Asante
et al.
(2020)

Cowpea (Vigna
unguiculata)

Rhizobia spp. Single
superphosphate

Increased N2

fixation
Bello et al.
(2018)

Alfalfa (Medicago
sativa)

Rhizobium sp. Calcium phos-
phate (CaHPO4)

Increased N2 fixa-
tion and biomass
production

Crews
(1993)

Rhizobium sp. P fertilizer Increased nodula-
tion and yield

IPNI
(1999)

White lupin
(Lupinus albus)

Bradyrhizobium
lupini

Monocalcium
phosphate Ca
(H2PO4)2

Increased photosyn-
thesis, N2 fixation
and P concentration
in shoots, roots and
nodules

Schulze
et al.
(2006)

Indigenous soil
population

Monocalcium
phosphate Ca
(H2PO4)2

Increased root
growth, shoot P and
N concentration

Wasaki
et al.
(2018)

Pigeonpea
(Cajanaus cajan),
Sunn hemp
(Crotalaria
juncea), White
Jack bean
(Canavalia
ensiformais),

Indigenous soil
population

Triple
superphosphate

Increased root
growth and dry
weight; Increased
N-use efficiency and
micronutrients (Mn,
Zn and Cu) uptake

Fageria
et al.
(2014)



Forage crop Source of P Output

Mucuna bean
(Mucuna
cinereum), and
Lablab (Dolichos
lablab)

�

et al. 2014). Some well-known P-mobilizing forage legumes, e.g., Lupinus albus,
Ornithopus sativa, Vicia faba, Trifolium purpureum, Lotus corniculatus, and
Ornithopus compressus, facilitate P availability and acquisition by neighboring
non-P mobilizing species (Li et al. 2014; Simpson et al. 2017; Dissanayaka et al.
2017). In addition to P-mobilizing pasture crops, the inclusion of P-mobilizing
bacteria such as Pseudomonas spp. also makes more inorganic P available for crop
uptake (Nassal et al. 2018). Thus, it is suggested that the holistic inclusion of both
P-mobilizing pasture crops and microorganisms would greatly improve biological N
fixation and productivity in pastures (Fig. 10.2).
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Table 10.2 (continued)

N2-fixing
bacteria References

White clover (Tri-
folium repens
L. Milkanova)

Rhizobium
leguminosarum
(biovar trifolii
strain)

Sodium
dihydrogen phos-
phate NaH2PO4

Increased nodula-
tion and N2 fixation

Høgh-
Jensen
et al.
(2002)

Berseem clover
(Trifolium
alexandrinum)

Indigenous soil
population

Arbuscular
mycorrhizal fungi
(Rhizophagus
irregularis and
Funneliformis
mosseae)

Increased biomass
production, N2 fixa-
tion, P and N uptake
under drought stress

Saia et al.
(2014)

Subterranean clo-
ver (Trifolium
subterraneum
cv. Seaton Park)

Rhizobium
trifolii (TAI)

Finely ground
(lower than
200 pm) super-
phosphate (10%
P)

Increased nodula-
tion, N fixation,
plant growth

Robson
et al.
(1981)

Leguminous
shrubs (Cytisus
balansae,
C. multiflorus,
C. scoparius, and
C. striatus)

Bradyrhizobium
spp.

Sodium phos
phate monobasic
dihydrate (NaH2

PO4 2H2O)

Increased nodula-
tion, plant biomass
and shoot

Míguez-
Montero
et al.
(2020)

Young pea plants
(Pisum sativum)

Rhizobium
leguminosarium
RisØ strain la

Sodium
dihydrogen phos-
phate (NaH2PO4)

Increased nodula-
tion and P concen-
tration in the shoot

Jakobsen
(1985)

Chickpea (Cicer
arietinum L.)

Rhizobium sp Superphosphate Increased nodula-
tion, leaf area, and
shoot dry weight

Yahiya
et al.
(1995)

Forage crops as used in this table refers to crops that are used as animal feeds directly or indirectly

https://shop.biosolve-chemicals.eu/detail.php?id=2305
https://shop.biosolve-chemicals.eu/detail.php?id=2305
https://shop.biosolve-chemicals.eu/detail.php?id=2305
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Fig. 10.2 Effects of P availability on biological N fixation and other associated mechanisms
leading to increased pasture productivity. (a) Low P causes a low population of N2-fixing bacteria,
poor nodulation, P and N assimilation, as well as reduced photosynthesis, growth, and yield of
pasture legumes. (b) Optimal P enhances N2-fixing bacteria population, nodulation, P and N
assimilation, as well as photosynthesis, growth, and yield of legumes. Optimal P nutrition also
enhances tolerance of legumes to other abiotic stress such as drought and salinity. Similarly, P
availability in the rhizosphere increases soil biodiversity, thereby enhancing other beneficial
microbial associations with forage crops for optimal growth and yield. N2, N, and P represent
dinitrogen, nitrogen, and phosphorus, respectively

