)

Check for
updates

Guarantees for Maximization of £-Submodular
Functions with a Knapsack and a Matroid
Constraint

Kemin Yu, Min Li, Yang Zhou, and Qian Liu®®

School of Mathematics and Statistics, Shandong Normal University,
Jinan 250014, People’s Republic of China
1g-gsh@163.com, {liminemily, zhouyang}@sdnu.edu.cn

Abstract. A k-submodular function is a generalization of a submodular func-
tion, whose definition domain is the collection of & disjoint subsets. In our paper,
we apply a greedy and local search technique to obtain a %(1 — e~ ?)-approximate
algorithm for the problem of maximizing a k-submodular function subject to the
intersection of a knapsack constraint and a matroid constraint. Furthermore, we
use a special analytical method to improve the approximation ratio to %(1 —e73),
when the k-submodular function is monotone.

Keywords: k-submodularity + Knapsack constraint - Matroid constraint -
Approximation algorithm

1 Introduction

Consider a ground set G composed of n elements and k € N, we define (k 4 1)¢
the family of & disjoint subset (X7, ..., X}), where X; C G, Vi € [k] and X;NX; = 0,
Vi # j. A function f : (k +1)¢ — R is said to be k-submodular [7], if

f@)+ fly) = flaUy) + fxNy),
forany & = (X1,...,X)andy = (Y1,...,Ys) in (k + 1), where

zUy:= (X uvi\ (|JX:uY),... . X uYi\ (| Xiuy)),
i#£1 i#k

Ty = (Xlﬂyl,...,XkﬂYk).

Obviously, it is a submodular function for k = 1.

As early as 1978, Nemhauser et al. [11] studied the monotone submodular maxi-
mization problem subject to cardinality constraints and obtained a greedy (1 — 1/e)-
approximation algorithm. Many scholars extended submodular maximization to differ-
ent constraints and design approximate algorithms, see [1-6,10,17,20]. Among them,

Supported by National Science Foundation of China (No. 12001335) and Natural Science Foun-
dation of Shandong Province of China (Nos. ZR2019PA004, ZR2020MA029, ZR2021MA100).
(© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 156-167, 2022.
https://doi.org/10.1007/978-3-031-16081-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_14&domain=pdf
https://doi.org/10.1007/978-3-031-16081-3_14

Guarantees for Maximization of k-Submodular Functions 157

knapsack constraint and matroid constraint are mainly concerned, and most of the algo-
rithms can achieve the tight 1 — 1/e approximation ratio. However, under the intersec-
tion constraint of a knapsack and a matroid, we have not found that the algorithm can
achieve 1 —1/e-approximation, since the loss of rounding is difficult to avoid. Recently,
by combining greedy and local search techniques, Sarpatwa et al. [16] contributed an
algorithm for reaching 1’5 -approximation ratio.

In recent years, k-submodular maximization problem has been widely concerned
and studied. There have been many research results. For k-submodular maximization
without constraint, Ward and Zivny [19] gave a deterministic greedy algorithm, whose
approximate ratio reached 1/3, and a randomized greedy algorithm whose approxi-

mate ratio is 11, where a = max{1, \/£71}. Iwata et al. [8] improved the approx-

imation ratio to 1/2. Later, [14] contributed an algorithm with ratio 2’“;2':_11. Under the
monotonicity assumption, Ward and Zivny [19] gave a 1/2 approximation algorithm and
Iwata et al. [8] improved the approximation ratio to k/(2k — 1), which is asymptotically
tight. There are also many results for nonnegative monotone k-submodular maximiza-
tion with constraints. In 2015, Ohsaka and Yoshida [13] designed a 1/2-approximation
algorithm for a total size constraint. Sakaue [15] presented a 1/2-approximation algo-
rithm with a matroid constraint. And for monotone k-submodular maximization subject
to a knapsack constraint, Tang et al. [18] proposed an algorithm of 1771/8 approximate
ratio. Liu et al. [9] design a combinatorial approximation algorithm for monotone k-
submodular maximization subject to a knapsack and a matroid constraint and obtained
a 1 (1 — e~2) approximate ratio.

In this paper, we consider the k-submodular maximization subject to a knapsack
and a matroid constraint, and do some work on the basis of the algorithm given by Liu
et al. [9]. The main contributions of this paper are as follows:

— We extend the algorithm for k-submodular maximization problem with a knapsack
and a matroid constraint to nonmonotone case, and achieve a é(l — e~ 2) approxi-
mate ratio, based on the pairwise monotone property.

