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Abstract. A k-submodular function is a generalization of a submodular func-
tion, whose definition domain is the collection of k disjoint subsets. In our paper,
we apply a greedy and local search technique to obtain a 1

6
(1−e−2)-approximate

algorithm for the problem of maximizing a k-submodular function subject to the
intersection of a knapsack constraint and a matroid constraint. Furthermore, we
use a special analytical method to improve the approximation ratio to 1

3
(1−e−3),

when the k-submodular function is monotone.
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1 Introduction

Consider a ground set G composed of n elements and k ∈ N+, we define (k + 1)G as
the family of k disjoint subset (X1, . . . , Xk), whereXi ⊆ G, ∀i ∈ [k] andXi∩Xj = ∅,
∀i �= j. A function f : (k + 1)G → R is said to be k-submodular [7], if

f(x) + f(y) ≥ f(x 
 y) + f(x � y),

for any x = (X1, . . . , Xk) and y = (Y1, . . . , Yk) in (k + 1)G, where

x 
 y := (X1 ∪ Y1 \ (
⋃

i�=1

Xi ∪ Yi), . . . , Xk ∪ Yk \ (
⋃

i�=k

Xi ∪ Yi)),

x � y := (X1 ∩ Y1, . . . , Xk ∩ Yk).

Obviously, it is a submodular function for k = 1.
As early as 1978, Nemhauser et al. [11] studied the monotone submodular maxi-

mization problem subject to cardinality constraints and obtained a greedy (1 − 1/e)-
approximation algorithm. Many scholars extended submodular maximization to differ-
ent constraints and design approximate algorithms, see [1–6,10,17,20]. Among them,
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knapsack constraint and matroid constraint are mainly concerned, and most of the algo-
rithms can achieve the tight 1 − 1/e approximation ratio. However, under the intersec-
tion constraint of a knapsack and a matroid, we have not found that the algorithm can
achieve 1−1/e-approximation, since the loss of rounding is difficult to avoid. Recently,
by combining greedy and local search techniques, Sarpatwa et al. [16] contributed an
algorithm for reaching 1−e−2

2 -approximation ratio.
In recent years, k-submodular maximization problem has been widely concerned

and studied. There have been many research results. For k-submodular maximization
without constraint, Ward and Zivny [19] gave a deterministic greedy algorithm, whose
approximate ratio reached 1/3, and a randomized greedy algorithm whose approxi-

mate ratio is 1
1+a , where a = max{1,

√
k−1
4 }. Iwata et al. [8] improved the approx-

imation ratio to 1/2. Later, [14] contributed an algorithm with ratio k2+1
2k2+1 . Under the

monotonicity assumption, Ward and Zivny [19] gave a 1/2 approximation algorithm and
Iwata et al. [8] improved the approximation ratio to k/(2k−1), which is asymptotically
tight. There are also many results for nonnegative monotone k-submodular maximiza-
tion with constraints. In 2015, Ohsaka and Yoshida [13] designed a 1/2-approximation
algorithm for a total size constraint. Sakaue [15] presented a 1/2-approximation algo-
rithm with a matroid constraint. And for monotone k-submodular maximization subject
to a knapsack constraint, Tang et al. [18] proposed an algorithm of 1−1/e

2 approximate
ratio. Liu et al. [9] design a combinatorial approximation algorithm for monotone k-
submodular maximization subject to a knapsack and a matroid constraint and obtained
a 1

4 (1 − e−2) approximate ratio.
In this paper, we consider the k-submodular maximization subject to a knapsack

and a matroid constraint, and do some work on the basis of the algorithm given by Liu
et al. [9]. The main contributions of this paper are as follows:

– We extend the algorithm for k-submodular maximization problem with a knapsack
and a matroid constraint to nonmonotone case, and achieve a 1

6 (1 − e−2) approxi-
mate ratio, based on the pairwise monotone property.

– We improve the approximate ratio from 1
4 (1 − e−2) in [9] to 1

3 (1 − e−3) under the
monotonicity assumption. In the theoretical analysis of the algorithm, we no longer
rely on the results of the greedy algorithm for the unconstrained k-submodular max-
imization problem, and use the properties of k-submodular function to get the new
result.

