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Abstract. Business process simulation is a versatile technique to pre-
dict the impact of one or more changes on the performance of a pro-
cess. Mainstream approaches in this space suffer from various limitations,
some stemming from the fact that they treat resources as undifferenti-
ated entities grouped into resource pools. These approaches assume that
all resources in a pool have the same performance and share the same
availability calendars. Previous studies have acknowledged these assump-
tions, without quantifying their impact on simulation model accuracy.
This paper addresses this gap in the context of simulation models auto-
matically discovered from event logs. The paper proposes a simulation
approach and a method for discovering simulation models, wherein each
resource is treated as an individual entity, with its own performance and
availability calendar. An evaluation shows that simulation models with
differentiated resources more closely replicate the distributions of cycle
times and the work rhythm in a process than models with undifferenti-
ated resources.
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1 Introduction

Business Process (BP) simulation [1] is a technique to analyze “what-if” sce-
narios, such as “what would be the cycle time of a process if the number of
daily new cases increases by 20%?” (S1) or “what if two resources involved in a
process become unavailable for an extended period of time?” (S2).

The starting point for BP simulation is a simulation model consisting of a
process model enhanced with parameters capturing the available resource capac-
ity, activity processing times, arrival rate of new cases, etc. It has been noted
that existing BP simulation approaches suffer from various limitations [1,2,8].
Some of these limitations stem from incompleteness of, or inaccuracies in, the
BP simulation model. These limitations are partly addressed by data-driven sim-
ulation methods [5,11], which automatically discover and calibrate simulation
models from execution data (event logs). These methods ensure that the simula-
tion model is better aligned with the observed reality [1,5,11]. Other limitations
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of BP simulation approaches relate to assumptions made by the underlying BP
simulator [1,8], most notably the assumption that resources are interchange-
able entities. Specifically, mainstream BP simulation approaches, including data-
driven ones, make the following assumptions:

A1 Pooled resource allocation. Each resource belongs to one resource pool (e.g.,
a role or group). Resource pools are disjoint. All instances of an activity are
allocated to the same resource pool. For example, all instances of tasks Check
invoice and Schedule payment are allocated to an Accountant pool.

A2 Undifferentiated performance. The processing time of an activity does not
depend on the resource who performs it.

A3 Undifferentiated availability. All resources in a pool are available for work
during the same time periods, e.g., Monday to Friday, 9:00–17:00.

In practice, each (human) resource has their own capabilities, performance,
and availability. Previous studies have hypothesized that the above assumptions
affect the accuracy of simulation models [1–3,8], but without quantifying their
impact. In this setting, this paper addresses the following question: Do assump-
tions A1–A3 affect the accuracy of a business process simulation model, and if
so, to what extent? The paper studies this question in the context of simulation
models discovered from event logs. To address this question, the paper proposes
and evaluates: (1) a business process simulation approach with differentiated
resources; and (2) an automated method to discover a simulation model with
differentiated resources from an event log. In the proposed approach, resources
are not grouped into pools, but treated as individuals (unpooled allocation), the
performance of each resource is independent of that of other resources (differen-
tiated performance), and each resource may have its own availability calendar
(differentiated availability). As a result, a simulation model can be used not only
to answer what-if scenarios S1 and S2 above, but also scenarios such as: “what
if resource R is replaced by resource R′ with lower performance?” (S3) or “what
if a resource changes their availability from full-time to part-time?” (S4).

The paper is structured as follows. Section 2 discusses related work. Section 3
formalizes assumptions A1–A3 by presenting a simulation approach with undif-
ferentiated resources. Section 4 presents a simulation approach with differentiated
resources, while Sect. 5 proposes a corresponding method to discover simulation
models. Section 6 empirically compares simulation models with differentiated vs.
undifferentiated resources, and Sect. 7 concludes and sketches future work.

2 Related Work

Van der Aalst et al. [1,2] analyze three limitations of BP simulation approaches:
unreliability of simulation models for short-term prediction, insufficient reliance
on execution data to construct simulation models, and incorrect modeling of
resources. The authors emphasize that resources often work part-time and that
failure to capture this, leads to inaccurate simulations. In [13], the authors study
the impact of workload on resource performance, i.e., to what extent resource
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performance varies depending on workload and the impact of this variability on
simulation accuracy. Our contribution is related to these studies, but we focus
on limitations that arise when resources are modeled as undifferentiated entities.

Afifi et al. [3] note that existing BP simulation approaches, including the
BPSim simulation modeling standard [16], rely on role-based resource allocation,
and do not support a wider range of resource allocation styles such as those iden-
tified in [15]. However, the authors do not quantify the impact of the identified
limitations (e.g., role-based allocation) on concrete simulation scenarios.

Freitas & Pereira [8] reviews five BP simulation tools. They find that these
tools do not allow one to define unavailability periods for individual resources.
However, they do not evaluate the impact of this limitation. Some commercial
simulation engines such as IBM Websphere Modeler1 support the definition of
“named resources”, which can have their own timetables (differentiated avail-
ability). However, the activity processing times are defined at the level of tasks,
and hence they do not support differentiated performance.

This paper studies the impact of resource differentiation on simulation models
discovered from logs. Prior studies on BP simulation model discovery [5,11,14]
assume that resources are available 24/7. In [7], the authors address this limita-
tion by integrating a technique for discovering timetables into a simulation model
discovery pipeline, assuming all resources in a pool have the same timetable.

3 Simulation Models with Undifferentiated Resources

A BP simulation model with pooled allocation and undifferentiated resources
(herein, a classic BP simulation model) consists of a process model M (e.g., a
BPMN diagram) enhanced with simulation metadata described in Definition 1.

