

Total Coloring of Planar Graphs Without Some Adjacent Cycles

Liting Wang and Huijuan $\operatorname{Wang}^{(\boxtimes)}$

School of Mathematics and Statistics, Qingdao University, Qingdao 266071, China sduwhj@163.com

Abstract. Let G = (V, E) be a graph. If $x, y \in V \cup E$ are two adjacent or incident elements, then a k-total-coloring of graph G is a mapping φ from $V \cup E$ to $\{1, 2, \ldots, k\}$ on condition that $\varphi(x) \neq \varphi(y)$. In this paper, we define G to be a planar graph with maximum degree $\Delta \geq 8$. We prove that if for each vertex $v \in V(G)$, there exist two integers i_v , $j_v \in \{3, 4, 5, 6, 7, 8\}$ on condition that v is not incident with adjacent i_v -cycles and j_v -cycles, then G has a $(\Delta + 1)$ -total-coloring.

Keywords: Total coloring \cdot Planar graph \cdot Short cycle

1 Introduction

In this paper, all graphs mentioned are finite, simple and undirected. Undefined notions and terminologies can be referred to [1]. Suppose G is a graph, then V and d(v) are used to denote the vertex set and the degree of v. We use F, d(f)and E to denote the face set, the degree of f and the edge set respectively. Then $\Delta = \max\{d(v)|v \in V\}$ is the maximum degree of a graph and $\delta = \min\{d(v)|v \in V\}$ V} is the minimum degree. We use *n*-vertex, n^+ -vertex, or n^- -vertex to denote the vertex v when d(v) = n, $d(v) \ge n$, or $d(v) \le n$ respectively. A n-face, n^+ -face, or n^- -face are analogously defined. We use (n_1, n_2, \ldots, n_k) to denote a k-face and its boundary vertices are n_i -vertex (i = 1, 2, ..., k). Similarly, we can define a $(n_1^+, n_2^-, \ldots, n_k)$ -face. For instance, a (l, m^+, n^-) -face is a 3-face whose boundary vertices are *l*-vertex, m^+ -vertex and n^- -vertex respectively. If two cycles or faces have at least one common edge, then we call they are adjacent. We use $n_k(f)$ to denote the number of k-vertices that is incident with f. The number of k^+ -face incident with f is denoted as $n_{k^+}(f)$ and the number of k^- face incident with f is denoted as $n_{k-}(f)$. We use $n_k(v)$ to denote the number of k-vertices adjacent to v and use $f_k(v)$ to denote the number of k-faces incident with v. If G has a k-total-coloring, then we say that G can be totally colored by k colors. For the convenience of description, we say that G is total-k-colorable when G can be totally colored by k colors. If G can be totally colored by at least k colors, then k is the total chromatic number of G that is defined as χ'' . It is easy to know that $\chi''(G) \geq \Delta + 1$. For the upper bound of χ'' , Behzad [2] and Vizing [3] put forth the Total Coloring Conjecture (for short, TCC):

Conjecture 1. For any graph, $\Delta + 1 \leq \chi''(G) \leq \Delta + 2$.

TCC has attracted lots of researchers' attention. However, this conjecture remains open even for planar graphs. In 1971, Rosenfeld [4] and Vijavaditva [5] confirmed TCC for all graphs with $\Delta \leq 3$ independently. Kostochka [6] proved that $\chi''(G) \leq \Delta + 2$ when $\Delta \leq 5$. For a planar graph, TCC is unsolved only when $\Delta = 6$ (see [6,18]). With the advances in research, some researchers found that $\chi''(G)$ of some specific graphs have an exact upper bound $\Delta + 1$. In 1989, Sánchez-Arroyo [7] demonstrated that it is a NP-complete problem to determine whether $\chi''(G) = \Delta + 1$ for a specified graph G. Moreover, for every fixed $k \geq 3$, McDiarmid and Sánchez-Arroyo [8] demonstrated that to determine whether a specific k-regular bipartite graph is total- $(\Delta + 1)$ -colorable or not is also a NPcomplete problem. However, it is possible to prove that $\chi''(G) = \Delta + 1$ when G is a planar graph having large maximum degree. It has been proved that $\chi''(G) = \Delta + 1$ on condition that G is a planar graph when $\Delta(G) \geq 11$ [9], $\Delta(G) = 10$ [10] and $\Delta(G) = 9$ [11]. It is still open to determine whether a planar graph is total- $(\Delta + 1)$ -colorable when $\Delta = 6, 7$ and 8. If G is a planar graph and $\Delta(G) = 8$, then there are some relevant results obtained by adding some restrictions. For instance, for a planar graph with $\Delta(G) > 8$, it is proved that G is total- $(\Delta + 1)$ -colorable if G does not contain k-cycles (k = 5, 6) [13], or adjacent 3-cycles [12], or adjacent 4-cycles [14]. Wang et al. [15] proved $\chi''(G) = \Delta + 1$ if there exist two integers $i, j \in \{3, 4, 5\}$ such that G does not contain adjacent *i*-cycles and *j*-cycles. Recently, a result has been proved in [20] for a planar graph with $\Delta(G) = 8$, that is, if for each vertex $v \in V$, there exist two integers i_v , $j_v \in \{3, 4, 5, 6, 7\}$ on condition that v is not incident with adjacent i_v -cycles and j_v -cycles, then G is total- $(\Delta + 1)$ -colorable. Now we improve some former results and get the following theorem.

Theorem 1. Suppose G is a planar graph with maximum degree $\Delta \geq 8$. If for each vertex $v \in V$, there exist two integers i_v , $j_v \in \{3, 4, 5, 6, 7, 8\}$ on condition that v is not incident with adjacent i_v -cycles and j_v -cycles. Then G is total- $(\Delta + 1)$ -colorable.

2 Reducible Configurations

Theorem 1 has been proved for $\Delta \geq 9$ in [11]. So we presume that $\Delta = 8$ in the rest of this paper. Suppose G = (V, E) is a minimal counterexample to Theorem 1, that is, |V| + |E| is as small as possible. In other words, G cannot be totally colored by $\Delta + 1$ colors, but every proper subgraph of G can be totally colored with $\Delta + 1$ colors. In this section, we give some information of configurations for our minimal counterexample G. A configuration is called to be reducible if it cannot occur in the minimal counterexample G. Firstly, we show some known properties of G.