We organize our paper as follows. In Sect. 2, we first introduce the k-submdodular func-
tion and some corresponding results, then present the k-submodular maximization prob-
lem with a knapsack and a matroid constraint. We present our results for non-monotone
case in Sect. 3. In Sect. 4, we show our theoretical analysis for monotone case.

2 Preliminaries

2.1 k-Submodular Function

For any two k disjoint subsets x = (X1, . . . , Xk) and y = (Y1, . . . , Yk) in (k + 1)G,
we need to introduce a remove operation and a partial order, i.e.

x \ y := (X1 \ Y1, . . . , Xk \ Yk),
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x 
 y, if Xi ⊆ Yi,∀i ∈ [k].

Define ∅ := (∅, . . . , ∅) ∈ (k+1)G and (v, i) ∈ (k+1)G such thatXi = {v} andXj = ∅
for ∀j ∈ [k] with j �= i. Refer U(x) =

⋃k
i=1 Xi. For v /∈ U(x), we use fx((v, i)) =

f(x 
 (v, i)) − f(x) to represent the marginal gain of f . A function f is said to be
pairwise monotone if fx((v, i))+fx((v, j)) ≥ 0 for any i �= j ∈ [k] holds. In addition,
we call that the function f is orthant submodular, if fx((v, i)) ≥ fy ((v, i)) holds, for
any x 
 y. According to the above definition, we have the equivalent definition and
property of the k-submodular function as follows.

Definition 1 [19]. A function f : (k + 1)G → R is k-submodular iff it is pairwise
monotone and orthant submodular.

Lemma 1 [18]. Given a k-submodular f , we have

f(y) − f(x) ≤
∑

(v,i)�y\x
fx((v, i)),

for any x 
 y.

Check the definition of k-submodular, we have the lemma as follows.

Lemma 2. Given a k-submodular f , we set g(x) = f(x 
 (v, i)): (k + 1)G\v → R,
then g(x) is k-submodular.

2.2 k-Submodular Maximization with a Knapsack and a Matroid Constraint

We define L ⊆ 2G as the family of subsets of G. A pair (G,L) is called as an inde-
pendence system if (M1) and (M2) holds. And if (M3) also holds, the independence
system (G,L) is a matroid.

Definition 2. Given a pair M = (G,L), where L ⊆ 2G. We call M is a matroid if the
following holds:

(M1): ∅ ∈ L.
(M2): for any subset A ∈ L, B ⊆ A indicates B ∈ L.
(M3): for any two subset A,B ∈ L, | A |>| B | indicates that there exists a point
v ∈ A\B, such that B ∪ {v} ∈ L.

Given a subset A ∈ L and a pair of points (a, b), where a ∈ A ∪ {∅} and b ∈
G\A, we refer the pair (a, b) as a swap(a, b) if A\{a} ∪ {b} ∈ L. It means that only
some special points pair called swap can guarantee that A\{a} ∪ {b} ∈ L is still an
independent set.
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We highlight that the next lemma ensures that a swap(a, b) must exist between the
optimal solution x∗ and the current solution xt in the later analysis. Consider the sup-
port set of the current solution U(xt) as A ∈ L and U(x∗) as B ∈ L. We will con-
sider finding a special kind of swap(y(b), b) of U(xt), where b ∈ U(x∗)\U(xt) and
y(b) ∈ U(xt)\U(x∗) ∪ {∅}.
Lemma 3 [16]. Assume two sets A,B ∈ L, then we can construct a mapping y :
B\A → (A\B) ∪ {∅}, where every point b ∈ B\A satisfies (A\{y(b)}) ∪ {b} ∈ L,
and a ∈ A\B satisfies |y−1(a)| ≤ 1.

Consider every point v in G, we give it a weight wv ≥ 0 and a total upper bound B.
In the following, we assume that wv is an integer, because we can always change all wv

and B proportionally without losing generality. The two constraints reduce the domain
of candidate solutions, so we can only find some solutions x ∈ (k + 1)G such that the
sum of weight wv of all points v in U(x) is less than B and U(x) is an independent
set. Define wx =

∑
v∈U(x)

wv . The problem can be written as

max
x∈(k+1)G

{f(x) | wx ≤ B and U(x) ∈ L}. (1)

In addition, in the later proof, we need to use the following lemma.

