
Qiufen Ni
Weili Wu (Eds.)

LN
CS

 1
35

13

Algorithmic Aspects
in Information
and Management
16th International Conference, AAIM 2022
Guangzhou, China, August 13–14, 2022
Proceedings

Lecture Notes in Computer Science 13513

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Qiufen Ni ·Weili Wu (Eds.)

Algorithmic Aspects
in Information
and Management
16th International Conference, AAIM 2022
Guangzhou, China, August 13–14, 2022
Proceedings

Editors
Qiufen Ni
Guangdong University of Technology
Guangzhou, China

Weili Wu
University of Texas at Dallas
Richardson, TX, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-031-16080-6 ISBN 978-3-031-16081-3 (eBook)
https://doi.org/10.1007/978-3-031-16081-3

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-0462-9549
https://orcid.org/0000-0001-8747-6340
https://doi.org/10.1007/978-3-031-16081-3

Preface

The 16th International Conference on Algorithmic Aspects in Information and
Management (AAIM 2022), took place at Guangzhou, China, August 13–14, 2022.
The conference was held virtually due to the COVID-19 pandemic.

The AAIM conference series, which started in 2005 in Xi’an, China, aims to stimu-
late various fields for which algorithmics has become a crucial enabler, and to strengthen
the ties of various research communities of algorithmics and applications. AAIM 2022
seeks to address emerging and important algorithmic problems by focusing on the funda-
mental background, theoretical technological development, and real-world applications
associated with information and management analysis, modeling and data mining. Spe-
cial considerations are given to algorithmic research that was motivated by real-world
applications. We received 59 submissions, out of which 41 papers were accepted for
publication. Each submission was reviewed by at least three reviewers.

We would like to thank the four keynote speakers, Hui Xiong (IEEE fellow,
a Distinguished Professor at Rutgers University, USA and a Distinguished Guest
Professor at the University of Science and Technology of China), Kui Ren (ACM
Fellow, IEEE Fellow, a Professor at Zhejiang University), Cong Tian (a Professor
at Xidian University), and Xiaoming Sun (Professor at the Institute of Computing
Technology, Chinese Academy of Sciences) for their contributions to the conference.

We would like to express our appreciation to all members of the Program Committee
and the external referees whose efforts enabled us to achieve a high scientific standard
for the proceedings. We would also like to thank all members of the Organizing
Committee for their assistance and contribution which attributed to the success of
the conference. Particularly, we would like to thank Anna Kramer and her colleagues
at Springer for meticulously supporting us in the timely production of this volume.
Last but not least, our special thanks go to all the authors and participants for their
contributions to the success of this event.

July 2022 Qiufen Ni
Weili Wu

Organization

Program Committee Chairs

Qiufen Ni Guangdong University of Technology, China
Weili Wu University of Texas at Dallas, USA

Program Committee Members

Wolfgang Bein University of Nevada, USA
Gruia Calinescu Illinois Institute of Technology, USA
Xujin Chen Academy of Mathematics and Systems Science,

Chinese Academy of Sciences, China
Zhizhong Chen Tokyo Denki University, Japan
Bhaskar DasGupta University of Illinois at Chicago, USA
Xingjian Ding Beijing University of Technology, Faculty of

Information Technology, China
Hongwei Du Harbin Institute of Technology (Shenzhen), China
Rudolf Fleischer Heinrich Heine University Dusseldorf, Germany
Shuyang Gu Texas A&M University - Central Texas, USA
Jianxiong Guo Beijing Normal University, Advanced Institute of

Natural Sciences, China
Sun-Yuan Hsieh National Cheng Kung University, China
Liying Kang Shanghai University, China
Michael Khachay Krasovsky Institute of Mathematics and

Mechanics, Russia
Chia-Wei Lee National Taitung University, Computer Science

and Information Engineering, Taitung, China
Xianyue Li Lanzhou University, Lanzhou, China
Xiao Li University of Texas at Dallas, USA
Shengxin Liu Harbin Institute of Technology (Shenzhen), China
Chuanwen Luo Beijing Forestry University, Beijing, China
Viet Hung Nguyen University of Clermont-Auvergne, France
Ghosh Smita Santa Clara University, USA
Zhiyi Tan Zhejiang University, China
Weitian Tong Georgia Southern University, USA
Weili Wu University of Texas at Dallas, USA
Yicheng Xu Shenzhen Institute of Advanced Technology,

Chinese Academy of Sciences, China
Boting Yang University of Regina, Canada

viii Organization

Ruiqi Yang Beijing University of Technology, Beijing
Institute for Scientific and Engineering
Computing, China

Nan Zhang Xidian University, China
Yapu Zhang Beijing University of Technology, China
Yong Zhang Shenzhen Institute of Advanced Technology,

Chinese Academy of Sciences, China
Fay Zhong California State University, China
Yuqing Zhu California State University, Los Angeles, USA

Reviewers

Wolfgang Bein University of Nevada, USA
Gruia Calinescu Illinois Institute of Technology, USA
Xujin Chen Academy of Mathematics and Systems Science,

Chinese Academy of Sciences, China
Sijia Dai Shenzhen Institute of Advanced Technology,

Chinese Academy of Sciences, China
Bhaskar DasGupta University of Illinois at Chicago, USA
Xingjian Ding Beijing University of Technology, Faculty of

Information Technology, China
Dingzhu Du University of Texas at Dallas, USA
Hongwei Du Harbin Institute of Technology (Shenzhen), China
Liman Du University of Chinese Academy of Sciences,

China
Guichen Gao Shenzhen Institute of Advanced Technology,

Chinese Academy of Sciences, China
Yuping Gao Lanzhou University, China
Shuyang Gu Texas A&M University - Central Texas, USA
Jianxiong Guo Beijing Normal University, Advanced Institute of

Natural Sciences, China
Xinxin Han Shenzhen Institute of Advanced Technology,

Chinese Academy of Sciences, China
Yi Hong Beijing Forestry University, China
Sun-Yuan Hsieh National Cheng Kung University, China
Liying Kang Shanghai University, China
Michael Khachay Krasovsky Institute of Mathematics and

Mechanics, Russia
Chia-Wei Lee National Taitung University, Computer Science

and Information Engineering, China
Xianyue Li Lanzhou University, China
Xiao Li University of Texas at Dallas, USA
Shengxin Liu Harbin Institute of Technology (Shenzhen), China
Chuanwen Luo Beijing Forestry University, China

Organization ix

Viet Hung Nguyen University of Clermont-Auvergne, France
Qiufen Ni Guangdong University of Technology, China
Ghosh Smita Santa Clara University, USA
Shaojie Tang University of Texas at Dallas, USA
Weitian Tong Georgia Southern University, USA
Yongcai Wang Renmin University of China, China
Weili Wu University of Texas at Dallas, USA
Yicheng Xu Shenzhen Institute of Advanced Technology,

Chinese Academy of Sciences, China
Boting Yang University of Regina, Canada
Ruiqi Yang Beijing University of Technology, Beijing

Institute for Scientific and Engineering
Computing, China

Wenguo Yang University of Chinese Academy of Sciences,
China

Nan Zhang Xidian University, China
Yapu Zhang Beijing University of Technology, China
Yong Zhang Shenzhen Institute of Advanced Technology,

Chinese Academy of Sciences, Shenzhen,
China

Fay Zhong California State University, USA
Yuqing Zhu California State University, Los Angeles, USA

Contents

Approximation Algorithms

A Binary Search Double Greedy Algorithm for Non-monotone
DR-submodular Maximization . 3
Shuyang Gu, Chuangen Gao, and Weili Wu

An Approximation Algorithm for the Clustered Path Travelling Salesman
Problem . 15
Jiaxuan Zhang, Suogang Gao, Bo Hou, and Wen Liu

Improved Approximation Algorithm for the Asymmetric Prize-Collecting
TSP . 28
Bo Hou, Zhenzhen Pang, Suogang Gao, and Wen Liu

Scheduling Problem and Game Theory

Approximation Scheme for Single-Machine Rescheduling with Job Delay
and Rejection . 35
Ruiqing Sun and Xiaofei Liu

Online Early Work Maximization Problem on Two Hierarchical Machines
with Buffer or Rearrangements . 46
Man Xiao, Xihua Bai, and Weidong Li

On-line Single Machine Scheduling with Release Dates and Submodular
Rejection Penalties . 55
Xiaofei Liu, Yaoyu Zhu, Weidong Li, and Lei Ma

The Optimal Dynamic Rationing Policy in the Stock-Rationing Queue 66
Quan-Lin Li, Yi-Meng Li, Jing-Yu Ma, and Heng-Li Liu

The Constrained Parallel-Machine Scheduling Problem with Divisible
Processing Times and Penalties . 83
Jianping Li, Runtao Xie, Junran Lichen, Guojun Hu, Pengxiang Pan,
and Ping Yang

Obnoxious Facility Location Games with Candidate Locations 96
Ling Gai, Mengpei Liang, and Chenhao Wang

xii Contents

Nonlinear Combinatorial Optimization

Streaming Adaptive Submodular Maximization . 109
Shaojie Tang and Jing Yuan

Constrained Stochastic Submodular Maximization with State-Dependent
Costs . 121
Shaojie Tang

Bicriteria Algorithms for Maximizing the Difference Between Submodular
Function and Linear Function Under Noise . 133
Mengxue Geng, Shufang Gong, Bin Liu, and Weili Wu

Monotone k-Submodular Knapsack Maximization: An Analysis
of the Greedy+Singleton Algorithm . 144
Jingwen Chen, Zhongzheng Tang, and Chenhao Wang

Guarantees for Maximization of k-Submodular Functions with a Knapsack
and a Matroid Constraint . 156
Kemin Yu, Min Li, Yang Zhou, and Qian Liu

Network Problems

Defense of Scapegoating Attack in Network Tomography 171
Xiaojia Xu, Yongcai Wang, Yu Zhang, and Deying Li

Adaptive Competition-Based Diversified-Profit Maximization with Online
Seed Allocation . 183
Liman Du, Wenguo Yang, and Suixiang Gao

Collaborative Service Caching in Mobile Edge Nodes . 195
Zichen Wang and Hongwei Du

A Decentralized Auction Framework with Privacy Protection in Mobile
Crowdsourcing . 207
Jianxiong Guo, Qiufen Ni, and Xingjian Ding

Profit Maximization for Multiple Products in Community-Based Social
Networks . 219
Qiufen Ni and Jianxiong Guo

MCM: A Robust Map Matching Method by Tracking Multiple Road
Candidates . 231
Wanting Li, Yongcai Wang, Deying Li, and Xiaojia Xu

Contents xiii

Pilot Pattern Design with Branch and Bound in PSA-OFDM System 244
Shuchen Wang, Suixiang Gao, and Wenguo Yang

AoI Minimizing of Wireless Rechargeable Sensor Network Based
on Trajectory Optimization of Laser-Charged UAV . 255
Chuanwen Luo, Yunan Hou, Yi Hong, Zhibo Chen, Ning Liu,
and Deying Li

Energy-Constrained Geometric Coverage Problem . 268
Huan Lan

Incremental SDN Deployment to Achieve Load Balance in ISP Networks 278
Yunlong Cheng, Hao Zhou, Xiaofeng Gao, Jiaqi Zheng, and Guihai Chen

Graph Theory

Polynomial Time Algorithm for k-vertex-edge Dominating Problem
in Interval Graphs . 293
Peng Li and Aifa Wang

Cyclically Orderable Generalized Petersen Graphs . 303
Xiaofeng Gu and William Zhang

The r-Dynamic Chromatic Number of Planar Graphs Without Special
Short Cycles . 316
Yuehua Bu, Ruiying Yang, and Hongguo Zhu

Distance Magic Labeling of the Halved Folded n-Cube . 327
Yi Tian, Na Kang, Weili Wu, Ding-Zhu Du, and Suogang Gao

Balanced Graph Partitioning Based on Mixed 0-1 Linear Programming
and Iteration Vertex Relocation Algorithm . 339
Zhengxi Yang, Zhipeng Jiang, Wenguo Yang, and Suixiang Gao

Partial Inverse Min-Max Spanning Tree Problem Under the Weighted
Bottleneck Hamming Distance . 351
Qingzhen Dong, Xianyue Li, and Yu Yang

Mixed Metric Dimension of Some Plane Graphs . 363
Na Kang, Zhiquan Li, Lihang Hou, and Jing Qu

On the Transversal Number of k-Uniform Connected Hypergraphs 376
Zian Chen, Bin Chen, Zhongzheng Tang, and Zhuo Diao

xiv Contents

An Improvement of the Bound on the Odd Chromatic Number of 1-Planar
Graphs . 388
Bei Niu and Xin Zhang

Fast Searching on k-Combinable Graphs . 394
Yuan Xue, Boting Yang, and Sandra Zilles

Class Ramsey Numbers Involving Induced Graphs . 406
Yan Li and Ye Wang

Injective Edge Coloring of Power Graphs and Necklaces . 413
Yuehua Bu, Wenwen Chen, and Junlei Zhu

Total Coloring of Planar Graphs Without Some Adjacent Cycles 421
Liting Wang and Huijuan Wang

Logic and Machine Learning

Security on Ethereum: Ponzi Scheme Detection in Smart Contract 435
Hongliang Zhang, Jiguo Yu, Biwei Yan, Ming Jing, and Jianli Zhao

Learning Signed Network Embedding via Muti-attention Mechanism 444
Zekun Lu, Qiancheng Yu, Xiaofeng Wang, and Xiaoning Li

Three Algorithms for Converting Control Flow Statements from Python
to XD-M . 456
Jiarui Wang, Nan Zhang, and Zhenhua Duan

Hyperspectral Image Reconstruction for SD-CASSI Systems Based
on Residual Attention Network . 466
Haobin Luo, Guowei Su, Yi Wang, Jiajia Zhang, and Luobing Dong

Author Index . 477

Approximation Algorithms

A Binary Search Double Greedy
Algorithm for Non-monotone
DR-submodular Maximization

Shuyang Gu1(B) , Chuangen Gao2, and Weili Wu3

1 Department of Computer Information Systems,
Texas A&M University - Central Texas, Killeen, TX 76549, USA

s.gu@tamuct.edu
2 School of Computer Science and Technology,

Qilu Technology University, Jinan, China
3 Department of Computer Science,

The University of Texas at Dallas, Dallas, TX, USA
weiliwu@utdallas.edu

Abstract. In this paper, we study the non-monotone DR-submodular
function maximization over integer lattice. Functions over integer lattice
have been defined submodular property that is similar to submodularity
of set functions. DR-submodular is a further extended submodular con-
cept for functions over the integer lattice, which captures the diminishing
return property. Such functions finds many applications in machine learn-
ing, social networks, wireless networks, etc. The techniques for submodu-
lar set function maximization can be applied to DR-submodular function
maximization, e.g., the double greedy algorithm has a 1/2-approximation
ratio, whose running time is O(nB), where n is the size of the ground
set, B is the integer bound of a coordinate. In our study, we design a
1/2-approximate binary search double greedy algorithm, and we prove
that its time complexity is O(n logB), which significantly improves the
running time.

Keywords: Non-monotone · DR-submodular · Binary search double
greedy · Approximation algorithm

1 Introduction

A lot of real-world problems have objective functions with a so-called submodular
property, which reflects the diminish return nature for the problems. Since such
property exists in a vast amount of applications, submodular optimization has
caught a lot of attention during the past two decades. A set function f : 2E → R

is submodular if f(X) + f(Y) ≥ f(X ∪ Y) − f(X ∩ Y) holds for any two sets
X,Y ⊆ E where E is a ground set. Submodular function has an equivalent
definition in terms of the diminishing return property: f(X ∪ {e}) − f(X) ≥
f(Y ∪ {e}) − f(Y) X ⊆ Y , the element e ∈ E \ Y .

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 3–14, 2022.
https://doi.org/10.1007/978-3-031-16081-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_1&domain=pdf
http://orcid.org/0000-0003-4535-2280
https://doi.org/10.1007/978-3-031-16081-3_1

4 S. Gu et al.

Submodular set function optimization includes maximizing or minimizing a
submodular function with or without some constraints. One of the directions
is non-monotone submodular maximization without constraint. Given a non-
negative submodular function f , the goal is to find a subset S that maximizes
f(S). Since this problem captures many applications in machine learning, viral
marketing, etc., it has been studied extensively. A deterministic local search gives
a 1/2 -approximation and a randomized smoothed local search algorithm gives
2/5-approximation [3]. Buchbinder et al. further improve that result, they show
that a deterministic double greedy algorithm provides 1/3-approximation, and
the randomized version of it gives a 1/2-approximation, both in linear time [5].

Recently, submodular optimization has been extended to functions over inte-
ger lattice, which considers the situation that each element in the ground set can
be selected as multiple copies. The functions over integer lattice may also have
submodular property, which is defined similarly to set functions’ submodular. A
function defined over the integer lattice Z

E
+ is lattice submodular if the following

inequality holds:

f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y),x,y ∈ Z
E
+.

The techniques for submodular set function optimization can be applied to
lattice submodular optimization. Based on the double greedy algorithm in [5], an
algorithm for submodular functions over the bounded integer lattice is designed
with 1/3 approximation ratio [2].

Although the definition of lattice submodular is similar to set function sub-
modular, the lattice submodular does not imply diminish return property. Soma
et al. [4] give a stronger generalization of submodularity on integer lattice, which
is called diminishing return submodular (DR-submodular) functions, such func-
tions capture various applications with diminishing return property. DR sub-
modular function on a bounded integer lattice satisfies f(x + χe) − f(x) ≥
f(y + χe) − f(y) for any x ≤ y and e ∈ E, where χe denotes a unit vector, i.e.
χie ∈ Z

E is the vector with χe(e) = 1 and χe(a) = 0 for every a �= e. In this
paper, we specifically study the profit maximization problem in social networks
as an application of non-monoton DR-submodular maximization.

The contributions of this paper are summarized as follows.

– To solve the non-monotone DR-submodular maximization problem, we pro-
pose the binary search double greedy algorithm.

– We prove the algorithm has a 1/2- approximate ratio and the time complex-
ity is polynomial(n logB). To the best of our knowledge, this is the fastest
algorithm with the least queries to the objective function.

2 Related Work

Non-monotone DR-submodular Maximization is closely related to non-monotone
submodular set function maximization because the algorithm for the latter prob-
lem can be applied to the former problem directly. The non-monotone submodu-
lar maximization is also called Unconstrained Submodular Maximization (USM).

A Binary Search Double Greedy Algorithm 5

USM has various applications, such as marketing strategies over social networks
[18], Max-Cut [19], and maximum facility location [20]. USM problem has been
studied extensively [21–23]. Buchbinder gives a tight linear time randomized
(1/2)-approximation for the problem [5].

The topic of functions over integer lattice optimization has attracted much
attention recently. Monotone submodular functions over integer lattice with car-
dinality constraint are addressed in [10,12,14]. Sahin et al. study lattice sub-
modular functions subject to a discrete (integer) polymatroid constraint [13].
Zhang et al. study the problem of maximizing the sum of a monotone non-
negative DR-submodular function and a supermodular function on the integer
lattice subject to a cardinality constraint [11]. The non-submodular functions on
the integer lattice are addressed in [16]. Nong et al. focus on maximizing a non-
monotone weak-submodular function on a bounded integer lattice [17]. For the
problem addressed in this paper, non-monotone DR-submodular function maxi-
mization, Soma et al. design a 1

2+ε -approximation algorithm with a running time
of O(n

ε log2 B) [6].
In the meantime, the discrete domains of submodular functions over inte-

ger lattice are further extended to continuous domains, Hassani et al. study
stochastic projected gradient methods for maximizing continuous submodular
functions with convex constraints [15]. In [7,8], the authors consider maximizing
a continuous and nonnegative submodular function over a hypercube.

3 Preliminaries

We say that a set function g : f : 2E → R+ is submodular if it satisfies a natural
“diminishing returns” property: the marginal gain from adding an element to a
set X is at least as high as the marginal gain from adding the same element to
a superset of X. Formally, for every set X,Y such that X ⊆ Y ⊆ E and every
e ∈ E \ Y , it follows that

g(X ∪ {e}) − g(X) ≥ g(Y ∪ {e}) − g(Y)

An equivalent definition of the submodularity is

g(X) + g(Y) ≥ g(X ∪ Y) + f(X ∩ Y),∀X,Y ⊆ E

A set function is monotone if g(X) ≤ g(Y) for all X ⊆ Y .
Functions over integer lattice has similar property. A function h : ZE

+ → R+

that is defined over the integer lattice is submodular if the following holds [2]:

h(x) + h(y) ≥ h(x ∨ y) + h(x ∧ y),x,y ∈ Z
E
+.

where (x ∨ y)(i) = max{x(i),y(i)} and (x ∧ y)(i) = min{x(i),y(i)}. Hence
x∨y represents coordinate-wise maximum, and x∧y denote the coordinate-wise
minimum. We can see this form of submodularity is a more generalized definition
of submodularity that covers set functions submodular, because vectors with all

6 S. Gu et al.

entries equal to either 0 or 1 can be seen as a subset including the elements that
are equal to 1 while excluding the elements that are equal to 0, in that case,
x ∧ y and x ∧ y transform to set intersection and set union of the subsets that
x and y represent respectively.

The submodular function over integer lattice does not have the diminishing
return property. To capture such property in real-world problems, a stronger
version of submodularity has been introduced, which is called DR-submodular
[4]. DR submodular function on a bounded integer lattice satisfies the following
diminish return property:

h(x + χe) − h(x) ≥ h(y + χe) − h(y),∀x ≤ y,∀e ∈ E

where χe denotes a unit vector, i.e. χe ∈ Z
E is the vector with χe(e) = 1 and

χe(a) = 0 for every a �= e.
The problem we consider is maximizing (non-monotone) DR-submodular

functions. Formally, we study the optimization problem

max f(x)
subject to 0 ≤ x ≤ B,

(1)

where f : ZE
+ → R+ is a non-negative DR-submodular function and not neces-

sarily monotone. 0 is the all zero vector, and B ∈ Z
E
+ is a vector representing the

maximum value for each coordinate. When B is the all-ones vector, the problem
is equivalent to the original unconstrained submodular set function maximiza-
tion. We assume that f is given as an evaluation oracle; when we specify x ∈ Z

E
+,

the oracle returns the value of f(x). We define f(x|y) = f(y + x) − f(y).

4 Algorithm

In this section, we present the algorithm for non-monotone DR-submodular func-
tion maximization. The main idea is inspired by the double greedy algorithm for
the unconstrained submodular maximization (USM) [5] on set functions. The
algorithm can be extended to accommodate DR-submodular function over inte-
ger lattice [6], because DR-submodular function can be treated as submodular set
function on each coordinate. We investigate some interesting properties for DR-
submodular functions to further speed up the algorithm. In the rest of the paper
some notations will be used. We define two new functions φ(b) := f(χe|x+bχe),
ψ(b) := f(−χe|y − bχe), where b ∈ Z

+. Both functions are non-increasing func-
tions of b because the function f is DR-submodular.

The algorithm starts with two vectors, x = 0 and y = c. For each coordinate
e ∈ E it iteratively either increase x(e) or decrease y(e) by σ, which depends on
the marginal gain by adding σ to x(e) and the marginal gain by removing σ to
y(e). This procedure continues until x(e) = y(e). Then it moves on to work on

A Binary Search Double Greedy Algorithm 7

Algorithm 1. Binary Search Greedy Algorithm
Input: f : ZE

+ → R
+, c ∈ Z

E
+

Assumption: f is DR-submodular

1: x ← 0, y ← c;
2: for e ∈ E do
3: Find argminb φ(b) such that φ(b) < 0 by binary search.
4: u ← x(e) + argminb φ(b) − 1.
5: Find argminb ψ(b) such that ψ(b) < 0 by binary search.
6: v ← y(e) − argminb ψ(b) + 1.
7: while x(e) < y(e) do
8: σ ← max(� y (e)−x(e)

2
�, 1)

9: α ← f(σχe|x) and β ← f(−σχe|y)
10: if β ≤ 0 then
11: x(e) ← x(e) + σ
12: else if α ≤ 0 then
13: y(e) ← y(e) − σ
14: else
15: Randomly update x(e) ← x(e) + σ or y(e) ← y(e) − σ; the former case

occurs with probability α
α+β

, the later case with the probability β
α+β

.
16: end if
17: end while
18: if x(e) ≥ u then
19: x(e) ← u, y(e) ← u
20: end if
21: if y(e) ≤ v then
22: y(e) ← v, x(e) ← v
23: end if
24: end for
25: return x

the next coordinate, after x and y agrees on all coordinates e ∈ E, x = y, and
the vector is the output of the algorithm. Different from applying the double
greedy algorithm directly, which tightens the gap one unit per step, Algorithm 1
tightens it by half in each iteration. The binary search nature of this algorithm
guarantees that the number of iterations needed is a logarithm of B. Next let
us firstly give a few results based on the diminish return property, which will be
used in proving the theoretical guarantee of the algorithm later.

Lemma 1. For ∀x ≤ y, k ≥ 1, k ∈ Z
+, and the value of k does not violate the

integer bound. We have

f(x + kχe) − f(x) ≥ f(y + kχe) − f(y)

8 S. Gu et al.

Proof.

f(x + χe) − f(x) ≥ f(y + χe) − f(y)
f(x + 2χe) − f(x + χe) ≥ f(y + 2χe) − f(y + χe)

...
f(x + kχe) − f(x + (k − 1)χe) ≥ f(y + kχe) − f(y + (k − 1)χe)

Sum up the above inequalities, the lemma holds. �
Note that from Lemma 1, we have

α + β = f(x + σχe) − f(x) − (f(y + σχe) − f(y)) ≥ 0 (2)

Lemma 2. For ∀x ≤ y, k ≥ 1, k ∈ Z
+, k ≤ y(e), we have

f(x − kχe) − f(x) ≤ f(y − kχe) − f(y)

Lemma 2 can be easily obtained from Lemma 1.

Lemma 3. Given p ≤ q, p, q ∈ Z+, if f(χe|x + (q − 1)χe) ≥ 0, then

0 ≤ f(pχe|x) ≤ f(qχe|x)

Proof.

f(pχe|x) = f(χe|x) + f(χe|x + χe) + · · · + f(χe|x + (p − 1)χe)
f(qχe|x) = f(χe|x) + f(χe|x + χe) + · · · + f(χe|x + (q − 1)χe)

Since the values of the terms in the above equations are non-increasing from
left to right, f(χe|x + (q − 1)χe) ≥ 0, so all terms are greater than or equal to
0. And f(qχe|x) has more terms, so the lemma holds. �

We can obtain a similar property in terms of the vector y.

Lemma 4. Given p ≤ q, p, q ∈ Z+, if f(−χe|y − (q − 1)χe) ≥ 0, then

0 ≤ f(−pχe|y) ≤ f(−qχe|y)

The rest of this section is devoted to proving that Algorithm 1 provides an
approximation ratio of 1/2 for DR-submodular maximization. Let us begin the
analysis of Algorithm 1 with the introduction of some notation. Let xe

i and ye
i

be random variables denoting the vectors generated by the algorithm at the end
of the i-th iteration for coordinate e, let the number of iterations for coordinate
e is θe, note that 1 ≤ i ≤ θe ≤ logB. Denote by opt the optimal solution.
Let us define the following random variable: opte

i � (opt ∨ xe
i) ∧ ye

i . Note that
xe
0(e) = 0, ye

0(e) = B, and opte
0(e) = opt(e). Additionally, the following always

holds: opte
θe
(e) = xe

θe
(e) = ye

θe
(e), ∀e ∈ E.

A Binary Search Double Greedy Algorithm 9

Let us analyze the approximation ratio of the randomized algorithm. We
consider the subsequence E[f(opte

0)], . . . ,E[f(opte
θe
)] for any dimension e ∈ E,

and a whole sequence which is a combination of every such subsequence for each
element e ∈ E. This sequence starts with f(opt) and ends with the expected
value of the algorithm’s output. The following lemma upper bounds the loss
between every two consecutive elements in the sequence. Formally, E[f(opte

i−1)−
f(opte

i)] is upper bounded by the average expected change in the value of the two
solutions maintained by the algorithm, i.e., 1

2E[f(x
e
i)−f(xe

i−1)+f(ye
i)−f(ye

i−1)].

Lemma 5. For every 1 ≤ i ≤ θe,

E[f(opte
i−1) − f(opte

i)] ≤ 1
2
E[f(xe

i) − f(xe
i−1) + f(ye

i) − f(ye
i−1)] (3)

where expectations are taken over the random choices of the algorithm.

Proof. Notice that it suffices to prove the inequality conditioned on any event of
the form xe

i−1 = se
i−1, where se

i−1 ∈ Z
E

+, (se
i−1(e) ≤ σ1+· · ·+σi−1), for which the

probability that xe
i−1 = se

i−1 is nonzero. Hence, fix such an event corresponding
to an integer vector se

i−1. The rest of the proof implicitly assumes everything
is conditioned on this event. Since the analysis is same for every coordinate,
we omit the superscript e in xe

i , y
e
i , s

e
i and optei in the following proof. After an

iteration i on coordinate e, denote by δi the distance between xi(e) and yi(e),
which can be calculate as δi = yi(e) − xi(e) = B − ∑i

k=1 σk. The parameter σi

can be obtained iteratively as σ1 = �B
2 �, σi = �B−∑i−1

k=1 σk

2 � = � δi
2 �. Due to the

conditioning, the following random variables become constants:

1. yi−1, where yi−1(e) = si−1(e) + δi−1

2. opti−1 � (opt ∨ xi−1) ∧ yi−1, where opti−1(e) = si−1(e) + min(opt(e) −
si−1(e), δi−1)

3. αi and βi, which refer to α, β at the iteration i .

By Lemma 1, αi + βi ≥ 0. Thus at most one of αi and βi is strictly less than
zero. We need to consider the following three cases for the value of αi and βi:

Case 1: (αi ≥ 0 and βi ≤ 0). In this case the vector y does not change:
yi = yi−1. The vector x changes. xi ← xi−1+σiχe. Hence, f(yi)−f(yi−1) = 0.
Also, by our definition opti � (opt∨xi)∧yi = (opt∨ (xi−1+σiχe))∧yi. Thus,
we are left to prove that

f((opt ∨ xi−1) ∧ yi−1) − f((opt ∨ (xi−1 + σiχe)) ∧ yi) ≤ 1

2
[f(xi) − f(xi−1)] =

αi

2

We prove it considering the relationship among xi−1(e), xi(e) and opti(e).

Case 1.1: xi(e) = si−1(e) + σi ≤ opt(e).
This condition implies xi−1(e) ≤ opt(e). Since yi = yi−1, the left-hand side

of the last inequality is 0, which is definitely not greater than the nonnegative
αi

2 .

10 S. Gu et al.

Case 1.2: si−1(e) ≥ opt(e).
This condition implies that xi(e) = si−1(e) + σi > opt(e).
We can see that (opt ∨ (xi−1 + σiχe)) ∧ yi = (opt ∨ xi−1) ∧ yi−1 + σiχe =

opti−1 + σiχe ≤ yi−1, by diminish return submodularity we have

f((opt ∨ xi−1) ∧ yi−1) − f((opt ∨ (xi−1 + σiχe)) ∧ yi)

= f(−σiχe|opti−1 + σiχe) ≤ f(−σiχe|yi−1) = β ≤ 0 ≤ αi

2

Case 1.3: si−1(e) ≤ opt(e) and xi(e) = si−1(e) + σi > opt(e).
Then we have

((opt ∨ xi−1) ∧ yi−1) − (opt ∨ (xi−1 + σiχe) ∧ yi) = −(si−1(e) + σi − opt(e))χe

Let si−1(e) + σi − opt(e) = δ, then

((opt ∨ xi−1) ∧ yi−1) − (opt ∨ (xi−1 + σiχe) ∧ yi) = −δχe.

And

f((opt ∨ xi−1) ∧ yi−1) − f((opt ∨ (xi−1 + σiχe)) ∧ yi)
= f(−δχe|(opt ∨ (xi−1 + σiχe)) ∧ yi)
= f(−δχe|opti).

(4)

By the definition of the random variable opti, we have

xi ≤ opti ≤ yi

Note that 0 ≤ δ < σi. Since ψ(b) := f(−χe|y − bχe) is a non-increasing function
on b. f(−σiχe|yi) ≤ 0 implies f(−δχe|yi − σiχe) ≤ 0. We note that in the ithe
iteration, yi = yi−1 and due to the condition of case 1.3, we have yi − σiχe ≥
opti, thus f(−δχe|opti) ≤ f(−δχe|yi − σiχe) ≤ 0 ≤ αi

2 .

Case 2: (αi < 0 and βi > 0). This case is analogous to the previous one, and
therefore we omit its proof.

Case 3: (αi ≥ 0 and βi > 0). With probability αi

αi+βi
the following events

happen: xi ← xi−1 + σiχe and yi ← yi−1; while with probability βi

αi+βi
the

following events happen: xi ← xi−1 and yi ← yi−1 − σiχe Thus,

E[f(xi) − f(xi−1) + f(yi) − f(yi−1)] =
αi

αi + βi
[f(xi−1 + σiχe) − f(xi−1)]

+
βi

αi + βi
[f(yi−1 − σiχe) − f(yi−1)]

=
α2

i + β2
i

αi + βi

(5)

A Binary Search Double Greedy Algorithm 11

Next, we upper bound E[f(opti−1) − f(opti)].

E[f(opti−1) − f(opti)]

=
αi

αi + βi
[f((opt ∨ xi−1) ∧ yi−1) − f((opt ∨ (xi−1 + σiχe)) ∧ yi)]

+
βi

αi + βi
[f((opt ∨ xi−1) ∧ yi−1) − f((opt ∨ xi) ∧ (yi−1 − σiχe))]

≤ αiβi

αi + βi

(6)

The final inequality follows by considering two cases. The first case is: yi(e) =
yi−1(e) − σi, xi(e) = xi−1(e), the first term of the left-hand side of the last
inequality equals zero. There are three subcases,

Case 3.1: (xi(e) ≤ yi(e) = yi−1(e) − σi < yi−1(e) ≤ opt(e)).
Thus (opt ∨ xi−1) ∧ yi−1 = (opt ∨ xi) ∧ (yi−1 − σiχe) + σiχe, and (opt ∨

xi) ∧ (yi−1 − σiχe) ≥ xi−1, hence

f((opt ∨ xi−1) ∧ yi−1) − f((opt ∨ xi) ∧ (yi−1 − σiχe))
= f(σiχe|(opt ∨ xi) ∧ (yi−1 − σiχe)) ≤ f(σiχe|xi−1) = αi

Case 3.2: (opt(e) ≤ yi(e) = yi−1(e) − σi < yi−1(e)).
In this case, the second term of the left-hand side of inequality (6) also equals

zero, thus inequality (6) follows.

Case 3.3: (xi(e) ≤ yi(e) = yi−1(e) − σi ≤ opt(e) < yi−1(e)).
We have (opt∨xi−1)∧yi−1 = (opt∨xi)∧(yi−1−σiχe)+(opt(e)−yi−1(e)+

σi)χe. Let μ = opt(e) − yi−1(e) + σi, then 0 < μ ≤ σi, and

f((opt ∨ xi−1) ∧ yi−1) − f((opt ∨ xi) ∧ (yi−1 − σiχe))
= f(μχe|(opt ∨ xi) ∧ (yi−1 − σiχe))
≤ f(μχe|yi−1 − σiχe) ≤ 0 ≤ αi

The line 18–23 in the algorithm guarantees that f(−χe|yi−1 − (σ − 1)χe)) ≥ 0.
By Lemma 3, we have f(−σχe|yi−1) ≥ 0. Also f(−μχe|yi−1 − (σ − μ)χe) ≥ 0.
Thus,

f(−μχe|yi−1 − (σ − μ)χe) = −f(μχe|yi−1 − σiχe) ≥ 0

By now, we show that the inequality (6) holds for the case yi(e) = yi−1(e)−σi,
xi(e) = xi−1(e). The other case is that yi(e) = yi−1(e), xi(e) = xi−1(e) + σi,
which is analogous to the previous case, we omit the proof here.

Now we show inequality (6) follows for all situations. By (5) and (6) inequality
(3) holds if

αiβi

αi + βi
≤ 1

2
· α2

i + β2
i

αi + βi

which can easily be verified.

12 S. Gu et al.

Theorem 1. Algorithm 1 is a randomized O(n logB) time (1/2)-approximation
algorithm for the DR-Submodular Maximization problem.

Proof. Summing up Lemma 4 for every 1 ≤ i ≤ θe for each e ∈ E gives

∑

e∈E

θe∑

i=1

E[f(opte
i−1) − f(opte

i)]

≤ 1
2

∑

e∈E

θe∑

i=1

E[f(xe
i) − f(xe

i−1) + f(ye
i) − f(ye

i−1)]

(7)

The above sum is telescopic. We define that the algorithm executes on the vector
coordinates ordered by e1, . . . , en. Collapse the inequality, we get

f(opte1
0) − f(opten

θe
) ≤ 1

2
E[f(xen

θen
) − f(xe1

0) + f(yen

θen
) − f(ye1

0)]

≤ 1
2
E[f(xen

θen
) + f(yen

θen
)]

(8)

Recalling the definitions of opte
i , opte1

0 = opt, opten

θe
= xen

θen
= yen

θen
is the

output solution, thus E[f(xen

θen
)] = E[f(yen

θen
)] ≥ f(opt)/2. It is clear that the

algorithm makes O(n logB) oracle calls since for each coordinate e ∈ E the
number of oracle calls is at most logB and there are n = |E| coordinates.

5 Conclusions

In this paper, we propose a binary search double greedy algorithm for non-
monotone DR-submodular function maximization over bounded integer lattice.
Our algorithm improves the approximation ratio and significantly reduces the
time complexity.

One interesting direction for our future work is to explore the problems
in social networks that fall into non-monotone DR-submodular maximization,
exploit our proposed algorithm and test with real datasets. Another direction
we are interested in is maximizing DR-submodular function with some types
of constraints such as cardinality constraint, matroid constraint and knapsack
constraint.

References

1. Alon, N., Gamzu, I., Tennenholtz, M.: Optimizing budget allocation among chan-
nels and influencers. In: Proceedings of the 21st International Conference on World
Wide Web, pp. 381–388 (2012)

2. Gottschalk, C., Peis, B.: Submodular function maximization on the bounded inte-
ger lattice. In: Sanità, L., Skutella, M. (eds.) WAOA 2015. LNCS, vol. 9499, pp.
133–144. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-28684-6_12

https://doi.org/10.1007/978-3-319-28684-6_12

A Binary Search Double Greedy Algorithm 13

3. Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular
functions. SIAM J. Comput. 40(4), 1133–1153 (2011)

4. Soma, T., Yoshida, Y.: A generalization of submodular cover via the diminishing
return property on the integer lattice. In: Advances in Neural Information Process-
ing Systems, vol. 28 (2015)

5. Buchbinder, N., Feldman, M., Seffi, J., Schwartz, R.: A tight linear time (1/2)-
approximation for unconstrained submodular maximization. SIAM J. Comput.
44(5), 1384–1402 (2015)

6. Soma, T., Yoshida, Y.: Non-monotone DR-submodular function maximization. In:
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31, no. 1 (2017)

7. Niazadeh, R., Roughgarden, T., Wang, J.: Optimal algorithms for continuous non-
monotone submodular and DR-submodular maximization. In: Advances in Neural
Information Processing Systems, vol. 31 (2018)

8. Bian, A., Levy, K., Krause, A., Buhmann, J.M.: Continuous DR-submodular maxi-
mization: structure and algorithms. In: Advances in Neural Information Processing
Systems, vol. 30 (2017)

9. Soma, T., Kakimura, N., Inaba, K., Kawarabayashi, K.-I.: Optimal budget alloca-
tion: theoretical guarantee and efficient algorithm. In: International Conference on
Machine Learning, pp. 351–359. PMLR (2014)

10. Soma, T., Yoshida, Y.: Maximizing monotone submodular functions over the inte-
ger lattice. Math. Program. 172(1), 539–563 (2018)

11. Zhang, Z., Du, D., Jiang, Y., Wu, C.: Maximizing DR-submodular+ supermodular
functions on the integer lattice subject to a cardinality constraint. J. Glob. Optim.
80(3), 595–616 (2021)

12. Lai, L., Ni, Q., Lu, C., Huang, C., Wu, W.: Monotone submodular maximiza-
tion over the bounded integer lattice with cardinality constraints. Discrete Math.
Algorithms Appl. 11(06), 1950075 (2019)

13. Sahin, A., Buhmann, J., Krause, A.: Constrained maximization of lattice submod-
ular functions. In: ICML 2020 Workshop on Negative Dependence and Submodu-
larity for ML, Vienna, Austria, PMLR, vol. 119 (2020)

14. Zhang, Z., Guo, L., Wang, Y., Xu, D., Zhang, D.: Streaming algorithms for max-
imizing monotone DR-submodular functions with a cardinality constraint on the
integer lattice. Asia-Pacific J. Oper. Res. 38(05), 2140004 (2021)

15. Hassani, H., Soltanolkotabi, M., Karbasi, A.: Gradient methods for submodular
maximization. In: Advances in Neural Information Processing Systems, vol. 30
(2017)

16. Kuhnle, A., Smith, J.D., Crawford, V., Thai, M.: Fast maximization of non-
submodular, monotonic functions on the integer lattice. In: International Con-
ference on Machine Learning, pp. 2786–2795. PMLR (2018)

17. Nong, Q., Fang, J., Gong, S., Du, D., Feng, Y., Qu, X.: A 1/2-approximation
algorithm for maximizing a non-monotone weak-submodular function on a bounded
integer lattice. J. Comb. Optim. 39(4), 1208–1220 (2020)

18. Hartline, J., Mirrokni, V., Sundararajan, M.: Optimal marketing strategies over
social networks. In: Proceedings of the 17th International Conference on World
Wide Web, pp. 189–198 (2008)

19. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for max-
imum cut and satisfiability problems using semidefinite programming. J. ACM
(JACM) 42(6), 1115–1145 (1995)

20. Ageev, A.A., Sviridenko, M.I.: An 0.828-approximation algorithm for the uncapac-
itated facility location problem. Discret. Appl. Math. 93(2–3), 149–156 (1999)

14 S. Gu et al.

21. Gharan, S.O., Vondrák, J.: Submodular maximization by simulated annealing. In:
Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 1098–1116. SIAM (2011)

22. Buchbinder, N., Feldman, M.: Deterministic algorithms for submodular maximiza-
tion problems. ACM Trans. Algorithms (TALG) 14(3), 1–20 (2018)

23. Pan, X., Jegelka, S., Gonzalez, J.E., Bradley, J.K., Jordan, M.I.: Parallel double
greedy submodular maximization. In: Advances in Neural Information Processing
Systems, vol. 27 (2014)

An Approximation Algorithm
for the Clustered Path Travelling

Salesman Problem

Jiaxuan Zhang, Suogang Gao, Bo Hou, and Wen Liu(B)

Hebei Key Laboratory of Computational Mathematics and Applications,
School of Mathematical Sciences, Hebei Normal University,

Shijiazhuang 050024, People’s Republic of China

liuwen1975@126.com

Abstract. In this paper, we consider the clustered path travelling sales-
man problem. In this problem, we are given a complete graph G = (V,E)
with edge weight satisfying the triangle inequality. In addition, the vertex
set V is partitioned into clusters V1, · · · , Vk. The objective of the problem
is to find a minimum Hamiltonian path in G, and in the path all vertices
of each cluster are visited consecutively. We provide a polynomial-time
approximation algorithm for the problem.

Keywords: Travelling salesman problem · Stacker crane problem ·
Path · Cluster

1 Introduction

The travelling salesman problem (TSP) is a best-known combinatorial optimiza-
tion problem. In this problem, we are given a complete graph G = (V,E) with
vertex set V and edge set E, and there is an edge weight function ω satisfying
the triangle inequality. The task of the TSP is to find a minimum Hamiltonian
cycle. This problem is NP-hard and has multitudes of applications [4,6].

Meanwhile, TSP has quite a lot variants [11,18]. Among these variants there is
an important one called the path travelling salesman problem (PTSP), whose task
is to find a minimum Hamiltonian path. For the PTSP, Hoogeveen [15] presented
a 5

3 -approximation algorithm. An et al. [1] improved this result and gave a 1+
√
5

2 -
approximation algorithm. Recently, Zenklusen [22] developed the best known 3

2 -
approximation algorithm. For more work on this problem, one can see [12,19,20].

Supported by the NSF of China (No. 11971146), the NSF of Hebei Province of China
(No. A2019205089, No. A2019205092), Overseas Expertise Introduction Program of
Hebei Auspices (25305008) and the Graduate Innovation Grant Program of Hebei
Normal University (No. CXZZSS2022052).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 15–27, 2022.
https://doi.org/10.1007/978-3-031-16081-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_2&domain=pdf
https://doi.org/10.1007/978-3-031-16081-3_2

16 J. Zhang et al.

Another best-studied variant of the TSP is the clustered travelling salesman
problem (CTSP). In this problem, the vertex set V is partitioned into clusters
V1, · · · , Vk. The goal of the CTSP is to find a minimum Hamiltonian cycle in G,
and in the cycle all vertices of each cluster are visited consecutively. Note that if
k = 1, the CTSP is exactly the TSP. So in the following we assume k ≥ 2. Chis-
man [5] first introduced theCTSP and gave some applications about it. Arkin et al.
[3] developed the first approximation algorithm for the CTSP with a performance
guarantee of 7

2 . Guttmann-Beck et al. [13] designed approximation algorithms for
several cases of the CTSP by decomposing them into the PTSP together with the
stacker crane problem, or the PTSP together with the rural postman problem.
Then, Kawasaki and Takazawa [17] improved approximation ratios by applying an
improved approximation algorithm for the PTSP given by Zenklusen [22]. Appli-
cations and other related work for the CTSP may be found in [9,16].

Motivated by the work of Kawasaki and Takazawa [17] and Anily et al. [2], we
study the clustered path travelling salesman problem (CPTSP). In the CPTSP,
we are given a complete graph G = (V,E) with edge weight satisfying the
triangle inequality, and the vertex set V is partitioned into clusters V1, · · · , Vk.
The goal is to find a minimum Hamiltonian path in G, and in the path all
vertices of each cluster are visited consecutively. For the CPTSP, we get three
corresponding problems when we specify neither, one or both endpoints of the
Hamiltonian path. But we only deal with the case that both endpoints of the path
are specified. The reason is by guessing an endpoint, one can use an algorithm
for the case with two specified endpoints to solve the case with only one specified
endpoint, and by the algorithm for the case with one specified endpoint to solve
that with no specified endpoint. Specifically, let s (t) be the start (end) vertex of
the Hamiltonian path. The goal for the CPTSP is to find a minimum Hamiltonian
path in G from s to t, and in the path all vertices of each cluster are visited
consecutively. Note that s must be the start vertex for one cluster and t must
be the end vertex for another. We might as well assume s ∈ V1 and t ∈ Vk.
Then V1 and Vk are the first and the last clusters to be visited respectively. For
other clusters, we visit them in any order. Note that there are k clusters in the
CPTSP and a Hamiltonian path of this problem induces a Hamiltonian path
in each cluster. For simplicity, we assume that in each cluster the start vertex
and the end vertex for the Hamiltonian path are both specified. In this paper,
we design an approximation algorithm with an approximation ratio 8

3 for the
CPTSP by decomposing it into the path travelling salesman problem and the
path version of the stacker crane problem.

The paper is organized as follows. In Sect. 2, we give some definitions and
results. In Sect. 3, we design two approximation algorithms for the path stacker
crane problem. Based on these two algorithms, we design an algorithm for the
clustered path travelling salesman problem and analyze its approximation ratio
in Sect. 4. In Sect. 5, we provide several future research problems.

An Approximation Algorithm 17

2 Preliminaries

In this section, we introduce some terminology, concepts and related results.
A graph G is a pair (V,E) where V is a set of objects called vertices and

E is a set of edges. Each edge is a pair {v, w} of vertices v, w ∈ V . If an edge
{v, w} is associated with a direction, a directed edge (arc) is obtained and we
denote it by (v, w) if the direction is from v to w or (w, v) otherwise. Vertices v
and w are called the tail and the head of the arc (v, w), respectively. A directed
graph has a set of vertices and a set of directed edges. In a directed graph, the
outdegree (indegree) of a vertex is the number of edges directed out of (into) the
vertex. A mixed graph in which both directed and undirected edges may exist.
A mixed multigraph is a graph, possibly with parallel edges, each of which is
either undirected or directed.

A walk in a graph G from vertex v1 to vl is a sequence
(v1, {v1, v2}, v2, {v2, v3}, v3, · · · , vl−1, {vl−1, vl}, vl), in which all vi

′s are vertices
and {vi−1, vi} ∈ E(G) for i = 2, 3, · · · , l. We also call v1, vl the start vertex
and the end vertex of the walk. A path is a walk with no repeated vertices.
A trail is a walk with no repeated edges. An Eulerian trail is a walk passing
through every edge of G exactly once. If this walk is closed (starts and ends
at the same vertex), it is called an Eulerian tour. A Hamiltonian path/cycle in
G is a path/cycle visiting every vertex of G exactly once. A directed walk in
a directed graph is a sequence (v1, (v1, v2), v2, (v2, v3), v3, · · · , vl−1, (vl−1, vl), vl).
A directed path is a directed walk with no repeated vertices. A directed trail
is a directed walk with no repeated arcs. A directed Eulerian trail is a directed
walk passing through every arc of G exactly once. Similarly, we can define that
on the mixed multigraph.

In the stacker crane problem (SCP), we are given a mixed multigraph G′ =
(V ′, E′,D), where V ′ = {si, ti | i ∈ [k]}, (V ′, E′) is an undirected complete
graph with an edge weight function satisfying the triangle inequality, and D =
{(si, ti) | i ∈ [k]}. Here [k] is the notation for the set {1, 2, · · · , k}. The objective
is to find a minimum Hamiltonian cycle that traverses each arc (si, ti) in the
specified direction from si to ti, i ∈ [k], where we identify the weight of the arc
(si, ti) with that of the corresponding edge {si, ti}.

If the objective “Hamiltonian cycle” substitutes for “Hamiltonian path” in
the definition of the SCP, we get the path version of the stacker crane problem,
and we call it the path stacker crane problem (PSCP).

The following results are important for the discussion in Sects. 3 and 4.

Theorem 2.1 [7]. A connected multigraph has an Eulerian trail if and only if
it has either 0 or 2 vertices of odd degree.

By a simple deduction, we get the following result similar to that in [14].

18 J. Zhang et al.

Theorem 2.2. A connected directed multigraph has an Eulerian trail if and only
if every vertex has the same indegree and outdegree or the indegree of one vertex
is equal to the outdegree of this vertex plus one, the outdegree of another vertex
is equal to the indegree of this vertex plus one, and the outdegree of other vertices
is equal to the indegree of them.

Theorem 2.3 [17]. For the PTSP with u1 and u2 being the two given endpoints,
there exists a polynomial time approximation algorithm that finds Hamiltonian
paths S1 and S2 from u1 to u2 such that w(S1) ≤ 2OPT ′ − w{u1, u2}, w(S2) ≤
3
2OPT ′, where OPT ′ denotes the weight of an optimal solution of the problem.

3 Approximation Algorithms for the PSCP

In this section, we give two polynomial-time algorithms for the PSCP which will
be used when we design the algorithm for the CPTSP in next section.

Recall that in the PSCP, we are given a mixed multigraph G′ = (V ′, E′,D),
where V ′ = {si, ti | i ∈ [k]}, (V ′, E′) is an undirected complete graph with an
edge weight function ω satisfying the triangle inequality, and D = {(si, ti) | i ∈
[k]}. The objective is to find a minimum Hamiltonian path from s1 to tk that
traverses each arc (si, ti) in the specified direction from si to ti, i ∈ [k]. The first
algorithm for the PSCP is as follows.

Algorithm 1.
Step 1: Find a minimum bipartite matching between the head set T =

{t1, t2, · · · , tk−1} and the tail set S = {s2, s3, · · · , sk}.
Step 2: Initialize E1 to be empty. For each edge included in the above match-
ing, associate a direction with it, going from T to S, and insert it into E1. (This
results in m ≥ 1 disjoint connected components, each of which consists of edges
with the associated directions in the matching and arcs in D, and we denote
these m disjoint connected components by Ri, i ∈ [m].)
Step 3: Condense each Ri into a single node ni. Define

d{ni, nj} = min{ω{u, v} | u ∈ Ri
′, v ∈ Rj

′}

where Ri
′ represents the set of all vertices in Ri except for s1, tk.

Step 4: Find a minimum spanning tree for the nodes {ni | i ∈ [m]}. Here the
minimum is with respect to the distance function d defined in Step 3.
Step 5: Firstly, make two copies of each edge in the spanning tree. Secondly,

associate one direction with one copy, and the opposite direction with the other.
Thirdly, insert these edges with the associated directions into E1. (This results
in a directed graph G′

1 = (V ′, E1

⋃
D).)

Step 6: Find an Eulerian trail from s1 to tk in G′
1.

Step 7: Using the triangle inequality, we get a Hamiltonian path PPSCP1 from
s1 to tk traversing each arc (si, ti) in the specified direction from si to ti, i ∈ [k].

An Approximation Algorithm 19

Example 3.1. Assume G′ = (V ′, E′,D) with (V ′, E′) being a complete graph,
V ′ = {si, ti | i ∈ [4]}, and D = {(si, ti) | i ∈ [4]}. The weight of edges
is as follows: ω{s1, t1} = 1.6, ω{s1, t2} = 1.5, ω{s1, t3} = 1.4, ω{s1, t4} =
1.3, ω{s1, s2} = 1.2, ω{s1, s3} = 1.5, ω{s1, s4} = 1.4, ω{s2, t1} = 1.5, ω{s2, t2} =
1.9, ω{s2, t3} = 1.8, ω{s2, t4} = 1.6, ω{s2, s3} = 1.1, ω{s2, s4} = 1.2, ω{s3, t1} =
1.6, ω{s3, t2} = 1.9, ω{s3, t3} = 1.8, ω{s3, t4} = 1.7, ω{s3, s4} = 2, ω{s4, t1} =
1.5, ω{s4, t2} = 1.7, ω{s4, t3} = 2, ω{s4, t4} = 1.7, ω{t1, t2} = 1.2, ω{t1, t3} =
1.7, ω{t1, t4} = 1.2, ω{t2, t3} = 1.8, ω{t2, t4} = 1.3, ω{t3, t4} = 1.4.

s1

t1 s2

t2

t3

s3 s4
t4

(a)

s1

t1 s2

t2

t3

s3 s4
t4

(b)

n1

n2

(c)

s1

t1 s2

t2

t3

s3 s4
t4

(d)

s1

t1 s2

t2

t3

s3 s4
t4

(e)

At the beginning of our algorithm, there are four arcs. T = {t1, t2, t3}, and
S = {s2, s3, s4} (a). Find a minimum bipartite matching between T and S. By
Step 2 in Algorithm1, we get two connected components (b). Condense each
connected component into a single node and by using the distance function d,
we find a minimum spanning tree for nodes n1, n2, i.e., the edge {s2, s3} (c).
Make two copies of the edge {s2, s3} and the two copies are in opposite direc-
tions: one is (s2, s3) and the other is (s3, s2). Then we find an Eulerian trail

20 J. Zhang et al.

(s1, (s1, t1), t1, (t1, s2), s2, (s2, s3), s3, (s3, t3), t3, (t3, s3), s3, (s3, s2), s2, (s2, t2), t2,
(t2, s4), s4, (s4, t4), t4) in the graph G′

1 with vertex set V ′ = {si, ti | i ∈
[4]} and directed edge set {(s1, t1), (t1, s2), (s2, s3), (s3, t3), (t3, s3), (s3, s2),
(s2, t2), (t2, s4), (s4, t4)} (d). Using the triangle inequality, we get a path
(s1, (s1, t1), t1, (t1, s3), s3, (s3, t3), t3, (t3, s2), s2, (s2, t2), t2, (t2, s4), s4, (s4, t4), t4)
(e).

Lemma 3.2. Algorithm1 outputs a Hamiltonian path PPSCP1 with weight at
most 3OPT ′′ − 2U , where OPT ′′ denotes the weight of an optimal solution of
the problem and U =

∑k
i=1 ω(si, ti).

Proof. We first show that PPSCP1 is a Hamiltonian path from s1 to tk that
traverses each arc (si, ti) in the specified direction from si to ti. According to
the directions of the edges of the bipartite matching in Step 2, we can know that
except for s1, tk, the indegree and outdegree of each vertex are thus equal in these
connected components. The edges of the spanning tree created in Step 4 connect
these disjoint connected components produced in Step 2 into one. Since in Step
5 for each edge of the spanning tree we add two edges with opposite directions,
the indegree and outdegree of each vertex are still equal in the one connected
component, except for s1, tk. Step 1 and Step 3 of the algorithm guarantee that
s1 and tk are the only two vertices with odd degree. For specific, the indegree of
s1(tk) is 0(1) and the outdegree of s1(tk) is 1(0). In Step 6, by Theorem2.2, we
get the Eulerian trail from s1 to tk in the directed graph G′

1 = (V ′, E1

⋃
D). In

Step 7, using the triangle inequality, we get a desired Hamiltonian path.
In the following, we consider the weight of PPSCP1. Since an optimal path

of this problem contains a bipartite matching between T and S and all arcs in
D, its weight can not be smaller than that of the minimum bipartite matching
obtained in Step 1 and the arcs in D. For convenience, we denote the weight
of the minimum bipartite matching by M . Then M + U ≤ OPT ′′. Since the
edges with the associated directions in the optimal path except for the arcs in
D can connect these disjoint connected components into one and the spanning
tree created in Step 4 also connects these disjoint connected components into
one, the weight of the minimum spanning tree in Step 4 must be no greater
than OPT ′′ − U . Therefore, the weight of the Eulerian trail in Step 6 is at most
M + U + 2(OPT ′′ − U), and then is at most 3OPT ′′ − 2U . Using the triangle
inequality, we get the weight of the path PPSCP1 is at most the weight of the
Eulerian trail. The results follows. ��

The following is the second algorithm for the PSCP.

An Approximation Algorithm 21

Algorithm 2.
Step 1: Condense each arc (si, ti) into a node ni for each i ∈ [k]. For each pair

i, j with i, j ∈ [k], define

d{ni, nj} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min{ω{si, sj}, ω{si, tj}, ω{ti, sj}, ω{ti, tj}}, if s1, tk /∈ {si, sj , ti, tj},
min{ω{ti, sj}, ω{ti, tj}}, if s1 = si,

min{ω{si, tj}, ω{ti, tj}}, if s1 = sj ,

min{ω{si, tj}, ω{si, sj}}, if tk = ti,

min{ω{ti, sj}, ω{si, sj}}, if tk = tj ,

ω{ti, sj}, if s1 = si, tk = tj ,

ω{si, tj}, if s1 = sj , tk = ti.

. Step 2: Find a minimum spanning tree for the nodes {ni | i ∈ [k]}. Here the
minimum is with respect to the distance function d defined in Step 1.
Step 3: Initialize E1 to be empty. Insert all edges in the above spanning tree
into E1. Replace the node ni with the arc (si, ti) for each i ∈ [k]. (This results
in a graph with vertex set V ′ and edge set E1

⋃
D.)

Step 4: Identify vertices with odd degree in the graph obtained in Step 3. Then
find a minimum perfect matching for all these vertices with odd degree, except
for s1, tk.
Step 5: Insert all edges in the above matching into E1. (This results in a graph
with vertex set V ′ and edge set E1

⋃
D.)

Step 6: Find an Eulerian trail from s1 to tk in the graph obtained in Step 5,
ignoring the directions of the arcs in D.
Step 7: Associate each edge in E1 with the direction of the Eulerian trail.

For each arc in D that is incorrectly traversed, add two directed edges to E1,
both with direction opposite to that of the arc. (This results in a directed graph
G′

2 = (V ′, E1

⋃
D).)

Step 8: Find an Eulerian trail from s1 to tk in G′
2.

Step 9: Using the triangle inequality, we get a Hamiltonian path PPSCP2 from
s1 to tk traversing each arc (si, ti) in the specified direction from si to ti, i ∈ [k].

The following is an example to show the process of Algorithm2.

Example 3.3. Assume G′′ = (V ′′, E′′,D) with (V ′′, E′′) being a complete
graph, V ′′ = {si, ti | i ∈ [4]}, and D = {(si, ti) | i ∈ [4]}. The weight of
edges is as follows: ω{s1, t1} = 2.2, ω{s1, t2} = 1.2, ω{s1, t3} = 1.3, ω{s1, t4} =
1.2, ω{s1, s2} = 1.4, ω{s1, s3} = 1.6, ω{s1, s4} = 1.7, ω{s2, t1} = 1.5, ω{s2, t2} =
1.5, ω{s2, t3} = 1.4, ω{s2, t4} = 1.4, ω{s2, s3} = 1.3, ω{s2, s4} = 1.2, ω{s3, t1} =
2, ω{s3, t2} = 1, ω{s3, t3} = 1.8, ω{s3, t4} = 2, ω{s3, s4} = 2.4, ω{s4, t1} =
1.8, ω{s4, t2} = 1.5, ω{s4, t3} = 1.8, ω{s4, t4} = 2.5, ω{t1, t2} = 1.4, ω{t1, t3} =
2.6, ω{t1, t4} = 1.7, ω{t2, t3} = 2.2, ω{t2, t4} = 2, ω{t3, t4} = 2.1.

22 J. Zhang et al.

s1

t1 s3

t3

s2

t2

s4
t4

(f)

n1 n3

n2

n4

(g)

s1

t1 s3

t3

s2

t2

s4 t4
(h)

s1

t1 s3

t3

s2

t2

s4 t4
(i)

s1

t1 s3

t3

s2

t2

s4 t4
(j)

s1

t1 s3

t3

s2

t2

s4 t4
(k)

With a similar discussion with Example 3.1, we get a desired Hamiltonian
path (s1, (s1, t1), t1, (t1, s3), s3, (s3, t3), t3, (t3, s2), s2, (s2, t2), t2, (t2, s4), s4, (s4,
t4), t4).

Lemma 3.4. Algorithm2 outputs a Hamiltonian path PPSCP2 with weight at
most 2OPT ′′ + 2U , where OPT ′′ denotes the weight of an optimal solution of
the problem and U =

∑k
i=1 ω(si, ti).

An Approximation Algorithm 23

Proof. With a similar discussion with Lemma3.2, after completion of Step 5 all
vertices are of even degree except for s1, tk. The degree of s1, tk is 1. This is
obtained by the definition of d in Step 1 and by ignoring these two odd degree
vertices s1, tk in Step 4. According to Theorem2.1, we find an Eulerian trail
from s1 to tk in the graph obtained in Step 5 by ignoring the directions of arcs
in D. Step 7 shows how to augment the graph to allow the Eulerian trail to
traverse arcs in D in the proper direction. Similarly, the definition of d in Step
1 and omission of these two odd degree vertices s1, tk in Step 4 ensure that arcs
(s1, t1), (sk, tk) are correctly traversed. When there exists the arc in D that is
incorrectly traversed, add two directed edges to E1, both with direction opposite
to that of the arc, the indegree and outdegree of each vertex are equal, except
for s1, tk. The indegree of s1(tk) is 0(1) and the outdegree of s1(tk) is 1(0). Then
we get the Eulerian trail from s1 to tk traversing each arc (si, ti) in the specified
direction from si to ti in the directed graph G′

2 = (V ′, E1

⋃
D). In Step 9, using

the triangle inequality, we get a desired Hamiltonian path.
In the following, we consider the weight of PPSCP2. Since the edges with the

associated directions in the optimal path except for the arcs in D can connect
the nodes, the weight of the spanning tree in Step 2 is at most OPT ′′ −U . Then
the weight of the graph obtained in Step 3 is at most OPT ′′. So the minimum
perfect matching weight on these vertices of odd degree except for s1, tk is at
most OPT ′′. Therefore the weight of the graph obtained in Step 5 is at most
2OPT ′′, and so the weight of the Eulerian trail in Step 6 is at most 2OPT ′′.
Note that the weight of all directed edges added in Step 7 is at most 2U . Then
the weight of the Eulerian trail in Step 8 is at most 2OPT ′′ + 2U . Also using
the triangle inequality, we get the weight of the Hamiltonian path PPSCP2 is at
most 2OPT ′′ + 2U , as desired. ��
Remark 3.5. The outputs of the above two algorithms both have weights
related to the weight U of the arcs in D. Each of Algorithm1 and Algorithm2 is
run, and the value U relative to OPT ′′ will determine which algorithm we will
choose. For specific, if U ≥ 1

4OPT ′′, we choose Algorithm1. Choose the other
one instead.

Lemma 3.6. Both Algorithm1 and Algorithm2 can be implemented in polyno-
mial time.

Proof. The running time of Algorithm1 depends on the running time of finding
the minimum bipartite matching and the minimum spanning tree. According
to Grinman [10], the running time of the Hungarian algorithm for finding the
minimum bipartite matching is O(

∣
∣V 3

∣
∣). According to Yao [21], the minimum

spanning tree algorithm runs in polynomial time. So Algorithm1 can be imple-
mented in polynomial time.

24 J. Zhang et al.

The running time of Algorithm2 depends on the running time of finding
the minimum perfect matching and the minimum spanning tree. There is a
polynomial-time blossom algorithm for computing minimum perfect matching
by Edmonds [8]. So Algorithm2 can be implemented in polynomial time ��

4 Approximation Algorithm for the CPTSP

In this section, we first design an approximation algorithm for the CPTSP, then
we analyze its approximation ratio.