Lemma 1. ([9]). (a) G is 2-connected.

(b) Suppose v_1v_2 is an edge of G. If $d(v_1) \le 4$, then $d(v_1) + d(v_2) \ge \Delta + 2 = 10$.

(c) Suppose G_{28} is a subgraph of G that is induced by the edges joining 2-vertices to 8-vertices. Then G_{28} is a forest.

Lemma 2. ([16]). G has no subgraph isomorphic to the configurations depicted in Fig. 1, where 7 - v is used to denote the vertex of degree of seven. If a vertex is marked by \bullet , then it has no more neighbors that are not depicted in G.

Fig. 1. Reducible configurations of Lemma 2

Lemma 3. ([19]). Suppose $v \in V$, d(v) = d and $d \ge 6$. Let v be clockwise adjacent to v_1, \ldots, v_d and incident with f_1, f_2, \ldots, f_d such that v_i is the common vertex of f_{i-1} and f_i ($i \in \{1, 2, \ldots, d\}$). Notice that f_0 and f_d denote a same face. Let $d(v_1) = 2$ and $N(v_1) = \{v, u_1\}$. Then G contains none of the following configurations. (see Fig. 2):

- (1) there exists an integer $k \ (2 \le k \le d-1)$ such that $d(v_{k+1}) = 2$, $d(v_i) = 3$ $(2 \le i \le k)$ and $d(f_j) = 4 \ (1 \le j \le k)$.
- (2) there exist two integers k and t $(2 \le k < t \le d-1)$ such that $d(v_k) = 2$, $d(v_i) = 3 \ (k+1 \le i \le t), \ d(f_t) = 3 \ and \ d(f_j) = 4 \ (k \le j \le t-1).$
- (3) there exist two integers k and t $(3 \le k \le t \le d-1)$ such that $d(v_i) = 3$ $(k \le i \le t), d(f_{k-1}) = d(f_t) = 3$ and $d(f_j) = 4$ $(k \le j \le t-1).$
- (4) there exists an integer k $(2 \le k \le d-2)$ such that $d(v_d) = d(v_i) = 3$ $(2 \le i \le k), d(f_k) = 3$ and $d(f_j) = 4$ $(0 \le j \le k-1).$

Fig. 2. Reducible configurations of Lemma 3

Lemma 4. ([20]). Suppose u is a 6-vertex. If u is incident with one 3-cycle which is incident with a 4-vertex, then $n_{5+}(u) = 5$.

Lemma 5. ([17]). G contains no $(6, 6, 4^+)$ -cycles.

Lemma 6. Suppose $v \in G$. If d(v) = 8 and $n_2(v) \ge 1$, then $n_{5^+}(v) \ge 1$.

Proof. Suppose G' is a subgraph of G. The mapping φ is said to be a nice coloring of G if $G' = G - \{v | v \in V, d(v) \leq 4\}$ has a $(\Delta + 1)$ -total-coloring. It is clear that a nice coloring can be easily extended to a $(\Delta + 1)$ -total-coloring of G, because a 4⁻-vertex has at most 8 forbidden colors. Hence, in the following, we will always assume that every 4⁻-vertex is colored in the end.

Contrarily, we assume that G contains a configuration with d(v) = 8, $n_2(v) \ge 1$, and $n_{5^+}(v) = 0$. Suppose v is a 8-vertex. Let v be clockwise adjacent to v_1, v_2, \ldots, v_8 and incident with e_1, e_2, \ldots, e_8 such that v_i is incident with e_i $(i = 1, 2, \ldots, 8)$. Since $d(v_i) \le 4$ $(i = 1, 2, \ldots, 8)$, we uncolor the adjacent vertices of v and color them in the end. We may assume that $d(v_1) = 2$. Then the one edge incident with v_1 is e_1 , and the other edge incident with v_1 is denoted as e_9 . Because of the minimality of G, $H = G - e_1$ has a nice coloring. Firstly, suppose $\varphi(e_9) = 9$. Otherwise, we color e_1 with 9 to get a nice coloring of G, which is a contradiction, so $\varphi(e_9) = 9$. We recolor v with 9, and color e_1 with 1 to get a nice coloring of G, which is a contradiction.

3 Discharging

In this section, we will accomplish the proof of Theorem 1 by using discharging method. The discharging method is a familiar and important way to solve coloring problems for a planar graph. By Euler's formula |V| - |E| + |F| = 2, we have

$$\sum_{v \in V} (2d(v) - 6) + \sum_{f \in F} (d(f) - 6) = -6(|V| - |E| + |F|) = -12 < 0$$

We define w(x) of $x \in V \cup F$ to be the original charge function. Let w(v) = 2d(v) - 6 for every $v \in V$ and w(f) = d(f) - 6 for every $f \in F$. So $\sum_{v \in V \cup F} w(x) < 0$. We use $\omega(x \to y)$ to denote the amount of total charge from x to y. We shall give proper discharging rules and transfer the original charge to get a new charge. We have two rounds of discharging rules. We use $w^*(x)$ to denote the charge of $x \in V \cup F$ after the first round of discharging and use w'(x) to denote the charge of $x \in V \cup F$ after the second round of discharging. If there is no discharging rule for $x \in V \cup F$, then the last charge of x is equal to the original charge of x. Notice that the total charge of G is unchangeable after redistributing the original charge, so $\sum_{x \in V \cup F} w'(x) = \sum_{x \in V \cup F} w(x) = -6\chi(\Sigma) = -12 < 0$. We will get an obvious contradiction by proving that $\sum_{x \in V \cup F} w'(x) \ge 0$.

These are the discharging rules:

R1. Suppose v is a 2-vertex. If u is adjacent to v, then $\omega(u \to v) = 1$.

R2. Let f be a face which is incident with v. Suppose d(v) = 4 or 5. If d(f) = 4, then $\omega(v \to f) = \frac{1}{2}$. If d(f) = 5, then $\omega(v \to f) = \frac{1}{3}$. Finally v sends the surplus charge to 3-faces incident with it evenly.

R3. If a 3-face is incident with 6-vertices and 7⁺-vertices, then it receives $\frac{5}{4}$ from 7⁺-vertices.

R4. Every 7⁺-face sends $\frac{d(f)-6}{d(f)}$ to its adjacent 3-faces.