— We improve the approximate ratio from (1 — e~2) in [9] to §(1 — e~*) under the
monotonicity assumption. In the theoretical analysis of the algorithm, we no longer
rely on the results of the greedy algorithm for the unconstrained k-submodular max-
imization problem, and use the properties of k-submodular function to get the new
result.

We organize our paper as follows. In Sect. 2, we first introduce the k-submdodular func-
tion and some corresponding results, then present the k-submodular maximization prob-
lem with a knapsack and a matroid constraint. We present our results for non-monotone
case in Sect. 3. In Sect. 4, we show our theoretical analysis for monotone case.

2 Preliminaries

2.1 k-Submodular Function
For any two k disjoint subsets = (X1,..., X3) andy = (Y1,...,Y%) in (k + 1)%,
we need to introduce a remove operation and a partial order, i.e.

(I)\y:: (Xl\Yi,...,Xk\Yk),

158 K. Yu et al.

x <y, if X; C Y, Vie[k].

Define () := (0, ...,0) € (k+1)¢ and (v,i) € (k+1)€ such that X; = {v} and X; = ()
for Vj € [k] with j # 4. Refer U(x) = Ule X;.Forv ¢ U(x), we use fz((v,1)) =
f(x U (v,i)) — f(x) to represent the marginal gain of f. A function f is said to be
pairwise monotone if f ((v,i))+ fz ((v,7)) > 0forany i # j € [k] holds. In addition,
we call that the function f is orthant submodular, if f((v,7)) > fy((v,%)) holds, for
any x < y. According to the above definition, we have the equivalent definition and
property of the k-submodular function as follows.

Definition 1 [19]. A function f : (k + 1)¢ — R is k-submodular iff it is pairwise
monotone and orthant submodular.

Lemma 1 [18]. Given a k-submodular f, we have
(v,i)2y\z
forany x =X y.
Check the definition of k-submodular, we have the lemma as follows.

Lemma 2. Given a k-submodular f, we set g(x) = f(x U (v,7)): (k +1)¢\V — R,
then g(x) is k-submodular.

2.2 k-Submodular Maximization with a Knapsack and a Matroid Constraint

We define £ C 2% as the family of subsets of G. A pair (G, L) is called as an inde-
pendence system if (M1) and (M2) holds. And if (M3) also holds, the independence
system (G, £) is a matroid.

Definition 2. Given a pair M = (G, L), where L C 2C. We call M is a matroid if the
following holds:

(M1): 0 € L.

(M2): for any subset A € L, B C A indicates B € L.

(M3): for any two subset A, B € L, | A |>| B | indicates that there exists a point
v € A\B, such that BU {v} € L.

Given a subset A € L and a pair of points (a,b), where a € AU {0} and b €
G\ A, we refer the pair (a,b) as a swap(a, b) if A\{a} U {b} € L. It means that only
some special points pair called swap can guarantee that A\{a} U {b} € L is still an
independent set.

Guarantees for Maximization of k-Submodular Functions 159

We highlight that the next lemma ensures that a swap(a, b) must exist between the
optimal solution * and the current solution ! in the later analysis. Consider the sup-
port set of the current solution U(z") as A € £ and U(x*) as B € L. We will con-
sider finding a special kind of swap(y(b),b) of U(x!), where b € U(z*)\U(z") and
y(b) € U(a")\U(z") U {0}.

Lemma 3 [16]. Assume two sets A, B € L, then we can construct a mapping y :
B\A — (A\B) U {0}, where every point b € B\ A satisfies (A\{y(b)}) U {b} € L,
and a € A\B satisfies |y~ (a)| < 1.

Consider every point v in G, we give it a weight w,, > 0 and a total upper bound B.
In the following, we assume that w,, is an integer, because we can always change all w,,
and B proportionally without losing generality. The two constraints reduce the domain
of candidate solutions, so we can only find some solutions & € (k + 1) such that the
sum of weight w, of all points v in U(x) is less than B and U(x) is an independent

set. Define w, = Y. w,. The problem can be written as
veU(x)

max {f(x)|w, < BandU(x) € L}. (1)
ze(k+1)C

In addition, in the later proof, we need to use the following lemma.

Lemma 4 [11]. Given two fixed P,D € N, and a sequence of numbers v; € R,
where i € [P], then we have

25;1 Vi
minse(p) (352, % + D))

1
21—(1—5)”21—@*”’3.

