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Foreword 

It is an honor to write a foreword on this book on database forensics by Kim-Kwang 
Raymond Choo and Nhien-An Le-Khac. 

Database forensics in this book are well described, with many examples, and 
also the need for validation. Since the rate of change in digital evidence and also 
database forensics is fast, it is important to have the newest insights in the field in 
this book. I was excited to read this book with many viewpoints on database forensics 
in instant messaging, SQL databases, mobile phones and IoT devices. Case examples 
are important to explore and give insights for future cases in this field. 

As a forensic scientist at the Netherlands Forensic Institute, as well as my chair 
Forensic Data Science at the University of Amsterdam, this is a valuable book for 
researchers, teaching and practitioners in the field. The book has covered different 
expert knowledge and can also be used as an excellent reference in these fields. 

Zeno Geradts 
Forensic Scientist, Netherlands Forensic Institute 

Chair of Forensic Data Science 
University of Amsterdam 

Amsterdam, The Netherlands
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Chapter 1 
Databases in Digital Forensics 

Nhien-An Le-Khac and Kim-Kwang Raymond Choo 

1.1 Introduction 

While digital forensics (or referred to as cyber forensics in recent times) play 
an increasingly important role in our current society (or ‘metaverse’), the role of 
databases in data/evidence acquisition cannot be understated [1–3], for example 
in mobile device/application forensics [4], Internet of Things (IoT) forensics [5], 
cryptocurrency forensics [6], etc. 

There are, however, a number of operational challenges in identifying and 
acquiring data of forensic or evidential interest and relevance from the different 
databases on the devices and systems under investigation, as noted in several of the 
chapters in this book as well as our previous books [7, 8]. We observe that while there 
is only a small number of technical books on a narrow aspects of digital forensics, 
there are few edited or authored books on database security and forensic education. 
This is the gap we seek to address in this book. 

1.2 Organization of This Book 

In the next chapter, we will provide a high-level introduction of databases and their 
roles in digital forensics. 

In Chap. 3, we focus on the examination of the Signal instant message appli-
cation. We demonstrate what and how data can be acquired from the various 
databases installed on a laptop running Windows 10 Pro 64-bit, an iPad Air (4th 
Gen) running iOS 14.6, an iPhone 8 running iOS 14.6, an iPhone X running iOS 
14.3, an Android Samsung Galaxy S20 Ultra, an Android Samsung Galaxy S10, 
using Magnet AXIOM, Oxygen Forensic Detective v13.6, Cellebrite UFED Touch 
2 7.45.1, Cellebrite Physical Analyzer 7.46.
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Similarly for Chaps. 4 and 5, we focus on the examination of the qTox messenger 
application and the PyBitmessage messenger application, and explain what and how 
data can be acquired from a range of devices and systems. 

In Chaps. 6 and 7, we focus on the examination of an iPhone X (model A1901) 
running iOS 14.3 with an A11 chipset, an iPhone 5s (model A1533) running iOS 
12.5.3 with an A7 chipset, an iPhone SE (model A1723) running iOS 14.6 with an 
A9 chipset, an iPhone 7 (model A1778) running iOS 10.2 with an A10 chipset, and 
an iPhone 7+ (model A1784) running iOS 11.0.3 with an A10 chipset, as well as 
several other IoT devices. 

Finally, in the last chapter, we forensically examine Google Chrome browser in 
order to identify the types and range of forensic artifacts that could be recovered. 
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Chapter 2 
Database Forensics 

Nhien-An Le-Khac and Kim-Kwang Raymond Choo 

2.1 Introduction to Databases 

Today, investigators need databases to store and analyze forensic and criminal data 
(Fig. 2.1). Hence, they should design and build database solutions for investigations.

Besides, most parts of digital forensics today deal with extraction and collection 
of evidences from databases such as history or cookies information of browsers [1], 
account information, contact list or call logs of VoIP (Voice over Internet Protocol) 
application (Fig. 2.2) [2, 3] and social media apps [4, 5]. Therefore with a best under-
standing of database structure, investigator could retrieve evidences more efficient 
from variant types of data across electronic devices.

2.1.1 What Is a Database? 

Database is not only tables as shown in previous examples. To define what a database 
is, we should know what is data? So, Eliot said: “Where is the wisdom? Lost in the 
knowledge. Where is the knowledge? Lost in the information” [6], and Mr. Celko, 
he said: “Where is the information? Lost in the data” [7]. Maybe the poet Eliot never 
wrote a computer program in his life but Mr. Celko did. However, we agree with both 
Eliot and Celko on their points about unofficial definition of knowledge, information 
and data. Actually, data is a representation of fact, figure or idea. Data normally refers 
to a collection of numbers, characters, image, etc.
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Fig. 2.1 Examples of forensic and criminal databases

Fig. 2.2 VoIP apps databases

Besides, when data has a relational connection, its meaning is an information. For 
example, Bob, 10 are data. “Bob” is “10” years old is an information. Knowledge 
is the appropriate collection of information such that it is to be useful. For example, 
when we have a collection of information such as “Bob is 10 years old”, “Alice is 
5 years old”, “Rian is 6 years old”, etc. we can have a rule “80% of children in this 
room is less than 8 years old”. This rule is a knowledge. 

Data is typically processed by human or stored and processed in computer as files. 
But how these files are organized so that users can access their information easily 
and effectively at any given time? It could be a database. 

There are many way is define a database. Firstly, it is a collection of data, which is 
structurally stored in a computer system. A database can be considered a collection 
of related data which are describing the activities of relevant organizations. For 
instance, a school database contains information about the pupils, school, subjects, 
and rooms. This database also has the relationships between these objects such as 
school teaching subjects and the use of rooms for subjects. At the technical point 
of view, a database could be a tool that stores data, and allows users to create, read, 
update, and delete the relevant data per request [7]. 

Databases can be simple or very complicated [8]. We can have not only Univer-
sities’ databases as discussed previously but also many examples of databases in 
everyday uses. For example, a telephone company has a customer database with basic
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information about their clients such as first name, surname, address, city, postal code 
and phone number. 

An example of large databases is databases existing in banking systems, library 
catalogues, hotel or airline reservation, social networking, etc. Besides, databases 
can also be used to store images, audio streams and videos digitally. 

Law enforcement has been used databases to store and manage criminal data, 
which can help to identify and catch. Also, by suing the databases, law enforcement 
members can effectively gather relevant information to assist in investigations. 

2.1.2 Database Management System (DBMS) 

A Database Management System (DBMS) [9] is a software system specifically 
designed to handle and exploit databases at different scales. Most DBMSs are used 
to manage relational databases. But why we need a DBMS? Today, we live in a world 
experiencing information explosion. In order to manage efficiently the huge amount 
of data, we need DBMSs because a DBMS can provide: 

• Data independence: A DBMS gives an abstract view of data representation and 
storage to the application programs. 

• Efficient data access: A DBMS normally applies optimal techniques to handle 
and access data efficiently. 

• Data integrity and security: A DBMS implements a variety of mechanisms to 
guarantee the integrity constraints on the data and to control the access the relevant 
data. 

• Data administration: A DBMS allows the databases to share among several users 
or different user groups in an efficient way in terms of storing and retrieving. 

A DBMS moreover can handles concurrent access and crash recovery as well as 
to reduce application development time. However, a DBMS has some drawbacks 
such as its overhead costs. 

Some popular DBMSs in the market can be listed as Microsoft SQL Server [10], 
Oracle database (Oracle DB) [11], PostgreSQL [12] (open source) and MySQL [13] 
(open source). 

There are four important elements of a DBMS: modeling language, data struc-
tures, data query language and transactions. A data model is a collection of data 
description at a high-level that hides details in low-level storage. A data model can 
be represented by data schemas. A modeling language is used to define the schema of 
each database stored in a DBMS, according to the data model. As mentioned previ-
ously, most DBMSs today are using the relational data model. There are moreover 
other data model such as: entity-relationship model, relational algebra, hierarchical 
model, network model and object data model. 

Data structure relates to data types, relationships and constraints and the data 
structures allows DBMS to interact with the data align to their integrity.
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A query language is a specialized language that allows to post a queries. A query 
is a question involving the data stored in a DBMS. For example, some queries can be 
posted for the University database such as “What is the student name of the student 
with an ID 1234?”, “How many students are enrolled in course COMP47370?” etc. 

A transaction is an execution from the user program in a DBMS. It is also a basic 
unit of change in the DBMS. 

2.1.3 Database Types and Users 

Let’s have a look at different types of a database [14]. First, it is a flat file. A flat file is 
simply file containing text. A flat file could be a database if we add structure in. For 
example, by separating values with commas, a flat file becomes a .csv file. Although 
flat files do not provide many services, they are simple and easy to understand. Flat 
files are also good places to store configuration settings such as .INI files. 

In a hierarchical database, records’ relationships form a tree-like structure. One 
data record logically links to other data records. The structure of hierarchical 
database is simple and it is restricted to a one-to-many relationship. An example 
of a hierarchical database is the Windows system registry (Fig. 2.3). 

A network database is not a database that is used over the network of computers. 
It relates to the database structure that consists of a collection of nodes connected by 
links. The nodes and links represent objects such as members of a social network. 
This database structure is uncommon and normally used to express many-to-many 
relationships [14]. 

The object oriented database is used to manage objects of varied types such as 
pictures, video clips, voice and text, etc. The object database management systems 
(ODBMS) provides special query syntax for accessing and retrieving objects from 
the database. This database type is popular for Web-based applications.

Fig. 2.3 Example of windows registry 
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Regarding the database users, there are some popular roles in practice such 
as a database administrators (DBA), database designers, System Analysts and 
Application programmers and finally end users. 

2.2 Relational Databases 

2.2.1 Basic Concepts 

In the relational data model, data is organized in tables [8, 9, 14]. A table has a set 
of records (or rows) and each record can have many attributes/fields (or columns). 
The simple structure of relational data model makes it easy to understand and easy 
to exploit with high-level languages such as Structured Query Language (SQL) [15] 
to query the data. Current popular relational DBMSs include Oracle DB, MS SQL 
Server, MySQL, DBs, etc. 

Figure 2.4 illustrates an example of a relational database, which is a univer-
sity database to explain the following concepts: table, row and column. Within this 
database will be three tables named Student, Module and Enroll. Table Student for 
example includes student information such as student id (SID), name, age and grade 
point average (gpa). Each information is described as a field (or an attribute, or a 
column) of this table. A column is also called an attribute. The set of the validate 
values of an attribute is called the attribute’s domain. It relates to data type of this 
field. For example, the domain of the attribute age is integer, the domain of the 
attribute name is string and of the attribute gpa is real number. Besides, a table is 
sometime called a relation. 

Fig. 2.4 Example of tables in a relational database
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Schema versus Instance 

At the model level, there are two concepts related to relational database: schema and 
instance. 

A schema describes the column head for the table that specifies how data to be 
structured at the logic level. The schema is also called meta-data. In fact, a schema 
species the name of table, all attribute (field) names, and the domain for each attribute. 
The schema is normally defined at the setup time of a relational database and it’s 
rarely changed because of high cost for updating of instances. 

For example, for the Student table in previous example, we have the Student 
schema as you can see here, the name of this schema is also Student and this schema 
specifies the name and data type of each attribute. 

A record/row in a table is called a table instance, it is also called a tuple. In fact, all 
tuples in a table have the same number of fields/attributes and there is no two tuples 
that are identical. That means a table contains a set of unique instances. Besides the 
order of these instances are not important. The value of an instance can be updated 
but it always conforms to its schema. In table Student for example (Fig. 2.4), there 
are five instance such as (234, Rian, 18, 2.3), (541, James, 22, 1.8), etc. 

Keys and Index 

Key is an important concept of relational database. A key is a combination of one or 
more fields that it can be used to identify records (rows) in a table. A key of a table 
is defined as a set of one or more attributes (or columns) in this table. For example, 
a Student table can use SID as a key to find students. If a student’s ID is known, the 
relevant student’s record can be found in the table. Hence, this table, the key is SID. 

A compound/composite key is a key that has more than one attributes (or columns). 
For example, in table Case_Investigation (Fig. 2.5), it might be used the combination 
of CaseID and Investigator as a compound key. Of course there is an assumption 
that there is no duplication of investigator names in the department. Besides, in the 
previous example of University’s database, it might be used the combination of SID 
and CID to look up enrollments. 

Fig. 2.5 Case_Investigation table
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A superkey is a set of one or more attributes in a table so that a record is unique. 
There are no two records that can have the same values. Hence, a superkey is also 
called a unique key. For example, in the Enroll table (Fig. 2.4), the SID and CID 
attributes together form a superkey because no two records have exactly the same 
SID and CID values. Besides, in the Student table, the superkey is SID. 

There are more key definition in relational database. A primary key is a superkey 
and a table can have only one primary key. It should be noted that every records in a 
database has the own primary key. 

Besides, a secondary key is used to lookup records but it does not guarantee the 
record uniqueness. 

Another kind of key is the foreign key, which is used to refer to a primary key of 
another table. 

Index is another important concept of the relational databases. This special 
database structure allows to find records quicker and easier by using one or more 
attributes’ values. Note that indexes are not the same as keys. For example, as shown 
in Fig. 2.4, Student table holds student information: name, age, and gpa. This table 
also has the primary key SID. If students do not remember their student IDs, the 
student name can be used to search a student. If this table is indexed by name, users 
can quickly locate a student’s record in two ways: by student ID or by name. 

2.2.2 Database Design 

Databases store vast quantities of information. Consider government social security 
databases for instance. Information is stored on every citizen in the entire nation. 
This information includes name, address, date of birth, income, tax status et cetera. 
Searching through all of this information can be very time consuming. If every 
record needed to be checked in the database it would be a very inefficient system. 
As mentioned above, there are two ways to make these searches faster: using keys 
or indexes. For example, the social security system gives each person in the nation a 
unique identifying number: a social security number. This number acts as a key. It is 
a unique number that identifies the person in question and can be searched for very 
quickly in the database. Rather than search for the name for example, Jim Murphy 
in the database users can search for the unique social security number. 

There are three main steps in database design [9]. Gathering the required informa-
tion, in other words to make sure that all of the necessary information can be stored 
in the database. These pieces of information will form the fields. This information 
should also be logically divided into tables. For each of the fields identified designers 
should select a datatype for this. Finally designers need to create keys or indexes to 
make retrieval quicker.
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2.3 Structured Query Language (SQL) 

2.3.1 SQL and SQLite 

SQL, or Structured English Query Language [15] is the standard query language for 
relational DBMSs. There are different versions of SQL: SQL-86 or SQL-1 is the 
first standard version of SQL. SQL-2 is a revised and expanded version of SQL-86, 
it is also called SQL-92. The next version is a well-recognized standard SQL-99. 
The other standards such as SQL-3 have been proposed. However they are not fully 
endorsed by the industry. 

SQL includes statements for data definitions, queries and updates. SQL uses the 
term table, row and column for the relation model. 

For example, the CREATE command in SQL is for the data definition that is used 
to create schemas, tables, relations, domains, etc. The ALTER command is used 
to change the definition of a table such as adding or dropping a column, changing 
a column definition (name of column, data type), and adding or dropping table 
constraints. The DROP command is used to drop tables, domains or constraints. 
The SELECT command in SQL is a basic statement for retrieving information from 
database. 

SQLite is public-domain, lightweight relational DBMS [16]. SQLite follows 
nearly entire SQL-92 standard. SQLite is designed by D. Richard Hipp and the 
first version was released in August 2000. 

SQLite does not require a separate server as other DBMSs such as MySQL, SQOL 
server of Oracle to operate. That means users do not need to setup/configure a server. 
It is stability, ease to use as for instance, creating a SQLite database is as simple as 
opening a file. Moreover, the whole database are stored in a single file that can run 
on many platforms. SQLite can runs with a limit of hardware resource (CPU, RAM). 

Recently, many applications are now storing log information in SQLite 3 database 
format. These include: Skype; WhatsApp; iOS; Google-Chrome; Mozilla Firefox and 
many more. So, the ability to extract this log information and handle it in meaningful 
ways is essential in forensics. 

2.3.2 SQLite Basic Commands 

The command line interface for SQLite available for all major. There are also some 
SQLite management commands that start with a dot as follows: 

.tables: display all tables in the database 

.schema: display the schema of tables created 

.quit to exit the SQLite application
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There are also some basic SQLite commands as follows1 : 

• Launch SQLite: sqlite3 
• Create/open a SQLite file: sqlite3 <filename> 
• Create a table: CREATE TABLE command 
• Add a record into a table: INSERT INTO command 
• Delete a table: DROP TABLE command 
• Retrieve information: SELECT command 
• Delete a record: DELETE command 

Examples: 

• Create/open university database: 

sqlite3 university 

• Create Student table: 

CREATE TABLE Student (SID INTEGER, 
name TEXT, 
age INTEGER, 
gpa REAL); 

• Add a record into Student table: 

INSERT INTO Student VALUES (1, “Rian”, 18, 3.3); 

• Retrieve all students who have gpa greater than 3.68: 

SELECT * FROM Student WHERE gpa > 3.68; 

• Delete student James: 

DELETE FROM Student WHERE name = ‘James’; 

• Delete Student table: 

DROP TABLE Student. 

2.4 Database Forensics 

As mentioned in Sect. 2.1, there are many applications varied from web browsers 
to mobile apps, running on different operating systems and platforms that are 
using databases, especially SQLite databases to store relevant information such as 
searching history or cookies information of browsers, account information or call 
logs, which are important artifacts for any forensic investigation. This also means

1 More details of SQLite commands’ syntax and examples can be found in: https://www.sqlite.org/ 
docs.html. 

https://www.sqlite.org/docs.html
https://www.sqlite.org/docs.html
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that investigators regularly encounter such artifacts from databases. Hence, how to 
conduct the database forensics from a given application? How to acquire and analysis 
artifacts? 

Figure 2.6 illustrates a flow chart of the suggested forensic method that has three 
main phases: preparation, acquisition and analysis.

The investigator should explore the application in the first phase (Step 1, Fig. 2.6). 
The objective is to understand the application i.e. what can the application do? What 
information might be stored in its databases (e.g. SQLite files)? To achieve this 
objective, investigators should look for information related to the application, using 
application websites, open sources, published documents, forensic sites and blogs 
etc. Without knowledge of what the application does it is very difficult to know 
what to look for. Hence, in some cases, using the application (Step 1a, Fig. 2.6) is  
recommended to gain a better understanding of this application. 

The second phase includes three steps: identify the database files, collect database 
information and extract relevant information from databases. 

The objective of identifying the database files (Step 2, Fig. 2.6) is to locate 
all databases used by the application. Investigators can look at open sources on 
the internet. Databases of existing applications have probably been illustrated in 
published documents, relevant websites, blogs, etc. Moreover, Profiles, Preferences 
folders in applications could store location information. Another approach is to install 
the application in a virtual machine or a simulated platform. Investigators should take 
snapshots of (database) files existing before and after the installation and try to iden-
tify the new (database) files in the after snapshot. The outcome of this step is a list 
of all database files used by this application. 

Next, investigators should collect as much as much information on the databases 
located (Step 3, Fig. 2.6). The relevant information of each database can be listed 
as a list of tables, the structure of all tables, the number of entries in all tables, the 
relationship between tables, index and key for each table, etc. To assist the collec-
tion information in this step, a good practice is to use the application by performing 
its common tasks (Step 3a, Fig. 2.6) then repeat Step 3 to identify which informa-
tion created or updated, which table entries have been modified and examine these 
changes. 

The final step of this acquisition stage is to launch SQL queries to extract necessary 
data (artifacts) from all relevant tables (Step 4, Fig. 2.6) of the databases. Note that 
the storage of the acquired data and devices should follow the policy regarding the 
chain of custody and jurisdiction. 

The acquired data are analyzed in Stage 3 (Step 5, Fig. 2.6). Note that investigators 
could re-run Step 4 (Fig. 2.6) if the acquired data outcome is un-sufficient for the 
investigation. 

Finally, when the analysis phase is finished, investigators should conduct a review 
of the process and the actions of the previous steps to validate the investigation 
process. A formal report is produced in this phase (Step 6, Fig. 2.6) to record all the 
steps of the investigation, explain the findings etc.
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Fig. 2.6 Database forensic 
flowchart
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2.5 Examples 

This section presents the forensic investigation of databases from some popular 
applications as examples, more case studies of database forensics will be introduced 
in the following chapters. 

2.5.1 IOS Database Investigation 

Smartphones are widely used today and there are security risks associated with 
their use such as conducting a digital crime or becoming a victim of one. Hence, 
smartphones have an important role in the crime investigation [17]. Eventually, in 
crime scenes the importance of evidence out of the smartphone is increasing with 
the effect that more and more phones are seized and for a thoroughly investiga-
tion offered at the digital department of the police. In the early days the possible 
information out of a cell phone was phone calls, SMS and contacts. Nowadays the 
smartphone contains email, web browsing information, Chat, Instant Message, Docu-
ments, Photos, Videos, and plenty of applications used daily [18]. The most popular 
operating systems on smartphones today can be listed as iOS and Android. 

iOS (or iPhone OS up to Version 3) is developed by Apple specifically for many 
Apple’s products such as iPhone, iPad, iPod touch, Apple TV, etc. iOS revolution-
ized the way cell phones have been created. Like on other mobile platforms, most 
important information on the iOS devices are stored in SQLite databases that are 
used by both native and third-party applications. The popular databases in iOS are 
the Address Book, SMS, and Call History databases. Table 2.1 lists common iOS 
databases in different iOS versions. 

Most evidence generated by native applications are located in the Library direc-
tory. In this directory, the AddressBook refers to the information related to the 
personal contacts that present in the Contact application. There are two databases of

Table 2.1 List of common 
iOS databases 

SQLite databases iOS12 iOS13 iOS14 

Addressbook.sqlite
√ √ √ 

Calendar.sqlitedb
√ √ √ 

Callhistory.storedata
√ √ √ 

consolidated.db
√ √ √ 

sms.db
√ √ √ 

notes.sqlite
√ √ √ 

photos.sqlite
√ √ √ 

voicemail.db
√ √ √ 

healthdb.sqlite
√ √ √ 

tcc.db
√ √ √ 
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interest in this AddressBook directory: AddressBook.sqlitedb and AddressBookIm-
ages.sqlitedb. The  AddressBook.sqlitedb contains the information for each contact 
such as name, surname, phone number, e-mail address, etc. The number of tables 
in this database depends on iOS version. On the left of Fig. 2.7 is a list of 
tables from the contact database AddressBook.sqlitedb, which can be found in the 
Home/Library/AddressBook folder of recent iOS versions. The tables of interest 
are mainly ABPerson and ABMultiValue. ABPerson table (Fig. 2.7, right) with 46 
fields contains the name, organization, department, and other general information for 
each contact. ABMultivalue table contains phone numbers, email addresses, website 
URLs, and other data for the case a contact may have more than one. 

Some multivalued entries contain multiple values. For example, an address 
consists of a city, state, zip code, and country code and these values can be found in 
ABMultiValueEntry table. This table has parend_id field, which corresponds to the 
rowid of ABMultiValue table. 

Figure 2.8 illustrates an example of retrieving some important information from 
tables of AddressBook.sqlitedb database.

Fig. 2.7 AddressBook.sqlitedb tables (left) and list of fields of ABPerson table (right) 
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Fig. 2.8 Exploring a suspect’s contact information with a SQLite query 

AddressBookImages.sqlitedb contains images associated to a given contact. In 
this database, the important table is ABFullSizeImage. 

The Call History information is stored in the Call History database: callhis-
tory.storedata that contains each of the missed, placed, and received calls, etc. on the 
device. So, this information helps to find tracks about incoming, outgoing and missed 
calls with time and date occurred and their duration. Tables contained within this 
database are listed in Fig. 2.9 (left) where ZCALLRECORD (right) is the important 
one. 

Figure 2.9 (bottom) shows an example of exploring some important fields of 
ZCALLRECORD table such as the call sequence id, phone number, the duration 
of the call, the call direction, the call status and the call timestamp. The headers 
command is used in this example to display the column headers in our query results. 
The value of its parameter must be either ON or OFF. Note that the call direction 
showed in this example is a number i.e. 0, 1. To display this information in a more 
comprehensive format for the query result, ZORIGINATED field is used with the 
value 0 is “Incoming” and value 1 is “Outgoing” with the SQLite CASE command

Fig. 2.9 callhistory.storedata tables (left) and list of fields of ZCALLRECORD table (right). 
SQLite query to explore ZCALLRECORD table (bottom) 
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Fig. 2.10 More examples of SQLite queries to explore ZCALLRECORD table 

(Fig. 2.10). Similarly, in the last example, the CASE command for the call status 
ZANSWERED field is used, with value 0—a missed call and 1—a call answered 
(Fig. 2.10). 

Messages are one of the most significant data items to be recovered from iOS 
devices. The database, which is used to storedsuch information in iOs is sms.db that 
can be found in the Home/Library/SMS folder and the important table is message 
table (Fig. 2.11). This table contains the message, date and time, and whether the 
message was sent or received, etc. For example, this table uses specific fields for 
each status such as is_sent, is_read, is_delievered, etc. and the value of each specific 
field is either 0 (default) or 1 (Fig. 2.11).

From the forensic point of views, there are also other interesting sqlite databases in 
iOS such as notes, photos, voicemail, healthdb and tcc.db (Table 2.1). tcc.db database 
for example, tcc means Transparency Consent and Control system, it contains all the 
prevailing settings for privacy controls, including the allow lists which are displayed 
in the Privacy tab of the Security and Privacy pane. The healthdb.sqlite database 
contains all information collected or received by the Health app. The voicemail.db 
database contains voicemail entries. The photos.sqlite database stores a lot of photo 
asset information including location, date, time, etc. 

Note database NoteStore.sqlite is also interesting because some users tend to store 
passwords and other important info in notes. Figure 2.12 illustrates tables in the Note-
Store.sqlite database, and the important tables are ZNOTE and ZNOTEBODY. Some 
important fields are ZAUTHOR that contains the author’s email address, ZTITLE 
contains the title of the note and ZCONTENT field of the ZNOTEBODY table has 
the content of the note. However, most of the notes’ contains in the recent iOS version
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Fig. 2.11 sms.db tables (left) and list of fields of message table (right)

can be found in NoteStore.sqlite database that can be synchronized with the iCloud 
account and the note content is normally encrypted.

Figure 2.13 lists tables in the Photos.sqlite database, and an important table is 
ZGENERICASSET. There are many fields in this ZGENERICASSET table. Some 
important fields are ZDATECREATED, which is the timestamp of the image, ZLAT-
ITUDE and ZLONGITUDE, which are the location where the photo is taken, ZFILE-
NAME and so on. Figure 2.13 also has an example of SQLite query to show all photo 
names with the timestamp and location.

Finally, Fig. 2.14 shows tables of voicemail.db database with an example of a 
SQLite query to get a list of voicemails sorted by date.
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Fig. 2.12 NoteStore.sqlite tables (left) and list of fields of ZNOTE table (right) and ZNOTEBODY 
table (bottom)

2.5.2 WhatsApp Database Forensics 

WhatsApp is an Instant Messaging and Voice over IP (VoIP) app developed by Brian 
Acton and Jan Koum. Users can use WhatsApp to exchange instant messages, images, 
video and audio media messages. Today, there are around two billion WhatsApp 
registered users active monthly. Hence it becomes an important source of forensic 
investigation [19]. 

WhatsApp is available on different devices such as iPhone, iPad, Android phones 
and tablets and also with different platforms such as Windows, Mac, iOS, Android, 
etc. 

On iOS systems, the manual file system analysis initially shown that the What-
sApp files are in the directory group.net.whatsapp.WhatsApp.shared/ . The activity 
and contact information are stored in SQLite database files. For example, the 
communication activity is stored in ChatStorage.sqlite database and the contact 
information is stored in the ContactsV2.sqlite database. There are other artefacts 
in net.whatsapp.WhatsApp/Documents/ folder. The ChatStorage.sqlite database 
(Fig. 2.15) might be of interest in an investigation. Its most significant tables are 
ZWACHATSESSION, ZWAGROUPINFO, ZWAGROUPMEMBER, ZWAMEDI-
AITEM and ZWAMESSAGE. ZWACHATSESSION table contains a list of unique 
conversations started with different contacts or groups. ZWAGROUPINFO table 
stores a list of group conversations. ZWAGROUPMEMBER table has a list of
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Fig. 2.13 Photos.sqlite tables (left) and list of fields of ZGENERICASSET table (top right). SQLite 
query to show all photo names with the timestamp and location (bottom right)

Fig. 2.14 Tables of voicemail.db (left), list of fields of voicemail table (right). SQLite query to 
explore voicemail table (bottom)
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Fig. 2.15 List of tables in 
ChatStorage.sqlite database 

contacts participating in group conversations. ZWAMEDIAITEM table contains a 
list of exchanged media items and finally ZWAMESSAGE is an important one, it 
stores a list of messages exchanged. 

Figure 2.16 illustrates more details of ZWAMESSAGE table. The interesting 
fields are: ZMESSAGESTATUS contains the message status. For example, value ‘1’ 
is ‘received’, value ‘8’ is ‘read’. ZMESSAGETYPE is the message type, with ‘0’ 
is text, ‘1’ is image; ‘2’ is video; ‘3’ is audio; ‘4’ is contact; ‘5’ is location; ‘6’ is 
group; ‘7’ is URL; ‘8’ is file; etc. ZGROUPMEMBER stores a value, which is a 
primary key in ZWAGROUPMEMBER table, it links with ZWAGROUPMEMBER 
to identify the sender in a group. ZMESSAGEDATE contains the created date or the 
received date of a message. ZSENTDATE contains the sent date of a message. And 
finally ZTEXT contains text or Emojis.

Another interesting WhatsApp database is Contacts.sqlite with the most important 
table is ZWAADDRESSBOOKCONTACT (Fig. 2.17). In this table, we can find the 
list of all contacts found on the phone with the phone numbers and the contact’s 
profile. Some important fields are ZFULLNAME stores the Contact’s full name. 
ZPHONENUMBER stores the contact’s phone number. ZWHATSAPPID stores the 
contact’s number in WhatsApp id format, i.e. the phone number in international 
format.

On the Android systems, WhatsApp artifacts can be found in the following folders: 
data/com.whatsapp/databases/msgstore.db; data/com.whatsapp/databases/wa.db; 
data/com.whatsapp/…
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Fig. 2.16 ZWAMESSAGE table

Fig. 2.17 Contacts.sqlite tables (left) and fields of ZWAADDRESSBOOKCONTACT table
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Fig. 2.18 msgstore.db tables (left) and fields of message table (right) 

The folder ‘databases’ was identified as storing the most valuable information 
in order to reconstruct the communication history in WhatsApp, which were the 
two main database files wa.db and msgstore.db that contained all the exchanged 
attachments, such as images, video and contact cards. Figure 2.18 illustrates the 
structure of database and fields of its message table. 

The wa.db database has one important table wacontacts (Fig. 2.19). This table 
contains a list of all contacts found on the phone (not only WhatsApp contacts). It 
has the following attributes:

• jid: The contact or group WhatsApp id in < phonenumber> @s.whatsapp.net 
format 

• is_whatsapp_user: Boolean if the phone number is a registered WhatsApp user 
• status: The status text of the contact 
• number: The contact’s phone number 
• display_name: The contact’s display name in the contact list 
• phone_type: Number mapped to phone type, i.e. mobile, home etc.
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Fig. 2.19 wa.db tables (left) and fields of wa_contacts table (right) 

• given_name: Contact’s first name 
• family_name: Contact’s family name 
• wa_name: Contact’s WhatsApp name. 

We refer readers to other related research efforts on WhatsApp forensics, such as 
those outlined in [19, 20]. 

2.6 Summary 

This chapter present background of databases and database investigation that are 
necessary to follow case studies in following chapters. Basic concepts of databases 
including relational databases, database design and SQL language were intro-
duced. This chapter also described a process for investigating application databases. 
Finally, two examples of database forensics were illustrated to show how to examine
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databases from iOS and from an instant message application. The following chap-
ters will present case studies where database investigation techniques are applied in 
acquire relevant artifacts from different applications of forensic cases. 

Acknowledgements Authors would like to thank Ranul Thantilage, who helped us to prepare 
relevant SQLite databases used in this chapter. 
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Chapter 3 
Signal Instant Messenger Forensics 

Shuo Yan , Kim-Kwang Raymond Choo , and Nhien-An Le-Khac 

3.1 Introduction 

The rapid development of personal computing devices and social media has funda-
mentally influenced the living model of our world. The traditional short-text message, 
phone call and email are no longer enough for the current social life. The gravity of 
modern social life has moved from reality to a virtual dimension: desktop, laptop, 
tablet and mobile phone. The boundary has become vague thanks to the “never 
offline” networking. The explosive increase of online duration on mobile devices 
and the diverse instant-messaging and social media applications are strong proof of 
the new tendency. The instant-messaging application allows people worldwide to 
communicate in real-time, and share the moments of their lives with friends in text, 
audio, video, and multi-media formats. WhatsApp, the most popular mobile instant 
messenger application global, enjoys more than 2000 million monthly active users. 

Being the products that cover the detailed aspects of users’ social life, the secu-
rity and privacy of instant-messaging applications have been a controversial topic in 
recent years. The call for transparent terms, stronger encryption mechanisms, and 
no-sharing of user data to authorities from the user community has driven the instant-
messaging application manufacturers to reinforce the security and privacy settings of 
the products. Nowadays, most popular IM applications like WhatsApp, Signal, Viber, 
and Telegram have equipped with End-to-End (E2E) encryption of messages, audio 
and video messages, audio and video calls, media shared, and even metadata [1]. 
Also, applications benefit from mobile device security configurations like app-lock, 
screen lock, PIN and multi-factor authentication (MFA) which are widely adopted on 
iOS and Android devices. However, the anxiety of users towards the potential privacy 
risks is never eased. The concern was again triggered by WhatsApp’s updated terms 
of conditions, the instant-messaging market leader owned by Facebook1 (Converted

1 Meta (2021). The Facebook Company Is Now Meta. [online] Meta. Available at: https://about.fb. 
com/news/2021/10/facebook-company-is-now-meta/. 
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to META in 2021), the social media tycoon at the beginning of 2021. WhatsApp 
users received a popped-out notification of the new privacy policy going into effect 
in February 2021 (extended to May 2021), which no longer includes the option to 
allow users to refuse data sharing with parent company Facebook. “Instead, the new 
policy expressly outlines how WhatsApp will share data (stuff like user’s phone 
number, profile name, and address book info) with Facebook” [2]. Although What-
sApp issued a public explanation that the major changes and data sharing were for 
the business users, and WhatsApp would continue to respect the user privacy, the 
acceptance of the updated terms was mandatory for users to continue using all What-
sApp functions. Signal, an alternative instant messenger of WhatsApp, established in 
2014 and owned by the non-profit Signal Foundation, received an explosive growth 
in new user registration following the WhatsApp Terms update [3, 4]. 

Since it was founded, Signal messenger [5], the open-source application, was a 
major player in the instant messaging market with a reputation for its outstanding 
security and privacy. The endorsements from formal NSA contractor Edward 
Snowden and Elon Musk made Signal the new rising star. In May 2017, the Signal 
was approved by the Senate Sergeant at Arms for U.S. Senate staff to use [6]. In 
2020, when interviewed by Reuters, a U.N. spokesman mentioned that “The senior 
officials at the U.N. have been instructed not to use WhatsApp, it’s not supported as 
a secure mechanism [7]” Meanwhile, Signal has been adopted as a UN standard for 
the exchange of sensitive content [8]. Also, in February 2020, European Commis-
sion staffs have been communicated internally, encouraging them to switch to Signal 
messaging service [9, 10]. 

On the other hand, the excellence of Signal’s security mechanism and privacy 
configuration has become a new obstacle for digital forensic investigators. Like its 
market competitor Telegram, which has been used by organized crime groups and 
perpetrators of illegal activities, Signal could be abused for inappropriate uses to 
hide the digital traces of malicious online activities. The various options to delete 
messages and shared media shared within Signal and the little digital trail left in 
the forensic extraction create many difficulties for investigations relying on instant 
messaging evidence. The independence from any cloud storage or social media makes 
Signal a “stand-alone black box” for the digital forensic community. The End-to-End 
encryption of all data and metadata within Signal makes interception an even harder 
task, not to mention that Signal does not store data except basic user identity in their 
servers. The first necessary step to investigate cases involving Signal messenger is to 
under it. Therefore, the digital forensic community needs to understand how Signal 
builds its security mechanism and find options to bypass the technical obstacles 
between investigators and Signal data. Then, explore the options to overcome the 
difficulties and even use the security features to achieve investigation goals. These 
two steps can be combined to establish an operational framework that can guide 
investigators from the very beginning of the investigation to the final report. In 
the past years, mobile forensics has become a hot topic, especially the analysis 
of instant messaging applications like WhatsApp, Viber, Skype, and Kakao Talks. 
Nevertheless, research on Signal is much less compared to the attention on its major 
alternatives. The existing Signal research mainly focuses on post-mortem forensic
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acquisition and analysis of the digital artifacts parsed or carved by forensic software 
from a single platform, such as iOS, Android or Signal Windows. Also, the post-
mortem forensic research on Signal fails to discuss the Signal database structure and 
how the messages are deleted from Signal messenger. On the other hand, there is no 
research to examine the cross-platform message synchronization of Signal and how 
to leverage the multiple linked devices to retrieve Signal data. There is also a gap 
in research from an OSINT and real-time data capturing perspective. This chapter 
proposes an integrated approach to guide digital forensic investigations of Signal 
messenger. 

3.2 Basic Features 

3.2.1 Signal Messenger 

Signal messenger is a cross-platform encrypted instant messaging application devel-
oped by the non-profit Signal Technology Foundation and Signal Messenger LLC. 
Signal currently covers iOS and Android on mobile devices and Windows, macOS 
and Linux on desktop devices. Signal software is free and open-source. The clients 
are published under the GPLv3 license, and the server code is published under the 
AGPLv3 [11]. Users can register a Signal user account with a standard cellular tele-
phone number or virtual telephone number, e.g., Google voice. Communications in 
Signal is end-to-end encrypted, including messages (text, audio and video), one-to-
one audio/video call, group chats and calls, and shared media. Signal is famous for 
its encryption protocol—Signal Protocol (TextSecure Protocol). 

3.2.2 Disappearing Messages 

Disappearing message is the feature that allows Signal users to define a “life-
duration” of messages [12]. A timer is defined with disappearing messages, and 
Signal messenger will remove the messages from a user’s device when the timer 
elapses. Disappearing messages can be enabled and managed by any participant in 
the chat, and the timer setting applies to all new messages after the timer has been 
defined or modified. As Signal supports multiple platforms, it synchronises the timer 
modification on all devices linked to the Signal account. For the message sender, the 
timer starts after the message is sent, while on the receiving side, the timer starts 
after the recipient reads the message. No or little trace was left on the device. A 
similar feature is also available in WhatsApp and Viber, but the previous version of 
WhatsApp was not deleting the messages from its database [13]. Given that major 
mobile and desktop OS allow users to receive message previews as notifications, the 
notification could be used as an approach to read Signal messages while not changing
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the message read status [14]. Digital forensic investigators could benefit from the 
notifications; however, Signal has a privacy feature to disable the preview of message 
content in the notification. This part will be covered in Chap. 4. 

3.2.3 Delete for Everyone 

Signal allows the message sender to delete a sent message from all devices that 
received the message in the specific chat [15]. WhatsApp also provides a similar 
feature to users [16]. Unlike WhatsApp offering one-hour windows for deleting for 
everyone, Signal extends the windows to three hours. Also, Signal explicitly includes 
the words that quoted messages will not be deleted in its official documentation, while 
WhatsApp fails to notify its users of this widely used bypass technique [17]. Also, 
WhatsApp mentioned in its documentation that shared photos that have been saved 
to the device by the recipient may not be deleted, while Signal does not cite any 
exception regarding the shared media. Moreover, WhatsApp provides users with a 
notification whether the deletion for everyone is successful, but Signal marks the 
message with “you deleted this message”. 

3.2.4 View-Once Media 

At the beginning of 2020, Signal introduced a unique feature: view-once media [18]. 
It allows users to configure the shared photos and videos to be removed automatically 
from a chat after the recipient has viewed the media. This feature is only available 
on Signal iOS and Android, but not the desktop client. The maximum duration of 
view-once media is 30 days after the media is sent, and the term will be shorter 
if the recipient opens the media or it has been set as a disappearing message [19]. 
WhatsApp is also catching up with its competitor to introduce a similar feature on 
the latest version of WhatsApp Android beta [20]. 

3.2.5 Mark as Unread 

Mark as unread is a feature available in Signal mobile clients as well as desktop 
clients. It allows users to mark a specific chat as unread [21]. WhatsApp has a similar 
feature, and it only marks the message from the recipient side but does not change the 
message read status from the sender side. Signal does not explicitly mention how this 
feature works with the disappearing messages, delete for everyone and view-once 
media. This part will be discussed in Chap. 4.
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3.2.6 Show in Suggestions 

Show in Suggestions is a unique feature only available in the Signal iOS client. When 
an iOS device user enables the “Suggestions while Searching, Suggestions on Home 
Screen”, “Suggestions When Sharing” options, and the Show in Suggestions feature 
in Signal; the iOS device will show a list of recent Signal contacts when sharing from 
other apps. 

3.2.7 Backup and Restore Messages 

Unlike WhatsApp and other instant messengers, Signal does not support cloud 
backup solutions. According to Signal official documentation, Signal messages, 
pictures, files, and other contents are only stored locally on the user device [22]. 
Therefore, message restoration is not supported in Signal or the account transfers. 
Signal supports data transfer between different Android devices and restores account 
information; besides, Signal Android allows users to restore data from a manually 
created backup file. A backup file is protected with a 30-digit passphrase, which 
cannot restore from the backup if forgotten. An alternative solution is to create a new 
backup file with a newly generated 30-digit passphrase, which is currently being 
used by mobile forensic software like Oxygen for Signal data extraction [23]. On 
iOS client, Signal only support data transfer between two iOS devices with Signal 
installed. The authentication is via QR code scanning. This could be considered an 
option for digital forensic investigators of law enforcement to take over the subject’s 
Signal account and receive real-time information, such as group chats. 

3.3 Related Work 

Mobile forensics, especially research on forensic analysis of instant messaging appli-
cations, has been a hot topic. One important reason is that modern social life depends 
on communicating through chats on mobile devices and the cross-platform user 
experience. With the COVID-19 pandemic, face-to-face communication has been 
replaced by instant messaging and video chats. Nevertheless, there is a gap in research 
specifically on Signal messenger, compared to the diverse research on WhatsApp, 
Viber, WeChat and other instant messengers. Therefore, this chapter is developed on 
the research of similar instant messengers of Signal. 

Alissa and al. conducted a comparative study on four digital forensic software 
specifically used to extract data from WhatsApp. In the research paper, the authors 
clearly defined the importance of WhatsApp forensics in criminal investigations 
and explained the database structure and the data storage of WhatsApp on Android
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devices [24]. Also, the authors designed a framework to test WhatsApp forensic soft-
ware by combining the NIST Mobile Device Tool Test Assertions and the Test Plan 
and researchers-specified criteria. The author tested Guasap forensics, Elcomsoft 
WhatsApp Explorer, WhatsApp key/DB Extractor, and SalvationData WhatsApp 
Forensics tool. The comparative study indicated that the four WhatsApp forensic 
tools could extract WhatsApp data like messages and contacts, but not all What-
sApp forensic tools tested support extracting WhatsApp media, recovering deleted 
WhatsApp data, and hashing the extracted data. Also, three of the four tools extract 
WhatsApp data via downgrading the WhatsApp version, which interacts directly 
with WhatsApp user data and remains a risk to impact the data extraction. On the 
other hand, the research does not include important criteria for WhatsApp forensics 
on Android devices, for example, a comparative study of the data extracted from 
rooted devices against the unrooted device. In addition, the research does not include 
a database-level analysis of the data extracted by the four software tested. Another 
limitation of the study was that WhatsApp iOS, WhatsApp for Web and WhatsApp 
Desktop were not included. Also, the research only had four software specifically 
designed for WhatsApp forensics, but not the one-stop mobile forensic software like 
Cellebrite UFED, Oxygen Forensic Detective, which can extract WhatsApp data and 
other related user data from mobile devices. 

Rick Cents et al. used the network packet forensic wiretap and analysis to iden-
tify the indicators of WhatsApp message communication between different Android 
devices [25]. The research provides law enforcement with an alternative solution 
when the physical device is not seized. Analyzing the network wiretap data shows 
that sending and receiving WhatsApp on an Android device will form a pattern of 
network communication between the sending/receiving device and the WhatsApp 
server. The patterns could be used to determine if a target was communicating using 
WhatsApp within a certain time. However, the research was conducted only on 
Android devices, without including iOS devices, WhatsApp Desktop and WhatsApp 
for Web. Also, the pattern found was limited to one-to-one chat via messages. The 
research does not include audio messages, media and files shared, and WhatsApp 
calls. 

Marshall wrote a case note in which he conducted a brief test on the URLs shared 
within WhatsApp on the mobile handset [26]. Marshall tested the URLs pointing 
to online video files, which are then shared in WhatsApp chats. His test indicates 
that online videos may remain available for direct downloading even if the associ-
ated messages/chat session had been deleted from the WhatsApp database of the 
sender/receiver. Marshall’s tests inspired an alternative approach to determine and 
access media files shared in WhatsApp chats other than image thumbnails or video 
preview frames. However, the test was in a starting phase which did not include a 
detailed analysis of what types of media files can be identified and the availability 
of direct downloading of different web servers that popular video files are hosted. 
Also, the research fails to discuss if the media shared in WhatsApp has any artifacts 
pointing to the WhatsApp servers. 

The research paper of Choi et al. discussed the backup database encryption mech-
anism and proposed an offline password cracking methodology to decrypt the backup
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database of KakaoTalk [27]. The research is limited to Windows PC desktop clients 
but not the mobile app. Also, the research does not include how the KakaoTalk 
message and file shared synchronizing between the mobile app and the desktop 
client. 

Ichsan and Riadi tested the capability of four different digital forensic software to 
extract data from IMO messenger from Android mobile devices [28]. The research 
compared the data extracted from both rooted and non-rooted Android devices, and 
the test results showed that MOBILedit could not create a physical image of the 
non-rooted Android device. On the other hand, IMO messenger data, including 
account information, messages, and media files, including the deleted messages, 
can be extracted on a rooted Android device. The research was conducted following 
the DFRWS method to ensure that the process is forensically sound. However, the 
research did not include a detailed analysis of the data extracted from the digital 
forensic software used; especially only one physical image of the mobile testing 
devices was created with MOBILedit without a comparative analysis. Further-
more, the research did not include an analysis of the database structure of how 
IMO messenger Android client stores data. The data analysis is only limited to the 
automatic parsing and carving stage, but no manual analysis is included. 

Karpisek and al. experimented on WhatsApp communication between WhatsApp 
clients installed on Android devices and the WhatsApp server to understand the call 
signalling messages of WhatsApp audio calls [29]. The researchers captured the 
network traffic of a WhatsApp audio call using Wireshark with WhatsApp dissector. 
By decrypting and analysing the pcap file, the researchers closely examine the authen-
tication process between WhatsApp clients and the WhatsApp server (full handshake 
when initially establishing the communication, and then half handshake with previ-
ously generated session key). The researchers also revealed that WhatsApp used 
Opus 8 or 16 kHz sampling rates for voice media streams. The researchers also 
decrypted the client and relay server IP addresses used during the communications. 
The research proves that by capturing and analysing the WhatsApp network traffic 
data, forensic investigators can retrieve artifacts like the phone number of call partic-
ipants, the call establishment and termination timestamp, the call duration, the call 
voice codex, and the IP addresses of both involving clients and all relay servers used. 
However, the research limits for WhatsApp on Android devices but failed to include 
WhatsApp on iOS devices, WhatsApp desktop and WhatsApp Web. Therefore, it 
would be useful to understand if WhatsApp uses an identical or similar authentica-
tion process on other platforms. Moreover, the research could include the analysis 
of network communications between WhatsApp mobile clients and desktop clients 
to understand whether it is possible to intercept the data synchronization process. 

Conti and al. conducted a comparative forensic analysis of three popular VoIP 
messengers, Viber, Skype, and WhatsApp, on the Android platform [30]. The 
research focused on analysing the data storage directories of the three target messen-
gers within the Android system and comparing what data can be recovered or found 
from a logical extraction of the handset. Conti and al. indicated the file system direc-
tories Viber, Skype, and WhatsApp located and what data can be extracted from the 
SQLite databases. The comparative analysis showed that Viber and WhatsApp have
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a similar database structure, and the data can be extracted. Skype, on the other hand, 
leaves more forensic artifacts like a client IP address. Nevertheless, the research 
failed to compare the data extracted via logical extraction, file-system extraction, 
and physical extraction of the Android handset. Also, the research test environment 
is limited to rooted Android devices, and it did not analyse the detailed difference 
between data extracted from rooted and unrooted devices. 

Al-Rawashdeh et al. conducted a post-mortem forensic analysis on the Kik 
instant messenger on Android platform [31]. The researchers classified eight typical 
scenarios of Kik usage that crime perpetrators may be used to cover their digital traces. 
The Kik messenger, which is popular because of its user anonymity and registration 
without a valid mobile number. The research focused on forensically retrieving the 
Kik messenger messages from the data dumps of Android device NAND memory and 
processing heap memory. The results showed that Kik messages could be extracted 
from the Android memory dumps, including the deleted ones. However, the test was 
conducted with an Android emulator instead of a physical Android mobile device. 
Also, the test did not explain why certain messages were found from both memory 
dumps of NAND RAM and process heap memory, while others were found in only 
one dump. Besides, the test only focused on the messages instead of the media, 
user account information and other application artifacts. The research could also be 
extended to the iOS platform as a comparison. 

Kukuh, Muchamad et al. created a logical image of an Android device with IMO 
messenger installed and analysed the database structure of IMO messenger [32]. 
Their research reveals how data is stored in the Android internal memory and what 
application artifacts can be found from the data structure. Furthermore, the research 
can be extended by analysing the database tables to understand the data model of IMO 
messenger and to understand if deleted messages and media could be recovered in 
the forensic acquisition phase with logical, full file-system and physical extractions. 

Agrawal and Tapaswi conducted a thorough forensic analysis of the Google Allo 
instant messenger on the Android mobile device. Compared to the related research, 
Agrawal and Tapaswi tried to use the Android built-in functionalities and Google 
ADB to acquire application data from the device internal memory instead of relying 
on 3rd party commercial forensic software [33]. On top of the acquisition, they 
conducted a detailed analysis of the Google Allo application’s database structure 
and revealed where to locate the user information, messages, media files, and other 
forensic artifacts that digital investigators are targeted. They also repeated the acqui-
sition process with MOBILedit software and compared the data extracted by the 
commercial software and the “native” acquisition. The comparison was designed 
with an algorithm developed by the authors, which also considered the margin of 
error. Their testing result shows that the “native” acquisition can extract as much or 
even more application data than the commercial software while largely reducing the 
risk of tempering evidence intentionally or unintentionally. However, the research 
fails to test the proposed acquisition method with actual scenarios and to discuss why 
investigators should choose to acquire data with the built-in Android functionality 
instead of commercial forensic software.
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Riadi et al. conducted a comparative analysis of the performance of different 
digital forensic software [34]. The testing and analysis used the “Mobile Device 
Tool Test Assertions and Test Plan ver. 2” and “Mobile Device Tool Specification 
ver. 2” published by the NIST and adopted the Blackberry messenger, one of the 
most popular instant messengers on the local market for Android device as the target 
of analysis. The research focuses on testing the core assertions of logical acquisition 
and optional assertions of physical acquisition of the tested forensic software. The 
research can be considered a reference for mobile forensic software testing and 
validation. However, the research fails to include a comparative analysis of different 
instant-messaging applications, especially those with a larger market share. 

Conti et al. researched social media and instant messaging apps and web clients 
based on the FxOS, the mobile OS platform developed by Mozilla [35]. The contribu-
tion of their research was to separately acquire the internal phone memory image and 
the volatile memory images and analyse what forensic artifacts can be retrieved from 
both images. The research revealed that mobile application activities, user profiles, 
passwords and SMS verification codes could be retrieved from the volatile memory 
image instead of the internal mobile image. Also, the research compared the arti-
facts retrieved from the mobile app and the corresponding web client. However, the 
research focuses only on an OS platform with a relatively small user community, not 
reflecting the latest trend in the instant messaging market. 

Judge conducted physical and logical extraction on Android and iOS mobile 
devices with Signal messenger installed and analysed the application artifacts 
retrieved by commercial and open-source forensic software [36]. Judge’s research 
revealed that on non-rooted/non-jailbroken mobile devices, neither commercial soft-
ware nor open-source forensic software could retrieve much application data from 
Signal messenger. The research proves the security of Signal and raises more ques-
tions to the digital forensic community on how to acquire Signal messenger data in a 
forensically sound approach. However, the research fails to discuss Signal desktop or 
to include an in-depth analysis at the database level to understand the database tables, 
what traces of the deleted messages can be found from the Signal database and how 
to decrypt the Signal database. Instead, only the parsed results of forensic software 
were discussed, but no manual analysis of the database tables or a comparison of 
data retrieved from different types of acquisitions is included. 

Wijnberg and Le-Khac systematically designed a framework for law enforcement 
to acquire, analyse and report WhatsApp data in the forensically sound approach [37]. 
More importantly, the author focused on testing the framework in various scenarios 
for law enforcement officers to intercept the WhatsApp communication to generate 
real-time or in-time intelligence. The tests conducted by the author included inter-
cepting WhatsApp calls, taking over WhatsApp accounts, intercepting via WhatsApp 
Web, and gathering WhatsApp user data via OSINT research. The research provides 
insights for law enforcement to acquire real-time WhatsApp data, despite the diffi-
culties with end-to-end encryption adopted by WhatsApp and other major instant-
messaging tools. However, WhatsApp Desktop is not included in the research. Also, 
the research does not combine the in-time intelligence, OSINT research and forensic 
examination into an integrated framework.
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As covered in Sect. 1.1, there is a gap in research on Signal instant-messaging 
applications. Compared with the research conducted on WhatsApp, Telegram and 
other major instant-messaging applications, the research specifically on Signal is 
relatively limited. Although commercial digital forensic software supports the extrac-
tion of Signal data, little research discusses the application data storage of Signal 
mobile apps and desktop clients in detail. Especially what artifacts can be founded 
in Signal clients and what deleted artifacts could be recovered. Although, Signal 
does not support cloud backup, and no data is stored in its server except basic user 
account information. This security mechanism reduces the possibility of wiretap-
ping the Signal network communication or accessing data via cloud storage. Also, 
the digital forensic investigators need to receive real-time data from Signal, given that 
the features like view-once media, disappearing messages, and delete for everyone 
also contribute to the coverage of digital trace. Moreover, digital forensic investi-
gators need to understand what data related to Signal messenger can be obtained 
without having the physical device seized. This chapter will answer these questions 
and lead toward a new framework as a reference for digital forensic investigators to 
handle Signal data. 

3.4 Forensic Methods 

3.4.1 Experimental Platforms 

To discuss the proposed framework in this chapter, the author established a testing 
platform. The detailed breakdown of the platform is in Table 3.1.

The testing platform covers Signal desktop clients on both Windows and macOS 
and Signal mobile applications on iOS and Android. The three iOS devices are 
included, among which the iPad Air and iPhone 7 Plus will be linked to the same 
Signal account to test the data synchronization between linked devices, as well as to 
test the Signal data transfer between iOS devices. 

Due to the limitation of hardware resources, the Android devices will be virtual-
ized by the Android emulator BlueStacks 5. Two Android devices will be included 
in the testing platform. Regarding the software, Oxygen Forensic Detective and 
Cellebrite UFED Touch 2+ Physical Analyzer will be used to extract data from 
testing mobile devices in a forensically sound approach. Magnet AXIOM will be 
used to acquire Signal data from Windows and macOS computers and for forensic 
analysis. 

The testing platform mainly generates test data of Signal one-to-one chat between 
two mobile devices and the data synchronization between linked devices. Therefore, 
the detailed testing devices are paired, as shown in Fig. 3.1.
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Table 3.1 Testing platform 

Category Platform Operating system Model Specification 

Hardware Desktop Windows 10 Pro 64-bit 
version: 19043.1083 

HP OMEN 
15-dc0850nd laptop 

Intel(R) Core (TM) 
i7-8750H CPU @ 
2.20 GHz 2.21 GHz 
32.0 GB RAM 
Memory 

Hardware Desktop macOS Big Sur MacBook Pro (Retina, 
13-inch, Late 2013) 

2.4 GHz dual-core 
Intel Core i5 processor 
8 GB of 1600 MHz 
DDR3L onboard 
memory 

Hardware Mobile iOS 14.6 iPad Air (4th Gen) A14 Bionic chip 
256 GB flash memory 

Hardware Mobile iOS 14.6 iPhone 8 A11 Bionic chip 
256 GB flash memory 

Hardware Mobile iOS 14.3 iPhone X A11 Bionic chip 
256 GB flash memory 

Hardwarea Mobile Android Samsung Galaxy S20 
Ultra 

4 Cores  4 GB RAM  

Hardware Mobile Android Samsung Galaxy S10 4 Cores  4 GB RAM  

Software Windows Magnet AXIOM 

Software Windows Oxygen Forensic 
Detective v13.6 

Hardware Windows Cellebrite UFED 
Touch 2 7.45.1 

Software Windows Cellebrite Physical 
Analyzer 7.46 

Due to limit of resource, the Android mobile handsets are virtualized using BlueStacks Android 
emulator on Windows

Fig. 3.1 Signal testing device pairing
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3.4.2 Datasets 

The testing dataset used in this chapter is created in a combination of the following 
two datasets, which are both publicly available for academic usage:

• Chat logs dataset (1100 chat logs) created by Tarique Anwar and Muhammad 
Abulaish for their article “A social graph-based text mining framework for chat 
log investigation.” Published in the proceedings of Digital Investigation Journal 
Volume 11, Issue 4, 2014.

• DFRWS 2006 Challenge dataset containing various files including JPEG, ZIP, 
HTML, Text, Microsoft Office file, MP3, MPG, and PDF. 

The testing dataset contains one-to-one text messages, imagery content shared, 
URL shared, Microsoft Office documents, archived files, and local audio and video 
files. The testing dataset is constructed to simulate a genuine Signal one-to-one chat, 
and the testing dataset will cover Signal features like disappearing messages, delete 
for everyone, view-once media, etc. The chat-style dataset is shown in Fig. 3.2 (3 
parts-crossed over on 3 pages).

3.4.3 Forensic Scenarios 

3.4.3.1 Signal Account Take Over 

Pre-requisites

• Signal messenger is installed on the handset of the target of the investigation.
• The target’s SIM card, whose number was used for Signal registration, is cloned, 

or the SMS traffic is wire-tapped (near) real-time to receive the Signal verification 
code. 

Test Environment 

The test environment consists of two Android virtual devices: 

1. iPhone X (bob iPhone X) with iOS 14.3; 
2. Samsung S20 Ultra (Bob Samsung S20 Ultra BlueStacks); 
3. Ubuntu 18.04 LTS 64 Bits virtualized by Virtual Box in Windows 10. 

The Signal Android client is installed on the Android virtual device and the phys-
ical device iPhone X. A Signal account is registered first on the Android virtual 
device, and then the author tries to register a new Signal account using the mobile 
number linked to the virtual device on iPhone X. The Signal Linux client is installed 
in the Ubuntu virtual machine and linked to the Signal account registered with the 
virtualized Samsung S10.
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Part I 

Fig. 3.2 The testing dataset—Part I (in chat), Part II (in chat), and Part III (in chat)
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Part II 

Fig. 3.2 (continued)
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Part IIl 

Fig. 3.2 (continued)
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Test Scenario 1—Signal Registration Lock Is Enabled on the Target’s Handset 

In this test scenario, the Signal security feature registration lock is enabled. This 
means registering Signal with the same phone number on a new device requires 
entering the user-defined PIN code, and this step could not be skipped. This security 
mechanism stops hackers from taking over a legitimate Signal user’s account by 
wiretapping the victim’s SMS traffic. However, this mechanism also increases digital 
forensic investigators’ difficulties in taking over the target’s Signal account from a 
technical perspective. This test aims to understand how the Signal registration lock 
will impact digital forensic investigators from taking over a target’s Signal account 
by registering a new Signal account with the target’s phone number. 

A new Signal account will be registered on the iPhone X running iOS 14.3. Then, 
the registration lock is enabled from the Signal settings. Then, the author tries to 
register a new Signal account with the same phone number used by Signal on iPhone 
X. The registration is conducted on a virtual Samsung Galaxy S20 Ultra running 
Android Nougat 64-bit created in BlueStacks Android emulator. 

Test Scenario 2—Signal Registration Lock Is Disabled on the Target’s Handset 

In this circumstance, the Signal registration lock is disabled on the target’s handset, 
which is not the default configuration of Signal. Digital forensic investigators could 
register Signal on an examiner’s mobile handset as if they own the target’s phone 
number. 

A new Signal account will be registered on the iPhone X running iOS 14.3. Then, 
the registration lock is disabled from the Signal settings. Then, the author tries to 
register a new Signal account with the same phone number used by Signal on iPhone 
X. The registration is conducted on a virtual Samsung Galaxy S20 Ultra running 
Android Nougat 64-bit created in the BlueStacks Android emulator. 

3.4.3.2 Signal Activity Monitoring with Linked Device 

Signal uses the mobile handset on which the Signal account is registered as the master 
device. Similar to its major competitor WhatsApp, Signal allows a user to connect 
other devices as linked devices and create a seamless cross-platform user experience. 
However, as tested in the previous section, Signal account takeover, Signal does not 
allow a user to link a second mobile phone. However, a mobile device such as an 
iPad can be linked to an iPhone. Signal currently supports both iOS and Android 
platforms for the mobile side, Windows, macOS and Linux (Debian-based) for the 
desktop side. Therefore, an iOS/Android mobile phone can link to all other available 
platforms. Once linked, Signal chats will be synchronized on all linked platforms. 
The device linkage is created by scanning the QR code generated on Signal clients 
of different platforms with the mobile phone used for Signal registration. 

In this test, one Signal account is created on the iPhone 8 and linked with the 
Windows 10 examiner laptop. Similarly, another Signal account is created on the 
iPhone X and linked with the macOS Big Sur examiner laptop. The main aim of this
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test is to understand if investigators cannot seize the mobile device of an investigation 
target, what Signal data can be obtained by seizing a linked device or linking an 
investigative device to the target’s Signal account. 

