
Fast Searching on k-Combinable Graphs

Yuan Xue, Boting Yang(B), and Sandra Zilles

Department of Computer Science, University of Regina, Regina, Canada
{xue228,boting,zilles}@cs.uregina.ca

Abstract. Finding an optimal fast search strategy for graphs is challenging,
sometimes even when graphs have very small treewidth, like cacti, cartesian
product of a tree and an edge, etc. However, it may be easier to find an optimal
fast search strategy for some critical subgraphs of the given graph. Although fast
searching is not subgraph-closed, this observation still motivates us to establish
relationships between optimal fast search strategies for a graph and its subgraphs.
In this paper, we introduce the notion of k-combinable graphs and propose a new
method for computing their fast search number. Assisted by the new method, we
investigate the fast search number of cacti graphs and the cartesian product of a
tree and an edge. Algorithms for producing fast search strategies for the above
graphs, along with rigorous proofs, are given in this paper.

1 Introduction

Inspired by an article of Breisch [3] who considered the problem of finding a lost
explorer in dark complex caves, Parsons [9] first introduced the graph search problem
in which both searchers and fugitive move continuously along edges of a graph. Moti-
vated by applied problems in the real world and theoretical issues in computer science
and mathematics, graph searching has become a hot topic. It has many models, such as
edge searching, node searching, mixed searching, fast searching, etc. These models are
basically defined by the class of graphs, the actions of searchers and fugitives, visibility
of fugitives, and conditions on what constitutes capture [1,2,6,8].

Given a graph that contains an invisible fugitive, the fast search problem is to find
the fast search number, i.e., the minimum number of searchers to capture the fugitive
in the fast search model. This model was first introduced by Dyer, Yang and Yaşar [5]
in 2008. Let G denote an undirected graph. In the fast search model, a fugitive hides
either on vertices or on edges of G. The fugitive can move at a great speed at any
time from one vertex to another along a path that contains no searchers. We call an edge
contaminated if it may contain the fugitive, and we call an edge cleared if we are certain
that it does not contain the fugitive. In order to capture the fugitive, one launches a set
of searchers on some vertices of the graph; these searchers then clear the graph edge by
edge while at the same time guarding the already cleared parts of the graph. There are
two actions for searchers: placing and sliding. An edge is cleared by a sliding action
and every edge must be traversed exactly once. A fast search strategy for a graph is a
sequence of actions of searchers that clear all contaminated edges of the graph. The fast
search number of G, denoted by fs(G), is the smallest number of searchers needed to
capture the fugitive in G. For more details about the model setting, please refer to [5].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 394–405, 2022.
https://doi.org/10.1007/978-3-031-16081-3_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_34&domain=pdf
https://doi.org/10.1007/978-3-031-16081-3_34

Fast Searching on k-Combinable Graphs 395

Dyer et al. [5] proposed a linear time algorithm for computing the fast search num-
ber of trees. Stanley and Yang [10] gave a linear time algorithm for computing the fast
search number of Halin graphs and their extensions. They also presented a quadratic
time algorithm for computing the fast search number of cubic graphs, while the prob-
lem of finding the node search number of cubic graphs is NP-complete [7]. Yang [13]
proved that the problem of finding the fast search number of a graph is NP-complete;
and it remains NP-complete for Eulerian graphs. He also proved that the problem of
determining whether the fast search number of G is a half of the number of odd vertices
in G is NP-complete; and it remains NP-complete for planar graphs with maximum
degree 4. Dereniowski et al. [4] characterized graphs for which 2 or 3 searchers are suf-
ficient in the fast search model. They proved that the fast searching problem is NP-hard
for multigraphs. Dyer et al. [5] considered complete bipartite graphs Km,n, and com-
puted the fast search number of Km,n when m is even. They also presented lower and
upper bounds on the fast search number of Km,n when m is odd. Xue et al. [12] pro-
vided lower bounds and upper bounds on the fast search number of complete k-partite
graphs. They also solved the open problem of determining the fast search number of
complete bipartite graphs. In [11], Xue and Yang provided lower bounds on the fast
search number, and gave formulas for the fast search number of the cartesian product
of an Eulerian graph and a path, as well as variants of the cartesian product.

In this paper, we introduce the notion of k-combinable graphs, and develop a new
method for computing their fast search number. The method can be seen as a general
method for finding lower bounds on the fast search number. Using this new method, we
examine the fast search number of several classes of graphs including cacti graphs and
cartesian product of a tree and an edge.

