
A Reference Data Model
for Process-Related User Interaction Logs

Luka Abb(B) and Jana-Rebecca Rehse

University of Mannheim, Mannheim, Germany
{luka.abb,rehse}@uni-mannheim.de

Abstract. User interaction (UI) logs are high-resolution event logs that
record low-level activities performed by a user during the execution of a
task in an information system. Each event in a UI log corresponds to a
single interaction between the user and the interface, such as clicking a
button or entering a string into a text field. UI logs are used for purposes
like task mining or robotic process automation (RPA), but each study
and tool relies on a different conceptualization and implementation of
the elements and attributes that constitute user interactions. This lack
of standardization makes it difficult to integrate UI logs from different
sources and to combine tools for UI data collection with downstream ana-
lytics or automation solutions. To address this, we propose a universally
applicable reference data model for process-related UI logs. Based on a
review of scientific literature and industry solutions, this model includes
the core attributes of UI logs, but remains flexible with regard to the
scope, level of abstraction, and case notion. We provide an implementa-
tion of the model as an extension to the XES interchange standard for
event logs and demonstrate its practical applicability in a real-life RPA
scenario.

Keywords: User behavior mining · UI Log · Data model · Robotic
process automation · Task mining

1 Introduction

User interaction (UI) logs are high-resolution event logs that record low-level,
manual activities performed by a user during the execution of a task in an
information system (IS) [1]. Each event in a UI log corresponds to a single
interaction between the user and the graphical user interface (GUI) of a software
application. Examples include clicking a button, entering a string into a text
field, ticking a checkbox, or selecting an item from a dropdown [26]. Multiple
recent research streams use this type of data, for example to analyze usage
patterns in software applications [6,12,28], to identify candidate routines for
robotic process automation (RPA) [7,26,35], or to derive RPA automation and
test scripts [3,8]. In addition, companies like Celonis and UiPath offer tools that
record and process UI data for inspecting and automating task executions [5].
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The UI logs currently used in research differ substantially. The data collected
in a specific research context is usually limited in scope and tailored to the
proposed analysis technique or automation approach. This results in considerable
variation regarding the number, type, and granularity of recorded events and
corresponding attributes. Even when researchers record the same attributes at
a similar level of detail, there is no common definition of UI log attributes to
which they can adhere. Instead, they often rely on ad-hoc conceptualizations of
elementary notions like activities and UI components. The situation is similar
in industry, where each vendor has developed their own UI log format tailored
to the capabilities of their recording software [27].

This lack of standardization makes it difficult to integrate UI logs from dif-
ferent sources [26,30]. It also poses a challenge for the interoperability of data
collection and downstream processing tools: logs recorded by one tool are usually
only compatible with the associated analytics or automation approach. Combin-
ing data collection and processing tools requires considerable preprocessing effort
or is entirely infeasible if the necessary attributes cannot be recorded [27].

In this paper, we address these challenges by proposing a reference data
model for process-related UI logs. This model provides a data structure and an
accompanying interchange format that others can reuse to conceptualize and
capture UI logs in a process context. To ensure widespread applicability, the
model is designed such that it subsumes and integrates the commonalities of
existing process-related UI logs, but remains flexible with regard to the their
differences. To identify those commonalities and differences, we conduct a litera-
ture review in Sect. 3 and a review of industry solutions in Sect. 4. The reference
data model, along with its underlying design principles and an accompanying
interchange format, is presented in Sect. 5. In Sect. 6, we demonstrate how the
data model can be instantiated in practice by applying it in a real-life RPA
scenario. Finally, we conclude the paper with a discussion in Sect. 7.

2 Background and Related Work

Event Logs. Process mining extracts information from event logs, i.e., collec-
tions of events recorded in an IS [32]. An event log consists of cases that each
correspond to one process instance. Each case contains a trace of events that
occurred during the execution of the process instance and can have additional
attributes, for example, the size of an order in an order-to-cash process. Events
are related to a particular step in a process with an activity label (e.g., create
invoice) and can also have additional attributes.