Definition 1 (Classic BP Simulation Model). A classic BP simulation
model is a tuple <E,A,G, F,RPools,Alloc, PT,BP,AT,AC>, where E,A,G
are respectively the sets of events, activities, and gateways of a BPMN model, F
is the set of directed flow arcs of a BPMN model, and the remaining elements
capture simulation parameters as follows:

1. RPools is a set of resource pools. Each resource pool p ∈ RP represents a
group of resources. The resource pools are disjoint, i.e., ∀ p1, p2 ∈ RPools :
p1 ∩ p2 = ∅. Each resource pool is described by the following properties:
– Size(p) ∈ N is the number of resources in the pool.
– Avail(p) is a calendar (a set of intervals) during which every resource

in p is available to perform activity instances.
– Cost(p) is the cost of each pool p per time unit (e.g., hour).

2. Alloc : A → RP is a function mapping each activity a ∈ A to one resource
pool p ∈ RPools. A resource pool can perform many activities.

3. PT : A → P(R+) is a mapping from each activity a ∈ A to a probability
density function, modeling the the processing times of activity a.

1 https://www.ibm.com/support/pages/download-websphere-business-modeler-
advanced-v70.

https://www.ibm.com/support/pages/download-websphere-business-modeler-advanced-v70
https://www.ibm.com/support/pages/download-websphere-business-modeler-advanced-v70
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4. BP: F → [0, 1] is a function that maps each flow f ∈ F s.t., the source of f
is an element of G to a probability (a.k.a., the branching probability).

5. AT ∈ P(R+) is a probability density function modeling the inter-arrival times
between consecutive case creations.

6. AC is calendar (set of intervals) such that cases can only be created during
an interval in AC.

Given that in classic BP simulation models, resource pools are disjoint, they
cannot capture scenarios where participants share their time across multiple
pools (cf. assumption A1 in Sect. 1). Also, since all resources in a pool have the
same timetable, these models cannot capture scenarios where a pool incorporates
some part-time resources and some full-time ones (assumption A3). Finally, in
classic BP simulation models, the processing times of an activity do not depend
on the resource that performs it. Hence, such models cannot capture scenarios
where some resources in a pool are faster or slower than others (assumption A2).

When executed in a simulation engine, a (classic) BP simulation model pro-
duces an event log as per Definition 2. Herein, we call simulated logs those logs
produced by a simulation and real logs those extracted from information systems.

Definition 2 (Event log). An event log E is a set of events, each representing
the execution of an activity instance in a process. An event e ∈ E is a tuple
e = <α, r, τ0, τs, τc>, where α is the label of one activity in a business process
(i.e., e is an instance of the activity α), r is the resource who performed α, τ0
is the timestamp in which the activity instance was enabled to be executed, and
τs, τc are, respectively, the timestamps corresponding to the beginning and end
of the activity instance. A trace (a.k.a., process case) is a non-empty sequence of
events t = <e1, e2, ..., en>, and an event log L = <t1, t2, ..., tm> is a non-empty
sequence of traces, each capturing one instance of a process (i.e., a case).

Various performance metrics can be computed from a log, including: waiting
time – the time-span from the moment the activity is enabled until the starting
of the corresponding event; processing time – the time-span between beginning
and end of the event; cycle time – the difference between the end time and start
time of a case; and resource utilization – the ratio between the time a resource
is busy executing activity instances, divided and its total availability time.

4 Simulation Models with Differentiated Resources

To lift the limitations imposed by assumptions A1–A3 (cf. Sect. 1), we propose
an approach to BP simulation with differentiated resources. In this simulation
model, the notion of resource pool is replaced by that of resource profile. Like a
resource pool, a resource profile models a set of resources that share the same
availability calendar. However, unlike classic BP simulation models, an activity
in a process model may be assigned to multiple resource profiles and the same
resource profile may be shared by multiple pools. For example, in a claims han-
dling process, there may be a resource profile for junior claims handler, another
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for senior claims handler and a third for lead claims handler, each with different
calendars. Activity Analyze claim may be assigned to junior claims handler and
senior claims handler, i.e., an instance of Analyze claim may be performed by
a junior or by a senior claims handler. Meanwhile, activity Assess claim may
be assigned to senior claims handler and lead claims handler. Finally, activ-
ity Approve large claim may be assigned to lead claims handler, i.e., only lead
claims handlers may perform this activity. Another difference is that in a classic
simulation model, each activity is mapped to a distribution of processing times.
Meanwhile, in a simulation model with differentiated resources, the distribution
of processing times depends not only on the activity, but also on the resource
profile. Thus, the distribution of processing times of the activity Analyze claim
when assigned to a junior claims handler is different than when assigned to a
senior claims handler, e.g., seniors may be faster, on average, than juniors.

Definition 3 (BP simulation model with differentiated resources). A
BP simulation model with differentiated resources DSM is a tuple <E,A,G, F,
RProf, BP,AT,AC>, where E,A,G are the sets of events, activities, and gate-
ways of a BPMN model, F is the set of directed flow arcs of a BPMN model,
and the remaining elements capture simulation parameters as follows:

1. RProf = {r1, ..., rn} is a set of resource profiles, where n is the number of
resources in the process, and each resource r ∈ R is described by:
– Alloc (r) = {α | α ∈ A} is the set of activities that r can execute,
– Perf (r, α) = R ×Am → Pm(R+) is a mapping from the resource r to a

list of density functions over positive real numbers, corresponding to the
distribution of processing times of each activity α ∈ Alloc, with m being
the number of activities that r can perform,

– Avail(r) is the calendar (a set of intervals) in which the resource r is
available to perform each activity α ∈ Alloc,

– Cost(r) is the cost of the resource r per time unit (e.g., hour)
2. BP, AT, and AC are defined as in Definition 1.