Recall that in the CPTSP, the start vertex and end vertex are both specified
for each cluster Vi, i ∈ [k]. In order to apply the PSCP problem in the algorithm,
we assume that the start (end) vertex is si (ti) for each Vi, i ∈ [k]. Obviously,
s1, tk are s, t. Our algorithm mainly consists of four parts. In the first part, for
each fixed i ∈ [k], we find the pathi, a path from si to ti that goes through all
vertices in Vi. This is exactly the PTSP with given start and end vertices. In
the second part, we replace the pathi by the arc (si, ti). In the third part, we
apply Algorithm1 or Algorithm2 to find a Hamiltonian path from s1 to tk that
traverses each arc (si, ti) for i ∈ [k]. In the fourth part, we replace the arc (si, ti)
by the path pathi obtained in the first part.

Algorithm 3.
Input: A complete graph G = (V,E) with weight function ω : E → R+, clus-
ters V1, · · · , Vk, and the start (end) vertex si (ti) for each Vi, i ∈ [k].
begin
Step 1: For each Vi, i ∈ [k], compute pathi, a Hamiltonian path with start

vertex si and end vertex ti.
Step 2: Replace the pathi with the arc (si, ti). (This results in a mixed multi-
graph with vertex set {si, ti | i ∈ [k]} and D = {(si, ti) | i ∈ [k]}.)
Step 3: Find a Hamiltonian path PPSCP in the mixed multigraph obtained

above.
Step 4: In PPSCP, replace the arc (si, ti) by the pathi, i ∈ [k].
Output: Return the resulting path T

In this algorithm, we are involved in the PTSP, and the PSCP that are
polynomial-time solvable, so our algorithm runs in polynomial time.

Example 4.1. See this example for a sample execution of the algorithm.

An Approximation Algorithm 25

s1

t1

s2

t2

s3 t3

(l)

s1

t1

s2

t2

s3 t3

(m)

s1

t1

s2

t2

s3 t3

(n)

s1

t1

s2

t2

s3 t3

(o)

In this example, we give three clusters (l). In (m), we compute paths in each
cluster. In (n), we solve the PSCP instance. In (o), we replace the arcs by the
paths in each cluster.

Since there are two solutions for the PSCP, we either take one of them or
take a combination of them, in order to get a better approximation ratio. Let
OPT denote both an optimal solution of the CPTSP and its total weight.

Theorem 4.2. Let T be the path output by Algorithm3. Then ω(T) ≤ 8
3OPT .

Proof. The algorithm consists of two subproblems: the PTSP with given start
and end vertices, and the PSCP. Let Pi denote the induced path of OPT on
Vi, i ∈ [k]. Let L =

∑
i∈[k]

∑
e∈Pi∩OPT ω(e), L

′
= OPT − L. Recall that

U =
∑k

i=1 ω(si, ti). By Theorem2.3, we get ω(
∑k

i=1 pathi) ≤ min(2L − U, 3
2L).

Therefore, ω(
∑k

i=1 pathi) ≤ min(2L − U, 3
2L) ≤ 2L − U.

Note that there exists a solution to the PSCP with weight L
′
+ U . By Lem-

mas 3.2 and 3.4, the weight of the two solutions returned by the Algorithm1 and

26 J. Zhang et al.

Algorithm2 is at most 3L
′
+U and 2L

′
+4U , respectively. Therefore, using the

fact that for a set of quantities, the minimum is less than or equal to any convex
combination of them, we get

ω(PPSCP) ≤ min(3L
′
+ U, 2L

′
+ 4U)

≤ 2
3
(3L

′
+ U) +

1
3
(2L

′
+ 4U)

=
8
3
L

′
+ 2U.

In Step 4 of Algorithm3, we replace the arc (si, ti) by pathi for each i ∈ [k].
Then we obtain

ω(T) = ω(
k∑

i=1

pathi) − U + ω(PPSCP)

≤ (2L − U) − U + (
8
3
L

′
+ 2U)

= 2L +
8
3
L

′

≤ 8
3
(L + L

′
) =

8
3
OPT.

��

5 Discussion

In this paper, we only consider the case that the start vertex and the end vertex
are both given in each cluster. Other cases including two endpoints in each
cluster are given but we are free to choose the start vertex, only the start vertex
is given in each cluster, and neither of the endpoints is given in each cluster, are
also interesting problems to consider.

References

1. An, H.-C., Kleinberg, R., Shmoys, D.B.: Improving Christofide’ algorithm for the
s-t path TSP. J. ACM 62(5), 1–28 (2015)

2. Anily, S., Bramel, J., Hertz, A.: A 5/3-approximation algorithm for the clustered
traveling salesman tour and path problems. Oper. Res. Lett. 24, 29–35 (1999)

3. Arkin, E.M., Hassin, R., Klein, L.: Restricted delivery problems on a network.
Networks 29, 205–216 (1994)

4. Bland, R.G., Shallcross, D.F.: Large travelling salesman problems arising from
experiments in X-ray crystallography: a preliminary report on computation. Oper.
Res. Lett. 8(3), 125–128 (1989)

5. Chisman, J.A.: The clustered traveling salesman problem. Comput. Oper. Res. 2,
115–119 (1975)

An Approximation Algorithm 27

6. Christofides, N.: Worst-case analysis of a new heuristic for the Travelling Sales-
man Problem. Technical report 388, Graduate School of Industrial Administration,
Carnegie Mellon University (1976)

7. Diestel, R.: Graph Theory. Springer, New York (2017). https://doi.org/10.1007/
978-3-662-53622-3

8. Edmonds, J.: Paths, trees and flowers. Can. J. Math. 17, 449–467 (1965)
9. Gendreau, M., Hertz, A., Laporte, G.: The traveling salesman problem with back-

hauls. Comput. Oper. Res. 23, 501–508 (1996)
10. Grinman, A.: The Hungarian algorithm for weighted bipartite graphs. Seminar in

Theoretical Computer Science (2015)
11. Grötschel, M., Holland, O.: Solution of large-scale symmetric traveling salesman

problems. Math. Program. 51, 141–202 (1991)
12. Gottschalk, C., Vygen, J.: Better s-t-tours by Gao trees. Math. Program. 172,

191–207 (2018)
13. Guttmann-Beck, N., Hassin, R., Khuller, S., Raghavachari, B.: Approximation

algorithms with bounded performance guarantees for the clustered traveling sales-
man problem. Algorithmica 28, 422–437 (2000)

14. Hong, Y.M., Lai, H.J., Liu, Q.H.: Supereulerian digraphs. Discrete Math. 330,
87–95 (2014)

15. Hoogeveen, J.A.: Analysis of Christofides’ heuristic: some paths are more difficult
than cycles. Oper. Res. Lett. 10, 291–295 (1991)

16. Jongens, K., Volgenant, T.: The symmetric clustered traveling salesman problem.
Eur. J. Oper. Res. 19, 68–75 (1985)

17. Kawasaki, M., Takazawa, T.: Improving approximation ratios for the clustered
travelling salesman problem. J. Oper. Res. Soc. Jpn. 63(2), 60–70 (2020)

18. Plante, R.D., Lowe, T.J., Chandrasekaran, R.: The product matrix travelling sales-
man problem: an application and solution heuristics. Oper. Res. 35, 772–783 (1987)

19. Sebő, A., van Zuylen, A.: The salesman’s improved paths: a 3/2+1/34 approxima-
tion. In: Proceedings of 57th Annual IEEE Symposium on Foundations of Com-
puter Science (FOCS), pp. 118–127 (2016)

20. Traub, V., Vygen, J.: Approaching 3/2 for the s-t path TSP. J. ACM 66(2), 1–17
(2019)

21. Yao, A.: An O(|E| log log |V |) algorithm for finding minimum spanning trees. Inf.
Process. Lett. 4, 21–23 (1975)

22. Zenklusen, R.: A 1.5-approximation for path TSP. In: Proceedings of the 30th
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1539–1549 (2019)

https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3

Improved Approximation Algorithm
for the Asymmetric Prize-Collecting TSP

Bo Hou(B), Zhenzhen Pang, Suogang Gao, and Wen Liu

Hebei Key Laboratory of Computational Mathematics and Applications,
School of Mathematical Sciences, Hebei Normal University,

Shijiazhuang 050024, People’s Republic of China

houbo1969@163.com

Abstract. We present a 4�log(n)�
0.698�log(n)�+1.302

–approximation algorithm for
the asymmetric prize-collecting traveling salesman problem. This is
obtained by combining a randomized variant of a rounding algorithm
of N.H. Nguyen and T.T. Nguyen [6] and a primal-dual algorithm of
N.H. Nguyen [7].

Keywords: Asymmetric prize-collecting traveling salesman problem ·
Approximation algorithm

1 Introduction

In this paper, we mainly study the version of the asymmetric prize-collecting
traveling salesman problem (APC-TSP). In the APC-TSP, we are given a com-
plete directed graph G = (V,A) with vertex set V = {1, 2, · · · , n} and arc
set A. Let c : A → R≥0 be an arc cost function and let π : V → R≥0 be a
penalty function. Assume that the arc costs satisfy the triangle inequality, that
is, c(i,j) ≤ c(i,k) + c(k,j) for all i, j, k ∈ V . Fix a vertex j ∈ V . The goal is to
find a tour T with j ∈ V (T) such that c(T) + π(V \ V (T)) is minimized, where
c(T) =

∑
(i,k)∈T c(i,k), π(S) =

∑
i∈S πi, and V (T) denotes the vertices spanned

by T .
If c(i,k) = c(k,i) for all i, k ∈ V , then the APC-TSP is exactly the prize-

collecting traveling salesman problem (PC-TSP). For the PC-TSP, in 1993, D.
Bienstock et al. [2] presented the first constant approximation algorithm with
an approximation ratio of 5

2 based on the solution of a linear program prob-
lem. In 1995, D.P. Goemans and M.X. Willamson [4] presented a primal-dual
approximation algorithm with an approximation ratio of 2 − 1

n−1 . In 2009, A.
Archer et al. [1] and D.P. Goemans [5] respectively improved the algorithm of
D.P. Goemans and M.X. Williamson to 1.990283 and 1.91456.

Supported by the NSF of China (No. 11971146), the NSF of Hebei Province of China
(No. A2019205089, No. A2019205092), Overseas Expertise Introduction Program of
Hebei Auspices (25305008) and the Graduate Innovation Grant Program of Hebei
Normal University (No. CXZZSS2022053).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 28–32, 2022.
https://doi.org/10.1007/978-3-031-16081-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_3&domain=pdf
https://doi.org/10.1007/978-3-031-16081-3_3

Improved Approximation Algorithm 29

For the APC-TSP, in 2012, V.H. Nguyen and T.T. Nguyen [6] presented an
(1 + �log(n)�)-approximation algorithm based on Frieze et al.’s heuristic for the
asymmetric traveling salesman problem as well as a method to round fractional
solutions of a linear programming relaxation to integers. In 2013, V.H. Nguyen
[7] presented a combinatorial approximation algorithm with an approximation
ratio of �log(n)� based on the primal-dual method.

Motivated by the above work, in this paper, we focus our attention on the
APC-TSP problem and propose a 4�log(n)�

0.698�log(n)�+1.302 -approximation algorithm by
combining a randomized variant of the rounding algorithm of N.H. Nguyen and
T.T. Nguyen [6] and the primal-dual algorithm of N.H. Nguyen [7].

2 Preliminaries

In this section, we review the results of V.H. Nguyen and T.T. Nguyen [6] and
those of V.H. Nguyen [7]. We start by considering a classical LP relaxation of
the APC-TSP.

Let yi = 1 if i is in the tour and 0 otherwise. Let xe = 1 if e is in the tour
and 0 otherwise. The LP relaxation is as follows:

min
∑

e∈E cexe +
∑

i∈V πi(1 − yi)
s.t.

∑
e∈δ+(j) xe ≥ 1,

∑
e∈δ+(j) xe ≥ 1,

∑
e∈δ+(S) xe ≥ yi, ∅ 	= S ⊂ V \{j},∀i ∈ S,

∑
e∈δ−(S) xe ≥ yi, ∅ 	= S ⊂ V \{j},∀i ∈ S,

yj = 1,
yi ≤ 1, ∀i ∈ V \{j},
yi ≥ 0, ∀i ∈ V \{j},
xe ≥ 0, ∀e ∈ A.

(1)

For conciseness, we use c(x) + π(1 − y) to denote the objective function of
this LP relaxation. Let x∗, y∗ be an optimum solution of this LP relaxation, and
let Z∗ = c(x∗) + π(1 − y∗) denote the optimum value.

Next, we briefly review the rounding result of V.H. Nguyen and T.T. Nguyen
[6]. V.H. Nguyen and T.T. Nguyen [6] showed the following result which is based
on the analysis of Frieze et al.’s heuristic algorithm for the asymmetric traveling
salesman problem [3].

Proposition 2.1. Let 0 ≤ γ ≤ 1 and let S(γ) = {i : y∗
i ≥ γ}. Let Tγ denote

the tour on S(γ) output by Frieze et al.’s heuristic algorithm when given S(γ)
as vertex set. Then we have

c(Tγ) ≤ �log(n)�
γ

c(x∗).

Note that the (1+ �log(n)�)-approximation algorithm for the APC-TSP pro-
posed in [6] can be derived by setting γ = �log(n)�

1+�log(n)� .
Finally, we review the primal-dual results of V.H. Nguyen [7]. Let T denote

the tour returned by the primal-dual algorithm [7]. The following lemmas hold.

30 B. Hou et al.

Lemma 2.2 [7, Lemma 1]. There are at most �log2(n)� iterations.

Lemma 2.3 [7, Lemma 2]. For every iteration except the last, the total cost of
the arcs added to T at this iteration is at most Z∗.

Lemma 2.4 [7, Lemma 3]. For the last iteration, the cost of the arcs added to
T at this iteration plus the penalties associated to the vertices eliminated from T
(from the first iteration) is at most Z∗.

Corollary 2.5. With reference to the above notation, we have

c(T) + �log(n)�π(V \ V (T)) ≤ 2�log(n)�Z∗. (2)

Proof. Immediate from Lemmas 2.2–2.4. �
Now we apply the primal-dual algorithm [7] to an instance in which we replace

the penalties π(·) by π′(·) given by

π′
i =

1
�log(n)�πi. (3)

Let Tpd denote the output tour for the penalties π′(·). By (2) and (3), we obtain

c(Tpd) + π(V \ V (Tpd)) = c(Tpd) + �log(n)�π′(V \ V (Tpd)) ≤ 2�log(n)�Z∗′, (4)

where Z∗′ denotes the optimum value for the penalties π′(·).
As the optimum solution x∗, y∗ for the penalties π(·) is feasible for the linear

programming relaxation with penalties π′(·), we have

Z∗′ ≤ c(x∗) + π′(1 − y∗). (5)

Combining (4) and (5), we have

c(Tpd) + π(V \ V (Tpd)) ≤ 2�log(n)�c(x∗) + 2π(1 − y∗). (6)

3 Approximation Algorithms

In this section, we present our approximation algorithm for the APC-TSP and
analyze its approximate ratio.

In our algorithm, we will use as subroutines the rounding algorithm for the
APC-TSP proposed by V.H. Nguyen and T.T. Nguyen [6] and the primal-dual
algorithm for the APC-TSP proposed by V.H. Nguyen [7].

Improved Approximation Algorithm 31

Algorithm 1
1: Given a complete directed graph G = (V, A) with the vertex set V = {1, 2, · · · , n}

and the arc set A, a special vertex j ∈ V , a cost function c : A → R+, and a
penalty function π : V → R+.

2: Solve the LP relaxation (1) to obtain an optimal fractional solution (x∗, y∗).
3: Select a parameter γ uniformly at random from the interval [e− 1

3 , 1].
4: Let S(γ) = {i : y∗

i ≥ γ}. Run Frieze et al.’s heuristic algorithm on the instance in
which S(γ) is the vertex set to obtain the tour Tγ .

5: Define the function π′ : V → R+ by (3).
6: Run the primal-dual algorithm on the instance in which we replace the penalties

π(·) by π′(·) to obtain the tour Tpd.

7: Let p =
(1− �log(n)�

3) 1
1−e−1/3

2�log(n)�−2+ 1
1−e−1/3 (1− �log(n)�

3)
.

8: Select Tpd with probability p or select Tγ with probability 1−p as the output tour.

Theorem 3.1. The expected output value of Algorithm1 is an α-approximation
to the APC-TSP, where α ≤ 4�log(n)�

0.698�log(n)�+1.302 .

Proof. First, assume that we select γ randomly according to a certain distribu-
tion to be specified. Then, by Proposition 2.1, we have that

E[c(Tγ)] ≤ E[
�log(n)�

γ
c(x∗)] = �log(n)�E[

1
γ
]c(x∗),

while the expected penalty we have to pay is

E[π(V \ V (Tγ))] =
∑

i∈V

Pr[γ > y∗
i]πi.

Thus, the overall expected cost is:

E[c(Tγ) + π(V \ V (Tγ))] ≤ �log(n)�E[
1
γ
]c(x∗) +

∑

i∈V

Pr[γ > y∗
i]πi. (7)

Now, we assume that γ is chosen uniformly at random from the interval
[e− 1

3 , 1]. Then,

E[
1
γ
] =

∫ 1

a

1
1 − a

1
x

dx = − ln a

1 − a
=

1
3(1 − a)

=
1

3(1 − e−1/3)
,

and Pr[γ > y] = 1−y
1−a when a ≤ y ≤ 1 and Pr[γ > y] = 1 ≤ 1−y

1−a when 0 ≤ y ≤ a.
Therefore, (7) becomes:

E[c(Tγ) + π(V \ V (Tγ))] ≤ �log(n)� 1
3(1−e−1/3)

c(x∗) +
∑

i∈V
1−y∗

i

1−e−1/3 πi

= �log(n)� 1
3(1−e−1/3)

c(x∗) + 1
1−e−1/3 π(1 − y∗).

(8)

32 B. Hou et al.

Next, let

p =
(1 − �log(n)�

3) 1
1−e−1/3

2�log(n)� − 2 + 1
1−e−1/3 (1 − �log(n)�

3)
.

Observe that

2p�log(n)� + (1 − p)�log(n)� 1
3(1 − e−1/3)

= [2p + (1 − p)
1

1 − e−1/3
]. (9)

We select Tpd with probability p or select Tγ with probability 1 − p as the
output tour. From (6), (8) and (9), we get that the expected cost E∗ of the
resulting algorithm satisfies:

E∗ ≤ [2�log(n)�pc(x∗) + 2pπ(1 − y∗)] + [(1 − p)�log(n)� 1

3(1 − e−1/3)
c(x∗)

+ (1 − p)
1

1 − e−1/3
π(1 − y∗)]

= [2p�log(n)� + (1 − p)�log(n)� 1

3(1 − e−1/3)
]c(x∗) + [2p + (1 − p)

1

1 − e−1/3
]π(1 − y∗)

= [2p + (1 − p)
1

1 − e−1/3
](c(x∗) + π(1 − y∗)).

Therefore, Algorithm1 outputs a solution of cost at most αZ∗ where

α = 2p + (1 − p)
1

1 − e−1/3
=

4�log(n)�
3 · 1

1−e−1/3

2�log(n)� − 2 + 1
1−e−1/3 (1 − �log(n)�

3)
<

4�log(n)�
0.698�log(n)� + 1.302

.

�
We remark that the probability distribution given in the proof is optimal

and the approximation ratio of Algorithm1 is stronger than those of algorithms
proposed in [6] and [7] when n is greater than 8.

References

1. Archer, A., Bateni, M., Hajiaghayi, M., Karloff, H.: Improved approximation algo-
rithms for prize-collecting Steiner tree and TSP. In: Proceedings of the 50th Annual
Symposium on Foundations of Computer Science (2009)

2. Bienstock, D., Goemans, M.X., Simchi-Levi, D., Williamon, D.P.: A note on the
prize collecting traveling salesman problem. Math. Prog. 59, 413–420 (1993)

3. Frieze, A.M., Galbiati, G., Maffioli, F.: On the worst case performance of some
algorithms for the asymmetric traveling salesman problem. Networks 12, 23–39
(1982)

4. Goemans, M.X., Williamson, D.P.: A general approximation technique for con-
strained forest problems. SIAM J. Comput. 24(2), 296–317 (1995)

5. Goemans, M.X.: Combining approximation algorithms for the prize-collecting TSP.
arXiv arXiv: 0910.0553v1 (2009)

6. Nguyen, V.H., Nguyen, T.T.: Approximating the asymmetric profitable tour. Int.
J. Math. Oper. Res. 4(3), 294–301 (2012)

7. Nguyen, V.H.: A primal-dual approximation algorithm for the asymmetric prize-
collecting TSP. J. Comb. Optim. 25, 265–278 (2013)

http://arxiv.org/abs/0910.0553v1

Scheduling Problem and Game Theory

Approximation Scheme
for Single-Machine Rescheduling with Job

Delay and Rejection

Ruiqing Sun1 and Xiaofei Liu2(B)

1 School of Mathematics and Statistics, Yunnan University, Kunming, China
2 School of Information Science and Engineering, Yunnan University,

Kunming, China

lxfjl2016@163.com

Abstract. In this paper, we consider the single-machine rescheduling
with job delay and rejection. In this problem, we are given a set of jobs
and a single machine, where each job has a processing time and weight.
We can get an original scheduling with the minimal the total weighted
completion time based on the shortest weighted processing time, if all
jobs are available at time zero. For each job, the completion time in the
original scheduling is defined as its due date. In the real world, some jobs
may be delayed when the formal processing begins. In order to ensure a
reasonable service level, it is allowed to reject some delayed jobs, but a
rejection cost should be paid. This problem is to reschedule the jobs such
that the maximum tardiness is bounded by a given threshold and the sum
of the following three components: the total weighted tardiness time, the
total rejection cost, and the maximum tardiness for the accepted jobs, is
minimized. We present a pseudo-polynomial time dynamic programming
algorithm, and a fully polynomial time approximation scheme.

Keywords: Rescheduling · Rejection · Dynamic programming · Fully
polynomial time approximation scheme

1 Introduction

Given a set M of machines and a set J of jobs such that each job has to be
processed on one of the machines, the classical scheduling problem is to find a
scheduling such that the makespan is minimized [3,4]. Starting from classical list
scheduling algorithm in [4], numerous algorithms have been proposed [1,6,7,20].
However, some jobs may be delayed when the formal processing begins. Bean et
al. [2] proposed the rescheduling problem where the objective is to reschedule
the jobs to reduce the negative impact of the delay. This problem has been found
a lot of applications in many areas such as the automobile industry, the aviation
industry, the medical industry and so on [16,19,22,24].

Due to different applications, the specific definition of the rescheduling prob-
lem has some differences. Hall and Potts [5] considered the rescheduling problem

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 35–45, 2022.
https://doi.org/10.1007/978-3-031-16081-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_4&domain=pdf
https://doi.org/10.1007/978-3-031-16081-3_4

36 R. Sun and X. Liu

on a single machine, where any job can be allowed disruption and the objective
is to minimize the total weighted completion time. They proposed an approxi-
mation algorithm, and a fully polynomial time approximation scheme (FPTAS).
Liu and Ro [10] considered the rescheduling problem on single machine with
machine unavailability, where the objective is to minimize the makespan under
a maximum allowable time deviation. They provided a pseudo-polynomial time
algorithm, a constant factor approximation algorithm, and an FPTAS. Luo et al.
[13] considered the rescheduling problem on single machine, where the objective
is to find a rescheduling such that the total weighted completion time is min-
imized. They presented a pseudo-polynomial time algorithm and an FPTAS.
More related work can be found in [11,21].

In the real life, the manufacturer can handle a part of delayed jobs by out-
sourcing, but the manufacturer needs to pay extra. Thus, the rescheduling with
rejection is considered, where the penalty of the rejected jobs is regarded as
the outsourcing costs. Wang et al. [17] considered the rescheduling on multi-
ple identical parallel machines and rejection, where the objective is to find a
rescheduling such that the total cost, which consists of the total completion
time of the accepted jobs, the total rejection cost and the maximum time devia-
tion, is minimized. They presented a pseudo-polynomial time algorithm for the
number of machines is fixed. Li et al. [8] studied constrained penalty scheduling
problem in which the total penalty of the rejected jobs is no more than a given
bound.

From the perspective of fairness, the maximum tardiness is an objective that
should not be ignored for the rescheduling problem. Yu et al. [23] considered
the rescheduling on single machine, where the objective is to find a rescheduling
such that the maximum tardiness is bounded by a given threshold and the total
cost which consists of the total weighted completion time, the total rejection cost
and the maximum tardiness, is minimized. They presented a pseudo-polynomial
time algorithm, and an FPTAS. Luo et al. [12] considered a generalization of
this problem, in which the rescheduling is required that the total rejection cost
is also no more than a given threshold. They presented an FPTAS by using the
sparse technique.

Fig. 1. Airport reschedule

Rescheduling on Single Machine with Job Delay and Rejection 37

Normal circumstances, the passenger flights take off from the airport according
to the flight schedule timetable. However, due to weather and other reasons, some
previous flight did not arrive on time, causing the subsequent flight to be delayed.
The airport control center needs to reschedule the flight schedule timetable to
reduce negative impact, where the negative impact is mainly caused by the tardi-
ness which is difference between the actual taking off time and the original planned
time, see Fig. 1. Motivated by the studies in [12,23], we generalize the first part of
the objective in [12] to the total weighted tardiness time, and consider the single-
machine rescheduling with job delay and rejection, where the objective is to find a
rescheduling such that the maximum tardiness is no more than a given threshold
and the total cost, which consists of the total weighted tardiness time, the total
rejection cost and the maximum tardiness, is minimized.

The remainder of the paper is organized as follows. In Sect. 2, we describe
the definition of the single-machine rescheduling with job delay and rejection
and some important properties. Section 3, we present a dynamic programming
algorithm for this problem. Section 4, we modify the dynamic programming algo-
rithm in Sect. 3 and present an FPTAS. We conclude the paper and suggest some
possible future research in the last Section.

2 Preliminaries

We are given a job set, J = {1, 2, · · · , n}, and a single machine. Each job j ∈ J
has a processing time pj and a weight wj , where pj and wj are positive integers.
For convenience, we sort the jobs in J such that

p1
w1

≤ p2
w2

≤ · · · ≤ pn

wn
.

Let π∗ be a scheduling, denoted by original scheduling, based on the shortest
weighted processing time (SWPT) [15], if all jobs are available at time zero,
where

SWPT schedules the jobs in order of nondecreasing
pj

wj
.

Each job j has a due date
dj = Cj(π∗),

where Cj(π∗) is the completion time of job j in π∗. When the formal processing
starts, a delayed job set D ⊆ J and a delayed threshold k are given, where each
job j in D has a rejected cost ej and is available at time r. Only jobs in D can
be rejected, however, we need to pay ej if job j is rejected.

The single-machine rescheduling with job delay and rejection is to find a
rescheduling (σ;A,R) such that

max
j:j∈A

Tj ≤ k,

where
Tj = max{Cj − dj , 0}

38 R. Sun and X. Liu

is the tardiness of job j, Cj is the completion time of job j in σ, A is the subset
of jobs accepted of (σ;A,R), R is the subset of jobs rejected of (σ;A,R), and σ
is the rescheduling for J . The objective is to minimize the sum of the following
three components: the total weighted tardiness time, the total rejection cost,
and the penalty on the maximum tardiness for the accepted jobs, i.e.,

min(
∑

j:j∈A

wjTj +
∑

j:j∈R

ej + Tmax),

where
Tmax = max

j:j∈A
Tj

is the maximum tardiness in σ. By using the general notation for scheduling
problems, the problem is denoted by

1|rej, r, Tmax ≤ k|
∑

j∈A

wjTj +
∑

j∈R

ej + Tmax. (1)

Lemma 1. When
∑jmin−1

j=1 pj ≥ r, (π∗, J, ∅) is an optimal solution of Problem
(1), where r is the available time of each delay job, and jmin = min{j|j ∈ D}.

Proof. When
∑jmin−1

j=1 pj ≥ r, all jobs in J can be processed based on the original
scheduling π∗, and the maximum tardiness is 0. The objective function value of
(π∗, J, ∅) is 0 and the lemma holds. ��

Let (σ∗, A∗, R∗) be an optimal rescheduling for Problem (1), if all jobs in D∗

are rejected, then (δ;J \D,D) is an optimal rescheduling, where all jobs in J \D
are processed by SWPT in δ. Thus, in the following paper, we assume that

jmin−1∑

j=1

pj < r, and D ∩ A∗
= ∅ (2)

in Problem (1).
Using the available time r and optimal rescheduling σ∗, we can partition the

accepted set A∗ of σ∗ into two parts as follows: The earlier part

A∗
<r = {j ∈ A∗|C∗

j − pj < r}
is a set of jobs which are started processing strictly before time point r, where
C∗

j is the completion time of J by σ∗; The later part

A∗
≥r = {j ∈ A∗|C∗

j − pj ≥ r} = A∗ \ A∗
<r

is set of the remainder jobs, i.e., A∗
≥r = A∗ \ A∗

<r. Similar to [23], we have the
following properties:

Property 1. If job j′ is processed before job j by σ∗ for j′, j ∈ A∗
<r, then j′ < j;

Rescheduling on Single Machine with Job Delay and Rejection 39

Property 2. If job j′ is processed before job j by σ∗ for j′, j ∈ A∗
≥r, then j′ < j.

Let
j∗ = arg min

j
{j|j ∈ A∗

≥r}

be the minimum job in set A∗
≥r. Similar to [12], we have the following lemma.

Lemma 2. The tardiness of (σ∗, A∗, R∗) is

Tmax = max{C∗
j∗ − dj∗ , 0},

where C∗
j is the completion time of job j by σ∗.

Then, in the optimal rescheduling, job j∗ may be two processed possibilities,
continuous or discontinuous processed, see Fig. 2.

Fig. 2. Continuous or discontinuous processed

Case 1. Continuous processed, let m be the minimum integer satisfying
∑

j:j∈(J\D)m

pj ≥ r,

where (J \D)m is the set of the first m jobs with minimum index in J \D. Thus,
A∗

<r = (J \ D)m. Let

Dm = {j ∈ D|j < j∗},

and all jobs in Dm should be rejected by Property 2, and only jobs in Jj∗ =
J \ ((J \ D)m ∪ Dm ∪ {j∗}) need to be considered. Furthermore, the completion
processing time of job j∗ is

C∗
j∗ =

∑

j:j∈(J\D)m

pj + pj∗ .

40 R. Sun and X. Liu

Case 2: Discontinuous processed, let m − 1 be the maximum integer satisfying
∑

j:j∈(J\D)m−1

pj < r.

Only jobs in Jj∗ = J \ ((J \ D)m−1 ∪ Dm ∪ {j∗}) need to be considered, where
(J \ D)m−1 is the set of the first m − 1 jobs with minimum index in J \ D and
Dm = {j ∈ D|j < j∗}. Furthermore, the completion processing time of job j∗ is

C∗
j∗ = r + pj∗ .

In order to describe more clearly, we need a preprocessing step: guessing the
first job j∗ in A∗

≥r and its processing case. Let C∗
j∗ be the completion processing

time of job j∗, and let Jj∗ be the set of only jobs needed to be considered, where
we resort the jobs in Jj∗ such that

pj1

wj1

≤ pj2

wj2

≤ · · · ≤
pj|Jj∗ |

wj|Jj∗ |
.

In the following sections, we only introduce the algorithms for instance
(Jj∗ , C∗

j∗).

Lemma 3. (Jj∗ , C∗
j∗) can be found in 2 ·n iteration by traveling all jobs and two

cases.

3 Dynamic Programming

In this section, we introduce a dynamic programming for instance (Jj∗ , C∗
j∗) by

modifying the algorithm [23].
We define

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

j0 = j∗,
Cj0 = C∗

j∗ ,

Ej0 =
∑

j:j∈D\Jj∗

ej ,

and use F (jl;C,E) to denote the minimum total weighted tardiness time, when
the completion time of job jl is C and the total rejected cost is E among
{j1, j2, . . . , jl}.

Dynamic programming algorithm (DP1) is described as follows:
Initially,

F (j0;C,E) =

{
max{wj0(Cj0 − dj0), 0}, if C = Cj0 , and E = Ej0

∞, otherwise.

For i = 1, 2, . . . , |Jj∗ |;
F (ji+1;C,E)

= min{F (ji;C − pji+1 , E) + max{wji+1(C − dji+1), 0}, F (ji;C,E − eji+1)}.

Rescheduling on Single Machine with Job Delay and Rejection 41

Let

OUT = min{F (j|Jj∗ |;C,E) + E + max{Cj∗ − dj∗ , 0}|
0 ≤ C ≤ n · pmax, and 0 ≤ E ≤ n · emax},

where pmax = maxj:j∈J pj and emax = maxj:j∈J ej . Thus, the optimal value is
OUT .

Lemma 4. OUT can be found in time O(pmax·emax·n3), where pmax = maxj:j∈J

pj and emax = maxj:j∈J ej.

Proof. Since both pj and ej are integers for any job j ∈ J , then C is an element
of the set {0, 1, . . . , n ·pmax} and E is an element of the set {0, 1, . . . , n · emax} at
every iteration. Thus, we can compute the value OUT in time O(pmax ·emax ·n3).

��
Combining Lemma 3 and 4, we have the following theorem.

Theorem 1. Problem (1) can be solved in time O(pmax · emax · n4).

4 A Fully Polynomial Time Approximation Scheme

In this section, we present a fully polynomial time approximation scheme
(FPTAS) for instance (Jj∗ , C∗

j∗), which is based on a modified DP1 mentioned
in Sect. 3 and a rounding technique in [14,18].

We define
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

j0 = j∗,
Cj0 = C∗

j∗ ,

Ej0 =
∑

j:j∈D\Jj∗

ej ,

Fj0 = max{wj∗C∗
j∗ , 0}.

We use a 4-dimensional vector (jl, C,E, F) to denote a station to represent
a state, which is true if and only if there is a feasible rescheduling on the job
subset {j1, j2 . . . , jl} such that

⎧
⎪⎨

⎪⎩

the completion time is exactly C,

the total rejected cost is exactly E,

the minimum total weighted tardiness time is exactly F.

Dynamic programming algorithm (DP2) is described as follows:
Initially,

s(j0, C,E, F) =

{
1, if C = Cj0 , E = Ej0 and F = Fj0 ,

0, otherwise.

42 R. Sun and X. Liu

For i = 1, 2, . . . , |Jj∗ |;
s(ji+1, C,E, F)

= max{s(ji, C − pjj+1 , E, F − wjj+1(max{C − djj+1 , 0})), s(ji, C,E − ejj+1 , F)}.

At the end, we check all the true states of the form (j|Jj∗ |, C,E, F), i.e.,
s(j|Jj∗ |, C,E, F) = 1, and calculate its objective value

OUT(j|Jj∗ |,C,E,F) = F + E + Tmax,

where Tmax = max{C∗
j∗ − dj∗ , 0}. Thus, the optimal value is equal to the mini-

mum objective value among all true states, i.e.,

OUT = min
s(j|Jj∗ |,C,E,F)=1

{
OUT(j|Jj∗ |,C,E,F)

}
.

Lemma 5. OUT can be found by DP2 in time O(p2max · emax · wmax · n4), where
pmax = maxj:j∈J pj, emax = maxj:j∈J ej and wmax = maxj:j∈J wj.

Proof. Since both pj and wj are integers for any job j ∈ J , then F is an element
of the set {0, 1, . . . , n · pmax · wmax} at every iteration. By Lemma 4, we can
compute the value OUT in time O(p2max · emax · wmax · n4). ��

Given any parameter ε > 0, let δ = (1 + ε
2n), let X = logδ

n·pmax
Cj0

�, then we
partition the interval [Cj0 , n · pmax] into X intervals as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

the 1 interval is (Cj0 , δCj0],

the 2 interval is (δCj0 , δ
2Cj0],

· · ·
the X − 1 interval is (δX−2Cj0 , δ

X−1Cj0],

the X interval is (δX−1Cj0 , n · pmax].

Let Y = logδ
n·emax

Ej0
� , then we partition the interval [Ej0 , n · emax] into Y

intervals as follows:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

the 1 interval is (Ej0 , δEj0],

the 2 interval is (δEj0 , δ
2Ej0],

· · ·
the Y − 1 interval is (δY −2Ej0 , δ

Y −1Ej0],

the Y interval is (δY −1Ej0 , n · emax].

Let Z = logδ
n·wmax·pmax

Fj0
�, then we partition the interval [Fj0 , n ·wmax ·pmax]

into Z intervals as follows:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

the 1 interval is (Fj0 , δFj0],

the 2 interval is (δFj0 , δ
2Fj0],

· · ·
the Z − 1 interval is (δZ−2Fj0 , δ

Z−1Fj0],

the Z interval is (δZ−1Fj0 , n · wmaxpmax].

Rescheduling on Single Machine with Job Delay and Rejection 43

For any 4-dimensional vector (jl, C,E, F) in DP2, we can find three positive
integers x, y and z satisfying that C ∈ (δx−1Cj0 , δ

xCj0], E ∈ (δy−1Ej0 , δyEj0]
and F ∈ (δz−1Fj0 , δ

zFj0], and we define this 4-dimensional vector (jl, C, E, F)
fell in the state of (l, x, y, z). If there are several 4-dimensional vectors fell in same
state (l, x, y, z), our FPTAS algorithm only stores the 4-dimensional vector with
the minimum second component, and let C(l, x, y, z) be the value of the second
component of the 4-dimensional vector store in state (l, x, y, z). We propose the
detailed FPTAS algorithm Aε in Algorithm.

Algorithm 1: Aε

Input: An instance (Jj∗ , C
∗
j∗).

Output: A objective value OUTε.
1 Initially,

(l, x, y, z) =

{
(j0, Cj0 , Ej0 , Fj0), if x = y = z = 0,

(j0,∞,∞,∞), otherwise.

2 for l = 1 to |Jj∗ | do
3 for (l, x, y, z) with integer x ∈ [1, X], y ∈ [1, Y] and z ∈ [1, Z] do
4 Let (jl, C,E, F) be the 4-dimensional vector stored in this state, and

construct two 4-dimensional vectors{
v1 = (jl+1, C + pjl+1 , E, F + max{wjl+1(C + pjl+1 − djl+1), 0}),

v2 = (jl+1;C,E + ejl+1 , F).

5 Let (l, x1, y1, z1) be the state contained the vector v1, and let
(l, x2, y2, z2) be the state contained the vector v2

6 if C(l, x1, y1, z1) > C(v1) then
7 let (l, x1, y1, z1) = v1.

8 if C(l, x2, y2, z2) > C(v2) then
9 let (l, x2, y2, z2) = v2.

10 Check each the state (|Jj∗ |, x, y, z) and calculate its objective value of the
4-dimensional vector (j|Jj∗ |, C,E, F) as F + E + max{Cj0 − dj0 , 0}, and output
OUTε which is the minimum objective value.

By mathematical induction, we have the following lemma.

Lemma 6. For any l ∈ {1, 2, . . . , |Jj∗ |} and any true state (j∗, jl, C,E, F) in
DP2, there exists a state (l, x, y, z) in Algorithm1, and its stored vector (jl, C

′,
E′, F ′) satisfying C ′ ≤ C, E′ ≤ δlE and F ′ ≤ δlF .

44 R. Sun and X. Liu

By Lemma 6, there exists a state (|Jj∗ |, x, y, z), and its stored vector (jq, C
′,

E′, F ′) satisfying
⎧
⎪⎨

⎪⎩

C ′ ≤ C∗;

E′ ≤ δlE∗

F ′ ≤ δlF ∗.

(3)

Thus, the following lemma is obvious.

Lemma 7. Algorithm1 is an FPTAS for instance (Jj∗ , C∗
j∗) and its time com-

plexity is O(n4

ε3 log(npmax) log(nemax) log(nwmaxpmax)).

Combining Lemma 3 and 7, we have the following theorem.

Theorem 2. Problem (1) possesses an FPTAS with running time

O(
n5

ε3
log(npmax) log(nemax) log(nwmaxpmax)),

where pmax = maxj:j∈J pj, emax = maxj:j∈J ej and wmax = maxj:j∈J wj.

5 Conclusion

In this paper, we study the single-machine rescheduling with job delay and rejec-
tion, and design a pseudo-polynomial time dynamic programming algorithm.
Furthermore, we present a fully polynomial time approximation scheme.

It would be interesting to design a better algorithm for this problem.
Recently, problems with submodular penalties become a research hotpot, in
which the penalty is determined by a submodular function. The generalization
of this problem to submodular penalties is worth considering. In [9], each job is
characterized by a d-dimension vector, and the generalization of this problem to
vector is also worth considering.

References

1. Alon, N., Azar, Y., Woeginger, G.J., Yadid, T.: Approximation schemes for schedul-
ing on parallel machines. J. Sched. 1(1), 55–66 (1998)

2. Bean, J.C., Birge, J.R., Mittenthal, J., Noon, C.E.: Matchup scheduling with mul-
tiple resources, release dates and disruptions. Oper. Res. 39(3), 470–483 (1991)

3. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J.
45(9), 1563–1581 (1966)

4. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math.
17(2), 416–429 (1969)

5. Hall, N.G., Potts, C.N.: Rescheduling for job unavailability. Oper. Res. 58(3), 746–
755 (2010)

6. Kones, I., Levin, A.: A unified framework for designing EPTAS for load balancing
on parallel machines. Algorithmica 81(7), 3025–3046 (2019)

Rescheduling on Single Machine with Job Delay and Rejection 45

7. Li, W., Li, J., Zhang, T.: Two approximation schemes for scheduling on parallel
machines under a grade of service provision. Asia-Pacific J. Oper. Res. 29(05),
1250029 (2012)

8. Li, W., Li, J., Zhang, X., Chen, Z.: Penalty cost constrained identical parallel
machine scheduling problem. Theor. Comput. Sci. 607, 181–192 (2015)

9. Li, W., Cui, Q.: Vector scheduling with rejection on a single machine. 4OR 16(1),
95–104 (2018)

10. Liu, Z., Ro, Y.K.: Rescheduling for machine disruption to minimize makespan and
maximum lateness. J. Sched. 17(4), 339–352 (2014)

11. Liu, Z., Lu, L., Qi, X.: Cost allocation in rescheduling with machine unavailable
period. Eur. J. Oper. Res. 266(1), 16–28 (2018)

12. Luo, W., Jin, M., Su, B., Lin, G.: An approximation scheme for rejection-allowed
single-machine rescheduling. Comput. Ind. Eng. 146, 106574 (2020)

13. Luo, W., Luo, T., Goebel, R., Lin, G.: Rescheduling due to machine disruption to
minimize the total weighted completion time. J. Sched. 21(5), 565–578 (2018)

14. Schuurman, P., Woeginger, G.J.: Approximation schemes - a tutorial. In: Wolsey,
L.A., et al. (eds.) Lectures on Scheduling (2009)

15. Smith, W.E.: Various optimizers for single-stage production. Nav. Res. Logist. Q.
3, 59–66 (1956)

16. Thomson, S., Nunez, M., Garfinkel, R., Dean, M.D.: Efficient short term allocation
and reallocation of patients to floor of a hospital during demand surges. Oper. Res.
57(2), 261–273 (2009)

17. Wang, D., Yin, Y., Cheng, T.C.E.: Parallel-machine rescheduling with job unavail-
ability and rejection. Omega 81, 246–260 (2018)

18. Woeginger, G.J.: When does a dynamic programming formulation guarantee the
existence of an FPTAS? INFORMS J. Comput. 12(1), 57–74 (2000)

19. Wu, S.D., Storer, R.H., Chang, P.C.: A rescheduling procedure for manufacturing
systems under random disruptions. In: Proceedings Joint USA/German Conference
on New Directions for Operations Research in Manufacturing, pp. 292–306 (1991)

20. Xiao, M., Ding, L., Zhao, S., Li, W.: Semi-online algorithms for hierarchical
scheduling on three parallel machines with a buffer size of 1. In: He, K., Zhong,
C., Cai, Z., Yin, Y. (eds.) NCTCS 2020. CCIS, vol. 1352, pp. 47–56. Springer,
Singapore (2021). https://doi.org/10.1007/978-981-16-1877-2 4

21. Yin, Y., Cheng, T.C.E., Wang, D.J.: Rescheduling on identical parallel machines
with machine disruptions to minimize total completion time. Eur. J. Oper. Res.
252(3), 737–749 (2016)

22. Yu, G., Argüello, M., Song, G., McCowan, S.M., White, A.: A new era for crew
recovery at Continental Airlines. Interfaces 33(1), 5–22 (2003)

23. Yu, S., Jin, M., Luo, W.: Approximation scheme for rescheduling on a single
machine with job delay and rejection. OR Trans. 25(2), 104–114 (2021)

24. Zweben, M., Davis, E., Daun, B., Deale, M.: Scheduling and rescheduling with
iterative repair. IEEE Trans. Syst. Man Cybern. 23(6), 1588–1596 (1993)

https://doi.org/10.1007/978-981-16-1877-2_4

Online Early Work Maximization
Problem on Two Hierarchical Machines

with Buffer or Rearrangements

Man Xiao, Xihua Bai, and Weidong Li(B)

School of Mathematics and Statistics, Yunnan University, Kunming 650504,
People’s Republic of China

weidongmath@126.com

Abstract. In this paper, we consider two semi-online models of online
early work maximization problem on two hierarchical machines. When
a buffer size of K is available, we propose an optimal online algorithm
with a competitive ratio of 4

3
. If we are allowed to reassign at most K

jobs after all the jobs have been scheduled, we propose an optimal online
algorithm with a competitive ratio of 4

3
.

Keywords: Semi-online · Early work · Hierarchy · Competitive ratio ·
Two machines

1 Introduction

We are given two hierarchical machines M1, M2 and a job set J = {J1, J2,
· · · , Jn}, where jobs arrive one by one in a list. A new job arrives only when the
current job is scheduled. Machine M1 can process all jobs, while machine M2 can
only process part of the jobs. Each job can only be processed by one machine. For
an online maximization (minimization) problem, the competitive ratio of online
algorithm A is defined as the minimum value of ρ satisfying COPT (I) ≤ ρCA(I)
(CA(I) ≤ ρCOPT (I)) for any instance I, where CA(I) (CA, for short) denotes
the output value of online algorithm A, and COPT (I) (COPT , for short) denotes
the off-line optimal value. If there is no online algorithm with a competitive ratio
strictly less than ρ, then ρ is called a lower bound of the problem. If there is
an algorithm whose competitive ratio is equal to ρ, this algorithm is called the
optimal online algorithm.

A typical objective is to minimize the maximum machine completion time,
which is denoted by P2|GoS|Cmax. Park et al. [11] and Jiang et al. [7] inde-
pendently gave an optimal online algorithm with a competitive ratio of 5

3 . Park
et al. [11] also considered a semi-online version with known total job processing
time, and proposed an optimal algorithm with a competitive ratio of 3

2 . Zhang et
al. [18] studied the semi-online model with bounded processing times and gave
an optimal online algorithm. Wu et al. [14] considered two semi-online versions
where the off-line optimal value or the largest processing time of all jobs is known,
and gave two optimal online algorithms with competitive ratios of 3

2 and
√
5+1
2

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 46–54, 2022.
https://doi.org/10.1007/978-3-031-16081-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_5&domain=pdf
https://doi.org/10.1007/978-3-031-16081-3_5

Online Early Work Maximization Problem on Two Hierarchical Machines 47

respectively. Chen et al. [2] studied several semi-online versions where the total
processing time of low-hierarchy jobs is known, and gave several optimal online
algorithms. Chen et al. [4] considered two semi-online problems with buffer or
rearrangements, and designed two optimal algorithms with a competitive ratio
of 3

2 . Dai et al. [5] studied semi-online hierarchical scheduling for bag-of-tasks on
two machines. Xiao et al. [16] considered two semi-online models with a buffer
of size 1 on three hierarchical machines. Li et al. [8] proposed an efficient poly-
nomial time approximation schemes for scheduling on m hierarchical machines
with two hierarchies.

Another typical objective is to maximize the minimum machine completion
time, which is denoted by P2|GoS|Cmin. Chassid and Epstein [1] proved that the
competitive ratio of any online algorithm is infinite. Epstein et al. [6] designed
an optimal online algorithm for the restricted assignment version with a buffer
size of 1 on two machines, whose competitive ratio is 2. Wu et al. [13] consid-
ered several semi-online versions on two hierarchical machines. Luo and Xu [10]
studied a semi-online version with bounded processing times on two hierarchical
machines, and designed an optimal online algorithm. Wu and Li [12] considered a
semi-online model where the processing times are in {1, 2, 22, ..., 2k} with k ≥ 2,
and gave an optimal online algorithm with a competitive ratio of 2k. Xiao et al.
[17] gave several optimal online algorithms for semi-online versions with known
total processing time of low-hierarchy jobs.

For the objective of maximizing the total early work on two identical
machines, denoted by P2|GoS|X, Xiao et al. [15] proposed three optimal online
algorithms when the total size of low-hierarchy jobs, the total size of high-
hierarchy jobs, the total size of low-hierarchy and high-hierarchy jobs are known
in advance, respectively. In addition, Chen et al. [3] designed several offline and
online algorithms and Li [9] designed several improved approximation schemes
for early work scheduling on identical parallel machines with a common due
date.

Motivated by [4,15], we consider the early work maximization problem on
two hierarchical machines with buffer or rearrangements. The rest of the paper is
organized as follows. In Sect. 2, we give problem statement and symbol descrip-
tion. In Sect. 3, we consider the buffer model and propose an optimal online
algorithm. In Sect. 4, we consider the rearrangement model and propose an opti-
mal online algorithm. Finally, we make a summary.

2 Preliminaries

We are given two hierarchical machines M1 and M2, and a series of jobs arriving
online which are to be scheduled irrevocably at the time of their arrivals. The
arrival of a new job occurs only after the current job is scheduled. Let J =
{J1, J2, ..., Jn} be the set of all jobs arranged in the order of arrival time. We
denote the j-th job as Jj = (pj , gj), where pj is processing time (also called size)
of the job Jj , and gj ∈ {1, 2} is the hierarchy of the job Jj . If gj = k, we call
Jj as a job of hierarchy k, k ∈ {1, 2}. M1 can process all jobs, and M2 can only
process the jobs of hierarchy 2.

48 M. Xiao et al.

As in [3], we assume that each job has a common due date d > 0, and

pj ≤ d, for j = 1, 2, . . . , n.

The early work of job Jj is denoted by Xj ∈ [0, pj]. If job Jj is completed before
the due date d, the job is called totally early and Xj = pj . If job Jj starts at
the time of sj < d, but finishes after the due date d, the job is called partially
early and Xj = d − sj . If job Jj starts at the time of sj ≥ d, the job is called
totally late and Xj = 0.

A feasible schedule is actually a partition (S1, S2) of the job set J , such that
S1 ∪ S2 = J and S1 ∩ S2 = ∅. Let Li =

∑
Jj∈Si

pj be the load of Mi, i ∈ {1, 2}.
The objective is to find a schedule such that total early work

X =
n∑

j=1

Xj =
2∑

i=1

min {Li, d}

is maximized. Let T be the total size of the jobs in J , and Lj
i be the load of Mi

after job Jj is assigned to a machine or stored in buffer.
From the above definitions, we have

Lemma 1. The optimal objective value COPT is at most min {2d, T}.

3 Buffer Model

In this section, we have a buffer of size K, where the buffer can temporarily
store at most K jobs. When the buffer is full, a new job can be stored in the
buffer only when an earlier job is removed from the buffer and assigned to some
machine. Denote this problem as P2|GoS, online, dj = d, buffer|max(X). We
give a lower bound 4

3 for any constant K, and propose an online algorithm with
a competitive ratio of 4

3 for K = 1.

Theorem 2. Any online algorithm A for P2|GoS, online, dj = d, buffer|
max(X) has a competitive ratio at least 4

3 .

Proof. Let d = 1 and ε = 1
2N , where N is a sufficiently large integer. The first

N identical jobs with (ε, 2) arrive. Since the buffer can only store at most K
jobs, at least N − K jobs are allocated to M1 or M2.

Case 1. LN
2 ≥ 1

2 − Kε or LN
1 ≥ 1

2 − Kε.
If LN

2 ≥ 1
2 − Kε, the last two jobs JN+1 = (12 , 1) and JN+2 = (1, 2) arrive.

Since there are at most K jobs with (ε, 2) in the buffer, we have CA ≤ 3
2 + Kε

and COPT = 2. Thus,

lim
ε→0

COPT

CA
≥ lim

ε→0

2
3
2 + Kε

=
4
3
.

If LN
1 ≥ 1

2 − Kε, the last job JN+1 = (1, 1) arrives. Since there are at most K
jobs (ε, 2) in the buffer, we have CA ≤ 1 + Kε and COPT = 3

2 , implying that

Online Early Work Maximization Problem on Two Hierarchical Machines 49

lim
ε→0

COPT

CA
≥ lim

ε→0

3
2

1 + Kε
=

3
2
.

Case 2. LN
2 < 1

2 − Kε and LN
1 < 1

2 − Kε.
The next t − N identical jobs with (ε, 2) arrive one by one until that Lt

2 ∈
[12 − Kε, 1

2] or Lt
1 ∈ [12 − Kε, 1

2], where t ≥ N is the minimal integer satisfying
the condition.

If Lt
2 ∈ [12 − Kε, 1

2] and Lt
1 < 1

2 − Kε, the last two jobs Jt+1 = (α, 1) and
Jt+2 = (1, 2) arrive, where α = 1

2 − Lt
1. Since there are at most K jobs with

(ε, 2) in the buffer, we have CA ≤ 3
2 + Kε and COPT ≥ 2 − Kε. Thus,

lim
ε→0

COPT

CA
≥ lim

ε→0

2 − Kε
3
2 + Kε

=
4
3
.

If Lt
2 ∈ [12 − Kε, 1

2] and Lt
1 ∈ [12 − Kε, 1

2], the last job Jt+1 = (1, 1) arrives.
Since there are at most K jobs with (ε, 2) in the buffer, we have CA ≤ 3

2 + Kε
and COPT ≥ 2 − 2Kε. Thus,

lim
ε→0

COPT

CA
≥ lim

ε→0

2 − 2Kε
3
2 + Kε

=
4
3
.

If Lt
2 < 1

2 −Kε and Lt
1 ∈ [12 −Kε, 1

2], the last job Jt+1 = (1, 1) arrives. Since
there are at most K jobs with (ε, 2) in the buffer, we have CA ≤ 1 + Lt

2 + Kε
and COPT ≥ 3

2 − Kε + Lt
2. Thus,

lim
ε→0

COPT

CA
≥ lim

ε→0

3
2

− Kε + Lt
2

1 + Lt
2 + Kε

= lim
ε→0

1 +
1
2

− 2Kε

1 + Lt
2 + Kε

≥ lim
ε→0

1 +
1
2

− 2Kε
3
2

=
4

3
.

�
Our online algorithm for P2|GoS, online, dj = d, buffer|max(X) with a

buffer of size 1 is described as follows, where we always put the current largest
job of hierarchy 2 into the buffer.

Algorithm 1:
1 Initially, let L0

2 = 0 and b0 = 0.
2 When a new job Jj arrives,
3 if gj = 1 then
4 Assign job Jj to machine M1.

5 else
6 Compare job Jj with job Bj = (bj , 2) which is in the buffer. Put the bigger

one into buffer, and the other one is also denoted by Jj for convenience.
7 if Lj−1

2 < d
2
then

8 Assign job Jj to machine M2

9 else
10 Assign Jj to M1.

11 If there is no job, assign job Bj to the least loaded machine, and stop.

50 M. Xiao et al.

Theorem 3. The competitive ratio of Algorithm 1 is at most 4
3 .

Proof. Based on Lemma 1, if L1 ≥ d and L2 ≥ d, we have CA1 = 2d ≥ COPT .
If L1 ≤ d and L2 ≤ d, we have CA1 = T ≥ COPT . It implies that we only need
to consider the following two cases.

Case 1. L1 > d and L2 < d. In this case, we have CA1 = d + L2. If there is no
job of hierarchy 2 assigned to M1, then Algorithm 1 reaches the optimal. Else,
let Jl be the last job of hierarchy 2 assigned to M1. If Jl is assigned to M1 at
line 10, according to the choice of Algorithm1, we have L2 ≥ Ll−1

2 ≥ d
2 . Thus,

by Lemma 1, we have

COPT

CA1
≤ 2d

d + L2
≤ 2d

d + d
2

=
4
3
.

Else, Jl is assigned to M1 at line 11. According to the choice of Algorithm1, we
have L2 ≥ L1 − pl. If L2 ≥ d

2 , as above, we have COPT

CA1 ≤ 4
3 . If L2 < d

2 , then
L1 − pl ≤ L2 < d

2 . By Lemma 1, we have

COPT

CA1
≤ T

d + L2
=

L1 + L2

d + L2
= 1 +

L1 − d

d + L2
≤ 1 +

L1 − pl

d + L2
≤ 1 +

L2

d + L2
≤ 4

3
.

Case 2. L1 < d and L2 > d.
In this case, CA1 = L1 + d. Let Jt be the last job of hierarchy 2 assigned to

M2. If Jt is assigned to M2 at line 8, according to the choice of Algorithm 1, job
Bn (the last job in the buffer) is assigned to M1, and L2 = Lt−1

2 + pt < d
2 + pt.

Since L2 > d, we have pt > d
2 implying that L1 ≥ bn ≥ pt > d

2 . Thus, we have

COPT

CA1
≤ 2d

L1 + d
≤ 2d

d
2 + d

=
4
3
.

If Jt is assigned to M2 at line 11, according to the choice of Algorithm 1, we have
L2 − pt ≤ L1. If L1 ≥ d

2 , as above, we have COPT

CA1 ≤ 4
3 . Else, we have L1 < d

2

and L2 − pt ≤ L1 < d
2 . Therefore,

COPT

CA1
≤ T

L1 + d
=

L1 + L2

L1 + d
= 1 +

L2 − d

L1 + d
≤ 1 +

L2 − pt

L1 + d
≤ 1 +

L1

L1 + d
≤ 4

3
.

�

4 Rearrangement Model

In this section, after all the jobs have been arrived and scheduled, we are allowed
to rearrange at most K jobs from M2 to M1, or from M1 to M2. Denote this
problem as P2|GoS, online, dj = d, rearrangement|max(X). We give a lower
bound 4

3 for any constant K, and propose an online algorithm with a competitive
ratio of 4

3 for K = 1.

Online Early Work Maximization Problem on Two Hierarchical Machines 51

Theorem 4. Any online algorithm A for P2|GoS, online, dj = d,
rearrangement| max(X) has a competitive ratio at least 4

3 .

Proof. Let d = 1 and ε = 1
2N , where N is a sufficiently large integer. The first

N identical jobs with (ε, 2) arrive.

Case 1. LN
2 = 1

2 or LN
1 = 1

2 .
If LN

2 = 1
2 , the last two jobs JN+1 = (12 , 1) and JN+2 = (1, 2) arrive. Since at

most K jobs of hierarchy 2 are rearranged, we have CA ≤ 3
2 +Kε and COPT = 2.

Thus,

lim
ε→0

COPT

CA
≥ lim

ε→0

2
3
2 + Kε

=
4
3
.

If LN
1 = 1

2 , the last job JN+1 = (1, 1) arrives. Since at most K jobs of
hierarchy 2 are rearranged, we have CA ≤ 1 + Kε and COPT = 3

2 . Hence,

lim
ε→0

COPT

CA
≥ lim

ε→0

3
2

1 + Kε
=

3
2
.

Case 2. LN
2 < 1

2 and LN
1 < 1

2 .
The next t − N identical jobs (ε, 2) arrive one by one until (1) Lt

2 = 1
2 and

Lt
1 < 1

2 or (2) Lt
1 = 1

2 and Lt
2 < 1

2 , where t ≥ N is the minimal integer satisfying
the condition. If Lt

2 = 1
2 and Lt

1 < 1
2 , the last two jobs Jt+1 = (α, 1) and

Jt+2 = (1, 2) arrive, where α = 1
2 − Lt

1. Since at most K jobs of hierarchy 2 are
rearranged, we have COPT = 2 and CA ≤ 3

2 + Kε. Therefore,

lim
ε→0

COPT

CA
≥ lim

ε→0

2
3
2 + Kε

=
4
3
.

If Lt
1 = 1

2 and Lt
2 < 1

2 , the last job Jt+1 = (1, 1) arrives, implying COPT =
3
2 + Lt

2. Since at most K jobs of hierarchy 2 are rearranged, we have CA ≤
1 + Lt

2 + Kε. Therefore,

lim
ε→0

COPT

CA
≥ lim

ε→0

3
2 + Lt

2

1 + Lt
2 + Kε

= 1 +
1
2

1 + Lt
2

≥ 4
3
.

�
Our algorithm for P2|GoS, online, dj = d, rearrangement|max(X) is

described as follows, where pj
max,2 is the processing time of the largest job sched-

uled on M2 after job Jj is scheduled.

52 M. Xiao et al.

Algorithm 2:
1 Initially, let L0

2 = 0 and p0max,2 = 0.
2 When a new job Jj arrives,
3 if gj = 1 then
4 Assign job Jj to machine M1.

5 else

6 if Lj−1
2 − pj−1

max,2 < d
2
then

7 Assign the job Jj to M2

8 else
9 Assign job Jj to machine M1.

10 If Lj
2 − pj

max,2 > Lj
1, rearrange the largest job on M2 to M1. Else, do nothing.

Theorem 5. The competitive ratio of Algorithm 2 is at most 4
3 .

Proof. Based on Lemma 1, if L1 ≥ d and L2 ≥ d, we have CA2 = 2d ≥ COPT .
If L1 ≤ d and L2 ≤ d, we have CA2 = T ≥ COPT . It implies that we only need
to consider the following two cases.

Case 1. L1 > d and L2 < d. In this case, we have CA2 = d + L2. If there is no
job of hierarchy 2 assigned to M1, then Algorithm 2 reaches the optimal. Else,
let Jl be the last job of hierarchy 2 assigned to M1. If Jl is assigned to M1 at
line 9, according to the choice of Algorithm 2, we have L2 ≥ Ll−1

2 − pl−1
max,2 ≥ d

2 .
Thus, by Lemma 1, we have

COPT

CA2
≤ 2d

d + L2
≤ 2d

d + d
2

=
4
3
.

If Jl is assigned to M1 at line 10, according to the choice of Algorithm2, we
have L2 ≥ Ln

2 − pn
max,2 > Ln

1 and pn
max,2 = pl ≤ d. If L2 ≥ d

2 , as above, we have
COPT

CA2 ≤ 4
3 . If L2 < d

2 , then L1 = Ln
1 + pn

max,2 ≤ Ln
1 + d. Thus, by Lemma 1, we

have

COPT

CA2
≤ T

d + L2
≤ L1 + L2

d + L2
= 1 +

L1 − d

d + L2
≤ 1 +

Ln
1

d + L2
≤ 1 +

L2

d + L2
≤ 4

3
.

Case 2. L1 < d and L2 > d. In this case, we have CA2 = L1 +d. Let Jt = (pt, 2)
be the last job of hierarchy 2 assigned to M2. Since Jt is assigned to M2 at
line 7, according to the choice of Algorithm 2, we have Lt−1

2 − pt−1
max,2 < d

2 and
Ln
2 = Lt

2 = Lt−1
2 + pt < d

2 + pt−1
max,2 + pt. If the rearrangement happens, we have

d < L2 = Ln
2 − max {pt−1

max,2, pt} <
d

2
+ min {pt−1

max,2, pt},

which implies that min {pt−1
max,2, pt} > d

2 and L1 ≥ max {pt−1
max,2, pt} > d

2 . Thus,
by Lemma 1, we have

COPT

CA2
≤ 2d

L1 + d
≤ 2d

d
2 + d

=
4
3
.

Online Early Work Maximization Problem on Two Hierarchical Machines 53

If the rearrangement does not happen, we have L2 = Ln
2 and Ln

2 −
max {pt−1

max,2, pt} ≤ Ln
1 = L1. If L1 ≥ d

2 , as above, we have COPT

CA2 ≤ 4
3 . If

L1 < d
2 , we have

COPT

CA2
≤ T

d + L1
≤ L1 + L2

d + L1
= 1 +

L2 − d

d + L1

≤ 1 +
L2 − max {pt−1

max,2, pt}
d + L1

≤ 1 +
L1

d + L1
≤ 4

3
.

�

5 Discussion

In this paper, we considered two semi-online versions for early work maximization
problem on two hierarchical machines. When a buffer is available, we proposed
an optimal online algorithm with competitive ratio of 4

3 . When we are allowed to
reassign at most K jobs at the end, we also proposed an optimal online algorithm
with a competitive ratio of 4

3 . In the future, it is interesting to study the online
early work maximization problem on m hierarchical machines with buffer or
rearrangements.

Acknowledgment. The work is supported in part by the National Natural Science
Foundation of China [No. 12071417].