2 K-Combinable Graphs

We first introduce a class of graphs named k-combinable graphs. Then we describe our
method for finding an optimal fast search strategy for k-combinable graphs. Let G be a
connected graph and let E′

G be the set of all pendant edges of G. The profile of G is an
ordered tuple πG = (π1, . . . , πz) of positive integers, which is defined as follows:

1. If E′
G = ∅, then z = 1 and π1 = fs(G).

2. If E′
G �= ∅ and |E′

G| = k, then z = k!2k and each component πi of πG is associated
with a specific permutation σ and a specific orientation of each edge in E′

G. In
particular, πi is the smallest number of searchers with which a fast search strategy
can clear G if it traverses the edges in E′

G in the order of σ and in the directions as
given by the chosen orientations.

Let G1 be a connected graph that has k1 ≥ 1 pendant edges, and let G2 be a
connected graph having k2 ≥ 1 pendant edges. We choose k to be a constant satisfying
that 1 ≤ k ≤ min{k1, k2}. Let −→e1 = (u1u

′
1, . . . , uku′

k), where uiu
′
i ∈ E(G1) and u′

i

is a leaf node. Let −→e2 = (v1v′
1, . . . , vkv′

k), where viv
′
i ∈ E(G2) and v′

i is a leaf node.
Let H be the graph obtained from G1 and G2 by performing the following operations
on G1 and G2 with respect to

−→e1 and −→e2 :

396 Y. Xue et al.

1. remove edges uiu
′
i and viv

′
i, for 1 ≤ i ≤ k;

2. remove vertices u′
i and v′

i, for 1 ≤ i ≤ k;
3. connect ui and vi by adding a new edge, for 1 ≤ i ≤ k.

Note that the above operations depend on the choice of the sequences −→e1 and −→e2
which we will henceforth call edge pairing sequences. If we permute either of the edge
pairing sequences, this would create a different result. Hence, we define the align oper-
ation on G1 and G2 with respect to

−→e1 and −→e2 , denoted as (G1,
−→e1)�(G2,

−→e2), to be the
graph obtained by performing the above operations.

Definition 1. Let m ≥ 2. Let G1, . . . , Gm be connected graphs. The sequence (G1,
. . . , Gm) is k-combinable if there are edge sequences −→e1 , . . . ,−→em, −→e1,2, . . . ,

−−−−→e1,m−1

such that:

1. For 1 ≤ i ≤ m, −→ei is a sequence of pendant edges of Gi.
2. For 2 ≤ i ≤ m − 1, −→e1,i is a sequence of pendant edges of Hi, where H2 =

(G1,
−→e1)�(G2,

−→e2), and Hi+1 = (Hi,
−→e1,i)�(Gi+1,

−−→ei+1).
3. For 1 ≤ i ≤ m, the set of all edges of Gi, which occur in −→e1 , . . . ,−→em and−→e1,2, . . . ,

−−−−→e1,m−1, has size at most k.
4. For 2 ≤ j ≤ m − 1, the set of all edges of Hj , which occur in −→e1 , . . . ,−→em and−→e1,2, . . . ,

−−−−→e1,m−1, has size at most k.

Further, we call Hm a k-combination of (G1, . . . , Gm), in particular, this is the k-
combination of (G1, . . . , Gm) with respect to −→e1 , . . . ,−→em, −→e1,2, . . . ,

−−−−→e1,m−1.

Obviously, there may exist more than one graph that is a k-combination of (G1, G2,
. . . , Gm). Further, for each k-combination G of (G1, G2, . . . , Gm), there exist specific−→e1,2, . . . ,

−−−−→e1,m−1 and −→e1 , . . . ,−→em for obtaining G. In the remainder of this section, we
always assume that every time an algorithm handles profiles of graphs, it implicitly
associates the profiles with corresponding −→e1,i and −→ej , where 2 ≤ i ≤ m − 1 and
1 ≤ j ≤ m.

Theorem 1. There exists an algorithm that, given the profiles and edge pairing
sequences of G1 and G2 such that G is the k-combination of (G1, G2) with respect
to the edge pairing sequences, runs in O((k1 + k2 − k)!2k1+k2−k) time to compute the
profile of G. Here ki refers to the number of pendant edges of Gi, where 1 ≤ i ≤ 2.