3.4.3.3 Signal Group Chat 

Like other instant messaging applications, Signal also provides users with the feature 
to create groupsand chat, call, and share media and files between group members. 
However, unlike Telegram or Facebook, which have public groups that all applica-
tion users can join groups without seeking approval from a group admin, Signal only 
provides secure groups. This means that Signal groups are private, which is a mech-
anism that all perspective group members must request and be approved before they 
becomeofficial group members. Previously criminal investigations and white-collar 
crimes have witnessed abuses of group features of instant messaging applications, 
such as illegal intelligence exchange, drug, weapon trade, etc. On the other hand, 
law enforcement can go undercover in the group to monitor and collect group chats 
as normal group members. This test aims to understand if investigators can recycle 
this investigation technique when facing Signal messenger. 

In this scenario, the test aims to assess the possibility of joining the Signal group 
and monitoring the Signal group chat. The testing configuration is: 

1. Virtual Samsung S10—Claire Samsung S10 SignalTest to create a new Signal 
group named SignalTest. 

(1) Signal provides two options when a user requests to join a Signal group: 
explicit approval of a request by the group admin or no explicit approval 
process. 

(2) Signal provides four different approaches to share a group link: Share via 
Signal, QR code, copy link and share with other apps. 

2. bob iPhone X (linked with Signal Mac): in the first round, Bob iPhone X will join 
the SignalTest group with no explicit approval process via scanning QR code. 

3. Virtual Samsung S20 Ultra—Joe Samsung S20 Ultra. Joe will join the SignalTest 
group without explicit approval via copy and manual share. The group link is 
copied from Claire and pasted in a Note to Self in Joe; click send, and click the 
link in the sent note to self to join the group. 

3.4.3.4 Use Signal as Source of OSINT 

Instant messaging applications are breaking the barrier between communication tools 
and social media. Many instant messaging applications embed social networking 
features, such as the tight linkage between WhatsApp and Facebook. This trend has 
made instant messaging applications the new gold mine of open-source intelligence 
research. Compared with other major instant messaging applications, Signal seems
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to fall behind in the social network features and provides users with fewer related 
features. However, Signal remains a useful source of OSINT. 

Search Signal Account Via Mobile Number 

This function can serve as the starting point of OSINT research on Signal. Since 2014, 
Signal has been working on the Private contact discovery feature, which allows a 
Signal user to query based on Signal username or the phone number linked to a 
Signal account within the application to determine whether there is a valid Signal 
account connected to the username or the phone number. In this test, the author will 
test how to search for a phone number within Signal and how it can be used for 
OSINT investigation. 

Notify When Contact Joins Signal 

Manual phone number search in Signal could be a tedious and time-consuming task. 
To improve search efficiency, digital forensic investigators can benefit from another 
Signal feature—Notify When Contact Joins Signal. 

This feature is enabled by default when installing and registering for a new Signal 
account. Signal asks new users permission to access the mobile handset’s device 
contact book. If the user grants Signal permission, Signal will map all contacts 
within the device contact book and notify the user which contacts are using Signal. 
Therefore, instead of querying each number under investigation, digital forensic 
investigators can add all mobile numbers of interest into the device’s contact book 
and allow Signal to access it. In this test, the author will walk through the entire 
process of searching Signal accounts via the contact notification feature. 

Signal Account Profile 

Signal allows users to create a personalized account profile, including profile image, 
username, and account description. In this test, the author will test what Signal 
account information can be obtained and used for OSINT investigation. 

Read Receipts and Typing Indicators 

To provide a better user experience in chatting, Signal and other major instant 
messaging applications have an icon to show whether a sent message has been 
read. Also, typing indicator is enabled in Signal by default to notify users that 
another chat participant is typing. Unlike Skype, Microsoft Teams and other instant 
messaging applications, Signal does not have an indicator of online status. Instead, 
digital forensic investigators can use the read receipts and typing indicators together 
to map an activity timeline of the target. Investigators can deduct the online status 
based on whether the received messages have been read. The two Signal indica-
tors can be useful if investigators can monitor Signal group chat in real-time. In 
this test, the author will discuss how these two indicators could be used for OSINT 
investigation.
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Shared Media and URL Preview in Chat 

Signal allows users to share URLs within chat sessions and generates a URL preview 
with a thumbnail and brief description of the webpage that the URL points to. The 
URLs shared in Signal one-to-one and group chats can provide digital forensic inves-
tigators with much information about the topics covered in the chat, and provide new 
leads for online investigation. 

3.4.4 Forensic Acquisition and Analysis of Signal 

This section of the chapter will discuss the experiment setup, the detailed testing 
scenarios and how to collect the testing data. Before each test, the physical and 
virtual mobile devices are wiped completely for a fresh installation and registration 
of Signal. The Signal client and its data on the desktop devices are deleted for a fresh 
installation and new linkage with the mobile devices. 

3.4.4.1 Signal iOS 

The first part of the test on Signal is conducted based on the Apple iOS platform. 
This section will cover the test platform composition, test parameters, and tested 
scenarios in detail. 

Test Environment 

The test on the iOS platform includes two iOS mobile handsets and two linked 
computer devices. The detailed test platform is listed in the following Fig. 3.3. The  
iPhone 8 and iPhone X used for testing are reset to factory settings via the “Erase all 
Content and Settings”. A separate testing Apple ID is created and logged in on each 
iOS device to install Signal messenger from the App Store. For the Windows 10 and 
macOS Big Sur examiner laptops, a fresh installation of Signal clients is conducted. 

Fig. 3.3 Signal test platform on iOS
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Test Scenario 1 

Alice iPhone 8 and Bob iPhone X were configured in the Signal default setting, 
listed as follows. Signal Windows on Windows 10 examine machine is configured 
with default settings, linked to the Alice iPhone 8. Signal Mac is configured with 
default settings linked to the Bob iPhone X. Once the test environment is set; a Signal 
one-to-one chat is initiated on Alice iPhone 8. The messages and media included in 
the testing dataset mentioned in the early sections are sent and received between 
the two iOS mobile handsets. The two linked examiner laptops will synchronize all 
messages sent and received on the corresponding iOS mobile handset in real-time.

• Chat Settings 

– Generate Link Previews enabled 
– Show Chats in Suggestions enabled 
– Use System Contact Photos disabled

• Notification Content 

– Name, Content, and Actions 
– Notify when Contact Joins Signal

• Privacy 

– Messaging

• Read Receipts enabled
• Typing Indicators enabled 

– Disappearing Messages disabled 
– App Security

• Hide Screen in App Switcher disabled
• Screen Lock disabled 

– Calling

• Show Calls in Recents enabled 

– Advanced

• Always Relay Calls disabled 

– Sealed Sender disabled. 

Test Scenario 2 

Alice iPhone 8, Bob iPhone X, Alice Windows 10, and Bob MacBook Pro were 
configured with differentiating Signal settings. The same linked device configuration 
is used in this test. Also, the disappearing message timer is enabled and set to five 
minutes. Finally, the same test dataset is used for the Signal one-to-one chat between 
Alice iPhone 8 and Bob iPhone X. The detailed device settings are listed as follows:
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Alice iPhone 8

• Chat Settings 

– Generate Link Previews disabled 
– Show Chats in Suggestions disabled 
– Use System Contact Photos disabled

• Notification Content 

– No Name or Content 
– Notify when Contact Joins Signal disabled

• Privacy 

– Messaging

• Read Receipts disabled
• Typing Indicators disabled 

– Disappearing Messages

• Default Timer for New Chats—5 min 

– App Security

• Hide Screen in App Switcher enabled
• Screen Lock enabled (passcode/Touch ID/Face ID each time to enter Signal) 

– Calling

• Show Calls in Recents disabled 

– Advanced

• Always Relay Calls disabled 

– Sealed Sender disabled. 

Bob iPhone X

• Chat Settings 

– Generate Link Previews enabled 
– Show Chats in Suggestions enabled 
– Use System Contact Photos disabled

• Notification Content 

– Name, Content, and Actions 
– Notify when Contact Joins Signal enabled

• Privacy 

– Messaging

• Read Receipts enabled
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• Typing Indicators enabled 

– Disappearing Messages

• Default Timer for New Chats—disabled 

– App Security

• Hide Screen in App Switcher disabled
• Screen Lock disabled 

– Calling

• Show Calls in Recents enabled 

– Advanced

• Always Relay Calls disabled 

– Sealed Sender

• Show Status Icon enabled
• Allow from Anyone enabled. 

Alice Windows 10

• Notification Content 

– No name or content 
– Draw attention to this window when a notification arrives 
– Play audio notification

• General 

– Enable spell check 
– Calling

• Always relay calls enabled
• Play calling sounds enabled
• Show notifications for calls enabled
• Enable incoming calls 

– Permissions

• Allow access to the microphone
• Allow access to the camera 

– Disappearing messages

• Default timer for new chats—5 min (synchronized with Alice iPhone 8).
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Bob macOS Big Sur

• Theme 

– Dark

• Notification 

– Name, content, and actions 
– Play audio notification

• General 

– Enable spell check

• Calling 

– Play calling sounds 
– Show notifications for calls 
– Enable incoming calls

• Permissions 

– Allow access to the microphone 
– Allow access to the camera

• Disappearing messages 

– Default timer for new chats—off. 

iOS Digital Forensic Acquisition of Testing Data 

Once the test has been finalized, the author conducts digital forensic acquisitions 
to extract data from the above-mentioned test devices. The detailed digital forensic 
acquisition process is shown in the following Fig. 3.4. Both full file-system extraction 
and logical iTunes backup will be created for the iOS devices to compare and under-
stand what artifacts can be found from the extractions. Alice iPhone 8 and Bob iPhone 
X were connected to the examiner’s laptop with an Apple data cable, and tap “Trust 
this computer” on the iPhones. iTunes logical backups and full filesystem based on 
Checkra1n exploit extractions were conducted with Oxygen Forensic Detective 13.6.

For Alice Windows 10 and Bob MacBook Pro used in the tests, a live RAM 
extraction is conducted on both devices to understand what Signal artifacts can 
be found from the memory. Then, to simulate port-mortem forensic investigations, 
both devices were powered off following a full disk acquisition with CAINE 12 
Bootable USB beta release. The main aim is to simulate the different scenarios that 
digital forensic investigators may encounter in a real daily investigation. In some 
investigations, investigators may not have an opportunity to acquire the RAM but 
are only given a power-off computer. In these circumstances, what can be found 
and recovered from a post-mortem full disk acquisition will be important for the 
investigation.
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Fig. 3.4 Signal testing devices forensic acquisition process—iOS
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3.4.4.2 Signal Android 

This section of the chapter will discuss the detailed experiment setup, the testing 
scenarios, and the forensic acquisition process of Signal messenger on the Android 
platform. 

Test Environment 

The test on the Android platform includes two virtual mobile devices running Android 
10 and one linked virtual desktop environment. The detailed test platform is listed in 
the following Fig. 3.5. Android mobile devices used in this test were created in the 
Android emulator BlueStacks 5. They are emulated with the Android Nougat 64-bit 
operating system, and the Signal Android app is downloaded from the Google Play 
store pre-installed in the default system image. Also, an Ubuntu Linux distribution 
virtual environment is created in VMWare Workstation Pro 16. Signal Linux 5.10 
is downloaded and installed in the Ubuntu environment and linked to the virtual 
Android device Alice Samsung S10. 

Test Scenario 1 

The Signal test on the Android platform has a different device configuration compared 
with the tests conducted on the iOS platform. Alice Samsung S10 and Bob Samsung 
Galaxy S20 Ultra have asymmetrical Signal settings to simulate the different user 
experiences in real-time. The design aims to configure Alice Samsung S10 with the 
Signal app’s strict security and privacy settings. Therefore, the features that could 
potentially feed the other chat participant or third-party monitors, such as read receipt, 
typing indicator, and URL preview are disabled. On the other hand, Bob Samsung 
Galaxy S20 Ultra has a “casual” style setting from a privacy perspective. Also, the 
disappearing message timer is enabled and set to five minutes. The detailed device 
configurations are listed as follows. Once the test environment is set, a Signal one-to-
one chat is initiated on Alice Samsung S10. The messages and media included in the 
testing dataset mentioned in the early sections are sent and received between the two 
Android virtual devices. The linked Signal Ubuntu will synchronize all messages 
sent and received on the corresponding Android mobile handset in real-time.

Fig. 3.5 Signal test platform on android 
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Alice Samsung Galaxy S10

• Chat Settings 

– Generate Link Previews disabled 
– Show Chats in Suggestions disabled 
– Use System Contact Photos disabled 
– Use system emoji disabled 
– Chat backup disabled

• Notification enabled 

– Repeat alerts—Never 
– Show no name or message 
– Priority—High 
– Calls Notification enabled 
– Notify when Contact joins Signal disabled

• Privacy 

– Messaging

• Read Receipts disabled
• Typing Indicators disabled 

– Disappearing Messages disabled 
– App Security

• Screen security enabled
• Screen Lock disabled in VM
• Incognito keyboard enabled 

– Advanced

• Always Relay Calls enabled
• Signal messages and calls enabled 

– Sealed Sender disabled. 

Bob Samsung Galaxy S20 Ultra

• Chat Settings 

– Generate Link Previews enabled 
– Use system emoji enabled 
– Use System Contact Photos disabled 
– Chat backup enabled 
– Use System Contact Photos disabled 
– Chat backup enabled

• Notification enabled 

– Repeat alerts—Never
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– Show Name and message 
– Priority—High 
– Calls Notification enabled 
– Notify when Contact joins Signal enabled

• Privacy 

– Messaging

• Read Receipts enabled
• Typing Indicators enabled 

– Disappearing Messages

• Default Timer for New Chats—disabled 

– App Security

• Hide Screen in App Switcher disabled
• Screen Lock disabled
• Incognito keyboards disable 

– Advanced

• Always Relay Calls disabled
• Signal messages and calls enabled 

– Sealed Sender

• Show Status Icon enabled
• Allow from Anyone enabled. 

Alice Ubuntu LTS 20.04.2 

– Theme—Dark

• Notification 

– Name, content, and actions 
– Draw attention to this window when a notification arrives 
– Play audio notification

• General 

– Enable spell check

• Calling
• Always relay calls 

– Play calling sounds 
– Show notifications for calls 
– Enable incoming calls
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• Permissions 

– Allow access to the microphone 
– Allow access to the camera

• Disappearing messages 

– Default timer for new chats—5 min (synchronized). 

Android Digital Forensic Acquisition of Testing Data 

Like the iOS tests, formal digital forensic acquisitions were conducted to extract 
data from testing devices. However, compared with the forensic acquisition of 
physical devices, the process of virtual machine acquisition is different. The 
Android BlueStacks virtual disk images in VDI format can be found in system 
path C:\ProgramData\BlueStacks_nxt\Engine. These images are collected for further 
forensic analysis. A snapshot file in VMEM format is created with the Signal Linux 
app opened regarding the Ubuntu virtual environment. The virtual memory image 
and the virtual disk image in VMDK format are collected for further forensic analysis. 

3.4.5 Forensic Analysis 

Oxygen Forensic Detective is used to create both iTunes logical backups and full 
filesystem extractions of the iOS devices. Besides, a full filesystem extraction of Bob 
iPhone X is conducted using Cellebrite UFED Touch 2. Given that the Signal Foun-
dation claimed that Cellebrite UFED has security vulnerabilities that may impact 
the integrity of the digital forensic acquisition process, this chapter uses Oxygen 
Forensic Detective as the main mobile forensic software. However, Cellebrite prod-
ucts are also used for cross-validation purposes. Once the mobile forensic images are 
created, they are imported into Oxygen Forensic Detective for forensic analysis. The 
full filesystem extraction created with Cellebrite UFED Touch 2 will be imported to 
Cellebrite Physical Analyzer for comparative analysis. 

The forensic images and memory capture from Alice Windows 10 and Bob 
MacBook Pro are processed by Magnet AXIOM. The virtual memory and disk 
images collected from BlueStacks, and VMWare Workstation Pro are also processed 
by Magnet AXIOM. 

The analysis phase consists of three parts: automatic analysis, database review 
and manual analysis. 

(1) Automatic Analysis: rely on commercial digital forensic software to parse data 
from the forensic images and carve the deleted data. Review the analytical results 
delivered by the forensic software. This is usually the first step of digital forensic 
analysis in real investigations. The automatic analysis results can provide inves-
tigators with direct information and data aggregation to save time and effort for 
manual analysis.
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(2) Database Review: in the second step of forensic analysis, the Signal database 
structure review is conducted to understand where to locate Signal application 
data within a device’s filesystem. Besides, reviewing the Signal database struc-
ture will provide investigators with information on what artifacts can be found 
from the Signal database and how to handle the deleted data. 

(3) Manual Analysis: As the final stage of forensic analysis, manual analysis is the 
process for investigators to deeply analyse specific digital artefacts identified in 
the two previous steps. 

3.5 Findings and Discussion 

3.5.1 Signal Account Take Over 

3.5.1.1 Test Scenario 1—Signal Registration Lock Is Enabled 
on the Target’s Handset 

On the Bob iPhone X, where a new Signal account is created, the registration lock 
feature is enabled under the Signal account setting. In this test, the author assumes 
that the user-defined PIN is obtained by digital forensic investigators, which is a 
pre-requirement to continue the test. 

Then, on the virtual Android device Bob Samsung Galaxy S20 Ultra, a new Signal 
account registration is initiated with the same number used by the Signal account on 
Bob iPhone X. When requested the PIN code, the obtained PIN code of Bob iPhone 
X is input. A new Signal account is successfully created on Bob Samsung Galaxy 
S20 Ultra. However, the author receives a notification shortly on Bob iPhone X that 
his/her handset is no longer registered because the phone number was used to register 
Signal on a different device, as shown in Fig. 3.6. The de-registered device will no 
longer be able to send or receive any new Signal message. The notification will alert 
the target that something wrong happens to his/her Signal account. The target of the 
investigation may take the account back by re-registering the same Signal account on 
the original device (iPhone X in our test) with the same PIN code. Then, create a new 
PIN code to stop investigators from further attempts. In a worse situation, the target 
may abandon the Signal account under investigators’ radar by deleting the Signal 
account. Therefore, taking over the Signal account with a registration lock can be 
risky with a low success rate.

According to Signal documentation, a PIN code will expire after seven-day inac-
tivity. Theoretically, investigators can seize the target’s mobile device, wait for seven 
days, and then take over the Signal account. However, if not under control, the target 
can easily de-register Signal from the seized device.
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Fig. 3.6 Notification of device de-registration

Fig. 3.7 Signal Activity Synchronized in Windows 10
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3.5.1.2 Test Scenario 2—Signal Registration Lock Is Disabled 
on the Target’s Handset 

When the registration lock is disabled, Signal still asks for the PIN code when 
registering a new Signal account on Bob Samsung Galaxy S20 Ultra, with the same 
number that Signal is using on Bob iPhone X. However, Signal now allows skip 
the PIN verification. Nevertheless, the skipping does not mean investigators could 
register Signal on their device without alerting the target. Instead of inputting the PIN 
obtained, Signal asks users to create a new PIN to overwrite the previous one when 
the skip option is chosen. When a new PIN is input and confirmed, the author still 
receives the same notification on Bob iPhone X that the device has been de-registered 
in Signal. Besides, the target will still receive a notification that his/her device is de-
registered because the phone number is used to register Signal on another device. 
Again, the author can tap the notification to re-register Signal and create a new PIN 
to take the Signal account back. 

This test shows that the registration lock mechanism of Signal remains an obstacle 
for the investigators to take over a Signal account without notifying the target. Further-
more, once the target is warned that he/she might be under investigation, the target 
may start deleting Signal data or abandon the phone number. Therefore, the Signal 
account takeover should be conducted with extra caution and only considered one 
of the last solutions. 

3.5.2 Signal Activity Monitoring with Linked Device 

In this test, Alice iPhone 8 has a linked device Alice Windows 10, and Bob iPhone 
X has a linked device Bob MacBook Pro. A computer with a corresponding Signal 
client installed can be linked to one and only one mobile handset with Signal installed. 
When launching Signal Windows or Mac, the client generates a QR code. Using the 
mobile camera to scan the QR code can link the computer and the mobile device. 

The Signal user can review all linked devices in the “Linked Devices” list. The 
existing linked device can be removed from the list, and the Signal client on the linked 
device will receive a notification reminding the user of the linkage removal. The link 
relation will need to be renewed by scanning a new QR code after a period, which 
is the main obstacle for investigators in monitoring the target’s Signal activities and 
receive real-time Signal messages. However, the linked devices remain one of the 
useful options for forensically examining the target’s digital activity. 

To monitor the target’s Signal activity via linked devices, investigators can either 
seize an existing linked device or periodically scan the QR code. Regarding the 
artifacts that can be found and recovered from a post-mortem forensic examination 
of the linked Signal device, the details will be covered in a later section. This section 
focuses on the real-time monitoring of Signal activity. 

Based on the author’s test, Signal messages in text, audio, and video will be 
synchronized to Signal Windows, macOS or Linux client, as shown in Fig. 3.7.
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Fig. 3.8 Notification of 
contacts using signal 

However, Signal audio and video calls are not synchronized to linked devices and 
vice versa. However, this may differ for different makes and models of devices. 

Interestingly, the Signal clients on the Desktop side are very similar to WhatsApp 
Web, which does not download and save shared media to local disks automatically. 
Instead, a download option is provided with the arrow icon beside each shared media. 
Therefore, investigators need to manually save the media required when monitoring 
Signal activity via a linked device. The saving action is not notified on the target’s 
mobile handset. On the other hand, the design of Signal desktop clients leads to 
another hypothesis: the Signal desktop client will not store messages and shared 
media in a database unless manually saved locally. This hypothesis will be discussed 
in the forensic acquisition section. 

In general, monitoring real-time Signal communication via a linked device could 
be an option in the actual investigation. However, the target may be aware of the 
existence of a seized linked device and remove the linkage. On the other hand, how 
to scan the QR code generated by Signal desktop clients by the target’s mobile phone 
periodically should be the most difficult step. 

3.5.3 Signal Group Chat 

On the virtual Android device Claire Samsung S10, a new Signal account is created, 
and then a Signal group is created with the name SignalTest. When creating a Signal 
group, it is possible to include existing Signal contacts into the group; however, the 
test skips this step and creates a group with only the group creator. It is worth noting 
that the Signal user who creates the group is assigned the group admin role by default.
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Then, Signal asks the group creator to enable and share a link to the newly created 
group. This is the mechanism within Signal to invite friends to join an existing group. 
There is an option “Approve New Members” when enabling group link sharing. This 
option, once enabled, will require the group admin to approve each request to join the 
Signal group. Otherwise, Signal users possessing the group link can join the Signal 
group without approval from a group admin. Both options are tested in this chapter. 

In the first round of tests, the option “Approve New Members” is disabled. Then, 
Signal offers four different approaches to share a group link: share the group link 
(URL) via Signal message, generate a group link in QR code, and invite friends to 
scan the QR code, share the group link via third-party apps, such as email, and copy 
the group link for further manual sharing. 

The author scans the group QR code generated on Claire Samsung S10 with Bob 
iPhone X, and then a notification will be shown to ask for user confirmation to join 
the Signal group. Once confirmed, Bob joins the group SignalTest. 

Another virtual Android device Joe Samsung Galaxy S20 Ultra received the 
SignalTest group link via manual copy and paste and joined the SignalTest group. 

Although no explicit approval process is required, all the group members will 
receive a notification that a new Signal user has joined the group via the group link. 
This notification is visible to all Signal group members. When investigators try to join 
the target Signal group to receive a real-time Signal group chat, the notification may 
alert the target of the investigation that a suspicious member has joined. However, 
if the Signal group has many members with high group dynamics, the notification 
may be flooded with new messages. Therefore, monitoring Signal group chat is still 
useful in real investigations. 

Also, all group members of a Signal group can see the member list from Signal 
group settings and view other group members’ profile details including profile 
images, descriptions, and phone numbers. This could be another valuable source 
of evidence for further OSINT investigation. The group admin can also remove a 
group member from the group, make another group member as admin, add a group 
member to another group, and add a group member as a contact. 

Claire removes Bob and Joe from the group as a group admin at the end of the 
first round. The removal of the group member will also leave a notification in the 
group chat interface. 

In the second round, Bob iPhone X and Joe Samsung Galaxy S20 Ultra will re-join 
the SignalTest group with the option “Approve New Members” enabled. When an 
explicit approval request is enabled, the group admin could grant all group members 
to pass the group join request orlimit the authorization to only the admin. Under this 
configuration, Bob will join the group via the share with copy link, and Joe will join 
the group via communicating with Claire within Signal, and then Bob will pass Joe’s 
request. 

Firstly, enable the “Approve New Members” under the sharable link settings on 
Claire Samsung S10. Then, copy and paste the group link to Bob iPhone X and click 
the group link to request joining the group SignalTest. Then, Claire Samsung S10 
as the group admin, will receive a Signal notification that there is one new request 
to join the group pending approval. Only the group admin can view the notification.
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Once the group admin taps the notification, Signal will redirect the admin to the 
interface to approve or deny the pending requests. Here, Claire passes the request 
from Bob, and Bob joins the SignalTest group. 

After Bob joined the group, modify the group permission to extend the permission 
to add new group members from only admin to all group members. Once applied, 
new requests to join the group will lead to a notification reminder of pending requests 
visible to the all-group members. On the other hand, the invite friends option remains 
only available for the group admin. However, group members can go inside the group 
setting to copy the group link and share it further. However, in the group setting, only 
the group admin, Claire, has the option to approve Joe’s request. Once Bob is made 
an admin of the group, he can pass Joe’s request. Therefore, the approval process 
overwrites all existing group members’ permission to add new members. 

3.5.4 Use Signal as Source of OSINT 

Instant messaging applications are simulations of human interaction in real life; 
therefore, much personal information can be collected from Signal and similar social 
apps. This section mainly discusses how Signal features can contribute to OSINT 
investigations. 

3.5.4.1 Search Signal Account Via Mobile Number 

The feature of searching contacts by phone number can be used for OSINT investi-
gation. If investigators have several phone numbers under investigation, the numbers 
can be searched within Signal to see if a Signal account is linked to the phone 
number under investigation. It is worth noting that Signal does not necessarily have 
to be registered with a valid mobile phone number. Virtual call service as Google 
Voice and Twilio can be used to register a Signal account. Moreover, a landline phone 
number is also valid for Signal account registration. 

The number search function in Signal allows users to type in a phone number to 
be searched. If the queried phone number has no Signal account linked, the applica-
tion will return an error message “Contact is not a Signal User”. Otherwise, Signal 
will redirect the user to a new chat with the Signal account linked to the searched 
number. Then, the number associated with the found Signal account could be used 
for phone number reverse searching and social media account searching. Signal does 
not provide the features of searching partial phone numbers and returns a list of 
all matching results. Instead, only when a valid phone number is entered, and the 
user presses the search button can Signal show the search results. Therefore, the 
manual searches by phone number within Signal may be repetitive work for digital 
forensic investigators. Whether the search process could be automated via Signal 
API is beyond this chapter’s scope but is considered a potential future work.
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3.5.4.2 Notify When Contact Joins Signal 

Notify When Contact Joins Signal can be used as an improved version of Signal 
account searching. This feature is enabled by default when a new Signal account 
is registered. Investigators can create a new contact for each phone number under 
investigation in the device’s contact book and then launch Signal messenger on the 
phone. The Signal will ask for permission to access the device contact book. When 
granted permission, Signal will generate a blue notification reminding users that their 
contacts are using Signal, as shown in Fig. 3.8. 

When clicking the blue notification, users will be redirected to the page to search 
Signal account by Phone Number. Instead of querying manually, Signal displays 
a list of contacts using Signal below the search pane. With this approach, digital 
forensic investigators can quickly focus their investigation on the Signal accounts 
and corresponding phone numbers in the list. This information can also be used for 
further OSINT investigation. 

3.5.4.3 Signal Account Profile 

Signal allows users to create a personalized account profile, including profile image, 
username, and account description. 

Although Signal provides a series of pre-defined avatars and text-style avatars 
for the profile image, users can also use pictures from the device photo gallery and 
take a profile photo with the device camera. Imagery content, including user profile 
images, is one of the most important sources of OSINT investigation. Digital forensic 
investigators can adopt the profile image downloaded from publicly available online 
sources and conduct a reverse image search to track the target’s online activity. If a 
Signal user chooses to use a photo containing genuine facial information as the Signal 
profile image, the photo can be very useful in social media investigation (Fig. 3.9).

3.5.4.4 Read Receipts and Typing Indicators 

Read receipts and typing indicators together can be used to indicate Signal online 
status. When these two features are enabled, investigators can build a heatmap of the 
target’s Signal online timetable, analysing the activity pattern such as when period 
within the day the target is actively on Signal. Especially these two indicators are 
useful within a Signal group chat that distinct activity patterns of each group member 
can be built. 

However, the two indicators are not always reliable. On the one hand, both options 
can be disabled in the Signal setting, which will stop other chat participants to view 
the message read status and typing indicator; on the other hand, Signal allows users 
to mark a chat session as unread to remind the user him/herself for any messages of 
interests.
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Fig. 3.9 Signal account with downloaded profile image (left); Google reverse image search of 
signal profile image (right)

3.5.4.5 Shared Media and URL Preview in Chat 

Signal allows users to share URLs within chat sessions and generates a URL preview 
with a thumbnail and a brief description of the web page that the URL points to. The 
URLs shared in Signal one-to-one, and group chats can provide digital forensic 
investigators with much information about the topics covered in the chat and provide 
new leads for online investigation. Based on the tests conducted by the author, the 
URL can be previewed within a Signal chat if the message sender enables the feature. 
The message recipient does not need to have URL preview enabled. 

3.5.5 Forensic Acquisition and Analysis of Signal 

This section will focus on the test results obtained from the forensic acquisition of 
devices with Signal running on and explain the findings and how they can contribute 
to the Signal investigation.
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3.5.5.1 Signal iOS 

Visual Examination 

When investigators have the iOS devices seized, a forensic acquisition may not 
be possible on site. In this case, a visual examination may be helpful for a quick 
assessment. In this chapter, the author focuses on four Signal features: Notification 
content, Hide Screen in App Switcher, and Screen Lock. 

The notification content means what details can be viewed from iOS notifications. 
Signal allows users to choose from Name, Content, Actions, Name Only, and No 
Name or Content. As shown in the figure below, if Signal is configured to show 
name, content, and actions on iOS system notifications, investigators can visually 
view many incoming Signal messages and the sender information. 

Screen lock is a user security mechanism; once enabled will need to enter the iOS 
system passcode or authenticate via biometrics to land in the Signal app. If the feature 
is enabled, investigators cannot view the Signal messages directly by launching the 
app without the passcode. 

Hide Screen in App Switcher is another user privacy setting. When switching 
apps on an iOS device, the content on the current app view will be shown to the user. 
Therefore, investigators may adopt this system feature to view Signal messages. 
However, if the target enables the Hide Screen in App Switcher, the Signal app will 
only show a blue background with the Signal logo when switching apps. 

iTunes Logical Backup 

iTunes logical backups of Alice iPhone 8 and Bob iPhone X are created with Oxygen 
Forensic Detective (Fig. 3.10). The logical backups use the standard iTunes backup 
mechanism to backup iPhone user data including contact book, iMessage, calendar, 
and data from built-in apps on iPhone. As a logical backup, no deleted data and data 
from unallocated space will be included. The logical acquisition aims to understand 
what Signal artifacts can be found in an iTunes backup, which is an Apple-provided 
backup solution for all regular iOS device users. It is also useful for investigators to 
assess whether the logical acquisition should be considered an option when no other 
acquisition technologies are equipped.

From the following figure of the Oxygen Forensic Detective device extraction 
dashboard, we notice that Signal is not listed in the apps automatically extracted and 
parsed by Oxygen. However, this does not mean that no Signal artifacts are extracted. 
The next step can be a global search within the iTunes backup of the keyword “Signal” 
in all text files and file contents to confirm if there are any Signal-related artifacts 
within the backup. The search turns 98 hits, including SMS, contact, process activity, 
contact activity, SQLite databases, Plist, and other artifacts. Although the Signal 
database and shared media are not included in the iTunes backup, we can still tell a 
lot from the logical extraction. 

In the contact and SMS section, the Signal verification code sending service 
is extracted from the device contact book, and the SMS containing the one-time
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Fig. 3.10 Oxygen forensic detective dashboard for Alice iPhone 8 iTunes backup

verification code is parsed. With the timestamp, investigators can understand whether 
a Signal messenger is installed on the device (Fig. 3.11). 

When searching for the OS artifacts, the Signal app-related process records 
are found in the iTunes backup. This information can tell the investigator 
that Signal is installed on the device, and when it is launched. Another important 
piece of information is that the application ID of Signal in an 
iOS device is “org.whispersystems.signal”, and the process ID is 
“Signal/org.whispersystems.signal” (Fig. 3.12).

The search also reveals the folder structure of Signal on iOS devices, and the 
folders found from the iTunes backup are listed in the following screen capture. 
When looking into the folders, no actual database or other artifacts are found within 
the folders. However, this information can be preserved as a reference if a full

Fig. 3.11 Signal artifacts in contact book and SMS 
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Fig. 3.12 Signal artifacts in contact and process activity

filesystem or physical extraction can be done at a later stage. According to the research 
conducted by SANS [38], the Signal data can be found in the paths:

• /private/var/mobile/Containers/Data/Application/<APP_GUID>
• /private/var/mobile/Containers/Shared/AppGroup/<APP_GUID> 

However, no Signal data is in the above paths. 
In the SQLite database “Calendar.sqlite.db”, the iCloud account used 

on the iOS device can be identified. In this test, the email address 
alice_signaltest@protonmail.com is the iCloud username used on this iPhone 8. 
Moreover, the two YouTube videos shared by Alice iPhone 8 with Bob iPhone X in 
Signal chat are captured in the Safari Browser artifacts section. 

In the Wireless Connections sections, the Wi-Fi SSID that the iOS device has 
connected are listed with coordinates, which can be used for further combined 
searches with other OSINT data to trace the target’s activities at a certain point 
in the timeline. 

Another important source of evidence is the Password and Token section. For 
example, in the iTunes backup, 15 credentials and 188 keychain data are parsed by 
Oxygen, including the keychain file of WhatsApp, Viber and iCloud. If the cloud 
account forensics is within the authorization, investigators can adopt these credentials 
to extract more backup data from the cloud (Fig. 3.13).

The iPhone X is running iOS 14.3 during the tests, and the iPhone 8 is running iOS 
14.6, so the difference in the extractions can be identified. Note that fewer artifacts 
related to Signal are turned in the global search, and no iCloud account information 
is included in the iTunes extraction.
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Fig. 3.13 Credentials and keychain artifacts in iTunes backup

In general, an iTunes backup does not provide investigators with Signal messages, 
shared media, and other related data. Still, it can be used as a reference to indicate 
whether a Signal messenger is installed on an iOS device or not. Besides, investigators 
may use the geolocation information to trace the target’s activity and adopt cloud 
investigation credentials and keychain files. 

iOS Full Filesystem Extraction with Checkm8 

Checkm8 bootrom is the major solution for the forensic acquisition of iOS devices. 
The open-source iOS jailbreaking tool is embedded as the standard method to create 
a full filesystem extraction of the iOS device. Oxygen Forensic Detective, Cellebrite 
UFED, Belkasoft and other commercial mobile forensic manufacturers rely on the 
update of Checkm8 to support new iOS versions and later Apple devices. According 
to the official GitHub site, Chechm8 is a permanent uncatchable bootram exploit for 
iOS devices allowing dumping SecureRom, decrypting keybags for iOS firmware, 
and demoting devices for JTAG [39]. Another advantage of iOS full filesystem 
extraction is that no permanent jailbreaking is required. In the test, a Checkm8 
full filesystem extraction is conducted on both the iPhone 8 and the iPhone X 
using Oxygen Forensic Detective. A second Checkm8 extraction is conducted with 
Cellebrite UFED Touch 2. Although the Signal foundation criticizes Cellebrite for 
its lack of security mechanism for the mobile data extraction tool, Cellebrite remains 
one of the most popular and most robust mobile forensic solutions on the market. 
Therefore, an extraction is conducted for comparative analysis. The main aim of 
the extractions is to understand what Signal artifacts can be found from an iOS 
full filesystem extraction, how they can contribute to the investigation and feed the 
real-time investigative actions and OSINT research. 

With the Checkm8 full filesystem extractions, the Signal database and other related 
data such as user information are extracted. Therefore, differences between the two 
test scenarios will also be discussed in a comparative approach. 

As listed in Table 3.2, the Signal is configured with default settings in the first 
test scenario, and more secure settings are configured in test scenario 2. It is worth in 
that some features in which the usage and results are straightforward are not tested, 
especially, using system contact photos and always relaying calls.
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Table 3.2 Signal settings on iPhone 8 

Scenario 1 Scenario 2 

Chat settings Link preview
√ × 

Show chats in 
suggestions 

√ × 

Use system contact 
photos 

Notification content Name and content Name, content, and 
actions 

No name or content 

Notify when contact 
joins signal 

√ × 

Privacy settings Read receipts
√ × 

Typing indicators
√ × 

Disappearing messages 
default timer 

× 5 min  

Hide screen in App 
switcher 

× √ 

Screen lock × √ 

Show calls in Recents
√ × 

Always relay calls × × 
Sealed sender × × 

The first difference between the iTunes backup and the Checkm8 full filesystem 
extraction is the size of the extraction file. The iTunes backup of the iPhone 8 is 
87.3 MB, and the Checkm8 iOS full filesystem extraction tar file for test scenario 1 
is 9.39, and 9.66 GB for test scenario 2. We can easily conclude that full filesystem 
extraction should be obtained for iOS devices if possible. 

Again, we start the comparative analysis from the Oxygen extraction dashboards 
(Figs. 3.14 and 3.15). From the two figures below, we can view the different numbers 
of Signal data extracted by Oxygen. The hypothesis is that the disappearing message 
timer is set to 5 min in test scenario 2. According to Signal official documentation, 
if enabled on the sender side, the disappearing message timer is counted from the 
moment when a message is sent. In test scenario 2, a disappearing message is enabled 
in the Alice iPhone 8, the sender, but not on Bob iPhone X, the receiver. Therefore, 
all messages disappear 5 min after sending out.

When we look into the Signal section in Oxygen, we can see that the mobile 
number, the contact (Bob iPhone X), text messages, shared media and logs are 
extracted as expected. In addition, the mobile number used to register Signal and 
the user-defined PIN code are extracted. If authorised, this information can be used 
for the Signal account takeover discussed in the previous section. Also, the Signal 
contact’s profile image, phone number, and username are extracted. This information 
can be used for Signal account take over and further OSINT investigation, such as 
image reserve search, name, and phone number reverse search. Compared with the
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Fig. 3.14 Oxygen dashboard of iPhone 8 full filesystem extraction—test scenario 1 

Fig. 3.15 Oxygen dashboard of iPhone 8 full filesystem extraction—test scenario 2

test scenario two extraction, the author finds that the same Signal user account and 
contact information are extracted. 

Regarding the messages in the test dataset, the contents and the timestamps are 
extracted except the message “delete for everyone” and view-once media. The deleted 
messages have only the timestamps and direction (incoming/outgoing), but with 
empty content; the same for the view-once media. However, for test scenario 2, the 
messages disappear 5 min after sending out, and the extraction is conducted after 
the timer is reached. Therefore, the author notices that the disappearing messages 
have no artifacts left in the extraction, no content, timestamps or message direction 
(Figs. 3.16 and 3.17).

Another finding is about the URL preview (Fig. 3.18). Signal generates a URL 
preview by interpreting the URL when a user pauses to type. However, if the user 
pauses a bit, and then finishes typing the rest of the URL, Signal will interpret a
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Fig. 3.16 Signal messages “delete for everyone” and view-once media artifacts—test scenario 1 

Fig. 3.17 Signal message artifacts—test scenario 2

Fig. 3.18 URL preview artifacts 

second URL. For this reason, we can see from the figure below that three URLs are 
extracted in a single Signal message. It might be not very clear for investigators to 
distinguish whether they are three different URLs or just one URL with a pause in 
typing at first. This could be distinguished by reviewing the URLs. It is obvious that 
the typing was paused or interrupted in our case. 

Then, we can investigate where the Signal databases locate. As mentioned before, 
Signal databases should be in the following paths:

• /private/var/mobile/Containers/Data/Application/<APP_GUID>
• /private/var/mobile/Containers/Shared/AppGroup/<APP_GUID> 

However, the APP_GUID may not be obtained by reviewing the arte-
facts. Instead, we can search for the keyword Signal in the filesystem. From 
the search result, we can see the Signal database signal.sqlite locates in 
the path/private/var/mobile/Containers/Shared/AppGroup/687B747F-FF8F-4C7F-
BDA9-1BCE0F7BA064/grdb/signal.sqlite, therefore, the Signal APP_GUID is 
687B747F-FF8F-4C7F-BDA9-1BCE0F7BA064. We can then use this information 
to search other Signal data within the filesystem. From the search, we can understand 
that the messages and the shared media are stored in the encrypted signal.sqlite. 
According to the research of Magpol, decrypt the Signal database requires the 
database key in the keyvalue “GRDBDatabaseCipherKeySpec” is randomly gener-
ated when initialising the Database for the first time. The Key and value are then
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Fig. 3.19 GRDBDatabaseCipherKeySpec Keyvalue 

stored in the iOS keychain. The keyvalue is extracted by the iOS full filesystem 
extraction and decoded using base64 (Fig. 3.19). 

When comparing the two Signal databases from the iPhone 8 of test scenario 1 
and scenario 2, the author finds that the sizes of the two databases are the same, both 
are 1.31 MB. Given that the same testing dataset is used for the two scenarios, it is 
worth researching if the disappearing messages are saved in the database but hidden 
from view. 

Another important artifact is the group.org.whispersystems.signal.group.plist 
locates in the path /private/var/mobile/Containers/Shared/AppGroup/APP_GUID 
/Library/Preferences, which contains the Signal version information and the app 
configuration data (Fig. 3.20). 

Similarly, the Signal settings on the iPhone X are different in test scenario 1 and 
test scenario 2 (Table 3.3).

Like the iPhone 8, the Signal user and contact information are extracted. The 
Signal database is the same as mentioned for iPhone 8. Besides the Signal data, a 
full filesystem provides investigators with other sources of evidence, such as GPS 
geolocation information that can be used to create a map of the target’s activity. 
The map information can support social media analysis to validate where the target 
locates at a specific time point.

Fig. 3.20 group.org.whispersystems.signal.group.plist 
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Table 3.3 Signal settings on iPhone X 

Scenario 1 Scenario 2 

Chat settings Link preview
√ √ 

Show chats in 
suggestions 

√ √ 

Use system contact 
photos 

× × 

Notification content Name and content Name, content, and 
actions 

Name, content, and 
actions 

Notify when contact 
joins signal 

√ √ 

Privacy settings Read receipts
√ √ 

Typing indicators
√ √ 

Disappearing messages 
default timer 

× × 

Hide screen in App 
switcher 

× × 

Screen lock × × 
Show calls in Recents

√ √ 

Always relay calls × × 
Sealed sender × √

The keychain files and credentials extracted from the iOS keychain can be used 
for cloud investigation and OSINT investigation (Fig. 3.21). 

Regarding the Signal database, the findings on iPhone X also indicate that the 
size of the signal.sqlite remains the same even if the disappearing message timer 
is enabled. The author uses Magnet AXIOM which supports manual extraction of 
GRDBDatabaseCipherKeySpec keyvalue, and then uses the keyvalue to decrypt the 
imported Signal database. After importing the signal.sqlite extracted from the iPhone 
X full filesystem extraction created with Oxygen, and copy the GRDBDatabase-
CipherKeySpec keyvalue decoded base64 by Oxygen, import them into Magnet 
AXIOM for processing. Once the processing finishes, we can find the Signal chats

Fig. 3.21 Signal account and contact information—iPhone X 
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Fig. 3.22 Signal database 
path in Cellebrite Physical 
Analyzer 

under the Communication Artifact type. Although Magnet AXIOM allows users to 
decrypt the imported Signal database, it does not provide a view of the decrypted 
Signal database signal.sqlite.decrypted. To view the database structure, the author 
uses Cellebrite Physical Analyzer. 

The Signal database extracted from the iPhone X for test scenario 1 is 
located in the path Apple_iPhone X (A1901).zip/root/private/var/mobile/ 
Containers/Shared/AppGroup/8CF8600C-3A28-49FB-93B1-CCB85FE3FCFC/ 
grdb/signal.sqlite. Under this path there is another decrypted version Signal 
database signal.sqlite.decrypted, which is our target of analysis (Fig. 3.22). 

From the file info tab in Cellebrite Physical Analyzer, we know that the size of the 
decrypted Signal database is 1351680 Bytes with 4830 rows. In the database view 
tab, we can clearly view the Signal iOS database structure. The Signal database is 
an SQLite database, and when looking into the sqlite_master table, we know that the 
Signal database has 139 database tables in total, and 18 of them are deleted tables 
in this case (Fig. 3.23). Not all tables will be covered in this chapter. We will focus 
on the database tables containing the messages, user information, timestamps, and 
verify if the view-once media read and deleted messages can be found in the Signal 
database.

The first table we will explore is the model_OWSUserProfile (Fig. 3.24). In this 
database table, the user profile name, the phone number linked to the Signal account, 
the uniqueID of the user, the last profile fetch timestamp, the last messaging times-
tamp, the profile image path, and filename can be found. With the information from 
this database table, investigators can conduct OSINT searches on the name, phone 
number and profile images. In addition, the uniqueID of users, can be used to query 
the database to fetch all user information.

It is also worth noting that Signal iOS uses Unix epoch time to represent times-
tamps in the database. The time encoding is identified automatically in Cellebrite 
Physical Analyzer. 

The second database table to explore is indexable_text, where the Signal messages 
are stored. In this database table, we can find the message content and the unique 
messages ID generated by Signal. The opened view-once media and deleted messages
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Fig. 3.23 sqlite_master table of signal database

Fig. 3.24 model_OWSUserProfile database table of signal iOS

have a database entry, but the message content is empty. The corresponding times-
tamps and the direction information of the messages can be found in a different 
database table index_interactions_on_timestamp_sourceDeviceId (Fig. 3.25).

What are still missing from the Signal database? The data of deleted messages, the 
shared files, and the view-once media. The scrambled content of deleted messages 
can be found in the database table indexable_text_fts_data (Fig. 3.26). Although 
not all message content can be recovered, a large part of the information can be 
reconstructed.

The shared files are considered attachments in the Signal database, and they 
can be located in model_TSAttachment. In addition, the message ID of the view-
once media and whether they have been opened can be found in the database table
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Fig. 3.25 indexable_text database table of signal iOS

Fig. 3.26 indexable_text_fts_data database table of signal iOS

index_interactions_on_view_once. However, the view-once media contents are not 
located in the Signal database. 

The decrypted Signal database of test scenario 2 is also reviewed for comparison. 
Especially that the disappearing message timer is set as 5 min. The 
path of the decrypted Signal database is Apple_iPhoneX.zip/root/private/var 
/mobile/Containers/Shared/AppGroup/FDF7354F-7FF5-485C-8A1C-C6CCF49A 
8037/grdb/signal.sqlite/signal.sqlite.decrypted. 

When we investigate the database table indexable_text where the message contents 
are stored, the author finds that the message contents are either empty or replaced 
with the sender’s phone number username (Fig. 3.27).

Another database table to investigate is model_OWSDisappearingMessages 
Configuration, in which we can find the unique ID of the user who enables the 
disappearing message timer and the timer in seconds (Fig. 3.28).



3 Signal Instant Messenger Forensics 75

Fig. 3.27 indexable_text database table of signal iOS with disappearing message

Fig. 3.28 model_OWSDisappearingMessagesConfiguration 

3.5.5.2 Signal Windows 

The forensic acquisition and analysis of Signal Windows and Signal macOS are 
discussed in this section as they are linked to the iOS devices in the tests. Signal 
client on Windows 10 examiner laptop is linked to the Alice iPhone 8, and Signal 
client on the macOS Big Sur is linked to the Bob iPhone X. Both Signal desktop 
clients are not used to send messages but to synchronize the messages sent and 
received on the mobile devices. The test aims to simulate how investigators can use 
a linked device to receive real-time Signal messages, shared media, and files. 

For test scenario 1, the disappearing messages timer is not enabled. Therefore, 
most of the messages sent and received between the iOS devices remain on the 
interfaces of Signal desktop clients. Only the messages deleted from both participants 
and the view-once media will disappear from the Signal desktop interface. As for test 
scenario 2, the disappearing message timer is enabled for five minutes on the Alice 
iPhone 8. A notification displays on the Signal desktop clients to notify users about 
the disappearing message settings. Of course, investigators can use screen recording 
software such as FlashBack to record the Signal desktop interface. However, the 
screen capture cannot store the shared media and files. Another option to monitor the 
incoming Signal messages is from Windows notification. When the Signal desktop
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is configured to include name, content, and action in the notifications, investigators 
can collect the notifications from reconstructing the chat session. 

The advantage of Windows 10 system notification is that the notifications remain 
in the notification pane even when the Signal desktop is shut down. However, notifi-
cations still cannot capture the media and files shared. Therefore, the best option is 
to acquire the desktop device and understand what Signal artifacts can be retrieved. 

When the test scenarios are finalized, the Windows 10 examiner laptop is not 
powered off immediately. Instead, a RAM dump is created with FTK Imager and 
imported to Magnet AXIOM with Volatility memory analysis framework included 
for analysis. When reviewing the artifacts parsed and carved by Magnet AXIOM, 
we find that the images shared within the Signal test chats are captured in Windows 
RAM images. The Signal profile image of the Alice iPhone 8 and Bob iPhone X 
is also captured. Moreover, when searching the profile images in Google, the other 
images are also captured in the Windows 10 RAM image. It is worth noting that the 
images shared in the deleted Signal messages and sent as view-once media are also 
found from the Windows 10 RAM dump (Fig. 3.29). As mentioned in the Signal 
iOS database analysis, the view-once media are not located clearly in the Signal iOS 
database. With the memory dump of the linked Windows desktop, investigators can 
find the artifacts on the desktop. 

The Web URLs typed in Signal chat as text messages are found in Windows 10 
RAM dump and carved by Magnet AXIOM as browser activity. In addition, the 
native format URLs are listed as potential browser activity, and the corresponding 
Webpage titles are shown in the Firefox SessionStore artifacts (Fig. 3.30).

When reviewing the Windows LNK files in Windows 10 RAM dump (Fig. 3.31), 
we find the Signal desktop installation path and the MAC timestamps. Also, the 
device Mac address of the desktop device network adapter is captured. With this 
information, investigators can map the devices linked or linked with a target Signal 
account, which could be used for network forensic analysis.

Another important finding from Windows 10 RAM dump is the process infor-
mation of the Signal desktop. On Windows 10, Signal.exe launches process 7156, 
and four other processes share the same parent process 7156. The five processes are

Fig. 3.29 Signal images found from linked Windows 10 RAM dump 
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Fig. 3.30 URLs sent in signal chat captured in Windows 10 RAM dump

Fig. 3.31 Signal desktop information in Windows 10 RAM dump

Fig. 3.32 Memory processes of signal windows 

created for the same Signal session and started in a sequential style. The process 
start times are also captured, but no exit timestamps are linked because the Signal 
desktop is opened while the RAM is captured. If a deep analysis of the Signal 
desktop behaviour is needed, investigators can also investigate the dynamically 
loaded libraries (DLL) list linked with Signal.exe (Fig. 3.32). 

Besides the Windows 10 RAM dump, the Windows 10 examiner laptop is also 
powered off for a post-mortem full disk acquisition. The Windows 10 laptop is booted 
into a bootable USB thumb drive with CAINE 12 Beta Linux distribution for a live 
acquisition. A forensic image of EnCase Expert Witness E01 format is created for 
the 256 GB internal SSD of the laptop. The forensic image is then processed by 
Magnet AXIOM. 

Previously, we mentioned that the Windows 10 system notifications can be a 
source to extract incoming Signal messages. When reviewing the artifacts within the 
full disk image in Magnet AXIOM, the author finds that not all incoming messages 
from Bob SignalTest to Alice SignalTest, the Signal account used on the iPhone 8 
and Signal Windows, are captured in the Windows 10 notification. The Windows 10 
notifications are stored in the SQLite database wpndatabase.db in the system path in 
XML format: 

<SYSTEM_PARTITION> \Users\<USER_NAME>\AppData\Local\Microsoft\ 
Windows\Notifications
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Fig. 3.33 Captured incoming signal messages in wpndatabase.db 

The database can be viewed from Magnet AXIOM SQLite Viewer (Fig. 3.33). As not 
all incoming Signal messages are stored in the database, Windows system notification 
should not be considered the only source of Signal information during an investi-
gation. However, the value of Windows notification is that the message content of 
deleted messages may be found, in this case, the message from Bob “its just a misun-
derstanding LOL…” is deleted from both iOS devices but is found in the Windows 
10 full disk image. 

To better understand how Signal stores data in Windows 10 and 
extract as much information from the application, we will focus on the 
Signal database now. The Signal folder can be found in the system path: 
<SYSTEM_PARTITION>Users\<USER_NAME>\AppData\Roaming\Signal\. 
Another the multiple subfolders, we will focus on two files:

• config.json
• SQLite database db.sqlite in the sql subfolder. 

According to the research blog of Judith Myerson published on TechTarget [40], 
each time Signal desktop opens the database, it stores the encryption key in plaintext 
to the local configuration file config.json. Just as mentioned in the blog, the content 
of config.json can be viewed within Magnet AXIOM, and the keyvalue is: 

31fe07297864bf5413f372c303df10a1b3dcf27e0bba1c8929dd4db 
58d5f9f3e 

Many information security researchers have criticized how Signal stores a 
database’s encryption key, but Signal responded that at-rest encryption is never 
something that Signal promises to provide. However, how Signal stores its database 
encryption key remains a risk, as any malicious users with access to the physical 
machine and the device’s administrator access can decrypt the Signal database. In 
this case, we export sb.sqlite and use the plaintext encryption key to decrypt and open 
the Signal database in DB Browser (SQLCipher). The decrypted database structure 
is shown in the screen capture below (Fig. 3.34).

The message content, send, and receive timestamps, type, and other message 
properties can be found in the messages database table. The timestamps in the Signal 
desktop database are represented in Unix epoch milliseconds. Therefore, we can 
convert the timestamps into the human-readable format by writing a simple SQLite 
query as below:
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Fig. 3.34 Decrypted signal 
desktop database from 
Windows 10

SELECT id,conversationId,type,source,body,datetime 
(sent_at/1000, ’unixepoch’, ’utc’), datetime (received_at/1000, 
’unixepoch’, ’utc’), datetime (sent_at/1000, ’unixepoch’, ’utc’), 
hasAttachments, hasFileAttachments, hasVisualMediaAttachments 
FROM messages; 

The author noticed that the contents of deleted messages are empty in the Signal 
database, but there is a database entry recorded in the messages table. Also, Signal 
uses a Boolean database variable to define if there is an attachment, file attach-
ment, and visual media attachment for each message. The author then finds that the 
attachments of Signal messages are stored in another subfolder attachments.noindex 
and categorized as archive files by Magnet AXIOM. However, when exported, the 
attachments can be opened with the default apps (Fig. 3.35).

3.5.5.3 Signal MacOS 

The MacBook Pro running macOS Big Sur has a Signal for Mac installed and linked 
to Bob iPhone X for both test scenarios. When the tests are finished, the MacBook 
Pro remains powered on, and a live RAM dump is captured with OSXPMem 2.1, 
and a Mac memory image in RAW format is created. Similar to Windows 10, not
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Fig. 3.35 Screen capture of signal database

many forensic findings related to Signal in the memory dump. Only the URLs typed 
as Signal messages are captured as network browser activity (Fig. 3.36). 

Then, the MacBook Pro is powered off for a full disk forensic acquisition. CAINE 
12 Beta bootable USB is used to create the forensic image in E01 format of MacBook 
Pro. The forensic image is then imported into Magnet AXIOM for processing. Before 
we focus on the Signal database, we first look at the KnowledgeC database. In this 
database, we can find Signal application focus data. The start and end timestamps 
record the usage on Signal for Mac. Besides, the KnowledgeC database also records 
the incoming Signal notifications. However, similar to Windows 10, not all incoming 
Signal messages are written into the notification database. Note that on both Windows 
10 and macOS, a complete data deletion of Signal data from the clients and removing 
the Signal desktop for a fresh installation does not necessarily remove all traces of 
Signal usage. The network and application usage artifacts record the usage of Signal.

Fig. 3.36 URLs found in Mac memory dump 

Fig. 3.37 Signal database messages table in macOS with disappearing message enabled 
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Then, we will focus on the Signal database in macOS. For comparison purposes, 
the Signal database for test scenario 2 with a disappearing message timer set is 
extracted for a detailed analysis here. The Signal data storage locates in the system 
path. 

<MAC_SYSTEM_PARTITION>\Users\<USER_NAME>\Library\Application 
Support\Signal\ 

Signal for Mac has the same folder structure as Signal Windows, which facilitates 
cross-platform development and forensic exanimation. Same as in Windows 10, we 
can locate the Signal database in sql subfolder, and we can also extract the SQLite 
database encryption key in plaintext from file config.json. The same procedure used 
to decrypt the Signal database in Windows is used for macOS. 

In the Signal database, not all the messages sent and received in the test dataset are 
listed in the messages database table (Fig. 3.37). The disappearing message timer 
is enabled on the iPhone 8 side, and the full disk acquisition is created after the 
timer expired, therefore, the empty message contents can be expected. However, 
unlike the messages deleted using the Signal feature “delete for everyone”, which 
leaves a database entry with empty content, Signal seems to remove the disap-
pearing messages randomly from the database. As a result, some messages have 
no database entries, while the others can be retrieved. The detailed mechanism of 
how Signal is used to “sanitize” the database for disappearing messages remains 
further investigated. 

3.5.5.4 Signal Android 

Due to the lack of physical Android devices, the author uses the BlueStacks Android 
emulator on a Windows 10 examiner laptop. BlueStacks provides a native user expe-
rience up to Android 10, and the emulator provides various built-in virtual device 
profiles without manual configuration. In the tests of this chapter, a Samsung Galaxy 
S10 and a Samsung Galaxy S20 Ultra virtual devices are created in BlueStacks using 
the pre-defined profiles. The data of BlueStacks Windows can be found in the system 
path: C:\ProgramData\BlueStacks_nxt. 

Each virtual device created in BlueStacks has a separate folder with the naming 
convention ANDROID_ALIAS_ID No, such as “Nougat64_1”. The Android system 
profile used in the tests is Android Nougat 64-bit. BlueStacks asks users to create a 
virtual device as the master device. In the folder of the master device, “Nougat64” in 
our case, we have the folder structure as shown in the screen capture below. From the 
master device folder, we can see that BlueStacks uses VDI virtual disk format to store 
data. Based on the master device, more virtual devices with the same configurations 
can be created by cloning the master device. In the non-master device folder, only 
the DATA.VDI can be found. The DATA.VDI is the main file that we will focus, on 
and where the Signal data locates (Fig. 3.38).
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Fig. 3.38 BlueStacks master 
device folder content 

Like the tests with iOS devices, the Signal Android are configured with customized 
settings for test scenarios with a disappearing message timer set as five minutes 
(Table 3.4).

We firstly have a look at the DATA.VDI of Samsung S10. In the 
password and token artifacts type list, the Gmail account used to 
register Google Play Store is stored in the SQLite database in the path 
<ANDROID_PARTITION>\system_cd\0\accounts_ce.db. The Gmail account 
properties can be found in the database and the tokens for accessing other Google 
services. In the same path of accounts-ce.db, the recent system task information 
is stored in XML format. For example, the file 14_task.xml is the task of Signal 
Android. The most important information that can be extracted from the XML file 
is the timestamps when Signal is lastly launched and moved. The token can be used 
later for extracting cloud data from Google services if authorized. 

The images shared in the Signal testing chat can be found from the unallo-
cated space of the virtual Android Samsung device. Also, another copy of the 
images is found in the cache of the BlueStacks file manager app, which is an 
app to simulate the Android file manager on a physical device. Therefore, it is 
worth verifying the finding on the physical Android mobile. Moreover, in the folder 
<ANDROID_PARTITION>\media\0\DCIM\SharedFolder\ (Fig. 3.39), all image 
files and other file attachments shared in the test Signal chat are found. However, the 
finding does not mean Signal Android stores the files, but because the files are first 
uploaded to the virtual Android devices, and then shared within Signal. The inspi-
ration of this finding is that many forensic artifacts may be stored in the file system, 
so investigators should not only focus on the Signal folder but should conduct a full 
analysis of the forensic image acquired.
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Table 3.4 Signal settings on virtual Android devices 

Alice Samsung S10 Bob Samsung S20 Ultra 

Chat settings Link preview × √ 

Show chats in 
suggestions 

× √ 

Use system contact 
photos 

× × 

Use system emoji × √ 

Chat backup × √ 

Notification content Name and content No name of content Show name and message 

Notify when contact 
joins signal 

× √ 

Repeat alerts Never Never 

Priority High High 

Calls notification
√ √ 

Read receipts × √ 

Typing indicators × √ 

Privacy settings Disappearing messages 
default timer 

× × 

Screen security
√ × 

Screen lock (not 
support) 

× × 

Incognito keyboard
√ × 

Always relay calls
√ × 

Signal messages and 
calls 

√ √ 

Sealed sender × √

Fig. 3.39 Android artifacts of files shared in signal 

The runtime-permissions.xml file in the path <ANDROID_PARTITION>\system 
\users\0\ keeps records of the system permissions required by each application 
installed. The approval result is represented with a Boolean variable, 1 is approved, 
and 0 is rejected. In the XML, we can find the permissions that Signal Android asks 
for. They are listed in the screenshot below. For example, Signal asks permission to 
read and write to the device contact book, get account information, read phone state
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and external storage, read send SMS and MMS, initiate, and receive calls, camera, 
and audio records. 

The author notices that Signal Android is named org.thoughtcrime.securesms in 
the filesystem. Therefore, investigators should search for this alias instead of Signal 
within the Android filesystem. The Signal data folder locates in the path: 

<ANDROID_PARTITION>\data\org\thoughtcrime.securesms\ 

Inside this path, several subfolders can be found, as shown in the screen capture 
below. 

The Signal SQLite database signal.db locates in the subfolder databases. The 
Signal Android database is encrypted with a different encryption mechanism than 
in the iOS system; the AES_GCM mode encryption requires keyvalues from the 
following files to decrypt the Signal database.

• \misc\keystore\user_0\<SIGNAL_APP_ID>_USRSKEY_SignalSecret 

The value of hex offset 2D to 3C in the file contains the AES_GCM encryption key;

• \data\org.thoughtcrime.securesms\shared_prefs\org.thoughtcrime. 
securesms_preferencesxml 

The keyvalues of key “pref_database_encrypted_secret” are required.

• The first keyvalue “data” contains the AES-GCM ciphertext, and the last 32 
characters consist of the auth tag.

• The second keyvalue, “iv” is the initialization vector. 

