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Abstract. Let G = (V, E) be a graph. If x, y ∈ V ∪ E are two adjacent
or incident elements, then a k-total-coloring of graph G is a mapping
ϕ from V ∪ E to {1, 2, . . . , k} on condition that ϕ(x) �= ϕ(y). In this
paper, we define G to be a planar graph with maximum degree Δ ≥ 8.
We prove that if for each vertex v ∈ V (G), there exist two integers iv,
jv ∈ {3, 4, 5, 6, 7, 8} on condition that v is not incident with adjacent
iv-cycles and jv-cycles, then G has a (Δ + 1)-total-coloring.
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1 Introduction

In this paper, all graphs mentioned are finite, simple and undirected. Undefined
notions and terminologies can be referred to [1]. Suppose G is a graph, then V
and d(v) are used to denote the vertex set and the degree of v. We use F , d(f)
and E to denote the face set, the degree of f and the edge set respectively. Then
Δ = max{d(v)|v ∈ V } is the maximum degree of a graph and δ = min{d(v)|v ∈
V } is the minimum degree. We use n-vertex, n+-vertex, or n−-vertex to denote
the vertex v when d(v) = n, d(v) ≥ n, or d(v) ≤ n respectively. A n-face,
n+-face, or n−-face are analogously defined. We use (n1, n2, . . . , nk) to denote
a k-face and its boundary vertices are ni-vertex (i = 1, 2 . . . , k). Similarly, we
can define a (n1

+, n2
−, . . . , nk)-face. For instance, a (l,m+, n−)-face is a 3-face

whose boundary vertices are l-vertex, m+-vertex and n−-vertex respectively. If
two cycles or faces have at least one common edge, then we call they are adjacent.
We use nk(f) to denote the number of k-vertices that is incident with f . The
number of k+-face incident with f is denoted as nk+(f) and the number of k−-
face incident with f is denoted as nk−(f). We use nk(v) to denote the number of
k-vertices adjacent to v and use fk(v) to denote the number of k-faces incident
with v. If G has a k-total-coloring, then we say that G can be totally colored by
k colors. For the convenience of description, we say that G is total-k-colorable
when G can be totally colored by k colors. If G can be totally colored by at least
k colors, then k is the total chromatic number of G that is defined as χ

′′
. It is

easy to know that χ
′′
(G) ≥ Δ + 1. For the upper bound of χ

′′
, Behzad [2] and

Vizing [3] put forth the Total Coloring Conjecture (for short, TCC):
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Conjecture 1. For any graph, Δ + 1 ≤ χ
′′
(G) ≤ Δ + 2.

TCC has attracted lots of researchers’ attention. However, this conjecture
remains open even for planar graphs. In 1971, Rosenfeld [4] and Vijayaditya [5]
confirmed TCC for all graphs with Δ ≤ 3 independently. Kostochka [6] proved
that χ

′′
(G) ≤ Δ + 2 when Δ ≤ 5. For a planar graph, TCC is unsolved only

when Δ = 6 (see [6,18]). With the advances in research, some researchers found
that χ

′′
(G) of some specific graphs have an exact upper bound Δ + 1. In 1989,

Sánchez-Arroyo [7] demonstrated that it is a NP-complete problem to determine
whether χ

′′
(G) = Δ+1 for a specified graph G. Moreover, for every fixed k ≥ 3,

McDiarmid and Sánchez-Arroyo [8] demonstrated that to determine whether a
specific k-regular bipartite graph is total-(Δ + 1)-colorable or not is also a NP-
complete problem. However, it is possible to prove that χ

′′
(G) = Δ + 1 when

G is a planar graph having large maximum degree. It has been proved that
χ

′′
(G) = Δ + 1 on condition that G is a planar graph when Δ(G) ≥ 11 [9],

Δ(G) = 10 [10] and Δ(G) = 9 [11]. It is still open to determine whether a planar
graph is total-(Δ+1)-colorable when Δ = 6, 7 and 8. If G is a planar graph and
Δ(G) = 8, then there are some relevant results obtained by adding some restric-
tions. For instance, for a planar graph with Δ(G) ≥ 8, it is proved that G is
total-(Δ+1)-colorable if G does not contain k-cycles (k = 5, 6) [13], or adjacent
3-cycles [12], or adjacent 4-cycles [14]. Wang et al. [15] proved χ

′′
(G) = Δ + 1

if there exist two integers i, j ∈ {3, 4, 5} such that G does not contain adjacent
i-cycles and j-cycles. Recently, a result has been proved in [20] for a planar graph
with Δ(G) = 8, that is, if for each vertex v ∈ V , there exist two integers iv,
jv ∈ {3, 4, 5, 6, 7} on condition that v is not incident with adjacent iv-cycles and
jv-cycles, then G is total-(Δ+1)-colorable. Now we improve some former results
and get the following theorem.

