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Abstract. Let G be a finite undirected simple connected graph with
vertex set V(G) and edge set E(G). A vertex u € V(G) resolves two
elements (vertices or edges) v,w € V(G) U E(G) if d(u,v) # d(u,w).
A subset Sy, of vertices in G is called a mixed metric generator for G
if every two distinct elements (vertices and edges) of G are resolved by
some vertex of Sy,. The minimum cardinality of a mixed metric generator
for G is called the mixed metric dimension and is denoted by dim., (G).
In this paper, we study the mixed metric dimension for the plane graph
of web graph W,, and convex polytope D,.
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1 Introduction

The concept of the metric dimension of graph G was introduced independently
by Slater [18] and Harary and Melter [6]. After these two seminal papers, several
works concerning applications, as well as some theoretical properties, of this
invariant were published. For instance, applications to the navigation of robots
in networks were discussed in [14] and applications to chemistry were discussed
in [2,3,10,11].

Let G be a finite undirected simple connected graph with vertex set V(G)
and edge set E(G). The distance d(u,v) between two vertices u,v € V(G) is
the number of edges in a shortest path between them in G. A vertex z € V(G)
resolves or distinguishes two vertices u,v € V(G) if d(u,z) # d(v,z). A set
S C V(G) is a metric generator for G if every two distinct vertices of G can be
distinguished by some vertex in S. A metric basis of G is a metric generator of
minimum cardinality. The cardinality of a metric basis, denoted by dim(G) is
called the metric dimension of G.

Similar to metric dimension, edge metric dimension was introduced by [12]
which uniquely identifies the edges related to a graph. The distance between the
vertex v and edge e = vw is defined as d(e, u) = min{d(v, u),d(w, u)}. The
vertex u € V(G) resolves or distinguishes two edges of a graph e, e € E(G)
if d(ey, u) # d(ez, u). A set S. C V(G) is an edge metric generator for G if
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every two distinct edges of G can be distinguished by some vertex of S.. An
edge metric basis of G is an edge metric generator of minimum cardinality. The
cardinality of an edge metric basis, denoted by dim.(G) is called the edge metric
dimension of G. Recently, this variant has been investigated by [15,19,20].

The mixed metric dimension is the combination of well studied metric and
edge metric dimension. It was introduced by Kelenc et al. [11]. A vertex v € V(Q)
resolves or distinguishes two elements (vertices or edges) a,b € V(G) U E(G) if
d(v,a) # d(v,b). A set S, C V(G) U E(G) is a mized metric generator for G if
every two distinct elements (vertices or edges) of G can be distinguished by some
vertex in S,,. A mized metric basis of G is a mixed metric generator of minimum
cardinality. The cardinality of a mixed metric basis, denoted by dim,,(G) is
called the mized metric dimension of G. Let S,,, = {v1, va, ..., vx} be an ordered
subset of V(G). Let a be an element (vertex or edge) of G. The k-tuple r(a|Sy,) =
(d(a, v1), d(a, va),..., d(a, vg)) is called mixed metric representation of a with
respect to S,,. Clearly, S, is a mixed metric generator if and only if for every
two distinct elements (vertices or edges) a, b of G we have r(a|Sy,) # 7(b|Sm).
Calculation of the mixed metric dimension of a graph G can be found in [4,5,
16,17].

In this paper, we study the mixed metric dimension of two classes of plane
graphs: web graph W,,, plane graph (convex polytope) D,,. We show that the
mixed metric dimension of W,, is not constant and the mixed metric dimension of
D, is constant. For W,,, dim,,,(W,,) = n+1 whenn > 3. For D,,, dim,,(D,,) = 4
when n > 3.

The organization of the paper is as follows. In the following section, we recall
some results concerning plane graphs: W,,, ,,. In Sect. 3, we study the mixed
metric dimension of W,,. In Sect. 4, we study the mixed metric dimension of D,,.
In the last section, we conclude this paper.