References

1. Chassid, O., Epstein, L.: The hierarchical model for load balancing on two
machines. J. Comb. Optim. 15(4), 305–314 (2008)

2. Chen, X., Ding, N., Dosa, G., Han, X., Jiang, H.: Online hierarchical scheduling on
two machines with known total size of low-hierarchy jobs. Int. J. Comput. Math.
92(5–6), 873–881 (2015)

3. Chen, X., Sterna, M., Han, X., Blazewicz, J.: Scheduling on parallel identical
machines with late work criterion: offline and online cases. J. Sched. 19(6), 729–736
(2016)

4. Chen, X., Xu, Z., Dosa, G., Han, X., Jiang, H.: Semi-online hierarchical scheduling
problems with buffer or rearrangements. Inf. Process. Lett. 113, 127–131 (2013)

5. Dai, B., Li, J., Li, W.: Semi-online hierarchical scheduling for bag-of-tasks on two
machines. In: Proceedings of the 2018 2nd International Conference on Computer
Science and Artificial Intelligence, pp. 609–614 (2018)

6. Epstein, L., Levin, A., Stee, R.V.: Max-min online allocations with a reordering
buffer. SIAM J. Discret. Math. 25(3–4), 1230–1250 (2011)

7. Jiang, Y., He, Y., Tang, C.: Optimal online algorithms for scheduling on two iden-
tical machines under a grade of service. J. Zhejiang Univ. Sci. A 7, 309–314 (2006)

8. Li, W., Li, J., Zhang, T.: Two approximation schemes for scheduling on parallel
machines under a grade of service provision. Asia-Pacific J. Oper. Res. 29(05),
1250029 (2012)

54 M. Xiao et al.

9. Li, W.: Improved approximation schemes for early work scheduling on identical par-
allel machines with a common due date. J. Oper. Res. Soc. Chin. (2022). https://
doi.org/10.1007/s40305-022-00402-y

10. Luo, T., Xu, Y.: Semi-online hierarchical load balancing problem with bounded
processing times. Theoret. Comput. Sci. 607, 75–82 (2015)

11. Park, J., Chang, S.Y., Lee, K.: Online and semi-online scheduling of two machines
under a grade of service provision. Oper. Res. Lett. 34(6), 692–696 (2006)

12. Wu, G., Li, W.: Semi-online machine covering on two hierarchical machines with
discrete processing times. In: Li, L., Lu, P., He, K. (eds.) NCTCS 2018. CCIS,
vol. 882, pp. 1–7. Springer, Singapore (2018). https://doi.org/10.1007/978-981-
13-2712-4 1

13. Wu, Y., Cheng, T.C.E., Ji, M.: Optimal algorithms for semi-online machine cov-
ering on two hierarchical machines. Theoret. Comput. Sci. 531(6), 37–46 (2014)

14. Wu, Y., Ji, M., Yang, Q.F.: Optimal semi-online scheduling algorithms on two
parallel identical machines under a grade of service provision. Int. J. Prod. Econ.
135(1), 367–371 (2012)

15. Xiao, M., Liu, X., Li, W.: Semi-online early work maximization problem on two
hierarchical machines with partial information of processing time. In: Wu, W., Du,
H. (eds.) AAIM 2021. LNCS, vol. 13153, pp. 146–156. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-93176-6 13

16. Xiao, M., Ding, L., Zhao, S., Li, W.: Semi-online algorithms for hierarchical
scheduling on three parallel machines with a buffer size of 1. In: He, K., Zhong,
C., Cai, Z., Yin, Y. (eds.) NCTCS 2020. CCIS, vol. 1352, pp. 47–56. Springer,
Singapore (2021). https://doi.org/10.1007/978-981-16-1877-2 4

17. Xiao, M., Wu, G., Li, W.: Semi-online machine covering on two hierarchical
machines with known total size of low-hierarchy jobs. In: Sun, X., He, K., Chen,
X. (eds.) NCTCS 2019. CCIS, vol. 1069, pp. 95–108. Springer, Singapore (2019).
https://doi.org/10.1007/978-981-15-0105-0 7

18. Zhang, A., Jiang, Y., Fan, L., Hu, J.: Optimal online algorithms on two hierarchical
machines with tightly-grouped processing times. J. Comb. Optim. 29(4), 781–795
(2013). https://doi.org/10.1007/s10878-013-9627-7

https://doi.org/10.1007/s40305-022-00402-y
https://doi.org/10.1007/s40305-022-00402-y
https://doi.org/10.1007/978-981-13-2712-4_1
https://doi.org/10.1007/978-981-13-2712-4_1
https://doi.org/10.1007/978-3-030-93176-6_13
https://doi.org/10.1007/978-981-16-1877-2_4
https://doi.org/10.1007/978-981-15-0105-0_7
https://doi.org/10.1007/s10878-013-9627-7

On-line Single Machine Scheduling
with Release Dates and Submodular

Rejection Penalties

Xiaofei Liu1, Yaoyu Zhu2, Weidong Li3, and Lei Ma4,5(B)

1 School of Information Science and Engineering, Yunnan University,
Kunming, People’s Republic of China

2 School of Electronic Engineering and Computer Science, Peking University,
Beijing, People’s Republic of China

3 School of Mathematics and Statistics, Yunnan University,
Kunming, People’s Republic of China

4 Beijing Academy of Artificial Intelligence, Beijing, People’s Republic of China
5 National Biomedical Imaging Center, Peking University,

Beijing, People’s Republic of China

lei.ma@pku.edu.cn

Abstract. In this paper, we consider the on-line single machine schedul-
ing problem with release dates and submodular rejection penalties. We
are given a single machine and a sequence of jobs that arrive on-line and
must be immediately and irrevocably either assigned on the machine or
rejected. The objective is to minimize the sum of the makespan of the
accepted jobs and the penalty of the rejected jobs which is determined
by a submodular function. We prove that there is no on-line algorithm
with a constant competitive ratio if the penalty submodular function is
nonmonotone. When the penalty submodular function is monotone, we
present an on-line algorithm with a competitive ratio 3.

Keywords: On-line scheduling · Submodular penalties · On-line
algorithm · Competitive ratio

1 Introduction

Multiprocessor scheduling with rejection (MSR), which is first proposed by Bar-
tal et al. [1], is a classical and important problem in operations research and
combinatorial optimization. On this prblem, we are given m identical paral-
lel machines and a set of n jobs, where each job can be either accepted and
processed on the machine or rejected and paid a penalty. The objective is to
minimize the makespan of accepted jobs plus the rejected penalty. Bartal et al.
[1], proposed a 2-approximation algorithm and a polynomial-time approximation
scheme (PTAS). Ou et al. [12] proposed a (3/2 + ε)-approximation algorithm,
where ε is a small given positive constant. Li et al. [6] designed a PTAS for a
variant of the MSR, where the objective is to minimize the makespan when the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 55–65, 2022.
https://doi.org/10.1007/978-3-031-16081-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_6&domain=pdf
https://doi.org/10.1007/978-3-031-16081-3_6

56 X. Liu et al.

rejection cost is bounded by a given constant. When the number of machine is
1, Zhang et al. [14] considered the scheduling with rejection and release dates,
in which each job has a release date, and they designed a PTAS. Li and Cui [5]
considered the vector MSR, where each job is characterized by a d-dimension
vector, and designed a PTAS.

In all the above problems, the information of all jobs can be achieved before
making a decision. Since the market becomes more competitive, a sequence of
jobs that arrive on-line and must be immediately and irrevocably either assigned
on the machine or rejected. Bartal et al. [1] considered the on-line MSR problem,
and presented an on-line algorithm with a competitive ratio (

√
5 + 3)/2≈ 2.618;

in particular, for m = 2, they presented an on-line algorithm with a competitive
ratio (

√
5 + 1)/2≈ 1.618. If preemption is allowed, Seiden [13] presented an

on-line algorithm with a competitive ratio (4 +
√

10)/3≈ 2.3874. Epstein et al.
[3] considered the on-line MSR problem with unit processing jobs and proved
that there does not exist an on-line algorithm with a competitive ratio less than
1.63784, and presented an on-line algorithm with a competitive ratio (2+

√
3)/2≈

1.866. Lu et al. [11] designed an optimal on-line algorithm with a competitive
ratio 2 for the online single machine scheduling with rejection and release dates.
Dai and Li [2] designed an on-line algorithm with a competitive ratio 1.62d for
the vector MSR on two machines, where d is the number of dimensions.

Recently, problems with submodular penalties have gradually become a
research hotspot in the field of theoretical computers and combinatorial opti-
mization [8,10]. Zhang et al. [15] proposed a 3-approximation algorithm
for precedence-constrained scheduling with submodular rejection on parallel
machines. Liu and Li [7] proposed a 2-approximation algorithm for the single
machine scheduling problem with release dates and submodular rejection. Liu
et al. [9] proposed a 2-approximation algorithm for the off-line single machine
vector scheduling problem with submodular rejection penalties.

In this paper, we generalize the problem in [7] to on-line setting, and consider
the on-line single machine scheduling problem with release dates and submodular
rejection penalties The remainder of this paper is structured as follows. In Sect. 2,
we first provide basic definitions, and give a formal on-line problem statement.
Then, we prove the lower bound of this problem. In Sect. 3, first, we recall the
algorithm for the offline case. Second, we present the on-line algorithm. In Sect. 4,
we give a brief conclusion.

2 Preliminaries

Let J be a given ground set and π(·) : 2J → R be a real-valued function defined
on all the subsets of J . Function π(·) is called submodular if π(S) + π(T) ≥
π(S ∪ T) + π(S ∩ T),∀S, T ⊆ J , i.e.,

π(S ∪ X) − π(S) ≥ π(T ∪ X) − π(T), ∀X ⊆ J and ∀ S ⊆ T ⊆ J \ X. (1)

In particular, it is called monotone if function π(·) satisfies π(S) ≤ π(T), ∀S ⊆
T ⊆ J . Moreover, we assume that π(·) can be computed in polynomial time for
any subset S ⊆ J , where the ‘polynomial’ we use is with regard to the size n.

On-line Single Machine Scheduling with Release Dates 57

The on-line single machine scheduling problem with release dates and sub-
modular rejection penalties is defined as follows: we are given a single machine
and a sequence of n jobs, J = {1, 2, . . . , n}, arriving online, where each job j in
J has a processing time pj and a release date rj , without loss of generality, we
assume that

rj ≤ rj′ for any 1 ≤ j < j′ ≤ n.

The job is to be either scheduled or rejected irrevocably at the time of their
arrivals. This problem is to find a feasible schedule (A,R), where A is the set
of accepted jobs that are processed on machine and R = J \ A is the set of
the rejected jobs. The objective is to minimize the sum of the makespan of the
accepted jobs and the total penalty of the rejected jobs, which is determined by a
penalty submodular function π(·). Thus, we use 1|rj , on-line, reject|Cmax+π(R)
to denote this problem based on the three field notation.

Theorem 1. There is no on-line algorithm with a constant competitive ratio for
the 1|rj , on-line, reject|Cmax + π(R) if the penalty submodular function π(·) is
nonmonotone.

Proof. Consider a penalty submodular function π(·) defined on all the subsets
of job set J = {1, 2}, where

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

π(∅) = 0;

π({1}) = P 2 + 1;
π({2}) = 1;
π({1, 2}) = 1.

For any algorithm A, the first job 1 in the sequence arrives at 0 and its
process time p1 = P . If A rejects job 1, then no job arrives, and we have ZA =
π({1}) = P 2 + 1 and Z∗ = r1 + p1 = P , where ZA is the value of schedule
generated by A and Z∗ is the optimal value. This implies that

ZA
Z∗ =

P 2 + 1
P

> P.

If job 1 is accepted by A, then the next job 2 arrives at 1 and its process
time p2 = P . The optimal schedule is to reject all jobs and its objective value
Z∗ = π({1, 2}) = 1. If A rejects job 2, we have ZA = r1 + p1 + π({2}) = P + 1;
otherwise A processes job 2 on the machine, we have ZA = r1 + p1 + p2 = 2P .
These statements imply that

ZA
Z∗ ≥ P + 1

1
> P.

Since P is positive number, the lemma holds. �
Therefore, in the following part of this paper, we assume that the penalty

submodular function is monotone.

58 X. Liu et al.

3 1|rj, on-line, reject|Cmax + π(R)

In this section, first, we recall the 2-approximation algorithm for the off-line case
[7], and prove some key lemmas. Second, we present the online algorithm for the
1|r, on-line, reject|Cmax + π(R) based on the off-line algorithm, and prove that
the competitive ratio of this algorithm is 3.

3.1 The Offline Problem

In this subsection, we recall the definition of the off-line problem. We are given
a single machine and n jobs, J = {1, 2, . . . , n}, where each job j has a processing
time pj and a release date rj . The off-line problem is to find a feasible schedule
(A,R), where A is the set of accepted jobs that are processed on machine and
R = J \ A is the set of the rejected jobs. The objective is to minimize the sum
of the makespan of the accepted jobs and the total penalty of the rejected jobs,
which is determined by a monotone submodular penalty function π(·).

For convenience, for each r ∈ {1, 2, 3, . . . , n + 1}, let

Br = {j ∈ J |j ≥ r},

then B1 = J and Bn+1 = ∅. We display the algorithm as follows. For each
r ∈ {1, 2, 3, . . . , n+1}, algorithm needs to find a feasible solution (Ar, Rr) based
on an auxiliary function. Then, output the best feasible solution.

For each r ∈ {1, 2, 3, . . . , n + 1}, we construct the auxiliary function pπr(·)
defined on all the subset of J \ Br, where

pπr(S) = p((J \ Br) \ S) + π(S), ∀ S ⊆ J \ Br.

Then, pπr(S) is a submodular function, which is proven in Lemma 1, and the
set

Sr := arg min
S:S⊆J\Br

pπj(S)

can be found in polynomial-time by modifying the methods in [4] slight. Then,
set Rr = Br ∪ Sr and Ar = J \ Rr.

We propose the detailed algorithm in Algorithm 1.

Lemma 1. For any r ∈ {1, 2, 3, . . . , n + 1}, pπr(·) is a submodular function.

Proof. For any r ∈ {1, 2, 3, . . . , n + 1} and any two job set S1, S2 ⊆ J \ Br, we
have

pπr(S1) + pπr(S2)
= p((J \ Br) \ S1) + π(S1) + p((J \ Br) \ S2) + π(S2)
≤ p((J \ Br) \ (S1 ∪ S2)) + p((J \ Br) \ (S1 ∩ S2)) + π(S1 ∪ S2) + π(S1 ∩ S2)
= pπr(S1 ∪ S2) + pπr(S1 ∩ S2),

where the inequality follows from the fact that π(·) is a submodular function.
This means, pπr(·) is a submodular function. �

On-line Single Machine Scheduling with Release Dates 59

Algorithm 1:
1 for r = 1 to n + 1 do
2 Construct the set Br and the auxiliary function pπr(·) defined on all the

subset of J \ Br defined as above.
3 Set Sr := argminS:S⊆J\Br pπj(S), and Rr := Br ∪ Sr. Schedule all jobs in

Ar(= J \ Rr) on the single machine using the earliest release date rule.
4 Set Zr = rr−1 + p(Ar) + π(Rr) be the objective value of (Ar, Rr), where

r0 = 0.

5 Set (A, R) = argmin(Ar,Rr) Zr, and output (A, R).

Theorem 2. (A,R) can be found in polynomial time satisfying that its objective
value is no more than 2Z∗, where Z∗ is the optimal value.

Proof. Let (A∗, R∗) be the optimal schedule in J , and its objective value is

Z∗ = C(A∗) + π(R∗),

where C(A∗) is the makespan of the jobs in A∗. Let r∗ = max{j|j ∈ A∗} + 1,
then we have

Z∗ ≥ rr∗−1 + π(Br∗), (2)

where rr∗−1 is the maximum release date of the jobs in A∗, and Br∗ = {j ∈
J |j ≥ r∗}.

Since Sr∗ := arg minS:S⊆J\Br∗ pπj(S), we have pπj(Sr∗) ≤ pπj(R∗ \ Br∗),
and

p(Ar∗) + π(Sr∗) = p((J \ Br∗) \ Sr∗) + π(Sr∗)
≤ p((J \ Br∗) \ (R∗ \ Br∗)) + π(R∗ \ Br∗)
= p(A∗) + π(R∗ \ Br∗)
≤ Z∗. (3)

Then the objective value of (A,R) is

Z ≤ Zr∗ = rr∗−1 + p(Ar∗) + π(Rr∗)
≤ rr∗−1 + p(Ar∗) + π(Sr∗) + π(BR∗)
≤ 2Z∗,

where the first second inequality follows from the fact that π(·) is a submodular
function and π(∅) = 0, and the third inequality follows from inequalities (2)
and (3).

By Lemma 1, for any r ∈ {1, 2, 3, . . . , n + 1}, the set Sr can be found in
polynomial-time [4]. Thus, Algorithm 1 can be implemented in polynomial time.

�
Note that the following lemma is important which is used in the online case.

60 X. Liu et al.

Lemma 2. If job n is in set A generated by Algorithm 1, then there exists an
optimal schedule (A∗, R∗) satisfying

n ∈ A∗.

Proof. If job n is in set A generated by Algorithm 1, then (A,R) = (An+1,
Rn+1); otherwise, since job n is in set Br for any r ∈ {1, 2, . . . , n}, then n is in
Rr for any r ∈ {1, 2, . . . , n}. We have

p(J \ R) + π(R) ≤ p(J \ (S ∪ R)) + π(S ∪ R), ∀S ⊆ J (4)

by Bn+1 = ∅ and R = Rn+1 = Sn+1 = arg minS:S⊆J\Bn+1 pπj(S).
Assume that any optimal schedule satisfying that job n is rejected, and let

(A∗, R∗) be an optimal schedule in J satisfying n /∈ A∗, and its objective value
is Z∗. Then, we have

Z∗ = C(A∗) + π(R∗)
< C(A∗ ∪ A) + π(R∗ \ A)
≤ max{C(A∗), rn} + p(A \ A∗) + π(R∗ \ A), (5)

where C(A∗) is the makespan of the jobs in A∗, the first inequality follows from
the assumption and n ∈ A.

If rn ≤ C(A∗), by rearranging inequality (5), we have

p(A \ A∗) > π(R∗) − π(R∗ \ A)
= π(R∗) − π(R∗ \ (J \ R))
= π(R∗) − π(R∗ ∩ R)
≥ π(R∗ ∪ R) − π(R).

where the last inequality follows from the diminishing marginal value π(·) by
definition (1). Then, we have

p(J \ R) + π(R) = p(J \ (R∗ ∪ R)) + p(R∗ \ R) + π(R)
= p(J \ (R∗ ∪ R)) + p(A \ A∗) + π(R)
> p(J \ (R∗ ∪ R)) + π(R∗ ∪ R),

which contradicts the inequality (4).
Otherwise, rn > C(A∗), let r∗ = maxj:j∈A∗ +1. we have

rr∗ ≤ C(A∗) < rn

and
rr∗ + π(R∗) ≤ Z∗ ≤ rn + p(A \ A∗) + π(R∗ \ A),

On-line Single Machine Scheduling with Release Dates 61

where the second inequality follows from inequality (5). These statements imply
that

0 > rn − rr∗ ≥ π(R∗) − p(A \ A∗) − π(R∗ \ A)
= π(R∗) − π(R∗ \ (J \ R)) − p((J \ R) \ (J \ R∗))
= π(R∗) − π(R∗ ∩ R) − p(R∗ \ (R∗ ∩ R))
≥ π(R∗ ∪ R) − π(R) − p(R∗ \ (R∗ ∩ R))
= p(J \ (R∗ ∪ R)) + π(R∗ ∪ R) − p(J \ (R)) − π(R),

where the last inequality follows the diminishing marginal value π(·) by definition
(1). This implies that

p(J \ R) + π(R) > p(J \ (R∗ ∪ R)) + π(R∗ ∪ R),

which contradicts the inequality (4).
Therefore, the lemma holds.

3.2 The On-line Algorithm

In this subsection, we present an on-line algorithm with a competitive ratio 3
for 1|r, on-line, reject|Cmax +π(R). In particular, we prove that the competitive
ratio of this on-line algorithm is 2 if all the jobs have the same release date.

Given a set of a sequence jobs, J = {1, 2, . . . , n}, for each j ∈ {1, 2, . . . , n},
let Jj = {1, . . . , j} be the set of the first j jobs in J .

For instance Jj , we can find a feasible schedule (Aj , Rj) in polynomial-time
using Algorithm 1. The objective value of (Aj , Rj) satisfies Zj ≤ Z∗

j by Theorem
2, where Z∗

j is the optimal value for instance Jj .
Next, we provide the detailed the on-line algorithm in Algorithm 2 below.

Algorithm 2:
1 Initially, set the makspan C = 0, j = 1, A = ∅ and R = ∅.
2 Assume that a job j arrives.
3 Using Algorithm 1, find the feasible solution (Aj , Rj) for instance Jj .
4 if j ∈ Rj then
5 reject job j, and set R := R ∪ {j}
6 else
7 process job j on the machine at time max{C, rj}, and set

C := max{C, rj} + pj and A := A ∪ {j}.
8 If no new job arrives, stop and output the current schedule (A, R) and its value

Z = C + π(R); otherwise, set j := j + 1 and go to 2.

Lemma 3. Let Cj be the makespan generated Algorithm 2 for instance Jj, then
we have

Cj ≤ Z∗
j , ∀j ∈ {1, 2, . . . , n}.

62 X. Liu et al.

Proof. Our proof is by mathematical induction. For the instance J1 = {1}, let
(A1, R1) be the feasible schedule generated by Algorithm 1, then we have either
R1 = {1} or A1 = {1}. If R1 = {1}, then job 1 is rejected by Algorithm 2,
and C1 = 0 ≤ Z∗

1 ; otherwise, A1 = {1}, then ({1}, ∅) is an optimal schedule by
Lemma 2 and Z∗

1 = r1 + p1. job 1 is processed on the machine by Algorithm 2
and C1 = r1 + pi = Z∗

1 . Thus, we have C1 ≤ Z∗
1 .

Then, assume that Cj ≤ Z∗
j holds for each j < k. We consider j = k. It is

obvious that
Z∗
k−1 ≤ Z∗

k .

If k ∈ Rk, then job k is rejected by Algorithm 2, and

Ck = Ck−1 ≤ Z∗
k−1 ≤ Z∗

k .

Otherwise, k ∈ Ak, there exists an optimal schedule (A∗
k, R

∗
k) for instance Jk

satisfying k ∈ A∗
k. Thus, we have

Z∗
k = C(A∗

k) + π(R∗
k)

= max{C(A∗
k \ {k}), rk} + pk + π(R∗

k)
≥ C(A∗

k \ {k}) + pk + π(R∗
k)

≥ Z∗
k−1 + pk, (6)

where C(A∗
k) is the makespan of job set A∗ using the earliest release date rule,

and the last inequality follows because (A∗
k \ {Jk}, R∗

k) is a feasible schedule for
instance Jk−1 and Z∗

k−1 is the optimal objective value for instance Jk−1.
Since job k ∈ Ak, job k is processed on the machine and

Ck = max{Ck−1, rk} + pk.

If Ck−1 ≤ rk, by k ∈ A∗
k , we have Ck = rk + pk ≤ C(A∗

k) ≤ Z∗
k ; Otherwise,

Ck−1 > rk, then we have

Ck = Ck−1 + pk ≤ Z∗
k−1 + pk ≤ Z∗

k ,

where the first inequality follows from by the assumptions and the second follows
from inequality (6).

Therefore, we have Ck ≤ Z∗
k and the lemma holds.

Lemma 4. Let R(j) be the rejected set generated Algorithm 2 for instance Jj,
then we have

π(R(j)) ≤ 2Z∗
j ∀j ∈ {1, 2, . . . , n}.

Proof. For any j = 1, 2, . . . , n, let (Aj , Rj) be the feasible solution generated by
Algorithm 1, then its objective value is

Zj = rrj−1 + p(Aj) + π(Rj) ≤ 2Z∗
j , (7)

where rj − 1 is the number of loops to generate (Aj , Rj), and the inequality
follows from Theorem 2.

On-line Single Machine Scheduling with Release Dates 63

If R(j) \ Rj = ∅, we have

π(R(j)) ≤ π(Rj) ≤ Zj ≤ 2Z∗
j ,

where the first inequality follows from that π(·) is monotone, and the second
inequality follows from inequality (7).

Otherwise, R(j) \ Rj �= ∅, let

k = arg max
j′∈R(j)\Rj

j′,

be the maximum job in R(j) \ Rj . Then, k ∈ Aj , we have

rk ≤ rrj−1, (8)

by Algorithm 1.
Let (Ak, Rk) be the feasible schedule for instance Jk generated by Algorithm

1, and Algorithm 1 needs to find a feasible schedule (Ak,r, Rk,r) for each r ∈
{1, 2, . . . , k + 1} to find (Ak, Rk), i.e.,

(Ak, Rk) = arg min
(Ak,r,Rk,r)

Zk,j ,

where Zk,r = rr−1 + p(Ak,r) + π(Rk,r). We define r̂ = arg minr(rr−1 + p(Ak,r) +
π(Rk,r), i.e., (Ak, Rk) = (Ak,r̂, Rk,r̂). Thus, the objetive value of (Ak, Rk) is
rr̂−1 + p(Ak) + π(Rk) ≤ rk + p(Jk \ (Rj ∩ Rk)) + π(Rj ∩ Rk), and

rk − rr̂−1

≥ p(Ak) − p(Jk \ (Rj ∩ Rk)) + π(Rk) − π(Rj ∩ Rk)
≥ π(Rk ∪ Rj) − π(Rj) − p(Rk \ Rj),

where the last inequality follows from the diminishing marginal value π(·) by
definition (1). Thus, we have

π(Rk ∪ Rj) ≤ Zj .

If R(j) \ (Rk ∪ Rj) = ∅, we have

π(R(j)) ≤ π(Rk ∪ Rj) ≤ Zj ≤ 2Z∗
j ,

where the first inequality follows from that π(·) is monotone, and the last
inequality follows from inequality (7). Thus, the lemma holds; otherwise, let
R(j) = Rk ∪ Rj , repeat the above process up to |Rj \ (Rk ∪ Rj)|(≤ n) times, we
can obtain that the inequality R(j) \ (Rk ∪ Rj) = ∅ follows.

Theorem 3. The online Algorithm 2 is a 3-competitive for any instance of the
1|r, on-line, reject|Cmax + π(R) and the bound is tight.

64 X. Liu et al.

Proof. By Lemma 3 and Lemma 4, for any instance Jj , the objective value of
the schedule generated by Algorithm 2 is

Cj + π(R(j)) ≤ 3Z∗
j .

To show that the bound is tight, consider the job list J = {1, 2}, where
r1 = 0, p1 = P , r2 = P and p2 = 1 (P is a large constant). The polymatroid
function π(·) is defined as follows: π(∅) = 0, π({1}) = P + 1, π({2}) = 2P − 1,
π({1, 2}) = 2P .

When the first job 1 arrives, job 1 ∈ A1 by the Algorithm 1, and job 1 is
accepted and processed on the machine by the Algorithm 2. Then, the second job
2 arrives, job 2 ∈ R2 by the Algorithm 1, and job 2 is rejected by the Algorithm
2. Therefore, we have Z = r1 + p1 + π({2}) = 0 + P + 2P − 1 = 3P − 1, and
Z∗ = r1 + p1 + p2 = P + 1. Thus, we have

Z

Z∗ =
3P − 1
P + 1

−→ 3, when P → ∞.

4 Conclusion

In this paper, we consider the on-line single machine scheduling problem with
release dates and submodular rejection penalties. We prove that there is no
on-line algorithm with a constant competitive ratio if the penalty submodular
function is nonmonotone, and present an on-line algorithm with a competitive
ratio of 3 for the problem when the penalty submodular function is monotone.

The topic could be further studied in the following ways. It is challenging to
either find a greater lower bound or design an on-line algorithm with a better
competitive ratio. In the real world, we always know all the information about
all the jobs that have the same release date, thus the on-line-over-time version
of this problem is worth considering. Moreover, algorithm for the on-line single
machine vector scheduling problem with release dates and submodular rejection
penalties could be further developed.

Acknowledgements. The work is supported in part by the National Natural Science
Foundation of China [No. 12071417], and National Key R&D Program of China [No.
2020AAA 0105200].

Conflict of Interest. The authors declare that they have no conflict of interest.

References

1. Bartal, Y., Leonardi, S., Marchetti-Spaccamela, A., Sgall, J., Stougie, L.: Multi-
processor scheduling with rejection. SIAM J. Discrete Math. 13(1), 64–78 (2000)

2. Dai, B., Li, W.: Vector scheduling with rejection on two machines. Int. J. Comput.
Math. 97(12), 2507–2515 (2020)

On-line Single Machine Scheduling with Release Dates 65

3. Epstein, L., Noga, J., Woeginger, G.: On-line scheduling of unit time jobs with
rejection: minimizing the total completion time. Oper. Res. Lett. 30(6), 415–420
(2002)

4. Fleischer, L., Iwata, S.: A push-relabel framework for submodular function min-
imization and applications to parametric optimization. Discrete Appl. Math.
131(2), 311–322 (2003)

5. Li, W., Cui, Q.: Vector scheduling with rejection on a single machine. 4OR 16,
95–104 (2018)

6. Li, W., Li, J., Zhang, X., Chen, Z.: Penalty cost constrained identical parallel
machine scheduling problem. Theor. Comput. Sci. 607, 181–192 (2015)

7. Liu, X., Li, W.: Approximation algorithm for the single machine scheduling prob-
lem with release dates and submodular rejection penalty. Mathematics 8(1), 133
(2020)

8. Liu, X., Li, W.: Approximation algorithms for the multiprocessor scheduling with
submodular penalties. Optimiz. Lett. 15, 2165–2180 (2021)

9. Liu, X., Li, W., Zhu, Y.: Single machine vector scheduling with general penalties.
Mathematics 9(16), 1965 (2021)

10. Liu, X., Dai, H., Li, S., Li, W.: k-prize-collecting minimum power cover problem
with submodular penalties on a plane (in chinese). Sci. Sin. Inform. 52(6), 947
(2022)

11. Lu, L., Ng, C., Zhang, L.: Optimal algorithms for single-machine scheduling with
rejection to minimize the Makespan. Int. J. Prod. Econ. 130(2), 153–158 (2011)

12. Ou, J., Zhong, X., Wang, G.: An improved heuristic for parallel machine scheduling
with rejection. Eur. J. Oper. Res. 241(3), 653–661 (2015)

13. Seiden, S.: Preemptive multiprocessor scheduling with rejection. Theor. Comput.
Sci. 262(1–2), 437–458 (2001)

14. Zhang, L., Lu, L., Yuan, J.: Single machine scheduling with release dates and
rejection. Eur. J. Oper. Res. 198(3), 975–978 (2009)

15. Zhang, X., Xu, D., Du, D., Wu, C.: Approximation algorithms for precedence-
constrained identical machine scheduling with rejection. J. Combinat. Optimiz.
35, 318–330 (2018)

The Optimal Dynamic Rationing Policy
in the Stock-Rationing Queue

Quan-Lin Li1, Yi-Meng Li2, Jing-Yu Ma3(B) , and Heng-Li Liu2

1 School of Economics and Management,
Beijing University of Technology, Beijing 100124, China

2 School of Economics and Management,
Yanshan University, Qinhuangdao 066004, China

3 Bussiness School, Xuzhou University of Technology, Xuzhou 221018, China

mjy0501@126.com

Abstract. In this paper, we study a stock-rationing queue with two
demand classes by means of the sensitivity-based optimization, and
develop a complete algebraic solution for the optimal dynamic rationing
policy. To do this, we establish a policy-based birth-death process to
show that the optimal dynamic rationing policy must be of transforma-
tional threshold type. Based on this finding, we can refine three sufficient
conditions under each of which the optimal dynamic rationing policy is
of threshold type (i.e., critical rationing level). Crucially, we character-
ize the monotonicity and optimality of the long-run average profit of
this system, and establish some new structural properties of the opti-
mal dynamic rationing policy by observing any given reference policy.
Finally, we use numerical examples to verify computability of our theo-
retical results. We believe that the methodology and results developed
in this paper can shed light on the study of stock-rationing queue and
open a series of potentially promising research.

Keywords: Stock-rationing queue · Inventory rationing · Dynamic
rationing policy · Sensitivity-based optimization · Markov decision
process

1 Introduction

In this paper, we consider a stock-rationing queueing problem of a warehouse
with one type of products and two classes of demands, which may be viewed
as coming from retailers with two different priority levels. Now, such a stock-
rationing warehouse system becomes more and more important in many large
cities under the current COVID-19 environment. For example, Beijing has seven

Supported by the National Natural Science Foundation of China under grant No.
71932002.
J.-Y. Ma and Q.-L. Li—Contributed to the work equally and should be regarded as
co-first authors.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 66–82, 2022.
https://doi.org/10.1007/978-3-031-16081-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_7&domain=pdf
http://orcid.org/0000-0002-0396-1232
https://doi.org/10.1007/978-3-031-16081-3_7

The Optimal Dynamic Rationing Policy in the Stock-Rationing Queue 67

super-large warehouses, which always supply various daily necessities (e.g., veg-
etables, meat, eggs, seafood) to more than 40 million people every day. In the
warehouses, each type of daily necessities are supplied by lots of different com-
panies in China and other countries, which lead to that the successive supply
stream of each type of products can be well described as a Poisson process. In
addition, the two retailers may be regarded as a large supermarket group and
another community retail store group. Typically, the large supermarket group
has a higher supply priority than the community retail store group. When the
COVID-19 at Beijing is at a serious warning, the stock-rationing management of
the warehouses and their optimal rationing policy play key roles in strengthening
the effective management of the warehouses such that every family at Beijing
can have a very comprehensive life guarantee.

From the perspective of practical applications, such a stock-rationing queue-
ing problem with multiple demand classes can always be encountered in many
different real areas, assemble-to-order systems, make-to-stock queues and multi-
echelon inventory systems by Ha [6]; manufacturing by Zhao et al. [21]; airline
by Wang et al. [19]; rental business by Altug and Ceryan [1] and Jain et al. [9];
health care by Moosa and Luyckx [15] and Baron et al. [2]; and so forth. All
the studies above show that the stock-rationing queues with multiple demand
classes are not only necessary and important in many practical applications, but
also have their own theoretical interest. In the stock-rationing queueing systems,
the rationing policies always assign different supply priorities to multiple classes
of demands. In the early literature, the so-called critical rationing level was
imagined intuitively, and its existence was further proved by Veinott Jr [18] and
Topkis [17]. Thus designing and optimizing the critical rationing levels become
a basic issue of inventory rationing across multiple demand classes.

So far some research has applied the Markov decision processes (MDPs) to
discuss inventory rationing (and stock-rationing queues) across multiple demand
classes by means of the submodular (or supermodular) technique, among which
important examples include Ha [6–8], Gayon et al. [5], Benjaafar and ElHafsi [3]
and Nadar et al. [14]. To this end, it is a key that the structural properties of
the optimal rationing policy need to be identified by using a set of structured
value functions that are preserved under an optimal operator. Based on this
finding, the optimal rationing policy of the inventory rationing across multiple
demand classes can be further analyzed by means of the structural properties.
In many more general cases, it is not easy and even very difficult to set up
the structural properties of the optimal rationing policy. For this reason, some
stronger model assumptions have to be further added. The purpose of improving
the applicability of the MDPs motivates us to propose a new algebraic method
to find a complete algebraic solution to the optimal rationing policy by means of
the sensitivity-based optimization which is proposed by Cao [4]. To the best of
our knowledge, this paper is the first to apply the sensitivity-based optimization
to the study of stock-rationing queues.

Based on the above analysis, we summarize the main contributions of this
paper as follows:

68 Q.-L. Li et al.

(1) A complete algebraic solution: This paper develops a complete algebraic
solution to the optimal dynamic rationing policy of the stock-rationing queue by
means of the sensitivity-based optimization, and shows that the optimal dynamic
rationing policy must be of transformational threshold type, which can lead to
refining three sufficient conditions under each of which the optimal dynamic
rationing policy is of threshold type. It is worthwhile to note that our transfor-
mational threshold type results are sharper than the bang-bang control given
in Ma et al. [12,13] and Xia et al. [20]. Therefore, our algebraic method pro-
vides a new way of optimality proofs when comparing to the frequently-used
submodular (or supermodular) technique of MDPs.

(2) Two different methods can sufficiently support each other: Note that our
algebraic method sets up a complete algebraic solution to the optimal dynamic
rationing policy, thus it can provide not only a necessary complement of policy
spatial structural integrity but also a new way of optimality proof when compar-
ing to the frequently-used submodular (or supermodular) technique of MDPs.
Since our algebraic method and the submodular (or supermodular) technique
are all important parts of the MDPs (the former is to use the poisson equations,
while the latter is to apply the optimality equation), it is clear that the two dif-
ferent methods will sufficiently support each other in the study of stock-rationing
queues (and rationing inventory) with two demand classes.

The remainder of this paper is organized as follows. Section 2 gives model
description for the stock-rationing queue with two demand classes. Section 3
establishes an optimization problem to find the optimal dynamic rationing policy,
in which we set up a policy-based birth-death process and introduce a key reward
function. Section 4 discusses the monotonicity and optimality of the long-run
average profit of this system, and finds the optimal dynamic rationing policy
under three different areas of the penalty cost. Finally, some concluding remarks
are given in Sect. 5.

2 Model Description

In this section, we describe a stock-rationing queue, in which a single class of
products are supplied to stock at a warehouse, and the two classes of demands
come from two retailers with different priorities. In addition, we provide system
structure, operational mode and mathematical notations.

A Stock-Rationing Queue: The warehouse has the maximal capacity N to
stock a single class of products, and needs to pay a holding cost C1 per product
per unit time. There are two classes of demands to order the products, in which
the demands of Class 1 have a higher priority than that of Class 2, such that
the demands of Class 1 can be satisfied in any non-zero inventory, while the
demands of Class 2 may be either satisfied or refused based on the inventory
level of products. Figure 1 depicts a simple physical system to understand the
stock-rationing queue.

The Supply Process: The supply stream of the products to the warehouse is
a Poisson process with arrival rate λ, where the price of per product is C3 paid

The Optimal Dynamic Rationing Policy in the Stock-Rationing Queue 69

Fig. 1. A stock-rationing queue with two demand classes.

by the warehouse to the external product supplier. If the warehouse is full, then
any new arriving product has to be lost. In this case, the warehouse will have
an opportunity cost C4 per product rejected into the warehouse.

The Service Processes: The service times provided by the warehouse to satisfy
the demands of Classes 1 and 2 are i.i.d. and exponential with service rates μ1

and μ2, respectively. The service disciplines for the two classes of demands are
all First Come First Serve (FCFS). The warehouse can obtain the service price
R when one product is sold to Retailer 1 or 2. Note that each demand of Class
1 or 2 is satisfied by one product every time.

The Stock-Rationing Rule: For the two classes of demands, each demand of
Class 1 can always be satisfied in any non-zero inventory, while for satisfying the
demands of Class 2, we need to consider three different cases as follows:

(1) The inventory level is zero. In this case, any new arriving demand has to
be rejected immediately. This leads to the lost sales cost C2,1 (resp. C2,2) per
unit time for any lost demand of Class 1 (resp. 2). We assume that C2,1 > C2,2,
which is used to guarantee the higher priority service for the demands of Class
1 when comparing to the lower priority for the demands of Class 2.

(2) The inventory level is low. In this case, the number of products in the
warehouse is not more than a key threshold K, where the threshold K is sub-
jectively designed by means of some real experience. Note that the demands of
Class 1 have a higher priority to receive the products than the demands of Class
2. Thus the warehouse will not provide any product to satisfy the demands of
Class 2 under an equal service condition if the number of products in the ware-
house is not more than K. Otherwise, such a service priority is violated (i.e., the
demands of Class 2 are satisfied from a low stock), so that the warehouse must
pay a penalty cost P per product supplied to the demands of Class 2 at a low
stock. Note that the penalty cost P measures different priority levels to supply
the products between the two classes of demands.

70 Q.-L. Li et al.

(3) The inventory level is high. In this case, the number of products in the
warehouse is more than the threshold K. Thus the demands of Classes 1 and 2
can be simultaneously satisfied due to enough products in the warehouse.

Independence: We assume that all the random variables defined above are
independent of each other.

3 Optimization Model Formulation

In this section, we establish an optimization problem to find the optimal dynamic
rationing policy in the stock-rationing queue. To do this, we set up a policy-based
birth-death process and introduce a key reward function.

3.1 The States and Policies

To study the stock-rationing queue with two demand classes, we define both
‘states’ and ‘policies’ to express stochastic dynamics of the stock-rationing queue.

Let I(t) be the number of products in the warehouse at time t. Then it is
regarded as the state of this system at time t. Obviously, all the cases of State
I(t) form a state space as follows:

Ω = {0, 1, 2, . . . , N}.

Also, State i ∈ Ω is regarded as an inventory level of this system.
From the states, some policies are defined with a little bit more complicated.

Let di be a policy related to State i ∈ Ω, and it expresses whether or not the
warehouse prefers to supply some products to the demands of Class 2 when the
inventory level is not more than the threshold K for 0 < K ≤ N . Thus, we have

di =

⎧
⎨

⎩

0, i = 0,
0 or 1, i = 1, 2, . . . ,K,
1, i = K + 1,K + 2, . . . , N,

(1)

where di = 0 and 1 represents that the warehouse rejects and satisfies the
demands of Class 2, respectively. Obviously, not only does the policy di depend
on State i ∈ Ω, but also it is controlled by the threshold K. Of course, for a
special case, if K = N , then di ∈ {0, 1} for 1 ≤ i ≤ N .

Corresponding to each state in Ω, we define a time-homogeneous policy of
the stock-rationing queue as

d = (d0; d1, d2, . . . , dK ; dK+1, dK+2, . . . , dN).

It follows from (1) that

d = (0; d1, d2, . . . , dK ; 1, 1, . . . , 1). (2)

The Optimal Dynamic Rationing Policy in the Stock-Rationing Queue 71

Thus the rationing policy d depends on di ∈ {0, 1}, which is related to State i
for 1 ≤ i ≤ K. Let all the possible policies of the stock-rationing queue, given in
(2), form a policy space as follows:

D = {d : d = (0; d1, d2, . . . , dK ; 1, 1, . . . , 1), di ∈ {0, 1} , 1 ≤ i ≤ K} .

Let I(d)(t) be the state of the stock-rationing queue at time t under any given
rationing policy d ∈ D. It is easy to check that

{
I(d)(t) : t ≥ 0

}
is a policy-based

birth-death process. Based on this, the infinitesimal generator is given by

B(d) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ λ
v (d1) − [λ + v (d1)] λ

. . .
. . .

. . .

v (dK) − [λ + v (dK)] λ
v (1) − [λ + v (1)] λ

. . .
. . .

. . .

v (1) − [λ + v (1)] λ
v (1) −v (1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3)

where v (di) = μ1 + diμ2 for i = 1, 2, . . . ,K, and v (1) = μ1 + μ2. It is clear that
v (di) > 0 for i = 1, 2, . . . ,K. Thus the policy-based birth-death process B(d)

must be irreducible, aperiodic and positive recurrent for any given policy d ∈ D.

3.2 The Stationary Probability Vector

From the infinitesimal generator, we write the stationary probability vector of
the policy-based birth-death process

{
I(d)(t) : t ≥ 0

}
as

π(d) =
(
π(d)(0);π(d)(1), . . . , π(d)(K);π(d)(K + 1), . . . , π(d)(N)

)
. (4)

Obviously, the stationary probability vector π(d) is the unique solution to the
system of linear equations: π(d)B(d) = 0 and π(d)e = 1, where e is a column
vector of ones with a suitable dimension. We write

ξ0 = 1, i = 0,

ξ
(d)
i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λi

i∏

j=1
v(dj)

, i = 1, 2, . . . ,K,

λi

(μ1+μ2)
i−K

K∏

j=1
v(dj)

, i = K + 1,K + 2, . . . , N,
(5)

and

h(d) = 1 +
N∑

i=1

ξ
(d)
i .

It follows from Li [10] that

π(d) (i) =
{ 1

h(d) , i = 0,
1

h(d) ξ
(d)
i , i = 1, 2, . . . , N.

(6)

72 Q.-L. Li et al.

3.3 The Reward Function

By using the policy-based birth-death process B(d), now we define a key reward
function in the stock-rationing queue. It is seen from that the reward function
with respect to both states and policies is defined as a profit rate (i.e., the total
system revenue minus the total system cost per unit time). By observing the
impact of rationing policy d on the profit rate, the reward function at State i
under rationing policy d is given by

f (d) (i) = R
(
μ11{i>0} + μ2di

) − C1i − C2,1μ11{i=0} − C2,2μ2 (1 − di)
− C3λ1{i<N} − C4λ1{i=N} − Pμ2di1{1≤i≤K}, (7)

where 1{·} represents the indicator function whose value is one when the event
occurs; otherwise it is zero. By using the indicator function, satisfying and reject-
ing the demands of Class 1 are expressed as 1{i>0} and 1{i=0}, respectively; the
external products enter or are lost by the warehouse according to 1{i<N} and
1{i=N}, respectively; and a penalty cost paid by the warehouse is denoted by
1{1≤i≤K} due to that the warehouse supplies the products to the demands of
Class 2 at a low stock.

Based on the above analysis, we define an (N + 1)-dimensional column vector
composed of the elements f (0) , f (d) (i) for 1 ≤ i ≤ K, and f (j) for K + 1 ≤
j ≤ N as follows:

f (d) =
(
f (0) ; f (d) (1) , f (d) (2) , . . . , f (d) (K) ; f (K + 1) , f (K + 2) , . . . , f (N)

)T

.

(8)
Now, we consider the long-run average profit of the stock-rationing queue

(or the continuous-time policy-based birth-death process
{
I(d)(t) : t ≥ 0

}
) under

any given rationing policy d. Let

ηd = lim
T→∞

E

{
1
T

∫ T

0

f (d)
(
I(d)(t)

)
dt

}

.

Then
ηd = π(d)f (d),

where π(d) and f (d) are given by (4) and (8), respectively.
Based on this, our objective is to find an optimal dynamic rationing policy

d∗ such that the long-run average profit ηd is maximal, that is,

d∗ = arg max
d∈D

{
ηd

}
. (9)

3.4 The Perturbation Realization Factor

For any given rationing policy d ∈ D, it follows from Cao [4] that for the
continuous-time policy-based birth-death process

{
I(d) (t) , t ≥ 0

}
, we define the

performance potential as

g(d) (i) = E

{∫ +∞

0

[
f (d)

(
I(d)(t)

)
− ηd

]
dt

∣
∣
∣
∣ I

(d) (0) = i

}

, (10)

The Optimal Dynamic Rationing Policy in the Stock-Rationing Queue 73

which quantifies the contribution of the initial State i to the long-run average
profit of the stock-rationing queue. Furthermore, we define a perturbation real-
ization factor as

G(d) (i) def= g(d) (i − 1) − g(d) (i) , i = 1, 2, . . . , N, (11)

which quantifies the difference among two adjacent performance potentials
g(d) (i) and g(d) (i − 1), and measures the effect on the long-run average profit
of the stock-rationing queue when the system state is changed from i − 1 to i.

By using the policy-based Poisson equation in Ma et al. [12] , we can derive
a new system of linear equations, which can be used to directly express the
perturbation realization factor G(d) (i) for i = 1, 2, . . . , N , as follows:

Theorem 1. For any given rationing policy d, the perturbation realization fac-
tor G(d) (i) is given by

(a) for 1 ≤ i ≤ K,

G(d) (i) = λ−i
[
f (0) − ηd

] i−1∏

k=1

v (dk) +
i−1∑

r=1

λr−i
[
f (d) (r) − ηd

] i−1∏

k=r+1

v (dk) ;

(b) for K + 1 ≤ i ≤ N ,

G(d) (i) = λ−i
[
f (0) − ηd

] K∏

k=1

v (dk) [v (1)]i−K−1

+
K−1∑

r=1

λr−K
[
f (d) (r) − ηd

] K∏

k=r+1

v (dk)

+
i−1∑

r=K

λr−i
[
f (r) − ηd

]
[v (1)]i−r−2

.

3.5 The Penalty Cost

When the inventory level is low, if the service priority is violated (i.e., the
demands of Class 2 are served at a low stock), then the warehouse has to pay
the penalty cost P for each product supplied to the demands of Class 2.

For our later discussion, we will see that G(d) (i) + b where b = R + C2,2 − P
plays a fundamental role in the performance optimization of the stock-rationing
queue and the sign directly determines the selection of decision actions. Based
on this, we study the influence of the penalty cost P on the sign of G(d) (i) + b.
From G(d) (i) + b = 0, we have

74 Q.-L. Li et al.

P

{

1 + λ−i
[
A0 − F (d)

] i−1∏

k=1

v (dk) +
i−1∑

r=1

λr−i
[
A(d)

r − F (d)
] i−1∏

k=r+1

v (dk)

}

= R + C2,2 + λ−i
[
B0 − D(d)

] i−1∏

k=1

v (dk) +
i−1∑

r=1

λr−i
[
B(d)

r − D(d)
] i−1∏

k=r+1

v (dk) ,

(12)

thus, the unique solution of the penalty cost P to the linear equation (12) is
given by

P
(d)
i =

R + C2,2+λ−i
[
B0−D(d)

] i−1∏

k=1

v (dk)+
i−1∑

r=1
λr−i

[
B

(d)
r −D(d)

] i−1∏

k=r+1

v (dk)

1 + λ−i
[
A0 − F (d)

] i−1∏

k=1

v (dk)+
i−1∑

r=1
λr−i

[
A

(d)
r − F (d)

] i−1∏

k=r+1

v (dk)
.

(13)
It’s easy to see that if P

(d)
i > 0 and 0 ≤ P ≤ P

(d)
i , then G(d) (i) + b ≥ 0;

while if P ≥ P
(d)
i , then G(d) (i) + b ≤ 0. Note that the equality can hold only if

P = P
(d)
i .

4 Monotonicity and Optimality

In this section, we analyze the optimal dynamic rationing policy in the three
different areas of the penalty cost P ≥ PH (d); PL (d) > 0 and 0 < P ≤ PL (d);
and PL (d) < P < PH (d). For the third area: PL (d) < P < PH (d), the
optimal dynamic rationing policy may not be of threshold type but it must be
of transformational threshold type.

The following lemma provides a useful equation for the difference ηd′ −ηd cor-
responding to any two different policies d,d′ ∈ D, called performance difference
equation. See Cao [4] and Ma et al. [12] for more details.

Lemma 1. For any two policies d,d′ ∈ D, we have

ηd′ − ηd = π(d′)
[(

B(d′) − B(d)
)
g(d) +

(
f(d

′) − f (d)
)]

. (14)

To find the optimal rationing policy d∗, we define two rationing policies d
and d′ with an interrelated structure at Position i as follows:

d =
(
0; d1, d2, . . . , di−1, di, di+1, . . . , dK ; 1, 1, . . . , 1

)
,

d′ =
(
0; d1, d2, . . . , di−1, d

′
i, di+1, . . . , dK ; 1, 1, . . . , 1

)
,

where d′
i, di ∈ {0, 1} with d′

i �= di. Clearly, if the two rationing policies d and
d′ have an interrelated structure at Position i, then only the difference between
the two rationing policies d and d′ is at their ith elements: di and d′

i.

The Optimal Dynamic Rationing Policy in the Stock-Rationing Queue 75

Lemma 2. For the two rationing policies d and d′ with an interrelated structure
at Position i: di and d′

i, we have

ηd′ − ηd = μ2π
(d′) (i) (d′

i − di)
[
G(d) (i) + b

]
. (15)

In the stock-rationing queue, we define two critical values related to the
penalty cost P as

PH (d) = max
d∈D

{
0,P

(d)
1 ,P

(d)
2 , . . . ,P

(d)
K

}
(16)

and
PL (d) = min

d∈D

{
P

(d)
1 ,P

(d)
2 , . . . ,P

(d)
K

}
. (17)

The following proposition uses the two critical values PH (d) and PL (d),
together with the penalty cost P , to provide some sufficient conditions under
which the function G(d) (i) + b is either non-positive or non-negative.

Proposition 1. (1) If P ≥ PH (d) for any given rationing policy d ∈ D, then
for each i = 1, 2, . . . , K,

G(d) (i) + b ≤ 0.

(2) If PL (d) > 0 and 0 ≤ P ≤ PL (d) for any given rationing policy d ∈ D,
then for each i = 1, 2, . . . , K,

G(d) (i) + b ≥ 0.

The following theorems provide the optimal dynamic rationing policy of the
stock-rationing queue in two different areas, see the proof in Li et al. [11].

Theorem 2. If P ≥ PH (d) for any given rationing policy d, then the optimal
dynamic rationing policy of the stock-rationing queue is given by

d∗ = (0; 0, 0, . . . , 0; 1, 1, . . . , 1) .

This shows that if the penalty cost is higher with P ≥ PH (d) for any given
rationing policy d, then the warehouse can not supply any product to the demands
of Class 2.

Theorem 3. If PL (d) > 0 and 0 ≤ P ≤ PL (d) for any given rationing policy
d, then the optimal dynamic rationing policy of the stock-rationing queue is given
by

d∗ = (0; 1, 1, . . . , 1; 1, 1, . . . , 1) .

This shows that if the penalty cost is lower with PL (d) > 0 and 0 ≤ P ≤ PL (d),
then the warehouse would like to supply the products to the demands of Class 2.

76 Q.-L. Li et al.

In what follows, we discuss the third area of the penalty cost: PL (d) < P <
PH (d). Note that the analysis for this area is a little complicated. To this end,
we propose a new algebraic method to find the optimal dynamic rationing policy
of the stock-rationing queue.

Based on (13), we introduce a convention: If P(d)
n−1 < P

(d)
n = P

(d)
n+1 = · · · =

P
(d)
n+i = c and P

(d)
n−1 < P ≤ c, then we write

P
(d)
n−1 < P ≤ P(d)

n = P
(d)
n+1 = · · · = P

(d)
n+i,

that is, the penalty cost P is written in front of all the equal elements in the
sequence

{
P

(d)
k : n ≤ k ≤ n + i

}
.

For the sequence
{
P

(d)
k : 1 ≤ k ≤ K

}
, we set up a new permutation from the

smallest to the largest as follows:

P
(d)
i1

≤ P
(d)
i2

≤ · · · ≤ P
(d)
iK−1

≤ P
(d)
iK

,

it is clear that P
(d)
i1

= PL (d) and P
(d)
iK

= PH (d). For convenience of descrip-

tion, for the incremental sequence
{
P

(d)
ij

: 1 ≤ j ≤ K
}

, we write its subscript
vector as (i1, i2, . . . , iK). Note that the subscript vector (i1, i2, . . . , iK) depends
on rationing policy d.

The following lemma shows how the penalty cost P is distributed in the
sequence

{
P

(d)
k : 1 ≤ k ≤ K

}
.

Lemma 3. If PL (d) < P < PH (d) for any given rationing policy d, then there
exists the minimal positive integer n0 ∈ {1, 2, . . . ,K} such that either

P
(d)
in0

< P = P
(d)
in0+1

or
P

(d)
in0

< P < P
(d)
in0+1

.

Now, our task is to develop a new method for finding the optimal dynamic
rationing policy by means of the two useful information: (a) The incremental
sequence

PL (d) = P
(d)
i1

≤ P
(d)
i2

≤ · · · ≤ P
(d)
iK−1

≤ P
(d)
iK

= PH (d) ;

and (b) the penalty cost P has a fixed position: P(d)
in0

< P ≤ P
(d)
in0+1

, where n0

is the minimal positive integer in the set {1, 2, . . . ,K}.
In what follows we discuss two different cases: A simple case with

PL (d) = P
(d)
1 ≤ P

(d)
2 ≤ · · · ≤ P

(d)
K−1 ≤ P

(d)
K = PH (d) (18)

and a general case with

PL (d) = P
(d)
i1

≤ P
(d)
i2

≤ · · · ≤ P
(d)
iK−1

≤ P
(d)
iK

= PH (d) . (19)

The Optimal Dynamic Rationing Policy in the Stock-Rationing Queue 77

Case One: A Simple Case
In case of (18), the subscript vector is expressed as {1, 2, . . . ,K} depending on
the rationing policy d.

If PL (d) < P < PH (d) for any given rationing policy d, then there exists
the minimal positive integer n0 ∈ {1, 2, . . . ,K − 1,K} such that

PL (d) = P
(d)
1 ≤ · · · ≤ P

(d)
n0−1 < P ≤ P(d)

n0
≤ · · · ≤ P

(d)
K = PH (d) .

Based on this, we take two different sets

Λ1 =
{
P

(d)
1 ,P

(d)
2 , . . . ,P

(d)
n0−1

}

and
Λ2 =

{
P(d)

n0
,P

(d)
n0+1, . . . ,P

(d)
K

}
.

By using the two sets Λ1 and Λ2, we write

PH (d;1 → n0 − 1) = max
1≤i≤n0−1

{
P

(d)
i

}

and
PL (d;n0 → K) = min

n0≤j≤K

{
P

(d)
j

}
.

It is clear that PH (d;1 → n0 − 1) = P
(d)
n0−1 and PL (d;n0 → K) = P

(d)
n0 .

For this simple case, the following theorem finds the optimal dynamic
rationing policy is of threshold type.

Theorem 4. For the simple case with PL (d) < P < PH (d) for any given
rationing policy d, if there exists the minimal positive integer n0 ∈ {1, 2, . . . ,K}
such that

PL (d) = P
(d)
1 ≤ · · · ≤ P

(d)
n0−1 < P ≤ P(d)

n0
≤ · · · ≤ P

(d)
K = PH (d) , (20)

then the optimal dynamic rationing policy is given by

d∗ =

⎛

⎜
⎝0; 0, 0, . . . , 0

︸ ︷︷ ︸
n0−1 zeros

, 1, 1, . . . , 1
︸ ︷︷ ︸

K−n0+1 ones

; 1, 1, . . . , 1

⎞

⎟
⎠ .

Case Two: A General Case
For the incremental sequence

{
P

(d)
ij

: j = 1, 2, . . . ,K
}

, we write its subscript
vector as (i1, i2, . . . , iK), which depends on rationing policy d. In the general
case, we assume that (i1, i2, . . . , iK) �= (1, 2, . . . , K).

If PL (d) < P < PH (d) for any given rationing policy d, then there exists
the minimal positive integer n0 ∈ {1, 2, . . . ,K} such that

PL (d) = P
(d)
i1

≤ · · · ≤ P
(d)
in0−1

< P ≤ P
(d)
in0

≤ · · · ≤ P
(d)
iK

= PH (d) .

78 Q.-L. Li et al.

Based on this, we take two sets

ΛG
1 =

{
P

(d)
i1

,P
(d)
i2

, . . . ,P
(d)
in0−1

}

and
ΛG
2 =

{
P

(d)
in0

,P
(d)
in0+1

, . . . ,P
(d)
iK

}
.

For the two sets ΛG
1 and ΛG

2 , we write

P
G

H (d;1 → n0 − 1) = max
1≤k≤n0−1

{
P

(d)
ik

}

and
P

G

L (d;n0 → K) = min
n0≤k≤K

{
P

(d)
ik

}
,

It is clear that P
G

H (d;1 → n0 − 1) = P
(d)
in0−1

and P
G

L (d;n0 → K) = P
(d)
in0

.
Corresponding to the subscript vector of the incremental sequence{

P
(d)
ik

:1≤k≤K
}

, we transfer rationing policy

d = (0; d1, d2, . . . , dn0−1, dn0 , dn0+1, . . . , dK ; 1, 1, . . . , 1)

into a new transformational rationing policy

d (Transfer) =
(
0; di1 , di2 , . . . , din0−1 , din0

, din0+1 , . . . , diK ; 1, 1, . . . , 1
)
.

Therefore, a transformation of the optimal dynamic rationing policy d∗ is

(1, 2, . . . ,K − 1,K) ⇒ (i1, i2, . . . , iK−1, iK) ;

and an inverse transformation of the optimal transformational dynamic rationing
policy d∗ (Transfer) is

(i1, i2, . . . , iK−1, iK) ⇒ (1, 2, . . . ,K − 1,K) .

For the general case, the following theorem finds the optimal dynamic
rationing policy, which may not be of threshold type, but it must be of transfor-
mational threshold type.

Theorem 5. For the general case with PL (d) < P < PH (d) for any given
rationing policy d, if there exists the minimal positive integer n0 ∈ {1, 2, . . . ,K}
such that

PL (d) = P
(d)
i1

≤ · · · ≤ P
(d)
in0−1

< P ≤ P
(d)
in0

≤ · · · ≤ P
(d)
iK

= PH (d) ,

then the optimal transformational dynamic rationing policy is given by

d∗ (Transfer) =

⎛

⎜
⎝0; 0, 0, . . . , 0

︸ ︷︷ ︸
n0−1 zeros

, 1, 1, . . . , 1
︸ ︷︷ ︸

K−n0+1 ones

; 1, 1, . . . , 1

⎞

⎟
⎠ .

The Optimal Dynamic Rationing Policy in the Stock-Rationing Queue 79

The following theorem provides a useful summarization for Theorems 2 to 5,
and shows that we obtain a complete algebraic solution to the optimal dynamic
rationing policy of the stock-rationing queue.

Theorem 6. For the stock-rationing queue with two demand classes, there must
exist an optimal transformational dynamic rationing policy

d∗ (Transfer) =

⎛

⎜
⎝0; 0, 0, . . . , 0

︸ ︷︷ ︸
n0−1 zeros

, 1, 1, . . . , 1
︸ ︷︷ ︸
K−n0 ones

; 1, 1, . . . , 1

⎞

⎟
⎠ .

Based on this finding, we can achieve the following two useful results:
(a) The optimal dynamic rationing policy d∗ is of critical rationing level (i.e.,

threshold type) under each of the three conditions: (i) P ≥ PH (d) for any given
rationing policy d; (ii) PL (d) > 0 and 0 ≤ P ≤ PL (d) for any given rationing
policy d; and (iii) PL (d) < P < PH (d) with the subscript vector (1, 2, . . . ,K)
depending on the rationing policy d.

(b) The optimal dynamic rationing policy is not of critical rationing level (i.e.,
threshold type) if PL (d) < P < PH (d) with the subscript vector (i1, i2, . . . , iK) �=
(1, 2, . . . ,K) depending on rationing policy d.

In the remainder of this section, we provide two numerical examples to verify
computability of our theoretical results and analyze how the optimal long-run
average profit of the stock-rationing queue depends on some key system param-
eters.

In the numerical examples, we take some common parameters: C1 = 1, C2,1 =
4, C2,2 = 1, C3 = 5, C4 = 1;R = 15, N = 100;μ1 = 30, μ2 = 40;K = 5, 6, 10.

(a) A higher penalty cost. Let P = 10 and d∗ = (0; 0, 0, . . . , 0; 1, 1, . . . , 1). We
discuss how the optimal long-run average profit ηd∗

depends on λ for λ ∈ (47, 50).

Fig. 2. ηd∗
vs. λ under three different thresholds K with a higher penalty cost.

80 Q.-L. Li et al.

Fig. 3. ηd∗
vs. λ under three different thresholds K with a lower penalty cost.

From Fig. 2, it is seen that the optimal long-run average profit ηd∗
increases as

λ increases. In addition, with the threshold K increases, the optimal long-run
average profit ηd∗

increases less slowly as λ increases.
(b) A lower penalty cost. Let P = 0.1 and d∗ = (0; 1, 1, . . . , 1; 1, 1, . . . , 1). We

discuss how the optimal long-run average profit ηd∗
depends on λ for λ ∈ (65, 80).

From Fig. 3, it is seen that the optimal long-run average profit ηd∗
increases as

λ increases. In addition, with the threshold K increases, the optimal long-run
average profit ηd∗

increases less slowly as λ increases.

5 Concluding Remarks

In this paper, we highlight intuitive understanding on the optimal dynamic
rationing policy of the stock-rationing queue with two demand classes by means
of the sensitivity-based optimization. To find the optimal dynamic rationing pol-
icy, we establish a policy-based birth-death process and a key reward function
such that the long-run average profit of the stock-rationing queue is expressed
explicitly. Based on this, we derive a performance difference equation between
any two rationing policies such that we can find the optimal dynamic rationing
policy and compute the maximal long-run average profit from three different
areas of the penalty costs. Therefore, we provide an algebraic method to set up
a complete algebraic solution to the optimal dynamic rationing policy. We show
that the optimal dynamic rationing policy must be of transformational thresh-
old type, which leads to refining three simple sufficient conditions under each of
which the optimal dynamic rationing policy is of threshold type.

Along such a line, there are a number of interesting directions for potential
future research, for example:

The Optimal Dynamic Rationing Policy in the Stock-Rationing Queue 81

• Extending to the stock-rationing queues with multiple demand classes, mul-
tiple types of products, backorders, batch order, batch production, and so
on;

• analyzing non-Poisson input, such as Markovian arrival processes (MAPs);
and/or non-exponential service times, e.g., the PH distributions;

• discussing how the long-run average profit can be influenced by some concave
or convex reward functions;

• studying individual or social optimization for stock-rationing queues from a
perspective of game theory by means of the sensitivity-based optimization.