If $w^*(f) < 0$ of a 5⁻-face after the first round discharging, then we have the second round discharging:

R5. If $w^*(f) < 0$, then f receives $|\frac{w^*(f)}{n_{6^+}(v)}|$ from every 6⁺-vertices incident it which do not give any charge to f.

Lemma 7. Suppose f is a face which is incident with v.

$$\begin{aligned} \textbf{1. If } d(v) &= 6, \ then \\ & \begin{cases} \frac{5}{4}, & if \ d(f) = 3 \ and \ n_4(f) = 1, \\ \frac{11}{10}, & if \ d(f) = 3 \ and \ n_5(f) \geq 1, \\ 1, & if \ d(f) = 3 \ and \ n_6 + (f) = 3, \\ 1, & if \ d(f) = 3, \ n_{5^-}(f) = 0 \ and \ n_{7^+}(f) = 1, \\ \frac{1}{2}, & if \ d(f) = 3 \ and \ n_{7^+}(f) = 2, \\ \frac{2}{3}, & if \ d(f) = 4 \ and \ n_{3^-}(f) = 1, \\ \frac{1}{2}, & if \ d(f) = 4 \ and \ n_{3^-}(f) = 0, \\ \frac{1}{3}, & if \ d(f) = 5. \end{aligned}$$

Proof. Suppose v is incident with a 4⁺-face f. Then it is clear that Lemma 7 is correct by R2 and R5. Now we think about that f is a 3-face that is incident with v. If d(v) = 6, then there exist no 3⁻-vertices adjacent to v by Lemma 1(b). If there exists a 4-vertex incident with f, then f is incident with a 7⁺-vertex by Lemma 5. So $\omega(v \to f) \leq 3 - \frac{5}{4} - \frac{1}{4} = \frac{5}{4}$. If $n_5(f) = 1$ and $n_{6^+}(v) = 2$, then $\omega(v \to f) \leq \frac{3-\frac{4}{5}}{2} = \frac{11}{10}$. Suppose $n_5(f) = 2$. If there exists one 5-vertex incident with five 3-faces, then the other 5-vertex is incident with at least two 6⁺-faces. So $\omega(v \to f) \leq 3 - \frac{4}{5} - \frac{4}{3} \leq \frac{11}{10}$. If there exists one 5-vertex incident with four

3-faces, then all of the two 5-vertices are incident with at least one 6⁺-face. So $\omega(v \to f) \leq 3 - 1 \times 2 \leq \frac{11}{10}$. Suppose $n_{6^+}(f) = 3$. Then $\omega(v \to f) \leq \frac{3}{3} = 1$. If $n_{5^-}(f) = 0$ and $n_{7^+}(f) = 1$, then the 7⁺-vertex sends $\frac{5}{4}$ to f by R4, so $\omega(v \to f) \leq \frac{3-\frac{5}{4}}{2} = \frac{7}{8}$. If $n_{7^+}(f) = 2$, then $\omega(v \to f) \leq 3 - \frac{5}{4} \times 2 = \frac{1}{2}$. If $d(v) \geq 7$, then there exists at most one 3⁻-vertex adjacent to v, so $\omega(v \to f) \leq \frac{3}{2}$. If $n_{3^-}(f) = 0$, then $\omega(v \to f) \leq \frac{3-\frac{1}{2}}{2} = \frac{5}{4}$.

Lemma 8. Suppose d(v) = 8. Let v be clockwise adjacent to v_1, v_2, \ldots, v_n $(n \ge 3)$ and incident with $f_1, f_2, \ldots, f_{n-1}$ such that f_j is incident with v_j and v_{j+1} . Clearly, f_0 and f_d denote a same face. If $d(v_1) = d(v_n) = 2$ and $d(v_i) \ge 3$ $(i = 2, 3, \ldots, n-1)$, then $\sum_{i=1}^{n-1} \omega(v \to f_i) \le \frac{5}{4}n - \frac{9}{4}$.

 $\begin{array}{l} Proof. \mbox{ By Lemma 2, we know that } d(f_1) \geq 4 \mbox{ and } d(f_{n-1}) \geq 4. \mbox{ Firstly, suppose } \\ d(f_1) = 4 \mbox{ and } d(f_{n-1}) = 4. \mbox{ If } \min\{d(f_2), d(f_3), \ldots, d(f_{n-2})\} \geq 5, \mbox{ then } n \geq 4, \mbox{ so } \\ \sum_{i=1}^{n-1} \omega(v \to f_i) \leq 1 \times 2 + \frac{1}{3}(n-3) \leq \frac{5}{4}n - \frac{9}{4}. \mbox{ If } \min\{d(f_2), d(f_3), \ldots, d(f_{n-2})\} = 4 \\ \mbox{ and } \max\{d(f_2), d(f_3), \ldots, d(f_{n-2})\} = 5, \mbox{ then } \sum_{i=1}^{n-1} \omega(v \to f_i) \leq n-2 + \frac{1}{3} \leq \frac{5}{4}n - \frac{9}{4}. \mbox{ If } d(f_2) = d(f_3) = \ldots = d(f_{n-2}) = 4, \mbox{ then } \sum_{i=1}^{n-1} \omega(v \to f_i) \leq n-2 + \frac{1}{3} \leq \frac{5}{4}n - \frac{9}{4}. \mbox{ If } d(f_2) = d(f_3) = \ldots = d(f_{n-2}) = 4, \mbox{ then } \sum_{i=1}^{n-1} \omega(v \to f_i) \leq n-2 + \frac{1}{3} \leq \frac{5}{4}n - \frac{9}{4}. \mbox{ suppose } \min\{d(f_2), d(f_3), \ldots, d(f_{n-2})\} = 3 \\ \mbox{ and } \max\{d(f_2), d(f_3), \ldots, d(f_{n-2})\} = 4. \mbox{ If } d(f_2) = 4 \mbox{ or } d(f_{n-2}) = 4, \mbox{ then } \\ \omega(v \to f_1) + \omega(v \to f_2) \leq \max\{1 \times 2, \frac{3}{4} + \frac{5}{4}\} = 2 \mbox{ and } \omega(v \to f_{n-2}) + \omega(v \to f_{n-1}) \leq \max\{1 \times 2, \frac{3}{4} + \frac{5}{4}\} = 2. \mbox{ Moreover, } v \mbox{ sends more charge to } 3 \mbox{-faces than } \\ 4 \mbox{-faces, so we assume that } v \mbox{ is incident with } 3 \mbox{-faces as more as possible. Hence, } \\ \sum_{i=1}^{n-1} \omega(v \to f_i) \leq 2 \times 2 + \frac{5}{4} \times (n-5) \leq \frac{5}{4}n - \frac{9}{4}. \mbox{ Suppose } d(f_2) = d(f_3) = \ldots = \\ d(f_{n-2}) = 3, \mbox{ then } f_j \mbox{ } (2 \leq j \leq n-2) \mbox{ receives at most } \frac{5}{4} \mbox{ for } v \mbox{ by Lemma 3. } \\ \mbox{ Hence, } \sum_{i=1}^{n-1} \omega(v \to f_i) \leq \frac{3}{4} \times 2 + \frac{5}{4} \times (n-3) \leq \frac{5}{4}n - \frac{9}{4}. \mbox{ Suppose } \\ \min\{d(f_1), d(f_{n-1})\} = 4 \mbox{ and } \max\{d(f_1), d(f_{n-1})\} \geq 5. \mbox{ If } d(f_2) = d(f_3) = \ldots = \\ d(f_{n-2}) = 3, \mbox{ then } \sum_{i=1}^{n-1} \omega(v \to f_i) \leq \frac{3}{4} + \frac{1}{3} + \frac{3}{2} + \frac{5}{4} \times (n-4) \leq \frac{5}{4}n - \frac{9}{4}. \\ \mbox{ If } \max\{d(f_2), d(f_3), \ldots, d(f_{n-2})\} = 4, \mbox{ then } \sum_{i=1}^{n-1} \omega(v \to f_i) \leq 1 \times 2 + \frac{1}{3} + \frac{3}{2} + \frac{5}{4} \times (n-5) \leq \frac{5}{4}n - \frac{9}{4}. \\ \mbox{ If } \max\{d(f_1), d(f_{n-1})\} \geq 5. \mbox{ Then } \\ \sum_{i$