2 Preliminaries

The web graph W, [13] (Fig. 1) has 3n vertices and 4n edges. We have the vertex
set
V(Wn) = {aiabiaciu < ) g ’I’L}7
and all edges E(W,,) = {a;ait1,a:b;, bibiy1, bici|1 <
by).
The plane graph (convex polytope) D,, [1] (Fig.2) has 4n vertices and 6n
edges. We have the vertex set

it <n}(ant1 = a1,bpp1 =

V(Dn) = {ai7bi7ciadi|1 g B} < ’I’L},

and all edges E(]D)n) = {aiaiH,aici,cidi,cHldi, bidi, bibi+1|1 < ) < n} (an+1 =
al,bn+1 = b1,0n+1 = Cl). Let A = {ai 01 < ) < Tl}, B = {bl 01 < 1 < n},
C={¢:1<i<n}, D ={d;:1<i<n}

Lemma 1. [8] For n > 5, let W,, be a web graph. Then dim(W,,) is equal to 2
if n is odd and 3 if n is even.
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Fig. 2. The plane graph D,,

Lemma 2. [7] Let D, be the graph of convex polytope with n > 4, then we have
dim(D,,) = 3.

Lemma 3. [21] For the web graph W,, with n > 3, we have dim.(W,) = 3.

Lemma 4. [21] For the graph of convex polytope D, with n > 3, then we have
dim.(D,) = 3.

3 The Mixed Metric Dimension of Web Graph W,

In this section we intend to present the mixed metric dimension of web graph
W, (Fig.1).

Lemma 5. Let W,, be the web graph, wheren > 3. Let W = {c1, ca,..., ¢y} be
a subset of V(W,,). For arbitrary mized metric generators Sy, of W,,, we have
W C S,

Proof. Suppose that ¢; ¢ Sy,. Then we have r(b;c;|Sm) = 7(b;|Sm), which is
a contradiction to the fact that S, is a mixed metric generator. Therefore we
have W C S,,.

Lemma 6. Let W, be the web graph, where n > 3. Then dim,,,(W,) > n+ 1.

Proof. Let S, be any mixed metric generators for W,,. By Lemma 5, we get
[Sm| = n. If |Sp| = n, then we have S, = {ci1, ¢2,..., ¢n}. Note that
r(a;b;|Sy) = 7(b;|Sm), which is a contradiction to the fact that S, is a mixed
metric generator. Thus, we have dim,,,(W,,) > n + 1.
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Theorem 1. Let W, be the web graph, where n > 3. Then dim,,(W,) = n—+1.

Proof. For 3 < n < 5, we find that {a1, ¢1, c2,..., ¢,} is the mixed metric
basis of W,, by total enumeration, and hence the mixed metric dimension of W,
isn+ 1.

For n > 6, let S,, = {a1, 1, ¢2,...,c,}. We will show that S, is a mixed
metric generator of W,, in Cases (I) and (II), respectively.

Case (I) n is odd. In this case, we can write n = 2l + 1, where [ > 3 is an
integer. Let S; = {a1, ¢1, ¢3, ¢i43}. We give mixed metric representations of
any element of V(W,,) U E(W,,) with respect to S;.