Proof. We briefly introduce the idea of how to compute the profile of G. Since G1

and G2 have k1 and k2 pendant edges respectively, the sizes of profiles of G1 and
G2 are k1!2k1 and k2!2k2 . Let −→e1 and −→e2 denote the edge pairing sequences of G1

and G2 respectively. Consider all the edges in −→e1 and −→e2 . If we are given a set of
rules instructing how these edges are cleared in a strategy, then in accordance with
the rules, we can figure out the number of searchers that need to be placed on the non-
leaf vertices in V (G1) and V (G2). For each parameter in the profile of G, it takes
O(k!2k) time to compute its value. Further, we know the size of the profile of G is
(k1 + k2 − 2k)!2k1+k2−2k. Hence, the time complexity for computing the profile of G
is O((k1 + k2 − k)!2k1+k2−k). 	

Fast Searching on k-Combinable Graphs 397

From Theorem 1, it is easy to see that our method can be applied to find an optimal
fast search strategy for quite complicated graphs, if the graph can be split into two
smaller graphs for which fast search strategies are easy to find. Moreover, if we are
given G that is a k-combination of (G1, . . . , Gm)where m ≥ 3, by repeatedly applying
the procedure presented in the proof of Theorem 1, we can find an optimal fast search
strategy for G as stated in Theorem 2. This novel method reveals an interesting property
of fast searching that has not been exploited systematically in the literature to date.

Theorem 2. Let G be a k-combination of (G1, . . . , Gm) with respect to −→e1 , . . . ,−→em,−→e1,2, . . . ,
−−−−→e1,m−1, where G1, . . . , Gm are connected graphs and k is a constant. There

exists an algorithm which, given (1) the profiles of G1, G2, . . .Gm in sequence, and (2)−→e1 , . . . ,−→em and −→e1,2, . . . ,
−−−−→e1,m−1, runs in polynomial time to compute the profile of G.

Furthermore, the fast search number of G can be found in polynomial time.

In the next section, we will apply Theorem 2 to the finding of optimal fast search
strategy for cacti graphs; further, we also apply the theorem to the finding of optimal
fast search strategies for cartesian product of a tree and an edge. We will show that (1)
how to split a graph into smaller subgraphs, and (2) how to apply Theorem 2 to obtain
an optimal fast search strategy, upon knowing the profiles of all the subgraphs in (1).

3 Cacti Graphs

A connected graph is a cactus if and only if each of its edges is contained in at most
one cycle. In this section, we use G to denote a cactus graph. Let v ∈ V (G) and let
G1, . . . ,Gk be all the connected components from G by deleting v and all its incident
edges. We use Gi

v to denote the subgraph of G induced by V (Gi)∪ {v}, where 1 ≤ i ≤
k. G1

v , . . . , Gk
v are called sub-cacti of G with respect to vertex v. Note that G1

v , . . . ,Gk
v

must satisfy:

(i) V (G1
v) ∪ · · · ∪ V (Gk

v) = V (G),
(ii) V (Gi

v) ∩ V (Gj
v) = v, where 1 ≤ i �= j ≤ k, and

(iii) u1, u2 ∈ V (G) are adjacent, only if there exists i such that u1, u2 ∈ V (Gi
v).

Consider Gi
v , where 1 ≤ i ≤ k. Note that v has degree at most two in Gi

v . If v is
a leaf node in Gi

v , then let u be a vertex in V (Gi
v) satisfying u ∼ v. We use πI(Gi

v) to
denote the minimum number of searchers placed on V (Gi

v)\{v} in a strategy for Gi
v , in

which vu is cleared by sliding a searcher from v to u. An I-strategy for Gi
v is a strategy

in which (1) vu is cleared by sliding a searcher from v to u, and (2) πI(Gi
v) searchers

are placed on V (Gi
v) \ {v}. Note that if vu is cleared by sliding a searcher from v to u

in a strategy, then a searcher must be placed on v at the beginning of the strategy. We
use πO(Gi

v) to denote the minimum number of searchers placed on V (Gi
v) \ {v} in a

strategy for Gi
v , in which vu is cleared by sliding a searcher from u to v. An O-strategy

for Gi
v is a strategy for Gi

v in which (1) vu is cleared by sliding a searcher from u to v,
and (2) πO(Gi

v) searchers are placed on V (Gi
v) \ {v}.