In the rest of this paper, we can check that $w'(x) \ge 0$ for every $x \in V \cup F$ which is a contradiction to our assumption. Let $f \in F$. If $d(f) \ge 7$, then $w'(f) \ge w(f) - \frac{d(f)-6}{d(f)} \times d(f) = 0$ by R4. If f is a 6-face, then w'(f) = w(f) = 0. Suppose $d(f) \le 5$. If $n_{6^+}(f) \ge 1$, then $w'(f) \ge 0$ by R5. If $n_{6^+}(f) = 0$, then $n_5(f) = d(f)$. Suppose d(f) = 3 and the boundary vertices of f are consecutively v_1, v_2 and v_3 . Then $d(v_i) = 5$ (i = 1, 2, 3). By R2, 4⁺-face receives at most $\frac{1}{2}$ from incident 4-vertices or 5-vertices. Suppose $f_3(v_i) \le 3$ (i = 1, 2, 3). Then $\omega(v_i \to f) \ge 1$, so $w'(f) \ge 3 - 6 + 1 \times 3 = 0$. Suppose there exists $f_3(v_1) \ge 4$. Without loss of generality, assume that $f_3(v_3) \ge 4$. Then we have $f_3(v_1) \le 4$ and $f_3(v_2) \le 4$. Otherwise, $f_3(v_1) = 5$ or $f_3(v_2) = 5$, then for any integers $j, k \in \{3, 4, 5, 6, 7, 8\}$, there exists a vertex incident with adjacent j-cycles and k-cycles. So we get a contradiction to the condition of Theorem 1. If $f_3(v_1) = 4$, then v_1 is incident with a 9⁺-face and v_2 is incident with at least two 6⁺-faces, so $\omega(v_1 \to f) \ge 1$ and $\omega(v_2 \to f) \geq 1$. Consequently, $w'(f) \geq 3 - 6 + \frac{4}{5} + 1 + \frac{4}{3} > 0$. Similarly, we know that if $f_3(v_2) = 4$, then w'(f) > 0. Suppose $f_3(v_1) = f_3(v_2) = 3$. Then v_1 and v_2 is incident with at least one 6^+ -face, so $\omega(v_i \to f) \geq \frac{4-\frac{1}{2}}{3} = \frac{7}{6}$, (i = 1, 2). Consequently, $w'(f) \geq 3 - 6 + \frac{4}{5} + \frac{7}{6} \times 2 > 0$. If d(f) = 4, then $w'(f) \geq 4 - 6 + \frac{1}{2} \times 4 = 0$ by R2. If d(f) = 5, then $w'(f) \geq 5 - 6 + \frac{1}{3} \times 5 > 0$ by R2. So for every $f \in F$, we prove that $w'(f) \geq 0$. Next, we consider that $v \in V$. Suppose d(v) = 2. Then it is clear that w(v) = -2, so $w'(v) = -2 + 1 \times 2 = 0$ by R1. If d(v) = 3, then w'(v) = w(v) = 0. Suppose d(v) = 4 or d(v) = 5. Then w'(v) = 0 by R2.

If v is a 6⁺-vertex of G. Let v be clockwise adjacent to v_1, \ldots, v_d and incident with f_1, f_2, \ldots, f_d such that v_i is the common vertex of f_{i-1} and f_i $(i \in \{1, 2, \ldots, d\})$. Notice that f_0 and f_d denote the same face. Suppose d(v) = 6. Then there exist no 3⁻-vertices incident with v by Lemma 1 (b). Clearly, w(v) = 2d(v) - 6 = 6. By Lemma 4, there exist at most two 3-faces incident with a 4-vertex. Hence, if $f_3(v) \leq 3$, then $w'(v) \geq 6 - \frac{5}{4} \times 2 - \frac{11}{10} \times 1 - \frac{2}{3} \times 3 > 0$ by R4. Suppose $f_3(v) = 4$. If $f_{5^+}(v) \geq 1$, then $w'(v) \geq 6 - \frac{5}{4} \times 2 - \frac{11}{10} \times 2 - \frac{2}{3} - \frac{1}{3} > 0$. If $f_4(v) = 2$, then there exist three boundary vertices of the two 4-faces adjacent v, that is, all of the two 4-faces are incident with four 4⁺-vertices. Hence, $w'(v) \geq 6 - \frac{5}{4} \times 2 - \frac{11}{10} \times 2 - \frac{1}{2} \times 2 > 0$. Suppose $f_3(v) \geq 5$. If v is adjacent to a 5-vertex v_0 and f is a 3-face incident with v and v_0 , then $f_3(v_0) \leq 3$, so $\omega(v_0 \to f) \geq 1$ and $\omega(v \to f) \leq 1$. Suppose $f_3(v) = 5$. If $f_{5^+}(v) = 1$, then $w'(v) \geq 6 - \frac{5}{4} \times 2 - 1 \times 3 - \frac{1}{3} > 0$. If $f_4(v) = 1$, then there exist three boundary vertices of the 4-faces adjacent to v, that is, the 4-face is incident with four 4^+ -vertices. Hence, $w'(v) \geq 6 - \frac{5}{4} \times 2 - 1 \times 3 - \frac{1}{2} = 0$.