The key difference between Definition 3 and Definition 1 is that instead of
mapping each activity to a pool, Definition 1 maps each resource profile to the
set of activities, and for each activity, it captures the corresponding probability
density function of processing times. Note that a classic simulation model can be
converted into a model with differentiated resources by mapping each resource
pool to one resource profile. However, a scenario where an activity is assigned to
multiple resource profiles cannot be captured as a classic simulation model. Note
also that if every resource profile has a size of one (i.e., one profile per resource),
each resource may have different performance and availability. In Sect. 5, we
focus on discovering such models with individualized resources.

The operational semantics of simulation models with differentiated resources
is captured by Algorithm 1. This algorithm takes as input a simulation model
DSM according to Definition 3, the number pCases of process instances to sim-
ulate, and the timestamp startAt of the beginning of the simulation. Like in a
classic BP simulation engine, the simulation produces a log and the performance
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Algorithm 1. Snippet of processes simulation with differentiated resources
1: function SimulateProcess(DSM , pCases, startAt)
2: for each resource r ∈ DSM do
3: readyAt[r] ← minFrom(Avail , startAt)

4: diffResQ ← DiffResourceQueue (Alloc, Avail, SortingCriteria= min(readyAt))
5: evtQ ← GenerateAllArrivalEvents (pCases, DSM , AT, AC)
6: while evtQ not empty do
7: e ← PopEvent(evtQ)
8: e[r] ← PopResource(diffResQ, e[α])
9: e[τs] ← max(e[τ0], readyAt[e[r]])

10: e[τc] ← e[τs] + IdleProcessingTime (e[τs], e[r], e[α], Avail, Perf)
11: readyAt[e[r]] ← e[τc] + IdleT ime(r, Avail, e[τc])
12: UpdateResourceAvailability(diffResQ, e[r])
13: UpdateSimulatedEventLog(e)
14: state, enabled ← UpdateProcessState(e[α], e[pState], DSM , BP)
15: for each α′ ∈ enabled do
16: nE ← Event(α = α′, τ0 = e[τc], pState = state)
17: EnqueueEnabledEvent(evtQ, nE)

indicators in Sect. 3. Due to space limitations, we illustrate steps related to the
generation and update of the simulation events, focusing on the functions in Def-
inition 3, but omitting the details of the data structures and algorithms required
to handle the event logs, calendars, scheduling, and estimation of performance
indicators.

The first issue to handle in models with differentiated resources is that they
can be shared among several tasks. Unlike undifferentiated models, which allow
only one pool per activity, multiple resource profiles may be allocated to each
activity in differentiated scenarios. To address this, we use a multi-queue data
structure named DiffResourceQueue, initialized in line 4. The queue groups
the resources by activities according to function Alloc, restricting allocated
resources to the remaining shared activities. Besides, resources are sorted in
the queue according to a priority function SortingCriteria given as input.
By default, the resource sorting criteria consider the minimum timestamp in
which each resource will be ready to perform an activity, i.e., stored in the map
readyAt. Thus, the values in the map readyAt (initialized in lines 2–3) are calcu-
lated considering the resources working calendars, given by the function Avail,
and the periods in which resources are busy performing activities during the
simulation. The support for multiple sorting criteria in DiffResourceQueue

opens many options for prioritizing and sorting resources following different cri-
teria, e.g., allocate resources according to their expertise given some conditions.

Next, function GenerateAllArrivalEvents in line 5 produces the initial
event (see Definition 2) of each process case to simulate, i.e., according to the
arrival time distribution AT, in the intervals defined by the arrival calendar
AC. The queue evtQ stores and retrieves all the simulated events according
to the timestamp in which the corresponding activity α was enabled. Then the
simulation proceeds until there is not enabled event in evtQ (line 6). We are using
the notation e[r], e[α], e[τ0], e[τs] and e[τc] referring respectively to the resource
allocated, activity name, enabling, starting and completing times of the event e
(see Definition 2). Additionally, e[pState] represents the marking over the flow-
arcs of the corresponding process instance at the moment of the event creation.
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This marking simulates the token game as specified in the BPMN standard. For
each process instance created by the function GenerateAllArrivalEvents,
it generates tokens that traverse the flow-arcs in the model until reaching the
end event in the BPMN model. An element in the control flow becomes enabled
when one or many tokens arrive at its incoming flow-arcs (i.e., according to the
element execution semantics). Similarly, the execution of an enabled element
consumes the incoming tokens, generating new ones on its outgoing flow-arcs.

The queue evtQ only stores enabled events. Thus, the attributes e[r], e[τs]
and e[τc] are determined and updated once the corresponding event is popped
from evtQ, i.e., the event is then executed. In lines 7–8 of Algorithm 1, the event
with the lowest enabling timestamp in evQ is allocated to a resource, according
to availability and allocation criteria passed to the resources queue diffResQ,
i.e., selecting the participant being available the earliest as default criteria.

When the event is enabled, the allocated resource may not be according to
their calendar (and vice-versa). Thus, the starting timestamp of the event relies
on both task and resource availability (line 9). Next, in line 10, the completion
timestamp is calculated by the function IdleProcessingTime which adjusts
the ideal processing time (if the resource works in the task without interruption
according to Perf), plus the time the resource may rest from their calendar in
Avail. Similarly, function IdleTime calculates the next timestamp the resource
is available after completing the task, updating the resource queue accordingly
(lines 11–12). Finally, lines 14–17 update the process state, retrieving the activ-
ities enabled after executing the current event, queuing them as events in evtQ
with enabling time equal to the completion time of the previous event.

5 Discovering Differentiated Resources Profiles

This section proposes an approach to discover simulation models with differen-
tiated resources described in Sect. 4. Due to space limitations, we focus only
on the main steps to discover differentiated resource profiles from event logs,
i.e., to model each resource performance and availability independently. Before
describing our proposal, Definition 4 formalizes the weekly calendars, followed
by Definition 5 introducing some notations we will use across this section.