(i—1,i+1, 5—14, 1+1), 1<i<2;
(@i]8)) = (i—1,i+1,i—1, l4+5—1), 3<i<i+1;
MUY= (21 +2 -4, 2+4—i, i—1, L+5—1), I +2<i<I+3;
20+2—4, 20+4—i, 20+6—4, i —1—1),1+4<i<2l+1.
(i, i, 4—i, l+i—1), 1<i<2;
(bi]1) = (i, i, i—2, l—i+4), 3<i<i+1;
TR =Y (20— i+3, 20—i+3, i—2, | —i+4), I +2<i<I+3;
(+3—i, 20+3—i, 2A+5—1i, i—1—2), | +4<i<2+1.
(2, 0, 4, 1+1), i=1
(3, 3,3, 1+2), i=2
(4, 4, 0, 1 +2), i =3
r(ci|S1) = ¢ (i + ,i+1 i—1, l+5—1), 4<i<l+1;
(142, 142, 1+1, 3), i= 142
(I+1, 141, 1+2, 0), i =143;
(4+4—d, 20+4—i, 2A+6—1i, i—1—1), 1 +4<i<2+1.
(i—1,i4+1, 4—1i, 1 +1), 1<i<2;
(@i |S1) = (i—1,i+1,i—1,1—i+4), 3<i<i+1;
MGGH121) = Yy (-1, [ +1, [+1, 2), i=1+2
(20+1—d, 2043 —4, 20+5—4, i—1—1),1+3<i<2l+1.
(i—1, i, 4—i, 1 —1+74), 1<i<2;
" G-t i—2, 1+ 4—4), 3<i<i+;
raibilS) =N o110 G ks —i i (44—0),  I+2<i<l+3;
(20+2—d, 20+3—4, 20+5—4, i—1—2),1+4<i<2l+1.
(%, i, 3—1, 1 —1+1), 1<i<2;
. ) Gd i—2 1+ 3—1), 3<i<i+;
T’(bsz—l‘Sl) - (l, l, l7 1)7 i = l+2;
(L—i+2, 20—i+2, 2A+4—i, i—1—2),1+3<i<2+1.
(1, 0, 3, 1), i=1;
(2, 2,2 1+1), i=2
(3,3,0, 1+1), i =3
r(bici|S1) =< (4, 4, i —2, I+4—1), 4<i<l+1;
(I+1,1+1,1, 2), i =1+2
(1, 1, 1+1, 0), i=1+3;
20+3—14, 20+3—i, 2l+5—4, i —1—2),l+4<i<2l+1.
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Note that when 1 < i < n and i # 1,3,1 + 3, we have r(b;c;|S1) = r(b;|S1).
In other cases, all mixed metric representations with respect to S7 are pairwise
different. Therefore, in other cases, all mixed metric representations with respect
to S, are pairwise different. However, when 1 < ¢ < n and i # 1, 3,143, we have
r(bic;|S1Uc;) # r(b;|S1Uc;). It follows that r(b;c;|Sm) # r(b;|Sm) for 1 < i < n.
Hence S, is a mixed metric generator and therefore dim,,(W,) < n + 1. By
Lemma 6 we have dim,,,(W,,) = n+1. Thus, we obtain that dim,,(W,,) = n+1.

Case (IT) n is even. In this case, we can write n = 2[, where [ > 3 is an
integer. Let S1 = {a1, ¢1, c3, cl+2}. We give mixed metric representations of
any element of V(W,,) U E(W,,) with respect to 5.