Data Formats. To enable the exchange of event data between different ISs,
the business process management (BPM) community has developed interchange
formats that define the structure and general contents of event logs. The current
main format is XES (eXtensible Event Stream), which was introduced in 2010 to
replace the older MXML format and was accepted as the official IEEE standard
for event data in 2016 [38]. In XES, an event log consists of a three-level hierar-
chy of log, trace, and event objects. The format is designed to be highly generic,



A Reference Data Model for Process-Related User Interaction Logs 59

with a minimal set of explicitly defined attributes on each of the three levels.
Additional attributes, with a commonly understood semantic meaning, can be
introduced by XES extensions. For example, the concept extension introduces
the “name” attribute, which stores names for event logs, traces, and events.
Although researchers have recently pointed out shortcomings of XES and pro-
posed more flexible, object-centric alternatives such as OCEL [17], XES remains
the most common event log format and is supported by many process mining
tools.

UI Logs. UI logs are a particular type of event log in which events correspond
to low-level interactions of a user with a GUI. They can be recorded either inter-
nally by adding logging capabilities to an application, or externally by dedicated
logging tools. These tools record screen coordinates for each action and map
them to parts of the GUI using optical character recognition technology.

User Behavior Mining. UI logs essentially record how users behave while
they are engaged with an application. They can be analyzed by means of data
or process mining techniques to gain data-driven insights into user behavior. We
refer to this analysis of UI logs as user behavior mining (UBM) [1]. UBM can
serve different purposes, including the analysis of software usage patterns, the
design of new user assistance components, or the automation of tasks.

Task Mining. One application of UBM is to enhance traditional process min-
ing by providing a more detailed view of execution steps. Event logs gathered
from ERP systems like SAP or Oracle capture the main tasks in a process, like
creating an order, but they do not provide insights into how employees actually
perform these tasks. Recording and analyzing detailed task executions is referred
to as task mining [32] or desktop activity mining [29]. These techniques can give
companies deeper insights into their processes than traditional process mining
alone, and they can also help software vendors to optimize their products, for
example, by identifying common usability issues.

Robotic Process Automation. UI logs can be used to automate tasks and
entire processes by having bots emulate the recorded user interactions. This
approach to automation is called robotic process automation (RPA) [22] and
has lately received considerable attention in research and practice. Within RPA,
UBM techniques can be used to derive automation scripts, but also for robotic
process mining [26], which for example encompasses the identification of suitable
tasks for automation from UI logs [24].

Web Usage Mining. Another field that is concerned with the analysis of user
behavior is web usage mining [34], i.e., the analysis of clickstream user data
recorded during interactions with websites. Web usage mining is often process-
agnostic; its main purpose is to optimize websites, for example, by adapting
their content and structure to users’ browsing behavior [13,19]. The primary
data source for web usage mining are server UI logs that are generated in a
standardized logging format like the Extended Log Format [37] and have a fixed
set of attributes. These include the URL of the current and previous page request,
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the resource accessed, timestamps, identifying data like the user’s IP address,
and technical data about the user’s web browser and operating system.

UBM in Other Domains. In addition to the research areas mentioned above,
interaction logs have been used as a source of data-driven insights into user
behavior in several other domains, such as human-computer-interaction [14,15],
information retrieval [21], and visualization [18]. The logs in these domains can
take various forms, but they generally record user interactions at a much lower
level of detail than the process-related UI logs that we focus on in this paper.

3 Literature Review

This paper’s goal is to develop a reference data model that subsumes and inte-
grates the commonalities of current approaches for capturing process-related UI
logs, but stays flexible with regard to their differences. In this section, we review
UI logs from scientific literature to identify those commonalities and differences.

3.1 Research Method

We conducted a structured literature review [23] in SpringerLink, IEEE Xplore,
and ACM Digital Library. As search terms, we used “log” combined with (1)
“user interact*” and “user interface” (2) “task mining” and “desktop activity
mining” as common terms for high-resolution process mining, and (3) “robotic
process automation” and “robotic process mining” as important applications of
UI logs. We limited our search to papers written in English and published after
2015 because we focus on the current state of the art. The relevance of the initial
search results was assessed based on their title and abstract. This yielded a set of
potentially relevant papers, on which we performed a forward-backward-search
to also cover papers that our search terms might have missed.