If v has degree two in Gi
v , then let u1 and u2 be the two vertices in V (Gi

v) satisfying
that u1 ∼ v and u2 ∼ v. For i ∈ {1, 2}, we say vui is cleared by a slide-in action if a

398 Y. Xue et al.

searcher slides from v to ui along vui, and we say vui is cleared by a slide-out action
if a searcher slides from ui to v along vui. We use πI,I(Gi

v) to denote the minimum
number of searchers placed on V (Gi

v) \ {v} in a strategy for Gi
v , in which vu1 and vu2

are both cleared by slide-in actions. We use πO,O(Gi
v) to denote the minimum number

of searchers placed on V (Gi
v) \ {v} in a strategy for Gi

v , in which vu1 and vu2 are
both cleared by slide-out actions. We use πI,O(Gi

v) to denote the minimum number of
searchers placed on V (Gi

v)\{v} in a strategy for Gi
v , in which vu1 or vu2 is cleared by a

slide-in action, and later the other edge is cleared by a slide-out action. We use πO,I(Gi
v)

to denote the minimum number of searchers placed on V (Gi
v)\{v} in a strategy for Gi

v ,
in which vu1 or vu2 is cleared by a slide-out action, and later the other edge is cleared
by a slide-in action. A strategy for Gi

v is an II-strategy, in which (1) πI,I(Gi
v) searchers

are placed on V (Gi
v) \ {v}, and (2) vu1 and vu2 are both cleared by slide-in actions. In

a similar way, we define IO-strategy, OI-strategy and OO-strategy for Gi
v respectively.

Definition 2. Consider a sub-cactus of G with respect to vertex v, i.e., Gi
v .

1. If v has exactly one incident edge in Gi
v , then the profile of Gi

v is defined as the pair
(πI(Gi

v), πO(Gi
v)).

2. If v has exactly two incident edges in Gi
v , then the profile of Gi

v is defined as the
4-tuple (πI,I(Gi

v), πI,O(Gi
v), πO,I(Gi

v), πO,O(Gi
v)).

For cactus graph G and v ∈ V (G), we use G′
v to denote the graph obtained by

adding either one or two pendant edges to v. There are two possibilities for G′
v:

(1) v has one added pendant edge in G′
v , say vu. Let πI(G′

v) be the minimum
number of searchers placed on V (G′

v)\{u} in a strategy for G′
v , in which vu is cleared

by sliding a searcher from u to v. An I-strategy for G′
v is a strategy, in which (a) πI(G′

v)
searchers are placed on V (G′

v) \ {u}, and (b) vu is cleared by sliding a searcher from
u to v. In a similar way, we define πO(G′

v) and O-strategy for G′
v . The profile of G′

v is
defined as the pair (πI(G′

v), πO(G′
v)).

(2) v has two added pendant edges in G′
v . Notice that there are four distinct ways

to clear the two added pendant edges of v. In a similar way, we define (1) πI,I(G′
v),

πI,O(G′
v), πO,I(G′

v) and πO,O(G′
v) forG

′
v , and (2) II-strategy, IO-strategy,OI-strategy

and OO-strategy for G′
v . The profile of G′

v is defined as 4-tuple (πI,I(G′
v), πI,O(G′

v),
πO,I(G′

v), πO,O(G′
v)).

Definition 3. For a strategy S for G, let the reversed strategy for S be obtained from S
by making the following modifications:

1. Remove all placing actions from S.
2. For each vertex v ∈ V (G) that contains searchers at the end of S, insert a placing

action at the beginning that places the same number of searchers on v.

Fast Searching on k-Combinable Graphs 399

3. For each edge e ∈ E(G), reverse the sliding action on e by letting searcher move in
the opposite way to clear it.

4. Reverse the order of all sliding actions.

Clearly, the reversed strategy for S uses the same number of searchers to clear G.
Hence, we have πI,I(Gi

v) = πO,O(Gi
v) − 2, and πI(Gi

v) = πO(Gi
v) − 1.

Lemma 1. Gi
v must have one of the following properties:

1. πI,I(Gi
v) = πI,O(Gi

v) = πO,I(Gi
v) = πO,O(Gi

v) − 2;
2. πI,I(Gi

v) = πI,O(Gi
v) = πO,I(Gi

v) − 1 = πO,O(Gi
v) − 2;

3. πI,I(Gi
v) = πI,O(Gi

v) = πO,I(Gi
v) − 2 = πO,O(Gi

v) − 2;
4. πI,I(Gi

v) = πI,O(Gi
v) − 1 = πO,I(Gi

v) − 1 = πO,O(Gi
v) − 2;

5. πI,I(Gi
v) = πI,O(Gi

v) − 1 = πO,I(Gi
v) − 2 = πO,O(Gi

v) − 2;
6. πI,I(Gi

v) = πI,O(Gi
v) − 2 = πO,I(Gi

v) − 2 = πO,O(Gi
v) − 2;

7. πI(Gi
v) = πO(Gi

v) − 1.

For convenience, we say Gi
v satisfies (

i) if it has the i-th property in Lemma 1, where
1 ≤ i ≤ 7. Consider G1

v , . . . , Gk
v . Let χi

v be the number of sub-cacti that satisfy (i),
where 1 ≤ i ≤ 7. Obviously, we have 0 ≤ χi

v ≤ k. Two strategies for G are said to be
equivalent if they use the same number of searchers to clear G.