Theorem 1. Suppose G is a planar graph with maximum degree Δ ≥ 8. If for
each vertex v ∈ V , there exist two integers iv, jv ∈ {3, 4, 5, 6, 7, 8} on condition
that v is not incident with adjacent iv-cycles and jv-cycles. Then G is total-
(Δ + 1)-colorable.

2 Reducible Configurations

Theorem 1 has been proved for Δ ≥ 9 in [11]. So we presume that Δ = 8 in the
rest of this paper. Suppose G = (V,E) is a minimal counterexample to Theorem
1, that is, |V | + |E| is as small as possible. In other words, G cannot be totally
colored by Δ + 1 colors, but every proper subgraph of G can be totally colored
with Δ + 1 colors. In this section, we give some information of configurations
for our minimal counterexample G. A configuration is called to be reducible if
it cannot occur in the minimal counterexample G. Firstly, we show some known
properties of G.

Lemma 1. ([9]). (a) G is 2-connected.

(b) Suppose v1v2 is an edge of G. If d(v1) ≤ 4, then d(v1)+d(v2) ≥ Δ+2 = 10.
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(c) Suppose G28 is a subgraph of G that is induced by the edges joining 2-vertices
to 8-vertices. Then G28 is a forest.

Lemma 2. ([16]). G has no subgraph isomorphic to the configurations depicted
in Fig. 1, where 7 − v is used to denote the vertex of degree of seven. If a vertex
is marked by •, then it has no more neighbors that are not depicted in G.

Fig. 1. Reducible configurations of Lemma 2

Lemma 3. ([19]). Suppose v ∈ V , d(v) = d and d ≥ 6. Let v be clockwise
adjacent to v1, . . . , vd and incident with f1, f2, . . . , fd such that vi is the common
vertex of fi−1 and fi (i ∈ {1, 2, . . . , d}). Notice that f0 and fd denote a same
face. Let d(v1) = 2 and N(v1) = {v, u1}. Then G contains none of the following
configurations.(see Fig. 2):

(1) there exists an integer k (2 ≤ k ≤ d − 1) such that d(vk+1) = 2, d(vi) = 3
(2 ≤ i ≤ k) and d(fj) = 4 (1 ≤ j ≤ k).

(2) there exist two integers k and t (2 ≤ k < t ≤ d − 1) such that d(vk) = 2,
d(vi) = 3 (k + 1 ≤ i ≤ t), d(ft) = 3 and d(fj) = 4 (k ≤ j ≤ t − 1).

(3) there exist two integers k and t (3 ≤ k ≤ t ≤ d − 1) such that d(vi) = 3
(k ≤ i ≤ t), d(fk−1) = d(ft) = 3 and d(fj) = 4 (k ≤ j ≤ t − 1).

(4) there exists an integer k (2 ≤ k ≤ d − 2) such that d(vd) = d(vi) = 3
(2 ≤ i ≤ k), d(fk) = 3 and d(fj) = 4 (0 ≤ j ≤ k − 1).

Fig. 2. Reducible configurations of Lemma 3
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Lemma 4. ([20]). Suppose u is a 6-vertex. If u is incident with one 3-cycle
which is incident with a 4-vertex, then n5+(u) = 5.

Lemma 5. ([17]). G contains no (6, 6, 4+)-cycles.

Lemma 6. Suppose v ∈ G. If d(v) = 8 and n2(v) ≥ 1, then n5+(v) ≥ 1.

Proof. Suppose G
′

is a subgraph of G. The mapping ϕ is said to be a nice
coloring of G if G

′
= G − {v|v ∈ V, d(v) ≤ 4} has a (Δ + 1)-total-coloring. It is

clear that a nice coloring can be easily extended to a (Δ + 1)-total-coloring of
G, because a 4−-vertex has at most 8 forbidden colors. Hence, in the following,
we will always assume that every 4−-vertex is colored in the end.

Contrarily, we assume that G contains a configuration with d(v) = 8, n2(v) ≥
1, and n5+(v) = 0. Suppose v is a 8-vertex. Let v be clockwise adjacent to
v1, v2, . . . , v8 and incident with e1, e2, . . . , e8 such that vi is incident with ei
(i = 1, 2, . . . , 8). Since d(vi) ≤ 4 (i = 1, 2, . . . , 8), we uncolor the adjacent vertices
of v and color them in the end. We may assume that d(v1) = 2. Then the one
edge incident with v1 is e1, and the other edge incident with v1 is denoted as e9.
Because of the minimality of G, H = G−e1 has a nice coloring. Firstly, suppose
ϕ(e9) = 9. Otherwise, we color e1 with 9 to get a nice coloring of G, which is a
contradiction, so ϕ(e9) = 9. We recolor v with 9, and color e1 with 1 to get a
nice coloring of G, which is a contradiction. ��

