

Guarantees for Maximization of k-Submodular Functions with a Knapsack and a Matroid Constraint

Kemin Yu, Min Li, Yang Zhou, and Qian Liu^(⊠)

School of Mathematics and Statistics, Shandong Normal University, Jinan 250014, People's Republic of China lq_qsh@163.com, {liminemily,zhouyang}@sdnu.edu.cn

Abstract. A k-submodular function is a generalization of a submodular function, whose definition domain is the collection of k disjoint subsets. In our paper, we apply a greedy and local search technique to obtain a $\frac{1}{6}(1-e^{-2})$ -approximate algorithm for the problem of maximizing a k-submodular function subject to the intersection of a knapsack constraint and a matroid constraint. Furthermore, we use a special analytical method to improve the approximation ratio to $\frac{1}{3}(1-e^{-3})$, when the k-submodular function is monotone.

Keywords: k-submodularity \cdot Knapsack constraint \cdot Matroid constraint \cdot Approximation algorithm

1 Introduction

Consider a ground set G composed of n elements and $k \in N_+$, we define $(k+1)^G$ as the family of k disjoint subset (X_1, \ldots, X_k) , where $X_i \subseteq G, \forall i \in [k]$ and $X_i \cap X_j = \emptyset$, $\forall i \neq j$. A function $f : (k+1)^G \to R$ is said to be k-submodular [7], if

$$f(\boldsymbol{x}) + f(\boldsymbol{y}) \geq f(\boldsymbol{x} \sqcup \boldsymbol{y}) + f(\boldsymbol{x} \sqcap \boldsymbol{y}),$$

for any $\boldsymbol{x} = (X_1, \dots, X_k)$ and $\boldsymbol{y} = (Y_1, \dots, Y_k)$ in $(k+1)^G$, where

$$oldsymbol{x} \sqcup oldsymbol{y} := (X_1 \cup Y_1 \setminus (\bigcup_{i \neq 1} X_i \cup Y_i), \dots, X_k \cup Y_k \setminus (\bigcup_{i \neq k} X_i \cup Y_i)),$$

 $oldsymbol{x} \sqcap oldsymbol{y} := (X_1 \cap Y_1, \dots, X_k \cap Y_k).$

Obviously, it is a submodular function for k = 1.

As early as 1978, Nemhauser et al. [11] studied the monotone submodular maximization problem subject to cardinality constraints and obtained a greedy (1 - 1/e)-approximation algorithm. Many scholars extended submodular maximization to different constraints and design approximate algorithms, see [1–6, 10, 17, 20]. Among them,

Supported by National Science Foundation of China (No. 12001335) and Natural Science Foundation of Shandong Province of China (Nos. ZR2019PA004, ZR2020MA029, ZR2021MA100).

[©] The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 156–167, 2022. https://doi.org/10.1007/978-3-031-16081-3_14

knapsack constraint and matroid constraint are mainly concerned, and most of the algorithms can achieve the tight 1 - 1/e approximation ratio. However, under the intersection constraint of a knapsack and a matroid, we have not found that the algorithm can achieve 1 - 1/e-approximation, since the loss of rounding is difficult to avoid. Recently, by combining greedy and local search techniques, Sarpatwa et al. [16] contributed an algorithm for reaching $\frac{1-e^{-2}}{2}$ -approximation ratio.

In recent years, k-submodular maximization problem has been widely concerned and studied. There have been many research results. For k-submodular maximization without constraint, Ward and Zivny [19] gave a deterministic greedy algorithm, whose approximate ratio reached 1/3, and a randomized greedy algorithm whose approximate ratio is $\frac{1}{1+a}$, where $a = \max\{1, \sqrt{\frac{k-1}{4}}\}$. Iwata et al. [8] improved the approximation ratio to 1/2. Later, [14] contributed an algorithm with ratio $\frac{k^2+1}{2k^2+1}$. Under the monotonicity assumption, Ward and Zivny [19] gave a 1/2 approximation algorithm and Iwata et al. [8] improved the approximation ratio to k/(2k-1), which is asymptotically tight. There are also many results for nonnegative monotone k-submodular maximization with constraints. In 2015, Ohsaka and Yoshida [13] designed a 1/2-approximation algorithm for a total size constraint. Sakaue [15] presented a 1/2-approximation algorithm with a matroid constraint. And for monotone k-submodular maximization subject to a knapsack constraint, Tang et al. [18] proposed an algorithm of $\frac{1-1/e}{2}$ approximate ratio. Liu et al. [9] design a combinatorial approximation algorithm for monotone ksubmodular maximization subject to a knapsack and a matroid constraint and obtained a $\frac{1}{4}(1-e^{-2})$ approximate ratio.

In this paper, we consider the k-submodular maximization subject to a knapsack and a matroid constraint, and do some work on the basis of the algorithm given by Liu et al. [9]. The main contributions of this paper are as follows:

- We extend the algorithm for k-submodular maximization problem with a knapsack and a matroid constraint to nonmonotone case, and achieve a $\frac{1}{6}(1-e^{-2})$ approximate ratio, based on the pairwise monotone property.
- We improve the approximate ratio from $\frac{1}{4}(1-e^{-2})$ in [9] to $\frac{1}{3}(1-e^{-3})$ under the monotonicity assumption. In the theoretical analysis of the algorithm, we no longer rely on the results of the greedy algorithm for the unconstrained k-submodular maximization problem, and use the properties of k-submodular function to get the new result.

We organize our paper as follows. In Sect. 2, we first introduce the k-submodular function and some corresponding results, then present the k-submodular maximization problem with a knapsack and a matroid constraint. We present our results for non-monotone case in Sect. 3. In Sect. 4, we show our theoretical analysis for monotone case.