References

1. Altug, M.S., Ceryan, O.: Optimal dynamic allocation of rental and sales inventory
for fashion apparel products. IISE Trans. 54(6), 603–617 (2021)

2. Baron, O., Lu, T., Wang, J.: Priority, capacity rationing, and ambulance diversion
in emergency departments. SSRN. 3387439 (2019)

3. Benjaafar, S., ElHafsi, M.: Production and inventory control of a single product
assemble-to-order system with multiple customer classes. Manage. Sci. 52(12),
1896–1912 (2006)

4. Cao, X.R.: Stochastic Learning and Optimization–A Sensitivity-based Approach.
Springer, New York (2007). https://doi.org/10.1007/978-0-387-69082-7

5. Gayon, J.P., De Vericourt, F., Karaesmen, F.: Stock rationing in an M/Ek/1 multi-
class make-to-stock queue with backorders. IIE Trans. 41(12), 1096–1109 (2009)

6. Ha, A.Y.: Inventory rationing in a make-to-stock production system with several
demand classes and lost sales. Manage. Sci. 43(8), 1093–1103 (1997)

7. Ha, A.Y.: Stock-rationing policy for a make-to-stock production system with two
priority classes and backordering. Nav. Res. Log. 44(5), 457–472 (1997)

8. Ha, A.Y.: Stock rationing in an M/Ek/1 make-to-stock queue. Manage. Sci. 46(1),
77–87 (2000)

9. Jain, A., Moinzadeh, K., Dumrongsiri, A.: Priority allocation in a rental model
with decreasing demand. M. Som-Manuf. Serv. Op. 17(2), 236–248 (2015)

10. Li, Q.L.: Constructive Computation in Stochastic Models with Applications: The
RG-Factorizations. Springer (2010). https://doi.org/10.1007/978-3-642-11492-2

11. Li, Q.L., Li, Y.M., Ma, J.Y., Liu, H.L.: A complete algebraic solution to the optimal
dynamic rationing policy in the stock-rationing queue with two demand classes.
arXiv: 1908.09295 (2019)

12. Ma, J.Y., Xia, L., Li, Q.L.: Optimal energy-efficient policies for data centers
through sensitivity-based optimization. Discrete Event Dyn. S. 29(4), 567–606
(2019)

13. Ma, J.Y., Li, Q.L., Xia, L.: Optimal asynchronous dynamic policies in energy-
efficient data centers. Systems 10(2), 27 (2022)

14. Nadar, E., Akan, M., Scheller-Wolf, A.: Optimal structural results for assemble-to-
order generalized M-systems. Oper. Res. 62(3), 571–579 (2014)

15. Moosa, M.R., Luyckx, V.A.: The realities of rationing in health care. Nat. Rev.
Nephrol. 17(7), 435–436 (2021)

16. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, Hoboken (2014)

17. Topkis, D.M.: Optimal ordering and rationing policies in a nonstationary dynamic
inventory model with n demand classes. Manage. Sci. 15(3), 160–176 (1968)

https://doi.org/10.1007/978-0-387-69082-7
https://doi.org/10.1007/978-3-642-11492-2
http://arxiv.org/abs/1908.09295

82 Q.-L. Li et al.

18. Veinott, A.F., Jr.: Optimal policy in a dynamic, single product, nonstationary
inventory model with several demand classes. Oper. Res. 13(5), 761–778 (1965)

19. Wang, R., Qin, Y., Sun, H.: Research on location selection strategy for airlines
spare parts central warehouse based on METRIC. Comput. Intel. Neurosc. 2021,
1–16 (2021)

20. Xia, L., Zhang, Z.G., Li, Q.L.: A c/μ-rule for job assignment in heterogeneous
group-server queues. Prod. Oper. Manag. 31(3), 1191–1215 (2021)

21. Zhao, H., Deshpande, V., Ryan, J.K.: Inventory sharing and rationing in decen-
tralized dealer networks. Manage. Sci. 51(4), 531–547 (2005)

The Constrained Parallel-Machine
Scheduling Problem with Divisible
Processing Times and Penalties

Jianping Li1(B), Runtao Xie1, Junran Lichen2, Guojun Hu1, Pengxiang Pan1,
and Ping Yang1

1 Department of Mathematics, Yunnan University, East Outer Ring South Road,
University Town, Chenggong District, Kunming 650504, People’s Republic of China

jianping@ynu.edu.cn, xieruntao7@163.com, huguojun@mail.ynu.edu.cn,
panpx@outlook.com, yp1573395725@hotmail.com

2 School of Mathematics and Physics, Beijing University of Chemical Technology,
No. 15, North Third Ring East Road, Chaoyang District,

Beijing 100029, People’s Republic of China

J.R.Lichen@buct.edu.cn

Abstract. We consider the constrained parallel-machine scheduling
problem with divisible processing times and penalties (the CPS-DTP
problem, for short). Specifically, given a set M = {a1, a2, . . . , am} of m
identical machines, and a set J = {b1, b2, . . . , bn} of n jobs, each job
bj ∈ J has a processing time pj ∈ Z+ and a penalty ej ∈ Z+, and the
job processing times are divisible, i.e., either pi|pj or pj |pi for any two
different jobs bi and bj in J . Each job bj is either executed in process-
ing time pj with which we schedule this job on one of m machines, or
rejected with its penalty ej that we must pay for, it is asked to deter-
mine a subset A ⊆ J such that each job bj ∈ A has to be scheduled
only on one of m machines and each job bj ∈ J\A has to be rejected.
We consider three versions of the CPS-DTP problem, respectively. (1)
The constrained parallel-machine scheduling problem with divisible pro-
cessing times and total penalties (the CPS-DTTP problem, for short) is
asked to determine a subset A ⊆ J to satisfy the constraint mentioned-
above, the objective is to minimize the makespan of the schedule T for
accepted jobs in A plus the value of total penalties of the rejected jobs
in J\A; (2) The constrained parallel-machine scheduling problem with
divisible processing times and maximum penalty (the CPS-DTMP prob-
lem, for short) is asked to determine a subset A ⊆ J to satisfy the
constraint mentioned-above, the objective is to minimize the makespan
of the schedule T for accepted jobs in A plus the maximum penalty paid
for rejected jobs in J\A; (3) The constrained parallel-machine schedul-
ing problem with divisible processing times and bounded penalty (the
CPS-DTBP problem, for short) is asked to determine a subset A ⊆ J to

This paper is fully supported by the National Natural Science Foundation of China
[Nos.11861075,12101593] and Project for Innovation Team (Cultivation) of Yunnan
Province [No.202005AE160006]. Junran Lichen is also supported by Fundamental
Research Funds for the Central Universities (buctrc202219), and Jianping Li is also
supported by Project of Yunling Scholars Training of Yunnan Province.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 83–95, 2022.
https://doi.org/10.1007/978-3-031-16081-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_8&domain=pdf
https://doi.org/10.1007/978-3-031-16081-3_8

84 J. Li et al.

satisfy the constraint mentioned-above and the value of total penalties
of the rejected jobs in J\A is no more than a given bound, the objective
is to minimize the makespan of the schedule T for accepted jobs in A.

In this paper, we design an exact algorithm in pseudo-polynomial time
to solve the CPS-DTTP problem, an exact algorithm in strongly poly-
nomial time to solve the CPS-DTMP problem and an exact algorithm
in polynomial time to solve the CPS-DTBP problem, respectively.

Keywords: Combinatorial optimization · Scheduling · Divisible
processing times · Penalties · Exact algorithms

1 Introduction

The classical scheduling problem [6] is defined as follows. Given a set M =
{a1, a2, . . . , am} of m parallel machines and a set J = {b1, b2, . . . , bn} of n jobs,
where each job bj ∈ J has a processing time pj , it is asked to determine a schedule
T such that each job bj has to be executed only on one of the machines, the
objective is to minimize the makespan, i.e., the maximum completion time taken
over all machines. The classical scheduling problem has many applications in
some domains, for example, personnel scheduling, computer systems, engineering
design and transportation scheduling. Following the convention of Lawler et
al. [9], we denote the classical scheduling problem by P || Cmax.

It is well-known that the P || Cmax problem is NP-hard [10]. Graham [6]
in 1966 proposed the classical list scheduling algorithm (the LS algorithm, for
short) which is to arrange all jobs on the machines and assign the job which is
next processed to the currently finishing fastest machine, and the approximation
ratio of the LS algorithm is 2− 1

m . Faigle [5] in 1989 proved that the LS algorithm
is an optimal algorithm for the P || Cmax problem when m = 2 or m = 3. And
Graham [7] in 1969 proposed another famous longest processing time algorithm
(the LPT algorithm, for short) for the off-line version of the P ||Cmax problem
which sort the jobs according to their processing times in non-increasing order,
and then using the LS algorithm. The approximation ratio of the LPT algorithm
is 4

3− 1
3m , which is significantly better than the LS algorithm. Coffman [2] in 1978

presented the MULTIFIT approximation algorithm for the P || Cmax problem
according to the corresponding relationship between the bin packing problem
and this problem, and then proved that the upper bound of the MULTIFIT
algorithm does not exceed 1.22 in the worst case.

However, in many practical cases, processing all jobs may cause the high cost
when some processing times of jobs are very large. So as a survey written by
Shabtay et al. [12], in such cases, the firm may wish to reject these jobs to keep
the completion of orders, though they need to pay some rejection penalties. Bar-
tal et al. [1] in 1996 first considered the parallel-machine scheduling problem with
rejection penalties (the PS-P problem, for short), which is a generalization of the
P || Cmax problem, and it is defined as follows. Given a set M = {a1, a2, . . . , am}
of m identical machines and a set J = {b1, b2, . . . , bn} of n jobs, each job bj ∈ J

The Constrained Parallel-Machine Scheduling Problem 85

has a processing time pj and a penalty ej . It is asked to determine a subset A ⊆ J
such that each job bj ∈ A has to be scheduled only on one of m machines and
each job bj ∈ J\A has to be rejected. The objective is to minimize the makespan
of the schedule T for accepted jobs in A plus the value of total penalties of the
rejected jobs in J\A. For the PS-P problem, Bartal et al. [1] designed a fully
polynomial-time approximation scheme (FPTAS, for short) for fixed m and a
polynomial-time approximation scheme (PTAS, for short) for arbitrary m. In
addition, they presented a (2 − 1

m)-approximation algorithm with running time
O(n log n) for arbitrary m.

Zhang et al. [15] in 2009 introduced the parallel-machine scheduling problem
with bounded penalty (the PS-BP problem, for short), which is a generalization
of the PS-P problem. In addition, in order to satisfy the constraint of the PS-P
problem, the PS-BP problem is asked to satisfy the constraint that the value of
total penalties of the rejected jobs in J\A is no more than B, the objective is to
minimize the makespan. Zhang et al. [15] designed an exact pseudo-polynomial-
time dynamic programming algorithm for the PS-BP problem and an FPTAS
when m is a constant. Li et al. [11] in 2014 designed a strongly polynomial-
time 2-approximation algorithm and a PTAS for the PS-BP problem, and then
presented a FPTAS for the case where the number of machines is a fixed constant,
which improved previous best running time to O(1

ε2m+3 + mn2).
Yue et al. [14] in 2019 proposed the parallel-machine scheduling problem with

divisible processing times (the PS-DT problem, for short), which is a special
version of the P || Cmax problem. In addition to satisfying the constraint of
the P || Cmax problem, the PS-DT problem is asked to satisfy the constraint
that the job processing times are divisible, i.e., either pi|pj or pj |pi, for any two
different jobs bi and bj in J . For convenience, we denote this case by (pi, pj) =
min{pi, pj}. The objective is to minimize the makespan. Divisible processing
times are of interest because they arise naturally in certain applications, such
as memory allocation in computer systems, where device capacities and block
sizes are commonly restricted to powers of 2 [8]. For the PS-DT problem, Yue et
al. [14] designed a polynomial-time algorithm that can exactly solve the PS-DT
problem in time O(n log n).

Zheng et al. [16] in 2018 introduced the parallel-machine scheduling problem
with penalties under special conditions (the PS-PSC problem, for short), which
is a special version of the PS-P problem. In addition to satisfying the constraint
of the PS-P problem, the PS-PSC problem is asked to satisfy the constraint that
ei/pi ≥ ej/pj for any two different jobs bi and bj in J whenever pi ≥ pj , the
objective is to minimize the makespan plus the value of total penalties of the
rejected jobs. Zheng et al. [16] proved that the PS-PSC problem is solvable in
polynomial time, and then presented an efficient polynomial-time algorithm to
solve this problem.

Yue [13] in 2020 considered the parallel-machine scheduling problem with
bounded penalty under special conditions (the PS-BPSC problem, for short),
which is a special version of the PS-BP problem. In addition to satisfying the
constraint of the PS-BP problem, the PS-PSC problem is asked to satisfy the

86 J. Li et al.

constraint that each job bj ∈ J has a processing time pj ∈ 2Z+
and a penalty

ej ∈ {1, 2}, the objective is to minimize the makespan plus the value of total
penalties of the rejected jobs in J\A. Yue [13] designed an exact algorithm in
polynomial time that can exactly solve the PS-BPSC problem .

As the results mentioned-above, when more conditions about processing
times and penalties are satisfied, we can find that the PS-P problem and its
variants are solvable in polynomial time. But the conditions so far are strictly,
it is natural to ask whether there exist some more general conditions that can
keep polynomial-time solvability of those problems. Motivated by the problems
mention-above, we consider the following three problems. Specifically, given a
set M = {a1, a2, . . . , am} of m identical machines, and a set J = {b1, b2, . . . , bn}
of n jobs, each job bj ∈ J has a processing time pj ∈ Z+ and a penalty ej ∈ Z+,
where the job processing times are divisible, i.e., either pi|pj or pj |pi, for any
two different jobs bi and bj in J . Each of these n jobs is either processed on
a machine and not allowed to be interrupted in the process, or rejected with
its penalty that we must pay for, and each machine can only process one job
at a time. It is asked to determine a subset A ⊆ J such that each job bj ∈ A
has to be scheduled only on one of m machines and each job bj ∈ J\A has
to be rejected. We consider three versions of this constrained parallel-machine
scheduling problem with divisible processing times and penalties (the CPS-DTP
problem, for short), i.e., (1) The constrained parallel-machine scheduling prob-
lem with divisible processing times and total penalties (the CPS-DTTP prob-
lem, for short) is asked to determine a subset A ⊆ J to satisfy the constraint
mentioned-above, the objective is to minimize the makespan of the schedule T
for accepted jobs in A plus the value of total penalties of the rejected jobs in J\A,
i.e., min{Cmax(A) +

∑
bj∈J\A ej | A ⊆ J} (2) The constrained parallel-machine

scheduling problem with divisible processing times and maximum penalty (the
problem CPS-DTMP, for short) is asked to determine a subset A ⊆ J to satisfy
the constraint mentioned-above, the objective is to minimize the makespan of
the schedule T for the accepted jobs in A plus maximum penalty paid for the
rejected jobs in J\A, i.e., min{Cmax(A) + max{ej |bj ∈ J\A} | A ⊆ J} (3) The
constrained parallel-machine scheduling problem with divisible processing times
and bounded penalty (the CPS-DTBP problem, for short) is asked to determine
a subset A ⊆ J of to satisfy the constraint mentioned-above and the value of
total penalties of the rejected jobs in J\A is no more than a given bound B,
i.e.,

∑
bj∈J\A ej ≤ B, the objective is to minimize the makespan of the schedule

T for accepted jobs in A , i.e., min{Cmax(A) | A ⊆ J}.
For convenience, by following the convention of Lawler et al. [9], we denote

these three versions of the CPS-DTP problem by P | (pi, pj) = min{pi, pj}, rej
| Cmax +

∑
bj∈J\A ej , P | (pi, pj) = min{pi, pj}, rej | Cmax + max{ej |bj ∈ J\A}

and P | (pi, pj) = min{pi, pj},
∑

bj∈J\A ej ≤ B | Cmax, respectively.
As far as what we have known, the PS-P problem [1,4] and the PS-BP

problem [11,13,15] have been studied for many years. However, to our best
knowledge, the three problems mentioned-above have not been considered in the
literature. Our contribution in this paper is to design three exact algorithms to

The Constrained Parallel-Machine Scheduling Problem 87

solve the CPS-DTTP problem, the CPS-DTMP problem and the CPS-DTBP
problem, respectively.

The paper is organized as follows. In Sect. 2, we introduce some notations and
terminologies, and then present fundamental lemmas to ensure the correctness
of our exact algorithms; In Sect. 3, we present an exact algorithm to solve the
CPS-DTTP problem, and this algorithm runs in time O((n log n+nm)C), where
n is the number of jobs, m is the number of machines and C is the optimal value
for the PS-DT problem; In Sect. 4, we design an exact algorithm to solve the
CPS-DTMP problem, and this algorithm runs in time O(n2 log n); In Sect. 5, we
provide an exact algorithm to solve the CPS-DTBP problem, and that algorithm
runs in time O((n log n + nm) log C); In Sect. 6, we provide our conclusion and
further research.

2 Terminologies and Fundamental Lemmas

In order to clearly present our exact algorithms to solve the CPS-DTTP problem,
the CPS-DTMP problem and the CPS-DTBP, respectively, we restate a special
version of classical scheduling problem and a special version of the multiple
knapsack problem in the sequel. And we provide some fundamental lemmas as
follows.

The parallel-machine scheduling problem with divisible processing times (the
PS-DT problem, for short) is defined as follows.

Definition 1. [14] Given a set M = {a1, a2, . . . , am} of m identical machines,
and a set J = {b1, b2, . . . , bn} of n jobs, each job bj ∈ J has a processing time
pj ∈ Z+, where the job processing times are divisible, i.e., either pi|pj or pj |pi,
for any two different jobs bi and bj in J . Each machine can only process one job
at a time, and the job is not allowed to be interrupted in the processing. It is asked
to determine a schedule T such that each job bj ∈ J has to be processed on one of
the machines. The objective is to minimize the makespan, i.e., minT {Cmax(T)}.

For convenience, we use I = (M,J, p, e) to denote an instance of the CPS-
DTTP problem and the CPS-DTMP problem, use I ′ = (M,J, p, e;B) to denote
an instance of the CPS-DTBP problem in the sequel. For any subset X ⊆ J , we
define e(X) =

∑
bj∈J ej . Now we can construct an instance τ(I) = (M,J, p) of

the PS-DT problem with a processing time function p : J → Z+.
We have known that Yue [14] in 2019 proved the LPT algorithm [7] can solve

the PS-DT problem in polynomial time, which is restated as follows

Lemma 1. [14] There is an exact polynomial algorithm, denoted by the ALPT

algorithm [7], to solve the PS-DT problem, and this algorithm runs in time
O(n log n), where n is the number of jobs with divisible processing times.

The multiple knapsack problem with divisible item sizes (the MKP-DS prob-
lem, for short) is defined as follows.

88 J. Li et al.

Definition 2. [3] Given a set N of m knapsacks with same capacity limitation
L and a set Y = {y1, . . . , yn} of n items, each item yj ∈ Y has its size sj ∈ Z+

and value vj ∈ R+, where item sizes are divisible, i.e., either si|sj or sj |si, for
any two different items yi and yj in Y . It is asked to determine an assignment
(Y1, Y2, . . . , Ym;Y0) of items, satisfying Y = Y0 ∪ (∪m

i=1Yi), Y0 ∩ Yk = φ for each
k ∈ {1, 2, . . . ,m}, and Yi ∩ Yj = φ for two different integers i, j ∈ {1, 2, . . . ,m},
such that the items in Yi ⊆ Y (i = 1, . . . , n) can be put into the ith knap-
sack under the constraint that the total size of items in Yi does not exceed L,
the objective is to maximize the summation of values of assigned items, i.e.,
max{∑

yj∈Y ′ vj | Y ′ = ∪m
i=1Yi}.

Similarly, we use Q = (N,Y ; s, v;L) to denote an instance of the MKP-DS
problem in the sequel. For any subset Y ′ ⊆ Y , we define v(Y ′) =

∑
yj∈Y ′ vj .

We have known that Detti [3] in 2009 presented an exact algorithm in poly-
nomial time to solve the MKP-DS problem, which is restated as follows

Lemma 2. [3] There is an exact polynomial-time algorithm, denoted by the
ADetti algorithm, to solve the MKP-DS problem, and this algorithm runs in
time O(n log n + nm), where m is the number of knapsacks and n is the number
of items.

Given an instance I of either the CPS-DTMP problem or the CPS-DTBP
problem, we can construct an instance ρk(I) of the MKP-DS problem in the fol-
lowing ways. Specifically, given an instance I = (M,J, p, e) and a positive integer
k, we construct an instance ρk(I) = (N,Y ; s, v; k) of the MKP-DS problem, i.e.,
N is the same set of m knapsacks with same capacity limitation k, each item
yj ∈ Y has its size sj ∈ Z+ and value vj ∈ R+, where sj = pj and vj = ej for
each job bj ∈ J .

3 An Exact Algorithm to Solve the CPS-DTTP Problem

In this section, we consider the constrained parallel-machine scheduling problem
with divisible processing times and total penalties (the CPS-DTTP problem),
and we plan to find a schedule T and a subset A ⊆ J such that the value
Cmax(T) + e(J\A) is minimized.

Our algorithm, denoted by the CPS-DTTP algorithm, to solve the CPS-
DTTP problem is described in details as follows.

Algorithm: CPS-DTTP
Input: An instance I = (M,J, p, e) of the CPS-DTTP problem;
Output: A schedule Tk0 and a value k0 + e(J\Ak0).
Begin
Step 1. Using an input instance I to construct an instance τ(I) = (M,J, p)

of the PS-DT problem, we execute the ALPT algorithm [7] on the instance
τ(I) to produce an optimal solution and its optimal value C for the PS-DT
problem;

The Constrained Parallel-Machine Scheduling Problem 89

Step 2. For k = 1 to C do:
(2.1) Using an input instance I of the CPS-DTTP problem and a positive

integer k, we construct an instance ρk(I) = (N,Y ; s, v; k) of the MKP-DS
problem mentioned in Sect. 2;

(2.2) Executing the ADetti algorithm [3] on the instance ρk(I) of the
MKP-DS problem, we determine a schedule Tk = (S1k , S2k , . . . , Smk

;Rk),
and we execute all jobs in Ak = ∪m

i=1Sik on these m machines such that the
value e(Ak) is maximized, equivalently, that e(J\Ak) is minimized;

Step 3. Compute e(J), and denote e(J\A0) = e(J), T0 = (φ, φ, . . . , φ;J)
Step 4. Determine a schedule Tk0 ∈ {T0, T1, T2, . . . , TC}, satisfying the following

Cmax(Tk0) + e(J\Ak0) = min{Cmax(Tk) + e(J\Ak) | k = 0, 1, 2, . . . , C};
Step 5. Output “the schedule Tk0 and the value Cmax(Tk0) + e(J\Ak0)”.
End

Using the CPS-DTTP algorithm, we can determine the following

Theorem 1. The CPS-DTTP algorithm is an exact algorithm to solve the CPS-
DTTP problem, and this algorithm runs in O((n log n + nm)C) time, where n
is the number of jobs, m is the number of machines and C is the optimal value
for an instance τ(I) = (M,J, p) of the PS-DT problem.

Proof. Suppose that there is an optimal solution for an instance I =
(M,J, p, e) of the CPS-DTTP problem, i.e., there is an optimal schedule
T ∗ = (S∗

1 , S∗
2 , . . . , S∗

m;R∗) and an optimal value V ∗ = Cmax(T ∗) + e(J\A∗),
where A∗ = ∪m

i=1S
∗
i . For the same instance I, the CPS-DTTP algorithm

obtains a schedule Tk0 = (S1k0 , S2k0 , . . . , Smk0 ;Rk0) and the output value is
V0 = Cmax(Tk0) + e(J\Ak0).

For convenience, we denote k∗ = Cmax(T ∗). According to Lemma 2, we can
obtain that the ADetti algorithm [3] at Step 2 produces a subset Ak∗ ⊆ J such
that the jobs in Ak∗ are all process on one of the m machines, and the sum
of the penalties of all processed jobs is the largest in all other subsets of J ,
i.e., e(Ak∗) = max{e(A) | the jobs in a subset A(⊆ X) are all process on m
machines, and the makespan is no more than k∗}, implying that e(Ak∗) ≥ e(A),
where A(⊆ J) is a set of jobs that can be processed on m machines and whose
makespan does not exceed k∗.

Since e(J) = e(Ak∗) + e(J\Ak∗) = e(A) + e(J\A) for each subset A (⊆ J)
mentioned-above (including the subset A∗ and the subset Ak∗ because of the
definition k∗ = Cmax(T ∗)), using the fact e(Ak∗) ≥ e(A), we have the following
e(J) − e(Ak∗) ≤ e(J) − e(A), implying that e(J\Ak∗) ≤ e(J\A∗) whenever
A = A∗.

Now, we obtain the following

V0 = Cmax(Tk0) + e(J\Ak0) = min {k + e(J\Ak)|k = 0, 1, 2, ..., C}
≤ k∗ + e(J\Ak∗) ≤ k∗ + e(J\A∗) = Cmax(T ∗) + e(J\A∗) = V ∗

where the second inequality comes from the facts 0 ≤ k∗ ≤ C,the third inequality
comes from the fact e(J\Ak∗) ≤ e(J\A∗) and the fourth equality comes from
the definition k∗ = Cmax(A∗).

90 J. Li et al.

Thus, we have V0 = V ∗ by the minimality of the optimal solution A∗ ⊆ J for
an instance I of the CPS-DTTP problem, implying that the schedule Tk0 and
the value V0 produced by the CPS-DTTP algorithm is also an optimal solution
for an instance I of the CPS-DTTP problem.

The complexity of the CPS-DTTP algorithm can be determined as follows.
(1) Step 1 needs at most time O(n log n) to compute C ; (2) For each k ∈
{0, 1, 2, . . . , C}, the ADetti algorithm [3] needs time O(n log n + nm) to find a
schedule Tk such that all jobs in the subset Aj which obtain from Tk can be
processed on m machines and that e(Ak) is maximized, implying that Step 2
needs at most time O((n log n+nm)C) to execute C iterations; (3) Step 3 needs
at most time O(n) to compute e(J); (4) Step 4 needs at most time O(C) to find a
a schedule Tk0 ∈ {T0, T1, T2, . . . , TC} with minimum value Cmax(Tk0)+e(J\Ak0).
Hence, the CPS-DTTP algorithm needs total time O((n log n + nm)C).

4 An Exact Algorithm to Solve the CPS-DTMP Problem

In this section, we consider the constrained parallel-machine scheduling problem
with divisible processing times and minimum penalty (the CPS-DTMP prob-
lem), and we plan to find a schedule T such that the value Cmax(T)+max{ej |bi ∈
J\A} is minimized.

Our algorithm, denoted by the CPS-DTMP algorithm, to solve the CPS-
DTMP problem is described in details as follows.

Algorithm: CPS-DTMP
Input: An instance I = (M,J, p, e) of the CPS-DTMP problem;
Output: A schedule Tj0 and a value Cmax(Tj0) + ej0 .
Begin
Step 1. We construct a fabricated job b0, and denote e0 = min{ej − 1|bj ∈ J};
Step 2. For j = 0 to n do:

(2.1) Reject bj , and denote Aj = {bt ∈ J |et>ej};
(2.2) Using an input instance I, we construct another instance Ij =

(M,Aj , p, e) of the CPS-DTMP problem;
(2.3) Using the instance Ij of the CPS-DTMP problem, we construct an

instance τ(Ij) = (M,Aj , p) of the PS-DT problem mentioned in Section 2;
(2.4) Executing the ALPT algorithm [7] on the instance τ(Ij) of the PS-

DT problem, determine an optimal schedule Tj = (S1j , S2j , . . . , Smj ;Rj) and
the makespan Cmax(Tj), where Aj = ∪m

i=1Sij and Rj = φ;
Step 3. Determine a schedule Tj0 ∈ {T0, T1, T2, . . . , Tn}, satisfying the following

Cmax(Tj0) + ej0 = min{Cmax(Tj) + ej | j = 0, 1, 2, . . . , n},
and denote Tj0 = (S1j0 , S2j0 , . . . , Smj0 ;R

′), where R′ = J\ ∪m
i=1 Sij0 ;

Step 4. Output “the schedule Tj0 and the value Cmax(Tj0) + ej0”.
End

Using the CPS-DTMP algorithm, we can determine the following

The Constrained Parallel-Machine Scheduling Problem 91

Theorem 2. The CPS-DTMP algorithm is an exact algorithm to solve the CPS-
DTMP problem, and this algorithm runs in O(n2 log n) time, where n is the
number of jobs.

Proof. Suppose that there is an optimal solution for an instance I =
(M,J, p, e) of the CPS-DTMP problem, i.e., there is an optimal schedule
T ∗ = (S∗

1 , S∗
2 , . . . , S∗

m;R∗) and an optimal value V ∗ = Cmax(T ∗) + ej∗ , where
A∗ = ∪m

i=1S
∗
i . For the same instance I, the CPS-DTMP algorithm obtains a

schedule Tj0 = (S1j0 , S2j0 , . . . , Smj0 ;Rj0) and a value V0 = Cmax(Tj0) + ej0 .
Without loss of generality, we assume that the job bj∗ is the job with the

largest penalty in subset J\A∗, then the new job subset is Aj∗ = {bt|et>ej∗} =
A∗. Using the ALPT algorithm [7], according to Lemma 1, we can get a schedule
Tj∗ which process all the jobs in Aj∗ on one of the m machines such that the
makespan is minimum, then there is Cmax(Tj∗) ≤ Cmax(T ′

j∗), where the process-
ing set is Aj∗ in every schedule T ′

j∗ and the maximum penalty of the job in the
rejection set is ej∗ . This shows that Cmax(Tj∗) ≤ Cmax(T ∗) whenever T ′

j∗ = T ∗.
Now, we obtain the following

V0 = Cmax(Tj0) + ej0 = min {Cmax(Tj) + ej |j = 1, 2, . . . , n}

≤ Cmax(Tj∗) + ej∗ ≤ Cmax(T ∗) + ej∗ = V ∗

where the first inequality comes from the facts 1 ≤ j∗ ≤ n,the second inequality
comes from the fact Cmax(Tj∗) ≤ Cmax(T ∗) .

Thus we have V0 = V ∗, by the minimality of the optimal solution for an
instance I of the CPS-DTMP problem, implying that the schedule Tj0 and the
value V0 produced by the CPS-DTMP algorithm is also an optimal solution for
an instance I of the CPS-DTMP problem.

The complexity of the CPS-DTMP algorithm can be determined as follows.
(1) Step 1 needs at most time O(n) ; (2) For each j ∈ {1, 2, . . . , n}, the ALPT

algorithm [7] needs time O(n log n) to find a schedule Tj such that all jobs in
the subset Aj which obtain from Tj can be processed on m machines and that
Cmax(Tj) is minimal, implying that Step 2 needs at most time O(n2 log n) to
execute n iterations; (3) Step 3 needs at most time O(n) to find a a schedule
Tj0 ∈ {T0, T1, T2, . . . , Tn} with minimum value Cmax(Tj0)+ej0 . Hence, the CPS-
DTMP algorithm needs total time O(n2 log n).

5 An Exact Algorithm to Solve the CPS-DTBP Problem

In this section, we consider the constrained parallel-machine scheduling problem
with divisible processing times and bounded penalty (the CPS-DTBP problem),
and we plan to find a schedule T such that the value of total penalties of rejected
jobs is no more than a given bound B, the objective is minimize the makespan.

Our algorithm, denoted by the CPS-DTBP algorithm, to solve the CPS-
DTBP problem is presented as follows.

92 J. Li et al.

Algorithm: CPS-DTBP
Input: An instance I = (M,J, p, e;B) of the CPS-DTBP problem;
Output: A schedule Tk0 and a value k0.
Begin
Step 1. Using an input instance I, we construct an instance τ(I) = (M,J, p) of

the PS-DT problem, and executing the ALPT algorithm [7] on the instance
τ(I), we produce the optimal solution and its optimal value C;

Step 2. If (e(J) ≤ B) then
Output“the schedule Tk0 = (φ, φ, . . . , φ;J), and the value k0 = 0”,

Stop;
Else

Denote H = 1 and H ′ = C;
Step 3. Set k = 	(H + H ′)/2
;
Step 4. We do the following two steps

(4.1) Using an input instance I of the CPS-DTBP problem and a positive
integer k, we construct an instance ρk(I) = (N,Y ; s, v; k) of the MKP-DS
problem mentioned in Sect. 2;

(4.2) Using the ADetti algorithm [3] on the instance ρk(I) of the MKP-
DS problem, we determine a schedule Tk = (S1k , S2k , . . . , Smk

;Rk) to execute
all jobs in Ak = ∪m

i=1Sik on these m machines such that the value e(Ak) is
maximized, equivalently, that e(J\Ak) is minimized;

Step 5. If (e(J\Ak) ≤ B) then
Set H ′ = k;

Else
Set H = k;

Step 6. If (H ′ − H > 1) then Go to Step 3;
Step 7. Output “the schedule Tk0 and the value k0 = H ′”.
End

Using the CPS-DTBP algorithm, we can determine the following

Theorem 3. The CPS-DTBP algorithm is an exact algorithm to solve the CPS-
DTBP problem, and this algorithm runs in time O((n log n + nm) log C), where
n is the number of jobs, m is the number of machines and C is the optimal value
for an instance τ(I) = (M,J, p) of the PS-DT problem.

Proof. Whenever the case e(J) ≤ B happens, we can easily use the CPS-DTBP
algorithm to obtain an optimal solution , i.e., reject all jobs in J in this case.

In the sequel arguments, we should consider the case e(J)>B. Suppose that
there is an optimal solution for an instance I = (M,J, p, e;B) of the CPS-
DTBP problem, i.e., there is an optimal schedule T ∗ = (S∗

1 , S∗
2 , . . . , S∗

m;R∗)
and an optimal value V ∗ = Cmax(T ∗). For the same instance I, the CPS-DTBP
algorithm obtains a value k0 and a schedule Tk0 = (S1k0 , S2k0 , . . . , Smk0 ;Rk0).

In Step 5, we determine that if e(J\Ak) ≤ B, assign the value of k to the
upper bound, otherwise assign the value of k to the lower bound. That is to say,
when k is the upper bound, we have e(J\Ak) ≤ B, and when k is the lower

The Constrained Parallel-Machine Scheduling Problem 93

bound, we have e(J\Ak)>B. In Step 6, we can find that the penalty of the jobs
are all positive integers, so the upper and lower bounds are also both positive
integers. When the difference between the upper and lower bounds is equal to 1
and k0 is the upper bound at this time, we can obtain that e(J\Ak0) ≤ B satisfy-
ing the constraints, and for k0−1, we have e(J\Ak0−1)>B which does not satisfy
the constraints, implying that k0 is the smallest positive integer that satisfies
the constraints e(J\Ak) ≤ B, i.e., k0 = min{k ∈ {1, 2, . . . , C}|e(J\Ak) ≤ B}.

For convenience ,when we denote k∗ = Cmax(T ∗) , using Lemma 2, we can
obtain that the ADetti algorithm [3] at Step 4 produces a subset Ak∗ ⊆ J such
that the sum of the penalties of all processed jobs in Ak∗ is the largest among
all subsets of J , implying that e(Ak∗) ≥ e(A∗).

Now, we obtain the following

e(J\Ak∗) = e(J) − e(Ak∗) ≤ e(J) − e(A∗) = e(J\A∗) ≤ B

where the first inequality comes from the facts e(Ak∗) ≥ e(A∗), the second
inequality comes from the facts that the optimal solution is also a feasible solu-
tion, implying e(J\Ak∗) ≤ B.

Due to the minimality of k0 in the algorithm, i.e., k0 = min{k ∈
{1, 2, . . . , C}|e(J\Ak) ≤ B} , we have k0 = Cmax(Tk0) ≤ k∗ = Cmax(T ∗), and by
the minimality of the optimal solution k∗ for an instance I of the CPS-DTBP
problem, we have k0 = k∗, implying that the schedule Tk0 and the value k0 pro-
duced by the CPS-DTBP algorithm is also an optimal solution for an instance
I ′ of the CPS-DTBP problem.

The complexity of the CPS-DTBP algorithm can be determined as follows.
(1) Step 1 needs at most time O(n log n) to compute C ; (2) Step 2 needs at most
time O(n) to compute e(J) ; (3) Step 3 needs at most time O(1) to compute k;
(4)Step 4 needs at most time O(n log n+nm)to find a schedule Tk for some k by
using the ADetti algorithm [3]; (5) Step 5 needs at most time O(1) to determine
the size relationship between e(J\Ak) and B and assign k to H or H ′; (6) Step
6 determine the difference between H and H ′, if the difference is 1, we can
find the value of k0, otherwise it returns to Step 3 and uses the binary search
algorithm to iterate, so that Step 6 needs at most time O((n log n + nm) log C)
to execute log C iterations. Hence, the CPS-DTBP algorithm needs total time
O((n log n + nm) log C).

6 Conclusion and Further Work

In this paper, we consider the constrained parallel-machine scheduling problem
with divisible processing times and total penalties (the CPS-DTTP problem), the
constrained parallel-machine scheduling problem with divisible processing times
and maximum penalty (the CPS-DTMP problem) and the constrained parallel-
machine scheduling problem with divisible processing times and bounded penalty
(the CPS-DTBP problem), respectively. We obtain the following three main
results.

94 J. Li et al.

(1) We design an exact algorithm in time O((n log n + nm)C) to solve the the
CPS-DTTP problem, where n is the number of jobs with divisible sizes,
m is the number of machines and C is the optimal value for an instance
τ(I) = (M,J, p) of the PS-DT problem;

(2) We present an exact algorithm in time O(n2 log n) to solve the CPS-DTMP
problem;

(3) We provide an exact algorithm in time O((n log n + nm) log C) to solve the
CPS-DTBP problem, where C is the optimal value for an instance τ(I) =
(M,J, p) of the PS-DT problem.

In further work, we shall study other versions of the parallel-machine schedul-
ing problem with divisible job sizes and penalties, and we shall try to design other
exact algorithm in lower running time to resolve CPS-DTTP problem.

References

1. Bartal, Y., Leonardi, S., Marchetti-Spaccamela, A., Sgall, J., Stougie, L.: Multi-
processor scheduling with rejection. SIAM J. Dis. Math. 13, 64–78 (2000)

2. Coffman, E.G., Jr., Garey, M.R., Johnson, D.S.: An application of bin-packing to
multiprocessor scheduling. SIAM J. Comput. 7(1), 1–17 (1978)

3. Detti, P.: A polynomial algorithm for the multiple knapsack problem with divisible
item sizes. Inf. Process. Lett. 109(11), 582–584 (2009)

4. Dósa, G., He, Y.: Bin packing problems with rejection penalties and their dual
problems. Inf. Comput. 204(5), 795–815 (2006)

5. Faigle, U., Kern, W., Turn, G.: On the performance of on-line algorithms for par-
tition problems. Acta Cybern. 9, 107–119 (1989)

6. Graham, R.L.: Bounds for centain multiprocessing anomalies. Bell Syst. Tech. J.
45, 1563–1581 (1966)

7. Graham, R.L.: Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math.
17, 416–429 (1969)

8. Knuth, D.E.: Foundamental Algorithms, vol. 1, 2nd ed. Addison-Wesley, Reading
(1973)

9. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B.: Sequencing and
scheduling: algorithms and complexity. Handb. Oper. Res. Manag. Sci. 4, 445–522
(1993)

10. Lenstra, J.K., Kan, A.R., Brucker, P.: Complexity of machine scheduling problems.
Ann. Discrete Mach. 1, 343–362 (1977)

11. Li, W., Li, J., Zhang, X.,Chen, Z.: Penalty cost constrained identical parallel
machine scheduling problem. Theor. Comput. Sci. 607, 181–192 (2015)

12. Shabtay, D., Gaspar, N., Kaspi, M.: A survey on offline scheduling with rejection.
J. Sched. 16(1), 3–28 (2013)

13. Yue, X.: Parallel machine scheduling problem with rejection cost under special
conditions. Kunming University of Science and Technology, China (2020)

14. Yue, X., Gao, J., Chen, Z.: A polynomial time algorithm for scheduling on process-
ing time constraints. In: ACM International Conference Proceeding Series, 2019
the 9th International Conference on Communication and Network Security, pp.
109–113 (2019)

The Constrained Parallel-Machine Scheduling Problem 95

15. Zhang, Y., Ren, J., Wang, C.: Scheduling with rejection to minimize the makespan.
In: Du, D.-Z., Hu, X., Pardalos, P.M. (eds.) COCOA 2009. LNCS, vol. 5573, pp.
411–420. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02026-
1 39

16. Zheng, S., Yue, X., Chen, Z.: Parallel machine scheduling with rejection under
special conditions. In: ACM International Conference Proceeding Series, 2018 the
8th International Conference on Communication and Network Security, pp. 139–
143 (2018)

https://doi.org/10.1007/978-3-642-02026-1_39
https://doi.org/10.1007/978-3-642-02026-1_39

Obnoxious Facility Location Games
with Candidate Locations

Ling Gai1(B) , Mengpei Liang1 , and Chenhao Wang2,3

1 Glorious Sun School of Business and Management,
Donghua University, Shanghai 200051, China

lgai@dhu.edu.cn, liangmengpei@mail.dhu.edu.cn
2 Advanced Institute of Natural Sciences, Beijing Normal University,

Zhuhai 519087, China
3 BNU-HKBU United International College, Zhuhai 519087, China

chenhwang@bnu.edu.cn

Abstract. We study obnoxious facility location games with facility can-
didate locations. For obnoxious single facility location games under social
utility objective, we present a group strategy-proof mechanism with
approximation ratio of 3. Then we prove the ratio is tight by giving a corre-
sponding lower bound instance. This is also proved to be the best possible
mechanism. For obnoxious two-facility location games with facility candi-
date locations, we study the heterogeneous facility case in this paper. We
design a group strategy-proof mechanism and prove that the approxima-
tion ratio is 2. We also prove that the problem lower bound is 3

2
.

Keywords: Obnoxious facility location game · Mechanism design ·
Strategyproof · Approximation ratio

1 Introduction

The classical facility location problem is a consideration of where to place one or
more facilities to serve the agent and achieve the goal of maximizing utility, i.e.,
a trade-off between service and benefit. For the facility location game, the loca-
tion of an agent is private information and needs to be reported by the agent. The
agents, being rational in the game, will try to maximize their utilities by misre-
porting so that the facility is closer to them. Thus, we are more concerned about
how to design a strategy-proof mechanism to incentivize agents to report their posi-
tions truthfully while ensuring a relatively good facility location solution. The con-
cept of strategy-proof approximation mechanism design without money was first
introduced by Procaccia and Tennenholtz [10]. Following their work, this branch
of study has received a great deal of attention. Chan et al. [2] gave a thorough and
comprehensive survey for it.

In the general setting, most studies focused on the case that facilities can be
placed anywhere (e.g., see [1,3,8,9,16]). However, in practice, most of the facili-
ties can only be built in fixed areas or given locations. For example, the garbage
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 96–105, 2022.
https://doi.org/10.1007/978-3-031-16081-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_9&domain=pdf
http://orcid.org/0000-0003-0710-8498
http://orcid.org/0000-0002-8506-4569
http://orcid.org/0000-0002-2481-5648
https://doi.org/10.1007/978-3-031-16081-3_9

Obnoxious Facility Location Games with Candidate Locations 97

disposal plants or landfills are limited to particular places based on the factors of
geographical position and wind direction. A gas station is generally not located in
the center of residential community. In this paper, we study the facility location
games where the locations can only be selected from a given candidate set, and the
facilities should not be built at the same place.

In the followingwepresent a brief reviewon the results of facility location games
with candidate locations. Tang et al. [12] studied single facility and two-facility
location games for social cost objective and maximum cost objective. For the
single-facility problem under the maximum-cost objective, they gave a determin-
istic 3-approximation group strategy-proof mechanism, and proved that no deter-
ministic (or randomized) strategy-proof mechanism can have an approximation
ratio better than 3 (or 2). For the two-facility problem, they gave an anonymous
deterministic group strategy-proof mechanism that is (2n − 3)-approximation for
the total-cost objective, and 3-approximation for the maximum-cost objective.
Walsh [14] analyzed six different objectives and showed that limiting the location
of a facility makes the problem harder to approximate. Thang [13] assumed an
agent could control multiple locations. He designed a 3-approximation random-
ized strategy-proof mechanism and a deterministic group strategy-proof mecha-
nism with 2n + 1 approximation ratio for social cost objective. Feldman et al. [5]
studied three types of candidate selection mechanisms (single candidate, ranking
and location mechanisms), and they gave the relationships among them. Serafino
and Ventre [11] and Kanellopoulos et al. [7] studied a different version of facility
location games. They assumed the positions of agents to be common knowledge,
while every agent has a private preference over the given facility candidates. So
the cost of each agent is defined to be the distance to the set of facilities he is inter-
ested in, rather than accessing the nearest facility. Dokow et al. [4] analyzed the
location game on discrete unweighted graph, where the agents and the facility are
restricted to vertices only. They gave a characterization of strategy-proof mecha-
nisms on lines and on sufficiently large cycles. Filimonov and Meir [6] gave a char-
acterization of strategy-proof mechanisms on discrete trees.

To the best of our knowledge, there has been no analysis on obnoxious facility
location game with candidate locations. In this paper, the obnoxious facility loca-
tion game on a line is studied. We assume there are n agents distributed in the inter-
val [0, 1], and the candidate locations are given as a set M ⊆ [a, b], a, b ∈ �. We will
design strategy-proof mechanisms, and analyze their approximation ratios. When
multiple facilities are to be located, we consider the heterogeneous facilities case.
[2,15] presented some motivations in real life for this problem. The agent’s utility is
the sum of its distances to all the facilities. And for obnoxious heterogeneous two-
facility location games with minimum distance requirement, [15] designed group
strategy-proof mechanism with approximate ratio in (1, 2]. When we consider two
facilities with a distance limit of 0, the approximation ratio of their mechanism can
be converted to 2.

98 L. Gai et al.

Our Results. For the obnoxious single facility location game under social utility
objective, we prove the cases where an optimal group strategy-proof mechanism
exists. Then we present a group strategy-proof mechanism with approximation
ratio of 3 for other cases. This is the best possible strategy-proof mechanism for
this problem. For the obnoxious heterogeneous two-facility location game, we pro-
pose an optimal group strategy-proof mechanism for the case where [a, b] has no
intersection with (0, 1) and a 2-approximation mechanism for the case with inter-
section, where a and b are the leftmost and rightmost point of the facility candidate
locations, respectively. We also prove the ratio is tight by giving a corresponding
lower bound instance. The problem lower bound is proved to be 3

2 . A summary of
our results is shown in Table 1.

Table 1. Main results

Facility Candidate location Approximation ratio Lower bound

Single facility a+b
2

≤ 0 or a+b
2

≥ 1 Optimal /
0 < a+b

2
< 1 3 3

Heterogeneous
Two-facility

[a, b] ⊆ (−∞, 0] or
[a, b] ⊆ [1,+∞)

Optimal /

Other cases 2 3
2

2 Definition and Terminology

Let N = {1, 2, ..., n} be the set of agents. They are in an interval [0, 1] and their
location set is denoted as X. Let M be the set of candidate locations for the facility,
M ⊆ [a, b]. That is, the leftmost candidate point is a and the rightmost candidate
point is b, a, b ∈ �. The distance between any two points x, y ∈ � is d(x, y) =
|x−y|. We denote the location profile reported by the agents as x = (x1, x2, ..., xn).
A deterministic mechanism f based on the agents’ location profile x, outputs k
facility locations y = (y1, ..., yk) ∈ Mk.

When k = 1, a single obnoxious facility is to be located. Assume the facility
location to be y = f(x) = y, the utility of agent i is his distance to the facility y.
That is,

u(xi,y) = u(xi, y) = d(xi, y).

If k = 2, two obnoxious facilities are to be located. Suppose the locations output
by the mechanism are y = f(x) = {y1, y2}. Then for the heterogeneous facilities
case, the utility is defined to be the sum of distances to both facilities [15]

u(xi,y) = d(xi, y1) + d(xi, y2).

The social utility of a mechanism f(x) with respect to x is denoted as the sum
of utilities of n agents,

SU(x,y) =
∑

i∈N

u(xi,y).

Obnoxious Facility Location Games with Candidate Locations 99

A mechanism f is strategy-proof if no agent can acquire more utility from mis-
reporting. Specifically, assume that an agent i ∈ N misreports its location profile
xi as x′

i, then
u(xi, f(x′

i,x−i)) ≤ u(xi, f(xi,x−i))

A mechanism f is group strategy-proof if there exists at least one agent in group
F who cannot benefit from misreporting. That is, there exists an agent i ∈ F ⊆ N
such that

u(xi, f(x′
F ,x−F)) ≤ u(xi, f(xF ,x−F))

Given an instance c, let OPT (c) be the optimum social objective value, and
f(c) be the objective value of mechanism f . We say mechanism f has an approxi-
mate ratio β if for any instance c there exists a number β such that OPT (c)

f(c) ≤ β.

3 Obnoxious Single Facility Location Game

In this section, we study the obnoxious single facility location game with the objec-
tive of maximizing social utility. Specifically, given an agent location set X ⊆ [0, 1],
one facility is to be selected from candidate location set M which belongs to inter-
val [a, b], a, b ∈ �. The agent utility is his distance to the facility output by the
mechanism, and the social utility is the sum of agents’ utility.

It is easy to see that an optimal facility location solution may not guarantee
strategy-proofness. For example, there are two agents with x1 = 1

3 , x2 = 3
5 ,

and the facility candidate location set is M = {0, 1}. Because
∑2

i=1 d(xi, 1) >∑2
i=1 d(xi, 0), the optimal facility location is y∗ = 1. However, if x2 misreports its

location to be 1, the mechanism returns the facility location y∗ = 0 and x2 can
benefit from misreporting.

In the following, a group strategy-proof mechanism will be presented. The per-
formance analysis of this mechanism will be carried out based on the position of
interval [a, b] and its relationship with agent location set X.

Mechanism 1.Given an agent location profile x in the interval [0, 1] and a facility
candidate location set M ⊆ [a, b]. Let n1 be the number of agents with xi ≤ a+b

2

and n2 be the number of agents with xi > a+b
2 . If n1 ≥ n2, return the rightmost

facility candidate point b; otherwise, return the leftmost facility candidate point a.

Theorem 1. For the obnoxious single facility location game,Mechanism1 is group
strategy-proof. It is optimal if [a, b]∩X = ∅, or [a, b]∩X 	= ∅, a+b

2 ≤ 0 or [a, b]∩X 	=
∅, a+b

2 ≥ 1; and is 3-approximate if [a, b] ∩ X 	= ∅ and 0 < a+b
2 < 1.

100 L. Gai et al.

Fig. 1. Seven possible positions of interval [a, b] comparing to [0, 1], [a, b] ∩ X = ∅.

Proof. As shown in Fig. 1, there is no intersection between [a, b] and interval (0, 1).
For the cases (i)(ii)(iii), a will be selected as the output facility location since n1 <
n2. And point a is the farthest facility candidate point for all agents. So it is optimal
and no agents have the motivation to misreport their positions. Cases (v)(vi)(vii)
are with the similar analysis.

For case (iv)with a > 0, b < 1, 0 < a+b
2 < 1. LetN1 be the set of the agentswith

xi ∈ [0, a+b
2], N2 be the set of the agents with xi ∈ (a+b

2 , 1], and i ∈ N . Suppose
n1 ≥ n2, then Mechanism 1 outputs y = b, the rightmost candidate location. For
any a < y′ < y, we have,

n∑

i=1

d(xi, y) =
∑

i∈N1

d(xi, y
′) +

∑

i∈N1

d(y′, y) +
∑

i∈N2

d(xi, y
′) −

∑

i∈N2

d(y′, y)

=
n∑

i=1

d(xi, y
′) + (n1 − n2) · d(y′, y)

≥
n∑

i=1

d(xi, y
′),

where the last inequality holds because n1 ≥ n2, implying the optimality of y.
Therefore, Mechanism 1 is optimal. Next, we analyse the group strategy-

proofness of Mechanism 1. Let F ∈ N be a coalition. We need to prove that at least
one agent in F does not benefit from lying. Without loss of generality, we assume
that n1 ≥ n2, and the mechanism outputs the facility location profile y = b. If the
output of the mechanism is to be changed, i.e., the facility is located on point a,
at least one agent with xi ≤ a+b

2 misreports his/her location to x′
i > a+b

2 . How-
ever, u(xi, f(x′

F ,x−F)) = d(xi, a) ≤ u(xi, f(xF ,x−F)) = d(xi, b), implying no
increase in the utility of agent i.

When there are agents with positions between [a, b], while the midpoint a+b
2 is

outside of [0, 1], Mechanism 1 is still group strategy-proof and optimal. Suppose
a+b
2 ≤ 0, then Mechanism 1 returns y = a, which is the farthest facility candidate

location for all agents. Therefore, Mechanism 1 is optimal.

Obnoxious Facility Location Games with Candidate Locations 101

When [a, b] ∩ X 	= ∅, 0 < a+b
2 < 1, suppose n1 ≥ n2, the optimal location is

y∗ = y∗ and Mechanism 1 returns y = b. Since the distance from the agent in N1

to point y is at least (y − a+b
2). Then,

SU(x,y) =
∑

i∈N

u(xi,y) =
∑

i∈N

d(xi, y) ≥ n1 · (y − a + b

2
).

Let D1 = SU(x,y) − n1 · (y − a+b
2), we have

D1 =
∑

xi∈[0, a+b
2]

[d(xi, y) − d(
a + b

2
, y)] +

∑

xi∈(a+b
2 ,1]

d(xi, y)

=
∑

xi∈[0, a+b
2]

[d(xi,
a + b

2
)] +

∑

xi∈(a+b
2 ,1]

d(xi, y).

Consider a new location profile x′, in which there are n1 agents at point a+b
2 and

n2 agents are at point y (when y > 1, n2 agents at point 1). Since y∗ is to the left
of y = b and the distance to y is at most (b − a). We have

SU(x′,y∗) = n1 · d(
a + b

2
, y∗) + n2 · d(y∗, y)

≤ n1 · (y − a + b

2
) + 2n2 · (y − a + b

2
) ≤ 3n1 · (y − a + b

2
).

Let D2 be the difference of SU(x,y∗) and SU(x′,y∗). Then,

D2 = SU(x,y∗) − SU(x′,y∗)

=
∑

xi∈[0, a+b
2]

[d(xi, y
∗) − d(

a + b

2
, y∗)] +

∑

xi∈(a+b
2 ,1]

[d(xi, y
∗) − d(y, y∗)].

Thus,

D1 − D2 =
∑

xi∈[0, a+b
2]

[d(xi,
a + b

2
) + d(

a + b

2
, y∗) − d(xi, y

∗)]

+
∑

xi∈(a+b
2 ,1]

[d(xi, y) + d(y, y∗) − d(xi, y
∗)].

By the triangle inequality, it is easy to get that D1 − D2 ≥ 0. (When y > 1,
D1 − D2 ≥ 0 still holds.) In summary,

OPT (x)
SU(x,y)

=
SU(x,y∗)
SU(x,y)

≤ SU(x,y∗) − D1

SU(x,y) − D1
≤ SU(x,y∗) − D2

SU(x,y) − D1

=
SU(x′,y∗)

n1 · (y − a+b
2)

≤ 3n1 · (y − a+b
2)

n1 · (y − a+b
2)

= 3.

�

102 L. Gai et al.

It is obvious that the approximation ratio of 3 for Mechanism 1 is tight. Given
the agents’ location profile x = (12 , 3

4) and candidate location profile (14 , 3
4), the

optimal social utility is 3
4 with the facility locating at point 1

4 , and the social utility
of Mechanism 1 is 1

4 with the facility at point 3
4 .

Note that in [3], Cheng et al. pointed out that for any deterministic strategy-
proof mechanism selecting one of the endpoints as the facility location, 3 is the best
possible approximation ratio when the agents are located on a path. This conclu-
sion applies in our case with facility candidate location constraint, too. We present
the following theorem.

Theorem 2. For the obnoxious single facility location game with candidate loca-
tion, no deterministic strategy-proof mechanism can have an approximation ratio
better than 3 if [a, b] ∩ X 	= φ and 0 < a+b

2 < 1.

Proof. Suppose f is a deterministic mechanism, the output of the mechanism f is
f(x) = y. Consider the profile x = (x1, x2) = (a+b

2 − ε, a+b
2 + ε), 0 < ε < 1.

Assume a location set of facility candidates M = {a, b}, 0 ≤ a < b ≤ 1. We can
see that this profile satisfies the constraint of [a, b] ∩ X 	= φ and 0 < a+b

2 < 1.
The possible facility location of mechanism f could be a or b. If y = b, the

utility of agent 2 is b−a
2 − ε. Consider the profile x′ = (x1, x2) = (a+b

2 − ε, b). By
the strategy-proofness, u(x2, y

′) = |y′ − x2| ≤ b−a
2 − ε. So we have y′ = b. Then

the social utility of f is at most b−a
2 +ε while the optimal social utility is 3(b−a)

2 −ε.
Thus the approximation ratio is at least 3 when ε tends to 0. Therefore, the general
lower bound for the approximation ratio is 3.
�

4 Obnoxious Heterogeneous Two-facility Location Game

In this section, two heterogeneous facilities are to be located inside the candidate
location set M ⊆ [a, b], a, b ∈ �. Agents are still located in the interval [0, 1]. Each
of them tries to maximize the total distance from two facilities, that is, for agent
i, his utility is d(xi, y1) + d(xi, y2). Denote the optimal location profile as y∗ =
(y∗

1 , y
∗
2) and the output of our mechanism as (y1, y2). Without loss of generality,

suppose y∗
1 < y∗

2 and y1 < y2.

Mechanism 2. Given a location profile x in the interval [0, 1] and a location set
of facility candidates M ⊆ [a, b]. The two facilities at the two candidate positions
which are farthest from point 0.

Theorem 3. For the obnoxious heterogeneous two-facility location game, Mecha-
nism 2 is a group strategy-proof optimal mechanism if [a, b] ⊆ (−∞, 0] or [a, b] ⊆
[1,+∞).

Proof. The group strategy-proof of Mechanism 2 is easy to verify since the output
of Mechanism 2 does not depend on agents’ report. The conclusion of optimal is
trivial since Mechanism 2 ensures the selected facilities being the farthest from
each agent.
�

Obnoxious Facility Location Games with Candidate Locations 103

We then carry out our study by considering other possible positions of interval
[a, b].

Mechanism 3. (Endpoints Mechanism). Select two endpoints of the facility can-
didate locations, i.e., point a and point b.
Theorem 4. Mechanism 3 is group strategy-proof for the obnoxious heteroge-
neous two-facility location gameunder themaximizing social utility objective.When
[a, b] ⊆ [0, 1], or a < 0 and b > 1,or a < 0 and 0 < b ≤ 1, or 0 ≤ a < 1 and b > 1,
the approximation ratio is 2.

Proof. No agent misreporting will affect the output of the mechanism, i.e., the
output of the mechanism is fixed. So, Mechanism 3 is group strategy-proof.

Four cases are shown in Fig. 2. In either case, the approximate ratio of Mecha-
nism 3 is 2. For any agent in the interval [0, 1], it is either farthest from a or b. For
each agent, assume he is farther from point a, his utility from any mechanism is at
most 2|xi − a|. Since our mechanism outputs two endpoints, it must output point
a, so the utility of agent from our mechanism is at least |xi − a|. Thus, the social
utility of Mechanism 3 is at least half of the maximum social utility when all the
agents are considered. Therefore, the approximate ratio of Mechanism 3 is 2.
�

As for the lower bound of Mechanism 3, consider the following example. Sup-
pose all the agents are at the point ε. The facility candidate locations are points
0, 1 and 1 − ε. Mechanism 3 outputs two locations a = 0, b = 1, and the social
utility is n(1 − 0). The optimal solution outputs the two rightmost points, point
1 and point 1 − ε. The social utility is n(2 − 3ε). So we have n(2−3ε)

n(1−0) → 2, when
ε → 0. Therefore, the analysis of the approximation ratio is tight.

Fig. 2. Four possible positions of interval [a, b] comparing to [0, 1].

Theorem 5. For the obnoxious heterogeneous two-facility location gamewith can-
didate location, no deterministic strategy-proof mechanism f can have an approx-
imation ratio better than 3

2 if [a, b] ⊆ [0, 1], or a < 0 and b > 1, or a < 0 and
0 < b ≤ 1, or 0 ≤ a < 1 and b > 1, under the social utility objective.

Proof. Suppose f is a strategy-proof mechanism with approximation ratio better
than 3

2 for heterogeneous two-facility location. Assume w.l.o.g. that f builds at
least one facility on the rightmost two candidates. In this case, the utility of agent
2 is at most 1

2 + ε + 1 − (12 + ε) = 1. However, if agent 2 misreports her location
as 1, then by the approximation ratio, f must locate two facilities at 0 and ε, and
thus the utility of agent 2 increases to 1

2 + ε+ 1
2 = 1+ ε, giving a contradiction to

the strategyproofness.
�

104 L. Gai et al.

5 Conclusion

This paper initiates the studies on obnoxious facility location games with candi-
date locations. We design deterministic strategy-proof mechanisms and analyze
the approximation ratio comparing with the optimal solution. We consider both
the single facility location game and the two-facility location game. In the single
facility game, the agent utility is defined as the distance to that facility; In the
two-facility game, the agent utility is defined to be the sum of distances to both
facilities for the heterogeneous case. The social utility is the sum of agents’ utility.

We give a 3-approximation group strategy-proof mechanism for the obnoxious
single facility location game with candidate locations. The ratio is proved to be
tight. For the obnoxious heterogeneous two-facility game with candidate locations,
we propose a 2-approximation mechanism besides an optimal group strategy-proof
mechanism under different cases of [a, b]. We also proved that for obnoxious het-
erogeneous two-facility location game with candidate locations, no strategy-proof
mechanism could get better approximation ratio less than 3

2 .
In the future work we will study the mechanism design and analysis on obnox-

ious homogeneous two-facility game with candidate locations. The cases when
agents are distributed on a tree or general graphs will also be considered.

References

1. Anastasiadis, E., Deligkas, A.: Heterogeneous facility location games. In: Proceed-
ings of the 17th International Conference on Autonomous Agents and MultiAgent
Systems, pp. 623–631 (2018)

2. Chan, H., Filos-Ratsikas, A., Li, B., Li, M., Wang, C.: Mechanism design for facil-
ity location problems: a survey. In: Proceedings of the Thirtieth International Joint
Conference on Artificial Intelligence, IJCAI 2021, Virtual Event/Montreal, Canada,
19–27 August 2021, pp. 4356–4365 (2021)

3. Cheng, Y., Yu, W., Zhang, G.: Strategy-proof approximation mechanisms for an
obnoxious facility game on networks. Theoret. Comput. Sci. 497, 154–163 (2013)

4. Dokow, E., Feldman, M., Meir, R., Nehama, I.: Mechanism design on discrete lines
and cycles. In: Proceedings of the 13th ACM Conference on Electronic Commerce,
pp. 423–440 (2012)

5. Feldman, M., Fiat, A., Golomb, I.: On voting and facility location. In: Proceedings
of the 2016 ACM Conference on Economics and Computation, pp. 269–286 (2016)

6. Filimonov, A.,Meir, R.: Strategyproof facility locationmechanisms on discrete trees.
In: AAMAS 2021: 20th International Conference on Autonomous Agents andMulti-
agent Systems, Virtual Event, United Kingdom, 3–7 May 2021, pp. 510–518 (2021)

7. Kanellopoulos, P., Voudouris, A.A., Zhang, R.: On discrete truthful heterogeneous
two-facility location. arXiv preprint arXiv:2109.04234 (2021)

8. Meir, R.: Strategyproof facility location for three agents on a circle. In: International
Symposium on Algorithmic Game Theory, pp. 18–33 (2019)

9. Nehama, I., Todo, T., Yokoo, M.: Manipulation-resistant false-name-proof facility
location mechanisms for complex graphs. Auton. Agent. Multi-Agent Syst. 36(1),
1–58 (2022). https://doi.org/10.1007/s10458-021-09535-5

http://arxiv.org/abs/2109.04234
https://doi.org/10.1007/s10458-021-09535-5

Obnoxious Facility Location Games with Candidate Locations 105

10. Procaccia, A.D., Tennenholtz, M.: Approximate mechanism design without money.
In: Proceedings of the 10th ACM Conference on Electronic Commerce, pp. 177–186
(2009)

11. Serafino, P., Ventre, C.: Heterogeneous facility location without money. Theoret.
Comput. Sci. 636, 27–46 (2016)

12. Tang, Z., Wang, C., Zhang, M., Zhao, Y.: Mechanism design for facility location
games with candidate locations. In: International Conference on Combinatorial
Optimization and Applications, pp. 440–452 (2020)

13. Thang, N.K.: On (group) strategy-proof mechanisms without payment for facility
location games. In: International Workshop on Internet and Network Economics,
pp. 531–538 (2010)

14. Walsh, T.: Strategy proof mechanisms for facility location at limited locations. In:
Pacific Rim International Conference on Artificial Intelligence, pp. 113–124 (2021)

15. Xu, X., Li, B., Li, M., Duan, L.: Two-facility location games with minimum distance
requirement. J. Artif. Intell. Res. 70, 719–756 (2021)

16. Zou, S., Li, M.: Facility location games with dual preference. In: Proceedings of the
2015 international Conference on Autonomous Agents and Multiagent Systems, pp.
615–623 (2015)

Nonlinear Combinatorial Optimization

Streaming Adaptive Submodular
Maximization

Shaojie Tang1(B) and Jing Yuan2

1 Naveen Jindal School of Management,
University of Texas at Dallas, Richardson, USA

shaojie.tang@utdallas.edu
2 Department of Computer Science, University of North Texas, Denton, USA

Abstract. Many sequential decision making problems can be formulated
as an adaptive submodular maximization problem. However, most of exist-
ing studies in this field focus on pool-based setting, where one can pick
items in any order, and there have been few studies for the stream-based
setting where items arrive in an arbitrary order and one must immedi-
ately decide whether to select an item or not upon its arrival. In this paper,
we introduce a new class of utility functions, semi-policywise submodular
functions. We develop a series of effective algorithms to maximize a semi-
policywise submodular function under the stream-based setting.