3 Discharging

In this section, we will accomplish the proof of Theorem 1 by using discharging
method. The discharging method is a familiar and important way to solve col-
oring problems for a planar graph. By Euler’s formula |V | − |E| + |F | = 2, we
have

∑

v∈V

(2d(v) − 6) +
∑

f∈F

(d(f) − 6) = −6(|V | − |E| + |F |) = −12 < 0

We define w(x) of x ∈ V ∪ F to be the original charge function. Let w(v) =
2d(v)−6 for every v ∈ V and w(f) = d(f)−6 for everyf ∈ F . So

∑
v∈V ∪F w(x) <

0. We use ω(x → y) to denote the amount of total charge from x to y. We shall
give proper discharging rules and transfer the original charge to get a new charge.
We have two rounds of discharging rules. We use w∗(x) to denote the charge of
x ∈ V ∪F after the first round of discharging and use w

′
(x) to denote the charge

of x ∈ V ∪ F after the second round of discharging. If there is no discharging
rule for x ∈ V ∪ F , then the last charge of x is equal to the original charge
of x. Notice that the total charge of G is unchangeable after redistributing the
original charge, so

∑
x∈V ∪F w

′
(x) =

∑
x∈V ∪F w(x) = −6χ(Σ) = −12 < 0. We

will get an obvious contradiction by proving that
∑

x∈V ∪F w
′
(x) ≥ 0.

These are the discharging rules:

R1. Suppose v is a 2-vertex. If u is adjacent to v, then ω(u → v) = 1.
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R2. Let f be a face which is incident with v. Suppose d(v) = 4 or 5. If
d(f) = 4, then ω(v → f) = 1

2 . If d(f) = 5, then ω(v → f) = 1
3 . Finally v

sends the surplus charge to 3-faces incident with it evenly.
R3. If a 3-face is incident with 6-vertices and 7+-vertices, then it receives 5

4
from 7+-vertices.
R4. Every 7+-face sends d(f)−6

d(f) to its adjacent 3-faces.

If w∗(f) < 0 of a 5−-face after the first round discharging, then we have the
second round discharging:

R5. If w∗(f) < 0, then f receives | w∗(f)
n6+ (v) | from every 6+-vertices incident it

which do not give any charge to f .

Lemma 7. Suppose f is a face which is incident with v.

1. If d(v) = 6, then

ω(v → f) ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5
4 , if d(f) = 3 and n4(f) = 1,

11
10 , if d(f) = 3 and n5(f) ≥ 1,

1, if d(f) = 3 and n6+(f) = 3,

7
8 , if d(f) = 3, n5−(f) = 0 and n7+(f) = 1,

1
2 , if d(f) = 3 and n7+(f) = 2,

2
3 , if d(f) = 4 and n3−(f) = 1,

1
2 , if d(f) = 4 and n3−(f) = 0,

1
3 , if d(f) = 5.

2. If d(v) ≥ 7, then

ω(v → f) ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
2 , if d(f) = 3 and n3−(f) = 1,

5
4 , if d(f) = 3 and n3−(f) = 0,

1, if d(f) = 4 and n3−(f) = 2,

3
4 , if d(f) = 4, n3−(f) = 1 and n4(f) = 1,

2
3 , if d(f) = 4, n3−(f) = 1 and n5+(f) = 3,

1
2 , if d(f) = 4 and n3−(f) = 0,

1
3 , if d(f) = 5.

Proof. Suppose v is incident with a 4+-face f . Then it is clear that Lemma 7 is
correct by R2 and R5. Now we think about that f is a 3-face that is incident
with v. If d(v) = 6, then there exist no 3−-vertices adjacent to v by Lemma 1(b).
If there exists a 4-vertex incident with f , then f is incident with a 7+-vertex by
Lemma 5. So ω(v → f) ≤ 3 − 5

4 − 1
4 = 5

4 . If n5(f) = 1 and n6+(v) = 2, then

ω(v → f) ≤ 3− 4
5

2 = 11
10 . Suppose n5(f) = 2. If there exists one 5-vertex incident

with five 3-faces, then the other 5-vertex is incident with at least two 6+-faces.
So ω(v → f) ≤ 3 − 4

5 − 4
3 ≤ 11

10 . If there exists one 5-vertex incident with four
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3-faces, then all of the two 5-vertices are incident with at least one 6+-face. So
ω(v → f) ≤ 3 − 1 × 2 ≤ 11

10 . Suppose n6+(f) = 3. Then ω(v → f) ≤ 3
3 = 1.

If n5−(f) = 0 and n7+(f) = 1, then the 7+-vertex sends 5
4 to f by R4, so

ω(v → f) ≤ 3− 5
4

2 = 7
8 . If n7+(f) = 2, then ω(v → f) ≤ 3 − 5

4 × 2 = 1
2 . If

d(v) ≥ 7, then there exists at most one 3−-vertex adjacent to v, so ω(v → f) ≤ 3
2 .