For any cactus graph G, algorithm FASTSEARCHCACTUS (See Algorithm 1) com-
putes the minimum number of searchers required for clearing G.

Algorithm 1: FASTSEARCHCACTUS(G)

1 Input: A cactus graph G.
2 Output: The fast search number of G.

1: Arbitrarily select a cut vertex v in V (G), whose removal results in k ≥ 2
connected components H1, . . . , Hk. Let Gi denote the subgraph of G induced
by V (Hi) ∪ {v}, where 1 ≤ i ≤ k. Let Ecut denote the edge set consisting of
all edges connecting v and vertices in V (H1). Let G′ be the subgraph of G
induced by V (H2) ∪ · · · ∪ V (Hk) ∪ V (Ecut).

2: Let PGi
be the output of CLEARCACTI1(Gi, v), where 1 ≤ i ≤ k.

3: Let PG′ be the output of CLEARCACTI3(G′, Ecut, v, {PG2 , . . . ,PGk
}).

4: List all the possible combinations of the profiles from PG1 and PG′

respectively with respect to sliding actions on all the edges in Ecut.
5: return the minimum number of searchers in all the combinations.

In algorithm FASTSEARCHCACTUS, we define Gi, where 1 ≤ i ≤ k. Algorithm
CLEARCACTI1 (See Algorithm 2) computes the profiles of Gi. The input of the algo-
rithm includes Gi, along with the cut vertex v ∈ V (G). The output is the profile of
Gi.

400 Y. Xue et al.

Algorithm 2: CLEARCACTI1(Gi, v)
1: If Gi is a tree, then let πI(Gi) be the number of searchers that are placed on V (Gi) \ {v} in the

I-strategy produced by FS(Gi) in [5]. Let πO(Gi) ← πI(Gi) + 1. Let (πI(Gi), πO(Gi)) be the
profile of Gi.

2: If Gi is a simple cycle, then let πI,I(Gi) ← 0, πI,O(Gi) ← 0, πO,I(Gi) ← 2,
and πO,O(Gi) ← 2. Let (πI,I(Gi), πI,O(Gi), πO,I(Gi), πO,O(Gi)) be the
profile of Gi

v .
3: If Gi is neither a tree nor a simple cycle, then there are two subcases:

(i) if v is contained in a cycle of Gi, then let the output of CLEARCACTI2(Gi, v)
be the profile of Gi;

(ii) if v is a leaf node of Gi, then let u ∈ V (Gi) be the vertex such that v ∼ u;
let the output of CLEARCACTI1(Gi − {uv}, u) be the profile of Gi.

4: return the profile of Gi.

Algorithm CLEARCACTI2 (See Algorithm 3) is used to compute the profile of a
sub-cactus in which v is contained in a cycle. The input of the algorithm includes a
sub-cactus Gi and the cut vertex v. The output of the algorithm is the profile of Gi.

Algorithm 3: CLEARCACTI2(Gi, v)
1: Let C = vu1 . . . uk′v be the shortest cycle in Gi that contains v. Let

Hu1 , . . . ,Huk′ denote the k′ connected components that contain u1, . . . , uk′

respectively, which are obtained by deleting all edges in E(C) from Gi. Let
Ej ⊂ E(C) be the set containing the two incident edges of uj , where 1 ≤ j ≤
k′. Let Guj

denote the connected subgraph obtained from Huj
by adding two

edges in Ej to uj .
2: For j ← 1, . . . , k′:
(2.1) Let H1, . . . , Hm denote all the connected components of Huj

after
removing the vertex uj . Let H ′

� be the subgraph of Huj
induced by

V (H�) ∪ {uj}, where 1 ≤ � ≤ m.
(2.2) Let PH′

�
be the output of CLEARCACTI1(H ′

�, uj), where 1 ≤ � ≤ m.
(2.3) Let the output of CLEARCACTI3(Guj

, Ej , uj , {PH′
1
, . . . ,PH′

m
}) be the

profile of Guj
.

3: Let W ← Gu1 . Let j ← 2.
4: Note that W and Gui

have one edge in common. A strategy for W ∪ Guj
can

be obtained from strategies for W and Guj
by reaching an accord on the

sliding action on the common edge of W and Guj
. Note that in the graph

W ∪ Guj
, u1 and uj have one pendent edge in E(C) respectively. Compute the

profile of W ∪ Guj
with respect to the sliding actions on the pendent edges of

u1 and uj , which consists of
πI,I(W ∪ Guj

), πI,O(W ∪ Guj
), πO,I(W ∪ Guj

), πO,O(W ∪ Guj
).