To ascertain the relevance of the identified papers, we scanned their full text
for passages on UI logs or recording approaches for them. Papers were considered
as relevant if (1) they contained a concrete UI log or (2) they described the UI
log collection process in enough detail to infer the captured attributes.

Table 1. The papers found in the database search

Search Term IEEE Xplore ACM DL SpringerLink

log AND “user interact*” [24] [12] [2,3,7,35]

log AND “user interface”

log AND “task mining” [26]

log AND “desktop activity mining”

log AND “robotic process automation” [5,22]

log AND “robotic process mining”
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As listed in Table 1, we found 9 relevant publications in the initial search.
Several papers appeared in more than one query, but are only listed under
the search term that we first found them with. The forward-backward search
returned another 10 publications. Although we did not explicitly search for web
usage mining logs, our search returned papers about server-side and also client-
side web usage mining (recording web activities by adding tracking software to
a browser), but none of these met the above-listed criteria. In our review, we
therefore only included one exemplary clickstream log from a process mining
context: the BPI Challenge 2016 [11], in which the Dutch Employee Insurance
Agency recorded eight months of user activities on their website. Our final result
was hence a set of 20 relevant publications.

3.2 Results

Some of the 20 relevant publications covered the same use case and data collec-
tion approach and were therefore treated as duplicates, resulting in 12 unique
approaches. The majority of papers cover RPA [2–5,7–9,20,22,24–27,35]. Four
publications [6,10,12,28] focus on software process mining [33]. The remaining
two are general approaches to analyzing low-level user interactions with broader
applications [11,29].
Commonalities. Although the reviewed UI logs were fairly heterogeneous, we
found a set of six core attributes that are recorded in more than half of them.
Table 2 indicates which of the 12 approaches include which attributes (•).

Table 2. UI log attributes as found in the literature review

Source Action type Target element UI Hierarchy Application Input value Timestamp

[2–5] • • • • • •
[6] • • Single • •
[9] • • • • • •
[10] • • Single •
[11] • • Single • •
[12] • Single •
[20] • • • • •
[8,22] • • • •
[7,24–27] • • • • • •
[28] • • • Single •
[29] • • • •
[35] • • • • •

1. An action type, which describes the action a user takes. Actions are most often
divided into mouse and keyboard inputs, but some logs further distinguish
between different mouse buttons, string inputs, and hotkeys. Only two logs
do not record action types: the BPIC 2016 clickstream log [11] and Urabe et
al. [35], who only record that an interaction has taken place.
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2. The atomic target UI element, on which the user action is executed. This
attribute is recorded in most UI logs, except for two: Dev et al. [12] only
record the usage of specific functions, such as crop in a graphics editor, and
Jimenez-Ramirez et al. [8,22] record click coordinates and screenshots, but
only use them to match similar user actions and do not map them to target
elements.

3. The software application that the user interacts with. This could be a web
browser, an ERP system, or an office application. This attribute is always
recorded when researchers track user actions across multiple applications,
but is not captured when the tracking is limited to a single application.

4. One or multiple attributes that specify the location of the target element
in the application’s UI hierarchy. For example, an Excel cell is located in a
worksheet (hierarchy level 1), which belongs to a workbook (hierarchy level
2) [27]. UI hierarchy attributes are included in about half the reviewed logs.

5. The input value that the user writes into a text field. Input values are included
in about half of the reviewed logs.

6. A timestamp, which records the exact date and time at which the action
occurred. This is recorded in all logs.

Differences. Most authors characterize user interactions through an action
type, i.e., what the user does, and a target element, i.e., where they do it. How-
ever, the set of possible values for the action type, and hence the level of detail at
which actions are recorded, differs considerably. For example, Agostinelli et al.
[3] record aggregated action types abstracted from raw hardware input (e.g.,
clickButton and clickTextField), whereas Jimenez-Ramirez et al. [22] make the
low-level differentiation between left, right, and middle mouse clicks. Which other
attributes are included in a UI log differs between approaches: whereas times-
tamps and the application in focus (where applicable) are recorded in all logs,
input values and information on the location of a target element within the appli-
cation’s UI hierarchy are included in about half of them. Examples for other,
less common attributes that are only recorded in few approaches include the cur-
rent value of a text field [5,9,27], user IDs [5,10,27,35], other resources involved
[6,11], and associations to higher-level process steps [20,29].