2 Preliminaries

2.1 k-Submodular Function

For any two k disjoint subsets $\boldsymbol{x} = (X_1, \dots, X_k)$ and $\boldsymbol{y} = (Y_1, \dots, Y_k)$ in $(k+1)^G$, we need to introduce a remove operation and a partial order, i.e.

$$\boldsymbol{x} \setminus \boldsymbol{y} := (X_1 \setminus Y_1, \dots, X_k \setminus Y_k),$$

$$\boldsymbol{x} \preceq \boldsymbol{y}$$
, if $X_i \subseteq Y_i, \forall i \in [k]$.

Define $\emptyset := (\emptyset, ..., \emptyset) \in (k+1)^G$ and $(v, i) \in (k+1)^G$ such that $X_i = \{v\}$ and $X_j = \emptyset$ for $\forall j \in [k]$ with $j \neq i$. Refer $U(\boldsymbol{x}) = \bigcup_{i=1}^k X_i$. For $v \notin U(\boldsymbol{x})$, we use $f_{\boldsymbol{x}}((v,i)) = f(\boldsymbol{x} \sqcup (v,i)) - f(\boldsymbol{x})$ to represent the marginal gain of f. A function f is said to be pairwise monotone if $f_{\boldsymbol{x}}((v,i)) + f_{\boldsymbol{x}}((v,j)) \geq 0$ for any $i \neq j \in [k]$ holds. In addition, we call that the function f is orthant submodular, if $f_{\boldsymbol{x}}((v,i)) \geq f_{\boldsymbol{y}}((v,i))$ holds, for any $\boldsymbol{x} \preceq \boldsymbol{y}$. According to the above definition, we have the equivalent definition and property of the k-submodular function as follows.

Definition 1 [19]. A function $f : (k + 1)^G \to R$ is k-submodular iff it is pairwise monotone and orthant submodular.

Lemma 1 [18]. Given a k-submodular f, we have

$$f(\boldsymbol{y}) - f(\boldsymbol{x}) \leq \sum_{(v,i) \preceq \boldsymbol{y} \setminus \boldsymbol{x}} f_{\boldsymbol{x}}((v,i)),$$

for any $x \preceq y$.

Check the definition of k-submodular, we have the lemma as follows.

Lemma 2. Given a k-submodular f, we set $g(\mathbf{x}) = f(\mathbf{x} \sqcup (v, i))$: $(k+1)^{G \setminus v} \to R$, then $g(\mathbf{x})$ is k-submodular.

2.2 k-Submodular Maximization with a Knapsack and a Matroid Constraint

We define $\mathcal{L} \subseteq 2^G$ as the family of subsets of G. A pair (G, \mathcal{L}) is called as an independence system if $(\mathcal{M}1)$ and $(\mathcal{M}2)$ holds. And if $(\mathcal{M}3)$ also holds, the independence system (G, \mathcal{L}) is a matroid.

Definition 2. Given a pair $\mathcal{M} = (G, \mathcal{L})$, where $\mathcal{L} \subseteq 2^G$. We call \mathcal{M} is a matroid if the following holds:

 $(\mathcal{M}1): \emptyset \in \mathcal{L}.$ $(\mathcal{M}2): \text{ for any subset } A \in \mathcal{L}, B \subseteq A \text{ indicates } B \in \mathcal{L}.$ $(\mathcal{M}3): \text{ for any two subset } A, B \in \mathcal{L}, |A| > |B| \text{ indicates that there exists a point } v \in A \setminus B, \text{ such that } B \cup \{v\} \in \mathcal{L}.$

Given a subset $A \in \mathcal{L}$ and a pair of points (a, b), where $a \in A \cup \{\emptyset\}$ and $b \in G \setminus A$, we refer the pair (a, b) as a swap(a, b) if $A \setminus \{a\} \cup \{b\} \in \mathcal{L}$. It means that only some special points pair called swap can guarantee that $A \setminus \{a\} \cup \{b\} \in \mathcal{L}$ is still an independent set.

We highlight that the next lemma ensures that a swap(a, b) must exist between the optimal solution x^* and the current solution x^t in the later analysis. Consider the support set of the current solution $U(x^t)$ as $A \in \mathcal{L}$ and $U(x^*)$ as $B \in \mathcal{L}$. We will consider finding a special kind of swap(y(b), b) of $U(x^t)$, where $b \in U(x^*) \setminus U(x^t)$ and $y(b) \in U(x^t) \setminus U(x^*) \cup \{\emptyset\}$.

Lemma 3 [16]. Assume two sets $A, B \in \mathcal{L}$, then we can construct a mapping $y : B \setminus A \to (A \setminus B) \cup \{\emptyset\}$, where every point $b \in B \setminus A$ satisfies $(A \setminus \{y(b)\}) \cup \{b\} \in \mathcal{L}$, and $a \in A \setminus B$ satisfies $|y^{-1}(a)| \leq 1$.

Consider every point v in G, we give it a weight $w_v \ge 0$ and a total upper bound B. In the following, we assume that w_v is an integer, because we can always change all w_v and B proportionally without losing generality. The two constraints reduce the domain of candidate solutions, so we can only find some solutions $x \in (k+1)^G$ such that the sum of weight w_v of all points v in U(x) is less than B and U(x) is an independent set. Define $w_x = \sum_{v \in U(x)} w_v$. The problem can be written as

$$\max_{\boldsymbol{x}\in(k+1)^G} \{f(\boldsymbol{x}) \mid w_{\boldsymbol{x}} \leq B \text{ and } U(\boldsymbol{x}) \in \mathcal{L}\}.$$
(1)

In addition, in the later proof, we need to use the following lemma.