Definition 4. A weekly calendar ̂C is binary relation W × Δ between the
set of weekdays, W = {Monday, ..., Sunday}, and a set of time granules
Δ = {δ1, ..., δn} where

⋂n
i=1 δi = ∅. Each time granule δi ∈ Δ is a sorted

pair of time points <τw
s , τw

c >, such that τw
s , τw

c = <hour,minute, second>,
hour ∈ [0, ..., 23], minute, second ∈ [0, ..., 60], and τw

s ≤ τw
c . A calendar entry κ

is a tuple <ω, τw
s , τw

c > representing a time interval for a given day. For example,
κ = <Monday, 08:15:00, 12:00:00> describes Monday from 08:15 to 10:30.

Definition 5 (Notations).

– Given an event log L: E is the set of all the events in L, R and A are,
respectively, the sets of resources and activities in any event e ∈ E. Besides,
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Ar = {α ∈ A | ∃ e ∈ E, r ∈ R,α ∈ A : r, α ∈ e}, and Er= {e ∈ E | r ∈
R ∧ r ∈ e} are the set of activities and events executed by the resource r,
respectively. With, Eα = {e ∈ E | α ∈ A ∧ α ∈ e} being the set of events,
which are instances of the activity α, and Er,α = {e | e ∈ Er ∩ Eα} the set of
instances of α executed by the resource r.

– Γ is function mapping a timestamp in the event log into a calendar entry
κ = <ω, τw

s , τw
c >, where <τw

s , τw
c > spans n minutes. Specifically, Γ retrieves

an interval of size n containing the timestamp received as input. Note that,
Γ retrieves intervals assuming that days are split into intervals of equal size
n starting from the 00 : 00 : 00 h, e.g., from n = 15min days are split as
[00 : 00 : 00 − 00 : 15 : 00), [00 : 15 : 00 − 00 : 30 : 00), ..., [23 : 45 : 00 − 00 :
00 : 00). For example, consider a calendar with time intervals of 15min, for
the timestamp 2022 − 01 − 01T08 : 12, the function Γ returns the calendar
entry candidate <Saturday,<08, 00, 00>,<08, 15, 00>>.

– Ωn
r = {κm(κ) | ∀<τs, τc> ∈ Er, n > 0, κ = Γ (τs, n) ∧ κ = Γ (τc, n)} is a

multi-set of calendar entry candidates of duration n mapped from the starting
and ending timestamps of each event executed by the resource r, with the
supra-index m(κ) being the number of calendar entries κ in Ωn

r .
– Ωn

r,α = {κm | κ ∈ Ωn
r ∧ α ∼ κ, n > 0} is the subset of Ωn

r containing all
the calendar entry candidates that are instances of the activity α, with ∼
representing that an instance of α occurred in the calendar entry κ.

To discover resource availability calendars, we take inspiration from the app-
roach in [9], which discovers repetition patterns from a set of time granules with
a certain level of confidence and support. The latter approach assumes time
intervals that are covered entirely. This condition does not hold when discovering
working intervals of a resource, since the event log shows only the start and com-
pletion timestamps of each event, and gives no information about what happens
in two timestamps. Also, the start of an event is conditioned by the enablement
of the related activity, i.e., a resource can be available but still needs to wait to
start an activity until it becomes enabled in the process. Thus, we redefined the
confidence and support metrics in [9] to discover calendars over time granules not
fully described by the input data. Furthermore, we filter the resources with low
frequency according to their relative participation, to exclude external resources
(i.e., resource who seldom participate in the process), as there is insufficient data
to discover availability calendars for such resources individually.

Other approaches such as [12] can be used to discover resource availability
calendars. In this latter work, the authors use the activity waiting and processing
times of each activity to estimate the intervals resources are available according
to an input event log. Thus, [12] assumes that available resources will work as
soon as an activity is enabled, and they keep working during the entire activ-
ity’s execution interval (without any break). In this paper, do not make this
assumption. Instead, we only assume that the resource was working when the
activity instance starts and when it completes, and in-between, we consider that
the resource may or may not be working. In any case, the calendar discovery
approach in [12] could be used as an alternative to the approach presented here.
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Definitions 6, 7, and 8 describe, respectively, the metrics of confidence, sup-
port, and resource participation we use to filter and discover the resource pro-
files. The metrics retrieve a real number between 0 (worst assessment) and 1,
the best possible value. The activity-conditional confidence, given a calendar
entry κ = <ω, τw

s , τw
c > related to an activity α, measures the ratio between the

number of times α was started or completed on the weekday ω between τw
s and

τw
c , divided by the total of weekdays ω that α occurred. For example, it mea-

sures from every Monday a resource was observed executing a given activity,
how often it happened between 8:00 AM–8:15 AM. Definition 6 generalizes the
metric to a set of tasks executed by a resource in the same time granules as the
maximum between the individual value computed for each activity. The support
metric computes from all the timestamps a resource was active in the log, what
ratio is covered by some calendar entry. Finally, the participation metric esti-
mates the ratio of events performed by a resource compared with the number
of events executed by the most frequent resource. The comparison is relative to
the activities each resource can perform. For example, resources r1 and r2 may
execute 10 and 1000 events, respectively. If we compare r1 and r2 globally, then
r1 has a participation ratio of 0.01 compared to r2. However, if r1 and r2 execute
different activities, and if r1 is the only executing all the instances of an activity,
the relative ratio is 1.0 as r1 is relevant to the activity r1 performs alone.