Suppose $f_3(v) = 6$, that is, $d(f_i) = 3$ (i = 1, 2, ..., 6). By Lemma 4, v is incident with at most one 4-vertex. So we may assume that $d(v_6) = 4$, then $d(v_1) \geq 7$ and $d(v_5) \geq 7$ by Lemma 5. Suppose $f_{6^+}(v_6) = 2$. Then $\omega(v_6 \to f_5) \geq 1$ and $\omega(v_6 \to f_6) \geq 1$, so $\omega(v \to f_5) \leq 1$ and $\omega(v \to f_6) \leq 1$. Therefore, $w'(v) \ge 6 - 1 \times 6 = 0$. Otherwise, $f_{5^-}(v) \ge 3$. Let f_x be the 5⁻-face incident with v_6 except f_5 and f_6 . Suppose $d(f_x) = 5$. Then we get a contradiction to the condition of Theorem 1. Suppose $d(f_x) = 4$. Then v_6 is adjacent to v_4 and v_1 is adjacent to v_3 . So we know that $f_{6^+}(v_6) = 1$ and $\omega(v_6 \to f_i) \ge \frac{2-\frac{1}{2}}{2} = \frac{3}{4}$ (i = 5, 6). Therefore, $\omega(v \to f_i) \le 3 - \frac{5}{4} - \frac{3}{4} \le 1$ (i = 5, 6), and $w'(v) \ge 1$ $6-1 \times 6 = 0$. Suppose $d(f_x) = 3$. Then each of the boundary vertices of f is adjacent to v. If v_6 is adjacent to v_4 and v_1 is adjacent to v_4 , then $d(v_4) \ge 7$ by Lemma 5. So $\omega(v_4 \to f_4) = \frac{5}{4}$ and $\omega(v_5 \to f_4) = \frac{5}{4}$, then $\omega(v \to f_4) \leq \frac{1}{2}$ and $w'(v) \geq 6 - \frac{5}{4} \times 2 - 1 \times 3 - \frac{1}{2} = 0$. If v_6 is adjacent to v_3 and v_1 is adjacent to v_3 , then $d(v_3) \ge 7$ by Lemma 5. Suppose $d(v_2) \ge 6$ and $d(v_4) \ge 6$. Then $\omega(v \to f_i) \leq \frac{3-\frac{5}{4}}{2} = \frac{7}{8} \ (i = 1, 2, 3, 4).$ Hence, $w'(v) \geq 6 - \frac{5}{4} \times 2 - \frac{7}{8} \times 4 = 0.$ Suppose $d(v_2) = 5$ or $d(v_4) = 5$. Without of generality, assume that $d(v_4) = 5$. Then $\omega(v_4 \to f_3) \ge 1$ and $\omega(v_4 \to f_4) \ge 1$. So $\omega(v \to f_3) \le 3 - 1 - \frac{5}{4} = \frac{3}{4}$ and $\omega(v \to f_4) \le 3 - 1 - \frac{5}{4} = \frac{3}{4}$. Therefore, $w'(v) \ge 6 - \frac{5}{4} \times 2 - 1 \times 2 - \frac{3}{4} \times 2 = 0$.

Suppose d(v) = 7. Then it is easy to know that $f_3(v) \leq 6$ and v is not adjacent to a 2⁻-vertices by Lemma 1 (b). Clearly, w(v) = 2d(v) - 6 = 8. Suppose there exist no 3-faces incident with a 3-vertex. If $f_3(v) = 6$, then $f_{9^+}(v) = 1$, so $w'(v) \geq 8 - \frac{5}{4} \times 6 > 0$ by Lemma 7. If $f_3(v) = 5$, then there exist no 4-faces incident with two 3⁻-vertex. So $w'(v) \geq 8 - \frac{5}{4} \times 5 - \frac{3}{4} \times 2 > 0$ by Lemma 7. If $f_3(v) \leq 4$, then $w'(v) \geq 8 - \frac{5}{4} \times 4 - 1 \times 3 = 0$. Now we presume that there exists at least one 3-face that is incident with a 3-vertex. Then all of the 4-faces are incident with at most one 3⁻-vertex. By Lemma 2, there exist at most two 3-faces incident with a 3-vertex. If $f_3(v) = 6$, then $f_{9^+}(v) = 1$, so $w'(v) \geq 8 - \frac{3}{2} \times 2 - \frac{5}{4} \times 4 = 0$ by Lemma 7. Suppose $f_3(v) = 5$. If v is incident with at least one 5⁺-face, then $w'(v) \geq 8 - \frac{3}{2} \times 2 - \frac{5}{4} \times 3 - \frac{2}{3} - \frac{1}{3} > 0$ by Lemma 7. Otherwise, $f_4(v) = 2$, then there exist three boundary vertices of the 4-face adjacent to v, so $w'(v) \geq 8 - \frac{3}{2} \times 2 - \frac{5}{4} \times 3 - \frac{3}{4} - \frac{1}{2} = 0$. Suppose $f_3(v) \leq 4$. Then $w'(v) \geq 8 - \frac{3}{2} \times 2 - \frac{5}{4} \times 2 - \frac{3}{4} \times 3 > 0$ by Lemma 7. If d(v) = 8, then we know that $w(v) = 2 \times 8 - 6 = 10$, $f_3(v) \leq 6$ and $n_2(v) \leq 7$ by Lemma 6. By Lemma 7 and Lemma 8, we shall consider the following cases by discussing the number of $n_2(v)$.