Lemma 4 [11]. Given two fixed $P, D \in N_+$ and a sequence of numbers $\gamma_i \in R_+$, where $i \in [P]$, then we have

$$\frac{\sum_{i=1}^{P} \gamma_i}{\min_{t \in [P]} (\sum_{i=1}^{t-1} \gamma_i + D\gamma_t)}$$

$$\geq 1 - (1 - \frac{1}{D})^P \geq 1 - e^{-P/D}.$$
(2)

2.3 Algorithm

Before giving the algorithm to solve problem (1), we firstly introduce a greedy algorithm for unconstrained k-submodular by [19]. We know that a k-submodular function f is pairwise monotone due to Definition 1, that is, $f_x((v,i)) + f_x((v,j)) \ge 0$ for any $i \ne j \in [k]$. It means that for a fixed $x \in (k+1)^G$ and $v \in G \setminus U(x)$, there are no two positions $i \ne j \in [k]$ such that $f_x((v,i)) < 0$ and $f_x((v,j)) < 0$ both hold. So we can always find a position $i \in [k]$ such that $f_x((v,i)) \ge 0$ for any $v \in G \setminus U(x)$. Therefore, for every current solution x^t in the Algorithm 1, we add $v \in G \setminus U(x^t)$ with a greedy position i_j until all points $v \in G$ are added to $U(x^t)$.

Then we give an algorithm inspired by [16] and [18] for problems (1) called MK-KM abbreviated as maximizing k-submodular function with a knapsack constraint and a matroid constraint. Let's highlight some important nodes. Firstly, we select three elements with the largest marginal return from the optimal solution x^* by enumerating. Second, for every current solution $x^t \in \mathcal{L}$ and the optimal solution $x^* \in \mathcal{L}$, we can always find a swap(y(b), b) satisfying $y(b) \in x^t \setminus x^*$ and $b \in x^* \setminus x^t$ by Lemma 3. But we always choose a swap(a, b) with the highest marginal profit density $\rho(a, b)$. In the

Algorithm 1. Greedy Algorithm (f, G)

Require: A function $f : (k + 1)^G \to R_+$ and a set G = [n] **Ensure:** A k-disjoint set $x \in (k + 1)^G$ 1: $x \leftarrow (\emptyset, \dots, \emptyset)$ 2: for j = 1 to n do 3: $i_j \leftarrow \arg \max_{i \in [k]} f_x((v, i))$ 4: $x \leftarrow x \sqcup (v, i_j)$ 5: end for 6: return x

line 9 of MK-KM, we reorder the $U(x^t)$ after the operation of $\operatorname{swap}(a, b)$ and ensure $x^0 \preceq x^t$. Considering the order of each element in $(U(x^{t-1} \setminus x^0) \setminus \{a\}) \cup \{b\})$ as it is added to current solution in MK-KM, we add them to Greddy Algorithm in the same order. Last but not least, only when x^t is updated, S will be regenerated in line 5. Otherwise, MK-KM will continue to pick and remove the next swap in the loop from 6 to 13. So MK-KM will break the loop when $S = \emptyset$ in line 6.

 $\overline{\text{Algorithm 2. MK-KM}(G, B, M)}$

Require: A function $f: (k+1)^G \to R_+$, a budget $B \in R_+$ and a matroid (G, \mathcal{L}) **Ensure:** A k-disjoint set $x \in (k+1)^G$ satisfying $w_x \leq B$ and $U(x) \in \mathcal{L}$ 1: Let $x^{lpha} \in rg\max_{|U(x)|=1, x \preceq x^*} f(x), x^{eta} \in rg\max_{|U(x)|=2, x^{lpha} \preceq x \preceq x^*} f(x)$ $oldsymbol{x}^\gamma \in rg\max_{egin{smallmatrix}|U(oldsymbol{x})|=3,oldsymbol{x}^eta^{\,eta} oldsymbol{x}^{\,eta} oldsymbol{x}^{\,e$ 2: $x^t \leftarrow x^\gamma$ and switch = false3: while switch = false do switch = true4: 5: Generate a collection of all swaps $S = S(U(\boldsymbol{x}^t \setminus \boldsymbol{x}^0))$ while switch = true and $S \neq \emptyset$ do 6: 7: Pick a swap (a, b) from S with a maximum value of $\rho(a, b)$ = $\max_{j \in [k]} \frac{f((x^t \setminus (a,i)) \sqcup (b,j)) - f(x^t)}{\cdots}$ if $\rho(a,b) > 0$ and $w_x - w_a + c_b < B$ then 8: $\widetilde{\boldsymbol{x}}^t \leftarrow \mathbf{Greedy} \, \mathbf{Algorithm} \, \mathbf{for} \, f(\widetilde{\boldsymbol{x}}^t \sqcup \boldsymbol{x}^0) \, \mathbf{over} \, (U(\boldsymbol{x}^t \setminus \boldsymbol{x}^0) \setminus \{a\}) \cup \{b\}$ 9: $\boldsymbol{x}^{t+1} = \widetilde{\boldsymbol{x}}^t \sqcup \boldsymbol{x}^0$ 10: 11: $w_{x^{t+1}} = w_{x^t} - w_a + w_b$ 12: switch = false13: end if 14: $S = S \setminus \{(a, b)\}$ 15: end while 16: end while 17: return x

We modify MK-KM and give MK-KM' algorithm for problem (1) with monotonicity. MK-KM' selects two elements with the largest marginal return from the optimal solution x^* by enumerating. This modification reduces the running time.