Lemma 4 [11]. Given two fixed P,D ∈ N+ and a sequence of numbers γi ∈ R+,
where i ∈ [P ] , then we have

∑P
i=1 γi

mint∈[P ](
∑t−1

i=1 γi + Dγt)

≥ 1 − (1 − 1
D
)P ≥ 1 − e−P/D.

(2)

2.3 Algorithm

Before giving the algorithm to solve problem (1), we firstly introduce a greedy algo-
rithm for unconstrained k-submodular by [19]. We know that a k-submodular function
f is pairwise monotone due to Definition 1, that is, fx((v, i)) + fx((v, j)) ≥ 0 for any
i �= j ∈ [k]. It means that for a fixed x ∈ (k + 1)G and v ∈ G\U(x), there are no two
positions i �= j ∈ [k] such that fx((v, i)) < 0 and fx((v, j)) < 0 both hold. So we can
always find a position i ∈ [k] such that fx((v, i)) ≥ 0 for any v ∈ G\U(x). Therefore,
for every current solution xt in the Algorithm 1, we add v ∈ G\U(xt) with a greedy
position ij until all points v ∈ G are added to U(xt).

Then we give an algorithm inspired by [16] and [18] for problems (1) called MK-
KM abbreviated as maximizing k-submodular function with a knapsack constraint and
a matroid constraint. Let’s highlight some important nodes. Firstly, we select three ele-
ments with the largest marginal return from the optimal solution x∗ by enumerating.
Second, for every current solution xt ∈ L and the optimal solution x∗ ∈ L, we can
always find a swap(y(b), b) satisfying y(b) ∈ xt\x∗ and b ∈ x∗\xt by Lemma 3. But
we always choose a swap(a, b) with the highest marginal profit density ρ(a, b). In the
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Algorithm 1. Greedy Algorithm (f, G)

Require: A function f : (k + 1)G → R+ and a set G = [n]
Ensure: A k-disjoint set x ∈ (k + 1)G

1: x ← (∅, . . . , ∅)
2: for j = 1 to n do
3: ij ← argmaxi∈[k] fx ((v, i))
4: x ← x � (v, ij)
5: end for
6: return x

line 9 of MK-KM, we reorder the U(xt) after the operation of swap(a, b) and ensure
x0 
 xt. Considering the order of each element in (U(xt−1 \ x0) \ {a}) ∪ {b}) as
it is added to current solution in MK-KM, we add them to Greddy Algorithm in the
same order. Last but not least, only when xt is updated, S will be regenerated in line 5.
Otherwise, MK-KM will continue to pick and remove the next swap in the loop from 6
to 13. So MK-KM will break the loop when S = ∅ in line 6.

Algorithm 2. MK-KM (G, B, M )

Require: A function f : (k + 1)G → R+, a budget B ∈ R+ and a matroid (G, L)
Ensure: A k-disjoint set x ∈ (k + 1)G satisfying wx ≤ B and U(x) ∈ L
1: Let xα ∈ arg max

|U(x)|=1,x�x∗ f(x), xβ ∈ arg max
|U(x)|=2,xα�x�x∗ f(x)

xγ ∈ arg max
|U(x)|=3,xβ�x�x∗

f(x) and t = 0

2: xt ← xγ and switch = false
3: while switch = false do
4: switch = true
5: Generate a collection of all swaps S = S(U(xt\x0))
6: while switch = true and S �= ∅ do
7: Pick a swap (a, b) from S with a maximum value of ρ(a, b) =

maxj∈[k]
f((xt\(a,i))�(b,j))−f(xt)

wb

8: if ρ(a, b) > 0 and wx − wa + cb ≤ B then
9: x̃t ← Greedy Algorithm for f(x̃t � x0) over (U(xt \ x0) \ {a}) ∪ {b}
10: xt+1 = x̃t � x0

11: wxt+1 = wxt − wa + wb

12: switch = false
13: end if
14: S = S \ {(a, b)}
15: end while
16: end while
17: return x
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We modify MK-KM and give MK-KM’ algorithm for problem (1) with monotonic-
ity. MK-KM’ selects two elements with the largest marginal return from the optimal
solution x∗ by enumerating. This modification reduces the running time.