The encrypted Signal databases are exported from the two virtual Android devices, 
and the author tries to decrypt the databases with the above keyvalues in Magnet 
AXIOM; however, the tests are failed. Although Magnet AXIOM does not throw 
any error message, it returns no decrypted result (Fig. 3.40).

Although the encrypted database cannot be decrypted, some Signal artifacts are 
still parsed by Magnet AXIOM. The user information and the contact list are parsed. 

3.5.5.5 Signal Linux 

Signal Linux is installed in the virtual machine hosted in VMWare Workstation Pro 
16 on a Windows 10 examiner laptop. Ubuntu 20.04.2 LTS 64-bit is used as the 
testing operating system. Signal Linux is installed in the Ubuntu virtual environment 
and linked to the virtual Samsung S10 for the test. When the test is finished, the 
Ubuntu virtual machine remains powered on, and a snapshot in VMEM format is 
created. Then, the Ubuntu virtual machine is powered off, and the VMDK virtual 
disk image is imported into Magnet AXIOM together with the snapshot image for 
processing (Fig. 3.41).

The VMEM snapshot is like a RAM capture on Windows, in which the network 
activities of Signal are found, as well as the thumbnail of the URL previewed in the 
Signal chat.
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Fig. 3.40 Decrypt signal android database in Magnet AXIOM

Fig. 3.41 Signal network activities in Ubuntu VM snapshot
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Fig. 3.42 File details of encrypted signal database in Ubuntu 

In the virtual disk image VMDK, we can find the Signal database listed in the list of 
the encrypted files of Magnet AXIOM, which uses the same encryption mechanism 
as on Windows and macOS. Therefore, we can export the Signal database and decrypt 
it with the keyvalue from config.json. As expected, the Signal database in Ubuntu 
has the same database entries as in Windows 10, this is because Signal desktop is 
developed as a cross-platform application that one-time development can deploy to 
different platforms (Fig. 3.42). 

3.5.5.6 Sharing Signal Data with Investigators 

Both criminal investigation and workplace investigation have a clear standard of 
evidence acceptance. Screen captures from WhatsApp, Skype and other instant 
messaging applications are one of the main approaches for witnesses, victims and 
subjects to share information with investigators. However, screen captures are hard 
to distinguish whether they are authentic as they are usually stored in formats like 
JPG, PNG or TIFF to send through an insecure channel. Especially, free online 
resources such as fakechatapp.com, and fakewhats.com allow non-tech savvy users 
to create fake WhatsApp chats in several minutes. In WhatsApp, exporting chat into 
a compressed file of text messages and media files provides an alternative solution; 
however, the compressed file can be extracted. The text file can also be edited in
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any text editor. For instant-messaging applications with local or cloud data backup 
functions, a data backup should be created and protected with passwords. Then the 
package and passwords should be shared with investigators separately. However, 
Signal only supports data backup on the Android platform, and the backups are 
encrypted. 

The author proposes an alternative solution to share Signal data with investigators. 
Signal can be installed on an examiner’s laptop, and then the generated QR code 
is shared with the witness to scan. Once scanned, the examiner’s laptop becomes 
a linked device to the witness’s mobile handset. Then, investigators can store the 
synchronized Signal chats via screen recording, screen captures, and forensic acqui-
sition. Once the evidence collection finishes, the witness can remove the examiner’s 
laptop from the Signal linked device list. However, user privacy should be protected, 
and a clear authorization with a scope well-defined should be reviewed and signed 
by the witness in advance. 

3.6 Discussion 

3.6.1 General Process to Handle Signal 

With the shifting of the social gravity from personal interaction to online chatting, 
instant messaging applications have become copies of our lives. Digital forensic 
investigations on instant messaging applications start with forensically in the mobile 
device data and reviewing the shared messages and media. However, the develop-
ment of applications like Signal is driving the change of mindset of mobile forensics 
to integrated digital forensics. Delete messages from all chat participants, timed 
disappearing messages, and view-once media pose the same question to investiga-
tors and digital forensic practitioners, what to do if post-mortem filesystem/physical 
acquisition cannot recover deleted data? Also, linked devices of mobile and desktop 
devices make the physical device seizure more difficult. The target Signal account can 
remain active with data exchange with only one linked device not seized. Addition-
ally, suppose, the Signal registration lock is not enabled. In that case, the target of an 
investigation can easily register the same Signal account on a new mobile handset, 
which makes the seizure non-valid. Not to mention that the target can unlink all 
devices and delete Signal clients and the account from physical devices, which can 
lead the investigation to a dead end. These questions naturally lead to further thinking 
about the importance of extending Signal investigations from mobile examination 
centred or physical device forensic examination centred mode to an OSINT-based 
and real-time data flow mode investigation that does not necessarily involve physical 
devices. This framework relies on the power of OSINT and Signal built-in features to 
establish a social graph of the target and explore the possibility of monitoring the real-
time data exchange within Signal. The physical devices, if seized and acquired, should 
be considered as a new source of lead that feeds into the real-time and OSINT-based
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investigation. Besides an in-depth analysis of the Signal database, the contacts, geolo-
cations, timeline information and multimedia artifacts extracted from the physical 
devices would be input to an iteration of the real-time and OSINT-based investigation. 

The next natural step is to combine the segments of thinking into a formal frame-
work that streamlines the entire life cycle of the digital forensic investigation of 
Signal. Investigators and digital forensic practitioners can refer to the framework for 
their investigation preparation, decision-making, problem-solving during an investi-
gation, and validating their outcome. Compared with other frameworks for instant-
messaging investigation, such as IDFIF proposed by Bery Actoriano and Imam Riadi 
in their research on WhatsApp Web, the framework proposed in this chapter is specifi-
cally tuned to include the unique features of Signal and how to leverage these features 
to establish a real-time data flow and to facilitate the OSINT investigation. As of the 
writing time, the framework proposed in this chapter is the first digital forensic 
investigation framework proposed to the author’s best knowledge. 

Moreover, this framework is also a reference for future research on Signal. It 
can also be extended based on separate in-depth research of each step within the 
framework, such as the mechanism of linking devices to a Signal account. Can this 
mechanism be bypassed or cracked? Finally, researchers can use the framework in this 
chapter as an assessment reference to evaluate how their research can fit into the life 
cycle of a digital forensic investigation and contribute to achieving the investigation 
requirements. 

3.6.2 Signal Data and Database 

Signal is outstanding because of its top-level security and privacy protection 
compared with other market competitors. As part of this mechanism, Signal databases 
are encrypted on all supported platforms on the mobile and desktop. Although the 
findings in this section may be different on the different device makes and models, 
the author finds that the Signal Android has the best database encryption mecha-
nism compared with Signal on other platforms. The Signal database on an Android 
mobile device is encrypted with a mechanism that requires three different keyvalues 
to decrypt the SQLite database. Due to the limitation of physical devices, the tests 
on Signal Android are conducted with virtual Android devices. The author tries to 
export the keyvalues and the SQLite database and decrypt it in Magnet AXIOM, 
however, no decrypted results were identified from the result. On the other hand, 
the Signal database encryption key can be easily found in the iOS keychain file. The 
author successfully exports the Signal iOS database and decrypts it with the keyvalue 
in DB Browser SQLCipher. In the decrypted Signal iOS database, user information, 
including name, telephone number, last activity timestamps and profile description 
is found. Regarding the deleted messages via disappearing message and delete for 
everyone, the author finds that not all deleted message contents are removed from 
the Signal iOS database. For some deleted messages, the message content is empty, 
while all other message properties, including the timestamps can be identified. Other 
messages have contents in a disordered format or are scrambled with non-readable



3 Signal Instant Messenger Forensics 89

symbols. The author also finds that some deleted messages whose contents remain 
untampered in the Signal iOS database, and the full message content can be recovered. 
Similar findings are noted from Signal desktop for Windows, macOS, and Ubuntu. 
From a visual examination, it seems that Signal removes deleted message contents 
from the SQLite database in a random mechanism, which may leave certain message 
contents unchanged. This direction could be an option for further in-depth research 
to understand how Signal removes deleted message contents from the database. 

When comparing the findings with previous research done by Judge, her research 
focused on whether different forensic software can parse Signal messages and carve 
deleted messages from Android and iOS devices. An important difference between 
the two research is the improvement of mobile acquisition technology. In Judge’s 
research, a full filesystem extraction of iOS devices was unavailable, so not many 
Signal artifacts could be extracted from the logical extraction. In this chapter, the 
author can create full filesystem extractions with different mobile forensic software, 
leading to the successful decryption of the Signal database. On the Android platform, 
both pieces of research prove that the logical extraction of Android devices does not 
reflect the Signal database, and the Signal messages were not extracted either. Another 
improvement of this chapter is the database analysis. The author walks through the 
Signal database decryption process in this chapter and discusses Signal’s encryption 
mechanisms on both iOS and Android platforms, which was not covered in Judge’s 
research. Also, the author analyses the digital artifacts in the Signal database manually 
rather than relying on the software parsing functionality, which reveals more details 
about how Signal data is stored in the database, and what can be found for the deleted 
messages. 

This chapter also covers the desktop Signal clients for Windows, macOS, and 
Ubuntu. This chapter proves that Signal desktop is developed in a multi-platform 
style that the same database structure, folder structure and encryption mechanism 
are re-used in the three desktop platforms. Like iOS, the encryption key can be found 
easily from the Signal config JSON file in plaintext and can be used to decrypt the 
SQLite database manually. The research findings also reveal that Signal media can 
be found from live memory acquisition from linked desktop devices. The findings 
also prove the importance of including Signal desktop when investigating Signal. 

3.6.3 Signal Investigation Without Physical Devices 

One of the core findings of this chapter is to explore the possibility of investigating 
Signal with an OSINT-based and real-time data flow-based mode. In this chapter, the 
author finds a viable approach to taking over a Signal account with the registration 
lock disabled. With the method, investigators can register the target Signal account 
in an examiner’s mobile handset and continue data exchange, recording all user and 
contact information from the taken Signal account. Also, the author proves that a real-
time Signal data flow can be established by linking an examiner desktop or adopting 
the linked desktop device from the target to monitor the real-time data exchange of 
the Signal account under investigation. In addition, the various options to add new
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members to a Signal group offer a possibility for investigators to join the same Signal 
group as the target, monitor the group activities, and collect information about all 
group members. Of course, the extension of Signal investigation from a physical 
device-based, lab forensic examination centred model to an interactive, real-time 
investigation comes with high risks to alert the target of the investigation; therefore, 
these activities must be conducted with extra caution and plan in advance. 

Meanwhile, the author explores Signal from an OSINT-based approach to fully 
use the built-in Signal features in investigations. Although Signal has fewer social 
network-style features than WhatsApp, Viber, and other instant messaging applica-
tions, it allows users to search Signal users with telephone numbers and view basic 
Signal user profiles. The read receipts and typing indicators can also be used in time-
line construction to map the target’s online activities. If combined with the real-time 
data investigation and digital forensic examination findings, the geolocation, multi-
media, contact information, and OS artifacts can be used as new leads for OSINT 
investigation. 

3.7 Summary 

This chapter introduces a new operational framework for digital forensic investiga-
tion of Signal instant messenger. The framework covers different forensic methods 
to handle Signal messenger data with or without the physical devices. Also, the 
chapter discussed how major forensic acquisition techniques can assist investigators 
in Signal investigations and their limitations. The chapter emphasizes the importance 
of real-time data capture and OSINT investigation when dealing with Signal and 
other instant messaging applications. The framework proves that investigators can 
have different choices when handling Signal messenger. The post-mortem forensic 
analysis of Signal can be considered valuable source to drive the OSINT investigation 
in an iterative model. The chapter proposes a new integrated digital forensic inves-
tigation framework for handling Signal secure messenger. The framework includes 
the entire life cycle of a digital forensic investigation, from the trigger to the final 
report. The framework includes an iterative process for situations with or without 
physical data carriers seized and acquired. Also, the chapter discusses the possible 
approaches for investigators to establish a real-time Signal data flow, and the data 
captured can be used for OSINT investigation. Signal features are tested with an 
author-defined dataset within different scenarios, and the test results are useful for 
investigative actions without the physical devices. In addition, the chapter also covers 
the digital forensic acquisition and analysis process for Signal supported platforms. 
Different digital forensic acquisition modes are discussed, and Signal artifacts can 
be found from the extractions. The chapter describes the process to decrypt Signal 
databases from different platforms and discusses what artifacts can be found and 
when to find the artifacts. The framework proposed in this chapter can easily be 
extended or adjusted for other similar instant messaging applications. Moreover, the 
framework aims to provide operational level guidance so that investigators and digital 
practitioners can use the framework directly in their daily investigation activities.
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4.1 Introduction 

Instant messenger (IM) are software tools to exchange messages in real-time over 
the internet between two or more users. Today, the most popular instant messenger 
clients like WhatsApp, Facebook Messenger, Threema, Telegram etc. are proprietary 
software that is owned and developed by large companies. On the other hand, there 
are also a lot of open-source projects like Jabber based clients, Matrix protocol or 
the Tox protocol with different clients like Riot [1], qTox [2]. Most people use well 
known messenger like WhatsApp [3], Telegram and Threema. The spread of these 
messengers makes it easy for people to connect with each other. Only a small part 
of people use less known messenger like qTox or Jabber based clients. They often 
appreciate the independence from large companies and trust in open source software. 

In the past couple of years, the amount of cases regarding cybercrimes has risen 
sharply. We often see the extensive use of End-to-End Encryption (E2EE) IM applica-
tions like Telegram, WhatsApp, Signal or Jabber based clients [3–5]. We also noticed 
the use of qTox messenger over the Tox protocol for communication between the 
offenders [6, 7]. Because of the implemented encryption algorithm, most digital 
forensic investigators were not able to read the user database and therefore not able 
to get the qTox communication of the suspects. They tend to lost important evidence 
material due to this fact. 

The story of Tox began in the year 2013. The idea was to build an unofficial 
successor of Skype, E2EE and that ran without requiring the use of central servers. 
The developers of Tox wanted to build a free and easy to use messenger for a wide 
range of platforms, supporting voice and video chats, file transfer and desktop sharing 
capabilities and they wanted it to be decoupled from the frontend respectively user-
interface. By now the Tox protocol is an open source project at github.com/TokTok 
(https://github.com/TokTok/c-toxcore) and a lot of clients for different platforms have 
been released. All clients are using the same core code of the Tox protocol. qTox is 
the most popular client for the Tox protocol and it is available for Windows, MacOS,
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Linux and BSD. qTox is an open source project, developed in C ++ by different users 
and managed on the platform github (https://github.com/qTox/qTox/). In the current 
version of writing this chapter (version 1.16.3) the following features are supported 
and relevant for a forensic consideration: Chats, Group Chats, File Transfers, Audio-
and Video Calls. Users are able to install qTox without registration and without 
specifying an address, e-mail or the real name. 

On the forensic investigation point of view, for most of the common IM appli-
cations there are software solutions to reconstruct metadata and communication. Or 
literature is available that describes a way and methods to reconstruct and/or decrypt 
such information. However, in the case of qTox/Tox it looks different. Existing well 
known digital forensic software like Magnet Internet Evidence Finder [8], Magnet 
Axiom [9] or X-Ways Forensics [10] is not able to detect and extract artifacts of the 
qTox messenger. Moreover, to the best of our knowledge, literature that describes 
the possibilities and forensic reconstruction of qTox data and communication has not 
appeared yet. Hence, this paper aims at investigating whether any forensic artifacts of 
qTox can be recovered from a specific desktop environment with two main research 
questions: Is it possible to find forensic artifacts of qTox on a system and what kind 
of artifacts can be forensically discovered when using qTox messenger? And if there 
are encrypted artifacts, is it possible to decrypt such data? The main contribution of 
this chapter can be listed as follows:

• Reconstruct artifacts from the hard drive and the memory of the system.
• A solution to decrypt the qTox sqlite databases.
• Experiments show that forensic artifacts can be recovered from the qTox Client 

in different desktop environments such as Linux, Windows. 

Hence, qTox forensic is interesting for law enforcement agencies. qTox is not 
widely used like WhatsApp or Telegram, but it is very common in the field of sexual 
abusers and the child exploitation community. Examining contacts and conversations 
is important for a forensic investigator since they might give important clues to the 
case. 

4.2 Background Concepts 

4.2.1 QTox Client 

The story of Tox began in the year 2013. Two years after the software giant Microsoft 
took over the then leading software for voice and video telephony Skype, a group 
of people in a 4chan (http://rbt.asia/g/thread/S34778013#p34778939) subchannel 
about technology discussed the privacy of Skype and the cooperation of Microsoft 
with the NSA. The idea was to build an unofficial successor of Skype, end-to-end 
encrypted and that ran without requiring the use of central servers. The developers of 
Tox wanted to build a free and easy to use messenger for a wide range of platforms,

https://github.com/qTox/qTox/
http://rbt.asia/g/thread/S34778013\#p34778939
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supporting voice- and video chats, file transfer and desktop sharing capabilities and 
they wanted it to be decoupled from the frontend respectively user-interface. 

By now the Tox protocol is an open source project at github.com/TokTok (https:// 
github.com/TokTok/c-toxcore) and a lot of clients for different platforms have been 
released. All clients are using the same core code of the Tox protocol. 

As mentioned in Sect. 4.1, qTox [2] is the most popular client for the Tox protocol 
and it is available for different OSs such as Windows, MacOS, and Linux. The 
first initial commit at github was on 24. June 2014 from a user with the canonical 
name “tux3”. In the current version (v 1.16.3) the following features are supported 
and relevant for a later forensic consideration: Chats, Group Chats, File Transfers, 
Audio- and Video Calls. 

You are  able to install  qTox without registration and without specifying an address, 
e-mail or your real name. If you start the qTox application for the first time, you will 
be asked to create a profile and provide a username and password or to load an already 
existing profile. After that, qTox generates a unique Tox ID and the necessary public 
and secret keys. This Tox ID is your own reachability. You can give this ID to other 
people to get in contact with them over the tox network. 

If you create a new profile, all user information, configuration files and database 
files are stored at the following locations: 

Windows 10: 
C:\Users\<username>\AppData\Roaming\tox\. 
Linux Ubuntu 18.04.4: 
/home/<username>/.config/tox/. 

If you set a password while creating an account, all user files and database files 
are encrypted. The filename is always the qTox username. For example, you could 
have testuser.db file for the username “Testuser” and it is the encrypted sqlite3 
database. It includes the user contact list and chat history. Another file is the encrypted 
user configuration file testuser.ini, which stores general information about qTox user 
settings. 

To read out your own Tox ID (cf. 2.2 below), to change your username or user 
status, you have to open the “My profile” page inside the qTox application (Fig. 4.1).

4.2.2 The Tox ID 

The unique Tox ID is a 76 characters (38 bytes) long string, which is used to identify 
peers in the tox peer to peer network. In order to add a friend, you need to have the 
friend’s Tox ID. The first part of the Tox ID is the 32 byte long term public key of the 
peer. The second part contains a 4 byte nospam value and the third part is a 2 byte 
XOR checksum (Table 4.1).

If a Tox user wants to add a friend to his friend-list, he will try to send a friend 
request to the Tox ID of that friend. This friend request contains the asymmetric public 
key, the nospam value and an inviting message. The primary goal of the friend request

https://github.com/TokTok/c-toxcore
https://github.com/TokTok/c-toxcore
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Fig. 4.1 “My profile” page inside qTox client on Windows 10

is transmitting the long term public key, because that is what the friend needs to know 
to create a connection to the sender of the request. The nospam value is a number to 
prevent someone from spamming the peer to peer network with valid friend requests. 
It makes sure that only those people who have seen the Tox ID of a friend are capable 
of sending a request. The nospam value is part of the Tox ID. 

The 2-byte checksum is calculated by XORing. The first two bytes of the long 
term public key and nospam value are calculated with the next two bytes. This result 
is calculated with the next following two bytes again until all 36 bytes have been 
XORed together. Then the result is appended to the end to form the Tox ID. 

4.3 Related Work 

(Instant) Messaging and email applications such as Facebook’s chat and Gmail 
clients, respectively, are widely used communication services that allow individ-
uals to exchange messages over the Internet. Given the nature of the exchanged 
data, digital artifacts left by such applications may hold highly relevant forensic
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value [11]. Vukadinović [12] described that instant messaging popularity has transi-
tioned from desktop-based-applications (i.e., ICQ, Windows Live Messenger, Yahoo! 
Messenger) to smartphone-based applications (i.e., WhatsApp, Viber, Kik, WeChat, 
QQ). There was also a transition from text conversations between individuals to the 
exchange of media like photos, video, documents, location and audio/video data. 
The possibilities of instant messaging applications have developed enormously in 
recent years. 

In the past messaging forensics research has been performed and it primarily 
focused on mobile operating systems like iOS and Android. Gao and Zhang [13] 
conducted an exploratory study to look for any artifacts left behind by the third most 
popular IM application worldwide, WeChat on iOS (Statista 2018). They found audio 
data, conversation databases, user profile information, photo and videos. Yuhang and 
Tianjie [14] described the forensic analysis of the QQ Tencent messenger, which was 
the most popularly used messaging application in China at that time. By using digital 
and memory forensics they were able to extract information like contact lists, chats 
records, network notepad and display names. 

In a series of past works, Dickson identified that artifacts of the client-based 
AOL messenger (AIM), [15] and Yahoo Messenger [16] could be recovered from 
the registry and other application files on the hard drive of a Windows XP machine. 
By using keyword search, Dickson was able to recover artifacts of the conversation 
history from unstructured datasets such as memory dumps, slack space and swap 
files in plain text, also if conversation logging was disabled. Thakur [17] analyzed 
the WhatsApp application on Android to determine what types of user data can 
be extracted from the external storage and internal memory of the application. He 
identified that deleted messages in WhatsApp messenger can be extracted from the 
internal memory of an Android device. 

The encryption of user data and profile information is an important and common 
practice used in messenger applications because diverse type of personal data such as 
chat messages and user profiles are stored and managed for many different purposes. 
Kobsa et al. [18] described in their study, that users were concerned about chat 
message logs that could be abused. There are a few works that deal with the anal-
ysis of encrypted databases. Barghouthi and Said [19] analyzed the IM applica-
tions Facebook-Messenger, Skype, Gmail, Yahoo and Google Talk to identify the 
encryption methods used for protecting the conversation through packet sniffer soft-
ware (like Wireshark) or other network forensic/investigation tools. Choi et al. [20] 
analyzed the messenger application KakaoTalk and found out, that chat messages 
can be recovered from the backup files if the user of the application selects a weak 
password for the backup service. 

Researches in the past have shown that different messenger systems leave infor-
mation, like the IP address of the instant messenger chat session initiator or other 
personal information, on the system’s memory once the application is executed [21]. 
It was possible in some cases to retrieve the chat history from the volatile memory, 
when the messenger encrypts the message before sending it over the messenger
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network [14]. Additional information such as contact lists, group messages, user-
names and filenames of sent and received files could also be restored from the volatile 
memory. 

On the other hand, the market of useful forensic software is big. There are some 
tools available that are able to extract forensic artifacts of well-known messenger 
like Skype, ICQ and Jabber. An examination of the qTox images with the Software 
Magnet Forensics Internet Evidence Finder (v6.4) was not able to extract relevant 
artifacts. 

The literature research shows that in the past it was essentially possible to find 
readable artifacts of (instant) messengers on different operating systems with partially 
different forensic methods. It was easier to extract messenger data, since most of 
the time no data encryption was used. Time has changed and today most of the 
well-known messenger applications use profile and database encryption techniques. 
Experiments in the recent past show that it is mostly only possible to find artifacts by 
analyzing the memory of a running system, because conversation or other information 
are readable, before they are stored in encrypted form. Live and memory forensic is 
becoming more and more important. 

4.4 Why qTox Database Forensics? 

Recently, many computers have been seized by the police all over the world, but they 
are not able to get relevant information from the systems regarding qTox commu-
nication; and as mentioned in Sect. 3, forensic software is not able to restore qTox 
communication and the investigators do not have any clues on how to search for 
relevant qTox data. 

The objective of this research is to identify the artifacts stored by qTox in the file 
system and in memory on Windows and Linux. This leads to the following questions: 

(a) What artifacts can forensically be discovered when using qTox messenger on 
Windows and Linux? 

(b) If there are encrypted artifacts of the qTox messenger, is there a way for the 
investigator to decrypt such data? 

With regard to research question (a), it is assumed that every software, used on 
a computer system, leaves its mark on it. With the use of a wide range of forensic 
analyses, like forensic analysis of a hard drive and forensic analysis of volatile data 
(memory forensics) it should be possible to reconstruct artifacts from the hard drive 
and/or the memory of the system. If communication or information of the qTox 
messenger are processed it is always passed to the memory and in certain circum-
stances saved on the hard drive. It is expected that data artifacts of the application 
qTox should be found on the hard drive and/or inside the memory. It is always the 
question how to search for it. 

With regard to research question (b) it is possible that there are artifacts that are 
not readable, because of data encryption. Each profile of the qTox messenger uses a
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profile database that is encrypted with the profile password. While qTox is running 
it is necessary to decrypt the profile database, to read the data from the database 
or write new data to the database. This is necessary in order to keep the key in the 
memory. It is expected that it is possible to find the encryption key inside the memory 
dump. 

4.5 Methodology 

4.5.1 Artifact Definitions 

A recoverable artifact is any item of interest recovered from the forensic analysis of 
an image or found in a memory dump of a computer system. Regarding the functions 
of the qTox messenger, there are different types of possible recoverable artifacts as 
follows:

• Sent and received text messages
• Deleted text messages
• Contact information about participants of a communication
• qTox contacts of the suspect
• Send and received picture, videos and files
• Outgoing and incoming voice call
• Outgoing and incoming video call
• Information about an individual chat conversation
• Information about a group chat conversation
• Information about used keys, hashes and passwords. 

The above mentioned types are all related information about the use of qTox and 
these information are important for further forensic investigations. 

4.5.2 Experimental Environments 

To search for qTox artifacts on different operating systems, the following environ-
ments are set up:

• Linux Host Workstation: Core i7-8700 K CPU @ 3.70 GHz (6 cores), 32 GB 
RAM, Linux Mint 19.3 Tricia with Kernel 5.3.0-51-generic.

• Linux Virtual Environment: Ubuntu-18.04.4, 64-bit, 8 GB RAM, Network: NAT 
Mode. qTox Client v1.17.2 installed with two users namely Alice and Bob.

• Windows Virtual Environment: Windows 10 Enterprise, v1909, Build 18,363.836, 
8 GB RAM, Network: NAT Mode, qTox 64-bit for Windows, v1.17.2 installed 
with one user namely Charlie.
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4.5.2.1 qTox Client Setup on Ubuntu 18.04.4 

To get the qTox Client (v1.17.2) for Linux clone the qTox source code from https:// 
github.com/qTox/qTox by using the distributed version-control system Git. Install 
all related dependencies, listed at https://github.com/qTox/qTox/blob/master/INS 
TALL.md#ubuntu-git by using the “sudo apt-get command” on the virtual Ubuntu 
18.04.4 machine. After that compile the qTox source code by using the cmake 
command. 

qTox Version: 1.17.2-227-g9da1e3bb 
Git commit: 0b256c5b83c323a22140ad13bb195d201877a6fa 

Start qTox and create a new profile with the following credentials (Table 4.2). 
After creating a new profile, there are no contacts in the contact list and no 

messages or groups are visible. The default profile status is “Toxing on qTox”. To 
have differences here between the clients, change the profile status message to “Alice 
is toxing on qTox”. While creating a new profile, qTox creates some files at the profile 
location “/home/alice/.config/tox/”.

-rw-r-r-1 alice alice 40,960 Mai 25 21:28 Alice.db
-rw-r-r-1 alice alice 24 Mai 25 21:28 Alice.ini
-rw-r-r-1 alice alice 22 Mai 25 21:28 Alice.lock
-rw-r-r-1 alice alice 1084 Mai 25 21:28 Alice.tox 
drwxrwxr-x 2 alice alice 4096 Mai 25 21:28 avatars
-rw-r-r-1 alice alice 6676 Mai 25 21:28 bootstrapNodes.json
-rw-r-r-1 alice alice 1531 Mai 25 21:28 qtox.ini 

When using a password to create a new profile, the files Alice.db (sqlite database) 
and Alice.tox (profile configuration file) are encrypted by default (Table 4.3 and 
Fig. 4.2).

After creating the profile, qTox automatically searches for additional peers with 
whom it can connect. For the first connection, qTox uses fixed bootstrap nodes from 
a public tox bootstrap nodes list (https://nodes.tox.chat). 

The setup of the second Linux Ubuntu machine (Machine 2) for Bob is in the 
same manner like the first Linux Ubuntu machine for Alice. The profile parameter 
are different and listed in Table 4.4.

Table 4.2 Credentials for 
qTox on Linux Ubuntu 

Username Password Machine 

Alice P4SSAL1C3 Ubuntu 18.04.4 Machine 1 

Bob P4SSBOBX Ubuntu 18.04.4 Machine 2 

https://github.com/qTox/qTox
https://github.com/qTox/qTox
https://github.com/qTox/qTox/blob/master/INSTALL.md\#ubuntu-git
https://github.com/qTox/qTox/blob/master/INSTALL.md#ubuntu-git
https://nodes.tox.chat
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Table 4.3 Alice’s profile configuration 

Alice Ubuntu 18.04.4 Machine 1 

Tox ID 38816B1049BCA73400DC89DB14C98E543B953B69D 
DFC587211548B45A139587062DE05B42FC3 

My name Alice 

My status Alice is toxing on qTox 

Profile Location /home/alice/.config/tox/ 

Language American English 

Auto-start Disabled 

Check for updates Enabled 

Default directory to 
save files 

/home/alice/ 

Auto-accept files Disabled 

Max auto-accept file size 20 MB 

Keep chat history Enabled 

Fig. 4.2 Alice’s “MyProfile” page at qTox
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4.5.2.2 qTox Client Setup on 6.1.5 Windows 10 Ent 

The third virtual machine is a Windows 10 Enterprise with the following credentials 
(Table 4.5). 

To install qTox on a Windows 10 operating system download the latest qTox 
64-bit executable from https://tox.chat/download.html. The current version of qTox 
for Windows is v1.17.2. After downloading, execute the file “setup-qtox-x86_64-
release.exe” and follow the install instructions (using the default install path: 
“C:\Program Files\qTox”). 

Creating the qTox profile in Windows 10 is in the same way as described 
previously. The profile parameter are different and listed in Table 4.6.

QTox creates the following files at the profile location “C:\Users\Charlie 
\Roaming\tox” during the profile creation process: 

03.06.2020 12:07 < DIR > avatars 
03.06.2020 12:07 40.960 Charlie.db 
03.06.2020 12:07 26 Charlie.ini 
03.06.2020 12:07 64 Charlie.lock 
03.06.2020 12:13 3.242 Charlie.tox 
03.06.2020 12:05 369 qtox.log 

4.5.3 Data Population 

To make a forensic analysis and acquire any artifact, a population of data had to take 
place on the experimental environments. These fiction users Alice, Bob and Charlie 
send different messages to each other including texts and images. There are also 
group chats with texts and images exchanged from these users. 

Following the prepared fictional conversation between the three characters 
(Table 4.7).

After the text conversation between Alice, Bob and Charlie, three images were 
exchanged between the parties (Table 4.8).

The third part of communication is a group chat between Alice, Bob and Charlie. 
To start a group chat in qTox, you have to create a new group and invite friends, who 
are currently online, from your friendlist to the created group. It is not possible to 
invite offline friends or external non Tox users to a group chat (Table 4.9).

It is also possible to initiate a voice call inside groups, video calls are not imple-
mented in the current qTox versions, but has already been announced for the next 
versions. Initiated group sessions are persistent. After closing and restarting the qTox 
application, initiated groups should be available furthermore.

Table 4.5 Credentials for 
qTox on Windows 10 
enterprise 

Username Password Machine 

Charlie P4SSCH4RL13 Windows 10 enterprise v1909 

https://tox.chat/download.html
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Table 4.7 Fictional conversation between Alice, Bob and Charlie 

From To Message 

Alice Bob Hello Bob. How are you? 

Bob Alice Hello Alice. Here is Bob. I feel very well. And you? 

Alice Bob Yes Bob. Me too. How is the weather in your city? 

Bob Alice The sun is shining the weather is sweet :-) 

Alice Charlie Hello Charlie. Do you come with me to Bob? The sun is shining there and the 
weather is sweet 

Charlie Alice Hey Alice. Yes I go with you to Bob. But first I ask Bob if I can come too 

Charlie Bob Good morning Bob, can I come to you with Alice? 

Bob Charlie Yes, of course. I am happy to see you later 

Charlie Bob Perfect. I am also happy to see you Bob 

Alice Bob Starting audio call. Bob accepted 

Bob Charlie Starting audio call. Charlie accepted 

Bob Alice Starting video call. Alice accepted

4.5.4 Acquisition of Data 

There are two level of data acquisition: memory and image. For the memory acqui-
sition, memory dumps were carried out for each environment by using dumpvmcore 
command from Virtualbox. The .vdi and/or .vmdk disk image files of each virtual 
machine were also taken for the image acquisition. 

4.5.4.1 Memory Acquisition 

Using VirtualBox as a virtual environment has the advantage that some helpful func-
tions are included. A direct memory acquisition is possible with just one virtualbox 
command. It is also recommended to use these virtualbox functions, because then 
there is no change of data due to the installation of a forensic tool. 

To acquire such data, first a memory acquisition was done in each virtual envi-
ronment directly after the population of data with the following commands1 on the 
host system. 

Memory Dump of Machine 1 (Linux Ubuntu) 

vboxmanage debugvm "Ubuntu-18.04.4_Machine_1_Alice" dumpvmcore –file-
name Memory_Ubuntu-18.04.4_Machine_1_Alice.elf

1 Vboxmanage debugvm dumpvmcore: https://www.virtualbox.org/manual/ch12.html#ts_guest-
core-format. 

https://www.virtualbox.org/manual/ch12.html\#ts_guest-core-format
https://www.virtualbox.org/manual/ch12.html#ts_guest-core-format
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Table 4.8 Image exchange between Alice, Bob and Charlie 

From To Image 

Alice Bob 

Filename: cat.jpg 
Type: JPEG 
MD5: 28a174190b533f5f463c7567c14134c3y 
SHA256: 
a874d21f13d2f5d61e3138a7b55ad80a55aae6a6152ab56eb88ca86c94a1fbd3 

Bob Charlie 

Filename: dog.jpg 
Type: JPEG 
MD5: 77da9f27c4f3722f737a52ee37e2df06 
SHA256: 
7e6c810ef9c8e3be76c6c2af0295052cd01221285e813abd2bfdf0b1a86719b8 

Charlie Alice 

Filename: mouse.jpg 
Type: JPEG 
MD5: 7a210e73e3e6ffe2537e15ace5569b21 
SHA256: 
e4a6e0653bacbab1a6961ed336458a403100a139d232a72c2c43efa889c898a7
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Result:

-rwxrwxrwx 1 dm dm 8,2G Jun 4 18:27 Memory_Ubuntu-18.04.4_Machine_1_Alice 
.elf 

Memory Dump of Machine 2 (Linux Ubuntu) 

vboxmanage debugvm “Ubuntu-18.04.4_Machine_2_Bob” dumpvmcore –filename 
Memory_Ubuntu-18.04.4_Machine_2_Bob.elf 

Result:

-rwxrwxrwx 1 dm dm 8,2G Jun 4 18:27 Memory_Ubuntu-18.04.4_Machine_2_Bob 
.elf. 

Memory Dump of Machine 3 (Windows 10). 

vboxmanage debugvm "UWin10_Ent_Machine_3_Charly" dumpvmcore –filename 
Memory_Win10_Ent_Machine_3_Charly.elf 

Result:

-rwxrwxrwx 1 dm dm 8,2G Jun 4 18:27 Memory_Win10_Ent_Machine_3_Charly.elf 
ELF stands for Executable and Linkable Format and is a common standard file 

format for executable files, object code, shared libraries and core dumps.2 

The ELF files are raw memory dumps and are directly used for further analysis. 

4.5.4.2 Image Acquisition 

After the population of data and getting the memory dumps via virtualbox functions, 
it is necessary to acquire a forensic copy of the hard drives. Because of virtualbox it 
is enough to copy the vdi or vmdk disk image files of each virtual machine.

-rwxrwxrwx 1 dm dm 9,1G Jun 4 18:30 Alice_Ubuntu-18.04.4.vdi
-rwxrwxrwx 1 dm dm 9,2G Jun 4 18:30 Bob_20200520_Ubuntu-
18.04.4[…].vmdk
-rwxrwxrwx 1 dm dm 18G Jun 4 18:31 Charlie_Win10_Pro_clean-disk001.vmdk 

The vdi and vmdk files can be used in the same way as an image created with 
tools like dd or FTK Imager. It acts like a raw copy of the hard drive of the virtual 
machines.

2 ELF file format: https://en.wikipedia.org/wiki/Executable_and_Linkable_Format. 

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
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4.5.5 Forensic Analysis of Data 

When starting with the forensic work, it is helpful to prepare a list with relevant 
keywords to get a first impression of relevant matches. Use names, parts of text 
messages, filenames and other relevant values and meta data from the data population 
to generate a list for the “X-Ways Simultaneous Search Engine”. 

noindentStarting list of search terms 

Bob 
Charlie 
cat.jpg 
mouse.jpg 
dog.jpg 
swan.jpg 
10.11.12.46 
10.11.12.47 
10.11.12.37 
< p class = alert > 
< p class = msg > 
P4SSAL1C3 
P4SSBOBX 
P4SSCH4RL13 
is toxing on qTox 

This list of search terms should be dynamic and can be expanded as a part of the 
investigation or examination. 

Besides, one important part to get forensic artifacts from the qTox client is to 
analyze the qTox sqlite database file for each client profile. By default, the sqlite 
database file (*.db) and the qTox profile file (*.tox) are encrypted. The database is 
encrypted by using SQLCipher. The encryption key is a 256-bit hex value and it can be 
derived from the password by using deriveKey function in the qTox rawdatbase.cpp 
at src/persistence/db/rawdatabase.cpp (Fig. 4.3).

If the profile password is known, it is possible to extract the relevant profile 
files from the evidence image. Put the files in the qTox profile directory (e.g. 
/home/investigator/.config/tox) of a fresh  qTox installation and start it. It is possible 
to load the relevant profile with the known password and remove the password at the 
“My Profile” page. 

After removing the password, the sqlite database profile file is no longer encrypted 
and could be read with every sqlite3 tool. Figure 4.4 illustrates the Structure of 
qTox sqlite database file. Compared to other well know messenger applications like 
WhatsApp on mobile devices or Skype, the database schema of qTox is very slim. 
Not all activities like voice and video calls are stored to the database. Profile status 
messages or display name history entries are not saved as well.



4 Forensic Analysis of the qTox Messenger Databases 111

Fig. 4.3 deriveKey function in rawdatbase.cpp

Fig. 4.4 Structure of qTox database file
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Only direct communication between peers are saved to the database. Group 
conversations or information about group members like display name or the public 
key are not saved to the database either. Each default qTox profile has six tables. The 
tables “faux_offline_pending” and “broken_messages” were not considered, because 
they are not important to restore relevant communication. 

The “peers” table contains the Tox IDs of the profile owner and the communication 
partners (peers) in the column “public_key”. The public key is the first 32 byte of the 
Tox ID. The ID field of the table is a unique (auto increment) value and serves as a 
relationship ID to other tables. 

The “aliases” table contains the display names of the profile owner and the 
communication partners in the column “display_name” and the related peer ID from 
the “peers” table in the column “owner”. 

The “history” table contains all messages sent and received with information about 
the message content in the column “message” and the communication partner ID in 
relation to the “peers” table in the column “chat_id”. It also contains the used sender 
alias ID in relation to the “alias” table, the timestamp of the message in the unix 
timestamp format in milliseconds and the “file_id” in relation to the  “file_transfers” 
table, if a file was sent. 

The “file_transfers” table contains all files that have been sent or received. It 
contains the communication partner ID in relation to the “peers” table in the column 
“chat_id”. It also contains the original file name of transferred files in the column 
“file_name”, the original local file path in the column “file_path”, the file size in 
bytes in the column “file_size” and the direction of the transfer (sent or received) in 
the column “direction”. The transferred files are not part of the database, rather it is 
saved on the hard disk. 

In order to communicate with the database and to get information from the 
database the query language SQL is used to write appropriate queries. With SQL 
it is possible to get information from a database, write values to a database, delete 
data or alter the database schema. 

Communication could be restored from the qTox SQLite database file by using 
the following SQL Select statements: 

Get all communication partners/peers 

SELECT aliases.display_name, peers.public_key FROM aliases 
INNER JOIN peers ON aliases.owner=peers.id; 

Get all messages with names in a chronological order 

SELECT datetime(substr(history.timestamp,0,11),’unixepoch’), 
aliases.display_name as ’FROM’, history.chat_id as ’TO CHAT 
ID’,history.message FROM history INNER JOIN aliases ON 
aliases.owner=history.sender_alias ORDER by history.timestamp; 

Get all file transfers 

SELECT chat_id,file_name,file_path,file_size,direction, 
file_state FROM file_transfers;
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Get all messages with names and file transfers in a chronological order 

SELECT datetime(substr(history.timestamp,0,11),’unixepoch’), 
aliases.display_name as ’FROM’, history.chat_id as ’TO CHAT ID’, 
history.message,file_transfers.file_name,file_transfers. 
file_path,file_transfers.file_size,file_transfers.file_state 
FROM history INNER JOIN aliases ON aliases.owner=history. 
sender_alias LEFT JOIN file_transfers ON history.file_id=file 
_transfers.id ORDER by history.timestamp; 

Explanation “chat_id”: 
The column “chat_id” describes the unique ID of a communication channel between 
two parties. If Alice establishes a new conversation by sending an invitation to 
another Tox ID, the “chat_id” increases by one. All messages and files are sent 
to a communication channel. 

The timestamp of the history table is a unix timestamp in millisecond format, 
saved as an integer value inside the database. To make it readable and for a further 
analysis it is helpful to convert the unix timestamp to a standardized time format. 
This is possible inside the SQL statement. 

4.6 Findings and Discussions 

This section presents the artifacts found on each virtual machine after conducting 
the forensic analysis with Autopsy and a manual analysis of the qTox database file. 
The evidence image file, the memory dump and the database file are considered for 
each environment. 

4.6.1 Recovered Artifacts Found in the Image Files 

qTox debug log files 
qTox log files are found in both Linux and Windows. The file structure in the different 
profile directories is almost identical. 

The file “qtox.log” is not encrypted and available on Linux and Windows in the 
respective profile directory and contains debug information regarding the execution 
of qTox. Activities found in the debug log are documented with the exact timestamp 
and can, under certain circumstances, be used to enrich user activities and qTox 
conversations. From the log files, it is possible to find information about the following 
user activities during the use of qTox (Tables 4.10, 4.11, 4.12 and 4.13):

• Artifacts about friend requests
• Artifacts about sending and receiving files
• Artifacts about audio and video calls
• Artifacts about group conversation and attendees of a group.
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Table 4.10 Artifacts found in debug log file/receiving a file request 

File: qtox.log Info: qTox debug log file/Charlie/Windows 

Action Bob sent the file “dog.jpg” to Charlie @ 2020-06-04 18:10:51 
(UTC: 2020-06-04 16:10:51) 

Finding [16:10:51.930 UTC] core/corefile.cpp:357: Debug: “filename already clean” 
[16:10:51.930 UTC] core/corefile.cpp:359: Debug: “Received file request 
1:65,536 kind 0” 

Explanation It is recognizable, that Charlie received a file request at the same time Bob sent a 
file to Charlie 

Table 4.11 Artifacts found in debug log file/sending file request 

File: qtox.log Info: qTox debug log file/Charlie/Windows 

Action Charlie sent the file “mouse.jpg” to Bob @ 2020-06-04 18:11:30 
(UTC: 2020-06-04 16:11:30) 

Finding [16:11:30.220 UTC] core/corefile.cpp:158: Debug: “sendFile: Created file sender 
0 with friend 1”  

Explanation It is recognizable, that Charlie sent a file request to Bob 

Table 4.12 Artifacts found in debug log file/making audio call 

File: qtox.log Info: qTox debug log file/Charlie/Windows 

Action Bob initiate an audio call with Bob @ 2020-06-04 18:21:41 
(UTC: 2020-06-04 16:21:41) 

Finding [16:21:41.728 UTC] audio/backend/openal.cpp:441: Debug: Opening audio 
output “Lautsprecher (High Definition Audio Device)” 
[16:21:41.728 UTC] audio/backend/openal.cpp:453: Debug: Opened audio 
output “Lautsprecher (high definition audio device)” 
[16:21:41.773 UTC] audio/backend/openal.cpp:278: Debug: Audio source 1 
created. Sources active: 1 
[16:21:41.773 UTC] core/coreav.cpp:732: Debug: “Received call invite from 1” 

Explanation It is recognizable, that Bob initiate an audio call with Charlie 

Table 4.13 Artifacts found in debug log file/group conversation. Action describes an action in the 
context of data population 

File: qtox.log Info: qTox debug log file/Charlie/Windows 

Action Charlie joins the group “friends” @ 2020-06-04 18:15:55 
(UTC: 2020-06-04 16:15:55) 

Finding [16:15:55.328 UTC] core/core.cpp:600: Debug: “Group 0 peerlist changed” 
[16:15:55.328 UTC] core/core.cpp:609: Debug: “Group 0, Peer 0, name changed 
to Alice” 
[16:15:55.328 UTC] core/core.cpp:600: Debug: “Group 0 peerlist changed” 
[16:15:55.328 UTC] core/core.cpp:609: Debug: “Group 0, Peer 1, name changed 
to Bob” 
[16:15:55.328 UTC] core/core.cpp:600: Debug: “Group 0 peerlist changed” 

Explanation The debug log file shows information about the group members and the peer IDs 
at the time Charlie joins the group
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The created log file contains relevant information about user activities. None of the 
information like audio and video calls or group activities are included in the profile 
database. The entries are logged with the exact timestamp in UTC (coordinated 
universal time). 

Receiving a file request: 
Sending a file request: 
Making an audio call: 
Group conversation: 

Conversations 

Artifacts or communication extracts about accomplished conversations between 
Alice, Bob and Charlie were not found on the image files. Primarily it is because 
of the qTox database encryption. Conversations between peers are processed in the 
system’s memory and then written to the database. The database is encrypted again 
after access. There is no situation, when qTox writes plain text from conversations 
to the hard disk. 

The transferred files were found in the respective user directory of the system:

• Linux machine 1 (Alice): “mouse.jpg” was found at /home/alice/Pictures 
/mouse.jpg 

The hash values are identical to hash values of the source files. 
MD5: 7a210e73e3e6ffe2537e15ace5569b21 
SHA256: e4a6e0653bacbab1a6961ed336458a403100a139d232a72c2c43 
efa889c898a7

• Linux machine 2 (Bob): “cat.jpg” was found at /home/dm/Pictures/cat.jpg 
The hash values are identical to hash values of the source files. 
MD5: 28a174190b533f5f463c7567c14134c3y 
SHA256: a874d21f13d2f5d61e3138a7b55ad80a55aae6a6152ab56eb88 
ca86c94a1fbd3

• Windows machine 3 (Charlie): “dog.jpg” was found at \Users\spam\Pictures 
\dog.jpg 

The hash values are identical to hash values of the source files. 
MD5: 77da9f27c4f3722f737a52ee37e2df06 
SHA256: 7e6c810ef9c8e3be76c6c2af0295052cd01221285e813abd2bfdf 
0b1a86719b8 

Files that are transferred during the conversation are not saved in the database. In 
the database table “file_transfers”, there is only a reference to the physical location 
of the transferred file located. The transferred files were not changed or compressed. 
The hash values of the received files were identical to the hash values of the source 
files.
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4.6.2 Recovered Artifacts Found in the Memory Dump 

Extraction of text conversation 

The search for relevant text conversation relating to the data population [4.2] gives the 
below mentioned results. It is possible to reduce the amount of false positive results 
by using the following search terms to extract artifacts of qTox text conversation 
from the memory dumps: 

< p class = alert > 
< p class = msg > 

QTox conversation inside the application is formatted via html tags. The a/m html 
tags are typical for qTox conversations and helpful, when searching in unstructured 
raw data. 

Table 4.14 shows the extraction results of text conversation from the memory 
dump for the different virtual machines.

VM 1 = Linux Ubuntu Machine 1 (Alice) 
VM 2 = Linux Ubuntu Machine 2 (Bob) 
VM 3 = Windows 10 Machine 3 (Charlie) 
A = Alice 
B = Bob 
C = Charlie 
G = Group conversation 
F = From 
T = To 
It was possible to extract artifacts of all text messages of the data population (cf. 

5.3) from the memory dumps of the different relevant virtual machines. 
qTox conversations are processed inside the memory of the qTox application and, 

in case of a peer to peer conversation, saved to the database. Group conversations 
are not saved to the database, but also processed inside the memory. All group 
conversations could be read out completely from the memory dump. 

Each message (peer to peer and group conversations) could be found multiple 
times at different offsets in the memory dump. This happens because each message 
is processed multiple times inside the application and written to different variables 
as it is received, processed, displayed and stored. 

Extraction of qTox encryption keys 

As mentioned above (cf. 5.5), the sqlite database of the qTox user profile encrypted by 
default. SQLCipher with some PRAGMA statements is used to ensure the encryption 
and decryption of the database content. 

When the memory dump was created as the qTox client was started, it is possible 
to get the hex value of the encryption key. During tests it was possible to get the 
“magic number (hex value)” to find the relevant encryption key as a hex value inside
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Table 4.14 Artifacts extraction of text messages 

F T From Data Population VM 
1 

VM 
2 

VM 
3 

A B Hello Bob. How are you? 

B A Hello Alice. Here is Bob. I feel very well. And 
you? 

A B Yes Bob. Me too. How is the weather in your 
city? 

B A The sun is shining the weather is sweet ;-) 

A C Hello Charlie. Do you come with me to Bob? 
The sun is shining there and the weather is 
sweet. 

C A Hey Alice. Yes i go with you to Bob. But first 
i ask Bob if i can come too. 

C B Good Morning Bob, can i come to you with 
Alice? 

B C Yes, of course. I am happy to see you later. 

C B Perfect. I am also happy to see you Bob. 

F T Group conversation 

A G Hey Bob and Charlie. I am looking forward to 
meet you. 

B G Hello Alice and Charlie. Should i cook some-
thing? 

C G Oh yes .. I can bring something to drink. 

B G That would be very awesome Charlie. 

A G Ok guys, See you later. :-)
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unstructured raw data. QTox encrypts the database with the hex value of the profile 
password. Therefore, encrypted qTox databases can also be decrypted again by using 
the hex key. 

Artifacts of the encryption key can be resolved from unstructured raw data by 
searching for the following hex combination (Magic Key) inside the memory dump: 

6800 0000 0000 0000 7827 

The hex value of the database encryption key could be determined 
for all virtual machines. Figures 4.5 illustrates the extracted encryp-
tion key of Alice (96 bytes right after the Magic Key), which is 
2712f58e7e09596012e59b7048bcbb4d2a99ce3e8e79b93a4f05537fef3960d05e764 
ca1d2e2aafe162ef2f471a4783d (its hex value is “32 37 31 32 66 35 38 65 37 
65 30 39 35 39 36 30 31 32 65 35 39 62 37 30 34 38 62 63 62 62 34 64 32 
61 39 39 63 65 33 65 38 65 37 39 62 39 33 61 34 66 30 35 35 33 37 66 
65 66 33 39 36 30 64 30 35 65 37 36 34 63 61 31 64 32 65 32 61 61 66 
65 31 36 32 65 66 32 66 34 37 31 61 34 37 38 33 64”); and Fig. 4.6 illus-
trates the extracted key of Charlie (96 bytes right after the Magic Key), which is 
86784bd9554c0d3a5636793da578dd93f5df5ba4831bf497be7c448d8c95c207f3963 
ebfe072d3bc45a2a24dfa3927a5 (its hex value is “38 36 37 38 34 62 64 39 35 35 34 
63 30 64 33 61 35 36 33 36 37 39 33 64 61 35 37 38 64 64 39 33 66 35 64 66 35 62 
61 34 38 33 31 62 66 34 39 37 62 65 37 63 34 34 38 64 38 63 39 35 63 32 30 37 66 
33 39 36 33 65 62 66 65 30 37 32 64 33 62 63 34 35 61 32 61 32 34 64 66 61 33 39 
32 37 61 35”). 

Fig. 4.5 Found location of the encryption key of Alice (the header hex is marked in yellow)
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Fig. 4.6 Found location of the encryption key of Charlie (the header hex is marked in yellow) 

The encryption keys are used to encrypt and decrypt the qTox profile databases. By 
using SQLCipher + the encryption keys it is possible to decrypt the sqlite database 
from a forensic image. 

Extraction of qTox status text 

Artifacts of the qTox status text of all friends in the buddy list can be restored from 
the different memory dumps. The qTox status message is not stored to the profile 
database. The relevant strings were found several times in the memory dump. The 
status message of the profile owner and the peers of the qTox user could be extracted. 

4.6.3 Recovered Artifacts Found in the Database Files 

For each profile created, a sqlite database file is created in the respective profile 
directory. The file is named with the profile username and the prefix “.db”. If the 
file is encrypted and the password available, it is possible to create an unencrypted 
version of the database file. To decrypt the database without password, an option is 
to get the encryption key from a memory dump and decrypt the database file with 
“SQLCipher”. 

Table 4.15 shows an example of messages extracted from the databases and Table 
4.16 shows the artifacts from the file transfer extracted from the database.



120 D. Meier et al.

Table 4.15 Get messages from database file 

# Timestamp From Chat_id Message 

1 2020-06-04 15:53:33 Alice 0 /me offers friendship, “Alice here! Tox 
me maybe?” 

2 2020-06-04 15:56:16 Alice 2 /me offers friendship, “Alice here! Tox 
me maybe?” 

3 2020-06-04 15:57:25 Alice 3 /me offers friendship, “Alice here! Tox 
me maybe?” 

4 2020-06-04 16:02:25 Alice 2 Hello Bob. How are you? 

5 2020-06-04 16:03:15 Bob 2 Hello Alice. Here is Bob. I feel very 
well. And you? 

6 2020-06-04 16:03:47 Alice 2 Yes Bob. Me too. How is the weather in 
your city? 

7 2020-06-04 16:05:01 Bob 2 The sun is shining the weather is sweet 
;-) 

8 2020-06-04 16:06:44 Alice 3 Hello Charlie. Do you come with me to 
Bob? The sun is shining there and the 
weather is sweet 

9 2020-06-04 16:07:31 Charlie 3 Hey Alice. Yes I go with you to Bob. 
But first I ask Bob if I can come too 

10 2020-06-04 16:10:03 Alice 2 

11 2020-06-04 16:11:58 Charlie 3 

Table 4.16 Get file transfers from database file 

# Chat_id File_name File_path File_size Direction State 

1 2 cat.jpg /run/user/1001/gvfs/afp-volume:host = 
nas.local,user = dm,volume = 
Data/…/cat.jpg 

41,629 0 5 

2 3 mouse.jpg /home/alice/Pictures/mouse.jpg 52,023 1 5 

4.6.4 Discussion 

The experiment shows, that it is possible to recover several artifacts from the test 
environment by using different forensic techniques. The first was to analyze the 
virtual machine images, the second was to analyze the memory dump of each machine 
and the third was to investigate the qTox profile database file. Different artifacts 
were found with each technique. With all the techniques together, almost all of the 
information were restored. 

All recovered messages matched the data population. Specifically, it was possible 
to recover 9 of 9 text messages between Alice, Bob and Charlie from the experiments. 
Status messages like “invitation” were also restored as well as 5 of 5 group messages. 
Audio calls between the communication partners were traced and the profile status
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Table 4.17 Results of data 
extraction 

Input Amount #Artifact found 

Text messages 9 9 

Text messages to group 5 5 

Ansfered images 4 3 

Audio calls 3 3 

Communication partners 3 3 

Profile status text 3 3 

Database encryption keys 3 3 

text was resolved. With the discovery of the encryption keys, it was possible to 
decrypt the qtox databases (Table 4.17). 

The experiments could prove that with the help of forensic techniques and 
methods, it was possible to restore artifacts from the images and memory dump 
files. In the experiment environment, it was able to restore all peer-to-peer messages 
from the sqlite database of the qTox profile and also from the memory dump. Group 
conversations are not stored to the database file, but could be restored via the memory 
dump. 

Concerning the examination of the memory dump, it depends on the timing 
between the conversation and the creation of the memory dump file. If the time 
span is too long, it is possible that memory area has been freed and used by other 
applications. Existing artifacts could then be overwritten. In the experiments the time 
span was short enough to proof, that artifacts could be extracted from the memory 
dump. 

In order to extract conversations from the dump file, it was helpful to find and 
define unique tags to mark relevant qTox messages in unstructured raw data. This is 
also helpful for further investigations in a relevant qTox case. 

Besides the conversations, information about peers and file transfers were restored 
from the sqlite database. Transferred files are not stored in the database themselves. 
An examination of the hard disk image is therefore always necessary here in order 
to save the associated file. In the experiments all transferred files could be restored 
from the hard disk image. The transferred files were not changed during the transfer 
process over the peer-to-peer network because the hash values of the files did not 
change. 

Debug logging of the qTox application is activated by default. Because of this, it 
was possible to extract and analyze the generated log file with relevant information 
on user activities. In combination with the other forensically obtained artifacts, it is 
possible to create a detailed picture of user activity. 

Regarding the encrypted artifacts of the qTox messenger, it was possible as a part 
of the experiment to locate the used encryption key inside the memory dump. In this 
context it was helpful to find a “magic number (hex value)” to extract the key for 
future investigations under different operating systems. With this key and without 
knowing the real password it was possible to decrypt the sqlite profile database.



122 D. Meier et al.

4.7 Summary 

As already mentioned, it was able to find and restore forensic artifacts under the given 
circumstances. Basically the results are useful for investigators, because it shows a 
way to examine a system with a running qTox client and it shows first clues where 
an investigator can start to search and which search terms are reasonable (html tags 
and hex values) to look inside the digital image and memory dump. 

From a technical point of view, there are some limitations. Everything took place 
in an experimental setting. In the area of memory forensic in particular, there can be 
many factors what would have a negative impact on the result. 

For this analysis the main operating systems Windows 10 and Ubuntu Linux 
were used. This should cover most of the cases. It was not possible to use a MacOS 
operating system, because of availability reasons. But it should not differ significantly 
from the Linux results. 

qTox calls itself a secure end-to-end encrypted messenger. This paper has proven 
that the qTox messenger leaves artifacts on a system that help investigators with their 
work. It makes sense to look deeper and search for possibilities to extract relevant 
information. qTox is being further developed. It makes sense to keep track of changes 
to the source code and to document the effects on forensic work. 

The peer-to-peer network properties of the tox protocol offer further approaches 
for identifying and locate suspects. That could not be tested in this research and could 
be the subject of future work. 
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Chapter 5 
PyBit Forensic Investigation 

Benno Krause, Kim-Kwang Raymond Choo, and Nhien-An Le-Khac 

5.1 Introduction 

The daily work of a cyber-investigator contains data forensic related cases as well 
as network-related cases. In the last 20 years [1], the internet, and thus the so-
called “darknet” comes more into focus. Criminals and suspects are using internet 
techniques to support their criminal activities. Often their criminal activities involve 
internet techniques themselves. 

While during early years of the worldwide internet, communication was mainly 
unencrypted, nearly every communication protocol has its encrypted pendent. The 
usage of unencrypted email messaging has been redeemed by encrypted email trans-
port. Messengers like IRC, ICQ or MSN have been replaced by encrypted messengers 
like Skype or WhatsApp [2, 3]. 

Internet users primarily are using existing communication platforms. The fewest 
users or user collectives are developing their own communication methods. That also 
applies to criminals and suspects. They use what the market has to offer to perform 
their criminal activities like digital blackmailing (ransomware [4]) or botnets, where 
secure communication played an essential role in the behavior of the suspects [5]. 

There are multiple approaches, law enforcement can investigate if encrypted 
messaging is used by criminals. Often the first approach is to oblige the responsible 
operator. Another approach is encryption. If the encryption or its implementation is 
poor, it can be tried to decrypt the message content. The next one is gathering and 
analyzing existent metadata. Often identification of a message sender by exploring 
connected IP addresses is expedient. 

Knowing the circumstances, the developers of messaging protocols and software 
try to prevent these approaches. 

A commonly used messenger of the cybercriminals is the PyBitmessage 
Messenger, which is using the Bitmessage protocol [6–9]. The message-protocol is an 
encrypted open-source peer-to-peer network protocol, which copes without central 
infrastructure. PyBitmessage is the most used client for the BitMessage protocol. It
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is Python-based and stores data to a SQLite database and several JSON Datafiles 
[10]. 

The Bitmessage protocol, the PyBitmessage Messenger is based on, has been 
developed with the aspiration of preventing all of the above-mentioned investigations 
approaches. Also, cybercriminals have become aware of this messaging protocol. 
For example, the malware Chimera had used the Bitmessage peer-to-peer messaging 
application to communicate between the victim’s computer and the malware devel-
oper’s command and control server [11]. This creates a decryption service that is 
incredibly portable, secure, and difficult, if not impossible, to take down as all the 
peers in the network are helping to distribute the keys. Hence this chapter describes 
how to gather pieces of information about messages, sender, and recipients of the 
Bitmessage network, how to analyze PyBitmessage database files with the specific 
stipulation to support investigations. 

5.2 Basic Features 

5.2.1 Bitmessage Concept 

BitMessage is a system, that allows users to securely send and receive messages using 
a trustless, decentralized peer-to-peer protocol. The protocol and the encryption are 
inspired by the Bitcoin protocol. 

All messages including content and metadata like recipient and sender, are 
encrypted. In the Bitmessage protocol, the encrypted message does not reveal any 
information about the sender or the receiver. Therefore it has to be delivered to all 
participants of the BitMessage network. 

Like common Email encryption techniques like PGP/GPG, a message is encrypted 
with the public key of the receiver. The receiver is the only one able to decrypt the 
message, as only he knows the corresponding private key. Every receiver tries to 
decrypt the message. If he succeeds, he knows that he is the proper receiver. 

For the identification of a BitMessage participant, a Bitcoin-like address is used. 
This address is the hash of participants’ public key and a checksum encoded with 
base58, prepended by the characters “BM-” 

BM-2cUTQn8kRiLSJseQgNqtbcMpWSAbboVNRD 

5.2.2 Data Encryption 

5.2.2.1 Symmetric-Key Cryptography 

Message objects are encrypted by using Symmetric-Key Cryptography. To encrypt a 
plain text, or decrypt a ciphertext, symmetric-key algorithms only need one single
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identical key. The symmetry relies on the reversible calculation of one single secret. 
This secret-key needs to remain hidden and is never communicated in plaintext. 