2.3 Algorithm

Before giving the algorithm to solve problem (1), we firstly introduce a greedy algo-
rithm for unconstrained k-submodular by [19]. We know that a k-submodular function
f is pairwise monotone due to Definition 1, that is, f5 ((v,4)) + fz((v,7)) > 0 for any
i # j € [k]. It means that for a fixed € (k +1)¢ and v € G\U(z), there are no two
positions ¢ # j € [k] such that f, ((v,7)) < 0and fi((v, 7)) < 0 both hold. So we can
always find a position ¢ € [k] such that f, ((v,7)) > 0 for any v € G\U(x). Therefore,
for every current solution =* in the Algorithm 1, we add v € G\U (") with a greedy
position ; until all points v € G are added to U (x").

Then we give an algorithm inspired by [16] and [18] for problems (1) called MK-
KM abbreviated as maximizing k-submodular function with a knapsack constraint and
a matroid constraint. Let’s highlight some important nodes. Firstly, we select three ele-
ments with the largest marginal return from the optimal solution * by enumerating.
Second, for every current solution x! € L and the optimal solution =* € L, we can
always find a swap(y(b), b) satisfying y(b) € =*\x* and b € z*\x' by Lemma 3. But
we always choose a swap(a, b) with the highest marginal profit density p(a,b). In the

160 K. Yu et al.

Algorithm 1. Greedy Algorithm (f, G)

Require: A function f : (k+1)¢ — Ry andaset G = [n]
Ensure: A k-disjoint set x € (k + 1)
x—(0,...,0)
: for j = 1tondo
ij < argmax;epy] fe ((v,1))
xz —xU(v,i5)
end for
return x

A A

line 9 of MK-KM, we reorder the U(x") after the operation of swap(a, b) and ensure
z® < z'. Considering the order of each element in (U(z!~1\ z°) \ {a}) U {b}) as
it is added to current solution in MK-KM, we add them to Greddy Algorithm in the
same order. Last but not least, only when x! is updated, S will be regenerated in line 5.
Otherwise, MK-KM will continue to pick and remove the next swap in the loop from 6
to 13. So MK-KM will break the loop when S = {) in line 6.

Algorithm 2. MK-KM (G, B, M)

Require: A function f : (k+1)¢ — Ry, abudget B € Ry and a matroid (G, £)
Ensure: A k-disjoint set 2 € (k 4 1) satisfying wy < Band U(z) € L

1: Letx® € ar max €T ,135 € ar max x
g\U(z)Izlew*f() g\U(w)Izlw“jwjx*f()
x7 € arg max f(x)andt =0

U(@)|=3,25 <o <a*
2: z* «— x” and switch = false
3: while switch = false do
4 switch = true
5: Generate a collection of all swaps S = S(U(z"\z"))
6: while switch = true and S # () do
7 Pick a swap (a,b) from S with a maximum value of p(a,b) =
S \(a,)u(b, i)~ f(=")

mane[k] wp
8: if p(a,b) > 0 and wy — w, + ¢ < B then
9: z' « Greedy Algorithm for f(z' L 2°) over (U(z*\ 2°) \ {a}) U {b}
10: T =z U
11: Wyt+l = Wyt — Wq + W
12: switch = false
13: end if
14: S =5\{(a,b)}

15: end while
16: end while
17: return x

Guarantees for Maximization of k-Submodular Functions 161

We modify MK-KM and give MK-KM’ algorithm for problem (1) with monotonic-
ity. MK-KM’ selects two elements with the largest marginal return from the optimal
solution * by enumerating. This modification reduces the running time.

Algorithm 3. MK-KM’ (G, B, M)

Require: A function f : (k+1)¢ — Ry, abudget B € Ry and a matroid (G, £)
Ensure: A k-disjoint set € (k 4 1) satisfying w, < Band U(z) € £

1: Letx® € ar max z), x” € ar max x),andt =0
g\U(z)|:1,ij*f() g\U(z)|:2,w“jij*f()

2: &' — aP and switch = false

3: while switch = false do

4 switch = true

5: Generate a collection of all swaps S = S(U(z"\z"))
6.