1 Introduction

Many machine learning and artificial intelligence tasks can be formulated as an
adaptive sequential decision making problem. The goal of such a problem is to
sequentially select a group of items, each selection is based on the past, in order
to maximize some give utility function. It has been shown that in a wide range
of applications, including active learning [4] and adaptive viral marketing [12],
their utility functions satisfy the property of adaptive submodularity [4], a natural
diminishing returns property under the adaptive setting. Several effective solutions
have been developed for maximizing an adaptive submodular function subject to
various practical constraints. For example, [4] developed a simple adaptive greedy
policy that achieves a 1 − 1/e approximation ratio for maximizing an adaptive
monotone and adaptive submodular function subject to a cardinality constraint.
Recently, [9] extends the aforementioned studies to the non-monotone setting and
they propose a 1/e approximated solution for maximizing a non-monotone adap-
tive submodular function subject to a cardinality constraint. In the same work,
they develop a faster algorithm whose running time is linear in the number of items.
[10] develops the first constant approximation algorithms subject to more general
constraints such as knapsack constraint and k-system constraint.

We note that most of existing studies focus on the pool-based setting where
one is allowed to select items in any order. In this paper, we tackle this problem
under the stream-based setting. Under our setting, items arrive one by one in
an online fashion where the order of arrivals is decided by the adversary. Upon
the arrival of an item, one must decide immediately whether to select that item
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 109–120, 2022.
https://doi.org/10.1007/978-3-031-16081-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_10&domain=pdf
http://orcid.org/0000-0001-9261-5210
http://orcid.org/0000-0001-6407-834X
https://doi.org/10.1007/978-3-031-16081-3_10

110 S. Tang and J. Yuan

or not. If this item is selected, then we are able to observe its realized state;
otherwise, we skip this item and wait for the next item. Our goal is to adaptively
select a group items in order to maximize the expected utility subject to a
knapsack constraint. For solving this problem, we introduce the concept of semi-
policywise submodularity, which is another adaptive extension of the classical
notation of submodularity. We show that this property can be found in many
real world applications such as active learning and adaptive viral marketing. We
develop a series of simple adaptive policies for this problem and prove that if the
utility function is semi-policywise submodular, then our policies achieve constant
approximation ratios against the optimal pool-based policy. In particular, for a
single cardinality constraint, we develop a stream-based policy that achieves an
approximation ratio of 1−1/e

4 . For a general knapsack constraint, we develop a
stream-based policy that achieves an approximation ratio of 1−1/e

16 .

2 Related Work

Stream-Based Submodular Optimization. Non-adaptive submodular maximiza-
tion under the stream-based setting has been extensively studied. For example,
[1] develop the first efficient non-adaptive streaming algorithm SieveStreaming
that achieves a 1/2− ε approximation ratio against the optimum solution. Their
algorithm requires only a single pass through the data, and memory indepen-
dent of data size. [6] develop an enhanced streaming algorithm which requires
less memory than SieveStreaming. Very recently, [7] propose a new algorithm
that works well under the assumption that a single function evaluation is very
expensive. [3] extend the previous studies from the non-adaptive setting to the
adaptive setting. They develop constant factor approximation solutions for their
problem. However, they assume that items arrive in a random order, which is
a large difference from our adversarial arrival model. Our work is also related
to submodular prophet inequalities [2,8]. Although they also consider an adver-
sarial arrival model, their setting is different from ours in that 1. they assume
items are independent and 2. they are allowed to observe an item’s state before
selecting it.

Adaptive Submodular Maximization. [4] introduce the concept of adaptive sub-
modularity that extends the notation of submodularity from sets to policies.
They develop a simple adaptive greedy policy that achieves a 1 − 1/e approx-
imation ratio if the function is adaptive monotone and adaptive submodular.
When the utility function is non-monotone, [9] show that a randomized greedy
policy achieves a 1/e approximation ratio subject to a cardinality constraint.
Very recently, they generalize their previous study and develop the first constant
approximation algorithms subject to more general constraints such as knapsack
constraint and k-system constraint [10]. Other variants of adaptive submodular
maximization have been studied in [11,13–15].

Streaming Adaptive Submodular Maximization 111

3 Preliminaries

3.1 Items

We consider a set E of n items. Each items e ∈ E belongs to a random state
Φ(e) ∈ O where O represents the set of all possible states. Denote by φ a realiza-
tion of Φ, i.e., for each e ∈ E, φ(e) is a realization of Φ(e). In the application of
experimental design, an item e represents a test, such as the blood pressure, and
Φ(e) is the result of the test, such as, high. We assume that there is a known prior
probability distribution p(φ) = Pr(Φ = φ) over realizations φ. The distribution
p completely factorizes if realizations are independent. However, we consider a
general setting where the realizations are dependent. For any subset of items
S ⊆ E, we use ψ : S → O to represent a partial realization and dom(ψ) = S is
called the domain of ψ. For any pair of a partial realization ψ and a realization
φ, we say φ is consistent with ψ, denoted φ ∼ ψ, if they are equal everywhere in
dom(ψ). For any two partial realizations ψ and ψ′, we say that ψ is a subrealiza-
tion of ψ′, and denoted by ψ ⊆ ψ′, if dom(ψ) ⊆ dom(ψ′) and they are consistent
in dom(ψ). In addition, each item e ∈ E has a cost c(e). For any S ⊆ E, let
c(S) =

∑
e∈S c(e) denote the total cost of S.

3.2 Policies

In the stream-based setting, we assume that items arrive one by one in an adver-
sarial order σ. A policy has to make an irrevocable decision on whether to select
an item or not when an item arrives. If an item is selected, then we are able to
observe its realized state; otherwise, we can not reveal its realized state. Formally,
a stream-based policy is a partial mapping that maps a pair of partial realizations
ψ and an item e to some distribution of {0, 1}: π : 2E × OE × E → P({0, 1}),
specifying whether to select the arriving item e based on the current observation
ψ. For example, assume that the current observation is ψ and the newly arrived
item is e, then π(ψ, e) = 1 (resp. π(ψ, e) = 0) indicates that π selects (res. does
not select) e.

Assume that there is a utility function f : 2E×O → R≥0 which is defined
over items and states. Letting E(π, φ, σ) denote the subset of items selected
by a stream-based policy π conditioned on a realization φ and a sequence of
arrivals σ, the expected utility favg(π) of a stream-based policy π conditioned
on a sequence of arrivals σ can be written as

E[favg(π) | σ] = EΦ∼p,Π [f(E(π, Φ, σ), Φ)]

where the expectation is taken over all possible realizations Φ and the internal
randomness of the policy π.

We next introduce the concept of policy concatenation which will be used in
our proofs.

Definition 1 (Policy Concatenation). Given two policies π and π′, let π@π′

denote a policy that runs π first, and then runs π′, ignoring the observation
obtained from running π.

112 S. Tang and J. Yuan

Pool-Based Policy. When analyzing the performance of our stream-based
policy, we compare our policy against the optimal pool-based policy which is
allowed to select items in any order. Note that any stream-based policy can
be viewed as a special case of pool-based policy, hence, an optimal pool-based
policy can not perform worse than any optimal stream-based policy. By abuse of
notation, we still use π to represent a pool-based policy. Formally, a pool-based
policy can be encoded as a partial mapping π that maps partial realizations ψ to
some distribution of E: π : 2E × OE → P ′(E). Intuitively, π(ψ) specifies which
item to select next based on the current observation ψ. Letting E(π, φ) denote
the subset of items selected by a pool-based policy π conditioned on a realization
φ, the expected utility favg(π) of a pool-based policy π can be written as

favg(π) = EΦ∼p,Π [f(E(π, Φ), Φ)]

where the expectation is taken over all possible realizations Φ and the internal
randomness of the policy π. Note that if π is a pool-based policy, then for any
sequence of arrivals σ, favg(π) = E[favg(π) | σ]. This is because the output of a
pool-based policy does not depend on the sequence of arrivals.

3.3 Problem Formulation and Additional Notations

Our objective is to find an stream-based policy that maximizes the worst-case
expected utility subject to a budget constraint B, i.e.,

max
π∈Ωs

min
σ

E[favg(π) | σ] (1)

where Ωs = {π | ∀φ, σ′ : c(E(π, Φ, σ′)) ≤ B} represents a set of all feasible
stream-based policies subject to a knapsack constraint (c,B). That is, a feasible
policy must satisfy the budget constraint under all possible realizations and
sequences of arrivals.

We next introduce some additional notations and important assumptions in
order to facilitate our study.

Definition 2 (Conditional Expected Marginal Utility of an Item).
Given a utility function f : 2E×O → R≥0, the conditional expected marginal
utility Δ(e | ψ) of an item e on top of a partial realization ψ is

Δ(e | ψ) = EΦ[f(S ∪ {e}, Φ) − f(S,Φ) | Φ ∼ ψ] (2)

where the expectation is taken over Φ with respect to p(φ | ψ) = Pr(Φ = φ | Φ ∼
ψ).

Definition 3. [4][Adaptive Submodularity and Monotonicity] A function f :
2E×O → R≥0 is adaptive submodular with respect to a prior p(φ) if for any two
partial realization ψ and ψ′ such that ψ ⊆ ψ′ and any item e ∈ E \ dom(ψ′),

Δ(e | ψ) ≥ Δ(e | ψ′) (3)

Moreover, if f : 2E×O → R≥0 is adaptive monotone with respect to a prior
p(φ), then we have Δ(e | ψ) ≥ 0 for any partial realization ψ and any item
e ∈ E \ dom(ψ).

Streaming Adaptive Submodular Maximization 113

Definition 4 (Conditional Expected Marginal Utility of a Pool-Based
Policy). Given a utility function f : 2E×O → R≥0, the conditional expected
marginal utility Δ(π | ψ) of a pool-based policy π on top of partial realization ψ
is

Δ(π | ψ) = EΦ,Π [f(E(π, Φ), Φ) − f(dom(ψ), Φ) | Φ ∼ ψ]

where the expectation is taken over Φ with respect to p(φ | ψ) = Pr(Φ = φ | Φ ∼
ψ) and the internal randomness of π.

We next introduce a new class of stochastic functions.

Definition 5 (Semi-policywise Submodularity). A function f : 2E×O →
R≥0 is semi-policywise submodular with respect to a prior p(φ) and a knapsack
constraint (c,B) if for any partial realization ψ,

favg(π∗) ≥ max
π∈Ωp

Δ(π | ψ) (4)

where Ωp denotes the set of all possible pool-based policies subject to a knapsack
constraint (c,B), i.e., Ωp = {π | ∀φ, c(E(π, φ)) ≤ B}, and

π∗ ∈ arg max
π∈Ωp

favg(π)

represents an optimal pool-based policy subject to (c,B).

In the rest of this paper, we always assume that our utility function f :
2E×O → R≥0 is adaptive monotone, adaptive submodular and semi-policywise
submodular with respect to a prior p(φ) and a knapsack constraint (c,B). In
appendix, we show that this type of function can be found in a variety of impor-
tant real world applications. All missing materials are moved to appendix.

4 Uniform Cost

We first study the case when all items have uniform costs, i.e., ∀e ∈ E, c(e) = 1.
Without loss of generality, assume B is some positive integer. To solve this
problem, we extend the non-adaptive solution in [1] to the adaptive setting.

4.1 Algorithm Design

Recall that π∗ ∈ arg maxπ∈Ωp favg(π) represents an optimal pool-based policy
subject to a budget constraint B, suppose we can estimate favg(π∗) approxi-
mately, i.e., we know a value v such that β · favg(π∗) ≥ v ≥ α · favg(π∗) for some
α ∈ [0, 1] and β ∈ [1, 2]. Our policy, called Online Adaptive Policy πc, starts with
an empty set S = ∅. In each subsequent iteration i, after observing an arriving
item σ(i), πc adds σ(i) to S if the marginal value of σ(i) on top of the current
partial realization ψt is at least v

2B ; otherwise, it skips σ(i). This process iterates
until there are no more arriving items or it reaches the cardinality constraint. A
detailed description of πc is listed in Algorithm 1.

114 S. Tang and J. Yuan

Algorithm 1. Online Adaptive Policy πc

1: S = ∅; i = 1; t = 1; ψ1 = ∅.
2: while i ≤ n and |S| < B do
3: if Δ(σ(i) | ψt) ≥ v

2B
then

4: S ← S ∪ {σ(i)}; ψt+1 ← ψt ∪ {(σ(i), Φ(σ(i)))}; t ← t + 1;
5: i = i + 1;
6: return S

4.2 Performance Analysis

We present the main result of this section in the following theorem.

Theorem 1. Assuming that we know a value v such that β · favg(π∗) ≥ v ≥
α · favg(π∗) for some β ∈ [1, 2] and α ∈ [0, 1], we have E[favg(πc) | σ] ≥
min{α

4 , 2−β
4 }favg(π∗) for any sequence of arrivals σ.

4.3 Offline Estimation of favg(π∗)

Recall that the design of πc requires that we know a good approximation of
favg(π∗). We next explain how to obtain such an estimation. It is well known that
a simple greedy pool-based policy πg (which is outlined in Algorithm 2) provides
a (1−1/e) approximation for the pool-based adaptive submodular maximization
problem subject to a cardinality constraint [4], i.e., favg(πg) ≥ (1−1/e)favg(π∗).
Hence, favg(πg) is a good approximation of favg(π∗). In particular, if we set
v = favg(πg), then we have favg(π∗) ≥ v ≥ (1−1/e)favg(π∗). This, together with
Theorem 2, implies that πc achieves a 1−1/e

4 approximation ratio against π∗. One
can estimate the value of favg(πg) by simulating πg on every possible realization
φ to obtain E(πg, φ) and letting favg(πg) =

∑
φ p(φ)f(E(πg, φ), φ). When the

number of possible realizations is large, one can sample a set of realizations
according to p(φ) then run the simulation. Although obtaining a good estimation
of favg(πg) may be time consuming, this only needs to be done once in an
offline manner. Thus, it does not contribute to the running time of the online
implementation of πc.

Algorithm 2. Offline Adaptive Greedy Policy πg

1: S = ∅; t = 1; ψ1 = ∅.
2: while t ≤ B do
3: let e′ = arg maxe∈E Δ(e | ψt);
4: S ← S ∪ {e′}; ψt+1 ← ψt ∪ {(e′, Φ(e′))}; t ← t + 1;
5: return S

5 Nonuniform Cost

We next study the general case when items have nonuniform costs.

Streaming Adaptive Submodular Maximization 115

5.1 Algorithm Design

Algorithm 3. Online Adaptive Policy with Nonuniform Cost πk

1: S = ∅; t = 1; i = 1; ψ1 = ∅.
2: while i ≤ n do
3: if Δ(σ(i)|ψt)

c(σ(i))
≥ v

2B
then

4: if
∑

e∈S c(e) + c(σ(i)) > B then
5: break;
6: else
7: S ← S ∪ {σ(i)}; ψt+1 ← ψt ∪ {(σ(i), Φ(σ(i)))}; t ← t + 1;
8: i = i + 1
9: return S

Suppose we can estimate favg(π∗) approximately, i.e., we know a value v such
that β ·favg(π∗) ≥ v ≥ α ·favg(π∗) for some α ∈ [0, 1] and β ∈ [1, 2]. For each e ∈
E, let f(e) denote EΦ[f({e}, Φ)] for short. Our policy randomly selects a solution
from {e∗} and πk with equal probability, where e∗ = arg maxe∈E f(e) is the
best singleton and πk, which is called Online Adaptive Policy with Nonuniform
Cost, is a density-greedy policy. Hence, the expected utility of our policy is
(f(e∗)+E[favg(πk) | σ])/2 for any given sequence of arrivals σ. We next explain
the design of πk. πk starts with an empty set S = ∅. In each subsequent iteration
i, after observing an arriving item σ(i), it adds σ(i) to S if the marginal value
per unit budget of σ(i) on top of the current realization ψt is at least v

2B , i.e.,
Δ(σ(i)|ψt)

c(σ(i)) ≥ v
2B , and adding σ(i) to S does not violate the budget constraint;

otherwise, if Δ(σ(i)|ψt)
c(σ(i)) < v

2B , πk skips σ(i). This process iterates until there are
no more arriving items or it reaches the first item (excluded) that violates the
budget constraint. A detailed description of πk is listed in Algorithm 3.

5.2 Performance Analysis

Before presenting the main theorem, we first introduce a technical lemma.

Lemma 1. Assuming that we know a value v such that β · favg(π∗) ≥ v ≥
α · favg(π∗) for some α ∈ [0, 1] and β ∈ [1, 2], we have max{f(e∗),E[favg(πk) |
σ]} ≥ min{α

4 , 2−β
4 }favg(π∗) for any sequence of arrivals σ.

Proof: We first introduce an auxiliary policy πk+ that follows the same procedure
of πk except that πk+ is allowed to add the first item that violates the budget con-
straint. Although πk+ is not necessarily feasible, we next show that the expected
utility E[favg(πk+) | σ] of πk+ is upper bounded by max{f(e∗),E[favg(πk) | σ]}
for any sequence of arrivals σ, i.e., E[favg(πk+) | σ] ≤ max{f(e∗),E[favg(πk) |
σ]}.

116 S. Tang and J. Yuan

Proposition 1. For any sequence of arrivals σ,

E[favg(πk+) | σ] ≤ max{f(e∗),E[favg(πk) | σ]}
Proposition 1, whose proof is deferred to appendix, implies that to prove this

lemma, it suffices to show that E[favg(πk+) | σ] ≥ min{α
4 , 2−β

4 }favg(π∗). The
rest of the analysis is devoted to proving this inequality for any fixed sequence of
arrivals σ. We use λ = {ψλ

1 , ψλ
2 , ψλ

3 , · · · , ψλ
zλ} to denote a fixed run of πk+, where

ψλ
t is the partial realization of the first t selected items and zλ is the total number

of selected items under λ. Let U = {λ | Pr[λ] > 0} represent all possible stories
of running πk+, U+ represent those stories where πk+ meets or violates the
budget, i.e., U+ = {λ ∈ U | c(dom(ψλ

zλ)) ≥ B}, and U− represent those stories
where πk+ does not use up the budget, i.e., U− = {λ ∈ U | c(dom(ψλ

zλ)) < B}.
Therefore, U = U+ ∪U−. For each λ and t ∈ [zλ], let eλ

t denote the t-th selected
item under λ. Define ψλ

0 = ∅ for any λ. Using the above notations, we can
represent E[favg(πk+) | σ] as follows:

E[favg(πk+) | σ] =
∑

λ∈U

Pr[λ](
∑

t∈[zλ]

Δ(eλ
t | ψλ

t−1)) (5)

=
∑

λ∈U+

Pr[λ](
∑

t∈[zλ]

Δ(eλ
t | ψλ

t−1))

︸ ︷︷ ︸
I

+
∑

λ∈U−
Pr[λ](

∑

t∈[zλ]

Δ(eλ
t | ψλ

t−1)) (6)

Then we consider two cases. We first consider the case when
∑

λ∈U+ Pr[λ] ≥ 1/2
and show that the value of I is lower bounded by α

4 favg(π∗). According to
the definition of U+, we have

∑
t∈[zλ] c(e

λ
t) ≥ B for any λ ∈ U+. Moreover,

recall that for all t ∈ [zλ], Δ(eλ
t |ψλ

t−1)

c(eλ
t)

≥ v
2B due to the design of our algorithm.

Therefore, for any λ ∈ U+,
∑

t∈[zλ]

Δ(eλ
t | ψλ

t−1) ≥ v

2B
× B =

v

2
(7)

Because we assume that
∑

λ∈U+ Pr[λ] ≥ 1/2, we have
∑

λ∈U+

Pr[λ](
∑

t∈[zλ]

Δ(eλ
t | ψλ

t−1)) ≥ (
∑

λ∈U+

Pr[λ]) × v

2
≥ v

4
≥ α

4
favg(π∗) (8)

The first inequality is due to (7) and the third inequality is due to the assumption
that v ≥ α·favg(π∗). We conclude that the value of I (and thus E[favg(πk+) | σ])
is no less than α

4 favg(π∗), i.e.,

E[favg(πk+) | σ] ≥ α

4
favg(π∗) (9)

We next consider the case when
∑

λ∈U+ Pr[λ] < 1/2. We show that under
this case,

E[favg(πk+) | σ] ≥ 2 − β

4
favg(π∗) (10)

Streaming Adaptive Submodular Maximization 117

Because f : 2E×O → R≥0 is adaptive monotone, we have E[favg(πk+@π∗) |
σ] ≥ favg(π∗). To prove (10), it suffices to show that

E[favg(πk+) | σ] ≥ 2 − β

4
E[favg(πk+@π∗) | σ]

Observe that we can represent the gap between favg(πk+@π∗) and favg(π∗)
conditioned on σ as follows:

E[favg(πk+@π∗) − favg(πk+) | σ] =
∑

λ∈U

Pr[λ](
∑

t∈[zλ]

Δ(π∗ | ψλ
zλ)) (11)

=
∑

λ∈U+

Pr[λ](
∑

t∈[zλ]

Δ(π∗ | ψλ
zλ))

︸ ︷︷ ︸
II

+
∑

λ∈U−
Pr[λ](

∑

t∈[zλ]

Δ(π∗ | ψλ
zλ))

︸ ︷︷ ︸
III

(12)

Because f : 2E×O → R≥0 is semi-policywise submodular with respect to
p(φ) and (c,B), we have maxπ∈Ωp Δ(π | ψλ

zλ) ≤ favg(π∗). Moreover, because
Δ(π∗ | ψλ

zλ) ≤ maxπ∈Ωp Δ(π | ψλ
zλ), we have

Δ(π∗ | ψλ
zλ) ≤ favg(π∗) (13)

It follows that

II =
∑

λ∈U+

Pr[λ](
∑

t∈[zλ]

Δ(π∗ | ψλ
zλ)) ≤ (

∑

λ∈U+

Pr[λ])favg(π∗) (14)

Next, we show that III is upper bounded by (
∑

λ∈U− Pr[λ])β
2 favg(π∗).

For any ψλ
zλ , we number all items e ∈ E by decreasing ratio

Δ(e|ψλ

zλ)

c(e) , i.e.,

e(1) ∈ arg maxe∈E
Δ(e|ψλ

zλ)

c(e) . Let l = min{i ∈ N | ∑i
j=1 c(e(i)) ≥ B}. Define

D(ψλ
zλ) = {e(i) ∈ E | i ∈ [l]} as the set containing the first l items. Intuitively,

D(ψλ
zλ) represents a set of best-looking items conditional on ψλ

zλ . Consider any
e ∈ D(ψλ

zλ), assuming e is the i-th item in D(ψλ
zλ), let

x(e, ψλ
zλ) = min{1,

B − ∑
s∈∪j∈[i−1]{e(j)} c(s)

c(e)
}

where ∪j∈[i−1]{e(j)} represents the first i − 1 items in D(ψλ
zλ).

In analogy to Lemma 1 of [5],
∑

e∈D(ψλ

zλ)

x(e, ψλ
zλ)Δ(e | ψλ

zλ) ≥ Δ(π∗ | ψλ
zλ) (15)

Note that for every λ ∈ U−, we have
∑

t∈[zλ] c(e
λ
t) < B, that is, πk+ does

not use up the budget under λ. This, together with the design of πk+, indicates

118 S. Tang and J. Yuan

that for any e ∈ E, its benefit-to-cost ratio on top of ψλ
zλ is less than v

2B , i.e.,
Δ(e|ψλ

zλ)

c(e) < v
2B . Therefore,

∑

e∈D(ψλ

zλ)

x(e, ψ)Δ(e | ψλ
zλ) ≤ B × v

2B
=

v

2
(16)

(15) and (16) imply that

Δ(π∗ | ψλ
zλ) ≤ v

2
(17)

We next provide an upper bound of III,

III =
∑

λ∈U−
Pr[λ](

∑

t∈[zλ]

Δ(π∗ | ψλ
zλ)) ≤ (

∑

λ∈U−
Pr[λ])

v

2
(18)

≤ (
∑

λ∈U−
Pr[λ])

β

2
favg(π∗) (19)

where the first inequality is due to (17) and the second inequality is due to
v ≤ β · favg(π∗).

Now we are in position to bound the value of E[favg(πk+@π∗) − favg(πk+) |
σ],

E[favg(πk+@π∗)− favg(πk+) | σ] = II + III (20)

≤ (
∑

λ∈U+

Pr[λ])favg(π∗) + (
∑

λ∈U−
Pr[λ])

β

2
favg(π∗) (21)

≤ 1
2
favg(π∗) +

1
2

× β

2
favg(π∗) (22)

=
2 + β

4
favg(π∗) (23)

The first inequality is due to (14) and (19). The second inequality is due to∑
λ∈U+ Pr[λ] +

∑
λ∈U− Pr[λ] = 1 and the assumptions that

∑
λ∈U+ Pr[λ] < 1/2

and β ∈ [1, 2]. Because E[favg(πk+@π∗) | σ] ≥ E[favg(π∗) | σ], which is due to
f : 2E×O → R≥0 is adaptive monotone, we have

E[favg(π∗) − favg(πk+) | σ] ≤ E[favg(πk+@π∗) − favg(πk+) | σ] (24)

≤ 2 + β

4
favg(π∗) (25)

where the second inequality is due to (23). This, together with the fact that
E[favg(π∗) | σ] = favg(π∗), i.e., the optimal pool-based policy is not dependent
on the sequence of arrivals, implies (10).

Combining the above two cases ((9) and (10)), we have

E[favg(πk+) | σ] ≥ min{α

4
,
2 − β

4
}favg(π∗) (26)

Streaming Adaptive Submodular Maximization 119

This, together with Proposition 1, immedinately conclues this lemma. �
Recall that our final policy randomly picks a solution from {e∗} and πk with

equal probability, thus, its expected utility is f(e∗)+E[favg(π
k)|σ]

2 which is lower

bounded by max{f(e∗),E[favg(π
k)|σ]}

2 . This, together with Lemma 1, implies the
following main theorem.

Theorem 2. If we randomly pick a solution from {e∗} and πk with equal prob-
ability, then it achieves a min{α

8 , 2−β
8 } approximation ratio against the optimal

pool-based policy π∗.

5.3 Offline Estimation of favg(π∗)

Algorithm 4. Offline Greedy Policy with Nonuniform Cost πgn

1: S = ∅; t = 1; ψ1 = ∅.
2: while t ≤ B do
3: let e′ = arg maxe∈E

Δ(e|ψt)
c(e)

;

4: if
∑

e∈S c(e) + c(e′) > B then
5: break;
6: S ← S ∪ {e′}; ψt+1 ← ψt ∪ {(e′, Φ(e′))}; t ← t + 1;
7: return S

To complete the design of πk, we next explain how to estimate the utility
of the optimal pool-based policy favg(π∗). It has been shown that the bet-
ter solution between {e∗} and a pool-based density-greedy policy πgn (Algo-
rithm 4) achieves a (1 − 1/e)/2 approximation for the pool-based adaptive
submodular maximization problem subject to a knapsack constraint [16], i.e.,
max{favg(πgn), f(e∗)} ≥ 1−1/e

2 favg(π∗). If we set v = max{favg(πgn), f(e∗)}
in πk, then we have α = (1 − 1/e)/2 and β = 1. This, together with Theo-
rem 2, implies that πc achieves a 1−1/e

16 approximation ratio against π∗. One
can estimate the value of favg(πgn) by simulating πgn on every possible real-
ization φ to obtain E(πgn, φ) and letting favg(πgn) =

∑
φ p(φ)f(E(πgn, φ), φ).

To estimate the value of f(e∗), one can compute the value of f(e) using
f(e) =

∑
φ p(φ)f({e}, φ) for all e ∈ E, then return the best result as f(e∗).

References

1. Badanidiyuru, A., Mirzasoleiman, B., Karbasi, A., Krause, A.: Streaming submod-
ular maximization: massive data summarization on the fly. In: Proceedings of the
20th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 671–680 (2014)

2. Chekuri, C., Livanos, V.: On submodular prophet inequalities and correlation gap.
arXiv preprint arXiv:2107.03662 (2021)

3. Fujii, K., Kashima, H.: Budgeted stream-based active learning via adaptive sub-
modular maximization. In: NIPS, vol. 16, pp. 514–522 (2016)

http://arxiv.org/abs/2107.03662

120 S. Tang and J. Yuan

4. Golovin, D., Krause, A.: Adaptive submodularity: theory and applications in active
learning and stochastic optimization. J. Artifi. Intell. Res. 42, 427–486 (2011)

5. Gotovos, A., Karbasi, A., Krause, A.: Non-monotone adaptive submodular max-
imization. In: Twenty-Fourth International Joint Conference on Artificial Intelli-
gence (2015)

6. Kazemi, E., Mitrovic, M., Zadimoghaddam, M., Lattanzi, S., Karbasi, A.: Sub-
modular streaming in all its glory: Tight approximation, minimum memory and
low adaptive complexity. In: International Conference on Machine Learning, pp.
3311–3320. PMLR (2019)

7. Kuhnle, A.: Quick streaming algorithms for maximization of monotone submodular
functions in linear time. In: International Conference on Artificial Intelligence and
Statistics, pp. 1360–1368. PMLR (2021)

8. Rubinstein, A., Singla, S.: Combinatorial prophet inequalities. In: Proceedings of
the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
1671–1687. SIAM (2017)

9. Tang, S.: Beyond pointwise submodularity: non-monotone adaptive submodular
maximization in linear time. Theoret. Comput. Sci. 850, 249–261 (2021)

10. Tang, S.: Beyond pointwise submodularity: Non-monotone adaptive submodular
maximization subject to knapsack and k-system constraints. In: 4th international
Conference on Modelling, Computation and Optimization in Information Systems
and Management Sciences (2021)

11. Tang, S.: Robust adaptive submodular maximization. CoRR abs/2107.11333
(2021). https://arxiv.org/abs/2107.11333

12. Tang, S., Yuan, J.: Influence maximization with partial feedback. Oper. Res. Lett.
48(1), 24–28 (2020)

13. Tang, S., Yuan, J.: Adaptive regularized submodular maximization. In: 32nd
International Symposium on Algorithms and Computation (ISAAC 2021). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik (2021)

14. Tang, S., Yuan, J.: Non-monotone adaptive submodular meta-learning. In: SIAM
Conference on Applied and Computational Discrete Algorithms (ACDA 2021), pp.
57–65. SIAM (2021)

15. Tang, S., Yuan, J.: Optimal sampling gaps for adaptive submodular maximization.
In: AAAI (2022)

16. Yuan, J., Tang, S.J.: Adaptive discount allocation in social networks. In: Proceed-
ings of the 18th ACM International Symposium on Mobile Ad Hoc Networking
and Computing, pp. 1–10 (2017)

https://arxiv.org/abs/2107.11333

Constrained Stochastic Submodular
Maximization with State-Dependent

Costs

Shaojie Tang(B)

Naveen Jindal School of Management, University of Texas at Dallas, Texas, USA

shaojie.tang@utdallas.edu

Abstract. In this paper, we study the constrained stochastic submodular
maximization problem with state-dependent costs. The input of our prob-
lem is a set of items whose states (i.e., the marginal contribution and the
cost of an item) are drawn from a known probability distribution. The only
way to know the realized state of an item is to select that item.We consider
two constraints, i.e., inner and outer constraints. Recall that each item has
a state-dependent cost, and the inner constraint states that the total real-
ized cost of all selected items must not exceed a give budget. Thus, inner
constraint is state-dependent. The outer constraint, on the other hand, is
state-independent. It can be represented as a downward-closed family of
sets of selected items regardless of their states. Our objective is to max-
imize the objective function subject to both inner and outer constraints.
Under the assumption that larger cost indicates larger “utility”, we present
a constant approximate solution to this problem.

1 Introduction

In this paper, we study a novel constrained stochastic submodular maximiza-
tion problem. We follow the framework developed in [4] and introduce the state-
dependent item costs into the classic stochastic submodular maximization prob-
lem. The input of our problem is a set of items, each item has a random state
which is drawn from a known probability distribution. The marginal contribution
and the cost of an item are dependent on its actual state. The utility function is
a mapping from sets of items and their states to a real number. We must select
an item before observing its actual state. Our objective is to sequentially select
a group of items to maximize the objective function. We must obey two con-
straints, namely, inner and outer constraints, through the selection process. The
inner constraint requires that the total realized cost of all selected items must
not exceed a given budget B. Thus, the inner constraint is state-dependent. The
outer constraint is represented as a downward-closed family of sets of selected
items regardless of their states. Thus, the outer constraint is state-independent.
Under the assumption that the cost of an item is larger if it is in a “better”
state, we present a constant approximate solution.

Our model is general enough to capture many real-world applications. Here
we discuss three examples.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 121–132, 2022.
https://doi.org/10.1007/978-3-031-16081-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_11&domain=pdf
http://orcid.org/0000-0001-9261-5210
https://doi.org/10.1007/978-3-031-16081-3_11

122 S. Tang

Adaptive Coupon Allocation. The objective of this problem [7] is to dis-
tribute coupons to a group of up to k seed users such that those who redeem
the coupon can generate the largest cascade of influence. The state, which is
stochastic, of a user is her decision on whether or not to redeem the coupon. In
this case, it is uncertain in advance how many users redeem the coupon and help
to promote the product. Our framework can capture this scenario by treating
k as a outer constraint and treating the budget on the total value of redeemed
coupons as a inner constraint.

Recruiting Crowd Workers. Crowdsourcing is an effective way of obtaining
information from a large group of workers. A typical crowdsourcing process can
be described as follows: the task-owner sequentially hires up to k workers to work
on a set of similar tasks. Each worker reports her results to the task-owner after
completing her task. The state of a worker is the quality of the results returned
by her. It is clearly reasonable to assume that the actual amount of reward paid
to a particular worker depends on her state, which can only be observed after she
delivers the task. By treating k as a outer constraint and treating the budget on
the total value of total payments as a inner constraint, our objective is to maximize
the overall quality of the completed tasks subject to outer and inner constraints.

Recommendation. In the context of product or news recommendation, our
objective is to recommend a group of items to a customer in order to maximize
some utility function which often satisfies the diminishing marginal return prop-
erty. The performance of a recommended item depends on many random factors
such as the customer’s preferences. For example, after receiving a recommended
article, the customer decides to skip or read it in a probabilistic manner and she
must spend her own resource such as time and money on reading a recommended
article. Our framework can capture this scenario by treating the customer’s deci-
sion on a particular article as the state of that article. Hence, the performance,
as well as the cost, of a recommended article is determined by its state.

Related Works. Stochastic submodular maximization has been extensively stud-
ied in the literature [5,8,9,11]. While most of existing works assume that the cost
of each item is deterministic and pre-known, we consider state-dependent item
costs. Our problem reduces to the stochastic knapsack problem [6] when con-
sidering linear objective function. Recently, [4,10] extended the previous study
to the stochastic submodular maximization problem, however, their model does
not incorporate outer constraints. Hence, our study can be considered as an
extension of [4]. Our work is also closely related to submodular probing problem
[1] where they assume each item has binary states, our model allows each item
to have multiple states.

2 Preliminaries and Problem Formulation

Lattice-submodular functions Let I = {1, 2, · · · , n} be a set of items and [B] =
{1, 2, · · · , B} be a set of states. We further define [0;B] = {0, 1, 2, · · · , B}. Given
two vectors u, v ∈ [0;B]I , u ≤ v means that u(i) ≤ v(i) for all i ∈ I. Define

Submodular Maximization with State-Dependent Costs 123

(u∨ v)(i) = max{u(i), v(i)} and (u∧ v)(i) = min{u(i), v(i)}. For i ∈ I, define 1i

as the vector that has a 1 in the i-th coordinate and 0 in all other coordinates.
A function f : [0;B]I → R+ is called monotone if f(u) ≤ f(v) holds for any
u, v ∈ [0;B]I such that u ≤ v, and f is called lattice submodular if f(u ∨ s1i) −
f(u) ≥ f(v∨s1i)−f(v) holding for any u, v ∈ [0;B]I such that u ≤ v, s ∈ [0;B],
i ∈ I.

Items and States. We use a vector φ ∈ [B]I to denote a realization where for
each item i ∈ I, φ(i) ∈ [B] denotes the state of i under realization φ. We
assume that there is a known prior probability distribution pi over realizations
for each item i, i.e., pi = {Pr[φ(i) = s] : s ∈ [B]}. The states of all items are
decided independently at random, i.e., φ is drawn randomly from the product
distribution p =

∏
i∈I pi. For each item i ∈ I and state s ∈ [B], let ci(s) denote

the cost of i when its state is s. We made the following assumption.

Assumption 1. For all i ∈ I and s, s′ ∈ [B] such that s ≥ s′, we have ci(s) ≥
ci(s′), i.e., the cost of an item is larger if it is in a “better” state.

Adaptive Policy and Problem Formulation. Formally, a policy π is a function
that specifies which item to select next based on the observations made so far.
Consider any S ⊆ I and any realization φ, we use φS to denote a vector in [0;B]I

such that for each i ∈ I, set φS(i) = φ(i) if i ∈ S, and φS(i) = 0 otherwise. The
utility of S conditioned on φ is f(φS) where f : [0;B]I → R+ is a monotone
and lattice-submodular function. Consider an arbitrary policy π, for each φ, let
I(π, φ) denote the set of items selected by π conditional on φ1. Let Φ denote a
random realization, the expected utility of π is written as

favg(π) = EΦ∼p[f(ΦI(π,Φ))] (1)

Moreover, for any subset of items S ⊆ I, define f(S) = EΦ∼p[f(ΦS)] as the
expected utility of S with respect to the distribution p.

Definition 1. We say a policy π is feasible if it satisfies both outer and inner
constraints:

1. (Inner Constraint) For all φ, we have
∑

i∈I(π,φ) ci(φ(i)) ≤ C.
2. (Outer Constraint) For all φ, we have I(π, φ) ∈ Iout, where Iout is a

downward-closed family of sets of items.

Our goal is to identify the best feasible policy that maximizes its expected utility.

max
π

favg(π) subject to ∀φ :
∑

i∈I(π,φ)

ci(φ(i)) ≤ C; I(π, φ) ∈ Iout.

Following the framework developed in [3,4], our algorithm is composed of
two phases, a continuous optimization phase and a rounding phase. We first
1 For simplicity, we only consider deterministic policy. However, all results can be
easily extended to random policies.

124 S. Tang

solve a continuous optimization problem and obtain a fractional solution. In
the rounding phase, we convert the continuous solution to a feasible adaptive
policy that obeys inner and outer constraints. We first explain the continuous
optimization phase.

3 Continuous Optimization Phase

We present our solution based on the concept of “time”. We assume that each
item i is associated with a random processing time ci(φ(i)). Hence, if an item i
is selected at time t, we must wait until t + ci(φ(i)) to select the next item. We
treat the budget C as the time limit. We can not select an item i at slot t if the
processing of i may finish after a time limit C, i.e., i can not be selected at time
t if there exists some state s ∈ [B] such that t + ci(s) > C. We define a variable
x(i, t) for each item i and slot t, and it indicates whether an item i is selected
at t. Let x ∈ R

I
+ denote a vector defined by x(i) =

∑
t∈[C−ci(B)] x(i, t). We next

introduce the multilinear extension F (x) of f .

F (x) =
∑

U⊆I

∏

i∈U

x(i)
∏

i/∈U

(1 − x(i))f(U)

Let PIout ⊆ [0, 1]I denote a polytope that is a relaxation for Iout ⊆ 2I , i.e.,
PIout = conv{1S | S ∈ Iout}. For any d ∈ [0, 1], let d ·PIout = {d ·x | x ∈ PIout}.
Now we are ready to introduce our continuous optimization problem as follows:

P1: Maximize F (x)
subject to:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∀i ∈ I : x(i) =
∑

t∈[C−ci(B)] x(i, t)

∀i ∈ I : x(i) ≤ 1

x ∈ PIout

∀t ∈ [C] :
∑

i∈I E[min{ci(φ(i)), t}]∑t′∈[t] x(i, t
′) ≤ 2t (C1)

In constraint (C1), the expectation E[min{ci(φ(i)), t}] is taken with respect
to p, i.e., E[min{ci(φ(i)), t}] =

∑B
s=1 pi(s)min{ci(s), t}. Note that the formu-

lation of P1 involves Ω(n × C) variables, which makes our algorithm pseudo
polynomial. However, we can apply the technique used in [6] to convert the
algorithm into a polynomial-time algorithm at the expense of weakening the
approximation ratio by a constant factor. If PIout is a solvable polytope, we
can adopt the stochastic continuous greedy algorithm developed in [2] to solve
P1. Their algorithm involves two controlling parameters: stopping time l ∈ [0, 1]
and step size δ. Their original analysis can be easily extended to show that
for a stopping time l ∈ [0, 1], the algorithm outputs a solution x such that
x ∈ l · PIout , ∀t ∈ [C] :

∑
i∈I E[min{ci(φ(i)), t}]

∑
t′∈[t] x(i, t′) ≤ l · 2t, and

F (x) ≥ (1 − e−l − O(n3δ))favg(πopt) where πopt denotes the optimal policy of
our original problem. The following lemma follows immediately from the above
observation.

Submodular Maximization with State-Dependent Costs 125

Lemma 1. Let πopt denote the optimal policy of our original problem. Assume
PIout is a solvable polytope, if we apply the stochastic continuous greedy
algorithm with stopping time l ∈ [0, 1] and step size δ = o(n−3) to solve
P1, then the algorithm outputs a solution x such that x ∈ l · PIout , ∀t ∈
[C] :

∑
i∈I E[min{ci(φ(i)), t}]

∑
t′∈[t] x(i, t′) ≤ l · 2t and F (x) ≥ (1 − e−l −

o(1))favg(πopt).

4 Rounding Phase

In this section, we introduce an effective rounding approach that converts the
continuous solution to an adaptive policy. Before explaining the rounding phase,
we first introduce two important concepts: (β, γ)-balanced contention resolution
scheme [3] and α-contention resolution scheme [4].

4.1 Contention Resolution Scheme

(β, γ)-balanced contention resolution scheme ((β, γ)-balanced CRS) is a gen-
eral framework designed for maximizing set-submodular functions. In [4], the
authors extend this concept to the lattice-submodular functions by introducing
α-contention resolution scheme (α-CRS).

We first introduce the concept of (β, γ)-balanced CRS.

Definition 2 ((β, γ)-balanced CRS). Given a vector z ∈ β · PIout , let R
denote a random set of I obtained by including each item i ∈ I independently
with probability z(i). A (β, γ)-balanced CRS with regards to z is a mapping χ :
2I → Iout such that Pr[i ∈ χ(R)|i ∈ R] ≥ γ, where the probability considers
two sources of randomness: one is the randomness in choosing R, and the other
source is the randomness in the execution of χ. A (β, γ)-balanced CRS is said to
be monotone if for any two sets R,R′ such that R ⊆ R′, the following inequality
holds: Pr[i ∈ χ(R)|i ∈ R] ≥ Pr[i ∈ χ(R′)|i ∈ R′].

We next introduce the concept of α-contention resolution scheme. Consider
a probability distribution q : I × [0;B] → [0, 1]. Let v ∈ [0;B]I denote a random
vector such that, for each i ∈ I, the value of v(i) is set to j ∈ [0;B] independently
with probability q(i, j).

Definition 3 (α-CRS). Let F ⊆ [0;B]I be a downward-closed subset of [0;B]I ,
that is, u ≤ v ∈ F implies u ∈ F , and let α ∈ [0, 1]. An α-contention resolution
scheme (α-CRS) with regards to q is a mapping ψ : [0;B]I → F that satisfies
the following two conditions:

– For each i ∈ I, ψ(v)(i) ∈ {0, v(i)};
– For each i ∈ I and each j ∈ [B], we have Pr[ψ(v)(i) = j|v(i) = j] ≥ α, where

the probability considers two sources of randomness: one is the randomness
in choosing v, and the other source is the randomness in the execution of ψ.

126 S. Tang

An α-CRS ψ is said to be monotone if, for each u, v ∈ [0;B]I such that
u(i) = v(i) and u ≤ v, we have Pr[ψ(u)(i) = u(i)] ≥ Pr[ψ(v)(i) = v(i)], where
the probability here considers only the randomness in the execution of ψ.

In the context of maximizing set-submodular functions, Lemma 1.6 in [3]
states that one can combine contention resolution schemes for different con-
straints. We next follow a similar proof of theirs to show that this result also
holds for lattice-submodular functions.

Lemma 2. Let F =
⋂k

t=1 F t denote the intersection of several different subsets
of [0;B]I where for each t ∈ [k], F t ⊆ [0;B]I is a downward-closed subset of
[0;B]I . Suppose each F t has a monotone αt-CRS with regards to q. Then F has
a monotone

∏k
t=1 αt-CRS with regards to q.

Proof: We assume k = 2 for simplicity; the general statement can be proved
by induction. Given a vector v ∈ [0;B]I , for each t ∈ {1, 2}, assume that we
can apply a monotone αt-CRS ψt separately to obtain ψt(v). Then we define a
mapping ψ : [0;B]I → F such that

for each i ∈ I : ψ(v)(i) =

{
v(i) if for all t ∈ {1, 2}, ψt(v)(i) = v(i)
0 otherwise

We next show that ψ is a monotone α1α2-CRS with regards to q. Conditioned
on v, the value of ψ1(v), ψ2(v) are independent, which means that

Pr[ψ(v)(i) = v(i)] = Pr[ψ1(v)(i) = v(i)&ψ2(v)(i) = v(i)] (2)
= Pr[ψ1(v)(i) = v(i)] Pr[ψ2(v)(i) = v(i)] (3)

Taking an expectation over v conditioned on v(i) = j, we get

Pr[ψ(v)(i) = j|v(i) = j] = Ev∼q [Pr[ψ(v)(i) = j]|v(i) = j] (4)
= Ev∼q [Pr[ψ

1(v)(i) = j&ψ2(v)(i) = j]|v(i) = j] (5)
= Ev∼q [Pr[ψ

1(v)(i) = j] Pr[ψ2(v)(i) = j]|v(i) = j] (6)

Due to both ψ1 and ψ2 are monotone, we have both Pr[ψ1(v)(i) = j|v] and
Pr[ψ2(v)(i) = j|v] are non-increasing function of v on the product space of
vectors that satisfy v(i) = j. By the FKG inequality, we have

Ev∼q[Pr[ψ1(v)(i) = j] Pr[ψ2(v)(i) = j]|v(i) = j] (7)
≥ Ev∼q[Pr[ψ1(v)(i) = j]|v(i) = j]Ev∼q[Pr[ψ2(v)(i) = j]|v(i) = j] (8)
= Pr[ψ1(v)(i) = j|v(i) = j] Pr[ψ2(v)(i) = j|v(i) = j] (9)

(6) and (9) imply that

Pr[ψ(v)(i) = j|v(i) = j] (10)
≥ Pr[ψ1(v)(i) = j|v(i) = j] Pr[ψ2(v)(i) = j|v(i) = j] (11)
≥ α1α2 (12)

Submodular Maximization with State-Dependent Costs 127

The second inequality is due to the assumption that ψ1 is an α1-CRS with
regards to q and ψ2 is an α2-CRS with regards to q.

We next prove the monotonicity of ψ. For each u, v ∈ [0;B]I such that
u(i) = v(i) and u ≤ v, we have

Pr[ψ(u)(i) = u(i)] = Pr[ψ1(u)(i) = u(i)] Pr[ψ2(u)(i) = u(i)] (13)
≥ Pr[ψ1(v)(i) = u(i)] Pr[ψ2(v)(i) = u(i)] (14)
= Pr[ψ(v)(i) = v(i)] (15)

The inequality is due to the assumption that both ψ1 and ψ2 are monotone. �

4.2 Algorithm Design

Algorithm 1. Inner and Outer Constrained Adaptive Policy πio

1: A = ∅; i = 1; j = 1.
2: compute a solution y for P1 by the stochastic continuous greedy algorithm with

stopping time l = min{β, 1/4} and step size δ = o(n−3)
3: for i ∈ I do
4: add i to Rio with probability y(i)
5: apply an outer constraint-specific monotone (β, γ)-balanced CRS χio to Rio to

obtain a subset of items χio(Rio) which satisfies the outer constraint
6: for i ∈ χio(Rio) do
7: sample a number t from [C − ci(B)] with probability y(i, t)/y(i)
8: tio(i) ← t
9: σio ← sequence of items in χio(Rio) sorted in a nondecreasing order of tio(i),

breaking ties with the least index tie breaking rule
10: for i ∈ I do
11: if C′ ≤ tio(σio

i) then
12: select σio

i and observe φ(σio
i)

13: C′ = C′ + cσio
i
(φ(σio

i))

Assume PIout is a solvable polytope and there exists a monotone (β, γ)-balanced
CRS for Iout. Now we are ready the present the design of our Inner and Outer
Constrained Adaptive Policy πio (Algorithm 1). Our policy is composed of three
steps:

1. Compute a solution y for P1 by the stochastic continuous greedy algorithm
with stopping time l = min{β, 1/4} and step size δ = o(n−3).

2. Generate a random set Rio by including each item i with probability y(i).
Then apply a monotone (β, γ)-balanced CRS χio to obtain a subset of items
χio(Rio) which satisfies the outer constraint.

3. Sample a number t from [C − ci(B)] with probability y(i, t)/y(i) for each
i ∈ χio(Rio). Let σio denote a sequence of items in φio(Rio) sorted in a
nondecreasing order of tio(i).

128 S. Tang

(a) Add σio
1 to the solution and observe φ(σio

1).
(b) Starting with i = 2. If

∑
i∈[i−1] cσio

i
(φ(σio

i)) ≤ tio(σio
i), add σio

i to the
solution and observe φ(σio

i); otherwise, set cσio
i

(φ(σio
i)) = 0. Repeat this

step with the next item i ← i + 1. This process continues until all items
from σio have been visited.

4.3 Performance Analysis

This section is devoted to proving the approximation ratio of πio. Recall that
y is obtained from solving problem P1 using the stochastic continuous greedy
algorithm with stopping time l = min{β, 1/4} and step size δ = o(n−3). Then
Lemma 1 implies the following Corollary.

Corollary 1. Let πopt denote the optimal policy of our original problem.
Assume PIout is a solvable polytope, if we apply the stochastic continuous greedy
algorithm with stopping time l = min{β, 1/4} and step size δ = o(n−3) to solve
P1, then the algorithm outputs a solution y such that y ∈ min{β, 1/4} · PIout ,
∀t ∈ [C] :

∑
i∈I E[min{ci(φ(i)), t}]

∑
t′∈[t] y(i, t′) ≤ min{β, 1/4} · 2t and F (y) ≥

(1 − e−min{β,1/4} − o(1))favg(πopt).

We next focus on proving that if there exists a monotone (β, γ)-balanced CRS
for Iout, then favg(πio) ≥ (1−min{2β, 1/2})γF (y). This together with Corollary
1 implies that favg(πio) ≥ (1−min{2β, 1/2})γ(1−e−min{β,1/4}−o(1))favg(πopt).

Consider a random vector v ∈ [0;B]I such that, for each i ∈ I, v(i) is
determined independently as j ∈ [0;B] with probability

h(i, j) = pi(j) · y(i) (16)

where we define pi(0) = 1−y(i)
y(i) for each i ∈ I. Let R(v) = {i|i ∈ I and v(i) �= 0}.

For the purpose of analyzing the performance of Algorithm 1, we introduce three
mapping functions: ψa, ψb, and ψc.

– Design of ψa. We apply a monotone (β, γ)-balanced CRS χio used in Algo-
rithm 1 to R(v) and obtain a set χio(R(v)) ⊆ R(v). We set ψa(v)(i) = 0 for
all i ∈ I \ χio(R(v)), and set ψa(v)(i) = v(i) for all i ∈ χio(R(v)).

– Design of ψb. Sample a starting time t(i) from [C − ci(B)] with probability
y(i, t)/y(i) for each i ∈ R(v). Let σ(v) denote the sequence of items in R(v)
sorted in a nondecreasing order of t(i), breaking ties with the least index tie
breaking rule. Let σ(v)≤t(i) denote the sequence of items whose starting time
is no later than t(i). For each i ∈ I \ R(v), we set ψb(v)(i) = 0. For each
i ∈ R(v), we set ψb(v)(i) = v(i), if

i−1∑

i′∈σ(v)≤t(i)\{i}
ci′(v(i′)) ≤ t(i) (17)

and set ψb(v)(i) = 0 otherwise.

Submodular Maximization with State-Dependent Costs 129

– Design of ψc. The third mapping function ψc takes the intersection of ψa

and ψb: First apply ψa and ψb to v separately to obtain ψa(v) and ψb(v),
then generate ψc(v) as follows.

For all i ∈ I : ψc(v)(i) =

{
v(i) if ψa(v)(i) = v(i) and ψb(v)(i) = v(i)
0 otherwise

Before presenting the main theorem of this paper, we first provide several
technical lemmas. The first four lemmas are used to lower bound the expected
utility of ψc(v) with regards to h. The fifth lemma shows that the expected utility
of our policy is lower bounded by the expected utility of ψc(v) with regards to h.
Combing these two results, we are able to derive a lower bound on the expected
utility of our policy.

Lemma 3. ψa is a monotone γ-CRS with regards to h.

Proof: We first prove that ψa is a γ-CRS with regards to h. Recall that we set
ψa(v)(i) = 0 for all i ∈ I \ S, and set ψa(v)(i) = v(i) for all i ∈ χio(R(v)). It
follows that for all i ∈ I and all j ∈ [B], we have

Pr[ψa(v)(i) = j|v(i) = j] = Pr[i ∈ χio(R(v))|i ∈ R(v)] (18)

By the definition of monotone (β, γ)-balanced CRS, we have Pr[i ∈ χio(R(v))|i ∈
R(v)] ≥ γ. Hence, Pr[ψa(v)(i) = j|v(i) = j] ≥ γ. Next we prove that ψa

is monotone. Consider any two vectors u, v ∈ [0;B]I such that u(i) = v(i) and
u ≤ v, we have R(u) ⊆ R(v). Based on the definition of monotone (β, γ)-balanced
CRS, we have Pr[i ∈ χio(R(v))|i ∈ R(u)] ≥ Pr[i ∈ χio(R(v))|i ∈ R(v)]. Together
with (18), we have Pr[ψa(u)(i) = j|v(i) = j] ≥ Pr[ψa(v)(i) = j|v(i) = j] for all
i ∈ I and j ∈ [B]. �

Lemma 4. ψb is a monotone (1 − min{2β, 1/2})-CRS with regards to h.

Proof: The monotonicity of ψb follows from Lemma 3 in [4]. We next focus on
proving that ψb is a (1 − min{2β, 1/2})-CRS. Consider any i ∈ I and k ∈ [C],
we have

Pr[ψb(v)(i) = v(i) | i ∈ R(v), t(i) = k] (19)

= Pr[
∑

i′∈σ(v)≤k\{i}
ci′(v(i′)) ≤ k | i ∈ R(v), t(i) = k] (20)

= Pr[
∑

i′∈σ(v)≤k\{i}
min{ci′(v(i′)), k} ≤ k | i ∈ R(v), t(i) = k] (21)

where the probability considers two sources of randomness: one is the randomness
in choosing v, and the other source is the randomness in the generation of t.
Because the event that

∑
i′∈σ(v)≤k\{i} min{ci′(v(i′)), k} ≤ k is independent of

the event that i ∈ R(v) and t(i) = k, we have

130 S. Tang

Pr[
∑

i′∈σ(v)≤k\{i}
min{ci′(v(i′)), k} ≤ k | i ∈ R(v), t(i) = k] (22)

= Pr[
∑

i′∈σ(v)≤k\{i}
min{ci′(v(i′)), k} ≤ k] (23)

We next provide a lower bound of Pr[
∑

i′∈σ(v)≤k\{i} min{ci′(v(i′)), k} ≤ k].
Observe that

E[
∑

i′∈σ(v)≤k\{i}
min{ci′(v(i′)), k}] (24)

=
∑

i′∈I\{i}
E[min{ci′(v(i′)), k}] Pr[t(i′) ≤ k] (25)

=
∑

i′∈I\{i}
E[min{ci′(v(i′)), k}]

∑

t∈[k]

y(i′, t) (26)

≤
∑

i′∈I

E[min{ci′(v(i′)), k}]
∑

t∈[k]

y(i′, t) (27)

≤ min{β, 1/4}2k = min{2β, 1/2}k (28)

The second inequality is due to t(i) from [C −ci(B)] with probability y(i, t)/y(i)
for each i ∈ R(v). The second inequality is due to Corollary 1 and the fact
that y is obtained from solving problem P1 using the stochastic continuous
greedy algorithm with stopping time l = min{β, 1/4} and step size δ = o(n−3).
Hence, Pr[

∑
i′∈σ(v)≤k\{i} min{ci′(v(i′)), k} > k] < min{2β, 1/2} due to Markov

inequality. It follows that

Pr[
∑

i′∈σ(v)≤k\{i}
min{ci′(v(i′)), k} ≤ k] (29)

= 1 − Pr[
∑

i′∈σ(v)≤k\{i}
min{ci′(v(i′)), k} > k] (30)

> 1 − min{2β, 1/2} (31)

�

The following lemma follows from Lemma 3, Lemma 4 and Lemma 2.

Lemma 5. ψc is a monotone (1 − min{2β, 1/2})γ-CRS with regards to h.

Theorem 4 in [4] states that if ψc is a monotone α-CRS with respect to h,
then Ev∼h[f(ψc(v))] ≥ αF (y). This together with Lemma 5 implies the following
lemma.

Lemma 6. Ev∼h[f(ψc(v))] ≥ (1 − min{2β, 1/2})γF (y).

We next show that the expected utility of πio is bounded by Ev∼h[f(ψc(v))]
from below.

Submodular Maximization with State-Dependent Costs 131

Lemma 7. favg(πio) ≥ Ev∼h[f(ψc(v))].

Proof: Recall that for any S ⊆ I and any realization φ, we use φS to denote a
vector in [0;B]I such that φS(i) = φ(i) if i ∈ S, and φS(i) = 0 otherwise. Let ΦS

denote a random realization of S. As specified in Algorithm 1, Rio is a random
set that is obtained by including each item i ∈ I independently with probability
y(i). Thus, ΦRio ∈ [0;B]I can be considered as a random vector such that, for
each i ∈ I, ΦRio(i) is determined independently as j ∈ [0;B] with probability

h(i, j) = pi(j) · y(i) (32)

where we define pi(0) = 1−y(i)
y(i) for each i ∈ I. Note that the probability considers

two sources of randomness: one is the randomness in choosing Rio, and the other
source is the randomness of realization Φ.

Now consider a fixed realization v ∈ [0;B]I of ΦRio . Recall that in the design
of ψa, we define R(v) = {i|i ∈ I and v(i) �= 0}. It is easy to verify that Rio

coincides with R(v). For purpose of analysis, we further assume that χio(Rio)
coincides with χio(R(v)). Moreover, for each i ∈ χio(Rio), we assume that t(i)
(the sampled starting time of i in the implementation of ψb) coincides with tio(i)
(the sampled starting time of i in Algorithm 1). This assumption indicates that
σio (a sorted sequence of items as specified in Algorithm 1) is a subsequence
of σ(v) (a sorted sequence of items as specified in the design of ψb) due to
χio(Rio) ⊆ Rio.

We next define a new mapping function ψio as follows:

For all i ∈ I : ψio(v)(i) =

{
v(i) if i is selected by πio conditional on v

0 otherwise

Note that for i ∈ I to be selected by πio conditional on v, it must satisfy
i ∈ χio(Rio) as well as the condition defined in Line 11 of Algorithm 1 which
can be written as

∑

i′∈σio
≤t(i)\{i}:i′ is selected by πio

ci′(v(i′)) ≤ t(i) (33)

where σio
≤t(i) denotes the subsequence of σio by including all items whose starting

time is no later than t(i). It is easy to verify that favg(πio) = Ev∼h[f(ψio(v))].
We next focus on proving that Ev∼h[f(ψio(v))] ≥ Ev∼h[f(ψc(v))].

According to the design of ψc, for each i ∈ I, ψc(v)(i) = v(i) if and only if
i ∈ χio(R(v)) and condition (17) is satisfied. Given that σio is a subsequence
of σ(v), condition (17) is stronger than the condition (33). This together with
the fact that χio(Rio) = χio(R(v)) implies that for each i ∈ I, ψc(v)(i) = v(i)
implies that ψio(v)(i) = v(i). Hence, we have ψio(v) ≥ ψc(v), which implies that
f(ψio(v)) ≥ f(ψc(v)). It follows that Ev∼h[f(ψio(v))] ≥ Ev∼h[f(ψc(v))]. This
finishes the proof of this lemma due to favg(πio) = Ev∼h[f(ψio(v))]. �

Corollary 1, Lemma 6, and Lemma 7 imply the following main theorem.

132 S. Tang

Theorem 1. Assume PIout is a solvable polytope and there exists a monotone
(β, γ)-balanced CRS for Iout, favg(πio) ≥ (1−min{2β, 1/2})γ(1−e−min{β,1/4}−
o(1))favg(πopt).

4.4 Completing the Last Piece of the Puzzle: Discussion on β and γ

As the approximation ratio of πio is depending on the values of β and γ, we next
discuss some practical outer constraints under which β and γ are well defined.
In [3], they present monotone (β, γ)-balanced CRSs for a wide range of practical
constraints including (multiple) matroid constraints, knapsack constraints, and
their intersections. We can use their results as subroutines in Algorithm 1 to
handle a variety of outer constraints. For example, if Iout is the intersection of a
fixed number of knapsack constraints, there exists a (1− ε, 1− ε)-balanced CRS.
If Iout is induced by a matroid constraint, there exists a (b, 1−e−b

b)-balanced
CRS for any b ∈ (0, 1].

References

1. Adamczyk, M., Sviridenko, M., Ward, J.: Submodular stochastic probing on
matroids. Math. Oper. Res. 41(3), 1022–1038 (2016)

2. Asadpour, A., Nazerzadeh, H.: Maximizing stochastic monotone submodular func-
tions. Manage. Sci. 62(8), 2374–2391 (2016)

3. Chekuri, C., Vondrák, J., Zenklusen, R.: Submodular function maximization via
the multilinear relaxation and contention resolution schemes. SIAM J. Comput.
43(6), 1831–1879 (2014)

4. Fukunaga, T., Konishi, T., Fujita, S., Kawarabayashi, K.I.: Stochastic submodular
maximization with performance-dependent item costs. In: Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 33, pp. 1485–1494 (2019)

5. Golovin, D., Krause, A.: Adaptive submodularity: theory and applications in active
learning and stochastic optimization. J. Artif. Intell. Res. 42, 427–486 (2011)

6. Gupta, A., Krishnaswamy, R., Molinaro, M., Ravi, R.: Approximation algorithms
for correlated knapsacks and non-martingale bandits. In: 2011 IEEE 52nd Annual
Symposium on Foundations of Computer Science, pp. 827–836. IEEE (2011)

7. Tang, S.: Stochastic coupon probing in social networks. In: Proceedings of the 27th
ACM International Conference on Information and Knowledge Management, pp.
1023–1031 (2018)

8. Tang, S.: Beyond pointwise submodularity: non-monotone adaptive submodular
maximization in linear time. Theoret. Comput. Sci. 850, 249–261 (2021)

9. Tang, S.: Beyond pointwise submodularity: non-monotone adaptive submodular
maximization subject to Knapsack and k -system constraints. In: Le Thi, H.A.,
Pham Dinh, T., Le, H.M. (eds.) MCO 2021. LNNS, vol. 363, pp. 16–27. Springer,
Cham (2022). https://doi.org/10.1007/978-3-030-92666-3 2

10. Tang, S.: Stochastic submodular probing with state-dependent costs. In: Wu, W.,
Du, H. (eds.) AAIM 2021. LNCS, vol. 13153, pp. 170–178. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-93176-6 15

11. Tang, S., Yuan, J.: Influence maximization with partial feedback. Oper. Res. Lett.
48(1), 24–28 (2020)

https://doi.org/10.1007/978-3-030-92666-3_2
https://doi.org/10.1007/978-3-030-93176-6_15

Bicriteria Algorithms for Maximizing the
Difference Between Submodular Function

and Linear Function Under Noise

Mengxue Geng1, Shufang Gong1(B), Bin Liu1 , and Weili Wu2

1 School of Mathematical Sciences, Ocean University of China,
Qingdao 266100, People’s Republic of China

shufanggong@stu.ouc.edu.cn
2 School of Computer Science, University of Texas at Dallas,

Richardson, TX 75080, USA

Abstract. Submodular optimization is an essential problem in many
fields due to its diminishing marginal benefit. This property of submod-
ular function plays an important role in many applications. In recent
years, the problem of maximizing a non-negative monotone submodular
function minus a linear function under various constraints has gradually
emerged and is widely used in many practical scenarios such as team
formation and recommendation. In this paper, We focus on maximiz-
ing a non-negative monotone normalized submodular function minus a
linear function under ε–multiplicative noise and the result is similar in
the case of ε-additive noise. Many previous studies were conducted in
a noiseless environment, here we consider optimization of this problem
in a noisy environment for the first time. In addition, our study will be
conducted under two situations, that is, the cardinality constraint and
the matroid constraint. Based on these two situations, we propose two
bicriteria approximation algorithms respectively and all these algorithms
can obtain good results.

