
David Eyers
Spyros Voulgaris (Eds.)

LN
CS

 1
32

72

22nd IFIP WG 6.1 International Conference, DAIS 2022
Held as Part of the 17th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2022
Lucca, Italy, June 13–17, 2022, Proceedings

Distributed Applications
and Interoperable Systems

Lecture Notes in Computer Science 13272

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

David Eyers · Spyros Voulgaris (Eds.)

Distributed Applications
and Interoperable Systems
22nd IFIP WG 6.1 International Conference, DAIS 2022
Held as Part of the 17th International Federated Conference
on Distributed Computing Techniques, DisCoTec 2022
Lucca, Italy, June 13–17, 2022
Proceedings

Editors
David Eyers
University of Otago
Dunedin, New Zealand

Spyros Voulgaris
Athens University of Economics
and Business
Athens, Greece

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-16091-2 ISBN 978-3-031-16092-9 (eBook)
https://doi.org/10.1007/978-3-031-16092-9

© IFIP International Federation for Information Processing 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-7284-8006
https://orcid.org/0000-0003-3023-0299
https://doi.org/10.1007/978-3-031-16092-9

Foreword

The 17th International Federated Conference on Distributed Computing Techniques
(DisCoTec 2022) took place during June 13–17, 2022. It was organized by the IMT
School for Advanced Studies Lucca, Italy. The DisCoTec series is one of the major
events sponsored by the International Federation for Information Processing (IFIP) and
the European Association for Programming Languages and Systems (EAPLS). This
year’s event comprised three conferences:

– COORDINATION, the IFIP WG 6.1 24th International Conference on Coordination
Models and Languages;

– DAIS, the IFIP WG 6.1 22nd International Conference on Distributed Applications
and Interoperable Systems; and

– FORTE, the IFIP WG 6.1 42nd International Conference on Formal Techniques for
Distributed Objects, Components, and Systems.

Together, these conferences covered a broad spectrum of distributed computing
subjects, ranging from theoretical foundations and formal description techniques to
systems research issues. As is customary, the event also included several plenary sessions
in addition to the individual sessions of each conference, which gathered attendants from
the three conferences. These included joint invited speaker sessions and a joint session
for the best papers from the respective three conferences.

Associated with the federated event, four workshops took place:

– DisCoTec Tools, a tutorial session promoting mature tools in the field of distributed
computing;

– BlockTEE 2022, the First International Workshop on Blockchain Technologies and
Trusted Execution Environments;

– CoMinDs 2022, the First International Workshop on Collaborative Mining for
Distributed Systems;

– FOCODILE 2022, the 3rd International Workshop on the Foundations of Consensus
and Distributed Ledgers; and

– ICE 2022, the 15th International Workshop on Interaction and Concurrency
Experience.

Finally, in the context of the federated event, five tutorials were offered:

– An introduction to Spatial Logics and Spatial Model Checking;
– A Gentle Adventure Mechanising Message Passing Concurrency Systems;
– Smart contracts in Bitcoin and BitML;
– The �Q Systems Development Paradigm; and
– ChorChain: a Model-driven Approach for Trusted Execution of Multi-party Business
Processes on Blockchain.

vi Foreword

I would like to thank the Program Committee chairs of the different events for
their help and cooperation during the preparation of the conference, and the Steering
Committee and Advisory Boards of DisCoTec and its conferences for their guidance
and support. The organization of DisCoTec 2022 was only possible thanks to the
dedicated work of the Organizing Committee, including Letterio Galletta (chair of the
local organizing committee), Marinella Petrocchi and Simone Soderi (members of the
local organizing committee), Francesco Tiezzi (workshops and tutorials chair), Giorgio
Audrito (publicity chair), and all the students and colleagues who volunteered their time
to help. I would also like to thank the invited speakers for their excellent talks. Finally,
I would like to thank IFIP WG 6.1 and EAPLS for sponsoring this event, Springer’s
Lecture Notes in Computer Science team for their support and sponsorship, EasyChair
for providing the reviewing framework, and the IMT School for Advanced Studies
Lucca for providing the support and infrastructure to host the event.

June 2022 Rocco De Nicola

Preface

This volume contains the papers presented at the 22nd IFIP International Conference
on Distributed Applications and Interoperable Systems (DAIS 2022), sponsored by
the International Federation for Information Processing (IFIP) and organized by IFIP
WG 6.1. The DAIS conference series addresses all practical and conceptual aspects
of distributed applications, including their design, modeling, implementation, and
operation; the supporting middleware; appropriate software engineering methodologies
and tools; and experimental studies and applications. DAIS 2022 was held during June
13–17, 2022, in Lucca, Italy, as part of DisCoTec 2022, the 17th International Federated
Conference on Distributed Computing Techniques.

We offered three distinct paper tracks: full research papers, full practical experience
reports, and work-in-progress papers. We received 19 initial abstract submissions, 16
of which were for research papers, one for a practical experience report, and two for
work-in-progress papers. All submissions were reviewed by three to four Program
Committee (PC) members. The review process included a post-review discussion phase,
during which the merits of all papers were discussed by the PC. The committee
decided to accept nine full research papers, one full practical experience report, two
work-in-progress papers, and an invited paper.

The accepted papers cover a broad range of topics in distributed algorithms,
scalability and availability, stream processing, privacy, distributed ledgers, and trusted
hardware.

The conference was made possible by the hard work and cooperation of many
people working in several different committees and organizations, all of which are
listed in these proceedings. In particular, we are grateful to the PC members for their
commitment and thorough reviews, and for their active participation in the discussion
phase, and to all the external reviewers for their help in evaluating submissions. Finally,
we also thank the DisCoTec general chair, Rocco De Nicola, and the DAIS Steering
Committee chair, Luís Veiga, for their constant availability, support, and guidance.

June 2022 David Eyers
Spyros Voulgaris

Organization

General Chair

Rocco De Nicola IMT School for Advanced Studies Lucca, Italy

Program Committee Chairs

David Eyers University of Otago, New Zealand
Spyros Voulgaris Athens University of Economics and Business,

Greece

Steering Committee

Lydia Y. Chen TU Delft, The Netherlands
Frank Eliassen University of Oslo, Norway
Rüdiger Kapitza Technical University of Braunschweig, Germany
Rui Oliveira University of Minho and INESC TEC, Portugal
Hans P. Reiser University of Passau, Germany
Laura Ricci University of Pisa, Italy
Silvia Bonomi Università degli Studi di Roma “La Sapienza”,

Italy
Etienne Riviére Ecole Polytechnique de Louvain, Belgium
Jose Pereira University of Minho and INESC TEC, Portugal
Luís Veiga (Chair) INESC-ID and Universidade de Lisboa, Portugal

Program Committee

Eduardo Alchieri Universidade de Brasília, Brazil
Pierre-Louis Aublin Keio University, Japan
Silvia Bonomi Università degli Studi di Roma “La Sapienza”,

Italy
Davide Frey Inria, France
Vana Kalogeraki Athens University of Economics and Business,

Greece
Evangelia Kalyvianaki University of Cambridge, UK
Fábio Kon University of São Paulo, Brazil
João Leitão Universidade Nova de Lisboa, Portugal
Daniel Lucani Aarhus University, Denmark
Kostas Magoutis University of Ioannina, Greece

x Organization

Hein Meling University of Stavanger, Norway
Claudio Antares Mezzina University Urbino, Italy
Alberto Montresor University of Trento, Italy
Daniel O’Keeffe Royal Holloway, University of London, England
Emanuel Onica Alexandru Ioan Cuza University of Iasi, Romania
Marta Patino Universidad Politecnica de Madrid, Spain
José Orlando Pereira Universidade do Minho and INESC TEC,

Portugal
Hans P. Reiser Reykjavík University, Iceland
Romain Rouvoy University of Lille 1, France
Valerio Schiavoni University of Neuchâtel, Switzerland
Pierre Sutra Telecom SudParis, France

Local Organization

Rocco De Nicola
Letterio Galletta
Marinella Petrocchi
Simone Soderi
Francesco Tiezzi
Giorgio Audrito

Additional Reviewers

Christian Berger University of Passau, Germany
Emile Cadorel Inria, France
Johannes Köstler University of Passau, Germany
Adrien Luxey Inria, France
Antonis Papaioannou FORTH, Greece
Olivier Ruas Inria, France

Contents

Blockchains and Cryptocurrencies

An Evaluation of Blockchain Application Requirements and Their
Satisfaction in Hyperledger Fabric: A Practical Experience Report 3

Sadok Ben Toumia, Christian Berger, and Hans P. Reiser

Using SGX for Meta-Transactions Support in Ethereum DApps 21
Emanuel Onica and Ciprian Amariei

Understanding Cryptocoins Trends Correlations . 29
Pasquale De Rosa and Valerio Schiavoni

Rebop: Reputation-Based Incentives in Committee-Based Blockchains 37
Arian Baloochestani, Leander Jehl, and Hein Meling

Fault Tolerance

Lesser Evil: Embracing Failure to Protect Overall System Availability 57
Viktória Fördős and Alexandre Jorge Barbosa Rodrigues

Failure Root Cause Analysis for Microservices, Explained 74
Jacopo Soldani, Stefano Forti, and Antonio Brogi

Trusted Execution, Deep Learning, and IoT

Attestation Mechanisms for Trusted Execution Environments Demystified 95
Jämes Ménétrey, Christian Göttel, Anum Khurshid, Marcelo Pasin,
Pascal Felber, Valerio Schiavoni, and Shahid Raza

Accelerate Model Parallel Deep Learning Training Using Effective Graph
Traversal Order in Device Placement . 114

Tianze Wang, Amir H. Payberah, Desta Haileselassie Hagos,
and Vladimir Vlassov

Analysis of the Impact of Interaction Patterns and IoT Protocols on Energy
Consumption of IoT Consumer Applications . 131

Rodrigo Canek, Pedro Borges, and Chantal Taconet

xii Contents

Elastic and Scalable Systems

The HDFS Replica Placement Policies: A Comparative Experimental
Investigation . 151

Rhauani Weber Aita Fazul and Patrícia Pitthan Barcelos

An Elastic and Scalable Topic-Based Pub/Sub System Using Deep
Reinforcement Learning . 167

Thanos Giannakopoulos and Vana Kalogeraki

Invited Paper

Challenges in Automated Measurement of Pedestrian Dynamics 187
Maarten van Steen, Valeriu-Daniel Stanciu, Nadia Shafaeipour,
Cristian Chilipirea, Ciprian Dobre, Andreas Peter, and Mingshu Wang

Author Index . 201

Blockchains and Cryptocurrencies

An Evaluation of Blockchain Application
Requirements and Their Satisfaction

in Hyperledger Fabric
A Practical Experience Report

Sadok Ben Toumia1(B), Christian Berger1, and Hans P. Reiser2

1 University of Passau, Passau, Germany
bentou01@ads.uni-passau.de, cb@sec.uni-passau.de

2 Reykjav́ık University, Reykjav́ık, Iceland

hansr@ru.is

Abstract. Blockchain applications may offer better fault-tolerance,
integrity, traceability and transparency compared to centralized solu-
tions. Despite these benefits, few businesses switch to blockchain-based
applications. Industries worry that the current blockchain implementa-
tions do not meet their requirements, e.g., when it comes to scalabil-
ity, throughput or latency. Hyperledger Fabric (HLF) is a permissioned
blockchain infrastructure that aims to meet enterprise needs and provides
a highly modular and well-conceived architecture. In this paper, we sur-
vey and analyse requirements of blockchain applications in respect to
their underlying infrastructure by focusing mainly on performance and
resilience characteristics. Subsequently, we discuss to what extent Fab-
ric’s current design allows it to meet these requirements. We further
evaluate the performance of Hyperledger Fabric 2.2 simulating differ-
ent use case scenarios by comparing single with multi-ordering service
performance and conducting an evaluation with mixed workloads.

Keywords: Hyperledger Fabric · Distributed Ledger Technology ·
Application Requirements · Blockchain · Performance · Scalability ·
Benchmarking

1 Introduction

Since the invention of Bitcoin [24], many people are speculating about how
blockchain can revolutionize our daily lives. Several sectors can profit from
blockchain, whereas for many other areas it is considered an overkill [35]. Today,
a number of industries still struggle with basic concerns like traceability, integrity
protection, or privacy [8,16,17]. Competition is higher than ever, which makes
certain parties secretive about their transactions. Such issues are often not being
sufficiently handled by traditional applications.

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
D. Eyers and S. Voulgaris (Eds.): DAIS 2022, LNCS 13272, pp. 3–20, 2022.
https://doi.org/10.1007/978-3-031-16092-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16092-9_1&domain=pdf
https://doi.org/10.1007/978-3-031-16092-9_1

4 S. Ben Toumia et al.

This raises the demand of a platform that can handle these issues while meet-
ing their standards in respect to resilience and performance [8,16]. Enterprises
often need a permissioned blockchain that restricts participation to a consortium
of members. Due to competitors being also on the blockchain network, these
parties need privacy: not everyone should be able to see all their transactions –
instead transactions must be on a need-to-know basis [7].

Hyperledger Fabric (HLF) [1] is an open-source, permissioned blockchain
platform that intends to satisfy enterprise application requirements. It presents a
modular architecture with pluggable consensus and can achieve high throughput.
Previous studies have highlighted the issue of missing support for Byzantine fault
tolerance (BFT) [31]. Starting from version 2.0, HLF switched from a Kafka-
based ordering service to a Raft [25]-based ordering service. While Raft (like
Kafka) does not assume BFT, it could be transformed to do so in future, and
could essentially be a step towards implementing BFT in HLF.

We think that it is important to discuss and validate how far design deci-
sions like these, which concern the infrastructure of a blockchain system, match
up with the requirements concrete applications impose towards the underlying
blockchain infrastructure.

Contribution and Outline. Our main contribution consists in investigating
relevant requirements of blockchain applications and discussing how far these
are addressed in HLF. In the remainder of this report, we refer to related work
(Sect. 2), provide relevant background knowledge (Sect. 3), explain our method-
ology (Sect. 4) and conduct a requirements analysis for blockchain applications
selected from different use-cases (Sect. 5). Further, we analyse design choices
HLF makes to match these requirements (Sect. 6) and investigate on the question
whether HLF can satisfy performance requirements by conducting experiments
for different scenarios (Sect. 7). Finally, we draw our conclusions (Sect. 8).

2 Related Work

Li et al. [21] have recently published a survey paper highlighting Hyperledger
Fabric and Hyperledger Composer’s use-cases. The paper examined current the-
oretical and real-life HLF deployment while highlighting how HLF was used as
a solution to solve existing enterprise problems. A recently published disser-
tation [8] has studied the requirements and unresolved issues of supply chains
while also proposing architectures based on blockchains to address these issues,
the main focus was however restricted to supply chain management.

Several papers have included benchmarks for Hyperledger Fabric [1,3,11,30,
33], mainly focusing on the v1.x versions of Fabric with FastFabric pushing an
impressive 20,000 transactions per second (TPS) [11]. Androulaki et al. proposed
the architecture, components and design choices behind HLF and experimentally
validated the system performance [1] whereas Thakkar et al. studied how various
parameters of the network impacted performance such as number of channels,
number of endorsers and world-state database choice [33] - their proposals were
incorporated in future Hyperledger Fabric versions.

Blockchain Application Requirements and Their Satisfaction in HLF 5

Further, Guggenberger et al. [12] have recently published a detailed perfor-
mance report for Hyperledger Fabric v2.0 combining several configurations and
testing Fabric’s fault-tolerance using DLPS [29]. Their report covers an in-depth
benchmark analysis of HLF.

In our report, we focus on discussing application requirements of blockchain
and how these requirements are met by HLF’s design. Our report also includes
a performance evaluation that conducts experiments on multi-ordering service
performance and mixed workloads (e.g., read-heavy vs. write-heavy) which have
yet not been sufficiently studied by previous works but are interesting from an
application point of view.

3 Background

Blockchain. The term blockchain is not used consistently in academic literature.
Our definition emphasizes that we are referring to a complete system rather than
just a specific data structure:

A blockchain is a distributed system that manages an append-only and
totally-ordered log of immutable transactions (also called the ledger) in a repli-
cated fashion. Several nodes hold a consistent copy of the ledger, and several
nodes are involved in validating transactions issued by clients. To order trans-
actions, typically a consensus algorithm is employed. Further, transactions are
usually grouped into blocks, which are chained by referencing the hash of the
previous block in the block header.

The traceability and immutable history of transactions in a blockchain fun-
damentally increase the trustworthiness and transparency of the system. As long
as a sufficiently large portion of nodes in the system (e.g., determined by quan-
tity, resource allocation, or stake) behaves correctly, the overall system works as
intended. There is no need to put trust into the correctness of any single node,
thus eliminating single point of failure for blockchain applications. Immutability
refers to the property that each block bears also the hash of the previous block,
and a modification to a block modifies its hash, which results in the link being
broken and thus invalidating subsequent blocks [31,37].

Hyperledger Fabric (HLF). HLF is a highly modular enterprise-grade dis-
tributed ledger platform. HLF has plug and play capabilities that allow it to be
suitable for a wide range of use-cases. Further, HLF follows an execute-order-
validate architecture, where transactions are first simulated (this means executed
against the current state of the ledger) by endorsing peers, ordered by the order-
ing service, and then committed by committing peers.

The transaction flow consists of the following steps (also shown in Fig. 1) [1]:
The client sends a transaction proposal to the peers specified in the endorsement
policy and the endorsing peers simulate the transaction (1), which produces
read sets and write sets, without changing the state of the ledger. After that, the
client collects the responses of the endorsing peers (2), which contain the read
and write sets, checks if the endorsement policy is satisfied, assembles them in an
envelope and sends that to the ordering service (3). Subsequently, the ordering

6 S. Ben Toumia et al.

Fig. 1. Hyperledger fabric transaction flow [1].

service orders the transaction without knowing the contents of the envelope.
Transactions are batched and once one of the conditions for cutting a block is
met, the ordering service sends the block to the committing peers (4). Finally,
committing peers validate or invalidate the transactions in the block and the
block is eventually appended to the ledger (5).

4 Methodology

Our evaluation approach covers two dimensions: performance and resilience.
Performance characteristics are quantitative (e.g., transaction throughput) and
are used to assert that the blockchain can handle the application’s workload.
Resilience characteristics are often qualitative and describe if the blockchain can
deliver a certain service quality (e.g., tolerating faults, providing confidentiality).

Aspects of Resilience. Resilience is a broad term that encompasses many
aspects [5]. We employ the following aspects in our subsequent analysis:

Fault Tolerance Coverage (FTC). A measure of effectiveness for fault tolerance
is fault tolerance coverage [2]: it encompasses the error- and fault-handling cover-
age, a measure to capture how many of the occurring faults are actually covered
by the fault tolerance mechanism (development faults might restrict the intended
fault-handling coverage) and the fault assumption coverage, which is a measure
for reasoning about how closely assumptions of a fault model actually cover
reality. In our analysis we employ assumption coverage to indicate which type
of faults a blockchain can tolerate.

Fault Tolerance Proportion (FTP). Fault tolerance proportion is an assumed
upper-bound that indicates the ratio of faulty nodes a blockchain can tolerate,
to total nodes participating in the system (this property is also sometimes called
resilience bound). Fault tolerance coverage and proportion are often coupled.

Blockchain Application Requirements and Their Satisfaction in HLF 7

Table 1. Categorization of performance requirements.

Low Medium High

Scalability <100 nodes 100 to 1000 nodes >1000 nodes

Throughput <100 TPS 100 to 1000 TPS >1000 TPS

Latency <3 s 3 s to 10 s >10 s

Membership (Node Authenticity). In permissioned blockchains a consortium of
nodes is defined and a mechanism for managing membership is required. Provid-
ing membership information and node authenticity is an important feature for
blockchains and blockchain applications might demand the blockchain system to
be capable to changing (e.g., expanding) its consortium at run-time.

Confidentiality. There are different types of application requirements associated
with confidentiality depending whether the content, sender, or other information
of a transaction need to be confidential.

Integrity. Integrity is a main motivator towards blockchain adoption. Data
integrity in blockchains is achieved by the immutability property of the ledger.
Undetected tampering is almost infeasible, as hashes can be used to quickly val-
idate for correctness. We argue that all blockchain applications share the need
of this characteristic and will thus not use it in a comparison.

Aspects of Performance. We consider typical blockchain performance aspects
that application might demand, in particular:

Scalability. Number of nodes that can participate in the blockchain system.

Throughput. Number of transactions per second (TPS) that can be processed
by the blockchain system.

Latency. Time that elapses between a transaction being issued on the client side
and being finalized within a block that is appended to the ledger.

For each aspect, we categorize performance requirements of blockchain appli-
cations into three categories: low, medium and high as shown in Table 1. This
categorization is rough and aligns with performance magnitudes of blockchain
systems. Achieving low latency is better and thus means a higher requirement
towards the blockchain infrastructure. For the other aspects, higher is better.

5 Requirements Analysis

HLF is currently being used in a number of fields [23], some of them are already
in production, but most of them are still in development or proof-of-concept
status. These use-cases are high-risk environments with a lot at stake where
some parties could be interested in gaining unauthorized access or tampering
with the data for personal gain, thus requiring a highly resilient infrastructure.

In this section, we analyse use-cases and derive which of the characteristics
(Sect. 4) are required by which application and present a summary in Table 2.

8 S. Ben Toumia et al.

5.1 Electronic Voting (EVote)

EVote [27,28] is an open-source proof-of-concept application for holding an elec-
tronic election. The app leverages HLF to meet its needs for immutability and
traceability, which in return reduce election fraud. Smart contracts are used to
tally up votes, therefore reducing costs of manual work [28]. A voting network
to hold an election is a highly adversarial environment that might encourage
malicious behaviour of individuals. Therefore, we consider it valuable for such a
system to be Byzantine fault-tolerant (and to tolerate up to 33% of participants
becoming faulty). The system should be permissioned. It should further provide
high confidentiality: When votes need to be checked for their validity (to prevent
double voting) they should be untraceable to the voter to prevent any form of
coercion. Subnetworks could help to enforce a need-to-know policy for different
entities involved in the process.

From a performance standpoint, a high latency is tolerable in such a network,
because voting is per user a one-time action. It should not exceed 30 s to maintain
a pleasant user-experience. To maintain such latency, the system needs at least
a medium throughput, as elections are usually held in a small time period where
at peak times, many transactions are issued. In such a use-case, the scalability
of the system has another goal other than being able to handle such a traffic and
that is transparency and ensuring that not a single entity has more control over
the voting process. An approach for this might be to have every election district
host a peer node (or more in order to avoid a single point of failure) and as such
a medium to high scalability becomes a requirement.

5.2 Supply Chains (IBM Food Trust and GoDirect Trade)

GoDirect Trade [16] is a practical use case for blockchain technology, offering an
online marketplace for aerospace parts. The traceability feature of blockchain
allows users to access the lifecycle of parts and any associated information
required by the government. IBM Food Trust [17,20] is a project by Walmart,
IBM, Nestle, and Unilever aimed at improving traceability of products and all
their ingredients to the farms and also to access different data about the product
to satisfy customer needs and guarantee the safety of foods [17]. IBM Foodtrust
and GoDirect Trade both utilize the immutability and traceability aspects of
blockchain, in that both are interested in the history and provenance of items
recorded on the immutable ledger.

From a resilience perspective of view, IBM Foodtrust could go well with BFT
(and have a resilience bound of 33%) whereas GoDirect Trade could benefit
from using only CFT (and having a resilience bound of 50%). Contrary to IBM
Foodtrust, where participants could bring up their own peers and deploy their
own smart-contracts, GoDirect Trade’s nodes are in-house [16]. Further, both
applications need to be run on a permissioned blockchain, where participants
are granted access based on their status on the market. Moreover, both systems
require high confidentiality, as trade secrets are at stake here as in both networks
competitors are present.

Blockchain Application Requirements and Their Satisfaction in HLF 9

Table 2. Blockchain applications requirements towards the underlying blockchain
infrastructure with very high (✭), high (), medium () and low () demands. (Note
that, lower latency is better, and is thus considered a higher demand towards the infras-
tructure, e.g., tolerating a higher latency as in EVote means a lower requirement.)

Resilience Performance

Application FTC FTP Membership Confidentiality Scalability Throughput Latency

EVote BFT 33% Yes ✭ (sender, content)

IBM FoodTrust BFT 33% Yes (content)

GoDirect Trade CFT 50% Yes (content)

Change Healthcare CFT 50% Yes ✭ (sender, content)

Visa B2B Connect BFT 33% Yes (content) ✭

Contrary to EVote, where users are usually one-time users, supply chains,
due to the globalisation of the markets, are usually comprised of a lot of actors
and each one of them uses the network multiple times in a small time frame [8].
In terms of throughput and latency, GoDirect Trade requires only a medium
throughput and a medium latency whereas IBM FoodTrust requires a high
throughput and a low latency. This is due to the number of incoming trans-
actions where supply chains in the context of food generate a lot more requests
than supply chains in the context of aviation. In GoDirect Trade, network clients
are not allowed to host their own nodes. As stated in [16] the system operates
five validating nodes, which indicates that low scalability might suffice. In con-
trast, IBM FoodTrust subscribes are allowed to host their own nodes, install
their own private smart-contracts on private channels to automate transactions,
which indicates that it requires a higher scalability than GoDirect Trade and
therefore needs a least medium scalability.

5.3 Healthcare (Change Healthcare)

Change Healthcare [15] is a company with the aim to modernize the American
health system. Leveraging HLF the company is able to link providers and payers
in a trustful environment to facilitate claims.

As an actor in the healthcare industry, Change Healthcare has to be very wary
about how data on their network is handled. Providing access to unauthorized
persons has serious legal consequences [26], which is why Change Healthcare
needs very high confidentiality and private ledgers. Most importantly, trans-
actions, such as financial or patient data, should be on a subnetwork with only
participating entities granted access (need-to-know basis), for example a hospital
at which a person was a patient in and the insurance company for claims process-
ing. Similarly to GoDirect Trade, Change Healthcare’s nodes are in-house and
it can benefit from providing only CFT and having a fault tolerance proportion
of up to ε < 50%.

The blockchain network has initially run on six nodes in the company’s data-
center but now they are looking towards expanding to the cloud. As such, Change
Healthcare only needs low scalability due to the nodes belonging to it like in

10 S. Ben Toumia et al.

GoDirect Trade’s case. Currently the system can process 550 transactions per
second (TPS) but the company is aiming for a higher number in near future [15].
As such, the blockchain system needs at least medium throughput and works
best with low to medium latency to maintain a satisfactory user-experience.

5.4 Banking (VISA B2B Connect)

VISA B2B Connect [34] is a project by VISA to facilitate cross-border and cross-
currency payments. It leverages HLF to create a secure and trusted network of
financial institutions where international transfers do not have to go through
intermediate banks, thus drastically reducing both delays and costs.

The current standard for cross-border cross-currency payments and the main
system VISA B2B Connect is challenging is SWIFT, which handles approxi-
mately 33.6 million transactions per day. VISA B2B circumvents the shortcoming
of traditional banking applications by employing an one-to-many architecture,
in which VISA B2B is directly linked to several financial institutions, therefore
intermediaries can be bypassed. As a result of this centralization and the SWIFT
system as a motivator, such a system requires medium scalability, and very high
throughput to be capable of handling peak workloads. Typical other banking
methods have varying throughput with PayPal having around 450 TPS [13] and
credit-card companies such as VISA itself require 50,000 TPS [11].

This centralization also means VISA’s nodes are in-house. However, unlike
GoDiectTrade and other companies hosting their nodes in-house VISA should
employ BFT along with a FTP of up to 33%. The nature of this system makes
attacks highly rewarding and insider attacks are a legitimate concern, such as if
a participant is compromised or participant himself being dishonest.

6 How HLF Meets Enterprise Requirements

In this section, we focus on the design considerations and features of Fabric that
allow it to meet performance and resilience requirements of potential use-cases.

6.1 Resilience Requirements

In the following, we highlight Fabric’s features, components and design choices
while briefly explaining their role in increasing resilience.

Blockchain Features. Maintaining integrity of the data is a critical aspect
of resilience and a priority for businesses. HLF, being an implementation of
blockchain, comes with both immutability and traceability. Data is immutable
once appended to the ledger, this way users can insure its integrity [1].

Permissions. Fabric is a permissioned blockchain, permissions are maintained
by one or more membership service providers (MSP) which use cryptographic
identities. Transactions are checked at every step to verify authenticity of
requests. This in turn limits unwanted access and increases trust [1].

Blockchain Application Requirements and Their Satisfaction in HLF 11

Channels. Unlike other blockchain implementations, HLF uses channels. A
channel is a dedicated subnetwork with its own private ledger and a group of
channel members that manage a copy of the ledger, thus ensuring that not every
peer on the network has access to the ledger, therefore increasing confidentiality.

Endorsement Policy. Channel administrators define the endorsement policy,
which specifies which peers (endorsers) have to approve a transaction before this
is sent to the ordering service. If a client does not fulfill an endorsement policy
he has to retry submitting the transaction again [1]. An endorsement policy
consisting of multiple peers belonging to different organizations would increase
transparency and trust in the system, as no single entity is in full control of
endorsing transactions. A single point of failure can be avoided by defining a
minimum number or percentage of endorsing peers.

Consensus. An appealing feature of HLF is pluggable consensus. Older ver-
sions of HLF use Kafka + ZooKeeper (ZK), while the current default consensus
protocol is Raft. Both Raft and Kafka+ZK are crash fault-tolerant. Since con-
sensus is pluggable, developers could opt for a BFT ordering service in future
as a new BFT consensus library has been proposed for HLF recently [4]. Raft is
embedded into HLF and thus enjoys the direct support of the HLF community
whereas Kafka+ZK are supported by Apache. In terms of performance, a pub-
lished benchmark [10] with v1.4.1 showed that Raft can be much more efficient.

Resilience of the Execute-Order-Validate Design. HLF employs an
execute-order-validate architecture to separate these different concerns. A goal
of this design is to help withstanding attacks that may target performance degra-
dation or resource exhaustion. In particular, this design can help to circumvent
bottleneck situations since it allows for transactions to be processed in parallel
and by only a subset of nodes.

Peer Gossip. Peer gossip enables peers’ ledgers stay in sync by distributing data
to other peers on the channel. This aids resiliency in that peers that have gone
offline for sometime are able to have synced ledgers and can endorse transactions
again after they are back online.

Records of Invalid Transactions. All transactions in HLF, in contrast to
other blockchain implementations, are recorded on the ledger whether they are
valid or invalid. This allows dishonest or malicious users to be detected and
black-listed from the network which results in a more secure platform [1].

Identity Mixer. HLF supports the use of identity mixer (Idemix) to enhance
privacy by providing unlinkability and anonymity – this however, comes with
limitations such as not being able to endorse transactions. An Idemix entity
(issuer) certifies a user’s attributes in form of a digital certificate, users are
then able to generate a zero-knowledge proof of possession of a certificate while
revealing only what they choose to reveal to a verifier.

Hardware Security Module. HLF supports the usage of hardware security
modules (HSM) allowing cryptographic operations like signature generation to

12 S. Ben Toumia et al.

be offloaded to them. This has the advantage of letting the HSM manage private
keys of peers or orderers, thus protecting the keys from unauthorized reading.

Transport Layer Security. Communication over a HLF network can be
secured using TLS. This can be a one-way or a two-way authentication.

Private Data Collections. Channels support data privacy by having only
organizations on the channel that are allowed to view these transactions. In
cases where a subset of channel members need to conduct transactions between
each other while not wanting other channel members to know the contents of
these transactions, they could create a new channel. This is however associated
with a higher administrative overhead. A solution for this would be the usage of
private data collections1. Private data has a separate transaction flow compared
to other data on the channel. Only authorized peers can see private data and it
is communicated between them using gossip, all other nodes including ordering
nodes only see hashes of this data, non-authorized nodes append the hashes of
this private data in their ledgers, so they know a transaction has taken place
privately between entities on the channel but they do not know its content. To
comply with government regulations, some organizations might need to delete
private data after a certain time, this is doable and will leave behind a hash in
the peer’s ledgers as evidence that some data was there [18].

Chaincode Lifecycle. Introduced in v2.0, the new Fabric chaincode lifecy-
cle requires organizations participating in the endorsement process to approve
a transaction. Previously, in v1.x one organization would define attributes of
a chaincode and other organizations choose either to opt-in by installing the
chaincode or opt-out and not be able to endorse transactions. The chaincode
lifecycle provides equality on a channel by allowing the chaincode to be instanti-
ated only after gathering enough approvals. Chaincode packages also do not need
to be identical anymore, different organizations can install different chaincode
packages and introduce organization-specific behaviour (for example perform
different validations for their interests). This does not conflict with transaction
approval as long as endorsement results match [19].

6.2 Performance Requirements

Further, some of Fabric’s design choices were made to increase its performance.

The Advantage of Execute-Order-Validate. In HLF execution and ordering
of transactions are separated. This allows for better scalability for both phases
while increasing modularity and performance because of the decreased amount of
work a node has to do [1]. Some blockchain implementations use an order-execute
architecture, but this design has its limitations. HLF uses an execute-order-
validate approach to allow for parallel execution and eliminate non-determinism
of smart contracts (transactions can be processed by a subset of endorsers)
therefore increasing throughput and decreasing latency [1].
1 See https://hyperledger-fabric.readthedocs.io/en/release-2.2/private-data/private-

data.html, last accessed 12-22-2020.

https://hyperledger-fabric.readthedocs.io/en/release-2.2/private-data/private-data.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/private-data/private-data.html

Blockchain Application Requirements and Their Satisfaction in HLF 13

How Channels Help Performance. Dividing the network into channels where
each channel is serving a purpose and linking a subset of the organizations on
the network while having their own endorsers can increase performance due to
the decreased workload. This is HLF’s version of sharding (HLF can scale up
horizontally using channels), which has frequently been proposed to increase per-
formance in blockchains [9,10,36]. Generally, the idea of parallelizing transaction
processing is an important scalability technique [6].

Peer Gossip. The optional peer gossip feature allows for better performance.
The throughput of the ordering service is limited by the network capacity of
its nodes, and adding more nodes can decrease throughput. This service elects a
leader per organization that pulls blocks from the ordering service and distributes
them to the rest [1]. This reduces the workload of the ordering service.

BatchSize and BatchTimeout. The ordering service in Fabric uses batching
and forms blocks out of transactions. A new block is created if (1) the number
of transactions in the block is equal to the maximum allowed, (2) the block’s
size in bytes has reached max, or (3) an amount of time has passed since the
first transaction of a new block was received [1]. The parameters BatchSize and
BatchTimeout are customizable, allowing adaptation to the use case. If, however,
the wrong values are chosen Fabric’s performance can be heavily affected [14].

Supporting Multiple Ordering Services. The ordering service is usually
responsible for multiple channels. As the number of channels grows the load on
the ordering service grows, scaling the ordering service leads to a performance
decrease [1]. In cases where adding more channels would overwhelm the ordering
service, a new ordering service instance can be brought up [10].

World-State Database Choice. Recent work [22] has investigated the dif-
ference in performance between the supported world-state databases in Fab-
ric. Mostly with lower BatchSizes, LevelDB has shown better performance than
CouchDB, but CouchDB offers better functionality through rich queries2. Appli-
cations should again make trade-offs here of whether they want more functional-
ity in a database or a better performance. FastFabric has experimented with an
in-memory hash table as a ledger [11] and achieved a large increase in throughput
(from 3200 to 7500 TPS).

7 Performance Evaluation

In this section, we aim to examine HLF’s performance under different conditions
similar to real-world use-cases in terms of setup and transaction loads. For our
purposes, we use Hyperledger Caliper3, a state of the art tool for benchmarking
different blockchain platforms such as Hyperledger Fabric and Ethereum.

2 See https://hyperledger-fabric.readthedocs.io/en/release-2.2/couchdb as state data
base.html, last accessed 12-22-2020.

3 See https://www.hyperledger.org/use/caliper.

https://hyperledger-fabric.readthedocs.io/en/release-2.2/couchdb_as_state_database.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/couchdb_as_state_database.html
https://www.hyperledger.org/use/caliper

14 S. Ben Toumia et al.

In the first part of our evaluation, we focus on the ordering service by exam-
ining the benefits of operating a secondary ordering service whilst scaling the
number of channels as well as the transaction load. In the second part of this
evaluation, we investigate how HLF performs under different mixed application
workloads in terms of read and write operations, thereby simulating real-world
scenarios. To mimic a real application, we exemplary choose a fabcar chaincode
deployment. The fabcar is a simple chaincode that allows users to add or change
data (to be concrete: cars and their ownership) on the ledger using the Fabric
contract API4. This way we can observe the effect of concurrent reads and writes,
i.e., users browsing listings and at the same time users creating new listings.

For our purposes, we may employ setups (Fig. 2) with an increasing number
of nodes. We are running each node on a 4 vCPU, 6 GB RAM Debian VM
running in a private OpenNebula cloud in our university’s virtualization farm.

7.1 Multi Ordering Services Performance

We examine the benefits of operating a secondary ordering service. The need for
a secondary ordering service could arise when the first ordering service is already
operating at a high load and servicing a high number of channels or to include
only a certain subset of organizations in the ordering phase for certain channels.

Setup. We experiment with 8, 16 and 28 two-peer channels where each peer is
a member of 2, 4 or 7 channels respectively (Fig. 2). For the load generation, we
used a suitable number of workers for each workload, since employing too many
workers can result in inaccuracies in terms of maintained transaction load, while
too few workers may not be able to maintain the desired load.

Method. In this experiment we scale up the number of channels while experi-
mentally controlling the transaction loads with Hyperledger Caliper. Note that,
for a multi-ordering service setup, each orderer manages half the channels and
processes and as such half the transaction load. Further, we use Caliper for the
load generation and performance measurement, where each invocation of the

Fig. 2. Setups used for the evaluation.

4 See https://github.com/hyperledger/fabric-samples/tree/master/chaincode/fabcar.

https://github.com/hyperledger/fabric-samples/tree/master/chaincode/fabcar

Blockchain Application Requirements and Their Satisfaction in HLF 15

submitTransaction() method generates a new transaction per channel thus
guaranteeing a fair load distribution among channels and ordering services.

Caliper provides rate controllers to conduct different types of experiments.
For our purposes, we decided on the fixed-load controller which we slightly mod-
ified because it was too inaccurate in terms of maintaining a constant (or min-
imally oscillating) load. For this, we have overestimated the perceived network
throughput in the controller which minimized the delta between the specified
transactionLoad and the actual load at any time during the experiment.

Observations. We make the following observations:

Observation 1: Figure 3a shows that throughput is continuously increasing as the
transaction load increases and converges to approximately 600 TPS for 28 and
16 channel deployments and to 425 TPS for 8 channel deployments. Increas-
ing the number of channels increases throughput, a 100 Requests per Second
(RPS) transaction load per channel achieves approximately 425 TPS for 8 chan-
nel deployments and 600 TPS for 16 channel and 28 channel multi-ordering
service deployments. The same holds for a network level load, a 800 RPS net-
work load (50 RPS per channel for a 16 channel deployment and 100 RPS per
channel for an 8 channel deployment) achieves approximately 550 TPS at 16
channels compared to 425 TPS at 8 channels.

Takeaway 1: Increasing the number of channels increases throughput. The dif-
ference in throughput between a 28 channel and 16 channel setup is insignificant
with both setups reaching a peak of approximately 600 TPS whereas for an 8
channel setup the peak is reached at approximately 425 TPS. Increasing trans-
action load also increases throughput however the throughput converges after a
certain point.

Fig. 3. Ordering services setups in HLF with variable number of channels.

16 S. Ben Toumia et al.

Observation 2: Figure 3b shows that increasing the number of channels leads
to an increase in latency. For 28 channel setups the latency difference between
a single ordering service setup and a multi-ordering service setup is somewhat
significant with approximately 2.4 s and 1.8 s, respectively.

Takeaway 2: Increasing the number of channels increases latency. This increase
is more noticeable in single ordering service setups. Latency has increased by
more than 100% between 28 channel and 8 channel setups.

Observation 3: Having a secondary ordering service results in a small throughput
increase (¡20 TPS) and a slight latency improvement.

Takeaway 3: A multi-ordering service setup does not seem to lead to a significant
performance increase, at least when the ordering phase is not the bottleneck.
Several papers have highlighted the validation phase being the bottleneck in
HLF [3,11]. In light of this, using a secondary ordering-service solely to improve
performance is not beneficial. However, a secondary ordering service makes sense
when it comes to separating concerns, i.e., a party that is operating an OSN in
the first ordering service and is not involved in channels belonging to the second
ordering service, can be excluded from ordering for privacy or security reasons.

7.2 Mixed Workloads

In this experiment we investigate how HLF performs with mixed application
workloads. For this reason, we measure performance for different read-to-write
ratios, in particular mostly write (20/80 read/write), then mostly read (80/20
read/write), and also equal usage (50/50 read/write).

Setup. Our mixed workloads deployment, is similar to our multi-ordering-service
deployment in terms of number of organizations and endorsement. We are using
five ordering-service nodes for this deployment since this is a more suitable option
in practice (Fig. 4).

Method. We evaluate the performance for increasing input rates for which the
system is under a transaction load of 100 requests per second to 1000 RPS at
any given time depending on the setup. Further, each invocation of the method
submitTransaction() results in the generation of a single read or write trans-
action with a certain probability, e.g., for 20/80 read-write ratio, the probability
that a read operation is generated equals 20%.

Observations. Overall, we make the following observations:

Observation 1: The read-heavy workload achieves the highest throughput. The
difference between a write-heavy and a read-heavy workload is significant with
approximately 120 TPS difference. Equal usage achieves a decent throughput of
about 300 TPS, i.e., a 50 TPS increase compared to a write-heavy workload and
a 70 TPS decrease compared to a read-heavy workload at 1000 RPS.

Takeaway 1: The read-heavy workload results in a noticeable throughput
increase when compared to a write-heavy workload with 376 TPS and 248 TPS
respectively at 1000 RPS.

Blockchain Application Requirements and Their Satisfaction in HLF 17

Fig. 4. Employing different mixed read/write application workloads in HLF.

Observation 2: Latency increases with an increased transaction load. The mostly
write workload achieves the worst latency with approximately 4 s at 1000 RPS.
Note that the difference between the latencies of the individual workloads is
more noticeable at higher transaction loads.

Takeaway 2: An increased read-to-write ratio results in a latency decrease with
approximately 4 s at a write-heavy workload compared to approximately 2.5 s at
a read-heavy workload.

7.3 Discussion

The obtained results indicate that HLF achieves performance of several hundreds
of transactions per second even on commodity hardware. It is performance-wise
superior to some other blockchain platforms, e.g., Ethereum (as of time of writ-
ing). Applying our results to the aforementioned applications, it seems that HLF
meets their requirements to a certain extent. For GoDirect Trade and Change
Healthcare, HLF proves to be a perfect fit as a platform. For other applica-
tions such as Visa B2B Connect and EVote, Fabric lacks BFT support, which is
vital in adversarial environments. However, HLF’s modularity allows to opt for
a BFT ordering service to meet the resiliency requirements of these applications.
Such a setup was demonstrated using BFT-SMaRt [31] and SmartBFT-Go [4],
respectively. There are also plans for the Mir-BFT library [32] to be eventually
integrated into HLF as its ordering service, thus replacing Raft. Further, for
VISA B2B Connect and payment settlement in general, HLF could be a bit slow
due to the massive workload (in particular of peak loads) such applications bear.
Summarizing, HLF, compared to other solutions, already meets most business
requirements performance and security-wise with some trade-offs, and future
releases could potentially narrow the gap between enterprise requirements and
HLF, especially the planned introduction of BFT.

18 S. Ben Toumia et al.

8 Conclusion

Enterprises previously had minimal interest in blockchains due to the scalabil-
ity and performance issues. This is however continuously changing in the recent
years. The use cases discussed in this paper, as shown in Sect. 5, all have differ-
ent needs which make the modularity, customizability, privacy features and the
coinless nature of Hyperledger Fabric attractive. HLF, on its part, tries to meet
these needs by mainly diverting from traditional architectures like order-execute
and by increasing privacy through the usage of channels and private data collec-
tions. Its design also allows it to be integrated easily, in the way, that potential
users can setup their own certificate authority or employ their own version of an
ordering service. Previous work and our own experiences with HLF show that it
is progressing towards being more decentralized while setting new performance
and security standards for other blockchain platforms.

Acknowledgements. This work has been funded by the Deutsche Forschungsgemein-
schaft (DFG, German Research Foundation) grant number 446811880 (BFT2Chain).

References

1. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for per-
missioned blockchains. In: 13th EuroSys Conference, pp. 1–15. ACM (2018)

2. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.: Basic concepts and tax-
onomy of dependable and secure computing. Trans. Dep. Sec. Comp. 1(1), 11–33
(2004)

3. Baliga, A., Solanki, N., Verekar, S., Pednekar, A., Kamat, P., Chatterjee, S.: Per-
formance characterization of hyperledger fabric. In: Crypto Valley Conference on
Blockchain Technology (CVCBT), pp. 65–74. IEEE (2018)

4. Barger, A., Manevich, Y., Meir, H., Tock, Y.: A Byzantine fault-tolerant consen-
sus library for hyperledger fabric. In: International Conference on Blockchain and
Cryptocurrency (ICBC), pp. 1–9. IEEE (2021)

5. Berger, C., Eichhammer, P., Reiser, H.P., Domaschka, J., Hauck, F.J., Habiger,
G.: A survey on resilience in the IoT: taxonomy, classification, and discussion of
resilience mechanisms. ACM Comput. Surv. (CSUR) 54(7), 1–39 (2021)

6. Berger, C., Reiser, H.P.: Scaling byzantine consensus: a broad analysis. In: 2nd
Workshop on Scalable and Resilient Infrastructures for Distributed Ledgers, pp.
13–18 (2018)

7. Cocco, S., Singh, G.: Top 6 technical advantages of hyperledger fabric for
blockchain networks (2018). https://developer.ibm.com/technologies/blockchain/
articles/top-technical-advantages-of-hyperledger-fabric-for-blockchain-networks/.
Accessed 22 Dec 2020

8. Costa, P.M.L.: Supply chain management with blockchain technologies
(2018). https://repositorio-aberto.up.pt/bitstream/10216/114335/2/278462.pdf.
Accessed 22 Dec 2020

9. Dang, H., Dinh, T.T.A., Loghin, D., Chang, E.C., Lin, Q., Ooi, B.C.: Towards scal-
ing blockchain systems via sharding. In: International Conference on Management
of Data, SIGMOD 2019, pp. 123–140. Association for Computing Machinery, New
York (2019). https://doi.org/10.1145/3299869.3319889. Accessed 22 Dec 2020

https://developer.ibm.com/technologies/blockchain/articles/top-technical-advantages-of-hyperledger-fabric-for-blockchain-networks/
https://developer.ibm.com/technologies/blockchain/articles/top-technical-advantages-of-hyperledger-fabric-for-blockchain-networks/
https://repositorio-aberto.up.pt/bitstream/10216/114335/2/278462.pdf
https://doi.org/10.1145/3299869.3319889

Blockchain Application Requirements and Their Satisfaction in HLF 19

10. Ferris, C.: Does hyperledger fabric perform at scale? (2019). https://www.
ibm.com/blogs/blockchain/2019/04/does-hyperledger-fabric-perform-at-scale/.
Accessed 22 Dec 2020

11. Gorenflo, C., Lee, S., Golab, L., Keshav, S.: FastFabric: scaling hyperledger fabric
to 20 000 transactions per second. Int. J. Netw. Manage. 30(5), e2099 (2020)

12. Guggenberger, T., Sedlmeir, J., Fridgen, G., Luckow, A.: An in-depth investigation
of performance characteristics of hyperledger fabric. CoRR abs/2102.07731 (2021).
https://arxiv.org/abs/2102.07731

13. Hartnett, S.: When it comes to throughput transactions per second is the wrong
blockchain metric (2018). https://energyweb.org/2018/05/10/when-it-comes-to-
throughput-transactions-per-second-is-the-wrong-blockchain-metric/. Accessed
22 Dec 2020

14. Hua, S., Zhang, S., Pi, B., Sun, J., Yamashita, K., Nomura, Y.: Reasonableness
discussion and analysis for hyperledger fabric configuration. In: International Con-
ference on Blockchain and Cryptocurrency (ICBC), pp. 1–3. IEEE (2020)

15. Hyperledger.org: Case study: change healthcare using hyperledger fabric to improve
claims lifecycle throughput and transparency (2019). https://www.hyperledger.
org/wp-content/uploads/2019/06/Hyperledger CaseStudy ChangeHealthcare
Printable 6.19.pdf. Accessed 22 Dec 2020

16. Hyperledger.org: Case study: honeywell aerospace creates online parts market-
place with hyperledger fabric (2019). https://www.hyperledger.org/wp-content/
uploads/2019/12/Hyperledger CaseStudy Honeywell Printable 12.12.19.pdf.
Accessed 22 Dec 2020

17. Hyperledger.org: How Walmart brought unprecedented transparency to the food
supply chain with hyperledger fabric (2019). https://www.hyperledger.org/wp-
content/uploads/2019/02/Hyperledger CaseStudy Walmart Printable V4.pdf

18. Hyperledger.org: Private data (2020). https://hyperledger-fabric.readthedocs.io/
en/release-2.2/private-data/private-data.html. Accessed 7 Oct 2021

19. Hyperledger.org: What’s new in hyperledger fabric v2.x (2020). https://
hyperledger-fabric.readthedocs.io/en/release-2.2/whatsnew.html. Accessed 22 Dec
2020

20. IBM.com: IBM food trust (2019). https://www.ibm.com/downloads/cas/
8QABQBDR. Accessed 22 Dec 2020

21. Li, D., Wong, W.E., Guo, J.: A survey on blockchain for enterprise using hyper-
ledger fabric and composer. In: 2019 6th International Conference on Dependable
Systems and Their Applications (DSA), pp. 71–80 (2020). https://doi.org/10.1109/
DSA.2019.00017

22. Lincoln, N.: Hyperledger fabric 1.4.0 performance information report. https://
hyperledger.github.io/caliper-benchmarks/fabric/resources/pdf/Fabric 1.4.0
javascript node.pdf. Accessed 22 Dec 2020

23. Muscara, B.: Hyperledger fabric use-cases (2020). https://wiki.hyperledger.org/
display/LMDWG/Use+Cases. Accessed 22 Dec 2020

24. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009). http://bitcoin.
org/bitcoin.pdf. Accessed 22 Dec 2020

25. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm.
In: USENIX Annual Technical Conference (Usenix ATC 2014), pp. 305–319 (2014)

26. Peterson, K.J., Deeduvanu, R., Kanjamala, P., Mayo, K.: A blockchain-based app-
roach to health information exchange networks (2016). https://www.healthit.gov/
sites/default/files/12-55-blockchain-based-approach-final.pdf. Accessed 22 Dec
2020

https://www.ibm.com/blogs/blockchain/2019/04/does-hyperledger-fabric-perform-at-scale/
https://www.ibm.com/blogs/blockchain/2019/04/does-hyperledger-fabric-perform-at-scale/
https://arxiv.org/abs/2102.07731
https://energyweb.org/2018/05/10/when-it-comes-to-throughput-transactions-per-second-is-the-wrong-blockchain-metric/
https://energyweb.org/2018/05/10/when-it-comes-to-throughput-transactions-per-second-is-the-wrong-blockchain-metric/
https://www.hyperledger.org/wp-content/uploads/2019/06/Hyperledger_CaseStudy_ChangeHealthcare_Printable_6.19.pdf
https://www.hyperledger.org/wp-content/uploads/2019/06/Hyperledger_CaseStudy_ChangeHealthcare_Printable_6.19.pdf
https://www.hyperledger.org/wp-content/uploads/2019/06/Hyperledger_CaseStudy_ChangeHealthcare_Printable_6.19.pdf
https://www.hyperledger.org/wp-content/uploads/2019/12/Hyperledger_CaseStudy_Honeywell_Printable_12.12.19.pdf
https://www.hyperledger.org/wp-content/uploads/2019/12/Hyperledger_CaseStudy_Honeywell_Printable_12.12.19.pdf
https://www.hyperledger.org/wp-content/uploads/2019/02/Hyperledger_CaseStudy_Walmart_Printable_V4.pdf
https://www.hyperledger.org/wp-content/uploads/2019/02/Hyperledger_CaseStudy_Walmart_Printable_V4.pdf
https://hyperledger-fabric.readthedocs.io/en/release-2.2/private-data/private-data.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/private-data/private-data.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/whatsnew.html
https://hyperledger-fabric.readthedocs.io/en/release-2.2/whatsnew.html
https://www.ibm.com/downloads/cas/8QABQBDR
https://www.ibm.com/downloads/cas/8QABQBDR
https://doi.org/10.1109/DSA.2019.00017
https://doi.org/10.1109/DSA.2019.00017
https://hyperledger.github.io/caliper-benchmarks/fabric/resources/pdf/Fabric_1.4.0_javascript_node.pdf
https://hyperledger.github.io/caliper-benchmarks/fabric/resources/pdf/Fabric_1.4.0_javascript_node.pdf
https://hyperledger.github.io/caliper-benchmarks/fabric/resources/pdf/Fabric_1.4.0_javascript_node.pdf
https://wiki.hyperledger.org/display/LMDWG/Use+Cases
https://wiki.hyperledger.org/display/LMDWG/Use+Cases
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
https://www.healthit.gov/sites/default/files/12-55-blockchain-based-approach-final.pdf
https://www.healthit.gov/sites/default/files/12-55-blockchain-based-approach-final.pdf

20 S. Ben Toumia et al.

27. Porutiu, H.: Evote (2019). https://github.com/IBM/evote. Accessed 22 Dec 2020
28. Porutiu, H., Bablini, D., Zhang, G., Ryan Bouchard, K.W., Hernandez-Lu,

E., Ramamurthy, S.G.: Build a secure e-voting app (2019). https://developer.
ibm.com/technologies/blockchain/patterns/how-to-create-a-secure-e-voting-
application-on-hyperledger-fabric/. Accessed 22 Dec 2020

29. Sedlmeir, J., Ross, P., Luckow, A., Lockl, J., Miehle, D., Fridgen, G.: The DLPS: a
new framework for benchmarking blockchains. In: 54th Hawaii International Con-
ference on System Sciences, p. 10 (2021)

30. Shalaby, S., Abdellatif, A.A., Al-Ali, A., Mohamed, A., Erbad, A., Guizani, M.:
Performance evaluation of hyperledger fabric. In: International Conference on
Informatics, IoT, and Enabling Technologies (ICIoT), pp. 608–613. IEEE (2020)

31. Sousa, J., Bessani, A., Vukolic, M.: A Byzantine fault-tolerant ordering service for
the hyperledger fabric blockchain platform. In: 48th annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (DSN), pp. 51–58. IEEE
(2018)

32. Stathakopoulou, C., David, T., Vukolić, M.: Mir-BFT: high-throughput BFT for
blockchains. arXiv:1906.05552 (2019)

33. Thakkar, P., Nathan, S., Viswanathan, B.: Performance benchmarking and opti-
mizing hyperledger fabric blockchain platform. In: 26th International Symposium
on Modeling, Analysis, and Simulation of Computer and Telecommunication Sys-
tems (MASCOTS), pp. 264–276. IEEE (2018)

34. VISA.com: Visa B2B connect a network solution for global large-value pay-
ments (2019). https://usa.review.visa.com/dam/VCOM/global/partner-with-us/
documents/visa-b2b-connect-white-paper.pdf. Accessed 22 Dec 2020

35. Wüst, K., Gervais, A.: Do you need a blockchain? In: 2018 Crypto Valley Con-
ference on Blockchain Technology (CVCBT), pp. 45–54 (2018). Accessed 22 Dec
2020

36. Zamani, M., Movahedi, M., Raykova, M.: RapidChain: scaling blockchain via full
sharding. In: SIGSAC Conference on Computer and Communications Security, pp.
931–948. ACM (2018)

37. Zheng, Z., Xie, S., Dai, H., Chen, X., Wang, H.: An overview of blockchain tech-
nology: architecture, consensus, and future trends. In: International Congress on
Big Data (BigData Congress), pp. 557–564. IEEE (2017). Accessed 22 Dec 2020

https://github.com/IBM/evote
https://developer.ibm.com/technologies/blockchain/patterns/how-to-create-a-secure-e-voting-application-on-hyperledger-fabric/
https://developer.ibm.com/technologies/blockchain/patterns/how-to-create-a-secure-e-voting-application-on-hyperledger-fabric/
https://developer.ibm.com/technologies/blockchain/patterns/how-to-create-a-secure-e-voting-application-on-hyperledger-fabric/
http://arxiv.org/abs/1906.05552
https://usa.review.visa.com/dam/VCOM/global/partner-with-us/documents/visa-b2b-connect-white-paper.pdf
https://usa.review.visa.com/dam/VCOM/global/partner-with-us/documents/visa-b2b-connect-white-paper.pdf

Using SGX for Meta-Transactions
Support in Ethereum DApps

Emanuel Onica1,2(B) and Ciprian Amariei1

1 Alexandru Ioan Cuza University of Iaşi, Iaşi, Romania
eonica@info.uaic.ro

2 Eman Tech SRL, Iaşi, Romania

Abstract. Decentralized applications (DApps) gained traction in the
context of the blockchain technology. Ethereum is currently the pub-
lic blockchain that backs the largest amount of the existing DApps.
Onboarding new users to Ethereum DApps is a notoriously hard issue
to solve. This is mainly caused by lack of cryptocurrency ownership,
needed for transaction fees. Several meta-transaction patterns emerged
for decoupling users from paying these fees. However, such solutions are
mostly offered via off-chain, often paid relayer services and do not fully
address the security issues present in the meta-transaction path. In this
paper, we introduce a new meta-transaction architecture that makes use
of the Intel Software Guard Extensions (SGX). Unlike other solutions,
our approach would offer the possibility to deploy a fee-free Ethereum
DApp on a web server that can directly relay meta-transactions to the
Ethereum network while having essential security guarantees integrated
by design.

Keywords: DApps · Blockchain · Ethereum · Meta-Transactions ·
SGX

1 Introduction

Blockchain networks created the context for developing new applications that
leverage decentralized trust. The role of nodes in a blockchain network is to main-
tain a replicated data structure, the main part of it being commonly referred
as the ledger. Nodes validate transactions sent by clients that change the repli-
cated data. Blocks of multiple transactions are formed and mutually agreed in
a decentralized manner. Finally, confirmed blocks are appended to the ledger.