If n3−(f) = 0, then ω(v → f) ≤ 3− 1
2

2 = 5
4 . ��

Lemma 8. Suppose d(v) = 8. Let v be clockwise adjacent to v1, v2, . . . , vn (n ≥
3) and incident with f1, f2, . . . , fn−1 such that fj is incident with vj and vj+1.
Clearly, f0 and fd denote a same face. If d(v1) = d(vn) = 2 and d(vi) ≥ 3
(i = 2, 3, . . . , n − 1), then

∑n−1
i=1 ω(v → fi) ≤ 5

4n − 9
4 .

Proof. By Lemma 2, we know that d(f1) ≥ 4 and d(fn−1) ≥ 4. Firstly, suppose
d(f1) = 4 and d(fn−1) = 4. If min{d(f2), d(f3), . . . , d(fn−2)} ≥ 5, then n ≥ 4, so∑n−1

i=1 ω(v → fi) ≤ 1×2+ 1
3 (n−3) ≤ 5

4n− 9
4 . If min{d(f2), d(f3), . . . , d(fn−2)} = 4

and max{d(f2), d(f3), . . . , d(fn−2)} = 5, then
∑n−1

i=1 ω(v → fi) ≤ n − 2 + 1
3 ≤

5
4n − 9

4 . If d(f2) = d(f3) = . . . = d(fn−2) = 4, then
∑n−1

i=1 ω(v → fi) ≤ n −
3 + 3

4 × 2 ≤ 5
4n − 9

4 by Lemma 3. Suppose min{d(f2), d(f3), . . . , d(fn−2)} = 3
and max{d(f2), d(f3), . . . , d(fn−2)} = 4. If d(f2) = 4 or d(fn−2) = 4, then
ω(v → f1) + ω(v → f2) ≤ max{1 × 2, 3

4 + 5
4} = 2 and ω(v → fn−2) + ω(v →

fn−1) ≤ max{1 × 2, 3
4 + 5

4} = 2. Moreover, v sends more charge to 3-faces than
4-faces, so we assume that v is incident with 3-faces as more as possible. Hence,∑n−1

i=1 ω(v → fi) ≤ 2 × 2 + 5
4 × (n − 5) ≤ 5

4n − 9
4 . Suppose d(f2) = d(f3) = . . . =

d(fn−2) = 3, then fj (2 ≤ j ≤ n − 2) receives at most 5
4 from v by Lemma 3.

Hence,
∑n−1

i=1 ω(v → fi) ≤ 3
4 × 2 + 5

4 × (n − 3) ≤ 5
4n − 9

4 . Secondly, suppose
min{d(f1), d(fn−1)} = 4 and max{d(f1), d(fn−1)} ≥ 5. If d(f2) = d(f3) = . . . =
d(fn−2) = 3, then

∑n−1
i ω(v → fi) ≤ 3

4 + 1
3 + 3

2 + 5
4 × (n − 4) ≤ 5

4n − 9
4 .

If max{d(f2), d(f3), . . . , d(fn−2)} = 4, then
∑n−1

i=1 ω(v → fi) ≤ 1 × 2 + 1
3 +

3
2 + 5

4 × (n − 5) ≤ 5
4n − 9

4 . Finally, suppose min{d(f1), d(fn−1)} ≥ 5. Then∑n−1
i=1 ω(v → fi) ≤ 1

3 × 2 + 3
2 × 2 + 5

4 × (n − 5) ≤ 5
4n − 9

4 . ��

In the rest of this paper, we can check that w
′
(x) ≥ 0 for every x ∈ V ∪ F

which is a contradiction to our assumption. Let f ∈ F . If d(f) ≥ 7, then w
′
(f) ≥

w(f)− d(f)−6
d(f) ×d(f) = 0 by R4. If f is a 6-face, then w

′
(f) = w(f) = 0. Suppose

d(f) ≤ 5. If n6+(f) ≥ 1, then w
′
(f) ≥ 0 by R5. If n6+(f) = 0, then n5(f) = d(f).

Suppose d(f) = 3 and the boundary vertices of f are consecutively v1, v2 and
v3. Then d(vi) = 5 (i = 1, 2, 3). By R2, 4+-face receives at most 1

2 from incident
4-vertices or 5-vertices. Suppose f3(vi) ≤ 3 (i = 1, 2, 3). Then ω(vi → f) ≥ 1,
so w

′
(f) ≥ 3 − 6 + 1 × 3 = 0. Suppose there exists f3(vi) ≥ 4. Without loss of

generality, assume that f3(v3) ≥ 4. Then we have f3(v1) ≤ 4 and f3(v2) ≤ 4.
Otherwise, f3(v1) = 5 or f3(v2) = 5, then for any integers j, k ∈ {3, 4, 5, 6, 7, 8},
there exists a vertex incident with adjacent j-cycles and k-cycles. So we get a
contradiction to the condition of Theorem 1. If f3(v1) = 4, then v1 is incident
with a 9+-face and v2 is incident with at least two 6+-faces, so ω(v1 → f) ≥ 1
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and ω(v2 → f) ≥ 1. Consequently, w
′
(f) ≥ 3 − 6 + 4

5 + 1 + 4
3 > 0. Similarly,

we know that if f3(v2) = 4, then w
′
(f) > 0. Suppose f3(v1) = f3(v2) = 3.