Another interesting finding was that most of the reviewed UI logs are initially
unlabeled, i.e., they do not have a concrete case notion [16]. In some publica-
tions, events in unlabelled logs are later grouped into cases based on different
attributes. These attributes include external session IDs created automatically
by a system [11] or manually by users [3,27,28], user IDs [10], or case IDs from
associated higher-level event logs [20].

4 Review of Industry Solutions

To ensure broad applicability of our reference data model, we also review
industry approaches for conceptualizing and capturing UI logs. Because those
approaches are core to the industry solutions’ functionality and business secrets,
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the available material for this review may be less specific than scientific papers.
Therefore, we conduct the industry review in this section as an addition to the
literature review, meant to confirm and complement the established findings.

4.1 Research Method

Selection Strategy. An initial analysis indicated that RPA tools are presently
the only industry solutions that collect UI logs on a large scale. Some vendors
also advertise task mining capabilities, but their primary focus is on recording
UI logs for the automation of routines. Because the RPA market is highly frac-
tured and fast-moving, we could not conduct a complete review. Instead, we
opted to analyze a sample of companies that can be seen as representative for
the market. Therefore, we selected the companies that the 2021 Gartner Magic
Quadrant RPA report1 attributes with a “high ability to execute” and/or a
“high completeness of vision”: UiPath, Automation Anywhere, Microsoft Power
Automate, Blue Prism, NICE, WorkFusion, Pegasystems, Appian, EdgeVerve
Systems, and Servicetrace. We also included Celonis Task Mining, which is the
only major product that uses UI logs primarily for low-level process mining.

Review Approach. In analyzing those eleven tools, we focused on finding the
commonalities and differences between the industry logs and the scientific logs.
Specifically, we wanted to know whether the industry logs capture the same set
of six core attributes found in the scientific logs (commonalities) and whether
the industry logs capture any other attributes that could be relevant for a widely
applicable reference data model (differences). To answer those questions, we col-
lected freely available material about the tools.2 This included trial or demo
versions, documentations, and promotional material, such as videos showcasing
the recording process. After collecting the material, we had to exclude two com-
panies from our list, Pegasystems and EdgeVerve Systems, because we could not
obtain sufficient information on the functionalities of their recording software.

4.2 Results

Commonalities. For each industry solution, we analyzed whether it also records
the six core attributes found in the literature review. The results are summarized
in Table 3. All reviewed tools record action types, target elements, input values,
applications, and timestamps. Similar to what we found in the literature review,
the recordable action types differ considerably between tools.

Differences. We also examined whether the industry solutions systematically
record any other attributes, but we did not find any. However, we did find a
significant difference between industry logs and scientific logs in how they capture

1 https://www.gartner.com/en/documents/3988021.
2 A full list of the material that we analyzed can be found at https://gitlab.uni-

mannheim.de/jpmac/ui-log-data-model/-/blob/46b363dc75b992a43398f501e3a4cb
0e755107d0/industry review sources.pdf.

https://www.gartner.com/en/documents/3988021
https://gitlab.uni-mannheim.de/jpmac/ui-log-data-model/-/blob/46b363dc75b992a43398f501e3a4cb0e755107d0/industry_review_sources.pdf
https://gitlab.uni-mannheim.de/jpmac/ui-log-data-model/-/blob/46b363dc75b992a43398f501e3a4cb0e755107d0/industry_review_sources.pdf
https://gitlab.uni-mannheim.de/jpmac/ui-log-data-model/-/blob/46b363dc75b992a43398f501e3a4cb0e755107d0/industry_review_sources.pdf
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Table 3. UI log attributes as found in the industry review

Company Action type Target element UI Hierarchy Application Input value Time-stamp

UiPath • • Screenshots • • •
MS power

automate

• • • • • •

Automation

anywhere

• • • • • •

Celonis • • Screenshots • • •
Blue prism • • Screenshots • • •
Workfusion • • Screenshots • • •
NICE • • Screenshots • • •
Appian • • Screenshots • • •
ServiceTrace • • Screenshots • • •

information on the location of elements within the UI hierarchy. In research,
this information is explicitly recorded in UI log attributes, but most industry
tools instead store it as screenshots outside of the log. Some tools also use the
UI hierarchy to construct selectors that uniquely identify an element within an
application’s GUI, similar to file paths. Another difference between industry logs
and scientific logs concerns the case notion. In the industry solutions, the case
ID is always a task or process label that is manually added to the log. Additional
business context attributes also need to be added by users and are not recorded
by the tool.