Fig. 3. $n_2(v) = 0$ and $f_3(v) = 6$

Case 1. $n_2(v) = 0$. Suppose $f_3(v) = 6$. If $f_{6^+}(v) \ge 1$ or $f_{5^+}(v) \ge 2$, then $w'(v) \ge 10 - \frac{3}{2} \times 6 - 1 = 0$ by Lemma 7. Otherwise, $f_{6^+}(v) = 0$ and $f_{5^+}(v) \le 1$. Suppose $f_4(v) = 1$ and $f_5(v) = 1$. According to the condition of Theorem 1, there is only one case in which the location of the faces satisfying the condition of 1. We depict this case in Fig. 3 (1). It is clear that there exist three boundary vertices of the 4-faces adjacent to v, and there is at least one 3-face which is not incident with a 3-vertex by Lemma 2. If the 4-face is incident with at most one 3-vertex, then $w'(v) \ge 10 - \frac{3}{2} \times 5 - \frac{5}{4} - \frac{3}{4} - \frac{1}{3} > 0$. Otherwise, there exist two 3-vertex incident with the 4-face, then there exist at least two 3-faces that are not incident with a 3-vertex by Lemma 2. Hence, $w'(v) \ge 10 - \frac{3}{2} \times 4 - \frac{5}{4} \times 2 - \frac{3}{4} - \frac{1}{3} > 0$. Suppose $f_4(v) = 2$. There are only two cases satisfying the condition of Theorem 1. We depict these cases in Fig. 3(2) and (3). In Fig. 3(2), there exist at least four 3-faces all of which are adjacent to a 8^+ -face. By R4, if there exists a 8^+ -face

adjacent to a 3-face, then 8⁺-face sends $\frac{1}{4}$ to the 3-face, so each of the 3-face adjacent to a 8⁺-face receives at most $\frac{3-4}{2} = \frac{11}{8}$ from the boundary vertices. There exist at most one 4-face incident with two 3-vertices in Fig. 3(2). By Lemma 2, there exist at least one 3-face that is not incident with a 3-vertex, so $w'(v) \ge 10 - \frac{3}{2} - \frac{11}{8} \times 4 - \frac{5}{4} - 1 - \frac{3}{4} = 0$. In Fig. 3(3), there exist at least four 3-faces all of which are adjacent to a 8⁺-face. By Lemma 2, there is at most one 4-face incident with two 3-vertices. If all of the two 4-faces are incident with at most one 3-vertex, then $w'(v) \ge 10 - \frac{3}{2} \times 2 - \frac{11}{8} \times 4 - \frac{3}{4} \times 2 = 0$. Otherwise, there exists one 4-face that is incident with two 3-vertices, then there exist at least three 3-faces that are not incident with a 3-vertex by Lemma 2. Hence, $w'(v) \ge 10 - \frac{3}{2} \times 3 - \frac{5}{4} \times 3 - 1 - \frac{3}{4} = 0$. Suppose $f_3(v) = 5$. Then by the condition of Theorem 1, we know that $f_{5+}(v) \ge 1$, so $w'(v) \ge 10 - \frac{3}{2} \times 5 - 1 \times 2 - \frac{1}{3} \times 2 > 0$.

Case 2. $n_2(v) = 1$. Then $2 \times 8 - 6 - 1 = 9$.

Case 2.1. Let the 2-vertex be incident with a 3-cycle. It is clear that $f_3(v) \leq 6$ and there exist no 3-faces incident with a 3-vertex by Lemma 2. So v is incident with at most one 3-face that receives $\frac{3}{2}$ from v. If $f_3(v) = 6$, then by the condition of Theorem 1, we know that $f_{6^+}(v) \geq 1$ or $f_{5^+}(v) \geq 2$, so $w'(v) \geq 9 - \frac{3}{2} - \frac{5}{4} \times 5 > 0$ by Lemma 7. Suppose $f_3(v) = 5$. If $f_4(v) = 3$, then there are at least two $(8, 4^+, 4^+, 2^+)$ -faces between the three 4-faces by Lemma 2. Hence, $w' \geq 9 - \frac{3}{2} - \frac{5}{4} \times 4 - 1 - \frac{3}{4} \times 2 = 0$. If $f_4(v) \leq 2$, then we have $w'(v) \geq 9 - \frac{3}{2} - \frac{5}{4} \times 4 - 1 \times 2 - \frac{1}{3} > 0$. Suppose $f_3(v) = 4$. If $f_4(v) = 4$, then there exist at least two $(8, 4^+, 4^+, 2^+)$ -faces between the four 4-faces by Lemma 2. Hence, $w' \geq 9 - \frac{3}{2} - \frac{5}{4} \times 3 - 1 \times 2 - \frac{3}{4} \times 2 > 0$. If $f_4(v) \leq 3$, then $w'(v) \geq 9 - \frac{3}{2} - \frac{5}{4} \times 3 - 1 \times 3 - \frac{1}{3} > 0$. If $f_3(v) \leq 3$, then $w'(v) \geq 9 - \frac{3}{2} - \frac{5}{4} \times 2 - 1 \times 5 = 0$.