Then v1 and v2 is incident with at least one 6+-face, so ω(vi → f) ≥ 4− 1
2

3 = 7
6 ,

(i = 1, 2). Consequently, w
′
(f) ≥ 3 − 6 + 4

5 + 7
6 × 2 > 0. If d(f) = 4, then

w
′
(f) ≥ 4 − 6 + 1

2 × 4 = 0 by R2. If d(f) = 5, then w
′
(f) ≥ 5 − 6 + 1

3 × 5 > 0 by
R2. So for every f ∈ F , we prove that w

′
(f) ≥ 0. Next, we consider that v ∈ V .

Suppose d(v) = 2. Then it is clear that w(v) = −2, so w
′
(v) = −2 + 1 × 2 = 0

by R1. If d(v) = 3, then w
′
(v) = w(v) = 0. Suppose d(v) = 4 or d(v) = 5. Then

w
′
(v) = 0 by R2.
If v is a 6+-vertex of G. Let v be clockwise adjacent to v1, . . . , vd and

incident with f1, f2, . . . , fd such that vi is the common vertex of fi−1 and
fi (i ∈ {1, 2, . . . , d}). Notice that f0 and fd denote the same face. Suppose
d(v) = 6. Then there exist no 3−-vertices incident with v by Lemma 1 (b).
Clearly, w(v) = 2d(v)−6 = 6. By Lemma 4, there exist at most two 3-faces inci-
dent with a 4-vertex. Hence, if f3(v) ≤ 3, then w

′
(v) ≥ 6− 5

4×2− 11
10×1− 2

3×3 > 0
by R4. Suppose f3(v) = 4. If f5+(v) ≥ 1, then w

′
(v) ≥ 6− 5

4×2− 11
10×2− 2

3− 1
3 > 0.

If f4(v) = 2, then there exist three boundary vertices of the two 4-faces adja-
cent v, that is, all of the two 4-faces are incident with four 4+-vertices. Hence,
w′(v) ≥ 6 − 5

4 × 2 − 11
10 × 2 − 1

2 × 2 > 0. Suppose f3(v) ≥ 5. If v is adjacent
to a 5-vertex v0 and f is a 3-face incident with v and v0, then f3(v0) ≤ 3, so
ω(v0 → f) ≥ 1 and ω(v → f) ≤ 1. Suppose f3(v) = 5. If f5+(v) = 1, then
w

′
(v) ≥ 6 − 5

4 × 2 − 1 × 3 − 1
3 > 0. If f4(v) = 1, then there exist three bound-

ary vertices of the 4-faces adjacent to v, that is, the 4-face is incident with four
4+-vertices. Hence, w

′
(v) ≥ 6 − 5

4 × 2 − 1 × 3 − 1
2 = 0.

Suppose f3(v) = 6, that is, d(fi) = 3 (i = 1, 2, . . . , 6). By Lemma 4, v
is incident with at most one 4-vertex. So we may assume that d(v6) = 4, then
d(v1) ≥ 7 and d(v5) ≥ 7 by Lemma 5. Suppose f6+(v6) = 2. Then ω(v6 → f5) ≥ 1
and ω(v6 → f6) ≥ 1, so ω(v → f5) ≤ 1 and ω(v → f6) ≤ 1. Therefore,
w′(v) ≥ 6 − 1 × 6 = 0. Otherwise, f5−(v) ≥ 3. Let fx be the 5−-face incident
with v6 except f5 and f6. Suppose d(fx) = 5. Then we get a contradiction to
the condition of Theorem 1. Suppose d(fx) = 4. Then v6 is adjacent to v4 and
v1 is adjacent to v3. So we know that f6+(v6) = 1 and ω(v6 → fi) ≥ 2− 1

2
2 = 3

4

(i = 5, 6). Therefore, ω(v → fi) ≤ 3 − 5
4 − 3

4 ≤ 1 (i = 5, 6), and w
′
(v) ≥

6 − 1 × 6 = 0. Suppose d(fx) = 3. Then each of the boundary vertices of f is
adjacent to v. If v6 is adjacent to v4 and v1 is adjacent to v4, then d(v4) ≥ 7 by
Lemma 5. So ω(v4 → f4) = 5

4 and ω(v5 → f4) = 5
4 , then ω(v → f4) ≤ 1

2 and
w

′
(v) ≥ 6 − 5

4 × 2 − 1 × 3 − 1
2 = 0. If v6 is adjacent to v3 and v1 is adjacent

to v3, then d(v3) ≥ 7 by Lemma 5. Suppose d(v2) ≥ 6 and d(v4) ≥ 6. Then
ω(v → fi) ≤ 3− 5

4
2 = 7

8 (i = 1, 2, 3, 4). Hence, w
′
(v) ≥ 6 − 5

4 × 2 − 7
8 × 4 = 0.