10.4.2 Phosphorus Nutrition Through Arbuscular
Mycorrhizal Fungi Associations for Improved
Biological Nitrogen Fixation

In low-input agriculture, sufficient soil phosphorus (P) could be made available to
plants via inoculation of microorganisms that solubilize and/or mineralize organic P
for plant uptake. These microorganisms may include bacteria, fungi, algae, or
actinomycetes, but arbuscular mycorrhizal fungi and phosphate solubilizing bacteria
are the most prominent in plant P nutrition. These microbes produce organic acids,
siderophores, and enzymes that hydrolyze P from the organic form into a bioavail-
able form to improve the efficiency of P uptake and utilization by plants (Alori et al.
2017; Bargaz et al. 2018; Wei et al. 2018; Sawers et al. 2017). Both arbuscular
mycorrhizal fungi and phosphate-solubilizing bacteria do not only nourish crops
with P but also associate with N2-fixing bacteria for improved biological N fixation
efficiency (Afzal et al. 2010; Bargaz et al. 2018; Fig. 10.3). Significantly improved N
and P uptake have been linked to the integrated use of P solubilizing bacteria such as



Pseudomonas striata, arbuscular mycorrhizal fungi, and Rhizobium spp. (Zaidi
et al. 2003; Khan and Zaidi 2007). Thus, P provision by arbuscular mycorrhizal
fungi and other P solubilizing microorganisms in low-input pastures is of great
potential (Fig. 10.3).
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Arbuscular mycorrhizal fungi are ubiquitous in nearly all agricultural ecosystems.
Over 80% of terrestrial plants associate with arbuscular mycorrhizal fungi and this
association accounts for up to 80% of plants total P uptake (Li et al. 2006; Farzaneh
et al. 2009; Wang et al. 2018; Bargaz et al. 2018). Through the arbuscules of
arbuscular mycorrhizal fungi, P is transferred from the fungi hyphae into the root
cortex cell of plants (Aslam et al. 2019). Just as biological N fixation cost N2-fixing
plants to expend a lot of photosynthates, the mycorrhizal association also requires
that plants exchange sugar for P from arbuscular mycorrhizal fungi (Luginbuehl and
Oldroyd 2017; Rosenblueth et al. 2018). Consequently, under sufficient P and N
conditions, plants tend to uptake these nutrients directly instead of relying on the
biological processes of mycorrhization and biological N fixation (Coelho et al. 2009;
Weese et al. 2015; Liu et al. 2016; Míguez-Montero et al. 2020). A recent study has
shown that N transfer from forage legumes to grasses is regulated by arbuscular
mycorrhizal fungi or root exudates, depending on the N status of the soil (Zhang
et al. 2019). Arbuscular mycorrhizal fungi were actively involved in the transfer of N
from alfalfa to maize under zero N-containing fertilizer application, while root
exudates regulated the transfer of N after the application of 165.5 kg N ha-1

(Zhang et al. 2019). Therefore, it is essential to deepen our exploration of the
abundant arbuscular mycorrhizal fungi in pastures for higher N and P provision
under poor soil fertility conditions (Fig. 10.3).

Some plants can form both nodules and mycorrhizal associations, thereby having
multiple mechanisms for essential nutrient acquisition and survival in N and P
limiting environments (Fig. 10.3). The integrated inoculations of N2-fixing bacteria
and arbuscular mycorrhizal fungi increase nitrogenase activity, uptake of macro,
e.g., P, and micro, e.g., iron, nutrients in adverse environmental conditions (Meng
et al. 2015; Zhu et al. 2016). The concurrent presence of both N2-fixing bacteria and
arbuscular mycorrhizal fungi also promotes higher N transfer from forage legumes to
grasses (Abd-Alla et al. 2014). N2-fixing legumes experience an increase in accu-
mulation of tissue N as a result of P supply by arbuscular mycorrhizal fungi (Subba
Rao et al. 1986; Biro et al. 2000). Similarly, reduced P uptake from low available soil
P has been linked to reduced arbuscular mycorrhizal fungi colonization (Wang et al.
2018). It has been hypothesized that biological N fixation enhances higher
arbuscular mycorrhizal fungi colonization, thereby enhancing increased P uptake
(Nasto et al. 2014). Thus, harnessing the tripartite association among pasture crops,
N2-fixing bacteria, and arbuscular mycorrhizal fungi could help to maximize or
maintain optimal agroecosystem functioning in pastures.