Definition 6. Confidence(r, κ) =
max

α∈Ar,α∼κ
|Ωn

r,α|
|{ωm | ω∈W ∧ ω∈Ωn

r,α}| computes the
activity-conditioned confidence of a calendar entry κ = <ω, τw

s , τw
e >. The multi-

set in the fraction denominator computes how many times each activity α was
executed on the weekday ω.

Definition 7. Support(r, ̂C) = |{κm | κ∈Ωn
r ∧κ∈ ̂C}|

|Ωn
r | computes the support of a

given calendar ̂C, where the multi-set in the fraction numerator computes how
many calendar entries κ from the multi-set of candidates Ωn

r are covered by ̂C.

Definition 8. RParticipation(r) =
∑

α∈Ar
|Er,α|

∑

α∈Ar
max
r′∈R

|{Er′,α}| computes the relative

participation of a resource r. The fraction numerator computes the number of
events executed by r. The denominator sums up all the events executed by each
resource who executed the most events for each activity executed by r.

Algorithm 2 captures the main steps to calculate differentiated resource pro-
files. It takes as input an event log, a BPMN model, the size n of the granules in
the calendar, the desired support, confidence, and participation values, and the
minimum number of data points required to infer the processing-time distribu-
tions. Line 2 extracts from the log the sets and multi-sets described in Defini-
tion 5, followed by the initialization of the mappings Alloc, Avail and Perf

in Definition 3. Lines 4–9 discard the resources with low relative participation
(Definition 8), storing (in the mapping Avail) the discovered calendars of each
resource over the required threshold. Function ExtractCalendarEntries, in
line 5 transforms the timestamps in which each resource was active into calendar
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Algorithm 2. Resource Profiles Discovery (from event logs)
1: function DiscoverResourceProfiles(L, DSM , n, dSupp, dConf , dPart)
2: ParseEventLog(L) � To extract sets and multi-sets in Def. 5
3: Alloc, Avail, Perf ← ∅, ∅, ∅
4: for each r ∈ R do
5: Ωn

r ← ExtractCalendarEntries(Er, Γ , n)
6: if RParticipation(r) ≥ dPart then
7: Avail[r] ← DiscoverCalendar(Ωn

r , dSupp, dConf)
8: else
9: Avail[r] ← ∅

10: for each α ∈ A do
11: discarded ← ∅
12: for each r ∈ R : Avail[r] = ∅ and Er,α 	= ∅ do
13: discarded.Add(Er,α)

14: jointR ← MaxDisjointIntervals(discarded)
15: for each r ∈ jointR do
16: Ωn

r ← ExtractCalendarEntries(jointR, Γ , n)

17: ̂C ← DiscoverCalendar(Ωn
r , dSupp, dConf)

18: if ̂C 	= ∅ then

19: Avail[r].Add( ̂C)

20: if IsUnallocated(α) then
21: BuildUnrestrictedCalendar(jointR, Avail)

22: for each r ∈ Avail : Avail[r] 	= ∅ do
23: Alloc[r] ← Ar

24: for each α ∈ A do
25: Perf[α].Add(DiscoverProcessingTimes(Eα, R))

26: return Alloc, Avail, Perf

Algorithm 3. Calendar Discovery
1: function DiscoverCalendar(Ωn

r , dSupp, dConf)

2: ̂C, discarded ← ∅, ∅
3: for each <ω, τw

s , τw
c > ∈ Ωn

r do
4: if Confidence(<ω, τw

s , τw
c >, Ωn

r ) ≥ dConf then

5: ̂C.Add(<ω, τw
s , τw

c >)
6: else
7: discarded.Add(<ω, τ̂s, τ̂c>)

8: if Support( ̂C, Ωn
r ) < dSupp then

9: SortMultisetByMultiplicity(discarded[r], order=decreasing)
10: for <ω, τw

s , τw
c > ∈ discarded do

11: ̂C.Add(<ω, τw
s , τw

c >)
12: discarded.Remove(<ω, τw

s , τw
c >)

13: if Support( ̂C, Ωn
r ) ≥ dSupp then

14: break
15: return ̂C

Algorithm 4. Processing Time Distribution Discovery
1: function DiscoverProcessingTimes(Eα, R, binSize = 50)

2: ̂D ← ∅
3: pendingResources ← ∅
4: for each r ∈ R do
5: if |Er,α| ≥ binSize then

6: ̂D[r] = BestFittedDistribution(Er,α, Alloc, binSize)
7: else
8: pendingResources.Add(r)

9: jointD ← BestFittedDistribution(Eα, binSize)
10: for each r ∈ pendingResources do

11: ̂D[r] ← jointD

12: return ̂D



Business Process Simulation with Differentiated Resources 371

entries according to Γ (cf. Definition 5). Function DiscoverCalendar in line
7 is described by Algorithm 3.

To discover a calendar, Algorithm 3 receives a multi-set of calendar entry
candidates of a given resource r. Then, lines 3–7 iterate over each candidate,
adding those with confidence above dConf in the calendar ̂C, discarding the
remaining ones. Next, line 8 verifies if the calendar achieved the required support
dSupp. If not, the algorithm adds the most frequent entries until reaching the
required support (lines 9–14). Thus, the algorithm relies on confidence only to
filter potential outliers among the entry candidates, prioritizing that the calendar
always covers the ratio of timestamps described by the support.