Algorithm 3. MK-KM' (G, B, M)

Require: A function $f: (k+1)^G \to R_+$, a budget $B \in R_+$ and a matroid (G, \mathcal{L}) **Ensure:** A k-disjoint set $x \in (k+1)^G$ satisfying $w_x \leq B$ and $U(x) \in \mathcal{L}$ 1: Let $x^{\alpha} \in \arg \max_{|U(x)|=1,x \leq x^*} f(x), x^{\beta} \in \arg \max_{|U(x)|=2,x^{\alpha} \leq x \leq x^*} f(x)$, and t = 02: $x^t \leftarrow x^\beta$ and switch = false3: while switch = false do 4: switch = true5: Generate a collection of all swaps $S = S(U(\boldsymbol{x}^t \setminus \boldsymbol{x}^0))$ while switch = true and $S \neq \emptyset$ do 6: Pick a swap (a, b) from S with a maximum value of $\rho(a, b)$ 7: = $\max_{j \in [k]} \frac{f((x^{\bar{t}} \setminus (a,i)) \sqcup (b,j)) - f(x^{\bar{t}})}{dt}$ if $\rho(a,b) > 0$ and $w_x - w_a + c_b \le B$ then 8: $\widetilde{x}^t \leftarrow \mathbf{Greedy} \, \mathbf{Algorithm} \, \mathbf{for} \, f(\widetilde{x}^t \sqcup x^0) \, \mathbf{over} \, (U(x^t \setminus x^0) \setminus \{a\}) \cup \{b\}$ 9: $\boldsymbol{x}^{t+1} = \widetilde{\boldsymbol{x}}^t \sqcup \boldsymbol{x}^0$ 10: 11: $w_{x^{t+1}} = w_{x^t} - w_a + w_b$ 12: switch = false13: end if 14: $S = S \setminus \{(a, b)\}$ 15: end while 16: end while 17: return x

In order to pave the way for analysis of Sect. 4, we consider the process of the current solution x^t generated by $x^0 \sqcup \tilde{x}^t$. We carefully define \tilde{x}_j^t as the current solution of each iteration of the greedy algorithm of the 9th line, where $j \in \{1, \ldots, |U(x^t) - 2|\}$ for every fixed t. Define $(v_j, i_j) = \tilde{x}_j^t \setminus \tilde{x}_{j-1}^t$ in Greedy Algorithm.

For the convenience of writing, we define $x_j^t = \tilde{x}_j^t \sqcup x^0$. Then immediately $(v_j, i_j) = (x_j^t \setminus x_{j-1}^t) = ((\tilde{x}_j^t \sqcup x^0) \setminus (\tilde{x}_{j-1}^t \sqcup x^0))$ holds. For each fixed iteration step t, there are a string of iteration steps $j \in \{1, \ldots, |U(x^t) - 2|\}$ for the nested greedy algorithm.

3 Analysis for Non-monotone k-submodular Maximization with a Knapsack Constraint and a Matroid Constraint

In this section, we will draw support from the nested greedy algorithm to solve problem (1). For nonnegative, non-monotone and unconstrained k-submodular, we need the following conclusions. Lemma 5 comes from Proposition 2.1 in [8]. If there exists a solution achieving the optimal value, we can construct an optimal solution containing all points of ground set. Therefore, for unconstrained k-submodular maximization, we only analyze the optimal solution which is the partition of ground set of Algorithm 1. And Lemma 6 ensures that we can obtain a 1/3-approximate greedy solution in the nested greedy Algorithm 1 by using $(U(\mathbf{x}^t \setminus \mathbf{x}^0) \setminus \{a\}) \cup \{b\}$ as ground set G, where $OPT_f(G)$ is the optimal value of unconstrained k-submodular f maximization over G.

Lemma 5 [8]. For maximizing a non-monotone k-submodular f over a set G, there exists a partition of G achieving the optimal value.

Lemma 6 [19]. For maximizing a non-monotone k-submodular f over a set G, by greedy algorithm, we can get a solution \mathbf{x} such that $U(\mathbf{x}) = G$ and $3f(\mathbf{x}) \geq OPT_f(G)$.

Drawing support from the nested greedy algorithm, we reorder each iterative solution of MK-KM and analyze the approximate ratio in two cases.

Theorem 1. Applying MK-KM algorithm to problem (1), we can obtain a $\frac{1}{6}(1 - e^{-2})$ -approximate ratio.

Proof. Using Lemma 3 between the iterative solution \boldsymbol{x}^t of MK-KM and the optimal solution \boldsymbol{x}^* , there exists swap (y(b), b) satisfying $y(b) \in (U(\boldsymbol{x}^t) \setminus U(\boldsymbol{x}^*)) \cup \{\emptyset\}$ and $b \in U(\boldsymbol{x}^*) \setminus U(\boldsymbol{x}^t)$.

For any iteration step t, we construct a solution \hat{x}^t . Considering all $(b, i) \leq x^* \setminus x^t$, we add them to x^t and get $\hat{x^t}$. Note that $x^0 \leq x^t \leq \hat{x}^t$ and $U(\hat{x}^t) = U(x^*) \cup U(x^t)$.