5: Let W ← W ∪ Guj
. If j = k′, then go to Step 6; otherwise, let j ← j + 1

and go to Step 4.
6: return the profile of W .

Fast Searching on k-Combinable Graphs 401

Algorithm CLEARCACTI3 (see Algorithm 4) is used for computing the profile of
G′

v , which is obtained by adding either one or two pendant edges to the cut vertex v.
The input of the algorithm includes G′, Ecut, v and P . The output of the algorithm is
the profile of G′.

Algorithm 4: CLEARCACTI3(G′, Ecut, v, P)

1: If |Ecut| = 1, then let πI(G′) be obtained from the output of
CLEARCACTI4(G′, 1, 1,P). Let πO(G′) ← πI(G′) + 1.

2: If |Ecut| = 2, then:
(i) let πI,I(G′) be the minimum number of searchers required for clearing

G′, where edges in Ecut are cleared by slide-in actions.
(ii) let πO,O(G′) ← πI,I(G′) + 2.
(iii) let πI,O(G′) be the minimum number of searchers required for clearing

G′, where one edge in Ecut is cleared by a slide-in action, followed by the
other edge in Ecut being cleared by a slide-out action.

(iv) let πO,I(G′) be the minimum number of searchers required for clearing
G′, where one edge in Ecut is cleared by a slide-out action, followed by
the other edge in Ecut being cleared by a slide-in action.

3: return the profile of G′.

Algorithm CLEARCACTI4(G′, σ1, σ2,P) (which is omitted due to space limit) is
called by CLEARCACTI3 as a subroutine, which computes the total number of searchers
for clearing G′ under some specific setting. Let P be the set containing the profiles of
all the sub-cacti of G′ − Ecut with respect to vertex v. We use σ1 to record the number
of available searchers on v which could be used in an II-strategy or an I-strategy for
a sub-cactus. We use σ2 to denote the maximum number of searchers residing on v at
some moment in a strategy for G′. For simplicity, σ2 is set to 2 if there exists some
moment in a strategy for G′ at which v contains two or more searchers.

Lemma 2. Consider all the sub-cacti of G with respect to v. For any strategy for G,
there exists an equivalent strategy such that all the sub-cacti are cleared in the following
order:

1. all the sub-cacti that are cleared by an O-strategy or an OO-strategy;
2. all the sub-cacti that are cleared by an OI-strategy (for each sub-cactus, perform all

actions of searchers in its strategy until one of v’s incident edges is cleared);
3. all the sub-cacti that are cleared by an IO-strategy;
4. all the sub-cacti that are cleared by an OI-strategy (for each sub-cactus, perform all

actions of searchers in its strategy after one of v’s incident edges is cleared);
5. all the sub-cacti that are cleared by an I-strategy or an II-strategy.

Lemma 3. Consider all the sub-cacti of G with respect to v, denoted as G1, . . . , Gk.
For any strategy for G, there exists an equivalent strategy in which:

1. if Gi satisfies (1), then it is cleared by an OI-strategy or an OO-strategy;
2. if Gi satisfies (2), then it is cleared by an IO-strategy, an OI-strategy or an OO-

strategy;

402 Y. Xue et al.

3. if Gi satisfies (3), then it is cleared by an IO-strategy or an OO-strategy;
4. if Gi satisfies (4), then it is cleared by an II-strategy, an OI-strategy or an OO-

strategy;
5. if Gi satisfies (5), then it is cleared by an II-strategy, an IO-strategy or an OO-

strategy;
6. if Gi satisfies (6), then it is cleared by an II-strategy, or an OO-strategy.

Definition 4. A strategy is called a standard strategy for G with respect to v, where
v ∈ V (G), if (1) all the sub-cacti with respect to v are cleared in the order given in
Lemma 2, and (2) each sub-cactus Gi

v , where 1 ≤ i ≤ k, is cleared by a strategy in
accordance with Lemma 3.

In the remainder of this section, we assume that every strategy for G′
v is a standard

strategy with respect to v without subscripts.

Theorem 3. For any cactus graph G, the fast search number of G can be computed in
linear time by algorithm FASTSEARCHCACTUS.

Proof. The algorithm FASTSEARCHCACUTS runs in linear time, as we can verify the
time complexity as follows:

1. the profile of the sub-cactus with respect to each vertex in V (G) has constant size;
2. the profile of the sub-cactus with respect to each vertex in V (G) is computed at most

once;
3. the profile of the sub-cactus with respect to each vertex in V (G) is passed as param-

eter at most once when computing the profile of other sub-cactus;
4. the computation of the profile of the sub-cactus with respect to a vertex in V (G)

takes constant time.