5 Reference Data Model

In this section, we introduce our reference data model for user interactions. We
consider a reference model to be a conceptual model that serves to be reused
for the design of other conceptual models [31]. Under such a reuse-oriented con-
ceptualization, (universal) applicability of the model is not a defining property.
However, maximizing the model’s application scope increases its reuse potential
and therefore its value to the community. Therefore, we designed the model in an
inductive or bottom-up fashion [31]: based on the commonalities and differences
between existing UI logs that we found in the literature and industry reviews,
we constructed a model that subsumes those commonalities, but remains flex-
ible with regard to their differences. In the following, we first elaborate on the
principles that guided our design process in Subsect. 5.1. The reference model is
presented in detail in Subsect. 5.2. In Subsect. 5.3, we provide a data interchange
format for UI log data as a supplement to the reference model.

5.1 Design Principles

In the literature and industry reviews, we found that the main commonality
between existing UI logs are the six core attributes. The main differences between
them concerned the scope, the level of abstraction, and the case notion. Based
on these findings, our data model follows four fundamental design principles:
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1. Minimal set of core components: The essential characteristics of user
interactions, as found in the reviews, are modeled as the components and
standard attributes of the data model. Because the model is intended to be
non-specific and universally applicable, we include no other elements, thus
keeping the number of components and standard attributes to a minimum.

2. Flexible scope: To ensure flexibility in scope, the data model can be
extended with any number of additional components and all components can
have an arbitrary number of attributes. Also, nearly all components and stan-
dard attributes are optional. The only non-optional component and attribute
that ensure the existence of a UI log are the activity and its name.

3. Flexible level of abstraction: To enable user interactions to be modeled in
various application contexts and at various levels of abstraction, the domain
of the standard attributes in the data model, such as the action type, is left
unspecified and can be determined at the point of instantiation. Furthermore,
all components are modeled as classes and can be subclassed. Explicit sub-
classes are only defined for the target object, because they are inherent to
the structure of user interfaces and the way they are embedded in ISs.

4. No explicit case notion: Whereas the case notion of a business processes
is tied to its instances, UI logs are not inherently structured along any data
dimension. The reviews have shown that they can have many possible case
identifiers. The data model therefore does not include an explicit case notion.
Instead, the case notion needs to be defined at the point of instantiation.

5.2 Reference Model Components

The reference data model is depicted as a UML diagram in Fig. 1. It consists
of nine components, modeled as classes, and their interrelations, modeled as
associations. Each class has an ID and can have any number of attributes. Some
components have standard attributes that have a particular significance for user
interactions. In the following, we define and explain the individual components.

Components that Define the User Interaction. In our model, user interac-
tions have two parts. First, the action component with its action type standard
attribute that describes what the user does. Common action types, as observed
in the reviews, correspond to the functionalities of standard peripheral input
devices, such as left or right mouse clicks, single keystrokes, or keystroke com-
binations for shortcuts. Higher-level distinctions are also possible. For exam-
ple, when collecting data in an ERP system, actions can be divided into input
actions, which make changes to a business object, and navigation actions, which
only serve to navigate the GUI.

The second part of an interaction is the target object that the action is exe-
cuted on. It is instantiated as one of four object types in the UI hierarchy, as
explained below. The action type and target object together determine the cen-
tral model component: the activity. It is uniquely defined as a combination of an
action and a target object and acts as the event label, like in a traditional event
log. An activity has three standard attributes: the activity name, an optional
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input value that denotes, e.g., the string that is entered into a text field, and a
timestamp to indicate its execution time. The activity name is determined as a
function of the action type of the corresponding action and the identifier of the
corresponding target object, for example, a concatenation. The timestamp is a
very common attribute in traditional event logs as well as UI logs. It is, however,
not a strictly required attribute in the data model, since there are alternative
ways to introduce a notion of order into an event log [36].