(i—1, i+1, 5—1i, [ +4), 1<i<2;
ey )=t i1 i L), 3<i <+ 1;
r(ailS1) =\ g-1 141 141, 2), i=1+2
(20—i4+1, 2l—4i+43, 2l—i+5, i—1),l+3<i< 2.
(3, i, 4—1, L —1+1), 1<i<2;
‘ )64 =2, 143 —1), 3<i<I+1;
SR N i1+
20—i+2, 20—i+2, 2l —i4+4, i—1—-1),1+3<i<2L
(2, 0, 4, I +1), 1= 1;
(3, 3, 3, 1 +2), i = 2
' )@ 4,0 141), i =3
r(eilS1) = (i4+1,i4+1, i—1, 1+4—1), 4<i<l+1;
(I+1, 141, 1+1, 0), i= 142
(20—i+3,20—i+3,20—i+5, i —1), 1 +3<i<2
0, 2, 3, I+1), i =1;
(1, 3, 2, I+1), i =2
. _ ) =1 i+l i1 1+3 1), 3<i<;
r(aiai11]S1) = (I-1,1+1,1, 2), i =141
(1—2,1, 1+1, 2), i =142
(20—, 20 —i+2 20 —i+4, i—1),1+3<i<2l
(z—l,z, —i,l—1+i), 1<i<2;
(i—1,4, i—2, 1 +3—1d), 3<i<it1;
r(aibil$1) = (-1, z z 1), i=1+2
(2l—Z+1 20—i+2, 2l—i+4,i—1—-1),1+3< 1< 2l
(17 ) 1= 1;
(2, 2, ) = 2;
r(bibi+1|51) = (1, 7,77,—2 I+2—1), 3 <<
2U—i+1, 20—i+1, 1 —2, 1), l+1<i<1+2
2l—i+1,20—i+1,20—i+3, i—1—-1), I +3<i< 2l
(1, 0, 3, 1), i =1
(2, ,2 I+1), i =2
. — (37 ) ) 7,23;
r(bicilS1) = (4, i, 1 —2, 1 +3—1), 4<i <+ 1;
11, 0), i =142
20—i+2, 20—i4+2, 2l—i4+4, i—1—-1),1+3<i<2L.
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Note that when 1 < i < n and ¢ # 1,3,1 + 2, we have r(b;ic;|S1) = r(b;|S1).
In other cases, all mixed metric representations with respect to S; are pairwise
different. Thus, in other cases, all mixed metric representations with respect to
S are pairwise different. However, when 1 < i < n and 7 # 1,3,] + 2, we have
r(bic;|S1Uc;) # r(b;]S1Uc;). It follows that r(b;c;|Sm) # 7(b;|Sm) for 1 < i < n.
Hence S, is a mixed metric generator and therefore dim,,(W,) < n + 1. By
Lemma 6 we have dim,,(W,,) > n+1. Thus, we obtain that dim,,(W,) = n+1.
Therefore, for n > 3 we have dim,,,(W,) = n+ 1.

4 The Mixed Metric Dimension of Plane Graph (Convex
Polytope) D,

In this section, we intend to present the mixed metric dimension of plane graph
(convex polytope) D,, (Fig.2).

Lemma 7. Let D, be the plane graph (convex polytope), where n > 10. Then
dim, (Dy,) < 4.

Proof. We consider two cases.

Case (I) n is odd. In this case, we can write n = 2] 4+ 1, where [ > 5 is
an integer. Let S,, = {a1, aj+1, b2, bir2}. We will show that S,, is a mixed
metric generator of I,,. We give mixed metric representations of any element of
V(D) U E(Dy,) with respect to Sy,

(i—1,1—di+1, 5—i, I+i+1), 1<i<2;
Sy = -1, 1—i+1, 1, l—z+5) 3<i<i+1;
r(ailSm) = (I, 1, 1+2, 3), i=1+2
(2 —i+2, i—1—1,20—i+6, i—1), |+3<i<2+]1.
(3, 1+2, 1, 1), i =1
(i+2, 1—i+3,i—2 1—i+2), 2<i<l;
r(bilSm) = (2l —i+4, i—1+2,i—2 l—i+2), I+1<i<l+2;
2 —i+4, i —142,20—i+3,i—-1—-2), I+3<i<2l+1.
(G, l—i4+2, 4—1, I +1), 1<1<2;
(ci|Sm) = {(z, l—i+2,i—1,1—i4+4), 3<i<I+1;
i (+1, 2, 1+1, 2), i =1+2
(2l—z+3,z—l, A—i+5 i—1—1), | +3<i<2+1.