Obviously, the algorithm FASTSEARCHCACUTS computes the fast search number
of G in linear time. 	

Theorem 4. For any cactus graph G, we can obtain an optimal fast search strategy in
linear time using FASTSEARCHCACTUS.

Proof. This can be achieved by first using a back-track method to record how every
edge of G is cleared after calling FASTSEARCHCACTUS. In addition, we can record
the vertices of G on which searchers are placed throughout FASTSEARCHCACTUS.
Based on these records, we can easily obtain an optimal fast search strategy for G by
letting those searchers move along edges following the prescribed directions. 	

4 Cartesian Product of a Tree and an Edge

Given two graphs G and H , the cartesian product of G and H , denoted G�H , is the
graph whose vertex set is the cartesian product V (G)×V (H), and in which two vertices
(u, v) and (u′, v′) are adjacent if and only if u = u′ and v is adjacent to v′ in H , or
v = v′ and u is adjacent to u′ in G.

Fast Searching on k-Combinable Graphs 403

In what follows, we apply Theorem 2 to find an optimal fast search strategy for
T�P2, where T has at least three vertices. Let Sn, where n ≥ 3, denote a star graph of
n vertices. Let Hn denote the graph obtained by connecting the center vertices of two
copies of Sn. Without loss of generality, let S1

n and S2
n denote the two copies of Sn in

Hn. For any pair of edges that are from E(S1
n) and E(S2

n) respectively, there are four
distinct ways to clear the two edges in a fast search strategy for Hn:

1. both edges are cleared by sliding a searcher from leaf to center node;
2. one of the two edges is cleared by sliding a searcher from leaf to center node, fol-

lowed by the other edge being cleared by sliding a searcher from center node to
leaf;

3. one of the two edges is cleared by sliding a searcher from center node to leaf, fol-
lowed by the other edge being cleared by sliding a searcher from leaf to center node;

4. both edges are cleared by sliding a searcher from center node to leaf.

For convenience, we use II, IO, OI and OO to represent the above four ways respec-
tively in the remainder of this section. Note that there are two layers in T�P2. Let T1

and T2 be the two layers in T�P2. Let v1
c ∈ V (T1) be a vertex of degree k ≥ 3. Let

v2
c ∈ V (T2) be the vertex where v2

c ∼ v1
c . Let V ′

c be the subset of V (T�P2), which
consists of v1

c , v
2
c and all their adjacent vertices in V (T�P2). Let E′

c be the subset of
E(T�P2), in which v1

c or v2
c is an end point of each edge. We use G′

c to denote the con-
nected subgraph of T�P2, whose vertex set is V ′

c and edge set is E′
c. It is easy to see

that G′
c is the same as Hk. Let G1, . . . , Gk−1 be the connected components after deleting

all edges in E′
c and all isolated vertices from T�P2. We use G′

i, where 1 ≤ i ≤ k − 1,
to denote the subgraph of T�P2, which is obtained from Gi by adding two pendant
edges in E(T�P2) that connect vertices from {v1

c , v2
c} and V (Gi). Note that there are

four ways to clear the two pendant edges of G′
i. We use s1(G′

i) to denote the minimum
numbers of searchers needed to be placed on V (Gi) in a strategy for G′

i, in which the
two pendant edges are cleared by II. In a similar way, we define s2(G′

i), s3(G′
i) and

s4(G′
i).

Lemma 4. G′
i must have one of the following properties:

1. s1(G′
i) = s2(G′

i) = s3(G′
i) = s4(G′

i) − 2;
2. s1(G′

i) = s2(G′
i) = s3(G′

i) − 1 = s4(G′
i) − 2;

3. s1(G′
i) = s2(G′

i) = s3(G′
i) − 2 = s4(G′

i) − 2;
4. s1(G′

i) = s2(G′
i) − 1 = s3(G′

i) − 1 = s4(G′
i) − 2;

5. s1(G′
i) = s2(G′

i) − 1 = s3(G′
i) − 2 = s4(G′

i) − 2.
6. s1(G′

i) = s2(G′
i) − 2 = s3(G′

i) − 2 = s4(G′
i) − 2.

Let G′ be the graph with vertex set V (G1) ∪ · · · ∪ V (Gk−2) ∪ V ′
c and edge set

E(G1) ∪ · · · ∪ E(Gk−2) ∪ E′
c. Given the profiles of G′

i, where 1 ≤ i ≤ k − 2, we can
compute the minimum number of searchers required for clearing G′.