Components that Define the UI Hierarchy. The UI hierarchy integrates the
various types of UI element context data into a general structure. It consists of
four components, which form a tree-shaped composition hierarchy: UI element,
UI group, application, and system. The UI element and UI group levels mirror
the hierarchical structure of virtually all GUIs (e.g., the document object model
of a website). The application and system levels go beyond the actual GUI and
position it within an IS, which makes it possible to record application- and
system-level user interactions and allows the UI log to be compatible with cross-
application and even cross-system UI tracking.

UI hierarchy

performs
1

0..*

executed on

0..*

1..*

User

Action

 Action type

UI element

 Current state

UI group

Application

System

Task

Target object

1

0..*

1..*

Activity

 Activity name
Input value
 Timestamp

associated
with

Fig. 1. User interaction data model

Most actions are exe-
cuted on the atomic UI ele-
ments, which form the low-
est level. Examples include
buttons, text boxes, drop-
downs, checkboxes, or slid-
ers. Elements can be state-
ful, such as a non-empty
text box or a greyed-out
button. Capturing this state
is necessary, for example,
to track the effects of
copy/paste actions or to
differentiate between activ-
ity outcomes. The state of
a UI element is therefore
recorded in its current state
standard attribute.

UI elements are com-
bined into UI groups, which
can be nested within other
UI groups. In many cases,
these UI groups are explicit
design elements of the user
interface, but our model
does not impose group-
ing criteria and allows UI
groups to be formed from
arbitrary sets of UI ele-
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ments. A simple example that we saw in the literature review is an Excel cell
(UI element), which is part of a worksheet (UI group), which is again part of a
workbook (UI group). Modeling UI groups has two main advantages. First, it
allows to uniquely identify functionally identical UI elements. For the example
above, recording information about UI groups allows us to distinguish between
the cell A1 in separate Excel worksheets. This idea is used in many industry
solutions to generate element selectors from screen captures. Second, UI groups
can be useful for event abstraction, i.e., mapping user interactions to higher-
level conceptual tasks, if these tasks are closely tied to particular UI groups. For
example, all interactions with elements in a login mask (enter username, enter
password, click login) can directly be abstracted to the “login” task.

UI elements and UI groups belong to an application, i.e., a single program
instance. Some actions are directly executed on the application and are not tied
to lower-level elements, such as “undo” or application-specific hotkeys.

The root node of the UI hierarchy is the system, on which the applications run
and actions are recorded. Similar to application-level actions, it is also possible
to capture system-level actions, such as the Ctrl-Alt-Del key combination to
open the Task Manager on a Windows system.

Components that Define the Context. Finally, the data model includes two
components that put UIs in a conceptual context: user and task. These exist in
some form for all UI logs, which is why they are included in the model. In
contrast, other potential context components, such as organizational or resource
attributes, are use-case-specific and can be considered by extending the model.

The user is the entity that initiates any interaction. Each action is associated
with a single user. Because user IDs and attributes depend on the data collection
environment (e.g., device IDs in mobile applications or IP addresses on websites),
the model does not specify any attributes for users. This also means that the
user component is not necessarily restricted to humans and can model computer-
initiated interactions, for example when recording partially automated processes.

The task component associates the recorded user interactions with conceptual
tasks or routines, which makes it possible to map low-level GUI interactions to
higher-level user activities. This abstraction is an essential prerequisite for being
able to perform meaningful analysis on UI logs or to use them for automation.

5.3 Exchange Format

To further increase the applicability and reuse potential of our data model,
we implemented it as an extension to the XES standard for event logs.3 This
UIlog extension provides a standardized exchange format for UI logs as a supple-
ment to the data model. The implementation considers the activity equivalent
to the event label and does not include the activity name or timestamp standard
attributes because those are already provided by the concept and time exten-
sions. The other components and standard attributes are defined at event level,
3 The XML specification for the UILog extension is available at https://gitlab.uni-

mannheim.de/jpmac/ui-log-data-model/-/raw/main/UILog extension.

https://gitlab.uni-mannheim.de/jpmac/ui-log-data-model/-/raw/main/UILog_extension
https://gitlab.uni-mannheim.de/jpmac/ui-log-data-model/-/raw/main/UILog_extension
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i.e., as attributes of an activity instance. The generic target object is not directly
implemented, but can instead be specified through attributes that correspond to
its four UI hierarchy subclasses: the target object is the lowest-level UI hierarchy
component that exists for this event. For example, for an event with a UI ele-
ment attribute, the target object is always this UI element, whereas for an event
with no UI element or UI group attributes, the target object is the application.