Filtering the resource and calendar entries in lines 6–7 of Algorithm 2 may
cause the coverage of some tasks to become too low. As a result, an activity
that is executed rarely or that is executed by external resources (i.e., resources
from outside the organization, who seldom participate in the process) can lose all
their resources, if none of them fulfills the participation threshold. This issue is
addressed by Algorithm 2 in lines 10–21 by grouping the events of the removed
resources related to each activity and assigning them to aggregated resources.
Function MaxDisjointIntervals takes those grouped events and: (1) Sort
them in ascending order of their start times τs, (2) add event e′ with the highest
τs, deleting all events whose time interval intersects e′, (3) repeat (1)–(2) until no
intervals remain. Next, an aggregated resource is created from each set of events
retrieved. The calendar of the aggregated resource is built from the maximal set
of mutually disjoint time intervals [4], i.e., by grouping the calendar entries that
were discarded due to low confidence. Then, lines 15–19 create a calendar for
each aggregated resource. If none fulfills the confidence and support requirement,
lines 20–21 retrieve a single calendar as an aggregation of all the discarded events
of the related activity without checking for confidence and support values.

Lines 22–23 of Algorithm 2 allocate, to each discovered resource, the activi-
ties executed by them in the event log. Then, function DiscoverProcessing-

Times (line 25) estimates the differentiated resource performance as described
in Algorithm 4, which from every pair activity resource (lines 4–5), validates the
number of events extracted fulfills a certain level of significance binSize (above 50
by default). Resources below the threshold binSize are grouped, with their per-
formance discovered as an aggregation of all their events (lines 7–11). Function
BestFittedDistribution adjusts each event duration by the calendar of the
corresponding resource. Then, it builds a histogram from the event durations and
applies curve-fitting to find a probability distribution, from a library of distribu-
tions, that best approximates the histogram (the one with lowest residual sum).

6 Implementation and Evaluation

We implemented the proposed approach as an open-source (Python-based) sim-
ulation engine, namely Prosimos, available at https://github.com/Automated
ProcessImprovement/Prosimos. Prosimos supports the simulation of processes
with an unpooled allocation model and differentiated availability and perfor-
mance as per Sect. 4. Besides, it provides a component to automatically discover

https://github.com/AutomatedProcessImprovement/Prosimos
https://github.com/AutomatedProcessImprovement/Prosimos
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Table 1. Characteristics of the business processes used in the experimentation.

LO-SL/ LO-SH/ LO-ML/ LO-MH/ P-EX/ PRD/ C-DM/ INS/ BPI-12/ BPI-17

Traces 1000 1000 1000 1000 608 225 954 1182 8616 30 276

Events 9844 9782 9768 9569 9119 4503 4962 23 141 59 302 240 854

Activities 15 15 15 15 23 23 18 11 8 9

Resources 19 19 34 34 47 54 337 125 68 141

Simulation Time 1.27 1.24 1.25 1.24 1.07 0.72 0.73 1.29 10.32 41.97

a simulation model with differentiated resources from an event log, as described
in Sect. 5. Prosimos takes as input a BPMN process model with simulation
parameters as per Definition 3 (encoded in JSON format). Like other simulation
engines, Prosimos produces an event log and a set of performance indicators
such as waiting, processing, and cycle times, and resource utilization.

Using Prosimos, we conducted an empirical evaluation aimed at answer-
ing the following sub-questions derived from the question posed in Sect. 1: EQ1
What impact does unpooled resource allocation have compared to pooled allo-
cation? EQ2 What impact does differentiated resource performance have com-
pared to undifferentiated performance? EQ3 What impact does differentiated
resource availability have compared to undifferentiated availability?

Datasets. We use five simulated (synthetic) logs and five real-life ones. Since our
proposal does not deal with process model discovery, we use the BPMN models
generated from the input logs using the Apromore open-source platform,2, which
we manually adjusted to obtain 90% replay-based fitness. Table 1 gives descrip-
tive statistics of the employed logs, including number of traces and events and
number of activities and resources. Row “simulation time” shows the average
execution times (in seconds) across five simulation runs.

The first four event logs were obtained by simulating a Loan Origination
(LO) process model using Apromore. The model contains 15 tasks assigned to 5
resource pools. We first simulated the model by assigning the same calendar to
all resource pools. Using this single-calendar (S) model, we generated two logs:
one where the resource utilization of each pool is around 50% (Low Utilization
– L) and another with a resource utilization of 80% (High Utilization – H). The
simulation parameters of the H model were identical to the ones of the L model,
except that we adjusted the case arrival rate to obtain higher resource utilization.
To test the techniques in the presence of multiple calendars, we simulated the
same model after assigning different (overlapping) calendars to each of the five
resource pools. We simulated this multi-calendar (M) model twice: once with
a low utilization (L) and once with high utilization (H). This procedure led to
four simulated logs: LO-SL, LO-SH, LO-ML, LO-MH. The fifth log (purchasing-
example (P-EX)) is part of the academic material of the Fluxicon Disco tool.3

The first real-life log (PRD) is a log of a manufacturing process.4. The second
and third are anonymized real-life logs from private processes. The C-DM comes
2 https://apromore.com.
3 https://fluxicon.com/academic/material/.
4 https://doi.org/10.4121/uuid:68726926-5ac5-4fab-b873-ee76ea412399.

https://apromore.com
https://fluxicon.com/academic/material/
https://doi.org/10.4121/uuid:68726926-5ac5-4fab-b873-ee76ea412399
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from an academic recognition process executed at a Colombian University. The
INS log belongs to an insurance claims process. The fourth real-life log is a
subset of the BPIC-2012 log5 – of a loan application process from a Dutch
financial institution. We focused on the subset of this log consisting of activities
that have both start and end timestamps. Similarly, we used the equivalent
subset of the BPIC-2017 log6, which is an updated version of the BPI-2012 log
(extracted in 2017 instead of 2012). We extracted the subsets of the BPI-2012
and BPI-2017 logs by following the recommendations provided by the winning
teams of the BPIC-2017 challenge.7

Experiment Setup and Goodness Measures. To address questions EQ1–EQ3, we
discovered five simulation models from each log using the following approaches:

– SP-NP-NA corresponds to an unpooled allocation with undifferentiated per-
formances and availability. We allocate the resources into a single pool, where
each resource can execute the same activities as in the log. The resources share
an aggregated calendar built from the entire log. The processing time of each
activity is discovered by aggregating all its instances without considering the
resource who executes them.