(2, 141, 2, 1+1), i=1;
(di]Som) = (t+1, 1—i+2, i—1, 1 —i+3), 2<i <
MGilom) = 1 —i+3, i—14+1,i—1, I —i+3), I+1<i<l+2;
(20—i+3, 1 =141, 2l—i+4,i—-1—-1), I+3<i<2l+1.
(i—1,1-1, 3, 14+2), 1<i<;
(G—1,1—14, 4, l —i+4), 3<i<;
r(aiai+1]Sm) = (2lfz+1 i—1—1, 4, 3), I+1<i<I+2;
(2 —i+1,i—1—1,20—i+5,i—1), |+3<i<2l+1.
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(i—1, l—i4+1, 4—i, [+1), 1<i<2;
N ) G- =i, i1, L =i+ 4), 3<i<l+1
r(aicilSm) =4 (11,141, 2), i=1+2
(l—i+2 i—1—1,20—i+5, i—1—1), |+3<i<2l+1.
(1, 141, 2, 1 +1), i=1
n )G l—i+2,i—1, 1—i+3), 2<i<l+1;
r(eidilSn) =9 01 2, 141, 1), i=1+2;
(2l —i+3,i—1,20—i+4, i—1—1), [+3<i<2l+1.
(2,1, 2, 1+1), i =1
(z+1 l—i+1, i— 1 l—i+3), 2<i<;
r(ciy1di|Sm) = S @Q—i+2, i—1+1,i—1, I —i+3), I+1<i<l+2
20—i+2, i —1+1, 2l—z+4 1—1—1), 1+3<i<2;
(1, 1+1, 3,10, i =20+1.
2, 1+1, 1, 1), i=1
o )G+, =i 2,02, L0+ 2), 2<i<;
r(bidilSm) = (20—i+3, i—1+1,i—2 1—i+2), I+1<i<I+2
(21 —i+3, i—14+1,20—i+3, i—1—2), | +3<i<2+1.
(3, 1+1, 0, 1), i=1;
(i42 1—i+2 i—2 l—i+1), 2<i<l—1;
r(bibig1]Sm) = { (142, 3, i—2, [ +1—1), I1<i<l+1;
(—i+3, i—1+2 20—i+2, i—1-2), 1+2<i<2l;
(3,142, 1, 1 —1), i=20+1.

Note that all mixed metric representations with respect to S, are pairwise dif-
ferent. We deduce that S, is a mixed metric generator for D,,.

Case (IT) n is even. In this case, we can write n = 2, where [ > 5 is an
integer. Let S,, {a1, ai41, ba, bi42}. We will show that S, is a mixed
metric generator of I,,. We give mixed metric representations of any element of

V(D,) U E(D,,) with respect to Sy,.

(i—1,1—i+1, 5—1i, I +1),
) @@-1,l—i+1, 4, Il —i+5),
r(ai|Sm) = (-1, 1, 142, 3),
(@ —i+1, i—1—1,20—i+5, i1,
i+2,l—i+3,2—4, l+i—2),
P42, 1 —i+3, i—2 [—i+2),

(

, _ )
r(0ilSm) =4 (21 ig3, imi42 -2 1—i+2),
(

(z,l—z—|—2 4—4, l+i-1),

(G, l—i+2,i—1, l —i+4),
r(@lSm) =912, 141, 2),

2—i+2, i1, 20—i+4, i—1-1),

(27 l+17 27 l)7
(i+1, 1—i+2,i—1,1—i+3),
(

(

r(dilSm) = 1, 1—i+3),

A—i+2, i—1+1, i—

A—i+2 i—1+1,20—i+3 i—1—1),

A —i+3, i—1+2 20—i+2, i—1—2),

1<i<2;
3<i<I+ 1
i =142

l+3<i<2l.

1<2<2;
3<i<
I+1<i<l+2;
[+3<1<2.
1<1<2;
3<i<i+ 1
=142
I+3<i<2l.

i =1

2 <i<;
I+1<e<i+2

I+3<i<2l
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(i—1,1-1, 3, I +1), 1<i<2;

(-1, 1- ii,l—i+4) 3<i <
r(aiti1|Sm) = 2 —d, i—1—1, i, | —i+4), I+1<i<l+2;

(2l —id, i —1—1, 2l—z+4 i—1), 1+3<i<2l

i—1,l—i+1,4—4 14+i-1), 1<i<2;
i—1, l—i+1,i—1, 1 —i+4), 3<i<l+ 1,
-1, 1, 1+1, 2), i =1+2;