Due to Lemma 5, there exists an optimal solution containing all points in ground set G. And by Lemma 2, we know that $f(\boldsymbol{x} \sqcup \boldsymbol{x}^0)$ is a k-submodular over $U(\hat{\boldsymbol{x}}^t) \setminus U(\boldsymbol{x}^0)$. So we define that $OPT_{f(\boldsymbol{x} \sqcup \boldsymbol{x}^0)}(U(\hat{\boldsymbol{x}}^t) \setminus U(\boldsymbol{x}^0))$ is the optimal value of $f(\boldsymbol{x} \sqcup \boldsymbol{x}^0)$ over $U(\hat{\boldsymbol{x}}^t \setminus \boldsymbol{x}^0)$. Using Lemma 6 for each \boldsymbol{x}^t in MK-KM, we always have

$$OPT_{f(\boldsymbol{x}\sqcup\boldsymbol{x}^{0})}(U(\hat{\boldsymbol{x}}^{t})\backslash U(\boldsymbol{x}^{0}))$$

$$\leq 3f(\hat{\boldsymbol{x}}^{t})$$

$$\leq 3f(\boldsymbol{x}^{t}) + 3\sum_{(b,i)\leq\hat{\boldsymbol{x}}^{t}\backslash\boldsymbol{x}^{t}}[f(\boldsymbol{x}^{t}\sqcup(b,i)) - f(\boldsymbol{x}^{t})]$$

$$\leq 3f(\boldsymbol{x}^{t}) + 3\sum_{(b,i)\leq\hat{\boldsymbol{x}}^{t}\backslash\boldsymbol{x}^{t}}[f((\boldsymbol{x}^{t}\backslash(y(b),j))\sqcup(b,i)) - f((\boldsymbol{x}^{t}\backslash(y(b),j))].$$
(3)

The first inequality is due to Lemma 6. And the second is due to Lemma 1. By orthant submodularity, we get the third inequality. Recall that MK-KM breaks all loops when $S = \emptyset$ in line 6. It implies that we cannot find a qualified swap(a, b) to update the output solution x. We only consider swaps(y(b), b) in $S(U(x \setminus x^0))$ related to $b \in U(x^*) \setminus U(x)$ instead of all candidate swaps(a, b). Now we use this construction method to analyze the algorithm in two cases.

Case 1: Consider a very special case that every swap(y(b), b) was rejected just due to $\rho(y(b), b) \leq 0$ instead of knapsack constraint.

Applying formula (3) for the output solution x and constructed solution \hat{x} , we get

$$f(\boldsymbol{x}^{*}) \leq OPT_{f(\boldsymbol{x} \sqcup \boldsymbol{x}^{0})}(U(\hat{\boldsymbol{x}}) \setminus U(\boldsymbol{x}^{0})) \\ \leq 3f(\boldsymbol{x}) + 3\sum_{(b,i) \leq \hat{\boldsymbol{x}} \setminus \boldsymbol{x}} [f((\boldsymbol{x} \setminus (y(b),j)) \sqcup (b,i)) - f((\boldsymbol{x} \setminus (y(b),j))].$$

$$(4)$$

Since $\rho(y(b), b) \leq 0$, we have

$$f((\boldsymbol{x}\backslash(\boldsymbol{y}(b),j))\sqcup(b,i)) \le f(\boldsymbol{x})$$
(5)

for all $(b, i) \leq \hat{x} \setminus x$. We define $\{(y(b), j)\}_{b \in U(\hat{x}^t \setminus x^t)} \setminus \{\emptyset\} = \{(y_1, j_1), \dots, (y_K, j_K)\}$, then we get

$$\sum_{\substack{(b,i) \leq \hat{\boldsymbol{x}} \setminus \boldsymbol{x} \\ \leq \sum_{l=1}^{K} [f((\boldsymbol{x} \setminus ((y_1, j_1) \sqcup \cdots \sqcup (y_K, j_K))) \sqcup ((y_1, j_1) \sqcup \cdots \sqcup (y_l, j_l))) \\ - f((\boldsymbol{x} \setminus ((y_1, j_1) \sqcup \cdots \sqcup (y_K, j_K))) \sqcup ((y_1, j_1) \sqcup \cdots \sqcup (y_{l-1}, j_{l-1}))] \\ = f(\boldsymbol{x}) - f(\boldsymbol{x} \setminus ((y_1, j_1) \sqcup \cdots \sqcup (y_K, j_K))) \\ \leq f(\boldsymbol{x}).$$

$$(6)$$

The first inequality is due to orthant submodularity. Because f is nonnegative, the second inequality holds. So we can get

$$f(\boldsymbol{x}^*) \le 6f(\boldsymbol{x}). \tag{7}$$

Therefore, we find a 1/6-approximate solution in Case 1.

Case 2: Consider the opposite of Case 1 that there exists at least one swap(y(b), b) satisfying $w_x - w_{y(b)} + w_b > B$.

Assume a special iteration step t^* . For the first time, there appears a swap $(y(b_*), b_*)$ in $S(U(\boldsymbol{x}^{t^*} \setminus \boldsymbol{x}^0))$ such that $w_{\boldsymbol{x}^{t^*}} - w_{y(b_*)} + w_{b_*} > B$, where $b_* \in U(\boldsymbol{x}^*) \setminus U(\boldsymbol{x}^{t^*})$ and $y(b_*) \in (U(\boldsymbol{x}^{t^*}) \setminus U(\boldsymbol{x}^*)) \cup \{\emptyset\}$.