Algorithm 3. MK-KM’ (G, B, M )

Require: A function f : (k + 1)G → R+, a budget B ∈ R+ and a matroid (G, L)
Ensure: A k-disjoint set x ∈ (k + 1)G satisfying wx ≤ B and U(x) ∈ L
1: Let xα ∈ arg max

|U(x)|=1,x�x∗ f(x), xβ ∈ arg max
|U(x)|=2,xα�x�x∗ f(x), and t = 0

2: xt ← xβ and switch = false
3: while switch = false do
4: switch = true
5: Generate a collection of all swaps S = S(U(xt\x0))
6: while switch = true and S �= ∅ do
7: Pick a swap (a, b) from S with a maximum value of ρ(a, b) =

maxj∈[k]
f((xt\(a,i))�(b,j))−f(xt)

wb

8: if ρ(a, b) > 0 and wx − wa + cb ≤ B then
9: x̃t ← Greedy Algorithm for f(x̃t � x0) over (U(xt \ x0) \ {a}) ∪ {b}
10: xt+1 = x̃t � x0

11: wxt+1 = wxt − wa + wb

12: switch = false
13: end if
14: S = S \ {(a, b)}
15: end while
16: end while
17: return x

In order to pave the way for analysis of Sect. 4, we consider the process of the
current solution xt generated by x0 
 x̃t. We carefully define x̃t

j as the current solution
of each iteration of the greedy algorithm of the 9th line, where j ∈ {1, . . . , |U(xt)−2|}
for every fixed t. Define (vj , ij) = x̃t

j\x̃t
j−1 in Greedy Algorithm.

For the convenience of writing, we define xt
j = x̃t

j 
 x0. Then immediately
(vj , ij) = (xt

j\xt
j−1) = ((x̃t

j 
 x0)\(x̃t
j−1 
 x0)) holds. For each fixed iteration step

t, there are a string of iteration steps j ∈ {1, . . . , |U(xt) − 2|} for the nested greedy
algorithm.

3 Analysis for Non-monotone k-submodular Maximization with a
Knapsack Constraint and a Matroid Constraint

In this section, we will draw support from the nested greedy algorithm to solve prob-
lem (1). For nonnegative, non-monotone and unconstrained k-submodular, we need the
following conclusions. Lemma 5 comes from Proposition 2.1 in [8]. If there exists a
solution achieving the optimal value, we can construct an optimal solution containing
all points of ground set. Therefore, for unconstrained k-submodular maximization, we
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only analyze the optimal solution which is the partition of ground set of Algorithm
1. And Lemma 6 ensures that we can obtain a 1/3-approximate greedy solution in the
nested greedy Algorithm 1 by using (U(xt \ x0) \ {a}) ∪ {b} as ground set G, where
OPTf (G) is the optimal value of unconstrained k-submodular f maximization over G.

Lemma 5 [8]. For maximizing a non-monotone k-submodular f over a set G, there
exists a partition of G achieving the optimal value.

Lemma 6 [19]. For maximizing a non-monotone k-submodular f over a set G, by
greedy algorithm, we can get a solution x such that U(x) = G and 3f(x) ≥
OPTf (G).

Drawing support from the nested greedy algorithm, we reorder each iterative solu-
tion of MK-KM and analyze the approximate ratio in two cases.

Theorem 1. Applying MK-KM algorithm to problem (1), we can obtain a 1
6 (1− e−2)-

approximate ratio.

Proof. Using Lemma 3 between the iterative solution xt of MK-KM and the optimal
solution x∗, there exists swap (y(b), b) satisfying y(b) ∈ (U(xt)\U(x∗)) ∪ {∅} and
b ∈ U(x∗)\U(xt).

For any iteration step t, we construct a solution x̂t. Considering all (b, i) 
 x∗\xt,
we add them to xt and get x̂t. Note that x0 
 xt 
 x̂t and U(x̂t) = U(x∗) ∪ U(xt).