Newer blockchains provide support for smart contracts, small programs exe-
cuted on the blockchain nodes. Transactions can trigger functions operating over
a contract state stored as part of the blockchain replicated data. This signifi-
cantly expanded the range of blockchain applications, from the fintech area to
games and others, coined under the generic name of DApps. Ethereum [24] was
the first platform to support smart contracts, and is still dominating the DApps

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
D. Eyers and S. Voulgaris (Eds.): DAIS 2022, LNCS 13272, pp. 21–28, 2022.
https://doi.org/10.1007/978-3-031-16092-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16092-9_2&domain=pdf
https://doi.org/10.1007/978-3-031-16092-9_2

22 E. Onica and C. Amariei

Fig. 1. Typical flow for Ethereum
DApp interaction.

Fig. 2. Interaction flow when relaying
using SGX meta-transactions. (Sim-
ple queries not changing the smart
contract state are considered free in
Ethereum, otherwise these should fol-
low the same path as transactions.)

market [5,19]. An Ethereum DApp is most often implemented as a web applica-
tion deployed on a web server having part of its backend using smart contracts
on the blockchain. The frontend can query the blockchain for information. Also,
actions performed by end-users can trigger transactions to smart contracts. A
simplified view of the DApp interaction flow is depicted in Fig. 1.

Users onboarding is a known major issue in Ethereum DApps develop-
ment [3,13,22]. This stems from the requirements a user must fulfill for enabling
DApp interaction with the blockchain backend. Ethereum transactions charge
a fee. This fee is required to regulate the transaction processing load and as
incentive for the network nodes, and must be paid by the transaction initiator.
This implies Ethereum cryptocurrency ownership by the user of the application.
Unfortunately this prevents DApps to target many users that might not even be
familiar with the notion of cryptocurrency or simply are not willing to pay.

Meta-transactions [9,17] emerged as a solution for users onboarding. In
essence, this implies wrapping end-user transaction data in transactions paid
by a different entity, which can be either the DApp owner or another spon-
sor. Although the concept seems simple, the implementation and deployment
are not. Some important issues arise when integrating meta-transaction relaying
with a DApp. The funds paying for transactions must be secured, as well as the
integrity of the end-user transaction data. The few maintained solutions are typ-
ically offered as third party relayer services [2,6,11]. These address transaction
integrity but disregard the protection of funds allocated for paying transactions.
Some also charge a relayer fee or require consistent changes in the DApp archi-
tecture. This complicates the task of a developer in finding a suitable DApp
design.

Using SGX for Meta-Transactions Support in Ethereum DApps 23

In this paper we introduce the SGX meta-transaction architecture, intended
to facilitate secure meta-transaction relaying integration for DApp developers.
Our purpose is to permit meta-transaction wrapping to be handled securely
by the DApp host, which will act as transaction relayer. For this, we use a
trusted execution environment (TEE), namely the Intel Software Guard Exten-
sions (SGX) [4]. This changes the transaction path as depicted in Fig. 2.

Our paper is structured as follows. In Sect. 2 we present some background on
Ethereum DApps and the context of meta-transactions. In Sect. 3 we introduce
our architecture and an initial proof-of-concept implementation. We discuss some
extensions in Sect. 4. Finally, we conclude in Sect. 5.

2 Background

Users interacting with Ethereum DApps can trigger transactions, such as cryp-
tocurrency transfers or calling functions in smart contracts that change the
blockchain data. The latter is the more general case and our focus. Transactions
come at a cost quantified in gas units. This cost increases with the complexity of
operations executed in the smart contract. The user must pay a transaction fee
equal to the cost in gas multiplied with a price per gas unit set in the Ethereum
cryptocurrency. This price per gas unit is composed of a variable base network
fee to which a priority fee can be added to speed up transaction processing.

Two types of accounts are defined in Ethereum: externally owned accounts
(EOAs) and contract accounts. Both types are identified by an address and have
a balance in the Ethereum currency. Transactions can be submitted by EOAs,
essentially user accounts controlled by private keys used to sign the transactions.
The fees of verified transactions are deducted from the EOA balance. The main
part included in a transaction message is either or both of a data payload encod-
ing a smart contract function call and a currency value to be transferred. Other
transaction fields include an incremental nonce bound to the EOA, a gas limit,
the maximum gas price, the recipient address and the EOA’s signature.

We consider DApps where the interaction does not imply a payment and users
can have a zero balance in Ethereum currency. In such cases, a meta-transaction
would wrap the original end-user’s transaction data, and must be signed and
paid by an EOA address capable of covering the transaction fees. The DApp
developer is faced with the challenge of implementing a signature delegation
pattern to such an EOA address, providing appropriate trust guarantees.

Deployed solutions typically require DApps to use off-chain relayer services [2,
6,11]. Integrating a third party service into the transaction path comes with an
inherent risk to the transaction integrity. Therefore, these solutions focus on
ensuring that the service itself cannot tamper the original data when wrapping
it into a meta-transaction. Provided APIs require the user’s EOA signature to be
present in their sent data and to adapt the smart contracts backend of the DApp
to verify that. However, this does not protect the private key used for signing
the meta-transaction itself. The relayer service must be provided with funds for
paying the meta-transaction. This makes critical storing securely the relayer’s

24 E. Onica and C. Amariei

signing key. If an attacker gains access to this key it can drain the relayer funds,
by simply signing transactions transferring the relayer’s balance to the attacker.

In a normal transaction scenario, keeping the signing key safe is solely the
responsibility of the end-user who operates with her own funds. In the relayed
meta-transaction scenario this guarantee should be provided by the relayer.
Unfortunately, none of the relayer implementations we are aware of offers details
on how it secures the meta-transaction signing key. Some relayer providers do
not even specify whether they host their service on their private infrastructure
or on a public cloud, case proven vulnerable to sensitive data leaks [16,20,25].

We propose a meta-transaction architecture that does not depend on an
external relayer and overcomes the security issues above. This simplifies inte-
grating meta-transaction support in a DApp and saves fees charged by external
relayers.

3 Basic Solution Design

The purpose of our design is to provide easy integration for safe meta-transaction
support with the DApp backend implementation and to use the DApp host as a
secure relayer. Eliminating a third party relayer service from the transaction path
automatically eliminates the concern of this party tampering with the transac-
tions. However, we consider the web server host where the DApp is deployed
untrusted with respect to preserving the confidentiality of sensitive information.
The main threat we tackle is an attack trying to leak private credentials from
this host, such as the key used in signing the meta-transactions.

To prevent private key leakage we employ the use of Intel SGX, a widely
available TEE solution. Its core abstraction is an enclave, which isolates sensitive
code execution within an encrypted memory region. An enclave implementation
can provide a set of functions - ECalls, to be called from untrusted code outside
the enclave for executing code in secure isolation within the enclave. Another set
of functions, the OCalls are used when the code inside the enclave initiates calls
to untrusted code. The definition of ECalls and OCalls forms the interface of the
enclave. An enclave can be remotely attested in order to verify the integrity of
the enclave code and if this is executed on a genuine SGX capable processor. The
remote attestation can also be used to establish a shared secret base for encrypted
communication between the enclave and the party requesting the attestation.

We use an SGX enclave integrated with the DApp for the sensitive operations
in the transaction flow. Once the DApp is deployed, the DApp owner must exe-
cute an enclave initialization protocol. This protocol establishes a set of master
credentials, namely an Ethereum account address and the corresponding signing
key, to be used within the enclave. These credentials are randomly generated in
the enclave and can be sent to the DApp owner via a secure channel established
as part of the attestation. The DApp owner will use the master account address
to transfer funds for covering the meta-transaction fees. The master signing key
must be safely stored by the DApp owner and is not used in normal operation
outside enclave space. This key is required to be sent to the DApp owner only
to maintain control over the funds in case of enclave failure.

Using SGX for Meta-Transactions Support in Ethereum DApps 25

After this initialization the enclave is ready to operate on transaction data
sent by a user. We define a SGX meta-transaction as a meta-transaction prepared
and signed within the secure enclave space. A simplified overview of the enclave
integration within the transaction flow is presented in Fig. 3. The transaction
data contains the serialized encoding of the smart contract function call and the
contract address. This is received at the DApp web backend and passed via an
ECall to the enclave. Additional information necessary to form an Ethereum
transaction such as gas related parameters can be passed with the transaction
data or established in the enclave space. The SGX meta-transaction is prepared
within the enclave using an encoding required by Ethereum, wrapping the data
and the rest of fields including a sequentially increasing nonce. This nonce is
associated to the enclave’s master Ethereum address and is required for trans-
action ordering. Finally, the enclave code signs the SGX meta-transaction using
the master signing key and passes it to the web backend through an OCall.

Fig. 3. High level overview of the SGX meta-transaction flow.

Following the above steps, the web backend code of the DApp can relay the
signed SGX meta-transaction to the Ethereum blockchain. The enclave main-
tains a trusted keystore, secured using the sealing key - a hardware key unique
per CPU accessible only in the enclave. The keystore is loaded in the enclave
memory when needed and can be stored encrypted on disk. The structure of this
keystore can be adapted to fit the needs of the DApp. In its simplest form it
holds the set of master credentials. Once the web backend receives the transac-
tion confirmation an ECall will trigger the nonce increment in the keystore.

We have implemented a proof-of-concept of the above design wrapping the
SGX enclave within a native Node.js module [14]. This module allows the DApp
backend to trigger the necessary meta-transaction flow operations within the
enclave. Most Ethereum DApp implementations use JavaScript libraries [7,21]
for interacting with the blockchain network. Therefore, providing our solution
as a Node.js module makes seamless the integration with most DApps. We per-
formed a functionality test of our transaction flow on a mockup DApp where
the user can change a value in a smart contract deployed on the Ethereum Rop-
sten test network. Our SGX meta-transaction constructed within the enclave

26 E. Onica and C. Amariei

was successfully validated by the network.1 We tested the implementation on
a SGX capable machine equipped with an Intel i7-7700 CPU running Ubuntu
18.04.5 LTS. The measured time overhead for preparing the signed SGX meta-
transaction was in the range of 3ms including logging, orders of magnitude
smaller than the average confirmation time of an Ethereum transactions block
at almost 14s.

4 Discussion and Open Directions

The description in the previous section is limited to the bare necessities in the
transaction flow. In the following we examine some of the extensions we consider.

A more complex structure of the keystore could include multiple Ethereum
credentials generated for signing meta-transactions. This scenario could fit allo-
cating separate funds for different users or attempts to scale the transaction
flow. Exporting multiple addresses and safely storing their private keys would
be, however, prone to increased security risks for the DApp owner. Therefore,
for such a scenario we consider keeping these keys confined in the enclave space.
The master account address would act as a central deposit for funding the meta-
transactions signed by each of the secondary accounts. This would be done by
periodical value transactions sent to these internal accounts and will obviously
add an extra cost. However, a simple value transaction has the smallest cost in
Ethereum and tuning the periodicity of funding can minimize the overhead.

A particular case is of DApps where the Ethereum identity of a user must
be preserved in the transactions: DApps using tokens, either fungible, essentially
virtual coins built over Ethereum, or NFTs. The approach in other solutions [6,9–
11] is to include a signature using user’s own Ethereum credentials in the meta-
transaction and adapt the smart contract logic to verify it. Our design in Sect. 3
can easily accommodate such changes in the carried transaction data.

EIP-2771 [18] proposes a contract level protocol for validating data signed
with user’s Ethereum credentials in meta-transactions. This architecture can
be integrated with our solution. However, we note that its main scope is to
guarantee integrity against a relayer controlled by an untrusted third party. In
our design the DApp owner controls the relayer. Nevertheless, we could consider
a possible integrity attack escalation over the web server. This can be mitigated
by a TLS channel terminated within the enclave over which the end-user will
send the transaction data. This guarantees the integrity up to the enclave on
the relaying host. Further, the SGX meta-transaction is securely signed in the
enclave, therefore it cannot be altered until verified in the blockchain network.
We have considered various TLS implementations in conjunction with SGX for
future extension [1,8,12,23]. Some provide performance advantages, while others
seem to be easier to integrate with our web oriented architecture. For brevity
we leave further technical details for a future extended report of our work.
1 The record of the first SGX meta-transaction relayed via our implemen-

tation is available at the following address: https://ropsten.etherscan.io/tx/
0xdcb13cdaaf847ddce26307988ac4938c9037e03b747276f46b222df2a42d302b.

https://ropsten.etherscan.io/tx/0xdcb13cdaaf847ddce26307988ac4938c9037e03b747276f46b222df2a42d302b
https://ropsten.etherscan.io/tx/0xdcb13cdaaf847ddce26307988ac4938c9037e03b747276f46b222df2a42d302b

Using SGX for Meta-Transactions Support in Ethereum DApps 27

Finally, an aspect to consider is the solution deployment. An attractive option
would be to deploy the DApp over a public cloud platform. Currently the support
for SGX offered in virtualized environments comes with a performance impact
as discussed in [15]. Further analysis is required, but we believe the transaction
confirmation time plus the network latency would still overshadow the additional
penalties inflicted by the virtualization.

5 Conclusion

We introduced in this paper a new architecture for relaying Ethereum meta-
transactions. Unlike external, sometimes paid services, our solution takes a dif-
ferent approach aiming for a secure integration of meta-transaction relaying sup-
port directly within the DApp. Our design introduces the SGX meta-transaction
prepared and signed within a secure enclave space. This provides independence
to a DApp developer, it relaxes integrity concerns by not needing to trust an
extra third party and offers solid guarantees on preventing leaks that could lead
to losing funds allocated for paying the meta-transaction fees.

We emphasize that our proposed architecture is a work-in-progress. We
briefly discussed multiple extensions we consider. We believe that our proof-of-
concept integrating SGX meta-transactions via a Node.js module already shows
the practicality of our design and promising potential for use within DApps.

References

1. Aublin, P.L., et al.: TaLoS: secure and transparent TLS termination inside SGX
Enclaves (2017). https://github.com/lsds/TaLoS. Accessed 27 Jan 2022

2. Biconomy (2021).https://docs.biconomy.io/. Accessed 27 Jan 2022
3. Chandra, S., Aggarwal, S.: Web3: onboarding the next billion users - the road

ahead (2022). https://cointelegraph.com/news/web3-onboarding-the-next-billion-
users-the-road-ahead. Accessed 31 Mar 2022

4. Costan, V., Devadas, S.: Intel SGX explained. cryptology ePrint Archive, Report
2016/086 (2016). https://eprint.iacr.org/2016/086. Accessed 27 Jan 2022

5. DappRadar - The World’s Dapp Store (2021). https://dappradar.com/. Accessed
27 Jan 2022

6. Ethereum Gas Station Network (GSN) (2021). https://docs.opengsn.org/.
Accessed 27 Jan 2022

7. Ethers.js (2022). https://docs.ethers.io/v5/. Accessed 27 Jan 2022
8. Gramine (2022). https://gramine.readthedocs.io/en/latest/. Accessed 17 Feb 2022
9. Griffith, A.T.: Ethereum meta transactions - lowering barriers to drive mass

ethereum adoption (2018). https://medium.com/@austin 48503/ethereum-meta-
transactions-90ccf0859e84. Accessed 27 Jan 2022

10. Griffith, A.T.: Native meta transactions (2018). https://medium.com/gitcoin/
native-meta-transactions-e509d91a8482. Accessed 31 Mar 2022

11. Infura transactions (ITX) (2022). https://docs.infura.io/infura/features/
transactions. Accessed 17 Feb 2022

12. Intel software guard extensions SSL (2022). https://github.com/intel/intel-sgx-ssl.
Accessed 27 Jan 2022

https://github.com/lsds/TaLoS
https://docs.biconomy.io/
https://cointelegraph.com/news/web3-onboarding-the-next-billion-users-the-road-ahead
https://cointelegraph.com/news/web3-onboarding-the-next-billion-users-the-road-ahead
https://eprint.iacr.org/2016/086
https://dappradar.com/
https://docs.opengsn.org/
https://docs.ethers.io/v5/
https://gramine.readthedocs.io/en/latest/
https://medium.com/@austin_48503/ethereum-meta-transactions-90ccf0859e84
https://medium.com/@austin_48503/ethereum-meta-transactions-90ccf0859e84
https://medium.com/gitcoin/native-meta-transactions-e509d91a8482
https://medium.com/gitcoin/native-meta-transactions-e509d91a8482
https://docs.infura.io/infura/features/transactions
https://docs.infura.io/infura/features/transactions
https://github.com/intel/intel-sgx-ssl

28 E. Onica and C. Amariei

13. Khatri, Y.: Ethereum onboarding solution provider UniLogin is shutting down due
to high gas fees (2020). https://www.theblockcrypto.com/post/78358/ethereum-
onboarding-unilogin-shutting-down-high-gas-fees. Accessed 31 Mar 2022

14. Native abstractions for Node.js (2022). https://nodejs.org/api/addons.html.
Accessed 31 Mar 2022

15. Ngoc, T.D., et al.: Everything you should know about intel SGX performance on
virtualized systems. In: Proceedings of the ACM on Measurement and Analysis of
Computing Systems, vol. 3, no. 1, pp. 5:1–5:21 (2019)

16. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In: Proceedings of
the 16th ACM Conference on Computer and Communications Security, CCS 2009,
pp. 199–212 (2009)

17. Rush, N.: Making uPort smart contracts smarter, part 3: fixing user experi-
ence with meta transactions (2017). https://medium.com/uport/making-uport-
smart-contracts-smarter-part-3-fixing-user-experience-with-meta-transactions-
105209ed43e0. Accessed 31 Mar 2022

18. Sandford, R., et al.: EIP-2771: secure protocol for native meta transactions (2020).
https://eips.ethereum.org/EIPS/eip-2771. Accessed 27 Jan 2022

19. State of the DApps - explore decentralized applications (2022). https://www.
stateofthedapps.com/. Accessed 27 Jan 2022

20. Varadarajan, V., Zhang, Y., Ristenpart, T., Swift, M.: A placement vulnerability
study in multi-tenant public clouds. In: Proceedings of the 24th USENIX Confer-
ence on Security Symposium, SEC 2015, pp. 913–928 (2015)

21. Web3.js - ethereum JavaScript API (2020). https://web3js.readthedocs.io/en/v1.
7.0/. Accessed 17 Feb 2022

22. Whinfrey, C.: Gas spectrum transactions (2019). https://medium.com/
authereum/gas-spectrum-transactions-bd34b65107b. Accessed 31 Mar 2022

23. WolfSSL with Intel SGX (2017). https://www.wolfssl.com/wolfssl-with-intel-sgx/.
Accessed 27 Jan 2022

24. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger - yellow
paper (2021). https://ethereum.github.io/yellowpaper. Accessed 27 Jan 2022

25. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-tenant side-channel
attacks in PaaS clouds. In: Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2014, pp. 990–1003 (2014)

https://www.theblockcrypto.com/post/78358/ethereum-onboarding-unilogin-shutting-down-high-gas-fees
https://www.theblockcrypto.com/post/78358/ethereum-onboarding-unilogin-shutting-down-high-gas-fees
https://nodejs.org/api/addons.html
https://medium.com/uport/making-uport-smart-contracts-smarter-part-3-fixing-user-experience-with-meta-transactions-105209ed43e0
https://medium.com/uport/making-uport-smart-contracts-smarter-part-3-fixing-user-experience-with-meta-transactions-105209ed43e0
https://medium.com/uport/making-uport-smart-contracts-smarter-part-3-fixing-user-experience-with-meta-transactions-105209ed43e0
https://eips.ethereum.org/EIPS/eip-2771
https://www.stateofthedapps.com/
https://www.stateofthedapps.com/
https://web3js.readthedocs.io/en/v1.7.0/
https://web3js.readthedocs.io/en/v1.7.0/
https://medium.com/authereum/gas-spectrum-transactions-bd34b65107b
https://medium.com/authereum/gas-spectrum-transactions-bd34b65107b
https://www.wolfssl.com/wolfssl-with-intel-sgx/
https://ethereum.github.io/yellowpaper

Understanding Cryptocoins Trends
Correlations

Pasquale De Rosa(B) and Valerio Schiavoni

University of Neuchâtel, Neuchâtel, Switzerland
{pasquale.rosa,valerio.schiavoni}@unine.ch

Abstract. Crypto-coins (also known as cryptocurrencies) are tradable
digital assets. Notable examples include Bitcoin, Ether and Litecoin.
Ownerships of cryptocoins are registered on distributed ledgers (i.e.,,
blockchains). Secure encryption techniques guarantee the security of the
transactions (transfers of coins across owners), registered into the ledger.
Cryptocoins are exchanged for specific trading prices. While history has
shown the extreme volatility of such trading prices across all different sets
of crypto-assets, it remains unclear what and if there are tight relations
between the trading prices of different cryptocoins. Major coin exchanges
(i.e.,, Coinbase) provide trend correlation indicators to coin owners, sug-
gesting possible acquisitions or sells. However, these correlations remain
largely unvalidated.

In this paper, we shed lights on the trend correlations across a large
variety of cryptocoins, by investigating their coin-price correlation trends
over a period of two years. Our experimental results suggest strong cor-
relation patterns between main coins (Ethereum, Bitcoin) and alt-coins.
We believe our study can support forecasting techniques for time-series
modeling in the context of crypto-coins. We release our dataset and code
to reproduce our analysis to the research community.

Keywords: cryptocoins · correlations · work-in-progress

1 Introduction

Cryptocurrencies, also known as crypto-coins, are tradable digital assets, backed
by secure encryption techniques to ensure the security of transactions (typically,
the transfer of coins across wallets). Notable examples include Bitcoin [14], Ether
(the native cryptocurrency of the Ethereum blockchain [8]) or Litecoin (used in
a fork of the original Bitcoin network). Nowadays there exists thousands of cryp-
tocurrencies (CoinMarketCap [3] lists 10039 coins as of April 2022). Cryptocoins
are designed to be traded as a form of digital money: the first useful Bitcoin trans-
action was used by a peer-to-peer payment between Satoshi Nakamoto (Bitcoin’s
founder) and one of its early adopters, and dates back to 2009.1 Cryptocoins are
nowadays traded over online (centralized or decentralized) exchanges, including
1 https://www.blockchain.com/btc/block/170.

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
D. Eyers and S. Voulgaris (Eds.): DAIS 2022, LNCS 13272, pp. 29–36, 2022.
https://doi.org/10.1007/978-3-031-16092-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16092-9_3&domain=pdf
http://orcid.org/0000-0001-9726-7075
http://orcid.org/0000-0003-1493-6603
https://www.blockchain.com/btc/block/170
https://doi.org/10.1007/978-3-031-16092-9_3

30 P. D. Rosa and V. Schiavoni

Coinbase [2], Kraken [5], Binance [1], Uniswap [6], etc. With a current estimated
worldwide market-cap of 1.71 Trillion dollars, the cryptocoins economy roughly
match the GDP of South Korean in 2021 [4].

 0

 0.2

 0.4

 0.6

 0.8

 1

Jan
’20

Apr Jul Oct Jan
’21

Apr Jul Oct Jan
’22

P
ric

e
(n

or
m

al
iz

ed
)

Average daily price trends for the top−5 coins

BTC ETH BNB XRP ADA

Fig. 1. Normalized (min-max) average prices of the top-5 cryptocoins since January
2020.

The ownership of cryptocoins is registered on distributed ledgers (i.e.,,
blockchains), together with the corresponding transactions (transfers of coins
across wallets). Cryptocoins are exchanged (i.e.,, sold, bought) for specific trad-
ing prices. While it is beyond the scope of this work to understand the exact
nature of those prices, history has shown the extreme volatility of such trading
prices across all different sets of crypto-assets. For instance, Fig. 1 shows the nor-
malized average daily prices of 5 popular cryptocoins (i.e.,, BTC, ETH, BNB,
XRP, ADA) since January 2020.

It remains unclear what and if there are tight relations between the trad-
ing prices of different cryptocoins. Major cryptocoin exchanges, in particular
given the enormous popularity that such digital assets have grown into the large
public, and further facilitated by the easy access to these markets via mobile
apps, started to provide trend correlation indicators to coin/wallet owners. Such
correlation indicators can possibly drive end-users towards acquisitions or sells.
Coinbase, among the most popular cryptocoin exchanges, indicates the price
correlation as the tendency of other asset prices to change at the same time as
the asset shown on the page. In their case, correlation is computed leveraging
the Pearson correlation with USD order books over the last 90 d.

However, the nature of such correlations, their intensity as well as the evo-
lution of the correlations through time, remain largely unvalidated.

The contributions of this work-in-progress paper are twofold. First, we
extract the trading prices, as well as other exchange metadata (e.g.,, open and
closing price, market cap, volume), for the top-100 cryptocoins since the last
two years from a popular cryptocoin monitoring web-site. Second, we leverage
this dataset to carry out our preliminary study of the trend correlations between
and across crypto-coins. Specifically, we investigate daily, weekly and monthly
correlation patterns exhibited by two principal cryptocoins, i.e.,BTC and ETH,
against the remaining set of alt-coins in our dataset. Our analysis show strong

Understanding Cryptocoins Trends Correlations 31

correlations between the observed trends. We will leverage these observations in
our future work, where we plan to exploit the observed correlations to forecast the
future trading trends and by considering the problem of time-series forecasting
applied to the crypto-coin market.

We follow an open science approach: our datasets will be released and made
available to the research and open-source community.
Roadmap. This paper is organized as follows. Section 2 provides background
materials on Bitcoin, Ethereum, as well as general notions of correlation analysis.
Section 3 describes our dataset, as well as our work-in-progress analysis. We
briefly cover related work in Sect. 4, before concluding and presenting our future
work in Sect. 5.

Fig. 2. ML-based time series forecasting approaches: RNN, LSTM and GRU.

2 Background

Cryptocoins in a Nutshell. Cryptocoins are digitally encrypted assets. They
were typically designed to replace fiat currencies and used mostly in peer-to-
peer networks. Depending on the incentive natures of the underlying blockchain,
cryptocoins (or token) are rewarded to nodes in the network. We differentiate
between three main types of cryptocoins: (i) Bitcoin, (ii) alt-coins, and (iii)
stable coins.2 Alt-coins are alternative coins to Bitcoin. Notable examples include
Ether (ETH), Cardano (ADA), Litecoin (LTC), or Ripple (XRP). A stablecoin is
a class of cryptocurrencies that attempt to offer price stability and are backed by
a reserve asset, e.g.,gold or the value of the American dollar. Examples include
USDT (Tether) and USDC.
Time Series Analysis. A time series is an n-tuple of observations collected
sequentially over time. Common examples of time series include trends of interest
rates and stock prices, daily high and low temperatures, the electrical activity
of the heart, etc. The purpose of time series analysis is generally twofold: (i) to
understand the mechanisms and the inner dynamics of an observed series, and
(ii) forecast the future values of the series based on the historical ones. To analyze

2 Some characterizations define stable coins as sub-classes of alt-coins, together with
secure tokens, utility tokens, and more. We leave as future work to study in-depth
the correlations between such sub-types of alt-coins.

32 P. D. Rosa and V. Schiavoni

time series as sequences of random variables (i.e.,stochastic processes), it is
common to assume their stationarity: a time series is stationary if the probability
laws that govern its behavior do not change, and its mean μ is constant over
time. The Autoregressive Moving Average is a state-of-the-art stationary time
series modeling approach, which combines an Autoregressive (AR) process of
order p and of a Moving Average (MA) process of order q.

Real applications do not expose stationary trends. The Autoregressive Inte-
grated Moving Average model (ARIMA) differentiates a nonstationary process
a number d of times, until it becomes stationary. It is common to observe the
presence of a seasonality in the trend of a time series, especially in applica-
tions where cyclical tendencies are very common (like business or economics).
To handle periodical components, a common model is the Seasonal Autoregres-
sive Integrated Moving Average (SARIMA), that can be mapped to a standard
ARIMA model in absence of seasonality [10].

A significant progress in time series modeling was introduced by temporally-
aware ML models, i.e.,Recurrent Neural Networks (RNNs) (see Fig. 2). In those,
the behaviour of hidden neurons is not only determined by the activations in
previous hidden layers, but also by the activations at earlier times. The activation
function for every hidden layer of a RNN is: h(t) = f(h(t−1), x(t), θ). There, the
hidden layer at the time t, h(t), is a function of the previous status, h(t−1), of
the current input x(t) and of the activation function adopted, θ.

The training process of RNNs is usually complex, due to the unstable gradi-
ent problem: the gradient of the adopted cost function tends to get smaller or
bigger as it is propagated back through layers, resulting in a final vanishing or
exploding effect, respectively. RNNs are unable to model long term dependen-
cies, lacking predictive ability when dealing with long sequences of data. To solve
this problem, more effective sequence models are adopted in practical applica-
tions, such as Long Short-Term Memory (LSTM) and networks based on the
Gated Recurrent Unit (GRU). Such gated RNN architectures allow the network
to accumulate information over a long time period, learning to decide how to
forget the old states once that information has been used and processed [11].

Table 1. Mean/standard deviation for the top-5 cryptocoins since January 2020 (Open,
High, Low and Close expressed in 1K US dollars, volume and market Cap in 1B US
dollars).

Coin Open High Low Close Volume Market Cap

BTC 29.39/19.55 30.18/20.07 28.50/18.92 29.42/19.53 39.63/20.41 550.41/368.54

ETH 1.57/1.44 1.63/1.49 1.51/1.39 1.57/1.44 20.48/11.05 184.19/170.90

BNB 0.20/0.21 0.21/0.22 0.19/0.20 0.20/0.21 1.63/1.91 33.18/35.39

XRP 5.64e-4/3.94e-4 5.90e-4/4.17e-4 5.36e-4/3.68e-4 5.64e-4/3.94e-4 4.59/4.91 25.70/17.96

ADA 7.97e-4/8.21e-4 8.33e-4/8.55e-4 7.60e-4/7.84e-4 7.99e-4/8.21e-4 2.29/2.77 25.67/26.77

Understanding Cryptocoins Trends Correlations 33

3 Preliminary Evaluation

We describe here our experimental evaluation of the correlations between cryp-
tocoins. First we describe our dataset, and then we show several correlation
patterns.
Dataset. We collected our dataset from CoinMarketCap [3], a leading aggre-
gator of cryptocurrency market data. It contains records (High, Low, Open,
Close, Volume and Market Capitalization) for 68 coins registered during a time
frame of 25 months, namely from 24.12.2019 to 24.01.2022. “High” and “Low”
are the highest and lowest prices reached by the asset during the considered time
frame; “Open” and “Close” the opening and closing market prices; “Volume”
the measure of how much it was traded in the last period. Finally, “Market
Capitalization” indicates the total market value of its circulating supply. The
dataset includes a total of 51884 observations. The resulting time series for each
coin trend includes 763 steps. Table 1 reports mean and standard deviation for
the gathered records and across the top-5 cryptocoins in our dataset.

Fig. 3. Trend of Bitcoin and Ethereum prices during the last 2 years.

The two major coins in terms of Volume and Market Capitalization are Bit-
coin (BTC) and Ethereum (ETH), that we selected as the benchmarks for our
subsequent study. The price trend of those cryptocoins over the past two years
(shown in Fig. 3) showed on average a high positive correlation (with a Pearson
coefficient ≈0.9).
Correlation Patterns. The aim of the present study is to identify and analyze
the presence of cross-correlation patterns in cryptocurrency trends. To do so, we
analyze the correlations of 66 alt-coins present in our dataset against BTC and
ETH, and for three different time frames: daily, weekly and monthly. For weekly
and monthly correlations we define the sequence segments adopting a sliding

34 P. D. Rosa and V. Schiavoni

window approach, where observations are grouped within a window that slides
across the data stream. The daily observations for each coin are averaged over
sliding partitions of 7 and 30 d respectively, and then the correlations with other
coins are computed on the resulting aggregated values. Note that we postpone
the study of thumbing windows, where there is no overlapping of data clusters,
to future work. We represent those correlations, averaged among all the studied
variables (i.e.,, High, Low, Open, Close, Volume and Market Cap), as a series
of “cross-correlograms” of coins (Fig. 4). The radius of each circle represents the
strength of the relation (in terms of Pearson coefficient) between each of the
considered alt-coin and BTC (Figs. 4a/c/e) or ETH (Figs. 4b/d/f). The color
identifies the sign of the correlation (green if positive, red otherwise). The anal-
ysis of the cross-correlogram clearly shows how the vast majority of considered
alt-coins are strongly correlated with and follows the same trend of the two mar-
ket leaders. Their average values of the Pearson coefficient very close to 1. Not
surprisingly, the only visible exceptions are represented by the stablecoins avail-
able in our dataset (i.e.,, USDP, TUSD, DAI, BUSD, USDC, USDT), that are
pegged to the US dollar and follow standalone trends with total independence
from the rest of the coins in the market.

4 Related Work

There exists studies which analyzed co-movement and cross-correlation phe-
nomena in cryptocurrency market trends. Similar to our study, Katsiampa [12]
investigated the volatility dynamics of the two major cryptocurrencies, Bit-
coin and Ethereum, finding evidence of interdependencies between the two and
price responsiveness to major news in the market. Aslanidis et al. [7] showed
that cryptocurrencies exhibit similar mean correlation among them, with an
unstable trend over time; in addition, the authors computed coins correlation
against more traditional assets, detecting an independent behavior respect to
other financial markets. In [13], Bitcoin is identified as the leader in the cryp-
tocurrency market using wavelet-based methods, showing how other coins trends
are dependent from BTC price movements: as a result, Bitcoin price drops are
immediately reflected in other cryptocurrency prices. Finally, [9] studied the
collective behaviour for the cryptocurrency market discovering distinct and not
time-persistent community structures characterized by cross-correlation.

Understanding Cryptocoins Trends Correlations 35

Fig. 4. Daily, weekly and monthly cross-correlations between the alt-coins and
BTC/ETH.

5 Conclusion and Future Work

Cryptocoins present very volatile trends on public exchanges. In this work-
in-progress paper, we presented our preliminary evaluation of the correlations
between BTC, Ether and 66 other alt-coins. Our analysis shows strong correla-
tions, suggesting alt-coins follow closely the trends of the two main ones. Follow-
ing this initial study, we will further investigate the cross-correlation between the
two market leaders and the alt-coins, in the perspective to forecast their price
trends by using the time-series techniques from Sect. 2. We believe that our work
could represent a significant starting point for further analyses in co-movement
behaviors within the cryptocoin markets and in modeling and forecasting trends
of the asset prices.

Metadata, analysis data, tools and code for reproducibility are available to
the research community at https://github.com/quapsale/cryptoanalytics/.

https://github.com/quapsale/cryptoanalytics/

36 P. D. Rosa and V. Schiavoni

References

1. Binance exchange. https://www.binance.com
2. Coinbase exchange. https://www.coinbase.com
3. CoinMarketCap web service. https://coinmarketcap.com/
4. International monetary fund. https://www.imf.org/en/Publications/WEO
5. Kraken exchange. https://www.kraken.com
6. UniSwap decentralized exchange. https://uniswap.org/
7. Aslanidis, N., Bariviera, A.F., Mart́ınez-Ibañez, O.: An analysis of cryptocurrencies

conditional cross correlations. Finan. Res. Lett. 31, 130–137 (2019). https://doi.
org/10.1016/j.frl.2019.04.019, https://www.sciencedirect.com/science/article/pii/
S1544612319302168

8. Buterin, V., et al.: Ethereum white paper. GitHub Repository 1, 22–23 (2013)
9. Chaudhari, H., Crane, M.: Cross-correlation dynamics and community struc-

tures of cryptocurrencies. J. Comput. Sci. 44, 101–130 (2020). https://doi.org/
10.1016/j.jocs.2020.101130, https://www.sciencedirect.com/science/article/pii/
S1877750320304312

10. Cryer, J., Chan, K.S.: Time Series Analysis. Springer, New York, NY, USA (2008).
https://doi.org/10.1007/978-0-387-75959-3

11. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016). http://www.deeplearningbook.org

12. Katsiampa, P.: Volatility co-movement between bitcoin and ether. Finan. Res.
Lett. 30, 221–227 (2019). https://doi.org/10.1016/j.frl.2018.10.005, https://www.
sciencedirect.com/science/article/pii/S1544612318305580

13. Kumar, A., Ajaz, T.: Co-movement in crypto-currency markets: evidences from
wavelet analysis. Finan. Innov. 33 (2019). https://doi.org/10.1186/s40854-019-
0143-3, https://jfin-swufe.springeropen.com/articles/10.1186/s40854-019-0143-3

14. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Decentralized Bus.
Rev. 212–260 (2008)

https://www.binance.com
https://www.coinbase.com
https://coinmarketcap.com/
https://www.imf.org/en/Publications/WEO
https://www.kraken.com
https://uniswap.org/
https://doi.org/10.1016/j.frl.2019.04.019
https://doi.org/10.1016/j.frl.2019.04.019
https://www.sciencedirect.com/science/article/pii/S1544612319302168
https://www.sciencedirect.com/science/article/pii/S1544612319302168
https://doi.org/10.1016/j.jocs.2020.101130
https://doi.org/10.1016/j.jocs.2020.101130
https://www.sciencedirect.com/science/article/pii/S1877750320304312
https://www.sciencedirect.com/science/article/pii/S1877750320304312
https://doi.org/10.1007/978-0-387-75959-3
http://www.deeplearningbook.org
https://doi.org/10.1016/j.frl.2018.10.005
https://www.sciencedirect.com/science/article/pii/S1544612318305580
https://www.sciencedirect.com/science/article/pii/S1544612318305580
https://doi.org/10.1186/s40854-019-0143-3
https://doi.org/10.1186/s40854-019-0143-3
https://jfin-swufe.springeropen.com/articles/10.1186/s40854-019-0143-3

Rebop: Reputation-Based Incentives
in Committee-Based Blockchains

Arian Baloochestani(B), Leander Jehl, and Hein Meling

Department of Electrical Engineering and Computer Science, University of Stavanger,
Stavanger, Norway

{arian.masoudbaloochestani,leander.jehl,hein.meling}@uis.no

Abstract. Blockchains based on proof-of-work suffer from serious draw-
backs, such as high computational overhead, long confirmation time, and
forks. Committee-based blockchains provide an alternative that tackles
these problems. These blockchains use a committee to approve a block
at each height. However, rewarding the committee for their work is chal-
lenging. The reward mechanism must be fair and robust to attacks.

In this paper, we study leader-based reward mechanisms in
committee-based blockchains in the presence of rational, colluding, and
Byzantine committee members. First, we study the incentives of com-
mittee members to deviate and show that an existing reward mechanism
is susceptible to attacks from both colluding and Byzantine members.

We then propose a reputation-based leader selection mechanism that
provides sufficient incentives to coerce rational members to abide by the
protocol, and significantly limits the possible gains of collusion. Addition-
ally, our approach reduces the ability of Byzantine members to perform
targeted attacks.

Keywords: Committee-based blockchains · Reward mechanisms ·
Incentives · Reputation-based rewarding · Fairness

1 Introduction

The blockchain was first introduced in 2008 as an infrastructure for the Bitcoin
cryptocurrency [27] and has since become an appealing technology for various
applications. A blockchain is a secure database where users share their data in a
distributed and trusted environment [34]. The unknown and untrusted partici-
pants that maintain a blockchain do not rely on a trusted third party [15].

The foundation of a blockchain is its underlying consensus protocol. Processes
acting on behalf of users produce blocks of transactions, and consensus protocols

This work is partially funded by the BBChain and Credence projects under grants
274451 and 288126 from the Research Council of Norway.

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
D. Eyers and S. Voulgaris (Eds.): DAIS 2022, LNCS 13272, pp. 37–54, 2022.
https://doi.org/10.1007/978-3-031-16092-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16092-9_4&domain=pdf
https://doi.org/10.1007/978-3-031-16092-9_4

38 A. Baloochestani et al.

determine how participating processes agree on which block to append next to
the blockchain [5]. This allows processes to securely and consistently update
shared states following the state machine approach [33].

There are various kinds of consensus protocols with different configurations
and characteristics. In Proof-of-Work (PoW) [27] and Proof-of-Stake (PoS) [32],
a single participating process is selected to propose a new block and succes-
sively rewarded if the block was valid. The probability of selecting a process is
proportional to the energy and computational resources spent in PoW, or the
amount of digital currency the process has invested in PoS. While PoS avoids
the tremendous amounts of resources used by PoW blockchains, the mechanism
suffers from various security problems such as the nothing at stake and the long-
range attacks [21]. Therefore, some blockchains use a combination of PoS and a
committee to overcome these drawbacks.

In committee-based blockchains, a group of processes is responsible for updat-
ing the blockchain. Numerous committee-based blockchains exists, such as Ten-
dermint [17], LibraBFT/HotStuff [6,37], Algorand [8], and HyperLedger Fab-
ric [4]. In these blockchains, one process is selected as the leader to propose a
new block. The other committee members (aka validators) vote for this block.
If a majority of validators vote for the block, it will be added to the blockchain.

Shifting the responsibility for block creation from a single process to a
committee requires adjusting the reward mechanism. A fair reward mechanism
should reward participating committee members and prevent free-riding pro-
cesses from gaining rewards [3,25]. Designing such mechanisms involves multiple
tradeoffs. The key challenges include tolerating message loss and transient out-
ages of individual processes. Repeated retransmissions and reconfiguration can
address these challenges but requires complex protocol adaptations [20]. Leader-
based mechanisms are more efficient but suffer from false detections, which both
benign and malicious leaders may trigger.

This paper analyzes leader-based reward mechanisms and their robustness
against different attacks. Unlike previous work, we consider misbehavior from
rational, colluding, and Byzantine committee members. Rational and colluding
attackers try to increase their share of rewards and can be dissuaded by proper
incentives. Byzantine members, however, may perform attacks regardless of the
offered incentives, e.g., motivated by factors outside the system. Further, such
attacks may target individual members instead of the system as a whole.

We propose Reputation-based Reward Opportunity (Rebop), which relies on
reputation-based leader election to give well-behaved processes opportunities to
earn a bonus for serving as leaders. Taking longer behaviour into account, Rebop
is able to distinguish between a constant and one-time misbehaviour and thus
significantly reduce the profitability of attacks. Different from pure monetary
mechanisms, reputation-based leader election can also reduce the capabilities of
Byzantine attackers, that may not care about lost rewards.

We devise a normal form game-theoretic framework for incentive schemes
to determine their robustness against attacks from rational and colluding com-
mittee members. We model Rebop and Cosmos’ incentive scheme [18] in this

Rebop: Reputation-Based Reward Incentives 39

Fig. 1. Blockchain structure. Each block contains data, the previous block’s hash, and
proof of commit. The proof contains votes from the committee for the previous block.

framework. Our analysis shows that Rebop and Cosmos require similar bonuses
to thwart attacks up to a given coalition size. However, for larger coalitions,
profitable misbehavior is significantly restricted in Rebop compared to Cosmos.
Further, Cosmos provides no countermeasures to restrict Byzantine behaviors.

We use simulations to verify our analytical results and evaluate our
reputation-based method in more complex scenarios, including multiple con-
current attacks and message loss.

2 Committee-Based Blockchains

A blockchain is stored as a cryptographically secured append-only log that is
shared among several processes. Each block or entry in the log contains data; for
example, in cryptocurrencies like Bitcoin, this data is a set of new transactions in
which money is transferred from one user to another. Additionally, every block
contains a cryptographic hash of its predecessor, as shown in Fig. 1. These hashes
ensure the integrity of the stored data. Users of the system are identified by a
public key and authorized through digital signatures [22]. To ensure a consistent
system state, i.e., account balances, processes need to agree on the order in
which blocks are appended to the blockchain and transactions are executed.
This is achieved through a consensus algorithm. The number of blocks between
the genesis block and a particular block is called the block height.

In some consensus algorithms, such as PoW, processes compete to find and
issue a new block; thus, different processes may produce more than one valid
block at a particular height. This leads to different paths in the blockchain
called forks, and consequently, processes will be confused about which fork to
follow. To prevent forks, some blockchains use a committee to confirm the new
block proposed by a leader [6,8,9,13,17]. In these blockchains, at every height, a
leader is elected, responsible for proposing a new block. Then, other committee
members vote for the proposed block if it is valid. The block is committed if
a sufficiently large fraction of the members vote for the block in one or more
rounds. The fraction and the number of rounds depend on the algorithm.

Different committee-based blockchains employ public or private leader elec-
tion procedures. In private leader election, processes can secretly determine if
they are the leader and publish proof of such leadership. Some blockchains, such
as Algorand [8] and Snow White [9], use verifiable random functions [24] to

40 A. Baloochestani et al.

produce uniformly distributed random values with non-interactive proofs. All
processes run the function privately at every height, and its output determines
the leader. The selected leader can present proof of leadership along with the
proposed block to any process. In Algorand, committee members and leaders are
chosen randomly with probabilities proportional to their stakes, and more than
one leader may get elected for each round.

In a public leader election, all processes can infer who will be the next leader.
Typically, the next leader depends on randomness derived from the previous
round. In Dfinity [13], this randomness is the input of a pseudo-random per-
mutation. The original Tendermint [17] protocol uses round-robin for electing
the leader in each round. However, in current Tendermint, referred to as Cos-
mos [18], the probability of becoming a leader is proportional to the processes’
stake.

3 System and Protocol Model

In this section, we discuss the system model and the related assumptions. In
addition, we give a high-level model for a committee-based blockchains that
suits multiple protocols.

We assume a set Π = {p1, p2, ..., pn} of processes which are all functioning as
committee members. This assumption fits well for consortium-based or permis-
sioned blockchains. However, PoS-based blockchains may also exhibit a relatively
stable committee. For example, in Cosmos, 125 processes with the most stake
are selected in the committee, and they remain until replaced by other pro-
cesses with more stake. We note that it is common to pose restrictions on how
quickly deposited stake may be withdrawn [28]. Moreover, while our methods
focus on the leader, they could also be applied to systems that randomly select
the committee from a larger set of processes. We assume that the network is
synchronous, but it may lose messages.

We assume that every process pi has a voting power mi ∈ (0, 1), such that∑
pi∈Π mi = 1. Typically, voting power will be evenly distributed among pro-

cesses. To model coalitions, we also allow a process to control a larger fraction
of the total voting power than its fair share.

In our blockchain model progress is measured through a parameter height h,
which represents the current length of the blockchain. A block is added to the
chain at each height, following the process in Fig. 2. The details of individual
consensus algorithms are abstracted.

Several rounds might be needed for a block to be approved at some height h.
At each round t, a leader Lt ∈ Π is selected to propose a new block. We assume
that leader selection is randomized and write P [Lt = pi] for the probability that
pi becomes the leader at round t. We further assume that P [Lt = pi] may depend
on the voting power mi and the history of the blockchain up to height h − 1.

To publish a new block at height h, the leader needs to collect votes for the
previous block, proposed at height h − 1. As shown in Fig. 1, these votes need
to be included in the new block. We use a parameter f to specify, the amount
of voting power for which votes may be missing:

Rebop: Reputation-Based Reward Incentives 41

Fig. 2. Overview of the system model. At every height, a leader collects votes for the
preceding block and publishes a new block. The figure also shows possible attacks (red)
and countermeasures (blue) discussed in Sects. 4 and 5. (Color figure online)

|votes|m =
∑

pi∈voted

mi ≥ 1 − f, where f is typically
1
3
,

If the leader cannot collect enough votes the system progresses to the next round.
The parameter f typically also specifies the amount of voting power (processes)
that can be faulty, and may vary depending on the protocol. Committee members
sign their votes with their private keys; hence, the identity of each vote is known
to all processes. We assume that digital signatures cannot be forged. Processes
broadcast their votes for the next potential leader to collect.

A reward R is paid out to motivate the processes to follow the protocol at
height h. The reward is distributed, according to their voting power, among the
processes whose votes are included at height h + 1. This ensures that processes
that did not participate do not receive a reward. We assume that R is constant
and is not related to the contents of the block. R may be fixed in a cryptocurrency
due to economic concerns such as inflation and money circulation.

As shown in Fig. 2, a faulty leader may omit some votes. Next, we discuss
how and why this might happen and how it affects the utility of the processes.

42 A. Baloochestani et al.

4 Attacks and Incentives

Some processes can exhibit malicious behavior by deviating from the protocol.
More precisely, the model presented in Sect. 3 allows three different attacks:

I A member of the committee may not vote for a proposal or fail to disseminate
the proposal.

II A leader may abstain from publishing a block.
III A leader may omit some of the votes when publishing a block.

We follow the BAR model [1], assuming altruistic, rational, and Byzantine
processes. Additionally, in a system with open membership, a single entity may
control multiple processes. Therefore, we also consider the possibility of colluding
rational processes [35].

Altruistic. Altruistic or correct processes strictly follow the protocol. Correct
processes may experience network failures, and their messages may get lost.

Rational. Rational processes follow the protocol unless deviating increases the
reward. These processes vote to get the reward, abstaining from Attack I.

However, a rational leader may exclude some votes to increase the share of
the reward received for his own vote (Attack III). If a rational process pr with
voting power mr voted at height h and is selected as the next leader pr = Lh+1,
then it may increase its share of the reward by omitting a fraction e < f of the
votes. Thus, instead of the honest share share[honest] = mrR, pr will receive
share[omite] = mrR

(1−e) . We can see that pr has a solid motivation to deviate from
the protocol to maximize its share of the reward. Authors in [17] claim that this
problem will not occur due to the tit-for-tat strategy taken by the validators;
however, due to the probability of message loss in the network, no one can prove
that it is excluded from the reward intentionally. Thus, a process that is subject
to message loss would suffer unfairly from such retaliation.

Finally, resource constraint rational processes may also try to avoid the addi-
tional steps performed by a leader, leading to Attack II.

Colluding. While a rational process pr deviates from the protocol if that leads
to more profit, a coalition works together to increase the group’s total profit.
We model colluding processes as a single process with a larger voting share.
Similar to rational processes, colluding processes also have the same motivation
to perform Attack III.

Byzantine. Byzantine processes arbitrarily deviate from the protocol. Unlike
rational processes, Byzantine attackers do not care about their outcome; because
they have an external motivation unknown to anyone else. They may, for exam-
ple, try to harm the system or specific other processes. Committee based proto-
cols remain functional despite a certain fraction (f) of Byzantine processes. We
therefore ignore attacks on the protocol in this work and focus on the reward-
ing mechanism, especially on targeted attacks, where Byzantine processes try to

Rebop: Reputation-Based Reward Incentives 43

reduce the reward of targeted committee members. In such a targeted attack,
a Byzantine process may selectively distribute its vote (Attack I) or, if selected
as the leader, ignore the votes of some processes in the committee (Attack III).
Note that incentives cannot discourage Byzantine behavior because Byzantine
processes are motivated by external goals. Instead of monetary punishment, we
need to reduce Byzantine processes’ ability to conduct attacks.

In the next section we present our reputation-based incentive scheme.

5 Rebop: Reputation-Based Reward Opportunity

In a committee-based scheme, the leader role carries a special responsibility
and must perform additional tasks. Therefore, the leader should be rewarded
more than other committee members. Additionally, this reward should discour-
age rational or colluding processes from omitting votes. We note that benign
leaders may also lose votes due to message loss. In our incentive scheme, Rebop,
we reward correct leaders with the possibility of additional earnings rather than
punishing misbehavior.

As the flowchart in Fig. 2 indicates, Rebop combines two mechanisms. We
use reputation-based leader election to select leaders in each round. In addition,
we propose to give a fixed fraction of the block reward as a bonus to the leader
to enforce long-term benefits for rational and colluding processes. The bonus
encourages leaders to actually propose a block, preventing Attack II.

If we penalize deviating processes for Attack III by selecting them less often as
the leader in the subsequent blocks, we reduce the ability of Byzantine attackers.
Additionally, deviating processes are punished by losing bonus now given to other
leaders. This can motivate rational processes against Attack III. Rebop computes
reputation based on the average number of votes a process pi has included as
the leader during the last T blocks. Let leader(i, h) determine whether pi was a
leader at height h:

leader(i, h) =

{
1 if pi is Lh

0 otherwise

Then, the reputation ri,h ∈ [0, 1] of pi at height h is calculated as:

ri,h =

⎧
⎨

⎩

1 if
∑h

t=h−T leader(i, t) = 0
∑h

t=h−T leader(i,t)·(f−et
f)α

∑h
t=h−T leader(i,t)

otherwise
(1)

where et ∈ [0, f] is the number of votes missing from the block at height t, and
α ≥ 1 is a parameter of the protocol. T should be selected in a way to allow
each process to become the leader at least once during the next T rounds. For
α > 1 repeated omission of even a few votes results in a lower reputation than a
one time omission of many votes. This helps to reduce the ability of Byzantine
attackers to omit individual players. Thus, larger α gives better protection from
Byzantine attackers, but may open to additional attacks from colluding processes

44 A. Baloochestani et al.

as we show below. A large α may also result in punishments for correct processes
that suffer from message loss.

We write ri for the reputation of pi at the current height The chances of the
process pi to be selected as the leader is proportional to ri and mi. The more
the reputation of pi, the more chances for it to be the leader, and consequently,
the more bonus it gets.

P [pi = Lh] =
rimi∑

i≤n rimi
(2)

Rational players may not produce a block if they lose too many votes to
prevent their reputation from being slashed (Attack II). However, because repu-
tation is an average of the number of votes gathered in the last T blocks, a small
value for reputation in one round cannot affect the total reputation much.

In addressing Attack III, we note that reputation-based leader election can
make Attack I more attractive for rational and colluding players. By omitting
votes and reducing the reputation of other processes, rational processes may try
to gain a larger share of the rewards. However, our analysis in the next section
shows that the reward lost to this attack is often higher than the earned bonuses.

6 Incentive Analysis

We use game theory to analyze the different strategies of committee members.
Specifically, we use a normal form game G = 〈N,S,U〉, where N is the player
set, S is the strategy set, and U is the utility function.

Player Set. We consider players in the game as the processes in the committee
who contribute to maintaining the blockchain (N = Π). We model colluding
processes as one player pi with voting-power mi ∈ [0, f].

Strategy Set. To simplify our analysis, we only consider constant strategies, i.e.
strategies where players follow conduct a certain attack with constant probability
every round. We analyze some additional strategies through simulation. The
strategy S(ρ, e, ea) of a player is parameterized by ρ ∈ [0, 1], e ∈ [0, f], and
ea ∈ [0,mi]. If a process pi is a follower, it votes with only mi − ea fraction of
its power for a proposed block. If it is the leader, it votes with its full power.
Additionally, a leader publishing a block will omit e votes with probability ρ.
With probability 1 − ρ it will include all votes it received. Therefore, having
e > 0 and ρ > 0 indicate Attack III, while Attack I is demonstrated by having
ea > 0.

The strategy profile S(0, 0, 0) in which the players always follow the protocol
is used by Altruistic processes, and is denoted by Shonest.

Utility Function. We define the utility function of each player as its expected
payoff during a round, excluding the first T . This payoff includes both the vot-
ing reward and leader bonus. We note that due to our restriction to constant
strategies, the expected payoff is constant for all rounds after the first T .

Rebop: Reputation-Based Reward Incentives 45

6.1 Baseline Analysis

As a baseline, we analyze the incentive mechanism introduced in Cosmos [18].
In this mechanism, the leader Lh+1 receives an extra reward b × R as a bonus
if it does include votes from all committee members. If votes from a fraction
e ≤ f of the committee members are missing, the bonus is reduced to b × f−e

f .
We refer to this incentive scheme as the variational bonus. In this scheme, the
expected payoff of players only depends on their behaviour in the current round.
We, therefore, ignore the parameters ρ in the strategy profile and concentrate on
e. In rounds, where pi is the leader, its payoff for strategies Shonest and S(1, e, 0)
is calculated as:

share[honest] = mi · R + b · R share[S(1,e,0)] =
mi · R

1 − e
+

f − e

f
· b · R (3)

In order to prevent rational processes from excluding each other, the bonus must
ensure that share[honest] > share[S(1,e,0)]. Thus, Inequality (4) must hold:

b >
f · mi

1 − e
(4)

Example. If we consider f = 1/3, then b must be greater than 1/(2 · n) to stop
a rational process. For instance, the size of the committee in Cosmos is between
100 and 300. A block needs at least 2/3 of the votes to be considered as approved.
Therefore, according to Eq. 4, a bonus of b = 0.005 would be sufficient to prevent
misbehaviour in individual rational nodes. The bonus of 5% employed in Cosmus
is sufficient to thwart off coalitions of size up to 10%.

Theorem 1. If and only if Eq. 4 holds, for all mi, the strategy profile Shonest is
a Nash equilibrium.

Proof. If Eq. 4 holds, share[S(1,e,0)] is smaller than share[honest], meaning the
payoff of staying correct is more than omitting other processes for pi with power
mi. Therefore, if all other players follow Shonest, player pi cannot increase its
payoff by changing e and omitting votes, when it is the leader.

Lemma 1. The right side of Eq. 4 reaches its maximum for e = f fraction of
the committee.

6.2 Collusion Resistance of Rebop

Attack III. To analyze the resistance of Rebop against Attack III, we focus on
strategies deviating from Shonest through ρ > 0 and e > 0.

Lemma 2. Any strategy S(ρ, e, ea) is dominated by a strategy S′ = S(ρ′, f, ea).

46 A. Baloochestani et al.

We omit the detailed proof due to space constraints. The idea is to choose ρ′,
such that for α = 1 both strategies give the same reputation. For α > 1, S′ will
even give a larger reputation. Since according to Lemma 1, omitting a larger
fraction is more profitable, S′ gives a bigger reward.

Assume now, that all players but pi follow Shonest. Further, we assume that
pi follows a strategy S′ = S(ρ′, f, 0). If ρ′ = 0 (i.e. S′ = Shonest), the expected
payoff received by pi is:

payoffi[Shonest] = Phonest[Lh = pi] · b · R + mi · R (5)

where Phonest[Lh = pi] = mi, since all players have reputation 1. If pi follows
S′, as a payoff, it receives miR

1−f reward in the rounds it is the leader and decides
to omit f votes (with probability ρ).

payoffi[omit] = PS′ [Lh = pi]
(

ρ
miR

1 − f
+ (1 − ρ)miR + bR

)

+ PS′ [Lh �= pi]miR

(6)
Following S′, ri = (1 − ρ). This gives the following equation:

PS′ [Lh = pi] =
mi(1 − ρ)

1 − mi + mi(1 − ρ)
(7)

By comparing the Eqs. 5 and 6, the bonus threshold for preventing the colluding
behaviour is derived as follows:

b >
mi · f · (1 − ρ)
(1 − f)(1 − mi)

(8)

Lemma 3. For ρ ∈ [0, 1] the right hand side of Inequation 8 reaches its maxi-
mum when ρ is 0.

Theorem 2. If Inequation 8 holds, and all players but pi follow Shonest, then
pi will receive a worse payoff following S′ than following Shonest.