Although this swap $(y(b_*), b_*)$ violates the knapsack constraint, we use it to construct a solution $(\boldsymbol{x}^{t^*} \setminus (y(b_*), j_{y(b_*)})) \sqcup (b_*, i_{b_*})$. By orthant submodularity, pairwise monotonicity and the greedy choice of $\boldsymbol{x}^{\alpha}, \boldsymbol{x}^{\beta}$ and \boldsymbol{x}^{γ} , we have

$$f((\boldsymbol{x}^{t^*} \setminus (y(b_*), j_{y(b_*)})) \sqcup (b_*, i_{b_*})) - f(\boldsymbol{x}^{t^*}) \le \frac{2}{3}f(\boldsymbol{x}^0).$$
(8)

The detailed process of proof is shown in the Appendix. By Lemma 2, we know that $g(x) = f(x) - f(x^0)$ is a k-submodular function. Then applying formula (3) for the current solution x^t and constructed solution \hat{x}^t , we can get

$$g(\boldsymbol{x}^*) \le 6[g(\boldsymbol{x}^t) + \frac{(B - w_{\boldsymbol{x}^0})}{2}\rho_{t+1}].$$
(9)

for all $t \in \{1, ..., t^*\}$. The detailed process of proof is shown in the Appendix. We introduce a construction method inspired by K. K. Sarpatwar [16]. Its details are still in the Appendix. Due to the construction method, we can get

$$\frac{g((\boldsymbol{x}^{t^*} \setminus (y(b_*), j_{y(b_*)})) \sqcup (b_*, i_{b_*}))}{g(\boldsymbol{x}^*)} \ge \frac{1}{6}(1 - e^{-2}).$$
(10)

Then, combing (8) and (10), we have

$$\begin{aligned} f(\boldsymbol{x}^{t} \) \\ &= f(\boldsymbol{x}^{0}) + g(\boldsymbol{x}^{t^{*}}) \\ &= f(\boldsymbol{x}^{0}) + g((\boldsymbol{x}^{t^{*}} \setminus (y(b_{*}), j_{y(b_{*})})) \sqcup (b_{*}, i_{b_{*}}))) \\ &- [g((\boldsymbol{x}^{t^{*}} \setminus (y(b_{*}), j_{y(b_{*})})) \sqcup (b_{*}, i_{b_{*}}))) - g(\boldsymbol{x}^{t^{*}})] \\ &= f(\boldsymbol{x}^{0}) + g((\boldsymbol{x}^{t^{*}} \setminus (y(b_{*}), j_{y(b_{*})})) \sqcup (b_{*}, i_{b_{*}}))) \\ &- [f((\boldsymbol{x}^{t^{*}} \setminus (y(b_{*}), j_{y(b_{*})})) \sqcup (b_{*}, i_{b_{*}}))) - f(\boldsymbol{x}^{t^{*}})] \\ &\geq f(\boldsymbol{x}^{0}) + \frac{1}{6}(1 - e^{-2})g(\boldsymbol{x}^{*}) - \frac{2}{3}f(\boldsymbol{x}^{0}) \\ &\geq \frac{1}{6}(1 - e^{-2})f(\boldsymbol{x}^{*}). \end{aligned}$$
(11)

Therefore, we have a $\frac{1}{6}(1-e^{-2})$ -approximate solution x^{t^*} for MK-KM.

4 Analysis for Monotone k-Submodular Maximization with a Knapsack and a Matroid Constraint

A function f is said to be monotone, if $f(x) \le f(y)$ for any $x \le y$. It is easy to see that f must be pairwise monotone if f is monotone. Therefore, a monotone function $f: (k+1)^G \to R$ is k-submodular if and only it is orthant submodular. In this section, we introduce a special construction method inspired by Lan N. Nguyen [12], and obtain a better approximate ratio by MK-KM' algorithm.

For a fixed iteration t, recall that $(v_j, i_j) = \mathbf{x}_j^t \setminus \mathbf{x}_{j-1}^t$. Define $(v_j, i_*) \preceq \mathbf{x}^*$. We construct two sequences $\{\mathbf{o}_{j-1/2}\}$ and $\{\mathbf{o}_j\}$ such that $\mathbf{o}_{j-1/2} = (\mathbf{x}^* \sqcup \mathbf{x}_j^t) \sqcup \mathbf{x}_{j-1}^t$ and $\mathbf{o}_j = (\mathbf{x}^* \sqcup \mathbf{x}_j^t) \sqcup \mathbf{x}_j^t$, where $j \in \{1, \ldots, |U(\mathbf{x}^t)| - 2\}$ and $\mathbf{o}_{j=0} = \mathbf{x}^*$.

Note that $x_{j-1}^t \leq x_j^{t'} \leq o_j$ and $o_{j-1/2} \leq o_j$. By Lemma 2, we know that $g(x) = f(x) - f(x^0)$ is a monotone k-submodular function. Then for any $j \in \{1, \ldots, |U(x^t)| - 2\}$, we have

$$g(o_{j-1}) - g(o_j) \le g(o_{j-1}) - g(o_{j-1/2}) \le g(x_j^t) - g(x_{j-1}^t).$$
(12)

The first inequality is due to monotonicity and $o_{j-1/2} \leq o_j$. When $v_j \notin U(\mathbf{x}^*)$ or $v_j \in U(\mathbf{x}^*)$ with $i_j = i_*$, we have $g(o_{j-1}) - g(o_{j-1/2}) \leq 0$ by monotonicity. When $v_j \in U(\mathbf{x}^*)$ and $i_j \neq i_*$, we have $g(o_{j-1}) - g(o_{j-1/2}) \geq 0$. Using orthant submodularity, we get the following inequality.

$$g(\boldsymbol{o}_{j-1}) - g(\boldsymbol{o}_{j-1/2}) \le g(\boldsymbol{x}_{j-1}^t \sqcup (v_j, i_*)) - g(\boldsymbol{x}_{j-1}^t)$$
(13)

Then by greedy choice, the inequality (12) holds.

Theorem 2. According to MK-KM' algorithm, a $\frac{1}{3}(1 - e^{-3})$ -approximate solution of problem (1) can be obtained, if f is monotone.

Proof. Similarly to Theorem 1, we analyze the algorithm in two cases. When we get the output solution \boldsymbol{x} , there is not any qualified swap (a, b) to update \boldsymbol{x} . We only consider swaps(y(b), b) in $S(U(\boldsymbol{x} \setminus \boldsymbol{x}^0))$ related to $b \in U(\boldsymbol{x}^*) \setminus U(\boldsymbol{x})$ instead of all candidate swaps(a, b).