Due to Lemma 5, there exists an optimal solution containing all points in ground set
G. And by Lemma 2, we know that f(x 
 x0) is a k-submodular over U(x̂t)\U(x0).
So we define that OPTf(x�x0)(U(x̂t)\U(x0)) is the optimal value of f(x 
 x0) over
U(x̂t\x0). Using Lemma 6 for each xt in MK-KM, we always have

OPTf(x�x0)(U(x̂t)\U(x0))

≤ 3f(x̂t)

≤ 3f(xt) + 3
∑

(b,i)�x̂t\xt

[f(xt 
 (b, i)) − f(xt)]

≤ 3f(xt) + 3
∑

(b,i)�x̂t\xt

[f((xt\(y(b), j)) 
 (b, i)) − f((xt\(y(b), j))].

(3)

The first inequality is due to Lemma 6. And the second is due to Lemma 1. By orthant
submodularity, we get the third inequality. Recall that MK-KM breaks all loops when
S = ∅ in line 6. It implies that we cannot find a qualified swap(a, b) to update
the output solution x. We only consider swaps(y(b), b) in S(U(x\x0)) related to
b ∈ U(x∗)\U(x) instead of all candidate swaps(a, b). Now we use this construction
method to analyze the algorithm in two cases.

Case 1: Consider a very special case that every swap(y(b), b) was rejected just due
to ρ(y(b), b) ≤ 0 instead of knapsack constraint.
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Applying formula (3) for the output solution x and constructed solution x̂, we get

f(x∗)

≤ OPTf(x�x0)(U(x̂)\U(x0))

≤ 3f(x) + 3
∑

(b,i)�x̂\x
[f((x\(y(b), j)) 
 (b, i)) − f((x\(y(b), j))].

(4)

Since ρ(y(b), b) ≤ 0, we have

f((x\(y(b), j)) 
 (b, i)) ≤ f(x) (5)

for all (b, i) 
 x̂\x. We define {(y(b), j)}b∈U(x̂t\xt)\{∅} = {(y1, j1), . . . , (yK , jK)},
then we get

∑

(b,i)�x̂\x
[f(x) − f((x\(y(b), j))]

≤
K∑

l=1

[f((x\((y1, j1) 
 · · · 
 (yK , jK))) 
 ((y1, j1) 
 · · · 
 (yl, jl)))

− f((x\((y1, j1) 
 · · · 
 (yK , jK))) 
 ((y1, j1) 
 · · · 
 (yl−1, jl−1))]
= f(x) − f(x\((y1, j1) 
 · · · 
 (yK , jK)))
≤ f(x).

(6)

The first inequality is due to orthant submodularity. Because f is nonnegative, the sec-
ond inequality holds. So we can get

f(x∗) ≤ 6f(x). (7)

Therefore, we find a 1/6-approximate solution in Case 1.
Case 2: Consider the opposite of Case 1 that there exists at least one swap(y(b), b)

satisfying wx − wy(b) + wb > B.
Assume a special iteration step t∗. For the first time, there appears a swap (y(b∗), b∗)

in S(U(xt∗\x0)) such that wxt∗ −wy(b∗)+wb∗ > B, where b∗ ∈ U(x∗)\U(xt∗
) and

y(b∗) ∈ (U(xt∗
)\U(x∗)) ∪ {∅}.

Although this swap(y(b∗), b∗) violates the knapsack constraint, we use it to con-
struct a solution (xt∗ \ (y(b∗), jy(b∗))) 
 (b∗, ib∗). By orthant submodularity, pairwise
monotonicity and the greedy choice of xα, xβ and xγ , we have

f((xt∗ \ (y(b∗), jy(b∗))) 
 (b∗, ib∗)) − f(xt∗
) ≤ 2

3
f(x0). (8)

The detailed process of proof is shown in the Appendix. By Lemma 2, we know that
g(x) = f(x) − f(x0) is a k-submodular function. Then applying formula (3) for the
current solution xt and constructed solution x̂t, we can get

g(x∗) ≤ 6[g(xt) +
(B − wx0)