6 Working Example

To demonstrate the practical utility of the reference data model, we describe
in this section how it can be instantiated in a real-life scenario. The scenario
is based on an RPA project, which we are currently conducting in cooperation
with an ERP system vendor. The project is set in the medical technology indus-
try, where companies are required to regularly validate their ISs to ensure that
they are in compliance with external quality regulations. The validation of an
IS involves manually executing a number of predefined workflows step-by-step
according to a rigid execution plan, checking the result of each step against a
set of acceptance criteria, and documenting the result. Manually executing a
well-defined validation workflow is a repetitive and time-consuming task. The
goal of our project is to automate this task using RPA. We want to record how
process experts interact with the UI of the ERP system during validation and
then train bots to emulate their actions.

In the following, we use the example of a keyword creation workflow to show
how an artificial UI log that captures one execution of this workflow may instan-
tiate the data model. The keyword creation workflow consists of five consecutive
steps, which are executed on the GUI parts shown in Fig. 2. The user (1) logs in
(a), (2) selects the right client and profile (b), (3) navigates through the dash-
board (c) to reach the explorer tree (d, left), (4) creates a new keyword (d,
right), and (5) logs out. The main acceptance criterion is that the newly created
keyword shows up in the explorer tree after refreshing.

Table 4 shows a UI log for one case, i.e., one execution of the keyword creation
workflow. It includes the action type, target UI element, and one level of UI
groups, plus input value and current state where applicable. The captured action
types are left and right clicks, text input, selected keyboard shortcuts, and none.
The activity label of an event (in most cases) consists of the concatenated action
type and target object identifier.

The first two events in the log do not correspond to single user interactions,
but instead take advantage of the UI group concept to directly abstract to higher-
level tasks. Instead of recording each event in the login and client selection masks
separately, the task is tracked only at completion and the content of the text
fields is read out when the user presses the “Login” and “Set Profile” buttons.
For these abstracted activities (marked with an “A ” prefix), the action type
is “none”; they are defined only through the target UI group, independent of
the performed actions. This approach can be used for simple tasks with the
same execution pattern in all workflows. Its main upside is that it reduces noise,
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a) Login b) Profile selection

c) Dashboard

d) Explorer tree with ”Create information object” form panel

Fig. 2. The user interface of the application described in the example

which is a common problem in UI logs [26]. In our scenario, activities like initially
entering a wrong password do not affect the outcome of the workflow and are
therefore not relevant for automating it. By abstracting during data collection,
those activities are automatically disregarded. Other advantages of abstraction
are reduced implementation effort and smaller UI logs.

For effective automation, various user inputs need to be tracked. Therefore,
the instantiation of the input value attribute in the log is flexible and depends
on the action type and target object: When a user writes into a textbox, the
input value is the entered string. When an item is selected from a dropdown, the
input value records the label of that item. For abstracted activities, the input
value captures the string values of all relevant UI group elements as a map.
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Table 4. UI log for one execution of the keyword creation workflow

Activity Action type UI element UI group Input value Current state

A Login none login mask {username: pren, password: dts123}
A Profile Selection none user select client {client: base, profile: author}
click content left click content dashboard ov

click masterdata left click masterdata explorer tree

click masterdata node expand left click masterdata node expand explorer tree

click keywords node expand left click keywords node expand explorer tree

rclick keywords right click keywords explorer tree

click ppanel new left click ppanel new explorer tree

click new information object left click new information object explorer tree

click name left click name fpanel keyword

input name input name fpanel keyword MyKeyword

click dd type left click dd type fpanel keyword [keyword, keywords folder]

click dd type left click dd type fpanel keyword keyword [keyword, keywords folder]

click dd linksto left click dd linksto fpanel keyword [linksto]

click dd linksto left click dd linksto fpanel keyword linksto [linksto]

click confirm left click confirm fpanel keyword

click keywords node expand left click keywords node expand explorer tree

KEY F5 explorer tree KEY F5 explorer tree

click logout left click logout explorer tree

click confirm left click confirm dialog logout

Most state information, however, is not required for automation. Therefore, the
current state attribute only records the values that can be selected from list
and dropdown elements, which is needed for some more complex workflows in
the validation process. For example, if a documents needs to be approved, the
validation must verify that a document’s author cannot be selected as approver.