Keywords: Submodular function · Linear function · Noise · Bicriteria
algorithm

1 Introduction

Due to the good property of the submodular function, which is the property of
diminishing marginal benefit, the optimization problem about it has also become
a hot topic in recent years. Many researches and literatures show that this prop-
erty plays an important role in many applications, especially in artificial intel-
ligence [20], social welfare [21], machine learning [14] fields showing extremely

This work was supported in part by the National Natural Science Foundation of
China (11971447, 11871442), and the Fundamental Research Funds for the Central
Universities.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 133–143, 2022.
https://doi.org/10.1007/978-3-031-16081-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_12&domain=pdf
http://orcid.org/0000-0002-8958-3999
http://orcid.org/0000-0001-8747-6340
https://doi.org/10.1007/978-3-031-16081-3_12

134 M. Geng et al.

strong applicability, specifically in recommendation systems [11], influence max-
imization in social networks [12], sensor settings [6] and so on. The submodular
maximization problem subject to various constraints has been widely studied
[5,18]. With the emergence of practical application scenarios such as team for-
mation [15], recommender systems [11] and social work [13], we began to investi-
gate the maximization of the non-negative monotone submodular function f(S)
minus the cost function c(S), i.e., c is a linear function.

In this model, we observe that the objective function h(S) = f(S) − c(S)
is submodular but not necessarily non-negative and monotone. However, exist-
ing studies suggest that maximizing a potentially negative submodular func-
tion is possible without a multiplicative approximation factor [15]. Therefore,
the approximation guarantee cannot be expressed in the form of a traditional
approximation ratio. In this paper, we use the bicriteria approximation algorithm
proposed by [2], that is the output solution S satisfies

f(S) − c(S) ≥ μf(OPT) − νc(OPT),

in which 0 ≤ μ ≤ 1. In recent years, the relevant work under this model has been
performed in a noise-free environment. However, in many practical scenarios, it
is difficult or costly to get a specific value of function f under the noise model,
but it is easy to get a value of F such as using Neural Net(NN) training [7].
Thus, we can only obtain a noisy evaluation function F of f . In the discussion
as follows, we consider this problem under the ε-multiplicative noise and the
proof is similar in the case of ε-additive noise. Generally the type of noise can
be regarded as multiplicative noise and additive noise [19], i.e.,

(1 − ε)f(X) ≤ F (X) ≤ (1 + ε)f(X).

and
f(X) − ε ≤ F (X) ≤ f(X) + ε,

Thus, the problem becomes how to find the approximate solution with the help
of noisy evaluation function.

For the set S obtained after each iteration, we assume that there are two
oracles that can be used to calculate the value of F (S) and c(S).

2 Related Work

The study of maximizing f − c under noise-free model has been studied as
follows. For the cardinality constraint, Harshaw et al. [10] combined standard
greedy algorithms with distortion techniques to solve the problem, where f is a γ-
weakly submodular. They obtained a solution set satisfying (1− 1

e−ε, 1)-bicriteria
approximation ratio when f is submodular. Then, Nikolakaki et al. [15] provided
a simple greedy algorithm with (12 , 1)-bicriteria approximation ratio. Meanwhile,
the same approximation ratio is obtained under the online unconstrained in [15].
In addition, [15] also showed that a solution set S satisfying (3−√

5
2 , 1)-bicriteria

Bicriteria Algorithms for Maximizing Submodular Function 135

approximation ratio under streaming model with the cardinality constraint. For
the matroid constraint, Sviridenko et al. [17] provided a stochastic algorithm
to solve this problem, and then got a solution S satisfying (1 − 1

e , 1)-bicriteria
approximation ratio. However, the time complexity of this algorithm is very bad.
Then, Feldman [4] improved it by using a continuous distortion greedy algorithm
to obtain the same approximation ratio. Recently, Nikolakaki et al. [15] proposed
a algorithm based on the standard greedy algorithm yields a solution set Q
satisfying (12 , 1)-bicriteria approximation ratio.

For submodular maximization problems in noisy environments, Horel et al.
[9] first introduced the concept of approximate submodular, they proved that the
greedy algorithm can achieve (1− e−1 −O(δ))-approximation ratio for maximiz-
ing non-negative monotone submodular function with the cardinality constraint,
when ε ≤ 1

k and δ = εk. Gölz [8] studied the submodular maximization with
the P -matroids constraint under the ε-multiplicative noise model, and obtained
(P + 1 + 4εk

1−ε)
−1-approximation ratio, in which k is the size of the maximum

feasible set of the P -matroids. In addition, there have been many results for
the study of maximization problem under the streaming model. Yang et al. [22]
developed two streaming thresholding algorithms for maximizing streaming sub-
modular with the cardinality constraint under the ε-multiplicative noise and ε-
additive noise. If the parameter ε → 0, their algorithms all had 2

k -approximation
to the optimal solution. For k-submodular maximization with streaming model
under the cardinality constraint, Nguyen and Thai [16] proposed two streaming
algorithm, one is deterministic and the other is random. Both algorithms pro-
vided O((1 − ε)−2εB)-approximation ratio when f has monotonicity as well as
O((1 − ε)−3εB)-approximation ratio when f is non-monotone.

To the best of our knowledge, although there have been many studies on
maximization f−c where f is an non-negative monotone normalized submodular
function and c is the sum of the costs in noise-free environments, there is a lack
of research in noisy environments. Thus, this is the first paper to study the f − c
maximization problem in noisy environment. We focus on this problem under
the ε-multiplicative noise in this paper because the solution of the problem under
the ε-additive noise model is similar to the ε-multiplicative noise model. Under
the noise model, we cannot get the exact value of the function f , but use certain
method such as Neural Net (NN) training can easily get the noise version F [7].
Then we can use the approximate version to obtain an approximate solution.

The rest of this paper is constructed as follows. In Sect. 3, we introduce
some basic definitions. In Sect. 4, we develop the bicriteria algorithm under noise
with cardinality constraint. In Sect. 5, we consider the problem with matroid
constraint. The last section summarizes the full paper.

3 Preliminaries

In this paper, we study the problem of maximizing the difference between a
non-negative monotone submodular function and a linear function in a noisy
environment. Under this premise, we cannot know the oracle in which calculates

136 M. Geng et al.

the value of function f . Therefore among all the algorithms, we use the noise
version function F to obtain an approximation ratio. Recall that a set function
f : 2N → R+ is non-negative if f(A) ≥ 0 for any subset A ⊆ N . A function f is
called monotone if f(A) ≥ f(B) whenever A ⊆ B. In addition, f is normalized
if f(∅) = 0. For the arbitrary elements e ∈ N and subsets A ⊆ N , the marginal
benefit of j in A can be expressed as

fA(j) := f(A ∪ {j}) − f(A).

It is clear that when j is in A there is fA(j) = 0. Similarly, represented by
fA(B) := f(A∪B)− f(A) the marginal benefit of B in A. In addition, we claim
that a function f is submodular function if it satisfies

f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B),

for any subsets A ⊆ N , B ⊆ N . It also has an equivalent definition, as shown as
follows

f(A ∪ {j}) − f(A) ≥ f(B ∪ {j}) − f(B),

for any A ⊆ B and j ∈ N \ B.
In addition, the noisy function F satisfies normalization rule and is not nec-

essarily submodular.

Definition 1 [19]. For some ε > 0, we say set function F : 2N → R is an
ε-multiplicative noise oracle of submodular function f if

(1 − ε)f(X) ≤ F (X) ≤ (1 + ε)f(X), ∀X ⊆ N.

In reality, the maximization problem of a potential negative submodular func-
tion is not approximable and may not have a constant multiplicative approxi-
mation factor. Thus, unlike the traditional approximation ratio representation,
we use a weaker approximation concept to evaluate the degree of approximation
of the solution. We therefore give the definition of the bicriteria approximation
algorithm.

Definition 2 [2]. An algorithm is called a (μ, ν)-bicriteria approximation algo-
rithm if the output solution of it satisfying f(S)− c(S) ≥ μf(O)− νc(O), where
O is the optimal solution to maxS⊆N{f(S) − c(S)} and 0 ≤ μ ≤ 1.

4 The Bicriteria Algorithm Under Noise with the
Cardinality Constraint

In this section, we study the problem of maximizing f(S)−c(S) under noise with
the cardinality constraint in which f is a non-negative normalized monotone
submodular function and c is the sum of the costs of all elements in the solution,
i.e., a non-negative linear function. Then, we present a bicriteria algorithm with
a surrogate objective function of F (S) − xc(S), where the value of x can be

Bicriteria Algorithms for Maximizing Submodular Function 137

Algorithm 1. The bicriteria algorithm for f −c under noise with the cardinality
constraint
Input: Given a ground set G, noisy function F , x = 2, a non-negative linear function

c and cardinality constraint k ∈ N+.
Output: A solution subset Q
1: Initially set Q := ∅
2: for i = 1, 2, · · · , k do
3: select ei = argmaxe∈G\Q{FQ(e) − xc(e)}
4: if FQ(ei) − xc(ei) > 0 then
5: update Q := Q ∪ {ei}
6: else
7: break
8: end if
9: end for

10: return Q

determined later. Suppose that in each iteration, when element ei is added, the
current set becomes Q(i) = {e1, e2, · · · , ei}, and the final output solution is Q.
Let O = argmax|S|≤k{f(S) − c(S)}, and the surrogate objective function is
ĥ(S) = F (S) − xc(S).

Before the concrete proof, we sort the elements in Q ∪ O: e1, e2, · · · , e|Q∪O|,
such that ei = argmaxe∈(Q∪O)\{e1,··· ,ei−1} ĥ{e1,··· ,ei−1}(ei). According to the exe-
cution rules of the Algorithm 1, in this order, the first |Q| elements are the output
solution of this algorithm and their order is the same as the order in which this
algorithm adds them to the set Q i.e., Q = S(|Q|). In addition, the first i elements
in this order are denoted as S(i) = {e1, · · · , ei}, where i = 1, 2, · · · , |Q ∪ O|.
Lemma 1. Let |O| = l � k, then we have

ĥ(S(l)) � 1 − ε

2
ĥ(S(l) ∪ O) − 2εk(1 + ε)

1 − ε
F (S(l) ∪ O) − 1 + ε

2
xc(O)

+
1 − ε

2
x
(
c(S(l) ∪ O) − c(S(l))

)
.

(1)

Proof. Consider the elements in Q ∪ O after sorting. By definition, S(l) denotes
the first l = |O| elements in Q ∪ O, it is clearly that l = |S(l)| = |O|. Then we
can construct a bijection σ : O → S(l), which satisfies condition: for each i ≤ l,
σ−1(ei) = ej for some index i ≤ j.

From the construction of the bijection, we know, for i = 1, 2, · · · , l

ĥS(i−1)(ei) ≥ ĥS(i−1)(σ−1(ei)).

138 M. Geng et al.

For each i = 1, · · · , l, let O(i) = σ−1(S(i)), O(i) = O(i−1) ∪σ−1(ei), then we have

ĥS(i−1)(σ−1(ei)) = ĥ(σ−1(ei) ∪ S(i−1)) − ĥ(S(i−1))

= F (σ−1(ei) ∪ S(i−1)) − xc(σ−1(ei) ∪ S(i−1))

− F (S(i−1)) + xc(S(i−1))

≥ (1 − ε)f(σ−1(ei) ∪ S(i−1)) − xc(σ−1(ei))

− (1 + ε)f(S(i−1))

≥ (1 − ε)
(
f(σ−1(ei) ∪ S(i−1)) − f(S(i−1))

)

− 2εf(S(i−1)) − xc(σ−1(ei)),

where the first inequality used the definition of function F (S) and the inequality:

c(σ−1(ei) ∪ S(i−1)) − c(S(i−1)) ≤ c(σ−1(ei)).

Based on the submodularity of function f , we can get

ĥS(i−1)(σ−1(ei)) ≥ (1 − ε)fS(l)∪O(i−1)(σ−1(ei)) − 2εf(S(i−1)) − xc(σ−1(ei)).

By the definition of F , we obtain

ĥS(i−1)(σ−1(ei)) ≥ (1 − ε)
(F (S(l) ∪ O(i))

1 + ε
− F (S(l) ∪ O(i−1))

1 − ε

)

− 2εf(S(i−1)) − xc(σ−1(ei))

≥ 1 − ε

1 + ε

(
F (S(l) ∪ O(i)) − F (S(l) ∪ O(i−1))

)

− 2ε
1 + ε

F (S(l) ∪ O(i−1)) − 2εf(S(l) ∪ O(i−1)) − xc(σ−1(ei))

≥ 1 − ε

1 + ε

(
F (S(l) ∪ O(i)) − xc(S(l) ∪ O(i)) − F (S(l) ∪ O(i−1))

+ xc(S(l) ∪ O(i−1))
)

− 4εf(S(l) ∪ O(i−1)) − xc(σ−1(ei))

+
1 − ε

1 + ε
x
(
c(S(l) ∪ O(i)) − c(S(l) ∪ O(i−1))

)
.

Therefore, we have

ĥS(i−1)(ei) ≥ 1 − ε

1 + ε

(
ĥ(S(l) ∪ O(i)) − ĥ(S(l) ∪ O(i−1))

)
− 4εf(S(l) ∪ O(i−1))

− xc(σ−1(ei)) +
1 − ε

1 + ε
x
(
c(S(l) ∪ O(i)) − c(S(l) ∪ O(i−1))

)
.

Summing up all i = 1, · · · , l, since the monotonicity of function f and the defi-
nition of function F (S), we can get

ĥ(S(l)) ≥ ĥ(S(l)) − ĥ(∅) ≥ 1 − ε

1 + ε

(
ĥ(S(l) ∪ O) − ĥ(S(l))

)
− 4εk

1 − ε
F (S(l) ∪ O)

− xc(O) +
1 − ε

1 + ε
x
(
c(S(l) ∪ O) − c(S(l))

)
,

Bicriteria Algorithms for Maximizing Submodular Function 139

where O(l) = σ−1(S(l)) = O and ĥ(∅) = F (∅) ≥ 0. Rewriting the inequality, we
obtain

ĥ(S(l)) ≥ 1 − ε

2
ĥ(S(l) ∪ O) − 2εk(1 + ε)

1 − ε
F (S(l) ∪ O)

− 1 + ε

2
xc(O) +

1 − ε

2
x
(
c(S(l) ∪ O) − c(S(l))

)
.

Thus we complete this Lemma.

From Algorithm 1, we can divide the output solution into two cases: Case 1,
|Q| ≥ l; and Case 2, |Q| < l. Considering these two cases respectively, we can
get the following Lemmas.

Lemma 2. When |Q| ≥ l, Algorithm 1 outputs a feasible solution Q such that

f(Q) − c(Q) ≥ α

2(1 + ε)
f(O) − c(O), (2)

where α = (1 − 4k)ε2 − (2 + 4k)ε + 1 and x = 2.

Proof. In this case, it is clearly S(l) ⊆ Q.
According to the execution rules of Algorithm 1, for each elements ei ∈ Q,

we know ĥQ(i−1)(ei) ≥ 0, thus

ĥ(Q) − ĥ(S(l)) =
|Q|∑

i=l+1

ĥS(i−1)(ei) ≥ 0.

Combining the inequality (1), let α = (1 − 4k)ε2 − (2 + 4k)ε + 1, we have

ĥ(Q) ≥ ĥ(S(l)) ≥ α

2(1 − ε)
F (S(l) ∪ O) − 1 − ε

2
xc(S(l)) − 1 + ε

2
xc(O).

As function c is non-negative linear function, it holds that c(S(l)) ≤ c(Q). Then

ĥ(Q) ≥ α

2
f(S(l) ∪ O) − 1 − ε

2
xc(Q) − 1 + ε

2
xc(O)

≥ α

2
f(O) − 1 − ε

2
xc(Q) − 1 + ε

2
xc(O),

where the first inequality holds by the property of F and the second inequality
follows by the monotonicity of f .

By the definition of ĥ, we obtain

F (Q) − xc(Q) ≥ α

2
f(O) − 1 − ε

2
xc(Q) − 1 + ε

2
xc(O).

Since (1 − ε)f(X) ≤ F (X) ≤ (1 + ε)f(X), rearranging this inequality, we have

f(Q) − x

2
c(Q) ≥ α

2(1 + ε)
f(O) − x

2
c(O).

140 M. Geng et al.

In order to obtain the approximate ratio that meets the conditions, we only need
to make following inequality established

−x

2
c(O) +

x

2
c(Q) − c(Q) ≥ −c(O),

Obviously, the above formula holds when x = 2. Thus Lemma 2 holds, where
α = (1 − 4k)ε2 − (2 + 4k)ε + 1.

Lemma 3. When |Q| < l, Algorithm 1 outputs a feasible solution Q such that

f(Q) − c(Q) ≥ β

2(1 + ε)
f(O) − 2

1 − ε
c(O), (3)

where β = (1 − 4k)ε2 − (2 + 12k)ε + 1 and x = 2.

Based on Lemma 2 and Lemma 3, there is the final bicriteria ratio in Theorem
1.

Theorem 1. The bicriteria ratio for Algorithm 1 is (β
2(1+ε) ,

2
1−ε), where β =

(1 − 4k)ε2 − (2 + 12k)ε + 1. If the parameter ε → 0, we then have (12 , 2)-
approximation.

5 The Bicriteria Algorithm Under Noise with the
Matroid Constraint

In this section, we describe the problem of maximizing a non-negative mono-
tone normalized submodular function f minus a non-negative linear function c
under ε-multiplicative noise model with the matroid constraint. Before analyz-
ing the specific approximation guarantee of Algorithm 2, we firstly introduce the
definition of matroid M = (E,F) by [3].

Definition 3 [3]. Assume a finite set E is the ground set and F is a family of
subsets of E, then a pair (E,F) is called a matroid if both E and F satisfy the
following conditions:

(1) ∅ ∈ F ;
(2) if A ⊆ B and B ∈ F , then A ∈ F ;
(3) if A,B ∈ F and |B| > |A|, then there exists e ∈ B\A such that A∪{e} ∈ F .

Further, we also need to use the following Lemma about the relationship
between the two independent sets in the matroid M = (E,F), which is a natural
result provided by [1].

Lemma 4 [1]. Let X and Y be two independent sets in the matroid M = (E,F)
such that |X| = |Y |. There is a bijection ψ : X \Y → Y \X such that (Y \ψ(e))∪
{e} is also an independent set for each element e ∈ X \ Y and ψ(e)) ∈ Y \ X.

Bicriteria Algorithms for Maximizing Submodular Function 141

Algorithm 2. The bicriteria algorithm for f − c under noise with the matroid
constraint
Input: Given a ground set E, noisy function F , x = 2 + 2ε + 4εp, 0 ≤ ε < 1, a

non-negative linear function c and matroid M = (E, F).
Output: A solution subset S
1: Initially set S := ∅, H := E
2: for i = 1, 2, · · · do
3: if H = ∅ then
4: break
5: else
6: select ei = argmaxe∈H{F (e|Q) − xc(e)}
7: if F (ei|Q) − xc(ei) > 0 then
8: update S := S ∪ {ei}
9: else

10: break
11: end if
12: end if
13: delete all the elements in H such that S ∪ {e} /∈ F
14: end for
15: return S

Suppose that the output solution of Algorithm 2 is S and the element added
to S to in the i-th iteration is ei. Then the current set becomes Si = {e1, · · · , ei}.
Let O = argmaxS⊆E{f(S) − c(S), S ⊆ F} and p is the rank of the matroid
M(the size of the largest independent set). The surrogate objective function is
ĥ(S) = F (S) − xc(S), where the value of x can be determined later.

Considering the final result of the Algorithm 2, let H
′
be the set of elements

remaining in E at the end of Algorithm 2. Then we consider the elements of the
set O in two parts, one for the elements that are in both O and H

′
, which is

called O1 and the other for the remaining elements in O, which is called O2.
On the one hand, through the property of matroid, it is easy to prove that

the number of elements in S is not less than the number of elements in O2 by
the converse method which can refer to the [15]. Let |O2| = q, we analyse the
approximation ratio by the following Lemmas.

Lemma 5. Let Sq = {e1, · · · , eq}, it holds that

(1 − ε)f(Sq ∪ O2) − 2εpf(S) − xc(O2) ≤ 2f(Sq) − xc(Sq). (4)

On the other hand, there is also a relationship between S and O1.

Lemma 6. It holds that

(1 − ε)f(S ∪ O1) − xc(O1) ≤ (1 − ε + 2εp)f(S). (5)

By the above two Lemmas, we get Theorem 2 as follows.

142 M. Geng et al.

Theorem 2. When x = 2+2ε+4εp, Algorithm 2 returns a set S ∈ F such that

f(S) − c(S) ≥ 1 − ε

2 + 2ε + 4εp
f(O) − c(O), (6)

where p is the rank of matroid F . If the parameter ε → 0, the approximate ratio
is (12 , 1).

6 Conclusions

In this paper, we firstly study the problem of maximizing the difference between
the submodular function and linear function in a noisy environment under two
constraints such as cardinality constraint and matroid constraint respectively.
The target of our study is the noise function F instead of the traditional submod-
ular function f . As our major contribution, we present two bicriteria algorithms
under ε-multiplicative noise. With the cardinality constraint, Algorithm 1 gives
the (1+ε2−2ε−12εk−4ε2k

2(1+ε) , 2
1−ε)-bicriteria approximation ratio; With the matroid

constraint, the (1−ε
2+2ε+4εp , 1)-bicriteria approximation ratio is obtained. If the

parameter ε → 0, we then have (12 , 2)-approximation and (12 , 1)-approximation
to their respective problems.

References

1. Brualdi, R.A.: Comments on bases in dependence structures. Bull. Aust. Math.
Soc. 1(2), 161–167 (1969)

2. Du, D., Li, Y., Xiu, N., Xu, D.: Simultaneous approximation of multi-criteria sub-
modular function maximization. J. Oper. Res. Soc. China 2(3), 271–290 (2014)

3. Edmonds, J.: Submodular functions, matroids, and certain polyhedra. In: Jünger,
M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization — Eureka, You
Shrink! LNCS, vol. 2570, pp. 11–26. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-36478-1_2

4. Feldman, M.: Guess free maximization of submodular and linear sums. In: Frig-
gstad, Z., Sack, J.-R., Salavatipour, M.R. (eds.) WADS 2019. LNCS, vol. 11646, pp.
380–394. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24766-9_28

5. Feige, U., Mirrokni, V.S., Vondrák, J.: Maximizing non-monotone submodular
functions. SIAM J. Comput. 40(4), 1133–1153 (2011)

6. Guestrin, C., Krause, A., Singh, A.P.: Near-optimal sensor placements in gaussian
processes. In: 22th International Conference on Machine Learning, pp. 265–272.
PMLR (2005)

7. Goldberger, J., Ben-Reuven, E.: Training deep neural-networks using a noise adap-
tation layer (2016)

8. Gölz, P., Procaccia, A.D.: Migration as submodular optimization. In: 33th AAAI
Conference on Artificial Intelligence, pp. 549–556. AAAI Press, Palo Alto, Califor-
nia USA (2019)

9. Horel, T., Singer, Y.: Maximization of approximately submodular functions. In:
Advances in Neural Information Processing Systems, vol. 29 (2016)

https://doi.org/10.1007/3-540-36478-1_2
https://doi.org/10.1007/3-540-36478-1_2
https://doi.org/10.1007/978-3-030-24766-9_28

Bicriteria Algorithms for Maximizing Submodular Function 143

10. Harshaw, C., Feldman, M., Ward, J., et al.: Submodular maximization beyond non-
negativity: guarantees, fast algorithms, and applications. In: 36th International
Conference on Machine Learning, pp. 2634–2643. PMLR (2019)

11. Kazemi, E., Minaee, S., Feldman, M., et al.: Regularized submodular maximization
at scale. In: 38th International Conference on Machine Learning, pp. 5356–5366
(2021)

12. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: 9th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 137–146. Association for Computing Machinery,
New York (2003)

13. Leskovec, J., Krause, A., Guestrin, C., et al.: Cost-effective outbreak detection in
networks. In: 13th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, pp. 420–429. Association for Computing Machinery, New
York (2007)

14. Mirzasoleiman, B., Badanidiyuru, A., Karbasi, A.: Fast constrained submodular
maximization: personalized data summarization. In: 33th International Conference
on Machine Learning, pp. 1358–1367. PMLR (2016)

15. Nikolakaki, S.M., Ene, A., Terzi, E.: An efficient framework for balancing submod-
ularity and cost. In: 27th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, pp. 1256–1266. Association for Computing Machinery, New York
(2021)

16. Nguyen, L., Thai, M.T.: Streaming k-submodular maximization under noise sub-
ject to size constraint. In: 37th International Conference on Machine Learning, pp.
7338–7347. PMLR (2020)

17. Sviridenko, M., Vondrák, J., Ward, J.: Optimal approximation for submodular
and supermodular optimization with bounded curvature. Math. Oper. Res. 42(4),
1197–1218 (2017)

18. Sviridenko, M.: A note on maximizing a submodular set function subject to a
knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)

19. Singer, Y., Vondrák, J.: Information-theoretic lower bounds for convex optimiza-
tion with erroneous oracles. In: Advances in Neural Information Processing Sys-
tems, vol. 28 (2015)

20. Shahaf, D., Horvitz, E.: Generalized task markets for human and machine com-
putation. In: 24th AAAI Conference on Artificial Intelligence, pp. 986–993. AAAI
Press, Palo Alto, California USA (2010)

21. Vondrák, J.: Optimal approximation for the submodular welfare problem in the
value oracle model. In: 14th Annual ACM Symposium on Theory of Computing,
pp. 67–74. Association for Computing Machinery, New York (2008)

22. Yang, R., Xu, D., Cheng, Y., et al.: Streaming submodular maximization under
noises. In: 39th International Conference on Distributed Computing Systems, pp.
3348–357. IEEE, Dallas (2019)

Monotone k-Submodular Knapsack
Maximization: An Analysis of the

Greedy+Singleton Algorithm

Jingwen Chen1, Zhongzheng Tang2, and Chenhao Wang1,3(B)

1 BNU-HKBU United International College, Zhuhai, China
2 Beijing University of Posts and Telecommunications, Beijing, China

3 Beijing Normal University, Zhuhai, China
chenhwang@bnu.edu.cn

Abstract. This paper studies the problem of maximizing a non-negative
monotone k-submodular function. A k-submodular function is a gener-
alization of a submodular function, where the input consists of k disjoint
subsets, instead of a single subset. For the problem under a knapsack
constraint, we consider the algorithm that returns the better solution
between the single element of highest value and the result of the fully
greedy algorithm, to which we refer as Greedy+Singleton, and prove
an approximation ratio 1

4
(1 − 1

e
) ≈ 0.158. Though this ratio is strictly

smaller than the best known factor for this problem, Greedy+Singleton
is simple, fast, and of special interests. Our experiments demonstrates
that the algorithm performs well in terms of the solution quality.

Keywords: k-submodular · Knapsack · Approximation ratio

1 Introduction

We investigate k-submodular functions in this paper, which generalize submod-
ular functions in a natural way. The input of a k-submodular function consists
of k disjoint subsets of a finite nonempty set V , instead of a single subset of V
in a submodular function. Submodular and bisubmodular functions are included
in our setting as the special cases k = 1 and k = 2 respectively.

The k-submodular maximization problem has been widely studied due to its
broad applications, e.g., influence maximization with k types of topics or rumors,
and sensor placement with k types of sensors, etc. In addition to the uncon-
strained setting [22], the k-submodular maximization problem is also investi-
gated in various constrained setting, such as cardinality constraints [14], matroid
constraints [16], and knapsack constraints [20]. This paper will focus on the knap-
sack constraints.

Let us define k-submodular functions formally. Given a finite nonempty set
V with |V | = n, let (k + 1)V := {(X1, . . . , Xk) | Xi ⊆ V ∀i ∈ [k],Xi ∩ Xj =
∅ ∀i �= j} be the family of k disjoint sets, where [k] := {1, . . . , k}.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 144–155, 2022.
https://doi.org/10.1007/978-3-031-16081-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_13&domain=pdf
http://orcid.org/0000-0002-2481-5648
https://doi.org/10.1007/978-3-031-16081-3_13

Monotone k-Submodular Knapsack Maximization 145

Definition 1 (k-submodularity [8]). A function f : (k + 1)V → R is called
k-submodular, if for any x = (X1, . . . , Xk) and y = (Y1, . . . , Yk) in (k +1)V , we
have

f(x) + f(y) ≥ f(x 	 y) + f(x
 y),

where

x 	 y :=

⎛
⎝X1 ∪ Y1\(

⋃
i�=1

Xi ∪ Yi), . . . , Xk ∪ Yk\(
⋃
i�=k

Xi ∪ Yi)

⎞
⎠ ,

x
 y := (X1 ∩ Y1, . . . , Xk ∩ Yk) .

Roughly speaking, k-submodularity captures the property that, if we choose
exactly one set Xa ∈ {X1, . . . , Xk} that an element a can belong to for each a ∈
V , then the resulting function is submodular. As we know, the submodularity is
equivalent to the property of diminishing marginal returns, and we shall see that
this property also play an important role in k-submodular functions. However, in
k-submodular functions, we must specify not only which element we are adding
to the solution, but also which set in the partition it is being added to.

Our Contributions
In this paper, we study the maximization problem of a non-negative monotone
k-submodular function under a knapsack constraint, that is, each item a ∈ V
has a cost ca, and the total cost of selected items must not exceed a given
budget B ∈ R+. A natural heuristic for knapsack problem is Greedy, which
maintains a feasible solution, and at each step adds to this solution an item that
maximizes the marginal value per unit of weight (i.e., marginal density), until
there is no longer budget. Unfortunately, this greedy algorithm is well known to
have unbounded approximations, even for linear objectives.

We consider the Greedy+Singleton algorithm that returns the better solu-
tion between Greedy and Singleton, where Singleton returns a solution that
contains a single item of highest value among all dimensions. We prove that the
Greedy+Singleton algorithm is (1 − 1

e)/4-approximation.
This approximation ratio is not as good as those in the literature. For the

k-submodular knapsack maximization, Tang et al. [20] provide a (1 − 1
e)/2-

approximation algorithm within O(n4k3) queries, which combines Singleton
with a greedy algorithm that completes all feasible solutions of size 2 greedily.
This approximation ratio has been improved to 1

2 − ε by Wang and Zhou [21]
using multilinear extension techniques.

Nevertheless, we highlight the novelty and special interests of our contribu-
tion. From the perspective of time complexity, while both algorithms in [20]
and [21] are not very efficient, our algorithm Greedy+Singleton takes only
O(n2k) queries. From the perspective of theoretical interests, special attention
was given to Greedy+Singleton for submodular functions: the approximation
ratio is improved from 0.387 to 0.393 and to 0.427 (see more details in the part
of Related Work). Hence, our approximation ratio (1 − 1

e)/4 is the first step for
k-submodular functions, and may inspire follow-up studies to improve this ratio
by more careful analysis.

146 J. Chen et al.

Related Work
We discuss the related work in three parts: submodular knapsack maximization,
Greedy+Singleton for submodular functions, and k-submodular maximiza-
tion.

Submodular Knapsack. For monotone submodular maximization under a knap-
sack constraint, Sviridenko [18] presents a greedy (1 − 1

e)-approximation algo-
rithm with O(n5) queries, which enumerates all feasible sets of size no more than
3 and then expands each set of size 3 greedily by the marginal density. This is
the best possible approximation ratio among polynomial-time algorithms. Faster
algorithms with (1 − 1

e − ε)-approximation exist [2], but the time is exponential
to 1

ε . Yaroslavtsev et al. [23] presented a Greedy+Max algorithm that is a 1
2 -

approximation with query complexity O(K̃n), where K̃ is an upper bound on
the number of elements in any feasible solution. Huang et al. [6,7] considered
this problem in a streaming setting.

Greedy+Singleton for Submodular Functions. The algorithm was first sug-
gested in [10] for coverage functions, and adapted to monotone submodular func-
tion in [12]. Both works stated an approximation guarantee of (1−e−0.5) ≈ 0.393,
though the proofs in both works were flawed. Tang et al. [19] establish a cor-
rect proof for the (1 − e−0.5)-approximation, improving upon an earlier approx-
imation guarantee e−1

2e−1 ≈ 0.387 [1]. Feldman, Nutov and Shoham showed
that the approximation ratio of the algorithm is within [0.427, 0.462] [3]. More
recently, Kulik, Schwartz and Shachnai [11] present an improved upper bound
of 0.42945, which combined with the result of [3], limits the approximation ratio
of Greedy+Singleton to the narrow interval [0.427, 0.42945].

k-submodular Maximization. The k-submodular functions were proposed by
Huber and Kolmogorov [8], which express the submodularity on choosing k dis-
joint sets of elements instead of a single set, and recently become a popular
subject of research [4,5,13,17]. For unconstrained non-monotone k-submodular
maximization, Ward and Živnỳ [22] first proposed an approximation algorithm,
and the ratio was later improved by Iwata et al. [9] to 1

2 , which is more
recently improved to k2+1

2k2+1 by Oshima [15]. For unconstrained monotone k-
submodular maximization, Ward and Živnỳ [22] proved that a greedy algorithm
is 1

2 -approximaion, and later, Iwata et al. [9] proposed a randomized k
2k−1 -

approximation algorithm, which is asymptotically tight.
The maximization of a monotone k-submodular function is also studied under

various constraints. Under a total size constraint (i.e., ∪i∈[k]|Xi| ≤ B for an inte-
ger budget B), Ohsaka and Yoshida [14] proposed a 1

2 -approximation algorithm,
and under individual size constraints (i.e., |Xi| ≤ Bi ∀i ∈ [k] with integers Bi),
they proposed a 1

3 -approximation algorithm. Under a matroid constraint on the
union of the sets, Sakaue [16] proposed a 1

2 -approximation algorithm. Under a
knapsack constraint, Tang et al. [20] provided a (1 − 1

e)/2-approximation algo-
rithm that combines Singleton with a greedy algorithm that completes all fea-
sible solutions of size 2 greedily, and later Wang and Zhou [21] improved it to
1
2 − ε using multilinear extension techniques.

Monotone k-Submodular Knapsack Maximization 147

2 Preliminaries

Denote x � y, if x = (X1, . . . , Xk) and y = (Y1, . . . , Yk) with Xi ⊆ Yi for each
i ∈ [k]. Define the marginal gain when adding item a to the i-th set of x to be

Δa,i(x) := f(X1, . . . , Xi−1,Xi ∪ {a},Xi+1, . . . , Xk) − f(x).

A k-submodular function f clearly satisfies the orthant submodularity, that is,

Δa,if(x) ≥ Δa,if(y), for any x,y ∈ (k+1)V with x � y, a /∈ ∪j∈[k]Yj , i ∈ [k].

A function f : (k + 1)V → R is called monotone, if f(x) ≤ f(y) for any x � y.
Ward and Živnỳ [22] shows that when monotonicity holds, f is k-submodular if
and only if it is orthant submodular.

For notational ease, we express the family of solutions (k + 1)V in an alter-
native way:

S =
{

∪t
j=1 {(aj , ij)} | t ∈ [n] ∪ {0}, aj ∈ V, ij ∈ [k]

}
.

That is, S is the family of the sets of item-index pairs, where an item-index
pair (a, i) indicates that item a ∈ V is assigned to the i-th set. Any k-disjoint
set x = (X1, . . . , Xk) ∈ (k + 1)V uniquely corresponds to an item-index pairs
set S ∈ S, such that (aj , ij) ∈ S if and only if aj ∈ Xij . From now on, we
rewrite f(x) as f(S) with a slight abuse of notation, and thus Δa,i(S) means
the marginal gain f(S ∪ {(a, i)}) − f(S). For any S ∈ S, we define U(S) := {a ∈
V | ∃i ∈ [k] s.t. (a, i) ∈ S} to be the set of items included, and the size of S is
|S| = |U(S)|. In this paper, let f be a non-negative, monotone, k-submodular
function. We further assume that f(∅) = 0, which is without loss of generality
because otherwise we can redefine f(S) := f(S) − f(∅) for all S ∈ S.

We first introduce an important lemma.

Lemma 1 ([20]). For any S, S′ ∈ S with S ⊆ S′, we have

f(S′) − f(S) ≤
∑

(a,i)∈S′\S

Δa,i(S).

The following proposition from Ward and Živnỳ [22] says that unconstrained
Greedy (see Algorithm 1) is 1

2 -approximation for maximizing f without any
constraint. This algorithm considers items in an arbitrary order, and assigns
each item the best index that brings the largest marginal gain. We will use this
algorithm as a subroutine in the analysis in Sect. 3.

Proposition 1 ([22]). Let T ∈ S be a solution that maximizes f in the uncon-
strained setting, and S ∈ S be the solution returned by Unconstrained Greedy.
Then f(T) ≤ 2 · f(S).

148 J. Chen et al.

Algorithm 1. Unconstrained Greedy
Input: Set V = {1, 2, . . . , n}, monotone k-submodular function f
Output: A solution S ∈ S

1: S ← ∅

2: for a = 1 to n do
3: ia ← argmaxi∈[k] Δa,i(S)
4: S ← S ∪ {(a, ia)}
5: end for
6: return S

3 Approximations of Greedy+Singleton

We consider the problem of maximizing f under a knapsack constraint, that is,
each item a ∈ V has a cost ca, and the total cost of selected items must not
exceed a given budget B ∈ R+. For any solution S ∈ S, define c(S) to be the
total cost of all items in S. Algorithm 2 is the procedure of Greedy+Singleton.

In the remainder of this section, we prove an approximation ratio 1
4 (1 −

1
e), following the framework provided by Khuller et al. [10] for the budgeted
maximum coverage problem, which can derive a 1

2 (1 − 1
e) approximation for the

submodular knapsack maximization.

Algorithm 2. Greedy+Singleton
1: Let S∗ ∈ arg max

S: |S|=1,c(S)≤B
f(S) be a singleton solution giving the largest value.

2: S0 ← ∅, V 0 ← V
3: for t from 1 to n do
4: Let (at, it) = arg max

a∈V t−1,i∈[k]

Δa,i(S
t−1)

ca
be the pair that maximizes the marginal

density
5: if c(St−1) + cat ≤ B then
6: St = St−1 ∪ {(at, it)}
7: else
8: St = St−1

9: end if
10: V t = V t−1\{at}
11: end for
12: S∗ ← Sn if f(Sn) > f(S∗)
13: return S∗

Let OPT be the optimal solution, and f(OPT) be the optimal value. Let
l + 1 be the first time when Algorithm 2 does not add an item in U(OPT) to
the current solution, due to the budget constraint. We can further assume that
l + 1 is the first step t for which St = St−1. This assumption is without loss of
generality, because if it happens earlier for some t′ < l + 1, then at′ does not
belong to the optimal solution T , nor the approximate solution we are interested

Monotone k-Submodular Knapsack Maximization 149

in; thus, we can remove at′ from the ground set V , without affecting the analysis,
the optimal solution T , and the approximate solution returned by the algorithm.

For each t = 1, . . . , l, we define Gt = St to be the solution after the t-
th iteration, and define Gl+1 = Sl ∪ {(al+1, il+1)} to be the solution obtained
by adding (al+1, il+1) to Sl though violating the budget. The following lemma
bounds the marginal gain in every iteration.

Lemma 2. For each t = 1, . . . , l + 1, we have

f(Gt) − f(Gt−1) ≥ cat

2B

(
f(OPT) − 2f(Gt−1)

)

Proof. We first consider the items in U(OPT). We run the subroutine Algorithm
1 on ground set U(OPT) with respect to an order of items in which the first l
items are a1, a2, . . . , al. Let OPT be the solution returned by this subroutine,
and by Proposition 1, f(OPT) ≤ 2 · f(OPT). Noting that at is the item added
by Algorithm 2 in the t-th iteration for every t = 1, . . . , l, we have St ⊆ OPT .
Then by Lemma 1, we have

f(OPT) ≤ 2 · f(OPT)

≤ 2 · f(Gt−1) + 2
∑

(a,i)∈OPT\Gt−1

Δa,i(Gt−1)

≤ 2 · f(Gt−1) + 2B · Δat,it(Gt−1)
cat

= 2 · f(Gt−1) + 2B · f(Gt) − f(Gt−1)
cat

,

where the last inequality follows from the facts that the marginal density is
maximized in each iteration and the capacity remained is at most B. Then
immediately we have f(Gt) − f(Gt−1) ≥ cat

2B

(
f(OPT) − 2f(Gt−1)

)
.
	

Lemma 3. For each t = 1, . . . , l + 1, we have

f(Gt) ≥ (1 − xt) · f(OPT),

where x1 = 1 − ca1
B and xt = (1 − cat

B)xt−1 + cat

2B .

Proof. We prove it by induction. Firstly, when t = 1, clearly we have f(S1) ≥
ca1
B f(OPT). Suppose the statement holds for iterations 1, 2, . . . , t − 1. We show

that it also holds for iteration t:

150 J. Chen et al.

f(Gt) = f(Gt−1) + f(Gt) − f(Gt−1)

≥ f(Gt−1) +
cat

2B

(
f(OPT) − 2f(Gt−1)

)

= (1 − cat

B
)f(Gt−1) +

cat

2B
f(OPT)

≥ (1 − cat

B
)(1 − xt−1) · f(OPT) +

cat

2B
f(OPT)

= (1 − cat

2B
− xt−1 +

cat

B
xt−1)f(OPT)

=
[
1 − (

(1 − cat

B
)xt−1 +

cat

2B

)]
f(OPT),

as desired.
	
It is not hard to see that the recurrence relation xt = (1 − cat

B)xt−1 + cat

2B

with initial state x1 = 1 − ca1
B can be written as

xt − 1
2

= (1 − cat

B
)xt−1 − 1

2
(1 − cat

B
)

= (1 − cat

B
)(xt−1 − 1

2
).

Hence, we can easily get a general formula

xt = (
1
2

− ca1

B
)

t∏
j=2

(1 − caj

B
) +

1
2
.

Now we are ready to prove our main theorem.

Theorem 1. Greedy+Singleton achieves an approximation ratio of 1
4 (1 −

1
e) ≈ 0.158 for k-submodular knapsack maximization with O(n2k) queries.

Proof. By Lemma 3, we have

f(Gl+1) ≥ (1 − xl+1) · f(OPT)

=
(1

2
− (

1
2

− c1
B

)
l+1∏
j=2

(1 − cj

B
)
)

· f(OPT)

≥
(1

2
− 1

2
(1 − c1

B
)

l+1∏
j=2

(1 − cj

B
)
)

· f(OPT) (1)

≥
(1

2
− 1

2

l+1∏
j=1

(1 − cj

c(Gl+1)
)
)

· f(OPT)

≥
(1

2
− 1

2
· (1 − 1

l + 1
)l+1

)
· f(OPT)

≥
(1

2
− 1

2e

)
· f(OPT). (2)

Monotone k-Submodular Knapsack Maximization 151

Note that inequality (1) follows from the fact that adding the item al+1 to Gl

violates the budget B, and thus

c(Gl+1) = c(Gl) + cl+1 > B.

By (2), we know that

f(Gl) + max
(a,i)

Δa,i(Gl) ≥
(1

2
− 1

2e

)
· f(OPT).

The LHS is no more than f(Gl) plus the maximum profit of a single item, i.e.,
the outcome of Singleton, say (a∗, i∗). Therefore, the better solution between
Gl and {(a∗, i∗)} is has a value

max{f(Gl), f({(a∗, i∗)})} ≥ 1
2

(1
2

− 1
2e

)
· f(OPT),

Since Gl = Sl is a part of the solution returned by Greedy+Singleton when
Greedy performs better than Singleton, it establishes an approximation ratio
1
4 (1 − 1

e).
	

4 Experiments

In this section, we evaluate the performance of algorithms empirically on syn-
thetic dataset. We conducted experiments on Visual Studio 2020 with Intel(R)
Core(TM) i5-10500 (3.10 GHz) and 16 GB of main memory. We implemented
all algorithms in C++. We apply the algorithms to the problem of influence
maximization of several topics in social networks.

In the information diffusion model, called the k-topic independent cascade
(k-IC) model [14], suppose that there are k kinds of topic (or rumors) which can
spread independently in a social network. Let G = (V,E) be a social network
with an edge probability pi

u,v for each edge (u, v) ∈ E, representing the probabil-
ity of spread the i-th topic from vertex u to v. Suppose we are given some seeds
S ∈ (k + 1)V , the infection process about the i-th topic starts by activating all
seed nodes with topic i, independently from other topics. And then their spread
conforms to the following rule: When a node u is activated in step t for the
first time, it has a single chance to activate each of its neighbor nodes who are
current inactive, with a probability pi

u,v of successfully activating its neighbor v.
If u succeeds, v becomes active in step t + 1 with the i-th topic, and then v will
continue to infect according to this rule in the next round. If the infection is not
successful, then u will not try again to infect v. The diffusion process will stop
when there is no more chance to activate any node.

The influence spread function f : (k+1)V → R+ in the k-IC model is defined
as the expected total number of vertices who are eventually activated in one of
the k topics given seeds S ∈ (k + 1)V . That is, f(S) = E[|⋃i∈[k]Ai(S)|], where
Ai(S) is a random variable representing the set of activated vertices with the i-th
topic. Suppose each vertex v ∈ V has a cost cv ∈ R+. Given a directed graph

152 J. Chen et al.

Fig. 1. The experiments results of the algorithms in the k-IC model, for a range of
budget from 10 to 60.

Monotone k-Submodular Knapsack Maximization 153

G = (V,E), edge probabilities pi
u,v for all (u, v) ∈ [E], i ∈ [k]), and a budget

B, the problem is to select seeds S ∈ (k + 1)V that maximizes f(S) subject
to a knapsack constraint

∑
v∈U(S) cv ≤ B. This influence spread function f is

monotone k-submodular [14].
In the experiment, we generate a synthetic dataset in the Erdős-Rényi ran-

dom graph model with 500 vertices. Each edge is included in the graph with
probability p = 0.01, 0.02, 0.03, independently from every other edge. Let the
number of topics be k = 5. The cost of each vertex is a random number fol-
lowing the uniform distribution Uni(0, 5). We compare the performances of the
following algorithms by changing the value of the budget.

– Singleton: a single node as well as it topic that maximizes the total number
of activated nodes.

– Greedy: at each step we add to the seeds set a feasible node as well as its
topic that maximizes the marginal density. The process ends when there is
no more budget for any further node.

– Greedy+Singleton (Algorithm 2): the better solution between Singleton
and Greedy.

– Greedy1: we initialize the set maintained in Greedy to be the output of
Singleton, and then expand this set greedily.

– Random: at each step we add to the seeds set a random feasible node as
well as a random topic, until there is no more feasible node.

The experiments results (see Fig. 1) show that for every instance, Greedy
performs strictly better than Singleton, and thus Greedy+Singleton is
exactly the same to Greedy. When p = 0.01, Greedy is better than Greedy1,
while when p = 0.02, Greedy1 is better than Greedy. When p = 0.03, the two
algorithms have a similar performance. In all cases, Greedy and Greedy1 are
much better than Singleton and Random.

5 Conclusion

We have provided an approximation ratio 1
4 (1 − 1

e) of the Greedy+Singleton
algorithm for the problem of maximizing a monotone k-submodular function
under a knapsack constraint. An immediate open question is whether this ratio
is tight with respect to the algorithm? The answer seems to be negative, because
the framework of the proof is a generalization of that in [10], which gives a very
loose analysis of Greedy+Singleton for the submodular knapsack problem.
Thus, it would be interesting to explore what approximation this algorithm can
achieve. Further, another future direction is to look at other simple and fast
algorithms for k-submodular maximization, or multiple knapsack constraints.

154 J. Chen et al.

Acknowledgements. This work is partially supported by Artificial Intelligence and
Data Science Research Hub, BNU-HKBU United International College (UIC), No.
2020KSYS007, and by a grant from UIC (No. UICR0400025-21). Zhongzheng Tang is
supported by National Natural Science Foundation of China under Grant No. 12101069
and Innovation Foundation of BUPT for Youth (No. 500422309). Chenhao Wang is
supported by a grant from UIC (No. UICR0700036-22).

References

1. Cohen, R., Katzir, L.: The generalized maximum coverage problem. Inf. Process.
Lett. 108(1), 15–22 (2008)

2. Ene, A., Nguyen, H.L.: A nearly-linear time algorithm for submodular maximiza-
tion with a knapsack constraint. In: Proceedings of the 46th International Collo-
quium on Automata, Languages, and Programming (ICALP) (2019)

3. Feldman, M., Nutov, Z., Shoham, E.: Practical budgeted submodular maximiza-
tion. arXiv preprint arXiv:2007.04937 (2020)

4. Gridchyn, I., Kolmogorov, V.: Potts model, parametric maxflow and k-submodular
functions. In: Proceedings of the IEEE International Conference on Computer
Vision (ICCV), pp. 2320–2327 (2013)

5. Hirai, H., Iwamasa, Y.: On k-submodular relaxation. SIAM J. Discret. Math. 30(3),
1726–1736 (2016)

6. Huang, C.C., Kakimura, N.: Improved streaming algorithms for maximizing mono-
tone submodular functions under a knapsack constraint. Algorithmica 83(3), 879–
902 (2021)

7. Huang, C.C., Kakimura, N., Yoshida, Y.: Streaming algorithms for maximizing
monotone submodular functions under a Knapsack constraint. In: Approxima-
tion, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM) (2017)

8. Huber, A., Kolmogorov, V.: Towards minimizing k -submodular functions. In:
Mahjoub, A.R., Markakis, V., Milis, I., Paschos, V.T. (eds.) ISCO 2012. LNCS,
vol. 7422, pp. 451–462. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32147-4 40

9. Iwata, S., Tanigawa, S.I., Yoshida, Y.: Improved approximation algorithms for
k-submodular function maximization. In: Proceedings of the 27th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pp. 404–413 (2016)

10. Khuller, S., Moss, A., Naor, J.S.: The budgeted maximum coverage problem. Inf.
Process. Lett. 70(1), 39–45 (1999)

11. Kulik, A., Schwartz, R., Shachnai, H.: A refined analysis of submodular greedy.
Oper. Res. Lett. 49(4), 507–514 (2021)

12. Lin, H., Bilmes, J.: Multi-document summarization via budgeted maximization
of submodular functions. In: Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the Association for Computational
Linguistics, pp. 912–920 (2010)

13. Nguyen, L., Thai, M.T.: Streaming k-submodular maximization under noise sub-
ject to size constraint. In: Proceedings of the 37th International Conference on
Machine Learning (ICML), pp. 7338–7347. PMLR (2020)

14. Ohsaka, N., Yoshida, Y.: Monotone k-submodular function maximization with size
constraints. In: Proceedings of the 28th International Conference on Neural Infor-
mation Processing Systems (NeurIPS), vol. 1, pp. 694–702 (2015)

http://arxiv.org/abs/2007.04937
https://doi.org/10.1007/978-3-642-32147-4_40
https://doi.org/10.1007/978-3-642-32147-4_40

Monotone k-Submodular Knapsack Maximization 155

15. Oshima, H.: Improved randomized algorithm for k-submodular function maximiza-
tion. SIAM J. Discret. Math. 35(1), 1–22 (2021)

16. Sakaue, S.: On maximizing a monotone k-submodular function subject to a matroid
constraint. Discret. Optim. 23, 105–113 (2017)

17. Soma, T.: No-regret algorithms for online k-submodular maximization. In: Pro-
ceedings of the 22nd International Conference on Artificial Intelligence and Statis-
tics (AISTATS), pp. 1205–1214. PMLR (2019)

18. Sviridenko, M.: A note on maximizing a submodular set function subject to a
Knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)

19. Tang, J., Tang, X., Lim, A., Han, K., Li, C., Yuan, J.: Revisiting modified greedy
algorithm for monotone submodular maximization with a Knapsack constraint.
Proc. ACM Measure. Anal. Comput. Syst. 5(1), 1–22 (2021)

20. Tang, Z., Wang, C., Chan, H.: On maximizing a monotone k-submodular function
under a knapsack constraint. Oper. Res. Lett. 50(1), 28–31 (2022)

21. Wang, B., Zhou, H.: Multilinear extension of k-submodular functions. arXiv
preprint arXiv:2107.07103 (2021)

22. Ward, J., Živnỳ, S.: Maximizing k-submodular functions and beyond. ACM Trans.
Algorithms 12(4), 1–26 (2016)

23. Yaroslavtsev, G., Zhou, S., Avdiukhin, D.: “Bring your own greedy”+ max: near-
optimal 1/2-approximations for submodular knapsack. In: International Confer-
ence on Artificial Intelligence and Statistics, pp. 3263–3274. PMLR (2020)

http://arxiv.org/abs/2107.07103

Guarantees for Maximization of k-Submodular
Functions with a Knapsack and a Matroid

Constraint

Kemin Yu, Min Li, Yang Zhou, and Qian Liu(B)

School of Mathematics and Statistics, Shandong Normal University,
Jinan 250014, People’s Republic of China

lq qsh@163.com, {liminemily,zhouyang}@sdnu.edu.cn

Abstract. A k-submodular function is a generalization of a submodular func-
tion, whose definition domain is the collection of k disjoint subsets. In our paper,
we apply a greedy and local search technique to obtain a 1

6
(1−e−2)-approximate

algorithm for the problem of maximizing a k-submodular function subject to the
intersection of a knapsack constraint and a matroid constraint. Furthermore, we
use a special analytical method to improve the approximation ratio to 1

3
(1−e−3),

when the k-submodular function is monotone.

Keywords: k-submodularity · Knapsack constraint · Matroid constraint ·
Approximation algorithm

1 Introduction

Consider a ground set G composed of n elements and k ∈ N+, we define (k + 1)G as
the family of k disjoint subset (X1, . . . , Xk), whereXi ⊆ G, ∀i ∈ [k] andXi∩Xj = ∅,
∀i �= j. A function f : (k + 1)G → R is said to be k-submodular [7], if

f(x) + f(y) ≥ f(x
 y) + f(x � y),

for any x = (X1, . . . , Xk) and y = (Y1, . . . , Yk) in (k + 1)G, where

x
 y := (X1 ∪ Y1 \ (
⋃

i�=1

Xi ∪ Yi), . . . , Xk ∪ Yk \ (
⋃

i�=k

Xi ∪ Yi)),

x � y := (X1 ∩ Y1, . . . , Xk ∩ Yk).

Obviously, it is a submodular function for k = 1.
As early as 1978, Nemhauser et al. [11] studied the monotone submodular maxi-

mization problem subject to cardinality constraints and obtained a greedy (1 − 1/e)-
approximation algorithm. Many scholars extended submodular maximization to differ-
ent constraints and design approximate algorithms, see [1–6,10,17,20]. Among them,

Supported by National Science Foundation of China (No. 12001335) and Natural Science Foun-
dation of Shandong Province of China (Nos. ZR2019PA004, ZR2020MA029, ZR2021MA100).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 156–167, 2022.
https://doi.org/10.1007/978-3-031-16081-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_14&domain=pdf
https://doi.org/10.1007/978-3-031-16081-3_14

Guarantees for Maximization of k-Submodular Functions 157

knapsack constraint and matroid constraint are mainly concerned, and most of the algo-
rithms can achieve the tight 1 − 1/e approximation ratio. However, under the intersec-
tion constraint of a knapsack and a matroid, we have not found that the algorithm can
achieve 1−1/e-approximation, since the loss of rounding is difficult to avoid. Recently,
by combining greedy and local search techniques, Sarpatwa et al. [16] contributed an
algorithm for reaching 1−e−2

2 -approximation ratio.
In recent years, k-submodular maximization problem has been widely concerned

and studied. There have been many research results. For k-submodular maximization
without constraint, Ward and Zivny [19] gave a deterministic greedy algorithm, whose
approximate ratio reached 1/3, and a randomized greedy algorithm whose approxi-

mate ratio is 1
1+a , where a = max{1,

√
k−1
4 }. Iwata et al. [8] improved the approx-

imation ratio to 1/2. Later, [14] contributed an algorithm with ratio k2+1
2k2+1 . Under the

monotonicity assumption, Ward and Zivny [19] gave a 1/2 approximation algorithm and
Iwata et al. [8] improved the approximation ratio to k/(2k−1), which is asymptotically
tight. There are also many results for nonnegative monotone k-submodular maximiza-
tion with constraints. In 2015, Ohsaka and Yoshida [13] designed a 1/2-approximation
algorithm for a total size constraint. Sakaue [15] presented a 1/2-approximation algo-
rithm with a matroid constraint. And for monotone k-submodular maximization subject
to a knapsack constraint, Tang et al. [18] proposed an algorithm of 1−1/e

2 approximate
ratio. Liu et al. [9] design a combinatorial approximation algorithm for monotone k-
submodular maximization subject to a knapsack and a matroid constraint and obtained
a 1

4 (1 − e−2) approximate ratio.
In this paper, we consider the k-submodular maximization subject to a knapsack

and a matroid constraint, and do some work on the basis of the algorithm given by Liu
et al. [9]. The main contributions of this paper are as follows:

– We extend the algorithm for k-submodular maximization problem with a knapsack
and a matroid constraint to nonmonotone case, and achieve a 1

6 (1 − e−2) approxi-
mate ratio, based on the pairwise monotone property.

– We improve the approximate ratio from 1
4 (1 − e−2) in [9] to 1

3 (1 − e−3) under the
monotonicity assumption. In the theoretical analysis of the algorithm, we no longer
rely on the results of the greedy algorithm for the unconstrained k-submodular max-
imization problem, and use the properties of k-submodular function to get the new
result.

We organize our paper as follows. In Sect. 2, we first introduce the k-submdodular func-
tion and some corresponding results, then present the k-submodular maximization prob-
lem with a knapsack and a matroid constraint. We present our results for non-monotone
case in Sect. 3. In Sect. 4, we show our theoretical analysis for monotone case.

2 Preliminaries

2.1 k-Submodular Function

For any two k disjoint subsets x = (X1, . . . , Xk) and y = (Y1, . . . , Yk) in (k + 1)G,
we need to introduce a remove operation and a partial order, i.e.

x \ y := (X1 \ Y1, . . . , Xk \ Yk),

158 K. Yu et al.

x y, if Xi ⊆ Yi,∀i ∈ [k].

Define ∅ := (∅, . . . , ∅) ∈ (k+1)G and (v, i) ∈ (k+1)G such thatXi = {v} andXj = ∅
for ∀j ∈ [k] with j �= i. Refer U(x) =

⋃k
i=1 Xi. For v /∈ U(x), we use fx((v, i)) =

f(x
 (v, i)) − f(x) to represent the marginal gain of f . A function f is said to be
pairwise monotone if fx((v, i))+fx((v, j)) ≥ 0 for any i �= j ∈ [k] holds. In addition,
we call that the function f is orthant submodular, if fx((v, i)) ≥ fy ((v, i)) holds, for
any x y. According to the above definition, we have the equivalent definition and
property of the k-submodular function as follows.

Definition 1 [19]. A function f : (k + 1)G → R is k-submodular iff it is pairwise
monotone and orthant submodular.

Lemma 1 [18]. Given a k-submodular f , we have

f(y) − f(x) ≤
∑

(v,i)�y\x
fx((v, i)),

for any x y.

Check the definition of k-submodular, we have the lemma as follows.

Lemma 2. Given a k-submodular f , we set g(x) = f(x
 (v, i)): (k + 1)G\v → R,
then g(x) is k-submodular.

2.2 k-Submodular Maximization with a Knapsack and a Matroid Constraint

We define L ⊆ 2G as the family of subsets of G. A pair (G,L) is called as an inde-
pendence system if (M1) and (M2) holds. And if (M3) also holds, the independence
system (G,L) is a matroid.

Definition 2. Given a pair M = (G,L), where L ⊆ 2G. We call M is a matroid if the
following holds:

(M1): ∅ ∈ L.
(M2): for any subset A ∈ L, B ⊆ A indicates B ∈ L.
(M3): for any two subset A,B ∈ L, | A |>| B | indicates that there exists a point
v ∈ A\B, such that B ∪ {v} ∈ L.

Given a subset A ∈ L and a pair of points (a, b), where a ∈ A ∪ {∅} and b ∈
G\A, we refer the pair (a, b) as a swap(a, b) if A\{a} ∪ {b} ∈ L. It means that only
some special points pair called swap can guarantee that A\{a} ∪ {b} ∈ L is still an
independent set.

Guarantees for Maximization of k-Submodular Functions 159

We highlight that the next lemma ensures that a swap(a, b) must exist between the
optimal solution x∗ and the current solution xt in the later analysis. Consider the sup-
port set of the current solution U(xt) as A ∈ L and U(x∗) as B ∈ L. We will con-
sider finding a special kind of swap(y(b), b) of U(xt), where b ∈ U(x∗)\U(xt) and
y(b) ∈ U(xt)\U(x∗) ∪ {∅}.
Lemma 3 [16]. Assume two sets A,B ∈ L, then we can construct a mapping y :
B\A → (A\B) ∪ {∅}, where every point b ∈ B\A satisfies (A\{y(b)}) ∪ {b} ∈ L,
and a ∈ A\B satisfies |y−1(a)| ≤ 1.

Consider every point v in G, we give it a weight wv ≥ 0 and a total upper bound B.
In the following, we assume that wv is an integer, because we can always change all wv

and B proportionally without losing generality. The two constraints reduce the domain
of candidate solutions, so we can only find some solutions x ∈ (k + 1)G such that the
sum of weight wv of all points v in U(x) is less than B and U(x) is an independent
set. Define wx =

∑
v∈U(x)

wv . The problem can be written as

max
x∈(k+1)G

{f(x) | wx ≤ B and U(x) ∈ L}. (1)

In addition, in the later proof, we need to use the following lemma.

Lemma 4 [11]. Given two fixed P,D ∈ N+ and a sequence of numbers γi ∈ R+,
where i ∈ [P] , then we have

∑P
i=1 γi

mint∈[P](
∑t−1

i=1 γi + Dγt)

≥ 1 − (1 − 1
D
)P ≥ 1 − e−P/D.

(2)

2.3 Algorithm

Before giving the algorithm to solve problem (1), we firstly introduce a greedy algo-
rithm for unconstrained k-submodular by [19]. We know that a k-submodular function
f is pairwise monotone due to Definition 1, that is, fx((v, i)) + fx((v, j)) ≥ 0 for any
i �= j ∈ [k]. It means that for a fixed x ∈ (k + 1)G and v ∈ G\U(x), there are no two
positions i �= j ∈ [k] such that fx((v, i)) < 0 and fx((v, j)) < 0 both hold. So we can
always find a position i ∈ [k] such that fx((v, i)) ≥ 0 for any v ∈ G\U(x). Therefore,
for every current solution xt in the Algorithm 1, we add v ∈ G\U(xt) with a greedy
position ij until all points v ∈ G are added to U(xt).

Then we give an algorithm inspired by [16] and [18] for problems (1) called MK-
KM abbreviated as maximizing k-submodular function with a knapsack constraint and
a matroid constraint. Let’s highlight some important nodes. Firstly, we select three ele-
ments with the largest marginal return from the optimal solution x∗ by enumerating.
Second, for every current solution xt ∈ L and the optimal solution x∗ ∈ L, we can
always find a swap(y(b), b) satisfying y(b) ∈ xt\x∗ and b ∈ x∗\xt by Lemma 3. But
we always choose a swap(a, b) with the highest marginal profit density ρ(a, b). In the

160 K. Yu et al.

Algorithm 1. Greedy Algorithm (f, G)

Require: A function f : (k + 1)G → R+ and a set G = [n]
Ensure: A k-disjoint set x ∈ (k + 1)G

1: x ← (∅, . . . , ∅)
2: for j = 1 to n do
3: ij ← argmaxi∈[k] fx ((v, i))
4: x ← x � (v, ij)
5: end for
6: return x

line 9 of MK-KM, we reorder the U(xt) after the operation of swap(a, b) and ensure
x0 xt. Considering the order of each element in (U(xt−1 \ x0) \ {a}) ∪ {b}) as
it is added to current solution in MK-KM, we add them to Greddy Algorithm in the
same order. Last but not least, only when xt is updated, S will be regenerated in line 5.
Otherwise, MK-KM will continue to pick and remove the next swap in the loop from 6
to 13. So MK-KM will break the loop when S = ∅ in line 6.

Algorithm 2. MK-KM (G, B, M)

Require: A function f : (k + 1)G → R+, a budget B ∈ R+ and a matroid (G, L)
Ensure: A k-disjoint set x ∈ (k + 1)G satisfying wx ≤ B and U(x) ∈ L
1: Let xα ∈ arg max

|U(x)|=1,x�x∗ f(x), xβ ∈ arg max
|U(x)|=2,xα�x�x∗ f(x)

xγ ∈ arg max
|U(x)|=3,xβ�x�x∗

f(x) and t = 0

2: xt ← xγ and switch = false
3: while switch = false do
4: switch = true
5: Generate a collection of all swaps S = S(U(xt\x0))
6: while switch = true and S �= ∅ do
7: Pick a swap (a, b) from S with a maximum value of ρ(a, b) =

maxj∈[k]
f((xt\(a,i))�(b,j))−f(xt)

wb

8: if ρ(a, b) > 0 and wx − wa + cb ≤ B then
9: x̃t ← Greedy Algorithm for f(x̃t � x0) over (U(xt \ x0) \ {a}) ∪ {b}
10: xt+1 = x̃t � x0

11: wxt+1 = wxt − wa + wb

12: switch = false
13: end if
14: S = S \ {(a, b)}
15: end while
16: end while
17: return x

Guarantees for Maximization of k-Submodular Functions 161

We modify MK-KM and give MK-KM’ algorithm for problem (1) with monotonic-
ity. MK-KM’ selects two elements with the largest marginal return from the optimal
solution x∗ by enumerating. This modification reduces the running time.