Example. Considering f = 1/3, in Rebop, a bonus of 0.005 is sufficient to
motivate rational players not to omit votes in a system with more than 100
players with equal power. A bonus of 5% allows Rebop to thwart off coalitions of
size up to 9%.

Attack I. In Rebop, a process pi may also try to reduce others reputation by
not voting for their proposed blocks with part of its power ea < mi. We note
that this attack becomes less effective if pi itself also omits votes. We therefore
analyze the payoff of strategies Sa = S(0, 0, ea). By reducing others’ reputations,
a process itself receives a bonus more often. However, it loses the ma part of its
reward by not voting to the approved blocks. This attack is unprofitable if the
lost reward is bigger than the expected increase in bonus.

Rebop: Reputation-Based Reward Incentives 47

Fig. 3. a) A comparison between variational bonus (red lines) and reputation-based
leader election with a fixed bonus (blue lines). The plot illustrates the minimal bonus
to make omitting votes with probability ρ unprofitable for 3 different values of mi.
b) Bonus threshold for preventing Attack III for reputation-based leader election and
variational bonus, and Attack I for α = [1, 15] and ea = mi. The blue and hatched
areas show the bonuses that can tolerate both attacks together. In both plots f = 1

3
.

(Color figure online)

(

ea −
(

mi − ea

1 − ea

)

ea

)

PSa
[Lh = pi] > PSa

[Lh = pi]b − PShonest
[Lh = pi]b (9)

Under strategy Sa the reputation of pi is 1, while the reputation of all correct
players is rc,a =

(
f−ea

f

)α

. Thus

PSa
[Lh = pi] =

mi

rc,a · (1 − mi) + mi
(10)

Simplifying Inequation 9, the bonus threshold for stopping Attack I is calculated
as follows:

b <
ea · rc,a

mi(1 − ea) (1 − rc,a) (11)

The next theorem follows from the above analysis and Theorem 2.

Theorem 3. If Inequation 11 and 8 hold, for all mi, the strategy profile Shonest

is a Nash equilibrium.

Discussion. Figure 3 b) correlates the bonus size with the maximum attacker
power tolerated. We see that a small bonus tolerates a similar coalition size
for both analyzed methods. Nevertheless, a larger bonus is needed for Rebop
to tolerate larger coalitions. Additionally, the analysis on Attack I shows that
for Rebop, there exists a maximum bonus for keeping a given coalition correct.
Different from the lower bound on the bonus, this upper bound depends on the
value α.

Interestingly, Lemma 3 suggests that for processes with power above the
threshold, the two methods differ in which attacks become profitable. This is

48 A. Baloochestani et al.

shown in Fig. 3 a). For Rebop, only small omissions become profitable. For exam-
ple, the figure shows that given a bonus of 5% a coalition with mi = 0.1 may
benefit from an attack, but only if ρ ≤ 0.1. While effective, this attack will not
give a significant win. Another example is given below:

Example. Consider f = 1/3, a bonus b = 0.1. Under Rebop, even for a coalition
with mi = 0.33, Attack III is only profitable with ρ < 0.6, meaning it is only
profitable for the coalition to omit others votes 60% of time. Using Cosmos’
variational bonus however, all attacks with e > 0 are profitable for the same
coalition, meaning it is profitable to omit others in every round.

6.3 Preventing Byzantine Attacks

None of the above schemes prevent Byzantine attackers from excluding targeted
processes when they are the leader. In Cosmos, for example, Byzantine processes
lose reward by attacking other processes, but it does not stop them from misbe-
haviour. However, different from the Cosmos’ variational bonus, Rebop reduces
the abilities of Byzantine attackers by prioritizing correct processes as the lead-
ers. Assume a Byzantine process pb with voting-power mb in the system. Assume
pb is targeting a victim pv with power mv. In the schemes that use a random
or round-robin leader election (Cosmos), the probability of pb to be selected as
the next round leader is always constant and proportional to its power mb. In
Rebop the probability for pb to be the leader is reduced with its reputation rb:

P [Lh = pb] =
mb · rb

mb · rb + (1 − mb)
=

mb (f − mv)α

mb (f − mv)α + fα(1 − mb)
(12)

According to Eq. 12 Byzantine attacks also on small victims (e.g. mv = 1%) can
be significantly reduced by choosing a large enough α. Note that while Rebop
reduces the ability of attacker to do Attack III, it gives the power to attacker
for Attack I. The effect of attacks is further analyzed in Sect. 7.2.

7 Simulation Results

We conduct simulations to verify our analysis and evaluate additional situations,
including Byzantine attacks. Since the committee’s composition has little effect
on our proposed methods, we use a constant committee in all simulations. For
simplicity, we assume that all processes have an equal voting power which does
not change during the experiments. We use f = 1/3, |Π| = n = 100, and
T = 10 000 in all simulations, and run for 60 000 rounds. This ensures that even
with a small reputation of 0.05 a node is likely the leader at least once during
T rounds.

Rebop: Reputation-Based Reward Incentives 49

Fig. 4. Final share of one colluding process with two different coalition sizes for different
attacks. In a fair environment, the share of each process is 0.01 of the total reward.

7.1 Resistance Against Colluding Processes

To show the impact of Rebop on colluding processes, we simulate Attack III by
coalitions with 10% and 30% of the committee members. There is no message
loss in this simulation, and the leaders receive all the votes. Bonus is set to 5% of
the block reward. We evaluate Cosmos’ variational bonus and the basic protocol
without bonus with e = f and ρ = 1.

We also simulated Rebop with 4 different strategies for the colluding pro-
cesses: 1) e = f and ρ = 0.25. 2) e = f and ρ = 0.75. 3) attack every other T
with e = f and ρ = 0.5. 4) ea = m

2 .
The results of this simulation are shown in Fig. 4. It is evident that under ran-

dom leader election with no bonus, even a 10% coalition can benefit from attack-
ing the system. Variational bonus (Cosmos) makes things better, but forming
a coalition in large sizes leads to a significant outcome; colluding processes can
gain more than their fair share from the system by excluding any process other
than themselves. However, Rebop is effective against such behavior. Even the
large coalition of 30% benefits more from fewer omissions (ρ = 0.25). Thus, the
5% bonus is sufficient to limit attacks. In addition, because the bonus is small,
Attack I is not effective. Note that attacking every other T with ρ = 0.5 leads
to almost the same reward as attacking every round with ρ = 0.25.

7.2 Byzantine Resistance

We simulate the effect of Rebop in the presence of message loss and Byzantine
attacks with α = 1 and α = 15. We also used the variational bonus (Cosmos)
as our baseline. Figure 5 shows how much the resulting shares are reduced and
increase through message loss and attacks. We use a bonus of b = 5%. Processes
exhibit different message loss and attack behavior, as summarized in Table 1. We
assume that a leader with message loss loses every message with the constant
probability given in the table.

Comparing shares of under attack processes, we see that Cosmos allows
Byzantine processes to inflict significant harm. Consistent with our results on
coalition resistance, the attackers (G7-G10) gain less than the correct G1. Rebop
reduces the harm done by Attack III. G6, which has voting power 5%, loses 9%

50 A. Baloochestani et al.

Fig. 5. The difference between final share and fair share (0.01) under message loss
and attack for processes in three different configurations: random leader selection with
variational bonus (Cosmos), Rebop with α = 1, and Rebop with α = 15. Processes are
categorized into 10 groups based on Table 1.

Table 1. Summary of message loss and Byzantine attacks in the Byzantine resistance
experiment.

Group Type Group
size

Message
loss

Target Attack

G1 Correct 42 - - -

G2 Correct 10 5% - -

G3 Correct 1 - - -

G4 Correct 1 - - -

G5 Correct 1 - - -

G6 Correct 5 - - -

G7 Byzantine 10 - G3 Attack I

G8 Byzantine 10 - G4 Attack III

G9 Byzantine 10 - G5 Attack I and Attack III

G10 Byzantine 10 - G6 Attack III

of its fair share with Cosmos, 8% in Rebop with α = 1 and gains 0.8% if α is
increased to 15. For victims with smaller voting power (G5, G6), Rebop is less
effective but still outperforms Cosmos. Our method still leaves some ability for
attacks. That is because our model cannot distinguish between votes omitted by
attackers and those omitted through message loss. We also note from G3’s share
that a large α opens the possibility of Attack I. To this end, the α should be
carefully selected. However, even under this attack, the attacker G7 earns less
than the correct G1.

Rebop: Reputation-Based Reward Incentives 51

8 Related Works

Fair rewarding mechanisms for blockchains have been studied for different con-
sensus types and perspectives [11,12,30,31]. In the following, we restrict expo-
sition to committee-based blockchains.

Lagaillardie et al. [19] studied the fairness of Tendermint in the presence of
rational processes. They proposed delayed rewarding, which allows votes for a
block at height h to be included and rewarded up to the height h+Δ. Amoussou-
Guenou et al. [2] analyzed the fairness of the rewarding mechanism used in Ten-
dermint. They proved that the current rewarding mechanism used by Tendermint
is not fair under message loss. They also proved that if a system is eventually
synchronous and Byzantine behavior is detectable, an eventual fair rewarding
mechanism exists for it. This differs from our assumptions, where Byzantine
behavior is indistinguishable from message loss. They further extended their
work in [3] to study fairness in all committee-based blockchains. They analyzed
the fairness of two critical elements of committee-based blockchains: rewarding
mechanisms and selection mechanisms. Liu et al. [23] proposed a fair selection
mechanism for permissionless committee-based blockchains, which has two main
components: the mining process and the confirmation of the new nodes list.
Motepalli et al. [25] designed a framework for analyzing different reward mech-
anisms in PoS-based blockchains using evolutionary game theory.

All of the above works either do not consider Byzantine behavior or assume
that such behavior, especially denial to receive a message, can be detected. On
the other hand, FairLedger [20] proposes a detection mechanism that includes
both echoing messages in case of message loss and explicit reconfiguration in
case of detection.

Using reputations for different areas such as blockchain is not new. Many
approaches assign a score to each user that represents the probability of that user
to behave honestly [7,14,16,26]. De Oliveira et al. [29] proposed a reputation-
based consensus mechanism to overcome the problem of high energy consump-
tion. In their model, each node needs to have a higher reputation than a threshold
to append a new block to the blockchain. Do et al. [10] presented an improvement
for delegated PoS by replacing coin-staking with a reputation-based ranking sys-
tem. Wang et al. [36] proposed a reputation-based incentive module that can be
added to most consensus algorithms and help them to achieve a better consensus
state. In most of the current approaches, reputations deter the reward of each
process. This is different from our proposed method in which only a small part
of the reward is given based on the reputation, and its main purpose is to take
the ability to misbehave away from the processes.

9 Conclusion

We have analyzed different attacks on leader-based reward mechanisms in
committee-based blockchains. We showed that rational processes might gain
more than their fair share by building a coalition, and Byzantine processes can

52 A. Baloochestani et al.

reduce others’ share of rewards. Then, we proposed Rebop, which uses a leader
bonus and reputation-based leader election to overcome these attacks. Our anal-
ysis proves the ability of the proposed method to tackle these problems. We
show that Rebop reduces the effect of Byzantine attacks, which the bonus and
incentives alone do not achieve.

References

1. Aiyer, A.S., Alvisi, L., Clement, A., Dahlin, M., Martin, J.P., Porth, C.: Bar fault
tolerance for cooperative services. In: Proceedings of the Twentieth ACM Sympo-
sium on Operating Systems Principles, pp. 45–58 (2005)

2. Amoussou-Guenou, Y., Del Pozzo, A., Potop-Butucaru, M., Tucci-Piergiovanni,
S.: Correctness and fairness of tendermint-core blockchains. arXiv preprint
arXiv:1805.08429 (2018)

3. Amoussou-Guenou, Y., del Pozzo, A., Potop-Butucaru, M., Tucci-Piergiovanni, S.:
On fairness in committee-based blockchains. In: 2nd International Conference on
Blockchain Economics, Security and Protocols (Tokenomics 2020) (2020)

4. Androulaki, E., et al.: Hyperledger fabric: a distributed operating system for per-
missioned blockchains. In: Proceedings of the Thirteenth EuroSys Conference, pp.
1–15 (2018)

5. Bano, S., et al.: Consensus in the age of blockchains. arXiv preprint
arXiv:1711.03936 (2017)

6. Baudet, M., et al.: State machine replication in the libra blockchain. The Libra
Association, Technical report (2019)

7. Cai, W., Jiang, W., Xie, K., Zhu, Y., Liu, Y., Shen, T.: Dynamic reputation-based
consensus mechanism: real-time transactions for energy blockchain. Int. J. Distrib.
Sens. Netw. 16(3), 1550147720907335 (2020)

8. Chen, J., Micali, S.: Algorand: a secure and efficient distributed ledger. Theoret.
Comput. Sci. 777, 155–183 (2019)

9. Daian, P., Pass, R., Shi, E.: Snow White: robustly reconfigurable consensus and
applications to provably secure proof of stake. In: Goldberg, I., Moore, T. (eds.)
FC 2019. LNCS, vol. 11598, pp. 23–41. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-32101-7 2

10. Do, T., Nguyen, T., Pham, H.: Delegated proof of reputation: a novel blockchain
consensus. In: Proceedings of the 2019 International Electronics Communication
Conference, pp. 90–98 (2019)

11. Fanti, G., Kogan, L., Oh, S., Ruan, K., Viswanath, P., Wang, G.: Compounding
of wealth in proof-of-stake cryptocurrencies. In: Goldberg, I., Moore, T. (eds.) FC
2019. LNCS, vol. 11598, pp. 42–61. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-32101-7 3

12. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis
and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS,
vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-46803-6 10

13. Hanke, T., Movahedi, M., Williams, D.: DFINITY technology overview series, con-
sensus system. arXiv preprint arXiv:1805.04548 (2018)

14. He, Q., Wu, D., Khosla, P.: SORI: a secure and objective reputation-based incen-
tive scheme for ad-hoc networks. In: 2004 IEEE Wireless Communications and
Networking Conference, pp. 825–830. IEEE (2004)

http://arxiv.org/abs/1805.08429
http://arxiv.org/abs/1711.03936
https://doi.org/10.1007/978-3-030-32101-7_2
https://doi.org/10.1007/978-3-030-32101-7_2
https://doi.org/10.1007/978-3-030-32101-7_3
https://doi.org/10.1007/978-3-030-32101-7_3
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
http://arxiv.org/abs/1805.04548

Rebop: Reputation-Based Reward Incentives 53

15. Herlihy, M., Moir, M.: Enhancing accountability and trust in distributed ledgers.
arXiv preprint arXiv:1606.07490 (2016)

16. Kantarci, B., Glasser, P.M., Foschini, L.: Crowdsensing with social network-aided
collaborative trust scores. In: 2015 IEEE Global Communications Conference
(GLOBECOM), pp. 1–6. IEEE (2015)

17. Kwon, J.: Tendermint: consensus without mining. Draft v. 0.6, fall 1(11) (2014)
18. Kwon, J., Buchman, E.: Cosmos: a network of distributed ledgers (2016). https://

cosmos.network/whitepaper
19. Lagaillardie, N., Djari, M.A., Gürcan, Ö.: A computational study on fairness of

the tendermint blockchain protocol. Information 10(12), 378 (2019)
20. Lev-Ari, K., Spiegelman, A., Keidar, I., Malkhi, D.: FairLedger: a fair blockchain

protocol for financial institutions. In: 23rd International Conference on Principles
of Distributed Systems (OPODIS 2019) (2020)

21. Li, W., Andreina, S., Bohli, J.-M., Karame, G.: Securing proof-of-stake blockchain
protocols. In: Garcia-Alfaro, J., Navarro-Arribas, G., Hartenstein, H., Herrera-
Joancomart́ı, J. (eds.) ESORICS/DPM/CBT -2017. LNCS, vol. 10436, pp. 297–
315. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67816-0 17

22. Liu, J., Li, W., Karame, G.O., Asokan, N.: Toward fairness of cryptocurrency
payments. IEEE Secur. Priv. 16(3), 81–89 (2018)

23. Liu, Y., Liu, J., Zhang, Z., Yu, H.: A fair selection protocol for committee-based
permissionless blockchains. Comput. Secur. 91, 101718 (2020)

24. Micali, S., Rabin, M., Vadhan, S.: Verifiable random functions. In: 40th Annual
Symposium on Foundations of Computer Science, pp. 120–130. IEEE (1999)

25. Motepalli, S., Jacobsen, H.A.: Reward mechanism for blockchains using evolution-
ary game theory. arXiv preprint arXiv:2104.05849 (2021)

26. Mousa, H., Mokhtar, S.B., Hasan, O., Younes, O., Hadhoud, M., Brunie, L.: Trust
management and reputation systems in mobile participatory sensing applications:
a survey. Comput. Netw. 90, 49–73 (2015)

27. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system. Technical report
(2008)

28. Nguyen, C.T., Hoang, D.T., Nguyen, D.N., Niyato, D., Nguyen, H.T., Dutkiewicz,
E.: Proof-of-stake consensus mechanisms for future blockchain networks: funda-
mentals, applications and opportunities. IEEE Access 7, 85727–85745 (2019)

29. de Oliveira, M.T., Reis, L.H., Medeiros, D.S., Carrano, R.C., Olabarriaga, S.D.,
Mattos, D.M.: Blockchain reputation-based consensus: a scalable and resilient
mechanism for distributed mistrusting applications. Comput. Netw. 179, 107367
(2020)

30. Pass, R., Shi, E.: FruitChains: a fair blockchain. In: Proceedings of the ACM Sym-
posium on Principles of Distributed Computing, pp. 315–324 (2017)

31. Pass, R., Shi, E.: The sleepy model of consensus. In: Takagi, T., Peyrin, T.
(eds.) ASIACRYPT 2017. LNCS, vol. 10625, pp. 380–409. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-70697-9 14

32. Saleh, F.: Blockchain without waste: proof-of-stake. Rev. Financ. Stud. 34, 1156–
1190 (2018)

33. Schneider, F.B.: Implementing fault-tolerant services using the state machine app-
roach: a tutorial. ACM Comput. Surv. (CSUR) 22(4), 299–319 (1990)

34. Sukhwani, H., Mart́ınez, J.M., Chang, X., Trivedi, K.S., Rindos, A.: Performance
modeling of PBFT consensus process for permissioned blockchain network (hyper-
ledger fabric). In: 2017 IEEE 36th Symposium on Reliable Distributed Systems
(SRDS), pp. 253–255. IEEE (2017)

http://arxiv.org/abs/1606.07490
https://cosmos.network/whitepaper
https://cosmos.network/whitepaper
https://doi.org/10.1007/978-3-319-67816-0_17
http://arxiv.org/abs/2104.05849
https://doi.org/10.1007/978-3-319-70697-9_14

54 A. Baloochestani et al.

35. Vilaça, X., Denysyuk, O., Rodrigues, L.: Asynchrony and collusion in the N-party
BAR transfer problem. In: Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012.
LNCS, vol. 7355, pp. 183–194. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31104-8 16

36. Wang, E.K., Liang, Z., Chen, C.M., Kumari, S., Khan, M.K.: PORX: a reputation
incentive scheme for blockchain consensus of IIoT. Futur. Gener. Comput. Syst.
102, 140–151 (2020)

37. Yin, M., Malkhi, D., Reiter, M.K., Gueta, G.G., Abraham, I.: HotStuff: BFT con-
sensus with linearity and responsiveness. In: Proceedings of the 2019 ACM Sym-
posium on Principles of Distributed Computing, pp. 347–356 (2019)

https://doi.org/10.1007/978-3-642-31104-8_16
https://doi.org/10.1007/978-3-642-31104-8_16

Fault Tolerance

Lesser Evil: Embracing Failure to Protect
Overall System Availability

Viktória Fördős1,2(B) and Alexandre Jorge Barbosa Rodrigues1

1 Cisco Systems, Stockholm, Sweden
{vfordos,albarbos}@cisco.com

2 Faculty of Informatics, ELTE, Eötvös Loránd University, Budapest, Hungary

Abstract. Low memory conditions degrade system performance, chal-
lenge programs to fulfil their SLA and can lead to out-of-memory errors
causing a major system outage. Running low on memory is an especially
dangerous situation in case of mission critical, embedded Erlang systems
with high availability requirements. In such systems, total system outage
must be avoided at all costs. Nonetheless, no solution exists today that
can be added to an Erlang system without code modification and would
treat memory pressure out of the box.

We propose an approach, called Lesser Evil, that can treat low mem-
ory pressure in any fault-tolerant Erlang system without the need of any
code modification. Our experiments suggest that, with the help of Lesser
Evil, an embedded Erlang system can survive low memory conditions and
avoid a major outage.

Keywords: Embedded systems · Memory management · Fault
tolerance · Erlang

1 Introduction

In our digitalised world we depend on mission critical, embedded systems. These
systems need to be always available regardless of the current load on the system.
Parallelism is a key enabler to accommodate a system to variable workload.
However, what stays constant in a system is the total memory installed (per a
single host). If a system runs low on available memory, it will not perform as
expected. Since it is struggling to allocate memory enough to execute requests,
it will not satisfy its QoS metrics, neither SLA requirements. Considering best
case scenarios, its performance will degrade while in the worst case the program
will stop with an out-of-memory error causing the system to reboot. Taking into
account that embedded systems have strongly constrained resources and slow
processing capabilities, the reboot can take significant amount of time while
the system stays offline. Hence, running low on memory is a critical event in
case of mission critical, embedded systems that should not be ignored as it can
compromise the availability of the system.
c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
D. Eyers and S. Voulgaris (Eds.): DAIS 2022, LNCS 13272, pp. 57–73, 2022.
https://doi.org/10.1007/978-3-031-16092-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16092-9_5&domain=pdf
http://orcid.org/0000-0001-6403-9797
http://orcid.org/0000-0001-7618-6743
https://doi.org/10.1007/978-3-031-16092-9_5

58 V. Fördős and A. J. Barbosa Rodrigues

The presented problem is especially relevant in case of embedded systems that
are written in Erlang. The Erlang programming language was designed in the
Ericsson software technology lab for systems that will never stop or fail. Early use
cases of Erlang at Ericsson include a multi-service switch, AXD 301 [12], where
the control system was implemented in Erlang. Since then, Erlang has become
well-known and used in the telecommunication segment, multiple companies
have decided to adapt Erlang to implement mission critical, embedded systems.
An illustrative example of the significance of Erlang in this sector is that Cisco
ships about 2 million devices per year with Erlang in them and that 90% of all
internet traffic goes through Erlang controlled nodes [4].
Motivation. Running low on memory is an especially dangerous situation in case
of mission critical, real-time embedded systems with high availability require-
ments. In such systems, total system outage must be avoided at all cost, even by
allowing temporary, partial failures. Nonetheless, no solution exists today that
can be added to an Erlang system without code modification and would treat
memory pressure out of the box. Having such a solution would enable existing
Erlang systems to perform better under low memory conditions. It would help
any Erlang system to deal with unexpectedly large workload but would be very
beneficial for embedded systems where virtual memory is disabled and physical
memory is very limited and constrained.
Our Contributions. In this paper, we propose an approach, called Lesser Evil,
that can treat memory pressure in any Erlang system without the need of any
code modification. Lesser Evil is ready to use and is applicable to any fault-
tolerant Erlang systems. We discuss why our approach is viable, how it identifies
low memory conditions, what strategy it employs and how it treats memory
pressure.
Summary of Results. Our evaluation shows that an Erlang system can survive
and keep functioning under low memory conditions with the help of our app-
roach. We have confirmed that Lesser Evil’s strategy is correct: it is able to
identify and execute compensating actions on the components most responsible
for the situation without damaging the other components or the overall system.

2 Problem Statement

Let us take an imaginary, fault-tolerant, embedded Erlang system as a motivat-
ing example. The Erlang system is designed to run on and control an embedded
device with limited memory and slow processing capability. The Erlang system
and the device are expected to be always available. The Erlang system receives
administrative requests that it processes, and as a result of processing, it exe-
cutes commands on the embedded device. The Erlang system usually receives
a few, small requests that never fills up the device memory, but sometimes a
large request arrives that may require all the available memory of the device to
process. If part of the device memory is used to process other small requests, the
available memory is not enough to process the large requests: the device runs
out of memory, becomes unresponsive or it even reboots.

Lesser Evil: Embracing Failure to Protect Overall System Availability 59

To protect the availability of the device, the only available solution to use
today is a generic solution for Linux systems, called the Out of Memory Man-
ager (OOM manager) [23]. However, the OOM manager is not an option in our
example, as the OOM manager would terminate the whole Erlang system that
controls the device; making the device unavailable. A more fine grained solution
would be more appreciated that would not cause the termination of the whole
Erlang system. Instead, it would free up enough memory to resume the normal
operation of the Erlang system, for example, by terminating the large request.

The motivating example illustrates that we need a solution that treats mem-
ory pressure differently. The primary goal is to free up enough memory to resume
the normal operation of the Erlang system. When releasing memory we accept
local failures but we cannot tolerate abnormal termination of the whole Erlang
system neither the risk of introducing permanent data inconsistencies. Under
local failures we mean failures that may effect some end-user but not all users
and also failures that may result in interruption of some requests but not all
requests. Our goal is to prevent a major outage, but we accept temporary, par-
tial system degradations.

To achieve our goals, a tool is needed that is able to monitor, assess and
interact with the running Erlang system. The tool needs to monitor the running
Erlang system to identify low memory conditions. If low memory conditions are
identified the tool needs to select some entities to execute compensating actions.
The tool needs to have a strategy to select entities and the strategy should
consider multiple criteria when making the selection. The strategy should be
based on metrics of the entities gathered from the runtime, and characterise the
badness of the entity. Compensating actions need to be defined on entity level,
ensuring that the impact of the action is limited; will not have a negative impact
on the overall Erlang system.

3 Erlang

In this section we discuss the Erlang ecosystem and highlight its key features
that our approach uses to treat memory pressure.

Erlang [9] is a dynamically typed functional programming language that
has built-in support for concurrency and distribution. Erlang systems are well
known about their high availability, thanks to their failure handling and hot
code loading capabilities.

An Erlang system can be considered as an actor based system, built up
of interacting Erlang processes. Erlang processes [14] are light-weight processes
with small memory overhead, fast to create and terminate, and the scheduling
overhead is low. The Erlang processes communicate with each other via asyn-
chronous message passings [19]. They share nothing with the outside world, they
exclusively own their data (excl. large binaries that are reference counted and
stored in a shared heap). If data is shared between two processes (via message
passing), the data is copied to the another process’s heap. Processes, while sched-
uled, are executing code, which is measured in reductions. The scheduler [20]

60 V. Fördős and A. J. Barbosa Rodrigues

de-schedules a process after a certain amount of reductions or when the process
enters into a waiting state (e.g. waiting for messages or IO). The fact that pro-
cesses share nothing and that they can yield to be de-scheduled enables Erlang’s
garbage collector [15] to work on a single process at a time without interfering
with other running processes. Moreover, when an Erlang process terminates all
its allocated memory can be freed as there are no other users to those memory
blocks.

Fault tolerance is built into the language [13], processes are allowed to fail.
Hence, interacting processes can never assume that their peer is alive. To detect
the termination of their peer, processes can monitor other processes. If the mon-
itored process terminates, the process will be notified by a message. If the inter-
acting processes depend on each other they can use another language construct,
called the process link. A process link is a bidirectional link forwarding events
of termination, called error signals, between the linked processes. The forwarded
error signal may terminate the receiving process as well, depending whether the
process trapping exits. Using links and monitors, more complex and robust archi-
tectures can be built that define restart strategies for the important processes.
An example is the supervisor process [18] that is responsible for starting, ter-
minating and restarting its children. A common practice is to build supervisor
trees that allow managing processes in a structured way and handling runtime
errors where it is convenient.

From the system architecture point of view, an Erlang system is built up
from a single or a set of Erlang nodes organised into a full mesh cluster. An
Erlang node, which is an OS process, is built up from the Erlang Runtime Sys-
tem (ERTS) and the Erlang release. An Erlang release [17] consists of a set of
Erlang applications. The Erlang applications [16] are the reusable units of the
Erlang ecosystem, can be bundled into multiple releases and be part of differ-
ent deployments. (Readers experienced in the Java programming language can
consider Erlang applications as Java packages.) An Erlang application is the
implementation of a functionality and can cooperate with other Erlang applica-
tions to implement more complex functionality. An Erlang application defines
and includes its Erlang processes. When an application starts the runtime starts
an application master process as the main responsible process for the applica-
tion. The application master in turn starts a process called ‘x’ that is responsible
for the IO and to start the main supervisor for the application. The main super-
visor is the first processes implemented by the user, the root of the supervisor
tree for the application. The ERTS enables interaction with the running Erlang
node. Processes can be created and terminated, and existing processes can be
inspected at runtime: various process metrics can be retrieved. Applications can
be started, stopped and upgraded without stopping the Erlang node.

4 Lesser Evil

In this section we describe our approach for Erlang systems, called Lesser
Evil [22]. First, we outline the approach and then we discuss the details: what

Lesser Evil: Embracing Failure to Protect Overall System Availability 61

entities are considered, how badness is characterised, how the strategy is eval-
uated and what compensating actions are employed. We show the architecture
and discuss the different ways the approach can be added to an Erlang system.

Our approach aims at treating memory pressure of an Erlang system without
the need of code modification. It proposes to monitor the running program and
upon low memory conditions select some entities with the greatest badness values
and execute compensating actions on the selected entities. Mapping the approach
to Erlang systems, the approach monitors an Erlang node and collect its memory
consumption. As Erlang processes are owning their data, they hold memory in
the system, thus the Erlang processes are the entities. The goal is to characterise
the badness of processes with the help of process level metrics. As the runtime
provides interaction possibilities with the running system, the approach employs
two compensating actions: triggering garbage collection on a selected process,
and terminating the process.

4.1 Entities

Lesser Evil considers Erlang processes as entities. However, it does not consider
all processes, as there are critical processes in an Erlang node. As examples,
consider the various system processes started by the runtime and the processes
belonging to critical user applications. Automatically identifying and excluding
the system processes is possible, however, distinguishing between critical and
non-critical user processes is not. Lesser Evil takes the approach of letting the
user decide, and requires a list of Erlang applications that are non-critical for
the system (e.g. the implementation of an HTTP API). Processes belonging to
the listed applications are considered only. However, this is still not enough.
As discussed in Sect. 3, each application includes 3 critical processes (applica-
tion master, process ’x’ and the main supervisor of the application) that must
be excluded. If they terminate, the whole application terminates, which must be
prevented.

4.2 Badness

Determining the badness of processes is the heart of the strategy: the compen-
sating actions executed on the selected processes should help the Erlang node
to survive low memory conditions, and their negative impact on the rest of the
processes should be minimal. In this section we discuss how such a metric can
be constructed.

To treat memory pressure effectively, the badness assigns greater values to
processes that (1) have high memory usage; (2) have several pending tasks,
therefore, they have a bad future outlook.

To minimise the negative impact of the compensating actions on the rest of
the processes, the badness assigns lower values to processes that (1) are long-
lived and, therefore, have proven their good behaviour; (2) are important to the
user; (3) play a central role in the system in the sense of several processes depend
on them.

62 V. Fördős and A. J. Barbosa Rodrigues

In conclusion, the goal is to select isolated, relatively new processes with high
memory usage and a bad future outlook. Therefore, the badness is a composite
metric that assigns a real value to a process based on the following process level
metrics.

– Memory . Number of bytes the process uses.
– MessageQLength. Number of messages delivered to but not yet processed by

the process. The metric expresses how much more tasks a process has pending.
– Reds . Reduction count shows the amount of work the process has done. As

for long lived processes this value can be several order of magnitudes large,
the logarithm with base 10 is applied to the reduction count in the badness
formula.

– Age. Number of checks the process has stayed alive.
– Links . The number of processes linking to the process. The metric expresses

how central the process is.
– Mons. The number of processes monitoring the process. The metric expresses

how central the process is.
– Prio. Erlang processes can have different priorities. The higher the process

priority is, the more important the process to the user is. This is what the
metric expresses by selecting a value from {1, 10, 100}.

The badness metric that assigns a real value to a process can be formalised as
shown by

badness ≡ Memory ∗ (MessageQLength + 1)
log10(Reds) ∗ (Links + 1) ∗ (Mons + 1) ∗ Age ∗ Prio

4.3 Strategy

In this section we define the strategy and how it is evaluated. The strategy works
with an Erlang node, and takes the memory limit, further denoted as MemLimit ,
the Erlang node can occupy as a configuration parameter.

The strategy maintains a state to store historical data about the processes
(i.e. age) and about the compensating actions executed in the past. Data about
the past actions is necessary to prevent cascading failures that would be caused
by too frequent compensating actions. Thus, the strategy ensures a cool down
interval is respected between two compensating actions.

The strategy is invoked when new system and process level metrics arrive.
The strategy decides whether compensating actions are required, executes
actions if required and updates its state. To decide whether compensat-
ing actions are required, it first checks if it is not in cool down interval
(NotInCoolDownInterval) by testing that a certain amount of seconds (currently,
it is 5 seconds) has elapsed since the last action was executed. We have chosen
to use 5 seconds as cool down interval to minimise the risk of cascading process
failures. Then, it looks at the system level metrics, namely, memory used by the
Erlang node (Mem) to check whether the current memory allocations are close
to the maximum. To summarise, the strategy triggers as follows.

trigger ≡ Mem > 0.8 ∗ MemLimit ∧ NotInCoolDownInterval

Lesser Evil: Embracing Failure to Protect Overall System Availability 63

When compensating actions are required the strategy selects a compensating
action as follows.

select action ≡
{
trigger gc if Mem < MemLimit
terminate proc otherwise

After that, the strategy orders the processes by their badness score that is cal-
culated using the received process level metrics and historical data stored in its
state. Now the goal is to counterbalance the low memory conditions by freeing
up memory. Thus, it takes as many processes from the beginning of the process
list as it needs to have the memory condition settled. The resulting set contains
processes with the highest badness score.

4.4 Compensating Actions

The strategy has selected a compensating action and a list of processes to execute
the compensating action on. We defined two compensating actions trigger gc
and terminate proc. The trigger gc action is to trigger garbage collection on the
selected processes, while the terminate proc action is to terminate the selected
processes. The trigger gc action is based on calling erlang:garbage_collect/1
function in order to trigger a full sweep garbage collection of the process. The
terminate proc action is non-trivial, we discuss its details now. The action first
sends a trappable exit signal to the process. The exit signal will terminate the
process if it is not trapping exits, however, if the process is trapping exits, the exit
signal is delivered as a message in its mailbox and it is up to the process to decide
whether to terminate. Hence, the action waits a few milliseconds and checks if
the process is still alive. If it is alive, the action sends a non-trappable exit signal
that will terminate the process immediately. In order to avoid cascading process
failures, the action waits 3 seconds between the termination of two processes.

4.5 Architecture

In this section we put things together: we show the main components of Lesser
Evil and discuss how it can be applied to Erlang systems with different require-
ments.

Lesser Evil is organised into two Erlang applications: lesser_evil and
lesser_evil_agent. The main responsibility of the lesser_evil application
is to monitor the Erlang node(s) and to evaluate the strategy based on the
metrics it receives from the agent(s). The application was designed in a way
that it supports supervising multiple Erlang nodes. The lesser_evil_agent
application is responsible for collecting and forwarding system and process level
metrics to the lesser_evil application and executing actions it receives from
the lesser_evil application.

In the rest of the section, we provide guidance on how to use Lesser Evil:
how to deploy, configure and install Lesser Evil for Erlang systems with different
requirements.

64 V. Fördős and A. J. Barbosa Rodrigues

In case of deployments where the network is not reliable or not secure, the
two applications should be included into the monitored Erlang node. Otherwise,
the agent should be included in the monitored Erlang node but the lesser_evil
application should be deployed as a standalone Erlang node. If the deployment
has multiple nodes and the network is stable, secure and the bandwidth is not
constrained, a central lesser_evil node handling all the nodes seems to be a
better choice.

As the next discussion point we provide guidance on how Lesser Evil can be
configured and added to an Erlang system. First of all, programmers need to
choose the Erlang applications to be monitored by the agent code. The selected
applications should be fault-tolerant applications that are non-critical from the
system point of view. Adding the core parts of the persistence layer is advised
against, while adding the northbound API, the cache layers, data consumers are
encouraged. After selecting the entities Lesser Evil will work with, one need to
decide on the memory limit that will be enforced by Lesser Evil. One should
work with historical data, and aim to choose a memory limit that does not
activate Lesser Evil during normal load and trigger garbage collection only for a
bit more intense load scenarios. We recommend to perform load tests to choose
the memory limit best fitting the Erlang system, and also to ensure that the
applications Lesser Evil interacts with are prepared for failures.

4.6 Discussion

In this section we discuss the design decisions we have made and the implications
Lesser Evil can have on the monitored node.
Badness. We start the discussion with the badness metric (Sect. 4.2), that is the
heart of the strategy that Lesser Evil employs.

One observation to make is that the messages are handled uniformly, nonethe-
less, they are not and they can have different implication on the process in
real-life. Processing one message may take only a few reductions while handling
another message can lead to thousands of reductions. Nevertheless, we choose to
consider all messages uniform as processes usually have a quasi-empty mailbox
in Erlang systems. Moreover, processes with large message queues are considered
a performance bottleneck in an Erlang system, hence we believe it is justified to
prioritise selecting them.

Another observation one may make is that due to the age factor older pro-
cesses are more protected, that can lead to the starvation of new processes.
However, we argue that this is not a problem. First of all, when Lesser Evil is
triggered the system is already at risk, there is no point in initiating more work.
Second, long lived processes are long lived for a reason: they are central parts of
the system with possibly lot of dependent processes and important responsibil-
ities. Therefore, their protection is necessary to avoid cascading failures and to
limit the impact of system degradations.
Compensating Actions. Another discussion point is the compensating actions
(Sect. 4.4) that are triggering garbage collection on process level or terminating
a selected process.

Lesser Evil: Embracing Failure to Protect Overall System Availability 65

Triggering immediate garbage collection can have side-effect on the process,
as the process must not be executing code while the garbage collection occurs.
Therefore, if the process is scheduled when the garbage collection is triggered,
the process is going to be de-scheduled while the garbage collection takes place,
resulting in longer execution times.

Terminating a process is a more serious event in the system. As an example,
what happens with files opened by the terminated process? In Erlang, files are
opened through an auxiliary process that is linked to the process that opened
the file, implying that upon the termination of the process, the auxiliary process
gets notified and will close the file. The same holds for other shared resources.

Another point to consider is the question of cascading failures. When a pro-
cess terminates all processes that have monitors on or are linked to the termi-
nated process get notified and may decide to terminate themselves, leading to
cascading failures. Cascading failures further reduce the memory and increase
the impact of the compensating action, which is meant to be kept minimal. To
avoid cascading failures the badness metric down-prioritises processes that are
central.

Furthermore, if the process was supervised, the supervisor is notified and
decides on whether to restart the process. Too frequent restarts make the super-
visor to give up: it terminates all its supervised processes and itself. The 5
seconds of cool down interval and the waiting time of 3 seconds between two
process terminations are there to avoid such scenarios. The constants were deter-
mined based on reviewing popular, open-source Erlang applications, however, the
authors believe that there can be cases where the constants need to be changed,
hence they will become configuration parameters of Lesser Evil.

4.7 Note on Applicability

In 2011, the Elixir language [32] was introduced that runs on the same vir-
tual machine, called the BEAM, as Erlang. Elixir has become a success, it is in
the 48th place on the TIOBE index [33] published in May 2021 [1]. Elixir has
managed to attract even more companies, thus the BEAM has become more
widespread. Processes started in Elixir have the same capabilities and proper-
ties as Erlang processes, thus Lesser Evil is able to monitor Elixir processes as
well. Furthermore, as Erlang system level API functions used by Lesser Evil are
available in Elixir systems and Erlang applications can be part of Elixir releases,
Lesser Evil works not only with Erlang systems but with Elixir systems as well.
This fact greatly increases the applicability of our approach.

5 Evaluation

In this section we present the evaluation of Lesser Evil. The primary use case of
Lesser Evil is embedded systems, thus we built a test system using popular, open-
source Erlang applications to evaluate Lesser Evil. We show the test subject,
present the experiments, assess the results and discuss the limitations.

66 V. Fördős and A. J. Barbosa Rodrigues

5.1 Test Subject

In this section we show the representative Erlang system we built for evaluation
purposes: an embedded device controller. We use the system to evaluate Lesser
Evil. During the experiments we do not use representative load or scale, our goal
is to push the system to its limit, because we want to confirm that Lesser Evil
helps the Erlang node avoid a major outage.

The system under test (SUT) is an embedded device controller. The device
controller is reachable via an HTTP API. Requests sent to the controller are
being processed in memory, and confirmations are returned as response. The
processing time and the memory required to process the request grow with the
size of the request. Table 1 shows the processing time and the allocated memory
per request size.

Table 1. Impact of an Incoming Request on the SUT

Size Request Size Used Memory Processing Time

XS 1 KB 16 KB 1 ms

S 10 KB 160 KB 24 000 ms

M 100 KB 1 600 KB 48 000 ms

L 1 000 KB 16 000 KB 96 000 ms

The SUT is a one-node Erlang system built up from one application, the
http_api, implementing the HTTP handlers. To implement the HTTP han-
dlers we used the cowboy [27] and the jsone [30] applications as applications
dependencies of the http_api application. The cowboy application depends on
the ranch application [28] that is a socket acceptor pool for TCP protocols.

5.2 Configuration

All experiments ran on a machine that has 16 GB of memory and is equipped
with a 2,6 GHz 6-Core Intel Core i7 processor. The SUT was running in a Docker
container. To measure the memory consumption of the SUT we periodically
queried the memory allocations of the Erlang VM using the erlang:memory/1
function provided by the Erlang VM. To generate load for the SUT, we used
Basho Bench [2].

The lesser_evil application was deployed as a standalone Erlang node and
configured to allow 90 MB memory for the SUT. The SUT packaged together
with lesser_evil_agent was deployed as another Erlang node inside of a
Docker container. The lesser_evil_agent application was configured to mon-
itor and report metrics about the ranch application in every second. Note that
the ranch application is not written by the authors. The Docker container run-
ning the SUT was configured to limit both real and virtual memory to 120 MB.

Lesser Evil: Embracing Failure to Protect Overall System Availability 67

To generate load for the SUT, we used the following load configurations.
All tests were run for 10 min, maintaining 5 concurrent connections. The gen-
erated requests were random binaries, belonging to one of the request types
(see Table 1). The mix of load was 20% of XS-sized requests, 40% of S-sized
requests, 20% of M-sized requests, and 20% of L-sized requests. The mix of load
characterises normal operation (80% of the requests are small requests) where
unusually large requests (20% of the requests) occur. The only variable part in
the load generation was the number of requests per second generated by each
connection, that were one of the followings: {5, 10}. Observe the followings.

– The memory usage of the SUT correlates with the number and the size of
requests being processed.

– The SUT can exceed the available memory when unusually large requests
(L-sized requests) arrive.

– L-sized requests are the ones mainly responsible for increased memory con-
sumption of the SUT.

5.3 Experiments

The goal of the experiments is to test the following hypotheses.
Hypothesis #1: Lesser Evil can control the memory usage of an Erlang node,
therefore, it helps an Erlang node survive low memory conditions. For this pur-
pose, we first establish a baseline: we start a test run without Lesser Evil and
record the memory consumption of the SUT. Then, we start another test run
with Lesser Evil and record the memory consumption. We expect to see that
with Lesser Evil the memory consumption of the SUT is constrained by the
given memory limit.
Hypothesis #2: Lesser Evil can prevent major outages. For this purpose, the
test runs need to employ a load configuration that stresses the SUT enough to
require more memory than what is available in the system. Without Lesser Evil
we expect to see that the SUT will be terminated by the Linux OOM manager
causing a major outage, while with Lesser Evil we expect to see that the SUT
keeps operating. We accept temporary, partial system degradations.
Hypothesis #3: Lesser Evil selects and executes actions on those processes that
are mainly responsible for the memory usage and does not interfere with the rest
of the processes. Considering the embedded device controller, we know that the
processes handling L-sized requests are the ones mainly responsible for holding
memory. We expect to see that if the SUT is about to exceed the memory limit
only these HTTP requests will fail. Moreover, we also expect to see that the
system will continue to operate and processes executing the inexpensive HTTP
requests (XS- and S-sized requests) will continue to succeed.
Hypothesis #4: Lesser Evil’s agent is non-intrusive to the Erlang node, its mem-
ory usage is low. For this purpose, we first establish a baseline: we start the SUT
without Lesser Evil and record its memory consumption. Then, we start the SUT
packaged together with Lesser Evil and record the memory consumption. No load
is generated in both cases. We expect to see that with Lesser Evil the increase
in memory consumption is low.

68 V. Fördős and A. J. Barbosa Rodrigues

Table 2. Experiments Conducted on the Embedded Device Controller. Note that
the number of requests (# Req.s) is only shown if the experiment was successfully
completed.

L.E active Req/sec per Con. Got OOM-ed Max Mem. # Req.s # Error # GC # Kill

No 5 After 13 s 67 MB n/a n/a n/a n/a

Yes 5 No 161 MB 41 9 54 22

No 10 After 9 s 126 MB n/a n/a n/a n/a

Yes 10 No 117 MB 54 8 34 22

5.4 Results

The experiments were run multiple times, the test results were consistent. Table 2
summarises the experiments conducted on the test subject. It shows whether
Lesser Evil was used, the maximum number of requests each connection sent per
second, whether the SUT got killed by the Linux OOM manager, the maximum
amount of used memory, the total number of requests the SUT received, the
number of requests the SUT did not serve because of an error, the number of
times Lesser Evil initiated garbage collection on a process and the number of
times Lesser Evil terminated a process.

We can observe that the SUT without Lesser Evil never managed to complete
any experiments; all experiments ended prematurely as the SUT ran out of
memory and the Linux’s OOM manager terminated the whole Erlang node. As
the SUT never got OOM-ed while Lesser Evil was active and the memory usage
of the SUT was 93% of the time below the configured maximum, the experiments
confirm Hypothesis #1 and partially Hypothesis #2. The results suggest that
Lesser Evil can control the memory usage of an Erlang node.

Figure 1 shows the memory usage of the SUT recorded during the experiment
where Lesser Evil was active and each connection was configured to send 10
requests per second. Observe how effectively Lesser Evil reacts: once the memory
limit (90 MB) is exceeded, Lesser Evil executes a compensating action that fixes
the problem.

Based on the logs written by Lesser Evil, there were several actions executed.
Both the trigger gc and the terminate proc actions were invoked by Lesser Evil.
Actions were triggered frequently but the cool down period was always respected.
As there were processes terminated by Lesser Evil, we need to confirm that the
right processes were selected for termination. As only L-sized requests failed
in both experiments (9 and 8 errors), we conclude that Lesser Evil chose the
right processes to terminate, did not interfere with the rest of the processes, and
effectively controlled the memory usage of the SUT, confirming Hypothesis #3.
Due to the failed requests there was a temporary, partial system degradation that
effected only the requesters of L-sized requests. However, a temporary, partial
system degradation is still a better choice compared to the test runs where the
SUT got terminated by the Linux OOM manager and, therefore, a major outage
occurred. The experiments confirm Hypothesis #2.

Lesser Evil: Embracing Failure to Protect Overall System Availability 69

0 100 200 300 400 500 600

40

60

80

100

120

90

Time (second)

M
em

or
y
(m

eg
ab

yt
e)

Fig. 1. Memory usage over time of the embedded device controller with Lesser Evil.

Overhead. We started the SUT with and without Lesser Evil and recorded the
rss size [29] for a minute. Then, we calculated the difference point by point of
the recorded values; the difference we got is the memory used by the Lesser Evil
agent code. The minimum, median and maximum values of memory used by the
agent code are: 848 KB, 1 000 KB, 1 148 KB, which we consider low enough.
The experiment confirms Hypothesis #4.

5.5 Conclusion and Limitations

The experiments confirm all 4 hypotheses. Lesser Evil can control the memory
usage of an Erlang node and avoid major outage. Its negative impact on the
overall system is minimal. Considering the embedded device controller use case,
which is the primary use case of Lesser Evil, that includes an Erlang system with
high availability but with very limited memory and slow processing capabilities,
Lesser Evil can help in scenarios where a few unusually large requests arrive that
take long to process and fill up the available memory.

We have experimented with other use cases. We have found that if the mem-
ory pressure is due to a continuously arriving, vast amount of short lived (ca 2
milliseconds) processes with high memory consumption, Lesser Evil cannot effec-
tively control the memory usage of the Erlang node. To fix memory pressure,
Lesser Evil would need to execute the terminate proc action without respecting
the cool down internal: risking to cause the termination of the Erlang node.

5.6 Threats to Validity

Our evaluation is subject to threats to validity. The results were obtained from
an Erlang system, and hence, they cannot necessarily be generalized to all Erlang
systems. We minimised this threat in three ways. First, by reviewing the most
widespread use cases of Erlang to build a representative test system that char-
acterises well the given use case of Erlang. Second, by building the test subject

70 V. Fördős and A. J. Barbosa Rodrigues

using Erlang applications (cowboy, ranch, etc.) that are widespread and heavily
used in real-life Erlang applications, and are not built by the authors. Third,
by ensuring that the code written by the authors is very small (202 lines out
of 267K lines) considering the size of the project, and Lesser Evil monitors an
application (ranch [28]) that is independent from the authors.

6 Related Work

Memory pressure has always been an important challenge of the research and
practitioner community. The topic has been discussed in different contexts rang-
ing from operating systems to software libraries targeting specific software appli-
cations.

Considering operating system level, there is a generic solution for Linux sys-
tems, called the OOM manager [23]. The OOM manager is tasked to monitor the
host and, under low memory conditions, select and terminate an OS process to
treat memory pressure. Its goal is to protect the availability of the overall host.
It employs a strategy to select new, non-user preferred processes that have high
memory usage. Considering Erlang systems, our experience and the evaluation
presented in this paper show that OOM is not a help, we have never seen a case
when killing the Erlang node solved the underlying problem. Instead, it dam-
aged the Erlang systems. Lesser Evil and the OOM Manager work on different
abstraction level, however, both protect the overall system availability, employ
a strategy and treat memory pressure by killing processes.

Virtualisation techniques have become significant to better utilise available
resources and to isolate applications. An example is Apache Mesos [11,24] that
sits between the application layer and the operating system and makes it easier
to deploy and manage applications in large-scale clustered environments more
efficiently. Apache Mesos supports oversubscription [31] for better resource utili-
sation with the promise of keeping QoS metrics. Their approach is to monitor the
entire host and if CPU pressure occurs the QoS controller kills revocable tasks.
To further improve killing tasks when oversubscription occurs, the authors of
[10] propose a user-assisted OOM killer in kernel space for agile task killing.
Lesser Evil and the Mesos’s QoS controller have different focus (memory versus
CPU), however, both select and terminate entities that are non-critical to the
system.

As there is no general solution for programming language and runtime
level, researchers have proposed various solutions to better manage specific use
cases [5,7,8,21]. Browsing through the articles, one can notice that there has
been a targeted interest in Java programs. ITask proposed in [21] is a promising
choice for Java workflow applications that requires code modification, however,
promises protection of tasks and performance improvements in high load scenar-
ios. This is a considerable benefit compared to Lesser Evil, however, on the other
hand rewriting applications is not required by Lesser Evil. Besides, as Erlang
applications often employs restart strategies for important worker processes offer-
ing the restoration of interrupted tasks, it is not a necessity. The authors of [6]

Lesser Evil: Embracing Failure to Protect Overall System Availability 71

proposed a more general solution for handling out of memory errors in Java
applications. The idea is to overallocate memory that is not used and release
the non-used memory when out of memory errors occur. The authors of [35]
looks at the problem from another perspective, taming the garbage collection,
and proposes a system that enables garbage-collected applications to predict an
appropriate heap size, allowing the system to maintain high performance while
adjusting dynamically to changing memory pressure.

When embedded systems are targeted, memory management becomes more
critical as memory is more limited and virtual memory is often disabled.
Researchers have proposed several low level memory management techniques
that focus on memory allocation strategies and minimises memory fragmen-
tation [26,34]. The authors of [3] observed that application performance is
impacted by the employed memory allocation strategy in embedded systems.
They propose to manage memory per task and introduce a runtime scheduler
for memory management policy switching and kernel overlapping. Their eval-
uation suggests that their approach can treat memory pressure and improve
response time. Virtualisation ensures isolation of applications that is necessary in
smart consumer electronics. However, with a virtualised embedded device, flexi-
ble memory management is required to run multiple VMs efficiently on resource-
constrained hardware. The authors of [25] tackle the challenge by introducing an
in-memory compressed swap device (CSW) that prioritises the memory reserva-
tions of the critical applications running on the embedded device by swapping
out only the memory of third-party applications in response to memory pressure.
Lesser Evil and CSW employ different compensating actions but both activate
when low memory conditions occur and distinguish between critical and non-
critical entities.

7 Conclusion

In this paper we have proposed and implemented an approach, called Lesser Evil,
that can treat low memory pressure in Erlang systems without the need of any
code modification. Lesser Evil embraces failures to protect overall system avail-
ability. It monitors the running program and upon low memory conditions selects
some non-critical entities based on the badness metric and execute compensating
actions on the selected entities to help the system avoid a major outage. Lesser
Evil is ready to use and is applicable to any Erlang systems. The prototype
implementation is available on GitHub [22].

The evaluation shows that Lesser Evil can control the memory usage of an
Erlang node and an embedded Erlang system can avoid a major outage and
keep functioning under low memory conditions with the help of our approach.
We have confirmed that Lesser Evil’s negative impact on the overall system is
minimal, and Lesser Evil’s strategy is correct: it is able to identify and exe-
cute compensating actions on the components most responsible for the situation
without damaging the other components or the overall system.