(
r(a;ic;|Sm) = E
(2l—’i—|—17 t—1—=1,2l—i4+4,i—1-1), 1 +3<i<2l

(la I+1, 2, l)a t=1
" )G l—=i+2,i—-1, 1 —i+3), 2<i<l+1;
r(eidilSm) = () 9, 141, 1), i= 142
(20—i+2,i—1,20—i+3,i—1-1), I+3<i<2l

2,1, 2, 1), i=1;
i+1, 1—i+1, 1, 1 —i+3), 2<i<;
2l—z+1,z—l+1,z—1 l—1i+3), I+1<i<l+2

(
r(ci+1di|Sm) = E
(Q—i4+1,i—1+1,20—i+3,i—1—1), 1+3<i<2L

2,141, 1, 1—1), i=1;
i1, l—i+2,i—2 1—i+2), 2<i<;
A—i+2, i—1+1,i—-2 l—i+2), I+1<i<l+2;

(
r(bidi|57n) - E
20—i+2, i—14+1,20—i4+2,i—1—-2), I+3<i<2l

(3, 1+1,0,1-1), i =1;
(G4+2,1—i4+2,1—2,1—i+1), 2<i<l—1;
. 23 i-2, ), i=
r(bibialSm) = 415 -1 0), i= 141
Q1 —i+2, i—142 2—i+1,i—1-2), I+2<i<2l—1;
(3, 1+2, 1, 1—2), i =2l

Note that all mixed metric representations with respect to S, are pairwise dif-
ferent. We deduce that S, is a mixed metric generator for D,,.
Therefore, for n > 10 we have dim,, (D) < 4.

Lemma 8. Let D, be the plane graph (convex polytope), where n > 10. Let
C; ={¢i,¢it1,d;} CCUD, D; = {d;_1,d;,c;} C CUD. Then the following (i)
and (ii) hold.

(i) T(bi‘BUCUD\Ci) = T(bldl|BUCUD\CZ) for1 <i<n;
(ii) r(a;]AUCUDN\ D;) =r(a;c;]AUCUDN\ D;) for1<i<n.

Proof. (i) We consider the subsequent two cases depending upon n.

Case (I) n is odd. In this case, we can write n = 2l 4+ 1, where [ > 5 is
an integer. Now, we calculate the distance between the vertexs b; and z;, and
the distance between the edges b;d; and the vertex x;, where z; € BUC U D,
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I<ijsn
d(bi, b;) = d(bidi, b;) = [i — jl, li—jl<{
d bi7bj) = d(bidi,bj) =n-— ‘i—j|, I+1< |Z—]| <2
d(bi,cj) = 2,d(bid;, c;) = 1, j=4j=1+1
d(bi,c;) = d(bdwcj)—‘l*]“rl li—jl<landj>ij<ij<i+l;
d(bi,c;) = d(bidi,cj) =i — j| + 2, i—jl<land j<i,j<i,j<i+];
d(bi,cj) = d(bd,,cj)fn—\z—jH—Q l+1<i—j| <2 andi<l;
d(biycj) = d(bidiycj)=n—|i—j|+1, 1+41<|i—j|<2landl+1<i< 20+ 1.
d(bs,d;) = 1,d(bids,d;) = 0, ] =1
d(bi,d;) = d(bidi, d;) = |i —jl+1, li—jl<landj<
d(bs,d;) = d(bids,d;) =n—1li—j|+1, I+1<|i—j| <21.

In this case, it is not hard to see that r(b;|BUC U D\ C;) = r(b;d;|BUC U
D\ C)).

Case (II) n is even. Similar to the proof of Case (I) we may obtain r(b;|B U
CUD\C» = T(bidi‘BUCUD\Ci).

So (i) holds.

(ii) We consider the subsequent two cases depending upon n.