2
ρt+1]. (9)
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for all t ∈ {1, . . . , t∗}. The detailed process of proof is shown in the Appendix. We
introduce a construction method inspired by K. K. Sarpatwar [16]. Its details are still in
the Appendix. Due to the construction method, we can get

g((xt∗ \ (y(b∗), jy(b∗))) 
 (b∗, ib∗))
g(x∗)

≥ 1
6
(1 − e−2). (10)

Then, combing (8) and (10), we have

f(xt∗
)

= f(x0) + g(xt∗
)

= f(x0) + g((xt∗ \ (y(b∗), jy(b∗))) 
 (b∗, ib∗))

− [g((xt∗ \ (y(b∗), jy(b∗))) 
 (b∗, ib∗))) − g(xt∗
)]

= f(x0) + g((xt∗ \ (y(b∗), jy(b∗))) 
 (b∗, ib∗))

− [f((xt∗ \ (y(b∗), jy(b∗))) 
 (b∗, ib∗))) − f(xt∗
)]

≥ f(x0) +
1
6
(1 − e−2)g(x∗) − 2

3
f(x0)

≥ 1
6
(1 − e−2)f(x∗).

(11)

Therefore, we have a 1
6 (1 − e−2)-approximate solution xt∗

for MK-KM.

4 Analysis for Monotone k-Submodular Maximization with a
Knapsack and a Matroid Constraint

A function f is said to be monotone, if f(x) ≤ f(y) for any x 
 y. It is easy to see
that f must be pairwise monotone if f is monotone. Therefore, a monotone function
f : (k +1)G → R is k-submodular if and only it is orthant submodular. In this section,
we introduce a special construction method inspired by Lan N. Nguyen [12], and obtain
a better approximate ratio by MK-KM’ algorithm.

For a fixed iteration t, recall that (vj , ij) = xt
j\xt

j−1. Define (vj , i∗) 
 x∗. We
construct two sequences {oj−1/2} and {oj} such that oj−1/2 = (x∗ 
 xt

j) 
 xt
j−1

and oj = (x∗ 
 xt
j) 
 xt

j , where j ∈ {1, . . . , |U(xt)| − 2} and oj=0 = x∗.
Note that xt

j−1 
 xt
j 
 oj and oj−1/2 
 oj . By Lemma 2, we know that

g(x) = f(x) − f(x0) is a monotone k-submodular function. Then for any j ∈
{1, . . . , |U(xt)| − 2}, we have

g(oj−1) − g(oj) ≤ g(oj−1) − g(oj−1/2) ≤ g(xt
j) − g(xt

j−1). (12)

The first inequality is due to monotonicity and oj−1/2 
 oj . When vj /∈ U(x∗)
or vj ∈ U(x∗) with ij = i∗, we have g(oj−1) − g(oj−1/2) ≤ 0 by monotonicity.
When vj ∈ U(x∗) and ij �= i∗, we have g(oj−1) − g(oj−1/2) ≥ 0. Using orthant
submodularity, we get the following inequality.

g(oj−1) − g(oj−1/2) ≤ g(xt
j−1 
 (vj , i∗)) − g(xt

j−1) (13)

Then by greedy choice, the inequality (12) holds.
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Theorem 2. According to MK-KM’ algorithm, a 1
3 (1 − e−3)-approximate solution of

problem (1) can be obtained, if f is monotone.

Proof. Similarly to Theorem 1, we analyze the algorithm in two cases. When we get the
output solution x, there is not any qualified swap (a, b) to update x. We only consider
swaps(y(b), b) in S(U(x\x0)) related to b ∈ U(x∗)\U(x) instead of all candidate
swaps(a, b).

Case 1: Consider a very special case that every swap(y(b), b) was rejected just due
to ρ(y(b), b) ≤ 0 instead of knapsack constraint.

For the optimal solution x∗ and the output solution x, we construct two sequences
{oj−1/2} and {oj}, where j ∈ {1, . . . , |U(x)|−2}. Sum (12) for j from 1 to (|U(x)|−
2), we have

g(x∗) − g(o|U(x)|−2) =
|U(x)|−2∑

j=1

[g(oj−1) − g(oj)]

≤
|U(x)|−2∑

j=1

[g(xj) − g(xj−1)]

= g(x).