72 V. Fördős and A. J. Barbosa Rodrigues

References

1. Statistics and data: the most popular programming languages - 1965/2021 -
new update. https://statisticsanddata.org/data/the-most-popular-programming-
languages-1965-2021/

2. Basho: basho bench. https://github.com/alexandrejbr/basho bench
3. Bateni, S., Wang, Z., Zhu, Y., Hu, Y., Liu, C.: Co-optimizing performance and

memory footprint via integrated CPU/GPU memory management, an implemen-
tation on autonomous driving platform. In: 2020 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), pp. 310–323 (2020). https://
doi.org/10.1109/RTAS48715.2020.00007

4. Bevemyr, J.: How Cisco is using Erlang for intent-based networking. Talk at
Code BEAM STO 2018, Stockholm, Sweden, 31 May 2018. https://youtu.be/077-
XJv6PLQ?t=109

5. Borkar, V., Carey, M., Grover, R., Onose, N., Vernica, R.: Hyracks: A flexible and
extensible foundation for data-intensive computing. In: 2011 IEEE 27th Interna-
tional Conference on Data Engineering, pp. 1151–1162 (2011). https://doi.org/10.
1109/ICDE.2011.5767921

6. Boyland, J.T.: Handling out of memory errors. In: ECOOP 2005 Workshop on
Exception Handling in Object-Oriented Systems, vol. 2005 (2005)

7. Bu, Y., Borkar, V., Jia, J., Carey, M.J., Condie, T.: Pregelix: big(GER) graph
analytics on a dataflow engine. Proc. VLDB Endow. 8(2), 161–172 (2014). https://
doi.org/10.14778/2735471.2735477

8. Bu, Y., Borkar, V., Xu, G., Carey, M.J.: A bloat-aware design for big data applica-
tions. In: Proceedings of the 2013 International Symposium on Memory Manage-
ment, ISMM 2013, pp. 119–130. Association for Computing Machinery, New York
(2013). https://doi.org/10.1145/2464157.2466485

9. Cesarini, F., Thompson, S.: ERLANG programming. O’Reilly Media Inc, 1st edn,
Sebastopol (2009)

10. Chen, W., Pi, A., Wang, S., Zhou, X.: OS-augmented oversubscription of oppor-
tunistic memory with a user-assisted OOM killer. In: Proceedings of the 20th
International Middleware Conference, Middleware 2019, pp. 28–40. Association
for Computing Machinery, New York (2019). https://doi.org/10.1145/3361525.
3361534

11. Choudhury, D.G., Perrett, T.: Designing cluster schedulers for internet-scale ser-
vices: Embracing failures for improving availability. Queue 16(1), 98–119 (2018).
https://doi.org/10.1145/3194653.3199609

12. Cronqvist, M.: Troubleshooting a large erlang system. In: Proceedings of the 2004
ACM SIGPLAN Workshop on Erlang, ERLANG 2004, pp. 11–15. Association
for Computing Machinery, New York (2004). https://doi.org/10.1145/1022471.
1022474

13. Ericsson AB: erlang reference manual: errors and error handling. https://erlang.
org/doc/reference manual/errors.html

14. Ericsson AB: erlang reference manual: processes. http://erlang.org/doc/reference
manual/processes.html

15. Ericsson AB: erlang run-time system application, internal documentation: erlang
garbage collector. https://erlang.org/doc/apps/erts/GarbageCollection.html

16. Ericsson AB: OTP design principles: applications. https://erlang.org/doc/design
principles/applications.html

https://statisticsanddata.org/data/the-most-popular-programming-languages-1965-2021/
https://statisticsanddata.org/data/the-most-popular-programming-languages-1965-2021/
https://github.com/alexandrejbr/basho_bench
https://doi.org/10.1109/RTAS48715.2020.00007
https://doi.org/10.1109/RTAS48715.2020.00007
https://youtu.be/077-XJv6PLQ?t=109
https://youtu.be/077-XJv6PLQ?t=109
https://doi.org/10.1109/ICDE.2011.5767921
https://doi.org/10.1109/ICDE.2011.5767921
https://doi.org/10.14778/2735471.2735477
https://doi.org/10.14778/2735471.2735477
https://doi.org/10.1145/2464157.2466485
https://doi.org/10.1145/3361525.3361534
https://doi.org/10.1145/3361525.3361534
https://doi.org/10.1145/3194653.3199609
https://doi.org/10.1145/1022471.1022474
https://doi.org/10.1145/1022471.1022474
https://erlang.org/doc/reference_manual/errors.html
https://erlang.org/doc/reference_manual/errors.html
http://erlang.org/doc/reference_manual/processes.html
http://erlang.org/doc/reference_manual/processes.html
https://erlang.org/doc/apps/erts/GarbageCollection.html
https://erlang.org/doc/design_principles/applications.html
https://erlang.org/doc/design_principles/applications.html

Lesser Evil: Embracing Failure to Protect Overall System Availability 73

17. Ericsson AB: OTP design principles: releases. https://erlang.org/doc/design
principles/release structure.html

18. Ericsson AB: OTP design principles: supervisor behaviour. https://erlang.org/
doc/design principles/sup princ.html

19. Stenman, E.: The BEAM book: mailboxes and message passing. https://blog.
stenmans.org/theBeamBook/# mailboxes and message passing

20. Stenman, E.: The BEAM book: scheduling: non-preemptive, reduction count-
ing. https://blog.stenmans.org/theBeamBook/# scheduling non preemptive
reduction counting

21. Fang, L., Nguyen, K., Xu, G., Demsky, B., Lu, S.: Interruptible tasks: treating
memory pressure as interrupts for highly scalable data-parallel programs. In: Pro-
ceedings of the 25th Symposium on Operating Systems Principles, SOSP 2015,
pp. 394–409. Association for Computing Machinery, New York (2015). https://
doi.org/10.1145/2815400.2815407

22. Fördős, V., Rodrigues, B., Jorge, A.: Lesser evil prototype. https://github.com/
viktoriafordos/lesser-evil

23. Gorman, M.: Understanding the Linux Virtual Memory Manager. Prentice Hall
PTR, USA (2004)

24. Hindman, B., et al.: Mesos: a platform for fine-grained resource sharing in the
data center. In: Proceedings of the 8th USENIX Conference on Networked Systems
Design and Implementation, NSDI 2011, pp. 295–308. USENIX Association, USA
(2011)

25. Hwang, J., Jeong, J., Kim, H., Choi, J., Lee, J.: Compressed memory swap for QoS
of virtualized embedded systems. IEEE Trans. Consum. Electron. 58(3), 834–840
(2012). https://doi.org/10.1109/TCE.2012.6311325

26. Liu, D., Wang, T., Wang, Y., Qin, Z., Shao, Z.: A block-level flash memory man-
agement scheme for reducing write activities in PCM-based embedded systems. In:
Proceedings of the Conference on Design, Automation and Test in Europe, DATE
2012, pp. 1447–1450. EDA Consortium, San Jose, CA, USA (2012)

27. Hoguin, L.: Cowboy. https://github.com/ninenines/cowboy
28. Hoguin, L.: Ranch. https://github.com/ninenines/ranch
29. Kerrisk, M.: Linux manual page: ps(1). https://man7.org/linux/man-pages/man1/

ps.1.html
30. Ohta, T.: Jsone. https://github.com/sile/jsone/
31. The apache software foundation: apache mesos documentation: oversubscription.

http://mesos.apache.org/documentation/latest/oversubscription/
32. Thomas, D.: Programming elixir: functional, Concurrent, Pragmatic, Fun. 1st edn.,

Pragmatic Bookshelf, Eau Claire (2014)
33. TIOBE software BV: TIOBE index. https://www.tiobe.com/tiobe-index/
34. Venkataramani, V., Chan, M.C., Mitra, T.: Scratchpad-memory management for

multi-threaded applications on many-core architectures. ACM Trans. Embed.
Comput. Syst. 18(1) (2019). https://doi.org/10.1145/3301308

35. Yang, T., Berger, E.D., Kaplan, S.F., Moss, J.E.B.: CRAMM: virtual memory
support for garbage-collected applications. In: Proceedings of the 7th Symposium
on Operating Systems Design and Implementation, pp. 103–116 (2006)

https://erlang.org/doc/design_principles/release_structure.html
https://erlang.org/doc/design_principles/release_structure.html
https://erlang.org/doc/design_principles/sup_princ.html
https://erlang.org/doc/design_principles/sup_princ.html
https://blog.stenmans.org/theBeamBook/#_mailboxes_and_message_passing
https://blog.stenmans.org/theBeamBook/#_mailboxes_and_message_passing
https://blog.stenmans.org/theBeamBook/#_scheduling_non_preemptive_reduction_counting
https://blog.stenmans.org/theBeamBook/#_scheduling_non_preemptive_reduction_counting
https://doi.org/10.1145/2815400.2815407
https://doi.org/10.1145/2815400.2815407
https://github.com/viktoriafordos/lesser-evil
https://github.com/viktoriafordos/lesser-evil
https://doi.org/10.1109/TCE.2012.6311325
https://github.com/ninenines/cowboy
https://github.com/ninenines/ranch
https://man7.org/linux/man-pages/man1/ps.1.html
https://man7.org/linux/man-pages/man1/ps.1.html
https://github.com/sile/jsone/
http://mesos.apache.org/documentation/latest/oversubscription/
https://www.tiobe.com/tiobe-index/
https://doi.org/10.1145/3301308

Failure Root Cause Analysis
for Microservices, Explained

Jacopo Soldani(B) , Stefano Forti , and Antonio Brogi

University of Pisa, Pisa, Italy
{jacopo.soldani,stefano.forti,antonio.brogi}@unipi.it

Abstract. Determining the root causes of observed failures is a main
issue in microservice-based applications. Unfortunately, available root
cause analysis techniques do not focus on explaining how root failures
actually caused the observed failure. On the other hand, the availabil-
ity of such explanations would greatly help to pick adequate counter-
measures, e.g., by introducing circuit breakers or bulkheads. We hence
present a declarative root cause analysis technique, which can determine
the cascading failures that possibly caused an observed failure, identify-
ing also (or starting from) a root cause. We also introduce a prototype
implementation of our technique, and we use it to assess our technique
by means of controlled experiments.

1 Introduction

Microservices gained momentum in the software industry. For instance, Netflix
and Spotify are already delivered as microservice-based applications [33]. This
is because microservice-based applications are cloud-native, meaning that they
are composed by loosely coupled services, which can be independently deployed
and scaled to fully exploit the potentials of cloud computing [9].

Microservice-based applications are often composed by hundreds of services,
which are typically replicated by instantiating multiple instances of each service.
The multiple instances of the various different services in an application interact
to deliver the end users’ requests, possibly resulting in thousands of interactions
happening at the same time. Service instances can fail, e.g., by returning error
responses to their invokers, or not even answering since they suddenly crashed.

Whilst failing service instances can be promptly detected at runtime, under-
standing the possible root causes for a failing service instance is an offline task,
which is inherently complex [28]. Did the service instance fail on its own? Did it
instead fail in cascade, since it interacted with another failing service instance?
Did the latter fail on its own or in cascade to some other service instance?
Answering such questions is not easy, when you have possibly thousands of
interactions among different service instances happening in parallel [33]. At the

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
D. Eyers and S. Voulgaris (Eds.): DAIS 2022, LNCS 13272, pp. 74–91, 2022.
https://doi.org/10.1007/978-3-031-16092-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16092-9_6&domain=pdf
http://orcid.org/0000-0002-2435-3543
http://orcid.org/0000-0002-4159-8761
http://orcid.org/0000-0003-2048-2468
https://doi.org/10.1007/978-3-031-16092-9_6

Failure Root Cause Analysis for Microservices, Explained 75

same time, answering the above questions is crucial to enact countermeasures
and avoid the same failure cascade to happen again [28].

Existing root cause analysis techniques can help determining the service
instances that may have failed first [28]. This is typically done by correlating
the performance of the different service instances or the events they log, so as to
determine the set of possible root causes. Identified root causes are also some-
times ranked by returning first those having higher chances to have caused the
observed failure. However, there is no explanation of whether/how root causing
failures propagated to other service instances, up to causing the failure observed
on a service instance. Explanations —given as the possible failure cascades orig-
inating from an identified root causing failure— would enable intervening not
only on the service that first failed, but also on those that failed in cascade [28].
They would enable, e.g., to equip intermediate services with circuit breakers
enhancing the failure resilience of their instances [24], or to introduce bulkheads
limiting failure propagations to only certain parts of an application [20].

We propose here a novel explainable root cause analysis technique, together
with its prototype implementation and experimentation. Our technique auto-
matically determines both the possible root causes for a failure observed on a
service instance, and the failure cascades due to which the root causing failure
possibly propagated up to that observed. It can also be used by restricting the
possible root causes to a given set, hence enabling to explain the possible root
causes identified with other existing techniques. In both cases, the explainable
root cause analysis starts from the distributed logs of an application’s service
instances. Such logs are processed by means of declarative rules, which enable
eliciting the interactions occurring among service instances, and determining
whether a service instance failed on its own or in cascade, e.g., because it inter-
acted with another failing service instance.

We also present yRCA, an open source prototype implementation of our
explainable root cause analysis technique. We show how we used yRCA to run con-
trolled experiments assessing our technique, based on an existing chaos testbed.
The results of our experiment show that our technique can effectively determine
the possible root causes and their explanations in 99.74% of the cases, whilst also
keeping the number of returned explanations low enough to be counted on one
hand. Our experiments also show that yRCA already achieves good time perfor-
mances, with a processing time that is low on average, especially if we consider
that root cause analysis is a batch process to be enacted offline [28].

The paper is organised as follows. Section 2 motivates our work. Sections 3
and 4 introduce our explainable root cause analysis technique and its proto-
type implementation, respectively. Section 5 presents some controlled experi-
ments assessing our technique. Finally, Sects. 6 and 7 discuss related work and
draw some concluding remarks, respectively.

2 Motivating Scenario

Consider Sock Shop [34], an open source application simulating an e-commerce
website selling socks. The microservice-based architecture of Sock Shop is dis-

76 J. Soldani et al.

Fig. 1. Sock Shop’s microservice-based architecture. Darker nodes and dashed arcs
highlight the portion of Sock Shop discussed in our motivating example.

played in Fig. 1. Clients connect to Sock Shop through an edgeRouter, which
redirects clients’ requests to the possibly multiple instances of the application’s
frontend. The latter displays a graphical user interface for e-shopping socks,
backed by the microservices managing the catalogue of socks, the application
users, and the users’ carts and orders. Each of such microservices interacts
with its own database to persist data, viz., catalogueDb, usersDb, cartsDb, and
ordersDb. orders also interact with carts and payment to allow placing orders
by simulating the online payment of the socks in a cart, and with shipping
to simulate the actual shipping of an order. This is done with the microser-
vice shipping placing to-be-shipped orders in a message queue (viz., rabbitMq),
which is consumed by queueMaster to simulate their actual shipping.

Consider a running deployment of Sock Shop, with two replicated instances
of each microservice, and focus on the highlighted portion of Sock Shop in
Fig. 1. Suppose that an instance of carts fails (e.g., because of an internal error)
and starts returning error responses to its clients. Suppose also that frontend’s
instances can tolerate the failure of carts’ instances, e.g., by caching carts. Sup-
pose instead that orders’ instances fail when carts replies with error responses,
becoming unable to process the requests from frontend’s instances. When this
happens, we have cascading failures in frontend as well, due to which Sock
Shop’s end users cannot place orders.

For Sock Shop to get back fully working, application operators must identify
the internal failure of an instance of carts as the root cause of the failures in
frontend’s instances, as well as that such root causing failure propagated to
frontend through orders. This would enable first recovering the failing instance
of carts, e.g., by restarting it, which would then result in the instances of orders
and frontend getting back fully working as well. Also, by identifying the failure
cascades that made frontend’s instances unable to place orders, application
operators could operate only on such cascades to avoid this to happen again.
For instance, they could introduce a circuit breaker enabling orders to tolerate
the failure of carts’ instances, whilst not intervening on frontend, which can
already tolerate the failure of carts.

There exist techniques for identifying the possible root causes of functional
failures in microservice-based applications, e.g., [8,12,13,18,21,22,26,31]. How-
ever, they only identify the root causing microservice without stating how its
failure propagated to other microservices. Understanding failure propagation still
requires to manually inspect the distributed logs of an application, or its dis-
tributed traces, if the application is instrumented to feature distributed tracing.

Failure Root Cause Analysis for Microservices, Explained 77

Due to the number of microservices in an application, their complex interactions,
and considering that microservices can be replicated over multiple instances, the
resulting process is cumbersome, error-prone, and time consuming [28].

To this end, we provide a novel technique for identifying the failure cascades
that can have possibly caused a failure in a microservice instance. Our tech-
nique inputs the distributed application logs, and it can automatically identify
the possible root causing failures and how they propagated to a failing microser-
vice instance. Our technique can also be used to complement the existing root
cause analysis techniques, if any is in place, by identifying the possible cascades
explaining how the identified root causing failure propagated and caused that
observed on a failing microservice instance.

3 Declarative Failure Root Cause Analysis

In this section, we describe the declarative Prolog1 methodology that enables
determining explanations for failure root causes, through interaction-based anal-
yses, which rely on simple logging information.
Logs and Interactions. First, application logs are modelled as facts like

log(SName, SInstance, Timestamp, Event, Message, Severity).

where the name SName and the instance identifier SInstance of the logging service
are followed by the log Timestamp, the type of the logged Event, the associated
log Message (if any), and its Severity level. Our methodology currently handles
the following types of event:

– internal, which denotes logs related to the internal business logic of the con-
sidered service,

– sendTo(DstService, SessionId), which denotes that a request was sent to an
instance of DstService with an associated SessionId,2

– received(SessionId), which denotes reception of a message by an instance of
the destination service within the interaction identified by SessionId,

– timeout(DstService, SessionId), which denotes that the interaction started
towards DstService, identified by SessionId, incurred in a timeout, and

– errorFrom(DstService, SessionId), which denotes that the destination service
replied with an error code within the interaction identified by SessionId.

Finally, logged severity levels are expressed according to the Syslog standard [7]:

1 A Prolog program is a finite set of clauses of the form a :- b1, ..., bn. stating
that a holds when b1 ∧ · · · ∧ bn holds, where n ≥ 0 and a, b1, ..., bn are atomic
literals. The logical or of two literals b1 ∨ b2 can be expressed as b1; b2. Clauses
with empty condition are also called facts. Prolog variables begin with upper-case
letters, lists are denoted by square brackets, and negation by \+.

2 To easily identify messages pertaining to the same interaction, we assume that the
code performing a request generates fresh session identifiers for each interaction.

78 J. Soldani et al.

severity(emerg, 0). severity(err, 3). severity(info, 6).
severity(alert, 1). severity(warning, 4). severity(debug, 7).
severity(crit, 2). severity(notice, 5).

Note that Syslog severity levels can be mapped onto other existing industry
standards (e.g., Log4J), and compared one another via a predicate like

moreSevere(Sev1,Sev2) :- severity(Sev1,A), severity(Sev2,B), A<B.

which holds when the severity level identified by Sev1 is more severe than the
one identified by Sev2.

Based on this simple modelling, we can identify any completed interaction
between instance I of service SI and instance J of service SJ, that happened
between time Ts and time Te. Predicate interaction/5 infers that instance I of
service SI performed a request towards instance J of service SJ and that, in turn,
instance J of SJ logged reception of such request. Such interaction is identified
by its unique session Id and happened at time Tr, between Ts and Te:

interaction(Id,(SI,I),(SJ,J),Ts,Te) :-
log(SI,I,Ts,sendTo(SJ,Id),_,_), log(SJ,J,Tr,received(Id),_,_),
Ts < Tr, Tr < Te.

Dually, predicate nonReceivedRequest/5 covers the case in which a request sent
by instance I of SI incurred in a timeout event and its reception was not logged
by any instance of SJ between Ts and Te:

nonReceivedRequest(Id,I,SJ,Ts,Te) :-
log(SI,I,Ts,sendTo(SJ,Id),_,_), log(SI,I,Te,timeout(SJ,Id),_,_),
\+ (log(SJ,_,Tr,received(Id),_,_), Ts =< Tr, Tr =< Te).

By relying on interaction/5, predicate failedInteraction/5 identifies interactions
that – despite being correctly received at the destination service – failed either
due to a logged error or to an expired timeout:

failedInteraction(Id,(SI,I),(SJ,J),Ts,Te) :-
errorInteraction(Id,(SI,I),(SJ,J),Ts,Te) ;
timedOutInteraction(Id,(SI,I),(SJ,J),Ts,Te).

On the one hand, errorInteraction/5 identifies that the invoked service instance
J of SJ terminated the interaction identified by Id by returning an error response
to the source service instance I:

errorInteraction(Id,(SI,I),(SJ,J),Ts,Te) :-
log(SI,I,Te,errorFrom(SJ,Id),_,_),
interaction(Id,(SI,I),(SJ,J),Ts,Te).

On the other hand, predicate timedOutInteraction/5 handles the case in which
the interaction was interrupted by the invoking service instance I of SI, since
the corresponding request’s timeout expired:

Failure Root Cause Analysis for Microservices, Explained 79

timedOutInteraction(Id,(SI,I),(SJ,J),Ts,Te) :-
log(SI,I,Te,timeout(SJ,Id),_,_),
interaction(Id,(SI,I),(SJ,J),Ts,Te).

Explanations. Predicate causedBy/3 is the core that our methodology exploits
to determine explanations for root causes. A call to causedBy(Log, Explanation,

RootCause) inputs an event Log to be explained and recursively builds an Explana-

tion, represented as a list of logs, until it determines RootCause as the name of the
service that started the failure cascade. Predicate causedBy/3 distinguishes 8 cases
– 5 recursive and 3 base cases – corresponding to different possible cascading or
root failures, respectively. For each case, we illustrate the Prolog code and offer
a graphical sketch to epitomise recursive cases.

The first case (lines 1–7) infers that event E logged by instance I of service SI

(line 2), currently being explained, has been caused by an internal error of the
invoked service instance J of SJ. Event E is either an error or a timeout (line 3),
resulting from an interaction between I and J that failed or timed-out between
time Ts and Te (line 4). If J logged an internal error more severe than a warning

in the same time period (line 5–6), then the Log currently being explained is
added to the explanation (line 1), and causedBy/3 recurs to possibly explain the
internal error of J (line 7).

1
2
3
4
5
6
7

The second case (lines 8–15) infers that event E logged by instance I of
service SI (line 9), currently being explained, has been caused by a cascading
failed interaction of the invoked service instance J of SJ. Event E is either an error
or a timeout (line 10) resulting from an interaction between I and J that failed
between time TsIJ and TeIJ (line 11). In turn, such failure has been caused by a
failed interaction of J with a third service between time TsJK and TeJK (line 12),
within TsIJ and TeIJ (line 13). If J logged an event F at time TeJK (line 14) more
severe than a warning (line 15), then the Log currently being explained is added
to the explanation (line 8), and causedBy/3 recurs to possibly explain the log L

related to event F (line 16).

80 J. Soldani et al.

The third case (lines 17–23) infers that event E logged by instance I of service
SI (line 18), currently being explained, has been caused by the timed-out inter-
action of the invoked service instance J of SJ. Event E is a timeout resulting from
an interaction between I and J timed out at time TeIJ (line 19). In turn, such
timeout has been caused by a timed out interaction of J with a third service SK

between time TsJK and TeJK (line 20), started before the previous interaction and
timed out afterwards (line 21). If J logged a timeout event at time TeJK related
to an interaction IdJK with SK (line 22), then the Log currently being explained
is added to the explanation (line 17), and causedBy/3 recurs to possibly explain
the timeout of interaction IdJK (line 23).

17
18
19
20
21
22
23

The fourth case (lines 24–31) infers that event E logged by instance I of service
SI (line 25), currently being explained, has been caused by the unreachability of
a service called by the invoked service instance J of SJ. Event E is either an error
or a timeout (line 26) resulting from a failed interaction Id between I and J

between time TsIJ and TeIJ (line 27). In turn, such an event has been caused by
a request of J towards service SK, happening between TsIJ and TeIJ, which was
never received by any instance of SK (lines 28–29). If J logged a timeout event
at time TeJK related to interaction IdJK with SK (line 30), then the Log currently
being explained is added to the explanation (line 24), and causedBy/3 recurs to
possibly explain the time out of interaction IdJK (line 31).

24
25
26
27
28
29
30
31

Failure Root Cause Analysis for Microservices, Explained 81

The fifth case (lines 32–35) infers that event E logged by instance I of service
SI (line 33), currently being explained, has been caused by the unreachability of
the invoked service instance J of SJ. Indeed, I incurred in a timeout during an
interaction Id with SJ (line 33), which was caused by a request that was never
received at any instance of SJ (line 34). Then, the Log currently being explained
is added to the explanation (line 32), and causedBy/3 recurs to possibly explain
an abducted piece of knowledge, i.e. that SJ was unreachable (line 35).

32
33
34
35

The sixth case (line 36) explains an internal event R logged by a service,
identifying the service itself as the Root cause for R. Recursion ends.

36 causedBy(Log,[Log],Root) :- Log = log(Root,R,T,internal,M,Sev).

The seventh case (line 37) explains an abducted unreachable(Root) fact, iden-
tifying that such a service was temporarily unreachable as it previously logged
some information. Recursion ends.

37 causedBy(Log,[Log],Root) :- Log = unreachable(Root), log(Root,_,_,_,_,_).

The last case (lines 38–39) explains an abducted unreachable(Root) fact (line
34), identifying that such a service never logged any information (line 39). Recur-
sion ends, by adding the fact that Root was possibly never started (line 40).

38 causedBy(unreachable(Root),[Log],Root) :-
39 \+ log(Root,_,_,_,_,_),
40 Log = neverStarted(Root).

Last, but not least, xfail(Event,Explanations,RootCause) exploits causedBy/3 to
determine all distinct Explanations starting from the service RootCause, as in:

xfail(Event,Explanations,RootCause) :-
findall(E,distinct(causedBy(Event,E,RootCause)),Explanations).

It is worth noting that, thanks to Prolog resolution mechanisms, our method-
ology permits instantiating the RootCause parameter to a specific service name
so to restrict the obtained explanations only to those that have such a service as
the failure cascade root cause. If, conversely, RootCause is left unbound, it deter-
mines all explanations for all possible values that can be unified with RootCause.
This enables using our methodology both as an explainer working in pipeline
with other existing tools for root caused identification and as a standalone tool.

82 J. Soldani et al.

4 Prototype Implementation

We developed an open source prototype of our explainable analysis technique,
called yRCA.3 yRCA embeds the Prolog reasoner presented in the previous section
in a Python-based command-line tool, which can be run as follows:

python3 yrca.py [-r S] [-v] EVENT LOGS TEMPLATES

where EVENT and LOGS are two JSON files containing the failure event to be
explained and a dump of the distributed logs of all service instances in an appli-
cation. In both JSON files, log entries are expected to be in GELF (Graylog
Extended Log Format [5]). TEMPLATES is instead a YAML file specifying the tem-
plates to parse log messages, with each template being a regular expression to
match log messages to determine whether they correspond to client-side events
(viz., request sent, successful/error response received, or timeout expired) or
server-side events (viz., request received, response sent). Finally, option -r S

enables focusing on explanations having S as the root causing service, e.g., to
explain how its failure – identified with another root cause analysis technique –
caused that in EVENT. Option -v instead allows running yRCA in verbose mode,
namely by printing all possible explanations, rather than grouping them based
on their structure, as yRCA does by default.

An example of output returned by yRCA is shown hereafter, with possible
explanations for the failure mentioned in our motivating scenario (Sect. 2):

[0.615]: edgeRouter: Error response (code: 500) received from frontend
(request_id: [<requestId>])

-> frontend: Error response (code: 500) received from orders (request_id:
[<requestId>])

-> orders: Failing to contact carts (request_id: [<requestId>]). Root
cause: <exception>

-> carts: unreachable
[0.385]: edgeRouter: Error response (code: 500) received from frontend
(request_id: [<requestId>])

-> frontend: Failing to contact carts (request_id: [<requestId>]). Root
cause: <exception>

-> carts: unreachable

Note that, by default, yRCA groups the possible explanations based on the struc-
ture of the failure cascade, and it ranks the different explanations based on the
frequency with which they occur in all identified failure cascades —with such
frequency indicated between square brackets at the beginning of each explana-
tion. The idea is that the more frequent is an explanation, the higher is the
probability that it corresponds to the true explanation for an observed failure.
This is inspired by other existing analysis techniques, which rank the identified
root causes by giving higher ranks to those found with a higher rate [28].

3 https://github.com/di-unipi-socc/yrca.

https://github.com/di-unipi-socc/yrca

Failure Root Cause Analysis for Microservices, Explained 83

5 Evaluation

To assess the practical applicability of our root cause analysis technique, we
run yRCA in controlled experiments.4 Their objective was to evaluate the perfor-
mances of our technique in determining the failure cascades that may have caused
an observed failure, namely whether the true cause is among those returned, how
many possible explanations were returned, and the elapsed time.

In our experiments, we exploited the Chaos Echo testbed [27] to obtain
a reference application. Chaos Echo enables deploying interconnected services
to mirror the architecture of an existing application, while replacing each of
its services with a Chaos Echo service. A Chaos Echo service simulates the
behaviour of an existing service by interacting with its backend services (if any)
to process incoming requests, and by possibly failing in doing so. Whenever it
receives a request, it interacts with a randomly selected subset of its backend
services, each invoked with a given probability. The Chaos Echo service for-
wards them the incoming request’s message and waits for their answer. If any of
the invoked backend services returns an error response, or if a request timeout
expires, the Chaos Echo service considers the interaction as failed. It then fails
in cascade, by replying to the request under processing with an error response.
A Chaos Echo service may also fail on its own, with a given probability, either
returning an error response (even if all its backend services successfully replied
to its requests) or by suddenly crashing, hence not replying at all. By differently
configuring the Chaos Echo services in a reference application, we can control
how their services interact, fail, and propagate failures. This, together with the
workload generator available in the Chaos Echo testbed, enable assessing tools
for analysing failures in multi-service applications, like yRCA.

The reference application we used in our experiments mirrors Sock Shop
(Fig. 1), by replacing each of its components by a Chaos Echo service. The
Chaos Echo service replacing edgeRouter was then configured to always invoke
frontend and to never fail on its own, but only in cascade to the service it
interacts with, viz., frontend. Our objective was indeed to assess yRCA’s ability
to determine the root causing failures and the cascades that resulted in fail-
ures observed on edgeRouter. All other Chaos Echo services were then differ-
ently configured to analyze the performances of yRCA when varying four different
parameters, viz., (a) end-user load, (b) service interaction rate, (c) failure cas-
cade length, and (d) service failure rate. More precisely:

(a) We configured all services (but edgeRouter) to invoke their backend services
with probability 0.5. We also set them to never fail on their own, with the
only exception of carts, which was set to fail with probability 0.5. We then
varied the end-user load from 1 to 100 req/s.

(b) We varied the probability with which all services (but edgeRouter) invoked
their backend services from 0.1 to 1. We also set them to never fail on their

4 The sources of the controlled experiments are publicly available at https://github.
com/di-unipi-socc/yrca/tree/main/data/experiments/sock-echo.

https://github.com/di-unipi-socc/yrca/tree/main/data/experiments/sock-echo
https://github.com/di-unipi-socc/yrca/tree/main/data/experiments/sock-echo

84 J. Soldani et al.

own (except for carts, which was set to fail with probability 0.5) and we
fixed the end-user load to 10 req/s.

(c) We configured all services (but edgeRouter) to invoke their backend services
with probability 0.5 and set the end-user load to 10 req/s. We then varied
the length of the considered failure cascade by considering the different cases
of frontend, orders, shipping, or rabbitMq being the only services set to
fail on their own with probability 0.5. This enabled us to generate failure
cascades of length 1, 2, 3, or 4, respectively.

(d) We configured the services to invoke their backend services with probability
0.5 and set the end-user load to 10 req/s. We then set all services (but
edgeRouter) to fail with a probability varying from 0.1 to 1.

In all cases, to also account for service instances, all services (but edgeRouter)
were set to be replicated over two instances. Overall, we hence always had 27
deployed service instances.

We run the differently configured deployments to generate logs, ensuring that
each deployment was generating at least 200 failures in edgeRouter. We then run
yRCA to explain a random sample of 200 edgeRouter’s failures in the logs of each
case, repeating the run 5 times for each failure, so as to measure the average
time yRCA took to explain a failure in each case. As a result, we observed that the
results returned by yRCA contained the true root cause and the corresponding
explanation in 99.74% of the times. The effectivenss of our technique however
not only depends on this, but also on the number of returned false positives,
viz., failure cascades considered to have possibly caused the observed failure,
even if this was not the case. False positives should be kept low, as they require
application operators to waste time and resources in unnecessarily checking them
[28]. We therefore measured the average number of failure cascades identified by
yRCA, one being the right solution and the other being false positives.5

Number of Identified Failure Cascades. The results of our measurements
are shown in Fig. 2. We can readily observe that in cases (a–c), where there was
only one service set to possibly fail (and to cause subsequent failure cascades),
yRCA correctly determined only one possible root cause. The latter effectively
corresponded to the known ground truth in all the three cases, viz., carts in
cases (a) and (b), and each service set to fail in each different cascade for case
(c). yRCA also identified a number of possible explanations originating from carts
that slightly increased when we increased (a) the load rate, (b) the rate with
which each service was invoking its backend services, and (c) the length of the
failure cascade. This is mainly because the increasing load/interactions in (a–b)
resulted in an increasing number of service interactions, whilst in (c) we had an
increasing number of services failing in cascade. For this reasons, (a–c) resulted in
an increasing number of possible paths for the root causing failure to propagate
up to edgeRouter, which is reflected by the plots (a–c) in Fig. 2.

The results were instead quite different when we increased the probability
with which each service (but edgeRouter) could have failed, as shown in Fig. 2(d).
5 All experiments reported in this section were executed on a Ubuntu 20.04.3 LTS

virtual machine, with four vCPUs and 32 GB of RAM.

Failure Root Cause Analysis for Microservices, Explained 85

Fig. 2. Average number (y-axis) of identified explanations and root causes.

In this case, all instances of the services in Fig. 1 (but queueMaster) not only get
invoked to process an end-user request received by edgeRouter, but they may also
fail on their own with increasing probability. Their failures may then propagate
and cause that observed on edgeRouter. Even in such a complex scenario, with
all instances of 12 services possibly being the root cause of an observed failure,
the average numbers of root causes and explanations returned by yRCA were (in
the worst case) around two and three, respectively. Out of those, one always
corresponded to the true root cause and failure cascade that happened in our
reference application deployment.

The above discussed experiments (a–d) show that yRCA not only effectively
identified the failure cascades that caused an observed failure, but also that it
was able of restricting such cascades to quite a few. This hence reduces the
number of false positives returned by yRCA, which is a plus when enacting root
cause analysis in applications composed of many interacting microservices [28].
Average Processing Time. Figure 3 shows the average time required by yRCA
to explain each failure in each experiment, normalised in milliseconds for pro-
cessing a megabyte of logs. We can observe that the average processing time
depends on how much services interacts. Indeed, elapsed time significantly grew
with (a) the load rate, whose increase results more service interactions due to a
higher number of end users’ requests to be processed, and with (b) the proba-
bility of each service invoking its backend services. This is to be expected, given
that our Prolog reasoner first identifies and classifies service interactions, to then
process classified interactions to reconstruct possible failure cascades (Sect. 3). It
is anyhow worth noting that, even in the cases of heavy load, yRCA took 104.04 s
to process 381.21 MBs of logs. Such an amount of time is acceptable for an
offline task as that of failure root cause analysis [37]. It is also much less than
that we would need to elicit the failure cascades that may have caused a failure
by manually inspecting the same logs, even in the case when the possible root
causing failures have already been identified with some existing technique (like
those discussed in Sect. 6).

Figure 3 also shows that the average processing time instead kept stable when
we increased (c) the length of failure cascades or (d) the services’ failure rate.
This suggests that our root cause analysis is independent from how long is a
failure cascade or how many services failed, as it would require the same pro-
cessing time. This is a desiderata when having big enterprise applications where
a failure cascade may involve tens of services [30].

86 J. Soldani et al.

Fig. 3. Average elapsed time (y-axis) for each experiment, in ms/MB.

6 Related Work

Various techniques have been proposed to identify the possible root causes of
failures in multi-service applications [28]. This is typically done by relying on
applications being instrumented to feature distributed tracing or to monitor spe-
cific Key Performance Indicators (KPIs) on their services. For instance, Zhou et
al. [37] and Guo et al. [6] propose two methodologies to systematically identify
the root cause of a failure observed on the frontend of an application, based
on manually inspecting its distributed traces with the support of visualisation
tools. Similarly to our technique, their methodologies enable identifying not only
the possible root causing failures, but also the cascades that made such failures
propagate up to that observed on the application frontend. They however dif-
fer from our technique, since we enable identifying the possible root causes for
failures happening on any service in an application, whilst also fully automating
the root cause analysis.

CloudDiag [18], TraceAnomaly [13], MonitorRank [8], and MicroHECL [12]
are other examples of distributed tracing-based root cause analysis techniques,
yet fully automating the analysis. CloudDiag [18] and TraceAnomaly [13] directly
analyse the distributed traces and consider as possible root causes for a failure
those services whose response time was anomalous. MonitorRank [8] and Micro-
HECL [12] instead process the distributed traces to obtain a graph representing
the services forming the application and their interactions, which they then
visit guided by the correlation between service performances. The services cor-
responding to the nodes where their visits stop are considered as possible root
causes for the considered failure. A first difference between the above techniques
(but MicroHECL [12]) resides in the fact that they focus on analysing the pos-
sible root causes of failures happening on the application frontend, whilst we
enable analysing those for failures happening on any service. In addition, all
the above techniques differ from ours since they require application to feature
distributed tracing, and since they return the possible root causes for a failure,
but without explaining how they propagated and caused the observed failure.
Our technique can hence complement their results, by not only returning the
possible root causes of an observed failure, but also the cascades that made root
causing failures propagate to that observed.

Similar considerations apply to the root cause analysis techniques requiring to
instrument applications to monitor specific KPIs on their services. For instance,
ε-diagnosis [26], PAL [21], Wang et al. [31], and FChain [22] enable determining

Failure Root Cause Analysis for Microservices, Explained 87

the possible root causes for a service’s failure, based on the correlation between
anomalous KPI values monitored on the failing service and on other services.
They all differ from our technique since, even if identifying the possible root
causes for an observed failure (which must be a frontend failure in the case ε-
diagnosis [26], PAL [21], and FChain [22]), they are not providing explanations
on how the root causing failures propagated to that observed. We instead enable
identifying the failure cascades that caused a failure observed on any service. We
can thus complement the results obtained with ε-diagnosis [26], PAL [21], Wang
et al. [31], or FChain [22], by allowing to determine how the root causing failures
– identified with such techniques – propagated and caused that observed.

MicroRCA [35], Wu et al. [36], Sieve [30], and Brandón et al. [2], and DLA [25]
exploit monitored KPIs to drive the search for the possible root causes of a failure
in a graph-based modelling of the architecture of an application. The latter is
automatically reconstructed by MicroRCA [35], Wu et al. [36], Sieve [30], and
Brandón et al. [2] from monitored KPIs themselves, and it is instead an input
for DLA [25]. Despite relying different methods to visit the graph, they can all
effectively determine the possible root causes for an observed failure. At the
same time, they all differ from our technique since they return the possible root
causing failures, without eliciting how such failures propagated and caused that
observed. We instead enable identifying the whole failure cascades that caused an
observed failure, also allowing to explain how the root causing failures identified
with MicroRCA [35], Wu et al. [36], Sieve [30], Brandón et al. [2], or DLA [25]
caused that observed.

Similar considerations apply to CauseInfer [4], Microscope [10], Qiu et al. [23],
CloudRanger [32], MS-Rank [14], AutoMap [15], MicroCause [17], FacGraph [11],
and LOUD [16]. They all exploit monitored KPIs to infer a causality graph,
whose nodes model the services forming an application and whose arcs model
causal relationships between the performances of its services. Most of them then
exploit KPIs to identify the possible root causes of a failure by visiting the
causality graph, with CauseInfer [4], Microscope [10], and Qiu et al. [23] enact-
ing a KPI-driven BFS, whereas CloudRanger [32], MS-Rank [14], AutoMap [15],
MicroCause [17] enact a random walk similar to that of MonitorRank [8]. Fac-
Graph [11] and LOUD [16] instead analyze the graph structure to determine the
possible root causes for a failure. Again, the main difference between such tech-
niques and ours resides in explainability. The above techniques indeed effectively
identify the possible root causes for an observed failure, without explaining how
the root causing failures propagated to that observed. Our technique instead
determines the failure cascades that may have possibly caused an observed fail-
ure, hence also enabling to complement the results that can be obtained with
the above discussed techniques.

Finally, it is worth positioning our work with respect to Aggarwal et al. [1]
and our previous work [29], which both process the logs produced by the services
in an application, instead of requiring it to feature distributed tracing or to
get instrumented with monitoring probes. Aggarwal et al. [1] model the logs
of the services forming an application as multivariate time series, and it then

88 J. Soldani et al.

exploits Granger causality tests to derive a causality graph. In the latter, nodes
model services, whilst arcs model causal dependencies among the errors logged
by services. The causality graph is then visited by enacting a random walk similar
to MonitorRank [8], in order to determine the highest probable root cause for a
failure observed on the application frontend. Aggarwal et al. [1] hence differ from
our technique since they return one possible root cause for a frontend failure,
without explaining how such root causing failure propagated to the application
frontend. We instead enable determining the possible root causes for failures
observed on any service, while also eliciting the failure cascades that may have
caused root causing failures to propagate to the observed ones.

In this perspective, the root cause analysis technique we proposed in our
previous work [29] is closer to that in this paper, given that it identifies the
possible root causes and explains how they propagated to cause an observed
failure. Our previous work [29] however relies on a specification of the appli-
cation architecture and of the failure behaviour of each of the service therein,
given by associating each service to its fault-aware management protocol [3]. We
indeed exploited such specification to drive the search for failure cascades in the
application logs. The technique presented in this paper hence differs from that
in our previous work [29], given that we now directly process the application
logs, without requiring any specification of the application.

In summary, to the best of our knowledge, ours is the first explainable root
cause analysis technique, which not only determines the possible root causes for
a failure, as typically done in literature, but also the cascades due to which the
root causing failures propagated and caused that observed. It is the first doing
it in a fully automated manner, and without requiring other inputs than the
logs produced by the services forming an application. Our technique can also
complement the results obtained with other existing techniques, by explaining
how the root causing failures they identify propagated and caused that observed.

7 Conclusions

We presented an explainable technique for determining the possible root causes
of cascading failures in any microservice-based application, provided that its
services suitably log their interaction and failure events (Sect. 5). Our technique
can be used to determine the failure cascades that possibly caused an observed
failure, either also eliciting the possible root causes or starting from a given set
of possible root causes. It can hence complement existing root cause analysis
techniques, providing explanations of how the root causing failures they identify
propagated and caused that observed.

We also presented a prototype implementation of our technique, called yRCA,
which we used to assess it based on controlled experiments run on an existing
chaos testbed. The results of our experiments showed that yRCA features good
time performances, and that it effectively determined the root cause of a fail-
ure in 99.74% of the cases. This happened whilst returning around 3 possible
explanations in the worst case. yRCA hence kept the number of false negatives

Failure Root Cause Analysis for Microservices, Explained 89

low, thus limiting the efforts hat should be spent by application administrators
in checking failure cascades that did not truly caused an observed failure.

The failure cascades explaining an observed failure can help application
administrators in identifying where to enact suitable countermeasures (e.g., cir-
cuit breakers and bulkheads [20]) to avoid the occurrence of those failure cas-
cades. One natural direction for future work is the prototyping of a tool sup-
porting the visualization of failure cascades explaining observed failures, together
with suggestions of possible countermeasures.

Another interesting future work direction is experimenting our technique on
industrial applications, based on different chaos testing approaches (e.g., Net-
flix’s Chaos Monkey [19]). We also plan to extend the scope of our explainable
root cause analysis to deal with incomplete logs, e.g., in case the logging driver
fails or a service instance gets suddenly killed without flushing all its logs.

References

1. Aggarwal, P., et al.: Localization of operational faults in cloud applications by
mining causal dependencies in logs using golden signals. In: Hacid, H., et al. (eds.)
ICSOC 2020. LNCS, vol. 12632, pp. 137–149. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-76352-7 17

2. Brandón, A., et al.: Graph-based root cause analysis for service-oriented and
microservice architectures. J. Syst. Soft. 159, 110432 (2020). https://doi.org/10.
1016/j.jss.2019.110432

3. Brogi, A., et al.: Fault-aware management protocols for multi-component applica-
tions. J. Syst. Softw. 139, 189–210 (2018). https://doi.org/10.1016/j.jss.2018.02.
005

4. Chen, P., et al.: Causeinfer: automatic and distributed performance diagnosis with
hierarchical causality graph in large distributed systems. In: INFOCOM 2014, pp.
1887–1895. IEEE (2014). https://doi.org/10.1109/INFOCOM.2014.6848128

5. Graylog Extend Log Format: Graylog (2022). https://www.graylog.org/
6. Guo, X., et al.: Graph-based trace analysis for microservice architecture under-

standing and problem diagnosis. In: ESEC/FSE 2020, pp. 1387–1397. ACM (2020).
https://doi.org/10.1145/3368089.3417066

7. IETF: The Syslog protocol. RFC 5424, Network Working Group (2009)
8. Kim, M., et al.: Root cause detection in a service-oriented architecture. SIGMET-

RICS Perform. Eval. Rev. 41(1), 93–104 (2013). https://doi.org/10.1145/2494232.
2465753

9. Kratzke, N., Quint, P.: Understanding cloud-native applications after 10 years of
cloud computing - a systematic mapping study. J. Syst. Soft. 126, 1–16 (2017).
https://doi.org/10.1016/j.jss.2017.01.001

10. Lin, J., Chen, P., Zheng, Z.: Microscope: pinpoint performance issues with causal
graphs in micro-service environments. In: Pahl, C., Vukovic, M., Yin, J., Yu, Q.
(eds.) ICSOC 2018. LNCS, vol. 11236, pp. 3–20. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03596-9 1

11. Lin, W., et al.: FacGraph: frequent anomaly correlation graph mining for root cause
diagnose in micro-service architecture. In: IPCCC 2018, pp. 1–8. IEEE (2018).
https://doi.org/10.1109/PCCC.2018.8711092

https://doi.org/10.1007/978-3-030-76352-7_17
https://doi.org/10.1007/978-3-030-76352-7_17
https://doi.org/10.1016/j.jss.2019.110432
https://doi.org/10.1016/j.jss.2019.110432
https://doi.org/10.1016/j.jss.2018.02.005
https://doi.org/10.1016/j.jss.2018.02.005
https://doi.org/10.1109/INFOCOM.2014.6848128
https://www.graylog.org/
https://doi.org/10.1145/3368089.3417066
https://doi.org/10.1145/2494232.2465753
https://doi.org/10.1145/2494232.2465753
https://doi.org/10.1016/j.jss.2017.01.001
https://doi.org/10.1007/978-3-030-03596-9_1
https://doi.org/10.1007/978-3-030-03596-9_1
https://doi.org/10.1109/PCCC.2018.8711092

90 J. Soldani et al.

12. Liu, D., et al.: MicroHECL: high-efficient root cause localization in large-scale
microservice systems. In: ICSE-SEIP 2021, pp. 338–347. IEEE (2021). https://doi.
org/10.1109/ICSE-SEIP52600.2021.00043

13. Liu, P., et al.: Unsupervised detection of microservice trace anomalies through
service-level deep Bayesian networks. In: ISSRE 2020, pp. 48–58. IEEE (2020).
https://doi.org/10.1109/ISSRE5003.2020.00014

14. Ma, M., et al.: MS-rank: multi-metric and self-adaptive root cause diagnosis for
microservice applications. In: ICWS 2019, pp. 60–67. IEEE (2019). https://doi.
org/10.1109/ICWS.2019.00022

15. Ma, M., et al.: AutoMAP: diagnose your microservice-based web applications auto-
matically. In: WWW 2020, pp. 246–258. ACM, New York (2020). https://doi.org/
10.1145/3366423.3380111

16. Mariani, L., et al.: Localizing faults in cloud systems. In: ICST 2018, pp. 262–273.
IEEE (2018). https://doi.org/10.1109/ICST.2018.00034

17. Meng, Y., et al.: Localizing failure root causes in a microservice through causal-
ity inference. In: IWQoS 2020, pp. 1–10. IEEE (2020). https://doi.org/10.1109/
IWQoS49365.2020.9213058

18. Mi, H., et al.: Toward fine-grained, unsupervised, scalable performance diagnosis
for production cloud computing systems. IEEE Trans. Par. Dist. Sys. 24(6), 1245–
1255 (2013). https://doi.org/10.1109/TPDS.2013.21

19. Netflix: Chaos monkey. https://netflix.github.io/chaosmonkey/. Accessed 13 Aug
2022

20. Newman, S.: Building Microservices, 2 edn. O’Reilly Media, Sebastopol (2021)
21. Nguyen, H., et al.: PAL: propagation-aware anomaly localization for cloud hosted

distributed applications. In: Managing Large-Scale Systems via the Analysis of
System Logs and the Application of Machine Learning Techniques. ACM (2011).
https://doi.org/10.1145/2038633.2038634

22. Nguyen, H., et al.: FChain: toward black-box online fault localization for cloud sys-
tems. In: ICDCS 2013, pp. 21–30. IEEE (2013). https://doi.org/10.1109/ICDCS.
2013.26

23. Qiu, J., et al.: A causality mining and knowledge graph based method of root cause
diagnosis for performance anomaly in cloud applications. App. Sci. 10(6) (2020).
https://doi.org/10.3390/app10062166

24. Richardson, C.: Microservices Patterns, 1 edn. Manning Publications, Shelter
Island (2018)

25. Samir, A., Pahl, C.: DLA: detecting and localizing anomalies in containerized
microservice architectures using Markov models. In: FiCloud 2019, pp. 205–213.
IEEE (2019). https://doi.org/10.1109/FiCloud.2019.00036

26. Shan, H., et al.: ε-diagnosis: unsupervised and real-time diagnosis of small-window
long-tail latency in large-scale microservice platforms. In: WWW 2019, pp. 3215–
3222. ACM (2019). https://doi.org/10.1145/3308558.3313653

27. Soldani, J., Brogi, A.: Automated generation of configurable cloud-native chaos
testbeds. In: Adler, R., et al. (eds.) EDCC 2021. CCIS, vol. 1462, pp. 101–108.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86507-8 10

28. Soldani, J., Brogi, A.: Anomaly detection and failure root cause analysis in (micro)
service-based cloud applications: a survey. ACM Comput. Surv. 55(3) (2022).
https://doi.org/10.1145/3501297

29. Soldani, J., Montesano, G., Brogi, A.: What went wrong? Explaining cascading
failures in microservice-based applications. In: Barzen, J. (ed.) SummerSOC 2021.
CCIS, vol. 1429, pp. 133–153. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-87568-8 9

https://doi.org/10.1109/ICSE-SEIP52600.2021.00043
https://doi.org/10.1109/ICSE-SEIP52600.2021.00043
https://doi.org/10.1109/ISSRE5003.2020.00014
https://doi.org/10.1109/ICWS.2019.00022
https://doi.org/10.1109/ICWS.2019.00022
https://doi.org/10.1145/3366423.3380111
https://doi.org/10.1145/3366423.3380111
https://doi.org/10.1109/ICST.2018.00034
https://doi.org/10.1109/IWQoS49365.2020.9213058
https://doi.org/10.1109/IWQoS49365.2020.9213058
https://doi.org/10.1109/TPDS.2013.21
https://netflix.github.io/chaosmonkey/
https://doi.org/10.1145/2038633.2038634
https://doi.org/10.1109/ICDCS.2013.26
https://doi.org/10.1109/ICDCS.2013.26
https://doi.org/10.3390/app10062166
https://doi.org/10.1109/FiCloud.2019.00036
https://doi.org/10.1145/3308558.3313653
https://doi.org/10.1007/978-3-030-86507-8_10
https://doi.org/10.1145/3501297
https://doi.org/10.1007/978-3-030-87568-8_9
https://doi.org/10.1007/978-3-030-87568-8_9

Failure Root Cause Analysis for Microservices, Explained 91

30. Thalheim, J., et al.: Sieve: actionable insights from monitored metrics in distributed
systems. In: Middleware 2017, pp. 14–27. ACM (2017). https://doi.org/10.1145/
3135974.3135977

31. Wang, L., et al.: Root-cause metric location for microservice systems via log
anomaly detection. In: ICWS 2020, pp. 142–150. IEEE (2020). https://doi.org/
10.1109/ICWS49710.2020.00026

32. Wang, P., et al.: CloudRanger: root cause identification for cloud native systems.
In: CCGRID 2018, pp. 492–502. IEEE (2018). https://doi.org/10.1109/CCGRID.
2018.00076

33. Waseem, M., et al.: Design, monitoring, and testing of microservices systems: the
practitioners’ perspective. J. Syst. Soft. 182, 111061 (2021). https://doi.org/10.
1016/j.jss.2021.111061

34. Weaveworks: Sock shop (2017). https://microservices-demo.github.io
35. Wu, L., et al.: MicroRCA: root cause localization of performance issues in

microservices. In: NOMS 2020, pp. 1–9. IEEE (2020). https://doi.org/10.1109/
NOMS47738.2020.9110353

36. Wu, L., Bogatinovski, J., Nedelkoski, S., Tordsson, J., Kao, O.: Performance diag-
nosis in cloud microservices using deep learning. In: Hacid, H., et al. (eds.) ICSOC
2020. LNCS, vol. 12632, pp. 85–96. Springer, Cham (2021). https://doi.org/10.
1007/978-3-030-76352-7 13

37. Zhou, X., et al.: Fault analysis and debugging of microservice systems: industrial
survey, benchmark system, and empirical study. IEEE Trans. Soft. Eng. 47(2),
243–260 (2021). https://doi.org/10.1109/TSE.2018.2887384

https://doi.org/10.1145/3135974.3135977
https://doi.org/10.1145/3135974.3135977
https://doi.org/10.1109/ICWS49710.2020.00026
https://doi.org/10.1109/ICWS49710.2020.00026
https://doi.org/10.1109/CCGRID.2018.00076
https://doi.org/10.1109/CCGRID.2018.00076
https://doi.org/10.1016/j.jss.2021.111061
https://doi.org/10.1016/j.jss.2021.111061
https://microservices-demo.github.io
https://doi.org/10.1109/NOMS47738.2020.9110353
https://doi.org/10.1109/NOMS47738.2020.9110353
https://doi.org/10.1007/978-3-030-76352-7_13
https://doi.org/10.1007/978-3-030-76352-7_13
https://doi.org/10.1109/TSE.2018.2887384

Trusted Execution, Deep Learning,
and IoT

Attestation Mechanisms for Trusted
Execution Environments Demystified

Jämes Ménétrey1(B) , Christian Göttel1 , Anum Khurshid2 ,
Marcelo Pasin1 , Pascal Felber1 , Valerio Schiavoni1 , and Shahid Raza2

1 University of Neuchâtel, Neuchâtel, Switzerland
{james.menetrey,christian.gottel,marcelo.pasin,pascal.felber,

valerio.schiavoni}@unine.ch
2 RISE Research Institutes of Sweden, Stockholm, Sweden

{anum.khurshid,shahid.raza}@ri.se

Abstract. Attestation is a fundamental building block to establish trust
over software systems. When used in conjunction with trusted execu-
tion environments, it guarantees the genuineness of the code executed
against powerful attackers and threats, paving the way for adoption in
several sensitive application domains. This paper reviews remote attes-
tation principles and explains how the modern and industrially well-
established trusted execution environments Intel SGX, Arm TrustZone
and AMD SEV, as well as emerging RISC-V solutions, leverage these
mechanisms.

Keywords: Trusted execution environments · Attestation · Intel
SGX · Arm TrustZone · AMD SEV · RISC-V

1 Introduction

Confidentiality and integrity are essential features when building secure com-
puter systems. This is particularly important when the underlying system can-
not be fully trusted or controlled. For example, video broadcasting software
can be tampered with by end-users to circumvent digital rights management,
or virtual machines are candidly open to the indiscretion of their cloud-based
untrusted hosts. The introduction of Trusted Execution Environments (TEEs),
such as Intel SGX, AMD SEV, RISC-V and Arm TrustZone-A/-M, into com-
modity processors, significantly mitigates the attack surface against powerful
attackers. In a nutshell, TEEs let a piece of software be executed with stronger
security guarantees, including privacy and integrity properties, without relying
on a trustworthy operating system. Each of these enabling technologies offers dif-
ferent degrees of guarantees that can be leveraged to increase the confidentiality
and integrity of applications.

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
D. Eyers and S. Voulgaris (Eds.): DAIS 2022, LNCS 13272, pp. 95–113, 2022.
https://doi.org/10.1007/978-3-031-16092-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16092-9_7&domain=pdf
http://orcid.org/0000-0003-2470-2827
http://orcid.org/0000-0002-4465-6197
http://orcid.org/0000-0002-5788-069X
http://orcid.org/0000-0002-3064-5315
http://orcid.org/0000-0003-1574-6721
http://orcid.org/0000-0003-1493-6603
http://orcid.org/0000-0001-8192-0893
https://doi.org/10.1007/978-3-031-16092-9_7

96 J. Ménétrey et al.

Remote attestation allows establishing a trusting relationship with a specific
software by verifying its authenticity and integrity. Through remote attestation,
one ensures to be communicating with a specific, trusted (attested) program
remotely. TEEs can support and strengthen the attestation process, ensuring
that programs are shielded against many powerful attacks by isolating critical
security software, assets and private information from the rest of the system.
However, to the best of our knowledge, there is not a clear systematisation of
attestation mechanisms supported by modern and industrially well-established
TEEs. Hence, the main contribution of this work is to describe the state-of-the-
art best practices regarding remote attestation mechanisms of TEEs, covering a
necessarily incomplete selection of TEEs, which includes the four major technolo-
gies available for commodity hardware, which are Intel SGX, Arm TrustZone-
A/-M, AMD SEV and many emerging TEEs using the open ISA RISC-V. We
complement previous work [36,37] with an updated analysis of TEEs (e.g., intro-
duction of Intel SGX and Arm TrustZone variations), a thorough analysis of
remote attestation mechanisms and coverage of the upcoming TEEs of Intel and
Arm.

2 Attestation

2.1 Local Attestation

Local attestation enables a trusted environment to prove its identity to any other
trusted environments hosted on the same system, respectively, on the same CPU
if the secret provisioned for the attestation is bound to the processor. The tar-
get environment that receives the local attestation request can assess whether
the issued proof is genuine by verifying its authentication, usually based on a
symmetric-key scheme, using a message authentication code (MAC). This mech-
anism is required to establish secure communication channels between trusted
environments, often used to delegate computing tasks securely. As an exam-
ple, Intel SGX’s remote attestation (detailed in Sect. 3.3) leverages the local
attestation to sign proofs in another trusted environment through a secure com-
munication channel.

2.2 Remote Attestation

Remote attestation allows to establish trust between different devices and pro-
vides cryptographic proofs that the executing software is genuine and untam-
pered [18]. In the remainder, we adopt the terminology proposed by the IETF to
describe remote attestation and related architectures [13]. Under these terms, a
relying party wishes to establish a trusted relationship with an attester, thanks
to the help of a verifier. The attester provides the state of its system, indicating
the hardware and the software stack that runs on its device by collecting a set
of claims of trustworthiness. A claim is a piece of asserted information collected
by an attesting environment, e.g., a TEE. An example of claims is the code

Attestation Mechanisms for Trusted Execution Environments Demystified 97

measurement, (i.e., a cryptographic hash of the application’s code) of an exe-
cuting program within a TEE. TEEs also create additional claims that identify
the trusted computing base (TCB is the amount of hardware and software that
needs to be trusted), so verifiers are able to evaluate the genuineness of the plat-
form. Claims are collected and cryptographically signed to form evidence, later
observed and accepted (or denied) by the verifier. Once the attester is proven
genuine, the relying party can safely interact with it and transfer confidential
data or delegate computations.

The problem of remotely attesting software has been extensively studied
in academia, and industrial implementations already exist. Three leading fami-
lies of remote attestation methods exist: (i) software-based, (ii) hardware-based,
and (iii) hybrid (software- and hardware-based). Software-based remote attes-
tation [47] does not depend on any particular hardware. This method is partic-
ularly adapted to low-cost use cases. Hardware-based remote attestation relies
on a root of trust, which is one or many cryptographic values rooted in hard-
ware to ensure that the claims are trustworthy. Typically, a root of trust can be
implemented using tamper-resistant hardware, such as a trusted platform module
(TPM) [55], a physical unclonable function (PUF) that prevents impersonations
by using unique hardware marks produced at manufacture [30], or a hardware
secret fused in a die (e.g., CPU) exposed exclusively to the trusted environment.
Hybrid solutions combine hardware devices and software implementations [21],
in an attempt to leverage advantages from both sides. Researchers used hard-
ware/software co-design techniques to propose a hybrid design with a formal
proof of correctness [40]. Finally, remote attestation mechanisms are popular
among the TEEs due to their carefully controlled environments and their ability
to generate code measurements. Section 3 delivers extensive analysis of the state
of the art of the TEEs, including their support for remote attestation.

2.3 Mutual Attestation

Trusted applications may need stronger trust assurances by ensuring both ends
of a secure channel are attested. For example, when retrieving confidential data
from a sensing IoT device (where data is particularly sensitive), the device must
authenticate the remote party, while the latter must ensure the sensing device
has not been spoofed or tampered with. Mutual attestation protocols have been
designed to appraise the trustworthiness of both end devices involved in a com-
munication. We also report how mutual attestation has also been studied in the
context of TEEs [51], as we further detail in Sect. 3.

98 J. Ménétrey et al.

3 Issuing Attestations Using TEEs

Several solutions exist to implement hardware support for trusted computing,
and TEEs are particularly promising. Typically, a TEE consists of isolating crit-
ical components of the system, (e.g., portions of the memory), denying access
to more privileged but untrusted systems, such as kernel and machine modes.
Depending on the implementation, it guarantees the confidentiality and the
integrity of the code and data of trusted applications, thanks to the assistance
of CPU security features. This work surveys modern and prevailing TEEs from
processor designers and vendors with remote attestation capabilities for com-
modity or server-grade processors, namely Intel SGX [19], AMD SEV [3], and
Arm TrustZone [42]. Besides, RISC-V, an open ISA with multiple open-source
core implementations, ratified the physical memory protection (PMP) instruc-
tions, offering similar capabilities to memory protection offered by aforemen-
tioned technologies. As such, we also included many emerging academic and
proprietary frameworks that capitalise on standard RISC-V primitives, which
are Keystone [33], Sanctum [20], TIMBER-V [54] and LIRA-V [49]. Finally,
among the many other technologies in the literature, we omitted the TEEs lack-
ing remote attestation mechanisms (e.g., IBM PEF [26]) as well as the TEEs not
supported on currently available CPUs (e.g., Intel TDX [27], Realm [11] from
Arm CCA [8]).

Table 1. Comparison of the state-of-the-art TEEs.