The symmetric-key cryptography in BitMessage is implemented by using AES-
256-CBC. The Advanced Encryption Standard (AES) is an international encryp-
tion standard initiated by the National Institute of Standards and Technology for 
symmetric-key encryption. The AES algorithm is a symmetric block cipher that can 
encrypt (encipher) and decrypt (decipher) information. Encryption converts data to 
an unintelligible form called ciphertext; decrypting the ciphertext converts the data 
back into its original form, called plaintext. The AES algorithm is capable of using 
cryptographic keys of 128, 192, and 256 bits to encrypt and decrypt data in blocks 
of 128 bits [12]. 

Bitmessage uses AES-256-CBC with a key length of 256 bit and a block length 
of 128 bit. 

5.2.2.2 Asymmetric-Key Cryptography 

The sender and receiver have to agree on a key before the communication starts. 
These agreements must be secure. The key must be established between the sender 
and recipient using a secure channel. 

In order to overcome this challenge, BitMessage uses Diffie-Hellmann Key-
Exchange. Diffie, Hellmann, and Merkle had a proposal based on the following idea. 
The key used by the person who encrypts the message doesn’t need to be secret. The 
crucial part is that the receiver can only decrypt using a secret key [13]. 

Bitmessage uses the Elliptic Curve Integrated Encryption Scheme (ECIES) to 
encrypt the payload of the Message and Broadcast objects. The scheme uses Elliptic 
Curve Diffie-Hellman (ECDH) to generate a shared secret used to generate the 
encryption parameters for the Advanced Encryption Standard with 256-bit key and 
Cipher-Block Chaining (AES-256-CBC). 

The given code examples are taken from the BitMessage reference client 
PyBitMessage. 

5.2.2.3 Public and Private Key Generation in BitMessage 

BitMessage uses the Elliptic Curve Digital Signature Algorithm (ECDSA) based 
on elliptic curve cryptography. The particular elliptic curve is known as secp256k1 
(Koblitz Curve), which is the curve y2 = x3 + 7. 

The BitMessage private key is a random value, created by the OpenSSL rand 
function with a size of 32 bit.1 The determining of the public key is done by an 
elliptic curve point multiplication using the secp256k1 curve.2 The generation of the

1 https://github.com/Bitmessage/PyBitmessage/blob/v0.6/src/class_addressGenerator.py#L138. 
2 https://github.com/Bitmessage/PyBitmessage/blob/v0.6/src/highlevelcrypto.py#L106. 

https://github.com/Bitmessage/PyBitmessage/blob/v0.6/src/class_addressGenerator.py\#L138
https://github.com/Bitmessage/PyBitmessage/blob/v0.6/src/highlevelcrypto.py\#L106
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public key has to be repeated, until the first bytes of RipeMD160(SHA512(private 
key + public key)) begins with \ × 00 or \ × 00\ × 00. 
Key Storing Format 

In PyBitMessage, the keys are stored in the Bitcoin “Wallet import format”. For this, 
the key has to be converted: 

1. Adding a 0 × 80 byte in front of the key. 
2. Creating a checksum of the key by 

(a) performing a SHA-256 hash on the key 
(b) and an additional SHA-256 hash on the hash result 
(c) and taking the first 4 bytes. 

3. Adding the 4 bytes checksum at the end of the key. 
4. Converting the key into base58. 

Example of converting a given private key into the “Wallet import format”. 

1. The following 32bit private key is given: 
5f:14:bd:dc:df:05:27:28:0f:b2:e9:78:19:a2:4e:87:f6:b5:c7:d6:23:f3:73:2d: 

d5: a2:a7:f0:1c:1c:0f:fa. 
2. Adding a 0 × 80 byte in front of the key. 

80:5f:14:bd:dc:df:05:27:28:0f:b2:e9:78:19:a2:4e:87:f6:b5:c7:d6:23:f3:73:2d: 
d5:a2:a7:f0:1c:1c:0f:fa. 

3. Creating a checksum of the key 

(a) SHA-256 hash of the key 
b8:e1:3e:de:de:64:f7:ba:d5:4a:de:33:23:cc:14:07:d1:a3:d7:67:bd:62:7d: 

9a:73:8f:eb:80:85:13:16:48. 
(b) SHA-256 hash of the above SHA-256 hash 

57:29:2a:91:5b:f8:85:af:94:85:c5:3e:ff:89:a3:4c:6b:a8:34:35:af:b8:13: 
64:1c:cb:f3:2f:d5:f6:56:14. 

(c) Taking the first 4 Bytes 
57:29:2a:91. 

4. Adding the 4 bytes checksum at the end of the key. 
80:5f:14:bd:dc:df:05:27:28:0f:b2:e9:78:19:a2:4e:87:f6:b5:c7:d6:23:f3:73: 

2d:d5:a2:a7:f0:1c:1c:0f:fa:57:29:2a:91. 
5. Converting the key into base58 

5JYAJGmG58M1v8msZqTop5RxCeYdNattBg8gv3MKKMwzW1MyBZi. 

Visualization of the Public Key 

The BitMessage public key has a size of 20 byte. It’s part of the BitMessage identifier 
(Bitmessage address). 

The following steps are mandatory to convert a public key into its visual 
representation:
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1. Removing the leading zero bytes 
2. Merging of [Adressversion] + [Stream number] + [Key] 
3. Creating a checksum of the result of step 2 by 

a. performing a SHA-512 hash on the key 
b. and an additional SHA-512 hash on the hash result 
c. and taking the first 4 bytes. 

4. Merging the result of step 2 and the checksum of step 3 
5. Converrting into base58 
6. Adding “BM-“ 

Example of creating the visual representation of a public key. 
BM-2cVpCsorUSNZkK8ENC89C2XCHEneTZxG6J can be created by the 

following steps: 

1. Given is the following public key: 
00:96:bf:d6:ad:6f:67:42:55:9d:7f:e3:a0:d2:11:e6:bb:cd:78:31. 

2. Removing the leading zero byte(s) 
96:bf:d6:ad:6f:67:42:55:9d:7f:e3:a0:d2:11:e6:bb:cd:78:31. 

3. Merging of [Adressversion] + [Stream number] + [Key] 
[04] + [00] + [96:bf:d6:ad:6f:67:42:55:9d:7f:e3:a0:d2:11:e6:bb:cd:78:31]. 

04:00:96:bf:d6:ad:6f:67:42:55:9d:7f:e3:a0:d2:11:e6:bb:cd:7:31. 
4. Creating a checksum of the result of Step 2 by 

a. performing a SHA-512 hash on the key 
68:79:f0:70:d9:e1:64:a9:dc:7f:29:09:5a:e6:69:b0:f2:78:11:65:a8: 
e6:ac:66:73:58:1f:e2:fb:30:93:50:2e:fe:b6:48:3c:49:48:38:e5:73:3c:16:51: 
90: ca:42:ca:13:15:a6:0a:c5:18:1c:e2:07:5b:4c:3a:e5:be:cb. 

b. and an additional SHA-512 hash on the hash result 
a5:29:11:e7:d3:13:02:a0:5c:8a:a8:cf:fa:29:54:2b:64:a4:c2:53:2d: 54:3e:6b: 
2e:8d:7a:47:1d:02:5d:ba:8c:0f:43:c1:9a:81:cf:25:fd:96:b2:c9:27: 33:38: 
7a:0d:3a:e4:e1:07:f6:a4:c8:b3:67:96:4f:57:2d:81:b7. 

c. and taking the first 4 bytes. 
a5:29:11:e7. 

5. Merging the result of step 2 and the checksum of step 3 
04:00:96:bf:d6:ad:6f:67:42:55:9d:7f:e3:a0:d2:11:e6:bb:cd:7:31:a5:29:11:e7. 

6. Converting into base58 
2cVpCsorUSNZkK8ENC89C2XCHEneTZxG6J. 

7. Adding “BM-“ 
BM-2cVpCsorUSNZkK8ENC89C2XCHEneTZxG6J. 

5.2.3 BitMessage Networking Concept 

The concept of messaging is highly orientated on BitCoin and PGP. The message 
and it’s metadata has to be encrypted by the public key of the recipient and signed
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by the private signing key of the sender. The messages are propagated though the 
whole network, meaning that every peer in the network gets every message. To send a 
message to another person (receiver), the message is passed from peer to peer until it 
reaches the recipient. Each peer repeatedly download messages from a neighbor peer. 
Stored objects are again downloaded from other peers and so on, until the receiver 
downloads the message from another peer he is connected to. Only the receiver will 
be able to read the message content, because of the encryption. The encryption does 
not only cover the message body, but also the subject and other meta data (e.g., 
recipient address and sender address). 

5.2.3.1 BitMessage P2P Network 

BitMessage clients are using a peer to peer network to communicate with each 
other. A peer to peer network is a type of networking system that does not require a 
central server. Peers are equally privileged, equipotent participants in the BitMessage 
Network. 

Client- and server functions of the PyBitmessage software are contained in the 
same application. You cannot disable the server functionality in the software, but you 
can disable the port forwarding in the local firewall. So, the term “BitMessage server” 
in this chapter means, that the PyBitmessage core is running and the incoming TCP 
Port is accessible. 

Every BitMessage client, which wants to enter the Network can maintain outgoing 
connections to 83 different BitMessage Server. At the first start of the BitMessage 
client, the client tries to create the first connection by performing a bootstrap process. 
Therefore, it tries to connect to 9 hardcoded peers:

• 5.45.99.75:8444
• 75.167.159.54:8444
• 95.165.168.168:8444
• 85.180.139.241:8444
• 158.222.217.190:8080
• 178.62.12.187:8448
• 24.188.198.204:8111
• 109.147.204.113:1195
• 178.11.46.221:8444 

Additionally, it attempts to connect to bootstrap8080.bitmessage.org and boot-
strap8444.bitmessage.org, or, in case of using a tor proxy, the onion peer quzwel-
suziwqgpt2.onion. 

After establishing a connection to the first BitMessage peer, the client request 
connections information to other known peers. This list will be processed sequen-
tially and the client tries to establish connections to other clients until it reaches the

3 https://github.com/Bitmessage/PyBitmessage/blob/v0.6/src/bmconfigparser.py#L16. 

https://github.com/Bitmessage/PyBitmessage/blob/v0.6/src/bmconfigparser.py\#L16
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Fig. 5.1 Schematic visualization of a sending process (Step 1) 

maximum amount of outgoing connections. The configuration default of the amount 
of incoming and outgoing connections is 200.4 

Every single peer repeatedly downloads messages from other peers and puts them 
into the database. If a new message (not already stored in the database) is received, 
the peer distributes it to all connected peers. If the received message is already stored 
in the database, it will be discarded. 

Schematic visualization of a sending process: 

Step 1: The sender creates an encrypted message ( ). The message is propagated 
to reach the recipient. Therefore, the sender transmits the message to all connected 
nodes ( ) (Fig. 5.1). 
Step 2: Every single peer, which receives the message tries to decrypt the message. 
If this failed, it distributes the message to all peers in its connection queue 
(Fig. 5.2).
Step 3: Sometimes, the recipient’s peer will receive the message, If it’s part of the 
network. The network tries to deliver the message to as many nodes as possible 
until the message’s TTL (time to live) is reached (Fig. 5.3).

5.2.3.2 The Message Transfer Process 

In this chapter, the object creation and delivery process will be explained by reference 
to a message object. Other objects (e.g., key exchange or broadcast) have a similar 
process. 

To send a message from a sender to its recipient, the BitMessage client has to be 
connected to the BitMessage network. Therefore, a bootstrapping process has to be 
performed. 

The concrete message transfer process begins after a user wrote a message to a 
recipient and activates the send button. In the first step, PyBitmessage is checking, 
whether the needed public key of the recipient is already available or not. If the key

4 https://github.com/Bitmessage/PyBitmessage/blob/v0.6/src/bmconfigparser.py#L19. 

https://github.com/Bitmessage/PyBitmessage/blob/v0.6/src/bmconfigparser.py\#L19
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Fig. 5.2 Schematic visualization of a sending process (Step 2)

Fig. 5.3 Schematic visualization of a sending process (Step 3)
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is unknown, the message transfer process stops at this point and the sending will be 
queued (Fig. 5.4). 

Now PyBitmessage tries to obtain the public key by requesting it from one of the 
connected peers. Therefore, it sends a request to all connected peers. If these peers 
have saved the key in their database, it will be returned. Otherwise, they’ll send the 
request to all of their connected peers, and so on. This “chain request” continues, 
until either a client knows the public key or the TTL value of the public key request 
will be exceeded.

Fig. 5.4 Flowchart of the message transfer process 
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Because of the circumstance, that the public key request doesn’t contain inquirer 
information, the public key has to be transferred to all participants of the Network, 
and thus it reaches the inquirer, too. 

After the recipients, public key reaches the inquirer, or if a request wasn’t 
necessary because the key was known, the message transfer process can continue. 

PyBitmessage has to calculate a Proof of Work (PoW). The result of this 
computing will be transmitted, together with the encrypted message data to the 
recipient. 

The next step is to create an acknowledgment object. In the BitMessage network, 
the sender and recipients don’t know each other. Especially IP addresses are unknown. 
Neither the sender has information about the IP address of the recipient nor knows 
the recipient. So there’s no direct way to determine, if a message has reached the 
recipient, or if it has to be sent again. 

Because of this, its designated, that the recipient automatically sends an acknowl-
edgment to the sender, that the message was received. Technically, this acknowl-
edgment object is an empty message object with a computed PoW. The complete 
acknowledgment object has to be predefined by the sender of the original message. 
Also, the PoW has to be computed by the sender. 

Now, PyBitmessage encrypts and signs the message data and transfers this data 
object to all connected peers. 

After the data object reaches the recipient, the data will be decrypted and the data 
signature checked. Now the PoW will be checked. If one of these steps fails, the 
message will be discarded and not saved to the database. Otherwise, the recipient 
will return the contained acknowledgment packet to the P2P network and save the 
decrypted message into its database. 

5.2.3.3 Calculating the Proof of Work (PoW) 

To avoid spamming, the sender has to perform a cryptographic calculation of a proof 
of work, whose difficulty is set by the recipient. This calculation slows down the 
sending process, dependent on the calculation difficulty and the used hardware. 

The calculation of a PoW is affected by the recipient of the messages and the 
message size. 

The sender defines.

• The payloadLength (encrypted message object size)
• The TTL (Number of seconds in between now and the object expiring time) 

The recipient defines.

• the averageProofOfWorkNonceTrialsPerByte (difficulty–default: 1000)
• the payloadLengthExtraBytes (to raise the virtual size of the message)
• A target value is calculated by this formula:
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Table 5.1 Unencrypted message data 

Size Description Data type Comments 

Unencrypted message data 

1+ msg_version var_int Message format version 

1+ address_version var_int Sender’s address version number 

1+ stream var_int Sender’s stream number 

4 behavior bitfield uint32_t Client information 

64 public signing key uchar[] (prepended with \ × 04) 
64 public encryption key uchar[] (prepended with \ × 04) 
1+ nonce_trials_per_byte var_int Proof of work 

1+ extra_bytes var_int Proof of work 

20 destination public key uchar[] The ripe hash of the public key of the receiver of 
the message 

1+ encoding var_int Message encoding type 

1+ message_length var_int Message length 

Variable message uchar[] The message 

1+ ack_length var_int Length of the acknowledgment data 

variable ack_data uchar[] Acknowledgement data 

1+ sig_length var_int Length of the signature 

Variable signature uchar[] ECDSA signature 

target = 264 

nonceT r ials Per Byte(payload Length E xtra Bytes) 
+ T T  L( payload Length+payload Length E xtra Bytes) 

216 

The sender has to calculate a PoW until the result of the PoW is less than the 
target. The initialHash is the SHA612 hashvalue of the encrypted payload. 

while trialValue > target: 
nonce = nonce + 1 
resultHash = SHA512(SHA512( nonce || initialHash )) 
trialValue = the first 8 bytes of resultHash 

5.2.3.4 Structure of a Message Object 

Messages in BitMessage are represented by an unencrypted message structure. The 
structure is encapsulated in an encrypted message structure (Tables 5.1 and 5.2).

The message is a UTF-8 encoded string. It uses ‘Subject’ and ‘Body’ sections5 : 
‘Subject:’ + subject + ‘\n’ + ‘Body:’ + message.

5 https://github.com/Bitmessage/PyBitmessage/blob/v0.6/src/helper_msgcoding.py#L44. 

https://github.com/Bitmessage/PyBitmessage/blob/v0.6/src/helper_msgcoding.py\#L44
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Table 5.2 Encrypted message object 

Size Description Data type Comments 

Encrypted message object 

8 Nonce uint64_t Nonce used for the Proof Of Work 

8 ExpiresTime uint64_t The “end of life” time of this object 

4 ObjectType uint32_t Message Object = 3 
1 + Version var_int The object’s version 

1 + Stream number var_int The stream number 

? ObjectPayload uchar[] Encrypted message object

Table 5.3 Server 
specification 

Item Specification 

CPU Intel Xeon D-1540 

RAM 64 GB 

Bandwidth 500 Mbit/s 

Storage 2 × 2 TB HDD SATA Soft RAID 
OS Ubuntu Server 18.04 “Bionic Beaver” LTS 

The acknowledgment data contains a new message object with the proof of work 
already completed that the receiver of this message can easily send out (Table 5.3). 

5.2.4 BitMessage Implementations and Applications 

5.2.4.1 PyBitmessage 

PyBitmessage is an “all-in-one” communication software to communicate within 
the BitMessage network. It is the first client, which has implemented the network. It 
has been published in 2012 at Github6 under the MIT License. The first Code was 
committed by Jonathan Warren on 12.11.2012. 

The software version is 0.6.3.2 with a release on 13.02.2020 (Fig. 5.5).

5.2.4.2 Bitpost 

Bitpost is the second Client (Fig. 5.6), which tries to cover the full BitMessage 
range of functions. It has been published in 2014 at Github7 under the MIT License. 
Different from PyBitmessage, there seems to be no further development.

6 https://github.com/Bitmessage/PyBitmessage. 
7 https://github.com/VoluntaryLabs. 

https://github.com/Bitmessage/PyBitmessage
https://github.com/VoluntaryLabs
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Fig. 5.5 PyBitmessage GUI (inbox)

Fig. 5.6 Bitpost GUI 

5.2.4.3 Pechkin 

Pechin is the only BitMessage client for mobile devices (Fig. 5.7). Additionally it’s 
compatible with Microsoft Windows and Linux. It covers just the messaging part of 
the BitMessage Network and isn’t able to work as a server.
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Fig. 5.7 Pechkin GUI 

Pechin has been published in 2017 at Sourceforge8 under the Apache 2.0 Licence. 
For Android mobile devices, it’s available at the Google Playstore.9 Since 2017 there 
seems to be no further development. 

5.3 Criminal Usage of the BitMessage System 
and Investigation Challenges 

5.3.1 Illegal Transactions 

In the last two decades, a lot of criminal shop system or trading forums were coming 
and going. These pages were reachable in the Clearnet and the darknet (e.g., as TOR 
hidden service). The operators and users of these services were always dealing with 
one issue. How can secure communication be established between the customer and 
the vendor? This secure communication is important to hide an illegal deal from law 
enforcement and the rivalry. 

In the early days, ICQ was a popular communication method. But there was no 
encryption. Later, encryption addons like Off-The-Record have been used, which 
added encryption capabilities to some communication protocols. But most of the 
messaging systems have central servers. The messages may be encrypted, but the 
identity of the sender and recipient can be revealed.

8 https://sourceforge.net/projects/pechkin/. 
9 https://play.google.com/store/apps/details?id=pro.fenenko.pechkin. 

https://sourceforge.net/projects/pechkin/
https://play.google.com/store/apps/details?id=pro.fenenko.pechkin
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After the development of BitMessage, it was used in the criminal shop systems or 
trading forums. Especially offenders in child exploitation or child pornography are 
using this technique. 

5.3.2 Blackmailing of Politicians and Celebrities 

In 2019 and 2020 a lot of politicians and celebrities received emails from a sender 
called “Staatsstreichorchester” (coup d’etat—orchestra). In these emails, the sender 
distributes death threats against politicians, attorneys, and journalists. The writings 
have a nationalistic and extreme right-wing background [14, 15]. 

To establish communication, the responsible person offers a BitMessage address 
as reachability [16]. 

5.3.3 Command and Control Communication of the Chimera 
Malware 

In 2015, the Chimera ransomware was a ransomware infection. Ransomware refers 
to threats that take the victim’s computer or file hostage and then demand payment 
to return them. The Chimera Ransomware carries out a basic version of this attack, 
encrypting the victim’s files. This means that, even if the Chimera Ransomware is 
removed, the encrypted files are not recoverable without the decryption key (which 
is not supposedly available until the victim pays a hefty ransom using BitCoins) [17]. 

But added to this feature one more twist that is supposed to put more pressure on 
the victim. It threatens that in case if the ransom will not be paid, all the stolen files 
are going to be published, along with the stolen credentials allowing to identify files’ 
owner [18]. 

When Chimera infects a user it uses an embedded PyBitmessage application to 
send a Bitmessage to the developer that contains information such as the victim’s 
private key, the victim’s hardware ID, and the victim’s payment bitcoin address. If the 
victim is willing to pay, the offender transmits the decryption keys likewise through 
the BitMessage network [11]. 

5.3.4 Investigation Issues 

Law enforcement authorities have to investigate crime and also identify offenders 
and their identity. In the scope of IT-related investigations, the IT support measures 
often comprise of offender identification, lawful interception to enrich investigation 
information, and forensic data extraction and data analysis.
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5.3.4.1 Identification of Communication Participants 

The greater part of internet and IT-related crime is committed in the cloak of 
anonymity. Offenders are using multiple systems to keep their identity hidden. An 
often used anonymization technique is TOR or I2P, but also BitMessage in reference 
to Messenger services. Identification measures have a huge stake in the investigation. 
Often the impenetrability of the anonymization and encryption techniques detains 
successful investigation. 

In the case of BitMessage, the creators of the network are propagating the secure 
anonymity of participants. This chapter will show, although a decentralized peer-to-
peer network is used, there are possibilities to determine the recipient of a BitMessage 
message. 

5.3.4.2 Lawful Interception 

Investigations are often divided into a covert and an open phase. Contingent on 
the case and its quality, the covert phase is containing enrichment of information, 
which is necessary for a successful investigation. Lawful interception is a possible 
measure of this phase. Referring to BitMessage, wiretapping of the subjects’ internet 
connection can possibly confirm or deny the results of the IP identification. 

5.3.4.3 Data Extraction 

A culmination of all investigation measures is to search the subject’s apartment and 
employment. Forensic data backup of the uses IT hardware, and afterward processing 
and analyzing of the data is mandatory for the success. Because of the multiple kinds 
of data storage, investigators often struggle while preprocessing the data. Especially, 
different messenger services are using completely different data storage formats. 
Thus, a uniform and suitable preparation are compound. 

5.4 Adopted Approach 

5.4.1 Identification of Recipients 

5.4.1.1 BitMessage Original Sender Identification 

The network delivery system of Bitmessage is based on flooding. Flooding is used in 
computer networks routing algorithm in which every incoming packet is sent through 
every outgoing link except the one it arrived on [19].
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If the message delivery process of all delivering servers can be monitored, it is 
possible to determine, which participant is the originator of a message. The incoming 
connections of the delivering servers have to be sorted by timestamp if the wanted 
message is included. The sender of the first determined in time has to be the originator 
of the message. Therefore, two main issues have to be solved. 

The adjustments of the delivering server’s time generators have to be coordinated 
to ensure a correct comparison of the incoming messages by time. The transport of 
messages inside a computer network can be relatively fast, thereby small inaccuracies 
in the time systems may result in a false outcome. 

The next essential part is the accurate identification of a single message 
inside the messengers’ data stream. Only this unique identification enables the 
above-mentioned comparison. 

The control of all delivering servers is inpossible. But if a client is connected to 
more than a single delivering server it’s not necessary to log the incoming data of 
all of them. It is enough to control at least one of the connected servers to retrieve a 
sufficient result. 

5.4.1.2 Bitmessage Identification Approach 

In general, if sending a message inside the BitMessage network, sooner or later every 
single BitMessage Client will be a relay for this message. Nearly 100% of all clients, 
which are connected in the messages TTL, will receive the message. And all clients 
except the recipient will resend it. The challenge in identifying the message origin 
is, to identify the first sender of the message. 

Every BitMessage client can handle up to eight connections to BitMessage servers. 
If BitMessage clients operate as a server too, it can handle up to 200 connections 
(depending on the hardware) including the outgoing connections, by default. 

If every client is connected to at least one altered monitoring client, it seems to be 
possible to determine the originator of a message with a high probability. Therefore 
two main challenges have to be resolved. 

1. Fast packet relaying to our monitoring nodes 
2. Identifiability of a single message object 

Packet Relaying 

Each connection is managed by a data queue. The component, handling the relay or 
the own data creation puts the data, selected for sending in these queues. Depending 
on the current queue length and the particular data connection speed, an incoming 
packet will be relayed at different points of time. PyBitmessage tries always to serve 
the fastest connected nodes at first (Fig. 5.8).

Let us consider a single message, observed by one monitoring client. Let’s also 
assume, that the originator of a message is directly connected to the monitoring client. 
We don’t know any information about the other clients, which are connected with 
the originator. And we also don’t know the number of clients. But it’s very likely,
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Fig. 5.8 BitMessage data relay

that the originator has not server capabilities. So the maximal number of connected 
clients is eight (corg = 8). 

Let us first calculate the probability that the originator sends the message to the 
monitoring client on one specific order of precedence. 

p( A) = 1 

corg 
= 1 

8 

The probability, that the monitoring client receives the message at first is 1 8 . 
As mentioned before, we know nothing about the connection quality of the origi-

nator connections. So it’s possible, that the connection quality (and so the connection 
speed) between the originator and the monitoring client is worse than the connection 
quality between the other connected nodes. The monitoring client may receive the 
message from a third node, although it is connected directly to the originator. 

In this case, the presumption, the first received message is sent by the originator 
is wrong. 

Among others, the connection quality between nodes is dependent on multiple 
values:

• The distance between the terminal connections
• The current usage of the internet connection
• the used hardware
• Firewall or packet filter. 

PyBitmessage is ranking the outgoing connections by their quality. It assigns a 
value between −1.0 and 1.0 to each node. The higher this value is set, the higher is
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the probability, that the directly connected monitoring client gets the message from 
the originator at first. 

Although we can’t affect the originator’s internet connection and its hardware, 
we can choose a fast setup for the monitoring server e.g., fast internet connection, 
fast CPU and GPU support for the cryptographic functions. 

Identifiability of a Single Message 

All BitMessage data objects, which are transferred, are heavily encrypted. This also 
includes information about the sender and the recipient. So the issue is, to identify 
a data object from a specific origin (e.g., a Message from a specific communication 
partner). 

There are two basic approaches, how we can solve these issues. 
The global approach is to monitor all data packets. The monitoring nodes collect 

information about all message packets, relaying by itself, and save this information 
in a common database. Likewise, the exact timestamp of receiving will be saved. A 
hash of the encrypted data packet can be used as an identification feature. If we get 
a message, whose origin has to be identified, we have to check in the database, from 
which node one of our monitoring nodes received the message. 

Depending on the number of messages and the size of the BitMessage Network, 
the database would be huge. It also can be a legal issue, if we observe and save all 
transactions. 

A more specific approach is to find a way to identify messages from a specific 
target. As mentioned in 0, the recipient of a message sends automatically and imme-
diately an acknowledge message back to the sender. This acknowledge-message is 
predefined and encrypted by the sender. The content of the acknowledge message 
can be used to track. 

Let’s explain by using an example: The sender (we) sends a message to a recip-
ient (target). The message is encrypted by the public key of the recipient. Inside the 
message object, the sender predefines an acknowledge-message with a unique iden-
tifier (e.g., tracking identification) as the message text. This acknowledge message 
is encrypted by the public key of the sender. The recipient cannot “look” inside the 
acknowledge-data, but he immediately sends this packet back. The placed monitoring 
nodes have the sender’s private key, so they can decrypt the acknowledge-message. 
If they note this message, they can save the unique identifier and the timestamp in 
the common database. 

5.4.1.3 Experimental Assembly 

To test the hypotheses, a dedicated server with a static internet connection was used. 
The datacenter firewall had been configured to forward the ports 22 (SSH access), 

8444–8459 (BitMessage Nodes), 80 (HTTP Server). For security reasons, all other 
ports were closed.
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Fig. 5.9 Structure of the experimental server 

BitMessage Server 

For creating and configuring multiple BitMessage servers, a docker container 
structure with a Debian derivate as a data image was used (Fig. 5.9). 

sudo apt update 
catalog update of the APT packet manager 

sudo apt install docker.io 
installation of docker 

sudo systemctl start docker 
Start of the docker system 

sudo systemctl enable docker 
Configuration docker for starting during system boot 

To use a system inside of the docker container structure, a system image either 
has to be created or a standard image has to be download. Because the PyBitmessage 
client doesn’t need very special prerequisites, a standard ubuntu-server image was 
selected. 

For downloading and installing a docker image from the docker hub, the “pull” 
command has to be used (Fig. 5.10).
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Fig. 5.10 Download of the Ubuntu Docker image 

After starting a ubuntu docker container without any specifications, the necessary 
prerequisites for PyBitmessage were installed. Considering that, the docker container 
contains a Ubuntu Linux system, the installation of the prerequisites could easily be 
done with the apt packet manager. 

sudo apt-get install python openssl libssl-dev git python-msgpack 
python-qt4 

After this, the container was detached and the changes to a new docker image 
with the name “ubuntu-bitmessagenode” were committed. 

docker commit CONTAINERID ubuntu-bitmessagenode 

In order to handle the container maintenance more efficient, the image “ubuntu-
bitmessagenode” doesn’t contain the PyBitmessage sourcecode. If parts of the code 
have to be changed, the codes in all containers have to be altered. So the sourcecode 
stayed in a shared folder, which was accessible by all docker containers. 

Same with the PyBitMessage configuration files. All docker containers have 
access to a shared folder, containing the PyBitmessage configuration file (key.dat). 
Because the BitMessage server nodes are running on the same server, they are also 
using the same IP address. This is the reason, why each container has to listen to 
different TCP ports. Therefore, the file key.dat contained a placeholder for the port, 
which had to be replaced during the container start (Fig. 5.11).

Besides the standard configuration, the key.dat file contains the owner’s private 
key, too. 

Folder in parent system Folder in docker container Description 

/root/DockerShare/BitMessageSrc /root/BM/BitMessageSrc Modificated 
PyBitmessage source 
code 

/root/DockerShare/BM2 /root/.config/PyBitmessage PyBitmessage 
configuration folder
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Fig. 5.11 Schematic port forwarding

By using the start script (Fig. 5.12), a single BitMessage Node can be started. 
Therefore, the script performs the following steps: 

1. Starting a Docker container, using the image “ubuntu-bitmessagenode”. The 
container is named “BM_Node” + port number (e.g., BM_Node4888). 

2. Copying a new key.dat configuration file into the containers BitMessage config-
uration folder, by changing the keysVORLAGE.dat file and replacing the port 
number placeholder “###PORT###” 

3. Cleaning up the containers’ BitMessage configuration folder. 
4. Starting Bitmessage. 
5. Starting the container’s bash

Fig. 5.12 Bash Script to start a Docker BitMessage Node 
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Fig. 5.13 Bash Script to (re)start all BitMessage Docker Nodes 

To (re)start all BitMessage Docker nodes, the following start script was used 
(Fig. 5.13). 

Tracking Draft 

The concept of my tracking system contains three parts (Fig. 5.14). 
First, there is a customized BitMessage client. This client can be used to send a 

message to the tracking target. Therefore, it generates a unique tracking id, using  
the current Unix timestamp. Furthermore, it generates the acknowledgment message 
and inserts into its content the unique tracking id. 

After sending the message, it sends the tracking id and some information about 
the target address to the tracking server. 

The next part of the tracking system is the BitMessage Nodes. After receiving the 
tracking message, the target returns the acknowledgment message. If a BitMessage 
node takes notice of the acknowledgment message, it sends the containing tracking 
id and the current timestamp to the tracking server.

Fig. 5.14 Simple tracking schema 
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The last part is the tracking server itself. It’s a passive database/webserver appli-
cation. The received information from the BitMessage nodes and the BitMessage 
clients were collected and processed for the analyst. 

To simplify the communication between BitMessage Client and Tracking server 
as well as BitMessage Nodes and Tracking server, small HTTP GET requests were 
used. 

Code Changes in BitMessage Client 

The acknowledgment message can be used to hide information. But the structure of 
PyBitmessage doesn’t make it necessary to alter the process of creating the acknowl-
edgment message. PyBitmessage uses a simple approach to detect, that a relevant 
acknowledgment message has been received. It doesn’t decrypt the message, because 
the content of the message is irrelevant. It just needs to know, that the ack message has 
been received. So, after sending, it saves a hash value of the ack message. From then 
on, every single incoming message will be checked against this hash. This approach 
is much faster than trying to decrypt the ack message. 

The GUI based creating and sending of a message is done in the 
file./src/bitmessageqt/__init__.py.10 We changed the code in line 2167. 

2167 tmp = genAckPayload(streamNumber, stealthLevel) 
2168 logger.debug(’[TRACKING] ’+hexlify(tmp)) 
2169 id = str(int(time.time())) 
2170 ackdata = unhexlify(’000000020101eba1’) + "FUA_" + id + 

unhexlify(’87c33590cad51571557a20b714dc9b2a’) 
2171 logger.debug(’[ZISC] API Send message - stealthLevel: ’ + 

str(stealthLevel)) 
2172 logger.debug(’[ZISC] API Send message - toAddress: ’ + 

toAddress) 
2173 logger.debug(’[ZISC] API Send message - fromAddress: ’ + 

fromAddress) 
2174 logger.debug(’[ZISC] API Send message - ackdata: ’ + 

hexlify(ackdata[:8])) 
2175 logger.debug(’[ZISC] API Send message - ackdata: ’ + 

hexlify(ackdata)) 
2176 urllib2.urlopen(’http://51.xx.xx.xx/addTracking.php? 

trackingID=’+id+’&bmAddress=’+toAddress+’&bmInfo=’ 
+urllib.quote_plus(acct.getLabel(toAddress))).read() 

In line 2170 the bytes of a former acknowledgement message were taken and the 
string “FUA_” and the tracking id were inserted. 

In line 2176, the URL http://51.xx.xx.xx/addTracking.php was requested and the 
tracking id, the recipient’s address, and the address label were transmitted. 

Code Changes in BitMessage Node 

The PyBitMessage functions to handle incoming acknowledgement messages are 
present in the file./src/class_objectProcessor.py.11 

10 https://github.com/Bitmessage/PyBitmessage/blob/v0.6/src/bitmessageqt/__init__.py#L1986. 
11 https://github.com/Bitmessage/PyBitmessage/blob/v0.6/src/class_objectProcessor.py#L132.

http://51.xx.xx.xx/addTracking.php
https://github.com/Bitmessage/PyBitmessage/blob/v0.6/src/bitmessageqt/__init__.py\#L1986
https://github.com/Bitmessage/PyBitmessage/blob/v0.6/src/class_objectProcessor.py\#L132
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132def checkackdata(self, data, host = "", port = 0, portTCP = 0, selfhost = "", 
selfport = 0, timestamp = 0): 

… 

141 searchID = unhexlify(’000000020101eba1’) 
142 if data[readPosition:readPosition+8] == searchID: 
143 id = str(data[readPosition+8+4:readPosition+8+4+10]) 
144 logger.warning(’[TRACKING-RESULT] (’ + selfhost + ’;’ + host 

+ ’;’ + str(port) + ’;’ +str(timestamp)) 
145 try: 
146 ServerID = selfhost 
147 logger.warning(’http://51.xx.xx.xx/addLog.php?tracki 
ngID= 

’+id+’&serverIP=’+ServerID+’&serverPort=0&clientIP=’ 
+host+’&epochetime=’+str(timestamp)+’&clientPort=’ 
+str(port)+’&clientPortTCP=’+str(portTCP)) 

148 urllib2.urlopen(’http://51.xx.xx.xx/addLog.php?tracki 
ngID= 

’+id+’&serverIP=’+ServerID+’&serverPort=0&clientIP=’ 
+host+’&epochetime=’+str(timestamp)+’&clientPort=’ 
+str(port)+’&clientPortTCP=’+str(portTCP)).read() 

149 except: 
150 logger.warning(’Error: http://51.xx.xx.xx/addLog.php? 
trackingID=’ 

+id+’&serverIP=’+ServerID+’&serverPort=1234&clientIP= 
’+host+’&epochetime=’+str(timestamp)+’&clientPort=’ 
+str(port)+’&clientPortTCP=’+str(portTCP)) 

First, the original definition of the checkackdata function has been changed. Input 
variables for source and destination IP addresses and ports and the receiving time 
were added. 

In lines 142 and 143, the script is searching for the unique needle inside the 
acknowledgment packet bytes. 

In line 148, the information is transmitted to the tracking server. 

Tracking Server 

The main components of the tracking server are a relational database (MariaDB 
10.1.44) and an HTTP webserver (Appache/2.4.29). 

For receiving and storing the tracking information in the database, two PHP scripts 
and a PHP database handler script have been used.

• addTracking.php 
This script is executed, if a new tracking was created by sending a tracking 
message. The received GET data is saved inside the database.

• trackinID: Unique tracking id
• bmAddress: BitMessage Address
• bmInfo: Tracking description
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• addLog.php 
This script is executed, if a monitoring server takes notice of the acknowledgment 
object, which is part of the tracking system. The received GET data is saved 
into the database. The IP Addresses will be enriched by geolocation and ISP 
information.

• trackingID: Unique tracking id
• clientIP: IP Address of the connected client
• clientPort: promoted BitMessage Port of the client
• cilentPortTCP: real TCP port of the client
• epochetime: Logging timestamp
• serverIP: IP Address of the monitoring server
• serverPort: Port number of the monitoring server

• db.php 
This script is the database handler for the tracking server. It handles the database 
connection and performs the database queries. 

To store the tracking and the log information, a small database schema was created, 
containing two tables: Trackings and Logs. 

The Tracking table (Fig. 5.15) is containing basic information about the tracking 
message, recipient, and sending timestamp. The logs table (Fig. 5.16) is containing 
all information about the discovery of every single acknowledgment answer and its 
timestamp and its origin. 

Both tables have a field “trackingID”. This field connects both tables relative to 
each other.

Fig. 5.15 Trackingserver table structure—trackings
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Fig. 5.16 Tracking server table structure—logs

5.4.1.4 Network Scale Analysis 

The identification approached is based on the fact, that our BitMessage servers 
are connected with ideally all Bitmessage clients. To approximate, how many own 
BitMessage servers are necessary, the current scale of the BitMessage network had 
to be checked. 

The unique identification of a single BitMessage client is mandatory for this task. 
Unfortunately, the network doesn’t allow us to get a unique identification ID or 
string. So another kind of client identification has to be chosen. The only practicable 
capability for this task is to use the IP address as identifiers. The problem with this 
selection is that the clients can change their IP addresses and the occurrence of 
dynamic IP addresses. Currently, there is no way to circumvent this issue. 

For guessing, how many own BitMessage servers are necessary, it doesn’t require 
an exact value. It’s enough to obtain an approximate value. 

The scale of the BitMessage Network can be divided into two different values. 

1. The quantity of BitMessage servers 
2. The quantity of Bitmessage clients 

The Quantity of BitMessage Servers 

As mentioned before, the PyBitmessage source code was changed, to write log files in 
infinite size. Additionally, the hardcoded maximal number of 8 connected Bitmessage
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servers has been increased. These two changes allowed the counting of connected 
servers on a daily basis. 

When the client finished a connection with a BitMessage server successfully, it 
inserts the following line into the debug file: 

2020–08-10 17:02:41,321—DEBUG—New outgoing connection established: 
63.224.149.157. 

A simple bash script has been used, to extract the daily quantity of servers. This 
line, for example, extracts the count for the 10.08.2020: 

cat debug.log | \ 
grep "New outgoing connection established" | \ 
grep "2020-08-10" | \ 
awk ’{print $10}’ | sort | uniq | wc -l 

For this analysis, the BitMessage client was running between 16.07.2020 and 
09.08.2020 without a break. The daily results showed (Fig. 5.17), that the range 
of server count is between a minimum of 18 (18.07.2020) and a maximum of 47 
(16.07.2020). On average, there are 27 BitMessage Servers available. 

x = 1 
n 

n∑

i=1 

xi = 27, 26 

The Quantity of BitMessage Clients 

The term “Bitmessage Clients” in this chapter means, that the PyBitmessage core is 
running, whether the incoming TCP port is open or not.
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Fig. 5.17 BitMessage server quantity 
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In the standard configuration of a BitMessage client, it connects to 8 different 
BitMessage servers. To get an approximate value of the quantity of BitMessage 
clients, the precondition, that the presumption, every single client is connected to one 
of my servers has to be created. Currently, there were averaged 27 BitMessage servers 
in the network. So the injection of 2/3–16 BitMessage servers were appropriate. 

Each server is writing a log file. To get an active connection, it’s enough to get all 
log entries, which documents a data transfer. Additionally, I’ve removed the limit of 
connected clients, which is normally set to 100, to ensure the servers can connect to 
as many clients as possible. 

2020–07-20 23:06:22,670—DEBUG—89.133.146.180:8444 Requesting 1 
objects. 

We created a script file BMClientCount.sh to extract all entries containing a data 
transfer by filtering with the term “Requesting” and count them uniquely. 

For this analysis, the BitMessage servers were running between 16.07.2020 and 
09.08.2020 without a break. The daily results showed (Fig. 5.18), that the range of 
client count is between a minimum of 1404 (16.07.2020) and a maximum of 1910 
(22.07.2020). On average, there are 1702 BitMessage clients, using the network. 
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Fig. 5.18 Bitmessage client quantity
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5.4.1.5 Auditing 

The goal of this approach is to show the possibility to identify unknown users of the 
BitMessage Network. To audit, the positioned hypotheses, I’ve conducted some test 
series. 

Test Description 

In each test, the circumstances were known (e.g., used client software, IP Address), 
so the comparison between the tracking results and the expected result was possible. 
To compare the tests, the following test matrix was used (Table 5.4). 

Each target client had to receive 5 messages. The sending process of the first three 
messages was done, while the target client was online and running. The last two 
messages were sent, while the target client was offline. 

Test Realization 

While sending the first test message, we realized, that the key exchange between the 
sender and the recipient takes a long time. Depending on the client, the exchange 
took between 30 and 180 min. 

After receiving the public keys, the message sending process was (relatively) 
fast. All sent messages reached the recipient. All clients returned the acknowledge 
message automatically to the sender. And in all tracking cases, the monitoring servers 
received the logging information. 

The result of the different client software versions differs a little bit from each 
other. The test series with the windows version of PyBitmessage 0.6.1 (Lastest 
compiled Version) resulted in all cases the correct IP Address (Table 5.5: Line 6–10). 
Actually, the expected IP Address was always in the first position of the result list. 
There seems to be no distinction between the recipients’ client is online or offline.

The results of the test series with the PyBitmessage Client 0.6.3.2, running in 
Linux is quite similar, as the Version 0.6.1. running in Windows. The tracking tests, 
during the online phases of the client were successful. The expected IP Address was

Table 5.4 Test matrix 

Sending date (SD) Exact date and time when the test message 
was sent 

Target software (TS) Client software of the target 

Target status (Stat) Target connection status, while sending 

Target received message (TRM) Marker, if the target client received the 
message 

Sender received returned Ack Object (SRA) Marker, if the sender client received the 
acknowledgment message 

Target IP in tracking result list (TR) Marker, if the expected IP was in the result 
list 

IP ranking (LP) Position of the expected IP in the result list 
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Table 5.5 Tracking test results 

# SD TS Stat TRM SRA TR LP 

1 13.8.20 12:55 BitPost 0.9.8.3 (Mac 
OSX) 

Online Yes Yes No n/a 

2 13.8.20 13:06 BitPost 0.9.8.3 (Mac 
OSX) 

Online Yes Yes No n/a 

3 13.8.20 13:10 BitPost 0.9.8.3 (Mac 
OSX) 

Online Yes Yes No n/a 

4 13.8.20 13:24 BitPost 0.9.8.3 (Mac 
OSX) 

Offline Yes Yes No n/a 

5 13.8.20 13:31 BitPost 0.9.8.3 (Mac 
OSX) 

Offline Yes Yes No n/a 

6 13.8.20 13:10 PyBitmessage 0.6.1 
(Windows) 

Online Yes Yes Yes 1 

7 13.8.20 13:20 PyBitmessage 0.6.1 
(Windows) 

Online Yes Yes Yes 1 

8 13.8.20 13:31 PyBitmessage 0.6.1 
(Windows) 

Online Yes Yes Yes 1 

9 13.8.20 13:34 PyBitmessage 0.6.1 
(Windows) 

Offline Yes Yes Yes 1 

10 13.8.20 13:39 PyBitmessage 0.6.1 
(Windows) 

Offline Yes Yes Yes 1 

11 18.8.20 12:21 PyBitmessage 0.6.3.2 
(Ubuntu) 

Online Yes Yes Yes 1 

12 18.8.20 12:33 PyBitmessage 0.6.3.2 
(Ubuntu) 

Online Yes Yes Yes 1 

13 18.8.20 12:34 PyBitmessage 0.6.3.2 
(Ubuntu) 

Online Yes Yes Yes 1 

14 18.8.20 12:36 PyBitmessage 0.6.3.2 
(Ubuntu) 

Offline Yes Yes No n/a 

15 18.8.20 12:38 PyBitmessage 0.6.3.2 
(Ubuntu)ara> 

Offline Yes Yes No n/a 

16 18.8.20 12:45 Pechin vA0.1 
(Bluestack) 

Online Yes No No n/a 

17 18.8.20 13:59 Pechin vA0.1 
(Bluestack) 

Online Yes No No n/a 

18 18.8.20 13:59 Pechin vA0.1 
(Bluestack) 

Online Yes No No n/a 

19 18.8.20 14:33 Pechin vA0.1 
(Bluestack) 

Offline Yes No No n/a 

20 18.8.20 17:51 Pechin vA0.1 
(Bluestack) 

Offline Yes No No n/a
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always in the first position of the result list (Table 5.5: Line 11–13). However, during 
the offline phases, the tracking returned no result (Table 5.5: Line 14–15). In both 
cases, the target client wasn’t connected to at least one monitoring node. Because 
of this, reviewed the monitoring nodes protocol files. The IP Addresses of the target 
client were rejected by the monitoring clients because a reconnection attempt was 
repeated too often. 

The results of the test series with the BitPost 0.9.8.3 Client running under macOS 
were different from the other results (Table 5.5: Line 1–5). Although the tracking 
mechanism was triggered, the expected IP Address hasn’t been determined. The first 
entries in the result list were always IP Addresses, possibly belonging to internet 
servers. With this insight, the IP Addresses had been checked against the daily list of 
TOR Exit Nodes. The result was, that every single IP Address was part of the TOR 
Network (Table 5.5). 

Concerning the BitPost Github page, the BitPost client always uses the TOR 
network to connect to the BitMessage Network. Thus, the determination of a Clearnet 
IP Address isn’t possible. 

The test series with the Pechin vA0.1 client revealed another problem (Table 
5.5: Line 16–20). The software development seemed to be aborted and abandoned 
extensive parts of the BitMessage protocol were not implemented. The important 
implementation of the Bitmessage message acknowledgment system wasn’t part of 
the software. Thus the tracking resulted in no positive logging results. 

5.4.1.6 Conclusion 

Generally, the approach of monitoring the BitMessage network to obtain information 
about the recipient of a message is working. 

As a result, the probability of securely identify the recipient of a Bitmessage 
communication is directly dependent on the size of the Bitemessage network and 
the amount of inserted manipulated delivering servers and the current size of the 
Bitmessage network affords to identify the recipient of a Bitmessage communication 
securely, assuming that the recipient does not use a TOR exit node. 

5.4.2 Network Surveillance 

5.4.2.1 Methodology 

To gathering information out of the network traffic of an application, multiple process 
steps have to be performed.
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Data Capturing 

The data capturing is the acquiring and storing of all network traffic data, the software 
to be monitored is generating. That includes wired or wireless network data as well 
as other communication devices like Bluetooth. 

Data Preparation 

To analyze relevant data content, the captured data has to be prepared. This prepa-
ration contains the dropping of unnecessary data pieces (e.g., traffic, produced by 
other software) and preprocessing of the relevant data packets. This preprocessing 
comprised a recognisability of known data structures. A usual way to perform the 
data preparation is to use a network analyzer (e.g., wireshark) and a dissector for the 
expected network protocol. If there’s no dissector available, a suitable dissector has 
to be developed. 

Data Analyses 

Depending on the resulting data fields of the data preparation, different analyzing 
methods have to be performed. It has to be analyzed if there are elements in the 
data field, that contains target-oriented information about the sent message or their 
meta-data. 

5.4.2.2 Experimental Assembly 

To determine the operationality of the network traffic, the produced traffic of a 
Bitmessaege client has to be captured and analyzed. Essentially, the best approach 
to capture the network traffic of an application is to capture the traffic of the whole 
computer system and all of its network interfaces. But, because the traffic of the 
BitMessage network is highly encrypted, and therefore possibly not delimitate to 
other data, the decision to capture just the traffic of the Bitmessage client application, 
was made. 

Different from other capture software products (eg Tshark, Wireshark) the 
Microsoft Network Monitor 3.4 has implemented the possibility, to filter by an appli-
cation. This is, why this (outdated) capture-application was chosen. The captured data 
packets were saved as PCAP files. 

To analyze the PCAP data file, Wireshark 3.2.3 was used, because of its 
implemented analyzing function. 

As BitMessage client, the Win32 compiled PyBitmessage 0.6.1, running under 
Windows 10 was selected. 

The experiment consisted of two phases. First the capturing phase and second 
the analyzing phase. Before the capturing phase began, all unnecessary applications 
were stopped. Then the Microsoft Network Monitor (Fig. 5.19) had been started and 
begun the network capture. After establishing the capture, the PyBitMessage client 
was started and run until the connection to BitMessage servers were established. 
Now an external BitMessage client was used to send a tracking message with the
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Fig. 5.19 Microsoft network monitor 

running client as the recipient. Once the message arrived, the capturing was stopped 
and the captured data saved. 

5.4.2.3 Packet Analysis 

The captured data contained network packets between 19.08.2020 10:31:15 and 
19.08.2020 10:38:37. The total amount of captured data packets is 12148. 

By using the conversation analysis capabilities of Wireshark, the determination 
of five TCP connections with contained payload data was possible. The residual 
1308TCP conversations were just unsuccessful connection attempts, which were 
irrelevant for this analysis. 

To filter the relevant network packet, the following filter string as a display filter 
was used. 

(ip.addr==175.0.120.133) || (ip.addr==31.170.186.69) || 
(ip.addr==95.111.7.240) || (ip.addr==87.2.232.217) 

To reveal the BitMessage packet structure out of the data stream, Wireshark 
BitMessage LUA dissector of Jesper Borgstrup12 was used (Fig. 5.20). This dissector 
recognizes most of the BitMessage object types (version, verack, addr, inv, getdata, 
getpubkey, pubkey, msg, broadcast object types) Because of the data encryption, the 
dissector isn’t able to display any content.

12 https://github.com/jesperborgstrup/bitmessage-wireshark-dissector. 

https://github.com/jesperborgstrup/bitmessage-wireshark-dissector
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Fig. 5.20 Wireshark packet list 

Unsurprisingly, the content of all data packets was encrypted. It seemed, that the 
encryption approach of the BitMessage network had been correctly implemented in 
the PyBitmessage client. 

Furthermore, the BitMessage dissecter is just able to extract the first packet of a 
data object. The following data wasn’t recognized. 

To determine, where the acknowledgment object, used for tracking, can be found 
inside the data stream, a search for the packets was performed. Therefore, the display 
filter to filter the Wireshark packet list for the string “FUA_” (see Sect. 5.2.3.3) was  
set. 

frame contains "FUA_" 

The Wireshark’s display filter filtered eight data packets, containing the string 
“FUA_”. In the particular packet data, the string and the attached TrackingID is 
noticeable (Fig. 5.21).

The other packets contained acknowledgment objects of previous trackings. Also 
objects of trackings, with other target clients. 

5.4.2.4 Conclusion 

The wiretapping of an internet connection doesn’t lead to further knowledge of sent 
messages, communication partners, or other meta-information sent by a BitMessage 
Client. Because of the data encryption, a look inside the data payload is not possible. 
Even if the breaking of the AES-256 is prospective possible, the existence of a specific 
message packet inside the BitMessage data stream doesn’t imply, that the wiretapped 
BitMessage client is the origin of the message.
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0000   c8 0e 14 a4 4b b6 54 ee 75 b8 84 8a 08 00 45 00   ....K.T.u.....E. 
0010   00 af 0c 4c 40 00 80 06 00 00 c0 a8 02 8e 5f 6f   ...L@........._o 
0020   07 f0 7f 25 20 fc b2 92 f8 c0 bd 40 56 b6 50 18   ...% ......@V.P. 
0030   06 40 2b 37 00 00 e9 be b4 d9 6f 62 6a 65 63 74   .@+7......object 
0040   00 00 00 00 00 00 00 00 00 36 81 af 59 8c 00 00   .........6..Y... 
0050   00 00 00 6b 8b f3 00 00 00 00 5f 46 1c d4 00 00   ...k......_F.... 
0060   00 02 01 01 eb a1 46 55 41 5f 31 35 39 37 38 32 ......FUA_159782 
0070   35 38 39 35 87 c3 35 90 ca d5 15 71 55 7a 20 b7   5895..5....qUz . 
0080   14 dc 9b 2a e9 be b4 d9 67 65 74 64 61 74 61 00   ...*....getdata. 
0090   00 00 00 00 00 00 00 21 59 cf 61 1f 01 18 f3 7d   .......!Y.a....} 
00a0   55 07 3c 92 26 3f ea 11 eb 40 e9 a6 af 85 4c 2c   U.<.&?...@....L, 
00b0   75 06 99 81 c6 b2 5b 11 79 75 dc e3 d3            u.....[.yu... 

Fig. 5.21 Data packet—Acknowledgment object

For the scheduling of further investigation measures, information about the user 
activities of an offender can be useful. If it’s known, that a delinquent is using 
BitMessage, you can use the wiretapping for the information, when he is normally 
using his computer. 

5.4.3 Forensic Information Gathering 

5.4.3.1 Methodology 

Computer forensics is the application of investigation and analysis techniques to 
gather and preserve evidence from a particular computing device in a way that is 
suitable for presentation in a court of law. The goal of computer forensics is to perform 
a structured investigation while maintaining a documented chain of evidence to find 
out exactly what happened on a computing device and who was responsible for it 
[20]. 

In this particular case, is not a complete computing device or data storage, but a 
single software product, running on a device. This circumstance doesn’t change the 
computer forensics scope. It simplified the comprehensive approach of forensics. 

There are two approaches to gather information on a single software product’s 
behavior. The first approach is a comparison between the data state before the execu-
tion of the target software and the state after the execution. The alteration in the states 
can be used to determine the software behavior. Additional a copy of the memory 
can be saved before and after the execution to append the changes in memory into 
the following analyses. 

This approach lacks the inclusion of volatile data. The target software possibly 
overwrites important data changes or temporary data while executing, which can’t 
be determined afterward.



5 PyBit Forensic Investigation 161

The second approach is to monitor the target software while running. Nearly every 
current software is based on API calls of the Operation System it is developed for. 
These API calls include, among others, read and write operations as well as network 
operations. 

Depending on the OS, the target software is running on, there are different software 
products to perform a behavior recording. If using a Windows Operation system, the 
Software Sandboxie13 can be used. If using a Linux OS, the software strace14 meets 
the requirements. 

After running the software the data changes have to analyze and categorize. 
Written data files have to be identified if the data is stored in known data formats or 
in a proprietary way. To analyze the containing information, the content has to be 
extracted and classified. 

As mentioned above, there are multiple different BitMessage Client, which are 
capable to communicate inside the BitMessage Network. Besides the two deprecated 
clients Bitpost and Pechkin, there is PyBitmessage, the Reference client for Bitmes-
sage, written in Python. This client is available as compiled Windows 32 Binary, 
too. 

The following forensic analyses are referring to PyBitmessage, because it’s the 
most used client for communication in the BitMessage network. 

5.4.3.2 Observation of the PyBitmessage Affected Data 

Often, the forensic analyst hasn’t the possibility to test a software product and study 
its behavior. He has to analyze the given data. Because of the circumstance, that 
PyBitmessage is an Open Source Software, we can study its behavior by creating 
and sending prepared messages. 

To do this study, a clean lab environment has to be created. 

Laboratory Environment 

For forensic analyses, a Virtual Machine (VM) is an ideal environment to create and 
study the behavior of a software product. There are several virtualizing systems to 
create and run VMs. Because of the reason, that this study just deals with written 
data on data storage, and takes no account of memory forensics or CPU debugging, 
the choice of the virtualizer is subsidiary. For simplicity, the decision was to choose 
Oracle Virtual Box.15 For these studies, a VM with the following specification has 
been created.

• 64Bit CPU Virtualization
• 2048 MB Memory
• KVM Paravirtualization

13 https://github.com/sandboxie-plus/Sandboxie/releases. 
14 https://linux.die.net/man/1/strace. 
15 https://www.virtualbox.org/. 

https://github.com/sandboxie-plus/Sandboxie/releases
https://linux.die.net/man/1/strace
https://www.virtualbox.org/
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• 12 GB SATA Datastrorage (VMDK—Virtual Machine Disk Format)
• OS: Ubuntu (Kubuntu) 18.04.5 Desktop
• Necessary Dependencies for Running the PyBitmessage Software. 

Experimental Assembly 

By using a Linux Operation System, the surveillance of a running process can easily 
be performed by using the strace tool. 

Strace is a diagnostic, debugging, and instructional userspace utility for Linux. 
It is used to monitor and tamper with interactions between processes and the Linux 
kernel, which include system calls, signal deliveries, and changes of process state. 
The operation of strace is made possible by the kernel feature known as ptrace. A 
system call is a programmatic way a program requests a service from the kernel, 
and strace is a tool that allows you to trace the layer between user processes and 
the Linux kernel. System calls are very similar to function calls, which means they 
accept and work on arguments and return values [21]. 

Strace writes its output into a text file. The data are in the following format: 

Structure 
System call ( arguments ) = retuned value 

Example 

Openat (AT_FDCWD, "/usr/lib/python2.7/copy_reg.x86_64-linux-
gnu.so",O_RDONLY) = -1 ENOENT

• The first word of the line, Openat, is the name of a system call being executed. 
This system call openes a file relative to a directory file descriptor

• The text within the parentheses is the arguments provided to the system call. 
The File /usr/lib/python2.7/copy_reg.x86_64-linux-gnu.so will be opened read 
only (O_RDONLY). The argument AT_FDCWD means, that the path is treated 
relatively.

• The result after the = sign (which is -1 ENOENT in this case) is a value returned 
by the Openat system call. A directory component in pathname does not exist or 
is a dangling symbolic link. 

For the purpose of this analysis, the system calls with the function of disc 
writing are deeply interesting. To extract these system calls, the regular expression 
^.*?(O_APPEND|O_CREAT).*$ has been used. 

O_APPEND 

The file is opened in append mode. Before each write, the file offset is positioned at 
the end of the file. 

O_CREAT 

If the file does not exist it will be created.
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Fig. 5.22 PyBitmessage Forensic Experiment—Execution 01 

Experimental Accomplishment 

In this experiment, PyBitmessage has been executed three times. Each execution was 
traced by strace. 

Execution 01 

See Fig. 5.22. 

strace -o ~/200915_BitmessageFirstStart.txt \ 
python bitmessagemain.py 

In this first execution, the strace recording includes the first (self) configuration of 
PyBitmessage, the network bootstrap, and first network data synchronization. The 
traced system calls have been saved into the file 200915_BitmessageFirstStart.txt. 

The system calls has been filtered by the above mentioned regular expression 
^.*?(O_APPEND|O_CREAT).*$. Additionaly, all duplicates has been removed. 

openat(AT_FDCWD, "/dev/null", O_WRONLY|O_CREAT|O_TRUNC, 0666) 
= 3 
openat(AT_FDCWD, "/home/user/.config/PyBitmessage/debug.log", 
O_WRONLY|O_CREAT|O_APPEND, 0666) = 7 
openat(AT_FDCWD, "/home/user/.config/PyBitmessage/keys.dat", 
O_WRONLY|O_CREAT|O_TRUNC, 0666) = 7 
openat(AT_FDCWD, "/home/user/.config/PyBitmessage/knownnodes. 
dat", O_WRONLY|O_CREAT|O_TRUNC, 0666) = 13 
openat(AT_FDCWD, "/home/user/.config/PyBitmessage/ 
pybitmessageqt.conf", O_RDWR|O_CREAT|O_CLOEXEC, 0666) = 19
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Fig. 5.23 PyBitmessage config folder 

openat(AT_FDCWD, "/home/user/.config/PyBitmessage/singleton. 
lock", O_RDWR|O_CREAT|O_APPEND, 0666) = 12 

These results implies, that PyBitmessage writes into 5 different files and /dev/null. 
The Python based complilations from.py to.pyc are not relevant. 

1. /home/user/.config/PyBitmessage/debug.log 
2. /home/user/.config/PyBitmessage/keys.dat 
3. /home/user/.config/PyBitmessage/knownnodes.dat 
4. /home/user/.config/PyBitmessage/pybitmessageqt.conf 
5. /home/user/.config/PyBitmessage/singleton.lock 

A manual check of the folder /home/user/.config/PyBitmessage/ shows, that 
one additional file has been created: /home/user/.config/PyBitmessage/messages.dat 
(Fig. 5.23). 

This is the main database file of PyBitmessage in the Sqlite3 format. It doesn’t 
appear in the system calls of PyBitmessages, because the Sqlite3 functions were 
performed by a separated database driver. 

Execution 02 

strace -o ~/ 200915_BitmessageCreateAdresses.txt\ 
python bitmessagemain.py 

In this second execution, the strace recording includes the generating of BitMes-
sage Addresses with PyBitmessages. The traced system calls have been saved into 
the file 200915_ BitmessageCreateAdresses.txt. 

The resulting list of system calls has been filtered in the same way, as mentioned 
in Execution 01 of the experiment. This execution of PyBitmessage hasn’t created 
additional files.
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For test purposes, in this execution phase, two BitMessage Addresses have been 
created:

• BM-2cT7oFj8qj8DnMu67SKpHGVnxEAnSDHfhA
• BM-2cUx1xwZNkiacjA5iaSecymyfy7sPsmeTu 

Execution 03 

strace -o ~/ 200915_ BitmessageConversation.txt\ 
python bitmessagemain.py 

In this third execution, the strace recording includes the sending and receiving of 
messages with PyBitmessages. The traced system calls have been saved into the file 
200915_ BitmessageConversation.txt. 