Algorithm 3. MK-KM’ (G, B, M)

Require: A function f : (k + 1)G → R+, a budget B ∈ R+ and a matroid (G, L)
Ensure: A k-disjoint set x ∈ (k + 1)G satisfying wx ≤ B and U(x) ∈ L
1: Let xα ∈ arg max

|U(x)|=1,x�x∗ f(x), xβ ∈ arg max
|U(x)|=2,xα�x�x∗ f(x), and t = 0

2: xt ← xβ and switch = false
3: while switch = false do
4: switch = true
5: Generate a collection of all swaps S = S(U(xt\x0))
6: while switch = true and S �= ∅ do
7: Pick a swap (a, b) from S with a maximum value of ρ(a, b) =

maxj∈[k]
f((xt\(a,i))�(b,j))−f(xt)

wb

8: if ρ(a, b) > 0 and wx − wa + cb ≤ B then
9: x̃t ← Greedy Algorithm for f(x̃t � x0) over (U(xt \ x0) \ {a}) ∪ {b}
10: xt+1 = x̃t � x0

11: wxt+1 = wxt − wa + wb

12: switch = false
13: end if
14: S = S \ {(a, b)}
15: end while
16: end while
17: return x

In order to pave the way for analysis of Sect. 4, we consider the process of the
current solution xt generated by x0
 x̃t. We carefully define x̃t

j as the current solution
of each iteration of the greedy algorithm of the 9th line, where j ∈ {1, . . . , |U(xt)−2|}
for every fixed t. Define (vj , ij) = x̃t

j\x̃t
j−1 in Greedy Algorithm.

For the convenience of writing, we define xt
j = x̃t

j
 x0. Then immediately
(vj , ij) = (xt

j\xt
j−1) = ((x̃t

j
 x0)\(x̃t
j−1
 x0)) holds. For each fixed iteration step

t, there are a string of iteration steps j ∈ {1, . . . , |U(xt) − 2|} for the nested greedy
algorithm.

3 Analysis for Non-monotone k-submodular Maximization with a
Knapsack Constraint and a Matroid Constraint

In this section, we will draw support from the nested greedy algorithm to solve prob-
lem (1). For nonnegative, non-monotone and unconstrained k-submodular, we need the
following conclusions. Lemma 5 comes from Proposition 2.1 in [8]. If there exists a
solution achieving the optimal value, we can construct an optimal solution containing
all points of ground set. Therefore, for unconstrained k-submodular maximization, we

162 K. Yu et al.

only analyze the optimal solution which is the partition of ground set of Algorithm
1. And Lemma 6 ensures that we can obtain a 1/3-approximate greedy solution in the
nested greedy Algorithm 1 by using (U(xt \ x0) \ {a}) ∪ {b} as ground set G, where
OPTf (G) is the optimal value of unconstrained k-submodular f maximization over G.

Lemma 5 [8]. For maximizing a non-monotone k-submodular f over a set G, there
exists a partition of G achieving the optimal value.

Lemma 6 [19]. For maximizing a non-monotone k-submodular f over a set G, by
greedy algorithm, we can get a solution x such that U(x) = G and 3f(x) ≥
OPTf (G).

Drawing support from the nested greedy algorithm, we reorder each iterative solu-
tion of MK-KM and analyze the approximate ratio in two cases.

Theorem 1. Applying MK-KM algorithm to problem (1), we can obtain a 1
6 (1− e−2)-

approximate ratio.

Proof. Using Lemma 3 between the iterative solution xt of MK-KM and the optimal
solution x∗, there exists swap (y(b), b) satisfying y(b) ∈ (U(xt)\U(x∗)) ∪ {∅} and
b ∈ U(x∗)\U(xt).

For any iteration step t, we construct a solution x̂t. Considering all (b, i) x∗\xt,
we add them to xt and get x̂t. Note that x0 xt x̂t and U(x̂t) = U(x∗) ∪ U(xt).

Due to Lemma 5, there exists an optimal solution containing all points in ground set
G. And by Lemma 2, we know that f(x
 x0) is a k-submodular over U(x̂t)\U(x0).
So we define that OPTf(x�x0)(U(x̂t)\U(x0)) is the optimal value of f(x
 x0) over
U(x̂t\x0). Using Lemma 6 for each xt in MK-KM, we always have

OPTf(x�x0)(U(x̂t)\U(x0))

≤ 3f(x̂t)

≤ 3f(xt) + 3
∑

(b,i)�x̂t\xt

[f(xt
 (b, i)) − f(xt)]

≤ 3f(xt) + 3
∑

(b,i)�x̂t\xt

[f((xt\(y(b), j))
 (b, i)) − f((xt\(y(b), j))].

(3)

The first inequality is due to Lemma 6. And the second is due to Lemma 1. By orthant
submodularity, we get the third inequality. Recall that MK-KM breaks all loops when
S = ∅ in line 6. It implies that we cannot find a qualified swap(a, b) to update
the output solution x. We only consider swaps(y(b), b) in S(U(x\x0)) related to
b ∈ U(x∗)\U(x) instead of all candidate swaps(a, b). Now we use this construction
method to analyze the algorithm in two cases.

Case 1: Consider a very special case that every swap(y(b), b) was rejected just due
to ρ(y(b), b) ≤ 0 instead of knapsack constraint.

Guarantees for Maximization of k-Submodular Functions 163

Applying formula (3) for the output solution x and constructed solution x̂, we get

f(x∗)

≤ OPTf(x�x0)(U(x̂)\U(x0))

≤ 3f(x) + 3
∑

(b,i)�x̂\x
[f((x\(y(b), j))
 (b, i)) − f((x\(y(b), j))].

(4)

Since ρ(y(b), b) ≤ 0, we have

f((x\(y(b), j))
 (b, i)) ≤ f(x) (5)

for all (b, i) x̂\x. We define {(y(b), j)}b∈U(x̂t\xt)\{∅} = {(y1, j1), . . . , (yK , jK)},
then we get

∑

(b,i)�x̂\x
[f(x) − f((x\(y(b), j))]

≤
K∑

l=1

[f((x\((y1, j1)
 · · ·
 (yK , jK)))
 ((y1, j1)
 · · ·
 (yl, jl)))

− f((x\((y1, j1)
 · · ·
 (yK , jK)))
 ((y1, j1)
 · · ·
 (yl−1, jl−1))]
= f(x) − f(x\((y1, j1)
 · · ·
 (yK , jK)))
≤ f(x).

(6)

The first inequality is due to orthant submodularity. Because f is nonnegative, the sec-
ond inequality holds. So we can get

f(x∗) ≤ 6f(x). (7)

Therefore, we find a 1/6-approximate solution in Case 1.
Case 2: Consider the opposite of Case 1 that there exists at least one swap(y(b), b)

satisfying wx − wy(b) + wb > B.
Assume a special iteration step t∗. For the first time, there appears a swap (y(b∗), b∗)

in S(U(xt∗\x0)) such that wxt∗ −wy(b∗)+wb∗ > B, where b∗ ∈ U(x∗)\U(xt∗
) and

y(b∗) ∈ (U(xt∗
)\U(x∗)) ∪ {∅}.

Although this swap(y(b∗), b∗) violates the knapsack constraint, we use it to con-
struct a solution (xt∗ \ (y(b∗), jy(b∗)))
 (b∗, ib∗). By orthant submodularity, pairwise
monotonicity and the greedy choice of xα, xβ and xγ , we have

f((xt∗ \ (y(b∗), jy(b∗)))
 (b∗, ib∗)) − f(xt∗
) ≤ 2

3
f(x0). (8)

The detailed process of proof is shown in the Appendix. By Lemma 2, we know that
g(x) = f(x) − f(x0) is a k-submodular function. Then applying formula (3) for the
current solution xt and constructed solution x̂t, we can get

g(x∗) ≤ 6[g(xt) +
(B − wx0)

2
ρt+1]. (9)

164 K. Yu et al.

for all t ∈ {1, . . . , t∗}. The detailed process of proof is shown in the Appendix. We
introduce a construction method inspired by K. K. Sarpatwar [16]. Its details are still in
the Appendix. Due to the construction method, we can get

g((xt∗ \ (y(b∗), jy(b∗)))
 (b∗, ib∗))
g(x∗)

≥ 1
6
(1 − e−2). (10)

Then, combing (8) and (10), we have

f(xt∗
)

= f(x0) + g(xt∗
)

= f(x0) + g((xt∗ \ (y(b∗), jy(b∗)))
 (b∗, ib∗))

− [g((xt∗ \ (y(b∗), jy(b∗)))
 (b∗, ib∗))) − g(xt∗
)]

= f(x0) + g((xt∗ \ (y(b∗), jy(b∗)))
 (b∗, ib∗))

− [f((xt∗ \ (y(b∗), jy(b∗)))
 (b∗, ib∗))) − f(xt∗
)]

≥ f(x0) +
1
6
(1 − e−2)g(x∗) − 2

3
f(x0)

≥ 1
6
(1 − e−2)f(x∗).

(11)

Therefore, we have a 1
6 (1 − e−2)-approximate solution xt∗

for MK-KM.

4 Analysis for Monotone k-Submodular Maximization with a
Knapsack and a Matroid Constraint

A function f is said to be monotone, if f(x) ≤ f(y) for any x y. It is easy to see
that f must be pairwise monotone if f is monotone. Therefore, a monotone function
f : (k +1)G → R is k-submodular if and only it is orthant submodular. In this section,
we introduce a special construction method inspired by Lan N. Nguyen [12], and obtain
a better approximate ratio by MK-KM’ algorithm.

For a fixed iteration t, recall that (vj , ij) = xt
j\xt

j−1. Define (vj , i∗) x∗. We
construct two sequences {oj−1/2} and {oj} such that oj−1/2 = (x∗
 xt

j)
 xt
j−1

and oj = (x∗
 xt
j)
 xt

j , where j ∈ {1, . . . , |U(xt)| − 2} and oj=0 = x∗.
Note that xt

j−1 xt
j oj and oj−1/2 oj . By Lemma 2, we know that

g(x) = f(x) − f(x0) is a monotone k-submodular function. Then for any j ∈
{1, . . . , |U(xt)| − 2}, we have

g(oj−1) − g(oj) ≤ g(oj−1) − g(oj−1/2) ≤ g(xt
j) − g(xt

j−1). (12)

The first inequality is due to monotonicity and oj−1/2 oj . When vj /∈ U(x∗)
or vj ∈ U(x∗) with ij = i∗, we have g(oj−1) − g(oj−1/2) ≤ 0 by monotonicity.
When vj ∈ U(x∗) and ij �= i∗, we have g(oj−1) − g(oj−1/2) ≥ 0. Using orthant
submodularity, we get the following inequality.

g(oj−1) − g(oj−1/2) ≤ g(xt
j−1
 (vj , i∗)) − g(xt

j−1) (13)

Then by greedy choice, the inequality (12) holds.

Guarantees for Maximization of k-Submodular Functions 165

Theorem 2. According to MK-KM’ algorithm, a 1
3 (1 − e−3)-approximate solution of

problem (1) can be obtained, if f is monotone.

Proof. Similarly to Theorem 1, we analyze the algorithm in two cases. When we get the
output solution x, there is not any qualified swap (a, b) to update x. We only consider
swaps(y(b), b) in S(U(x\x0)) related to b ∈ U(x∗)\U(x) instead of all candidate
swaps(a, b).

Case 1: Consider a very special case that every swap(y(b), b) was rejected just due
to ρ(y(b), b) ≤ 0 instead of knapsack constraint.

For the optimal solution x∗ and the output solution x, we construct two sequences
{oj−1/2} and {oj}, where j ∈ {1, . . . , |U(x)|−2}. Sum (12) for j from 1 to (|U(x)|−
2), we have

g(x∗) − g(o|U(x)|−2) =
|U(x)|−2∑

j=1

[g(oj−1) − g(oj)]

≤
|U(x)|−2∑

j=1

[g(xj) − g(xj−1)]

= g(x).

(14)

Using Lemma 1, orthant submodularity and ρ(y(b), b) ≤ 0, we get

g(x∗) ≤ g(o|U(x)|−2) + g(x)

≤ g(x) +
∑

(b,i)�(o|U(x)|−2\x)
[g(x
 (b, i)) − g(x)] + g(x)

≤ 2g(x) +
∑

(b,i)�(o|U(x)|−2\x)
[g((x\(y(b), j))
 (b, i)) − g(x\(y(b), j))]

≤ 2g(x) +
∑

(b,i)�(o|U(x)|−2\x)
[g(x) − g(x\(y(b), j))].

(15)

Let {(y(b), j)}b∈U(o|U(x)|\x)\{∅} = {(y1, j1), . . . , (yK , jK)}, then we have

g(x∗) ≤ 2g(x) +
K∑

l=1

[g((y1, j1)
 · · ·
 (yl, jl)) − g((y1, j1)
 · · ·
 (yl−1, jl−1))]

≤ 2g(x) +
K∑

l=1

g((y1, j1)
 · · ·
 (yK , jK))

≤ 3g(x).
(16)

Therefore,
f(x∗) ≤ 3f(x) − 2f(x0) ≤ 3f(x). (17)

We obtain 1/3-approximate ratio in case 1.
Case 2: Consider the opposite of case 1 that there exists at least one swap(y(b), b)

satisfying wx − wy(b) + wb > B.

166 K. Yu et al.

For the first time, there appears a swap (y(b∗), b∗) in S(U(xt∗\x0)) such that
wxt∗ −wy(b∗)+wb∗ > B, where b∗ ∈ U(x∗)\U(xt∗

) and y(b∗) ∈ (U(xt∗
)\U(x∗))∪

{∅}. For each t ∈ {1, . . . , t∗}, we construct two sequences {oj−1/2} and {oj} between
xt and x∗, where j ∈ {1, . . . , |U(xt)| − 2}. Summing (13) for j from 1 to |U(xt)| − 2
and using Lemma 1, we have

g(x∗) ≤ g(o|U(xt)|−2) + g(xt)

≤ g(xt) +
∑

(b,i)�(o|U(x t)|−2\xt)

[g(xt
 (b, i)) − g(xt)] + g(xt). (18)

Then applying (18) and the similar technique of (3) and (6), we can get

g(x∗) ≤ 3g(xt) + (B − wx0)ρt+1, (19)

for all t ∈ {1, . . . , t∗}. The detailed process of proof is shown in the Appendix. Similar
to the proof of (10), using (19), we can get

g((xt∗ \ (y(b∗), jy(b∗)))
 (b∗, ib∗))
g(x∗)

≥ 1
3
(1 − e−3). (20)

We modify inequality (8) as follows. By orthant submodularity, monotonicity and
the greedy choice of xα, xβ , we have

f((xt∗ \ (y(b∗), jy(b∗)))
 (b∗, ib∗)) − f(xt∗
) ≤ f(x0)

2
. (21)

The detailed process of proof is shown in the Appendix. Combing (20) and (21), we
have

f(xt∗
)

= f(x0) + g((xt∗ \ (y(b∗), jy(b∗)))
 (b∗, ib∗))

− [f((xt∗ \ (y(b∗), jy(b∗)))
 (b∗, ib∗))) − f(xt∗
)]

≥ f(x0) +
1
3
(1 − e−3)g(x∗) − f(x0)

2

≥ 1
3
(1 − e−3)f(x∗).

(22)

Hence, MK-KM’ has an approximation ratio of at least 1
3 (1 − e−3).

5 Discussion

To summarize this paper, inspired by [16] and [18], we propose a nested algorithm
applicable to monotone and non-monotone k-submodular maximization with the inter-
section of a knapsack and a matroid constraint. For problem (1), we have a 1

6 (1− e−2)-
approximate ratio. Inspired by [12], we use a new construction method between optimal
solution and current solution. For monotone k-submodular maximization with a knap-
sack and a matroid constraint, we achieve at least 1

3 (1 − e−3) approximation ratio.

Guarantees for Maximization of k-Submodular Functions 167

References

1. Bian, A.A., Buhmann, J.M., Krause, A., Tschiatschek, S.: Guarantees for greedy maximiza-
tion of non-submodular functions with applications. In: Proceedings of the 34th Interna-
tional Conference on Machine Learning (ICML), Sydney, NSW, Australia, 2017, pp. 498–
507 (2017)

2. Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submodular func-
tion subject to a matroid constraint. SIAM J. Comput. 40(6), 1740–1766 (2011)

3. Ene, A., Nguy˜̂en, H.L.: A nearly-linear time algorithm for submodular maximization with
a knapsack constraint. In: Proceedings of the 46th International Colloquium on Automata,
Languages and Programming (ICALP), Patras, Greece, 2019, pp. 53:1–53:12 (2019)

4. Feldman, M.: Maximization problems with submodular objective functions, Ph.D. disserta-
tion, Computer Science Department, Technion, Haifa, Israel (2013)

5. Filmus, Y., Ward, J.: Monotone submodular maximization over a matroid via non-oblivious
local search. SIAM J. Comput. 43(2), 514–542 (2014)

6. Huang, C., Kakimura, N., Mauras, S., Yoshida, Y.: Approximability of monotone submodu-
lar function maximization under cardinality and matroid constraints in the streaming. SIAM
J. Discrete Math. 36, 355–382 (2022)

7. Huber, A., Kolmogorov, V.: Towards mininizing k-submodular functions. In: Proceedings of
2nd International Symposium on Combinatorial Optimization, pp. 451–462 (2012)

8. Iwata, S., Tanigawa, S.-I., Yoshida, Y.: Improved approximation algorithms for k-submodular
function maximization. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), Arlington, VA, USA, 2016, pp. 404–413 (2016)

9. Liu, Q., Yu, K., Li, M., Zhou, Y.: k-Submodular Maximization with a Knapsack Constraint
and p Matroid Constraints (submitted)

10. Liu, Z., Guo, L., Du, D., Xu, D., Zhang, X.: Maximization problems of balancing submodular
relevance and supermodular diversity. J. Global Optim. 82(1), 179–194 (2021). https://doi.
org/10.1007/s10898-021-01063-6

11. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing
submodular set functions-I. Math. Program. 14(1), 265–294 (1978)

12. Nguyen, L.N., Thai, M.T.: Streaming k-submodular maximization under noise subject to
size constraint. In: Proceedings of the 37th International Conference on Machine Learning
(ICML), 2020, pp. 7338–7347 (2020)

13. Ohsaka, N., Yoshida, Y.: Monotone k-submodular function maximization with size con-
straints. Adv. Neural. Inf. Process. Syst. 28, 694–702 (2015)

14. Oshima, H.: Improved randomized algorithm for k-submodular function maximization.
SIAM J. Discret. Math. 35(1), 1–22 (2021)

15. Sakaue, S.: On maximizing a monotone k-submodular function subject to a matroid con-
straint. Discret. Optim. 23, 105–113 (2017)

16. Sarpatwar, K.K., Schieber, B., Shachnai, H.: Constrained submodular maximization via
greedy local search. Oper. Res. Lett. 47(1), 1–6 (2019)

17. Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack
constraint. Oper. Res. Lett. 32(1), 41–43 (2004)

18. Tang, Z., Wang, C., Chan, H.: On maximizing a monotone k-submodular function under a
knapsack constraint. Oper. Res. Lett. 50(1), 28–31 (2022)

19. Ward, J., Živný, S.: Maximizing k-submodular functions and beyond. ACM Trans. Algo-
rithms 12(4), 47:1–47:26 (2016)

20. Yoshida, Y.: Maximizing a monotone submodular function with a bounded curvature under
a knapsack constraint. SIAM J. Discret. Math. 33(3), 1452–1471 (2019)

https://doi.org/10.1007/s10898-021-01063-6
https://doi.org/10.1007/s10898-021-01063-6

Network Problems

Defense of Scapegoating Attack
in Network Tomography

Xiaojia Xu, Yongcai Wang(B), Yu Zhang, and Deying Li

School of Information, Renmin University of China, Beijing 100872, China
{xuxiaojia,ycw,2020104230,deyingli}@ruc.edu.cn

Abstract. Defending of scapegoating attack is a critical problem in net-
work tomography. Theoretically, the ideal defending scheme is to add
monitoring paths to make all the links in the network be identifiable. This
requires very high monitoring cost. To overcome this problem, this paper
proposes a diagnosis-based defending scheme for scapegoating attack. A
scapegoating attack can be launched only when the link set manipulated
by the attacker cuts the probing paths going through the scapegoat links
and is not traversed by any monitoring path. This cut set is called unob-
served cut set (UCS). To defense, we propose to find the UCS and add
the minimum number of probing paths to traverse the UCS. A minimum
set cover model is proposed to select the least number of defense links
to cover the UCS, and a polynomial time algorithm is proposed. Evalu-
ations on various network dataset show the effectiveness of the proposed
strategies.

Keywords: Fault diagnosis method · Scapegoating attack · Network
tomography

1 Introduction

Timely and accurately knowing the internal states of the network, such as the
bandwidth, packet loss rate and link delay, is an important requirement in net-
work management. Instead of directly measuring the elements within the net-
work, network tomography which uses end-to-end path measurements to infer
the internal states of the network [1,4], becomes a promising solution [21]. Net-
work tomography deploys a set of monitors in the network [7]; measures only the
end-to-end path performances between the monitors; and then infers the internal
states of links and nodes by solving state recovering functions [8,10,14,16]. It
avoids the issues such as high internal measurement overhead, high measurement
cost of the direct measurement methods.

A critical problem in network tomography is the “identifiability” problem,
which indicates whether the internal states of the network can be uniquely recov-
ered by the end-to-end external path measurements. When identification is not

Supported by the National Natural Science Foundation of China Grant No. 61972404,
12071478.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 171–182, 2022.
https://doi.org/10.1007/978-3-031-16081-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_15&domain=pdf
https://doi.org/10.1007/978-3-031-16081-3_15

172 X. Xu et al.

guaranteed, methods like Pseudo-inverse and [1,12] are generally used to recover
the link states. Recently, the risk of being attacked is noticed when the iden-
tifiable property is not satisfied. Scapegoating attack (SA) [20] refers to a kind
of attack, that when an attacker manipulates a set of links to inject attacks
(such as inject delay or discard packets), not only the network performances will
be degraded, but also the network tomography will be misled to guilt a set of
normal links as scapegoats of the attack. [2] considers to degrade the perfor-
mance of the network by injecting delays to some path measurements and net-
work tomography cannot localize the attackers. They introduce chosen-victim,
maximum-damage and obfuscation scapegoating attacks. Recent work [19] pro-
poses the conditions to successfully launch scapegoating attack. The presence of
backdoor infected routers [3] and node-capture attacks [15] can be utilized to
carry out above scapegoating attacks by affecting the packet delivery and the
path measurement.

The scapegoating attack can cause persistent and inconspicuous performance
degradation. The ideal defense scheme is to insure the probing paths of network
tomography satisfying the “identifiability condition” [10], which requires the rank
of the routing matrix is equal to the number of links [17]. However, the number of
links can be very large, the identifiability condition is hard to be satisfied, unless
the number of probing paths is not less than the number of links, which need
very high measurement costs. Efficient methods to defend scapegoating attack
without greatly increasing measurement cost is highly desired.

To address this problem, this paper propose a highly efficient fault diagnosis
based scheme for defending scapegoating attacks. It doesn’t require the probing
paths to satisfy the identifiability condition. Instead, when network tomography
detects problematic links, we propose to use very low probing cost to examine
whether the problematic links are scapegoats or are real network problems. The
key behind the scheme is that we investigate the necessary and sufficient condi-
tion to defense scapegoating attack and the minimum cost defending problem.
The main contributions of this paper are as following.

1. We show the necessary condition to issue scapegoating attack is that the
attacker manipulates all links in a cut set of the probing paths that pass
through the scapegoat links and these cut set links are not observed by any
other probing path except those passing through the scapegoats. Such link
sets are called unobserved cut set (UCS).

2. We propose to find the UCS and add the minimum number of probing paths
to traverse them, so that the condition of scapegoating attack is broken and
the attacking links can be detected if any scapegoating attack exists.

3. A minimum set cover model is proposed for selecting the least number of
defense links to cover all the UCS; a greedy approximation algorithm with
HK ratio is proposed to solve the defense link selection problem; and a poly-
nomial time edge-disjoint path generation algorithm is proposed to generate
defending paths to traverse these links-to-defend.

4. Extensive verifications on real network datasets show the effectiveness of the
proposed defense strategies.

A Fault Diagnosis Method 173

2 Problem Formulation

2.1 Network Tomography Model

We consider a network modeled as a weighted, undirected graph G = (V,L,X).
V and L are the sets of nodes and links, |V | = n and |L| = m. Set X represents
the link weights, where xi ∈ X is an unknown link metric that describes the link
i’s performance, such as latency and loss rate. We assume the measures of these
link metrics are additive. This is a canonical model for representing important
performance measures [8,10,11]. In the network, a subset of vertices used for
injecting and extracting probing packets is defined as the set of monitors M =
{mi}. Monitor placement algorithms and probing path generation algorithms in
network tomography can be referred to [8,10].

A probing path pi for network tomography is defined as a sequence of links
that starts from a source monitor si and ends at a destination monitor di. The
end-to-end measurement of this probing path is denoted by yi. P = {pi} is the
set of probing paths and Y = {yi} denotes the end-to-end measurements of
these paths. Routing matrix R = {ri,j}pi∈P,lj∈L models how the probing paths
traverse the links in L. ri,j = 1 if a link lj ∈ L is on the path pi ∈ P and
ri,j = 0 otherwise. Network tomography is to solve the equation Rx̂ = Y to find
a solution x̂ that represents the estimated link metrics [8].

Note that this linear equation has a unique solution when the routing matrix
R has full column rank, i.e., Rank(R) = m, which is the unique identification
condition [17]. However, since m � n, it is generally difficult to generate enough
probing paths to satisfy the identification condition. For such difficulty, network
managers generally adopt the routing matrix with Rank(R) < m. In such case,
Pseudo-inverse is generally used [2,20] to estimate x̂ by:

x̂ = (RTR)−1RTY (1)

Without loss of generality, we consider the link metric is additive, such as link
delay. Then network tomography determines states of links by following method:

Definition 1 (Estimated Link States). Given estimated link delay x̂, a link
maybe divide into three states:

ψ(li) =

⎧
⎨

⎩

normal if x̂i < βmin

uncertain if βmin � x̂i � βmax

problematic if x̂i > βmax

(2)

where βmin is a threshold to find normal links. βmax is a threshold to detect
problematic, i.e., problematic links. When problematic links are detected, net-
work tomography generally requires more diagnosis method to check and to fix
the detailed problem.

2.2 Scapegoating Attack Model

Consider the attacker hacks a set of links, say Lm ⊂ L is manipulated by the
attackers. Attacker injects delays onto these links to affect the probing paths

174 X. Xu et al.

that pass through these links. The attackers also hope to hide their attacks by
let network tomography to wrongly detect some other links as problematic. The
wrongly detected problematic links are called “scapegoats”. The measurement
model under attack is:

R(x + Δx) = Y
′

(3)

where Δxi > 0 for li ∈ Lm and Δxi = 0 for li /∈ Lm.
[2,19,20] show that scapegoating attack can be successfully launched when

the probing paths don’t satisfy identifiability condition. Let Ls ⊂ L be the set
of scapegoats. There should be Ls ∩ Lm = ∅, since attacking links should not be
discovered. The scapegoating attack is called successful launched if:

{
x̂i ≤ βmin for li ∈ Lm

x̂i > βmax for some li ∈ Ls
(4)

where x̂ = {x̂1, x̂2, · · · x̂n} is the solution of x̂ = (RTR)−1RTY
′
, which is the

network tomography results under attack.
In Fig. 1, we using a simple network with five monitors to illustrate the

scapegoating attack. The red markers are the monitors which are selected by
MMP algorithm [8]. In order to identify the link metrics, ten probing paths are
constructed among monitors, as listed in the right part of Fig. 1.

Fig. 1. A network with five monitors selected by MMP [9] algorithm and ten probing
paths.

Figure 2 shows the result of scapegoating attack. The manipulated links are
l3, l5 and l11 and the scapegoating link is l12. The attack misleads the network
tomography to conclude that link l12 is a problematic link and the administrator
cannot identify the attacking links by simply checking the “problematic link” l12.
This not only greatly degrades the network performance, but also imposes high
difficulty to detect the true faults.

A Fault Diagnosis Method 175

Fig. 2. The result of the scapegoating attack.

3 Defense Strategy

It is necessary to design defense strategy to avoid scapegoating attack. We firstly
investigate the conditions for successful defense, and then propose an efficient,
minimum cost fault diagnosis method to examine whether a detected “problem-
atic link” is a scapegoat, so as to discover the attacking links.

3.1 What to Defend?

Note that the probing paths can be classified into three categories.

Definition 2 (Three Types of Paths). The probing paths in P are classified
as.

– Pm ⊆ P is the manipulated path set. Each path in it passes through at
least one manipulated links.

– Pn ⊆ P denotes the normal path set. All paths in it hasn’t passed through
any manipulated link.

– Ps ⊆ P is the scapegoating path set, which contains measurement paths
that pass through at least one scapegoat link.

The original delay of an attacked link is xi and the injected delay is Δxi. The
increased delay for a path pi ∈ Pm is further denoted by Δti, where Δti =∑

lj∈pi

Δxj . Since the injected delays only affect the manipulated path set, we can

easily get the following Lemma 1.

Lemma 1. Given P,Ls, Lm, if delays are injected onto links in Lm, there must
be Δti � 0 for pi ∈ Pm and Δti = 0 for pi ∈ Pn.

Definition 3 (Cut Set of Paths). A cut set C of a path set P is a set of links
in P that for every path pi ∈ P , the path passes through at least one link in C.
In other words, when we cut all the links in C, all the paths in P will be cut.

176 X. Xu et al.

Definition 4 (Unobserved Cut Set (UCS) of ls). An unobserved cut set of
ls is a set of links that cut the paths that pass through ls and there is no other
probing path that passes through any link in this set.

Problem 1 (Diagnosis-based scapegoating defense). The following problem is spe-
cially considered. When network tomography detects a link set Ls is problem-
atic, how to use the minimum additional probing costs to check out whether
their states are truly problematic, or they are scapegoats of some attackers.

Suppose a set of scapegoat links Ls are reported problematic, i.e., x̂i > βmax, for
li ∈ Ls, where x̂ =

(
RTR

)−1
RTY is the detected link states by current routing

matrix R, constructed using probing paths P . But the true states of these links
are normal. Our goal is to add the minimal number of defending paths Pd to
construct a new routing matrix R′ = [R,Rd]T , where Rd is the routing matrix
of Pd to recover the true states of links in Ls. By adding Pd, the recovered link
states are x̂′ =

(
R′TR′)−1

R′TY ′. Pd is called an effective defense, if the true
states of the scapegoat links are recovered. The minimal path defending problem
can be stated as following:

Problem 2 (Minimal Path Defending Problem). The minimal path defending
problem for scapegoating attack is to find the minimal number of additional
probing paths such that:

min |Pd|

s.t.

⎧
⎪⎨

⎪⎩

R′ = [R,Rd]
T
, Y ′ = [Y, Yd]

T

x̂′ =
(
R′TR′

)−1

R′TY ′

x̂′
i ≤ βmax,∀li ∈ Ls

(5)

Note that in (5), the original routing matrix R is copied, so the path con-
straints in original Pn and Pm are still satisfied. The key problem is how to
design the defending paths.

3.2 Key Observations

For defense, although the exact locations of Lm are not known, we know that they
must cover an unobserved cut set of Ps [2,19]. For a link li in Ls, there maybe
multiple unobserved cut sets that can cut the probing paths passing through li.
We denote the unobserved cut sets for li ∈ Ls as {Ci,1, Ci,2, · · · , Ci,ni

}.

Lemma 2 (Breaking an unobserved cut set for li ∈ Ls). If we add a
probing path p to go through any link in a cut set Ci,j but not the link li, then
the injected delays on the cut set Ci,j can no longer be attributed to li.

Proof. Only when all the links in a unobserved cut set of li are manipulated by
the attacker, can the scapegoating attack to li be successfully launched. There-
fore, if a link in the unobserved cut set Ci,j , denoted by lk has been monitored
by an added p, the added delay to this link will increase the delay of the new
path p. Since p doesn’t go through li, the increased delay cannot be attributed
to li. We say the unobserved cut set Ci,j is broken by the added path p.

A Fault Diagnosis Method 177

Theorem 1 (Necessary & Sufficient Condition to Defense Ls). Given G,
P , and Ls, to discover whether each link li ∈ Ls is truly problematic or not, we
need to add new probing paths Pd which don’t go through li ∈ Ls, but make each
unobserved cut set of li have at least one link be passed by at least one path in Pd.

Proof. Necessity: From Lemma 2, a unobserved cut set of li is broken if one of
its link is passed through by an added path. Since every cut set may initial an
attack to li, we need to break all cut sets of li to protect li. So li is protected
only if all its unobserved cut sets are broken.

Sufficiency: When all the unobserved cut sets are broken, the injected delays
on any cut set cannot be attributed to li. So try state of li will be recovered
after adding the defending paths.

3.3 Defense Methodologies

For each link li ∈ Ls, there maybe many unobserved cut sets that can cut the
paths going though li. Let Pli ∈ Ps denote the set of paths that go through li.
Let K denote the number of paths in Pli . Since any unobserved cut set of Pli

must cover an unobserved minimal cut set (UMCS) of Pli , so in order to break
all unobserved cut sets for Pli , we must break all the UMCS of Pli .

Consider there are totally K paths in the path set Ps. In order to defend all
the links in Ls, all the unobserved minimal cut set of Ps need to be broken. By
selecting one link from each path, an unobserved cut to the path set Ps can be
formed. Using this method, all unobserved minimal cuts for Ps can be found,
which is denoted by C.

Given the unobserved minimal cut set C, to design the minimum number of
defending paths, we propose to find a link set L with the minimum cardinality,
such that every unobserved minimal cut Ci ∈ C contains at least one link in L.
Then L is called a minimum cover of C.

This problem is a typical set cover problem, which is NP-hard. A greedy
algorithm is proposed to address this minimum cut set cover (MCSC) problem.
Let LC be the set of all links in C. Let U be all uncovered cuts in C.

In the algorithm, if a link l ∈ LC appears in n unobserved cuts in U , n
reveals the covering utility of the link l. In each iteration, the link with the
largest covering utility is selected and is put in L, until all unobserved cuts in
C have been covered. gMCSC has an HK approximation ratio [18], where K is
the largest number of cut sets that share one common link in LC.

178 X. Xu et al.

Algorithm 1: Greedy minimum set cover: L=gMCSC(C)
Input: C
Output: L

1 Initialize U = C, L = ∅, LC= all links in C ;
2 while (U is not empty) do
3 select l in LC that covers the most number of sets in U ;
4 add l to L ;
5 remove the cuts covered by l from U remove l from LC ;

6 return L ;

Lemma 3 (Approximation ratio of gMCSC). Let Ks be the number of
unobserved cuts in C that have common link l. Let K = maxl∈LC

Ks be the largest

number of unobserved cuts that share a common link. Let HK =
K∑

i=1

1/i ≈ ln K,

then the gMCSC algorithm returns L which has at most HK times links than the
optimal number of links to make each unobserved cut in C has at least one link
in L.

3.4 Minimum Number Defending Path Generation

Since L covers all unobserved cuts C, in order to break all unobserved cuts in C,
defending paths only need to be added to go through all the links in L and don’t
go through any link in Ls. We want to add the minimum number of defending
paths to achieve this goal.

In network tomography, a probing path is not required to be a simple path,
which can traverse the same edge more than one time. So a polynomial time
algorithm is proposed to generate the minimum number of defending paths to
go through all the links in L but no links in Ls.

The idea of the algorithm is to firstly removes the edges Ls from the graph
G. Suppose the removal of Ls decomposes G into F components, denoted by
G1, G2, · · · , GF . We show that we need to add at most F probing paths to
prevent Ls from scapegoating attack.

In detail, in subgraph Gn, we select a pair of monitors and find the shortest
paths P ∗

1 between the first monitor and one of the links l1 in L, P ∗
E+1 between the

second monitor and another one of the links lE in L, and also find the shortest
paths P ∗

2 , · · · , P ∗
E between (l1, l2), · · · , (lE−1, lE) by using Dijkstra algorithm.

The whole path Pn
d = {P ∗

1 , P ∗
2 , · · · , P ∗

E , P ∗
E+1} is the defending path of the

subgraph Gn. Since Ls has been deleted, this path will not traverse any link in
Ls. The defending paths of the F components cover all links in L. So at most F
defending paths in the F components need to be generated to cover L and don’t
traverse any link in LS .

The detailed algorithm is given in Algorithm 2. Line 3 to line 8 generate
the shortest defending path between two monitors. Line 9 to line 10 select the
overall shortest defending path.

A Fault Diagnosis Method 179

Algorithm 2: Defending path generation algorithm: Pd =
PathGen(G,M,Ls,L)
Input: G,M,Ls,L
Output: Pd

1 G = G \ Ls and suppose it has F components ;
2 for (n = 1;n ≤ F ;n + +) do
3 select a pair of monitors mj ,mk, L �= ∅ and suppose it has E components;
4 Find the shortest path P ∗

1 between (mj , l1);
5 for (i = 1; i ≤ E − 1; i + +) do
6 Find the shortest path P ∗

i+1 between (li, li+1)

7 Find the shortest path P ∗
E+1 between (lE ,mk) ;

8 P ∗ = P ∗
1 ∪ P ∗

2 ∪ · · · ∪ P ∗
E+1 ;

9 if (P ∗ is shorter than Pn
d) or (Pn

d is empty) then
10 Pn

d = P ∗ ;

11 return Pd ;

The obtained paths pass through all links in L but no link in Ls, so they
satisfy the requirement to recover the true states of Ls. So at most F defending
paths are generated to traverse all links in L but no links in Ls. The most
time consuming step in Algorithm 2 is the Dijkstra algorithm, whose complexity
is O(E ∗ n2

n) where nn is the number of nodes in Gn. Since nn < n, so the
complexity of Algorithm 2 is O

(
F ∗ E ∗ n2

)
in the worst case, where n is the

number of nodes in G.

4 Performance Evaluation

4.1 Experiment Setup

We use real network topologies from the Internet Topology Zoo [6] and synthetic
ER network topology, whose parameters are shown in the Table 1. Topology Zoo
are real ISP network topologies which are widely used in network tomography.
The ER graph [5] is a simple random graph generated by independently connect-
ing each pair of nodes by a link with a fixed probability p. In our simulations,
this probability is set to be 0.014 (Table 1). For each topology, the MMP [8]

Table 1. Parameters of topologies

Network L(G) V(G) Monitors Paths

AttMpls 56 25 5 100

Surfnet 68 50 32 845

TataNld 186 145 89 6217

ER 1215 500 61 3606

180 X. Xu et al.

algorithm is used to select candidate monitors. After selecting the monitors,
the probing paths are generated by multiple shortest paths based on Dijkstra’s
algorithm and Yen’s algorithm [13].

4.2 Results of Defense Strategy

Figure 3 shows the average ratio of identifiable links with the increase of paths
in different topologies. The evaluations on both synthetic topology and real
network topologies show that when the number of paths is small, the increase
of paths has a great influence on the number of identifiable links. But when the
number of paths is large to a certain extent, blindly looking for new paths cannot
increase the number of identifiable links. The application of our defending path
generation algorithm can effectively solve this problem.

Fig. 3. Average ratio of identifiable links with the increase of paths in different topolo-
gies.

Figure 4 shows how to generate the defending paths in the AttMpls network.
The first sub-figure is the network tomography of AttMpls network. The scape-
goat link is link 54. There are 10 probing paths, i.e., P in the network, which
are shown in different colors. Some paths are overlapped so only the top color
can be seen.

To defense, we only consider the paths passing through Ls, i.e., Ps. We need
to insure the minimum cover of the C in Ps being traversed by a defending path.
Firstly, we remove the edges Ls from the graph G. We suppose the possible
scapegoat, i.e., Ls is the link 54. Based on Algorithm 1, the minimum set cover
of the cut set is links {20, 25, 29}. Figure 4(b) is the L of the given topology, each
unobserved cut in C has at least one link in L. According to Algorithm 1, the
green highlighted links in this figure is the L of the given network tomography.
Based on Algorithm 2, the black highlighted links in Fig. 4(c) are the shortest
paths P ∗ between monitors and links. By using Algorithm 2, we can generate the
minimum defending path in Fig. 4(d) to verify whether link 54 is a scapegoat.

A Fault Diagnosis Method 181

Fig. 4. An example of defending path generation

5 Conclusion

Consider the high cost of making all the links in the network be identifiable, this
paper proposes a diagnosis-based defending scheme for scapegoating attack. A
minimum set cover model is proposed to select the least number of defense links
to cover the unobserved cut set, and a polynomial time algorithm is proposed to
generate the least number of probing paths to go through the selected defense
links. Theoretical analysis and simulations in the real network topology show
the effectiveness of the proposed defense strategies.

In future work, how to optimize the defense strategy proposed in this paper
to diagnose and defend against other types of scapegoating attacks to guarantee
the security of network tomography should be further studied.

References

1. Chen, A., Cao, J., Bu, T.: Network Tomography: Identifiability and Fourier Domain
Estimation, December 2007

2. Chiu, C.C., He, T.: Stealthy DGoS attack: degrading of service under the watch of
network tomography. In: IEEE INFOCOM 2020 - IEEE Conference on Computer
Communications, pp. 367–376. IEEE Press, Toronto, ON, Canada, July 2020

3. Constantin, L.: Attackers slip rogue, backdoored firmware onto Cisco routers
— PCWorld. https://www.pcworld.com/article/2984084/attackers-install-highly-
persistent-malware-implants-on-cisco-routers.html

4. Duffield, N., Presti, F.L., Paxson, V., Towsley, D.: Network loss tomography using
striped unicast probes. IEEE/ACM Trans. Networking 14(4), 697–710 (2006).
Conference name: IEEE/ACM Transactions on Networking

5. Erdös, P., Rényi, A.: On the evolution of random graphs. Publ. Mah. Inst. Hung.
Acad. Sci 5, 17–60 (1960)

https://www.pcworld.com/article/2984084/attackers-install-highly-persistent-malware-implants-on-cisco-routers.html
https://www.pcworld.com/article/2984084/attackers-install-highly-persistent-malware-implants-on-cisco-routers.html

182 X. Xu et al.

6. Knight, S., Nguyen, H.X., Falkner, N., Bowden, R., Roughan, M.: The internet
topology zoo. IEEE J. Sel. Areas Commun. 29(9), 1765–1775 (2011)

7. Ma, L., He, T., Leung, K.K., Swami, A., Towsley, D.: Monitor placement for maxi-
mal identifiability in network tomography. In: IEEE INFOCOM 2014 - IEEE Con-
ference on Computer Communications, pp. 1447–1455, April 2014. ISSN: 0743-
166X

8. Ma, L., He, T., Leung, K., Swami, A., Towsley, D.: Identifiability of link metrics
based on end-to-end path measurements, pp. 391–404, October 2013

9. Ma, L., He, T., Leung, K.K., Swami, A., Towsley, D.: Inferring link metrics from
end-to-end path measurements: identifiability and monitor placement. IEEE/ACM
Trans. Networking 22(4), 1351–1368 (2014)

10. Ma, L., He, T., Leung, K.K., Towsley, D., Swami, A.: Efficient identification of
additive link metrics via network tomography. In: Proceedings - 2013 IEEE 33rd
International Conference on Distributed Computing Systems, ICDCS 2013, pp.
581–590, December 2013

11. Ma, L., He, T., Swami, A., Towsley, D., Leung, K.K.: On optimal monitor place-
ment for localizing node failures via network tomography. In: Performance Eval-
uation. Elsevier Science Publishers B. V. PUB568 Amsterdam, The Netherlands,
The Netherlands, September 2015

12. Nguyen, H.X., Thiran, P.: The boolean solution to the congested IP link location
problem: theory and practice. In: IEEE INFOCOM 2007–26th IEEE International
Conference on Computer Communications, pp. 2117–2125, May 2007. ISSN: 0743-
166X

13. Pepe, T., Puleri, M.: Network tomography: a novel algorithm for probing path
selection. In: 2015 IEEE International Conference on Communications (ICC)
(2015)

14. Qiao, Y., Jiao, J., Rao, Y., Ma, H.: Adaptive path selection for link loss inference
in network tomography applications. PLOS ONE 11(10), e0163706 (2016). Public
Library of Science

15. Tague, P., Poovendran, R.: Modeling node capture attacks in wireless sensor net-
works. In: 2008 46th Annual Allerton Conference on Communication, Control, and
Computing, pp. 1221–1224, September 2008

16. Tati, S., Silvestri, S., He, T., Porta, T.L.: Robust network tomography in the
presence of failures. In: 2014 IEEE 34th International Conference on Distributed
Computing Systems, pp. 481–492, June 2014. ISSN: 1063-6927

17. Tati, S., Silvestri, S., He, T., Porta, T.L.: Robust network tomography in the
presence of failures. In: 2014 IEEE 34th International Conference on Distributed
Computing Systems, pp. 481–492 (2014)

18. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001). https://
doi.org/10.1007/978-3-662-04565-7

19. Xu, X., Wang, Y., Xu, L., Li, D.: Locate vulnerable link set to launch minimum
cost scapegoating attack in network tomography. Under review (2022)

20. Zhao, S., Lu, Z., Wang, C.: When seeing isn’t believing: on feasibility and
detectability of scapegoating in network tomography. In: 2017 IEEE 37th Interna-
tional Conference on Distributed Computing Systems (ICDCS), pp. 172–182, June
2017. ISSN: 1063-6927

21. Zhao, Y., Govindan, R., Estrin, D.: Sensor network tomography: monitoring wire-
less sensor networks. ACM SIGCOMM Comput. Commun. Rev. 32, 64 (2001)

https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1007/978-3-662-04565-7

Adaptive Competition-Based
Diversified-Profit Maximization with

Online Seed Allocation

Liman Du , Wenguo Yang(B) , and Suixiang Gao

School of Mathematical Sciences, University of Chinese Academy of Science,
Beijing 100049, China

duliman18@mails.ucas.edu.cn, {yangwg,sxg}@ucas.ac.cn

Abstract. The purpose of Profit Maximization (PM) problem in social
media is finding some influential users as seeds to trigger large online cas-
cading influence spread and generate profit as much as possible. Given
that competitive social advertising is more common in real-world, a series
of studies focus on Influence Maximization problem with competitive
influence spread and propose some versions of PM problem from this
perspective. However, the competition happening in the information dis-
semination of imperfect substitutes and the influence of potential con-
sumers’ preference have been mostly ignored. Besides, some companies
may snatch seeds to limit the profits of their opponents. Motivated by the
above considerations, we propose a novel Adaptive Competition-based
Diversified-profit Maximization (ACDM) problem. Given the interme-
diate observations of each node’s current state, ACDM problem aims
at adaptively selecting seeds and allocating them such that the sum of
profit generated by adopters for a special entity after information dis-
semination and social welfare with respect to adopter allocation reaches
maximum. To address this problem, we design a three-steps algorithm
which combines the method of online allocation and the concept of shap-
ley value. Experimental results on three real-world data sets demonstrate
the effectiveness of our proposed algorithm.

Keywords: Adaptive profit maximization · Online seed allocation ·
Nonsubmodularity · Competitive social advertising

1 Introduction

Due to the growing popularity of social networks and the rapid development
of social advertising, Influence Maximization (IM) problem, aiming to find top-
k influential nodes to influence as many nodes as possible, has become a hot
research topic in the past decade. It is formulated as a discrete optimization

Supported by the National Natural Science Foundation of China under grant num-
bers 12071459 and 11991022 and the Fundamental Research Funds for the Central
Universities under Grant Number E1E40107.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 183–194, 2022.
https://doi.org/10.1007/978-3-031-16081-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_16&domain=pdf
http://orcid.org/0000-0002-4553-3762
http://orcid.org/0000-0002-8441-7334
https://doi.org/10.1007/978-3-031-16081-3_16

184 L. Du et al.

problem and is proved to be NP-hard under IC and LT model used to describe
the process of information propagation of influence [11]. A greedy solution with
a 1−1/e approximation guarantee for IM problem is also proposed, and its high
time complexity leads to numerous subsequent researches focusing on improv-
ing greedy algorithm or designing heuristic algorithm [5,6,9,21,23]. Based on IM
problem, Competitive Influence Maximization (CIM) problem is abstracted from
competitive social advertising in real-world where multiple marketing campaigns
compete with each other by launching comparable products over the same mar-
ket and try to make the number of activated nodes reach maximum. Previous
studies mainly handle this problem from two different perspectives: seed selection
[2–4,13] and budget allocation [15,16,22]. A new two-phases scenario integrat-
ing the seed selection and budget allocation is proposed in [1]. Besides, Profit
Maximization (PM) problem, as another extension of IM problem, is proposed
from the perspective of social network hosts [7,8,20]. The purpose is changed
to gain as much profit as possible and the objective function generally loses
the property of submodular. An advertiser may delegate the operation of viral
marketing campaigns to the social network provider, and the latter could be
simultaneously paid to conduct the viral marketing campaign for many compet-
itive companies. So, another version of PM problem proposed in [19] wants to
maximize the host’s profit. However, it only considers the cost to activate seeds
and the objective function is still submodular.

These studies focusing on competition relationship between entities usually
assume that a node can be activated by only one entity. Such assumption is
likely to be unrealistic. For example, Microsoft’s Surface and Apple’s iPad, Coca-
Cola and Pepsi, and tea and coffee, can be regarded as comparable products or
imperfect substitutes. When a pair of imperfect substitutes are launched over the
same market, some consumers may buy both of them and provide their review
to their friends and followers. Then, the latter can make a decision according to
the information they receive and their own preference. In fact, the review about
different products provided by the same person is always more convincing. Under
the assumption in [1,19], if the initial consumer picks iPad, his friends who prefer
Microsoft cannot receive the information about Surface, to say nothing of buying
it. What should be emphasized is that the probability with which a potential
purchaser is persuaded to buy Surface is influenced by whether he has own
iPad. What’s more, the difference between potential consumers and the fact that
competitive companies may snatch seeds to limit the profits of their opponents
are mostly ignored. And existing works tends to assume that the information of
opponent’s seed are known and selects all the seeds in the beginning.

Motivated by defects mentioned above, we formulate Adaptive Competition-
based Diversified-profit Maximization (ACDM) problem under Competitive
Independent Cascade (CIC) model in this paper. It studies the profit related to
adopters for an entity in competitive social advertising and integrates the seed
selection and online allocation for competitive clients. To address ACDM prob-
lem, we divide it to two process, i.e. seed selection and allocation, and design AS
and OA algorithms, respectively. Then, as a combination, the Adaptive Selection

Adaptive Competition-Based Diversified-Profit Maximization 185

and Online Allocation (ASOA) algorithm consisting of three phases is proposed.
It iteratively selects seeds and allocates them with adaptive policy. The final
allocation is returned as a feasible solution.

The rest of this paper is organized as follows: The CIC model and ACDM
problem is proposed in Sect. 2. In Sect. 3, the detail of ASOA algorithm is shown.
And the experiments are presented in Sect. 4. We conclude in Sect. 5.

2 Problem Formulation

2.1 The CIC Model

The Com-IC model proposed in [14] captures the relationship spectrum from
complementary to competitive. In this paper, we focus on the competitive rela-
tionship between only two entities and denote it as Competitive Independent
Cascade (CIC) model.

There are two entities A and B which want to spread their information about
promotion in a social network abstracted as a directed graph G = (V,E). Each
node v ∈ V represents a user of the social network and |V | = n. The edge between
each pair of neighbors u, v ∈ V is denoted as (u, v) ∈ E. pu,v represents the
probability with which information is successfully spread from u to v. During the
information dissemination in G, each node selects one of {idle,accpeted,rejected}
as its state for A and do the same thing for B. Then, it stays in the joint state.
After receiving the information, whether node v’s state changes depends on its
current state and a parameter set q(v) = {qA|∅(v), qA|B(v), qB|∅(v), qB|A(v)}. To
reflect the competitive relationships between entities A and B, we assume that
0 < qA|B(v) < qA|∅(v) ≤ 1 and 0 < qB|A(v) < qB|∅(v) ≤ 1 for each v ∈ V . For
node v who does not accept B, it transforms from A-idle to A-accepted with
probability qA|∅(v). If v is B-accepted and informed of A, it becomes A-accepted
with probability qA|B(v). The meaning of qB|∅(v) and qB|A(v) are similar.

Now, we consider the CIC model as the information diffusion model. Let
SA, SB ⊂ V be two seed sets. At time t = 0, v ∈ SA accepts A while B is
accepted by u ∈ SB. Except for them, all the nodes initially stay in the joint
state of (A-idle, B-idle). At each time step t ≥ 1, for a node u becoming A-
accepted at time t − 1 and one of its neighbor v, information about A has only
one chance to successfully spread from u to v with probability pu,v. And pu,v

is the same for both A and B. If node v stays in the joint state of (A-idle, B-
idle) and is informed about both A and B from its neighbors at the same step,
tie-breaking rule is used to decide its state. It generally consists of two cases: A
is superior to B, that is, node always adopt A in competition; otherwise, A is
inferior to B. The process stops when there is no node can be activated. When
the diffusion is terminated, each node’s adoption is fixed and profit generated
by adopter of A can be calculated.

2.2 ACDM Problem

In this part, we firstly introduce the definition of allocation and its social wel-
fare under no-rejection condition. Given a set Scand of candidates waiting to be

186 L. Du et al.

allocated to agents, the no-rejection condition requires each candidate to choose
only one agent and can not be rejected. Therefore, all the candidates should
be allocated after the whole allocation process and an allocation A of Scand is
used to show candidates’ choice. Obviously, an allocation A is a non-overlapping
partition of nodes in Scand. In this paper, two agents A and B are considered
and A = {(SA,A), (SB,B)} satisfying Scand = SA ∪ SB and SA ∩ SB = ∅. Given
a happiness matrix H, hu,v ∈ H denotes the happiness of candidate u when u
and v choosing the same agent. ru,A ∈ R denotes the appraisal of candidate
u on A and the definition of ru,B is similar. The social welfare is defined as
SW (A) = hu,v + hv,u + ru,A + rv,A + hx,y + hy,x + rx,B + ry,B for u, v ∈ SA and
x, y ∈ SB. And for each candidate v, define its utility as the sum of its happiness
to all the other candidate in the same agent and its appraisal for the agent. That
is to say, for u ∈ SA, its utility can be represented as Uu =

∑
v∈SA hu,v + ru,A.

We assume that all candidates arrive online in uniform randomly order. Under
this assumption, when candidate i arrives, happiness value hi,j to all candidates
j that have already arrived, as well as its appraisal to A and B, are revealed.
And it should be allocated immediately. The definition of weakly stable is shown
below.

Definition 1 (Definition 3 in [10]). An allocation is weakly agent stable if for
any two candidates u, v choosing A and two candidates x, y choosing B, switching
their choices cannot increase all four candidates’ utilities.

Let φA(v) represent the modified profit with respect to entity A generated by
node v when it adopts A. We propose some assumptions as follows.

1. For node v which does not accept A, it can not generate profit with respect
to A regardless of its state for B.

2. For node v accepting both A and B, it can spread the information about
both A and B to its neighbors. However, v does not generate profit with
respect to A. Thus, it is ignored when calculating the total profit generated
by A-adopter.

Similar to IC model proposed in [11], the CIC model is also equivalent to a
live edge graph process. Flip a coin for each edge in advance and retain it with
probability pu,v. After the process, we obtain a subgraph g of G consisting of
all retained edges with randomness taken over the coin-flipping process of all
edges. Such a subgraph is defined as a realization. Based on the live edge graph
process, given allocation A = {SA, SB}, the profit generated by A-adopter can
be written by an expectation form. Based on the definition of realization, it can
be expresses as a function ψ : E → {0, 1}. For each e ∈ E, ψ(e) = 1 represent e
is retained, otherwise ψ(e) = 0. Then, we define a partial realization as follows.
Under the CIC model, for any seed sets SA, SB and time step t, the status of
nodes, to which length of the shortest path from nodes in SA ∪ SB is not bigger
than t, as well as whether their in-coming edges are retained can be observed via
partial realization ψt ⊆ ψ. To put it another way, for a fixed partial realization
(previous observation) ψt and an allocation A = {SA, SB}, the status of current

Adaptive Competition-Based Diversified-Profit Maximization 187

reachable nodes and all the edges are available. Such assumption is based on the
full feedback model which is widely studied. Now, we can denote our adaptive
strategy for picking seeds as a policy π. π is actually a function from a partial
realization ψt to V , specifying which node to select at time step t + 1 for given
ψt.

Then, integrating seed selection and allocation, we denote diversified-profit
function DP (A) as the sum of social welfare and profit generated by actual
A-adopter. Hence,

DP (Aψ) = ΦA(SA|Aψ, SB|Aψ) + λSW (Aψ) =
∑

v∈Ig,Aψ

φA(v) + λSW (Aψ) (1)

where λ is a weight of social welfare, Ig,Aψ
is the set of nodes which can receive

the information spread from SA and become (A-accepted, B-idle/rejected) under
CIC model with allocation A = {SA, SB} under realization ψ. Denote Aπ

ψ as
an allocation of seeds selected by policy π under realization ψ. Based on this
notation, the expected diversified-profit of a policy π is defined as E[DP (Aπ

ψ)]
where the expectation is taken with respect to p(ψ) which is based on a known
probability distribution over realizations.

Definition 2 (ACDM problem) Adaptive Competition-based Diversified-
profit Maximization problem aims to find a weakly stable allocation A of at most
K seeds with policy π∗ such that the expected value of diversified-profit function
is maximized under CIC-model, i.e.,

Aπ∗ ∈ arg maxE[DP (Aπ
ψ)] (2)

In this paper, we consider the k-R (k nodes per Round) setting proposed in [18]
that selects k nodes to allocate for each time round t ∈ [T]. The constraint of
the number of seed nodes is divided into T equal-sized parts, i.e. K = k ·T . Take
a further step of the property of IM problem, we propose a theorem as follows.

Theorem 1. ACDM problem is NP-hard.

3 The Algorithm

We concentrate on designing an algorithm to find a feasible solution for ACDM
problem in this part. Since the diversified-profit is defined as the sum of profit
influenced by seed selection and social welfare influenced by seed allocation, the
ACDM problem can be divided into two sub-problems, seed selection and seed
allocation. Firstly, finding a seed set S which satisfies |S| = k and can maximize
the profit φA(S). Then allocate all the nodes in S such that the social welfare
is maximized and the allocation is weakly stable. Based on the outcome of seed
allocation, update SA and SB. Then, based on SA and SB, select k nodes to
maximize the profit and allocate them. Repeat this process for T times.

In a nutshell, given that the result of seed selection and allocation influence
each other, we propose the Adaptive Selection and Online Allocation (ASOA)

188 L. Du et al.

Algorithm 1. ASOA algorithm (G = (V,E), P,Q, φA, ψt−1)
1: Initialize SA = {SA,i} with SA,i = ∅ and SB = {SB,i} with SB,i = ∅, for each

i ∈ [T].
2: for t = 1 to T do
3: (S, t) ← AS algorithm (G = (V, E), P, k, Q, φA, ψt−1).
4: (A, t) ← OA algorithm (S, H, R, (A, t − 1)).
5: SA,t = SA|(A, t) and SB,t = SB|(A, t).
6: Obtain partial realization ψt.

return SA, SB

algorithm consisting of two sub-algorithms. It can return a feasible solution for
the ACDM problem and is shown as Algorithm 1.

In each round, inspired by [17], we firstly design AS algorithm whose details
are shown in Algorithm 2 to find a candidate node set. Different from greedy
algorithm proposed in [11], it models nodes in the social network as players in
a coalitional game and captures information diffusion process as the process of
coalition formation in the game. For two given current seed node sets SA and
SB, it computes a ranking list of the nodes based on the shapley value and
picks the top-k nodes as candidate nodes waiting to be allocated in the next
step. Subsequently, Algorithm 3 is used to allocate all the node returned by
AS algorithm. Such an algorithm is based on Algorithm 2 proposed in [10] and
its crucial idea is the online no-rejection bipartite matching algorithm. Regard
Γ = {A,B} as a set which is given in advance and consists of two entities. At
the same time, nodes in S returned by Algorithm 2 are arriving one by one and
the edges incident to each node are revealed when it arrives. In sequence of its
index in S, we consider the first two nodes and consecutive allocate them to an
unmatched adjacent vertex γ ∈ Γ . Then, combine each node and its choice pair
as one new vertex γ and match the next two nodes with adjusted appraisal to
updated vertexes.

4 Experiments Settings and Results

We conduct a series of experiments on three real social networks, Petster-
Hamster-Household (PHH), Moreno-Innovation(MI) and email-Eu-core(Email).
The first two can be obtained from [12] while the last one can be found in SNAP
website. The number of nodes including in PHH, MI and Email are 921, 246
and 1005, respectively. Correspondingly, the number of edges are 4032, 1098 and
25571.

The propagation probability pu,v for each pair of neighbors (u, v) in CIC
model is randomly generated from [0, 1], and q(v) for each v ∈ V is fixed by
the same way. The profit φA of 90% nodes is set to be 1 while the rest are
0.5. In addition, the happiness matrix H and appraisal matrix R are randomly
generated and satisfy that every element is confined to [0, 1]. T is set to be 5,
and the number of seeds selected in each round varies with the seed size K which
is chosen from {10, 20, 30, 40, 50}.

Adaptive Competition-Based Diversified-Profit Maximization 189

Algorithm 2. AS algorithm (G = (V,E), P, k,Q, φA, ψt−1)
1: Denote the number of repetitions and a randomly sampled set of permutations as

mc and Υ , and initialize RL as an empty list.
2: for all v ∈ V do
3: Initialize each node’s shapley value to 0.

4: for all Aυ ∈ Υ do
5: for all nodes in Aυ do
6: Initialize nodes’ temporal shapley value to 0 and MG to a zero matrix.
7: for k = 1 to mc do
8: CMG ← Marginal Gain (G = (V, E), P, Q, φA, ψt−1).
9: MG = MG + CMG.

10: Update nodes’ temporal shapley value as average of elements of MG.

11: Update nodes’ shapley value as average value of their temporal shapley value.

12: Sort the nodes in non-increasing order by their shapley value to obtain RL.
13: Initialize S as an empty set and Scan as an empty list.
14: for i = 1 to n do
15: Denote the i-th element of RL as v.
16: if v /∈ S and v is not adjacent to any node in S then
17: Put v into S.
18: if |S| ≥ k then
19: Break.
20: else
21: Append v to Scan.

22: if |S| < k then
23: for j = 1 to k − |S| do
24: Put the j-th element of Scan into S.

return (S, t)
25: function Marginal Gain(G = (V, E), P, Q, φA, ψt−1)
26: Initialize SA,temp as an empty set and CMG as a n-tuple zero vector. Create

two empty queues Acan and Bcan.
27: for j = 1 to |V | do
28: Put the first j nodes in Aπ into SA,temp.
29: for every v ∈ SA,temp do
30: Put v into Acan and mark v as A-accepted.

31: while Acan is not empty do
32: for every out-neighbor w of nodes in Acan do
33: Update w’s joint state according to Q, ψt−1 and its current state.
34: if w is A-accepted then
35: Put w into Acan.

36: Calculate the total profit based on the first j nodes in Aπ. Take the difference
between it and the total profit based on the first j −1 nodes in Aπ as the marginal
gain of the j-th node in Aπ. Update CMG according to each node’s marginal gain.

return CMG

As this is the first work for solving ACDM problem, no direct algorithms
can be compared. For comparison, we propose ASOA algorithm with one-shot
policy as baseline and denote it as non-adaptive. This algorithm only conducts

190 L. Du et al.

Algorithm 3. OA algorithm (S,H,R, (A, t − 1))
1: Denote S = {v1, v2, . . . , v|S|}.
2: R′ ← R.
3: if (A, t − 1) is empty then
4: if Rv1,A > Rv1,B then
5: Allocate v1 to A and v2 to B.
6: else if Rv1,A < Rv1,B then
7: Allocate v1 to B and v2 to A.
8: else
9: Randomly allocate v1 to a seed set and allocate v2 to the other seed set.

10: Update (A, t).

11: for i = 2, . . . , � |S|
2

� do
12: R′

vj ,EN ← Rvj ,EN + Hvk,j + Hk,vj for each k in SEN , EN = A and B,
j = 2 ∗ i − 1 and 2 ∗ i

13: Update (A, t) according to the return matching of OnlineMatching on the
two nodes with R′.

14: if |S| < 2 ∗ � |S|
2

� then
15: Delete v|S| from (A, t).