Suppose d(v2) = 5 or d(v4) = 5. Without of generality, assume that d(v4) = 5.
Then ω(v4 → f3) ≥ 1 and ω(v4 → f4) ≥ 1. So ω(v → f3) ≤ 3 − 1 − 5

4 = 3
4 and

ω(v → f4) ≤ 3 − 1 − 5
4 = 3

4 . Therefore, w
′
(v) ≥ 6 − 5

4 × 2 − 1 × 2 − 3
4 × 2 = 0.
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Suppose d(v) = 7. Then it is easy to know that f3(v) ≤ 6 and v is not adjacent
to a 2−-vertices by Lemma 1 (b). Clearly, w(v) = 2d(v) − 6 = 8. Suppose there
exist no 3-faces incident with a 3-vertex. If f3(v) = 6, then f9+(v) = 1, so
w

′
(v) ≥ 8 − 5

4 × 6 > 0 by Lemma 7. If f3(v) = 5, then there exist no 4-faces
incident with two 3−-vertex. So w

′
(v) ≥ 8 − 5

4 × 5 − 3
4 × 2 > 0 by Lemma 7.

If f3(v) ≤ 4, then w
′
(v) ≥ 8 − 5

4 × 4 − 1 × 3 = 0. Now we presume that
there exists at least one 3-face that is incident with a 3-vertex. Then all of the
4-faces are incident with at most one 3−-vertex. By Lemma 2, there exist at
most two 3-faces incident with a 3-vertex. If f3(v) = 6, then f9+(v) = 1, so
w

′
(v) ≥ 8 − 3

2 × 2 − 5
4 × 4 = 0 by Lemma 7. Suppose f3(v) = 5. If v is incident

with at least one 5+-face, then w
′
(v) ≥ 8 − 3

2 × 2 − 5
4 × 3 − 2

3 − 1
3 > 0 by

Lemma 7. Otherwise, f4(v) = 2, then there exist three boundary vertices of the
4-face adjacent to v, so w

′
(v) ≥ 8− 3

2 ×2− 5
4 ×3− 3

4 − 1
2 = 0. Suppose f3(v) ≤ 4.

Then w
′
(v) ≥ 8 − 3

2 × 2 − 5
4 × 2 − 3

4 × 3 > 0 by Lemma 7. If d(v) = 8, then we
know that w(v) = 2 × 8 − 6 = 10, f3(v) ≤ 6 and n2(v) ≤ 7 by Lemma 6. By
Lemma 7 and Lemma 8, we shall consider the following cases by discussing the
number of n2(v).

Fig. 3. n2(v) = 0 and f3(v) = 6

Case 1. n2(v) = 0. Suppose f3(v) = 6. If f6+(v) ≥ 1 or f5+(v) ≥ 2, then
w

′
(v) ≥ 10 − 3

2 × 6 − 1 = 0 by Lemma 7. Otherwise, f6+(v) = 0 and f5+(v) ≤ 1.
Suppose f4(v) = 1 and f5(v) = 1. According to the condition of Theorem 1, there
is only one case in which the location of the faces satisfying the condition of 1. We
depict this case in Fig. 3 (1). It is clear that there exist three boundary vertices
of the 4-faces adjacent to v, and there is at least one 3-face which is not incident
with a 3-vertex by Lemma 2. If the 4-face is incident with at most one 3-vertex,
then w

′
(v) ≥ 10 − 3

2 × 5 − 5
4 − 3

4 − 1
3 > 0. Otherwise, there exist two 3-vertex

incident with the 4-face, then there exist at least two 3-faces that are not incident
with a 3-vertex by Lemma 2. Hence, w

′
(v) ≥ 10− 3

2×4− 5
4×2− 3

4− 1
3 > 0. Suppose

f4(v) = 2. There are only two cases satisfying the condition of Theorem 1. We
depict these cases in Fig. 3(2) and (3). In Fig. 3(2), there exist at least four
3-faces all of which are adjacent to a 8+-face. By R4, if there exists a 8+-face
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adjacent to a 3-face, then 8+-face sends 1
4 to the 3-face, so each of the 3-face

adjacent to a 8+-face receives at most 3− 1
4

2 = 11
8 from the boundary vertices.