Case (I) n is odd. In this case, we can write n = 2/ + 1, where [ > 5 is an
integer. Now, we calculate the distance between the vertexs a; and the vertex x;,
and the distance between the edges a;c; and the vertex x;, where z; € AUCUD,
1<i,j <n

{d(ai,a;) = d(aici,a;) = |i — jl, li—jl <t
d(ai,a;) = d(aici,a;) = n—|i—j|, I+1<]i—j| <2l
d(a”ucj) = 17d(aiciacj) = Oa .7
d(ai,cj) = d(aici,c;) = |i—j| + 1, |4 —j| land j <
d(ai,cj) = d(aici,ej) = n—li—jl+1, I+1<]i—j <21
d(aivdj) = Zvd(aici7dj) = 17 .7 = 27.7 = 2_17
d(a;,d;) = d(aici,dj) = i — j| + 2, i—jl<land j>i,j<i,j<i—1,
o) = dloiesdy) = i3] +1, i3l < Land j <ig <ig <i-
d(as,d;) = d(aici,dj) =n—|i—jl+1, I+1<|i—j| <2l and i<
d(a;,d;) = d(aici,dj) = n—|i—j|+2, I+1<i—j|<2landl+1<i<2l+1.

In this case, it is not hard to see that r(a;]AUCU D\ D;) = r(a;c;]AUCU
D\ D,).

Case (II) n is even. Similar to the proof of Case (I) we may obtain r(a;|AU

So (ii) holds.

Lemma 9. Let D, be the plane graph (convex polytope), where n > 10. Then
each mixed metric basis S, of D, contains at least one vertex of A and one
vertex of B.



372 N. Kang et al.

Proof. We first show that S, contains at least one vertex of A. Suppose on the
contrary that S,, does not contain any vertex of A. Then S,, C BUC U D.
By Lemma 8(i), we have r(b;|]BUC U D\ C;) = r(b;d;|BUC U D\ C;), where
C; = {¢i,cip1,d;} € C'UD. This means that S, contains at least one vertex of
C;. Also, we observe that

Loi—jl =1

Cin Gyl = {0, li —j|# 1.

From which it follows that S, contains at least [4] vertices of C'U D. Since
n > 10, then dim,,(D,) > 5. But, dim;,(D,) < 4 by Lemma 7. This is a
contradiction.

Secondly, we show that S, contains at least one vertex of B. Suppose on
the contrary that .S, does not contain any vertex of B. Then S,, C AUC U D.
By Lemma 8(ii), we have r(a;|/AUC U D\ D;) = r(a;c;]AUC U D\ D;), where
D; ={d;_1,d;,¢;} C CUD. This means that S,, contains at least one vertex of
D;. Also, we observe that

Lofi—jl =1

DN D] = {o, i —jl # 1.

From which it follows that S, contains at least [4] vertices of C'U D. Since
n > 10, then dim,,(D,) > 5. But, dim,;,(D,) < 4 by Lemma 7. This is a
contradiction.

Thus, each mixed metric basis S, of ID,, contains at least one vertex of A
and one vertex of B. O

Theorem 2. Let D, be the plane graph (convex polytope), where n > 3. Then
dim,,,(D,,) = 4.

Proof. For n = 3, we find that {ai, a2, d3, b2} is the mixed metric basis
of D,, by total enumeration, and hence the mixed metric dimension of D, is
4. For n = 4, we find that {a1, aa, d3, b2} is the mixed metric basis of D,
by total enumeration, and hence the mixed metric dimension of D,, is 4. For
5<n <9, we find that {a1, aj+1, b2, b2} is the mixed metric basis of D, by
total enumeration, and hence the mixed metric dimension of D,, is 4. For n > 10,
we consider the following two cases.

Case (I) n is odd. We show that dim,,(D,) # 3. By Lemma 9 we know that
a mixed metric basis S,, for ID,, contains at least one vertex of A and one vertex
of B. Since the vertices of graph D,, are symmetric, without loss of generality, we
assume that a; and b; are these two vertices, where 1 < ¢ < [+ 1. By calculating,
there are following four possibilities to be discussed.
(1) If Sy = {a1, b, aj}, where 1 <i<I+1 and 2 < j <2041, then we
obtain

r(cit1]Sm) = r(cat1diy1|Sm), 1<i<land2<j<2+1;
T(sz+1|5m) = T(021+1d21+1|sm), i=l+1land2<j <20+ 1.