7

while switch = true and S # () do

Pick a swap (a,b) from S with a maximum value of p(a,b) =
@'\ (a,))U(b.g) = f(z")

maxje[k]

8: if p(a,b) > 0 and w, v wq + ¢, < B then

9: Z' < Greedy Algorithm for f(z' U x°) over (U(z" \ 2°) \ {a}) U {b}
10: et =z ua’

11: Wyt+l = Wyt — Wa + Wh

12: switch = false

13: end if

14: S =5\{(a,b)}
15: end while

16: end while

17: return x

In order to pave the way for analysis of Sect.4, we consider the process of the
current solution * generated by x° LI &". We carefully define i; as the current solution
of each iteration of the greedy algorithm of the 9th line, where j € {1,...,|U(z")—2|}
for every fixed t. Define (vj,i;) = :Tné\d:?fl in Greedy Algorithm.

For the convenience of writing, we define wg = 53; L «°. Then immediately

(vj,i5) = (28 \ah_}) = (&5 Ux)\(&;_; Ux")) holds. For each fixed iteration step
t, there are a string of iteration steps j € {1,...,|U(x") — 2|} for the nested greedy
algorithm.

3 Analysis for Non-monotone k-submodular Maximization with a
Knapsack Constraint and a Matroid Constraint

In this section, we will draw support from the nested greedy algorithm to solve prob-
lem (1). For nonnegative, non-monotone and unconstrained k-submodular, we need the
following conclusions. Lemma 5 comes from Proposition 2.1 in [8]. If there exists a
solution achieving the optimal value, we can construct an optimal solution containing
all points of ground set. Therefore, for unconstrained k-submodular maximization, we

162 K. Yu et al.

only analyze the optimal solution which is the partition of ground set of Algorithm
1. And Lemma 6 ensures that we can obtain a 1/3-approximate greedy solution in the
nested greedy Algorithm 1 by using (U(x! \ 2°) \ {a}) U {b} as ground set G, where
OPT}(G) is the optimal value of unconstrained k-submodular f maximization over G.

Lemma 5 [8]. For maximizing a non-monotone k-submodular f over a set G, there
exists a partition of G achieving the optimal value.

Lemma 6 [19]. For maximizing a non-monotone k-submodular f over a set G, by
greedy algorithm, we can get a solution x such that U(x) = G and 3f(x) >
OPTy(G).

Drawing support from the nested greedy algorithm, we reorder each iterative solu-
tion of MK-KM and analyze the approximate ratio in two cases.

Theorem 1. Applying MK-KM algorithm to problem (1), we can obtain a %(1 — e 2)-
approximate ratio.

Proof. Using Lemma 3 between the iterative solution &' of MK-KM and the optimal
solution x*, there exists swap (y(b), b) satisfying y(b) € (U(x')\U(z*)) U {0} and
be U(x*)\U(x?).

For any iteration step ¢, we construct a solution &°. Considering all (b,7) < *\z,
we add them to ' and get «*. Note that ° < =! < &' and U(2") = U(z*) U U(z").

Due to Lemma 5, there exists an optimal solution containing all points in ground set
G. And by Lemma 2, we know that f(z LI 2°) is a k-submodular over U (&")\U (x°).
So we define that OPT 10y (U (2")\U (x?)) is the optimal value of f(z L z°) over
U(&"\x"). Using Lemma 6 for each ! in MK-KM, we always have

OPTf(z1100)(U(@")\U(2”))
< 3f(2")

<3f(@)+3 Y [fa'u(bi) - flah)] 3)

(b,5) &\t

<3f@@)+3 Y (@), 1)) U (b,1) = F(@\(y(b),)]

(bi)<e"\a*

The first inequality is due to Lemma 6. And the second is due to Lemma 1. By orthant
submodularity, we get the third inequality. Recall that MK-KM breaks all loops when
S = 0 in line 6. It implies that we cannot find a qualified swap(a,b) to update
the output solution . We only consider swaps(y(b),b) in S(U(z\z")) related to
b € U(x*)\U(x) instead of all candidate swaps(a, b). Now we use this construction
method to analyze the algorithm in two cases.

Case 1: Consider a very special case that every swap(y(b), b) was rejected just due
to p(y(b),b) < 0 instead of knapsack constraint.

Guarantees for Maximization of k-Submodular Functions 163

Applying formula (3) for the output solution x and constructed solution &, we get
fx")
< OPTf(wI_IwO)(U(:%)\U(mO))
<3f(@)+3 Y [f(@\(y(b), 1) L (bd) — f((@\(y(b), 5))].