The resulting list of system calls has been filtered in the same way, as mentioned 
in Execution 01 and Execution 02 of the experiment. This execution of PyBitmessage 
hasn’t created additional files. 

5.4.3.3 PyBitmessage Datafiles 

keys.dat 

The file keys.dat (Fig. 5.24) contains data of two different issue-areas: basic config-
uration and Bitmessage address storage. All data is represented in an INI based file 
format. The basic element is the key or property. Every key has a name and a value, 
delimited by an equals sign (=). The name appears to the left of the equals sign. The 
value, on the right of the equal sign, can contain any character. 

The data pairs can be grouped into sections. The section name appears on a line 
by itself, in square brackets ([ and]). 

The basic configuration is stored in the bitmessagesettings section. 
For each created BitMessage Address, the keys.dat contains a separate section. 

These sections are named after the Bitmessage Address.

[BM-2cT7oFj8qj8DnMu67SKpHGVnxEAnSDHfhA] 
label = Research Address 01 
enabled = true 
decoy = false 
noncetrialsperbyte = 1000 
payloadlengthextrabytes = 1000 

=yekgningisvirp 
5JbBtuwsDxFFX8ZJAA7RcRjYiZMsKWgwp8dLUJQy1m5TtHB 

=yeknoitpyrcnevirp 
5Jx41EYRByoY6G2gbhxWgP3xezd1E1bPPzie9A6Gr39m 

lastpubkeysendtime = 1600145800 

Fig. 5.24 Keys.dat—Example address section 
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knownnodes.dat 

The file knownnodes.dat (Fig. 5.25) contains a list of network nodes of the bitmessage 
network. The data is stored in the JavaScript Object Notation (JSON) data format. 
Every single network node is represented by an separate JSON Object. 

The Object contains the network connection data (host and port), the Bitmessage 
stream number, and statistical data. The lastseen value is in the epoch format. 

pybitmessageqt.conf 

The file pybitmessageqt.conf contains the configuration data for the user-interface 
of PyBitmessage. The user-interface of PyBitmessage based on the Qt project. The 
stored data are for example splitter and button positions. 

singleton.lock 

The file singleton.lock contains no data at all. It represents, whether PyBitmessage 
is running, or not.

Fig. 5.25 Example entries 
in file knownnodes.dat 

[ 
{ 

"peer": { 
"host": "170.84.48.19", 
"port": 65519 

}, 
"info": { 

"rating": 0.0, 
"self": false, 
"lastseen": 1600143793 

}, 
"stream": 1 

}, 
{ 

"peer": { 
"host": "68.102.185.194", 
"port": 8444 

}, 
"info": { 

"rating": -0.1, 
"self": false, 
"lastseen": 1600144396 

}, 
"stream": 1 

}, 
… 

] 
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2020-09-15 06:55:32,108 - WARNING - No indicator plugin 

found 

2020-09-15 06:55:32,109 - WARNING - No notification.message 

plugin found 

2020-09-15 06:55:37,113 - WARNING - No notification.sound 

plugin found 

Fig. 5.26 Sample content of debug.log 

debug.log 

The file debug.log (Fig. 5.26) contains the verbose output of PyBitmessage. 
Depending on the debug configuration, a complete reflection of the PyBitmessages 
behavior is stored. 

messages.dat 

The file messages.dat is the main database of PyBitmessage. It contains messages, 
foreign public keys and the internal working queue of PyBitmessage. 

The data is stored as SQLite3 Database. 

5.4.3.4 PyBitmessage Database Structure 

The message.dat (Table 5.6) database file contains 10 different tables and no indices. 
To obtain information about the user communication, three tables have to be 

regarded.

• Addressbook
• Inbox

Table 5.6 Message.dat 

# Table name Description 

1 Addressbook Contact list with BitMessage communication partners 

2 Blacklist List of BitMessage addresses, which aren’t allowed to send 
messages to this client 

3 Inbox Incoming Bitmessage messages 

4 Inventory For internale processes—Data source of the process queue of 
Pybitmessage 

5 Objectprocessorqueue For internale processes—Process queue of PyBitmessage 

6 Pubkeys List of received public keys 

7 Sent Sendet messages 

8 Settings Database settings 

9 Subscriptions Subscription list of Bitmessage channels 

10 Whitelist List of whitelisted Bitmessage Addresses 
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• Sent 

Structure of the database table “addressbook” 

# Field name Datatype 

1 Label Text 

2 Address Text 

Structure of the database table “inbox” 

# Field name Datatype 

1 Msgid blob 

2 Toaddress text 

3 Fromaddress test 

4 Subject text 

5 Received text 

6 Message text 

7 Folder text 

8 Encodingtype int 

9 Read bool 

10 Sighash blob 

Structure of the database table “sent” 

# Field name Data type 

1 Msgid blob 

2 Toaddress text 

3 Toripe blob 

3 Fromaddress test 

4 Subject text 

5 Message text 

6 Ackdata blob 

7 Senttime int 

8 Lastactiontime int 

9 Sleeptill int 

10 Status text 

11 Retrynumber int 

12 Folder text 

13 Encodingtype int 

14 Ttl int
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5.4.3.5 Data Extraction of a PyBitmessage Installation 

Extraction of all BitMessage Communication Addresses 

The extraction of the used BitMessage entities (BitMessage address) is the main step 
of gathering the BitMessage usage information of an analyzed system. 

To extract all BitMessage communication addresses, created by the PyBitmessage 
installation, it’s enough to explore the keys.dat file. If the analyzed computer system 
has multiple configurated user areas, each of them has to be included. 

The file path of the keys.dat file is [user root]/.config/PyBitmessage/keys.dat. 

Extraction of Communication 

The communication can be revealed by joining the tables addressbook with inbox 
and addressbook with sent of the messages.dat file with this SQL Queries (Figs. 5.27, 
5.28, 5.29 and 5.30). 

SELECT fromaddress, 
toaddress, 
(SELECT address 
FROM addressbook AS a 
WHERE i.fromaddress = a.address) AS toname, 

subject, 
Datetime(received, 'unixepoch', 'localtime') AS 

datetime, 
message 

FROM inbox AS i 
ORDER BY received ASC; 

Fig. 5.27 Query to acquire data from the inbox table 

SELECT fromaddress, 
toaddress, 
(SELECT address 
FROM addressbook AS a 
WHERE s.toaddress = a.address) AS toname, 

subject, 
Datetime(senttime, 'unixepoch', 'localtime') AS 

datetime, 
message, 
status 

FROM sent AS s 
ORDER BY senttime ASC; 

Fig. 5.28 Query to acquire data from the sent table
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Fig. 5.29 SQLite Browser—Query to acquire data from the inbox table 

Fig. 5.30 SQLite Browser—Query to acquire data from the sent table 

Recovering of Deleted Messages 

Normally, an SQLite3 DB doesn’t delete data in the strict sense of the word. If a 
field or data row has to be deleted, the database just leaps this data. Not before the 
database engine or the user executes the vacuum command, the leaped data will be 
finally deleted.
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Unfortunately, PyBitmessage performs the vacuum command regularly, so there is 
(besides the standard forensics measures) no possibility to recover deleted messages. 

5.4.3.6 Conclusion 

PyBitMessage uses common techniques like SQLite and JSON to store data. This 
makes the task of gathering information about messenger communication realizable. 
At least, if the owner of the computer system hasn’t deleted any messages. 

The main database is stored as SQLite File. No data field is encrypted or obfus-
cated. Also, the private keys of the used BitMessage account aren’t encrypted or 
otherwise secured. 

To extract message information about the saved conversations, just an SQLite 
capable database management system and a text editor is necessary. 

5.5 Summary 

This chapter is considered to the structure and technical background of the BitMes-
sage Network and its different clients. Close attention was paid to the encryption 
capabilities of BitMessage as well as the peer-to-peer packet distribution system. 

As experiments, 16 adapted monitoring servers have been created by using 
Docker container and brought into the Bitmessage network. A separate client to 
send messages and different clients to receive messages were also connected to the 
network. The receivers were clients with different messaging products to determine 
a possible software dependence of the results. 

The experiment consisted of a messaging test series. A total of five messages were 
sent to each recipient, do determine if a correct IP address is detectable. 

The results of the experiment confirm the initial assumption, that an identification 
is possible. Generally, the approach of monitoring the BitMessage network to obtain 
information about the recipient of a message is working. 16 monitoring servers were 
inserted into the existing network, containing ordinary 27 servers. So the probability, 
that an arbitrary client is connected to one of the monitoring servers was very high. 
Arithmetically, three of the eight connections to BitMessage servers had a monitoring 
server as a destination. If the number of participants of the BitMessage network rises, 
the number of monitoring servers has to raise too. In the case, that the increase of 
the monitoring server doesn’t correspond to the increase of the whole BitMessage 
Network, the presumption of the successful tracking decreases. 

The negative results of the test series with alternative clients don’t change the 
overall result. The development of both clients, Pechin vA0.1 and BitPost 0.9.8.3 are 
abandoned. The use of these clients is immaterial in the BitMessage Network. The 
far most participants are using the original PyBitmessage reference client. 

The test results showed, that the identification approach to identify message recipi-
ents can be implemented, regarding the current network scale. The number of network
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nodes (clients and servers) allows, to insert as much as necessary monitoring clients 
to fulfill the investigation requirements. 

The technical approach is based on the probability, that the target person’s BitMes-
sage client is directly connected to a monitoring node. However, this can only be 
an assumption and is not a fact. In a legal environment, the declaration of investiga-
tion results requires provable facts. Handling probabilities is often questionable. This 
means, that a single identification result isn’t sufficient for a conclusive identification 
result. The more concurrent results can be obtained, the better is the state of facts as 
a basis for argumentation. 

The evidence can be condensed by monitoring a suspect’s telecommunications. 
Here the question was asked which approaches does Bitmessage encryption offer to 
gather information out of foreign Bitmessage communication? 

In the performed experiment, the network traffic of a client connected to the 
Bitmessage network has been captured while a user was sending and receiving 
messages. Additionally, the network has also been captured while a tracking measure 
against the client was performed. 

The analysis of the traffic did not provide any indications of a possible decoding 
option. All content and metadata were fully encrypted in accordance with the Bitmes-
sage specifications. These specifications will not allow decryption in the foreseeable 
future. Additional data that did not correspond to the specified network protocol were 
not sent. 

The identification approach mentioned above changes the data packets above the 
encryption level. Small parts of the bit sequence have been changed according to a 
fixed pattern. This pattern was clearly recognizable in the captured data. If the moni-
tored port were the only port to which the manipulated packet would be delivered, 
the law enforcement IP identification measures could be determined and thereby 
confirmed. The distribution system within the Bitmessage network, however, means 
that every participant receives every data packet. The fact that a manipulated data 
packet was detected during monitoring does not mean that the monitored connection 
was the actual origin of the packet. General confirmation of the IP identification 
measures cannot be made. 

The PyBitmessage software does not use any special data storage methods. All 
data is saved either as a SQLite database or as a JSON object. Messages are stored 
encrypted and unencrypted as a table in the SQLite database. The messages that 
concern the examined client are always unencrypted. In addition, the associated 
keys are referenced. 

This chapter showed, that the identification of message recipients in the BitMes-
sage network is possible. The identification approach was tested in a phase, where the 
overall size of the BitMessage Network relatively small. Roundabout 1700 BitMes-
sage nodes were present on average. If the network size should increase in the 
future, the experiment of this master chapter has to be repeated and the conclusions 
accordingly rewritten. 

The acknowledgment packets used to identify the recipients are changed. An 
identifier string was entered. This string is recognizable while inspecting the network 
packets. If anyone will perform a security audit of the BitMessage network, this string
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can be noticed and scrutinized. A possible solution is to insert the identifier string, 
before encryption of the acknowledgment packet. 

Thus, the data forensic examination of PyBitmessages wasn’t part of this chapter, 
to complete the knowledge about the BitMessage network, an analysis of the messen-
gers’ data storage, and an overview of the memory artifacts, produced by the clients, 
is desirable. 
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Chapter 6 
Database Forensics for Analyzing Data 
Loss in Delayed Extraction Cases 

Katherine Moser, Kim-Kwang Raymond Choo , and Nhien-An Le-Khac 

6.1 Introduction 

Most within law enforcement would agree that cellular devices often play a critical 
evidentiary role in criminal investigations. This is largely due to the fact that most 
people today, use a cell phone in some capacity. According to a 2018 report published 
by the Canadian Radio-television and Telecommunications Commission, there were 
31.7 million mobile subscribers in Canada by the end of 2017 [1]. With an estimated 
population of 36.7 million that same year [2], as a Country, we are fast approaching 
a 1:1 cell phone to person ratio. 

For a digital forensic examiner working in a law enforcement digital forensics 
lab, extracting and analysing cell phone data is a common request for service [3, 
4]. Having said that, there are many factors that will determine whether or not the 
data on a cellular device can be accessed and extracted. These factors can be device 
specific, such as the make, model, operating system (OS) or dependant on the device 
support of the lab’s forensic hardware and software tools. 

One element that has influenced a digital forensic examiner’s ability to extract and 
analyze phone data is device security. More specifically, the use of different types of 
passwords and encryption. One highly publicized case that brought these very chal-
lenges to the forefront, was the 2015 terrorist shooting in San Bernadino, California. 
During the investigation, the Federal Bureau of Investigation (FBI) recovered an 
Apple iPhone from one of the suspects. The iPhone was password protected, which 
prevented the FBI from accessing the device. After a lengthy court battle with Apple 
Inc. (to no avail), the FBI paid a private third-party company to unlock the device 
for them [5]. 

Since the San Bernadino case made headlines, commercial digital forensic tools 
have emerged that are available to law enforcement only. These tools provide law 
enforcement organizations with the ability to have an “in-house” solution that can 
defeat or overcome the same data protections that restricted the FBI in the San 
Bernadino file. Another advantage of these advanced forensic tools, is the amount of
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data they can extract. Rather than simply performing a backup of a user’s data, these 
tools can extract a partial or full file system from an iPhone, giving law enforcement 
much more relevant data to use in criminal investigations. While these advanced 
tools can access and extract data from iPhones that might otherwise be inaccessible, 
they are not a one size fits all solution and are very expensive, which places them 
well outside of budgetary reach for many law enforcement digital forensic labs. 

In general terms, these advanced forensic tools use two different methods in order 
access and extract data from a locked iPhone. The first method is a brute-forcing 
technique (which means guessing the password until the correct one is found) and 
the second is a bypass method which works around the passcode altogether. The 
specific method that a digital forensic examiner can use is dependent on a number 
of factors including the iPhone’s model, Operating System version and state. A 
device’s state is very important to note, because the ability to use the bypass method 
is contingent on the iPhone’s state and a specific set of circumstances being met. In 
order to access and extract the iPhone’s data, the device must remain powered on 
and the password must have been entered at least once since the device was powered 
on or rebooted. Within the digital forensic community, this condition is referred to 
as an ‘After-First-Unlock’ (AFU) or Hot state. 

One major advantage of being able to bypass an iPhones passcode is because 
iPhones utilize security measures specifically designed to combat brute-force attacks. 
The ability to enter a password at an iPhone’s lock screen is purposely slowed down 
to only allow one attempt every 80 ms [6]. Additionally, after an incorrect passcode 
has been entered a certain number of times, additional incremental time delays are 
introduced before additional attempts can be tried. These additional incremental time 
delays are shown in the Apple’s Platform Security Guide [6]. 

To put this into context, a four-digit PIN that utilizes the numbers 0 through 
9 only has 10,000 possible combinations. Increasing the length to 6-digits adds an 
additional 990,000 possible combinations. Depending on the passcode or password’s 
length (4-digit, 6-digit, 10-digit) and complexity (e.g. all numbers or alphanumeric) 
the number of potential combinations continues to increases. With the brute-forcing 
delays outlined above, and depending on the passcode or password in use, success-
fully brute-forcing an iPhone could take anywhere from a few minutes or hours to 
months, years or even decades. For law enforcement, having to wait months or years 
let alone decades to access potentially relevant evidence on a seized iPhone is not 
feasible. In addition, the 2016 Supreme Court of Canada ruling in R versus Jordan, 
imposed timelines for the trial of court cases to avoid breaching the rights of the 
accused, which were established at 18 months for cases before the provincial court 
and 30 months for those before the superior court [7]. 

As of today (August 19, 2021) newer iPhones running more recent versions of 
the Apple operating system (iOS) can only be accessed using the bypass method as 
the brute-force method is not supported. With the introduction of this new AFU of 
Hot state criteria, a new set of challenges when seizing a phone exist that must be 
considered. 

In the past, the best practice for seizing electronic devices was to simply power 
them off. With cellular phones, doing so ensured three things:
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(1) The device was isolated from the network (cellular and internet) in order to cease 
the sending and receiving of all communications, especially those designed to 
remotely wipe all the data on the device; 

(2) There was no need to consider how much life was left in the phone’s battery; 
and 

(3) The device’s powered off state did not impact the investigative process, 
specifically the level of urgency in: 

a. Obtaining judicial authorizations to search the device (if not already in 
place); 

b. Transferring the seized device to the digital forensics lab; and 
c. When the extraction of data from the seized phone was conducted. 

Now that advanced forensic tools require certain phones to remain powered on in 
order to access and extract their data, previous best practices of powering off a Phone 
is no longer a viable option. Other techniques must now be used in order to ensure 
the phone’s network isolation, e.g. placing the phone in airplane mode, removing 
the SIM card or using a Faraday bag. A new consideration introduced by the need 
for keeping a device powered on is the phone’s battery life. Ensuring that a phone 
does not power off as a result of its battery drain could require access to and the use 
of charging cables and adapters and access to an electrical power source such as an 
electric outlet or battery pack. 

A phone that must remain in an AFU state means that the Operating System is 
still running. Therefore the phone’s battery will continue to deplete unless connected 
to a charger, and changes to the device’s data are still occurring. For example, a 
password protected device that is seized and isolated from the network has an alarm 
set to go off at 06:00 a.m. every day. As long as the device remains powered on, this 
alarm will continue go off daily at 06:00 a.m. because the device remains powered 
on and the operating system is still running. The question then becomes, by virtue 
of the Operating System continuing to run, does the iPhone then become a volatile 
container for the data it contains? Even if a seized device gets to the digital forensics 
lab at the earliest possible opportunity, can delays caused by the investigative process 
(i.e. lab backlogs or the need to first obtain a search warrant before the phone’s data 
can be extracted) cause the loss of potentially relevant data? 

In an effort to protect evidence that might be of evidentiary value to an investiga-
tion, the proposed research aims to demonstrate that device data is lost when a seized 
iPhone must be left powered on in order to be extracted, and extraction delays occur 
as a result of the investigative process. The research will determine if the longer 
the waiting period extends before extracting the data from a live iPhone, so will the 
number of artefacts that will be lost on the device. 

Within the digital forensic community, there appears to be a working level knowl-
edge or understanding that data on Apple devices can be deleted. This knowledge 
or understanding is often learned through work experience, training or asking others 
within the digital forensics community for advice. However; the shared knowledge 
is often specific to known data retention periods of certain applications or device 
settings, such as the knowledgeC.db database only storing data for approximately
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22–26 days. While this type of information is very useful to a digital forensic exam-
iner, it does not address overall data loss, and it does not address loss specifically 
related to delaying a device’s extraction. 

For most law enforcement digital forensic examiners, the ability to conduct the 
type of research proposed in this paper would not be possible due to the high 
costs associated with purchasing advanced forensic tools. Additionally, operational 
requirements would not only take priority for using those tools, but also an examiner’s 
time. 

The objective of this chapter is to provide the digital forensic community, and 
larger law enforcement community as a whole, a research based answer to the ques-
tion, is data lost when the extraction of a seized iPhone is delayed. This chapter aims 
to: 

• Contribute to digital forensic process best practices in dealing with a seized 
iPhone; 

• Provide research results that could form part of an exigent circumstances 
framework; and 

• Enable better outcomes for criminal investigations. 

6.2 Background 

6.2.1 iOS SQLite Databases 

Most iOS applications store data in a SQLite database, which is “an in-process 
library that implements a self-contained, serverless, zero-configuration, transactional 
SQL database engine” [8]. Since these databases are self-contained, they are usually 
comprised of a single main database, with additional temporary files that store infor-
mation when a change to the database (called a transaction) is being made [9]. The 
two most common temporary files found with iOS SQLite databases are the shared-
memory file and write-ahead log. This is because the databases run in what is known 
as WAL mode. The shared-memory file (named for the database with “-shm” added 
to the end) provides shared memory that the write ahead log uses as an index [10]. 
The write-ahead log (named for the database with “-wal” added to the end) keeps a 
record of changes that have been made, but not yet written to the main database file. 

6.2.2 SQLite Vacuuming 

When data is deleted from a SQLite database, the deletion does not necessarily occur 
right away. Rather, the area that contained the deleted data is marked or flagged as 
‘available space’ to be used by the database to store new data when it arrives. As a
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result, data can become fragmented and cause the database to grow in size unneces-
sarily. This is where the VACUUM command comes into play. When executed, the 
VACUUM command cleans up any ‘available space’ areas (in the main database file 
only) by rebuilding the database file and repacking the data inside the database so it 
can occupy the smallest amount of required space [11]. 

In order to keep a SQLite database running optimally, the VACUUM command 
can be set to run automatically, referred to as ‘auto_vacuum = FULL’ mode [11]. 
Running in full mode, a SQLite database uses the ‘available space’ once data is 
deleted, which reduces the overall size of the database without the need to run a 
separate VACUUM command to rebuild the entire database. The auto-vacuum mode 
has three settings in total, NONE (0), FULL (1) or INCREMENTAL (2) [12]. 

In order to set the vacuum status of a SQL database to a particular mode, a 
statement (called a PRAGMA statement) is used. A PRAGMA statement is specific 
to SQLite, and is used to modify how a database operates [12]. When a database 
is set to ‘2’ or incremental mode, auto-vacuuming will only occur once a pragma 
statement with ‘incremental_vacuum’ is used [12]. 

6.3 Methodology 

In the last number of years, law enforcement digital forensic labs have seen a shift 
in the electronic evidence they receive. More and more, requests for analysis centre 
around portable electronic devices, and in particular mobile phones. The introduction 
of ‘in lab’ advanced forensic tools has greatly diminished the need to send locked 
devices away to third party companies for assistance for those labs fortunate enough 
to have such a solution available. The support offered by these digital forensic tools, 
for some devices, is contingent on the device remaining in a powered on AFU or 
Hot state, the question arose on what happens to the data (if anything) on the seized 
device while it is waiting to be extracted. 

In order to be able to answer this question, the proposed research necessitated a law 
enforcement context. To have research data that would better inform law enforcement 
on what happens to the data on an iPhone when the extraction is delayed, all aspects 
of the research needed to simulate a criminal investigation involving the seizure and 
data extraction of a smartphone. With this idea in mind, the first step was to select test 
devices that were capable of having their data extracted while in an AFU or Hot state. 
Equally important, was each device already being populated with user data unknown 
to the researcher (just as the user data would be unknown to the law enforcement 
digital forensics analyst). In order to have a similar yet diverse amount of research 
data to work with, five phones with different chipset architectures and OS versions 
were selected. One other important aspect was knowledge of each test phone’s PIN 
number or passcode. The purpose of having this information was to ensure that the 
test devices were in an AFU state in order to start the extraction phase.
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In selecting the digital forensic hardware and software to be used for the extraction 
and analysis portion of the research the main criteria used was that the forensic tools 
had to be commonly found in (and currently used by) law enforcement digital forensic 
labs. 

Although the selection of devices and forensic tools were listed like steps, they 
were conducted simultaneously since they are co-dependent. This avoided selecting 
a test device that: 

a. Could not be extracted in AFU mode; 
b. Was not supported by the digital forensic tools; or 
c. Was supported but only by a forensic tool not available to the researcher. 

Once the devices and forensic tools were chosen, a timeline as well as the number 
of extraction to conduct on each device needed to be determined. In deciding when 
the devices should be extracted, consideration was given to using timeframes that 
the researcher believed would represent realistic delays that could be faced during 
a criminal investigation. With that in mind, the number of extractions performed 
needed to allow for comparable data sets that could also show a progression of data 
loss. Therefore, each device was selected to be extracted four times at an interval of 
2 h, 24 h, 72 h and 7 days post device seizure. 

At the beginning of the extraction phase, each test device started in a powered off 
state. To avoid data changes or remote wipe signals received through cellular and data 
network connectivity, each test device needed to ensure connectivity was disabled. 
This was ensured through removal of SIM cards (if present) before powering on the 
text devices and placing the device in airplane mode once it was powered on. After 
powering on each device and disabling network connectivity, each phone would 
need to be placed into its AFU or Hot by entering the passcode into the lock screen. 
Once the device was confirmed to be unlocked, it could subsequently be locked 
by pressing the home button or power button. With the phone now in the required 
state for extraction, a simulated device seizure time was selected and all interaction 
with the phone would cease with the exception of connecting it to a charge cable or 
forensic tool for extraction. The other two considerations for the extraction phase of 
the research were how to ensure the test phones did not lose their AFU or Hot state 
and device continuity. 

In order to maintain the charge level of each device’s battery in order to keep it 
in its powered on state, when not being extracted, the test devices were connected to 
a charging cable. To minimize potential risks to the research being conducted, e.g. 
power outages, additional measures like the use of a Universal Power Supply (UPS) 
were implemented. To ensure the continuity of each test device, the charging cables, 
Universal power supply and test phones were kept in a secure room only accessible 
by the researcher. Keeping the devices in a secure room was meant to simulate the 
use of a digital evidence room or locker. 

Once all of the extractions were completed, a comparison analysis on each device’s 
four extractions would need to be performed using the forensic analysis software. 
With the sheer number of applications and the amount of data a single device can 
contain, coupled with the fact that the data on each test device would be unknown to
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the researcher, parameters would need to be implemented to narrow the focus of the 
analysis. In order to find some common ground across all five devices, the scope of 
the research would be narrowed to focus on native OS applications only. 

Any losses of data identified through the comparison analysis would require 
further investigation in order to verify that the data was removed. Therefore, identi-
fication and review of the native applications or file system locations that stored the 
potentially lost data would need to be examined. To further support the loss of data, 
and any findings from the file system and application review, a timeline and iOS log 
analysis would also be conducted to potentially establish a cause as well as further 
confirm any loss of data. 

6.4 Database Analyzing of iOS 

In order to establish the scope and approach to the research presented in this paper, 
consideration was given to five main areas. The first involved determining which 
phones to include in the research. Once this was established, selecting the forensic 
hardware and software to be used to extract and analyze the iPhone data was consid-
ered. The third area of focus was to determine an appropriate extraction timeline 
that would simulate delays that could reasonably exist as a result of the investigative 
process. Next, parameters for which artifacts to focus on were established. Lastly, 
criteria was established for how the analysis would be conducted and what metrics 
would be compared in order to establish if any data was lost and how. Each of these 
five areas are discussed in greater detail below. 

6.4.1 iPhones for Conducting the Research 

The ability to purchase multiple new phones for conducting this research fell outside 
the cost neutral budget for this research. In addition, newly purchased devices would 
not be populated with user data, thus requiring the researcher to ensure the new 
devices had mobile subscriptions (which is an additional cost) and to populate the 
devices with user data. Since the approach to this research is to simulate a criminal 
investigation involving the extraction of data from a seized phone, the data on each 
test device should not be known to the researcher, just as it would not be known to 
a digital forensic examiner working in a law enforcement digital forensics lab. With 
these factors in mind, previously forfeit devices (already populated with user data 
unknown to the researcher) from a law enforcement digital forensics lab were used. 

In order to have a cross section of devices (that have different internal architec-
tures) and OS versions, the research required several test iPhones each running a 
different version of the iOS. The devices also needed to be protected by a known
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passcode (preferably already in use). This is because as soon as a user sets a passcode 
on their iPhone, data protection will be turned on automatically [6]. Knowledge of 
each iPhone’s passcode is strictly for the purpose of ensuring the device is in an AFU 
state as required by the forensic tool. It will not be used to gain access to the iPhone 
for the purpose of accessing and extracting the device’s data. 

With these parameters in place, five iPhones met the desired criteria to be used as 
test devices. The devices included: 

• iPhone X (model A1901) running iOS 14.3 with an A11 chipset and 6 digit PIN; 
• iPhone 5s (model A1533) running iOS 12.5.3 with an A7 chipset and 4 digit PIN; 
• iPhone SE (model A1723) running iOS 14.6 with an A9 chipset and 6 digit PIN; 
• iPhone 7 (model A1778) running iOS 10.2 with an A10 chipset and 4 digit PIN; 

and 
• iPhone 7+ (model A1784) running iOS 11.0.3 with an A10 chipset and 6 digit 

PIN. 

Of the five test devices in the list above, it should be noted that the iPhone SE, 
iPhone 7 and iPhone 7+ had not been powered on or connected to the cellular network 
in some time. As such, these devices boot times are not current. 

6.4.2 Platforms and Forensic Tools 

For the purposes of selecting the forensic hardware and software to use for conducting 
the research outlined in this paper, the following criteria was established: 

The forensic tools need to: 

• Be available to be used by the researcher; and 
• Currently be in law enforcement digital forensic labs; and 
• Support AFU data extractions from the test iPhones; or 
• Be able to parse the iPhone data extractions for analysis. 

Applying this criteria resulted in only one advanced forensic tool option to perform 
the required data extractions. Acknowledging that being able to extract each iPhone 
using at least two different forensic tools would assist in validating the data extraction 
results, the lack of other tool options will be a noted limitation for this research. In 
addition, due to non-disclosure agreements, and the fact that the focus of this research 
is not on the forensic tools themselves, the tools will not be named. 

In choosing a forensic tool to parse the data extractions and conduct analysis, based 
on the set criteria, two forensic software programs were available to the researcher, 
both made by the company “Cellebrite, Inc.” The two forensic analysis programs 
are Physical Analyzer (PA) and Inspector (formerly known as Blacklight made by 
BlackBag Technologies Inc.). At the onset of the research, both were the most recent 
versions of the software, being 7.45.0.92 for PA, and 10.3 for Inspector.
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With the forensic tools selected, the only other criteria required was to establish 
parameters for how the tools would be used to ensure consistency in their appli-
cation and the results they produced. Therefore, all forensic tools (including soft-
ware/firmware versions and settings/configurations) will need to remain the same 
throughout the research to ensure that the results are not tainted from using different 
versions or settings of the forensic tools. 

Non-forensic Tools 

In order to conduct the research, a laptop running Microsoft Windows 10 Pro, version 
20H2, OS Build 19042.1110, Windows Feature Experience Pack 120.2212.3530.0 
will be used. In addition, a free to use software program called DB Browser for 
SQLite version 3.12.2 (available at http://sqlitebrowser.org/) will be used to assist in 
conducting comparison analysis of SQLite databases. 

6.4.3 Extraction Phase and Timeline 

The extraction phase will start with each iPhone powered off with no SIM card 
inserted into the device. Each iPhone will be powered on and unlocked by entering 
the passcode on the lock screen to place it into an AFU of Hot state. Airplane mode 
will be enabled on each device and Bluetooth and Wi-Fi connections will be disabled 
(if not already done so). Subsequently the device’s screen lock will be enabled and the 
lock state verified. The device will then be connected to a charging cable connected 
to a UPS unit and wall outlet in a secure room only accessible to the researcher. 

These specific measures are being implemented to: 

• Simulate how a seized iPhone would likely be treated in a law enforcement digital 
forensics lab; 

• Ensure the device cannot connect to a cellular or data network which could alter 
or erase the phone’s data; 

• Maintain both the battery level and AFU or Hot state of each iPhone; and 
• Mitigate risks that could jeopardize the research process or alter the results, such 

as power outages or someone other than the researcher interacting with the test 
devices. 

With the idea of simulating a criminal investigation involving the seizure and 
extraction of data in mind, once each device is powered on and connected to a charge 
cable, a specific time will need to be selected which is meant to simulate the time of 
device seizure. From this time forward, user interaction with the device (other than 
for the purposes of connecting the device to the extraction tool or charge cable) will 
cease. 

Once the seizure of the device has taken place, four separate data extractions 
will be performed on each of the locked iPhones. The extraction intervals for each 
iPhone will use the following timeline, and every effort will be made to ensure all 
data extractions have strict adherence to this timeline:

http://sqlitebrowser.org/
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• Two hours from the identified seizure time; 
• 1 day (24 h) from the identified seizure date and time; 
• 3 days (72 h) from the identified seizure date and time; and 
• 1 week (7 days) from the identified seizure time. 

The first extraction at 2 h post seizure is designed to simulate no extraction delays 
occurring as a result of the investigative process. The latter three extraction time-
frames are purposed to imitate three different periods of delay that could be faced as a 
result of delays in the investigative process. Between each extraction, the iPhone will 
be placed back on the same charge cable connected to the Universal Power Supply 
unit and wall outlet in the same secure location. 

One limitation of the timed and consecutive nature of the proposed device extrac-
tions, is that any one extraction will not be able to be replicated without starting the 
whole cycle of device seizure and data extraction over. 

6.4.4 Artifacts of Interest 

Mobile device extractions can produce an enormous amount of data for a digital 
forensic examiner to analyze. With the methodology of this research requiring 20 
iPhone extractions, parameters needed to be set to streamline what the analysis would 
focus on to ensure the scope did not become too large. 

Normally, a law enforcement digital forensic examiner’s analysis is guided by 
the judicial authorization in place and further streamlined by any specific items of 
interest or evidentiary value requested by the lead Investigator. With this in mind, 
the researcher’s analysis will focus on those artifacts most commonly sought in an 
investigation, specifically: 

• Electronic communications (text messages, instant messages, chats, and call logs); 
• Media files (pictures and videos); 
• System logs; and 
• Any corresponding databases that house the aforementioned data. 

With that being said, one type of electronic communication that will not be 
included in the research are emails, which is purposeful. The reason for this exclu-
sion is because emails stored in the Apple Mail application are not extracted by the 
advanced forensic tool when performing an AFU or Hot extraction. 

One other component that would require the researcher’s analysis to be further 
streamlined is the need to have consistent and comparable data for analysis, while 
still being able to answer whether or not data is lost when an iPhone extraction is 
delayed. The artifact types of interest listed above could be produced by hundreds 
if not thousands of different iPhone applications. Coupling this with the fact that 
the data contained on each of the test iPhones is unknown to the researcher, and the 
Apple App Store having 1.8 million different apps available worldwide as of July 
2021 [13], the best solution is to analyze only those applications and databases that 
are installed as part of the iOS.
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6.4.5 Analysis Approaches 

As stated previously, consistency in how the forensic analysis tools are configured 
and used will be key to this stage of the research. Just as a digital forensic examiner 
does not want to report incorrect findings, it will be important to this research to 
ensure that any discrepancies found when comparing the data extractions from the 
same device against each other, are not influenced or caused by the researcher. 

6.4.5.1 Comparison Analysis 

Each of the device’s four extractions will be parsed and analyzed using the commer-
cially available forensic tools identified in Sect. 6.4.2. In an effort to answer the 
problem statement, a comparison analysis of each iPhone’s data extractions will be 
conducted. Two quantitative data sets will be the focus of this comparison: 

1. The size of each data extraction; and 
2. The total number of each artifact of interest. 

These quantitative data comparisons will be reported in tables using a color scheme 
to emphasize noted changes in size and number. Increases are emphasized in blue, 
decreases are emphasized in yellow and those that saw both an increase and decrease 
are emphasized in green. To provide structure to this comparison, the outline depicted 
in Fig. 6.1. 

When discrepancies in the number of artifacts of interest are identified, the arti-
facts will be tagged, and their source file (database) and file system location will be 
reviewed to ensure the artifact is associated to a native iOS application as outlined 
below. Once an association to a native iOS application has been confirmed, the 
source database from the two extractions being compared will be reviewed to verify 
the data loss and to ensure that the forensic tools are not reporting false positives. 
Once removal is confirmed, the modified time of the appropriate database will be 
noted and used as part of the Timeline and iOS Analysis outlined below. 

Any observed reductions in extraction size or number of artifacts will be an indi-
cation of data loss. In addition, subsequent reductions noted in the second and/or 
third comparisons will show that the longer an extraction is delayed, the greater the 
loss of data is.

• Extraction 
size 

• Artifacts of 
interest 

• Extraction 
size 

• Artifacts of 
interest 

• Extraction 
size 

• Artifacts of 
interest 

• Extraction 
size 

• Artifacts of 
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v. 
24 hrs 

24 hrs 
v. 

72 hrs 

72 hrs 
v. 
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v. 
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Fig. 6.1 Comparison analysis outline 
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Table 6.1 iOS database locations 

Artifacts of interest Path 

Electronic 
communications—calls 

/private/var/wireless/Library/CallHistoryDB/Callhistory.storedata 

Electronic 
communications—chats, 
instant messages (SMS, 
MMS) 

/private/var/mobile/Library/SMS/sms.db 

Media files—pictures, 
videos 

/private/var/mobile/Media/PhotoData/Photos.sqlite 

Logs—application usage 
log 

/private/var/mobile/Library/CoreDuet/Knowledge/knowledgeC.db 

Logs—log entries /private/var/mobile/Library/CoreDuet/People/interactionC.db 
/private/var/wireless/Library/Databases/DataUsage.sqlite 

Consistent reductions across multiple devices will demonstrate that a seized 
iPhone is a volatile container for its data as a result of the advanced forensic tools 
only supporting data extraction when the iPhone is kept powered on. These findings 
in turn, could be used to support investigations, demonstrating that the best possible 
outcome is achieved when an iPhone is extracted as soon as possible. 

6.4.5.2 IOS Application/Database Analysis 

Based on the artifacts of interest selected in Sect. 6.4.4, as part of the comparison 
analysis, certain applications and their respective databases are expected to be iden-
tified and reviewed. The iOS application databases including their file path locations 
within the iOS file system (based on the iOS versions of the iPhones used for this 
research) can be seen in Table 6.1. 

It should be noted here, that only the data presented by the forensic analysis soft-
ware will be reviewed. Additional data carving and the recovery of deleted artifacts 
outside of those recovered by the forensic software (including the recovery of entries 
from SQLite databases) will not form part of this research. 

6.4.5.3 Timeline and iOS Analysis 

When changes are made to a record in iOS, e.g. a recorded entry in a SQLite database 
is removed, the record’s modified timestamp is updated to reflect the change. When 
viewing the modified time of a file in iOS, the modified time reflects the last (or 
most recent) time the file was modified. Armed with this information, if artifacts 
are identified as being lost when comparing the iPhone extractions, the modified 
time of the SQLite database where the artefact of interest was located can be cross-
referenced in the timeline to determine what other activities were occurring on the
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device around the same time. This is possible because both forensic analysis tools 
have a timeline feature that has the ability to show all system and user events that 
occurred on a device in chronological order. 

Additionally, since iOS version 10.X, Apple Inc. introduced the use of a unified 
logging system, which captures disk and memory log data from all system levels 
into one centralized location. These log files are located in the file system at: 

• /private/var/db/diagnostics; and 
• /private/var/db/uuidtext 

Including these log files as part of the analysis and leveraging the timeline capa-
bilities of the forensic analysis tools, it is expected that any loss of data can be further 
verified as well as potentially identifying the cause of the data loss. 

6.5 Experiments and Findings 

As mentioned in the previous section, five iPhone test devices were used in the 
experiments: SE, 5s, 7, X, 7+. At the start of the extraction phase, each iPhone was 
powered off. As a result, each device was powered on, and had their passcode entered 
into the lock screen to place them into an AFU or Hot state. The Airplane mode status 
was enabled, if required (ensuring Bluetooth and Wi-Fi connections were disabled), 
and the lock screens were subsequently enabled and verified. Each device. 

As stated previously, the boot times of three of the devices are not current, as such, 
the date and time for each device is included as a reference in Table 6.2. Each iPhone 
had a seizure time selected and was connected to a charge cable, connected to a UPS 
in a secure room only accessible to the researcher. The timing of these actions are 
shown in Table 6.2 using Atlantic Daylight Time (ADT). All of the iPhones with the 
exception of the iPhone 7+ were showing a boot time in ADT. The iPhone 7+ was 
showing a time in Atlantic Standard Time (AST). 

Table 6.2 Experimental 
devices 

iPhone Powered on time 
(ADT) 

Seizure time 
(ADT) 

Boot time 
(ADT) 

SE 2021-06-15 12:50 2021-06-15 
12:51 

2016-09-21 
19:45 

5S 2021-06-15 14:30 2021-06-15 
14:30 

2021-06-15 
14:30 

7 2021-06-15 16:04 2021-06-15 
16:04 

2017-10-15 
15:04 

X 2021-06-15 17:33 2021-06-15 
17:34 

2021-06-15 
17:33 

7+ 2021-06-19 05:51 2021-06-19 
05:53 

2018-01-01 
14:16
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The iOS application, database analysis and timeline iOS Analysis were carried 
out for 5 iPhone test devices, however only the results of iPhone 7 and X will be 
described in the following subsections. A comparison analysis of all testing devices 
will be presented at the end of this section. 

6.5.1 iOS Application and Database Analysis 

6.5.1.1 iPhone 7 Analysis 

The only artifact of interest noted to have changed were the Images, shown in Table 
6.3. 

2 h versus 24 h  

Images: One decrease in images was identified by the artifacts of interest compar-
ison. In comparing the images from the iPhone 7’s 2 h and 24 h extrac-
tions, one image file was identified in the 2 h extraction that was not found 
in the 24 h extraction. The image file was tagged and reviewed. The image 
file was associated to a source file of Cache.db-wal located in the iPhone 7’s 
file system at /private/var/mobile/Library/Caches/sharedCaches/com.apple. iTunes-
Store.NSURLCache/. The image was identified as an embedded file called 
‘Cache.db-wal_embedded_1.jpg’. With the iTunes Store falling outside the scope 
of the research paper, the embedded image was excluded from the research. 

24  h versus 72 h  

No changes occurred in the number of reported artifacts of interest reported. 

72 h versus 7 days 

Images: Comparing the artifacts of interest revealed a decrease of 48 
images. The images from the iPhone 7’s 72 h and 7 day extractions were 
compared, and the 48 images were identified in the 72 h extraction, tagged 
and reviewed. Of these 48 image files, 44 had an identified source path of 
/private/var/mobile/Library/Caches/com.apple.MobileSMS/Previews/Attachments/. 
As previously stated, com.apple.MobileSMS is the BundleID for the native iOS 
Messages application. These 44 images can be seen in Fig. 6.2.

With a native iOS application identified in the source path for 44 images, 
further analysis was conducted. The 44 lost images from this location all had

Table 6.3 iPhone 7 artefacts of interest comparison 

Artefacts of interest 2 h 24 h +/− 24 h 72 h +/− 72 h 7 days +/− 
Images 42,826 42,825 −1 42,825 42,825 0 42,825 42,777 −48 
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# Name  
Size 

hsaH5DMsredloF-buSsetyB( 
1 20170731_212539-preview-l.ktx 101520 /2d/13/CAC20AC3-E9FD-4FAF-A867-ED2F0E21A273/ 01b1eeb94dd1695c5160a90b684ea05f 
2 2Uei0yTn-preview.ktx 322896 /9b/11/2CA52231-F734-4552-8F70-774A4D9AB73F/ af544fdbf0e939a2191146f1d5fac059 
3 54cc296a542a130e3eebc2098d466499-preview.ktx 322896 /31/01/97D7A20B-93FC-403B-A1AD-48A528B2DB68/ 158e520e18d0800a85ab96b1f254e2cc 
8 Company-preview.ktx 242208 /d8/08/C51A9B03-BEBF-4312-BED2-6B6DAAFC6D56/ 20f93a376b0a3519c20e2e506204e532 
9 FB_IMG_1501636183546-preview.ktx 242208 /53/03/48B3ADAF-4716-46A7-ACFB-518417C27BD2/ 1f7676979daa7847935be6b219d98110 
10 GingerSnaps2-preview.ktx 242208 /bb/11/B14D97BC-7A12-42EE-8E9D-033511C82F59/ 396e7dbe5db014045ecd33043e2a53ec 
11 IMG_0248-preview.ktx 322896 /21/01/6640AA9F-C4CC-4B8A-9C78-025251D5766F/ ca4f4ca1bca50f0d91391f955dce902d 
12 IMG_0293-preview.ktx 322896 /76/06/0CC34DCE-DE20-4109-9EA0-4B624C719E99/ ce3a2cb8371b2ec9d6aa354b128792c9 
13 IMG_0294-preview.ktx 322896 /78/08/27E2AAA0-0237-43D1-AB74-01463BE52DBE/ 665c3f276bf79602643c3ac4c8fbc785 
14 IMG_0296-preview.ktx 322896 /2f/15/0FF1DDC9-23CA-4774-8909-EFEC7C627F74/ 0faa197236fbfc4bcdf8e0f5c3638ef3 
15 IMG_0298-preview.ktx 322896 /ef/15/B3A981A7-E752-4510-A794-6594FF7BB868/ 9c97af95e7e4a5df5bfbba8f67b951d0 
16 IMG_0299-preview.ktx 322896 /51/01/BF2979C8-4A35-49B7-8FD1-163BBADA62ED/ 898127e8a6dcf117faadd682263d1c3a 
17 IMG_0302-preview.ktx 322896 /42/02/381F3AD1-7DC6-49FA-A68D-06A103B8AC83/ d45366c67d0f7c65c41a447b914f6078 
18 IMG_0310-preview.ktx 322896 /34/04/90F8094D-0631-493D-825C-595ACB2B499A/ 86b43ddc92156a935e579a72375bebe7 
19 IMG_0310-preview_1.ktx 322896 /b0/00/58965668-4C53-4100-B8AC-53361833A709/ 86b43ddc92156a935e579a72375bebe7 
20 IMG_0312-preview.ktx 181200 /40/00/210ED94E-201D-49E2-93EA-BCFCEF708A1C/ 8f4f4af0e4a2c60e54994c4d086c7097 
21 IMG_0312-preview_1.ktx 181200 /87/07/D072998C-1E52-4815-AD6B-0D61BED7EA60/ 8f4f4af0e4a2c60e54994c4d086c7097 
22 IMG_0313-preview.ktx 181200 /68/08/A990C377-0B02-4A54-96D7-78D036FB8782/ a9700d1cbbee3136b09e3639860327a5 
23 IMG_0313-preview_1.ktx 181200 /7c/12/12A694C1-1B1B-4325-9D0C-21517D031A66/ a9700d1cbbee3136b09e3639860327a5 
24 IMG_0314-preview.ktx 181200 /fd/13/502D5805-5C1D-4CC4-819B-8FCF26A9F6AC/ 77b6ca03b0dcc6c0bca571030aeb5aef 
25 IMG_0318-preview.ktx 322896 /21/01/D1721B12-CFBD-44D5-B4F3-610295AFF0B0/ 4e0577d8dacaa900a8a1a75dc1426300 
26 IMG_0318-preview_1.ktx 322896 /3f/15/C2BEF5DA-B04A-4066-8D30-DCB31E75E8EE/ 4e0577d8dacaa900a8a1a75dc1426300 
27 IMG_0322-preview.ktx 181200 /bc/12/CE45112D-A1DD-431A-A53A-01903C710BCA/ 942eabf4db148c0cc0906e004635b4cd 
28 IMG_0329-preview.ktx 322896 /4d/13/B39077DB-9A6A-419E-B0ED-D5FFABBFAF85/ c3d77e139beee2572a97c3f62099d422 
29 IMG_0330-preview.ktx 322896 /1f/15/04E6FBAC-39F2-4DBE-9235-021E91D88FF4/ 30a20fb57dceae9d4e3e1794a29445f4 
30 IMG_0333-preview.ktx 322896 /02/02/566DE426-196F-4737-A42D-0897E286B636/ b567f34dfc2e54eb28c77e98c5fafa63 
31 IMG_1704-preview.ktx 322896 /34/04/0C5BA154-D869-4848-BEA3-822BF10A0973/ 208b83714033940f32c1bde3ff63a0f2 
32 IMG_1744-preview.ktx 181200 /1c/12/CEB74AE1-FDFE-40C5-8583-1DCD716B9FC1/ 30d6cbf5963ae52496b84ca150412e61 
33 IMG_1764-preview.ktx 181200 /0f/15/41631BC7-29EC-4751-B6DF-D5912FEB72E6/ 13d5b53b948f41e19d6be2822a371069 
34 IMG_1773-preview.ktx 181200 /dc/12/C653E662-33CA-4D50-8F58-E40CAE3C8A85/ c24dae47d08e3d8868ec9d24980c7d9b 
35 Labels2-preview.ktx 242208 /f1/01/19564010-3D88-4742-B7CF-F83EE3D90055/ 199a6de4539730abd684c93d29bc10c3 
36 Resized_20170218_160005-preview.ktx 322896 /db/11/3FBF6AEE-B733-4112-B52F-D76262F3AE98/ d8630ebb294a7fa6c7e59aa61afcce3f 
37 Resized_20170405_212421-preview.ktx 322896 /a6/06/2F7D2621-8C04-4F87-9C3A-BBE6FB3C89EE/ 54b03fdae8a1a77d6d4051e0e2865ec8 
38 Resized_20170725_153714-preview.ktx 322896 /24/04/32258725-CDED-44B9-B908-C10784577D33/ 96d047196bf0257a77dc5bbc20b3fd6b 
39 Resized_20170728_092101-preview.ktx 135936 /de/14/91BD9059-61DB-4D5B-A3D4-63E1F80B2600/ b18baad752836af7c535b55943ebc2d0 
40 Resized_20170728_092447-preview.ktx 135936 /2e/14/8D35AE17-2CCA-4401-9CA5-EBDCA56F7BA6/ 2db6eb647e56f4b6d174ad8f99beb3c2 
41 Resized_20170728_175905-preview.ktx 135936 /8b/11/C0019EC0-5695-4389-97B8-38E3D0863B90/ b6753c5317e8a73f183d331cff42f368 
42 Resized_20170728_175913-preview.ktx 135936 /55/05/C8E45965-CF23-441C-9FF7-20D4D251B369/ fc5599da00c7c8bc2226a5ed0b839d19 
43 Resized_20170728_181309-preview.ktx 135936 /97/07/1986EFC7-85A7-4D07-85FB-BDF32B2C5732/ ad1df30a41a79fcb00cf8565294c496f 
44 Resized_20170730_143115-preview.ktx 135936 /42/02/32F749FD-E261-4A01-9D8E-459A42FEA9C2/ ca77bdc34dc3b7d356735c0c06a518d9 
45 Resized_20170730_143301-preview.ktx 191040 /bc/12/4DB276F7-1CB2-4566-9351-0B683A0BB3CA/ f9b1bac4844f48e05ef9dd1271d27e4d 
46 Resized_IMG_20170728_103009133-preview.ktx 135936 /51/01/E14EEE6F-5F61-46B6-8434-BCA746FC62DA/ 0c999391cee60c430a112289cfd77ee8 
47 Screenshot_20170720-085049-preview.ktx 322896 /34/04/B24F019B-3E93-4654-B20F-B656CE394C03/ e31a38b8ddf389e2f6f1e1bb82b3a851 
48 Untitled-26-preview.ktx 246144 /a6/06/8DAC44CD-F30A-4717-AEBB-E4B9154775DC/ d25fe91b1a0aa39fc9784f9bdd1829fc 

Source Path: /private/var/mobile/Library/Caches/com.apple.MobileSMS/Previews/Attachments/ 

Fig. 6.2 iPhone 7—44 images lost from 72 h extraction

the same file extension of ‘.ktx’ which is a known file extension for iOS Snap-
shots. iOS Snapshots are tracked in the applicationState.db database located at 
/private/var/mobile/Library/FrontBoard/. Reviewing this database from the iPhone 
7’s 72 h extraction did not reveal any entries that correlated to the 44 image files. 
Based on this finding, it appears that the purpose of these ‘.ktx’ images is like a 
thumbnail image, in that each ‘.ktx’ preview is a smaller version of an SMS image 
attachment. 

In reviewing the subfolder location for each of the 44 lost images, removal 
of each of the 44 images was confirmed, and in doing so, a pattern was estab-
lished. Each sub-subfolder that contained one of the 44 ‘.ktx’ images had 
been removed and each parent subfolder had the same modified time of 2017-
10-22 03:00. A comparison of the file path /private/var/mobile/Library/Caches/ 
com.apple.MobileSMS/Previews/Attachments/2d/13/ from the 72 h and 7 day extrac-
tions
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Fig. 6.3 iPhone 7 iOS snapshot “/Previews/Attachments/2d/13/” 72 h versus 7 days 

where the CAC20AC3-E9FD-4FAF-A867-ED2F0E21A273/20170731_212539-
preview-l.ktx file was located in the 72 h extraction, is shown in 
Fig. 6.3. 

In comparing the overall size difference of the Attachments folder from the iPhone 
7’s 72 h and 7 day extractions, although there was no change in modified time, the 
Attachments folders size shows a decrease of 11,121,749 B, displayed in Fig. 6.4. 

The other four of the 48 images had an associated source file of the 
Cache.db-wal write ahead log located in the iPhone 7’s file system at 
/private/var/mobile/Library/Caches/com.apple.parsecd/ Cache.db-wal. A list of the 
four images is presented in Fig. 6.5. 

The forensic analysis software identified each of the four photos as embedded 
‘.jpg’ files, and of the four, three had the word ‘partial’ in its name, indicating that 
they were likely only partial images (possibly meaning they are partially overwritten). 
A comparison of the Cacbe.db-wal from the 72 h and 7 day extractions is displayed 
in Fig. 6.6. 

Fig. 6.4 iPhone 7 attachments folder comparison 72 h versus 7 days 

# Name  
Size 

hsaH5DMhtaP)setyB( 
4 Cache.db-wal_embedded_1_partial.jpg 2552 /private/var/mobile/Library/Caches/com.apple.parsecd/Cache.db-wal/ 1607e7955a2696a0a9b32d325d81e355 
5 Cache.db-wal_embedded_2_partial.jpg 976 /private/var/mobile/Library/Caches/com.apple.parsecd/Cache.db-wal/ d6e899268b5ecdb4ec96a15be40fed35 
6 Cache.db-wal_embedded_3.jpg 3829 /private/var/mobile/Library/Caches/com.apple.parsecd/Cache.db-wal/ 8a66f9ead48c46fba9393e12287f642c 
7 Cache.db-wal_embedded_4_partial.jpg 21983 /private/var/mobile/Library/Caches/com.apple.parsecd/Cache.db-wal/ 8bd1d874b84aba7168618487a6bcb120 

Fig. 6.5 iPhone 7—4 lost images from 72 h extraction 

Fig. 6.6 iPhone 7 Cacbe.db-wal comparison 72 h versus 7 days showing 4 embedded images
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Fig. 6.7 iPhone 7 Cacbe.db-wal comparison 72 h versus 7 days showing 4 embedded images 

According to the Info.plist located in /System/Library/PrivateFrameworks 
/CoreParsec.framework/Versions/Current/Resources/, the com.apple.parsecd 
daemon is associated the phone’s location to assist with lookup, spotlight and 
safari suggestions, shown in Fig. 6.7. 

Since these four embedded image files were not associated to one of the native 
iOS application included in the scope of this research paper, they were excluded from 
the research findings. 

Briefly, the iPhone 7 only saw a decrease of 49 images between the four timed 
extractions. Of these 49 images, five were excluded as they were associated to appli-
cations or databases that fell outside the scope of this research paper. The remaining 
44 images were associated to the native iOS Messages application, and were noted 
to all be ‘.ktx’ files. The removal of each of the 44 images was confirmed through 
the analysis conducted. 

6.5.1.2 iPhone X Analysis 

The changes noted through the artifacts of interest comparison were the Application 
Usage Log, Log Entries, Images and Videos, shown in Table 6.4.

With decreases identified in the Application Usage Log and Log entries, the 
knowledgeC.db, interactionC.db and DataUsage.sqlite databases were analysed to 
determine if the auto-vacuum mode was enabled. The Z_METADATA tables from 
all three databases were reviewed to look at the stored binary ‘.plist’ file contained 
in the tables. The binary ‘.plist’ file for the knowledgeC.db confirmed the database
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Table 6.4 iPhone X artefacts of interest comparison 

Artefacts of 
interest 

2 h 24 h +/− 24 h 72 h +/− 72 h 7 days  +/− 

Applications usage 
log 

3608 3245 −363 3245 3115 −130 3115 2500 −615 

Log entries 2719 2678 −41 2678 2642 −36 2642 2555 −87 

Images 34,848 34,848 0 34,848 34,561 −287 34,561 34,495 −66 

Videos 613 613 0 613 556 −57 556 546 −10

Fig. 6.8 iPhone X knowledgeC.db auto-vacuum mode 

was running in INCREMENTAL auto-vacuum mode, identified by the number ‘2’ 
next to the _NSAutoVacuumLevel, shown in Fig. 6.8. 

The binary ‘.plist’ file from the interactionC.db database confirmed that it too was 
running in INCREMENTAL auto-vacuum mode, identified by the number ‘2’ next 
to the _NSAutoVacuumLevel, depicted in Fig. 6.9.

The binary ‘.plist’ file from the DataUsate.sqlite database confirmed that it was 
also running in INCREMENTAL auto-vacuum mode, identified by the number ‘2’ 
next to the _NSAutoVacuumLevel, depicted in Fig. 6.10.

2 h versus 24 h  

Application Usage Log: A decrease in 363 entries was reported in the artifacts of 
interest comparison. The Application Usage Log artifacts were compared from the 
iPhone X’s 2 h and 24 h extractions, and the 363 entries were identified in the 2 h 
extraction, tagged and reviewed. Due to the high number of entries, we do not list 
Application Usage Log entries. 

Of the 363 entries, 179 had an associated source file of the knowledgeC.db 
(ZOBJECT, ZSTRUCTUREMETADATA tables) database while the other 184 had an 
associated source file of the knowledgeC.db (ZOBECT table) database. Comparing 
the knowledgeC.db database files from the iPhone X’s 2 h and 24 h extractions, a 
new modified time of 2021-06-16 17:46 as well as a decrease in size of 1,036,288 B 
was noted for the knowledgeC.db database in the 24 h extraction, seen in Fig. 6.11.

The reduction in the size of the knowledgeC.db supports the decrease in 363 log 
entries, and the reduction in size of the database is supported by the knowledgeC.db 
database running in incremental auto-vacuum mode.
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Fig. 6.9 iPhone X interactionC.db auto-vacuum mode

Fig. 6.10 iPhone X DataUsage.sqlite incremental auto-vacuum mode

Fig. 6.11 iPhone X knowledgeC.db database files comparison 2 h versus 24 h

In analyzing the ZOBJECTS table in the knowledgeC.db database from the 2 h 
and 24 h extractions, a reduction in the number of entries from 44,425 to 40,731 was 
noted, shown in Fig. 6.12.

Comparing the entries in each of the ZOBJECTS tables, the removal of the 363 
Application Usage Log entries from the 2 h extraction was confirmed. The entries 
were confirmed to have been removed between entry numbers 14,040 and 18,204. 

Log Entries: The comparison of artifacts of interest identified a decrease in 41 
log entries between the iPhone X’s 2 h and 24 h extractions. The reported artifacts
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Fig. 6.12 iPhone X ZOBJECT table comparison 2 h versus 24 h

were compared and the 41 entries were identified in the 2 h extraction, tagged and 
reviewed. A listing of the 41 entries can be seen in Fig. 6.13.

One of the 41 log entries had no associated source file and was identified as deleted 
by the forensic analysis software. Due to the entry not having a source file, it was not 
possible to confirm its removal. Of the remaining 40 entries, 10 were associated to 
the interactionC.db-wal or interactionC.db (ZINTERACTIONS table) files. These 10 
entries were associated to the com.apple.InCallService application. The remaining 
30 entries had an associated source file of the DataUsage.sqlite-wal (ZLIVEUSAGE, 
ZPROCESS tables) database. When comparing the interactionC.db database from 
the iPhone X’s 2 h and 24 h extractions, there was no new modified time or change 
in database size noted, seen in Fig. 6.14.

However, when comparing the ZINTERACTIONS tables in the interactionC.db 
databases from the 2 h and 24 h extractions, a decrease in entries from 2403 to 2393 
was noted, shown in Fig. 6.15. This decrease in 10 entries does support the identified 
decrease from the artifacts of interest comparison.