For example, in a grass – Trachypogon spp.- dominated savanna ecosystem, six
forage legumes including Desmodium intortum, Indigosfera pascuorum, Mimosa
pudica, Cassia cultrifolia, and Stylosanthes spp. formed symbiotic associations with
both arbuscular mycorrhizal fungi and N2-fixing bacteria (Mora et al. 2017).



Piptadenia gonoacantha, a leguminous tree, also formed nodules and exhibited
biological N fixation only when colonized by arbuscular mycorrhizal fungi (Júnior
et al. 2017). This phenomenon was attributed to the dependency of Piptadenia
gonoacantha on arbuscular mycorrhizal fungi for P nutrition. Soybean inoculated
with both arbuscular mycorrhizal fungi and rhizobia under low P and N field
conditions had enormous growth, as well as P and N concentrations compared to
the non-inoculated soybean (Wang et al. 2011). This positive outcome is linked to
the adaptability of the soybean deep root structure which facilitated arbuscular
mycorrhizal fungi colonization in low soil P and higher nodulation when P was
sufficient in the soil (Wang et al. 2011). Therefore, the dynamics of the tripartite
association involving pasture crops, N2-fixing bacteria, and arbuscular mycorrhizal
fungi in pastures have the potential to improve agroecosystems functioning and
merits further studies.

220 S. K. Bello et al.

Fig. 10.3 Microbial provision of P for improved biological N fixation. Due to low soil P, there is an
increased association between the plant root system with specific P-solubilizing or mineralizing
rhizospheric microorganisms. The associations between the plant root system and P-solubilizing
microorganisms lead to the establishment of processes, such as the production of organic acids,
siderophores, biosynthesis, and secretion of enzymes, that enhance plant P uptake by hydrolyzing
organic P to plant bioavailable forms. In addition, plant root-P-solubilizing microorganisms asso-
ciations lead to increased surface area for immobile soil P acquisition, increased tolerance to abiotic
stresses such as heavy metal toxicity and salinity, and biotic stresses such as pathogen infestation.
The tripartite association among the plant root, mycorrhiza, and N2-fixing bacteria ultimately
promote pasture crop productivity, especially in low fertilizer input systems. N2, N, and P represent
dinitrogen, nitrogen, and phosphorus, respectively
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10.5 Conclusion and Future Perspectives

Efficient biological N fixation can improve pasture productivity by increasing the
soil N and tissue N contents of plants. The intensive exploitation of biological N
fixation in pastures also has the potential to reduce the contributions of agriculture to
climate change through the reduced use of chemical N-containing fertilizers. How-
ever, the efficiency of biological N fixation depends on optimal availability of P
which influences several factors that regulate biological N fixation including
N2-fixing bacteria, nodulation, and nitrogenase enzyme activities. Rather than the
incessant use of inorganic P fertilizers, natural or environment-friendly sources of P
could be harnessed to provide the required P for optimal biological N fixation and
pasture productivity. An abundant amount of organic P is present in the soil and is
only accessible to plants when converted to the inorganic form. The conversion of
the soil organic P-pool to the inorganic P-pool in pastures can be sustainably
achieved by the deployment of arbuscular mycorrhizal fungi. However, the
environment-friendly provisioning of P for plants through arbuscular mycorrhizal
is less exploited for the improvement of biological N fixation and productivity in
pastures.

Our review of available literature has shown that the holistic exploitation of
arbuscular mycorrhizal fungi and N2-fixing bacteria is an important strategy needed
for the improvement of plant nutrition and productivity in the pasture
agroecosystems. The concurrent exploitations of arbuscular mycorrhizal fungi and
biological N fixation complementarily provide plants’most required nutrients, P and
N. This arbuscular mycorrhizal fungi- N2-fixing bacteria association could also be
exploited to reinforce plants against adverse growing conditions by aiding the
production of plant defense hormones against pest and diseases, salinity, and
drought. Overall, the exploitation of plant-microbial associations such as arbuscular
mycorrhizal fungi and P solubilizing bacteria in conjunction with intercropping and
crop rotation among different pasture species could optimize biological N fixation
for increased pasture productivity. In conclusion, we suggest that there is a need for
the continued promotion of the use of eco-friendly microbial sources of nutrients in
conjunction with sustainable farming practices to achieve increased productivity in
pastures.
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