SGX TrustZone SEV RISC-V

Features

C
li
e
n
t
S
G
X

S
c
a
la
b
le

S
G
X

T
ru

st
Z
o
n
e
-A

T
ru

st
Z
o
n
e
-M

V
a
n
il
la

S
E
V
-E

S

S
E
V
-S

N
P

K
e
y
st
o
n
e

S
a
n
c
tu

m

T
IM

B
E
R
-V

L
IR

A
-V

Integrity

Freshness

Encryption

Unlimited domains

Open source

Local attestation

Remote attestation

API for attestation

Mutual attestation

User-mode support

Industrial TEE

Isolation and
attestation granularity

Intra-
address
space

Secure
world

VM
Secure
world

Intra-address space

System support for
isolation

µcode +
XuCode

SMC MPU Firmware SMC + PMP
Tag +
MPU

PMP

Attestation Mechanisms for Trusted Execution Environments Demystified 99

Table 2. Features of the state-of-the-art TEEs.

Feature Description

Integrity
An active mechanism preventing DRAM of TEE instances from being tam-

pered with. Partial fulfilment means no protection against physical attacks.

Freshness
Protecting DRAM of TEE instances against replay and rollback attacks.

Partial fulfilment means no protection against physical attacks.

Encryption
DRAM of TEE instances is encrypted to assure that no unauthorised access

or memory snooping of the enclave occurs.

Unlimited domains

Many TEE instances can run concurrently, while the TEE boundaries

(e.g.,isolation, integrity) between these instances are guaranteed by hard-

ware. Partial fulfilment means that the number of domains is capped.

Open source Indicate whether the solution is either partially or fully publicly available.

Local attestation A TEE instance attests running on the same system to another instance.

Remote attestation
A TEE instance attests genuineness to remote parties. Partial fulfilment

means no built-in support but is extended by the literature.

API for attestation

An API is available by the trusted applications to interact with the process

of remote attestation. Partial fulfilment means no built-in support but is

extended by the literature.

Mutual attestation

The identity of the attester and the verifier are authenticated upon remote

attestations. Partial fulfilment means no built-in support but is extended by

the literature.

User mode support
State whether the trusted applications are hosted in user mode, according

to the processor architecture.

Industrial TEE
Contrast the TEEs used in production and made by the industry from the

research prototypes designed by the academia.

Isolation and

attestation granularity

The level of granularity where the TEE operates for providing isolation and

attestation of the trusted software.

System support for

isolation
The hardware mechanisms used to isolate trusted applications.

3.1 TEE Cornerstone Features

We propose a series of cornerstone features of TEEs and remote attestation
capabilities and compare many emerging and well-established state-of-the-art
solutions in Table 1. Each feature is detailed in Table 2 and can either be missing
(), partially () or fully () available. Besides, we elaborate further on each
TEE in the remainder of the section.

Fig. 1. The workflow of deployment and attestation of TEEs.

100 J. Ménétrey et al.

3.2 Trusted Environments and Remote Attestation

The attestation of software and hardware components requires an environment
to issue evidence securely. This role is usually assigned to some software or hard-
ware mechanism that cannot be tampered with. These environments rely on the
code measurement of the executed software and combine that claim with cryp-
tographic values derived from the root of trust. We analysed today’s practices
for the leading processor vendors for issuing cryptographically signed evidence.

Figure 1 illustrates the generic workflow TEE developers usually follow for
the deployment of trusted applications. Initially, the application is compiled and
measured on the developers’ premises. It is later transferred to an untrusted
system, executed in the TEE facility. Once the trusted application is loaded and
required to receive sensitive data, it communicates with a verifier to establish a
trusted channel. The TEE environment must facilitate this transaction by expos-
ing evidence to the trusted application, which adds key material to bootstrap
a secure channel from the TEE, thus preventing an attacker from eavesdrop-
ping on the communication. The verifier examines the evidence, maintaining a
list of reference values to identify genuine instances of trusted applications. If
recognised as trustworthy, the verifier can proceed to data exchanges.

3.3 Intel SGX

Intel Software Guard Extensions (SGX) [19] introduced TEEs for mass-market
processors in 2015. Figure 2a illustrates the high-level architecture of SGX.
Specifically, Intel’s Skylake architecture introduced a new set of processor
instructions to create encrypted regions of memory, called enclaves, living within
the processes of the user space. Intel SGX exist in two flavours: client SGX and
scalable SGX [12]. The former is the technology released in 2015, designed and
implemented into consumer-grade processors, while the latter was released in
2021, focusing on server-grade processors. The key differences between the two
variants are: (i) the volatile memory available to enclaves, 128 MB and 512 GB,
respectively, (ii) the multi-socket support and (iii) the lack of integrity and replay
protections against hardware attacks for the latter. Researchers conduct work
to bring integrity protection for scalable SGX [12].

These instructions are their own ISA that is implemented in XuCode [28]
and together with model specific registers provide the requirements to form the
implementation of SGX. XuCode is a technology that Intel developed and inte-
grated into selected processor families to deliver new features more quickly and,
particularly for SGX, reduce the impact a (complex) hardware implementation
would have had on the features. It operates from protected system memory in a
special execution mode of the CPU, which are both set up by system firmware.
SGX is, to date, the only technology that is making use of XuCode.

A memory region is reserved at boot time for storing code and data of
encrypted enclaves. This memory area, called the enclave page cache (EPC), is
inaccessible to other programs running on the same machine, including the oper-
ating system and the hypervisor. The traffic between the CPU and the system

Attestation Mechanisms for Trusted Execution Environments Demystified 101

Fig. 2. Overview of the industrial TEE architectures. († denotes the attested elements)
(* means trusted for SEV/SEV-ES, untrusted for SEV-SNP)

memory remains confidential thanks to the memory encryption engine (MEE).
The EPC also stores verification codes to ensure that the DRAM corresponding
to the EPC was not modified by any software external to the enclave.

A trusted application executing in an enclave may establish a local attestation
with another enclave running on the same hardware. Toward this end, Intel SGX
issues a set of claims, called report, that contains identities, attributes (i.e., modes
and other properties), the trustworthiness of the TCB, additional information
for the target enclave and a MAC. Unlike local attestation, remote attestation
uses an asymmetric-key scheme, which is made possible by a special enclave,
called quoting enclave, that has access to the device-specific private key. Intel
designed their remote attestation protocol based on the SIGMA protocol [31]
and extended it to the enhanced privacy ID (EPID). The EPID scheme does not
identify unique entities, but rather a group of attesters. Each attester belongs to
a group, and the verifier checks the group’s public key. Evidence is signed by the
EPID key, which guarantees the trustworthiness of the hardware and is bound
to the firmware version of the processor.

In a remote attestation scenario, a verifier submits a challenge to the
attester (i.e., application enclave) with a nonce (Fig. 3-➀). The attester prepares

102 J. Ménétrey et al.

Fig. 3. The remote attestation flow of Intel SGX.

a response to the challenge by creating a set of claims, a public key (Fig. 3-➂),
and performs a local attestation with the quoting enclave. After verifying the set
of claims (i.e., report), the quoting enclave signs the report to form evidence with
the EPID key obtained using the EGETKEY instruction (Fig. 3-➅) and returns the
evidence to the attester (Fig. 3-➆), which sends it back to the verifier (Fig. 3-➇).
The public key contained in the evidence enables the creation of a confiden-
tial communication channel. Finally, the verifier examines the signature of the
evidence (Fig. 3-➈) using the Intel attestation service (IAS) [5,14]. If deemed
trustworthy, the verifier may provision sensitive data to the attester using the
secure channel.

More recently, Intel introduced the Data Center Attestation Primitives
(DCAP) [46], an alternative solution to EPID, enabling third-party attestation.
Thanks to DCAP, the verifiers have their own attestation infrastructure and
prevent depending on external dependencies (e.g., IAS) during the attestation
procedure. DCAP introduces an additional step, where the quote (Fig. 3-➆) is
signed using elliptic curve digital signature algorithm (ECDSA) by the attesta-
tion collateral of the attestation infrastructure. Instead of contacting the IAS
(Fig. 3-➈), the service retrieves the attestation collateral associated with the
received evidence from the attestation infrastructure in order to validate the
signature.

While the quoting enclave, the microcode and XuCode are closed-source,
recent work analysed the TEE and its attestation mechanism formally [45,50].
The other components of SGX (i.e., kernel driver and SDK) are open source.
MAGE [16] further extended the remote attestation scheme of Intel SGX by
offering mutual attestation for a group of enclaves without trusted third parties.
Similarly, OPERA [17] proposes a decentralised attestation scheme, unchaining
the attesters from the IAS while conducting attestation.

Intel SGX has many advantages but suffers from a few limitations as well.
First, most of the SGX implementation limits the EPC size to 93.5 MB [52].
While smaller programs offer smaller attack surfaces, exceeding this threshold
increases the memory access latency because of its pagination mechanism. Newer
Intel Xeon processors extend that limit to 512 GB, but drop integrity protection
and freshness against physical attacks. Besides, the enclave model prevents per-
forming system calls and direct hardware access since the threat model distrusts
the outer world, leading to the development of partitioned applications.

Attestation Mechanisms for Trusted Execution Environments Demystified 103

3.4 Arm TrustZone Architectures

Depending on the architecture of Arm’s processors, TrustZone comes in two
flavours: TrustZone-A (for Cortex-A) and TrustZone-M (for Cortex-M). While
they share many design aspects, we detail how different they are in the
remainder.

Arm TrustZone-A provides the hardware elements to establish a single TEE
per system [42]. Figure 2c illustrates the high-level architecture of TrustZone-A.
Broadly adopted by commodity devices, TrustZone splits the processor into two
states: the secure world (TEE) and the normal world (untrusted environment).
A secure monitor (SMC) is switching between worlds, and each world operates
with its own user and kernel spaces. The trusted world uses a trusted operating
system (e.g., OP-TEE) and runs trusted applications (TAs) as isolated processes.
The normal world uses a traditional operating system (e.g., Linux).

Despite the commercial success of TrustZone-A, it lacks attestation mech-
anisms, preventing relying parties from validating and trusting the state of
TrustZone-A remotely. Nevertheless, researchers proposed several variants of
one-way remote attestation protocols for Arm TrustZone [34,56], as well as
mutual remote attestation [2,48], thus extending the built-in capabilities of the
architecture for attestation. All of these propositions require the availability of
hardware primitives on the system-on-chip (SoC): (i) a root of trust in the secure
world, (ii) a secure source of randomness for cryptographic operations, and (iii) a
secure boot mechanism, ensuring the sane state of a system upon boot. Indeed,
devices lacking built-in attestation mechanisms may rely on a root of trust to
derive private cryptographic materials (e.g., a private key for evidence issuance).
Secure boot measures the integrity of individual boot stages on devices and pre-
vents tampered systems from being booted. As a result, remote parties can verify
issued evidence in the TEE and ensure the trustworthiness of the attesters.

We describe the remote attestation mechanism of Shepherd et al. [48] as a
study case. This solution establishes mutually trusted channels for bi-directional
attestation, based on a trusted measurer (TM), which is a software component
located in the trusted world and authenticated by the TEE’s secure boot, to
generate claims and issue evidence based on the OS and TA states. A private
key is provisioned and sealed in the TEE’s secure storage and used by the TM
to sign evidence, similarly to a firmware TPM [43]. Using a dedicated protocol
for remote attestation, the bi-directional attestation is accomplished in three
rounds:

1. The attester sends a handshake request to the verifier containing the identity
of both parties and the cryptographic materials to initiate keys establishment.

2. The verifier answers to the handshake by including similar information
(i.e., both identifies and cryptographic materials), as well as evidence of the
verifier’s TEE, based on the computed common secret (i.e., using Diffie-
Hellman).

3. Finally, the attester sends back signed evidence of the attester’s TEE, based
on the same common secret.

104 J. Ménétrey et al.

Once the two parties validated the genuineness of the evidence, they can derive
further shared secrets to establish a trusted communication channel.

Arm TrustZone-A also presents some advantages and drawbacks. Hardware
is independently accessible by both worlds, which is helpful for TEE applications
utilising peripherals. On the other hand, the reference and open-source trusted
OS, i.e., OP-TEE, limits the memory available to TAs by a few MB [24]. Due to
this constraint, software needs to be partitioned to leverage TrustZone. Besides,
the system must be installed in a particular way: a trusted OS is required,
instead of creating TEE instances directly in the regular OS, bringing more
complexity. Finally, OP-TEE is small and does not implement a POSIX API,
making developing TAs difficult, notably when porting legacy code. While most
components of TrustZone have open-source alternatives (e.g., the firmware and
the trusted OS), many vendors do not disclose the implementation of the secure
monitor.

Arm TrustZone-M (TZ-M) much like its predecessor TrustZone-A, provides
an efficient mechanism to isolate the system into two distinct states/processing
environments [7]. The TZ-M extension brings trusted execution into resource-
constrained IoT devices (e.g., Cortex-M23/M33/M35P/M55). When a TZ-M
enabled device boots up, it always starts in the secure world, where the memory
is initialised before transferring the control to the normal world. Despite the sim-
ilarity regarding the high-level concept, TrustZone-M differs from TrustZone-A
in low-level implementation of some features. The switch between the secure and
the normal world is embedded in hardware and is much faster than the secure
monitor [6]. This makes the context switching efficient and suitable for con-
strained devices. The normal world applications directly call the secure world
functions using the non-secure callable (NSC) region (Fig. 2d). TrustZone-M
lacks complex memory management operations like the memory management
unit (MMU) and only supports the memory protection unit (MPU) to enforce
even finer levels of access control and memory protection [9]. In TZ-M enabled
IoT devices, the secure world runs a concise trusted firmware which provides
secure processing in the form of secure services (e.g., TrustedFirmware-M), which
is a reference implementation of Platform Security Architecture (PSA) [10]) and
the normal world supports real-time operating systems (e.g., Zephyr OS, Arm
MBED OS, FreeRTOS).

Since TZ-M is a relatively new addition, recently available for the IoT infras-
tructure, existing work on attestation mechanisms for the hardware/software
is scarce. Nonetheless, TZ-M fulfils some basic requirements for attestation
like (i) secure storage, (ii) secure boot, (iii) secure inter-world communication
and (iv) isolation of software. Thus, schemes like [1] have leveraged TZ-M to
develop attestation and use TZ-M’s TEE capabilities to establish a chain of
trust. TrustedFirmware-M, following the guidelines of PSA, also supports initial
attestation of device-specific data in the form of a secure service. We provide
further details of the remote attestation mechanism introduced in DIAT [1]. It
aims at providing run-time attestation of on-device data integrity in autonomous

Attestation Mechanisms for Trusted Execution Environments Demystified 105

embedded systems in the absence of a central verifier. They provide attestation of
the data integrity by identifying the software components (or modules), i.e., the
claims, that process the data of concern, verifying that the modules are not mod-
ified, ensuring that all modules of software that influence data are benign. Data
integrity is provided by attestation, ensuring correct processing of the sensitive
data. The main steps of the protocol are described below:

– The verifier sends a request for data to the attester along with a nonce. The
data can represent collected environmental (e.g., a sensing edge device) or
compute-bound (e.g., machine learning) information.

– The attester generates the requested data and issues evidence, called the
attestation results, which are the list of all the software modules that affect
the data, and the control flow of each module is derived using the control flow
graph. The attester signs the data and the evidence with its secret key and
sends the authenticated data to the verifier.

– The verifier assesses the authenticity and integrity of the data by tracing
the software modules from the evidence. Since the evidence is comprised of
software modules that process the data and the frequency of execution of a
module, unauthorised data modifications and code reuse attacks are detected
and prevented.

TrustZone-M provides several advantages as a TEE to support remote attes-
tation but also has a few drawbacks. It provides efficient isolation of the software
modules and a faster context switch between the secure and normal world. This
is advantageous as it is critical to have minimum attestation latency in the real-
time operations of embedded systems like autonomous vehicles, industrial control
systems, unmanned aerial vehicles, etc. The availability of hardware-unique keys
in TZ-M enabled devices further ensures that the evidence generated by the TCB
cannot be forged. Besides, the software stack may be fully open source, thanks
to the absence of a secure monitor. On the other hand, since the components
involved in measuring, attesting, and verifying the data/system need to be pro-
tected as part of the TCB, it increases the TCB size on the attested devices,
raising the attack surface.

3.5 AMD SEV

AMD Secure Encrypted Virtualization (SEV) [3] allows isolating virtualised
environments (e.g., containers and virtual machines) from trusted hypervisors.
Figure 2b illustrates the high-level architecture of SEV. SEV uses an embedded
hardware AES engine, which relies on multiple keys to encrypt memory seam-
lessly. It exploits a closed Arm Cortex-v5 processor as a secure co-processor,
used to generate cryptographic materials kept in the CPU. Each virtual machine
(VM) and hypervisor is assigned a particular key and tagged with an address
space identifier (ASID), preventing cross-TEE attacks. The tag restricts the code
and data usage to the owner with the same ASID and protects from unautho-
rised usage inside the processor. Code and data are protected by AES encryption
with a 128-bit key based on the tag outside the processor package.

106 J. Ménétrey et al.

The original version of SEV could leak sensitive information during interrupts
from guests to the hypervisor through registers [25]. This issue was addressed
with SEV Encrypted State (SEV-ES) [29], where register states are encrypted,
and the guest operating system needs to grant the hypervisor access to specific
guest registers. Register states are stored with SEV-ES for each VM in a vir-
tual machine control block (VMCB) that is divided into an unencrypted control
area and an encrypted virtual machine save area. The hypervisor manages the
control area to indicate event and interrupt handling, while VMSA contains reg-
ister states. Integrity protection ensures that encrypted register values in the
VMSA cannot be modified without being noticed and VMs resume with the
same state. Requesting services from the hypervisor due to interrupts in VMs
are communicated over the guest hypervisor communication block (GHCB) that
is accessible through shared memory. Hypervisors do not need to be trusted
with SEV-ES because they no longer have access to guest registers. However,
the remote attestation protocol was recently proven unsecure [15], exposing the
system to rollback attacks and allowing a malicious cloud provider with physi-
cal access to SEV machines to easily install malicious firmware and be able to
read in clear the (otherwise protected) system. Future iterations of this tech-
nology, i.e., SEV Secure Nested Paging (SEV-SNP) [4], plan to overcome these
limitations, typically by means of in-silico redesigns.

At its core, SEV leverages a root of trust, called chip endorsement key, a
secret fused in the die of the processor and issued by AMD for its attestation
mechanism. The three editions of SEV may start the VMs from an unencrypted
state, similarly to Intel SGX enclaves. In such cases, the secrets and confiden-
tial data must then be provisioned using remote attestation. The AMD secure
processor creates a claim based on the measurement of the content of the VM.
In addition, SEV-SNP measures the metadata associated with memory pages,
ensuring the digest also considers the layout of the initial guest memory. While
SEV and SEV-ES only support remote attestation during the launch of the guest
operating system, SEV-SNP supports a more flexible model. That latter boot-
straps private communication keys, enabling the guest VM to request evidence
at any time and obtain cryptographic materials for data sealing, i.e., storing data
securely at rest.

The remote attestation process takes place when SEV is starting the VMs.
First, the attester, called hypervisor, executes the LAUNCH START command
(Fig. 4-➊) which creates a guest context in the firmware with the public key of
the verifier, called guest owner. As the attester is loading the VM into memory,
the LAUNCH UPDATE DATA/LAUNCH UPDATE VMSA commands (Fig. 4-➋) are called
to encrypt the memory and calculate the claims. When the VM is loaded, the
attester calls the LAUNCH MEASURE command (Fig. 4-➌), which produces evidence
of the encrypted VM. The SEV firmware provides the verifier with evidence
of the state of the VM to prove that it is in the expected state. The veri-
fier examines the evidence to determine whether the VM has not been inter-
fered with. Finally, sensitive data, such as image decryption keys, is provisioned
through the LAUNCH SECRET command (Fig. 4-➍) after which the attester calls

Attestation Mechanisms for Trusted Execution Environments Demystified 107

Fig. 4. The remote attestation flow of AMD SEV.

the LAUNCH FINISHED command (Fig. 4-➎) to indicate that the VM can be exe-
cuted.

Software development is eased, as AMD SEV protects the whole VM, which
comprises the operating system, unlike Intel SGX, where the applications are
split into untrusted and trusted parts. Nonetheless, this approach increases
the attack surface of the secure environment since the TCB is enlarged. The
guest operating system must also support SEV, cannot access host devices (PCI
passthrough), and the first edition of SEV (called vanilla in Table 1) is limited
to 16 VMs.

3.6 RISC-V Architectures

There exist several proposals for TEEs designs for RISC-V based on PMP
instructions. These proposals include support for remote attestation, such as
those previously described. We survey the most important ones in the following.

Keystone [33] is a modular framework that provides the building blocks to
create trusted execution environments, rather than providing an all-in-one solu-
tion that is inflexible and is another fixed design point. Instead, they advocate
that hardware should provide security primitives instead of point-wise solutions.
Keystone implements a secure monitor at machine mode (M-mode) and relies
on the RISC-V PMP instructions to provide isolated execution and, therefore,
does not require any hardware change. Since Keystone leverages features com-
position, the framework users can select their own set of security primitives,
e.g., memory encryption, dynamic memory management and cache partitioning.
Each trusted application executes in user mode (U-mode) and embeds a runtime
that executes in supervisor mode (S-mode). The runtime decouples the infras-
tructure aspect of the TEE (e.g., memory management, scheduling) from the
security aspect handled by the secure monitor. As such, Keystone programmers
can roll their custom runtime to fine-grained control of the computer resources
without managing the TEE’s security. Keystone utilises a secure boot mecha-
nism that measures the secure monitor image, generates an attestation key and
signs them using a root of trust. The secure monitor exposes a supervisor system

108 J. Ménétrey et al.

interface (SBI) for the enclaves to communicate. A subset of the SBI is dedi-
cated to issue evidence signed by provisioned keys (i.e., endorsed by the verifier),
based on the measurement of the secure monitor, the runtime and the enclave’s
application. Arbitrary data can be attached to evidence, enabling an attester to
create a secure communication channel with a verifier using key establishment
protocols (e.g., Diffie-Hellman). When a remote attestation request takes place,
the verifier sends a challenge to the trusted application. The response contains
evidence with the public session key of the attester. Finally, the verifier examines
the evidence based on the public signature and the claims (i.e., measurements
of components), leading to establishing a secure communication channel. While
Keystone does not describe in-depth the protocol, the authors provide a case
study of remote attestation.

Sanctum [20] has been the first proposition with support for attesting trusted
applications. It offers similar promises to Intel’s SGX by providing provable
and robust software isolation, running in enclaves. The authors replaced Intel’s
opaque microcode/XuCode with two open-source components: the measurement
root (mroot) and a secure monitor to provide verifiable protection. A remote
attestation protocol is proposed, as well as a comprehensive design for deriv-
ing trust from a root of trust. Upon booting the system, mroot generates the
cryptographic materials for signing if started for the first time and hands off to
the secure monitor. Similarly to SGX, Sanctum utilises a signing enclave, that
receives a derived private key from the secure monitor for evidence generation.
The remote attestation protocol requires the attester, called enclave, to estab-
lish a session key with a verifier, called remote party. Afterwards, an enclave can
request evidence from the signing enclave based on multiple claims, such as the
hash of the code of the requesting enclave and some information coming from the
key exchange messages. The evidence is then forwarded to the verifier through
the secure channel for examination. This work has been further extended to
establish a secure boot mechanism and an alternative method for remote attes-
tation by deriving a cryptographic identity from manufacturing variation using
a PUF, which is useful when a hardware secret is not present [32].

TIMBER-V [54] achieved the isolation of execution on small embedded pro-
cessors thanks to hardware-assisted memory tagging. Tagged memory transpar-
ently associates blocks of memory with additional metadata. Unlike Sanctum,
they aim to bring enclaves to smaller RISC-V featuring only limited physical
memory. Similarly to TrustZone, the user mode (U-mode) and the supervisor
mode (S-mode) are split into a secure and normal world. The secure supervisor
mode runs a trust manager, called TagRoot, which manages the tagging of the
memory. The secure user mode improves the model of TrustZone, as it can handle
multiple concurrent enclaves, which are isolated from each other. They combine
tagged memory with an MPU to support an arbitrary number of processes while
avoiding the overhead of large tags. The trust manager exposes an API for the
enclaves to retrieve evidence, based on a given enclave identity, a root of trust,
called the secret platform key, and an arbitrary identifier provided by the enclave.
The remote attestation protocol is twofold: the verifier (i.e., remote party) sends

Attestation Mechanisms for Trusted Execution Environments Demystified 109

a challenge to the attester (i.e., enclave). Next, the challenge is forwarded to the
trust manager as an identifier to issue evidence, which is authenticated using
a MAC. The usage of symmetric cryptography is unusual in remote attesta-
tion because the verifier requires to own the secret key to verify the evidence.
The authors added that TIMBER-V could be extended to leverage public-key
cryptography for remote attestation.

LIRA-V [49] drafted a mutual remote attestation for constrained edge
devices. While this solution does not enable the execution of arbitrary code in
a TEE, it introduces a comprehensive remote attestation mechanism that lever-
ages PMP for code protection of the attesting environment and the availability
of a root of trust to issue evidence. The proposed protocol relies exclusively on
machine mode (M-mode) or machine and user mode (M-mode and U-mode). The
claim, which is the code measurement, is computed on parts of the physical mem-
ory regions by a program stored in the ROM. LIRA-V’s mutual attestation pro-
tocol works similarly to the protocol illustrated in TrustZone-A, in three rounds
and requires provisioned keys as a root of trust. The first device (i.e., verifier)
sends a challenge with a public session key. Next, the second device (i.e., attester)
answers with a challenge and public session key, as well as evidence bound to
that device and encrypted using the established shared session key. Finally, if the
first device validates the evidence, it becomes the attester and issues evidence for
the second device, which becomes the verifier. This protocol has been formally
verified and enables the creation of a trusted communication channel upon the
validation of evidence.

Lastly, we omitted some other emerging TEEs leveraging RISC-V as they
lack remote attestation mechanisms. These technologies are yet to be researched
for bringing such capabilities. We briefly introduce them here for completeness.
SiFive, the provider of commercial RISC-V processor IP, proposes Hex-Five Mul-
tiZone [23], a zero-trust computing architecture enabling the isolation of soft-
ware, called zones. The multi zones kernel ensures the sane state of the system
using secure boot and PMP and runs unmodified applications by trapping and
emulating functionality for privileged instructions. HECTOR-V [39] is a design
for developing hardened TEEs with a reduced TCB. Thanks to a tight coupling
of the TEE and the SoC, the authors provide runtime and peripherals services
directly from the hardware and leverage a dedicated processor and a hardware-
based security monitor, which ensure the isolation and the control-flow integrity
of the trusted applications, called trustlets. Finally, Lindemer et al. [35] enable
simultaneous thread isolation and TEE separation on devices with a flat address
space (i.e., without an MMU), thanks to a minor change in the PMP specifica-
tion.

4 Future Work

TEEs and remote attestation are fast-moving research areas, where we expect
many technological and paradigm enhancements in the next decades. This
section introduces the next trusted environments announced by Intel and Arm.

110 J. Ménétrey et al.

Besides, we also describe a shift to VM-based TEEs and conclude on attestation
uniformity.

Intel unveiled Trust Domain Extensions (TDX) [27] in 2020 as its upcom-
ing TEE, introducing the deployment of hardware-isolated virtual machines,
called trust domains. Similarly to AMD SEV, Intel TDX is designed to iso-
late legacy applications running on regular operating systems, unlike Intel SGX,
which requires tailored software working on a split architecture (i.e., untrusted
and trusted parts). TDX leverages Intel Virtual Machine Extensions and Intel
Multi-Key Total Memory Encryption, as well as proposes an attestation pro-
cess to guarantee the trustworthiness of the trust domains for relying parties. In
particular, it extends the remote attestation mechanisms of Intel SGX to issue
claims and evidence, which has been formally verified by researchers [44].

Arm announced Confidential Compute Architecture (CCA) [8] as part of
their future Armv9 processor architecture, consolidating TrustZone to isolate
secure virtual machines. With this aim in mind, Arm CCA leverages Arm Realm
Management Extension [11] to create a trusted third world called realm, next
to the existing normal and secure worlds. Arm designed CCA to provide remote
attestation mechanisms, assuring that relying parties can trust data and trans-
actions.

These two recent initiatives highlight a convergence into the VM-based iso-
lation paradigm. Initially started by AMD, that architecture of TEEs has many
advantages. In particular, it reduces the developers’ friction in writing appli-
cations, since the underlying operating system and API are standard and no
different compared to the outside of the TEE. Furthermore, a convergence of
the paradigm may ease the development of unified and hardware-agnostic solu-
tions for trusted software deployment, such as Open Enclave SDK [41] or the
recent initiatives promoting WebAssembly as an abstract portable executable
code running in TEEs [22,38,53]. Remote attestation may also benefit from
these unified solutions by abstracting the attestation process behind standard
interfaces.

5 Conclusion

This work compares state-of-the-art remote attestation schemes, which leverage
hardware-assisted TEEs, which help deploy and run trusted applications from
commodity devices to cloud providers. TEE-based remote attestation has not
yet been extensively studied and remains an industrial challenge.

Our survey highlights four architectural extensions: Intel SGX, Arm Trust-
Zone, AMD SEV, and upcoming RISC-V TEEs. While SGX competes with
SEV, the two pursue significantly different approaches. The former provides a
complete built-in remote attestation protocol for multiple, independent, trusted
applications. The latter is designed for virtualised environments, shielding VMs
from untrusted hypervisors, and provides instructions to help the attestation of
independent VMs. Arm TrustZone and native RISC-V do not provide means for
attesting software running in the trusted environment, relying on the community

Attestation Mechanisms for Trusted Execution Environments Demystified 111

to develop alternatives. However, TrustZone-M supports a root of trust, helping
to develop an adequately trusted implementation. RISC-V extensions differ a
lot, offering different combinations of software and hardware extensions, some of
which support a root of trust and multiple trusted applications.

Whether provided by manufacturers or academia, remote attestation remains
an essential part of trusted computing solutions. They are the foundation of trust
for remote computing where the target environments are not fully trusted. Cur-
rent solutions widely differ in terms of maturity and security. Whereas some
TEEs are developed by leading processor companies and provide built-in attes-
tation mechanisms, others still lack proper hardware attestation support and
require software solutions instead. Our study sheds some light on the limitations
of state-of-the-art TEEs and identifies promising directions for future work.

Acknowledgments. This publication incorporates results from the VEDLIoT
project, which received funding from the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 957197, and from the Swedish
Foundation for Strategic Research (SSF) aSSIsT.

References

1. Abera, T., Bahmani, R., Brasser, F., et al.: DIAT: data integrity attestation for
resilient collaboration of autonomous systems. In: NDSS 2019 (2019)

2. Ahn, J., Lee, I.-G., Kim, M.: Design and implementation of hardware-based remote
attestation for a secure internet of things. Wireless Pers. Commun. 114(1), 295–327
(2020)

3. AMD: Secure encrypted virtualization API: technical preview. Technical report
55766 (2019)

4. AMD: Strengthening VM isolation with integrity protection and more. White
Paper (2020)

5. Anati, I., Gueron, S., Johnson, S., et al.: Innovative technology for CPU based
attestation and sealing. In: HASP 2013 (2013)

6. ARM: ARM TrustZone technology for the Armv8-M architecture. Technical report
100690 (2016)

7. ARM:. Armv8-M Architecture Reference Manual. DDI0553 (2016)
8. ARM: Introducing ARM confidential compute architecture. Technical report,

DEN0125 (2021)
9. ARM: Memory protection unit. Technical report, 100699, version 2.1 (2018)

10. ARM: Platform security architecture application guide. Technical report, version
2 (2019)

11. ARM: The realm management extension (RME), for Armv9-A. DDI0615 (2021)
12. Aublin, P.L., Mahhouk, M., Kapitza, R.: Towards TEEs with large secure memory

and integrity protection against HW attacks. In: SysTEX 2022 (2022)
13. Birkholz, H., Thaler, D., Richardson, M., et al.: Remote attestation procedures

architecture. Technical report. draft-ietf-rats-architecture-12, Internet Engineering
Task Force (2021)

14. Brickell, E., Li, J.: Enhanced privacy ID: a direct anonymous attestation scheme
with enhanced revocation capabilities. In: WPES 2007 (2007)

112 J. Ménétrey et al.

15. Buhren, R., Werling, C., Seifert, J.-P.: Insecure until proven updated: analyzing
AMD SEV’s remote attestation. In: CCS 2019. ACM (2019)

16. Chen, G., Zhang, Y.: Mage: mutual attestation for a group of enclaves without
trusted third parties. arXiv preprint arXiv:2008.09501 (2020)

17. Chen, G., Zhang, Y., Lai, T.-H.: Opera: open remote attestation for Intel’s secure
enclaves. In: CCS 2019. ACM (2019)

18. Coker, G., Guttman, J., Loscocco, P., et al.: Principles of remote attestation. Int.
J. Inf. Secur. 10(2), 63–81 (2011)

19. Costan, V., Devadas, S.: Intel SGX explained. Cryptology ePrint Archive
20. Costan, V., Lebedev, I., Devadas, S.: Sanctum: minimal hardware extensions for

strong software isolation. In: USENIX Security 2016 (2016)
21. De Oliveira Nunes, I., Jakkamsetti, S., Rattanavipanon, N., et al.: On the TOC-

TOU problem in remote attestation. In: CCS 2021. ACM (2021)
22. Enarx. https://enarx.dev
23. Garlati, C., Pinto, S.: A clean slate approach to Linux security RISC-V enclaves.

In: EW 2020 (2020)
24. Göttel, C., Felber, P., Schiavoni, V.: Developing secure services for IoT with OP-

TEE: a first look at performance and usability. In: Pereira, J., Ricci, L. (eds.) DAIS
2019. LNCS, vol. 11534, pp. 170–178. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-22496-7 11

25. Hetzelt, F., Buhren, R.: Security analysis of encrypted virtual machines. In: VEE
2017. ACM (2017)

26. Hunt, G.D.H., Pai, R., Le, M.V., et al.: Confidential computing for OpenPOWER.
In: EuroSys 2021. ACM (2021)

27. Intel: Trust domain extensions (2020). https://intel.ly/3L901wS
28. Intel: XuCode (2021). https://intel.ly/3rYAhMI
29. Kaplan, D.: Protecting VM register state with SEV-ES. Technical report (2017)
30. Kong, J., Koushanfar, F., Pendyala, P.K., et al.: PUFatt: embedded platform attes-

tation based on novel processor-based PUFs. In: DAC 2014. IEEE (2014)
31. Krawczyk, H.: SIGMA: The ‘SIGn-and-MAc’ approach to authenticated Diffie-

Hellman and its use in the IKE protocols. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 400–425. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45146-4 24

32. Lebedev, I., Hogan, K., Devadas, S.: Invited paper: secure boot and remote attes-
tation in the Sanctum processor. In: CSF 2018. IEEE (2018)

33. Lee, D., Kohlbrenner, D., Shinde, S., et al.: Keystone: an open framework for
architecting trusted execution environments. In: EuroSys 2020. ACM (2020)

34. Li, W., Li, H., Chen, H., et al.: AdAttester: secure online mobile advertisement
attestation using TrustZone. In: MobiSys 2015. ACM (2015)

35. Lindemer, S., Midéus, G., Raza, S.: Real-time thread isolation and trusted execu-
tion on embedded RISC-V. In: SECRISC-V 2020 (2020)

36. Maene, P., Götzfried, J., de Clercq, R., et al.: Hardware-based trusted computing
architectures for isolation and attestation. IEEE Trans. Comput. 67(3), 361–374
(2018)

37. Ménétrey, J., Pasin, M., Felber, P., et al.: An exploratory study of attestation
mechanisms for trusted execution environments. In: SysTEX 2022 (2022)

38. Ménétrey, J., Pasin, M., Felber, P., et al.: Twine: an embedded trusted runtime
for WebAssembly. In: ICDE 2021. IEEE (2021)

39. Nasahl, P., Schilling, R., Werner, M., et al.: HECTOR-V: a heterogeneous CPU
architecture for a secure RISC-V execution environment. In: ASIA CCS 2021. ACM
(2021)

http://arxiv.org/abs/2008.09501
https://enarx.dev
https://doi.org/10.1007/978-3-030-22496-7_11
https://doi.org/10.1007/978-3-030-22496-7_11
https://intel.ly/3L901wS
https://intel.ly/3rYAhMI
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/978-3-540-45146-4_24

Attestation Mechanisms for Trusted Execution Environments Demystified 113

40. Nunes, I.D.O., Eldefrawy, K., Rattanavipanon, N., et al.: VRASED: a verified
hardware/software co-design for remote attestation. In: USENIX Security 2019
(2019)

41. Open Enclave SDK. https://openenclave.io
42. Pinto, S., Santos, N.: Demystifying ARM TrustZone: a comprehensive survey. ACM

Comput. Surv. 51(6), 1–36 (2019)
43. Raj, H., Saroiu, S., Wolman, A., et al.: fTPM: a Software-Only implementation of

a TPM chip. In: USENIX Security 2016 (2016)
44. Sardar, M.U., Musaev, S., Fetzer, C.: Demystifying attestation in Intel Trust

Domain Extensions via formal verification. IEEE Access 9, 83067–83079 (2021)
45. Sardar, M.U., Quoc, D.L., Fetzer, C.: Towards formalization of enhanced privacy

ID (EPID)-based remote attestation in Intel SGX. In: DSD 2020. IEEE (2020)
46. Scarlata, V., Johnson, S., Beaney, J., et al.: Supporting third party attestation for

Intel SGX with Intel data center attestation primitives. White paper (2018)
47. Seshadri, A., Luk, M., Shi, E., et al.: Pioneer: verifying integrity and guaranteeing

execution of code on legacy platforms. In: SOSP 2005. ACM (2005)
48. Shepherd, C., Akram, R.N., Markantonakis, K.: Establishing mutually trusted

channels for remote sensing devices with trusted execution environments. In: ARES
2017. ACM (2017)

49. Shepherd, C., Markantonakis, K., Jaloyan, G.-A.: LIRA-V: lightweight remote
attestation for constrained RISC-V devices. In: SPW 2021. IEEE (2021)

50. Subramanyan, P., Sinha, R., Lebedev, I., et al.: A formal foundation for secure
remote execution of enclaves. In: CCS 2017. ACM (2017)

51. Turan, F., Verbauwhede, I.: Propagating trusted execution through mutual attes-
tation. In: SysTEX 2019. ACM (2019)

52. Vaucher, S., Pires, R., Felber, P., et al.: SGX-aware container orchestration for
heterogeneous clusters. In: ICDCS 2018. IEEE (2018)

53. Veracruz. https://veracruz-project.com
54. Weiser, S., Werner, M., Brasser, F., et al.: TIMBER-V: tag-isolated memory bring-

ing fine-grained enclaves to RISC-V. In: NDSS 2019 (2019)
55. Xu, W., Zhang, X., Hu, H., et al.: Remote attestation with domain-based integrity

model and policy analysis. IEEE TDSC 9(3), 429–442 (2012)
56. Zhao, S., Zhang, Q., Qin, Y., et al.: SecTEE: a software-based approach to secure

enclave architecture using TEE. In: CCS 2019. ACM (2019)

https://openenclave.io
https://veracruz-project.com

Accelerate Model Parallel Deep Learning
Training Using Effective Graph Traversal

Order in Device Placement

Tianze Wang(B), Amir H. Payberah, Desta Haileselassie Hagos,
and Vladimir Vlassov

KTH Royal Institute of Technology, Stockholm, Sweden
{tianzew,payberah,destah,vladv}@kth.se

Abstract. Modern neural networks require long training to reach decent
performance on massive datasets. One common approach to speed up
training is model parallelization, where large neural networks are split
across multiple devices. However, different device placements of the same
neural network lead to different training times. Most of the existing
device placement solutions treat the problem as sequential decision-
making by traversing neural network graphs and assigning their neurons
to different devices. This work studies the impact of neural network graph
traversal orders on device placement. In particular, we empirically study
how different graph traversal orders of neural networks lead to different
device placements, which in turn affects the training time of the neural
network. Our experiment results show that the best graph traversal order
depends on the type of neural networks and their computation graphs
features. In this work, we also provide recommendations on choosing
effective graph traversal orders in device placement for various neural
network families to improve the training time in model parallelization.

Keywords: Device Placement · Model Parallelization · Deep
Learning · Graph Traversal Order

1 Introduction

Recent years have seen the prevalence of Deep Learning (DL) with larger and
deeper models with billions of neurons [2,29]. Together with the performance
boost of DL models comes the increasing computation demand for model train-
ing. Most solutions seek to parallelize the training on GPU clusters to meet the
requirement of computation power. Data parallelization [27] and model paral-
lelization [29] of DL models are the most common parallelization strategies. In
data parallelization, data are distributed among several servers (a.k.a. devices)
in a GPU cluster. In contrast, in model parallelization, the DL model is split
into multiple parts and distributed among devices. Assigning different parts of
a DL model to different devices is known as device placement.
c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
D. Eyers and S. Voulgaris (Eds.): DAIS 2022, LNCS 13272, pp. 114–130, 2022.
https://doi.org/10.1007/978-3-031-16092-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16092-9_8&domain=pdf
https://doi.org/10.1007/978-3-031-16092-9_8

Accelerate DL Training Using Effective Graph Traversal in Device Placement 115

Finding the optimal device placement of DL models in model parallelization
is a challenging task. It is mainly due to the large search spaces of potential
parallelization strategies, model architectures, and device characteristics [38].
Despite lots of efforts to improve device placements, it still takes a long time for
device placement methods to train [1,3,4,19,38]. The first effort in automating
device placement combines global partitioning and local scheduling by using
heuristic strategies to first partition the DL model into smaller parts and then
determine the execution schedule of neurons within each part [17].

The state-of-the-art device placement methods use a combination of Graph
Neural Network (GNN) and Reinforcement Learning (RL) to find the placement
of DL models [1,38]. In these solutions, a DL neural network graph is represented
as a Directed Acyclic Graph (DAG), in which each node of the DAG represents a
single operation or a group of operations, e.g., convolutions. In a typical setting,
a GNN takes a DAG of a DL model and its nodes’ features as input and generates
node embeddings, which summarize the attributes and neighborhood topology
of each node [1,38]. An RL agent then processes the node embeddings and uses a
policy to predict device placements for all nodes in the DAG on the given device
cluster. To this end, the RL agent needs to traverse all the nodes in the DAG
and learn to propose placements to reduce the training time of the DL model.

Identifying a good graph traversal order can decrease the time to train the
RL agent and potentially help the RL agent to find better placements to reduce
the DL model training time. In this work, we empirically study the relation-
ship between graph traversal orders and the learning efficiency of the RL agent
for finding device placement during the training process. We look into six dif-
ferent graph traversal orders and show how they affect the training process of
Placeto [1], a state-of-the-art device placement method on three different families
of neural networks. Each family of neural networks contains structurally similar
DL models [25]. Our initial results suggest that different traversal orders are
better suited for different types of neural networks, and the best graph traversal
order to use depends on the attributes of the DL model.

We also explain how our traversal order recommendation can be used in DL
models built for Remote Sensing (RS) and Earth Observation (EO) applications.
RS and EO are domains where there is a need to provide near real-time services
and products for global monitoring of planet earth. EO satellites developed over
the years have provided an unprecedented amount of data that need to be pro-
cessed [6,40]. Model parallelization methods can contribute to these domains by
distributing the computation and memory requirement for training large models
on large datasets.

Our contributions are summarized as follows.

1. We empirically study the impact of the graph traversal orders on finding the
best device placement for the model parallelization of DL models and, conse-
quently, their training times. In this study, we consider different architectures
of DL models, such as Convolutional Neural Network (CNN) and Recurrent
Neural Network (RNN). Our study shows that different graph traversal orders

116 T. Wang et al.

triumph at finding the best device placements efficiently for different types of
DL models.

2. Based on our empirical evaluation of graph traversal orders in device place-
ment for different model parallelization of DL architectures, we summarize
and provide guidelines on identifying the best graph traversal order for a
given DL model based on its characteristics. For example, we recommend
using Breadth-First Search (BFS) traversal order for model parallelization of
RNNs with large average degrees to perform device placement.

3. In the context of RS and EO, we show how our methods on identifying the
best graph traversal order can be used on different DL models, e.g., CNN
models for satellite image classification and RNN models for sequence clas-
sification. Choosing a proper graph traversal method in device placement
improves the DL models’ training time and enables us to train them on larger
datasets within a certain (the same) amount of time. The above two-fold ben-
efit enables real-time online training of model parallelization of DL models
with time deadlines.

2 Preliminaries

In this section, we discuss the problem formulation of device placement and
present Placeto [1] as a state-of-the-art device placement method and show how it
uses GNN and RL for device placement. Moreover, we review the graph traversal
order methods we use in this work.

2.1 Device Placement

Let G(V,E) be a DAG that represents the computation graph of a neural net-
work. Each node v ∈ V describes a single computation operation (e.g., convo-
lution) or a predefined small group of operations (e.g., groups of convolutions
nearby) that we are interested in predicting its device placement. Each edge
e ∈ E models the data dependencies between the vertices. Let D denote a given
device cluster (e.g., GPU clusters) where d ∈ D characterizes a single device
in D. A placement p : V → D assigns each node v ∈ V to a device d ∈ D.
Our goal in device placement is to find a placement p to minimize the training
time of G (i.e., the DL model) on the given device cluster D while satisfying the
memory constraints of every device in the cluster. When given a fixed number
of devices, we can treat the device placement task as a classification problem by
considering each device identifier as a label. The classification model takes the
DAG of a computation graph G as input and classifies every node or group of
nodes of G into devices in D.

2.2 Placeto

Placeto [1] models a device placement task as finding a sequence of iterative
placement improvements. In each training round, Placeto takes the current place-
ment of the DAG and the representation of one of its nodes as input and predicts

Accelerate DL Training Using Effective Graph Traversal in Device Placement 117

that node’s placement. Each training episode lasts until the placements of all the
nodes have been updated once. The Placeto method, in general, consists of two
parts, (i) using GNN [26] for making node embeddings of the input DAG, and
(ii) using RL for assigning nodes of the DAG to devices. The Placeto model’s
parameters are shared across episodes, allowing to learn placement policies that
generalize well to unseen graphs [1]. Below, we elaborate on these two parts in
more detail.

Graph Neural Network. What matters in node embeddings of a computation
graph is not only the features of the nodes but also their topological relationship.
If two connected nodes are placed on two different devices, there will be data
transfer between two devices in both the forward and backward path of model
training, which is expensive. Things become even more complicated when there
are more complex graph and sub-graph structures. For example, convolution
blocks [30] contain parallel computation threads that depend on the same node
for input data and send the result to another node for intermediate result con-
catenation, or temporal dependency [8] during the training of recurrent neural
networks can also incur a lot of data communication if the nodes that construct
the recurrent unit are located on different devices. Thus, it is crucial to consider
the relationships among the nodes while making graph representations.

GNN [26] can generate graph embeddings for each node in a given graph that
can generalize to unseen graphs. Placeto [1] uses a graph embedding architecture
that computes node attributes (e.g., the execution time of operation, total size
of output tensor), summarizes the topology of a local neighborhood through
message passing, and uses pooling operations for creating a global summary of
the entire graph. Mitropolitsky et al. [22] study the impact of different graph
embedding techniques on the training time of DL models. By explicitly modeling
the relationships between nodes in a computation graph, better placement can
be found by auto device placement methods.

Reinforcement Learning. After generating node embeddings of the input
DAG, Placeto uses a RL agent to predict the device placement of the DAG’s
nodes. The RL agent takes the node embeddings of the DAG as input and gen-
erates the probability distribution of the current node over candidate devices
as the output. During the training process, the RL agent interacts with the
training environment and uses the training time of the input DL model as a
reward function to guide the training process. Thus, the RL agent aims to min-
imize the training time of the DL model across different episodes of training. In
each episode of training, Placeto updates the placement of each node one time.
Placeto uses REINFORCE policy-gradient method [34] to train the RL agent.
Placeto also has a simulator to predict the training time of the DL model, which
helps to speed up the training process of RL agent by avoiding taking DL model
training time measurement of placements on real hardware.

118 T. Wang et al.

2.3 Graph Traversal Order

Since the device placement problem is treated as a sequential decision-making
task [19], we need to convert the computation graph into a sequence of node
embeddings. Placeto formulated the device placement problem as Markov Deci-
sion Process (MDP), where the RL agent selects to update the placement for a
node in the computation graph in each state. Thus, we need to form a sequence
by traversing the computation graph, which is represented as a DAG. Below, we
review some of the graph traversal orders on DAG that one can consider using.

Topological. Topological ordering [9] on the DAG of a computation graph
defines a graph traversal order such that for every directed edge u → v from
node u to node v, u must appear before v in the traversal order. Topological
ordering can be used to represent dependencies in a DAG where we only visit a
node once all its dependencies have been met.

Reversed Topological. A reversed topological ordering of a DAG of a com-
putation graph is simply the reversed order of its topological ordering.

Depth-First Search. Depth-First Search (DFS) is a graph traversal method
that starts at source nodes (input nodes of a DAG) and explores the DAG as
far as possible by continuously visiting the children nodes of the current node
first before visiting the sibling nodes. A DFS ordering is an enumeration of the
nodes that is a possible output of applying DFS on the graph. A DFS preorder
is a list of nodes that are in the order of when they are first visited by DFS.
A DFS postorder is a list of nodes that are in the order of when they are last
visited by DFS.

Breadth-First Search. Breadth-First Search (BFS) is a graph traversal
method that starts at source nodes (input nodes of a DAG) and explores the
DAG by first visiting all the sibling nodes of the current nodes before moving
to children nodes. A BFS order of a graph is an enumeration of its nodes that
is one possible output of applying BFS on the graph.

Lexicographical. Lexicographical order is an order where the strings are placed
in order based on the position of each character in the string and their position
in the alphabet. For example, given the names of two nodes in a DAG are
a = a1a2 · · · ak and b = b1b2 · · · bk, the order of the name of the two nodes
depends on the alphabetical order of the characters in the first place i that a
and b differs. If ai < bi then a < b, otherwise a > b.

3 Graph Traversal Orders in Device Placement

In this section, we discuss challenges in device placement and the impact of
graph traversal orders.

Accelerate DL Training Using Effective Graph Traversal in Device Placement 119

3.1 Challenges in Device Placement

Finding a good placement for model parallelization is challenging. Most of the
state-of-the-art methods use RL to find placements; however, RL agents still
require a long time to train before they can find suitable placements. Mirhoseini
et al. [21] find that it takes 12 to 27 hours for their RL method to find the best
placement. Although lots of efforts have been made in reducing the complexity
of the problem [19], making the training method more efficient [3,4], and gener-
alizing them better on unseen computation graph [1,38,39], the RL agent still
needs a long time to train.

One of the challenges in device placement is defining order for nodes in
a DAG. Unlike text and image data, the nodes in DAGs reside in a multi-
dimensional space that are linked by edges to represent connectivity [36]. Since
a node in a graph might have an arbitrary number of edges, it is challenging
for a DL model to encode the structural information of a graph. Recent work
in graph representation learning [36] has shown that successfully learning struc-
tural information of graphs helps better represent them, which in turn leads to
performance improvement of downstream tasks that utilize the graph represen-
tations. In Placeto [1], the structural information is (partially) reflected in the
sequential order that the device placement method iterates through the nodes
of the DAG.

Another challenge in device placement concerns the expressiveness of GNN
that are used to generate node embeddings. The GNN that are used by state-of-
the-art device placement methods mostly follow the message-passing paradigm,
which is known to have inherent limitations. For example, the expressiveness
of such GNN is bounded by the Weisfeiler-Lehman isomorphism hierarchy [14].
Also, GNNs are known to suffer from over-squashing [32], where there is a distor-
tion of information propagation between distant nodes. Due to these limitations,
the node embeddings created by GNN have limited expressiveness. In such cases,
different graph traversal orders in device placement can lead to placements with
different DL model training time.

3.2 Impact of Graph Traversal Orders

A graph traversal order determines the order where an RL agent learns the
placement of each node in a DAG. We believe that a proper graph traversal order
can help the RL agent to learn appropriate placements with a lower DL training
time faster. One approach to help the RL agent finds better placements is to
prioritize learning the placement of important nodes that have more impact on
the DL model training time, e.g., to place the nodes with heavy communications
first. On the other hand, misplacement of such nodes can lead to longer DL model
training time due to extra data communications between different devices. The
placement order in a local neighborhood could also play an important role in
finding a suitable device placement. Apart from the straggler problem caused
by the unbalanced distribution of computation where all the other devices will
have to wait for the slowest device, data communication is also challenging.

120 T. Wang et al.

Table 1. Computation Graph Datasets Summary

Features Dataset
nmt ptb cifar10

#nodes (avg) 179.44 500.75 303.44
#edges (avg) 476.25 1285.44 444.22

node degree (avg) 2.65 2.56 1.47
diameter (avg) 63.13 316.09 95.63

diameter (min, max) (41, 69) (216, 450) (74, 154)

For example, many of the modern DL models consist of several computation
blocks, where each block has multiple parallel threads sharing the same input
and whose output should be concatenated to serve as the input for the next
computation block [8,30,33]. Suppose these computation threads are placed on
different devices; thus, the input of a computation block needs to be replicated
and sent to these parallel threads to perform the computation independently.
All the intermediate results from these parallel threads are later concatenated
that will serve as the input of the next computation block. If the RL agent can
not anticipate the concatenation of results from parallel computation threads, it
might misplace the threads on different devices, which incurs a lot of data trans-
fer for the concatenation node. However, if the RL agent learns the placement of
the concatenation node first, it can anticipate placements of predecessor nodes
in the computation block to better balance computation and communication.

4 Evaluation

In this section, we present the details of the empirical evaluation setup, results,
experiment analysis, and guidelines for choosing an effective graph traversal
order for a given DL model.

4.1 Datasets

We conduct our experiments on three different datasets nmt, ptb, and cifar10 as
in [1,22]. The nmt dataset contains 32 variations of Neural Machine Translation
(NMT) [35] with different number of unrolled steps. The computation graphs in
nmt are a family of encoder-decoder networks with attention structures. The ptb
and cifar10 are generated using an RL-based method ENAS [25] that finds the
optimal subgraph within a larger graph search space. The ptb dataset consists
of 32 computation graphs for language modeling tasks, and the cifar10 dataset
consists of 32 computation graphs of CNNs for image classification tasks. The
nodes of computation graphs are pre-grouped together in all three datasets to
reduce graph sizes in the same way as in [21]. The computation graphs in nmt,
ptb, and cifar10 have on average 180, 500, and 300 nodes. Table 1 summarizes
the three datasets.

Accelerate DL Training Using Effective Graph Traversal in Device Placement 121

Overall, the datasets we are studying for device place are similar to the mod-
els in EO. For example, CNN models are used for satellite image classification
and detection tasks. RNN models are used to learn from time series of satellite
data to monitor an area over different times of the year. Based on the results
of our empirical evaluation, we provide guidelines on choosing graph traversal
orders for EO tasks in Sect. 4.4.

4.2 Experiment Setup

We implement all the graph traversal orders in Sect. 2.3 using NetworkX [5] and
refer to them as topo, reversed-topo, dfs-preorder, dfs-postorder, bfs,
and lexico hereafter for Topological, Reversed Topological, DFS preorder, DFS
postorder, BFS, and Lexicographical, respectively. For the implementation of
Placeto, we use the implementation provided in [22], which is based on the origi-
nal implementation [1]. We use the same simulator in the original implementation
to simulate the physical execution environment with different numbers of devices
that a neural network can be placed on. We use the same graph traversal order
in one experiment, and this order is fixed across different episodes that happened
in the experiment.

We conduct experiments on the graphs from each of the three datasets with
three, five, and eight devices, in line with [22]. We run independent experi-
ments with the same setting (dataset and number of devices) to account for the
stochastic and randomness that might lead to differences in experiment results.
We compare different settings for the number of repeated runs on a subset of the
whole datasets and found that 10 repeated runs offer a good balance between
computation load and the reproducibility of the result.

The experiments are run on a standalone benchmark machine with AMD
Ryzen Threadripper 2920X 12-Core Processor and 128 GB of RAM. Since we
have 3 × 32 × 3 × 6 × 10 = 17280 (3 datasets, 32 graphs in each dataset, 3
different number of devices, 6 graph traversal orders, and 10 repeat for each
experiment) experiments to run, we use parallel Docker containers that each have
one experiment to speed up the process. We give each graph traversal order the
same number of training episodes to run, and it approximately takes a few hours
to finish each experiment on the CPU. We empirically found that the metrics
we measure in the experiment are not sensitive to the number of parallel Docker
containers running simultaneously. We use TensorFlow and NetworkX libraries
for the experiment, and we refer the readers to this repository1 for experiment
code and the specific version of the libraries and other software settings.

4.3 Results and Analysis

Through the training process of device placement, the RL agent aims to find
device placements with lower training times for the input DL models (i.e., the
DAGs). However, the device placement processes might have different learning
1 https://github.com/bwhub/Graph_Traversal_Order_in_Device_Placement.

https://github.com/bwhub/Graph_Traversal_Order_in_Device_Placement

122 T. Wang et al.

speeds using different graph traversal orders, meaning that the RL agent can
find a placement with lower training times for the input DL model faster if it
uses a proper graph traversal order.

Table 2. The number of times graph traversal orders find the placement with the
lowest training time on the nmt dataset.

nmt Graph Traversal Order
#dev episode lexico topo dfs-preorder reversed-topo dfs-postorder bfs

3 dev 9 0 2 0 22 1 7
19 0 0 1 23 1 7
49 0 0 1 24 1 6

5 dev 9 0 0 1 24 1 6
19 0 0 2 26 0 4
49 0 0 0 27 0 5

8 dev 9 0 0 0 23 3 6
19 0 0 0 24 1 7
49 0 0 0 24 3 5

We empirically observe that the training process of the RL agent is roughly
divided into three phases: (i) episodes 1 to 9, (ii) episodes 10 to 19, and (iii)
episodes 20 to 49. In the first phase (episode 1 to 9), the RL agent learns effi-
ciently and finds a better placement across different training episodes. This can
be explained by the fact that the learning process just started, and finding a good
enough placement that is better than a random strategy is not very hard. In the
second phase (episode 10 to 19), the learning process slows down, and the RL
agent cannot always find drastically better placements than in the first phase.
This reflects that the learning process plateaus, and we see diminishing returns.
In the third phase (episode 20 to 49), the RL agent overcomes the plateau and
finds better placements thanks to the more extended training budget and the
knowledge learned through the process. In the rest of the experiments, we com-
pare the best placement training time of different graph traversal orders at these
three episodes: 9, 19, and 49.