In reviewing the contents of both ZINTERACTIONS tables, the reduction in 10 
log entries was confirmed. Using a filter of 2021-05-19 in the ZENDATE col-umn 
and filter of com.apple.InCallService in the ZBUNDLEID column in both tables,
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# Application Body 
Start Time 
(UTC-3) 

End time      
(UTC-3) Source file information 

1 com.apple.datausage.appleid Wifi In:0 Wifi Out:0Wan In:24686 Wan Out:5801 2021-06-02 18:19 DataUsage.sqlite-wal : 0x376D9D (Table: ZLIVEUSAGE, ZPROCESS) 
2 com.apple.datausage.siri Wifi In:0 Wifi Out:0Wan In:31620 Wan Out:7308 2021-06-02 18:19 DataUsage.sqlite-wal : 0x376E3C (Table: ZLIVEUSAGE, ZPROCESS) 
3 com.apple.datausage.security Wifi In:0 Wifi Out:0Wan In:15703 Wan Out:4423 2021-06-02 18:18 DataUsage.sqlite-wal : 0x3768A6 (Table: ZLIVEUSAGE, ZPROCESS) 
4 Safari Wifi In:0 Wifi Out:0Wan In:14402997  Wan Out:847826 2021-05-31 21:16 DataUsage.sqlite-wal : 0x377D81 (Table: ZLIVEUSAGE, ZPROCESS) 
5 Safari Wifi In:0 Wifi Out:0Wan In:9705 Wan Out:17548 2021-05-31 21:16 DataUsage.sqlite-wal : 0x377DA3 (Table: ZLIVEUSAGE, ZPROCESS) 
6 com.apple.datausage.siri Wifi In:0Wifi Out:0Wan In:560631Wan Out:1504156 2021-05-29 20:34 DataUsage.sqlite-wal : 0x377BFB (Table: ZLIVEUSAGE, ZPROCESS) 
7 com.apple.datausage.location Wifi In:0Wifi Out:0Wan In:10106982Wan Out:688865 2021-05-29 19:44 DataUsage.sqlite-wal : 0x377479 (Table: ZLIVEUSAGE, ZPROCESS) 
8 com.apple.AppStore Wifi In:0Wifi Out:0Wan In:72154Wan Out:40987 2021-05-29 19:44 DataUsage.sqlite-wal : 0x377956 (Table: ZLIVEUSAGE, ZPROCESS) 
9 News Wifi In:0Wifi Out:0Wan In:82411Wan Out:27246 2021-05-29 19:44 DataUsage.sqlite-wal : 0x377977 (Table: ZLIVEUSAGE, ZPROCESS) 

10 com.apple.datausage.iad Wifi In:0Wifi Out:0Wan In:114981Wan Out:42149 2021-05-29 19:44 DataUsage.sqlite-wal : 0x377D60 (Table: ZLIVEUSAGE, ZPROCESS) 
11 com.apple.datausage.findmyiphone Wifi In:0Wifi Out:0Wan In:168457Wan Out:168791 2021-05-29 19:44 DataUsage.sqlite-wal : 0x377997 (Table: ZLIVEUSAGE, ZPROCESS) 
12 com.apple.AppStore Wifi In:0Wifi Out:0Wan In:5124Wan Out:6351 2021-05-29 19:44 DataUsage.sqlite-wal : 0x3779F9 (Table: ZLIVEUSAGE, ZPROCESS) 
13 com.apple.datausage.general Wifi In:0Wifi Out:0Wan In:218484Wan Out:88603 2021-05-29 19:44 DataUsage.sqlite-wal : 0x377A18 (Table: ZLIVEUSAGE, ZPROCESS) 
14 com.apple.datausage.itunesmedia Wifi In:0Wifi Out:0Wan In:110946Wan Out:43536 2021-05-29 19:44 DataUsage.sqlite-wal : 0x3779B8 (Table: ZLIVEUSAGE, ZPROCESS) 
15 com.apple.datausage.messages Wifi In:0Wifi Out:0Wan In:398129Wan Out:187982 2021-05-29 17:19 DataUsage.sqlite-wal : 0x377B7C (Table: ZLIVEUSAGE, ZPROCESS) 
16 com.apple.datausage.appleid Wifi In:0Wifi Out:0Wan In:423694Wan Out:132948 2021-05-29 17:19 DataUsage.sqlite-wal : 0x377935 (Table: ZLIVEUSAGE, ZPROCESS) 
17 com.apple.datausage.docsandsync Wifi In:0Wifi Out:0Wan In:171960Wan Out:40963 2021-05-29 17:19 DataUsage.sqlite-wal : 0x37749B (Table: ZLIVEUSAGE, ZPROCESS) 
18 Weather Wifi In:0Wifi Out:0Wan In:173240Wan Out:63492 2021-05-29 17:19 DataUsage.sqlite-wal : 0x3778D6 (Table: ZLIVEUSAGE, ZPROCESS) 
19 Weather Wifi In:0Wifi Out:0Wan In:26018Wan Out:10819 2021-05-29 17:19 DataUsage.sqlite-wal : 0x3773F7 (Table: ZLIVEUSAGE, ZPROCESS) 
20 Maps Wifi In:0Wifi Out:0Wan In:128854Wan Out:32901 2021-05-29 17:19 DataUsage.sqlite-wal : 0x377458 (Table: ZLIVEUSAGE, ZPROCESS) 
21 Weather Wifi In:0Wifi Out:0Wan In:22180Wan Out:5864 2021-05-29 17:19 DataUsage.sqlite-wal : 0x3778F7 (Table: ZLIVEUSAGE, ZPROCESS) 
22 com.apple.datausage.itunesmedia Wifi In:0Wifi Out:0Wan In:227663Wan Out:29995 2021-05-29 17:19 DataUsage.sqlite-wal : 0x3782DB (Table: ZLIVEUSAGE, ZPROCESS) 
23 com.apple.datausage.itunesmedia Wifi In:0Wifi Out:0Wan In:1033513Wan Out:176127 2021-05-29 17:19 DataUsage.sqlite-wal : 0x377A59 (Table: ZLIVEUSAGE, ZPROCESS) 
24 News Wifi In:0Wifi Out:0Wan In:2306012Wan Out:209519 2021-05-29 17:19 DataUsage.sqlite-wal : 0x377B3C (Table: ZLIVEUSAGE, ZPROCESS) 
25 Maps Wifi In:0Wifi Out:0Wan In:6801Wan Out:6792 2021-05-29 17:19 DataUsage.sqlite-wal : 0x377A7A (Table: ZLIVEUSAGE, ZPROCESS) 
26 com.apple.datausage.softwareupdate Wifi In:0Wifi Out:0Wan In:98767Wan Out:35099 2021-05-29 17:19 DataUsage.sqlite-wal : 0x377DE3 (Table: ZLIVEUSAGE, ZPROCESS) 
27 News Wifi In:0Wifi Out:0Wan In:19824Wan Out:17309 2021-05-29 17:19 DataUsage.sqlite-wal : 0x377B5D (Table: ZLIVEUSAGE, ZPROCESS) 
28 com.apple.datausage.dns Wifi In:0Wifi Out:0Wan In:225626Wan Out:221979 2021-05-29 17:19 DataUsage.sqlite-wal : 0x377E24 (Table: ZLIVEUSAGE, ZPROCESS) 
29 FaceTime Wifi In:0Wifi Out:0Wan In:5588Wan Out:5588 2021-05-29 13:55 DataUsage.sqlite-wal : 0x377ABC (Table: ZLIVEUSAGE, ZPROCESS) 
30 com.apple.datausage.applepushservice Wifi In:0Wifi Out:0Wan In:2106483Wan Out:3592809 2021-05-29 5:23 DataUsage.sqlite-wal : 0x377BDA (Table: ZLIVEUSAGE, ZPROCESS) 
31 com.apple.InCallService incoming call 2021-05-19 12:08 2021-05-19 12:08 interactionC.db : 0xA7D10 (Table: ZINTERACTIONS) 
32 com.apple.InCallService incoming call 2021-05-19 11:45 2021-05-19 11:55 interactionC.db : 0xA7FA8 (Table: ZINTERACTIONS) 
33 com.apple.InCallService outgoing call 2021-05-19 11:00 2021-05-19 11:00 interactionC.db : 0x324266 (Table: ZINTERACTIONS) 
34 com.apple.InCallService incoming call 2021-05-19 11:00 2021-05-19 11:00 interactionC.db : 0x3242F6 (Table: ZINTERACTIONS) 
35 com.apple.InCallService outgoing call 2021-05-19 10:20 2021-05-19 10:21 interactionC.db : 0x32437A (Table: ZINTERACTIONS) 
36 com.apple.InCallService outgoing call 2021-05-19 9:18 2021-05-19 9:18 interactionC.db : 0x3247B3 (Table: ZINTERACTIONS) 
37 com.apple.InCallService outgoing call 2021-05-19 9:16 2021-05-19 9:16 interactionC.db : 0x324A1E (Table: ZINTERACTIONS) 
38 com.apple.InCallService outgoing call 2021-05-19 9:15 2021-05-19 9:15 interactionC.db : 0x323F93 (Table: ZINTERACTIONS) 
39 com.apple.InCallService outgoing call 2021-05-19 9:15 2021-05-19 9:15 interactionC.db : 0x324024 (Table: ZINTERACTIONS) 
40 com.apple.InCallService outgoing call 2021-05-19 9:15 2021-05-19 9:15 interactionC.db : 0x3240B5 (Table: ZINTERACTIONS) 
41  call 

Fig. 6.13 iPhone X lost log entries 2 h extraction

Fig. 6.14 iPhone X interactionC.db database files comparison 2 h versus 24 h

the removed entries were identified as entry numbers 1033–1035, 1037, 1041, and 
1048–1052, which can be seen in Fig. 6.16.

With the removal of the 10 log entries from the interactionC.db confirmed, analysis 
was conducted on the remaining 30 log entries associated to the DataUsage.sqlite-
wal (ZLIVEUSAGE, ZPROCESS tables) write ahead lot. When comparing the 
DataUsage.sqlite database files from the iPhone X’s 2 h and 24 h extractions, a new 
modified time of 2021-06-16 17:34 in the 24 h extraction for DataUsage.sqlite and 
DataUsage.sqlite-wal files was noted along with a reduction in size of 3,411,360 B 
for the DataUsage.sqlite-wal write ahead log. These changes can be seen in Fig. 6.17.

In reviewing the ZLIVEUSAGE table in the DataUsage.sqlite database from both 
extractions, a reduction in table entries was noted from 289 to 258, shown in Fig. 6.18.

Comparing the ZLIVEUSAGE entries from both tables, using a date filter of 
2021-05-29 to 2021-06-02 in the ZTIMESTAMP column, removal of the 30 entries 
was able to be confirmed as entry numbers 440–442 and 444–470 (Fig. 6.19).

Although the removal of these entries was confirmed from the DataUsage.sqlite, 
the original identified entries were associated to the DataUsage.sqlite-wal write ahead 
log. Therefore, to ensure the entries were actually removed, the hex viewer in the
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Fig. 6.15 iPhone X ZINTERACTIONS table comparison 2 h versus 24 h

Fig. 6.16 iPhone X ZINTERACTIONS table comparison identifying removed log entries
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Fig. 6.17 iPhone X DataUsage.sqlite database files comparison 2 h versus 24 h

Fig. 6.18 iPhone X comparison of ZLIVEUSAGE tables in DataUsage.sqlite database

forensic analysis software was used to review the DataUsage.sqlite-wal files. The 
ending offset for the DataUsage.sqlite-wal from the 2 h extraction was noted to be 
0 × 37,548, and the ending offset for the DataUsage.sqlite-wal file from the 24 h 
extraction was noted to be 0 × 34782E8, seen in Fig. 6.20.

Based on this finding, the starting offsets for the 30 log entries associated to the 
DataUsage.sqlite-wal file were reviewed again. The starting offsets ranged from 0 × 
3768A6 to 0 × 377DA3, which occur after the end of file offset of 0 × 37,548 for 
the DataUsage.sqlite-wal from the 24 h extraction. Coupling this information with 
the reduction in size of the write ahead log seen in Fig. 6.19, the removal of the 30 
log entries could be confirmed. 

24  h versus 72 h  

Application Usage Log: A decrease in 130 entries was identified by the comparison 
of artifacts of interest. The reported artifacts from the iPhone X’s 24 h and 72 h 
extractions  were  compared,  and  the 130  entries  were  identified  in  the 2 h extrac-
tion, tagged and reviewed. Of the 130 entries, 124 had an associated source file of 
the knowledgeC.db (ZOBJECT table) database, 5 had an associated source file of 
the knowledgeC.db (ZOBJECT, ZSTRUCTUREMETADATA tables) database one
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Fig. 6.19 iPhone X ZLIVEUSAGE table comparison showing lost entries 2 h versus 24 h

Fig. 6.20 iPhone X end of file offset 0 × 34783E8 comparison for the DataUsage.sqlite-wal 2 h 
versus 24 h

had an associated source file of both the knowledgeC.db (ZOBJECT table) and the 
knowledgeC.db-wal (ZSTRUCTUREDMETADATA table) files. Note that not all 
130 Application Usage Log entries are listed. 

Comparing the knowledgeC.db database files from the iPhone X’s 24 h and 72 h 
extractions, a new modified time of 2021-06-18 17:37 and a reduction in size of 
2,678,784 B was noted in the 72 h extraction for the knowledgeC.db database. In 
addition, a new modified time of 2021-06-18 17:46 and increase in size of 646,840 B 
was noted in the 72 h extraction for the knowledgeC.db-wal write ahead log. These 
changes can be seen in Fig. 6.21.

Reviewing the knowledgeC.db database ZOBJECT tables from both extractions, 
a reduction in entries from 40,731 to 39,364 was observed, seen in Fig. 6.22.
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Fig. 6.21 iPhone X knowledgeC.db database files comparison 24 h versus 72 h

Fig. 6.22 iPhone X comparison of ZOBJECT table from the knowledgeC.db database 

In comparing the entries in the ZOBJECTS tables from both extractions against 
each other, the removal of the 130 Application Usage Log entries was able to be 
confirmed. Using a date filter of X in the X column, the entries were confirmed to 
have been removed between entry numbers 18,207 and 19,876. 

With one entry showing an associated source file of the knowledgeC.db-wal write 
ahead log, the built-in hex viewer of the forensic analysis software was used to review 
the knowledgeC.db-wal file from both extractions. Navigating to the starting offset 
for the log entry of 0 × 0275D83 in each write ahead log, confirmed the removal of 
the entry, as the area in the 72 h extraction had been overwritten with 0 × 00, shown 
in Fig. 6.23.
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Fig. 6.23 iPhone X comparison of offset 0 × 0275D83 in the knowledgeC.db-wal 24 h versus 72 h 

Log Entries: The artifacts of interest comparison showed a decrease in 36 entries. 
The log entries from the 24 h and 72 h extractions were compared, and 36 entries 
were identified in the 24 h extraction that were not in the 72 h extraction. These 
entries were then tagged in the 24 h extraction and reviewed. These 36 entries are 
shown in Fig. 6.24. 

Out of the 36 entries, 12 were associated to the interactionC.db (ZINTERAC-
TIONS table) database, and the remaining 24 were associated to the DataUsage.sqlite

# Application Body Date Source file information 
1 com.apple.datausage.location Wifi In:0Wifi Out:0Wan In:8231Wan Out:6608 2021-05-29 DataUsa ge.sqlite : 0x18F67 (Table: ZLIVEUSAGE, ZPROCESS) 
2 com.apple.datausage.general Wifi In:0Wifi Out:0Wan In:81482Wan Out:32407 2021-05-30 DataUsa ge.sqlite : 0x17128 (Table: ZLIVEUSAGE, ZPROCESS) 
3 com.apple.datausage.general Wifi In:0Wifi Out:0Wan In:7473Wan Out:3173 2021-06-03 DataUsa ge.sqlite : 0x17128 (Table: ZLIVEUSAGE, ZPROCESS) 
4 com.apple.datausage.bluetooth Wifi In:0Wifi Out:0Wan In:69813Wan Out:31341 2021-05-30 DataUsa ge.sqlite : 0x18150 (Table: ZLIVEUSAGE, ZPROCESS) 
5 com.apple.icloud.searchpartyd Wifi In:0Wifi Out:0Wan In:66240Wan Out:33491 2021-05-20 DataUsa ge.sqlite : 0x18CE6 (Table: ZLIVEUSAGE, ZPROCESS) 
6 com.apple.datausage.diagnostics Wifi In:0Wifi Out:0Wan In:6607Wan Out:2794 2021-06-03 DataUsa ge.sqlite : 0x18908  (Table: ZLIVEUSAGE,ZPROCESS) 
7 com.apple.datausage.siri Wifi In:0Wifi Out:0Wan In:615605Wan Out:1546535 2021-06-02 DataUsa ge.sqlite : 0x171D8 (Table: ZLIVEUSAGE, ZPROCESS) 
8 com.apple.datausage.bluetooth Wifi In:0Wifi Out:0Wan In:5844Wan Out:2768 2021-06-03 DataUsa ge.sqlite : 0x18150 (Table: ZLIVEUSAGE, ZPROCESS) 
9 FaceTime Wifi In:0Wifi Out:0Wan In:5632Wan Out:5632 2021-06-02 DataUsa ge.sqlite : 0x180C2 (Table: ZLIVEUSAGE, ZPROCESS) 

10 com.apple.datausage.dns Wifi In:0Wifi Out:0Wan In:519Wan Out:1883 2021-06-03 DataUsa ge.sqlite : 0x1717F (Table: ZLIVEUSAGE, ZPROCESS) 
11 FaceTime Wifi In:0Wifi Out:0Wan In:49308148Wan Out:63044317 2021-05-29 DataUsa ge.sqlite : 0x1828D (Table: ZLIVEUSAGE, ZPROCESS) 
12 com.apple.datausage.dns Wifi In:0Wifi Out:0Wan In:367232Wan Out:318659 2021-06-02 DataUsa ge.sqlite : 0x1717F (Table: ZLIVEUSAGE, ZPROCESS) 
13 com.apple.datausage.appleid Wifi In:0Wifi Out:0Wan In:356015Wan Out:44380 2021-06-03 DataUsa ge.sqlite : 0x1843B (Table: ZLIVEUSAGE, ZPROCESS) 
14 com.apple.datausage.general Wifi In:0Wifi Out:0Wan In:3521Wan Out:2106 2021-06-03 DataUsage.sqlite : 0x17147 (Table: ZLIVEUSAGE, ZPROCESS) 
15 com.apple.datausage.media Wifi In:0Wifi Out:0Wan In:3388Wan Out:8712 2021-05-29 DataUsa ge.sqlite : 0x1874A (Table: ZLIVEUSAGE, ZPROCESS) 
16 com.apple.datausage.applepushservice Wifi In:0Wifi Out:0Wan In:33691Wan Out:88867 2021-06-03 DataUsa ge.sqlite : 0x181B2 (Table: ZLIVEUSAGE, ZPROCESS) 
17 com.apple.datausage.siri Wifi In:0Wifi Out:0Wan In:254Wan Out:20925 2021-06-03 DataUsa ge.sqlite : 0x171D8 (Table: ZLIVEUSAGE, ZPROCESS) 
18 com.apple.datausage.applepushservice Wifi In:0Wifi Out:0Wan In:2147538Wan Out:3670981 2021-06-02 DataUsa ge.sqlite : 0x181B2 (Table: ZLIVEUSAGE, ZPROCESS) 
19 com.apple.datausage.iad Wifi In:0Wifi Out:0Wan In:136756Wan Out:49421 2021-06-02 DataUsage.sqlite : 0x19CB7 (Table: ZLIVEUSAGE, ZPROCESS) 
20 com.apple.datausage.security Wifi In:0Wifi Out:0Wan In:11960Wan Out:8044 2021-06-03 DataUsa ge.sqlite : 0x18A19 (Table: ZLIVEUSAGE, ZPROCESS) 
21 com.apple.datausage.location Wifi In:0Wifi Out:0Wan In:11807002Wan Out:830321 2021-06-02 DataUsa ge.sqlite : 0x1821C (Table: ZLIVEUSAGE, ZPROCESS) 
22 com.apple.datausage.appleid Wifi In:0Wifi Out:0Wan In:11532703Wan Out:5228070 2021-05-29 DataUsa ge.sqlite : 0x1843B (Table: ZLIVEUSAGE, ZPROCESS) 
23 com.apple.datausage.icloud Wifi In:0Wifi Out:0Wan In:11441Wan Out:4519 2021-05-16 DataUsa ge.sqlite : 0x1837D (Table: ZLIVEUSAGE, ZPROCESS) 
24 com.apple.datausage.maps Wifi In:0Wifi Out:0Wan In:1045115Wan Out:421977 2021-05-29 DataUsa ge.sqlite : 0x180FE (Table: ZLIVEUSAGE, ZPROCESS) 
25 com.apple.InCallService outgoing call 2021-05-21 interactionC.db : 0xD4D64 (Table: ZINTERACTIONS) 
26 com.apple.InCallService outgoing call 2021-05-21 interactionC.db : 0xD4DE9 (Table: ZINTERACTIONS) 
27 com.apple.InCallService outgoing call 2021-05-21 interactionC.db : 0xD4F18 (Table: ZINTERACTIONS) 
28 com.apple.InCallService outgoing call 2021-05-21 interactionC.db : 0xCB4D2 (Table: ZINTERACTIONS) 
29 com.apple.InCallService outgoing call 2021-05-20 interactionC.db : 0xAEEFC (Table: ZINTERACTIONS) 
30 com.apple.InCallService outgoing call 2021-05-20 interactionC.db : 0xAB25A (Table: ZINTERACTIONS) 
31 com.apple.InCallService outgoing call 2021-05-20 interactionC.db : 0xAB363 (Table: ZINTERACTIONS) 
32 com.apple.InCallService outgoing call 2021-05-20 interactionC.db : 0xAB96E (Table: ZINTERACTIONS) 
33 com.apple.InCallService incoming call 2021-05-21 interactionC.db : 0xD4FA8 (Table: ZINTERACTIONS) 
34 com.apple.InCallService incoming call 2021-05-20 interactionC.db : 0xAEE77 (Table: ZINTERACTIONS) 
35 com.apple.InCallService incoming call 2021-05-20 interactionC.db : 0xAB2DE (Table: ZINTERACTIONS) 
36 com.apple.InCallService incoming call 2021-05-20 interactionC.db : 0xAB3F3 (Table: ZINTERACTIONS) 

Fig. 6.24 iPhone X Log lost log entries 24 h extraction 
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Fig. 6.25 iPhone X interactionC.db database files comparison 24 h versus 72 h 

(ZLIVEUSAGE, ZPROCESS table). Further analysis began with the 12 entries asso-
ciated to the interactionC.db database first. Each of the 12 entries were noted to be 
associated to the com.apple.InCallService application. 

When comparing the interactionC.db from the iPhone X’s 24 h and 72 h ex-
tractions, the interactionC.db did not change in size, however; a new modified time 
of 2021-06-18 17:39 was noted in 72 h extraction, shown in Fig. 6.25. 

When viewing the ZINTERACTIONS table of the interactionC.db database from 
both extractions, a reduction in the number of table entries from 2393 to 2381 was 
observed, seen in Fig. 6.26.

In comparing the entries from both ZINTERACTIONS tables, the 12 entries were 
confirmed to have been removed. Using a date filter of 2021-05-20 to 2021-05-21 on 
the ZENDATE column, and a filter of com.apple.InCallService on the ZBUNDLEID 
column, the 12 log entries were identified as table entry numbers 1113, 1122–1125, 
1130, 1131, 1432, 1493, 1494, 1496 and 1497, shown in Fig. 6.27.

With the removal of the 12 entries from the interactionC.db confirmed, analy-sis 
was conducted on the remaining 24 log entries associated to the DataU-sage.sqlite 
database. 

When comparing the DataUsage.sqlite database files from the iPhone X’s 24 h 
and 72 h extractions, a new modified time of 2021-06-18 17:34 as well an in-crease 
in size of 568,560 B was noted in the 72 h extraction for the DataU-sage.sqlite-wal 
write ahead log, shown in Fig. 6.28.

Comparing the ZLIVEUSAGE tables in the DataUsage.sqlite database from both 
extractions a reduction in entries from 258 to 234 was observed, shown in Fig. 6.29.

In comparing the entries in the ZLIVEUSAGE tables from both extractions, the 24 
entries were confirmed to have been removed. Using a filter on the ZTIMESTAMP 
column of the 2021-05-16 to 2021-06-03, the removed were confirmed to be entry 
numbers 471–472, 477, 483, 491–492, 496–499, 783, 785, 788, 793, 795–796, 801 
and 803, 819–802, 822, 825, 828, and 849. These entries can be seen in Fig. 6.30.

Images: A decrease of 287 images was identified in the comparison of artifacts 
of interest from the iPhone X’s 24 h and 72 h extractions. The images from both 
extractions were reviewed, and the 287 images were identified in the 24 h extraction 
that were not in the 72 h extraction. These images were tagged and reviewed. 

Of the 287 images, 55 were full size photos located in the iPhone X’s file system at 
/private/var/mobile/Media/DCIM/100APPLE/ folder. Each of these 55 images were 
marked as being in the Trash. Comparing the 100APPLE folders from the iPhone 
X’s 24 h and 72 h extractions showed a decrease in folder size of 94,679,249 B and a 
new modified time in the 72 h extraction of 2021-06-18 05:37, depicted in Fig. 6.31.
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Fig. 6.26 iPhone X comparison of ZINTERACTIONS table in the interactionC.db database

Fig. 6.27 iPhone X comparison of the ZINTERACTIONS table entries 24 h versus 72 h
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Fig. 6.28 iPhone X comparison of the DataUsage.sqlite database files 24 h versus 72 h

Fig. 6.29 iPhone X comparison of ZLIVEUSAGE tables in the DataUsage.sqlite database

In reviewing the /private/var/mobile/Media/DCIM/100APPLE/ folder, the 
removal of the 55 images was confirmed. A tally of the contents of this folder from 
the 24 h and 72 h extractions can be seen in Fig. 6.32.

Unlike the previous 55 images, the remaining 232 images were all thumbnail 
images, meaning small versions (likened to the size of a thumbnail) of a larger 
image files. These 232 thumbnails were spread across five different locations from 
within the /private/var/mobile/media/PhotoData path in the iPhone X’s file system 
as follows: 

• 4 located in /private/var/mobile/Media/PhotoData/Metadata/DCIM/100APPLE/ 
(which is the video thumbnails folder); 

• 57 located in /private/var/mobile/Media/PhotoData/Thumbnails/V2/DCIM 
/100APPLE/ (which is the photo thumbnails folder); and 

• 171 located in /private/var/mobile/Media/PhotoData/Thumbnails/. 

Located within the /private/var/mobile/Media/PhotoData/Thumbnails/ folder, 
were three numbered ‘.ithmb’ data files. These numbered data files store picture 
and video thumbnails in ‘.bmp’ format based on resolution size. The thumbnail 
images stored in each of these data files are all the same size. The first data file,
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Fig. 6.30 iPhone X comparison of the ZLIVEUSAGE entries 24 h versus 72 h identifying the 24 
lost entries

Fig. 6.31 iPhone X DCIM/100APPLE folder comparison 24 h versus 72 h

Fig. 6.32 iPhone X /private/var/mobile/Library/DCIM/100APPLE folder comparison 24 h versus 
72 h

3306.ithmb, contained 57 small thumbnails, all 3186 B in size. The second data file, 
3314.ithmb, contained 57 cropped thumbnails, each one 31,566 B in size. The third 
data file, 4031.ithmb, contained 57 full size thumbnails, each one 28,866 B in size. 

In analysing /private/var/mobile/Media/PhotoData/Metadata/DCIM/100APPLE 
and /private/var/mobile/Media/PhotoData/Thumbnails/V2/DCIM/100APPLE/, the 
removal of the 61 photo thumbnail images, seen in Fig. 6.33.
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Fig. 6.33 iPhone X file system comparison 24 h versus 72 h showing the 61 lost thumbnail images 

Additionally, in viewing the three numbered data files, the removal of the 171 
images was confirmed. The contents of each data file were extracted from the 24 h 
and 72 h extractions. A view of the folder properties containing the embedded image 
files from the 3306.ithmb data file is shown as an example in Figure below. The 
removed images from the 3306.ithmb, 3314.ithmb and 4031.ithmb are shown in 
Figs. 6.34, 6.35 and 6.36. 

In comparing all five locations where the combined 232 thumbnail images were 
stored (2 folder paths and 3 data files) a common modified time of 2021-06-18 05:37 
was noted for all locations in the 72 h extraction. Also noted, was that only the folder 
locations saw a decrease in size while the ‘.ithmb’ data file sizes remained the same. 
A comparison of two folders and three files can be seen in Fig. 6.37.

Videos: Comparing the artifacts of interest from the 24 h and 72 h extraction identified 
a decrease of 57 videos. The artifacts from both extractions were compared, and 57 
videos were identified in the 24 h extraction that were not found in the 72 h extraction, 
which were tagged and reviewed. Each of the videos had a source folder location 
of /private/var/mobile/Media/DCIM/100APPLE/ and two of the 57 were identified

Fig. 6.34 iPhone X comparison of 3306.ithmb properties 24 h versus 72 h showing 57 removed 
files
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Fig. 6.35 iPhone X comparison of 3314.ithmb properties 24 h versus 72 h showing 57 removed 
files 

Fig. 6.36 iPhone X comparison of 4031.ithmb properties 24 h versus 72 h showing 57 removed 
files

Fig. 6.37 iPhone X comparison of thumbnail source locations 24 h versus 72 h
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# Created-Time 
(UTC-3) 

emiT-detaerC#eziSdnaemaNdeteleD 
(UTC-3) 

Deleted Name and Size 

1 2021-05-18 13:00 Trash IMG_0070.MOV (Size: 30425936 bytes) 30 2021-05-14 13:44 IMG_0039.MOV (Size: 184011 bytes) 
2 2021-05-15 17:59 IMG_0067.MOV (Size: 1853934 bytes) 31 2021-05-14 13:44 IMG_0038.MOV (Size: 184011 bytes) 
3 2021-05-15 17:59 IMG_0066.MOV (Size: 1853934 bytes) 32 2021-05-14 13:44 IMG_0037.MOV (Size: 184011 bytes) 
4 2021-05-15 17:59 IMG_0065.MOV (Size: 1850393 bytes) 33 2021-05-14 13:44 IMG_0036.MOV (Size: 184011 bytes) 
5 2021-05-15 17:59 IMG_0064.MOV (Size: 1850393 bytes) 34 2021-05-14 13:44 IMG_0035.MOV (Size: 220116 bytes) 
6 2021-05-15 17:59 IMG_0063.MOV (Size: 1738969 bytes) 35 2021-05-14 13:44 IMG_0034.MOV (Size: 220116 bytes) 
7 2021-05-15 17:59 IMG_0062.MOV (Size: 1818373 bytes) 36 2021-05-14 13:44 IMG_0033.MOV (Size: 220116 bytes) 
8 2021-05-14 18:42 IMG_0061.MOV (Size: 330945 bytes) 37 2021-05-14 13:44 IMG_0032.MOV (Size: 220116 bytes) 
9 2021-05-14 13:44 IMG_0060.MOV (Size: 178304 bytes) 38 2021-05-14 13:44 IMG_0031.MOV (Size: 220116 bytes) 

10 2021-05-14 13:44 IMG_0059.MOV (Size: 178304 bytes) 39 2021-05-14 13:44 IMG_0030.MOV (Size: 220116 bytes) 
11 2021-05-14 13:44 IMG_0058.MOV (Size: 178304 bytes) 40 2021-05-14 13:44 IMG_0029.MOV (Size: 663500 bytes) 
12 2021-05-14 13:44 IMG_0057.MOV (Size: 178304 bytes) 41 2021-05-14 13:44 IMG_0028.MOV (Size: 681674 bytes) 
13 2021-05-14 13:44 IMG_0056.MOV (Size: 178304 bytes) 42 2021-05-14 13:44 IMG_0027.MOV (Size: 654896 bytes) 
14 2021-05-14 13:44 IMG_0055.MOV (Size: 178304 bytes) 43 2021-05-14 11:15 IMG_0026.MOV (Size: 1858186 bytes) 
15 2021-05-14 13:44 IMG_0054.MOV (Size: 178304 bytes) 44 2021-05-13 17:14 IMG_0024.MOV (Size: 1711351 bytes) 
16 2021-05-14 13:44 IMG_0053.MOV (Size: 178304 bytes) 45 2021-05-13 17:14 IMG_0023.MOV (Size: 1711351 bytes) 
17 2021-05-14 13:44 IMG_0052.MOV (Size: 178304 bytes) 46 2021-05-13 17:14 IMG_0022.MOV (Size: 1711351 bytes) 
18 2021-05-14 13:44 IMG_0051.MOV (Size: 178304 bytes) 47 2021-05-13 17:14 IMG_0021.MOV (Size: 1711351 bytes) 
19 2021-05-14 13:44 IMG_0050.MOV (Size: 178304 bytes) 48 2021-05-13 17:14 IMG_0020.MOV (Size: 1711351 bytes) 
20 2021-05-14 13:44 IMG_0049.MOV (Size: 178304 bytes) 49 2021-05-13 17:14 IMG_0019.MOV (Size: 1711351 bytes) 
21 2021-05-14 13:44 IMG_0048.MOV (Size: 184011 bytes) 50 2021-05-13 17:14 IMG_0018.MOV (Size: 1711351 bytes) 
22 2021-05-14 13:44 IMG_0047.MOV (Size: 184011 bytes) 51 2021-05-13 17:14 IMG_0017.MOV (Size: 1711351 bytes) 
23 2021-05-14 13:44 IMG_0046.MOV (Size: 184011 bytes) 52 2021-05-13 17:14 IMG_0016.MOV (Size: 1711351 bytes) 
24 2021-05-14 13:44 IMG_0045.MOV (Size: 184011 bytes) 53 2021-05-13 17:14 IMG_0015.MOV (Size: 1711351 bytes) 
25 2021-05-14 13:44 IMG_0044.MOV (Size: 184011 bytes) 54 2021-05-13 17:14 IMG_0014.MOV (Size: 1711351 bytes) 
26 2021-05-14 13:44 IMG_0043.MOV (Size: 184011 bytes) 55 2021-05-13 11:03 IMG_0013.MOV (Size: 2350464 bytes) 
27 2021-05-14 13:44 IMG_0042.MOV (Size: 184011 bytes) 56 2021-05-13 9:23 Trash IMG_0012.MOV (Size: 6718699 bytes) 
28 2021-05-14 13:44 IMG_0041.MOV (Size: 184011 bytes) 57 2021-05-13 9:23 IMG_0011.MOV (Size: 2584513 bytes) 
29 2021-05-14 13:44 IMG_0040.MOV (Size: 184011 bytes) 

Source: /private/var/mobile/Media/DCIM/100APPLE/ 

Fig. 6.38 iPhone X 57 lost video files 72 h extraction 

as being in the Trash by the forensic analysis software. The list of 57 videos can be 
seen in Fig. 6.38. 

The source folder location for these 57 videos is the same location as the 55 full 
size lost images identified above. Therefore, the decrease in folder size and change 
in modified time can be seen in Fig. 6.38. 

In reviewing each of the folder locations that contained the 57 videos in the iPhone 
X’s file system, the removal of each video was confirmed, shown in Fig. 6.39. 

Fig. 6.39 iPhone X file system comparison 24 h versus 72 h showing removal of 57 videos
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72 h versus 7 days 

Application Usage Log: A decrease of 615 Application Usage Log entries was iden-
tified in the artifacts of interest comparison between iPhone X’s 72 h and 7 day 
extractions. In reviewing both extractions, the 615 entries were identified in the 
72 h extraction, tagged and reviewed. Of the 615 entries, 275 have an associated 
source file of the knowledgeC.db (ZOBJECT, ZSTRUCTUREMETADATA tables) 
database and the remaining 340 have an associated source file of the knowledgeC.db 
(ZOBJECT table) database. 

Comparing the knowledgeC.db databases from the iPhone X’s 72 h and 7 day 
extractions, a new modified time of 2021-06-22 17:44 as well as a decrease in size 
of 6,864,496 B for the knowledgeC.db database was noted in the 72 h extraction. 
These changes can be seen in Fig. 6.40. 

In reviewing the ZOBJECTS table in knowledgeC.db database from the 72 h and 
7 day extraction, a reduction in entries from 39,364 to 31,858 was noted, shown in 
Fig. 6.41.

In reviewing the entries in the ZOBJECT table from both extraction, the 615 
Application Usage Log entries were confirmed to have been removed between entry 
numbers 20,046 and 27,976. 

Log Entries: A decrease of 87 entries was identified in the artifacts of interest compar-
ison. In reviewing the log entries from the 72 h and 7 days extraction, a decrease of 88 
entries was identified in the 72 h extraction and one new log entry was identified in the 
7 days extraction. All 89 changes were tagged and reviewed. Of the 88 entries, 17 had 
an associated source file of the interactionC.db (ZINTERACTIONS table) database, 
and all 17 entries were associated to the application com.apple.InCallService. A 
listing of the 17 entries can be seen in Fig. 6.42.

When comparing the interactionC.db database from the iPhone X’s 72 h and 
7 day extractions, a new modified time of 2021-06-20 13:39 and an increase in 
size of 12,288 B was noted for the interactionC.db in the 7 day extraction, seen in 
Fig. 6.43.

When viewing the contents of the ZINTERACTIONS table in the interactionC.db 
database from both extractions, a decrease in table entries from 2381 to 2364 was 
noted, shown in Fig. 6.44.

In comparing the contents of the ZINTERACTIONS tables from both extraction, 
the 17 removed entries were confirmed. Using a filter of 2021-05-21 to 2021-05-25 
in the ZENDATE column, the 17 removed entries were identified as entry numbers

Fig. 6.40 iPhone X knowledgeC.db database files comparison 72 h versus 7 days 



6 Database Forensics for Analyzing Data … 209

Fig. 6.41 iPhone X ZOBJECT table from the knowledgeC.db database comparison 72 h versus 
7 days

# Application Body Start Time (UTC-3) End time (UTC-3) Source file information 
68 com.apple.InCallService incoming call 2021-05-25 15:42 2021-05-25 16:14 interactionC.db : 0x12D13B (Table: ZINTERACTIONS) 
69 com.apple.InCallService outgoing call 2021-05-25 15:41 2021-05-25 15:41 interactionC.db : 0x12D1C0 (Table: ZINTERACTIONS) 
70 com.apple.InCallService incoming call 2021-05-25 12:09 2021-05-25 12:13 interactionC.db : 0x12D250 (Table: ZINTERACTIONS) 
71 com.apple.InCallService outgoing call 2021-05-25 10:15 2021-05-25 10:15 interactionC.db : 0x12D373 (Table: ZINTERACTIONS) 
72 com.apple.InCallService outgoing call 2021-05-24 12:55 2021-05-24 13:00 interactionC.db : 0x12C9F0 (Table: ZINTERACTIONS) 
73 com.apple.InCallService outgoing call 2021-05-23 18:49 2021-05-23 19:29 interactionC.db : 0xF6AC0 (Table: ZINTERACTIONS) 
74 com.apple.InCallService outgoing call 2021-05-23 18:45 2021-05-23 18:49 interactionC.db : 0xF6B44 (Table: ZINTERACTIONS) 
75 com.apple.InCallService incoming call 2021-05-23 10:48 2021-05-23 11:21 interactionC.db : 0xF6BC8 (Table: ZINTERACTIONS) 
76 com.apple.InCallService outgoing call 2021-05-23 9:12 2021-05-23 10:03 interactionC.db : 0xF6C4C (Table: ZINTERACTIONS) 
77 com.apple.InCallService outgoing call 2021-05-23 9:11 2021-05-23 9:12 interactionC.db : 0xF6CD0 (Table: ZINTERACTIONS) 
78 com.apple.InCallService incoming call 2021-05-22 17:18 2021-05-22 19:34 interactionC.db : 0xDEDBC (Table: ZINTERACTIONS) 
79 com.apple.InCallService outgoing call 2021-05-22 17:17 2021-05-22 17:17 interactionC.db : 0xDD851 (Table: ZINTERACTIONS) 
80 com.apple.InCallService outgoing call 2021-05-22 17:14 2021-05-22 17:14 interactionC.db : 0xDD8E2 (Table: ZINTERACTIONS) 
81 com.apple.InCallService incoming call 2021-05-22 16:06 2021-05-22 17:02 interactionC.db : 0xDD972 (Table: ZINTERACTIONS) 
82 com.apple.InCallService outgoing call 2021-05-22 14:28 2021-05-22 14:28 interactionC.db : 0xD582A (Table: ZINTERACTIONS) 
86 com.apple.InCallService outgoing call 2021-05-21 18:11 2021-05-21 18:11 interactionC.db : 0xD5DCA (Table: ZINTERACTIONS) 
87 com.apple.InCallService outgoing call 2021-05-21 17:48 2021-05-21 18:10 interactionC.db : 0xD5E5A (Table: ZINTERACTIONS) 

Fig. 6.42 iPhone X 17 log entries removed from the 72 h extraction

Fig. 6.43 iPhone X interactionC.db database files comparison 72 h versus 7 days
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Fig. 6.44 iPhone X ZINTERACTIONS table from the interactionC.db database comparison 72 h 
versus 7 days

1519, 1520, 1536, 1587–1589, 1600, 1838, 1840, 1841, 1844, 1846, 2606, 2641, and 
2643–2645, shown in Fig. 6.45.

The remaining 71 Log Entries had an associated source file of the 
DataUsage.sqlite-wal (ZLIVEUSAGE, ZPROCESS tables) write ahead log. A listing 
of these 71 log entries can be seen in Fig. 6.46.

The additional 1 new log entry in the 7 days extraction also had an associated 
source file of the DataUsage.sqlite-wal (ZLIVEUSAGE, ZPROCESS tables) write 
ahead log, shown in Fig. 6.47.

When comparing the DataUsage.sqlite database files from the iPhone X’s 72 h 
and 7 day extractions, a new modified time of 2021-06-22 17:34 and an in-crease
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Fig. 6.45 iPhone X ZINTERACTIONS table comparison 72 h versus 7 days showing 17 removed 
entries

in size of 1,458,480 B was noted for the DataUsage.sqlite-wal file in the 7 days 
extraction, shown in Fig. 6.48.

In reviewing the ZLIVEUSAGE table in the DataUsage.sqlite database from both 
extraction, a decrease in entries from 234 to 164 was noted, seen in Fig. 6.49.

In comparing the entries in the ZLIVEUSAGE table from both extractions, the 
removal of the 71 was confirmed. Using a filter of 2021-05-18 to 2021-06-11 on the 
ZTIMESTAMP column, the removed log entries were confirmed to be entry numbers 
545–547, 557, 559, 562, 568, 575, 578, 584, 588, 589, 602–606, 629, 731, 740, 808, 
815, 821, 823, 824, 826, 827, 829–833, 835–839, 841–849, 855, 859–861,864 and 
866–873, shown in Fig. 6.50.

In comparing the entries in the ZLIVEUSAGE table from both extractions, using 
a filter in the ZTIMESTAMP column of 2021-06-11, the new entry was found in both 
the 72 h and 7 day extraction as entry number 721, shown in Fig. 6.51. Therefore, 
the entry could not be confirmed as new.

These verifications were conducted in the main DataUsage.sqlite databases, 
however the identified lost (and new) entries had an associated source file of the 
DataUsage.sqlite. 

Images: The artifacts of interest comparison showed a decrease of 66 images from 
the iPhone X’s 72 h extraction to the 7 days extraction. The images files from both 
extractions were reviewed and the 66 images were identified, tagged and reviewed. 
The 66 images had identified source locations in multiple areas within the iPhone 
X’s file system and none were identified by the forensic software as being in the 
Trash or deleted. 

Of the 66 images files, five had an associated source path of /private/var 
/mobile/media/PhotoData/. A listing of these five images is provided in Fig. 6.52.

Just like the previous lost images comparison between the iPhone X’s 24 h and 72 h 
extractions, these file system locations store photo and video thumbnails in folders 
or data files. In reviewing each of these locations, the removal of all 5 thumbnails 
was confirmed, shown in Fig. 6.53.
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# Application Body Time (UTC-3) Source file information 
1 com.apple.datausage.dns Wifi In:0Wifi Out:0Wan In:31188Wan Out:25417 2021-06-11 8:52 DataUsage.sqlite : 0xC1B8C (Table: ZLIVEUSAGE, ZPROCESS) 
2 com.apple.datausage.wifiassist Wifi In:0Wifi Out:0Wan In:6248Wan Out:3920 2021-06-08 21:07 DataUsage.sqlite : 0x9B3E5 (Table: ZLIVEUSAGE, ZPROCESS) 
3 com.apple.datausage.dns Wifi In:0Wifi Out:0Wan In:1931Wan Out:2372 2021-06-07 21:23 DataUsage.sqlite : 0x9B5CC (Table: ZLIVEUSAGE, ZPROCESS) 
4 com.apple.datausage.appleid Wifi In:0Wifi Out:0Wan In:297078Wan Out:2409348 2021-06-07 20:50 DataUsage.sqlite : 0x9B5EC (Table: ZLIVEUSAGE, ZPROCESS) 
5 FaceTime Wifi In:0Wifi Out:0Wan In:44Wan Out:44 2021-06-07 18:02 DataUsage.sqlite : 0x9B60D (Table: ZLIVEUSAGE, ZPROCESS) 
6 FaceTime Wifi In:0Wifi Out:0Wan In:5420Wan Out:4912 2021-06-07 18:02 DataUsage.sqlite : 0x9B62B (Table: ZLIVEUSAGE, ZPROCESS) 
7 com.apple.datausage.applepushservice Wifi In:0Wifi Out:0Wan In:86621Wan Out:96856 2021-06-07 17:13 DataUsage.sqlite : 0x9B64B (Table: ZLIVEUSAGE, ZPROCESS) 
8 com.apple.datausage.siri Wifi In:0Wifi Out:0Wan In:0Wan Out:2200 2021-06-07 0:46 DataUsage.sqlite : 0x9B68C (Table: ZLIVEUSAGE, ZPROCESS) 
9 FaceTime Wifi In:0Wifi Out:0Wan In:8440Wan Out:11528 2021-06-06 16:55 DataUsage.sqlite : 0x9B6A9 (Table: ZLIVEUSAGE, ZPROCESS) 

10 com.apple.datausage.itunesmedia Wifi In:0Wifi Out:0Wan In:11492Wan Out:5635 2021-06-06 14:23 DataUsage.sqlite : 0x9B725 (Table: ZLIVEUSAGE, ZPROCESS) 
11 News Wifi In:0Wifi Out:0Wan In:1407Wan Out:1280 2021-06-06 14:21 DataUsage.sqlite : 0x9B7E2 (Table: ZLIVEUSAGE, ZPROCESS) 
12 com.apple.datausage.docsandsync Wifi In:0Wifi Out:0Wan In:33153Wan Out:6783 2021-06-06 14:17 DataUsage.sqlite : 0x9B842 (Table: ZLIVEUSAGE, ZPROCESS) 
13 com.apple.datausage.findmyiphone Wifi In:0Wifi Out:0Wan In:97213Wan Out:53808 2021-06-06 14:16 DataUsage.sqlite : 0xC1190 (Table: ZLIVEUSAGE, ZPROCESS) 
14 com.apple.datausage.general Wifi In:0Wifi Out:0Wan In:59268Wan Out:40269 2021-06-06 14:16 DataUsage.sqlite : 0xC0D8A (Table: ZLIVEUSAGE, ZPROCESS) 
15 com.apple.datausage.maps Wifi In:0Wifi Out:0Wan In:95516Wan Out:48216 2021-06-06 14:16 DataUsage.sqlite : 0xC0C8B (Table: ZLIVEUSAGE, ZPROCESS) 
16 com.apple.datausage.diagnostics Wifi In:0Wifi Out:0Wan In:18027Wan Out:4214 2021-06-06 14:16 DataUsage.sqlite : 0xC0DEA (Table: ZLIVEUSAGE, ZPROCESS) 
17 com.apple.datausage.location Wifi In:0Wifi Out:0Wan In:2120938Wan Out:93136 2021-06-06 14:16 DataUsage.sqlite : 0xC107B (Table: ZLIVEUSAGE, ZPROCESS) 
18 com.apple.datausage.appleid Wifi In:0Wifi Out:0Wan In:801712Wan Out:51572 2021-06-06 10:00 DataUsage.sqlite : 0xC0CAD (Table: ZLIVEUSAGE, ZPROCESS) 
19 com.apple.datausage.applepushservice Wifi In:0Wifi Out:0Wan In:53446Wan Out:90992 2021-06-06 8:41 DataUsage.sqlite : 0xC0BEB (Table: ZLIVEUSAGE, ZPROCESS) 
20 com.apple.datausage.dns Wifi In:0Wifi Out:0Wan In:16566Wan Out:11228 2021-06-06 4:13 DataUsage.sqlite : 0xC0C0D (Table: ZLIVEUSAGE, ZPROCESS) 
21 com.apple.datausage.siri Wifi In:0Wifi Out:0Wan In:8557Wan Out:115810 2021-06-06 0:00 DataUsage.sqlite : 0xC0A8F (Table: ZLIVEUSAGE, ZPROCESS) 
22 FaceTime Wifi In:0Wifi Out:0Wan In:11733267Wan Out:16922028 2021-06-05 16:53 DataUsage.sqlite : 0xC0AB0 (Table: ZLIVEUSAGE, ZPROCESS) 
23 FaceTime Wifi In:0Wifi Out:0Wan In:924Wan Out:924 2021-06-05 16:44 DataUsage.sqlite : 0xC0AD4 (Table: ZLIVEUSAGE, ZPROCESS) 
24 Safari Wifi In:0Wifi Out:0Wan In:3619044Wan Out:366003 2021-06-05 7:49 DataUsage.sqlite : 0xC0AF4 (Table: ZLIVEUSAGE, ZPROCESS) 
25 com.apple.datausage.iad Wifi In:0Wifi Out:0Wan In:388Wan Out:300 2021-06-05 7:49 DataUsage.sqlite : 0xC0B56 (Table: ZLIVEUSAGE, ZPROCESS) 
26 Safari Wifi In:0Wifi Out:0Wan In:1033Wan Out:1544 2021-06-05 7:49 DataUsage.sqlite : 0xC0B16 (Table: ZLIVEUSAGE, ZPROCESS) 
27 com.apple.datausage.location Wifi In:0Wifi Out:0Wan In:6678Wan Out:3298 2021-06-05 7:49 DataUsage.sqlite : 0xC0B36 (Table: ZLIVEUSAGE, ZPROCESS) 
28 com.apple.datausage.maps Wifi In:0Wifi Out:0Wan In:132Wan Out:264 2021-06-05 1:16 DataUsage.sqlite : 0xC0B75 (Table: ZLIVEUSAGE, ZPROCESS) 
29 com.apple.datausage.siri Wifi In:0Wifi Out:0Wan In:615970Wan Out:1579595 2021-06-04 23:56 DataUsage.sqlite : 0xC1C90 (Table: ZLIVEUSAGE, ZPROCESS) 
30 com.apple.datausage.dns Wifi In:0Wifi Out:0Wan In:368195Wan Out:321436 2021-06-04 23:38 DataUsage.sqlite : 0xC2166 (Table: ZLIVEUSAGE, ZPROCESS) 
31 com.apple.datausage.appleid Wifi In:0Wifi Out:0Wan In:12473512Wan Out:5332674 2021-06-04 21:02 DataUsage.sqlite : 0xC2123 (Table: ZLIVEUSAGE, ZPROCESS) 
32 com.apple.datausage.applepushservice Wifi In:0Wifi Out:0Wan In:2216089Wan Out:3857470 2021-06-04 19:21 DataUsage.sqlite : 0xC1C4E (Table: ZLIVEUSAGE, ZPROCESS) 
33 com.apple.datausage.general Wifi In:0Wifi Out:0Wan In:92287Wan Out:36916 2021-06-04 11:23 DataUsage.sqlite : 0xC1C6F (Table: ZLIVEUSAGE, ZPROCESS) 
34 com.apple.datausage.bluetooth Wifi In:0Wifi Out:0Wan In:78568Wan Out:35444 2021-06-04 11:23 DataUsage.sqlite : 0xC2145 (Table: ZLIVEUSAGE, ZPROCESS) 
35 com.apple.datausage.location Wifi In:0Wifi Out:0Wan In:11811357Wan Out:832164 2021-06-04 1:19 DataUsage.sqlite : 0xC13E7 (Table: ZLIVEUSAGE, ZPROCESS) 
36 com.apple.datausage.iad Wifi In:0Wifi Out:0Wan In:138502Wan Out:50771 2021-06-04 1:18 DataUsage.sqlite : 0xC18C0 (Table: ZLIVEUSAGE, ZPROCESS) 
37 FaceTime Wifi In:0Wifi Out:0Wan In:51230159Wan Out:67427556 2021-06-03 18:01 DataUsage.sqlite : 0xC2209 (Table: ZLIVEUSAGE, ZPROCESS) 
38 FaceTime Wifi In:0Wifi Out:0Wan In:5940Wan Out:5940 2021-06-03 17:59 DataUsage.sqlite : 0xC222C (Table: ZLIVEUSAGE, ZPROCESS) 
39 com.apple.datausage.media Wifi In:0Wifi Out:0Wan In:3564Wan Out:9152 2021-06-03 17:59 DataUsage.sqlite : 0xC1D14 (Table: ZLIVEUSAGE, ZPROCESS) 
40 com.apple.datausage.icloud Wifi In:0Wifi Out:0Wan In:37504Wan Out:20146 2021-06-03 7:56 DataUsage.sqlite : 0xC21A6 (Table: ZLIVEUSAGE, ZPROCESS) 
41 com.apple.datausage.location Wifi In:0Wifi Out:0Wan In:10682Wan Out:8480 2021-06-03 7:46 DataUsage.sqlite : 0xC1A07 (Table: ZLIVEUSAGE, ZPROCESS) 
42 com.apple.datausage.maps Wifi In:0Wifi Out:0Wan In:1116635Wan Out:452533 2021-06-03 7:17 DataUsage.sqlite : 0xC1C2D (Table: ZLIVEUSAGE, ZPROCESS) 
43 Weather Wifi In:0Wifi Out:0Wan In:41871Wan Out:17159 2021-06-02 18:19 DataUsage.sqlite : 0xC1CB1 (Table: ZLIVEUSAGE, ZPROCESS) 
44 Maps Wifi In:0Wifi Out:0Wan In:136669Wan Out:36572 2021-06-02 18:19 DataUsage.sqlite : 0xC13C6 (Table: ZLIVEUSAGE, ZPROCESS) 
45 com.apple.datausage.docsandsync Wifi In:0Wifi Out:0Wan In:208051Wan Out:51009 2021-06-02 18:19 DataUsage.sqlite : 0xC1409 (Table: ZLIVEUSAGE, ZPROCESS) 
46 com.apple.datausage.itunesmedia Wifi In:0Wifi Out:0Wan In:272402Wan Out:37604 2021-06-02 18:19 DataUsage.sqlite : 0xC1A26 (Table: ZLIVEUSAGE, ZPROCESS) 
47 Weather Wifi In:0Wifi Out:0Wan In:217322Wan Out:76525 2021-06-02 18:19 DataUsage.sqlite : 0xC1B4B (Table: ZLIVEUSAGE, ZPROCESS) 
48 com.apple.datausage.itunesmedia Wifi In:0Wifi Out:0Wan In:1194168Wan Out:207249 2021-06-02 18:19 DataUsage.sqlite : 0xC19C7 (Table: ZLIVEUSAGE, ZPROCESS) 
49 Maps Wifi In:0Wifi Out:0Wan In:7435Wan Out:7222 2021-06-02 18:19 DataUsage.sqlite : 0xC19E8 (Table: ZLIVEUSAGE, ZPROCESS) 
50 News Wifi In:0Wifi Out:0Wan In:3074815Wan Out:250262 2021-06-02 18:19 DataUsage.sqlite : 0xC1AAA (Table: ZLIVEUSAGE, ZPROCESS) 
51 com.apple.datausage.softwareupdate Wifi In:0Wifi Out:0Wan In:132576Wan Out:40396 2021-06-02 18:19 DataUsage.sqlite : 0xC1D33 (Table: ZLIVEUSAGE, ZPROCESS) 
52 Weather Wifi In:0Wifi Out:0Wan In:15794Wan Out:12758 2021-06-02 18:19 DataUsage.sqlite : 0xC19A8 (Table: ZLIVEUSAGE, ZPROCESS) 
53 News Wifi In:0Wifi Out:0Wan In:22374Wan Out:19917 2021-06-02 18:19 DataUsage.sqlite : 0xC1ACB (Table: ZLIVEUSAGE, ZPROCESS) 
54 com.apple.AppStore Wifi In:0Wifi Out:0Wan In:83942Wan Out:46392 2021-06-02 18:18 DataUsage.sqlite : 0xC189F (Table: ZLIVEUSAGE, ZPROCESS) 
55 com.apple.datausage.appleid Wifi In:0Wifi Out:0Wan In:464718Wan Out:144279 2021-06-02 18:18 DataUsage.sqlite : 0xC1A47 (Table: ZLIVEUSAGE, ZPROCESS) 
56 News Wifi In:0Wifi Out:0Wan In:96139Wan Out:31671 2021-06-02 18:18 DataUsage.sqlite : 0xC1803 (Table: ZLIVEUSAGE, ZPROCESS) 
57 com.apple.datausage.media Wifi In:0Wifi Out:0Wan In:61728Wan Out:17713 2021-06-02 18:18 DataUsage.sqlite : 0xC1A8A (Table: ZLIVEUSAGE, ZPROCESS) 
58 com.apple.datausage.findmyiphone Wifi In:0Wifi Out:0Wan In:192172Wan Out:188166 2021-06-02 18:18 DataUsage.sqlite : 0xC18E1 (Table: ZLIVEUSAGE, ZPROCESS) 
59 com.apple.datausage.itunesmedia Wifi In:0Wifi Out:0Wan In:126574Wan Out:47606 2021-06-02 18:18 DataUsage.sqlite : 0xC1902 (Table: ZLIVEUSAGE, ZPROCESS) 
60 com.apple.datausage.general Wifi In:0Wifi Out:0Wan In:268257Wan Out:105736 2021-06-02 18:18 DataUsage.sqlite : 0xC1986 (Table: ZLIVEUSAGE, ZPROCESS) 
61 com.apple.AppStore Wifi In:0Wifi Out:0Wan In:5785Wan Out:7221 2021-06-02 18:18 DataUsage.sqlite : 0xC1967 (Table: ZLIVEUSAGE, ZPROCESS) 
62 com.apple.datausage.messages Wifi In:0Wifi Out:0Wan In:486440Wan Out:206677 2021-06-02 18:18 DataUsage.sqlite : 0xC1AEA (Table: ZLIVEUSAGE, ZPROCESS) 
63 Safari Wifi In:0Wifi Out:0Wan In:21211298Wan Out:1028653 2021-06-02 11:55 DataUsage.sqlite : 0xC1CD1 (Table: ZLIVEUSAGE, ZPROCESS) 
64 Safari Wifi In:0Wifi Out:0Wan In:11571Wan Out:22604 2021-06-02 11:55 DataUsage.sqlite : 0xC1CF3 (Table: ZLIVEUSAGE, ZPROCESS) 
65 Weather Wifi In:0Wifi Out:0Wan In:22180Wan Out:5864 2021-05-29 17:19 DataUsage.sqlite : 0xC1865 (Table: ZLIVEUSAGE, ZPROCESS) 
66 com.apple.datausage.appleid Wifi In:0Wifi Out:0Wan In:57997Wan Out:10813 2021-05-28 20:16 DataUsage.sqlite : 0xC1B2B (Table: ZLIVEUSAGE, ZPROCESS) 
67 com.apple.datausage.telephony Wifi In:0Wifi Out:0Wan In:2283350Wan Out:51931203 2021-05-28 8:36 DataUsage.sqlite : 0xC1A68 (Table: ZLIVEUSAGE, ZPROCESS) 
83 Maps Wifi In:0Wifi Out:0Wan In:234248Wan Out:18996 2021-05-22 13:41 DataUsage.sqlite : 0xC1384 (Table: ZLIVEUSAGE, ZPROCESS) 
84 com.apple.datausage.media Wifi In:0Wifi Out:0Wan In:37971Wan Out:11188 2021-05-22 13:41 DataUsage.sqlite : 0xC1947 (Table: ZLIVEUSAGE, ZPROCESS) 
85 com.apple.datausage.security Wifi In:0Wifi Out:0Wan In:19906Wan Out:5675 2021-05-22 13:41 DataUsage.sqlite : 0xC148C (Table: ZLIVEUSAGE, ZPROCESS) 
88 com.apple.datausage.siri Wifi In:0Wifi Out:0Wan In:64179Wan Out:15754 2021-05-18 6:08 DataUsage.sqlite : 0xC1345 (Table: ZLIVEUSAGE, ZPROCESS) 

Fig. 6.46 iPhone X listing of 71 removed log entries from 72 h extraction

# Application Body  Time 
(UTC-3) 

Source file information 

1 com.apple.datausage.dns Wifi In:0 
Wifi Out:0 
Wan In:31188 
Wan Out:25417 

11-Jun-21 
8:52:35 AM 

DataUsage.sqlite-wal : 0x225EEC (Table: 
ZLIVEUSAGE, ZPROCESS, Size: 2253672 
bytes) 

Fig. 6.47 iPhone X listing of 1 new log entry from the 7 days extraction
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Fig. 6.48 iPhone X comparison of DataUsage.sqlite database files 72 h versus 7 days

Fig. 6.49 iPhone X ZLIVEUSAGE entries from the DataUsage.sqlite database 72 h versus 7 days

In comparing the locations where these 5 thumbnails images were stored (2 folder 
paths and 3 data files), each had a common modified time of 2021-06-19 05:37, which 
was noted in the 7 days extraction. In addition, only the 100APPLE folders saw a 
decrease in size of 5126 and 43,566 B, while the ‘.ithmb’ files sizes remained the 
same. A comparison of these folders and data files from the iPhone X’s 72 h and 
7 day extractions are shown in Fig. 6.54.

The remaining 61 image files were associated to a common source path of 
/private/var/mobile/ Library within the iPhone X’s file system. In reviewing this 
source path, the 61 images divided between three different locations, all of which were 
found to be associated to the native iOS Messages application. Of these 61 images 
4 had an associated source path of /private/var/mobile/Library/SMS/Attachments/, 
shown in Fig. 6.55.

In analyzing this location within the iPhone X’s file system, the removal of all 
four image files was confirmed. In addition, each folder that contained one of the 
removed images not only saw a reduction in folder size but also had a new modified 
time of 2021-06-20 03:00, displayed in Fig. 6.56.
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Fig. 6.50 iPhone X ZLIVEPROCESS table comparison showing 71 lost entries 72 h versus 7 days
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Fig. 6.51 iPhone X ZLIVEPROCESS table comparison showing 1 new entry 72 h versus 7 days

Source: /private/var/mobile/Media/PhotoData/Metadata/DCIM/100APPLE/ 
# Size 

(bytes)
-detaerC5DM 

Date 
Path and/or Name 

37 5126 5bcb7789007b90677c809ae17ae13848 19-05-21 IMG_0094.THM 
Source: /private/var/mobile/Media/PhotoData/Thumbnails/ 

# Size 
(bytes)

-detaerC5DM 
Date 

Path and/or Name 

66 3186 c2b27559135a422508659a1333e0a04e 3306.ithmb/thumb_93.bmp 
64 31566 3e7e88fa590b634a054bb3beb5590f28 3314.ithmb/thumb_93.bmp 
65 28866 6681ceaeccfc8a5378a3f4f6db14b29c 4031.ithmb/thumb_93.bmp 

6 
43566 690abd89f857eb5f71de48e22005df70 19-05-21 /V2/DCIM/100APPLE/IMG_0094. 

MOV/5005.JPG 

Fig. 6.52 iPhone X 5 lost thumbnails from 72 h extraction

Fig. 6.53 iPhone X 5 thumbnail file system locations 72 h versus 7 days

Fig. 6.54 iPhone X lost thumbnail locations 72 h versus 7 days
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Source: /private/var/mobile/Library/SMS/Attachments/ 
# Size 

(bytes) 
detaerC5DM -

Date 
Path and/or Name 

13 1344402 9a086d5ec2225d69f106a75701b54af6 06-06-21 62/02/CC68ABEE-6D1B-4439-96CA-01A64B4FF3D0/CC68ABEE-
6D1B-4439-96CA-01A64B4FF3D0.pvt/64469311993__7813038D-
F1EC-4A37-859D-43955081F49B.HEIC 

19 1992095 9820971fdb3853cba771e72b4d8ef2f9 09-06-21 75/05/72C91C3C-DA84-48FA-8E46-890E804FF687/72C91C3C-
DA84-48FA-8E46-890E804FF687.pvt/64496376973__C6FADAEA-
E498-475F-9D0D-659FE0F692A0.HEIC 

44 1517376 3aa6bf83fb23d53ef542d3bf23efaf68 06-06-21 97/07/0152D003-E70E-4EDB-9F1E-4DF0303FA8DD/0152D003-
E70E-4EDB-9F1E-4DF0303FA8DD.pvt/IMG_0170.HEIC 

17 547846 2db1c02512029ffba9723c6c13628ce8 07-06-21 9b/11/E1427D62-D304-484F-B694-48E64631CF88/E1427D62-
D304-484F-B694-48E64631CF88.pvt/64478969545__0A655073-
6CE2-4238-9644-20F00FAA00E5.HEIC 

Fig. 6.55 iPhone X 4 lost image files from 72 h extraction

Fig. 6.56 iPhone X /private/var/mobile/Library/SMS/Attachments/ sub-subfolders 72 h versus 
7 days  

The second of the three locations contained five image files located 
in /private/var/mobile/Library/Caches/com.apple.MobileSMS/BrowserSnapshots/, 
shown in Fig. 6.57. 