There exist at most one 4-face incident with two 3-vertices in Fig. 3(2). By
Lemma 2, there exist at least one 3-face that is not incident with a 3-vertex, so
w

′
(v) ≥ 10 − 3

2 − 11
8 × 4 − 5

4 − 1 − 3
4 = 0. In Fig. 3(3), there exist at least four

3-faces all of which are adjacent to a 8+-face. By Lemma 2, there is at most one
4-face incident with two 3-vertices. If all of the two 4-faces are incident with at
most one 3-vertex, then w

′
(v) ≥ 10 − 3

2 × 2 − 11
8 × 4 − 3

4 × 2 = 0. Otherwise,
there exists one 4-face that is incident with two 3-vertices, then there exist at
least three 3-faces that are not incident with a 3-vertex by Lemma 2. Hence,
w

′
(v) ≥ 10− 3

2 ×3− 5
4 ×3−1− 3

4 = 0. Suppose f3(v) = 5. Then by the condition
of Theorem 1, we know that f5+(v) ≥ 1, so w

′
(v) ≥ 10− 3

2 ×5−1×2− 1
3 ×2 > 0.

Case 2. n2(v) = 1. Then 2 × 8 − 6 − 1 = 9.
Case 2.1. Let the 2-vertex be incident with a 3-cycle. It is clear that f3(v) ≤ 6

and there exist no 3-faces incident with a 3-vertex by Lemma 2. So v is incident
with at most one 3-face that receives 3

2 from v. If f3(v) = 6, then by the condition
of Theorem 1, we know that f6+(v) ≥ 1 or f5+(v) ≥ 2, so w

′
(v) ≥ 9− 3

2− 5
4×5 > 0

by Lemma 7. Suppose f3(v) = 5. If f4(v) = 3, then there are at least two
(8, 4+, 4+, 2+)-faces between the three 4-faces by Lemma 2. Hence, w

′ ≥ 9− 3
2 −

5
4×4−1− 3

4×2 = 0. If f4(v) ≤ 2, then we have w
′
(v) ≥ 9− 3

2− 5
4×4−1×2− 1

3 > 0.
Suppose f3(v) = 4. If f4(v) = 4, then there exist at least two (8, 4+, 4+, 2+)-faces
between the four 4-faces by Lemma 2. Hence, w

′ ≥ 9− 3
2 − 5

4 ×3−1×2− 3
4 ×2 > 0.

If f4(v) ≤ 3, then w
′
(v) ≥ 9 − 3

2 − 5
4 × 3 − 1 × 3 − 1

3 > 0. If f3(v) ≤ 3, then
w

′
(v) ≥ 9 − 3

2 − 5
4 × 2 − 1 × 5 = 0.

Case 2.2. Let the 2-vertex not be incident with a 3-cycle. Then f3(v) ≤
6. Suppose f3(v) = 6. Then the six 3-faces are adjacent and f9+(v) = 1, so
there exist at least four (8, 4+, 4+)-faces between the six 3-faces by Lemma 3.
Therefore, w

′
(v) ≥ 9− 3

2 ×2− 5
4 ×4−1×1 > 0 by Lemma 7. Suppose f3(v) = 5.

It is easy to know that f6+(v) ≥ 1 by the condition of Theorem 1. If f4(v) = 2,
then there exist three the boundary vertices of the two 4-faces adjacent to v. So
v is incident with at least two (8, 4+, 4+)-faces and one (8, 4+, 4+, 2+)-face by
Lemma 3. Hence, w

′
(v) ≥ 9− 3

2 ×3− 5
4 ×2−1×1− 3

4 ×1 > 0. If f4(v) = 1, then
there exists at least one (8, 4+, 4+)-face between the five 3-faces. by Lemma 3.
Hence, w

′
(v) ≥ 9 − 3

2 × 4 − 5
4 × 1 − 1 × 1 − 1

3 × 2 > 0. If f4(v) = 0, then
w

′
(v) ≥ 9− 3

2 ×5− 1
3 ×3 > 0. Suppose f3(v) = 4. Then we have f4(v) ≤ 3 by the

condition of Theorem 1. If f4(v) = 3, then there exist at least two (8, 4+, 4+)-
faces between four the 3-faces. Hence, w

′
(v) ≥ 9− 3

2 ×2− 5
4 ×2−1×3− 1

3 ×1 > 0.
If f4(v) ≤ 2, then w

′
(v) ≥ 9 − 3

2 × 4 − 1 × 2 − 1
3 × 2 > 0. Suppose f3(v) = 3. If

there exists a 5+-face incident with v, then w
′
(v) ≥ 9 − 3

2 × 3 − 1 × 4 − 1
3 > 0.