We report the number of times each graph traversal order finds the placement
with the lowest training time for the input DL models in the given dataset.
Table 2 shows the result of experiments on the nmt dataset. Each row shows the
number of times each graph traversal order, compared to other graph traversal
orders, finds placements with the lowest training time of the DL model at the
given training episode (i.e., 9, 19, or 49) and the number of devices (i.e., 3, 5, or
8). Since there are 32 computation graphs of DL models in each dataset, each
row in the table should sum to 32. The comparison between training time is
based on 10 repeated experiments to minimize random factors in the training
process.

As Table 2 shows, in the nmt dataset, the reversed-topo order domi-
nates and gives the best result. This can be explained by the fact that the

Accelerate DL Training Using Effective Graph Traversal in Device Placement 123

reversed-topo order considers how intermediate results are concatenated in
the DAG. The RL agent can decide the placement of the concatenation oper-
ation first. Then it is easier for the RL agent to collocate the input operations
nodes to the concatenation node to minimize expensive data transfer and syn-
chronization between devices during training. In such cases, starting from the
nodes in the output layers of the DAG also helps. The dfs-postorder order
does not work well on the nmt dataset (unlike on the cifar10 dataset that we
show) as it has a larger average node degree of 2.65 compared to the average
node degree of 1.47 of cifar10. This increases the effort for the RL agent to
collocate the sibling nodes that are far away in the placement sequence gener-
ated using the dfs-postorder order. Better collocation of sibling nodes can also
potentially explain why the bfs order is the graph traversal order that finds the
placement with the lowest training time.

Table 3 shows the result of experiments on the ptb dataset. The bfs order
is the graph traversal order that achieves the best learning efficiency on this
dataset. This can be explained by the fact that the DAGs in the ptb dataset have
more nodes and edges than the cifar10 and nmt datasets. There are potentially
more sibling nodes that the RL agent needs to consider when performing the
placement. Since sibling nodes in a local neighborhood will be put close together
in the traversal sequence generated by bfs, it is easier for the RL agent to learn
to collocate these nodes together to avoid unnecessary data transfer between
devices. In this way, the RL agent does not need to worry too much about
long-range dependencies in large DAGs.

Table 3. The number of times graph traversal orders find the placement with the
lowest training time on the ptb dataset.

ptb Graph Traversal Order
#dev episode lexico topo dfs-preorder reversed-topo dfs-postorder bfs

3 dev 9 0 1 6 1 0 24
19 0 1 10 1 2 18
49 0 1 8 5 2 16

5 dev 9 0 0 3 0 2 27
19 0 1 3 2 2 24
49 0 1 2 6 5 18

8 dev 9 0 0 2 1 1 28
19 0 0 2 5 4 21
49 0 0 2 13 5 12

Table 4 shows the result of experiments on the cifar10 dataset. Unlike in
the nmt and ptb dataset, where only one graph traversal order dominates the
contest for the optimal graph traversal order, the results are more diverse in
the cifar10 dataset. For example, the topo order achieves the best result in
experiments on three devices at episode nine, and the dfs-preorder on five
devices at episode nine. However, most of the time the reversed-topo and

124 T. Wang et al.

Table 4. The number of times graph traversal orders find the placement with the
lowest training time on the cifar10 dataset.

cifar10 Graph Traversal Order
#dev episode lexico topo dfs-preorder reversed-topo dfs-postorder bfs

3 dev 9 1 6 10 10 4 1
19 3 3 7 8 11 0
49 5 4 5 8 8 2

5 dev 9 0 9 6 6 9 2
19 0 9 3 10 8 2
49 2 6 6 9 6 3

8 dev 9 0 8 3 10 11 0
19 1 4 2 8 17 0
49 0 5 1 11 15 0

dfs-postorder orders are the best traversal orders to use since they are the
orders that find the placements of DL models with the lowest training time
(e.g., experiments on five and eight devices). This can be explained by the fact
that there are structures of parallel convolutions in the DAG of the cifar10
dataset where the intermediate results for parallel convolutions are concatenated
for later use. In such cases, it is better to start the learning process from the
nodes in the output layer of the model. Once the placement of concatenation
nodes located near the output layer is settled, it will be easier for the RL agent
to optimize the placement for the parallel convolutions. Also, we observe that
with more training episodes, the topo and dfs-preorder start to show fewer
advantages as the number of times they find the best placement with the lowest
training time decreases.

We also find out that the diameter of the input DAG affects which graph
traversal order is performing the best in the cifar10 dataset. With a smaller
diameter (e.g., diameters smaller than 100), the dfs family (dfs-preorder and
dfs-postorder) performs the best. With a larger diameter (e.g., diameters
larger than 100), the topo family (topo and reversed-topo) tends to find bet-
ter placements. This could be explained by the fact that the dfs family forms
longer sequences of consecutive nodes on the diameter with a larger diameter.
This can be hard for the RL agent to learn the placement of sibling nodes in the
DAG as they are far away from each other in the sequence. This might require
the RL agent to learn placement collocation of sibling nodes far away from each
other.

4.4 Discussion and Guidelines

In the previous subsection, we show that graph traversal orders affect the training
time of parallelized DL models. It means that a proper graph traversal order can
help the RL agent to find better placements for DL models to reduce DL models’
training time. Nevertheless, in Table 5 we show that if we give enough budget
(time) to the RL agent to find the placements, then different graph traversal

Accelerate DL Training Using Effective Graph Traversal in Device Placement 125

orders lead to placements of similar qualities (i.e., similar DL training time).
Table 5 compares the ratio of the DL training speed found by different graph
traversal orders versus the fastest training speed at episode 49, which is enough
training budget based on our empirical study. For example, for cifar10 dataset
with eight devices, the placements found using dfs-postorder have an average
training speed of one epoch per time unit, while the placements found using
dfs-preorder have an average training speed of 0.97 epoch per time unit. The
values of each row are normalized by the fastest training speed (i.e., the values
are between zero and one, where one is the fastest). However, the efficiencies are
different when the training budget is limited in real-world settings where larger
DL models take much longer to find placement. Furthermore, the time saved for
training DL models with a 5% speedup is still not negligible when the DL model
would take weeks, if not months, to train on a GPU cluster.

Identifying the proper graph traversal order for a DAG can improve the
training efficiency that leads to better placements with lower training time on
distributed hardware. However, finding the optimal graph traversal order for a
given DL model is not an easy task as many factors are involved in the process,
e.g., the topology of the DAG, the ratio of computation, and the communication
during training. Although one cannot always quickly find the best graph traversal
order for a DAG, we can still provide some guidelines based on our experience.

Table 5. The placement training time comparison between different graph traversal
orders. Each row shows a comparison of the average training speed of the DL model
according to the placement found by different graph traversal orders at episode 49.

episode 49 Graph Traversal Order
dataset #dev lexico topo dfs-preorder reversed-topo dfs-postorder bfs

nmt 3 0.931 0.922 0.948 1.000 0.963 0.978
5 0.869 0.863 0.929 1.000 0.954 0.966
8 0.849 0.831 0.953 1.000 0.960 0.972

ptb 3 0.969 0.980 0.990 0.986 0.981 1.000
5 0.953 0.962 0.969 0.976 0.974 1.000
8 0.953 0.953 0.977 0.983 0.983 1.000

cifar10 3 0.975 0.982 1.000 0.997 0.990 0.978
5 0.976 0.989 0.999 1.000 0.994 0.974
8 0.945 0.970 0.970 0.995 1.000 0.929

In general, it is good to start experiments with graph traversal orders that
traverse the nodes in a DAG in a backward fashion, i.e., start from the nodes
in the final layer of the graph, gradually go through the nodes in the previous
layers, and finish with the nodes in the first layer of the model. For example,
when using the reversed-topo order, the RL agent in the device placement
method can first learn the placement of the nodes in the last layers and then on
the nodes that are input to nodes that the RL agent already find placements for.
By starting from backward, the RL agent can learn to better collocate parent
and children nodes.

126 T. Wang et al.

If a DAG has a large diameter and a large number of nodes or groups of
nodes, then a graph traversal order that can put sibling nodes near each other
in the one-dimensional sequence is a better candidate for the optimal graph
traversal order. For example, when facing a large DL model with more than
200 nodes, the bfs order can put sibling nodes close to each other in the one-
dimensional sequence. Thus, the RL agent can learn to better place the sibling
nodes consecutively, instead of having to remember the placements of sibling
nodes that are far away from each other in a long sequence.

In the context of the ExtremeEarth project [6,12,13], different types of mod-
els are used to provide EO products. While hyperparameter tuning [18] and
ablation studies [28] can help to improve model performance, identifying proper
graph traversal order can improve the model parallel training performance. For
example, for Synthetic Aperture Radar (SAR) image classification [10,11], the
reversed-topo and dfs-postorder would be good traversal orders to start the
experiment, as the models are similar to those in cifar10 model datasets. For
sequence classification tasks [24], the bfs order would be a good traversal order
to start with, as they are sequence to sequence models, which are similar to those
in the ptb model datasets. The bfs order can help the RL agent to collocate
better the placements of sibling operations in the DL model.

5 Related Work

In this section, we discuss related work in device placement. We start with a
general overview of methods in device placement and then focus on those more
related to graph traversal orders.

The first effort in device placement uses partition methods. For example,
Mayer et al. [17] use a two-step approach that first partition the computa-
tion graph and then locally schedule the operations in each partition on each
device. In another work, Tanaka et al. [31] present RaNNC that uses a three-
step approach to partition the computation graph by first distinguishing atomic
components, then coarsely partitioning the graph, and finally searching for the
combination of the coarse partitions to find the final partition.

Mirhoseini et al. [19,21] are the first to use RL approaches for device place-
ment. In [19], they present HDP to find the placement by jointly learning the
grouping operations in a computation graph and placement of the groups. This
way, they improve the device placement time. Similarly, Lan et al. [16] present
EAGLE that combines the automatic grouping of operations and finding place-
ment for each group that improves the speed of finding better placements.

For making the device placement methods more generalized, Addanki et
al. [1] introduce Placeto, which uses a graph embedding method for representing
nodes in the graph and placing them iteratively. GPD [38], which is a single-shot
device placement method, and Mars [15], which uses self-supervised pre-training
to capture the topological relations between nodes in the computation graph, are
other examples of generalized device placement methods. Gao et al. [4] present
Spotlight that improves the training time of device placement methods by intro-
ducing a new RL algorithm based on proximal policy optimization. Later, they

Accelerate DL Training Using Effective Graph Traversal in Device Placement 127

introduce Post [3] that further improves training efficiency by combining cross-
entropy minimization and proximal policy optimization.

Some of the previous works study the relationship between graph traversal
orders and the training time of the final placement found. For example, HDP [19]
randomizes the order of predicting placements for each group of operations in a
DL model. The authors find that the difference between the fastest and slowest
placements is less than 7% in 10 experiments. Placeto [1] uses GNN to elim-
inate the need to assign indices when embedding graph features. Experiment
results show that the predicted placement of Placeto is more robust to graph
traversal orders than the RNN-based approaches. REGAL [23] uses topologi-
cal order to convert a graph into a sequence. Mitropolitsky et al. [22] study
how different graph embedding techniques affect the execution time of the final
placement and show that position-aware graph embedding improves the training
time of the placement found compared to Placeto-GNN [1] and GraphSAGE [7].
GPD [38] removes the positional embedding in the transformer model to prevent
overfitting.

Some work in other domains also studies graph traversal orders. In chip
placement, Mirhoseini et al. [20] find that topological order can help the RL
agent to place connected nodes close to each other. In the domain of generating
graphs with DL models, GraphRNN [37] uses BFS order for graph generation
to reduce the complexity of learning over all possible node sequences. The only
possible edges for a new node are those connecting to nodes in the “frontier” of
the BFS order. To the best of our knowledge, our work is the first to study how
the graph traversal orders affect device placement training efficiency in device
placement.

6 Conclusion

This work studies the impact of graph traversal orders on device placement for
accelerating model parallel deep learning training. We empirically show that
graph traversal orders affect the device placement and, consequently, the train-
ing time of deep learning models. A device placement method can learn more
efficiently during the training process by finding placement strategies with lower
training time faster when given a proper graph traversal order. Specifically, we
find that traversing the computation graph from the nodes in the output layer
of a deep learning model to the nodes in the input layer helps device place-
ment methods find good placements efficiently. Moreover, we observe that for
larger computation graphs, traversing orders that can better collocate sibling
nodes, e.g., breadth-first search, in the traversal sequence is more efficient than
its depth-first counterparts. We also provide practical guidelines on choosing
traversal orders for device placement.

We believe that our study can help researchers and practitioners better under-
stand the relationship between types of network and graph traversal orders. Sev-
eral potential extensions and improvements to this work exist, including jointly
learning graph traversal orders, graph embedding, and the policy network in the

128 T. Wang et al.

RL agent. Another possible direction is to study graph traversal orders based
on the graph structures and features of individual nodes (e.g., input and out-
put size and computation intensity of the given node). We can also investigate
other optimization techniques, such as constraint programming, to solve device
placement in future work.

Acknowledgements. This work was supported by the ExtremeEarth project funded
by European Union’s Horizon 2020 Research and Innovation Programme under Grant
agreement No. 825258.

References

1. Addanki, R., Bojja Venkatakrishnan, S., Gupta, S., Mao, H., Alizadeh, M.: Placeto:
Learning generalizable device placement algorithms for distributed machine learn-
ing. Advances in Neural Information Processing Systems 32 (NIPS 2019) (2019)

2. Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Nee-
lakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot
learners. arXiv preprint arXiv:2005.14165 (2020)

3. Gao, Y., Chen, L., Li, B.: Post: Device placement with cross-entropy minimization
and proximal policy optimization. In: Advances in Neural Information Processing
Systems. pp. 9971–9980 (2018)

4. Gao, Y., Chen, L., Li, B.: Spotlight: Optimizing device placement for training deep
neural networks. In: International Conference on Machine Learning. pp. 1676–1684
(2018)

5. Hagberg, A., Swart, P., S Chult, D.: Exploring network structure, dynamics, and
function using networkx. Tech. rep., Los Alamos National Lab. (LANL), Los
Alamos, NM (United States) (2008)

6. Hagos, D.H., Kakantousis, T., Vlassov, V., Sheikholeslami, S., Wang, T., Dowling,
J., Paris, C., Marinelli, D., Weikmann, G., Bruzzone, L., et al.: Extremeearth
meets satellite data from space. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing 14, 9038–9063 (2021)

7. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large
graphs. In: Proceedings of the 31st International Conference on Neural Information
Processing Systems. pp. 1025–1035 (2017)

8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
9(8), 1735–1780 (1997)

9. Kahn, A.B.: Topological sorting of large networks. Communications of the ACM
5(11), 558–562 (1962)

10. Khaleghian, S., Kramer, T., Everett, A., Kiarbech, A., Hughes, N., Eltoft, T.,
Marinoni, A.: Synthetic aperture radar data analysis by deep learning for automatic
sea ice classification. In: EUSAR 2021; 13th European Conference on Synthetic
Aperture Radar. pp. 1–6. VDE (2021)

11. Khaleghian, S., Ullah, H., Kræmer, T., Hughes, N., Eltoft, T., Marinoni, A.: Sea ice
classification of sar imagery based on convolution neural networks. Remote Sensing
13(9), 1734 (2021)

12. Koubarakis, M., Bereta, K., Bilidas, D., Giannousis, K., Ioannidis, T., Pantazi,
D.A., Stamoulis, G., Haridi, S., Vlassov, V., Bruzzone, L., et al.: From copernicus
big data to extreme earth analytics. Open Proceedings pp. 690–693 (2019)

http://arxiv.org/abs/2005.14165

Accelerate DL Training Using Effective Graph Traversal in Device Placement 129

13. Koubarakis, M., Stamoulis, G., Bilidas, D., Ioannidis, T., Mandilaras, G., Pantazi,
D.A., Papadakis, G., Vlassov, V., Payberah, A.H., Wang, T., et al.: Artificial intel-
ligence and big data technologies for copernicus data: The extremeearth project.
In: Proceedings of the 2021 conference on Big Data from Space. Publications Office
of the European Union (2021)

14. Kreuzer, D., Beaini, D., Hamilton, W.L., Létourneau, V., Tossou, P.: Rethinking
graph transformers with spectral attention. arXiv preprint arXiv:2106.03893 (2021)

15. Lan, H., Chen, L., Li, B.: Accelerated device placement optimization with con-
trastive learning. In: 50th International Conference on Parallel Processing. pp.
1–10 (2021)

16. Lan, H., Chen, L., Li, B.: Eagle: Expedited device placement with automatic group-
ing for large models. In: 2021 IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS). pp. 599–608 (2021). DOI: https://doi.org/10.1109/
IPDPS49936.2021.00068

17. Mayer, R., Mayer, C., Laich, L.: The tensorflow partitioning and scheduling prob-
lem: it’s the critical path! In: Proceedings of the 1st Workshop on Distributed
Infrastructures for Deep Learning. pp. 1–6 (2017)

18. Meister, M., Sheikholeslami, S., Payberah, A.H., Vlassov, V., Dowling, J.: Maggy:
Scalable asynchronous parallel hyperparameter search. In: Proceedings of the 1st
Workshop on Distributed Machine Learning. pp. 28–33 (2020)

19. Mirhoseini, A., Goldie, A., Pham, H., Steiner, B., Le, Q.V., Dean, J.: A hierarchical
model for device placement. In: International Conference on Learning Representa-
tions (2018)

20. Mirhoseini, A., Goldie, A., Yazgan, M., Jiang, J.W., Songhori, E., Wang, S., Lee,
Y.J., Johnson, E., Pathak, O., Nazi, A., et al.: A graph placement methodology
for fast chip design. Nature 594(7862), 207–212 (2021)

21. Mirhoseini, A., Pham, H., Le, Q.V., Steiner, B., Larsen, R., Zhou, Y., Kumar, N.,
Norouzi, M., Bengio, S., Dean, J.: Device placement optimization with reinforce-
ment learning. In: International Conference on Machine Learning. pp. 2430–2439.
PMLR (2017)

22. Mitropolitsky, M., Abbas, Z., Payberah, A.H.: Graph representation matters in
device placement. In: Proceedings of the Workshop on Distributed Infrastructures
for Deep Learning. pp. 1–6 (2020)

23. Paliwal, A., Gimeno, F., Nair, V., Li, Y., Lubin, M., Kohli, P., Vinyals, O.: Rein-
forced genetic algorithm learning for optimizing computation graphs. In: Interna-
tional Conference on Learning Representations (2020)

24. Paris, C., Weikmann, G., Bruzzone, L.: Monitoring of agricultural areas by using
sentinel 2 image time series and deep learning techniques. In: Image and Signal
Processing for Remote Sensing XXVI. vol. 11533, p. 115330K. International Society
for Optics and Photonics (2020)

25. Pham, H., Guan, M., Zoph, B., Le, Q., Dean, J.: Efficient neural architecture
search via parameters sharing. In: International Conference on Machine Learning.
pp. 4095–4104. PMLR (2018)

26. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. IEEE transactions on neural networks 20(1), 61–80 (2008)

27. Shallue, C.J., Lee, J., Antognini, J., Sohl-Dickstein, J., Frostig, R., Dahl, G.E.:
Measuring the effects of data parallelism on neural network training. Journal of
Machine Learning Research 20(112), 1–49 (2019)

28. Sheikholeslami, S., Meister, M., Wang, T., Payberah, A.H., Vlassov, V., Dowl-
ing, J.: Autoablation: Automated parallel ablation studies for deep learning. In:

http://arxiv.org/abs/2106.03893
https://doi.org/10.1109/IPDPS49936.2021.00068
https://doi.org/10.1109/IPDPS49936.2021.00068

130 T. Wang et al.

Proceedings of the 1st Workshop on Machine Learning and Systems. pp. 55–61
(2021)

29. Shoeybi, M., Patwary, M., Puri, R., LeGresley, P., Casper, J., Catanzaro, B.:
Megatron-lm: Training multi-billion parameter language models using model par-
allelism. arXiv preprint arXiv:1909.08053 (2019)

30. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. pp. 1–9 (2015)

31. Tanaka, M., Taura, K., Hanawa, T., Torisawa, K.: Automatic graph partitioning
for very large-scale deep learning. arXiv preprint arXiv:2103.16063 (2021)

32. Topping, J., Di Giovanni, F., Chamberlain, B.P., Dong, X., Bronstein, M.M.:
Understanding over-squashing and bottlenecks on graphs via curvature. arXiv
preprint arXiv:2111.14522 (2021)

33. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
Ł., Polosukhin, I.: Attention is all you need. In: Advances in neural information
processing systems. pp. 5998–6008 (2017)

34. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning 8(3), 229–256 (1992)

35. Wu, Y., Schuster, M., Chen, Z., Le, Q.V., Norouzi, M., Macherey, W., Krikun,
M., Cao, Y., Gao, Q., Macherey, K., et al.: Google’s neural machine translation
system: Bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144 (2016)

36. Ying, C., Cai, T., Luo, S., Zheng, S., Ke, G., He, D., Shen, Y., Liu, T.Y.:
Do transformers really perform bad for graph representation? arXiv preprint
arXiv:2106.05234 (2021)

37. You, J., Ying, R., Ren, X., Hamilton, W., Leskovec, J.: Graphrnn: Generating
realistic graphs with deep auto-regressive models. In: International conference on
machine learning. pp. 5708–5717. PMLR (2018)

38. Zhou, Y., Roy, S., Abdolrashidi, A., Wong, D., Ma, P.C., Xu, Q., Zhong, M.,
Liu, H., Goldie, A., Mirhoseini, A., et al.: Gdp: Generalized device placement for
dataflow graphs. arXiv preprint arXiv:1910.01578 (2019)

39. Zhou, Y., Roy, S., Abdolrashidi, A., Wong, D.L.K., Ma, P., Xu, Q., Mirhoseini, A.,
Laudon, J.: A single-shot generalized device placement for large dataflow graphs.
IEEE Micro 40(5), 26–36 (2020)

40. Zhu, X.X., Tuia, D., Mou, L., Xia, G.S., Zhang, L., Xu, F., Fraundorfer, F.: Deep
learning in remote sensing: A comprehensive review and list of resources. IEEE
Geoscience and Remote Sensing Magazine 5(4), 8–36 (2017)

http://arxiv.org/abs/1909.08053
http://arxiv.org/abs/2103.16063
http://arxiv.org/abs/2111.14522
http://arxiv.org/abs/1609.08144
http://arxiv.org/abs/2106.05234
http://arxiv.org/abs/1910.01578

Analysis of the Impact of Interaction
Patterns and IoT Protocols on Energy

Consumption of IoT Consumer
Applications

Rodrigo Canek(B), Pedro Borges, and Chantal Taconet

SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris, Paris, France

rodrigo.canek@telecom-sudparis.eu

Abstract. Nowadays, it is estimated that half the connected devices are
related to the Internet of Things (IoT). The IoT paradigm contributes to
the increase of the Information Technology energy demand. The energy
demand is due on one side to the huge number of IoT devices, and on
the other side to the plethora of IoT end user applications consuming
data produced by those devices. However, taking into account energy
consumption in the development of such applications, consuming data
produced by IoT devices is still challenging. There is a lack of knowl-
edge on what are the best practises to develop green IoT applications.
The work presented in this paper aims to raise the awareness of applica-
tion designers concerning the impact of the choice of IoT protocols and
interaction patterns on the energy consumption of the applications. For
this purpose, we have experimentally analysed the energy consumption
of HTTP and MQTT, which are two of the most popular, mature and
stable protocols for IoT consumer applications. For the HTTP proto-
col, we have studied both the publish-subscribe and the request-reply
interaction patterns. For MQTT, we have studied the publish-subscribe
interaction pattern with the three available Quality of Services. We also
examine the impact of message payload on energy consumption. The
results show that the publish/subscribe interaction pattern has lower
energy consumption (around 92% less) than the synchronous interaction
pattern and HTTP consumes 20% more energy than the MQTT protocol
for the publish/subscribe interaction pattern. Finally, we show that the
payload has a low impact on energy consumption, having a 9% overhead
on payloads ranging from 24 to 3120 bytes.

This work is a contribution to the Energy4Climate Interdisciplinary Center (E4C) of IP
Paris and Ecole des Ponts ParisTech, supported by 3rd Programme d’Investissements
d’Avenir [ANR-18-EUR-0006-02]. It has been funded by the “Futur & Ruptures” pro-
gram from Institut Mines Télécom, Fondation, Fondation Mines-Télécom and Institut
Carnot.

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
D. Eyers and S. Voulgaris (Eds.): DAIS 2022, LNCS 13272, pp. 131–147, 2022.
https://doi.org/10.1007/978-3-031-16092-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16092-9_9&domain=pdf
https://doi.org/10.1007/978-3-031-16092-9_9

132 R. Canek et al.

Keywords: Middleware · Internet of Things applications · IoT
protocols · Interaction patterns · IoT Platforms · Energy
Consumption · Green IT

1 Introduction

It is estimated that the number of Internet-connected devices will be 29.3 billion
in 2023, among them 50% will be IoT devices and 23% smartphones [4]. As the
number of IoT systems is one of the main causes of the growth of IT energy
consumption [9], handling IoT systems energy-efficiency is from now on a first
class imperative [20].

Because of their limited battery lifetime, energy-efficiency has firstly been
taken into account in the design of software deployed on IoT devices [12]. How-
ever, reducing software energy consumption should not be limited to IoT devices.
It has been estimated that around 67 zettabytes of data were generated by IoT
devices in 2020 [9]. Part of this volume of data has been consumed by IoT appli-
cations. Thus, carefully designing interactions between IoT applications and IoT
systems with a energy-efficiency concern is also essential.

Developers still lack knowledge about software energy consumption [18]. Mea-
suring experimentally software and hardware energy consumption participates
in providing this knowledge. Several approaches may be used for energy mea-
surement [15]. As most of the libraries that measure energy consumption at the
process level only consider the impact of CPU and memory (e.g., [1]), measuring
the cost of the interaction between distributed components is still a difficult task.
In this study, we propose to experimentally measure the cost of the interactions
between IoT consumer applications and IoT systems. These measures will guide
IoT consumer application developers in their design choices in terms of energy
consumption.

In our experiments, we consider consumer IoT applications connected with a
WiFi (802.11n) interface and that use MQTT and HTTP protocols. Those tech-
nologies are commonly used for IoT consuming applications placed in different
networks from the connected object ones, whereas other networks (e.g. Blue-
tooth) and protocols (e.g. Zigbee, COAP) are used on the connected object
side. The conducted analysis answers the following questions: What is the
energy consumption impact of (RQ1) the publish/subscribe interaction pattern
vs request/reply, (RQ2) the HTTP protocol vs MQTT for the publish subscribe
interaction pattern, (RQ3) the Quality of service (QoS) level (in the case of
MQTT) and (RQ4) the size of the payload. From the analysis of the results of
the experiments, we propose guidelines to help developers to build low energy
consuming IoT applications.

The rest of this paper is structured as follows. Section 2 provides important
background concepts on IoT architectures, interaction patterns and IoT proto-
cols. Section 3 investigates the related works concerning the energy consumption
of the studied IoT protocols. Section 4 shows the setup of the hardware and soft-
ware for the experiments and discusses the threats to validity. Section 5 presents

Analysis of the Impact of Interaction Patterns and IoT Protocols 133

the results of the experiments, analyses the results according to the four intro-
duced research questions and provides guidelines for IoT consuming application
developers. Finally, Sect. 6 draws conclusions and perspectives.

2 Consuming IoT Applications: Architecture, Interaction
Patterns and Protocols

This section introduces the main concepts that will be used throughout the
article, concerning IoT distributed architecture and IoT protocols.

2.1 Distributed IoT Architecture

Figure 1 presents a classical IoT system architecture. According to the ISO-IEC
IoT reference architecture [10], an IoT system consists of (1) IoT devices (sensors
and actuators), (2) end user applications that may consume sensor data (called
IoT consumer applications in this paper), (3) IoT platforms and IoT gateways,
standardized intermediates for interacting with IoT devices that deal with the
high degree of hardware and software heterogeneity in IoT environments.

The usage of IoT platforms to support IoT systems is a recent trend: they
provide services to deploy and run applications on top of a hardware and/or soft-
ware suite in different application domains [13]. Their role is to decouple produc-
ers from consumers by providing an intermediary layer. Among the platforms,
we can cite FIWARE/Orion [6], an IoT platform supported by the European
Community, and OneM2M [17] a Machine-2-Machine standard.

Fig. 1. IoT distributed architecture

2.2 Interaction Patterns

An interaction pattern, or a Message Exchange Pattern [7], defines the structure
of the interactions between the two sides engaged in a communication. In the IoT,
two high level interaction patterns are commonly used between the consumers
of data and the providers of data [3]: Publish-Subscribe and Request-Reply.

134 R. Canek et al.

Request-Reply. As shown in Fig. 2, the consumer (i.e. IoT consumer appli-
cation), sends a request message to the producer (e.g., the IoT platform). The
consumer is waiting for a reply from the producer (or a timeout). The producer
receives and processes the request and sends the consumer a reply message with
a given payload.

Fig. 2. Request-Reply Pattern Fig. 3. Publish-Subscribe Pattern

Publish-Subscribe. As shown in Fig. 3 the consumer defines, with a subscrip-
tion, what kind of data it is interested in. The consumer is notified whenever
there is a message matching the subscription.

2.3 IoT Protocols

We consider the most mature and stable protocols for the interaction between
IoT consumer applications and IoT systems [5]: MQTT [16] and HTTP [14].

HTTP is supported by all the IoT platforms. When it comes to using the
protocol, it is mostly used in its Request/Reply interaction pattern. However,
the FIWARE platform also uses HTTP for the publish-subscribe interaction
pattern, where the client is an open listener and the server posts available data
(as shown in Fig. 3).

MQTT is a lightweight protocol with the publish/subscribe interaction pat-
tern. IoT platforms host MQTT brokers that receive publications from connected
objects or gateways. Brokers are responsible to filter incoming messages and
distribute them properly according to the message topics. MQTT implements
three different models of message exchange known as Quality of Service, where
the delivery with QoS 0 being at most once, QoS 1 being at least once, and QoS
2 being exactly once.

In our experiments, MQTT and HTTP are above TCP/IP. TCP handles the
connections between the remote processes and reassembles the data in the correct
order. The Internet Protocol (IP) [19] is responsible for routing data. It provides
fragmentation and reassembly of long datagrams, if necessary according to the

Analysis of the Impact of Interaction Patterns and IoT Protocols 135

Maximum Transmission Unit (MTU). We investigate in our experiments
whether having a message payload below or above the MTU impacts the energy
consumption.

3 Related Work

In this section, we present an analysis of the related works concerning the effi-
ciency of IoT protocols used by IoT consumer applications. We have selected
research papers that include energy consumption measures in the evaluation of
HTTP and/or MQTT. We have to mention that, to the best of our knowledge,
the number of papers on this subject is low, we only found 4 papers and the
measures do not isolate the consumption on the consumer side. Furthermore,
none of them study the impact of the interaction pattern.

A synthesis of the study is presented in Table 1. For those related works,
the following points have been analyzed. Since our objective is to study the
consumer side of an IoT architecture, we indicate whether the study is con-
ducted on the producer side (P), on the consumer side (C), or on both sides. We
mention which IoT protocols were compared in the work. We also indicate the
experimental conditions: the device where the measure was conducted and the
type of network. The last aspect concerns type of the evaluation, analytical or
experimental energy evaluation and, if experimental, the tool they have used to
measure the energy consumption.

Bandyopadhyay and Bhattacharyya present an analysis of MQTT and
CoAP [2]. They examine the resource usage including energy consumption
according to the message size and the packet loss ratio. The energy consump-
tion of the most reliable configurations was measured on a Wide Area Network:
CoAP and MQTT with QoS 2. They show that with a perfect network without
any loss, MQTT with QoS2 is more than ten times more consuming than CoAP.
Concerning energy efficiency, they only study MQTT with QoS2. They do not
define whether the measures are done on the producer or/and consumer side,
which makes it difficult to know which side of the architecture was studied. They
also do not mention how the energy consumption was measured.

Toldinas et al. perform a dedicated study of MQTT QoS levels and their
energy consumption [21]. They use a ESP-WROOM-02 hardware device con-
nected to the network through Wifi 802.11 and acting both as producer and
consumer. For each level of QoS, the remaining battery voltage level was mea-
sured using a digital multimeter as an indicator of energy consumption. This
study provides a good indication of the percentage increase in energy consump-
tion for each level of the QoS compared to the previous one. However, it does not
allow effective energy-consumption conclusions to be drawn about the behavior
of a consumer or a producer as the same device is used for both tasks.

Hofer and Pawaska studied the impact of MQTT and HTTP protocols on
CPU, RAM, and energy consumption [8]. The device used is a Raspberry Pi
connected by Ethernet, that acts both as a producer and a consumer, as a
consequence they can not isolate the energy consumption on the consumer side.

136 R. Canek et al.

They do not mention what QoS was used for MQTT. For the energy evaluation,
the authors studied the Ampere per second in the device using an oscilloscope.
The study proved that MQTT outperformed HTTP RESTful in terms of data
overhead which is the amount of extra data needed to be sent to a client (e.g.
HTTP Headers, MQTT headers, etc.), a nearly four times higher throughput.
Furthermore, MQTT also had lower resource consumption and significantly lower
energy consumption. As HTTP is used with the synchronous interaction pattern
and MQTT is used with the publish/subscribe interaction pattern, it is not
possible to isolate the impact of the interaction pattern from the impact of the
protocol.

Joshi et al. presented a comparison in terms of protocol impact on through-
put and battery consumption between MQTT (QoS not specified), CoAP and
HTTP RESTful [11]. The device used was a Raspberry Pi, which acted only
as a producer. For energy consumption, the percentage of battery consumption
per hour was taken as a reference. However, it was not mentioned how it was
calculated. The conclusions are: (i) HTTP consumes more energy than MQTT,
and (ii) with the same amount of battery it is possible to send 100 times more
messages with MQTT compared to HTTP. Although the work was not dedicated
to the study of energy consumption, it lacks details on how the measures were
implemented as well as the conditions of the experiment (e.g. network type).

Table 1. Synthesis of the related work

Ref Network P/C MQTT QoS HTTP Evaluation

0 1 2 Sync Pub/sub

[2] WAN em. ? × × √ × × ?

[21] Wifi P+C
√ √ √ × × simulation

[8] Ethernet P+C ? ? ?
√ × oscilloscope

[11] Wifi P
√ × × √ × calculated

this Wifi C
√ √ √ √ √

wattmeter

Compared to the presented works, the experiments we have conducted allow
to isolate the cost of the consumer application side of an IoT architecture.
Furthermore as we test the HTTP protocol with the request/reply and pub-
lish/subscribe interaction patterns, we are able to study the impact of the inter-
action pattern separately from the impact of the protocol.

4 Experimental Methodology

This section presents the methodology used in the experiments. We present the
experimental conditions in terms of computer, network, energy measurement
tool, software and algorithms in Sect. 4.1. We continue by presenting the pro-
cess allowing to isolate the energy consumption of the communication part in

Analysis of the Impact of Interaction Patterns and IoT Protocols 137

Sect. 4.2. Then we present the experimental plan in Sect. 4.3. Finally, we discuss
the threats that may affect the validity of the experimentation in Sect. 4.4.

4.1 Experimental Setup

Computers and Network. As shown in Fig. 4, three computers were used to
perform the experiments. 1) The Consumer Computer used for running the
consumer application. A wattmeter measures its energy consumption. The Con-
sumer is connected to the network through a Wifi interface. The characteristics
of this computer are the following: Dell Latitude E6320 v:01 with 5.68 GiB of
RAM, a Broadcom (BCM4313 802.11bgn) Wireless Network Adapter driver and
Ubuntu 20.10 Operating system. Furthermore, the battery was fully charged and
the computer was always plugged to the electricity. 2) The Producer Com-
puter used for simulating an IoT platform. It runs a process that produces data.
It is a fixed computer connected to the Internet through an Ethernet interface.
3) The Script Computer was used (i) running the scripts responsible for start-
ing all applications on the client and server computers, and (ii) for reading the
energy consumption measures.

Fig. 4. Experimental setup

For MQTT, we use the Mosquitto broker version 3. The producer and
the consumer were developed using the open-source Eclipse Paho library for
Java. For HTTP Request/Reply, the consumer use HTTP/1.1 with the
java.net.http.HttpClient Java library. For HTTP Publish/Subscribe we also
use HTTP/1.1 and the consumer includes an Undertow Server to receive HTTP
publications. We have to mention that in a real scenario, the consumer appli-
cation does not choose the version of the HTTP protocol used by the server
neither the configuration of the server concerning the connection management.
In this context, the usage of HTTP/1.1 is widely supported by servers and clients
whereas other versions such as HTTP//2 are still less common.

Energy Consumption Measurements. Currently there is no library that
includes the consumption of the network interface in the energy consumption

138 R. Canek et al.

measurements. Some libraries such as RAPL are able to make energy measure-
ments, but are limited to the CPU and memory consumption. In the case for
communications over the internet, the hardware that need to have its energy-
consumption measured is the network interface, making it difficult the usage of
RAPL in our case. As a consequence, it was decided to use a Yocto wattmeter [22]
to measure the energy consumption of the consuming application.

As shown in Fig. 4, the Yocto-wattmeter is located between the consumer
computer power cable and the wall power outlet. The Yocto-wattmeter is con-
nected to the energy measurement computer via a USB cable. It uses the Yocto
software API to read energy consumption measures.

Algorithms. We provide below the algorithms used in the experiments.
On the consumer side, Algorithm 1 is used for the Request/Reply interac-

tion pattern, it takes as an input parameter the period between two requests.
Algorithm 2 is used for the publish/subscribe interaction pattern and registers
the handler to be called on the reception of a notification and runs forever.

Algorithm 1: Consumer
Request/Reply
Main(period)
begin

producer ←
httpInitialisation(URI)
while true do

value ←
producer.getV alue()
sleep(period)

end

end

Algorithm 2: Consumer pub-
lish/subscribe
Main(void)
begin

server ←
initializeServer(URI, handler)

end
handler(receiver)
begin

value ← receiver.getV alue()
end

On the producer side, the Algorithm 3 is used to simulate IoT data publica-
tions. It takes as input the period between two publications and the size of the
payload to be sent periodically.

Finally a script runs on the measuring computer. It takes as input the period
between two publications, the payload size and the duration of the experiment.
The script starts the consumer and the producer, then sleeps for one minute for
initialization and consumer warmup purposes. Then, the energy meter on the
wattmeter is reset and is ready to start gathering new energy measures for the
duration of the experiment. Finally, the script reads the consumed energy on
the consumer application from the wattmeter and stops the producer and the
consumer.

Analysis of the Impact of Interaction Patterns and IoT Protocols 139

Algorithm 3: Producer
Main(period, payload)
begin

dest=initializeServer(URI)
while true do

dest.send(payload)
sleep(period)

end

end

4.2 Process to Isolate the Communication Energy Consumption

Using a wattmeter has the following disadvantage: There is no isolation of the
application or any particular process in the measurement, as the wattmeter mea-
sures the energy consumption of the computer as a whole. For a proper mea-
surement of the impact of an application, it is necessary to make two measures:
(1) the measure of the energy consumption without the application and (2) the
measure of the energy consumption with the application.

In Fig. 5, we present, for the 5 families of experiments in Table 2, the following
measures of energy consumption of the consumer computer:

– Midle+jvm: we start the Consumer computer with the consumer application
but without any interaction with the producer application (blue + orange on
Fig. 5)

– Midle+jvm+interactions: we start the Consumer computer with the full con-
sumer application (blue + orange + green on Fig. 5)

Fig. 5. Energy consumption measures (Color figure online)

The results that are presented in Sect. 5 only show the interaction cost
(the upper part in green on Fig. 5). We obtain this value with this formula:

140 R. Canek et al.

Midle+jvm+interactions−Midle+jvm. As a consequence, the standard deviation of
the result is the addition of the standard deviation of the two measures.

4.3 Experimental Plan

Table 2 presents the combinations of interaction patterns and protocols for which
we have handled the experiments. That gives 5 families of experiments. We
measure: (1) the impact of the interaction pattern through families F1 and F2;
(2) the impact of the protocol with families F2 and F3 and (3) the impact of the
QoS for MQTT with families F3, F4 and F5.

Table 2. Families of experiments

Family Interaction pattern Protocol

F1 Synchronous HTTP

F2 Publish/Subscribe HTTP

F3 Publish/Subscribe MQTT QoS0

F4 Publish/Subscribe MQTT QoS1

F5 Publish/Subscribe MQTT QoS2

The message rates used in the experiments were of 1, 2, 4, 8 and 16 messages
by second. The tests at 32, 64 and 128 messages per second with both interaction
patterns using HTTP started to receive a significantly lower amount of messages,
as a consequence we did not keep those results.

The payload used in the experiments were of 24, 48, 240, 1320 and 1560 bytes.
We start with 24 bytes, since it is assumed that this payload is about the usual
value for an IoT payload. The last two values were chosen considering the MTU,
which was measured at 1500 bytes for our experiments. One lower than this
value and the other higher for comparison purposes on the energy-consumption
influence of such scenario.

We did 125 experiments: 5 families of experiments (see Table 2)* 5 message
rates * 5 payloads. For each experiment, we used 30 tests. Three more measures
were done with the consumer application also running Wireshark in order to
explain the obtained results. As the usage of Wireshark increases the energy
consumption of the machine, we do not include those tests for computing the
mean and the standard deviation. In total we realized 33*125 = 4 125 tests.

Each test had a total duration of 8 min. This was organized with one minute
for warm up, where the producer started the message exchange with the con-
sumer. Followed by a measurement of the energy consumption for 5 min while
the producer was exchanging data with the consumer. Finally, two more min-
utes of sleep time to reset the experiment and the network conditions before
starting the following test. 4 125 tests of duration 8 min necessitate around one
full month of experiments. Additionally, for Midle+jvm, 60 tests were realized,

Analysis of the Impact of Interaction Patterns and IoT Protocols 141

we double the number of tests to obtain low standard deviation and confidence
intervals.

4.4 Threats to Validity

We present below potential threats to the validity of our study and how we
propose to minimize their effects.

Computer conditions: The activity of the computer can not be totally con-
trolled, as a consequence we report some discrepancies in the measured values.
To reduce these discrepancies, we have shut down or disabled all unnecessary
processes of the operating system as well as using the lowest brightness and con-
necting to the device via ssh to reduce user tampering. In order to minimize the
standard deviation and obtain a more consistent result, each of the experiments
were run a total of 30 times.

Network conditions : The conditions of the network while doing the tests were
optimal. The gathered data showed that there was no packet loss during the tests
and the latency remained low and stable at around 23 ms.

Temperature at which the experiments are conducted: During the initial
experiments, the climate did not rise above 25 ◦C. However, on some days when
the external temperature rose between 28 and 32◦C, the fluctuations in energy
consumption increased. These fluctuations may be due to the need for the equip-
ment cooling systems to increase their output in order to keep the components of
the equipment in the correct temperature conditions. To address this threat, the
client computer was moved to an air-conditioned room where the computer was
always at a cold temperature. This resulted in a reduction of the standard devi-
ations of the measurements, making the results more stable. The experiments
realized in the air-conditioned room were for the message rate of 8 m/s and the
payloads of 1320 B, 1560 B, and 3120 B.

5 Analysis

We organize the analysis of the results of the experiments according to the four
tackled research questions presented in the introduction. As an outcome of the
analysis, Sect. 5.5 presents guidelines dedicated to developers of IoT consumer
applications.

5.1 (RQ1) Impact of the Interaction Pattern

For a fair comparison of the interaction patterns, we compared only the results
obtained with the HTTP protocol for which we have measured the two interac-
tion patterns.

142 R. Canek et al.

Figure 6 presents the results of the energy consumption for a 24 Bytes payload
for both interaction patterns. Table 3 presents in percentage the synchronous
pattern overhead over the publish/subscribe pattern. This is a synthesis of all
the realized measures (all the message rates).

The results of the experiments show that with the same number of received
observations, the synchronous pattern consumes around 92% (mean of all the
message rates and payloads results) more energy than the publish/subscribe
interaction pattern, being almost two times less efficient. This happens as the
client needs to process the request for the server and wait for a reply whereas in
pub/sub it will only need to wait for notifications from the server.

5.2 (RQ2) Impact of the Application Protocol

For the comparison of the protocols, it was desired to do a fair comparison of
the two protocols, comparing the MQTT QoS 0 and HTTP Pub/Sub as they
both propose an “at most once” semantics. As observed in Fig. 7 and in Table 4,
MQTT outperforms HTTP in terms of energy consumption and number of bytes
by Joule.

Fig. 6. Energy consumption 24B,
Interaction Pattern Comparison

Table 3. Synchronous pattern average
overhead over the publish/subscribe
pattern

Payload Overhead in %

24B +94.03%

48B +89.96%

240B +106.90%

1320B +85.16%

1560B +85.50%

Mean +92.31%

We observe that in terms of energy, the MQTT protocol outperforms HTTP
by 20% on average while having the same interaction pattern and the same
semantics. This happens because of the purpose of each protocol. While HTTP
has more processing on top of the data received by the client, as it needs to look
into further validations (e.g. size variable header, parameters, etc.), MQTT is
proposed with a more lightweigth structure that, for example, has fixed headers,
enabling a less intensive processing by the client.

Analysis of the Impact of Interaction Patterns and IoT Protocols 143

Fig. 7. Energy consumption for a 24B
payload, Protocol Comparison

Table 4. HTTP vs MQTT average
overhead with all the message rates

Payload HTTP vs MQTT in %

24B +28.07%

48B +23.40%

240B +31.05%

1320B +2.58%

1560B +18.63%

Mean +20.75%

5.3 (RQ3) Impact of the QoS in MQTT

In Fig. 8, we compare the measures of energy consumption for the three MQTT
QoS with the 24 B payload. Table 5 presents a synthesis of the overheads for all
the payloads.

Fig. 8. Energy consumption for a
24B payload, QoS Comparison

Table 5. MQTT QoS overheads

Payload QoS1/QoS0 QoS2/QoS1 QoS2/QoS0

24B +24.64% +46.58% +79.72%

48B +17.76% +51.09% +78.20%

240B +58.67% +27.08% +104.46%

1320B +12.16% +88.10% +111.76%

1560B +21.83% +53.31% +86.45%

Mean +27.01% +59.77 % +92.12%

Taking into consideration all the measures realized, meaning all the message
rates and payloads, the comparison of the QoS shows that QoS 0 consumes
around 27% less energy than QoS 1 and 92% compared to QoS 2 with the same
number of received observations. QoS 2 consumes 60% more energy than QoS 1.
Having similar results in the comparisons of QoS 0, QoS 1 and QoS 2, to what
was observed in the related work [21]. The difference is that we are able to
measure the consumer side only while they use the same device as producer and
consumer and as a result can not differentiate consumer from producer energy
consumption.

A deeper look at the results shows that the impact of the QoS using MQTT is
related to the amount of messages exchanged during the experiment. QoS 0 had
the smallest amount of messages exchanged between the broker and the consumer
because of the fire and forget mechanism (Sending messages and not verifying

144 R. Canek et al.

the arrival) it implements and resulted in the lowest energy consumption. MQTT
QoS 1 followed a similar path but as it increased the amount of messages, due
to the acknowledgments of the client, it resulted in a bigger energy consumption
when compared to MQTT QoS 0. Finally, QoS 2 with its bigger amount of
messages exchanged between the broker and the client doubled the amount of
packets exchanged and ended up almost doubling the amount of energy used.

5.4 (RQ4) Impact of the Payload

Figure 9 presents the bytes/Joule for different payloads for the fixed rate of 8
messages per second for the 5 families of experiments.

The usage of a payload up to 3120 bytes, presented a moderate increase in the
experiments (mean 9%), having cases with even lower consumption for HTTP.
The fragmentation of the messages according to the MTU (1500 bytes) does
not seem to have a relevant impact on the energy consumption. The experiment
impacted the most by the increase was MQTT QoS 0, having up to 21.89%
more energy consumption. Concerning HTTP publish-subscribe and request-
reply, both seemed unaffected by the changes in the payload as the payload of
24 B was slightly higher than the one with 3120 B (Table 6), which had the mes-
sage broken into 3 fragments according to the size of the MTU. The behaviour
of the payload seen in HTTP is further confirmed when checking the amount of
TCP connections with 24 bytes and 3120 bytes which remained the same. Fur-
thermore, MQTT is more impacted by the payload because the protocol created
only one TCP connection through all the test phases and exchanged messages
in this established connection. This causes the payload to become a bigger part
of the energy consumption considering that MQTT has a 2 bytes fixed header,
while the HTTP header does not have a limit (A limit can be set by the server),
but in the case of the tests done, it is around 106 Bytes. Besides those differ-
ences by family of experiment, the lesson of this comparison is that the number
of Bytes by Joule is augmented significantly for all the families while augmenting
the payload. An explanation for this result comes from the cost of the software
call stack necessary to handle one message whatever the size of the message is.

Fig. 9. Bytes Received by Joule Pay-
load Comparison

Table 6. Payload overhead from
24Bytes to 3120Bytes

Family of experiment Overhead in %

HTTP synchronous −1.36%

HTTP Pub/sub −1.32%

MQTT QoS0 +21.89%

MQTT QoS1 +15.45%

MQTT QoS2 +11.24%

Mean +9,18%

Analysis of the Impact of Interaction Patterns and IoT Protocols 145

5.5 Guidelines for IoT Consumer Application Designers

We provide in this section guidelines for IoT consumer application designers to
reduce the energy consumption at the end user device side.

Group Several Observations in One Message. We have shown that using
different payloads, from 24 up to 3120 bytes, has a small impact on the energy
consumption of the application. If the application necessitates multiple sensor
observations, we advise combining the different observations into one single mes-
sage. Some IoT platforms, such as Fiware/Orion, provide the possibility to query
(or subscribe to) a group of sensors. This possibility has clearly to be chosen by
application developers.

Favor the Publish-Subscribe Interaction Pattern. The comparison of
interaction patterns showed that for the same frequency of requests and noti-
fications, the publish/subscribe pattern consumed on average 92% less energy
than the request/reply pattern. As a consequence, we advise to favor the pub-
lish/subscribe pattern.

We have to mention that this advice may depend on the IoT application and
the IoT platform. If the frequency of requests is far lower than the frequency of
publications, the synchronous pattern can be an option because the client can
better control the amount of messages being exchanged.

Favor the MQTT Protocol over the HTTP Protocol. For the pub-
lish/subscribe pattern, the comparison of the MQTT and HTTP protocols shows
that MQTT has 20% less energy overhead in comparison to HTTP. The advice
is then to favor the MQTT protocol for the publish/subscribe pattern.

Choose the QoS Appropriate for Your Application. If your IoT applica-
tion supports losing some observations, prefer QoS 0 since it involves less energy
consumption. If the application cannot afford to lose observations, use QoS 1
instead of QoS 0 as it provides a complementary service to TCP’s reliability by
ensuring that each message is received at least once. Keep the QoS2 for exactly
once semantics requirement as it presents an overhead of 92% and should be
used in conditions that require no duplication of messages.

Guideline Example. The benefits of guidelines to develop IoT applications
can be better seen when viewing with a bigger space of time. As an example, an
IoT application running for one year using HTTP pub/sub sending 4 messages
per second with a payload of 24 B will consume around 31,01 MegaJoules while
another application running with the same parameters but using MQTT QoS 0
will consume around 8,40 MegaJoules. Furthermore, if the messages are grouped
into a single message, and sent once per second, we can achieve a consumption
of around 4,20 MegaJoules for both HTTP pub/sub and MQTT QoS 0 with

146 R. Canek et al.

a payload of 24 Bytes. As an example, for a regular notebook battery with
around 360 KiloJoules, an IoT application using HTTP or MQTT and grouping
messages could lead to a lifetime of around 31 h, on the other hand, without
grouping and using HTTP synchronous we have around 9 h of battery (71%
less).

6 Conclusions

Energy consumption is a first class concern in the development of future IoT
applications. As the amount of devices and the amount of applications related
to IoT will keep growing in the near future, there is a new requirement for the
developers and the users to regulate and improve the energy consumption of
IoT applications not only on the connected object side but also on the consumer
application side.

In this paper, we have measured the energy consumption of IoT consumer
applications on user devices connected with WiFi (802.11n). We have been able
to show the impact on energy consumption on different interaction choices sum-
marized below. The results show that for the same amount of received observa-
tions, the publish/subscribe interaction pattern has lower energy consumption
(around 92% lower) than the synchronous interaction pattern. We have also
shown that, for the publish/subscribe interaction pattern, MQTT consumes less
than the HTTP protocol (around 20% less). Finally, we have shown that the
payload has a low impact on energy consumption having a 9% overhead from 24
to 3120 bytes payloads. From the above results, we have been able to provide
guidelines for IoT consumer application designers, for example we advise devel-
opers to favor the publish/subscribe pattern and to group several observations
in one message when possible.

As a future work, we plan to investigate the cost of the software call stack to
better guide the developers of IoT consumer applications. We plan to investigate
the impact of data representation on the cost of marshalling and unmarshalling
data in IoT applications. We also plan to follow the guidelines for the design of
a middleware used by IoT applications to transparently interact with multiple
IoT platforms. Implementing those strategies at the middleware level may have
a strong impact for reducing IoT application energy consumption while keeping
a low development effort.

References

1. PowerAPI. http://powerapi.org/. Accessed 15 Feb 2022
2. Bandyopadhyay, S., Bhattacharyya, A.: Lightweight internet protocols for web

enablement of sensors using constrained gateway devices. In: 2013 International
Conference on Computing, Networking and Communications (ICNC), pp. 334–340
(2013). https://doi.org/10.1109/ICCNC.2013.6504105

3. Bouloukakis, G., Georgantas, N., Ntumba, P., Issarny, V.: Automated synthesis of
mediators for middleware-layer protocol interoperability in the IoT. Future Gener.
Comput. Syst. 101, 1271–1294 (2019). https://doi.org/10.1016/j.future.2019.05.
064

http://powerapi.org/
https://doi.org/10.1109/ICCNC.2013.6504105
https://doi.org/10.1016/j.future.2019.05.064
https://doi.org/10.1016/j.future.2019.05.064

Analysis of the Impact of Interaction Patterns and IoT Protocols 147

4. Cisco Annual Internet Report (2018–2023). https://www.cisco.com/c/en/us/
solutions/collateral/executive-perspectives/annual-internet-report/white-paper-
c11-741490.html (2020)

5. Dizdarević, J., Carpio, F., Jukan, A., Masip-Bruin, X.: A survey of communication
protocols for internet of things and related challenges of fog and cloud computing
integration, vol. 51. Association for Computing Machinery, NY (2019). https://
doi.org/10.1145/3292674

6. FIWARE: What is fiware? https://www.fiware.org/
7. Garbarino, E.: Message exchange patterns (MEPs) (2013). https://garba.org/

article/general/soa/mep.html#top
8. Hofer, J., Pawaskar, S.: Impact of the application layer protocol on energy con-

sumption, 4G utilization and performance. In: 2018 3rd Cloudification of the Inter-
net of Things (CIoT), pp. 1–7 (2018). https://doi.org/10.1109/CIOT.2018.8627133

9. Directed by Hugues Ferreboeuf, S.P.: Lean ICT - towards digital sobri-
ety (2019). https://theshiftproject.org/wp-content/uploads/2019/03/Lean-ICT-
Report The-Shift-Project 2019.pdf

10. ISO/IEC: Internet of Things (IoT) - reference architecture. ISO/IEC JTC 1/SC
41 - Internet of Things and Digital Twin, p. 84 (2018)

11. Joshi, J., et al.: Performance enhancement and IoT based monitoring for smart
home. In: 2017 International Conference on Information Networking (ICOIN), pp.
468–473 (2017). https://doi.org/10.1109/ICOIN.2017.7899537

12. Munoz, D.J., Montenegro, J.A., Pinto, M., Fuentes, L.: Energy-aware environments
for the development of green applications for cyber-physical systems. Future Gener.
Comput. Syst. 91, 536–554 (2019). https://doi.org/10.1016/j.future.2018.09.006

13. Nakhuva, B., Champaneria, T.: Study of various internet of things platforms. Int.
J. Comput. Sci. Eng. Surv. 6(6), 61–74 (2015)

14. Nielsen, H., et al.: Hypertext Transfer Protocol - HTTP/1.1. RFC 2616 (1999).
https://doi.org/10.17487/RFC2616, https://rfc-editor.org/rfc/rfc2616.txt

15. Noureddine, A., Rouvoy, R., Seinturier, L.: A review of energy measurement
approaches. ACM SIGOPS Oper. Syst. Rev. 47(3), 42–49 (2013)

16. OASIS: MQTT version 3.1.1 plus errata 01 (2015). https://docs.oasis-open.org/
mqtt/mqtt/v3.1.1/mqtt-v3.1.1.pdf. Accessed 21 May 2021

17. oneM2M: Who we are. https://www.onem2m.org/harmonization-m2m
18. Pang, C., Hindle, A., Adams, B., Hassan, A.E.: What do programmers know about

software energy consumption? IEEE Softw. 33(3), 83–89 (2016). https://doi.org/
10.1109/MS.2015.83

19. Postel, J.: Internet Protocol. RFC 791, RFC Editor (1981). https://doi.org/10.
17487/RFC0791, https://www.rfc-editor.org/info/rfc791

20. Shaikh, F.K., Zeadally, S., Exposito, E.: Enabling technologies for green internet
of things. IEEE Syst. J. 11(2), 983–994 (2017). https://doi.org/10.1109/JSYST.
2015.2415194

21. Toldinas, J., Lozinskis, B., Baranauskas, E., Dobrovolskis, A.: MQTT quality of
service versus energy consumption. In: 2019 23rd International Conference Elec-
tronics, pp. 1–4 (2019). https://doi.org/10.1109/ELECTRONICS.2019.8765692

22. YoctoPuce: Who are we? https://www.yoctopuce.com/EN/aboutus.php. Accessed
17 Oct 2021

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://doi.org/10.1145/3292674
https://doi.org/10.1145/3292674
https://www.fiware.org/
https://garba.org/article/general/soa/mep.html#top
https://garba.org/article/general/soa/mep.html#top
https://doi.org/10.1109/CIOT.2018.8627133
https://theshiftproject.org/wp-content/uploads/2019/03/Lean-ICT-Report_The-Shift-Project_2019.pdf
https://theshiftproject.org/wp-content/uploads/2019/03/Lean-ICT-Report_The-Shift-Project_2019.pdf
https://doi.org/10.1109/ICOIN.2017.7899537
https://doi.org/10.1016/j.future.2018.09.006
https://doi.org/10.17487/RFC2616
https://rfc-editor.org/rfc/rfc2616.txt
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.pdf
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.pdf
https://www.onem2m.org/harmonization-m2m
https://doi.org/10.1109/MS.2015.83
https://doi.org/10.1109/MS.2015.83
https://doi.org/10.17487/RFC0791
https://doi.org/10.17487/RFC0791
https://www.rfc-editor.org/info/rfc791
https://doi.org/10.1109/JSYST.2015.2415194
https://doi.org/10.1109/JSYST.2015.2415194
https://doi.org/10.1109/ELECTRONICS.2019.8765692
https://www.yoctopuce.com/EN/aboutus.php

Elastic and Scalable Systems

The HDFS Replica Placement Policies: A
Comparative Experimental Investigation

Rhauani Weber Aita Fazul(B) and Patŕıcia Pitthan Barcelos

Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil
{rwfazul,pitthan}@inf.ufsm.br

Abstract. The Hadoop Distributed File System (HDFS) is a robust
and flexible file system designed for reliably storing large volumes of
data in distributed environments. Its storage model relies upon data
replication and one of its central features is to optimize the placement
of the replicas across the cluster for fault tolerance, availability, and
performance. To this end, the Replica Placement Policy selects which
nodes will store the data blocks. This work presents an experimental
investigation of the different placement strategies available in HDFS. For
a broader analysis, we consider different stages where the placement of
the replicas is necessary, such as writing files in the system, re-replicating
blocks among the nodes, and balancing the replica distribution in the
cluster. The evaluation results allowed a deeper understanding of the
behavior of the policies, in addition to highlighting the advantages and
drawbacks of the replica placement concerning optimizations in data
availability, data locality, write and read throughput, and in the overall
performance of the HDFS.