Lemma 5. For each connected component G′
i, where 1 ≤ i ≤ k−2, if we know s1(G′

i),
s2(G′

i), s3(G′
i) and s4(G′

i), then we can compute s1(G′), s2(G′), s3(G′) and s4(G′).

404 Y. Xue et al.

Note that E(G′) and E(G′
j) have exactly two common edges. Given the profiles

of G′ and G′
j , we can list all the possible combinations of the profiles with respect to

the sliding actions on the two edges. The fast search number of T�P2 is the minimum
number of searchers in all the combinations. From Lemma 5, we have the following
result:

Lemma 6. For each connected component G′
i, where 1 ≤ i ≤ k−1, if we know s1(G′

i),
s2(G′

i), s3(G′
i) and s4(G′

i), then we can compute the minimum number of searchers for
clearing T�P2.

Theorem 5. An optimal fast search strategy for T�P2 can be found in polynomial
time.

Proof. We briefly describe a strategy below for finding an optimal fast search strategy
for T�P2.

1. Arbitrarily select a pair of vertices v and v′, where v′ is the corresponding vertex of
v in T�P2.

2. For each of the connected components of T�P2 with respect to v and v′, compute
its profile.

3. Compute the optimal fast search number of T�P2 based on the profiles of all the
connected components.

4. Use a back-track method to record how every edge of T�P2 is cleared, as well as all
vertices that are placed searchers. Based on these records, produce an optimal fast
search strategy for T�P2 by letting those searchers move along edges following the
prescribed directions.

Clearly, the above strategy can find an optimal fast search strategy for T�P2 in
polynomial time. 	

References

1. Bienstock, D.: Graph searching, path-width, tree-width and related problems (a survey).
DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 5, 33–49 (1991)

2. Bonato, A., Yang, B.: Graph searching and related problems. In: Pardalos, P.M., Du, D.-Z.,
Graham, R.L. (eds.) Handbook of Combinatorial Optimization, pp. 1511–1558. Springer,
New York (2013). https://doi.org/10.1007/978-1-4419-7997-1 76

3. Breisch, R.: An intuitive approach to speleotopology. Southwestern Cavers 6(5), 72–78
(1967)

4. Dereniowski, D., Diner, Ö., Dyer, D.: Three-fast-searchable graphs. Discret. Appl. Math.
161(13), 1950–1958 (2013)

5. Dyer, D., Yang, B., Yaşar, Ö.: On the fast searching problem. In: Fleischer, R., Xu, J. (eds.)
AAIM 2008. LNCS, vol. 5034, pp. 143–154. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-68880-8 15

6. Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph searching. The-
oret. Comput. Sci. 399(3), 236–245 (2008)

7. Makedon, F.S., Papadimitriou, C.H., Sudborough, I.H.: Topological bandwidth. SIAM J.
Algebraic Discrete Methods 6(3), 418–444 (1985)

https://doi.org/10.1007/978-1-4419-7997-1_76
https://doi.org/10.1007/978-3-540-68880-8_15
https://doi.org/10.1007/978-3-540-68880-8_15

Fast Searching on k-Combinable Graphs 405

8. Megiddo, N., Hakimi, S.L., Garey, M.R., Johnson, D.S., Papadimitrioum, C.H.: The com-
plexity of searching a graph. J. ACM 35(1), 18–44 (1988)

9. Parsons, T.: Pursuit-evasion in a graph. In: Proceedings of the International Conference on
the Theory and Applications of Graphs, pp. 426–441. Springer-Verlag (1976). https://doi.
org/10.1007/BFb0070400

10. Stanley, D., Yang, B.: Fast searching games on graphs. J. Comb. Optim. 22(4), 763–777
(2011)

11. Xue, Y., Yang, B.: The fast search number of a cartesian product of graphs. Discret. Appl.
Math. 224, 106–119 (2017)

12. Xue, Y., Yang, B., Zhong, F., Zilles, S.: The fast search number of a complete k-partite graph.
Algorithmica 80(12), 3959–3981 (2018)

13. Yang, B.: Fast edge searching and fast searching on graphs. Theoret. Comput. Sci. 412(12),
1208–1219 (2011)

https://doi.org/10.1007/BFb0070400
https://doi.org/10.1007/BFb0070400

	Fast Searching on k-Combinable Graphs
	1 Introduction
	2 K-Combinable Graphs
	3 Cacti Graphs
	4 Cartesian Product of a Tree and an Edge
	References