# Size 
(bytes) 

detaerC5DM -
Date 

Name 

1 12716 77c56a3e354c5160f76bb8ca5a0237f2 11-06-21 10465042522214366315.png 
2 302 7c13a3b780a7e0dedf12ebb5c1de4c20 06-06-21 14019782735580945992.png 
3 21592 2ffab18703a54d5cbb7b4c7bf09d4602 07-06-21 15799904270332018302.png 
4 302 7c13a3b780a7e0dedf12ebb5c1de4c20 06-06-21 16242543410136845744.png 
5 25173 538d625089b0c13cf5d2e04db23f7e74 08-06-21 3046088896689778919.png 

Source: /private/var/mobile/Library/Caches/com.apple.MobileSMS/BrowserSnapshots/ 

Fig. 6.57 iPhone X 5 lost image files from 72 h extraction
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Fig. 6.58 iPhone X removal of BrowserSnapshots subfolder 72 h versus 7 days 

Fig. 6.59 iPhone X /private/var/mobile/Library/Caches/com.apple.MobileSMS//Previews 
/Attachments/comparison 72 h versus 7 days 

In reviewing this location in both the 72 h and 7 day extractions, it was found that 
the /private/var/mobile/Library/ Caches/com.apple.MobileSMS/BrowserSnapshots/ 
subfolder had been completely removed thus confirming the loss of these 5 images, 
shown in Fig. 6.58. 

The third location contained 52 image files located in /private/var/ 
mobile/Library/Caches/ com.apple.MobileSMS/Previews/Attachments/. Of these 52 
images, 34 had a file extension of ‘.ktx’. As previously stated in this research paper, 
‘.ktx’ files are iOS snapshots, however; in this context, the ‘.ktx’ files appear to 
represent a thumbnail image. 

In comparing the overall size difference of the Attachments folder from the iPhone 
X’s 72 h and 7 day extractions, although there was no change in modified time, the 
folder’s size did decrease by 26,879,023 B, shown in Fig. 6.59. 

In comparing the iPhone X’s 72 h and 7 day extractions, a reduction in size 
of 26,939,108 B and a new modified time of 2021-06-20 03:00 was observed in the 
7 day extraction for the /private/var/mobile/Library/Caches/ com.apple.MobileSMS/ 
folder, shown in Fig. 6.60. 

In reviewing each of the 52 images folder locations, their removal was confirmed, 
shown in Fig. 6.61.

Videos: The artifacts of interest comparison between the iPhone X’s 72 h and 7 day 
extractions identified a decrease in 10 videos. In comparing the video files from both 
extractions, the 10 videos were identified, tagged and reviewed. The 10 video files 
were associated to three different source path locations within the iPhone X’s file 
system. A listing of these 10 video can be seen in Fig. 6.62.

Each of the three file system locations were reviewed, and the removal of the 10 
videos was confirmed, shown in Fig. 6.63.

Fig. 6.60 iPhone X com.apple.MobileSMS folder comparison 72 h versus 7 days 
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Fig. 6.61 iPhone X 52 removed images comparison from /com.apple.MobileSMS/Previews 
/Attachments/ 72 h versus 7 days

Source: /private/var/mobile/Media/DCIM/100APPLE/ 
# Name Size 

(bytes) 
Path and/or Name MD5 Hash Value Created-

Time (UTC-
3) 

Deleted 

7 IMG_0094.MOV 950085799 IMG_0094.MOV 5307971301cd05f9ebf42c053b7fd0e5 19-05-21 19:23 Trash 

Source: /private/var/mobile/Library/SMS/Attachments/ 
5 64478969545__0A655073-6CE2-4238-9644-

20F00FAA00E5_1.MOV 
1581520 9b/11/E1427D62-D304-484F-B694-

48E64631CF88/E1427D62-D304-484F-B694-
48E64631CF88.pvt/64478969545__0A655073-
6CE2-4238-9644-20F00FAA00E5.MOV 

83cb98506d6a556564381c4ff7930107 07-06-21 17:14

-E1F9-BDE4-E07E-300D2510/70/796467322VOM.1_0710_GMI# 
4DF0303FA8DD/0152D003-E70E-4EDB-9F1E-
4DF0303FA8DD.pvt/IMG_0170.MOV 

acc1426869ccd1435576c098afe86cb9 06-06-21 12:23 

6 64496376973__C6FADAEA-E498-475F-
9D0D-659FE0F692A0.MOV 

1937795 75/05/72C91C3C-DA84-48FA-8E46-
890E804FF687/72C91C3C-DA84-48FA-8E46-
890E804FF687.pvt/64496376973__C6FADAEA-
E498-475F-9D0D-659FE0F692A0.MOV 

5eaa453c89e5bad83f8ba7e5ec8bb51b 09-06-21 17:36 

3 64469311993__7813038D-F1EC-4A37-859D-
43955081F49B_1.MOV 

2404471 62/02/CC68ABEE-6D1B-4439-96CA-
01A64B4FF3D0/CC68ABEE-6D1B-4439-96CA-
01A64B4FF3D0.pvt/64469311993__7813038D-
F1EC-4A37-859D-43955081F49B.MOV 

1e378241273e35399cd578812169cd7f 06-06-21 14:25 

Source: /private/var/mobile/Library/Caches/com.apple.MobileSMS/Previews/Attachments/ 
4 64478969545__0A655073-6CE2-4238-9644-

20F00FAA00E5.MOV 
1581520 9b/11/E1427D62-D304-484F-B694-

48E64631CF88/64478969545__0A655073-6CE2-
4238-9644-20F00FAA00E5-
preview.pvt/64478969545__0A655073-6CE2-
4238-9644-20F00FAA00E5.MOV 

83cb98506d6a556564381c4ff7930107 07-06-21 17:14

-E1F9-BDE4-E07E-300D2510/70/796467322VOM.0710_GMI9 
4DF0303FA8DD/IMG_0170-
preview.pvt/IMG_0170.MOV 

acc1426869ccd1435576c098afe86cb9 06-06-21 12:23

-9CEA-FF64-FEB1-96F31721/50/590490141VOM.4510_GMI8 
2C5DB21B0D7D/IMG_0154-
preview.pvt/IMG_0154.MOV 

a57a3e4185e141a306e81c8747b10fda 01-06-21 14:57 

2 64469311993__7813038D-F1EC-4A37-859D-
43955081F49B.MOV 

2404471 62/02/CC68ABEE-6D1B-4439-96CA-
01A64B4FF3D0/64469311993__7813038D-F1EC-
4A37-859D-43955081F49B-
preview.pvt/64469311993__7813038D-F1EC-
4A37-859D-43955081F49B.MOV 

1e378241273e35399cd578812169cd7f 06-06-21 14:25 

1 64392340500__A94A8FBD-6BFA-4B25-
95DB-528EDA023A1B.MOV 

1305637 30/00/F1AC60E2-7677-40D7-A9BE-
8AB09C0FF855/64392340500__A94A8FBD-
6BFA-4B25-95DB-528EDA023A1B-
preview.pvt/64392340500__A94A8FBD-6BFA-
4B25-95DB-528EDA023A1B.MOV 

97d755be5e779389f7813c1368ca9201 28-05-21 16:36 

Fig. 6.62 iPhone X 10 removed video files 72 h extraction

Fig. 6.63 iPhone X 10 removed video filse 72 h versus 7 days
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Fig. 6.64 iPhone X /private/var/mobile/Media/DCIM/100APPLE/ comparison folder 72 h versus 
7 days  

In reviewing the first location, /private/var/mobile/Media/DCIM/100APPLE, a 
reduction in folder size as well as a new modified time of 2021-06-19 05:37 was 
noted in the 7 days extraction, shown in Fig. 6.64. 

The other two folder locations that contained the nine remaining video files are 
the same folder locations that were reviewed for the lost image files. Changes in 
these folder sizes a well as modified times can be seen in Figs. 6.60 and 6.61. 

Overall, in the case of iPhoneX analysis, the changes in the artifacts of interest 
were able to be confirmed through the application and database analysis conducted. 
In total, a decrease in 1108 application usage log entries, 165 log entries, 353 images 
and 67 videos was confirmed as well as one increase in log entries. The removal of 
only one log entry was not able to be confirmed as it had no associated source file. 
The verification of incremental auto vacuum mode on the knowledgeC.db, interac-
tionC.db, and DataUsage.sqlite databases further supports the loss of log entries and 
noted decreases in database size. 

6.5.2 Timeline and iOS Analysis 

Once the comparison analysis and modification times of the iOS database files and 
paths were noted, the unified logs from each of the iPhone extractions were parsed 
using the forensic analysis tool Cellebrite Inspector. The findings of this analysis are 
presented below. 

6.5.2.1 iPhone 7 Analysis 

Vacuuming 

The iOS unified logs from the iPhone 7’s 7 days extraction were reviewed to verify the 
usage of SQLite vacuuming. In total, 1465 unified log messages contained the word 
vacuum, and of those 960 were specifically related to auto-vacuuming. A sample of 
these log entries are shown in Fig. 6.65.

The full message content of the second entry reads: _{"msg": "incre-
mentalVacuum", "event": "elapsed", "begin_mach": "14251185579464", 
"end_mach": "14251185580475", "elapsed_s": "0.000042125", "pages": "3", 
"path": "/var/root/Library/Caches/locationd/gyroCal.db"} located in the log entry at 
/var/db/uuidtext/F6/E94E0F9F14383D948A6C21AC5730B4.
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Fig. 6.65 iPhone 7 auto-vacuum entries in unified logs

Fig. 6.66 iPhone 7 search hit results auto-vacuum 

Fig. 6.67 iPhone 7 search hit results auto-vacuum 

In conducting a deep search of the logs however, multiple instances of auto-
vacuuming using PRAGMA states were located. With these statements not appearing 
specifically in the unified logs, it appears that this level of detail is excluded from the 
message content. The results of the search performed and examples of the PRAGMA 
statements are provided in Figs. 6.66 and 6.67. 

com.apple.MobileSMS/Previews/Attachments 

In conducting the timeline and unified logs analysis, the deletion of data from the 
/private/var/mobile/Library/Caches/com.apple.MobileSMS/Preview/Attachments 
file path was further confirmed with an entry in the unified logs with the same 
modified time. The entry was located in /private/var/db/uuidtext/61/4F2CCB08343 
EDFB243C596ED4F9123 in the iPhone 7’s 7 days extraction. The log entry is
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Fig. 6.68 iPhone 7 /private/var/db/uuidtext/61/4F2CCB08343EDFB243C596ED4F9123 from 
7 days extraction 

Fig. 6.69 iPhone X auto-vacuum entries in unified logs 

for the IMAutomaticHistoryDeletionAgent, and in the log entry, the deletion of 
previews and snapshots is executed. A portion of the log file can be seen in Fig. 6.68. 

6.5.2.2 iPhone X 

Vacuuming 

The iOS unified logs from the iPhone X’s 7 days extraction were reviewed to verify 
the usage of SQLite vacuuming. In total, 3791 unified log messages contained the 
word vacuum, and of those 76 were specifically related to auto-vacuuming. A sample 
of the 76 log entries are shown in Fig. 6.69. 

The full message content of the first entry reads: _xpc_activity_set_state: send 
new state to CTS: com.apple.message.db.vacuum (107e55550), 5, which was found 
in the log /private/var/db/diagnostics/Persist/0000000000000367.tracev3. 

In conducting a deep search of the logs however, multiple instances of auto-
vacuuming using PRAGMA states were located. With these statements not appearing 
specifically in the unified logs, it appears that this level of detail is excluded from the 
message content. The results of the search performed and examples of the PRAGMA 
statements are provided in Figs. 6.70 and 6.71.

knowledgeC.db, interactionC.db, and DataUsage.sqlite 

While the unified logs do not provide a clear reason for the modified times of the 
knowledgeC.db, interactionC.db and DataUsage.sqlite database files, what can be 
correlated, is that the modification time of each of the database files occurred during 
one of iPhone X’s timed extractions, demonstrated in Table 6.5.
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Fig. 6.70 iPhone X search 
hit results auto-vacuum 

Fig. 6.71 iPhone X search hit results auto-vacuum 2

Table 6.5 iPhone X comparison of database file modification times with extraction times 

Extraction timeframe Database files or file 
path 

Modification times in 
ADT 

Extraction time 
in ADT 

24 h knowledgeC.db and 
knowledgeC.db-wal 

2021-06-16 17:46 2021-06-16 
17:34-18:05 

24 h interactionC.db-shm and 
interactionC.db-wal 

2021-06-16 17:39 2021-06-16 
17:34-18:05 

24 h DataUsage.sqlite and 
DataUsage.sqlite-wal 

2021-06-16 17:34 2021-06-16 
17:34-18:05 

72 h knowledgeC.db and 
knowledgeC.db-wal 

2021-06-18 17:37 and 
2021-06-18 17:46 

2021-06-18 
17:34-19:03 

72 h interactionC.db-shm and 
interactionC.db-wal 

2021-06-18 17:39 2021-06-18 
17:34-19:03 

72 h DataUsage.sqlite-wal 2021-06-18 17:34 2021-06-18 
17:34-19:03 

7 days knowledgeC.db and 
knowledgeC.db-wal 

2021-06-22 17:44 and 
2021-06-22 17:46 

2021-06-22 
17:34-18:02 

7 days interactionC.db-shm and 
interactionC.db-wal 

2021-06-22 17:39 and 
2021-06-22 17:39 

2021-06-22 
17:34-18:02 

7 days DataUsage.sqlite-wal 2021-06-22 17:34 2021-06-22 
17:34-18:02
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Fig. 6.72 iPhone X unified log entry from /private/var/db/diagnostics/Persist/0000000000000358. 
tracev3 

private/var/mobile/Media/DCIM/100APPLE/ 

The removal of the photos on 2021-06-18 was confirmed through analyzing the 
unified logs. Unified log entries located in /private/var/db/diagnostics/Persist 
/0000000000000358.tracev3 confirmed the removal. One of the entries is shown 
in Fig. 6.72. 

The full field content of the message in Fig. 6.72 was: Deleting DCIM/ 
100APPLE/IMG_0070.MOV [0xb773dda1a8b83e4a F4F479D8-70B9-4B03-9851-
F47DE52F754D] (created on Tue May 18 13:00:08 2021). 

The same activity was confirmed to have taken place on 2021-06-19, found 
in the unified log located at /private/var/db/diagnostics/Persist/0000 
00000000035c.tracev3. The log entries are shown in Fig. 6.73.

The full field content of the message in Fig. 6.73 was: 
Deleting DCIM/100APPLE/IMG_0094.MOV [0xb773dda1abb83e4a < x-

coredata://30230C52-572A-4958-B99F-DF733022B03E/Asset/p94 > 8AEEEF9C-
E977-4CE1-A74F-6E1B0697FF42] (created on Wed May 19 19:23:11 2021). 

/private/var/mobile/Media/PhotoData/ 
An XPC (Cross Process Communication) activity called 

com.apple.quicklook.cloudThumbnailDatabaseCleanup was found to be responsible 
for the removal of the thumbnail images from the iPhone X. The full deletion activity 
was located in three different log files: 

• /private/var/db/diagnostics/Special/0000000000000141.tracev3; 
• /private/var/db/diagnostics/Persist/0000000000000360.tracev3 and 
• /private/var/db/diagnostics/Persist/0000000000000358.tracev3. 

One of these log entries is provided as an example in Fig. 6.74.
The same activity was confirmed to have taken place on 2021-06-19 for the 

removal of the thumbnail images on that date, however the log entries were now
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Fig. 6.73 iPhone X unified log entry from /private/var/db/diagnostics/Persist/000000000000035c. 
tracev3

Fig. 6.74 iPhone X unified log entry from /private var/db/diagnostics/Special/0000000000000141. 
tracev3

located in /private/var/db/ diagnostics/Special/0000000000000147.tracev3, shown 
in Fig. 6.75.
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Fig. 6.75 iPhone X unified log entry /private/var/db/diagnostics/Special/0000000000000147. 
tracev3 

/private/var/mobile/Library/ 

With the given modified time of 2021-06-20 03:00, no activities in the timeline nor 
unified logs could pinpoint a cause for the removal of the images removed from this 
location in the file system. 

6.6 Discussion and Analysis 

6.6.1 Comparison Analysis 

6.6.1.1 Extraction Sizes 

The comparison of extraction sizes across four extractions from five different test 
devices showed both increases and decreases in size. Both of these results were 
expected, as SQLite vacuuming and the removal of artifacts would cause decreases 
in data and powering on an iPhone allows the OS to run, in turn causing increases 
over the course of the extraction phase. 

Overall, the iPhone X was the only test device that saw consistent decreases in 
extraction size, while the iPhone SE saw consistent increases. The iPhone 5 s and 
iPhone 7 extractions increased 2 h versus 24 h, but then saw consistent decreases 
24 h versus 72 h and 72 h versus 7 days. Alternatively, the iPhone 7+ saw the 
opposite with an initial increase in extraction size from 2 to 24 h and then consistent
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Table 6.6 Noted increases 
and decreases in data 
extraction sizes from all test 
devices 

iPhone 2 h versus 24 h 24 h versus 72 h 72 h versus  
7 days  

SE Increase Increase Increase 

5S Decrease Increase Increase 

7 Decrease Increase Increase 

X Decrease Decrease Decrease 

7+ Increase Decrease Decrease 

decreases in extraction size from 24 to 72 h and 72 h to 7 days. These observations 
are demonstrated in Table 6.6. 

In comparing each device against the other, the iPhone X saw biggest overall 
change in extraction size with decrease of 1,124,936 KB, and the iPhone SE saw the 
largest overall increase of 418,969 B. In putting all of the device data together, there 
was an overall loss of 1,193,500 KB and overall gain of 483,472 KB. 

6.6.1.2 Artifacts of Interest 

Conducting the comparison analysis of the artifacts of interest from all iPhone extrac-
tions provided vastly different results. Call Logs were the only artifact that saw no 
changes at all. The Log Entries and Videos only saw decreases, whereas the Appli-
cation Usage Logs, Chats, Instant Messages and Images experienced both increases 
and decreases. These changes are demonstrated in Table 6.7. 

To illustrate the changes in artifacts of interest by device, Table 6.8 is provided.
The only changes in artifacts that had an expected result were the changes in the 

Application Usage Logs and Log entries. The researcher was aware, through previous 
experience and training, that the knowledgeC.db database operates on a first in last 
out basis and only keeps entries for a certain number of days. By virtue of the OS 
running on the test iPhones, new entries would be created by running applications

Table 6.7 Noted changes in 
the artifacts of interest from 
all test devices by extraction 
interval 

Artifacts of 
interest 

2 h versus  
24 h 

24 h versus  
72 h 

72 h versus  
7 days  

Application 
usage log 

Both Both Both 

Call log n/a n/a n/a 

Chats Both Decrease n/a 

Instant 
messages 

Both Decrease n/a 

Log entries Decrease Decrease Decrease 

Images Both Both Decrease 

Videos n/a Decrease Decrease 
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Table 6.8 Noted changes in 
artifacts of interest by device 

Artifacts of 
interest 

Increase Decrease Both 

Application 
usage log 

iPhone 7+ iPhone X iPhone 5s 

Call log n/a n/a n/a 

Chats n/a iPhone 5s iPhone SE 

Instant 
messages 

iPhone 5s iPhone SE, 
iPhone 5s 

n/a 

Log entries n/a iPhone SE, 
iPhone X 

n/a 

Images iPhone SE, 
iPhone 5s 

iPhone 7, 
iPhone X 

n/a 

Videos n/a iPhone X n/a

and stored in this database. In addition, the lack new Log Entries was expected given 
that the test iPhones were not in use nor connected to any networks. Which would 
cause the types of entries stores in the log entries source databases (interactionC.db 
and DataUsage.sqlite) would be populated with new entries. 

The findings of the comparison analysis demonstrated that every test device 
and every extraction experienced changes. No two extractions were the same size, 
and each extraction saw an increase or decrease in reported artifacts of interest. 
Throughout the comparison analysis, the one commonality was change. 

This phase of the research also demonstrated that in comparing the total number 
of artifacts from one extraction to the next, that true number of increases or decreases 
were not captured until the artifacts of interest were identified in the parsed extrac-
tions. As an example, if the 2 h extraction reported 55 log entries, and the 24 h 
extraction reported 52 log entries in, the assumption would be that 3 entries were 
lost. However, in identifying and tagging the lost log entries in the extractions, it was 
learned  that  there were actually  59  log entries  removed from the 2 h extraction,  and  
4 new entries in the 24 h extraction (Table 6.8). 

6.6.2 iOS Application and Database Analysis 

The analysis conducted for this portion of the research included comparing and 
analyzing reported artifacts, SQLite databases, tables and entries, iOS file system 
locations and ‘.plist’ files. 

Four of the five test iPhones reported decreases in their artifacts of interest, and 
in each of those devices, the removal of data was confirmed. In cases where artifacts 
were associated to a database’s write ahead log, the removal of artifacts was verified 
in the write ahead log as well as the main database file. This additional analysis 
was conducted to ensure that artifacts in the write ahead log were actually removed,
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and not simply written into the main database file. One of the challenges noted in 
conducting this type of analysis, was the inability to confirm increases or decreases 
in artifacts when there is no additional data or a source file path or database on 
which to conduct the analysis. The reason for the reporting of these artifacts by the 
forensic analysis software could be attributed to a number of factors, however this 
falls far outside the scope of the author’s research and is only being mentioned here 
to acknowledge hundreds of artifacts that were not able to be verified. 

A somewhat surprising outcome that was further analyzed in this phase of the 
research, were the increases in artifacts of interest, especially considering that these 
test devices were not connected to any networks and were only interacted with by 
the researcher for the purposes of performing the data extractions. In total, three of 
the five test iPhones reported increases. Although the data loss is the focus of this 
research paper, if the reported increases were able to be associated to a native iOS 
application, they have been included in the research outcomes. 

Of the five test devices, only one reported no data loss at all (the iPhone 7+) and 
only one device saw some of its artifacts excluded from the research as they were 
associated to an application fell outside of scope (the iPhone 7). 

To summarize all of the quantitative findings from the iOS application and 
database analysis conducted, Table 6.9 has been provided, which presents a per 
device summary of all of changes in the artifacts of interest including those that were 
able to be confirmed, not confirmed (meaning the increase or decrease was able to 
be disproved through analysis) unable to be confirmed (i.e. no source database to 
verify was available) or excluded (outside the scope).

In total, across all devices the number of confirmed removed artifacts included: 

• 2017 application usage log entries; 
• 397 image files; 
• 43 chats; and 
• 267 log entries; 
• 1296 instant messages 
• Total loss: 4020 artifacts. 

The number of new confirmed artifacts across all devices included: 

• 5 images 
• 22 application usage log entries 
• 36 chats 
• Total gain: 63 artifacts. 

The number of unconfirmed artifacts across all devices included: 

• 26,164 instant messages 
• 72 chats 
• Total unconfirmed artifact changes: 36,607. 

The number of artifacts unable to be confirmed due to no source file across all 
devices:
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Table 6.9 Verified, non-verified and excluded artifacts of interest by iPhone 

iPhone Confirmed
√

Not confirmed× Unable to confirm Excluded 

SE − 42 chats − 77 instant 
messages 

− 102 log entries 
+ 2 images 

+ 36 chats 
5S + 13 application 

usage logs 
− 72 chats − 279 chats 

+ 1 chat + 1 instant message − 10,853 instant 
messages 

− 1296 instant 
messages 

− 23,591 instant 
messages 

− 909 application 
usage log entries 

+ 572 instant 
messages 

+ 3 images 

− 1 chat  

7 − 44 images 5 images 

X − 1108 application 
usage log entries 

− 1 log  entry  

− 67 videos 
− 353 images 

− 165 log entries 
7+ + 9 application usage  

log entries

• 279 chats 
• 10,853 instant messages 
• 1 log entry 
• Total unable to confirm artifact changes: 11,133. 

The number of artifacts excluded across all devices: 

• 5 images 
• Total excluded artifacts: 5. 

6.6.3 Timeline and iOS Analysis 

Using the folder or file’s modified time as an anchor point to try and find a reason 
or cause for the increase or decrease in artifacts was more effective when it related 
to a folder path than a database. With the number of daemons, applications and 
background processes running at any given time in iOS, the modified time could
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change a number of times after data is removed, making it far more challenging to 
pinpoint what occurred. 

One thing each device had in common, was the presence of the VACUUM 
command being used as well as PRAGMA statements invoking the auto-vacuuming 
to take place. This information was not as easy to find as originally thought. While 
the iOS unified logs are a good source of information, they appear to be somewhat 
designed to not divulge all information. 

In four of the five iPhones, changes in log entries associated to the knowledgeC.db, 
interactionC.db and DataUsage.sqlite occurred. Although a cause for any of the 
reported increases and decreases could not be found, all of these databases had 
modified times that coincided with the time that the iPhone was being extracted 
(Table 6.10).

6.7 Summary 

The research conducted in this paper has proven that data loss occurs when the extrac-
tion of a seized iPhone is delayed, which was demonstrated by a total loss of 1.19 GB 
of extraction data and the loss of 4020 artifacts. Based on the research findings, and 
in conducting multiple extractions at different timed intervals, a correlation was able 
to be sown in the amount of data loss and the length of the extraction delay in that 
as one increased, so did the other. 

With 4083 confirmed changes in the number of reported artifacts across all five 
test devices, coupled with the fluctuations in phone extraction sizes, the research has 
demonstrated that an iPhone that must remain in an AFU or Hot state is a volatile 
container for the data it contains. 

In revisiting the ideas proposed in the Background Concepts of this chapter, the 
research results do support the first proposed solution of extracting a device to place 
the data into a stable container in lieu of conducting a search incidental to arrest. The 
totality of the research presented can also be used to support an exigent circumstances 
framework. 

Future Research Possibilities 

With the sheer number of devices and applications available, the possibilities for 
future research become almost endless. As more and more devices turn to a file 
based encrypted platform, the need to keep devices in an AFU or Hot state in order 
to be able to extract their data will likely continue to expand well into the foreseeable 
future. 

Since the research conducted in this paper only focused on a specific number of 
applications, an expansion to include other applications that are not native to iOS 
would provide an even better understanding of the volatility of data on an iPhone 
that must be left powered on in order to have its data extracted. 

Other areas to expand on would be to include newer and more recently used 
devices, and to use different extraction timelines. It would not be uncommon for a
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device to have to wait a few weeks or even longer before it was extracted due to a 
number of factors, including lack of device support, laboratory backlogs, etc. The 
ultimate goal in any future research would be to provide research data to better inform 
law enforcement on what occurs when a seized device is not extracted as soon as 
possible. 

Other possible research that could build on the research presented in this paper 
would be to delve into the world of Android devices and conduct the same type of 
research. Alternatively, conducting more focused research into SQLite databases and 
the vacuuming that takes place in the background specifically as it pertains to iOS. 
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Chapter 7 
IoT Database Forensics—A Case Study 
with Video Door Bell Analysis 

Jayme Winkelman, Kim-Kwang Raymond Choo, and Nhien-An Le-Khac 

7.1 Introduction 

The use of smart devices has grown enormously in recent years. Many people want 
to use a smart device in and around their houses. When purchasing a new device, or 
when replacing an old device. More and more devices are connected to each other, 
with the possibility of data being exchanged between the devices. This is possible 
without any user activity. We refer to this as the Internet of Things (IoT). One of 
the smart devices that occur more is the smart doorbell also named a video doorbell. 
A video doorbell is an internet-connected doorbell that notifies the smartphone or 
other electronic device of the home owner when a visitor arrives at the door. It 
activates when the visitor presses the button of the doorbell, or alternatively, when 
the doorbell senses a visitor with its built-in motion sensors. The smart doorbell 
lets the home owner use a smartphone app to watch and talk with the visitor by 
using the doorbell’s built-in high-definition infrared camera and microphone [1]. 
Lots of people buy a video doorbell to increase security and or for prevention. The 
result of more video doorbells is that the owners are consciously or unconsciously 
making (video) recordings of people or situations in front of their houses or company 
buildings. In the context of digital forensics, this can lead to important evidence or a 
clue to solve a case. Not surprisingly, the investigators of the investigation teams are 
trying in various ways to use this information. With more and more video doorbell 
devices are showing up on crime scenes, it brings up more challenges to the daily 
work of a forensic investigator. This development forces the Police forces to adjust 
their mindset and also to change their forensic approach. 

Although multiple researches have been carried out on network and IoT forensics, 
little attention has been employed on how digital forensic techniques can be used 
to conduct digital forensic investigations into the video doorbell. There is very little 
research in literature on the video doorbell forensics because of many challenges: (i) 
identifying necessary pieces of evidence from the video ring doorbell; (ii) collecting 
and analyzing the evidence from the different environments in the video doorbell
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eco system; (iii) security of the IoT devices like data encryption and cloud storage; 
(iv) taking into account legal framework when using video doorbell artifacts. 

Therefore, in this chapter, we present a forensic approach for examining the video 
door bell. We illustrate how to collect and analyze the data from a video doorbell; 
how to collect network traffic and extract data from the smartphone application of the 
video doorbell. We demonstrate the examine opportunities of the doorbell and obtain 
data from the cloud. We are also looking at the legal options in the investigation. 
We evaluate our approach with the examination of two most popular video door 
bells: the Google Nest Hello video doorbell and the Ring pro video doorbell, and 
compare to some of the results of former forensic researches. The main contribution 
of this chapter can be listed as follows: (i) Identifying an approach to extract the 
video doorbell artifacts including device forensics, network forensics and mobile 
forensics; (ii) Forensic acquisition and analysis of two popular video doorbells: Ring 
Pro and Google Nest; and (iii) Identifying Legal practices to get information from 
the video doorbell. 

The rest of this chapter is organized as follows: Sects. 7.2 describes the research 
background and the review of related work in literature. Section 7.3 describes the 
problem statement. We describe our proposed approach for video doorbell forensics 
in Sect. 7.4. We then evaluate our approaches using different test cases in Sect. 7.5. 
Finally, we present our conclusion and future work. 

7.2 Related Work 

In this section we review related research in literature for the IoT forensics. An 
IoT system integrates various sensors, objects and devices that are connected to the 
internet and other networks. These devices are capable to connect, communicate 
and exchange data with each other, without any user activity. Several years ago 
investigators examined lots of computers. These days they see more smartphones, 
IoT devices like smart wearable devices, smart home devices etc. The way IoT 
devices store their information is also different as more and more data is stored 
online in the cloud. The IoT is presently a hot topic with the constant grow of smart 
devices in our daily world. The growth of smart devices draws attention from both 
academic institutions and businesses. Recently, many studies of IoT forensics have 
been conducted in literature [2–5]. These researches varied from the suggestion of 
IoT forensic models [3–8] to the forensic analysis of specific devices such as Amazon 
Echo [4], smartwatch [9], smart sensors [6], etc. Challenges of IoT forensics are also 
mentioned in [9, 10]. Authors in [10–13] also presented comprehensive surveys on 
IoT forensics. 

Various IoT devices were investigated, as well as the network techniques and 
protocols. However, due to the enormous growth of IoT devices, there is still much 
to explore in this field regarding the forensic approach. Search and seizure is an 
important step in any forensics examination. Nonetheless, detecting presence of IoT 
systems is quite a challenge considering these devices are designed to work passively
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and autonomously. There are countless devices that have not yet been researched for 
suitable approaches to identify, acquire and analyze artefacts [2, 3, 5]. Many studies 
of IoT devices have shown that there is no standard approach to investigate IoT 
devices [2–5, 10–13]. Yet, to the best of our knowledge, there is no fully research 
on the video doorbell forensics that takes into account the extraction and analysis of 
video doorbell’s data in it eco-system. 

7.3 Why Video Doorbell Analysis? 

The video doorbell is a relative new device in the world of digital forensics. Not 
much is known about the smart doorbell. The possibilities that provide us evidence. 
And situations where we have to pay attention because of a video doorbell. Video 
doorbell devices are connected to the internet with a wireless connection. They are 
able to communicate with other devices for example with the mobile application on 
the smartphone and/or with a home assistant and/or cloud service and the Chime. 
When there is activity in front of the camera the camera starts recording gives a signal 
there is motion and the facial recognition could recognize a person. When you are 
not at home the device could tell the person a pre-recorded message without human 
interaction. In video doorbell eco-system, both network traffic and the stored data 
are encrypted. The data will be stored in the cloud. A video doorbell is not working 
without an internet connection. And some of the options of the devices only work 
in combination with a subscription. Besides the video doorbell also the connected 
devices like a smartphone with application could provide important evidence these 
are secured and encrypted and bring other challenges. The video doorbell proper 
functioning depends on a good network when there is no connection data loss or 
no notification could be the result. In case of an investigation the data probably 
would not be found on the video doorbell. The connected devices possibly bring the 
investigator more opportunities. The connected devices like the cloud storage, the 
smartphone or other connected smart devices within the network. 

Hence, the research objective for this chapter is to examine the possibilities to 
investigate the video doorbell and its eco-system to extract evidence from the video 
doorbell. We aim to answer the following research questions: What are the forensic 
possibilities of a video doorbell? Can we (forensically) acquire images or videos made 
by the video doorbell? What traces of use can be extracted from the device or the 
connected network? What information to identify a video doorbell, can be extracted 
from a connected Wi-Fi network? What are the possibilities of the smartphone appli-
cation of the video doorbell? What are the legal methods to get information from the 
video doorbell?
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7.4 Methodology 

To retrieve information about the video doorbell, in this chapter we are going to 
examine the following 4 areas within the IoT forensics: (i) Examine the device and 
perform experiments with the video doorbell; (ii) With network forensics we are 
going to try if we could discover a video doorbell within a network and examine 
if the data between the video doorbell and the cloud or mobile phone is encrypted; 
(iii) Extract information from a mobile phone with mobile forensics. To investigate 
what kind of information we could extract from the mobile application; (iv) Finally, 
we investigate the possibilities within the cloud and the connected account. How 
and what information could we extract from the cloud. We investigate what kind of 
information is needed to enter the cloud and if we could extract information from 
the cloud automatically. 

7.5 Experiments and Evaluation 

7.5.1 Experimental Platforms 

The test environment consists of the equipment listed in Table 7.1. The video door-
bells and the used mobile phones within the testing environment where connected 
with a wireless router. The router was connected to the internet and was able to run 
tcpdump to collect the network data. The used laptop was connected by wire. For 
each experiment the same (wireless) router with tcpdump and internet connection 
was used. 

Ring video doorbell and iPhone SE/SamSung S5 both connected wireless to the 
router on the test network. When the Ring application is started on the mobile phone 
a DNS request on port 53 is performed. The Ring doorbell also make use of UDP 
port 53 to connect to DNS. Live view uses TCP destination port 15,064 and on the 
client UDP ports 30,000 and 30,002. All other connections between the doorbell and 
iPhone SE/Samsung S5 goes directly to the cloud by port 443 TLS (Fig. 7.1).

Table 7.1 Equipment and 
version of experimental 
devices 

Hardware Software Item 

Ring Pro 1.2.9 1 

Google Nest Hello 4,110,019 1 

Samsung S5 6.01—Android 2 

iPhone SE 13.3.1—iOS 2 

Laptop OS Microsoft Windows 10 4 

Pineapple Tetra Open WRT 19.07.2 3 
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Fig. 7.1 Ring video doorbell with a connected iPhone SE (or Samsung S5) 

Ring video doorbell and the Windows laptop connected wireless to the router on 
the test network. When the Ring website is opened up in a browser, a DNS request on 
port 53 is performed. The Ring doorbell also uses UDP port 53 to connect to DNS. 
The connections port 80 to start the website. All communication between the laptop 
and cloud make use of TCP port 443 TLS (Fig. 7.2). The experiments with Google 
Nest video doorbell are using the same configuration as Ring video doorbell.

7.5.2 Investigation of the Video Doorbell 

The Ring pro doorbell needs a working internet connection to connect to the cloud 
and to save the recordings. The led status tells if the device is active and if someone 
is connected. On the Ring pro device, we can find the MAC address of the device. 
This MAC address must be used when data or information, like an email address and 
maybe a phone number and payment information are stored will be claimed from 
Ring Company. The recorded videos are stored 30 days in the cloud. To stop the 
device cut of the power of the device. No physical options on Ring pro to access the 
recordings. 

The Google Nest Hello doorbell needs a working internet connection to connect 
to the cloud and to save the recordings. The led status indicates the status of the Nest 
Hello active and or someone is connected. The Nest Hello doorbell records 24/7
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Fig. 7.2 Ring video doorbell with a connected laptop

audio and video. The motion and actions will be saved in the cloud and could be 
claimed from Google LLC. Also the Google account and all connected information 
to the device and the account could be claimed from Google LLC. The MAC address 
and information of the device are only available with use of the Nest application or 
extract from the connected network. To stop the device working cut of the power of 
the Nest Hello. No physical options on Nest Hello to access the recordings. Only 
the chip off method could exclude if there is stored data locally within the video 
doorbell. 

When a chip-off will be performed on the video doorbell the memory chip will 
be extracted from the device within a lab environment. The data will be imaged 
and could be investigated with forensic tools to examine the data if there is data 
stored. This data could also be encrypted if so this option would not provide us any 
information. 

7.5.3 Network Examination 

7.5.3.1 Network Scan 

Within the test environment we performed some tests to look at the options to trace 
the video doorbells. When performing a network scan with a network sniffer. We start
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a scan not connected to a wireless network. The scan for available Wi-Fi networks 
and wireless clients is performed to collect mac addresses from devices. The Ring 
doorbell could be recognized when the device is in setup mode because of the showed 
SSID (Ring and the last characters of the mac address.) When a functional Ring 
already is configured and connected to a network, the device will not send the SSID. 
When you look at the collected mac addresses you cannot filter out the doorbell on 
the mac address. When you look up the vendors of the collected Ring mac address, 
Universal Global Scientific Industrial Co. Ltd is showed. The Ring Chime will show 
the vendor Texas instruments. When you look up the mac address of the Google Nest 
Hello the vendor Nest Labs Inc will be showed. 

When the investigator connects to the same wireless network as the Ring pro and 
Google Nest Hello and perform a network scan to discover connected devices on the 
network. The Ring pro doorbell will be found on the network. The Ring pro is found 
with the name combined with the last digits or letters of the mac address from the 
device. For example, this could be RingPro-00.lan when the mac address ends with 
00. The Nest Hello doorbell will be found on the network with the Name Nest-Hello 
and last 4 digits of its mac address for example Nest-Hello-00e0.lan when the mac 
address ends with 00:e0. 

It is not possible to connect to the Ring pro doorbell directly. The only connection 
to the doorbell is through the internet. The device sets up a connection to the cloud. 
And the other device that wants to connect to the doorbell, for example a smartphone 
setup his own connection to the cloud. Now both devices could communicate with 
each other. 

During the experiments with the video doorbells, the data from the connected 
network, was captured with TCPdump. The captured data will be saved to a pcap 
file. These pcap files are going to be analyzed with the program Wireshark. For each 
experiment we create a new pcap file so we could compare the data and the results 
of the pcap files afterwards. 

7.5.3.2 Ring Pro Video Doorbell Activity 

First we start with the tests of activity on the Ring pro video doorbell. The doorbell is 
connected to the network and an account is configured. During the tests the Ring plan 
is active by 30-day trial so all the data will be stored. All the recorded videos will be 
deleted at the end of the testing period. During the tests with ringing the doorbell it 
is performed with motion on and off to create data and to be able to analyze if there 
is difference within the captured data. All the tests were performed multiple times to 
see if there is a pattern in the data. 

The Ring pro doorbell connects to the internet even when there is no activity 
in front of the doorbell it connects to the cloud. The doorbell connects to several 
cloud servers of Amazon and Cloud flare. Besides these servers there are multiple 
connections to Ring related domains. Ring pro video doorbell uses the local network 
to connect to the internet, it does not expose any services to the local network. 
The connections are setup with HTTPS and TLS all encrypted network traffic.
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These protocols are also used within the data TCP, DNS and UDP. After analyzing 
al the network data form al the experiments, the following list of subdomains of 
resolved addresses from Ring.com are found: alerts.ring.com.cdn.cloudflare.net; 
api.ring.com.cdn.cloudflare.net; billing.ring.com; controlcenter.nw.ring.com; 
es.ring.com; fw.ring.com; fw-snaps.ring.com; nh-mobile-config.ring.com; 
ps.ring.com; oauth.ring.com; Link.verify.ring.com; site-nac.ring.com; 
az.ring.com; share.ring.com; static.ring.com; account.ring.com; alerts.ring.com; 
ring-untranscoded-videos.s3.amazonaws.com. 

Some of the names of the subdomains could be a clarification what the target is 
and why it is used for. Billing.ring.com could be a sort of check if a plan is activated 
on the account. Several servers are used as API from Ring. Account.Ring.com and 
control center are options within the Ring account. There is no readable data captured 
from the Ring device as all data is encrypted. 

7.5.3.3 Google Nest Hello Video Doorbell Activity 

The doorbell is connected to the network and an account is configured. All the 
recorded videos will be deleted at the end of the testing period. All the tests were 
performed multiple times to see if there is a pattern in the data. 

Within the captured data the following protocols are showed up. TCP, 
UDP and TLS. All the data from and to the Google Nest Hello doorbell is 
encrypted. There is no readable data. There are multiple DNS requests to 
the following sub domains from nest.com. Resolved addresses Nest are listed 
as follows: apigw.production.nest.com; weave-all-regions.production.nest.com; 
time.nest.com; logsink.home.nest.com; nestauthproxyservice-pa.googleapis.com; 
webapi.camera.home.nest.com; NestLabs_6; home.nest.com; www.google 
apis.com; apps-weather.nest.com; googlehomefoyer-pa.googleapis.com; 
firebaseremoteconfig.googleapi-s.com; nexusapi-eu1.camera.home.nest.com; 
czfe150-front01-iad01.transport.home.nest.com; nest.com; store.nest.com. The  
Google Nest Hello connects to the cloud and to several online servers of Google 
Nest. There is no local network traffic that was traceable or readable. The Nest 
Hello connects to the internet and to time.nest.com to sync time. It also gets the 
weather information online from apps-weather.nest.com. It is not clear how the data 
is synced and stored online and uses multiple online servers. The transport of data 
is fully encrypted. 

7.5.3.4 Discussion 

Both Ring pro and Google Nest Hello doorbell show the same result. As expected, 
research has shown in the data all the network traffic is fully encrypted. No informa-
tion could be traced. No video streams can be watched from capturing network data. 
We can see network requests to online cloud servers. We see several DNS requests to 
servers from Ring or Nest. This hints that there is a connected device but you cannot

http://www.googleapis.com
http://www.googleapis.com
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trace what device is communicating and how. We can also conclude both devices 
don’t communicate directly to devices on the local network. All the communication 
goes by the cloud environment. Because both devices work with certificates there is 
also no man in the middle attack possible. When there is activity on the Ring pro 
or Google Nest Hello device there is also network traffic to the internet but there is 
no pattern and all is encrypted. When sniffing for wireless networks and clients we 
could not find indications about Ring. When you look up the vendors of the collected 
Ring mac address, Universal Global Scientific Industrial Colt is showed. The Ring 
Chime will show the vendor Texas instruments. We could find an indication about 
the Nest Hello When you look up the mac address of the Google Nest Hello the 
vendor Nest Labs Inc. will be showed. When there is access to the same network and 
performing a network scan the Ring pro and Google Nest Hello will be recognized 
within the network and the scan results. The encrypted connection to the cloud goes 
on port 443 with the TLS protocol. Within the experiments we captured the data on 
the router. The only way we could see what kind of data is send we should look at 
the device or at the endpoint in the cloud. Within the test environment we tried if the 
device is reset or factory default if we have access to the data but this won’t provide 
us access to the stored cloud data. When we shut down the connection to the internet 
the device and the connection to the cloud are not available. Could we have access 
to the network data when we could bypass the security of the TLS or when there is a 
bug in the software could we have access? When we have access to the email client 
of the connected account that is used to login to the account of the video doorbell 
that store the data within the cloud we could reset the password and have access to 
the user environment. 

7.5.4 Smartphone Application 

7.5.4.1 Ring Mobile Application 

In this test, the Ring application was installed on an iPhone SE and Samsung S5, 
and the account environment online opened within the browser Google Chrome on 
Windows 10. When an active Ring application is opened, the dashboard is shown. 
Within this dashboard on top the location is shown, this location is added by the 
owner, and is not a location added with location service of the device. Event History 
and the added devices are also shown. When opening the Event History, there is a 
list of recent activities with the activated time. 

When the owner deletes a video it disappears from the event history. There is no 
information about deleted events or videos. It is only a time line of the current stored 
activity videos. There is also no log within the application about activity within the 
application or on the device. 

There is an option to share or download the stored videos within the Ring appli-
cation. This could be done by download the video to the device a smartphone or 
computer. Or the option to share the video by sending a download link of it. These
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options are available to share the video from the mobile applications such as Face-
book, WhatsApp, Email, Next-door, etc. All the users within the account have these 
options. 

In relation to investigations the Devices and History options are interesting. We can 
see what connected devices there are active and what activity is stored. The settings of 
the connected devices and the connected Ring account and the information connected 
to the account like email and phone number. 

The Ring pro device settings could be interesting to know how the connected 
device was configured. Ring alerts and motion alerts could be on/off. The Device 
health tab gives information about the Ring pro device and if the Ring device is 
working properly. The Wi-Fi connection and firmware are checked status is shown, 
and the MAC address of the device is shown at this location. 

The Ring device could sent multiple Ring notifications to the connected users 
and applications. When motion is detected, when someone pushes the button of the 
doorbell. Ring Modes there are 3 modes to choose Home, Away or Disarmed. The 
account user of the Ring pro device could choose if the devices record and sent 
notifications or disarm the device. When adjusted these setting and change the mode 
the connected Ring account user receives a notification of the chosen mode of the 
devices. The Ring notification consists only of text. 

7.5.4.2 Google Nest Mobile Application 

In this test, the Google Nest application was installed on an iPhone SE and Samsung 
S5, with the account online within the browser Google Chrome on OS Windows 10. 

When open up the Google Nest mobile application the first time you have to add 
an account a Gmail or nest account. Afterwards the app opens and shows the view 
of the connected Nest Hello doorbell and the temperature of the added location of 
the Nest Hello. 

When activate the camera view, two options appear to see a live stream or the 
recorded activity could be watched. The camera of the Google Nest Hello doorbell 
streams day and night and records the activity within the view of the camera or when 
a loud noise is received. When a plan is activated there are extra options within 
the doorbell like facial recognition. During the examination the plan option was not 
activated. The Nest Aware functions could not be tested and these options are not 
performed during experiments and examination of the Google Nest Hello doorbell. 
The doorbell sent notifications to the connected application. Within this notification a 
snapshot is added. The Google Nest Hello has 2 options when an account user of the 
Google Nest Hello device is at home or is away the settings could be changed. The 
home motion could disable the camera or when there is a mobile device is connected 
and the location is shared the camera could switch automatically between home or 
away. When the connected phone is near the device the camera switch to home mode 
and when leaves switches to away mode and records al the motion and activity. 

When there is motion in front of the camera the Google Nest Hello is able to filter 
between people or animals and even has the option to recognize people by facial
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recognition. When these options are active the device could also activate an audio 
message to the person in front of the camera without being at home. Within the 
tests not every motion is triggered. Google Nest Hello gets active by motion, sound 
or when someone rings the doorbell by pressing the button. Depending on a good 
network connection to send triggers and notifications. The recorded videos from the 
Nest Hello are stored to the cloud. When for example other Google devices are at 
a home like the Google Home these devices could communicate and for example 
the Google Home could notify and give an announcement when a visitor is in front 
of the camera and if recognized by the face recognition tells who is in front of the 
Google Nest Hello. 

The quality of the captured stored video could be adjusted to lower the bandwidth 
the Nest Hello uses. The account settings are in the Nest application and an email 
address and optional a connected device smartphone is shown. There is also an option 
to share the device with family and add other users to receive notifications and give 
access to the stored Nest videos. 

The changes of the state of the Nest Hello device, home and away mode are stored 
in the activity history with day and time. And when a Nest Aware subscription is active 
the owner could receive a Home report every month. This report contains energy use 
of the device and safety events. This report will be received at the connected email 
address of the Nest account. 

7.5.4.3 IPhone SE Mobile Forensics 

The iPhone SE is connected with the Ufed Touch from Cellebrite [14]. With the Ufed 
Touch the user data and file system could be extracted from the mobile phone. The 
data is extracted and stored as an Ufdx file. This file is opened with Ufed Analytics 
software to analyze the data and generate a report with data an Ufdr this report could 
be opened with the Ufed Reader. 

We look at the data in a timeline format what information could we extract from 
the used forensic software and the generated timeline are the notifications from the 
application written in this timeline or when the mobile applications of Nest and Ring 
are used? 

After performing the keyword search performed within the extracted data from 
the iPhone SE with the keyword terms: Ring and Nest. Several hits on the results of 
the keyword search on the terms Ring and Nest. 

If we look at the results of Ring and Nest locations within the file system with 
an investigators perspective, the files and folders interesting for the investigation are 
shown in Fig. 7.3.

Within the log files in the shown folder logs, we found related information about 
the used Ring pro doorbell. Databases and plists files are found in the com.ring 
folder (Fig. 7.4). In the database linphone_chats.db we discovered some information 
about sip connections to IP address related to Ring.com and the SIP number and 
event camera connected. This are some connections to the Ring pro video doorbell 
from the mobile application. We discovered the account used for Ring, the used
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Fig. 7.3 Folder 
group.com.ring containing 
folders and files

email is found at the localstate.db database. Related to the downloaded videos from 
Ring we found in the database some of the shared links from the Ring videos. The 
examination of the notifications did not result in any hits of Ring notifications. In the 
Ufed analytics timeline there were no results of the Ring application. 

When we investigate the artifacts of the Nest application in the extracted data. 
We extract 2 sqlite databases containing important information: Nest.sqlite and 
Dropcam.sqlite. The table ZCDBASEDEVICE contains the mac address, model of 
the device, and serial number of the connected Nest device. The table ZCDUSERS-
ESSION contains the Nest account and connected email address. ZCDSTRUCTURE 
contains the added postal code of the location of the device. The examination of the 
notifications did not result in any hits of Nest notifications. There are no results in 
the Ufed analytics timeline there were no hits on the Nest application.

7.5.4.4 Samsung S5 Mobile Forensics 

The Samsung S5 is also connected with the Ufed Touch from Cellebrite [7] to extract 
data. First we perform a keyword search through the extracted data from the Samsung 
S5. The keywords Nest and Ring only appear in the list of applications. Both Ring 
and Nest application are linked to the localappstate.db. This database contains the 
email address of the account that is used at Nest and Ring. There is no readable data 
that is linked to the mobile applications of Ring and Nest. There are no messages 
of notifications found on the data. On the SD card from the Samsung were found 2 
video files, these files are downloaded from the Ring account. The filename of the 
video files contains Ring Video and the date and time of the recording. 

7.5.4.5 Discussion of Results 

To get the best result of extracting information from the mobile application, the best 
method is to open the physical device with a working internet connection. With 
a working internet connection there is full access to the cloud and all the stored 
information. The cloud environment is available and all of the recordings could be 
viewed within a timeline and downloaded. When there is no connection available
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Fig. 7.4 com.ring folder in file system with databases and plists

the account information like account name and connected information like email 
and optional a phone number could be found within the application. Only the cloud 
environment is unreachable. The MAC address of the device could not be extracted 
from the mobile application when there is no working internet connection. The MAC 
address and account information could also be extracted from the data of an iPhone. 
The database localstate.db contain the account information of the Ring account. 
From the Nest application from the iPhone the information could be extracted from 
a Nest.sqlite database. The biggest challenge is to find the readable data if there will 
be access to the phone data. When the account information is found this information 
could be used to receive the recorded videos. This could be claimed by Ring BV or 
Google LLC whit a subpoena. The account could also be used to access the cloud 
when the legal opportunities are there. 

7.5.5 Securing Data 

After investigating the mobile application, we have discovered the options of 
extracting data from the account from the cloud environment. By using the mobile 
application, and the option to log in with a computer browser, and share or download 
the recorded videos.
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If it is possible to extract data from the cloud environment without using the mobile 
application or a computer browser, we could extract the data by using a script. We 
examine this possibility to see if we could connect to the cloud and extract information 
and recorded videos. Because there is no subscription to the nest environment we 
investigate the option to generate information from the Ring API cloud environment. 

The different methods have an effect on the result. For example, when sending 
a video with email or WhatsApp will affect the quality because of compression. 
Google Nest Hello has several options to save the videos from the different devices 
shown in below table. 

We examine the possibility to locate the connected Ring video doorbell and 
extract recorded video from the cloud environment with the Ring API using the 
available python library from https://python-ring-doorbell.readthedocs.io. Now  we  
could connect to the Ring “cloud” account. To login we need the Ring username and 
password, and we need access to the connected email account to receive a verification 
code. These credentials create an access token. With the token we could connect to 
the API. Within the library there are several options to perform to extract information 
about the Ring pro video doorbell such as the last actions (Fig. 7.5). We can retrieve 
the location and the connected Wi-Fi network of the Ring pro doorbell. The location 
of the device, is the location that is filled by the setup not a location retrieved from 
location service. We are able to create a snapshot from the view of the Ring pro 
doorbell. It is also possible to extract the latest recorded video or multiple videos 
from the cloud environment. The downloaded videos contain and display the date 
and time of the recorded video when play the video. The videos are stored with HD 
quality. 

Ring and Nest both have an API to communicate with. This API brings us an 
extra method to extract information and secure the videos from the cloud. When the 
account of the Ring is available and the connected email to retrieve a security code.

Fig. 7.5 Overview last 
actions of the doorbell 
extracted with the script 

https://python-ring-doorbell.readthedocs.io
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There are several scripts to retrieve information. One of the options is to retrieve 
videos automatically from the cloud environment of the used account. To use the 
script and to extract videos from the account we need a username and password. 
Also could be the possibility that we need a security code that will be generated for 
extra security. When we have access to the email account that is connected to the 
used cloud account we could reset the account or change the password. On this way 
we could have access to. 

Another option would be to hack the account to get access this would not be an 
option in the Netherlands because we don’t have a legal option to perform this action. 
When we don’t have the account that is connected to the device we could request the 
account information with a subpoena when we have the location and mac address of 
the used device. We need also a connected device like a smartphone to get access to 
the account. 

7.5.6 Law and Guidelines 

In some countries we have to deal with the law and regulations when we have an 
investigation the prosecutor is the leader of an investigation. 

Securing data from a network, investigating a network and the extracted data 
If we want to perform an investigation on a network. For example, the home network 
of the suspect or the network of a company we need permission. From the place 
where a search takes place, it is allowed to perform a network search in an automated 
online network. Research is done into data stored in that network. If data is found 
that can reveal the truth, then could be recorded or extracted. We are not allowed to 
extract data from the cloud when the investigator knows or could know the data is 
stored abroad outside the borders. 

Seizure of a mobile phone, extract the data and analyze the data 
We could seizure a mobile phone of a suspect. When we extract the data and want to 
analyze the data we need permission from a public prosecutor or examining magis-
trate applied because of the privacy of the suspect. The general seizure authorizations 
can be found in each country law. When we want to seizure a phone within a house 
or building of the suspect we need a search warrant. 

Extracting data from the cloud environment 
We are allowed to extract data from the cloud environment of a suspect when the 
suspect gives freely permission to access the account. We could ask permission to 
the examining magistrate. And also need the network search permission. 

Retrieve information from Google and Ring 
When the prosecutor grants permission the law enforcement seeking to obtain data 
from Ring must sent the request through the legal and diplomatic channels in its
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jurisdiction. Ring will release user information and recorded videos to law enforce-
ment in response to a valid and binding legal request. This could be a valid subpoena, 
search warrant, or other court order request. Requests and questions should be sent 
to subpoenas@ring.com. Within the request the Account or Mac address must be 
added. Nest (Google LLC) will release user information and recorded videos to 
law enforcement in response to a valid and binding legal request. The legal request 
is sent to Google Ireland Limited by the single point of contact from the police. 
The Dutch law, for example offer several options, to retrieve the data and possible 
evidence within the legal borders. When the recorded videos of Ring or Nest must be 
downloaded, and the owner gives no permission, the only method is to send a legal 
request to Ring or Nest. Both companies have legal guidelines and if the legal request 
complies with regulations they will cooperate and provide the requested information 
or recorded videos from the account of interest. 

7.6 Conclusion 

This chapter presented the process of securing data recorded by the video doorbells 
from Ring and the Google Nest Hello. The connected environment is very important 
to investigate when we come across a video doorbell at a crime scene. With help 
of mobile and network forensics we could provide important information. We could 
collect the information about the used device or the account information. When we 
have access to the connected device like the mobile application this would give us 
the opportunity to view the recordings stored in the cloud. 

Because the video doorbell stores their data within the cloud storage this will bring 
us legal issues. We could not create access to the cloud or download the videos from 
another country. Without the permission of the owner we need to send a subpoena 
to Amazon Ring or to Google and request the recordings in a time frame. 

This chapter showed that the video doorbell connects to the cloud. However the 
device could cache data locally and when a chip-off is performed, future work should 
examine if data is stored on the device itself. Because of the limitation the plan of 
Google Nest Hello was not active, the API of the Google Nest Hello was not tested. 
The options this would bring could be tested. In addition, the communication between 
the video doorbells and other devices like the smart home device could be tested and 
analyzed. 
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Chapter 8 
Web Browser Forensics—A Case Study 
with Chrome Browser 

Jacques Boucher, Kim-Kwang Raymond Choo , and Nhien-An Le-Khac 

8.1 Introduction 

8.1.1 Web Browser Forensics 

Internet is widely used in the world and its popularity has grown significantly since 
90s of the last century. In 1994, only around 0.04% of the world’s population 
(~25 million users) had Internet access. By the end of 2021, over 53% (~5 billion 
users) of the world’s population had access to the Internet, almost 800,000 new users 
each day [1]. The use of a software program known as a web browser remains a 
popular way to access content on the Internet. Consequently, a significant number of 
activities are conducted daily on the Internet using web browsers. The most popular 
online browsing activity is to search for information using different search engines. 
As of March 2021, there are approximate 5.5 billion Google searches per day, the 
most popular search engine. 

Today, the World Wide Web is an integral part of modern life, and web browsers 
remain a popular means of accessing its content. Browsers are used to search the 
Internet for content, watch videos, listen to music, e-commerce, online banking, 
social media activities, and so much more.There are dozens of web browsers avail-
able today, however four of them dominate the landscape: Google Chrome, Safari, 
Microsoft Edge (which is now Chromium based), and Firefox. As of 2022, Google 
Chrome has the biggest market share with 64%. Safari is around 19%. Firefox and 
Edge have about 7% of the market. The top browsers are available on both desktop
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OS’ (Microsoft Windows, Apple OS, Linux) and mobile OS’ (iOS, Android). The 
desktop vs mobile version of these cross-platform browsers tends to use the same 
artifact storage structure, making your browser analysis forensic skills equally cross-
platform. The popularity and usefulness of the Internet has created a new form of 
crime, “cybercrime”, and a new category of criminals, “cybercriminals”. Cyber-
criminals are exploiting the Internet’s convenience to engage in criminal activities 
worldwide. There are approximately 200,000 websites hacked each day [1], 88% of 
organizations experienced spear phishing attempts in 2019 around the world [2] and 
9.9 billion malware attacks in the same year [3]. Cybercrimes are not only crimes 
targeting computer hardware and software, and Internet of Things (IoT) devices, 
but also cyber-enabled crimes such as crimes against children, financial crimes, and 
terrorism. Such cybercrimes can involve the use of browsers to engage in criminal 
activities.Cybercriminals have been exploiting the popularity of web browsers for 
their illegal activities [4]. Web browsers could leave recoverable traces of their activ-
ities, hence searching the evidence left by web browsing becomes a crucial task for 
the digital investigator. Analyzing these traces can lead to varied artifacts including 
websites visited, keyword search terms used, timestamps of activities, etc. There 
are many sources of evidence in web browsers (a.k.a. browsers). For instance, the 
browser’s history contains a list of web pages that were visited by a user. Browser 
cookies, small text files stored on the user’s device by the website being visited for 
future tracking, can yield evidence. Bookmarks/Favourites will contain links that a 
user opted to save of web pages they found interesting to facilitate navigating to them 
again in the future. Browser cache contains locally stored copies of web pages that 
a user visited. These browsing artifacts can reveal the browsing habits of a user and 
may contain evidence of a user’s online criminal activity. These artifacts can facilitate 
a pattern-of-life analysis of a user, determining the objectives, methods, and activi-
ties of a cybercriminal. In web browser forensics, simple browser analysis with the 
aid of automated tools is not enough [5]. Today, it requires more advanced forensic 
techniques to extract as much evidence as possible from browser artifacts. When 
more than one browser is used, artifacts from each must be analyzed and merged 
into a single timeline to get a more accurate picture of a user’s online activity. We will 
focus on Google Chrome forensic analysis. There are other valuable resources [6, 7] 
available to assist with the analysis of other browsers. Fortunately for the forensic 
examiner, most browsers you will encounter use SQLite to store artifacts, allowing 
skills you will learn in this chapter to be applied to other browsers.



8 Web Browser Forensics—A Case Study with Chrome Browser 253

8.1.2 Google Chrome 

In this chapter we will look at Google Chrome artifacts found in various Google 
Chrome databases (SQLite and JSON formats). It is not an exhaustive look at all 
databases in Chrome, but it will cover the more common ones. Most of the topics in 
this chapter could be a chapter on their own in a dedicated Chrome Forensics book. 

Google Chrome is based on Chromium’s code. “The Chromium projects include 
Chromium and Chromium OS, the open-source projects behind the Google Chrome 
browser and Google Chrome OS, respectively” [8], because Chrome is based on 
Chromium, you can search through Chromium’s source code at https://source.chr 
omium.org/chromium as part of your research into Google Chrome. Even if you are 
not a coder, developer comments in Chromium’s source code can help you form an 
opinion about some of Google Chrome’s artifacts and reference the source code to 
support that opinion. 