(14)

Using Lemma 1, orthant submodularity and ρ(y(b), b) ≤ 0, we get

g(x∗) ≤ g(o|U(x)|−2) + g(x)

≤ g(x) +
∑

(b,i)�(o|U(x )|−2\x)
[g(x 
 (b, i)) − g(x)] + g(x)

≤ 2g(x) +
∑

(b,i)�(o|U(x )|−2\x)
[g((x\(y(b), j)) 
 (b, i)) − g(x\(y(b), j))]

≤ 2g(x) +
∑

(b,i)�(o|U(x )|−2\x)
[g(x) − g(x\(y(b), j))].

(15)

Let {(y(b), j)}b∈U(o|U(x )|\x)\{∅} = {(y1, j1), . . . , (yK , jK)}, then we have

g(x∗) ≤ 2g(x) +
K∑

l=1

[g((y1, j1) 
 · · · 
 (yl, jl)) − g((y1, j1) 
 · · · 
 (yl−1, jl−1))]

≤ 2g(x) +
K∑

l=1

g((y1, j1) 
 · · · 
 (yK , jK))

≤ 3g(x).
(16)

Therefore,
f(x∗) ≤ 3f(x) − 2f(x0) ≤ 3f(x). (17)

We obtain 1/3-approximate ratio in case 1.
Case 2: Consider the opposite of case 1 that there exists at least one swap(y(b), b)

satisfying wx − wy(b) + wb > B.
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For the first time, there appears a swap (y(b∗), b∗) in S(U(xt∗\x0)) such that
wxt∗ −wy(b∗)+wb∗ > B, where b∗ ∈ U(x∗)\U(xt∗

) and y(b∗) ∈ (U(xt∗
)\U(x∗))∪

{∅}. For each t ∈ {1, . . . , t∗}, we construct two sequences {oj−1/2} and {oj} between
xt and x∗, where j ∈ {1, . . . , |U(xt)| − 2}. Summing (13) for j from 1 to |U(xt)| − 2
and using Lemma 1, we have

g(x∗) ≤ g(o|U(xt)|−2) + g(xt)

≤ g(xt) +
∑

(b,i)�(o|U(x t)|−2\xt)

[g(xt 
 (b, i)) − g(xt)] + g(xt). (18)

Then applying (18) and the similar technique of (3) and (6), we can get

g(x∗) ≤ 3g(xt) + (B − wx0)ρt+1, (19)

for all t ∈ {1, . . . , t∗}. The detailed process of proof is shown in the Appendix. Similar
to the proof of (10), using (19), we can get

g((xt∗ \ (y(b∗), jy(b∗))) 
 (b∗, ib∗))
g(x∗)

≥ 1
3
(1 − e−3). (20)

We modify inequality (8) as follows. By orthant submodularity, monotonicity and
the greedy choice of xα, xβ , we have

f((xt∗ \ (y(b∗), jy(b∗))) 
 (b∗, ib∗)) − f(xt∗
) ≤ f(x0)

2
. (21)

The detailed process of proof is shown in the Appendix. Combing (20) and (21), we
have

f(xt∗
)

= f(x0) + g((xt∗ \ (y(b∗), jy(b∗))) 
 (b∗, ib∗))

− [f((xt∗ \ (y(b∗), jy(b∗))) 
 (b∗, ib∗))) − f(xt∗
)]

≥ f(x0) +
1
3
(1 − e−3)g(x∗) − f(x0)

2

≥ 1
3
(1 − e−3)f(x∗).

(22)

Hence, MK-KM’ has an approximation ratio of at least 1
3 (1 − e−3).

5 Discussion

To summarize this paper, inspired by [16] and [18], we propose a nested algorithm
applicable to monotone and non-monotone k-submodular maximization with the inter-
section of a knapsack and a matroid constraint. For problem (1), we have a 1

6 (1− e−2)-
approximate ratio. Inspired by [12], we use a new construction method between optimal
solution and current solution. For monotone k-submodular maximization with a knap-
sack and a matroid constraint, we achieve at least 1

3 (1 − e−3) approximation ratio.
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