Case 2.2. Let the 2-vertex not be incident with a 3-cycle. Then $f_3(v) \leq$ 6. Suppose $f_3(v) = 6$. Then the six 3-faces are adjacent and $f_{9^+}(v) = 1$, so there exist at least four $(8, 4^+, 4^+)$ -faces between the six 3-faces by Lemma 3. Therefore, $w'(v) \ge 9 - \frac{3}{2} \times 2 - \frac{5}{4} \times 4 - 1 \times 1 > 0$ by Lemma 7. Suppose $f_3(v) = 5$. It is easy to know that $f_{6^+}(v) \ge 1$ by the condition of Theorem 1. If $f_4(v) = 2$, then there exist three the boundary vertices of the two 4-faces adjacent to v. So v is incident with at least two $(8, 4^+, 4^+)$ -faces and one $(8, 4^+, 4^+, 2^+)$ -face by Lemma 3. Hence, $w'(v) \ge 9 - \frac{3}{2} \times 3 - \frac{5}{4} \times 2 - 1 \times 1 - \frac{3}{4} \times 1 > 0$. If $f_4(v) = 1$, then there exists at least one $(8, 4^+, 4^+)$ -face between the five 3-faces. by Lemma 3. Hence, $w'(v) \ge 9 - \frac{3}{2} \times 4 - \frac{5}{4} \times 1 - 1 \times 1 - \frac{1}{3} \times 2 > 0$. If $f_4(v) = 0$, then $w'(v) \ge 9 - \frac{3}{2} \times 5 - \frac{1}{3} \times 3 > 0$. Suppose $f_3(v) = 4$. Then we have $f_4(v) \le 3$ by the condition of Theorem 1. If $f_4(v) = 3$, then there exist at least two $(8, 4^+, 4^+)$ faces between four the 3-faces. Hence, $w'(v) \ge 9 - \frac{3}{2} \times 2 - \frac{5}{4} \times 2 - 1 \times 3 - \frac{1}{3} \times 1 > 0$. If $f_4(v) \le 2$, then $w'(v) \ge 9 - \frac{3}{2} \times 4 - 1 \times 2 - \frac{1}{3} \times 2 > 0$. Suppose $f_3(v) = 3$. If there exists a 5⁺-face incident with v, then $w'(v) \ge 9 - \frac{3}{2} \times 3 - 1 \times 4 - \frac{1}{3} > 0$. Otherwise, $f_4(v) = 5$, then there exist at least three $(8, 4^+, 4^+, 2^+)$ -faces between the five 4-faces. Hence, $w'(v) \ge 9 - \frac{3}{2} \times 3 - 1 \times 2 - \frac{3}{4} \times 3 > 0$. If $f_3(v) \le 2$, then $w'(v) \ge 9 - \frac{3}{2} \times 2 - 1 \times 6 = 0.$

Fig. 4. $n_2(v) = 2$

Case 3. $n_2(v) = 2$. Then $2 \times 8 - 6 - 2 = 8$ and there are four cases in which 2-vertices are located. We depict these cases in Fig. 4. In Fig. 4 (1), $w'(v) \ge 8 - (\frac{5}{4} \times 8 - \frac{9}{4}) > 0$ by Lemma 8. In Fig. 4 (2), $w'(v) \ge 8 - (\frac{5}{4} \times 7 - \frac{9}{4}) - (\frac{5}{4} \times 3 - \frac{9}{4}) = 0$. In Fig. 4 (3), $w'(v) \ge 8 - (\frac{5}{4} \times 6 - \frac{9}{4}) - (\frac{5}{4} \times 4 - \frac{9}{4}) = 0$. In Fig. 4 (4), $w'(v) \ge 8 - (\frac{5}{4} \times 5 - \frac{9}{4}) \times 2 = 0$ by Lemma 8.

Fig. 5. $n_2(v) = 3$

Case 4. $n_2(v) = 3$. Then $2 \times 8 - 6 - 3 = 7$ and there are five cases in which 2-vertices are located. We depict these cases in Fig. 5. In Fig. 5(1), $w'(v) \ge 7 - (\frac{5}{4} \times 7 - \frac{9}{4}) > 0$ by Lemma 8. In Fig. 5(2), $w'(v) \ge 7 - (\frac{5}{4} \times 6 - \frac{9}{4}) - (\frac{5}{4} \times 3 - \frac{9}{4}) > 0$. In Fig. 5(3), $w'(v) \ge 7 - (\frac{5}{4} \times 5 - \frac{9}{4}) - (\frac{5}{4} \times 4 - \frac{9}{4}) > 0$. In Fig. 5(4), $w'(v) \ge 7 - (\frac{5}{4} \times 5 - \frac{9}{4}) - (\frac{5}{4} \times 3 - \frac{9}{4}) \times 2 = 0$. In Fig. 5(5), $w'(v) \ge 7 - (\frac{5}{4} \times 3 - \frac{9}{4}) \times 2 = 0$. In Fig. 5(5), $w'(v) \ge 7 - (\frac{5}{4} \times 3 - \frac{9}{4}) - (\frac{5}{4} \times 3 - \frac{9}{4}) \times 2 = 0$ by Lemma 8.

Case 5. $n_2(v) = 4$. Then $2 \times 8 - 6 - 4 = 6$ and there are eight cases in which 2-vertices are located. We depict these cases in Fig. 6. In Fig. 6(1), $w'(v) \ge 6 - (\frac{5}{4} \times 6 - \frac{9}{4}) > 0$ by Lemma 8. In Fig. 5(2) and (4), $w'(v) \ge 6 - (\frac{5}{4} \times 5 - \frac{9}{4}) - (\frac{5}{4} \times 3 - \frac{9}{4}) > 0$. In Fig. 6(3) and (7), $w'(v) \ge 6 - (\frac{5}{4} \times 4 - \frac{9}{4}) \times 2 > 0$. In Fig. 6(5) and (6), $w'(v) \ge 6 - (\frac{5}{4} \times 3 - \frac{9}{4}) \times 2 - (\frac{5}{4} \times 4 - \frac{9}{4}) > 0$. In Fig. 6(8), $w'(v) \ge 6 - (\frac{5}{4} \times 3 - \frac{9}{4}) \times 4 = 0$ by Lemma 8.

Case 6. $n_2(v) \ge 5$. Suppose $n_2(v) = 5$. Then $2 \times 8 - 6 - 5 = 5$ and $f_3(v) \le 2$. Suppose $f_3(v) = 2$. Then $f_{6^+}(v) \ge 4$ by Lemma 2. Consequently, $w'(v) \ge 5 - \frac{3}{2} \times 2 - 1 \times 2 = 0$ by Lemma 7. If $f_3(v) = 1$, then $f_{6^+}(v) \ge 3$ and $f_4(v) \le 4$. If $f_4(v) = 4$. then all of the four 4-faces are $(8, 4^+, 4^+, 2^+)$ -faces. Hence, $w'(v) \ge 3$.