Google Chrome is not the only browser that is based on Chromium. There are many 
browsers based on Chromium. Two of the more recognized ones are Microsoft Edge 
and Opera. Browsers based on Chromium each will tweak the end user experience 
through changes to the user interface and adding or changing some of the front-end 
features. But they will share the core artifacts. If you know how to analyse the core 
Google Chrome artifacts, then you know how to analyze the core Opera and MS 
Edge artifacts as well (and many others). 

The other convenience we enjoy is that the artifacts are the same across different 
operating systems (Windows, Mac, Linux, Android, iOS1 ). This means that if you 
know how to analyze core Google Chrome artifacts on a Windows computer, you 
will be able to analyse them on a Mac or Linux computer, or on a mobile device. 

Up until Q2 of 2021, Google Chrome was on a 6-week rapid release cycle. 
Meaning updates were released every 6 weeks. As of Q3 of 2021 with the release of 
Chrome 94, it switched to a 4-week rapid release cycle. These releases can contain 
bug fixes, security patches, feature enhancements, or new features. Because of this, 
it’s possible that some content in this chapter will no longer apply in a future release. 

The impact of this rapid release cycle is not only a challenge for forensic exam-
iners. It’s also a challenge for forensic tool developers. Staying abreast of changes 
in each release of Google Chrome is challenging, as Google Chrome is just one of 
many artifacts a forensic tool must support (think of all the OS artifacts, and all the 
other applications the forensic tool parses and must remain abreast of those changes 
as well).

1 Chromium uses the Blink rendering engine. Apple only allows WebKit, its own browser rendering 
engine, on iOS devices. Thus, all browsers running on iOS use the WebKit rendering engine. This 
does not appear to impact the artifacts created by the front-end user interface, but it’s worth being 
aware of this fact. 

https://source.chromium.org/chromium
https://source.chromium.org/chromium
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8.1.3 Forensic Tool Gone Wrong 

The value of knowing your artifacts to recognize when your forensic tool is not 
properly decoding something was observed by the author while teaching a class 
on Google Chrome forensics in the early days of Google Chrome. Students were 
taught how to manually find and analyze Google Chrome artifacts. During one of the 
exercises, a student used a well-respected and still widely used forensic tool to answer 
an assignment question. The student noted that the visit date of a URL that had been 
visited multiple time was identical for all entries according to the forensic tool. The 
student called the author over for assistance. The author immediately recognized the 
problem. The forensic tool was using the last visit field in the URLs table rather 
than the visit time field in the visits table (more on this when we look at history 
artifacts in this chapter). A bug report was filed with the tool, and it was corrected 
very quickly. But it was a great teaching moment that underscores the value of having 
a better understanding of the artifacts so you can recognize when one of your tools 
is inaccurately parsing the data and validate it either manually, or with another tool. 

8.1.4 Environment Variables 

In this chapter the author will reference path to files using environment variables. 
On a Microsoft Windows computer, you can view your case insensitive environment 
variables in a few ways. The author’s preferred method is to open a command window 
and type the command “set” to view the variables. You can also see the value for any 
single variable with the “echo” command. For example, to see the folder for Program 
Files, you can type: “echo %ProgramFiles” (Fig. 8.1). 

Environment variables are ways for applications to know where to find something 
on a Windows system without worrying if a user installed Windows in a non-default 
folder for example. Some of the ones you may see in this chapter are the following: 
AppData, LocalAppData, Username. You can display their value at the command 
line with the echo command (Fig. 8.2). Of course these are the value of the variables 
on your system, not on a forensic image.

As a tip, you can use an environment variable in Windows Explorer to navigate to 
a folder. Opening Windows Explorer and entering %localappdata% in the address bar

Fig. 8.1 %ProgramFiles% 
environment variable 
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Fig. 8.2 Other environment 
variables

will navigate to the corresponding folder on your system. They can also be used at the 
command line if you prefer navigating a system that way, e.g., cd %localappdata%. 

8.1.5 Epoch Time or WebKit Time 

It’s important to note that you will encounter both Epoch time stamps and WebKit 
time stamps (and even some text time stamps) when analysing Google Chrome 
database files. Some of you may be wondering why WebKit time if Google Chrome 
is based on the Blink browser engine? The author has not researched the answer, but 
we do know that Blink is a fork of WebKit [9], the browser engine created by Apple 
and used in Safari [10]. That may explain the reason for WebKit time stamps. With 
experience you will recognize the difference between the two. Where applicable, the 
author will point out which applies when referencing dates in this chapter. 

8.2 Chrome Artifacts Folder 

Google Chrome’s artifacts are at the following path (Table 8.1). The rest of the 
chapter will provide you with the relative path found at this base path.

Local State 

Local State is a JSON [12] file. JSON files are plain text files with key:value pairs. 
If you are not familiar with JSON files, I encourage you to read up on them. You 
will encounter them in browser forensics (not just Chromium bases browsers, but 
also Mozilla Firefox based browsers), as well as other areas of forensic analysis. 
The author assisted a forensic analyst who had recovered from unallocated a partial 
sessionstore.js file (Firefox session recovery file) as part of a homicide investigation. 
Its content was relevant to the investigation, but the examiner was seeking assistance 
in interpreting it and rendering it in a more legible format. With the author’s help, the 
partial JSON file was fixed by adding a few missing tags so that it could be properly
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Table 8.1 Google Chrome data folder 

OS Path to file 

Microsoft Windows XP C:\Documents and Settings\%USERNAME%\Local 
Settings\Application Data\Google\Chrome\User Data\ 

Microsoft Windows 10/8/7/Vista %LocalAppData%\Google\Chrome\User Data/ 

OS X/Mac OS ~/Library/Application Support/Google/Chrome/ 

Linux ~/.config/google-chrome/ 

Android data\data\com.android.chrome\app_chrome\Default [11] 

iOS %root%\Library\Application 
Support\Google\Chrome\Default [11]

rendered by a JSON viewing tool of choice. E.g., Notepad++ with the appropriate 
add-on, Firefox’ JSONView add-on [13]. The latter requires that the file has a .json 
extension to parse it out using the browser add-on. 

The file Local State contains many valuable settings, of which only a handful will 
be covered in this chapter. 

8.3 Profiles 

Google Chrome allows you to create user different user profiles. This can be helpful if 
you have a shared family computer with a single sign on for everybody. Each family 
member can have their own Google Chrome profile so that they have their own 
bookmarks, browser history, saved passwords, etc. It can also be used by someone 
wanting to keep things organized by having a profile for work, one for home, and 
maybe another for their hobby. A digital forensic examiner might use a few different 
profiles as well. All profiles are stored in subfolders in Google Chrome’s artifacts 
folder covered earlier. 

If there is only one profile, the artifacts for that Google Chrome user will be 
stored in a subfolder called “Default”. All subsequent profiles are in subfolders 
called “Profile 1”, “Profile 2”, etc., also located directly off Google Chrome’s base 
artifacts folder. If present, each of these profile folders will contain their own user 
artifacts that you will want to analyse. 

This creates a caveat when analysing a system with your favourite forensic tool.

• Does your forensic tool parse all the Google Chrome user profile folders?
• If yes, does it report everything together, or does it identify from which profile 

the artifacts came from? 

During your forensic analysis, you will see the “Default” folder, and the various 
“Profile #” folders if present by navigating the file system. In the example (Fig. 8.3), 
we see a total of three profile folders (Default, Profile 1, Profile 2).
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Fig. 8.3 User profile folders 

You can also verify how many profiles are on a system by examining the “Local 
State” file at the root of the Google Chrome artifacts folder. In the example (Fig. 8.4— 
viewing Local State using Firefox JSONView add-on), we see that the three profiles 
are listed under “profile:info_cache:”. We also see that the last active profile is profile 
0: “Default”. This can be important to you because by default Chrome will launch 
the last profile that was used. This end user experience can be configured differently 
but that’s outside the scope of what we’ll cover in this chapter.

Examining these profiles in the “Local State” file will provide you with valuable 
information. For example, you can establish when the profile was last launched by 
looking at the Epoch date value associated to the key “active_time” (Fig. 8.5).

You can tell if the user of that profile is currently logged into a Gmail account. 
There will be the below key:value pairs in the JSON file “Local State” that will only 
exist if the user is currently logged into a Gmail account. Note that others may also be 
unique to a logged in user, but these are confirmed to be associated to a logged in user 
based on the author’s testing. These are found under “profile:info_cache:{profile}:” 
where {profile} is Default:, Profile 1:, Profile 2:, etc. 

gaia_given_name: “name” 
gaia_name: “full name” 
gaia_picture_file_name: “name of profile picture file” 
last_downloaded_gaia_picture_url_with_size: “Publicly accessible URL of their 

Google Account profile picture”
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Fig. 8.4 Local State—user profile folders

Fig. 8.5 Last time a profile was used

If a Google Chrome profile was used to log into a Gmail account and the user 
logged back out and stopped synching their data, some of the above key:value pairs 
will be present, but most will have a blank value. 

If a Google Chrome profile never logged into a Google account, those key:value 
pairs will not be present under their profile in the Local State file. 

You can also see what the last active profile was by examining “pro-
file:info_cache:last_used:” (Fig. 8.6). If there is no value for that key, it means the 
user had the option selected to show the profile manager start-up window where you 
select which profile to use each time you launch Google Chrome. But the default 
behaviour is to simply launch Google Chrome from the last profile that was used 
when launching Google Chrome without any option to pick a specific profile. 

Fig. 8.6 Last active profile
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Fig. 8.7 chrome://version 

On a live system with Google Chrome running (test system or system being 
seized), you can check the path to the profile folder by typing chrome://version in 
the URL and look at the “Profile Path:” (Fig. 8.7). On this page you will also see the 
Chrome version, OS information, and the command line options. 

Local Versus Network Time 

In addition to the above valuable insight you can extract from the Local 
State JSON file, you can also establish if the clock on the computer 
was accurate by examining network_time:network_time_mapping:local: versus 
network_time:network_time_mapping:network. In the example (Fig. 8.8) we see that 
the computer clock was off by 48 ms versus network time. Of course, this doesn’t 
tell us if the clock was accurate an hour earlier, or sometime later when a user was 
still using the OS after exiting Google Chrome. But this gives you an additional data 
point you can examine when trying to ascertain the accuracy of a device’s time. 

There are many other potentially valuable key:value pairs in the Local State file. 
You are encouraged to explore this JSON file and do some of your own testing to 
confirm the significance of some of those values and how they might be of value to 
you in an examination. For example, what value might these key:value pairs with an 
Epoch timestamp tell you (Fig. 8.9)?

Or how about some of the values under “user_experience_metrics:”? The screen-
shot (Fig. 8.10) is but a few of the potentially useful values you’ll find here. Of 
important note is that the timestamp “browser_last_live_timestamp” in this latest

Fig. 8.8 Local time versus network time 
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Fig. 8.9 Usage metrics

example is not expressed in Epoch time [14], but rather in Chrome WebKit [15] 
time. Whereas stats_buildtime is an Epoch date.

Or what might these values in Local State also with a Chrome WebKit timestamp 
tell you (Fig. 8.11)?

We know that Google tracks user activities. It’s entirely plausible that Google 
may start tracking other user metrics in this JSON file in a future release of Google 
Chrome. Don’t ignore this file in your analysis, as it could contains a few Easter eggs 
you likely were not aware of. 

8.4 User Profile Preferences 

In the previous section we saw that Local State is a JSON database file that contains 
settings that apply to all user profiles for that Google Chrome installation. 

Within each profile folder (Fig. 8.3) found under the main Chrome user data folder 
(Table 8.1) you will find two other JSON database files of interest: “Preferences” 
and “Secure Preferences”. 

Within these two JSON files you will find various profile specific settings. Which 
files the settings are stored in will vary from OS to OS. So you may need to check 
both. Table 8.2 lists some potentially important key:value pairs and which file you 
will find them in depending on the OS.

Some key:value pairs have a default value. The absence of a key:value pair means 
the default applies as we see for popup blocking in Table 8.2. We see similar behaviour 
in Firefox preferences. Makes sense, why use up space storing a default value? 

The key “account_info” has no value if that profile never logged into a Google 
account. If that profile did login at some point and logged back out, you will see the 
key with no value (Fig. 8.12).

Whereas if the profile is logged into their Google account, you will see a list of 
key:value pairs as you can see in Fig. 8.13. This is similar to what was observed in 
Local State. In some respects, this is redundant if you’ve already confirmed this via 
Local State. Or it can serve to validate what you observed in Local State.

In Local State we saw that it includes information about each of the profiles. 
Within the Preferences/Secure Preferences file this is also tracked. There are different 
key:value pairs that are affected depending on whether the profile ever signed into 
a Google account, if it’s currently signed in, or if it’s currently signed out (paused).
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Fig. 8.10 Other useful key:value pairs

Fig. 8.11 Other useful key:value pairs
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Table 8.2 Preferences versus Secure Preferences 

Pref Default 
value 

Windows 
10 

Mac OS Ubuntu 

account_info Preferences Preferences Preferences 

profile: Preferences Preferences Preferences 

session:restore_on_startup 5 Secure 
Preferences 

Preferences Preferences 

session:startup_urls <nil> Secure 
Preferences 

Preferences Preferences 

homepage: <nil> Secure 
Preferences 

Preferences Preferences 

homepage_is_newtabpage True Secure 
Preferences 

Preferences Preferences 

bookmark_bar:show_on… False Preferences Preferences Preferences 

default_search_provider… Google Secure 
Preferences 

Preferences Preferences 

profile:default_content_setting_values:popups: Does 
not 
exist 
(block 
popups) 

Preferences Preferences Preferences 

profile:content_settings:exceptions:popups: <nil> Preferences Preferences Preferences

Fig. 8.12 Never logged in

Fig. 8.13 Currently logged in

When you log out of a Google account in a Google Chrome profile, you still see that 
Google account atop of Google Chrome but it’s showing as paused. 

If a user logs into a new Google account from a profile already associated to 
another Google account, Google Chrome will ask the user if they want to create a
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Fig. 8.14 Other Google accounts 

new Google Chrome profile for that Google account (or switch to an existing one 
if one already exists). If the user accepts, a new Google Chrome profile is created 
for that newly signed in user (or it switches to the existing profile for that user). If 
the user declines, the user remains in that Google Chrome profile associated to the 
first Google account and any browsing activity under that profile continues to be 
associated to the Google account first associated to that profile. 

There are three keys in the JSON file that the author noted are affected 
depending on if someone is logged in to a Google Chrome profile: “account_info:”, 
“gaia_cookie:”, and “profile:” 

During testing with Google Chrome version 94, the author noted that 
the key:value pairs under “account_info:0:” were populated with details 
relating to the Google account associated to that Google Chrome profile 
(e.g., “email:”, “full_name:”, “given_name:”, “picture_url”). The sub-key 
“account_info:account_tracker_service_last_update:” contains a UTC WebKit 
timestamp of when that Google Chrome profile was created on the device in question. 

If other Google accounts are also logged into under the same profile, you will see 
those listed under the sub-key “account_info:1:”, “account_info:2:”, etc. (Fig. 8.14). 

The key “profile:” also contains potentially relevant information. It contains the 
version of Google Chrome that created that profile (“created_by_version”) on that 
device, as well as a WebKit UTC timestamp of when the profile was created on the 
device (“creation_time”). 

The subkey “profile:last_engagement_time:” initially appeared to capture the last 
time that Google Chrome profile was shut down. During the author’s testing, however, 
in one testing scenario that timestamp did not correspond to that, rather it was from 
almost two hours earlier. 

This illustrates the challenge of forming a definitive conclusion based on the 
key:value pairs in these JSON database files related to Google Chrome. With Google 
Chrome now on a 4-week rapid release cycle, a user who has been using an install 
of Google Chrome over a period of 12 months will have 26 updates during this time. 
Any one of these updates could add, remove, or change some of the key:value pairs 
in these JSON files. 

These JSON files are a rich source of artifacts that could contain the missing 
piece of the puzzle. But you need to be cautious when stating an opinion based on 
these artifacts. As with everything else in digital forensics, validate/corroborate your 
findings.
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8.5 Analyzing SQLite Files 

8.5.1 Secure_Delete 

SQLite can be compiled with many different options enabled or disabled via Pragma 
statements [16]. One of those is a Pragma statement called secure_delete [17]. If 
this option is enabled by the developer of the application, any record deleted in the 
SQLite file will be immediately overwritten with the hexadecimal value 00. 

Enabling secure_delete ensures greater privacy, but it does come at a cost 
of performance. Firefox has implemented SQLite with secure_delete enabled. 
Whereas Google Chrome opted for performance and implemented SQLite without 
secure_delete. 

When secure_delete is not enabled, the record is simply marked as deleted and 
eventually either overwritten by a new record, or the database is compressed via 
the vacuum command [18]. Because Google Chrome did not enable secure_delete, it 
instead periodically runs the vacuum command to clean up and compact the database 
file. This means that you could get a keyword hit on a Google Chrome SQLite file 
but when you examine its content with a regular SQLite tool, you will not see the 
transaction. That will let you know that you hit on a deleted, but not yet overwritten 
record. 

8.5.2 Analysis Tools 

There are a few commercial tools that can help you analyze an SQLite file in addition 
to general forensic as well as browser analysis tools able to parse Google Chrome 
browsing data. To avoid the risk of endorsing a commercial tool over another, the 
author will only reference a free, open source multi platform SQLite tool called 
DB Browser for SQLite [19]. This free tool allows you to open an SQLite file 
as read/write, or read-only, with the latter being the recommended option when 
conducting your analysis. 

DB Browser for SQLite will not analyze journal files. If they are present and you 
open the database read-write, the journal transactions will be processed. DB Browser 
for SQLite will also not find deleted records in an SQLite file. 

If you are conducting forensics on a limited budget, you can try opening the 
SQLite file without the journal file, and in a second instance open it with the journal 
file and analyze both. This is not without risk. For example, you will not see a new 
transaction still in the journal file that has a deletion also pending in the journal file. 

As for deleted transactions, some of the commercial tools that parse SQLite journal 
files also search for deleted records. If you do not have such a tool, but have a main 
forensic tool, you will still get keyword hits on deleted records. But if you don’t 
search for the right keyword, you won’t know about those deleted records.
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Database Is Locked 

If you are doing some testing and attempt to open a Google Chrome database from 
a Google Chrome profile which is running, it will fail as the database is locked. If 
you are using DB Browser for SQLite, you will get the error. 

You will need to close the Google Chrome instance associated to that profile and 
try again. If you continue to get the error after exiting all instances of Google Chrome, 
it’s likely that a Google Chrome process is still running. You will need to display 
your running processes and delete that process. 

8.6 History and Typed URLs 

As noted earlier in this chapter, Google Chrome allows you to create multiple 
user profiles, each containing the user data for that profile (e.g., user prefer-
ences, browser history, form data, saved passwords, etc.). Table 8.1 in this chapter 
provides you with the path to the root of Google Chrome’s user folders. From 
there, you will see the default profile in the folder called “Default” (i.e., %localapp-
data%/Google/Chrome/User Data/{Chrome Profile}/—Default in this example). If 
other profiles exist, they will be in folders called “Profile 1”, “Profile 2”, etc. Thus, 
any reference to an artifact in this section will be contained within the profile folder. 

Google Chrome’s history is stored in an SQLite file called “history” with no 
extension, and an associated journal file called “history-journal”. Google Chrome 
implements SQLite using a roll back journal. This is used to recover if the database 
is not shut down cleanly. If the journal file is 0 kB, you don’t have to worry about 
any pending transactions in it requiring analysis. If there is data in the journal file, 
you will want to use a tool that supports analyzing the journal file to examine any 
pending transactions. 

Google Chrome retains the last 90 days of browsing history. Artifacts related 
to browsing (e.g., urls visited, cookies, cache) are all subject to this 90-day 
limit. Whereas other artifacts such as preferences, form data, and passwords 
are kept until the user opts to delete them. 
Data in Google Chrome extensions not subject to this 90-day limit. Each 
extension developer decides what artifacts they track, and how long it is 
retained, as this is stored in the extension’s sub-folder. 

One approach to analysis of Google Chrome artifacts can involve copying a 
Google Chrome profile folder out of your forensic tool and pasting those files into 
a Google Chrome profile folder you created on your forensic machine or in a VM 
and then deleted the original content, retaining only the root folder. This approach 
allows you to launch Google Chrome (either with or without connectivity depending
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on your objective) and view the artifacts from within Google Chrome itself (e.g., 
view the browser’s history, cookies, preferences, etc.). 

An important caveat if using this approach is that any history artifacts older than 
90 days will be purged, so you will lose some content using this approach unless 
you back date your system’s date. The author’s experience when testing this a few 
years ago was that Google Chrome does not wipe all content older than 90 days 
immediately on launch. The deletion took place over time (exact time not tested), 
as shutting down the browser after a minute, or a few minutes revealed that some 
of the old artifacts had been purged, but not all of them. With each re-launch, more 
artifacts were deleted. 

8.6.1 SQLite Tables of Interest 

At the time of this writing, there are 17 tables in the SQLite file “history”. We will not 
explore all of them, but rather the main ones relating to browsing history. Chances 
are your forensic tool also focuses only on the main ones, and likely not all the fields 
within those tables. Attempting to support every artifact in the tables, validating for 
each new release coming out every 4 weeks, including adding new artifacts as they 
appear and deleting old ones as they are become obsolete would be far too labour 
intensive. The value that you would yield from that would not be proportional to the 
effort required to maintain this level of support. 

In this section we will focus on three tables: “urls”, “visits”, and “visit_source”. 

“urls” Table 

The “urls” table has seven fields at the time of this writing (Table 8.3). 
When navigating pages in Google Chrome, each complete URL is stored in this 

table. If the URL is already in the table, it is not stored a second time. Rather the 
fields “visit_count”, “typed_count”, and “last_visit_time” are updated as applicable. 
When a URL goes beyond the 90 days and its record is removed, the “visit_count” 
is decreased accordingly. In other words, the “visit_count” is the total # of visits in

Table 8.3 URLS table fields 

Field Description 

id Unique id that auto-increments 

url Unique URL 

title Associated page title 

visit_count Number of times the URL was visited in the past 90 days 

typed_count Number of times the URL was typed 

last_visit_time Timestamp when the URL was last visited (Google WebKit UTC time) 

Hidden If a URL is hidden, it is not included in the autocomplete [20] 



8 Web Browser Forensics—A Case Study with Chrome Browser 267

Fig. 8.15 “urls” table 

the browser’s history. Because it’s only kept for 90 days, it’s the total visit count for 
the last 90 days. 

Let’s look at what you could conclude if you only analysed this table by looking 
at sample from it (Fig. 8.15). 

We can see the URLs that were visited, the page title for each URL, how many 
times it was visited, how many times it was typed, and the last time it was visited. 
Let’s look at row #465. The record # is 15834, the URL is https://www.homedepot. 
com/b/Tools-Air-Compressor-Tools-Nail-Guns/N-5yc1vZc2cd/Ntk-EnrichedProd 
uctInfo/Ntt-nailer?Ntx=mode+matchpartialmax&NCNI-5&visNavSearch=nailer, 
the page title is https://www.homedepot.com/b/Tools-Air-Compressor-Tools-Nail-
Guns/N-5yc1vZc2cd/Ntk-EnrichedProductInfo/Ntt-nailer?Ntx=mode+matchpart 
ialmax&NCNI-5&visNavSearch=nailer, the visit count is 6, it was typed 1 time, 
and the last time it was visited was at 13274242895215941 Google WebKit time 
(UTC). 

There are different ways to convert WebKit and epoch timestamps. The author has 
found https://www.epochconverter.com/WebKit to work very well when converting 
a single value. The WebKit time in the previous paragraph converts to Tuesday, 
August 24, 2021, 1:41:35 AM UTC. 

But if you wanted to see the converted WebKit time for all records in this table, 
you could do that with the following SQLite query: 

SELECT id, 
url, 
title, 
visit_count, 
typed_count, 
last_visit_time, 
datetime(last_visit_time/1000000-11644473600,’unixepoch’) 

AS “Decoded last_visit_time” 
FROM urls

https://www.homedepot.com/b/Tools-Air-Compressor-Tools-Nail-Guns/N-5yc1vZc2cd/Ntk-EnrichedProductInfo/Ntt-nailer?Ntx=mode+matchpartialmax&amp;NCNI-5&amp;visNavSearch=nailer
https://www.homedepot.com/b/Tools-Air-Compressor-Tools-Nail-Guns/N-5yc1vZc2cd/Ntk-EnrichedProductInfo/Ntt-nailer?Ntx=mode+matchpartialmax&amp;NCNI-5&amp;visNavSearch=nailer
https://www.homedepot.com/b/Tools-Air-Compressor-Tools-Nail-Guns/N-5yc1vZc2cd/Ntk-EnrichedProductInfo/Ntt-nailer?Ntx=mode+matchpartialmax&amp;NCNI-5&amp;visNavSearch=nailer
https://www.homedepot.com/b/Tools-Air-Compressor-Tools-Nail-Guns/N-5yc1vZc2cd/Ntk-EnrichedProductInfo/Ntt-nailer?Ntx=mode+matchpartialmax&amp;NCNI-5&amp;visNavSearch=nailer
https://www.homedepot.com/b/Tools-Air-Compressor-Tools-Nail-Guns/N-5yc1vZc2cd/Ntk-EnrichedProductInfo/Ntt-nailer?Ntx=mode+matchpartialmax&amp;NCNI-5&amp;visNavSearch=nailer
https://www.homedepot.com/b/Tools-Air-Compressor-Tools-Nail-Guns/N-5yc1vZc2cd/Ntk-EnrichedProductInfo/Ntt-nailer?Ntx=mode+matchpartialmax&amp;NCNI-5&amp;visNavSearch=nailer
https://www.epochconverter.com/WebKit
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Note that we are using the SQLite datetime() function to convert the WebKit time 
to ‘unixepoch’ which the function can then convert to human readable format. 

Best Practice Recommendations

• When decoding a field in your SQLite statement, first display the raw field, 
followed by the decoded value. You want to avoid being on the stand and 
unable to testify to the raw values in the database, only your decoded values. 
You want the raw value that was in the database alongside your decoded 
value.

• Make generous use of comments in your SQLite statements so that you will 
understand what they do 6, 12, or 18 months later when having to explain it 
to a judge or jury, and include a copy of your SQLite queries in your report 
showing how you produced the output. 

Using the same urls table as earlier, here is what the same records would look like 
(Fig. 8.16). 

This is certainly more convenient than manually decoding the WebKit times using 
a website. But there is a limitation to the SQLite statement we just used. Some URLs 
could have a last_visit_time of 0. For those, the converted time will end up being 
1601-01-01 00:00:00. Rather than displaying an inaccurate date, you can modify 
the SQLite statement to deal with that by changing the datetime() statement to the 
following:

Fig. 8.16 “urls” table, decoded WebKit time 
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CASE 
WHEN last_visit_time IS 0 THEN NULL 
ELSE datetime(last_visit_time/1000000-11644473600,’unixepoch’) 

END AS "Decoded last_visit_time" 

If all you are interested in is knowing is how often someone visited a URL, how 
many times they typed it, and when they last visited it, this works. But URL #15834 
for homedepot.com was visited 6 times and typed 1 time. We only know the last time 
it was visited, not the other 5 times, and we don’t know which time it was typed. 

“visits” Table 

The “visits” table (Table 8.4) has nine fields at the time of this writing, but we will 
focus on the six. 

This table tracks each visit to a URL. If you visit the exact same URL 5 times, 
there will be 5 records in this table all pointing to a single record in the “urls” table 
we covered previously. Here is a raw view of a sampling of records from the “visits” 
table (Fig. 8.17). 

This table also contains a date value expressed in Chrome WebKit UTC timestamp 
which will need to be converted. The transition value is another field that will need 
to be decoded which we’ll tackle a bit further in this chapter. The “url” field is what 
is known as a foreign key. It points to a record in another table, the “urls” table in 
this case.

Table 8.4 VISITS table fields 

Field Description 

id Unique id that auto-increments 

url Foreign key that points to the id of the URL in the urls table 

visit_time Timestamp when the URL was visited (Google WebKit UTC time) 

from_visit Points to the id in the “visits” table from where the user navigated from prior 
this URL 

transition [21] Transition value that tracks several qualifiers about the visit 

visit_duration Visit duration in milliseconds 

Fig. 8.17 “visits” table 
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When we looked at the “urls” table earlier, we looked at a record relating to a 
visit to a page on homedepot.com. The id of that record was 15834 (Fig. 8.18). It 
was visited 6 times, of which one of those was a typed URL. And we decoded the 
last visit time as Tuesday, August 24, 2021, 1:41:35 AM UTC. 

The following SQLite statement was used to focus on the “visits” entries for url 
15834. 

SELECT id, url, from_visit, visit_time, 
CASE /*if visit_time is NULL don’t convert, leave it NULL. 

WHEN visit_time is NULL THEN NULL 
ELSE datetime(visit_time/1000000-11644473600,’unixepoch’) 

END AS ’Decoded visit_time (UTC)’, 
transition, visit_duration, visit_duration/1000000 AS "Visit Duration in 
seconds" 
FROM visits 
WHERE url=15834 

That query produced the results (Fig. 8.19). 
Now we see the timestamp for all six visits, with the last one matching the times-

tamp decoded earlier in the “urls” table relating to this record (Fig. 8.16). The “url” 
value is an id value that points to a record in the “urls” table. 

If all you must link is a handful of records from the “visits” table to their URL in 
the “urls” table, doing this manually is possible. But it’s not feasible to do this for all 
records in a user’s 90-day browsing history. We can use a JOIN command in SQLite 
to link two tables together. 

The following SQLite statement omits a few fields for brevity of the demonstra-
tion.

Fig. 8.18 “urls” table, record 15834 

Fig. 8.19 Querying URL 15834 in the “visits” table 
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SELECT visits.id, urls.url, visits.from_visit, visits.visit_time, 
CASE 

WHEN visits.visit_time is NULL THEN NULL 
ELSE datetime(visits.visit_time/1000000-11644473600, 

’unixepoch’) 
END AS ’Decoded visit_time (UTC)’, 
visits.transition, urls.typed_count, visits.visit_duration AS "visit duration 
in milliseconds" 
FROM visits 
LEFT JOIN urls ON urls.id  = visits.url 

The output of that statement is as in Fig. 8.20. 
This gives us a pretty good view of the browsing activity of the user. If we filter 

on record 15834, we have Fig. 8.21. 
The doesn’t tell us which URL was typed. We only know that one of the six was 

typed, but not which one. One might be inclined to conclude that record #6 (Fig. 8.21) 
is the typed one, as its transition value is different than the other five. In this case we 
are lucky that all the other transition values are identical so we can take an educated 
guess without decoding it. But in other cases it won’t be that obvious. Plus, you will 
miss other valuable info if you do not decode the value.

Fig. 8.20 Joining “urls” and “visits” tables 

Fig. 8.21 Joining “urls” and “visits” tables, record 15834 from “urls” table 
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The transition value actually tells us a lot about a URL as we can see from 
Chromium’s source code here: https://source.chromium.org/chromium/chromium/ 
src/+/master:ui/base/page_transition_types.h. 

The transition value is a four-byte value. Decoding the value requires us to do 
some bitwise operations. The right most byte tells us the page transition. The three 
left most bytes are qualifiers for that transition. 

Let’s look at record #1 in the example (Fig. 8.21) which has a transition value of 
805306368. First, we must convert the value to binary which gives us the following 
value: 00110000 00000000 00000000 00000000. 

The right-most byte has a value of decimal 0. Lines 28–31 of the earlier referenced 
source code has the following: 

PAGE_TRANSITION_FIRST = 0, 
// User got to this page by clicking a link on another page. 
PAGE_TRANSITION_LINK = PAGE_TRANSITION_FIRST, 

So, we know that the user navigated to this URL by clicking on a link. 
Here is Table 8.5 of the ten possible values according to Chromium’s source code. 
Next, we need to do some bitwise operations on the remaining three bytes to 

determine which qualifier(s) are applicable to this URL visit. 
Digging further into the source code for page_transition_types.h [21], we find the 

possible qualifiers (Table 8.6) and which bit(s) must be on to be applicable.
As a reminder, the binary value of the transition we are decoding is: 00110000 

00000000 00000000 00000000 where bits 3 and 4 are on. 
Bit 4 corresponds to the qualifier PAGE_TRANSITION_CHAIN_START, and 

Bit 3 corresponds to the qualifier PAGE_TRANSITION_CHAIN_END. The source 
code further describes the chain end as “The last transition in a redirect chain”. That

Table 8.5 Page transition Page transition description Value 

PAGE_TRANSITION_LINK 0 

PAGE_TRANSITION_TYPED 1 

PAGE_TRANSITION_AUTO_BOOKMARK 2 

PAGE_TRANSITION_AUTO_SUBFRAME 3 

PAGE_TRANSITION_MANUAL_SUBFRAME 4 

PAGE_TRANSITION_GENERATED 5 

PAGE_TRANSITION_AUTO_TOPLEVEL 6 

PAGE_TRANSITION_FORM_SUBMIT 7 

PAGE_TRANSITION_RELOAD 8 

PAGE_TRANSITION_KEYWORD 9 

PAGE_TRANSITION_KEYWORD_GENERATED 10 

https://source.chromium.org/chromium/chromium/src/+/master:ui/base/page_transition_types.h
https://source.chromium.org/chromium/chromium/src/+/master:ui/base/page_transition_types.h
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Table 8.6 Page qualifiers 

Page transition qualifier Hex value Binary value 

PAGE_TRANSITION_BLOCKED 0x00800000 0b0000 0000 1000 
0000 0000 0000 

PAGE_TRANSITION_FORWARD_BACK 0x01000000 0b0000 0001 0000 
0000 0000 0000 

PAGE_TRANSITION_FROM_ADDRESS_BAR 0x02000000 0b0000 0010 0000 
0000 0000 0000 

PAGE_TRANSITION_HOME_PAGE 0x04000000 0b0000 0100 0000 
0000 0000 0000 

PAGE_TRANSITION_FROM_API 0x08000000 0b0000 1000 0000 
0000 0000 0000 

PAGE_TRANSITION_CHAIN_START 0x10000000 0b0001 0000 0000 
0000 0000 0000 

PAGE_TRANSITION_CHAIN_END 0x20000000 0b0010 0000 0000 
0000 0000 0000 

PAGE_TRANSITION_CLIENT_REDIRECT 0x40000000 0b0100 0000 0000 
0000 0000 0000 

PAGE_TRANSITION_SERVER_REDIRECT 0x80000000 0b1000 0000 0000 
0000 0000 0000 

PAGE_TRANSITION_IS_REDIRECT_MASK 0xC0000000 0b1100 0000 0000 
0000 0000 0000

suggests that this is a redirect URL arising from the initial URL that a user navigated 
to. The fact that a URL in “visits” is both the start and end of the chain means it’s 
the only URL in that chain. 

Now let’s decode the transition value for the last record in this series of six visits, 
which has a value of 838860801 (Fig. 8.21). The binary representation is: 

00110010 00000000 00000000 00000001 
The right-most byte in this case has a value of decimal 1, which means it’s a typed 

URL as we suspected (but it won’t always be that obvious). The three left most bytes 
are then used to determine the applicable qualifiers. 

Bits 3 and 4 from the left are respectively the end and start of the page 
transition chain. The seventh bit from the left is PAGE_TRANSITION_FROM 
_ADDRESS_BAR. Meaning this URL was navigated to via the address bar. Makes 
sense since it’s a typed URL. 

Putting all this together, the visits record with id 45413 that we examined earlier 
is a typed URL, and its qualifiers are that it’s from the address bar and is both the 
start and end of the navigation chain. 

Fortunately for us, SQLite supports bitwise operations, so we can parse the tran-
sition value within an SQLite statement. For example, to parse the right most byte, 
you can use the following SQLite CASE statement to perform a bitwise operation 
on the transition value and isolate the bits in the right most byte:
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CASE (transition&0xff) 
WHEN 0 THEN ’Clicked on a link’ 

WHEN 1 THEN ’Typed URL’ 
WHEN 2 THEN ’Clicked on suggestion in the UI’ 
WHEN 3 THEN ’Auto subframe navigation’ 
WHEN 4 THEN ’User manual subframe navigation’ 
WHEN 5 THEN ’User typed text in URL bar, then selected an entry that 
did not look like a URL’ 
WHEN 6 THEN ’Top level navigation’ 
WHEN 7 THEN ’User submitted form data’ 
WHEN 8 THEN ’User reloaded page (either hitting ENTER in address bar, 
or hitting reload button)’ 
WHEN 9 THEN ’URL generated from a replaceable keyword other than 
default search provider’ 
WHEN 10 THEN ’Corresponds to a visit generated for a keyword.’ 
ELSE ’New value!: ’||transition&0xff||’ Check source code for meaning!’ 
END AS ’Transition Type’, 

Best Practice Recommendation 
We know that a single byte can have values between 0 and 255 (000000– 
111111), thus 256 values. But here Google Chrome is currently only using 
values 0–10. When writing SQLite statements like this where only 11 of the 
possible 256 values are being used, you can future proof your statement by 
including the ELSE clause as above. If a value other than 0–10 is found, it will 
result in “New value!: {value}” being displayed for that field where {value} is 
the new value it found. This alerts you to the fact that the value is something 
other than one of the values you were expecting. Seeing this you can research 
the new value and update your SQLite statement accordingly. 

The bitwise operation to decode the bits in the other three bytes is done each 
with its own CASE statement. It would be too lengthy to include all of them in this 
chapter, but here is an example of one of those case statements that checks to see if 
the bit is on denoting that the user navigated to the URL via the forward/backward 
button:
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CASE (transition&0x01000000) /* Applies mask to isolate 25th bit from 
the right */ 

WHEN 0x01000000 THEN ’yes’ /*bit is set */ 
END AS ’Navigated using Forward/Back button’, 

And here is an example of the CASE statement to check if the URL was the result 
of a redirect sent from the server by HTTP headers. 

CASE (transition&0x80000000) /* Applies mask to isolate 32nd bit from 
the right */ 

WHEN 0x80000000 THEN ’yes’ /* bit is set */ 
END AS ’Redirects sent from the server by HTTP headers.’ 

What Is a Typed URL? 

We saw earlier that by decoding the transition value, we can determine if a specific 
visit was typed or not. But what is a typed URL? Most would answer that it’s when 
you type a URL in the address bar (or omnibox as Google Chrome calls it), and 
that’s correct. But are there other interactions that you might not have considered 
that would result in a “typed” URL? 

Understanding how to decode the records in an SQLite file is important. But 
equally important is understanding what user actions will cause that data to be written 
to the database you are analyzing. Does a value in a record denote a very specific user 
action, or are their different ways a user can interact with the application to cause 
the same results to be written to the database? It’s the difference between stating that 
because you retrieved a particular value from a record, it means a user did A, versus 
a user could have done A, B, or C to cause that value to be written to the database. 

The user copies a URL and pastes it into the address bar and hits <ENTER>. Will 
that result in a typed URL? 

The user enters text in the address bar that results in a search with the browser’s 
default search engine. Will that result in a typed URL? 

The user edits the URL in the address bar. For example, they search for “cats 
and hogs” but meant to search for “cats and dogs”. Instead of editing the text in the 
Google search box on Google’s search page, they go into the address bar and changes 
hogs to dogs and hit <ENTER>. Will that result in a typed URL? 

The user simply clicks in the address bar, makes no changes to the URL and hits 
<ENTER>. Will that result in a typed URL? 

The user types a URL, but it results in a redirect (e.g.: typing www.google.com 
will initially go to http://www.google.com, and then redirect to https://www.google. 
com). Will both records result in a typed URL? 

The user types an invalid URL. Will that result in a Typed URL?

http://www.google.com
http://www.google.com
https://www.google.com
https://www.google.com
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The user types a valid URL but the site is down. Will that result in a Typed URL? 
The user types a valid URL but the device was not connected to the Internet at 

the time. Will that result in a typed URL? 
You are encouraged to test this with not only Google Chrome, but any other 

browser where you find the smoking gun in a typed URL. You need to know what 
that browser considers a typed URL, and how it stores that data in its history file. 
Imagine trying to suggest that the user typed: 

https://www.canadapost-postescanada.ca/cpc/en/support.page?ecid=murl_ddn_ 
jb_100#panel2-5 

That is a typed URL in the author’s Google Chrome browser history. Clearly, the 
author did not type that. How would your credibility be impacted if you got on the 
stand and claimed that the user typed that entire string in the address bar which is 
why it’s showing up as a typed URL in the database you analyzed? 

“visit_source” Table 

The “visit_source” table has two fields at the time of this writing (Table 8.7). 
In the author’s experience, the value 1 is not used in the field “value” in the 

“visit_source” table in Google Chrome. Rather Google Chrome simply does not 
store the id of the “visits” record if it’s been browsed by the user. This is a common 
practice we observed when looking at the JSON files earlier. Why store all the URLs 
here as well as in the “visits” table. It’s redundant. Hence why any URLs not in this 
table are locally browsed URLs, not synced URLs. 

The most important value you will want to check is for a value of 0, indicating 
the URL was synced to this device after having been visited on another device. This 
may be important if you need to address the sync defence (it wasn’t me, it synced 
from another device). Syncing only happens across browsers logged into the same 
Google account naturally. 

In Fig. 8.22 we have an example of what you might see in the “visit_source” table.
The id is a foreign key that points to “visits.id”. In the above example, it tells 

us that the “visits” record with ids 44357, 44358, 44359, 44379, 44380, and 44381 
synced from another device.

Table 8.7 VISIT_SOURCE 
table fields 

Field Description 

id Foreign key that points to visits.id 

source [22] Value between 0 and 5 
SOURCE_SYNCED = 0, // Synchronized from 
somewhere else 
SOURCE_BROWSED = 1, // User browsed 
SOURCE_EXTENSION = 2, // Added by an 
extension 
SOURCE_FIREFOX_IMPORTED = 3, 
SOURCE_IE_IMPORTED = 4, 
SOURCE_SAFARI_IMPORTED = 5, 

https://www.canadapost-postescanada.ca/cpc/en/support.page?ecid=murl_ddn_jb_100\#panel2-5
https://www.canadapost-postescanada.ca/cpc/en/support.page?ecid=murl_ddn_jb_100#panel2-5
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Fig. 8.22 Sample 
“visit_source” table

As we saw with the “visits” and URLs tables, you can use the JOIN statement to 
query across tables, denoting how they are linked together. 

8.7 Downloads 

Google Chrome tracks downloads in the same SQLite file as it tracks history, 
but in different tables. The following tables found in the “history” SQLite file 
have names that suggest to us that they are used to track downloads: downloads, 
downloads_reroute_info, downloads_slices, downloads_url_chains. 

The author has over 400 downloads in the “downloads” table. You could simply 
browse that table and yield some good insight in the downloads. The only other table 
with records in it was “downloads_url_chains”. Accordingly, the other two tables 
will not be reviewed. 

“downloads” Table 

The “downloads” table has 26 fields at the time of this writing, but we will focus on 
the 13 (Table 8.8).

When parsing the interrupt_reason in your SQLite statement, you will want to 
adopt the earlier recommended best practice of alerting you if a value other than one 
of the expected values is encountered so that you can research the new value and 
update your SQLite statement. 

“downloads_url_chains” Table 

The “downloads_url_chains” table has three fields at the time of this writing 
(Table 8.9).

This table can also be manually examined by browsing it with your favorite SQLite 
browser. Figure 8.23 is a sample of what you might see in it.

Note that the id is a foreign key that points to the id in the “downloads” table. 
In the above example, id 1 and 2 each only have one URL. Next, we see id 4 with
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two chains. Which means it redirected from the first to the second to perform the 
download. If we look at id = 5, we see 5 entries in the chain. When examining the 
record with id #5 in the “downloads” table, you must also consider these five records 
in this table. The last record will contain the URL where the download actually took 
place. 

We can write an SQLite statement that will return each record in “down-
loads_url_chains” along with the relevant data from “downloads”. Unfortunately, 
the output is much too wide to be able to display on a page. 

Alternate Data Stream (ADS) 
When you download a file from the Internet on a Windows computer and save 
it to an NTFS file system, in addition to the file it will create an alternate 
data stream. We won’t be covering ADS in this chapter. But it’s worth reading 
up on it and being familiar with the ADS created alongside a file when it’s 
downloaded from the Internet. This is not unique to Google Chrome.

Table 8.8 DOWNLOADS table fields 

Field Description [23] 

id Unique id that auto-increments 

current_path Current disk location 

target_path Final disk location 

start_time When the download was started. Google WebKit UTC timestamp 

end_time When the download completed. Google WebKit UTC timestamp 

last_access_time The last time it was accessed. Google WebKit UTC timestamp 

last_modified 
referrer 
site_url 
tab_url 
tab_referrer_url 
state 
interrupt_reason 

Last-modified header. Text UTC timestamp 
HTTP referrer 
Site URL for initiating site 
Tab URL for initiator 
Tag referrer URL for initiator 
1 = complete, 4 = interrupted 
Download Interrupt Reason [24]. Current values 0–3, 5–7, 10–15, 20–24, 
30–39, 40–41, 50

Table 8.9 DOWNLOADS_URL_CHAINS table fields 

Field Description [23] 

id Foreign key that points to downloads.id 

chain_index Index of url in chain. 0 is initial target, MAX is target after redirects 

url URL
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Fig. 8.23 downloads_url_chains table

Different Ways to Download 

There are a few different ways you can download a file from your browser. You can 
choose to download the file by clicking on the link. You can right click and choose 
Save As. Or you can choose to run the file. You should test to see what the downloads 
artifacts look like for each scenario to better understand what the artifacts represent. 

8.8 Search Terms 

Proving intent is one of the challenges a forensic examiner faces. A user may claim 
that they did not intentionally navigate to a particular URL. There is a table in the 
“history” SQLite file called “keyword_search_terms”. 

The “keyword_search_terms” table in the “history” SQLite file has four fields at 
the time of this writing (Table 8.10). 

You can see that to make sense of this information you not only have a foreign 
key pointing to another table within the same SQLite file (history), but you also have 
a foreign key pointing to a table in table in another SQLite file (web data). Manually 
parsing this would be tedious. Before we tackle that, let’s look at an example of 
what’s in the “keywords_search_term” table in the “history” SQLite file (Fig. 8.24).

We see a lot of entries that point to record id = 2 in the “keywords” table in “web 
data” SQLite file. How do we know this from looking at Fig. 8.24? The first field

Table 8.10 KEYWORD_SEARCH_TERMS table fields 

Field Description 

keyword_id Foreign key that points to the field “id” in the “web data” SQLite file, 
“keywords” table 

url_id Foreign key that points to urls.id in the “history” SQLite file 

term 
normalized_term 

The search term typed by the user 
The search term converted to all lower case 
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Fig. 8.24 keywords_search_terms table

is called “keyword_id”. Through testing, the author determined that it points to the 
“id” column in the “keywords” table in the Google Chrome SQLite file called “web 
data”. 

The “keywords” table (Table 8.11) in the “web data” SQLite file has 24 fields at 
the time of this writing. We will only use 5 of them. 

Here is a basic query of the keywords table, extracting the fields above and 
producing the output in Fig. 8.25.

Table 8.11 KEYWORDS table fields 

Field Description [25] 

id Unique id that auto-increments 

short_name The description of the search engine 

keyword 
url 
date_created 

The search engine keyword for omnibox access 
The actual parameterized search engine query URL 
The date this search engine entry was created (WebKit UTC time) 
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Fig. 8.25 “web data” SQLite file, “keywords” table 

SELECT id, short_name, keyword, url, 
date_created, 
CASE date_created 

WHEN 0 THEN NULL 
ELSE datetime(date_created/1000000-11644473600,’unixepoch’) 

END AS "Decoded keywords.date_created (UTC)" 
FROM keywords 

The above query produces Fig. 8.25. 
There is value in querying this table alone. Note the created date in Fig. 8.25. One  

goes back to February of 2015. There most likely won’t be any history entries for all 
the entries in this table, as history is only kept for 90 days and a user might not have 
navigated to some of the above in some time. But as you can see from the above 
output, this table retains the info indefinitely (until a user explicitly clears all their 
activity from their browser). 

With the combined query we will look at next, it will only query the records in 
this table that have an associated entry in the “history” SQLite file in the “key-
word_search_terms” table. Hence why querying the above separately can yield 
additional value. 

Combining It Together to Show Intent 

Querying across tables in different SQLite files is not a lot more difficult than simply 
querying across tables in a single SQLite file. If using something like DB Browser 
for SQLite, all you need to do is load the first SQLite file (“web data” in this case), 
and then attach the second one (“history” for this example) and give the second one 
a name.
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In the following SQLite statement, “web data” SQLite is loaded, and then 
“history” SQLite is attached and given the name “history”. 

SELECT keywords.keyword AS "Search Engine", 
history.urls.url, 
history.keyword_search_terms.term, 
history.urls.visit_count, 
history.urls.last_visit_time, 
datetime(history.urls.last_visit_time/1000000-11644473600, ’unixe-

poch’) AS "Decoded history.last_visit_time (UTC)" 
FROM history.keyword_search_terms 

LEFT JOIN history.urls ON history.urls.id = history.keyword_search 
_terms.url_id 

LEFT JOIN keywords ON history.keyword_search_terms.keyword_id 
= keywords.id 

The above yields the output in Fig. 8.26. 
With this query, we can show intent. We see what the user searched for via the 

search box on various websites, how many times it was searched, and when it was 
last searched. If a particular result has a visit count of greater than 1 and you want 
to see all those records, you will have to re-run the above query and output the field 
“history.keyword_search_terms.url_id”. Once you have the URL id, you can then 
query the “visits” table in the “history” SQLite file as we covered previously to see 
all the visits for that URL. 

Missing Search Term 

There will be situations when doing a search from within a search box on a site will 
not populate the search terms table. For example, during testing it was noted that if

Fig. 8.26 Querying across web data and history SQLite files 
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the search was done from the main Wikipedia page (Fig. 8.27), it did not populate 
the search term. 

Searching via the search box on the above page (Fig. 8.27) did not populate the 
search terms table. 

If the search was conducted from a language specific Wikipedia page, it did 
populate the search terms table. In the screenshot (Fig. 8.28), a search from the 
search box near the upper right corner would result in populating search terms. 

Fig. 8.27 Main wikipedia.org page 

Fig. 8.28 en.wikipedia.org
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8.9 Form Data 

When you enter data in a field on a webpage, Google Chrome will save what you 
entered so that it can present it to you again in the future should you land on an input 
field by the same name. This is known as autofill, or form data. 

Google Chrome tracks form data in an SQLite file called “web data” which we 
explored in part in the section about search terms. This SQLite file has 28 tables in 
Google Chrome 94, the current version at the time of writing. We explored one table 
called “keywords” in the previous section. 

There are nine tables in “web data” with autofill information. The first one we are 
going to examine is called “autofill”. The “autofill” table in the “web data” SQLite 
file has six fields at the time of this writing (Table 8.12). 

The dates in this table are not the more commonly observed Google WebKit 
format. They are in Unix Epoch, but UTC same as the WebKit timestamps we’ve 
examined in this chapter. 

The “name” field comes from the web page itself. A web programmer must assign 
a variable name to each input field. That is where this name comes from. 

Note that there is no URL here. We don’t know on what page this information 
was entered. All we know is the name of the field. When you visit a webpage for the 
first time and must enter information, Google Chrome might present options to you. 
Google Chrome looks at the name of the input field and checks for all records in the 
“autofills” table that have an entry for a field by this name and presents to you what 
you’ve previously entered for the field by that name. 

In the screenshot (Fig. 8.29), we see the HTML source code for an input box on 
a website. On the right we see: name = "email". This tells us that the field name is 
“email”. 

Table 8.12 AUTOFILL table 
fields 

Field Description 

name The name of the field on the webform 

value The value that the user entered in that field 

value_lower 
date_created 
date_last_used 
count 

Same as “value”, but all lower case 
The first date (Unix Epoch UTC) this autofill 
was used 
The last date (Unix Epoch UTC) this autofill 
was used 
The number of times it has been used 

Fig. 8.29 autofill
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Fig. 8.30 autofill for 
“email” field name 

Google Chrome checks autofill for any entries where the name is “email” and 
presents those options to you in the pull down as observed in the screenshot 
(Fig. 8.30). 

Well, the above is not accurate in this case. In this case Google Chrome pulled 
those values out of a different table, autofill_profile_emails. It’s not clear to the author 
when Google Chrome uses the content of “autofill” versus “autofill_profile_emails”. 

We can just browse the content of “autofill” or use the following SQLite statement 
to decode the dates for us. 

SELECT name, value, date_created, 
DATETIME(date_created, ’unixepoch’) AS "decoded date_created UTC", 
date_last_used, 
DATETIME(date_last_used, ’unixepoch’) AS "decoded date_last_used 
UTC", 
count 
FROM autofill 

In executing the above, the author saw that some of the records in the “autofill” 
table with the text ‘email’ for “name” had timestamps that decoded to as recently as 
September of 2021. So clearly Google is still using this “autofill” table in some cases. 
In the screenshot in this example (Fig. 8.30), there were email addresses in “autofill” 
that were not presented to the author as possible values. Instead, Google Chrome 
pulled the records from “autofill_profile_emails” to present previously entered values 
as options. 

The “autofill_profile_emails” table in the “web data” SQLite file has two fields 
at the time of this writing (Table 8.13).

This table is one of five tables in “web data” relating to autofill: “autofill_profiles”, 
“autofill_names”, “autofill_phones”, “autofill_addresses”, “autofill_emails”. Each
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Table 8.13 AUTOFILL_PROFILE_EMAILS table fields 

Field Description 

guid Unique GUID 

email Email address entered by the user

of these tables have different fields as you can gather from the names of the tables. 
“autofill_phones” has two fields: “guid” and “number”. “autofill_addresses” has 28 
fields of which the first one is “guid”. “autofill_names” has 19 fields, of which the 
first is “guid”. And “autofill_profiles” has 18 fields, of which the first is “guid”. 

As you probably figured out by now, the “guid” is what links the records across 
these autofill tables. Across all these tables, there are 64 fields not counting the “guid” 
field in each of them. 

The following SQLite command pulls some basic info from these five tables into 
one output. 

SELECT use_count, 
origin, 
date_modified, 

datetime(date_modified, ’unixepoch’, ’localtime’) AS ’Decoded 
date_modified (local time)’, 

use_date, datetime(use_date, ’unixepoch’, ’localtime’) AS ’Decoded 
use_date (local time)’, 

autofill_profiles.guid, 
full_name, 
first_name, 
middle_name, 
last_name, 
street_address, 
city, state, 
zipcode, 
country_code, 
number, email 

FROM autofill_profile_names 
JOIN autofill_profiles ON autofill_profiles.guid == autofill_ 

profile_names.guid 
JOIN autofill_profile_phones ON autofill_profiles.guid == 

autofill_profile_phones.guid 
JOIN autofill_profile_emails ON autofill_profiles.guid == 

autofill_profile_emails.guid



8 Web Browser Forensics—A Case Study with Chrome Browser 287

Those unfamiliar with SQLite might wonder why the table name does not precede 
the field names in the statement like we’ve seen in other SQLite statements. It’s not 
necessary to put in the table name as the prefix if there is only one table with a field 
by that name. The risk in doing so here with so many fields is that if in the future 
a field is added to one of the tables we are querying that is the same as the field in 
another of the tables being queried, the query will fail as SQLite will not know from 
which table you want to query that field. 

A more prudent practice when querying more than one table (which is almost 
always the case) is to use table_name.field_name rather than just field_name in your 
query. 

The sample SQLite statement only queries 16 fields out of a possible 64. Thus, 
there is a lot more info in these autofill tables that you should examine if that type 
of information is potentially relevant to your case. These tables have fields with 
descriptive names, so you should have no difficulty simply browsing them without 
needing to use an SQLite statement. 

8.10 Bookmarks 

Bookmarks in Google Chrome are not stored in an SQLite as is the case in Firefox. 
Instead, they are stored in a JSON file. You can view it same as what we did for 
Local State and the Preferences file, by adding the extension “.json” to it and then 
dragging it into Firefox with the extension JSONVIEW, or using Notepad++ with 
the appropriate addon. 

Within this JSON file you will see a series of key:value pairs, where a value can 
be another key:value pair, and that value can be yet another key:value pair, and so 
on. 

The author is not aware of any native query language for JSON like we have for 
SQLite. There are solutions in various stages of development such as JSONPath and 
json-query. If you are a Python coder, you can use the JSON library to read a JSON 
file. The library parses it out to a Python dictionary with embedded dictionaries, lists, 
and values. From there, querying it becomes much more intuitive to navigate if you 
are familiar with Python dictionaries and lists. 

Within the JSON structure for Google Chrome bookmarks a folder/sub-folder 
will have the following attributes: 

"date_added": "13245036499010868", 
"date_modified": "13277258678335801", 
"guid": "60f9b262-f2dc-40c0-a7e7-18e668124622", 
"id": "593", 
"name": "Work", 
"type": "folder" 
The dates are Google WebKit UTC timestamps. The name is what you see in the 

GUI when viewing your bookmarks.
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An individual bookmark entry has similar data but note that it only has one 
timestamp. 

"date_added": "13259352719115332", 
"guid": "a201dcd4-6b91-48e4-abb4-9513bccd5dfb", 
"id": "711", 
"name": "dates in hiding Archives—Metaspike", 
"type": "url", 
"url": "https://www.metaspike.com/tag/dates-in-hiding/" 
It’s possible to use Excel to import and parse a JSON file via the Get Data feature, 

much like you could use the free desktop version of PowerBI to accomplish something 
similar. But when briefly tested by the author, although all the bookmarks and folders 
were parsed out nicely, the hierarchy was lost. You could not determine from the Excel 
sheet which URL belonged to which folder. 

Perhaps a more skilled Excel user might know how to retain that structure while 
importing a JSON file. Once you have it in Excel, you can add a column to convert 
a WebKit timestamp to a format that Excel can display in human readable format. 

You can use the following Excel formula to convert a WebKit time to a Unix time. 
=(CELL/1000000-11644473600)/60/60/24+"1 jan 1970" [26] 
Where CELL is the cell you wish to convert. 
Excel can convert the result to human readable via the format cell option. For 

example, you can format it as “YYYY-MMM-DD HH:mm:ss.000 UTC” to display 
it with the four digit year, the month abbreviation, the day, and the time in 24 h format 
with leading 0 and include milliseconds. 

To preserve the folder structure of bookmarks, you’ll need a tool that parses it, 
or write your own Python statement to parse it. The author doesn’t use either, as the 
evidence is typically not found in bookmarks. If it is, it’s usually a single entry that 
you can easily manually parse out. If you need to produce all the bookmarks, you’ll 
want a tool to help you do that efficiently. 

8.11 Other 

This section will briefly touch on other browser artifacts, but will not look at how to 
analyse any of them as they are not database related, or more advanced. 

Incognito Mode 

Like all other modern browsers, Google Chrome supports browsing in private mode 
where nothing is saved to the drive. Google calls this Incognito Mode and they 
provide a detailed answer on what it does, and doesn’t, do [27]. 

Incognito mode doesn’t stop a network appliance from monitoring your traffic. 
It doesn’t stop websites from collecting data about your browsing session. It also 
apparently doesn’t stop (or at one time didn’t stop) Google from engaging in analytics 
about your usage of their browser. Evidence of this from a lawsuit working its way 
through the courts [28].

https://www.metaspike.com/tag/dates-in-hiding/
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Beyond the above, there are forensic tools that will look for evidence of Incognito 
browsing. Presumably it looks for this in the swap file, or unallocated space, as 
Google Chrome does not write anything to the user profile databases when browsing 
in this mode. 

Cache 

Google Chrome saves a local version of pages you browse in its local cache stored 
on your device so that if you visit it again before the cache expires, it can serve up the 
page from cache rather than from the source webpage. This was especially important 
in the early days of the Internet when it was slow, and you had a monthly bandwidth 
cap. 

That’s no longer a concern for many Internet users in first world countries. But 
there are still areas in both first world and third world countries where browser cache 
still serves its purpose. 

Analysis of cache is something few people will ever attempt manually, the author 
included. Because of this, we will leave this topic for those who want to walk a path 
seldom traveled by their peers. 

Session Recovery 

When you browse with Google Chrome, it keeps a copy of your current browsing 
session in a session recovery file. It does this to be able to recover a browsing session 
from a crash, as well as to pick up where you left off if you configure Google Chrome’s 
start up page to “Continue where you left off”. 

There is a 2012 post from Alex Caithness of CCL Forensics [29] where Alex takes 
us along on his journey to decode Google Chrome’s session recovery. It’s a deep dive 
into this artifact and in reading it, you will quickly conclude that it’s not something 
you’ll want to attempt to manually analyze, as it’s only evolved since 2012. Within 
this file you can not only find your currently open web pages, but the tab history for 
each tab (up to 50 tab history entries per tab), form data, cookies, and probably other 
stuff. 

If you hit on a keyword in one of Google Chrome’s session recovery files, hopefully 
you have a tool that will parse it for you. There is a way you can examine at least 
the URLs in each tab without resorting to trying to decode it manually or with a 
specialized tool. You could export a Google Chrome profile from a forensic image 
and copy it over an existing Google Chrome profile and ensure you have the correct 
preferences to cause Google Chrome to “Continue where you left off”, resulting in 
Google Chrome opening the session recovery file for you and opening all the tabs 
that were open, allow you to open closed tabs saved in the session recovery file, and 
even allow you to navigate through the tab history (forward/back) in each tab. 

If a person had 10 tabs open and each had the maximum 50 entries for tab history, 
that’s 500 URLs in that session recovery file. So, if you need to examine the session 
recovery file because it contains a keyword of interest to you, you could always use 
the shoestring option suggested herein in absence of a tool that can decode it for you.
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Saved Passwords 

Google Chrome saves passwords to an SQLite file, but as expected, they are stored 
in an encrypted format. You could examine the SQLite file and try and decrypt the 
passwords if tools are available to do that. Or you could actually use the similar 
approach to what the author suggested to examine the session recovery file. 

You could copy out the Google Chrome profile from your image and into a profile 
on your forensic machine and then go into the browser settings to view saved pass-
words. If that doesn’t work and your situation warrants it, you could navigate to the 
login page for the password you are interested in and let Chrome auto populate the 
username and password. 

The password will be masked with “dots” as you know from experience. But there 
is a simple webpage hack you can do on a live page to reveal the password behind 
the dots. There are many articles and YouTube videos that show you how to do this, 
so we won’t bother covering it here. 

8.12 Summary 

Google Chrome is a very popular browser. Knowing where it stores many of its 
artifacts and how to manually access them will help you be a better forensic examiner, 
even when using tools that do most of the heavy lifting for you. It will help you 
recognize if your tool is not parsing something correctly, or if it’s only parsing some 
of the info that’s available to you. 

If you know how to analyst Google Chrome on one platform, you know how 
to analyze it on all platforms. And by knowing how to analyze Google Chrome 
artifacts, you will be well equipped to also analyze common artifacts in Microsoft 
Edge, Opera, Brave, and any other browser that is based on Chromium. 
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