(2) If S, = {a1, bi, bj}, where 1 <@ <Il+1and 2 < j <20+1, then we obtain
r(doi+1]Sm) = r(ca+1daiy1|Sm)-
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(3)If Sy, = {a1, b;, ¢j}, where 1 <i<l+1and1<j<20+1, then we obtain

(a1]Sm) = r(a1azi+1|Sm), 1<i<land 1 <j<I+1;
r(a1|Sm) = r(ara2|Sm), 1<z<landl+2<]<2l+1
r(dag1|Sm) = r(cait1dat1]|Sm), 1 =1+ 1and 1< j <;

( ) = T(Cgl+1d21+1‘sm), 7 l+1 andl+1 <] <2l+1

(4) If Sy, = {a1, b, dj}, where1 <i<l+1and 1< j <2041, then we obtain

(b1‘5m) = r(b1b21+1|5 ), 7 land 1 <j<Il+1;

(b1]Sm) = r(bib2|Sm), i = andl+2<]<2l+1;

r(diy2|Sm) = r(atadiye|Sm), 2<i<land1<j<2l+1and j#1,1+1;
( ) =

Ci+2|Sm r(citedit2|Sm), 2<i<landj = 1+ 1.

By the above we see that there is no resolving set with three vertices for
V(Dy,), then dim,,(D,) > 4. By Lemma 7 we know that dim,,(D,) < 4, so
dim,,(D,,) = 4 holds.

Case (IT) n is even. We show that dim,,(D,,) # 3. By Lemma 9 we know that
a mixed metric basis S,,, for I,, contains at least one vertex of A and one vertex
of B. Since the vertices of graph D,, are symmetric, without loss of generality,
we assume that a; and b; are these two vertices, where 1 < ¢ < [. By calculating,
there are following four possibilities to be discussed.

(1) If Sp, = {a1, b, a;j}, where 1 <4 <[ and 2 < j < 2, then we obtain

r(c|Sm) = r(adi|Sm), 1<i<li—1and2<j <2
r(ca|Sm) = r(cadu|Sm), i =1 and 2< <2l
(2) If S,y = {a1, bi, b}, where 1 < i < and 2 < j < 2[, then we obtain

7(d2|Sm) = r(caudau|Sm).
(3) If Sy, = {a1, bi, ¢;}, where 1 < i<l and 1 < j < 2l, then we obtain

r(dgl\Sm) = r(chdzl\Sm) ) l and 1 ] l;
r(di|Sm) = r(cdi|Sm ) 1<z<landl+1<] 21.
(4) If Sp, = {a1, bi, dj}, where 1 <i <1 and 1< j <21, then we obtain
r(a1|Sm) = r(a1az21|Sm), i=1land1<j<l;
r(a1|Sm) = r(ai1az2|Sm), i =1 andl+1 <j<2

(
( =
r(dit2|Sm) = r(cit2di42|Sm), 2<i<land 1< j<2land j#1,1+1;
r(ci42]Sm) = r(atediy2|Sm), 2<i<landj = 1,1+ 1.

From the above we know that there is no resolving set with three vertices
for V(Dy,), then dim,,(D,,) > 4. By Lemma 7 we know that dim.,(D,,) < 4, so
dim,,(D,,) = 4 holds.

5 Conclusion

In this paper, we studied the mixed metric dimension for two families of plane
graphs (web graphs and convex polytopes) in metric graph theory. For web
graphs, a lower bound for the mixed metric dimension was proved and a mixed
metric basis was then obtained to determine the mixed metric dimension. For
convex polytopes, an upper bound for the mixed metric dimension was discovered
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and the above bound was then proved to be tight. The future research can be
thought of as finding the mixed metric dimension for other families of plane
graphs, especially rotationally symmetric ones.
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