(b3)2E\x

“4)

Since p(y(b),b) < 0, we have
f((2\(y(b), 7)) U (b,7)) < f(=) (5)

for all (b,4) = &\x. We define {(y(b), j) }ocv(@t\at)\ {0} = {(y1,51), -, (YK, jK))
then we get

Y @) = f(@\(y(0),)]

(byi)=z\z

\ A
=

D@\ (i) U U e i) U () U Ul i)
=1

= f((@\((y1,71) U+ U (yx, 3) U (g1, 51) U - U (Y1, 5i-1))]
= f(x) — f&\((y1,J1) U--- U (Y, JjK)))
< f(=).

The first inequality is due to orthant submodularity. Because f is nonnegative, the sec-
ond inequality holds. So we can get

f(®") <6f(z). 7

Therefore, we find a 1/6-approximate solution in Case 1.

Case 2: Consider the opposite of Case 1 that there exists at least one swap(y(b), b)
satisfying wy — wyp) +wp > B.

Assume a special iteration step t*. For the first time, there appears a swap (y(b.), bx)
in S(U (! \x°)) such that w,e — wyp,) +ws, > B, where b, € U(z*)\U(x!") and
y(b.) € (U(@)\U (")) U {0}.

Although this swap(y(bx), b.) violates the knapsack constraint, we use it to con-
struct a solution (2! \ (y(bs), jy(b.))) L (b«,ip,). By orthant submodularity, pairwise
monotonicity and the greedy choice of %, =” and 2”7, we have

FU@N ((0e), Gyon)) U (b in,)) = fl2') < %f(wo)- ®)

The detailed process of proof is shown in the Appendix. By Lemma 2, we know that
g(x) = f(x) — f(z°) is a k-submodular function. Then applying formula (3) for the
current solution ! and constructed solution &°, we can get

(B - wwo)

g(z*) < 6[g(x") + #Ptﬂ]-)

164 K. Yu et al.

forall t € {1,...,t*}. The detailed process of proof is shown in the Appendix. We
introduce a construction method inspired by K. K. Sarpatwar [16]. Its details are still in
the Appendix. Due to the construction method, we can get

g((&" \ (Y(b+), Jy))) U (s i) _ 1
e] (10)
Then, combing (8) and (10), we have
f(a")
= () +g(z")
= (") + g((@" \ (Y(be), dy(.))) U (bas i)
— (=" \ (y(b) Jyb)) U (beyin.))) — g(a')]
= (@°) + g((@" \ (Y(b2), dy(.))) U (bas i) an
— [F(@"\ (y(ba), Gyva))) U (B *»Zb) — f(@")]
zf(wO)Jré(l—e‘Q) (2°) - 3 /(")
> (-) @)

Therefore, we have a £ (1 — e~2)-approximate solution '~ for MK-KM.

4 Analysis for Monotone k-Submodular Maximization with a
Knapsack and a Matroid Constraint

A function f is said to be monotone, if f(x) < f(y) for any < y. It is easy to see
that f must be pairwise monotone if f is monotone. Therefore, a monotone function
f: (k+1)¢ — Ris k-submodular if and only it is orthant submodular. In this section,
we introduce a special construction method inspired by Lan N. Nguyen [12], and obtain
a better approximate ratio by MK-KM’ algorithm.

For a fixed iteration ¢, recall that (v;,i;) = @%\x}_,. Define (vj,i.) =< x*. We
construct two sequences {o —1/2} and {o;} such that oJ 12 = (z* U a;;) U e
and 0; = (z* U xt) U @}, where j € {1,...,|U(x")| — 2} and 0j—¢ = x*

Note that m§_1 < :c§ =< oj and 0;_1/5 < 0;. By Lemma 2, we know that
g(x) = f(x) — f(z°) is a monotone k-submodular function. Then for any j €
{1,...,|U(x")| — 2}, we have

] 1

9(0j-1) — g(0;) < g(0j—1) — g(0j_12) < g(x}) — g(x}_,). (12)

The first inequality is due to monotonicity and 0;_1/2 =< o0;. When v; ¢ U(x*)
orv; € U(x*) with i; = i,, we have g(0;_1) — g(0j_1/2) < 0 by monotonicity.
When v; € U(xz*) and i; # i,, we have g(0;_1) — g(0;_1/2) > 0. Using orthant
submodularity, we get the following inequality.

9(0j-1) — g(0j_1/2) < gt 1 U (vj,i.)) — g(xh_,) (13)
Then by greedy choice, the inequality (12) holds.