Case 1: Consider a very special case that every swap(y(b), b) was rejected just due to $\rho(y(b), b) \leq 0$ instead of knapsack constraint.

For the optimal solution x^* and the output solution x, we construct two sequences $\{o_{j-1/2}\}$ and $\{o_j\}$, where $j \in \{1, \ldots, |U(x)| - 2\}$. Sum (12) for j from 1 to (|U(x)| - 2), we have

$$g(\boldsymbol{x}^{*}) - g(\boldsymbol{o}_{|U(\boldsymbol{x})|-2}) = \sum_{j=1}^{|U(\boldsymbol{x})|-2} [g(\boldsymbol{o}_{j-1}) - g(\boldsymbol{o}_{j})]$$

$$\leq \sum_{j=1}^{|U(\boldsymbol{x})|-2} [g(\boldsymbol{x}_{j}) - g(\boldsymbol{x}_{j-1})]$$

$$= g(\boldsymbol{x}).$$
(14)

Using Lemma 1, orthant submodularity and $\rho(y(b), b) \leq 0$, we get

$$g(\boldsymbol{x}^{*}) \leq g(\boldsymbol{o}_{|U(\boldsymbol{x})|-2}) + g(\boldsymbol{x})$$

$$\leq g(\boldsymbol{x}) + \sum_{(b,i) \leq (\boldsymbol{o}_{|U(\boldsymbol{x})|-2} \setminus \boldsymbol{x})} [g(\boldsymbol{x} \sqcup (b,i)) - g(\boldsymbol{x})] + g(\boldsymbol{x})$$

$$\leq 2g(\boldsymbol{x}) + \sum_{(b,i) \leq (\boldsymbol{o}_{|U(\boldsymbol{x})|-2} \setminus \boldsymbol{x})} [g((\boldsymbol{x} \setminus (y(b),j)) \sqcup (b,i)) - g(\boldsymbol{x} \setminus (y(b),j))] \quad (15)$$

$$\leq 2g(\boldsymbol{x}) + \sum_{(b,i) \leq (\boldsymbol{o}_{|U(\boldsymbol{x})|-2} \setminus \boldsymbol{x})} [g(\boldsymbol{x}) - g(\boldsymbol{x} \setminus (y(b),j))].$$

Let $\{(y(b), j)\}_{b \in U(o_{|U(x)|} \setminus x)} \setminus \{\emptyset\} = \{(y_1, j_1), \dots, (y_K, j_K)\}$, then we have

$$g(\boldsymbol{x}^{*}) \leq 2g(\boldsymbol{x}) + \sum_{l=1}^{K} [g((y_{1}, j_{1}) \sqcup \cdots \sqcup (y_{l}, j_{l})) - g((y_{1}, j_{1}) \sqcup \cdots \sqcup (y_{l-1}, j_{l-1}))]$$

$$\leq 2g(\boldsymbol{x}) + \sum_{l=1}^{K} g((y_{1}, j_{1}) \sqcup \cdots \sqcup (y_{K}, j_{K}))$$

$$\leq 3g(\boldsymbol{x}).$$
(16)

Therefore,

$$f(x^*) \le 3f(x) - 2f(x^0) \le 3f(x).$$
 (17)

We obtain 1/3-approximate ratio in case 1.

Case 2: Consider the opposite of case 1 that there exists at least one swap(y(b), b) satisfying $w_x - w_{y(b)} + w_b > B$.

For the first time, there appears a swap $(y(b_*), b_*)$ in $S(U(\boldsymbol{x}^{t^*} \setminus \boldsymbol{x}^0))$ such that $w_{\boldsymbol{x}^{t^*}} - w_{y(b_*)} + w_{b_*} > B$, where $b_* \in U(\boldsymbol{x}^*) \setminus U(\boldsymbol{x}^{t^*})$ and $y(b_*) \in (U(\boldsymbol{x}^{t^*}) \setminus U(\boldsymbol{x}^*)) \cup \{\emptyset\}$. For each $t \in \{1, \ldots, t^*\}$, we construct two sequences $\{o_{j-1/2}\}$ and $\{o_j\}$ between \boldsymbol{x}^t and \boldsymbol{x}^* , where $j \in \{1, \ldots, |U(\boldsymbol{x}^t)| - 2\}$. Summing (13) for j from 1 to $|U(\boldsymbol{x}^t)| - 2$ and using Lemma 1, we have

$$g(\boldsymbol{x}^*) \leq g(\boldsymbol{o}_{|U(\boldsymbol{x}^t)|-2}) + g(\boldsymbol{x}^t)$$

$$\leq g(\boldsymbol{x}^t) + \sum_{(b,i) \leq (\boldsymbol{o}_{|U(\boldsymbol{x}^t)|-2} \setminus \boldsymbol{x}^t)} [g(\boldsymbol{x}^t \sqcup (b,i)) - g(\boldsymbol{x}^t)] + g(\boldsymbol{x}^t).$$
(18)

Then applying (18) and the similar technique of (3) and (6), we can get

$$g(\mathbf{x}^*) \le 3g(\mathbf{x}^t) + (B - w_{\mathbf{x}^0})\rho_{t+1},$$
(19)

for all $t \in \{1, ..., t^*\}$. The detailed process of proof is shown in the Appendix. Similar to the proof of (10), using (19), we can get

$$\frac{g((\boldsymbol{x}^{t^*} \setminus (y(b_*), j_{y(b_*)})) \sqcup (b_*, i_{b_*}))}{g(\boldsymbol{x}^*)} \ge \frac{1}{3}(1 - e^{-3}).$$
⁽²⁰⁾