– MP-NP-NA represents a pooled resource allocation with undifferentiated
resource profiles. Resources are grouped into disjoint pools assigned to one or
several activities according to [5]. Each resource pool shares a single calendar
and shares processing time distribution functions for each related activity,
i.e., built by aggregating the events of the resources in the pool.

– MP-DP-NA is a pooled resource allocation with differentiated performance
and undifferentiated availability. We retain the pools and calendars discov-
ered for MP-NP-NA. However, we extract differentiated processing time
distributions for each pair activity-resource.

– MP-NP-DA is pooled resource allocation with undifferentiated performance
and differentiated availability. We retain the pools and processing-time dis-
tributions discovered for MP-NP-NA. However, we extract a differentiated
calendar from the activity instances of each resource in the pool.

– SP-DP-DA corresponds to the unpooled resource allocation with differenti-
ated resources and performances proposed in this paper.

We assessed the goodness of the discovered models by simulating them using
Prosimos and measuring the distance between the simulated logs and the orig-
inal ones. Camargo et al. [5] propose several measures to assess the goodness
of simulation models discovered from data. These measures cover two dimen-
sions: the control-flow and the temporal dimension. The techniques proposed in
this paper do not affect the control flow. They only deal with resource perfor-
mance and availability. Accordingly, we evaluate them using temporal measures.
In line with [6], we compare simulated and real logs by extracting temporal

5 https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f.
6 https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b.
7 https://www.win.tue.nl/bpi/doku.php?id=2017:challenge.

https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://www.win.tue.nl/bpi/doku.php?id=2017:challenge
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histograms from each log and computing the Earth Movers’ Distance (EMD)
between these histograms. We use two EMD metrics, namely EMD-CT and
EMD-WR. EMD-CT compares the distributions of cycle time of the traces
in the logs. This metric captures to what extent the total durations produced by
the simulation model resemble those in the real log. To calculate the EMD-CT,
we group the cycle times in the real log into 100 equidistant bins. Then, we
discretize the simulated log by grouping the cycle times of its traces into bins
of the same width as those of the real log. We then measure the EMD between
these histograms. The second metric (EMD-WR) compares the distribution of
timestamps of the events in the two logs. This measure allows us to assess if
the simulated and the real log capture similar work rhythms. To calculate the
EMD-WR, we transform each log into a histogram by extracting the start and
end timestamps of each event in the log, and we group the resulting set of times-
tamps by hour. We then calculate the EMD between the resulting histograms.

The EMD is defined on an absolute dataset-dependent scale. Thus, EMD
distances should not be used to compare the performance of the approach across
multiple logs. Below, we use the EMD metrics to assess the relative performance
of multiple simulation discovery approaches within a given dataset.

The selection of parameters for simulation model discovery may impact the
accuracy. Choosing a small granule size, e.g., n = 60 s, may lead to a fragmented
calendar with many intervals. Conversely, a large value, e.g., n = 24 h, may
lead to unrealistic calendars in which resources are always available. With a
low support threshold, the algorithm may discard many timestamps in the log,
leading to low coverage of the observed events. To mitigate these issues, we run a
grid search over a range of parameters to find a configuration with low confidence
(to filter outliers), high support (to cover a representative set of events), and mid-
to-low resource participation (to discard resources that rarely participate in the
process). The grid search returned a granule size of 60 min for all experiments.
The confidence values ranged from 0.1 to 0.5, and the support and resource
participation ranged between 0.5 and 1.0.

Results. Tables 2 and 3 show the results of the EMD-CT and EMD-WR met-
rics, respectively. The results of the SP-NP-NA models illustrate that unpooled
resource allocations with undifferentiated resource profiles yield, on average, poor
results on both metrics. This suggests that undifferentiated availability and per-
formance may lead to less accurate results, especially when resources have con-
siderable differences in availability and performance. Another drawback of this
unpooled approach, due to the activities sharing resources, is that resources
may become busy executing an activity that they execute rarely. Thus, increas-
ing the waiting times of other shared activities (with higher frequencies) due
to the unavailability of the resource. This problem may have more impact on
processes with external resources. Still, these unpooled resource allocations with
undifferentiated resources may perform well in processes where resources have
similar calendars and performance, as shown in the BPI challenge logs.

Comparing the pooled models MP-NP-NA, MP-DP-NA, and MP-NP-
DA is not straightforward. On average, they exhibited better results than the
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Table 2. Results of the EMD-CT metric.

LO-SL/ LO-SH/ LO-ML/ LO-MH/ P-EX/ PRD/ C-DM/ INS/ BPI-12/ BPI-17 Mean

SP-NP-NA 4.49 3.83 15.77 35.1 17.54 21.73 10.53 11.24 10.04 3.95 13.42

MP-NP-NA 3.77 3.58 4.64 14.44 15.11 17.2 10.53 11.28 9.99 3.94 9.45

MP-DP-NA 3.65 4.15 7.35 17.72 15.54 18.1 10.53 11.23 9.98 3.95 10.22

MP-NP-DA 4.31 6.06 4.64 8.5 10.49 18.32 10.02 11.25 6.55 3.85 8.4

SP-DP-DA 2.19 1.82 2.44 4.9 10.26 7.32 8.83 3.33 3.84 1.32 4.63

Table 3. Results of the EMD-WR metric.