This simple example demonstrates how some of the core components of the
reference model can be instantiated in a real-life scenario, and how the flexibility
in abstraction level can be leveraged to record attributes in a way that matches
the requirements of a particular use case. It also shows that, in practice, com-
ponents that are not relevant for a use case can simply be left out. The main
advantage of using the reference model here is that, unlike with an ad-hoc model
tailored to the use case, the attributes captured in the UI log follow a general
convention that also applies to other user interfaces. This makes recording UI
logs in the same format straightforward even in other applications, and makes
it possible to develop automation or task mining solutions that are independent
of the recording approach used.

7 Discussion and Conclusion

In this paper, we propose a reference data model for UI logs. Based on reviews
of scientific literature and industry solutions, it has a set of core components to
capture essential characteristics of user interactions and is flexible with regard
to scope, abstraction level, and case notion. We implement the model as an XES
extension and exemplarily show how it can be instantiated in a real-life RPA
scenario.

Contribution. Our main objective is to address the issues that arise from the
lack of standardization of UI logs. Therefore, we derive the reference from exist-
ing UI logs. Most of the components are directly adopted from the core attributes
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identified in our reviews. Our contribution is their integration into a unified
framework with well-defined relations. For example, we propose a rigid interpre-
tation of an activity by defining it as a combination of an action and a target
element. We also expand on the location context of UI elements and explicitly
define four distinct types of target objects in an unambiguous hierarchy.

To this unified framework, we add additional, less frequently collected com-
ponents and standard attributes that are particularly relevant for a complete
model of user interactions. For instance, the current state is an important prop-
erty of stateful UI elements when the log is intended to be used for automation.
In the UI hierarchy, we add the system on top of the commonly recorded appli-
cation to model system-level user interactions. We also introduce the user and
task context components to add (optional) generic business context to UI logs.

Limitations. One limitation of our work concerns its grounding in existing UI
logs. Despite following a methodical approach, we do not claim that our reviews
or the model are complete or exhaustive. There could be unidentified UI logs
or future UI logs in different use cases, which are not well represented by the
model. For instance, our data model is only intended to model user interactions
with graphical user interfaces, and we did not consider alternative input types,
for example from voice commands or eye-tracking devices. The model may also
be somewhat biased towards automation use cases because RPA solutions are
overrepresented in the two reviews that it is based on.

Another limitation is that the XES standard is not particularly well-suited for
UI logs. It does not support explicitly defining the relations between attributes,
so all components of the UI hierarchy have to be implemented at event level.
Therefore, even if many events involve the same target object, UI group, appli-
cation, system and their attributes need to be included each time, leading to
considerable redundancy. XES also assumes a single case notion, contrary to the
flexible case notion that we intend for the data model.

Conceptually, implementing the model as an extension to the Object-Centric
Event Log format OCEL [17] would be more appealing, because users, tasks, and
UI hierarchy elements could be modeled as objects, reducing the redundancy.
However, OCEL does not support extensions and has two main limitations with
regard to UI logs. First, it does not support dynamic object attributes that can
differ between events, such as the current value of a textbox that may change
between interactions. Second, object attributes cannot be tied to certain object
types, so for example the current state attribute cannot be limited to UI elements
only. Therefore, we decided to implement the model as an XES extension.

Future Work. Our reference model can contribute to the field by providing
a common, application-independent conceptual framework for user interactions.
However, like any reference model, it needs to prove its utility in practice. We
therefore want to encourage researchers and practitioners to adopt the model
for capturing UI logs in their projects, and to extend it both with regard to new
use cases and with regard to conceptual aspects, such as user privacy.
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