Fig. 6. $n_2(v) = 4$

 $\begin{array}{l} 5 - \frac{3}{2} \times 1 - \frac{3}{4} \times 4 > 0. \mbox{ If } f_4(v) \leq 3, \mbox{ then } w^{'}(v) \geq 5 - \frac{3}{2} \times 1 - 1 \times 3 - \frac{1}{3} > 0. \\ \mbox{Suppose } f_3(v) = 0. \mbox{ Then } f_{6^+}(v) \geq 2. \mbox{ If } f_4(v) = 6, \mbox{ then all of the six 4-faces are } (8,4^+,4^+,2^+)\mbox{-faces. Hence, } w^{'}(v) \geq 5 - \frac{3}{4} \times 6 > 0. \mbox{ If } f_4(v) = 5, \mbox{ then there exist at least four } (8,4^+,4^+,2^+)\mbox{-faces between the five 4-faces. Hence, } w^{'}(v) \geq 5 - 1 \times 1 - \frac{3}{4} \times 4 - \frac{1}{3} \times 1 > 0. \mbox{ If } f_4(v) \leq 4, \mbox{ then } w^{'}(v) \geq 5 - 1 \times 4 - \frac{1}{3} \times 2 > 0. \\ \mbox{ Suppose } n_2(v) = 6. \mbox{ Then } 2 \times 8 - 6 - 6 = 4 \mbox{ and } f_3(v) \leq 1. \mbox{ If } f_3(v) = 1, \mbox{ then } f_{6^+}(v) \geq 5 \mbox{ and } f_4(v) \leq 2. \mbox{ So } w^{'}(v) \geq 4 - \frac{3}{2} - 1 \times 2 > 0. \mbox{ If } f_3(v) = 0, \mbox{ then } f_{6^+}(v) \geq 4. \mbox{ Hence, } w^{'}(v) \geq 4 - 1 \times 4 = 0. \mbox{ Suppose } n_2(v) = 7. \mbox{ Then by Lemma 2 we know that } f_{6^+}(v) \geq 6 \mbox{ by and } f_3(v) = 0, \mbox{ so } w^{'}(v) \geq 10 - 7 - 1 \times 2 > 0. \end{array}$

In summary, we know that $w'(x) \ge 0$ for every $x \in V \cup F$, so $\sum_{x \in V \cup F} w'(x) \ge 0$. Hence, we get the desired contradiction and finish the proof of Theorem 1.

Acknowledgements. We thanks for the support by Shandong Provincial Natural Science Foundation of China under Grant ZR2020MA045.

References

- Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. North-Holland, NewYork (1982)
- Behzad, M.: Graphs and their chromatic numbers. Ph.D. Thesis, Michigan State University (1965)
- Vizing, V.G.: Some unsolved problems in graph theory. UspekhiMat. Nauk 23, 117–134 (1968)
- Roesnfeld, M.: On the total colorings of certain graphs. Israel J. Math 9, 396–402 (1971). https://doi.org/10.1007/BF02771690

- Vijayaditya, N.: On total chromatic number of a graph. J. London Math. Soc. 3, 405–408 (1971). https://doi.org/10.1112/jlms/s2-3.3.405
- Kostochka, A.V.: The total chromatic number of any multigraph with maximum degree five is at most seven. Discrete Math. 162, 199–214 (1996) https://doi.org/ 10.1016/0012-365X(95)00286-6
- Sánchez-Arroyo, A.: Determining the total coloring number is NP-hard. Discrete Math. 78, 315–319 (1989). https://doi.org/10.1016/0012-365X(89)90187-8
- McDiarmid, J.H., Sánchez-Arroyo, A.: Total colorings regular bipartite graphs is NP-hard. Discrete Math. **124**, 155–162 (1994) https://doi.org/10.1016/0012-365X(92)00058-Y
- Borodin, O.V., Kostochka, A.V., Woodall, D.R.: Total colorings of planar graphs with large maximum degree. J. Graph Theory 26, 53–59 (1997) https://doi.org/ 10.1002/(SICI)1097-0118(199709)26:1(53::AID-JGT6)3.0.CO;2-G
- Wang, W.F.: Total chromatic number of planar graphs with maximum degree ten. J. Graph Theory 54, 91–102 (2007) https://doi.org/10.1002/jgt.20195
- Kowalik, L., Sereni, J.-S., Škrekovski, R.: Total-colorings of plane graphs with maximum degree nine. SIAM J. Discrete Math. 22, 1462–1479 (2008) https://doi. org/10.1137/070688389
- Du, D.Z., Shen, L., Wang, Y.: Planar graphs with maximum degree 8 and without adjacent triangles are 9-totally-colorable, Discrete Appl. Math. 157, 2778–2784 (2009) https://doi.org/10.1016/j.dam.2009.02.011
- Hou, J.F., Zhu, Y., Liu, Z.G., Wu, J.L.: Total colorings of planar graphs without small cycles., Graphs Comb. 24, 91–100 (2008) https://doi.org/10.1007/s00373-008-0778-8
- Tan, X., Chen, H.Y., Wu, J.L.: Total colorings of planar graphs without adjacent 4-cycles., Lecture Notes on Operations Research, vol. 10, pp. 167–173 (2009)
- Wang, H.J., Wu, L.D., Wu, J.L.: Total coloring of planar graphs with maximum degree 8., Theoret. Comput. Sci. 522, 54–61 (2014) https://doi.org/10.1016/j.tcs. 2013.12.006
- Chang, J., Wang, H.J., Wu, J.L.: Total coloring of planar graphs with maximum degree 8 and without 5-cycles with two chords. Theoret. Comput. Sci. 476, 16–23 (2013). https://doi.org/10.1016/j.tcs.2013.01.015
- Shen, L., Wang, Y.Q.: Total colorings of planar graphs with maximum degree at least 8. Sci. China Ser A: Math. 52, 1733–1742 (2009). https://doi.org/10.1007/ s11425-008-0155-3
- Sanders, D.P., Zhao, Y.: On total 9-coloring planar graphs of maximum degree seven. J. Graph Theory **31**, 67–73 (1999) https://doi.org/10.1002/(SICI)1097-0118(199905)31:1(67::AID-JGT6)3.0.CO;2-C
- Xu, R.Y., Wu, J.L. Wang, H.J.: Total coloring of planar graphs without some chordal 6-cycles. Bull. Malays. Math. Sci. Soc. 520, 124–129 (2014) https://doi. org/10.1007/s40840-014-0036-6
- Wang, H.J., Gu, Y., Liu, B.: Total coloring of planar graphs without adjacent short cycles. J. Com. Optim. **33**(1), 265–274 (2017). https://doi.org/10.1007/s10878-015-9954-y