We modify inequality (8) as follows. By orthant submodularity, monotonicity and the greedy choice of x^{α} , x^{β} , we have

$$f((\boldsymbol{x}^{t^*} \setminus (y(b_*), j_{y(b_*)})) \sqcup (b_*, i_{b_*})) - f(\boldsymbol{x}^{t^*}) \le \frac{f(\boldsymbol{x}^0)}{2}.$$
(21)

The detailed process of proof is shown in the Appendix. Combing (20) and (21), we have $f(z,t^*)$

$$f(\boldsymbol{x}^{*}) = f(\boldsymbol{x}^{0}) + g((\boldsymbol{x}^{t^{*}} \setminus (y(b_{*}), j_{y(b_{*})})) \sqcup (b_{*}, i_{b_{*}}))) - [f((\boldsymbol{x}^{t^{*}} \setminus (y(b_{*}), j_{y(b_{*})})) \sqcup (b_{*}, i_{b_{*}}))) - f(\boldsymbol{x}^{t^{*}})]$$

$$\geq f(\boldsymbol{x}^{0}) + \frac{1}{3}(1 - e^{-3})g(\boldsymbol{x}^{*}) - \frac{f(\boldsymbol{x}^{0})}{2}$$

$$\geq \frac{1}{3}(1 - e^{-3})f(\boldsymbol{x}^{*}).$$
(22)

Hence, MK-KM' has an approximation ratio of at least $\frac{1}{3}(1-e^{-3})$.

5 Discussion

To summarize this paper, inspired by [16] and [18], we propose a nested algorithm applicable to monotone and non-monotone k-submodular maximization with the intersection of a knapsack and a matroid constraint. For problem (1), we have a $\frac{1}{6}(1-e^{-2})$ -approximate ratio. Inspired by [12], we use a new construction method between optimal solution and current solution. For monotone k-submodular maximization with a knapsack and a matroid constraint, we achieve at least $\frac{1}{3}(1-e^{-3})$ approximation ratio.

References

- Bian, A.A., Buhmann, J.M., Krause, A., Tschiatschek, S.: Guarantees for greedy maximization of non-submodular functions with applications. In: Proceedings of the 34th International Conference on Machine Learning (ICML), Sydney, NSW, Australia, 2017, pp. 498– 507 (2017)
- Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM J. Comput. 40(6), 1740–1766 (2011)
- Ene, A., Nguyễn, H.L.: A nearly-linear time algorithm for submodular maximization with a knapsack constraint. In: Proceedings of the 46th International Colloquium on Automata, Languages and Programming (ICALP), Patras, Greece, 2019, pp. 53:1–53:12 (2019)
- 4. Feldman, M.: Maximization problems with submodular objective functions, Ph.D. dissertation, Computer Science Department, Technion, Haifa, Israel (2013)
- Filmus, Y., Ward, J.: Monotone submodular maximization over a matroid via non-oblivious local search. SIAM J. Comput. 43(2), 514–542 (2014)
- Huang, C., Kakimura, N., Mauras, S., Yoshida, Y.: Approximability of monotone submodular function maximization under cardinality and matroid constraints in the streaming. SIAM J. Discrete Math. 36, 355–382 (2022)
- Huber, A., Kolmogorov, V.: Towards mininizing k-submodular functions. In: Proceedings of 2nd International Symposium on Combinatorial Optimization, pp. 451–462 (2012)
- Iwata, S., Tanigawa, S.-I., Yoshida, Y.: Improved approximation algorithms for k-submodular function maximization. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), Arlington, VA, USA, 2016, pp. 404–413 (2016)
- 9. Liu, Q., Yu, K., Li, M., Zhou, Y.: k-Submodular Maximization with a Knapsack Constraint and p Matroid Constraints (submitted)
- Liu, Z., Guo, L., Du, D., Xu, D., Zhang, X.: Maximization problems of balancing submodular relevance and supermodular diversity. J. Global Optim. 82(1), 179–194 (2021). https://doi. org/10.1007/s10898-021-01063-6
- 11. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions-I. Math. Program. **14**(1), 265–294 (1978)
- Nguyen, L.N., Thai, M.T.: Streaming k-submodular maximization under noise subject to size constraint. In: Proceedings of the 37th International Conference on Machine Learning (ICML), 2020, pp. 7338–7347 (2020)
- Ohsaka, N., Yoshida, Y.: Monotone k-submodular function maximization with size constraints. Adv. Neural. Inf. Process. Syst. 28, 694–702 (2015)
- Oshima, H.: Improved randomized algorithm for k-submodular function maximization. SIAM J. Discret. Math. 35(1), 1–22 (2021)
- 15. Sakaue, S.: On maximizing a monotone k-submodular function subject to a matroid constraint. Discret. Optim. 23, 105–113 (2017)
- Sarpatwar, K.K., Schieber, B., Shachnai, H.: Constrained submodular maximization via greedy local search. Oper. Res. Lett. 47(1), 1–6 (2019)
- 17. Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint. Oper. Res. Lett. **32**(1), 41–43 (2004)
- Tang, Z., Wang, C., Chan, H.: On maximizing a monotone k-submodular function under a knapsack constraint. Oper. Res. Lett. 50(1), 28–31 (2022)
- Ward, J., Živný, S.: Maximizing k-submodular functions and beyond. ACM Trans. Algorithms 12(4), 47:1–47:26 (2016)
- Yoshida, Y.: Maximizing a monotone submodular function with a bounded curvature under a knapsack constraint. SIAM J. Discret. Math. 33(3), 1452–1471 (2019)