Guarantees for Maximization of k-Submodular Functions 165

Theorem 2. According to MK-KM’ algorithm, a %(1 — e~ 3)-approximate solution of
problem (1) can be obtained, if f is monotone.

Proof. Similarly to Theorem 1, we analyze the algorithm in two cases. When we get the
output solution @, there is not any qualified swap (a, b) to update . We only consider
swaps(y(b),b) in S(U(z\z")) related to b € U(x*)\U(z) instead of all candidate
swaps(a, b).

Case 1: Consider a very special case that every swap(y(b), b) was rejected just due
to p(y(b),b) < 0 instead of knapsack constraint.

For the optimal solution * and the output solution &, we construct two sequences
{0j_1/2} and {0}, where j € {1,...,|U(x)|—2}. Sum (12) for j from 1 to (|U(x)|—
2), we have

9(x*) = goww)—2) = Y l9(0j-1) — g(0))]

2 (14)

Using Lemma 1, orthant submodularity and p(y(b), b) < 0, we get

g(z") (0OU(a)|—2) + 9(x)

<y
<g(x)+ > l9(x L1 (b,4)) — g(x)] + g()
b,) 201U (@) -2 \)

< 29(x) + > [9((@\(y(5),) L (b,7)) — g(\(y(b),)] 1)

b)) 201U (@) —2\T)

< 29(x) + > lg(z) — g(2\(y(b), 5))]-

0,) 2 (01U ()| -2 \T)

Let {<y<b)7j)}bEU(ow(m”\m)\{@} = {(ylvj1)7 R (yKajK)}’ then we have

K
g9(x*) < 29(m) + Y [9((yr,51) U+ Uy, 30) — 9((y1, 1) U+ U (g1, 1))

< 3g(x). ;
(16)
Therefore,

fl@*) < 3f(x) —2f(x°) < 3f (). (17)

We obtain 1/3-approximate ratio in case 1.
Case 2: Consider the opposite of case 1 that there exists at least one swap(y(b), b)
satisfying wy — wyp) + wp > B.

166 K. Yu et al.

For the first time, there appears a swap (y(b.),b,) in S(U(z! \x°)) such that
Wer —Wy(p,) +wp, > B, where b, € U(z*)\U(x!") andy(b.) € (U(x!)\U(x*))U
{0}.Foreacht € {1,...,t"}, we construct two sequences {0;_1 /> } and {0, } between
x' and z*, where j € {1,...,|U(z")| — 2}. Summing (13) for j from 1 to |U (z!)| — 2
and using Lemma 1, we have

9(x") < g(ou(ar)|—2) + g(x")

<g(z')+ > [g(x U (b,7)) — g(@")] + g(a"). (18)
(b:6)=(0 0ty _2\&Y)

Then applying (18) and the similar technique of (3) and (6), we can get
g(x") < 3g(x") + (B — wg0)pet1, (19)

forallt € {1,...,t*}. The detailed process of proof is shown in the Appendix. Similar
to the proof of (10), using (19), we can get

g((@" \ (W), Gyv.))) U (beyin.)) 1
g(x*) -3

(1—e73). (20)

We modify inequality (8) as follows. By orthant submodularity, monotonicity and
the greedy choice of =, x°, we have

t* . . t* f(z?) 21
FI@ N (y(0s), Jyo)) U (bsy i) = fla") < = @D
The detailed process of proof is shown in the Appendix. Combing (20) and (21), we
have i
f")
= flz

%)+ g((@" \ (y(be): Gys))) U (beyin.)

*

= [F(@\ (9(00)s Gy U (080.))) = f(2")]

22
() 22

Hence, MK-KM’ has an approximation ratio of at least %(1 —e73).

5 Discussion

To summarize this paper, inspired by [16] and [18], we propose a nested algorithm
applicable to monotone and non-monotone k-submodular maximization with the inter-
section of a knapsack and a matroid constraint. For problem (1), we have a %(1 —e72)-
approximate ratio. Inspired by [12], we use a new construction method between optimal
solution and current solution. For monotone k-submodular maximization with a knap-
sack and a matroid constraint, we achieve at least %(1 — ¢~3) approximation ratio.

Guarantees for Maximization of k-Submodular Functions 167

References

10.

11.

14.

15.

17.

18.

20.