Keywords: Data replication · Block distribution · Replica placement
policies · Distributed file systems

1 Introduction

In the current days, it is common to come across scenarios that deal with large
volumes of data, of the most varied types, being generated at high speed. In
this context, there are demands for scalability, reliability, availability, and data
distribution, which can not always be satisfactorily addressed by traditional
tools, so specialized solutions become necessary. One of these solutions is the
Apache Hadoop framework [3]: an open-source platform dedicated to the efficient
storage and processing of big data in distributed environments.

The Hadoop Distributed File System (HDFS), Hadoop’s storage engine, is a
reliable and scalable file system, which is incorporated as a persistence layer by
several technologies, such as Apache Spark, Storm, and HBase [12]. HDFS fol-
lows a master-worker architecture composed of a NameNode (NN) and multiple
DataNodes (DNs). The NN is the master server, responsible for maintaining the

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
D. Eyers and S. Voulgaris (Eds.): DAIS 2022, LNCS 13272, pp. 151–166, 2022.
https://doi.org/10.1007/978-3-031-16092-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16092-9_10&domain=pdf
http://orcid.org/0000-0003-0705-9833
http://orcid.org/0000-0002-7164-5709
https://doi.org/10.1007/978-3-031-16092-9_10

152 R. W. A. Fazul and P. P. Barcelos

system namespace and controlling the access and distribution of the files, while
the DNs are the workers that effectively store and retrieve the data.

In order to handle large files, HDFS uses a storage strategy based on blocks,
where the files are split into a sequence of data blocks of fixed size (128MB by
default). The HDFS was designed to run on commodity hardware and reliably
store the data across machines in large clusters [2]. So, the blocks of a file are
replicated and maintained by different DNs. During replication, the selection of
the DNs to maintain the replicas is a critical factor for the proper functioning of
the HDFS. To select the DNs, the NN follows a Replica Placement Policy (RPP).
There are five different RPPs integrated into the Hadoop distribution, and one
of them is applied by default in the file system. A good replica placement opti-
mizes data availability and reliability, in addition to reducing write bandwidth
consumption and increasing read performance [12]. The current RPP implemen-
tation is the first effort in this direction, and it is one of Hadoop’s goals to
validate the policy on production systems, learn more about its behavior, and
build a foundation to test and research more sophisticated RPPs [3].

This work presents a practical investigation of the RPPs available on HDFS.
To this end, we consider different stages in which the policies for replica place-
ment are necessary in the file system, such as writing files across the cluster,
re-replicating blocks after failures, and redistributing blocks during replica bal-
ancing. At each stage, we analyze the behavior of the RPPs and measure the
optimizations in availability and performance achieved by their placement strate-
gies. The experimental analysis was conducted in a real, distributed, and het-
erogeneous environment running HDFS.

The paper is organized as follows. Section 2 is dedicated to data replication
and balancing on HDFS. Section 3 presents the official policies for replica place-
ment. Section 4 outlines the main related work. Section 5 exhibits and discusses
the evaluation results. Finally, Sect. 6 concludes the paper and points out further
research directions.

2 Data Replication in HDFS

Data replication is the primary fault tolerance mechanism and the core of the
HDFS storage model. It consists of creating redundant copies of the data blocks
so that, in the event of a failure, there are still replicas available in the system
[12]. The replicated data are stored in different nodes of the cluster in such a
way that the blocks can be accessed from any DN that maintains their replicas.
The number of replicas is determined by the Replication Factor (RF), which is
configured per file at the time of its creation and can be modified later through
system utilities. An RF of n avoids data loss even if n − 1 DNs fail at the same
time. The default RF is three.

The NN controls and makes all decisions regarding the replication of the
blocks, which involves selecting the DNs for storing the replicas based on an
RPP. This choice is initially performed when writing files in the cluster, and it
is also necessary during the re-replication and redistribution of the data already

The HDFS RPPs: A Comparative Experimental Investigation 153

stored in the file system. In all these moments, the selection of the DNs must be
done in order to maintain data availability in the event of failures and improve
the system’s performance in serving I/O operations over the data. Next, Sect. 2.1
introduces block re-replication, Sect. 2.2 details the redistribution process, and
Sect. 3 presents the official RPPs that guide the NN decisions.

2.1 Block Re-replication

Active monitoring is a vital requirement for assuring resilience and fault toler-
ance in the HDFS. In addition to the initial placement of the blocks performed
when writing files, it is necessary that NN constantly monitor the state of the
replicas and which data blocks need to be re-replicated. The necessity for data
re-replication may arise due to different reasons, such as [3]: (i) the corruption
of one or more replicas; (ii) a failure in one or more of the DN storage disks; (iii)
the increase of the RF of a file; or (iv) DNs becoming unavailable, either due to
network partition that causes some subset of DNs to lose connectivity or due to
crash-failures.

Even when running on clusters of commodity hardware, HDFS is designed to
maintain reliability and data availability in scenarios with consecutive failures.
Therefore, the NN must control the number of existing replicas of each block,
ensuring compliance with the RF [11]. To this end, the DNs processes commu-
nicate periodically with the NN through heartbeat messages: a fault tolerance
mechanism that allows detecting operational failures in DNs [2]. If the NN does
not receive heartbeats from a DN within a predefined period1, it marks the DN
as dead and does not forward any new requests to that node. The data in a dead
DN is not available to HDFS, which can cause the RF of the blocks previously
stored in its node to fall below the specified value.

Since the NN determines the mapping of blocks to DNs and constantly tracks
which blocks need to be replicated, it can trigger the re-replication of the under-
replicated blocks whenever necessary. To re-replicate a data block, the NN selects
a source DN that contains one of its remaining replicas and a target DN that
will receive the new copy of the replica stored in the source. As with the initial
replication, this selection is performed transparently by HDFS and must be in
accordance with the defined RPP.

2.2 Replica Rearrangement

HDFS is built around the idea that the most efficient data processing pattern
for files is the write once, read many (WORM) access model. In this sense, a
principle of Hadoop – and the reason for its good performance – is to move the
computational tasks to where the data are stored and, if it is not possible, to

1 The timeout to set a DN dead is relatively long (over 10 min by default) to avoid
replication storms caused by state flapping of DNs [3]. To better suit performance-
sensitive workloads, it is possible to configure a shorter interval to mark DNs as stale
and exclude their nodes in I/O operations.

154 R. W. A. Fazul and P. P. Barcelos

the nodes that have a faster network path for the DNs that maintain the blocks
needed for the operation. This feature, known as data locality optimization [12],
increases the overall throughput when processing large datasets and minimizes
read latency and network congestion.

An unbalanced replica distribution tends to affect the locality of the data,
resulting in an increased number of intra-rack and off-rack transfers, since tasks
assigned to nodes that do not maintain many replicas will possibly not access
local data. In addition to increasing the consumption of network bandwidth,
the imbalance may cause some nodes to become full and prevent them from
receiving new blocks, reducing their read parallelism and leading to performance
degradation [3]. Therefore, HDFS works best when the blocks are evenly spread
across the cluster. Over time, however, the cluster may become unbalanced, with
a large discrepancy in the data volume stored in the nodes.

The main causes of replica imbalance are [5]: (i) the replica placement strat-
egy that, in general, does not consider the node utilization; (ii) the re-replication
procedure, which follows the RPP; (iii) the behavior of the client application
that, if executed directly on a DN, stores one of the replicas in its node to pre-
serve data locality; (iv) the addition of new DNs to the system, since they will
be candidates for replica placement alongside all other DNs [11].

To maintain maximum cluster health and avoid performance bottlenecks, it
is necessary to redistribute the data. For this purpose, there is a tool, integrated
into the Hadoop distribution, designed for replica balancing: the HDFS Balancer
[9]. By analyzing the positioning of the blocks, the Balancer makes decisions
about the redistribution of data between the storage devices in the cluster. The
Balancer daemon – which should be triggered by the administrator – operates
until the utilization of each DN differs from the average utilization of the cluster
by no more than a given threshold percentage, which default value is 10% [12].
To this end, it will move replicas from over-utilized to under-utilized DNs, while
adhering to the configured RPP.

3 Replica Placement Policies

HDFS instances are commonly spread across multiple racks. In this sense, the
placement of replicas on HDFS uses rack awareness2, both for fault tolerance
and performance. The former is achieved by placing replicas of the same block
in at least two different racks, assuring data reliability and availability even if an
entire rack fails (this could happen, for instance, due to network switch failure or
partition within the cluster). The latter is optimized since it is possible to reduce
network bandwidth utilization when writing files and to use the bandwidth of
multiple racks when reading the data.

There are different RPP implementations available in the Hadoop distribu-
tion. They all follow the same interface to select the desired number of targets for
2 HDFS tries to satisfy a read request from a block that is closer to the reader so

that local replicas are preferred over remote data. This reduces global bandwidth
consumption and read latency [3].

The HDFS RPPs: A Comparative Experimental Investigation 155

placing block replicas. Next, the five RPPs currently being supported in HDFS
are presented.

– BlockPlacementPolicyDefault : this is the standard replica placement pol-
icy used in HDFS. Considering an RF of three replicas per block, if the writer
(client) is running on a DN, it puts the first replica of a block on the local
machine, otherwise, an arbitrary DN of the cluster is selected. The second and
third replicas are placed in the same remote rack – different from the rack
of the first replica – on two distinct nodes. In the case of a higher RF, the
next nodes are randomly chosen, while avoiding placing too many replicas in
DNs on the same rack by keeping the number of replicas per rack below the
upper limit given by (replicas − 1) / racks + 2. The other four RPPs extend
this default policy by adding a variety of behaviors to meet specific usage
demands.

– BlockPlacementPolicyRackFaultTolerant : this policy focuses on placing
replicas in as many racks as possible. Considering the standard RF, the local
rack is always preferred to store the first replica. In contrast, the second
and third replicas are stored in separate remote racks. For this, the cluster
must have enough racks (i.e., racks ≥ RF). In the end, the difference in the
number of replicas for every two racks is no more than one. This allows data
operations to take advantage of the bandwidth of multiple racks, in addition
to providing greater availability in the event of a rack failure.

– AvailableSpaceBlockPlacementPolicy : this policy aims at a balanced
placement of the blocks according to the storage space available in the nodes.
In this sense, an effort is made to prioritize DNs to receive replicas based on
the used space in their storage devices. This prioritization is controlled by a
parameter that represents a fraction of balancing preference, which can have
values between 0 and 1. If a value below 0.5 is used, DNs with more space
in use will receive more block allocations. By default, this fraction is set to
0.6, which prioritizes DNs with a lower occupation and promotes a balance
in terms of the volume of data stored between the nodes.

– BlockPlacementPolicyWithNodeGroup: this policy was designed for
environments with a node-group layer, that is, an extra layer of local-
ity/failure groups (contained by racks), which maintains logical nodes. This
is particularly useful to represent a cluster with a 4-layers hierarchical net-
work topology, where the leaves represent DNs (computers) and inner nodes
represent switches/routers that manage traffic in/out of data centers, racks,
or physical host (with virtual switch). With this RPP, the placement strategy
is adjusted to put the first replica on the local node (or if it is not possible,
on the local node-group or the local rack). If the writer is not on a DN, a
random DN is selected. The second replica is placed on a DN that is on a
different rack. The third replica is placed on a DN which is on a different
node-group but the same rack as the second replica node.

– BlockPlacementPolicyWithUpgradeDomain : this policy selects nodes
for placing block replicas that honor the upgrade domain policy. Upgrade
domains allow grouping cluster hosts for optimal performance during restarts.

156 R. W. A. Fazul and P. P. Barcelos

This RPP follows the same placement strategy as the default one while assur-
ing that all replicas have unique upgrade domains. To this end, it distributes
data across a set of hosts in the system (potentially larger than a single rack)
that can be updated or restarted at once without compromising service and
data availability. This feature is useful for very large clusters, or for clusters
where rolling restarts may happen frequently.

Regarding the overhead in the writing process, which involves storing mul-
tiple replicas of the same block, HDFS applies a replication pipeline tech-
nique. Figure 1 illustrates a possible block distribution of a file based on the
BlockPlacementPolicyDefault, considering a cluster formed by two racks with,
respectively, two and three DNs and using the standard RF of three. As can be
seen, for each block (b1 to b4), the same DN maintains a maximum of one of its
replicas and, in the same rack, a maximum of two of the three replicas of the
block is contained.

Fig. 1. Standard strategy for block distribution on an HDFS cluster.

In the pipeline of block b3 represented in Fig. 1, the NN retrieves the list of the
three DNs that will store the data block based on the replication target choosing
algorithm implemented by the RPP. Then, the first DN in the pipeline (first DN
of rack 1) starts receiving the data in portions, writes each portion to its local
repository, and transfers the portion to the second DN in the pipeline (first DN of
rack 2). This DN, in turn, writes the received portion to its repository and flushes
that portion to the next DN (third DN of rack 2). Therefore, the established
writing pipeline allows nodes to simultaneously receive and forward data. Besides
improving the write operation, it allows the entire replication process to be
transparent to the client, who only needs to interact with a single node when
writing data in the file system, regardless of the configured Replica Placement
Policy.

The HDFS RPPs: A Comparative Experimental Investigation 157

The cluster administrator must select which RPP to apply in the file system3

according to the environment composition and the needs of applications and
clients. It is important to mention that the mapping of the cluster topology,
which involves racks, node-groups, and upgrade domain groups, is specific to the
cluster layout and must also be assigned to each host DN by the administrator
(this mapping may or may not reflect the physical network topology of the cluster
[5]). The NN uses these definitions to distribute blocks when writing the files
and to orchestrate necessary actions, such as rolling restarts and upgrades, block
re-replication, and replica rearrangement.

4 Related Work

Several studies have been conducted to investigate the data replication mecha-
nism and the replica distribution strategy of HDFS. The work of [1], for example,
provided a theoretical analysis of different approaches for writing data blocks
across the DNs, namely: default pipeline, parallel broadcast, and parallel server-
worker. The study describes the technical specification, features, and specializa-
tion for each approach along with its applications. The authors in [6], on the
other hand, presented an improved replica placement policy, which is specifi-
cally designed for heterogeneous clusters. The proposed policy satisfies all the
selection requirements imposed by the standard RPP while striving to ensure a
balanced replica distribution.

A study of the replication factor was presented in [4] to determine if changes
in its default value allow for performance enhancements in HDFS. Through an
adaptive replication system, which increases the RF of the most accessed data, it
was possible to optimize the overall availability of data and reduce job execution
times. The work of [10], in turn, proposed a re-replication scheme that takes into
account performance and reliability perspectives. The scheme aims to balance
the workload among the nodes during re-replication and reduce the impact and
execution time of the re-replication procedure. To this end, the data blocks are
divided into priority groups to balance the system and the DNs for storing the
replicas are selected based on the utilization of the storage devices in the cluster.

Regarding data redistribution, in previous work [8], we automated the
decision-making process for configuring and triggering the HDFS Balancer.
Besides that, we modified the balancing policy to take into account reliabil-
ity and availability attributes. The solution maintains the balance of replicas in
the system while redistributing the replicas according to the propensity of node
failures in the cluster racks.

In [7], on the other hand, we proposed a customized balancing policy for the
HDFS Balancer, which focuses on improving data availability through replica
balancing. To this end, the balancer starts to prioritize block movements that
increase the number of racks in which the blocks are placed. This improves
3 The definition of the RPP to be used in the file system is made in a configuration file

(hdfs-site.xml), setting the parameter dfs.block.replicator.classname with the corre-
sponding classpath for the desired policy.

158 R. W. A. Fazul and P. P. Barcelos

reliability since placing block replicas in different racks reduces the chances of
data loss due to rack failures. Besides that, the additional availability can be used
as a way to take better advantage of data locality, thus improving the overall
I/O performance of the cluster. The customized policy behaves similarly to the
BlockPlacementPolicyRackFaultTolerant, however, it is specifically designed for
the HDFS Balancer. Therefore, it is exclusive to the balancing process and does
not interfere with the global RPP used in the file system.

5 Experimentation

The experiments were carried out on the GRID’50004 platform, with Apache
Hadoop (version 2.9.2) in a fully-distributed operation over 10 nodes of the site
Rennes. In order to provide a heterogeneous environment, the HDFS instance
was set up in two clusters, with 5 nodes in cluster paravance (represented by
C1) and 5 nodes in parapluie (C2).

The clusters were configured with two racks each. The racks in C1, namely R1

and R2, kept, respectively, 3 (DN01, DN02, and DN03) and 2 (DN04 and DN05)
nodes, each one with the following configurations: 2 Intel Xeon E5-2630 v3 CPUs
(2.40 GHz, 8 cores/CPU), 128 GB of RAM, 558 GB of storage capacity (HDD),
and 2 Ethernet connections of 10 Gbps each. The racks in C2, namely R3 and
R4, also maintained 3 (DN06, DN07, and DN08) and 2 (DN09 and DN10) nodes,
with: 2 AMD Opteron 6164 HE CPUs (1.7 GHz, 12 cores/CPU), 48 GB of RAM,
232 GB of HDD, 1 Ethernet connection of 1 Gbps, and 1 InfiniBand connection
of 20 Gbps. The nodes in both clusters were running a Debian GNU/Linux 10
(buster) distribution.

To deeply understand the behavior of the RPPs, the test scenario we built
considered different situations in which the data distribution in HDFS is affected.
To this end, the scenario is divided into 3 stages executed in sequence. In the
first stage, detailed in Sect. 5.1, we analyze the placement of replicas during the
initial replication resulting from writing files. In the second stage, discussed in
Sect. 5.2, we look into the re-replication procedure. In the third stage, presented
in Sect. 5.3, we explore the redistribution of data through replica balancing in
HDFS.

5.1 First Stage: Data Load

In the first stage, the distribution of the blocks based on the RPPs is done by
writing files in HDFS during the initial data load. For this, we used TestDFSIO
[12] (version 1.8): a distributed I/O bound benchmark that measures HDFS
performance through the execution of parallel tasks. An individual experiment
was conducted for each RPP and, in every experiment, 20 files of 15 GB each
and with an RF of 3 replicas per block were written through a node in R1 (local
rack), totaling a data volume of approximately 900 GB (2400 blocks of 128MB

4 https://www.grid5000.fr.

https://www.grid5000.fr

The HDFS RPPs: A Comparative Experimental Investigation 159

each and 7200 replicas in total). The average utilization of the cluster after the
data load was 28.01%.

Table 1 shows the HDFS status using the RPPs in the first stage. The amount
of data distributed among the nodes is displayed through the occupation in GB
(OGB) and the utilization percentage (U%) of each DN. After the initial data
distribution with all RPPs, there is a high discrepancy in the volume of data
stored in the nodes. This can be seen by the elevated Standard deviation (σ)
of the occupation and utilization of the DNs. In relation to the Default and
NodeGroup policies, this is explained by their choosing strategy of placing one-
third of the block replicas in one rack and two-thirds in a second rack, which
can promote inter-rack imbalance in the cluster.

Table 1. HDFS status after loading data with all Replica Placement Policies.

Rack DataNode Default RackFaultTolerant AvailableSpace NodeGroup UpgradeDomain

OGB U% OGB U% OGB U% OGB U% OGB U%

R1 DN01 105.93 21.01 89.19 17.69 112.65 22.34 96.96 19.23 63.37 12.57

DN02 74.16 14.71 71.87 14.25 115.39 22.89 82.88 16.44 76.16 15.10

DN03 75.55 14.98 100.75 19.98 134.63 26.70 80.03 15.87 104.31 20.69

R2 DN04 108.39 21.50 129.51 25.68 78.17 15.50 95.96 19.03 155.84 30.91

DN05 107.87 21.39 83.27 16.51 59.97 11.89 111.16 22.05 57.20 11.34

R3 DN06 66.90 36.50 68.26 37.24 94.10 51.33 65.79 35.89 76.44 41.70

DN07 105.27 57.43 74.58 40.69 95.79 52.26 97.12 52.98 68.23 37.22

DN08 80.38 43.85 87.56 47.76 69.23 37.77 94.14 51.36 77.86 42.47

R4 DN09 74.25 40.50 125.74 68.59 96.36 52.57 93.97 51.26 126.79 69.17

DN10 113.60 61.97 77.75 42.42 52.00 28.37 93.69 51.11 101.67 55.46

Standard deviation (σ) 18.32GB 17.29% 21.57GB 17.42% 26.14GB 15.40% 12.25GB 16.59% 31.28GB 19.31%

The RackFaultTolerant and UpgradeDomain policies, on the other hand,
place the replicas in unique racks, however, as the RF is less than the number of
racks in the cluster, the distribution of the blocks is also not fully balanced. The
highest level of balance considering node utilization was achieved by the Avail-
ableSpace policy, which ensures that the replicas are positioned in DNs with
less used percent based on their storage capacity. Regarding the data volume
maintained by each DN (occupation), the NodeGroup policy allowed for a better
balance since the configured capacity of the nodes in C1 is greater than that of
the nodes in C2.

To better visualize the occupation status of the cluster at a rack level, Fig. 2
illustrates the data stored in each rack. The AvailableSpace policy demonstrates
its distinguished behavior by storing the largest volume of data in the rack that
maintains the nodes with the greatest storage capacity. It is also noted that its
choosing algorithm prioritized the local rack R1, instead of the remote rack R2,
which also belongs to cluster C1. The other four RPPs showed similar results
between them, with a slight divergence in the volume maintained in each rack.

Table 2 presents key metrics of I/O operations performed in HDFS with the
data distribution based on the RPPs. The performance of the write operation
is represented by the Write time and the Write throughput. The Default RPP

160 R. W. A. Fazul and P. P. Barcelos

Fig. 2. Data volume stored in each rack after writing the files.

reduces the aggregate network bandwidth used when reading data since most
blocks are placed in only two racks rather than three. This improves write
performance, however, it does not ensure the block placement with the high-
est resilience and data availability. The RackFaultTolerant and UpgradeDomain
(each rack was configured in a different domain) policies, in turn, allow for a
higher data availability but increase the cost of writing operations since they
transfer blocks to more racks.

Table 2. HDFS performance with all Replica Placement Policies in the first stage.

Metric Default RackFaultTolerant AvailableSpace NodeGroup UpgradeDomain

Write time 1907.99s 2235.48s 2485.32s 2272.73s 2354.21s

Write throughput 14.76MB/s 20.33MB/s 18.20MB/s 12.48MB/s 16.17MB/s

Blocks in unique racks 0.00% 100.00% 12.79% 0.00% 100.00%

Read time 877.18s 715.54s 843.74s 870.77s 791.21s

Read throughput 46.01MB/s 87.53MB/s 44.34MB/s 57.21MB/s 71.27MB/s

Read avg. I/O rate 397.71MB/s 384.74MB/s 298.39MB/s 345.90MB/s 231.85MB/s

To further analyze the placement of the replicas considering an availability
perspective, we used the HDFS utility fsck (filesystem check) [12] to retrieve the
locations of the blocks stored in each rack. The Blocks in unique racks row in
Table 2 displays the percentage of blocks that were placed in the largest possible
number of racks (i.e., three, given the RF) after writing the files with each
RPP. The RackFaultTolerant and UpgradeDomain policies are the only ones
that have this concern, thus ensuring that 100% of the blocks achieve maximum
availability. This is especially useful in scenarios with two or more racks going
down at the same time, as placing replicas on only two racks will cause data
loss. However, as the chance of rack failure is far less than node failures, placing
replicas in only two racks tends not to impact data reliability and availability so
the other RPPs prioritize writing performance. It is worth mentioning that the
AvailableSpace policy, which placed 12.79% of the blocks in three racks, focuses
on a space balanced distribution, and thus it may place the replicas in unique
racks when suitable.

The HDFS RPPs: A Comparative Experimental Investigation 161

In order to investigate possible performance improvements and optimizations
in data locality promoted by the RPPs, we considered 10 executions of TestDF-
SIO – with its default configuration – to read the data stored in the HDFS
with each policy. At the bottom of Table 2, we can see the performance of the
read operations regarding the arithmetic means of the Read time (i.e., the total
execution time of the benchmark), Read throughput, and Read average I/O rate.
In general, the RackFaultTolerant and UpgradeDomain policies performed best,
since they enable the applications running on the cluster to use the network
bandwidth of one additional rack when operating over the data. In contrast,
the other policies stored the replicas in only two racks and resulted in a longer
execution time for the benchmark to read the data replicas in the file system.

5.2 Second Stage: Block Re-replication

At this stage, the RPPs are evaluated based on their placement strategies during
block re-replication. To emulate a faulty behavior, we insert crash failures in the
DNs through the Linux kill command. We selected one arbitrary node for racks
R1 and R3, so that all racks, after the induction of failures, keep exactly two
active DNs. When noticing the failure of the faulty nodes (DN03 and DN08)
for not receiving heartbeats, the NN creates new copies of the under-replicated
blocks.

Table 3 shows the state of the cluster after the failures and how the distribu-
tion of the new replicas affected the file system. The occupation and utilization
of the DNs demonstrate that the imbalance of replicas was further aggravated
in the cluster (there was an increase in Standard deviation of all RPPs when
compared to the first stage), which indicates an unbalanced placement of the
re-replicated blocks. It should be noted that the dead DNs are omitted from the
table, as they are decommissioned from the cluster. The average utilization of
the cluster after the re-replication was 34.87%.

Table 3. HDFS status after re-replication with all Replica Placement Policies.

Rack DataNode Default RackFaultTolerant AvailableSpace NodeGroup UpgradeDomain

OGB U% OGB U% OGB U% OGB U% OGB U%

R1 DN01 127.21 25.23 118.53 23.51 137.07 27.18 125.71 24.93 96.37 19.11

DN02 107.84 21.39 104.59 20.74 139.08 27.58 118.41 23.48 109.72 21.76

R2 DN04 129.67 25.72 146.99 29.15 110.36 21.89 118.68 23.54 172.72 34.26

DN05 128.88 25.56 97.64 19.36 96.76 19.19 129.76 25.74 74.28 14.73

R3 DN06 82.52 45.02 96.50 52.64 116.54 63.57 83.55 45.58 102.61 55.97

DN07 119.50 65.19 104.34 56.92 116.91 63.78 114.77 62.61 98.14 53.54

R4 DN09 89.81 48.99 145.91 79.60 119.31 65.08 106.96 58.35 140.31 76.54

DN10 122.71 66.94 93.73 51.13 71.06 38.76 109.86 59.93 113.64 61.99

Standard deviation (σ) 18.36GB 18.67% 21.69GB 21.72% 21.89GB 20.09% 14.24GB 17.92% 30.30GB 22.86%

The amount of data kept in each rack after the re-replication can be seen in
Fig. 3. We note an interesting feature of the AvailableSpace policy. In the first

162 R. W. A. Fazul and P. P. Barcelos

stage, this policy had prioritized the nodes in rack R1 to maintain the replicas.
After the failure of DN03, however, the policy chose to store the new replicas in
another rack (note the significant decrease in the volume of data stored in R1

in Fig. 3 compared to Fig. 2). This occurred because the remaining nodes in R1

(DN01 and DN02) were no longer the nodes with the largest available storage
space in the cluster and, therefore, it was possible to find more suitable nodes
to store the replicas in other racks.

R1 R2 R3 R4

0
50

100
150
200
250
300
350
400
450

Cluster racks

R
ac
k
oc

cu
pa

ti
on

(G
B
)

Default RackFaultTolerant AvailableSpace NodeGroup UpgradeDomain

Fig. 3. Data volume stored in each rack after the re-replication of the blocks.

Metrics of the re-replication and subsequent read operations are presented in
Table 4. The Re-replication time row is equivalent to the elapsed time from the
beginning to the end of the re-replication process. We noted that the Default
policy achieved the highest speed for re-replicating the blocks on component
failure, although the performance of the RPPs for storing the new replicas of
the under-replicated blocks was not very different from each other. Based on
the block mapping, we see that the percentage of Blocks in unique racks after
the failures has not changed from the first stage, with the exception of the
AvailableSpace policy, which re-replicated the blocks originally stored in the
failed DNs to nodes in a new rack.

Table 4. HDFS performance with all Replica Placement Policies in the second stage.

Metric Default RackFaultTolerant AvailableSpace NodeGroup UpgradeDomain

Re-replication time 585.00s 740.00s 607.00s 819.00s 774.00s

Blocks in unique racks 0.00% 100.00% 48.84% 0.00% 100.00%

Read time 1333.76s 1106.51s 1575.18s 1320.06s 1304.59s

Read throughput 23.36MB/s 42.25MB/s 21.97MB/s 35.16MB/s 34.36MB/s

Read avg. I/O rate 127.89MB/s 148.15MB/s 82.71MB/s 134.66MB/s 95.51MB/s

Regarding the performance of the read operations, we execute TestDFSIO
10 more times in reading mode. The increase in the overall Read time in relation
to the values obtained in the first stage is due to the reduced number of active

The HDFS RPPs: A Comparative Experimental Investigation 163

DNs (less parallelism and available bandwidth). Again, the higher availability
provided by the RackFaultTolerant and UpgradeDomain policies enables the
applications running on the cluster to utilize the bandwidth of one additional
rack when operating over the data. However, the AvailableSpace RPP, even with
48.84% of the blocks with maximum availability, had the longest reading time
and the lowest throughput, which can be justified by the elevated data imbalance
after the failures.

5.3 Third Stage: Replica Rearrangement

The third stage evaluates the behavior of the RPPs during the redistribution
of the blocks already stored in the system achieved by balancing the replica
placement on the cluster. For this purpose, the HDFS Balancer daemon was
triggered with a default balancing threshold of 10%. Table 5 displays the state
of the cluster after running the HDFS Balancer. The level of balance achieved
in the cluster is evidenced by the reduction of the Standard deviation of the
utilization of the nodes in relation to their respective values before the replica
balancing in the first and second stages.

Table 5. HDFS status after replica balancing with all Replica Placement Policies.

Rack DataNode Default RackFaultTolerant AvailableSpace NodeGroup UpgradeDomain

OGB U% OGB U% OGB U% OGB U% OGB U%

R1 DN01 168.93 33.50 156.22 30.98 152.69 30.28 154.13 30.57 142.49 28.26

DN02 131.03 25.99 137.07 27.19 163.65 32.46 145.51 28.86 152.70 30.28

R2 DN04 153.83 30.51 166.58 33.04 151.92 30.13 141.10 27.98 166.68 33.06

DN05 155.97 30.93 124.98 24.79 143.31 28.42 167.79 33.28 130.27 25.84

R3 DN06 76.47 41.72 77.99 42.54 77.36 42.20 77.48 42.27 76.60 41.79

DN07 71.31 38.90 73.07 39.86 78.99 43.09 73.83 40.28 78.49 42.82

R4 DN09 78.62 42.89 93.23 50.86 76.35 41.65 75.34 41.10 81.39 44.40

DN10 75.47 41.17 78.37 42.75 71.06 38.76 77.73 42.41 78.62 42.89

Standard deviation (σ) 42.46GB 6.29% 37.55GB 8.94% 41.55GB 6.16% 41.38GB 6.29% 38.40GB 7.58%

The occupation of the racks after the balancing is exhibited in Fig. 4. It is
noticed that the rearrangement of the replicas executed by the HDFS Balancer
does not aim at inter-rack balance. The tool operates to take the utilization of
the nodes to an interval controlled by a lower limit (average utilization of the
cluster minus the balancing threshold) and an upper limit (average utilization of
the cluster plus the threshold). Thus, as we are running the HDFS instance on
a heterogeneous environment, the racks of the nodes with less storage capacity
maintain a proportionally smaller volume of data.

Table 6 shows the metrics of the replica balancing process and read opera-
tions after running the HDFS Balancer. Based on the Balancing time we can see
that the UpgradeDomain and RackFaultTolerant policies were the most costly
in respect of the execution time of the HDFS Balancer in the file system. This
is caused by the high number of Balancing iterations needed to transfer the

164 R. W. A. Fazul and P. P. Barcelos

Fig. 4. Data volume stored in each rack after cluster balancing.

replicas between the nodes across the cluster (the amount of data redistributed
is represented by the Data volume moved row). The NodeGroup RPP, on the
other hand, had the best performance in the balancing operation, followed by the
AvailableSpace and Default policies. Similarly, these three RPPs do not guaran-
tee that redistribution will store the replicas in three separate racks.

Table 6. HDFS performance with all Replica Placement Policies in the third stage.

Metric Default RackFaultTolerant AvailableSpace NodeGroup UpgradeDomain

Balancing time 6263.17s 6740.23s 5490.20s 4524.93s 8982.66s

Data volume moved 111.25GB 116.38GB 119.13GB 116.00GB 144.63GB

Balancing iterations 9 46 8 7 54

Blocks in unique racks 16.42% 100.00% 62.09% 18.59% 100.00%

Read time 824.39s 879.77s 739.66s 946.54s 770.20s

Read throughput 68.86MB/s 74.19MB/s 85.89MB/s 53.88MB/s 70.84MB/s

Read avg. I/O rate 154.17MB/s 176.25MB/s 186.15MB/s 162.59MB/s 176.64MB/s

The percentage of Blocks in unique racks after the balancing shows that,
apart from respecting the strategies of the RackFaultTolerant and UpgradeDo-
main policies, the requirement of placing blocks in exactly two racks of the
other policies is relaxed during the HDFS Balancer operation. Therefore, with
the balancing, all RPPs maintained some replicas in the largest number of racks
allowed by the RF. As mentioned in Sect. 2.2, a balanced cluster can take better
advantage of the data locality. To investigate this, we run 10 new executions
with TestDFSIO aimed at reading the data stored in the file system.

Considering the percentage change given by ((Tb − Ta) / Ta × 100), where
Ta and Tb represent, respectively, the arithmetic means of the metric under
analysis in the 10 runs of the benchmark before (i.e., second stage) and after
the balancing, the change in the Read time with the Default, RackFaultTol-
erant, AvailableSpace, NodeGroup, and UpgradeDomain policies was −38.19%,
−20.49%, −53.04%, −28.30%, and −40.96%. These values represent the reduc-
tion in the execution time of TestDFSIO in the third stage in reference to the
times obtained without the balance in the second stage.

The HDFS RPPs: A Comparative Experimental Investigation 165

In addition, there was an increase in the Read throughput of 194.78%, 75.60%,
290.94%, 53.24%, and 106.17%, respectively for each RPP. In the Read average
I/O rate, the increase was 20.55%, 18.97%, 125.06%, 20.74%, and 84.94% after
replica balancing with all RPPs. These results reinforce that replica balancing
is beneficial for HDFS health regardless of the replica placement strategy used
in the file system.

6 Conclusions and Future Work

In HDFS, the blocks are replicated and distributed among different nodes in the
cluster. The choice of the DataNodes to maintain the block replicas is essential to
data reliability, availability, and overall system performance. Optimizing block
placement distinguishes HDFS from other distributed file systems. In this sense,
HDFS supports the configuration of five pluggable Replica Placement Policies
(RPPs). The system administrator can choose the policy based on the cluster
infrastructure and the usage requirements of the clients and their applications.

This work presents an experimental and comparative analysis of the strate-
gies used by the official policies for placing replicas in HDFS. Based on the
evaluation results we could understand, in-depth, different characteristics of the
behavior of the RPPs. To the best of our knowledge – except for the default pol-
icy – no work in the literature has investigated the behavior and performance of
the specialized block placement strategies of HDFS. In highlighting the trade-off
between fault tolerance, write and read bandwidth of each placement strategy,
we hope to support the decision-making process of HDFS cluster administrators
in choosing the ideal RPP.

We reinforce that, although the experimentation presented in this work is
based on a native Hadoop instance, it applies to other processing frameworks
that use HDFS as a persistence layer. In this regard, the BlockPlacementPolicy-
Default, the standard choice in all HDFS distributions, cuts the inter-rack write
traffic, which generally improves write performance, without compromising data
reliability or read performance. With the BlockPlacementPolicyRackFaultToler-
ant, on the other hand, we can place replicas to more than two racks. This
ensures the block placement with the best data reliability and availability even
in case of racks failing simultaneously.

The AvailableSpaceBlockPlacementPolicy, in turn, extends the default pol-
icy so that the selection of DNs starts to be made based on the used space in
the storage devices of the nodes, which allows interesting results in heteroge-
neous clusters. BlockPlacementPolicyWithNodeGroup introduces a node group
level that fits well with infrastructures running on virtualized environments since
it guarantees that, in case of node group failure, only one replica will be lost at
the maximum as it will never place more than one replica on the same physical
host mapped to a node group. In contrast, the BlockPlacementPolicyWithUp-
gradeDomain addresses the limitation of the default policy on rolling upgrade
by adding the concept of upgrade domains into HDFS in which we can group
nodes in a new dimension based on the cluster layout in addition to the existing
rack-based grouping.

166 R. W. A. Fazul and P. P. Barcelos

Future research work comprehends an analysis of the behavior and perfor-
mance of the replica placement policies considering different classes of applica-
tions running in the cluster. Besides that, motivated by the achieved results in
this work, we plan to validate an alternative for the current RPPs in order to
incorporate a temporal perspective of the state of the nodes and the cluster into
the data distribution process on the HDFS.

Acknowledgment. This work was developed with the support of CNPq - National
Council for Scientific and Technological Development – Brazil. Experiments presented
in this paper were carried out using the Grid’5000 testbed, supported by a scientific
interest group hosted by Inria and including CNRS, RENATER and several Universities
as well as other organizations.

References

1. Abead, E.S., et al.: A comparative study of HDFS replication approaches. Int. J.
IT Eng. 3, 5–11 (2015)

2. Achari, S.: Hadoop Essentials. 1st edn. Packt Publishing Ltd, Birmingham (2015)
3. Apache software foundation: apache hadoop. https://hadoop.apache.org/docs/r3.

3.1/ (2021) Accessed 27 Sep 2021
4. Ciritoglu, H.E., et al.: Investigation of replication factor for performance enhance-

ment in the hadoop distributed file system. In: Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering, pp. 135–140 (2018)

5. Cloudera Inc: Scaling namespaces and optimizing data storage. https://docs.
cloudera.com/runtime/7.2.6/scaling-namespaces/topics/hdfs-balancing-data-
across-hdfs-cluster.html (2020). Accessed 3 Sep 2021

6. Dai, W., Ibrahim, I., Bassiouni, M.: An improved replica placement policy for
hadoop distributed file system running on cloud platforms. In: 2017 IEEE 4th
International Conference on Cyber Security and Cloud Computing (CSCloud), pp.
270–275. IEEE (2017)

7. Fazul, R., Cardoso, P.V., Barcelos, P.P.: Improving data availability in HDFS
through replica balancing. In: 2019 9th Latin-American Symposium on Dependable
Computing (LADC), pp. 1–6. IEEE (2019)

8. Fazul, R.W.A., Barcelos, P.P.: Automation and prioritization of replica balanc-
ing in HDFS. In: Proceedings of the 36th Annual ACM Symposium on Applied
Computing, pp. 35–38 (2021)

9. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file
system. In: 2010 IEEE 26th Symposium on Mass Storage Systems and Technologies
(MSST), pp. 1–10. IEEE (2010)

10. Shwe, T., Aritsugi, M.: A data re-replication scheme and its improvement toward
proactive approach. ASEAN Eng. J. 8(1), 36–52 (2018)

11. Turkington, G.: Hadoop Beginner’s Guide, 1st edn. Packt Publishing Ltd, Birm-
ingham (2013)

12. White, T.: Hadoop: The Definitive Guide, 4th edn. O’Reilly Media Inc, Sebastopol
(2015)

https://hadoop.apache.org/docs/r3.3.1/
https://hadoop.apache.org/docs/r3.3.1/
https://docs.cloudera.com/runtime/7.2.6/scaling-namespaces/topics/hdfs-balancing-data-across-hdfs-cluster.html
https://docs.cloudera.com/runtime/7.2.6/scaling-namespaces/topics/hdfs-balancing-data-across-hdfs-cluster.html
https://docs.cloudera.com/runtime/7.2.6/scaling-namespaces/topics/hdfs-balancing-data-across-hdfs-cluster.html

An Elastic and Scalable Topic-Based
Pub/Sub System Using Deep

Reinforcement Learning

Thanos Giannakopoulos and Vana Kalogeraki(B)

Department of Informatics, Athens University of Economics and Business Athens,
Athens, Greece

{thanos,vana}@aueb.gr

Abstract. The ability to handle large volumes of event data and react
to unexpected spikes, in real-time, remains an important challenge in
stream processing systems, such as Apache Kafka, due to the amount of
custom coding and technical expertise required to configure these sys-
tems. In this paper we investigate the use of reinforcement learning as
a promising approach to address these issues. By feeding the machine
learning technique with system performance metrics under a wide variety
of configurations, we can effectively address any changes in the pub/sub
system or overload situations while maintaining the desired performance
goals. We implement our methodology on the Kafka pub/sub system
without any changes in the application logic. Our experimental results
illustrate the performance and benefits of our approach.

Keywords: elasticity · pub/sub · deep reinforcement learning

1 Introduction

Pub/sub systems have been increasingly popular communication architectures
in recent years to achieve information dissemination between a set of loosely
coupled producers (also known as publishers) and consumers (also known as
subscribers). Publishers forward their publications to a set of brokers which are
then responsible to deliver the publications to subscribers based on the regis-
tered subscriptions. They have found application in a wide variety of domains
from online games [1] to stock trading [2]. Examples of popular pub/sub sys-
tems include Facebook’s Wormhole [3], Google’s Cloud Pub/Sub [4], Apache’s
Kafka [5] and Apache’s Pulsar [6].

While pub/sub systems present desirable features including scalability, per-
sistency and availability, several challenges emerge as they typically entail a
large number of configuration parameters, which makes their tuning a signif-
icant issue that overwhelms users to achieve the desirable performance. Iden-
tifying a deployment configuration that satisfies user-defined objectives (e.g.,

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
D. Eyers and S. Voulgaris (Eds.): DAIS 2022, LNCS 13272, pp. 167–183, 2022.
https://doi.org/10.1007/978-3-031-16092-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16092-9_11&domain=pdf
http://orcid.org/0000-0002-6421-9947
https://doi.org/10.1007/978-3-031-16092-9_11

168 T. Giannakopoulos and V. Kalogeraki

on execution time), while avoiding unnecessary over-provisioning, is a signifi-
cant challenge especially when these are deployed in cloud environments. On the
other side, under-provisioning, i.e., allocating fewer resources than required, may
lead to services that cannot meet the service level requirements set by the client,
and thus must be avoided. Furthermore, pub/sub systems are often deployed in
diverse and often dynamic environments, and mechanisms used to ensure robust
operation and performance for one environment configuration may not be appro-
priate for another configuration. While tunable policies provide fine-grained con-
trol, configuring a large number of parameters can be overwhelming for users. As
a result, users often accept the default settings. Finally, manually tuning requires
in-depth knowledge of both the applications and the environment. Nevertheless,
it is labor-intensive, time-consuming, and often leads to suboptimal decisions.

The popularity of Machine Learning has grown significantly in recent years
as it provides systems with the ability to learn and enhance their operation
automatically. In particular, Reinforcement learning (RL) is a type of machine
learning algorithm that enables software agents and machines to automatically
evaluate the optimal behavior in a particular environment to learn what to do
or how to map situations to actions, so as to maximize a numerical reward sig-
nal and improve its efficiency. The learner is not told which actions to take,
but instead must discover which actions yield the highest reward by trying
them. In the most interesting and challenging cases, actions may affect not only
the immediate reward but also the next situation and, through that, all subse-
quent rewards. These two characteristics, i.e., trial-and-error search and delayed
reward, are the two most distinguishing features of reinforcement learning. Rein-
forcement learning has important benefits over supervised learning as it does not
need labeled input/output pairs to be presented and over unsupervised learning
which is typically about finding hidden structure and correlations between a set
of unlabeled data. State-of-the-art learning approaches can rely on either online
or offline schemes to find a (near) optimal configuration. In our work we focus
on online approaches that can work efficiently even when no a priori knowledge
of the execution environment or the deployed application is available.

In this paper we present our approach for building a robust, scalable and
elastic pub/sub system utilizing Deep Reinforcement Learning techniques. Our
solution addresses the challenges outlined above by combining the following novel
features: We investigate Deep Reinforcement Learning as a promising approach
to addressing these issues in environments where the dynamics of the environ-
ment and the rewards at each state may change and are not necessarily known
in advance. By feeding the machine learning technique with system performance
metrics under a wide variety of configurations and conditions, we can efficiently
address any workload changes or overload situations in the pub/sub system and
maintain the desired performance goals. We investigate two different algorithms,
namely Deep Q Networks and Double Deep Q Networks where the goal is to
learn a policy to tell the Deep Learning Reinforcement agent what action to take
under what circumstances. We implement our approach on top of Apache Kafka,
a general-purpose pub/sub system, without the need to modify its architecture

An Elastic and Scalable Topic-Based Pub/Sub System 169

or change the producer and consumer application logic. Our approach imple-
ments elasticity by dynamically determining whether brokers need to be added
or removed from the Kafka cluster based on user demands (i.e., on execution
time). We collect a set of performance metrics via the Prometheus monitoring
tool, the collected statistics are sent to the Deep Reinforcement Learning Agent
to decide the appropriate scaling action. Our experimental evaluation illustrate
the performance, scalability and elasticity of our approach.

2 System Architecture and Model

In this section we first present a brief introduction to the Kafka pub/sub mes-
saging system and then we describe our system architecture and model.

2.1 Apache Kafka

We chose Kafka [23], a popular, state-of-the-art, topic-based pub/sub system
as our messaging system. In Kafka each published message corresponds to a
specific topic and topics are further divided into partitions. The partitions are
distributed across the brokers that comprise the Kafka cluster. Each partition
can be hosted on a different broker, which denotes that a single topic can scale
horizontally across multiple servers for redundancy and scalability.

A Kafka producer is an application that acts as a source of data in a Kafka
cluster. A producer can publish messages to one or more Kafka topics; the mes-
sage is directed to the appropriate partition. Incoming messages are assigned to
partitions using a consistent-hashing mechanism on the message key [17] while
partitions are assigned to the cluster’s brokers using a round-robin policy. Each
partition has exactly one partition leader which handles all the read/writes
requests to that partition. If the replication factor is greater than one, the
additional replica partitions act as followers. This synchronization is achieved
through the ZooKeeper service. Kafka Consumers are subscribers wishing to
read records from one or more topics and one or more partitions of a topic.
Consumers can work together as part of a consumer group. Consumer groups
act as a level of parallelism on a Kafka cluster as consumers that are part of the
same group would be assigned with different partitions.

Despite the wide adoption of topic-based pub/sub systems, the problem of
how to dynamically adjust the number of brokers in the cluster when overloads,
load imbalances or skewness occurs due to the volume of messages in the pub/sub
system, to maintain the service required by the users, still remains a significant
challenge.

2.2 System Architecture and Model

Figure 1 presents our system architecture comprising a Kafka cluster running in
a Docker Container where the containers communicate via an overlay network.
The benefit of the Docker Container is that it simplifies and automates the

170 T. Giannakopoulos and V. Kalogeraki

deployment process and seamlessly scale our system to use multiple machines.
For a machine to be part of the system it needs to have a Docker daemon
installed.

During operation, each Broker in the Kafka Cluster is configured to run
with a JMX exporter where these metrics are exposed to a form that can be
collected by the Prometheus monitoring tool (http://prometheus.io), an open
source, metrics-based monitoring system. The collected statistics are sent to
the Deep Reinforcement Learning Agent, which in turn makes the appropriate
Scaling action. Three scaling actions are supported: Scale Up: a Broker needs
to be added to the Kafka Cluster, Scale Down: a Broker must be removed from
the Kafka Cluster, and No Scaling : no change in the number of Brokers in the
Cluster.

Fig. 1: System architecture

Our system collects a set of metrics from each Kafka broker via the use of
Prometheus. Each Kafka Broker is configured to run with a JMX exporter where
these metrics are exposed to a form Prometheus can retrieve. More specifically,
our system keeps track of the following metrics: (i) CPU utilization (mean rate,
95th%), (ii) number of bytes in/out per second (mean rate, 95th%), (iii) number
of messages in/out per second (mean rate, 95th%), (iv) response queue time
(mean rate, 95th%) which denotes the time it takes to send the response to the
Requestor, (v) number of produce requests (mean rate, 95th%) (vi) requests per
second (mean rate, 95th%) (vii) requests waiting in the purgatory (mean rate,
95th%).

We denote as total time (mean rate, 95th%), the amount of time taken to
service a request (Produce, Fetch Consumer and Fetch Follower), computed as

http://prometheus.io

An Elastic and Scalable Topic-Based Pub/Sub System 171

the sum of the following three types of requests: (a) request queue time (mean
rate, 95th%): the time the request spends in the queue once it has been received
but before processing starts, (b) local time: the time spent being processed by
the partition leader, (c) remote time: The time spent waiting for the follower
response before processing completes, We denote as response queue time, the
time it takes to send the response to the requestor. The total time is utilized
when we compute the reward that our agents collect.
Requests Waiting in the Purgatory. The purgatory holds requests waiting
to be satisfied. It is only used for Produce and Fetch requests. Each type of
request has different parameters that determine if it will be added to purgatory:

– Produce requests will be added to purgatory until the partition leader receives
an acknowledgment from in-sync replicas. The number of acknowledgments
the partition leader requires is determined by the acks parameter. When
acks=all, means that the leader will wait all in-sync replicas to acknowledge
the record and then send the next one.

– Fetch requests are added in the purgatory if there is not enough data to fulfill
the request. So wait until enough data is available or the max waiting time
for the request has passed.

Monitoring the size of purgatory is useful in order to determine the underlying
causes of latency.

3 Proposed Methodology

3.1 Deep Reinforcement Learning

The goal of Reinforcement Learning (RL) is to discover which actions yield the
highest numerical reward by trying them, not only for the immediate reward but
also for all subsequent rewards. Reinforcement learning has important benefits
compared to supervised learning in that it does not need labeled input/output
pairs to be presented, and over unsupervised learning which is typically about
finding hidden structure and correlations between a set of unlabeled data. One
of the most popular RL algorithms is Q-learning. The goal is to learn a policy,
which tells an agent what action to take under what circumstances. Q-Learning
is a model-free algorithm as it does not require a model of the environment and
the goal is to learn the value of an action in a particular state.

The core of the Reinforcement Learning algorithms is to estimate the action-
value function, using the Bellman equation as an iterative update,

Qi+1 = E[r + γ max
a′

Qi(s′, a′)|s, a]. (1)

where r is the reward, γ is the discount factor and a is the learning rate. This
kind of value iteration algorithms converge to the optimal action-value function
as the number of iteration goes to infinity, Qi → Q∗ as i → ∞. These methods
are impractical, because the action-value function is estimated separately for

172 T. Giannakopoulos and V. Kalogeraki

each sequence, so we do not get any generalization. Also standard Reinforcement
Learning is mostly limited to domains which are fully observed or to domains
where features can be handcrafted e.g. with the bucket method. It works best
when the number of possible states and actions are finite.

In our approach we use a non-linear function approximator i.e. a Neural
Network. We refer to a Neural Network function approximator with weights θ
as a Q-network. We train a Q-network by minimizing the loss function Li(θi) at
each iteration i,

Li(θi) = Es,a∼ρ(.)[(yi − Q(s, a; θi)2] (2)

where yi = Es′∼Environment[r + γmaxa′Q(s′, a′; θi−1)|s, a] is the target for iter-
ation i and (s, a) is the probability distribution over states s and actions α. We
refer to ρ(.) as the behaviour distribution. Note that the parameters from the
previous iteration θi−1 are fixed when minimizing the loss function Li(θi) and
depend solely on the network weights, compared to targets used for supervised
learning which are fixed before training.

If we differentiate the loss function with respect to the weights we have the
following gradient:

∇θi
= Es,a∼ρ(.);s′∼Environment[(r + γmaxa′Q(s′, a′; θi−1)

−Q(s, a; θi))∇θi
Q(s, a; θi)].

(3)

A closed-form solution to obtain directly the weights that minimize the loss
function exists but may be time-consuming if we have a very large number of
examples and features. So in our approach we use Stochastic gradient descent.
If we update the Q-network at each time step we have the familiar Q-learning
algorithm.
Deep Q Network Algorithm. Our first approach is based on a Deep Q Net-
work. First we utilize a technique known as Experience Replay. We store the
tuple (s, a, r, s′) at each time step in a dataset D with maximum capacity N,
known as replay memory. During the inner loop of the algorithm, we sample a
mini-batch of experiences from the replay memory and train the Q-network. The
sample is drawn uniformly from the replay memory i.e. every tuple has the save
probability to be chosen. In our approach we sample experiences regardless of
their significance. Alternatively, one could use the Prioritized Experience Replay
method in order to replay important transitions more frequently, and therefore
learn more efficiently. With the use of Experience Replay, we break the correla-
tion of data, and because each experience is potentially used in many updates we
have greater data efficiency. Overall, the use of the replay memory smooths the
learning process and helps the Q-network to avoid to fall into local minimums
and that we will eventually find the optimal policy of every state-action pair.

Deep learning requires a large amount of hand-labeled training data which
are later used as the target values when minimizing the loss function. In our case
the target value, for iteration i, has the following form:

yi = Es′∼Environment[r + γmaxa′Q′(s′, a′; θi)|s, a] (4)

An Elastic and Scalable Topic-Based Pub/Sub System 173

where Q′ is a different Neural Network, called Target Network. The Target Net-
work has the same architecture as the initial Q-network but with frozen param-
eters. Then, every C-steps we update the Weights of the Target Network to
match the Weights of the initial Q-network. This leads to a more stable training
because it keeps the target function fixed for C time steps.

Another benefit of the Deep Q Network algorithm is that it is able to find
which input data play an important role on the behaviour of the Q-network and
which are not. Given the above, we feed the Q-network with a 37 vector as input
(this is the total number of metrics we collect from the Monitoring component),
and it decides which inputs are important. So the best action to take here is
to feed the network with all information available. Those inputs that are not
significant will have weights approaching to zero.
Double Deep Q Network Algorithm. The Deep Q Network Algorithm is
known to overestimate action values, which can impact training especially early
on. If the DQN takes action 1 for example and learns a high Q value for that
specific action, that means that action 1 is going to be selected more, compared
to the other possible actions. This further overestimates the Q value for that
state action which leads to training instability and poor performance.

The idea in the Double Deep Q Network to reduce overestimations is
to decouple the selection and the evaluation of an action. As above, we use the
Q-network to select and evaluate actions using the ε-greedy strategy. But when
it comes to computing the target yi, we first find which action to take using the
Q-network Q and evaluate that action based on the target Q-network Q′. The
formula for that is:

yi = Es′∼Environment[r + γQ′(s′, argmaxa′Q(s′, a′; θi); θ−
i)|s, a] (5)

As earlier, the weights of the target Q-network θ− are replaced with the weights
of the Q-network θ every C-steps.

3.2 Scaling Decisions

In this section we describe our process for adding and removing brokers from
the Kafka cluster. When a broker is added, it will not automatically be assigned
any partitions, so we have to come up with a reassignment plan to move already
existing partitions to the newly added broker, in order to fully operate and be
part of the Kafka cluster. For this purpose, we utilize a simple round robin par-
tition technique. First, we calculate how many partitions must be moved to the
new broker, the total number of partitions divided by the number of active bro-
kers, including the new one. Then we start constructing our custom reassignment
plan by simply beginning from a random broker, picking one partition from the
broker and adding it to the reassignment plan which is in JSON format, and then
sequentially perform the same operation on each broker we encounter, until we
reach the appropriate amount of partitions. Using this scheme we can achieve
a fair redistribution of the partitions among the available brokers in the Kafka
cluster. So we are evenly spreading the load. When removing a broker from the

174 T. Giannakopoulos and V. Kalogeraki

Kafka cluster, we follow the same procedure. First, we get the partitions which
are located on the broker marked for removal. Then, we again construct a cus-
tom reassignment plan by allocating each partition to a broker following the
round robin technique, starting from a random broker and sequentially going to
the next one until all partitions are matched to a broker. We utilize the Kafka
partition reassignment tool to move the partitions across the brokers.

This tool supports three modes:

– generate: In this mode, given a list of topics and a list of brokers, the tool
generates a reassignment plan to move the topics to the brokers specified in
the list.

– execute: In this mode, the user provides a reassignment plan and the tool
executes it. It can be either the reassignment plan from the generate mode
or a handcrafted one.

– verify : In this mode, the tool verifies if the partitions in the reassignment
plan moved successfully to their specified broker.

We make use of the above modes provided by the partition reassignment
tool. The generate mode outputs the current partition assignment, so we have
a complete view of where each partition is located in the cluster. We use this
information to construct our custom assignment. Note that we do not use the
proposed assignment of the tool as it outputs random movements between the
active brokers in the cluster and as a result incurs a large overhead. In our
approach we tried to minimize the number of movements as much as possible. In
the execute mode, we provide our custom reassignment plan as a json file. This
is the step where the actual movement of the partitions takes place. Finally, the
verify mode is important when we remove one of the brokers. We remove the
broker from the cluster only when the reassignment plan finishes execution.

The operation of the Reassign Partitions Tool are summarized below.