Otherwise, f4(v) = 5, then there exist at least three (8, 4+, 4+, 2+)-faces between
the five 4-faces. Hence, w

′
(v) ≥ 9 − 3

2 × 3 − 1 × 2 − 3
4 × 3 > 0. If f3(v) ≤ 2, then

w
′
(v) ≥ 9 − 3

2 × 2 − 1 × 6 = 0.
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Fig. 4. n2(v) = 2

Case 3. n2(v) = 2. Then 2 × 8 − 6 − 2 = 8 and there are four cases in
which 2-vertices are located. We depict these cases in Fig. 4. In Fig. 4 (1),
w

′
(v) ≥ 8 − ( 54 × 8 − 9

4 ) > 0 by Lemma 8. In Fig. 4 (2), w
′
(v) ≥ 8 − (54 × 7 −

9
4 ) − ( 54 × 3 − 9

4 ) = 0. In Fig. 4 (3), w
′
(v) ≥ 8 − (54 × 6 − 9

4 ) − ( 54 × 4 − 9
4 ) = 0.

In Fig. 4 (4), w
′
(v) ≥ 8 − (54 × 5 − 9

4 ) × 2 = 0 by Lemma 8.

Fig. 5. n2(v) = 3

Case 4. n2(v) = 3. Then 2 × 8 − 6 − 3 = 7 and there are five cases in which
2-vertices are located. We depict these cases in Fig. 5. In Fig. 5(1), w

′
(v) ≥

7 − (54 × 7 − 9
4 ) > 0 by Lemma 8. In Fig. 5(2), w

′
(v) ≥ 7 − ( 54 × 6 − 9

4 ) −
(54 × 3 − 9

4 ) > 0. In Fig. 5(3), w
′
(v) ≥ 7 − ( 54 × 5 − 9

4 ) − ( 54 × 4 − 9
4 ) > 0.

In Fig. 5(4), w
′
(v) ≥ 7 − (54 × 5 − 9

4 ) − ( 54 × 3 − 9
4 ) × 2 = 0. In Fig. 5(5),

w
′
(v) ≥ 7 − (54 × 3 − 9

4 ) − ( 54 × 4 − 9
4 ) × 2 = 0 by Lemma 8.

Case 5. n2(v) = 4. Then 2 × 8 − 6 − 4 = 6 and there are eight cases
in which 2-vertices are located. We depict these cases in Fig. 6. In Fig. 6(1),
w

′
(v) ≥ 6 − ( 54 × 6 − 9

4 ) > 0 by Lemma 8. In Fig. 5(2) and (4), w
′
(v) ≥

6−(54×5− 9
4 )−( 54×3− 9

4 ) > 0. In Fig. 6(3) and (7), w
′
(v) ≥ 6−(54×4− 9

4 )×2 > 0.
In Fig. 6(5) and (6), w

′
(v) ≥ 6 − (54 × 3 − 9

4 ) × 2 − ( 54 × 4 − 9
4 ) > 0. In Fig. 6(8),

w
′
(v) ≥ 6 − (54 × 3 − 9

4 ) × 4 = 0 by Lemma 8.
Case 6. n2(v) ≥ 5. Suppose n2(v) = 5. Then 2×8−6−5 = 5 and f3(v) ≤ 2.

Suppose f3(v) = 2. Then f6+(v) ≥ 4 by Lemma 2. Consequently, w
′
(v) ≥

5 − 3
2 × 2 − 1 × 2 = 0 by Lemma 7. If f3(v) = 1, then f6+(v) ≥ 3 and f4(v) ≤ 4.

If f4(v) = 4. then all of the four 4-faces are (8, 4+, 4+, 2+)-faces. Hence, w
′
(v) ≥
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Fig. 6. n2(v) = 4

5 − 3
2 × 1 − 3

4 × 4 > 0. If f4(v) ≤ 3, then w
′
(v) ≥ 5 − 3

2 × 1 − 1 × 3 − 1
3 > 0.

Suppose f3(v) = 0. Then f6+(v) ≥ 2. If f4(v) = 6, then all of the six 4-faces
are (8, 4+, 4+, 2+)-faces. Hence, w

′
(v) ≥ 5 − 3

4 × 6 > 0. If f4(v) = 5, then
there exist at least four (8, 4+, 4+, 2+)-faces between the five 4-faces. Hence,
w

′
(v) ≥ 5−1×1− 3

4×4− 1
3×1 > 0. If f4(v) ≤ 4, then w

′
(v) ≥ 5−1×4− 1

3×2 > 0.
Suppose n2(v) = 6. Then 2 × 8 − 6 − 6 = 4 and f3(v) ≤ 1. If f3(v) = 1, then
f6+(v) ≥ 5 and f4(v) ≤ 2. So w

′
(v) ≥ 4 − 3

2 − 1 × 2 > 0. If f3(v) = 0, then
f6+(v) ≥ 4. Hence, w

′
(v) ≥ 4−1×4 = 0. Suppose n2(v) = 7. Then by Lemma 2

we know that f6+(v) ≥ 6 by and f3(v) = 0, so w
′
(v) ≥ 10 − 7 − 1 × 2 > 0.

In summary, we know that w
′
(x) ≥ 0 for every x ∈ V ∪F , so

∑
x∈V ∪F w

′
(x) ≥

0. Hence, we get the desired contradiction and finish the proof of Theorem 1.
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