. Bian, A.A., Buhmann, J.M., Krause, A., Tschiatschek, S.: Guarantees for greedy maximiza-

tion of non-submodular functions with applications. In: Proceedings of the 34th Interna-
tional Conference on Machine Learning (ICML), Sydney, NSW, Australia, 2017, pp. 498—
507 (2017)

. Calinescu, G., Chekuri, C., Pal, M., Vondrdk, J.: Maximizing a monotone submodular func-

tion subject to a matroid constraint. SIAM J. Comput. 40(6), 1740-1766 (2011)

. Ene, A., Nguyén, H.L.: A nearly-linear time algorithm for submodular maximization with

a knapsack constraint. In: Proceedings of the 46th International Colloquium on Automata,
Languages and Programming (ICALP), Patras, Greece, 2019, pp. 53:1-53:12 (2019)

. Feldman, M.: Maximization problems with submodular objective functions, Ph.D. disserta-

tion, Computer Science Department, Technion, Haifa, Israel (2013)

. Filmus, Y., Ward, J.: Monotone submodular maximization over a matroid via non-oblivious

local search. SIAM J. Comput. 43(2), 514-542 (2014)

. Huang, C., Kakimura, N., Mauras, S., Yoshida, Y.: Approximability of monotone submodu-

lar function maximization under cardinality and matroid constraints in the streaming. SIAM
J. Discrete Math. 36, 355-382 (2022)

. Huber, A., Kolmogorov, V.: Towards mininizing k-submodular functions. In: Proceedings of

2nd International Symposium on Combinatorial Optimization, pp. 451-462 (2012)

. Iwata, S., Tanigawa, S.-1., Yoshida, Y.: Improved approximation algorithms for k-submodular

function maximization. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), Arlington, VA, USA, 2016, pp. 404413 (2016)

. Liu, Q., Yu, K., Li, M., Zhou, Y.: k-Submodular Maximization with a Knapsack Constraint

and p Matroid Constraints (submitted)

Liu, Z., Guo, L., Du, D., Xu, D., Zhang, X.: Maximization problems of balancing submodular
relevance and supermodular diversity. J. Global Optim. 82(1), 179-194 (2021). https://doi.
org/10.1007/s10898-021-01063-6

Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing
submodular set functions-I. Math. Program. 14(1), 265-294 (1978)

. Nguyen, L.N., Thai, M.T.: Streaming k-submodular maximization under noise subject to

size constraint. In: Proceedings of the 37th International Conference on Machine Learning
(ICML), 2020, pp. 7338-7347 (2020)

. Ohsaka, N., Yoshida, Y.: Monotone k-submodular function maximization with size con-

straints. Adv. Neural. Inf. Process. Syst. 28, 694-702 (2015)

Oshima, H.: Improved randomized algorithm for k-submodular function maximization.
SIAM J. Discret. Math. 35(1), 1-22 (2021)

Sakaue, S.: On maximizing a monotone k-submodular function subject to a matroid con-
straint. Discret. Optim. 23, 105-113 (2017)

. Sarpatwar, K.K., Schieber, B., Shachnai, H.: Constrained submodular maximization via

greedy local search. Oper. Res. Lett. 47(1), 1-6 (2019)

Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack
constraint. Oper. Res. Lett. 32(1), 41-43 (2004)

Tang, Z., Wang, C., Chan, H.: On maximizing a monotone k-submodular function under a
knapsack constraint. Oper. Res. Lett. 50(1), 28-31 (2022)

. Ward, J., Zivny, S.: Maximizing k-submodular functions and beyond. ACM Trans. Algo-

rithms 12(4), 47:1-47:26 (2016)
Yoshida, Y.: Maximizing a monotone submodular function with a bounded curvature under
a knapsack constraint. SIAM J. Discret. Math. 33(3), 1452-1471 (2019)

https://doi.org/10.1007/s10898-021-01063-6
https://doi.org/10.1007/s10898-021-01063-6

	Guarantees for Maximization of k-Submodular Functions with a Knapsack and a Matroid Constraint
	1 Introduction
	2 Preliminaries
	2.1 k-Submodular Function
	2.2 k-Submodular Maximization with a Knapsack and a Matroid Constraint
	2.3 Algorithm

	3 Analysis for Non-monotone k-submodular Maximization with a Knapsack Constraint and a Matroid Constraint
	4 Analysis for Monotone k-Submodular Maximization with a Knapsack and a Matroid Constraint
	5 Discussion
	References