1. First the tool updates the Zookeeper path “/admin/reassign partitions” with
the partition assignments we specified in the JSON file we created.

2. The Kafka Controller listens to the above path for changes. It gets notified
from a ZooKeeper Watch.

3. For each specified partition, the following procedure is executed:
(a) Start new replica partitions in RAR-AR (RAR = Reassigned Replicas,

AR = original list of Assigned Replicas)
(b) Wait until the new replica partitions are in sync with the leader partitions.
(c) Check if the leader partitions are in RAR, if not elect a leader from RAR.
(d) Stop replicas from AR-RAR.
(e) Clear the Zookeeper path “/admin/reassign partitions”.

Note that the tool only updates the path. The Kafka Controller is responsible
to execute the reassignment. To make sure that records are not lost during the
cluster expansion, we utilize the acks setting in the Kafka producer configuration.
It denotes the number of brokers that must receive the record before we consider
the sending of a message successful. In our case we used the option, acks = all.

An Elastic and Scalable Topic-Based Pub/Sub System 175

This way we ensure that we will not loose any records during cluster scaling,
even if producers and consumer perform write and/or read operation on the
partitions marked for movement.

4 Evaluation

We evaluated our approach in our local cluster comprising physical machines
Intel Core i7-8700k and Intel Core i7-9750H, each with 16 GB DDR4 RAM,
running Ubuntu 20.04 and with the Docker daemons installed. The training
of the Deep Q Network and Double Deep Q Network was performed on an
Nvidia RTX 2070 with 8 GB GDDR6 memory. The RTX features 2,304 CUDA
cores which makes it ideal for performing multiple computations simultaneously
compared to a single CPU, which in our case comprises 12 logical cores.

Our Deep Learning model is a 3-layer fully connected network. The first
layer consists of 64 neurons, the second layer 128 neurons and the third one
of 256 neurons. We initialize the weights of our network using Xavier uniform
initializer, to address the problem of vanishing and exploding gradients [18]. One
key point of our implementation is that we perform layer normalization on the
input sample to improve the training speed. In our case, our input sample is a
37th dimensional vector with each column comprising a different feature. Each
feature has its own range of values, e.g. one feature is the active number of
brokers, at a given time point, ranging from 3 to 11 brokers, and another feature
is the average producer latency, again at the same time point, ranging from 0
to 500 in milliseconds. So normalizing the input sample will help us reduce the
training time.

Machine learning algorithms that use a variation of Gradient descent, as an
optimization technique, require data to scale as it helps the model to converge
quickly towards the global minimum. In standard Deep Learning, the most used
normalization technique is batch normalization [19], but it cannot be applied on
online tasks such as our Deep Q Network and Double Deep Q Network implemen-
tations. Thus, we used layer normalization [20], that was designed to overcome
the drawbacks of batch normalization. Layer normalization can be applied on a
single training sample compared to batch normalization, and that is the main
reason we chose it for our network.

We utilize the following hyper-parameters: mini-batch size (number of train-
ing cases over which SGD update is computed) was set to 10, the replay memory
size (SGD updates are sampled from the replay memory buffer) was set to 42, the
target network update frequency was set to 5, the discount factor (gamma used
in the Q-learning update) was set to 0.99, and the update frequency was set to 1
(selecting value 1 results in updating after every scaling action). The optimiza-
tion method we used was RMSprop, a stochastic gradient descent method that
maintains a moving (discounted) average of the square of gradients and divide
the gradient by the root of this average. The learning rate used by the Adam
optimizer was set to 0.00025, the initial value of the ε exploration was 1 and the
final exploration was 0.1 and we perform 10 random action at the start of the

176 T. Giannakopoulos and V. Kalogeraki

first two episodes. Some important aspects to note: (a) We do not clear out the
replay memory after each episode, this enables us to recall and build batches
of experiences from across episodes. (b) We used RMSprop as our optimization
algorithm with zero momentum value(as in [21,22]).

Each experiment runs a total time of 30 min. At time-step 0 we create the
required topics and initialize the producers and the consumers. We perform one
scaling action every 40 sec. A scaling up or scaling down action takes roughly
20 sec. We performed experiments with 3 different reward functions, keeping the
same network architecture and hyperparameters, and comparing the results of
the two different learning algorithms, DQN and Double DQN. For the experi-
ments we used a total of 1.8M records per producer, each record had a size of
124 bytes. We used 4 Producers, 4 Consumers. We varied the number of Brokers
between 3 and 11 and each topic had 16 partitions. The DQN and Double DQN
agents were trained for 10 episodes.

In our experiments we evaluated our approach with the following reward
functions:
Reward Function as a Function of the Number of Active Brokers. In
our first reward function we defined the immediate reward r as a function of the
number of active brokers, as:

rt = −NumberOfActiveBrokerst (6)

where we give a negative reward at each time step. This way we incentivize our
DQN and Double DQN agents to reduce the number of brokers to the minimum.

Fig. 2: DQN in early (top row) and later (bottom row) stages of training (reward
as a function of brokers).

An Elastic and Scalable Topic-Based Pub/Sub System 177

Fig. 3: Double DQN in early (top row) and later (bottom row) training (reward
as a function of brokers).

Reward Function as a Service Level Objective (SLO). A service-level
agreement (SLA) is a commitment between a service provider and a client. SLA
defines the metrics by which the service is measured, and the penalties, in case
the agreed-on service levels not be achieved. For our purposes we want the 95th%
of the Average End-to End Latency to be under 200 milliseconds. Choosing
the appropriate SLO was complex, but we set this value of 200 ms as it was
reasonable for our setting with 11 active brokers. The reward in this case is a
piecewise function and depends on the percentage difference of the actual value
with the SLO.

Summarizing, our second reward function has the following form:

rt =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2C if Total Latency is 200% over SLO
−3/2C if Total Latency is 150% over SLO
−C if Total Latency is 100% over SLO
−1/4C if Total Latency is 50% over SLO
−1/10C if Total Latency is over 10% SLO
0 Otherwise

Reward Function as a Weighted Sum of Active Brokers and SLO. Our
third reward function was defined with respect to both the number of active
brokers and the SLO and had the following form:

NormalizedBrokerCostt = − ABr − MinBr

MaxBr − MinBr
(7)

where AB is the number of Active Brokers at timestep t, MinBr is the minimum
number of Brokers and MaxBr is the maximum number of Brokers. For our

178 T. Giannakopoulos and V. Kalogeraki

Fig. 4: DQN in early (top row) and later (bottom row) stages of training (reward
as a function of SLO).

Fig. 5: Double DQN in early (top row) and later (bottom row) stages of training
(reward as a function of SLO).

setup MinBr has a value of 3 while MaxBr a value of 11. The SLA cost has the
following form:

An Elastic and Scalable Topic-Based Pub/Sub System 179

Fig. 6: DQN in early (top row) and later (bottom row) stages of training (reward
as function of both active brokers and the SLO).

SLACostt =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

C TotalLatency is 200% over SLO
(80/100)C TotalLatency is 150% over SLO
(60/100)C TotalLatency is 100% over SLO
(40/100)C TotalLatency is 50% over SLO
(20/100)C TotalLatency is over SLO
0 Otherwise

where C = –1. Note that SLAClost ranges between –1 and 0. We combine the
different costs into a single cost function using a Simple Additive Weighting
(SAW) technique. According to SAW, we define the reward function as follows:

rt = Wbrokers ∗ NormalizedBrokerCostt + Wsla ∗ SlaCostt (8)

where Wbrokers, Wsla satisfy the restriction Wbrokers + Wsla = 1. In the experi-
ments we used Wbrokers = Wsla = 50% and the SLO was set to 300ms.

As we observe from the results presented above (Figs. 2, 3, 4, 5, 6 and 7), for
the three different reward functions, both DQN and Double DQN agents per-
formed well and quickly achieved the expected behavior, at each a scaling action.
Our evaluation results illustrate that, independently of the reward function, each
agent was able to achieve the goal i.e. to maximize the expected value of the
cumulative sum of a received scalar signal (reward), with no adjustment of the
Deep Learning Model or hyperparameters across each learning algorithm. Both
agents performed equally well, with respect to the total number of rewards accu-
mulated across each episode. The third reward function, Double DQN achieved
higher performance on almost each training episode. Regarding the first reward

180 T. Giannakopoulos and V. Kalogeraki

Fig. 7: Double DQN in (top row) and later (bottom row) stages of training
(reward as function of active brokers and the SLO).

function, both agents learned that the optimal behavior was to keep the number
of active brokers to the bare minimum. While on the second reward function, in
order to keep the latency below the predefined threshold, both agents learned
that in order to achieve that they must keep the number of active brokers to the
maximum. When using the third reward function, there is a trade off between
the number of active brokers and the SLO. As our experiments indicate, both
agents managed to learn the optimal policy, satisfying the SLO most of the time
while keeping the number of active brokers to the least required.

5 Related Work

There has been work on adaptation and load balancing techniques in pub/sub
systems. The main difference between topic-based and content-based pub/sub
systems is the fact that the latter organize brokers in an overlay network so the
load balancing problem is solved by either dynamically changing the network
topology [7] or by updating the routing paths [8]. The authors in [8] propose a
new publication routing algorithm that takes into account broker resources and
publication popularity among subscribers for content-based pub/sub systems.
In [7] the authors propose a dynamic load balancing technique for content-based
publish/subscribe systems. Their algorithm distributes the incoming load by
offloading subscribers from heavily loaded brokers to less loaded brokers. How-
ever, they use simple threshold based techniques for determining when a node
is overloaded and try to balance the load in the set of nodes that reside to the
same overlay as they examine the problem in a content-based pub/sub system.
In [9] the authors proposed an approach to address the problem of hot topics in

An Elastic and Scalable Topic-Based Pub/Sub System 181

pub/sub systems by exchanging load related information about the brokers. The
authors in [10] examined the load balancing problem in topic-based pub/sub sys-
tems where the goal is to automatically construct an overlay network and then
establish the appropriate publication routing. Similarly, authors in [11] proposed
a distributed algorithm to build and maintain a routing structure that can be
used by topic-based pub/sub systems that exploit overlay networks. Further-
more, in [12] they deal with the problem of congestion avoidance in content-based
pub/sub systems. They consider the congestion invoked due to unsubscriptions.
In a topic based system like Kafka this would not create problems as there is no
hierarchy (i.e., similar to the routing tables) of the brokers. Similarly, Pietzuch
et al. [13] presented a pub/sub congestion control scheme that adjusts the rate
of publishing new messages, allowing brokers under recovery to eventually catch
up, and other brokers to keep up. In our problem we assume that we cannot
control the rate at which publishers send their messages to the brokers. In our
work our aim is to use machine learning techniques with system performance
metrics in order to build the appropriate robustness and drive the decisions that
will enable us to develop elastic and scalable pub/sub systems.

Machine learning techniques provide a promising adaptation approach to
maintaining QoS properties of QoS-enabled pub/sub middleware in dynamic
environments. The problem of autonomic adaption has also been studied in the
context of service level agreements. For example, Herssens et al. [14] study the
problem of autonomically adapting service level agreements (SLAs) when the
context of the specified service changes, to offer QoS for Web services. Their
goal is to negotiate the QoS agreement to fit the needs of the dynamic environ-
ment. [15] et al. and [16] et al. apply machine learning techniques to deal with
parameters uncertainty or simplify the configuration of QoS-enabled middleware
and adaptive transport protocols to maintain specified QoS as systems change
dynamically. The results of their work show that decision trees and neural net-
works can effectively classify the best protocols to use in adaptive environments.

6 Conclusions

In this paper we propose our approach for building a robust, scalable and elastic
pub/sub system utilizing Deep Reinforcement Learning techniques. We evalu-
ated our approach on Apache Kafka, with two algorithms, Deep Q Networks
and Double Deep Q Networks, with three different reward functions. Our per-
formance evaluation illustrated that, each agent was able to achieve the goal and
thus can be efficiently utilized to address system changes or overload situations.

Acknowledgment. This research has been supported by the H2020 LAMBDA
Project 734242, the EU ICT-48 2020 project TAILOR (No. 952215), the H2020 Auto-
Fair project (No. 101070568).

182 T. Giannakopoulos and V. Kalogeraki

References

1. César, C., Zhang, K., Kemme, B., Kienzle, J., Jacobsen, H.A.: Publish/subscribe
network designs for multiplayer games. In: Proceedings of the 15th International
Middleware Conference, pp. 241–252 (2014)

2. Yoav, T., Naaman, N., Harpaz, A., Gershinsky, G.: Hierarchical clustering of mes-
sage flows in a multicast data dissemination system. In: IASTED PDCS, Phoenix,
AZ, USA, vol. 5 (2005)

3. Sharma, Y., et al.: Wormhole: reliable pub-sub to support geo-replicated internet
services. In: 12th USENIX Symposium on Networked Systems Design and Imple-
mentation, NSDI 2015, vol. 15, Oakland, CA, USA, pp. 351–366 (2015)

4. Google Cloud Pub/Sub. https://cloud.google.com/pubsub/
5. Kreps, J., Narkhede, N., Rao, J., et al.: Kafka: a distributed messaging system for

log processing. In: Proceedings of the NetDB, Athens, Greece, pp. 1–7, June 2011
6. Apache Pulsar. https://pulsar.apache.org/
7. Cheung, A.K.Y., Jacobsen, H.-A.: Dynamic load balancing in distributed content-

based publish/subscribe. In: van Steen, M., Henning, M. (eds.) Middleware 2006.
LNCS, vol. 4290, pp. 141–161. Springer, Heidelberg (2006). https://doi.org/10.
1007/11925071 8

8. Salehi, P., Zhang, K., Jacobsen, H.A.: PopSub: improving resource utilization in
distributed content-based publish/subscribe systems. In: Proceedings of the 11th
ACM International Conference on Distributed and Event-based Systems, DEBS
2017, Barcelona, Spain, pp. 88–99 (2017)

9. Dedousis, D., Zacheilas, N., Kalogeraki, V.: On the fly load balancing to address hot
topics in topic-based pub/sub systems. In: 2018 IEEE 38th International Confer-
ence on Distributed Computing Systems (ICDCS), ICDCS 2018, Vienna, Austria
(2018)

10. Chen, C., Jacobsen, H.-A., Vitenberg, R.: Algorithms based on divide and conquer
for topic-based publish/subscribe overlay design. IEEE/ACM Trans. Networking
24(1), 422–436 (2016)

11. Turau, V., Siegemund, G.: Scalable routing for topic-based publish/subscribe sys-
tems under fluctuations. In: 2017 IEEE 37th International Conference on Dis-
tributed Computing Systems (ICDCS), ICDCS 2017, Atlanta, GA, USA, pp. 1608–
1617. IEEE (2017)

12. Chen, M., Hu, S., Muthusamy, V., Jacobsen, H.A.: Congestion avoidance with
incremental filter aggregation in content-based routing networks. In: 2015 IEEE
35th International Conference on Distributed Computing Systems, ICDCS 2015,
Columbus, OH, USA, pp. 557-568 (2015)

13. Pietzuch, P.R., Bhola, S.: Congestion control in a reliable scalable message-oriented
middleware. In: Endler, M., Schmidt, D. (eds.) Middleware 2003. LNCS, vol. 2672,
pp. 202–221. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-44892-
6 11

14. Herssens, C., Faulkner, S., Jureta, I.J.: Context-driven autonomic adaptation of
SLA. In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS,
vol. 5364, pp. 362–377. Springer, Heidelberg (2008). https://doi.org/10.1007/978-
3-540-89652-4 28

15. Hoffert, J., Mack, D., Schmidt, D.: Using machine learning to maintain pub/sub
system GOS in dynamic environments. In: Proceedings of the 8th International
Workshop on Adaptive and Reflective Middleware, ARM 2009, Urbana, IL, USA,
pp. 1–6 (2009)

https://cloud.google.com/pubsub/
https://pulsar.apache.org/
https://doi.org/10.1007/11925071_8
https://doi.org/10.1007/11925071_8
https://doi.org/10.1007/3-540-44892-6_11
https://doi.org/10.1007/3-540-44892-6_11
https://doi.org/10.1007/978-3-540-89652-4_28
https://doi.org/10.1007/978-3-540-89652-4_28

An Elastic and Scalable Topic-Based Pub/Sub System 183

16. Russo, G.R., Cardellini, V., Presti, F.L.: Reinforcement learning based policies for
elastic stream processing on heterogeneous resources. In: 13th ACM International
Conference on Distributed and Event-based Systems (DEBS 2019), pp. 31–42,
Darmstadt, Germany, June 2019

17. Karger, D., et al.: Web caching with consistent hashing. Comput. Netw. 31(11),
1203–1213 (1999)

18. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward
neural networks. In: Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, vol. 9, pp. 249–256, Chia Laguna Resort, Sar-
dinia, Italy, 13–15 May 2010

19. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by
reducing internal covariate shift (2015)

20. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization (2016)
21. Mnih, V.: Playing Atari with deep reinforcement learning, NIPS deep learning

workshop (2013)
22. Mnih, V., et al.: Human-level control through deep reinforcement learning nature,

vol. 518, pp. 529–33, February 2015
23. Kafka streams API. https://kafka.apache.org/documentation/streams/

https://kafka.apache.org/documentation/streams/

Invited Paper

Challenges in Automated Measurement
of Pedestrian Dynamics

Maarten van Steen1(B), Valeriu-Daniel Stanciu2, Nadia Shafaeipour3,
Cristian Chilipirea4, Ciprian Dobre5, Andreas Peter6, and Mingshu Wang7

1 Digital Society Institute, University of Twente, Enschede, The Netherlands
m.r.vansteen@utwente.nl

2 Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente,
Enschede, The Netherlands

3 Faculty of Geo-information Science and Earth Observation, University of Twente, Enschede,
The Netherlands

4 Azure Cloud, Microsoft, Bucharest, Romania
5 Faculty of Automatic Control and Computer Science, Politehnica University of Bucharest,

Bucharest, Romania
6 Department of Computer Science, University of Oldenburg, Oldenburg, Germany

7 School of Geographical & Earth Sciences, University of Glasgow, Glassgow, UK

Abstract. Analyzing pedestrian dynamics has since long been an active and
practical field of interest. Since the introduction of, in particular, smartphones,
various organizations saw a simple means for automatically measuring pedes-
trian dynamics. The basic idea is simple: network packets sent by WiFi-enabled
devices can be collected by sensors and by extracting the unique MAC address
from each packet, it should be possible to count how many devices are detected
by a single sensor, as well as how devices move between sensors. Although this
approach has been commercially deployed for many years, it is now largely for-
bidden (at least in the EU) due to obvious privacy infringements. In this paper,
we address challenges and some potential solutions to automated measurement of
pedestrian movements while protecting privacy. The results come from learning
the hard way: having run experiments extensively over the past years, we have
gradually gained considerable insight in what is possible and what may lie ahead.

1 Introduction

Understanding pedestrian dynamics is a long-standing scientific field motivated by
questions from very different domains (e.g., tourism [11], urban planning [14], safety
and security [12]). Automating the measurement of pedestrian dynamics allows for
collecting more accurate data than what is possible by manual means. In the past
decade, much attention has been spent on using the fact that people carry network-
connected devices such as smartphones (see, e.g., the extensive surveys conducted by

This is an internally reviewed accompanying paper to a keynote delivered by Maarten van Steen
at DAIS 2022, and is to be considered as background information for that talk.

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
D. Eyers and S. Voulgaris (Eds.): DAIS 2022, LNCS 13272, pp. 187–199, 2022.
https://doi.org/10.1007/978-3-031-16092-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16092-9_12&domain=pdf
https://doi.org/10.1007/978-3-031-16092-9_12

188 M. van Steen et al.

our team [7,23]). Such devices regularly transmit network packets, and many of those
packets contain information that uniquely identifies the transmitter, such as its MAC
address in WiFi or Bluetooth communications. The basic idea is that such identifiers
can be used as a proxy for the person carrying the associated device. In this way, it
becomes possible to, in principle, gather statistics on the whereabouts of a pedestrian
by simply capturing his or her movements through identification of the device that is
being carried.

There are several problems with this approach. For one, such schemes infringe upon
a person’s privacy and are largely forbidden, as formulated in the European General
Data Protection Regulation (GDPR). However, the strict regulation on the automated
collection of data transmitted by devices is being alleviated in the case data is used for
statistical counting, and under the condition that pedestrians are informed, as well as
that the data is discarded after the statistics have been computed [6]. Although these
measures allow for some automated gathering of data, the question of how to do so in a
privacy-preserving manner remains open.

Next to privacy infringements, there are other problems pertaining to the data
gathered by collecting network packets. Many modern devices use randomized MAC
addresses whenever possible, effectively making it impossible to check whether a
device has been detected for a long time at a specific location, or has moved between
two locations. MAC address randomization is offered by device manufacturers in light
of privacy considerations, but it is not a technique that can be applied to all packets.
Likewise, detecting packets in outdoor environments is by itself already difficult, cer-
tainly if packets can be captured by multiple sensors at the same time as it makes it
much harder to determine the location of a device.

In this paper, written for a nonexpert, we address several of these problems, with an
emphasis on privacy protection. We discuss potential solutions based on our own expe-
rience with experiments we conducted in the past five years, as well as some solutions
that are currently being explored by others.

2 Automated Measurement of Pedestrian Behavior

Key to automated measurement of pedestrian dynamics is capturing network traffic
from a device carried by a person and extracting an identifier of that device. Capturing
network traffic and extracting an identifier is done by means of a sensor that knows the
communication protocol (WiFi, Bluetooth). A WiFi access point can be re-purposed
to record the MAC network address transmitted by a device and use these as device
identifiers. However, such a raw device identifier is considered to be personal infor-
mation and recording it can be considered intrusive. Common practice has therefore
been to transform a raw device identifier RID to a pseudonym PID using a secure one-
way encryption function F (e.g., a collision-resistant cryptographic hash function). The
pseudonym is unique for a given raw device identifier, but the function makes it compu-
tationally infeasible to derive the raw identifier from the pseudonym. In other words, the
inverse function F−1 is infeasible to compute. In this way, one can use the pseudonym
PID= F(RID) as a device identifier. Given a sufficiently strong hash function (several
of which are known to exist, such as SHA256), it is impractical to determine the RID
from the PID alone.

Challenges in Automated Measurement of Pedestrian Dynamics 189

Schemes are also being deployed in which a provably secure parameterized one-
way encryption function is used to generate the pseudonym. To illustrate, consider such
a function FT,S with two parameters, a parameter T related to a time span, and a param-
eter S associated with a group of one or more specific sensing locations. The values of
the parameters determine which pseudonym is generated, given an identifier as input.
In other words, if we take RID as the raw device identifier, we can recognize that device
through the pseudonym PID = FT,S(RID) (here T and S can be considered what are
known as salts for the hash function). If we change either T or S, FT,S(RID) will change
as well. Note that F is collision resistant: when changing the value for T or S, a pseu-
donym is generated that makes it practically impossible to associate it with any other
pseudonym based on RID [9].

To illustrate, if T spans only a single day, yet S is the same for a number of sensing
locations, it becomes computationally impossible to identify the same physical device
over periods lasting more than one day. It will be possible to identify the same device
as being at different sensing locations during a single day. If we change S per location
(i.e., different sensors use different encryption functions), identifying the movement of
a device across multiple sensing locations is computationally infeasible.

Device
ID extractor PID

constructor
PID

collector

PID bufferdevicePIDdeviceID

Epoch ETimespan T
Sensor group S

Device
Device

Set of
detections for
timespan T,

sensor group S,
epoch E,

Sensor Server

Fig. 1. The general organization of many current sensors for measuring pedestrian dynamics.

Current approaches are summarized in Fig. 1. Devices transmit signals that are cap-
tured by a sensor σ, which subsequently extracts a device identifier, typically the afore-
mentioned RID. This identifier is then (securely) transmitted to a server where it is
converted to a device pseudonym, and handed over to a PID collector. The latter gen-
erally collects PIDs for a relatively small detection period, or time window, referred to
as an epoch, and places detected PIDs in a buffer, ignoring PIDs that had already been
encountered during that epoch. An epoch typically lasts 5min and effectively identifies
the time of a detection (e.g., as the tuple 〈year,month,day,hour, timeslot〉). In this way,
the collector registers the unique devices it has seen during that epoch and avoids any
double counting. At the end of the epoch, each collected device is added to the set of
detections as a tuple 〈PID,E,σ〉, which tells when (E) and where (σ) a device with
identifier PID was detected.

In practical situations, we see that commercial companies use so-called WiFi probe
messages to identify devices, let T span a single day, and often use a different value
for S per sensor. A probe message is broadcast by a WiFi-enabled device in search of a
WiFi access point to set up a connection. Such schemes allow for footfall counting on

190 M. van Steen et al.

a per-daily basis. We also see cases where T spans much longer intervals and where S
is the same for all sensors, which effectively allows for tracking. Recently, this led to a
fine of 600k C in The Netherlands for violation of the GDPR.1

In the following, we assume sensor nodes to be trusted and to follow a single fun-
damental design principle:

FDP1: Any data produced by a collection of (trusted) sensors cannot be traced
back to a physical device.

This principle states that no matter how we combine the data coming from sensors, it
should be impossible to identify an actual physical device, and thus its owner. As a con-
sequence, any system processing this data, data generated by any collection of trusted
sensors, is secure by design. Ideally, no extra security measures need to be implemented
for the processing system. Note that stating the principle does not mean that it can
be easily established. For example, when only very few devices are detected, it may
become difficult to protect the privacy of their owners. Also, as we shall see, we do
need to rely on a noncolluding server.

Given the GDPR and its alleviation for measuring pedestrian dynamics, we focus
our work on secure and privacy-aware statistical counting. In particular, we want a
system that can address the following two types of queries:

• Query type 1: How many people have been at location L during time span T?
• Query type 2: How many people, when at location L1 during time span T1, were at

location L2 during time span T2?

Given that not everyone will carry a network-enabled device, and that some people
may also have more than one such device, it is clear that precise counting is out of the
question. Moreover, many modern smartphones now deliberately use nonidentifiable
information when transmitting specific network packets (namely for the WiFi probe
requests which are used for automated measurements), typically in the form of ran-
domized MAC addresses. In addition, it is well known that radio signals as used in
wireless communication systems often exhibit highly unpredictable behavior [4]. This
means that we need to deal with missing network packets, but also packets which are
received at a much larger distance than would normally be possible considering the
specifications of the wireless medium.

In addition, simply assuming that sensors can be trusted is easier said than done.
We therefore also require the following:

FDP2: A sensor may not store any information that may be traced back to a
physical device any longer than strictly necessary for statistical counting,

FDP3: A sensor may not share information that may be traced back to a physical
device.

In other words, even storing pseudonyms needs to be limited to a minimal amount of
time and those pseudonyms need to be confined to the sensor. This leads to the design
sketched in Fig. 2.

1 https://autoriteitpersoonsgegevens.nl/en/news/dutch-dpa-fines-municipality-wi-fi-tracking.

https://autoriteitpersoonsgegevens.nl/en/news/dutch-dpa-fines-municipality-wi-fi-tracking

Challenges in Automated Measurement of Pedestrian Dynamics 191

Device
ID extractor PID

constructor
PID

collector

PID buffer

Data
protector

devicePIDdeviceID

Epoch

Set of
detectionsDevice

Device

Encryption
(if needed)

(Encrypted) set of
detections for
timespan T

sensor group S
epoch E

Sensor Server

Timespan T
Sensor group S

Fig. 2. The design of a privacy-protecting sensor.

There are a number of important differences from current approaches. First and
foremost, we introduce a separate data protector. A data protector takes a collection
of PIDs as input and produces a set of detections from which it is computationally
infeasible to extract any original PID. We explain below how this can be achieved. Sec-
ond, the whole path from ID extraction to an anonymized set of detections takes place
at the (trusted) sensor. We do not trust the server collecting data from many sensors
or the communication medium between the sensor and the server. If we need to store
data external to the sensor, we do so only after the sensor has taken sufficient privacy-
protecting measures. Thirdly, all data that we stored until handed over to the protector
is deleted after the elapse of an epoch. Only the protected set of detections is kept.

3 Protecting Privacy Through Detection k-anonymity

3.1 Approach

In a first attempt to protect privacy, we developed a method based on achieving k-
anonymity [15]. To explain, let PID denote the set of all possible PIDs. We devise a
mapping m to a new set of pseudonyms MPID, such that for each detected pid ∈ PID
there are at least k− 1 other detected pseudonyms {pid1, . . . ,pidk−1} ⊂ MPID with
m(pid) = m(pidi). To rephrase this, assuming that each sensor stores mapped pseudo-
nyms, then for each such stored pseudonym associated with some epoch, we are guar-
anteed that the sensor actually detected at least k different devices during that epoch.
We denote such a mapped pseudonym as a multipseudonym. It is important that com-
bining multipseudonyms preserves this k-anonymity.

A straightforward mapping is the one that simply truncates detected pseudonyms.
This works fine, in particular if we can assume that pseudonyms are effectively drawn
uniformly at random (which can be achieved by using a secure hashing function that
generates a pseudonym from a detected MAC address). A uniform distribution guar-
antees that no biases are introduced when removing bits, and thus no systematic error
when trying to map multiple PIDs to the same multipseudonym. For each epoch, a
sensor then stores truncated pseudonyms as multipseudonyms and records how many
different pseudonyms it detected for each stored multipseudonym. A problem, however,
is that we need to determine a priori, i.e., at design time, how many bits to keep without
knowing if that choice will lead to having detected enough pseudonyms to guarantee

192 M. van Steen et al.

k-anonymity. In other words, truncation of detected pseudonyms may leave us with mul-
tipseudonyms for which there are simply less than k detected pseudonyms. In that case,
we have no choice than to discard those multipseudonyms (and thus also the counts of
the number of associated detected pseudonyms). Clearly, this may seriously affect the
accuracy of counting pedestrians.

As an alternative to discarding multipseudonyms, we can also remap detected pseu-
donyms such that k-anonymity is preserved. To this end, we need to consider only the
multipseudonyms and their associated detected pseudonyms that violate k-anonymity.
A naive approach is to generate an unused multipseudonym and assign that to the first
k detected pseudonyms (for which k-anonymity was violated); generate another unused
multipseudonym for the next k detected pseudonyms, and so on. This solution works
fine for a single location, but not if we want to count how many pedestrians moved
from location A to B. The problem is that any relation with what was detected at A is
lost when generating multipseudonyms at B (at least for those detected pseudonyms that
violated k-anonymity). We then might have just as well discarded them.

We thus need a systematic way of mapping k-anonymity-violating detected pseu-
donyms (we refer to them simply as violating pseudonyms), and apply that method
to all sensors. We proceed as follows with what we denote as a correction method.
Assume a sensor has n violating pseudonyms for a specific epoch. It then sorts those
n pseudonyms and subsequently keeps only the top �n/k� ones. Using the remaining
n−�n/k� violating pseudonyms, it then systematically increases the counts for every
one of the remaining top of violating pseudonyms. In this way, in principle, almost none
of the counts for the other violating pseudonyms are lost. Moreover, if this procedure
is used at location A as well as B, we see that both locations will be assigning the same
multipseudonym to the same detected pseudonym, just as we wanted. The details can be
found in [15], along with a proof that when results from different sensors are combined,
k-anonymity is preserved.

3.2 Evaluation

We have evaluated this setup using simulations as well as real-world data. For the latter,
we used data on subway trips from Beijing [22,24]. That data set can be used to mimic
WiFi-based detections. The set consists of check-in and check-out records, each record
containing a unique card identifier, the identifier of the station where the card is being
checked, as well as a timestamp. For our purposes, namely counting the number of
devices that were detected at location A during some epoch e1 and later at location B
during epoch e2, the data is just fine: each check-in or check-out corresponds to a WiFi-
based detection of a device; the card identifier is analogous to aMAC address. (Note that
although we also have real-world measurements on WiFi data, those measurements do
not provide us with ground truth: they do not tell us which device actually moved from
one location to another. In contrast, the Beijing data set gives us an accurate account of
movements, making it, in principle, ideal for mimicking WiFi-based measurements.)

We apply the k-anonymity algorithm as explained above, for different values of the
epoch length, the size of truncated pseudonyms (i.e., the number of bits to keep), as
well as for different values of k. A check-in or check-out counter is treated as a sensor.
The idea is that each counter applies the algorithm and sends the k-anonymized data to

Challenges in Automated Measurement of Pedestrian Dynamics 193

a central server. If we consider an isolated trajectory, i.e., only those trips that have been
made between two specific locations, we attain high accuracy of counting the number
of trips between two locations. Results are generally better for lower values of k, yet
this is partly explained by the sometimes limited number of actual detections during
an epoch. We also see that there is a trade-off between the length of an epoch and
accuracy: the smaller an epoch is, the fewer detections we will have, in turn affecting
the accuracy (depending on k). The length of an epoch becomes less important once
enough detections can be guaranteed.

However, matters may easily deteriorate when combining trips, as also examined
in [15]. Let us return to the situation of counting pedestrians moving from A to B.
Assume that the sensor at A collected a set of pseudonyms PIDA, which were then
mapped to the multisetMPIDA. Likewise, at location Bwe have sets PIDB andMPIDB.
If there are no intermediate junctions, the multiset MPIDA ∩MPIDB represents the
devices that had moved from A to B.

Now consider the situation that we have two intermediate junctions Z1 and Z2 on
the path from A to B. At Z1 the sensor detects PIDZ1 devices entering the flow of
pedestrians moving from A to B, which are mapped to the multiset MPIDZ1. Assume
that MPIDA ∩MPIDZ1 is nonempty. At junction Z2, the sensor detects PIDZ2 devices
(mapped to MPIDZ2) leaving the flow again. If PIDZ2 ⊆ PIDA then, clearly, the final
count at B will be false: it will have been contaminated by devices entering at Z1 that
were mapped to the same multipseudonyms as those at A, which then for counting
purposes go unnoticed by the devices that left at Z2. This situation is sketched in Fig. 3.

......

Same MPID

Pedestrians entering the flow

Pedestrians from A leaving the flow

Fig. 3. The effect of devices entering and leaving a flow.

3.3 Reflection

Although the described approach toward k-anonymity is highly efficient, it turns out
that it is fairly sensitive to perturbations in flows of pedestrians between two locations.
Moreover, when considering practical situations such as subway networks, we have
found that setting correct values for epoch length and truncation sizes may be tricky. It
is yet unclear whether the approach is practically feasible.

194 M. van Steen et al.

4 Protecting Privacy Through Homomorphically Encrypted
Bloom Filters

4.1 Approach

An alternative to k-anonymity is to have sets of pseudonyms represented by Bloom
filters [2]. A Bloom filter is a constant-space probabilistic storage mechanism. Being
probabilistic, a Bloom filter can indicate that an item that was not included in the set is
actually present. The opposite is not true, if the Bloom filter indicates that an item is not
in the set it is guaranteed that this is true. The Bloom filter is represented using a vector
of m bits, initially all set to 0. Using a collection of k hash functions, an element x is
added to a Bloom filter by setting the position hi(x) to 1 for each of the k hash functions.
Each element can thus be represented as an m-bit vector consisting of exactly k bits set
to 1. A bitwise OR operation is performed each time an element is added.

A Bloom filter has the important property that one cannot retrieve the elements of
the set it represents other than by exhaustively testing for all possible elements. In other
words, a Bloom filter supports only membership tests. To check if x is in a set A, one
needs to check if every position hi(x) for the Bloom filter BF representing A has been
set to 1:

x ∈ A only if
k

∏
i=i

BF [hi(x)] = 1

(In the following, we will use the same notation for a set A and its representation by
means of a Bloom filter.) A Bloom filter allows for testing whether an element is in
the union of two sets, or in their intersection (this can be done by applying the OR
operation for union and the AND operation for intersection). This forms the basis for
counting at a single location (perhaps using multiple sensors), or counting movements
(between different locations, and certainly using multiple sensors). Statistical counting
is possible by means of a simple estimation n∗ of the number of elements in a Bloom
filter [17].

n∗ = −m
k
ln

(
1− X

m

)

where X is the number of nonzero elements in the Bloom filter.
One problem with the approach sketched so far is that the sensors would, in princi-

ple, need to share Bloom filters, which violates our design principle FDP3. Considering
that testing for membership entails a bitwise AND operation, which is equivalent to a
multiplication of 0’s and 1’s, we can test for such membership using multiplicative
homomorphic encryption. Such an encryption scheme enables the multiplication of
two encrypted numbers without the need to first decrypt those numbers. To clarify, let
[p] denote the homomorphically encrypted version of the number p. Then, with multi-
plicative homomorphic encryption, we have

[p]∗ [q] = [p∗q]

The basic idea is that a third party (e.g., a crowd expert) who needs the value of a sta-
tistical count provides a public key by which each sensor homomorphically encrypts

Challenges in Automated Measurement of Pedestrian Dynamics 195

the entries of its Bloom filter. Note also that if a value p is encrypted, leading to [p]1,
and that same value is encrypted a next time, leading to [p]2, the two encrypted val-
ues will be different: [p]1 �= [p]2 and an observer will not be able to distinguish the
two underlying values to be the same. Such an encrypted filter can be handed out to
another sensor without disclosing any detections. This latter sensor can still compute an
intersection [A] using its own Bloom filter (which has been homomorphically encrypted
with the same public key). Then, by simply shuffling the elements of that (encrypted)
intersection, the result will be an encrypted Bloom filter [A∗], in principle representing
a different set of devices (which have nothing to do with the actual detected devices)
yet of the same estimated size: A �= A∗, |A| = |A∗|. This encrypted Bloom filter [A∗] is
handed out to the entity having the private key, who can then compute |A∗|. Obviously,
no sensor would ever hand out its (encrypted) Bloom filter to the third party, as this
would violate FDP3.

4.2 Evaluation

Our initial motivation for developing an anonymization technique based on k-
anonymity was our assumption that using Bloom filters was simply too expensive in
terms of computational and storage resources. At that time, we were considering that
sensors would need to do handle all possible queries and also store results for those
queries. We were wrong. For many practical situations, using a Raspberry Pi4 as the
basis for a sensor, in combination with offloading the encrypted Bloom filters to a cen-
tralized server, is enough. In our experiments, assuming that a sensor needs to detect at
most 10,000 PIDs during a single epoch (again, meaning to be able to detect at most
10,000 different devices during, say, 5min), it takes just over 2min for a sensor to
process a complete pipeline of collecting data, constructing a Bloom filter, and subse-
quently encrypting the filter. The implementation is optimized in the sense that it makes
optimal use of multiple cores. A serial implementation takes close to 8min. When we
can assume that at most 1000 devices need to be detected per epoch, these numbers
drop to tens of seconds. Not surprisingly, the server, even lightweight versions, can eas-
ily handle the generated workloads. Our conclusion is that there are no serious problems
when it comes to performance.

We have also tested our setup against real data, gathered during a multi-day outdoor
festival. In this case, we evaluated how our method of privacy protection would lead to
the same results as the ones coming from the dataset as collected by the sensors that
were using the original pseudonyms. Because Bloom filters are probabilistic in nature,
deviations are to be expected in comparison to processing raw data. Again, we see that
we attain high accuracies in the 90–98% ranges for both footfall counting as well as
measuring the size of crowd flows. Some of these results have been reported in [16].

4.3 Reflection

There are reasons to believe that the described Bloom-filter approach is the way to go
for automatically measuring pedestrian dynamics. Yet, there are several challenges that
need to be addressed before drawing final conclusions.

196 M. van Steen et al.

The setup described so far implicitly relies on the assumption that devices are
detected by only one sensor at a time (this is why we can state that a flow moved
from one location to another). In practice, avoiding simultaneous detections of the same
device by multiple sensors may not be possible, or even desirable. For example, for pur-
poses of reliability, we may wish to install multiple sensors at a single location and com-
bine their detections as if they came from one, more powerful, sensor. In principle, this
is possible by constructing the union of (encrypted) Bloom filters over the same epoch
but from different sensors. Such a construction can be efficiently done by a server, as
described above. To what extent unions affect the design of Bloom filters remains to
be seen: there is a trade-off between the length m, the number of hash functions k, and
the accurate representation of sets of a given size, although unions of Bloom filters
are known to be lossless. More important is that constructing unions requires addi-
tive homomorphic encryption, implying that we may need a more advanced encryp-
tion scheme, or use two partial homomorphic schemes side-by-side. It is yet unclear
what this would mean for the design and implementation of the monitoring system as a
whole. Homomorphic encryption schemes are known to be generally computationally
hungry [1].

A final remark is in place. We essentially looked at combining only two Bloom
filters, and relied on the closed formula for estimating the size of the intersection [17], as
well as an improvement for that formula [13]. However, Bloom filters are probabilistic
data structures, meaning that when more than two filters are combined it is seen that
the estimated size becomes increasingly less accurate. No closed formula is known for
combining more than two Bloom filters. This implies that for practical implementations,
we need to look much closer into the accuracy of the final result after having combined,
in whatever way, several Bloom filters.

5 Other Challenges

Although protecting privacy has been a major issue in automated measuring pedestrian
dynamics, there are many other issues that need to be taken into account. Let us consider
a number of those that we encountered in the past years, of which some have also been
reported in [4].

5.1 Behavior of Carry-On Devices and (non)overlapping Sensor Ranges

The whole idea of automated measurements assumes that carry-on devices send out
packets at some minimal frequency. We have found that this may be a flawed assump-
tion. In fact, the behavior of different devices, especially from different manufacturers,
may vary widely, as also reported by others [10]. Together with the fact that wireless
communication is inherently difficult, making many transmitted packets impossible to
detect, even when in advertised range, means that automated measurements have an
unexpectedly low number of detections. One possible solution is to increase the length
of an epoch, as it simply increases the chance of capturing packets from a device that is
within range of a sensor. On the other hand, long epochs can easily complicate deciding
where a device actually is: just imagine that within a single epoch a device is detected

Challenges in Automated Measurement of Pedestrian Dynamics 197

at two locations (which may easily happen when a device moves from one location to
another within that epoch). Effectively, increasing epochs means that devices may more
easily be detected by multiple sensors during the same epoch. Yet, even if epochs are
small enough, we still need to handle the case in which sensor ranges overlap. Deter-
mining a location of a detected device may turn out to be difficult, in turn, hindering the
process of determining the size of crowd flows.

After running real-world experiments trying to distinguish bystanders looking at a
marching crowd and the marching crowd itself, Groba [10] draws the conclusion that the
behavior of carry-on devices may be so unpredictable that it may be close to impossible
to answer this type of questions or to accurately measure pedestrian dynamics.

5.2 MAC-Address Randomization

The statistical counting techniques described above are independent of the actual tech-
nique for detecting a device. So far, we have gained considerable experience with WiFi-
based detections, which have shown to be prone to many unreliable measurements,
notably in outdoor environments [3,5]. Making things more difficult is the general-
ization of the use of MAC-address randomization. When devices are associated to an
access point, such as, for example, when roaming within a public network or within
international networks such as Eduroam, they will always use their uniquely assigned
MAC address. In other cases, when a device is actively seeking for a network, we see
that increasingly often MAC-address randomization is deployed. This randomization
makes it much more difficult to identify devices. Attempts have been made to automati-
cally fingerprint devices by considering other fields in the transmitted signals (see, e.g.,
[20], which follows a machine-learning approach). We are investigating to what extent
the negative effects of MAC-address randomization can be mitigated to increase the
accuracy of device identification, along with other techniques. Others are also devel-
oping techniques that may prove to be useful [18]. In addition, it remains unclear
to what extent MAC randomization is effective [8,21], and to what extent it actually
affects accurately counting pedestrian dynamics. For example, if the used randomMAC
address remains the same during an epoch, footfall counting may still be possible.

5.3 Stationary Versus Nonstationary Devices

As a final challenge, detections are hindered by the fact that many stationary WiFi-
based devices mingle with nonstationary devices. When counting pedestrian (flows),
the two need to be separated. For flows, this may be simple if we can assume that
stationary devices at one location do not show up at another. For footfall counting,
which takes place at a single location, ensuring that only nonstationary devices are
counted is important.

A simple solution to this problem is to filter out pseudonyms that have been seen
for a long time. Unfortunately, such an approach may easily violate FDP2, which boils
down to keeping information on a detected device too long. Fortunately, we can use our
Bloom-filter approach for distinguishing stationary devices. The basic idea is to still
register detected pseudonyms in a Bloom filter, but now to count how often a specific
entry is set, leading to a counting Bloom filter. Assuming that over time a stationary

198 M. van Steen et al.

device is more often detected than a nonstationary one, we can set a watermark on all
entries of the counting Bloom filter to separate what we see as entries belonging to
stationary devices and those that do not. We then extract two new Bloom filters: one
of which the counts per entry were less than the chosen threshold, and one with entries
that counted equal or more than the threshold. Again, all operations can be done on
homomorphically encrypted Bloom filters. Eventually, only the encrypted Bloom filter
with detections from nonstationary devices is returned, after having shuffled its entries
so that only counting can be done.

6 Conclusions

Automatically measuring the dynamics of pedestrians continues to be a difficult prob-
lem. It is somewhat surprising to see the optimism that various groups report on attained
accuracies, but above all that so few groups have been paying attention to the protec-
tion of privacy. We have come to the conclusion that privacy can be successfully pro-
tected using a combination of Bloom filters for storing detected pseudonyms, together
with homomorphic encryption techniques for combining filters under encryption. At
the same time, more work needs to be done, notably when it comes to settings in which
sensors have overlapping ranges, or when many Bloom filters need to be combined.

Regardless of our means to protect privacy, we need to be aware of the difficulty
of gathering accurate detections. MAC-address randomization is one hindrance, but
there are many more, as we have discussed. We speculate that once privacy protection
is indeed considered to be safe, we may be able to open paths to smartphone apps
that assist in measuring crowd dynamics, operating completely unobtrusively, in the
background. This approach is very similar to the apps used for warning a user that he or
she was in close range to a COVID-infected person, which used the privacy-protecting
protocol Decentralized Privacy-Preserving Proximity Tracing (DP-3T) [19].

References

1. Acar, A., Aksu, H., Uluagac, A.S., Conti, M.: A survey on homomorphic encryption
schemes: theory and implementation. ACM Comput. Surv. 51(4), 1–35 (2018)

2. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM
13(7), 422–426 (1970)

3. Chilipirea, C., Dobre, C., Baratchi, M., van Steen, M.: Identifying movements in noisy crowd
analytics data. In: 19th International Conference Mobile Data Management (MDM 2018),
pp. 161–166. IEEE Computer Society Press, Los Alamitos, CA, June 2018

4. Chilipirea, C., Petre, A., Dobre, C., van Steen, M.: Presumably simple: monitoring crowds
using WiFi. In: 17th International Conference on Mobile Data Management, pp. 220–225.
IEEE, IEEE Computer Society Press, Los Alamitos, CA, June 2016

5. Chilipirea, C., Baratchi, M., Dobre, C., van Steen, M.: Identifying stops and moves in WiFi
tracking data. Sensors (Switserland) 18(11) (2018)

6. Council of the European union: proposal for a regulation of the european parliament and
of the council concerning the respect for private life and the protection of personal data in
electronic communications and repealing directive 2002/58/EC (Regulation on Privacy and
Electronic Communications). ST 5008 2021 (2021)

Challenges in Automated Measurement of Pedestrian Dynamics 199

7. Draghici, A., van Steen, M.: A survey of techniques for automatically sensing the behavior
of a crowd. ACM Comput. Surv. 51(1), 1–40 (2018)

8. Fenske, E., Brown, D., Martin, J., Mayberry, T., Ryan, P., Rye, E.: Three years later: a study
of MAC address randomization in mobile devices and when it succeeds. Proc. Priv. Enhanc-
ing Technol. 2021(3), 164–181 (2021)

9. Ferguson, N., Schneier, B., Kohno, T.: Cryptography Engineering: Design Principles and
Practical Applications. John Wiley, New York (2010)

10. Groba, C.: Demonstrations and people-counting based onWifi probe requests. In: 2019 IEEE
5th World Forum on Internet of Things (WF-IoT), pp. 596–600 (2019)

11. Lai, Y., Kontokosta, C.: Quantifying place: analyzing the drivers of pedestrian activity in
dense urban environments. Landscape Urban Plan. 180, 166–178 (2018)

12. Martella, C., Li, J., Conrado, C., Vermeeren, A.: On current crowd management practices
and the need for increased situation awareness, prediction, and intervention. Saf. Sci. 91,
381–393 (2017)

13. Papapetrou, O., Siberski, W., Nejdl, W.: Cardinality estimation and dynamic length adapta-
tion for bloom filters. Distrib. Parall. Databases 28(2), 119–156 (2010)

14. Southworth, M.: Designing the walkable city. J. Urban Plan. Dev. 131(4), 246–257 (2005)
15. Stanciu, V.D., van Steen, M., Dobre, C., Peter, A.: k-anonymous crowd flow analytics. In:

MobiQuitous 2020–17th EAI International Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services, pp. 376–385, December 2020

16. Stanciu, V.D., van Steen, M., Dobre, C., Peter, A.: Privacy-preserving crowd-monitoring
using bloom filters and homomorphic encryption. In: Proceedings of the 4th International
Workshop on Edge Systems, Analytics and Networking, pp. 37–42. ACM Press, New York,
NY, April 2021

17. Swamidass, S.J., Baldi, P.: Mathematical correction for fingerprint similarity measures to
improve chemical retrieval. J. Chem. Inf. Model. 47(3), 952–964 (2007)

18. Torkamandi, P., Kärkkäinen, L., Ott, J.: An online method for estimating the wireless device
count via privacy-preservingWi-Fi fingerprinting. In: Hohlfeld, O., Lutu, A., Levin, D. (eds.)
PAM 2021. LNCS, vol. 12671, pp. 406–423. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-72582-2 24

19. Troncosa, C., et al.: Decentralized privacy-preserving proximity tracing. CoRR
abs/2005.12273 (2020)

20. Uras, M., Cossu, R., Ferrara, E., Bagdasar, O., Liotta, A., Atzori, L.: Wi-Fi probes sniffing:
an artificial intelligence based approach for MAC addresses derandomization. In: 25th Inter-
national Workshop on Computer Aided Modeling and Design of Communication Links and
Networks (CAMAD), pp. 1–6. IEEE (2020)

21. Vasilevski, I., Blazhevski, D., Pachovski, V., Stojmenovska, I.: Five years later: how effective
is the MAC randomization in practice? The no-at-all attack. In: Gievska, S., Madjarov, G.
(eds.) ICT Innovations 2019. CCIS, vol. 1110, pp. 52–64. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-33110-8 5

22. Wang, M., Zhou, J., Long, Y., Chen, F.: Outside the ivory tower: visualizing university stu-
dents’ top transit-trip destinations and popular corridors. Reg. Stud. Reg. Sci. 3(1), 202–206
(2016)

23. Wijermans, N., Conrado, C., van Steen, M., Li, J., Martella, C.: A landscape of crowd-
management support: an integrative approach. Saf. Sci. 86(7), 142–164 (2016)

24. Zhou, J., Wang, M., Long, Y.: Big data for intra-metropolitan human movement studies: a
case study of bus commuters based on smart card data. Int. Rev. Spat. Plan. Sustain. Dev.
5(3), 100–115 (2017)

https://doi.org/10.1007/978-3-030-72582-2_24
https://doi.org/10.1007/978-3-030-72582-2_24
https://doi.org/10.1007/978-3-030-33110-8_5
https://doi.org/10.1007/978-3-030-33110-8_5

Author Index

Amariei, Ciprian 21

Baloochestani, Arian 37
Barbosa Rodrigues, Alexandre Jorge 57
Barcelos, Patrícia Pitthan 151
Ben Toumia, Sadok 3
Berger, Christian 3
Borges, Pedro 131
Brogi, Antonio 74

Canek, Rodrigo 131
Chilipirea, Cristian 187

De Rosa, Pasquale 29
Dobre, Ciprian 187

Fazul, Rhauani Weber Aita 151
Felber, Pascal 95
Fördős, Viktória 57
Forti, Stefano 74

Giannakopoulos, Thanos 167
Göttel, Christian 95

Hagos, Desta Haileselassie 114

Jehl, Leander 37

Kalogeraki, Vana 167
Khurshid, Anum 95

Meling, Hein 37
Ménétrey, Jämes 95

Onica, Emanuel 21

Pasin, Marcelo 95
Payberah, Amir H. 114
Peter, Andreas 187

Raza, Shahid 95
Reiser, Hans P. 3

Schiavoni, Valerio 29, 95
Shafaeipour, Nadia 187
Soldani, Jacopo 74
Stanciu, Valeriu-Daniel 187

Taconet, Chantal 131

van Steen, Maarten 187
Vlassov, Vladimir 114

Wang, Mingshu 187
Wang, Tianze 114

	 Foreword
	 Preface
	 Organization
	 Contents
	Blockchains and Cryptocurrencies
	An Evaluation of Blockchain Application Requirements and Their Satisfaction in Hyperledger Fabric
	1 Introduction
	2 Related Work
	3 Background
	4 Methodology
	5 Requirements Analysis
	5.1 Electronic Voting (EVote)
	5.2 Supply Chains (IBM Food Trust and GoDirect Trade)
	5.3 Healthcare (Change Healthcare)
	5.4 Banking (VISA B2B Connect)

	6 How HLF Meets Enterprise Requirements
	6.1 Resilience Requirements
	6.2 Performance Requirements

	7 Performance Evaluation
	7.1 Multi Ordering Services Performance
	7.2 Mixed Workloads
	7.3 Discussion

	8 Conclusion
	References

	Using SGX for Meta-Transactions Support in Ethereum DApps
	1 Introduction
	2 Background
	3 Basic Solution Design
	4 Discussion and Open Directions
	5 Conclusion
	References

	Understanding Cryptocoins Trends Correlations
	1 Introduction
	2 Background
	3 Preliminary Evaluation
	4 Related Work
	5 Conclusion and Future Work
	References

	Rebop: Reputation-Based Incentives in Committee-Based Blockchains
	1 Introduction
	2 Committee-Based Blockchains
	3 System and Protocol Model
	4 Attacks and Incentives
	5 Rebop: Reputation-Based Reward Opportunity
	6 Incentive Analysis
	6.1 Baseline Analysis
	6.2 Collusion Resistance of Rebop
	6.3 Preventing Byzantine Attacks

	7 Simulation Results
	7.1 Resistance Against Colluding Processes
	7.2 Byzantine Resistance

	8 Related Works
	9 Conclusion
	References

	Fault Tolerance
	Lesser Evil: Embracing Failure to Protect Overall System Availability
	1 Introduction
	2 Problem Statement
	3 Erlang
	4 Lesser Evil
	4.1 Entities
	4.2 Badness
	4.3 Strategy
	4.4 Compensating Actions
	4.5 Architecture
	4.6 Discussion
	4.7 Note on Applicability

	5 Evaluation
	5.1 Test Subject
	5.2 Configuration
	5.3 Experiments
	5.4 Results
	5.5 Conclusion and Limitations
	5.6 Threats to Validity

	6 Related Work
	7 Conclusion
	References

	Failure Root Cause Analysis for Microservices, Explained
	1 Introduction
	2 Motivating Scenario
	3 Declarative Failure Root Cause Analysis
	4 Prototype Implementation
	5 Evaluation
	6 Related Work
	7 Conclusions
	References

	Trusted Execution, Deep Learning, and IoT
	Attestation Mechanisms for Trusted Execution Environments Demystified
	1 Introduction
	2 Attestation
	2.1 Local Attestation
	2.2 Remote Attestation
	2.3 Mutual Attestation

	3 Issuing Attestations Using TEEs
	3.1 TEE Cornerstone Features
	3.2 Trusted Environments and Remote Attestation
	3.3 Intel SGX
	3.4 Arm TrustZone Architectures
	3.5 AMD SEV
	3.6 RISC-V Architectures

	4 Future Work
	5 Conclusion
	References

	Accelerate Model Parallel Deep Learning Training Using Effective Graph Traversal Order in Device Placement
	1 Introduction
	2 Preliminaries
	2.1 Device Placement
	2.2 Placeto
	2.3 Graph Traversal Order

	3 Graph Traversal Orders in Device Placement
	3.1 Challenges in Device Placement
	3.2 Impact of Graph Traversal Orders

	4 Evaluation
	4.1 Datasets
	4.2 Experiment Setup
	4.3 Results and Analysis
	4.4 Discussion and Guidelines

	5 Related Work
	6 Conclusion
	References

	Analysis of the Impact of Interaction Patterns and IoT Protocols on Energy Consumption of IoT Consumer Applications
	1 Introduction
	2 Consuming IoT Applications: Architecture, Interaction Patterns and Protocols
	2.1 Distributed IoT Architecture
	2.2 Interaction Patterns
	2.3 IoT Protocols

	3 Related Work
	4 Experimental Methodology
	4.1 Experimental Setup
	4.2 Process to Isolate the Communication Energy Consumption
	4.3 Experimental Plan
	4.4 Threats to Validity

	5 Analysis
	5.1 (RQ1) Impact of the Interaction Pattern
	5.2 (RQ2) Impact of the Application Protocol
	5.3 (RQ3) Impact of the QoS in MQTT
	5.4 (RQ4) Impact of the Payload
	5.5 Guidelines for IoT Consumer Application Designers

	6 Conclusions
	References

	Elastic and Scalable Systems
	The HDFS Replica Placement Policies: A Comparative Experimental Investigation
	1 Introduction
	2 Data Replication in HDFS
	2.1 Block Re-replication
	2.2 Replica Rearrangement

	3 Replica Placement Policies
	4 Related Work
	5 Experimentation
	5.1 First Stage: Data Load
	5.2 Second Stage: Block Re-replication
	5.3 Third Stage: Replica Rearrangement

	6 Conclusions and Future Work
	References

	An Elastic and Scalable Topic-Based Pub/Sub System Using Deep Reinforcement Learning
	1 Introduction
	2 System Architecture and Model
	2.1 Apache Kafka
	2.2 System Architecture and Model

	3 Proposed Methodology
	3.1 Deep Reinforcement Learning
	3.2 Scaling Decisions

	4 Evaluation
	5 Related Work
	6 Conclusions
	References

	Invited Paper
	Challenges in Automated Measurement of Pedestrian Dynamics
	1 Introduction
	2 Automated Measurement of Pedestrian Behavior
	3 Protecting Privacy Through Detection k-anonymity
	3.1 Approach
	3.2 Evaluation
	3.3 Reflection

	4 Protecting Privacy Through Homomorphically Encrypted Bloom Filters
	4.1 Approach
	4.2 Evaluation
	4.3 Reflection

	5 Other Challenges
	5.1 Behavior of Carry-On Devices and (non)overlapping Sensor Ranges
	5.2 MAC-Address Randomization
	5.3 Stationary Versus Nonstationary Devices

	6 Conclusions
	References

	Author Index