LO-SL/ LO-SH/ LO-ML/ LO-MH/ P-EX/ PRD/ C-DM/ INS/ BPI-12/ BPI-17 Mean

SP-NP-NA 491.4 264.5 341.4 195.1 1728.8 511.9 302.7 9244.1 2510.3 5177.0 2076.7

MP-NP-NA 375.1 276.2 369.5 64.5 1755.7 518.0 254.8 9176.4 2545.8 5141.5 2047.8

MP-DP-NA 507.5 207.6 344.2 64.9 1722.7 447.5 266.9 9178.5 2518.9 5134.5 2039.3

MP-NP-DA 402.5 273.1 388.5 169.5 1807.7 467.1 347.1 9384.5 2638.4 5129.9 2100.8

SP-DP-DA 378.4 273.5 331.3 76.7 1692.2 216.8 238.7 8510.9 2628.9 5277.4 1962.5

unpooled and undifferentiated model SP-NP-NA. The latter is a consequence
of the pooled models preventing the issue of resources allocated to low-frequency
tasks (outliers), but at the cost of not modeling processes with resources shared
among tasks. Also, in pooled models, the similarity criteria used to group the
resources adjust the data points to discover the aggregated calendars and pro-
cessing time distributions, leading to more accurate approximations. The exper-
iment shows that, on average, the model MP-NP-DA gets better values for
the EMD-CT metric than the models MP-NP-NA and MP-DP-NA. Sug-
gesting that a pooled model with differentiated availability and undifferentiated
performance approximates trace cycle times better than the baseline of pooled
allocation with undifferentiated resources. In contrast, the pooled model with
undifferentiated availability and differentiated performance MP-DP-NA per-
forms better on the metric EMD-WR than MP-NP-DA and MP-NP-NA.

As highlighted in Table 2, the unpooled model SP-DP-DA with fully differ-
entiated performance and availability yields the best results w.r.t. metric EMD-
CT. On average, the values achieved by SP-DP-DA are twice better than MP-
NP-NA and almost three times better than SP-NP-NA. This shows that fil-
tering resources with low resource participation (Definition 8), combined with
differentiated modeling of performance and availability, heightens the temporal
accuracy of the discovered simulation models. With respect to metric EMD-
WR (Table 3), the unpooled models with differentiated resource performance
and availability exhibited the best average results. Here, differences are not as
significant as with the cycle time estimations. However, unlike with the EMD-
CT, histograms built for the metric EDM-WR are also impacted by the inter-
arrival times discovered. For example, assume the discovered inter-arrival inter-
vals would produce more dispersed starting events in the simulation than in the
actual process. Consequently, it may lead to a shift in the timestamps of the sub-
sequently simulated events. The EMD-WR metric compares the exact times-
tamps in which each event occurs. Then, a shift of those events may have a more
significant impact on the metric evaluation than in the EMD-CT metric, which
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compares the trace durations without taking into account the exact timestamps
involved. The inter-arrival time discovery is orthogonal to the primary goal of this
paper, thus, kept as future work [10].8

To summarize, with respect to question EQ1, unpooled models offer the
best results. However, as expected, these models perform poorly when the pro-
cess involves homogeneous resource pools. Regarding questions EQ2–EQ3, the
experiments show that, on average, models with differentiated performance yield
better results (w.r.t. replicating the work rhythm) than undifferentiated models.
Conversely, models with differentiated availability are able to better replicate the
cycle times. If we only take into account one dimension at a time (differentiated
performance or availability), we do not observe significant accuracy improve-
ments (w.r.t. to models with undifferentiated resources). Instead, the experi-
ments show that modeling differentiated performance and availability together
yield the most visible improvements, both when it comes to replicating the cycle
time distribution and the work rhythm.

Threats to Validity. The evaluation reported above is potentially affected by
the following threats to validity: (1) Internal validity : the experiments rely
only on ten events logs. The results could differ on other datasets. To mitigate
this limitation, we selected logs with different sizes and characteristics and from
different domains. (2) Construct validity : we used two measures of goodness
based on histogram abstractions. The results could be different if we employed
other measures, e.g. similarity measures between time series based on dynamic
time warping. (3) Ecological validity : the evaluation compares the simulation
results against the original log. While this allows us to measure how well the
simulation models replicate the as-is process, it does not allow us to assess the
accuracy improvements of using differentiated resources in a what-if setting, i.e.,
predicting the performance of the process after a change.

7 Conclusion

The paper outlined an approach to discover simulation models where each
resource may have its own performance profile (differentiated performance) and
its own calendar (differentiated availability). The paper empirically shows that
models with differentiated performance and availability produce simulation logs
that are closer to the actual logs from which the simulation model is discovered.

The proposal has a few limitations that warrant further research. First, to
estimate inter-arrival times, it applies curve-fitting to the data series consisting of
the start time of the first activity instance of each trace. However, the actual case
creation time may be earlier than the start time of the first activity instance. This
limitation may be tackled by using specialized approaches such as the one in [10].
Second, the approach to discover availability calendars is designed to discover

8 We estimate the inter-case arrival distribution by applying curve-fitting to the data
series consisting of the start time of each trace. Branching probabilities are estimated
by replaying the log over the model and counting the conditional flow traversals.
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calendars with weekly periodicity. In practice, the availability of a resource may
vary across the year (e.g. different availability in summer months than in winter
ones), or across a month (e.g., different availability at the start than at the
end of a month). Another future work direction is to discover calendars with
more complex periodicity. Third, the approach for calendar discovery relies on
three parameters: confidence, support, and resource participation. In the current
implementation, we apply a grid search over narrow parameter ranges to find an
optimal configuration. Another future work direction is to enhance the approach
with a hyperparameter tuning algorithm to explore large configuration spaces.

Reproducibility. The experiments on public datasets may be reproduced
by cloning the repository https://github.com/AutomatedProcessImprovement/
Prosimos (tag bpm2022) and following the instructions given thereon.
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