16: else
17: for i = 1, . . . , � |S|

2
� do

18: R′
vj ,EN ← Rvj ,EN + Hvk,j + Hk,vj for each k in SEN , EN = A and B,

j = 2 ∗ i − 1 and 2 ∗ i
19: Update (A, t) according to the return matching of OnlineMatching on the

two nodes with R′.
20: if |S| < 2 ∗ � |S|

2
� then

21: Delete v|S| from (A, t).
return (A, t)

22: function OnlineMatching
23: M ← ∅, L ← ∅
24: for each node v comes do
25: L ← L ∪ {v}
26: Mv ← Optimal Matching on G[L ∪ {A B}].
27: ev ← The matching edge that contains v in Mv

28: if M ∪ evis a matching then
29: M ← M ∪ ev

30: else
31: Randomly choose EN from {A, B} and M ← M ∪ (v, EN)

return M

the first and second step of ASOA algorithm and the number of nodes selected
in the first phase is changed to K. It picks seeds and allocates them, regardless
of their realization.

Firstly, some experiments are conducted to study the influence of parameter
λ. This parameter is used to weight the importance of social welfare of seeds,
reflecting the evaluation of current allocation. We set λ = 0.25, 0.5, 0.75 and com-
pare the value of DP with varying λ based on different data sets. As is shown in
Fig. 1, the value of DP increases with λ. Due to the definition of DP function,

Adaptive Competition-Based Diversified-Profit Maximization 191

Fig. 1. The value of DP with varying of parameter λ

Fig. 2. The relationship between DP and seed set size on MI

this conclusion is easy to understand. Then, we compare the results obtained by
two different algorithms based on three datasets and results are shown in Fig. 2,
Fig. 3 and Fig. 4, respectively. According to Fig. 2 and Fig. 3, as the number of
selected seeds increases, the performance of ASOA algorithm donated as adap-
tive are always superior to the baseline algorithm. This is because non-adaptive
algorithm can not adjust its choice according to the result of allocation. How-
ever, ASOA algorithm must make a decision based on current state of each node
in the social network when selecting the next k seeds. When focusing on Fig. 4,
we observe that the value of DP obtained by adaptive algorithm based on PHH
dataset is smaller than that calculated by non-adaptive algorithm when K = 40
and λ = 0.5, 0.75. In fact, it is because the difference of profit obtained by two dif-
ferent algorithms is smaller than that of social welfare. ASOA algorithm firstly
picks nodes which can maximize the value of profit and then allocates them.
Given that the value of social welfare function is related to the selected seeds,
this order may influence the final result, especially when the average degree of
nodes is small (such as 4.3778 in PHH). Besides, the setting of φA, H and R
in our experiments may be another reason. In this setting, when a node v is
selected, the raise of social welfare may be bigger than that of profit. Therefore,
although such results seems unexpected, they show some special cases which can
be avoided through more ideal setting and actually do not impact the effective-
ness of ASOA algorithm. In summary, ASOA algorithm performs quite well on
both small-scale and large-scale networks.

192 L. Du et al.

Fig. 3. The relationship between DP and seed set size on Email

Fig. 4. The relationship between DP and seed set size on PHH

5 Conclusion

In this paper, we propose Adaptive Competition-based Diversified-profit Max-
imization problem integrating the process of seed selection and allocation for
two competitive entities. To address such a realistic and challenging problem,
Adaptive Selection and Online Allocation algorithm is designed. This algorithm
consists of AS algorithm and OA algorithm focusing on seed selection and seed
allocation, respectively. Combining the concept of shapley value and the method
used to handle online bipartite matching problem, ASOA algorithm could obtain
a better solution for ACDM problem. And we conduct experiments on real-world
networks to evaluate its effectiveness. To the best of our knowledge, it is the first
paper integrating seed selection and allocation in adaptive competitive profit
maximization problem.

References

1. Ansari, A., Dadgar, M., Hamzeh, A., Schlötterer, J., Granitzer, M.: Competitive
influence maximization: integrating budget allocation and seed selection (2019).
http://arxiv.org/abs/1912.12283

2. Bharathi, S., Kempe, D., Salek, M.: Competitive influence maximization in social
networks. In: Deng, X., Graham, F.C. (eds.) Internet and Network Economics, pp.
306–311. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77105-
0 31

http://arxiv.org/abs/1912.12283
https://doi.org/10.1007/978-3-540-77105-0_31
https://doi.org/10.1007/978-3-540-77105-0_31

Adaptive Competition-Based Diversified-Profit Maximization 193

3. Bozorgi, A., Samet, S., Kwisthout, J., Wareham, T.: Community-based influ-
ence maximization in social networks under a competitive linear threshold model.
Knowl.-Based Syst. 134, 149–158 (2017). https://doi.org/10.1016/j.knosys.2017.
07.029

4. Carnes, T., Nagarajan, C., Wild, S.M., van Zuylen, A.: Maximizing influence in a
competitive social network: a follower’s perspective. In: Proceedings of the Ninth
International Conference on Electronic Commerce, ICEC 2007, pp. 351–360. Asso-
ciation for Computing Machinery, New York, NY, USA (2007). https://doi.org/
10.1145/1282100.1282167

5. Chen, W., Wang, C., Wang, Y.: Scalable influence maximization for prevalent viral
marketing in large-scale social networks, pp. 1029–1038, September 2010. https://
doi.org/10.1145/1835804.1835934

6. Chen, W., Wang, Y., Yang, S.: Efficient influence maximization in social networks.
In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD 2009, pp. 199–208. Association for Computing
Machinery, New York, NY, USA (2009). https://doi.org/10.1145/1557019.1557047

7. Du, L., Chen, S., Gao, S., Yang, W.: Nonsubmodular constrained profit maxi-
mization from increment perspective. J. Comb. Optim. (2021). https://doi.org/10.
1007/s10878-021-00774-6

8. Du, L., Yang, W., Gao, S.: Generalized self-profit maximization in attribute net-
works. In: Du, D.-Z., Du, D., Wu, C., Xu, D. (eds.) COCOA 2021. LNCS, vol.
13135, pp. 333–347. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
92681-6 27

9. Goyal, A., Lu, W., Lakshmanan, L.V.: CELF++: optimizing the greedy algorithm
for influence maximization in social networks. In: Proceedings of the 20th Inter-
national Conference Companion on World Wide Web, WWW 2011, pp. 47–48.
Association for Computing Machinery, New York, NY, USA (2011). https://doi.
org/10.1145/1963192.1963217

10. Huzhang, G., Huang, X., Zhang, S., Bei, X.: Online roommate allocation problem. In:
Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intel-
ligence, IJCAI-2017, pp. 235–241 (2017). https://doi.org/10.24963/ijcai.2017/34

11. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through
a social network. In: Proceedings of the ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 37–146 (2003). https://doi.org/10.
1145/956750.956769

12. Kunegis, J.: KONECT - the Koblenz network collection. In: Proceedings of Interna-
tional Conference on World Wide Web Companion, pp. 1343–1350 (2013). https://
doi.org/10.1145/2487788.2488173

13. Li, H., Bhowmick, S.S., Cui, J., Gao, Y., Ma, J.: GetReal: towards realistic selection
of influence maximization strategies in competitive networks. In: Proceedings of the
2015 ACM SIGMOD International Conference on Management of Data, SIGMOD
2015, pp. 1525–1537. Association for Computing Machinery, New York, NY, USA
(2015). https://doi.org/10.1145/2723372.2723710

14. Lu, W., Chen, W., Lakshmanan, L.V.S.: From competition to complementarity:
comparative influence diffusion and maximization. Proc. VLDB Endow. 9(2), 60–
71 (2015). https://doi.org/10.14778/2850578.2850581

15. Masucci, A., Silva, A.: Advertising competitions in social networks (2016). http://
arxiv.org/abs/1608.02774

16. Masucci, A.M., Silva, A.: Strategic resource allocation for competitive influence in
social networks (2014). http://arxiv.org/abs/1402.5388

https://doi.org/10.1016/j.knosys.2017.07.029
https://doi.org/10.1016/j.knosys.2017.07.029
https://doi.org/10.1145/1282100.1282167
https://doi.org/10.1145/1282100.1282167
https://doi.org/10.1145/1835804.1835934
https://doi.org/10.1145/1835804.1835934
https://doi.org/10.1145/1557019.1557047
https://doi.org/10.1007/s10878-021-00774-6
https://doi.org/10.1007/s10878-021-00774-6
https://doi.org/10.1007/978-3-030-92681-6_27
https://doi.org/10.1007/978-3-030-92681-6_27
https://doi.org/10.1145/1963192.1963217
https://doi.org/10.1145/1963192.1963217
https://doi.org/10.24963/ijcai.2017/34
https://doi.org/10.1145/956750.956769
https://doi.org/10.1145/956750.956769
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1145/2723372.2723710
https://doi.org/10.14778/2850578.2850581
http://arxiv.org/abs/1608.02774
http://arxiv.org/abs/1608.02774
http://arxiv.org/abs/1402.5388

194 L. Du et al.

17. Narayanam, R., Narahari, Y.: A Shapley value-based approach to discover influen-
tial nodes in social networks. IEEE Trans. Autom. Sci. Eng. 8(1), 130–147 (2011).
https://doi.org/10.1109/TASE.2010.2052042

18. Shi, Q., Wang, C., Ye, D., Chen, J., Feng, Y., Chen, C.: Adaptive influence block-
ing: minimizing the negative spread by observation-based policies. In: 2019 IEEE
35th International Conference on Data Engineering (ICDE), pp. 1502–1513 (2019).
https://doi.org/10.1109/ICDE.2019.00135

19. Shi, Q., et al.: Profit maximization for competitive social advertising. Theor. Com-
put. Sci. 868, 12–29 (2021). https://doi.org/10.1016/j.tcs.2021.03.036

20. Tang, J., Tang, X., Yuan, J.: Towards profit maximization for online social network
providers, December 2017. https://arxiv.org/abs/1712.08963

21. Tang, Y., Shi, Y., Xiao, X.: Influence maximization in near-linear time: a Martin-
gale approach. In: Proceedings of the 2015 ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD 2015, pp. 1539–1554. Association for Com-
puting Machinery, New York, NY, USA (2015). https://doi.org/10.1145/2723372.
2723734

22. Varma, V.S., Lasaulce, S., Mounthanyvong, J., Morărescu, I.C.: Allocating mar-
keting resources over social networks: a long-term analysis. IEEE Control Syst.
Lett. 3(4), 1002–1007 (2019). https://doi.org/10.1109/LCSYS.2019.2919959

23. Yu, H., Kim, S.K., Kim, J.: Scalable and parallelizable processing of influence
maximization for large-scale social networks? In: Proceedings of the 2013 IEEE
International Conference on Data Engineering (ICDE 2013), pp. 266–277. IEEE
Computer Society, USA (2013). https://doi.org/10.1109/ICDE.2013.6544831

https://doi.org/10.1109/TASE.2010.2052042
https://doi.org/10.1109/ICDE.2019.00135
https://doi.org/10.1016/j.tcs.2021.03.036
https://arxiv.org/abs/1712.08963
https://doi.org/10.1145/2723372.2723734
https://doi.org/10.1145/2723372.2723734
https://doi.org/10.1109/LCSYS.2019.2919959
https://doi.org/10.1109/ICDE.2013.6544831

Collaborative Service Caching
in Mobile Edge Nodes

Zichen Wang and Hongwei Du(B)

School of Computer Science and Technology, Harbin Institute of Technology
(Shenzhen), Shenzhen, China

hongwei.du@ieee.org

Abstract. Recently, it has become widely accepted that moving services
from original cloud servers to mobile edge nodes (MENs) can shorten the
time it takes for a service to respond. In this article, we first examine
the issue of service caching by numerous MENs under the assumption of
market-oriented behavior, and then we propose a collaborative service
caching mechanism (CSCM) to allow MENs to assist one another with
services, enhancing the advantages of MENs and the service effectiveness
of the overall MEC network. Then a randomized rounding (CSCM+RR)
algorithm is proposed based on CSCM. Finally, we conduct experiments
on a simulation platform using a real dataset and evaluate the perfor-
mance of the CSCM+RR algorithm. According to the experimental find-
ings, the CSCM+RR algorithm reduces the average delay by 31.02% to
82.90% while increasing the average profit by 5.87% to 76.78% to the
baseline.

Keywords: Mobile edge computing · Service caching · Collaborative
mechanism

1 Introduction

The growth of cloud computing, artificial intelligence, and communication infras-
tructures over the last ten years has increased the demand for high-quality,
low-cost computing services. The technology used in autonomous vehicles, for
instance, has a high level of quick and accurate reaction for safety drives. Virtual
reality (VR) games require large volumes of data to be processed in real-time.
By 2022, it is anticipated that video-related mobile data traffic would exceed 60
EB globally [1]. These applications more severely test the cloud server’s com-
putation, storage, and transmission capacities, as well as the network’s overall
transmission capacity.

The difficulties that network service providers (NSPs) and application ser-
vice providers (ASPs) are currently facing can be solved very well thanks to the
development of mobile edge computing (MEC). Mobile edge nodes (MENs) con-
tain computing, storage, and communication capabilities and are situated closer
to users than distant cloud computing facilities. Such a MEC model provides
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 195–206, 2022.
https://doi.org/10.1007/978-3-031-16081-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_17&domain=pdf
https://doi.org/10.1007/978-3-031-16081-3_17

196 Z. Wang and H. Du

services to users with guaranteed quality and delay and reduces the pressure on
remote cloud computing centers at the same time.

In this paper, we discuss ways to increase MENs’ profit by making greater
use of the benefits of close proximity and quick communication. Then we propose
the problem of collaborative service caching in MEC networks. Caching services
must pay for both the time and bandwidth required to go to the edge from a
remote cloud computing center. Making MENs exchange services can boost the
use of services that are currently cached on MENs and further save service costs.

The edge cooperative caching mechanism enables MENs to provide services
to each other and form coalitions, which has some challenges: (1) MENs usu-
ally belong to different NSPs that only focus on their profits. They cannot be
compelled to provide services to each other, and a suitable market mechanism
is needed to make them consciously form a coalition. (2) It can be difficult to
create coalitions because of the size and degree of division. (3) When a coalition
is formed between MENs, one MEN can buy services from another MEN and
pay a certain fee. Pricing strategies are essential in these business activities, and
reasonable service pricing can benefit both ASPs and NSPs.

This study investigates the issue of edge service caching by establishing
a market-oriented coalition approach, comparing the cost differences between
acquiring services from the edge and from a remote data center.

The main contributions of this paper are as follows.

– For the collaborative service caching problem, we elaborate a coalition mech-
anism to minimize the service cost of all MENs through service sharing.

– For the coalition mechanism, we propose an Integer Linear Program (ILP)
solution and design a random rounding algorithm.

– We conduct simulations and implementations through an experimental plat-
form to evaluate the performance of the proposed mechanism. The experi-
mental results show that by establishing a service caching coalition on edge,
the MEN profit is improved, and the user response delay is shortened, making
the CSCM+RR algorithm outperforms the existing methods.

The rest of the paper is structured as follows. The state-of-the-art on this
subject is outlined in Sect. 2. The system model and problem formulations are
presented in Sect. 3. The coalition technique for the edge collaborative service
caching issue is suggested in Sect. 4. The service caching issue at the edge is
addressed in Sect. 5, along with a random rounding approach. The effectiveness
of the proposed algorithm is assessed in Sect. 6, and the article is wrapped up in
Sect. 7.

2 Related Work

The caching problem in edge computing has received extensive attention in
the academic community. In existing research, people generally innovates edge
caching methods to improve user experience (QoE) or reduce caching costs.

Collaborative Service Caching in Mobile Edge Nodes 197

Existing researches on edge caching can be divided into two categories depend-
ing on the cached content: (1) service caching; and (2) data caching.

For service caching, the research focuses on reducing the cost of service
caching or increasing the benefit. For example, Y. Liang et al. [2] studied the
service entity caching problem from the utility perspective. J. Xu et al. [3] focus
on minimizing the mobile user’s computation delay and energy consumption. G.
Zhao et al. [4] study how to efficiently offload dependent tasks to edge nodes
with limited (and predetermined) service caching. G. Zeng et al. [5] focus on
maximizing the total profit of service providers. Some scholars have also paid
attention to the problem of cooperative service caching, for example, Z. Xu et al.
[6] designed a novel coalition formation game for the problem with VM sharing
and aim to minimize the total cost of all network service providers. X. Ma et al.
[7] consider cooperation among edge nodes and investigate cooperative service
caching.

For data caching, the research focuses on how to use the characteristics of
the data to increase the request hit rate of cached content or reduce the response
delay. According to the attributes of the cached content, the optimization goals
of the cache scheme are different. H. Wang et al. [8] aimed to improve QoE and
the user’s fast joining ability and smooth viewing experience. F. Wang et al.
[9] proposed an intelligent edge caching framework to minimize content access
latency and traffic cost. C. Li et al. [10] proposed a collaborative caching strategy
for video content in a cloud-edge collaborative environment.

Based on the above analysis, the existing research on service caching does
not consider the cost of caching service behavior. The service caching needs to
consume the bandwidth cost and time cost from the remote data center to the
edge. If the utilization of services already cached at the edge can be increased, it
should be possible to reduce the cost of services further. This paper will design
the service caching mechanism from this perspective.

3 Preliminary

3.1 System Model

We considered a service caching system in a MEC network G = (MENs ∪
DC,E) with a set of MENs, the remote data center, and a set of communication
links that connect upward to the remote data center and downward to the user
terminal. The structure of the MEC network is shown in Fig. 1. Users need to
offload services to MENs located at the edge in this MEC network. MENs have
storage, computing, and communication capabilities. As a service provider at the
edge of the network, they provide services to users and charge users a certain
fee. Many coalitions are formed between MENs. When a MEN does not have
the services required by users, the MEN asks other MENs in the coalition for
assistance and pays a certain extra fee. When there is no user-requested service
in the coalition, the MEN requests the service from the remote data center. The
remote data center will provide the service and return the calculation results to

198 Z. Wang and H. Du

the user via the MEN. Each MEN has limited computing and caching resources
to provide services to users.

Users pay MENs for the amount of computation resource required for service,
regardless of whether MENs are busy or need to ask the DC for help. Charging
a service fee at a fixed rate can attract users better. Thus, MENs can only
increase its profits by reducing service costs to ensure user service quality without
increasing service fees.

In this paper, the user is represented by u ∈ U the MEN is represented by
n ∈ N and the service is represented by l ∈ L With each MEN as the center, a
coalition an ∈ A is formed, and the MEN can cooperate with the MENs in its
coalition to provide services.

Fig. 1. System model

3.2 Cache Services at Mobile Edge Nodes

We consider caching a portion of services deployed in the DC to the MEC net-
work to reduce the request latency of users, which is called service caching.

This paper proposes to form a service cache coalition among MENs, which
can increase the utilization of services on MENs and reduce the service cost of
MENs. After deploying some services to the MEC network, a user sends a service
request to MEN a. If MEN a can provide services for the user, it can directly
serve service calculations and return the calculation results to the user. When
MEN a does not have the service requested by the user, MEN a can request
the service from other MENs in its coalition. Assuming that the MEN b in the
coalition can provide the service, the MEN b provides the service for the user
and sends the calculation result back to the user through MEN a. Due to the
close distance between MENs in the Coalition, it can save a lot of time to ask for
service assistance from MENs in the coalition instead of going to DC to obtain
services. On the other hand, a collaborative service mechanism can increase the

Collaborative Service Caching in Mobile Edge Nodes 199

utilization of services on MENs. Through reasonable service pricing, increased
service utilization can translate into additional profits for MENs.

3.3 The Cost of Serving at the Edge and the Remote Data Center

Base Cost: For MENs, it needs to cache the service on the infrastructure and
perform computations after receiving user requests. Since MENs’ infrastructure
has limited cache space and limited computing resources, the provision of com-
puting services by MENs means that computing costs and storage costs are
needed. At the same time, MENs need to consume a specific network bandwidth
for transmitting data, so MENs also need to spend the bandwidth cost.

Denote by cc
n,l the cost of using a unit of computing resource in MEN n by

service l. And denote by cb
n,l the cost of using a unit of bandwidth resource in

MEN n by service l. Let cn,l be the usage cost of caching a service l in MEN n,
then,

cn,l = cc
n,l · Cl + cb

n,l · Bl (1)

where Cl is the amount of computing resource units required to calculate once
service l and Bl is the amount of bandwidth resource units required for service
l.

Collaboration Cost: When a MEN cannot provide services, it needs to request
service assistance from other MENs within its coalition. MENs only pay attention
to their own interests. In order to get help from other MENs, the MEN needs
to pay extra “assistance” fees in addition to the cost of base calculation and
bandwidth. If there are no MENs in the coalition that can help, the MEN needs
to send an assistance request to the DC. Since the DC is far away, the MEN
needs to pay more service fees to get the help of the DC. These fees are part of
the MEN service cost.

3.4 Pricing Strategy of the Edge and the Remote Data Center

MENs need to charge a certain fee for providing services to users, and the fee
is priced according to the resources required by the service. The cost of a user
requesting a service l from MEN n is Pn,l, then,

Pn,l = Tl · pn (2)

where Tl is the duration of serving the request of service l, and pn is the price
that MEN n provides the service per unit time. When a MEN requests services
from other MENs in its coalition, the cost of computation and extra cost of
assistance fees apply. Since the pricing of fees paid by users is not changed by
which MEN provides services, that is, the income is fixed, the service pricing of
MENs providing services to other MENs is particularly important. Since each
MEN only pays attention to their own income, both the MEN requesting the

200 Z. Wang and H. Du

service and the MEN providing the service expect to obtain part of the income.
We assume that the cost of MEN n requesting a service l from MEN m is,

Pm
n,l = Tl · pm · α (3)

where α is the coalition cost parameter. When MENs request services from the
DC, they need to pay more service fees to the DC to obtain the assistance of the
DC. Since the DC is too far away from MENs, and the distances between different
MENs and the DC are quite different, in order to facilitate the calculation, we
assume that the fee of services by the DC is the service fee paid by users, namely

PDC
n,l = Pn,l (4)

3.5 The Utility of Serving at the Edge and the Remote Data Center

We believe that the service transactions between MENs and between MENs and
users make MENs profitable. The service fees obtained by MENs for provid-
ing services to users are generally higher than the cost of providing services.
Therefore, MENs sell services to users to obtain profits. When a MEN provides
services to other MENs, it ought to charge a part of the extra assistance fee, so
the MEN who provide service assistance can also get certain profits. The MEN
who ask for assistance still has a part of the profits after paying the service cost
and assistance fee. When MENs request services from the DC, the service fee is
the service fee paid by users, so the profits of MENs are 0.

Let V n
n,l be profits obtained by MEN n for providing a service l.

V n
n,l = Pn,l − cn,l (5)

Let V m
n,l be profits obtained by MEN n requesting MEN m to provide a

service l.
V m

n,l = Pn,l − Pm
n,l (6)

Therefore, we have

Vn,l =

⎧
⎨

⎩

V n
n,l, MEN provide service by itself

V m
n,l, other MEN in the coalition assists to provide service
0, DC assists to provide service

(7)

3.6 The Response Delay of the Edge and the Remote Data Center

The response delay of a user requesting service is mainly composed of the queuing
delay waiting to be served on the MEN, the computing delay of the service, and
the transmission delay of transmitting data in the network. MEN can place mul-
tiple service tasks in multiple threads for parallel computing. When all threads
are occupied, each thread will have a queue. When a new service request arrives,
it only needs to select the thread with the shortest queue to wait for the service.
After the calculation is completed, the MEN sends the calculation result back

Collaborative Service Caching in Mobile Edge Nodes 201

to the user. Since the MEN is very close to the user, this period of delay is very
short. We assume that is a fixed value, which is represented by dbase. We use
dn,l to represent the user response delay when MEN n provides service l,

dn,l = (
∑

o∈qn

Co + Cl) · tc + dbase (8)

where qn represents the task set in the queue with the shortest queue on MEN
n, and tc is the unit task processing time. When the MEN n requests the MEN
m in the coalition to provide services, a transmission delay from the MEN m to
the MEN n will be added. We use dm

n,l to represent the user response delay when
MEN n requests service l from MEN m, that is,

dm
n,l = (

∑

o∈qm

Co + Cl) · tc + Bl · tb · Dmn + dbase (9)

where tb is the required transmission time per unit bandwidth resource, and Dmn

is the distance between m and n. When MEN n requests DC to provide services,
the transmission delay from MEN n to DC will be much longer than between
MENs. For the convenience of calculation, we assume that the transmission delay
from MEN to DC is a fixed value, using dDC

n,l to represent.

4 Coalition Mechanism for the Collaborative Service
Caching Problem with Service Sharing

4.1 Coalition Mechanism Among MENs

We set up a MENs collaboration coalition in the edge network so that MENs
in the Coalition can performed collaborative caching, increase the utilization of
the service cached on MENs, reduce the user response delay, and increase the
profits of MENs.

The basic idea of the algorithm is to form a stable optimal cache deployment
strategy through repeated iterations, including service deployment and service
response, which is called Collaborative Service Caching Mechanism (CSCM).
The detailed mechanism is given in Algorithm 1.

After a MEN receives a service request from a user, the MEN calculates the
expected profits of caching the service. If the expected profits are higher than
the minimum expected profits among the services currently pre-cached by the
MEN, the MEN adds the service to the pre-cache list. Cache services after all
service requests from all MENs have been considered.

After all of the services are cached on MENs as much as possible, we consider
the mechanism by which MENs respond to user service requests.

4.2 Mechanism Analysis

After MENs are formed into a coalition, each MEN can provide services to users
who are in the service scope of other MENs in the coalition, which is equivalent to

202 Z. Wang and H. Du

Algorithm 1. CSCM
Input: A set of service requests. Each request contains the requested MEN and the

service, as well as the start time and end time of the request
Output: A set of caching schemes, where each MEN caches as many services as pos-

sible to generate greater profit
1: while there is a service request that is not pre-cached do
2: A user sends a request of service l to his nearest MEN n;
3: MEN n considers adding the service l to the pre-cache list to maximize expected

profit without violating its capacity of itself;
4: end while
5: Cache the services in the pre-cache list on MENs;
6: while there is a service request that is not responded do
7: MEN n checks whether there is a cache of the service;
8: if MEN n cached service l then
9: MEN n puts the service l in the queue with the shortest queuing time;

10: else
11: MEN n asks other MENs in its collaborative coalition;
12: if there is a MEN in the coalition who can provide the service l then
13: MEN n selects the MEN m with the lowest service price;
14: MEN m puts the service in the queue with the shortest queuing time;
15: else
16: MEN n asks the DC for service l;
17: end if
18: end if
19: end while

expanding the service scope of each MEN. Assuming that there are N MENs in
each coalition on average, there are u users who sent service requests within each
MEN’s scope. The repetition ratio of the requested service is Δ. The repetition
ratio of all requests is α, the average number of services that each MEN can
store is m, and the repetition ratio of services stored between MENs is β, then
forming a MEN coalition can make the average hit rate increase m(Δ−αβ)

uΔαβ . It
can be inferred that when the condition (Δ > αβ) is satisfied, forming coalitions
will improve the average hit rate of MENs.

On the other hand, when a MEN cannot provide services, it can request the
assistance of other MENs in the coalition, which is equivalent to improving the
storage capacity of each MEN. For MENs, the number of services that can be
provided at a lower cost is as (Nβ − 1) times as original.

5 Approximation Algorithm for the Service Caching
Problem

5.1 Problem Formulation

Let xnl be a binary variable that indicates whether service l is cached in MEN
n. The problem can be formulated as follows.

max
∑

n∈N

∑

l∈L

xnl · Vn,l (10)

Collaborative Service Caching in Mobile Edge Nodes 203

subject to ∑

l∈L

xnl ≤ Capc (11)

Vn,l ≥ 0 (12)

xnl ∈ {0, 1} (13)

where constraint (11) says that the number of services cached per MEN cannot
exceed the capacity of the MEN, and Capc is the capacity of the MEN. Con-
straint (12) ensures that the profit of a service provided by MEN is non-negative.

5.2 Randomized Algorithm

Since the objective function (10) is an Integer Linear Programming (ILP) prob-
lem, it is NP-hard. We consider relaxing the constraints on the original problem
to find a feasible approximate solution in a limited time. First, we relax con-
straint (13) as,

0 < xnl < 1 (14)

Then, the ILP problem is relaxed into an LP problem with the objective
function as (10) and constraints as (11), (12), and (14).

Finally, the relaxed objective function is solved with a randomized rounding
algorithm. The random rounding algorithm obtains a feasible solution in each
iteration and finally obtains a feasible global solution. The detailed algorithm is
given in Algorithm 2, which is called Randomized Rounding (RR).

Algorithm 2. RR
Input: A set of service requests. Each request contains the requested MEN and the

service, as well as the start time and end time of the request
Output: A set of caching schemes, where each MEN caches as many services as pos-

sible to generate greater profit
Relax constraint (13) of ILP into constraint (14) and obtain an LP;

2: while there is a service request that is not pre-cached do
Assign a requested service a cached probability of xnl which satisfies constraint
(14);

4: if xnl is a feasible solution then
Put service l into the pre-cache list;

6: end if
end while

8: Cache the services in the pre-cache list on MENs;

204 Z. Wang and H. Du

6 Simulation Results and Discussions

6.1 Experiment Settings

We used a real communication dataset in our experiments. The dataset [11–
13], provided by Shanghai Telecom, contains more than 7.2 million records of
accessing the Internet through 3,233 base stations from 9,481 mobile phones for
six months.

We compared the algorithm proposed in this paper with three algorithms:
(1) A distributed coalition formation (coalition) [6]: different service providers
share computing resources on the same cloudlet (2) A coalition formation with
temporal VM sharing (CoalitionVMS) [6]: different service providers share
VMs in different time periods on the same cloudlet (3) Random: MEN randomly
selects cached services.

6.2 Performance Evaluation

The metrics we evaluate performance are the average response delay of users
and the average profit of all MENs over the same time period.

We first evaluate the impact of the number of service types on the algorithm.
The service types are 500, 1000, 2000, 4000, and 8000, respectively. The MEN’s
capacity was 100. The experimental results are shown in Fig. 2. As shown in
Fig. 2, the increase in the number of service types will reduce the performance of
all algorithms The performance of algorithms that collaborative caching among
MENs changes fast than algorithms that only cooperate among service providers.
The algorithm combining CSCM and RR (CSCM+RR) has the best perfor-
mance, while the coalition algorithm has the worst.

Then, we evaluate the impact of the MEN’s cache capacity on the algo-
rithm’s performance. The cache capacities of MENs are 100, 200, 300, 400, and
500, respectively. The service type is 1000. The experimental results are shown
in Fig. 3. It can be seen from Fig. 3 that the CSCM + RR algorithm has the
best performance under different MEN’s cache capacities, and the performance
improves as the MEN’s cache capacity increases. It is worth noting that when the
MEN’s cache capacity exceeds 200, the average profit of coalitionVMS exceeds
that of the algorithm combining CSCM and random(CSCM + random). When
the MEN cache capacity further exceeds 400, the average latency of coalition-
VMS is also lower than the CSCM + random algorithm.

Overall, the experimental results show that the CSCM + RR algorithm
increases the average profit by 5.87% to 76.78% and reduces the average delay
by 31.02% to 82.90% compared with coalitionVMS, which is the best performing
in the baseline.

Collaborative Service Caching in Mobile Edge Nodes 205

Fig. 2. The impact of the number of service types on algorithms.

Fig. 3. The impact of the MEN’s cache capacity on algorithms.

7 Conclusion

In this paper, we investigated the problem of service caching for collaboration
among MENs. We proposed to form a collaborative caching coalition among
MENs and proposed a mechanism CSCM for cooperative service caching so that
MENs can provide service assistance to each other. In addition, we also imple-
ment this mechanism nicely using the randomized rounding algorithm. Finally,
we conduct simulation experiments using a real communication dataset to eval-
uate the performance of the proposed algorithm. The experimental results show
that the proposed algorithm has good performance in comparing various dimen-
sions, which is better than the existing algorithms. The future work of this
research includes: (1) proposing an algorithm to handle the transfer of user
interest; and (2) considering a method for dynamic replacement of services on
MEN in continuous time.

Acknowledgement. This work is supported by National Natural Science Founda-
tion of China (No. 62172124), the Shenzhen Basic Research Program (Project No.
JCYJ20190806143011274) and the Shenzhen Colleges and Universities Stable Support
Program No. GXWD20201230155427003-20200822080602001.

206 Z. Wang and H. Du

References

1. Cisco: Cisco Annual Internet Report (2018–2023) White Paper, white paper (2020).
http://goo.gl/l77HAJ

2. Liang, Y., Ge, J., Zhang, S., et al.: A utility-based optimization framework for
edge service entity caching. IEEE Trans. Parallel Distrib. Syst. 30(11), 2384–2395
(2019)

3. Xu, J., Chen, L., Zhou, P.: Joint service caching and task offloading for mobile
edge computing in dense networks. In: IEEE INFOCOM 2018-IEEE Conference
on Computer Communications, pp. 207–215. IEEE (2018)

4. Zhao, G., Xu, H., Zhao, Y., et al.: Offloading dependent tasks in mobile edge
computing with service caching. In: IEEE INFOCOM 2020-IEEE Conference on
Computer Communications, pp. 1997–2006. IEEE (2020)

5. Zeng, G., Du, H., Ye, Q., et al.: Collaborative service placement for maximizing
the profit in mobile edge computing. In: 2021 IEEE Global Communications Con-
ference (GLOBECOM), pp. 1–6. IEEE (2021)

6. Xu, Z., Zhou, L., Chau, S.C.K., et al.: Near-optimal and collaborative service
caching in mobile edge clouds. IEEE Trans. Mob. Comput. (2022)

7. Ma, X., Zhou, A., Zhang, S., et al.: Cooperative service caching and workload
scheduling in mobile edge computing. In: IEEE INFOCOM 2020-IEEE Conference
on Computer Communications, pp. 2076–2085. IEEE (2020)

8. Wang, H., Wu, K., Wang, J,. et al.: Rldish: edge-assisted QoE optimization of
HTTP live streaming with reinforcement learning. In: IEEE INFOCOM 2020-IEEE
Conference on Computer Communications, pp. 706–715. IEEE (2020)

9. Wang, F., Wang, F., Liu, J., et al.: Intelligent video caching at network edge:
a multi-agent deep reinforcement learning approach. In: IEEE INFOCOM 2020-
IEEE Conference on Computer Communications, pp. 2499–2508. IEEE (2020)

10. Li, C., Zhang, Y., Song, M., et al.: An optimized content caching strategy for video
stream in edge-cloud environment. J. Netw. Comput. Appl. 191, 103158 (2021)

11. Li, Y., Zhou, A., Ma, X., et al.: Profit-aware edge server placement. IEEE Internet
Things J. 9(1), 55–67 (2022)

12. Guo, Y., Wang, S., Zhou, A., et al.: User allocation-aware edge cloud placement in
mobile edge computing. Softw. Pract. Exp. 50(5), 489–502 (2020)

13. Wang, S., Guo, Y., Zhang, N., et al.: Delay-aware microservice coordination in
mobile edge computing: a reinforcement learning approach. IEEE Trans. Mob.
Comput. 20(3), 939–953 (2021)

http://goo.gl/l77HAJ

A Decentralized Auction Framework
with Privacy Protection in Mobile

Crowdsourcing

Jianxiong Guo1,2, Qiufen Ni3, and Xingjian Ding4(B)

1 Advanced Institute of Natural Sciences,
Beijing Normal University, Zhuhai 519087, China

2 Guangdong Key Lab of AI and Multi-Modal Data Processing,
BNU-HKBU United International College, Zhuhai 519087, China

jianxiongguo@bnu.edu.cn
3 School of Computers, Guangdong University of Technology,

Guangzhou 510006, China
niqiufen@gdut.edu.cn

4 Faculty of Information Technology, Beijing University of Technology,
Beijing 100124, China

dxj@bjut.edu.cn

Abstract. With the rapid popularization of mobile devices, the mobile
crowdsourcing has become a hot topic in order to make full use of the
resources of mobile devices. To achieve this goal, it is necessary to design
an excellent incentive mechanism to encourage more mobile users to
actively undertake crowdsourcing tasks, so as to achieve maximization
of certain economic indicators. However, most of the reported incentive
mechanisms in the existing literature adopt a centralized platform, which
collects the bidding information from workers and task requesters. There
is a risk of privacy exposure. In this paper, we design a decentralized auc-
tion framework where mobile workers are sellers and task requesters are
buyers. This requires each participant to make its own local and indepen-
dent decision, thereby avoiding centralized processing of task allocation
and pricing. Both of them aim to maximize their utilities under the bud-
get constraint. We theoretically prove that our proposed framework is
individual rational, budget balanced, truthful, and computationally effi-
cient, and then we conduct a group of numerical simulations to demon-
strate its correctness and effectiveness.

Keywords: Decentralization · Incentive mechanism · Auction theory ·
Utility maximization · Truthfulness

This work was supported in part by the Start-up Fund from Beijing Normal Uni-
versity under grant 310432104, the Start-up Fund from BNU-HKBU United Inter-
national College under grant UICR0700018-22, the Guangdong Basic and Applied
Basic Research Foundation under grant 2021A1515110321 and 2022A1515010611, and
Guangzhou Basic and Applied Basic Research Foundation under grant 202201010676.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 207–218, 2022.
https://doi.org/10.1007/978-3-031-16081-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_18&domain=pdf
https://doi.org/10.1007/978-3-031-16081-3_18

208 J. Guo et al.

1 Introduction

During the last ten years, mobile devices have been getting stronger and stronger
by installing multiple sensors, microcomputers, and communication equipments.
It forms a new pattern, mobile crowdsourcing (MC), which has attracted wide
attention from academia and industry because of its great commercial value.
The MC refers to the use of computing resources or sensory abilities of a group
of mobile users to accomplish different types of tasks. A lot of different applica-
tions based on MC are gradually being industrialized, such as traffic monitoring,
healthcare, and electric vehicle charging. As for a crowdsourcing platform, it
wants as many mobile users as possible to participate in the crowdsourcing task.
However, mobile users are reluctant to do so, because it not only consumes energy
and time, but also risks exposing privacy. Therefore, while ensuring security, it
is a core issue to promote users’ participation.

In the existing works, a great deal of research has been done to promote
users’ participation in crowdsourcing by designing incentive mechanisms [2,7].
Auction theory [11,16] is commonly used in incentive mechanisms for its advan-
tage in dealing with the interaction between buyers and sellers. In MC, it can
be exploited to determine the hired mobile users and the fees paid to them, in
which mobile workers are sellers and task requesters are buyers. Nevertheless,
there are several severe issues in the existing auction mechanisms [8,13,16,18].
First, the complexity and generalization of both tasks and workers are not fully
studied. (1) A task is published by a requester, and the task can be undertaken
by many workers, but the total remuneration paid by the requester for the task
is limited; (2) A worker can take on several different tasks at the same time, but
the resource and energy investment it puts into each tasks are different; (3) For
each worker, its total investment to tasks is limited; (4) For the same invest-
ment, different workers bear the cost of it differently. Second, in the existing
auction design, they always assume that there is a fair and right-minded plat-
form/auctioneer to collect the bidding information from buyers and sellers, and
then determine the auction results. Such a centralized management pattern is
not conducive to managing the joining and leaving of requesters and workers in
a dynamic environment, but also threatens the users’ privacy, thus reducing the
incentive effect. Taking these two issues into consideration, it is a challenge to
incentivize both requesters and workers that adapts to complexity and privacy
protection simultaneously.

Based on the above careful observation, we propose a decentralized auction
framework (DAF), and take DAF as an incentive mechanism to achieve the
assignment and pricing between tasks and workers. Here, we consider the flex-
ibility of real crowdsourcing scenarios as much as possible, and generalize it to
a concise mathematical expression, which mainly covering the following points:
(1) Budget constraints: the total payment paid to workers for each task has been
constrained by the requester and the total investment in the task has been con-
strained by the worker; (2) For each worker, it can offer a arbitrary investment
with its own bid according to its cost; (3) Our proposed DAF can be carried out
in a decentralized manner, in which each requester can determine the winning

A Decentralized Auction Framework with Privacy Protection 209

workers to complete its task with the corresponding payment and each worker
can determine whether it is willing to undertake the tasks locally and indepen-
dently. The decentralized mechanism can be further integrated with emerging
technologies (such as distributed computing, edge computing, and blockchain).
At the same time, our DAF satisfies several design rationales of auction the-
ory: individual rationality, budget balance, truthfulness, and computational effi-
ciency. This will avoid price manipulation and guarantees a fair and competitive
market environment. To our best knowledge, this is the first time to put for-
ward a decentralized and truthful auction mechanism like us to address the MC
problem. For convenience, we will use buyers and sellers interchangeably with
task requesters and mobile users (workers) in the rest of this paper. Finally, we
conduct intensive simulations to evaluate the performance of our proposed algo-
rithms, whose results verify the correctness and effectiveness of our theoretical
analysis.

2 Crowdsourcing Model and Problem Formulation

2.1 Crowdsourcing Model

In this paper, we consider a decentralized mobile crowdsourcing application
where each task requester initiates its request to the mobile users. In general,
we denote by T = {t1, · · · , tj , · · · , tn} the set of tasks submitted by requesters
and W = {w1, · · · , wi, · · · , wm} the set of mobile users who are willing to act
as workers. For each task tj ∈ T , it needs to recruit a subset of workers in W to
complete this task together, but the total payment paid to them cannot be larger
than its budget Bj . For each worker wi ∈ W , it invests resource and energy to
complete the tasks, thus the total hardware/software investment to the tasks
it undertakes cannot exceed Ri. In this crowdsourcing scenario, workers have
high mobility. Here, we use a function δ : T,W → R+ to measure the matching
degree between tasks and works, where a smaller delta means a higher degree
of matching. For example, δ(tj , wi) can be defined as the distance between task
tj and worker wi. Let dj be the maximum tolerance of tj , in other words, only
those worker wk with δ(tj , wk) ≤ dj can be assigned to complete task tj .

To characterize the trading between task requesters and mobile users, we
use the auction model where task requesters are buyers, who want to attract
several workers to contribute to their tasks; and workers are sellers, who want
to exploit their limited resources to make a profit through undertaking takes.
However, in the traditional auction model, both buyers and sellers should submit
all their bidding information to a third-party auctioneer, and then the auctioneer
determines the assignment and pricing between buyers and sellers. It is at the risk
of exposing private information such as buyer’s budget and seller’s investment.
To overcome this drawback, we design a decentralized auction framework that
does not need to submit bidding information to an auctioneer, but requires the
participants to make decisions by themselves locally and independently. Thereby
it greatly reduces the risk of privacy leakage.

210 J. Guo et al.

2.2 Formulation of Decentralized Auction

We begin to talk about our decentralized auction framework (DAF) for mobile
crowdsourcing, which is executed round by round. In each round, it can be
decomposed into the following five steps:

– Each requester (buyer) broadcasts its crowdsourcing task tj to the mobile
users in the neighborhood.

– After receiving the task set T = {t1, · · · , tn}, each worker (seller) wi give its
bidding information {bij , rij}tj∈T , where the bij is the total bid to provide
rij resource investment to task tj . If worker wi are not willing to trade with
task tl, it sets {bil, ril} = ∅.

– After receiving all workers’ bidding information {bij , rij}wi∈W , each requester
has to choose a subset of workers it wants to trade as candidates because of
its limited budget and corresponding payment to them.

– Up to now, each worker should know which requesters it can cooperate with
to complete the crowdsourcing task, and then it chooses a subset of tasks
from feasible requesters because of its limited resource and give confirmation
to the selected requesters.

– Finally, each requester can cooperate with the winning workers to complete
its task and finish the transaction in this round.

In each round, the auction are executed between requesters and workers in a
local manner, which will determine two matrix: assignment matrix X = {xij :
wi ∈ W, tj ∈ T} and pricing matrix P = {pij : wi ∈ W, tj ∈ T}. Here, we have
xij = 1 if wi is a winner of tj , else xij = 0. The pij is the payment paid to
worker wi because of participating in task tj . The bid bij given by seller may
not be its truthful cost, thus we denote by cij the truthful cost of worker wi

to task tj . There is a limited budget for each requester and limited resource for
each worker. Based on that, we can define the utilities of sellers and buyers. For
each seller wi ∈ W , its utility Ūi can be defined as follows:

Ūi =
∑

tj∈T

ūij =
∑

tj∈T

xij · (pij − cij) s.t.
∑

tj∈T

xij · rij ≤ Ri, (1)

where each seller aims to maximize its economic return by undertaking crowd-
sourcing tasks and the total resource investment cannot exceed its maximum
load. For each buyer tj ∈ T , its utility Ûj can be defined as follows:

Ûj =
∑

wi∈W

ûij =
∑

wi∈W

xij · (rij − pij) s.t.
∑

wi∈W

xij · pij ≤ Bj , (2)

where each buyer aims to maximize the total investment from workers and the
total payment to workers cannot exceed requester’s budget.

3 Design Rationales and Algorithms

Based on the above problem defined above, a reasonable algorithm design for
DAF between requesters and workers should satisfy the following properties.

A Decentralized Auction Framework with Privacy Protection 211

– Individual rationality: In a reserve auction, it must ensure that the utility of
each seller must be positive (payment is larger than cost).

– Budget balance: In our case, it implies that the total payment to sellers can-
not exceed buyer’s budget and each buyer is profitable by requesting a crowd-
sourcing task.

– Truthfulness: In a reserve auction, it is better to guarantee that no seller can
get a higher utility by giving an untruthful bidding information, including
total bid and investment. Thus, truthful bidding is seller’s dominant strategy.

– Computational efficiency: The auction results (assignment and payment) can
be obtained in polynomial time.

To the truthfulness, we assume the resource investment rij given by each
worker wi are truthful and cannot be falsified since this is monitored by other
equipments. We only need to consider bij when analyzing the truthfulness. When
it is truthful, the DAF prevents it from being manipulated deliberately and there
is no seller having the motivation to untruthfully bid since they can get the
best utility by truthful bidding. Thus, the truthfulness simplifies the strategic
decisions for sellers and make sure a fair market environment, which plays an
important role in mechanism design. Here, we regard the worker wi ∈ W as a
truthful bid if bij = cij , ∀tj ∈ T , otherwise regard it as an untruthful bid if
bil �= cil, ∃tl ∈ T .

The detailed process of DAF is shown in Algorithm 1, which consists of
two stages, winning seller candidate determination stage and assignment & pric-
ing stage. In the first stage, after receiving all workers’ bidding information
{bij , rij}wi∈W , each requester tj ∈ T selects a subset of workers which are
qualified to undertake its crowdsourcing task. Obviously, it is inevitable that
pij = bij to maximize Ûj . The utility Ûj then becomes Ûj =

∑
wi∈W ûij =∑

wi∈W xij · (rij − bij) s.t.
∑

wi∈W xij · bij ≤ Bj . For the task tj , the qualified
worker set is denoted by Wj , that is

Wj = {wi ∈ W : bij ≤ Bj , δ(tj , wi) ≤ dj}, (3)

where the worker’s bid should be less than the total budget and the matching
degree with tj should be within the maximum tolerance. Then, we sort the Wj

according to their investment per bid, denoted by Wj = {w1, w2, · · · , w|Wj |}
such that r1j/b1j ≥ r2j/b2j ≥ · · · ≥ r|Wj |j/b|Wj |j . From this sorted Wj , we select
the maximum L with L ≤ |Wj | such that rLj − bLj ≥ 0 and

∑L
q=1 bqj ≤ Bj .

The first L workers with the highest investment per bid in Wj is denoted by
WL

j = {w1, w2, · · · , wL}. We call WL
j as winning seller candidate set, and we

have |WL
j | ≤ |Wj | definitely.

Next, in the second stage, we have to determine the payment pij for each
worker wi ∈ WL

j . For each worker wi ∈ WL
j , we define a sorted list Wj:−i =

Wj\{wi} =
{

wi1 , wi2 , · · · , wi|Wj |−1

}
. From this sorted Wj:−i, we select the max-

imum L′ with L′ ≤ |Wj |−1 such that rL′j − bL′j ≥ 0 and
∑L′−1

q=1 biqj + bij ≤ Bj .
The first L′ workers with the highest investment per bid in Wj:−i is denoted by

212 J. Guo et al.

Algorithm 1: Decentralized Auction Framework (DAF)
1 // Action of each requester (buyer) tj ∈ T :
2 Wj = {wi ∈ W : bij ≤ Bj , δ(tj , wi) ≤ dj};
3 pij = 0 for each wi ∈ W ;
4 if Wj = ∅ then
5 No worker can be used to undertake its crowdsourcing task;
6 return;

7 Sort Wj = {w1, · · · , w|Wj |} where r1j/b1j ≥ · · · ≥ r|Wj |j/b|Wj |j ;
8 L = max{L : wL ∈ Wj , rLj − bLj ≥ 0,

∑L
q=1 bqj ≤ Bj};

9 WL
j = {w1, w2, · · · , wL};

10 foreach wi ∈ WL
j do

11 Sort Wj:−i = Wj\{wi} = {wi1 , wi2 , · · · , wi|Wj |−1};

12 L′ = max{L′ : wL′ ∈ Wj:−i, rL′j − bL′j ≥ 0,
∑L′−1

q=1 biqj + bij ≤ Bj};
13 WL′

j:−i = {wi1 , wi2 , · · · , wiL′ };

14 if
∑L′

q=1 biqj + bij ≥ Bj then
15 pij = rij · biL′j/riL′ j ;

16 else
17 pij = max{rij · biL′j/riL′ j , rij}
18 return;
19 // Action of each worker (seller) wi ∈ W :
20 Ti = {tj ∈ T : wi ∈ WL

j };
21 Sort Ti = {t1, · · · , t|Ti|} where (pi1 − ci1)/ri1 ≥ · · · ≥ (pi|Ti| − ci|Ti|)/ri|Ti|;
22 xij = 0 for each tj ∈ T ; R = Ri;
23 foreach tj ∈ Ti do
24 if R − rij ≥ 0 then
25 xij = 1; R = R − rij ;

26 return;

WL′
j:−i =

{
wi1 , wi2 , · · · , wiL′

}
. Totally, there is a sorted list WL′

j:−i associated with
each worker wi ∈ WL

j . For each position ik in WL′
j:−i, we can get the maximum

bid b′
ij(k) that the worker wi could bid in order to replace wik at the position ik.

To achieve this goal, we have rij/b′
ij(k) ≥ rikj/bikj . Thus, we define a b′

ij(k) for
each worker wik ∈ WL′

j:−i as

b′
ij(k) = rij · bikj/rikj . (4)

Similarly, we can deal with other workers in WL′
j:−i in the same way. Based on

Eq. (4), we can get that b′
ij(1) ≤ b′

ij(2) ≤ · · · ≤ b′
ij(L′) where each b′

ij(k) is the

A Decentralized Auction Framework with Privacy Protection 213

worker wi’s maximum bid to replace the worker wik in WL′
j:−i. If the worker wi

replaces wik in WL′
j:−i, we can see that

WL′
j:−i ∪ {wi} = {wi1 , wi2 , · · · , wik−1 , wi, wik , · · · , wiL′ }, (5)

here the worker wik will be moved after wi. Then, there are two cases we need
to discuss as follows.

–
∑L′

q=1 biqj + bij > Bj : In this case, if the worker wi want to win, it must

replace at least one worker in WL′
j:−i. Based on

∑L′−1
q=1 biqj + bij ≤ Bj , when

the worker wi replaces any wik in WL′
j:−i, we have

∑k−1
q=1 biqj+bij ≤ Bj , which

will not exceed the requester’s budget. If the worker wi can replace one of the
workers in WL′

j:−i, it will be selected as a winning candidate by task tj . Thus,
the payment to work wi is

pij = max
{

b′
ij(1), b

′
ij(2), · · · , b′

ij(L′)

}
= b′

ij(L′). (6)

– Otherwise: In this case, we have
∑L′

q=1 biqj + bij ≤ Bj , which indicates that
WL′

j:−i = |Wj | − 1 or rL′+1,j − bL′+1,j < 0. In addition to replace one of
the workers in WL′

j:−i, the worker wi can be placed after all the workers in
WL′

j:−i. The worker wi will be selected as a winning candidate when satisfying
rij − bij ≥ 0. Thus, the payment to worker wi is

pij = max
{

b′
ij(L′), rij

}
(7)

After the above winning seller candidate determination stage at requester
side, each worker wi ∈ W may be selected as a candidate by multiple requesters.
Thus, it needs to choose the tasks that can achieve as much utility as possible.
For each worker wi ∈ W , we denoted by Ti =

{
tj ∈ T : wi ∈ WL

j

}
the task

set that the worker wi can choose. Since the total resource investment of each
worker cannot exceed its maximum load, we sort the Ti according to their utility
per investment, denoted by Ti = {t1, t2, · · · , t|Ti|} such that (pi1 − ci1)/ri1 ≥
(pi2 − ci2)/ri2 ≥ · · · ≥ (pi|Ti| − ci|Ti|)/ri|Ti|. From this sorted list Ti, we traverse
every task from left to right, and the worker will undertake the current task if
have enough space in investment.

4 Theoretical Analysis

In this section, we begin to analyze whether our proposed DAF can meet the
requirement of design rationales, including individual rationality, budget balance,
truthfulness, and computational efficiency, respectively.

Lemma 1. The DAF is individually rational to seller.

214 J. Guo et al.

Proof. Given any worker wi ∈ WL
j for any task tj ∈ T , we denote by wiij the

replacement of worker wi that is placed in i-th position in the Wj:−i. When
the winning worker wi joins in this sorted list, the wiij cannot be placed in
i-th position by now. When i ≤ L′, we have rij/bij ≥ riij/biij , it implies that
bij ≤ rij · biij/riij ≤ pij . When i > L′, we have bij ≤ rij ≤ pij because it is a
winner. Thus, the utility of worker wi is always non-negative. �

Lemma 2. The DAF is budget balanced.

Proof. For any requester tj ∈ T , its total payment to sellers
∑

wi∈W xij ·pij ≤ Bj

has been relaxed to
∑

wi∈W xij · bij ≤ Bj so as to guarantee the truthfulness.
Since the payment to a buyer is larger than its bid, the total payment to sellers
cannot be ensured to be less than the requester’s budget. However, according
to the auction process given by DAF, not all the workers in WL

j undertake this
task, and then total payment will not exceed the budget with a high probability.

Suppose each worker wi ∈ WL
j undertake task tj , the buyer’s utility Ûj =∑

wi∈WL
j
(rij − pij). Thus, it is sufficient to show that rij ≥ pij for each wi ∈

WL
j . For each worker wi ∈ WL

j , we can consider two cases as before. When
∑L′

q=1 biqj + bij > Bj , we have pij = max
{

b′
ij(1), b

′
ij(2), · · · , b′

ij(L′)

}
= b′

ij(L′).
Based on that, we have

pij = b′
ij(L′) = rij · biL′ j/riL′ j ≤ rij , (8)

because riL′ j−biL′ j ≥ 0. Otherwise, we have pij = max
{

b′
ij(L′), rij

}
≤ rij . Thus,

the utility of requester tj is non-negative, and the DAF is budget balanced.

According to Myerson theory [11], in a reserve auction, it is truthful if and
only if: (1) The bid of each seller is monotonic. For each worker wi, if it wins
the task tj with bid bij , then it must win this task with any bid that is smaller
than bij . (2) The payment to each seller is critical. For each worker wi with bid
bij to task tj , the payment pij is the maximum bid it can win. �

Lemma 3. The DAF is truthful.

Proof. First, we need to show that the bid of each seller is monotonic. Let us
consider a worker wi ∈ WL

j with its bid bij to task tj ∈ T . When it gives a bid
b∗
ij ≤ bij , this worker wi will not be moved backward in the sorted list Wj since

we have rij/b∗
ij > rij/bij definitely. Therefore, if the worker wi is a winner in

the winning seller candidate determination stage with bid bij , then it will be a
winner as well with bid b∗

ij .
Second, we need to show that the payment to each seller is critical. For each

worker wi ∈ WL
j , we can consider two cases as before. When

∑L′

q=1 biqj + bij >

Bj , the worker wi must replace at least one worker in WL′
j:−i. If it gives a bid

b∗
ij > pij = b′

ij(L′), we have rij/b∗
ij < riL′ j/biL′ j . The worker wi cannot replace

any worker in WL′
j:−i because of buyer’s budget constraint, and then it cannot

A Decentralized Auction Framework with Privacy Protection 215

be a winner. Otherwise, suppose the worker wi cannot replace any workers in
WL′

j:−i, it still wins this auction if rij ≥ bij because the corresponding requester
has enough budget. At this time, if it gives a bid b∗

ij > pij = rij , it cannot be
added into the WL

j and then fails. Thus, the DAF is truthful. �

Lemma 4. The DAF is computationally efficient.

Proof. Let us deal with requester side and worker side respectively. Here, we
denoted by |T | = n and |W | = m as before. For each requester tj ∈ T , it
takes O(m) time to check all the workers and determine the qualified worker set
Wj , and then takes O(m logm) time to sort. We can see |WL

j | ≤ |Wj | ≤ W .
To determine the payment of all sellers in WL

j , it takes at most m loop, and
consume at most O(m) time in each loop. Thus, the total time complexity for
each requester to determine the winning seller candidates and their payment
is O(m2) + O(m logm) = O(m2). For each worker wi ∈ W , it takes O(n) to
check all the requesters and determine the possible task set Wi and then takes
O(n log n) time to sort. We can see Ti ≤ T , thereby it consume at most O(n) to
choose the tasks. Thus, the total time complexity for each worker to choose the
tasks it want to undertake is O(n log n) + O(n) = O(n log n). Finally, the DAF
is computationally efficient. �

Theorem 1. The DAF given by Algorithm 1 is an effective decentralized auc-
tion mechanism, which can satisfy the above four design rationales: Individual
rationality, budget balance, truthfulness, and computational efficiency.

Proof. It can be proven by combining Lemma 1 to Lemma 4. �

5 Numerical Simulations

In this section, we implement our DAF in a pre-defined virtual crowdsourc-
ing application, which is located in a area with 1000 × 1000 m2. There are n
tasks and m workers distributed uniformly in this area. The matching degree
δ(tj , wi) between task tj and worker wi is defined as their distance, δ(tj , wi) =√
(xi − xj)2 + (yi − yj)2. For each task tj , its tolerance dj is randomly sampled

from [200, 400] and its budget Bj is randomly sampled from [30, 50]. For each
worker wi, it is a critical setting that how do determine the relationship between
cost cij and rij . Intuitively, cij will be larger if tj is far away from wi. Thus, we
give cij = rij · (c′

i+σ(tj , wi)/(1000
√
2)), where c′

i is its unit cost per investment.
Here, its investment rij is randomly sampled from [2, 8], its unit cost c′

i is ran-
domly sampled from [0.5, 0.7], and maximum load is sampled from [15, 25]. By
default, we assume that n = 20 and m ≥ n.

Figure 1 represents the utilities of tasks and workers in different settings.
Shown as Fig. 1 (a), the utility of each task is positive, and we can use it to check
whether our algorithm satisfies the budget balance. Shown as Fig. 1 (b), we test
the changing trend in average utilities of tasks or workers with the increase of
the number of workers. First, as the number of workers increases, the average

216 J. Guo et al.

Fig. 1. The utilities of tasks and workers in different settings.

Fig. 2. The utility of a representative worker. (a) wi’s utility at tj when winning with
truthful bid; (b) wi’s utility at tj when losing with truthful bid.

utility of workers will decrease since their competition is heating up when the
total tasks is certain. However, the average utility of tasks will first increase
and then decrease. This shows that workers are not enough at first, and then
gradually reach saturation. Increasing the number of workers after saturation
does not significantly increase the utility of tasks. Figure 2 represents the utility
of a representative worker to verify the truthfulness of sellers. Shown as Fig. 2
(a), when worker wi give a truthful bid bij = cij = 3.62, it will win the auction
and get utility ūij = 0.75. If it reduces its bid, its utility will keep constant. If it
increases its bid, its utility will change to zero when being larger than the critical
price. Shown as Fig. 2 (b), when worker wi give a truthful bid bij = cij = 4.73,
it will lose the auction and get utility ūij = 0. If it reduces its bid and win the
auction with its untruthful bid, its utility will be negative. If it increases its bid,
it will lose as well. Thus, our mechanism achieve the design rationales.

6 Related Works

In this section, we summarize some important literatures about mechanism
design in MC problem. The auction, as a technique of game theory, has been

A Decentralized Auction Framework with Privacy Protection 217

commonly used to deal with users’ strategic behaviors in a variety of network-
based applications, not only in MC [8,13,16,18], but also in cloud/edge comput-
ing [5,9], spectrum trading [19,20], and so on. Tong et al. [12] summarized the
main problems in spatial crowdsourcing, including task assignment, quality con-
trol, incentive mechanism, and privacy protection. The existing auction-based
incentive mechanisms can be divided into several categories according to their
objectives. The first is to maximize the social welfare [4,15]. Wang et al. [15] pro-
posed a truthful two-stage auction algorithm with location privacy-preserving for
MC systems. Gao et al. [4] designed a reverse-auction-based mechanism with a
nearly minimum social cost. The second is to maximize the total utility of the
platform [6,17]. Zhang et al. [17] proposed two optimization models to maximize
the user cardinality and sensing utility function in mobile crowdsensing appli-
cations. Guo et al. [6] designed a combinatorial double auction mechanism to
maximize the revenue of edge computing platform.

In fact, all these works considered specific and restricted scenarios in MC
applications, and they all depended on a third-party auctioneer and thus neglect
the privacy protection. Then, there were some researchers introducing differential
privacy [1,10] to prevent the adversary from inferring participants’ sensitive
information. However, such a method increases the difficulty of algorithm design
and affects the efficiency of algorithm operation. Thus, we adopt a decentralized
approach to design our auction mechanism, which effectively reduces the sharing
of some sensitive information, such as budget and investment. The only works
similar to us were in [3,14], which gave us a distributed auction for MC, but
their problems and algorithms are totally different from us.

7 Conclusion

In this paper, we design and implement a decentralized auction framework (DAF)
to effectively achieve task assignment and pricing between task requesters and
mobile users in generalized MC applications. Different from previous works, our
DAF is decentralized while ensuring the design rationales, where each participant
can make decisions locally, thus avoiding sharing some confidential information
and increasing security. Theoretical analysis and simulation results validate that
both buyers and sellers can optimize their own utilities and guarantee the truth-
fulness in a decentralized manner.

References

1. Chen, Z., Ni, T., Zhong, H., Zhang, S., Cui, J.: Differentially private double spec-
trum auction with approximate social welfare maximization. IEEE Trans. Inf.
Forensics Secur. 14(11), 2805–2818 (2019)

2. Ding, X., Guo, J., Li, D., Wu, W.: An incentive mechanism for building a secure
blockchain-based internet of things. IEEE Trans. Netw. Sci. Eng. 8(1), 477–487
(2020)

218 J. Guo et al.

3. Duan, Z., Li, W., Cai, Z.: Distributed auctions for task assignment and scheduling
in mobile crowdsensing systems. In: 2017 IEEE 37th International Conference on
Distributed Computing Systems, pp. 635–644. IEEE (2017)

4. Gao, G., Xiao, M., Wu, J., Huang, L., Hu, C.: Truthful incentive mechanism for
nondeterministic crowdsensing with vehicles. IEEE Trans. Mob. Comput. 17(12),
2982–2997 (2018)

5. Guo, D., Gu, S., Xie, J., Luo, L., Luo, X., Chen, Y.: A mobile-assisted edge com-
puting framework for emerging IoT applications. ACM Trans. Sens. Netw. 17(4),
1–24 (2021)

6. Guo, J., Ding, X., Jia, W.: Combinatorial resources auction in decentralized
edge-thing systems using blockchain and differential privacy. arXiv preprint
arXiv:2108.05567 (2021)

7. Guo, J., Ding, X., Wu, W.: A blockchain-enabled ecosystem for distributed elec-
tricity trading in smart city. IEEE Internet Things J. 8(3), 2040–2050 (2020)

8. Guo, J., Ding, X., Wu, W.: Reliable traffic monitoring mechanisms based on
blockchain in vehicular networks. IEEE Trans. Reliab. (2021). https://doi.org/
10.1109/TR.2020.3046556

9. Jiao, Y., Wang, P., Niyato, D., Suankaewmanee, K.: Auction mechanisms in
cloud/fog computing resource allocation for public blockchain networks. IEEE
Trans. Parallel Distrib. Syst. 30(9), 1975–1989 (2019)

10. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: 48th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), pp.
94–103. IEEE (2007)

11. Nisan, N., Roughgarden, T., Tardos, É., Vazirani, V.V.: Algorithmic Game Theory.
Cambridge University Press, Cambridge (2007)

12. Tong, Y., Zhou, Z., Zeng, Y., Chen, L., Shahabi, C.: Spatial crowdsourcing: a survey.
VLDB J. 29(1), 217–250 (2019). https://doi.org/10.1007/s00778-019-00568-7

13. Wang, J., Tang, J., Yang, D., Wang, E., Xue, G.: Quality-aware and fine-grained
incentive mechanisms for mobile crowdsensing. In: 2016 IEEE 36th International
Conference on Distributed Computing Systems, pp. 354–363. IEEE (2016)

14. Wang, X., Tushar, W., Yuen, C., Zhang, X.: Promoting users’ participation in
mobile crowdsourcing: a distributed truthful incentive mechanism (DTIM) app-
roach. IEEE Trans. Veh. Technol. 69(5), 5570–5582 (2020)

15. Wang, Y., Cai, Z., Tong, X., Gao, Y., Yin, G.: Truthful incentive mechanism with
location privacy-preserving for mobile crowdsourcing systems. Comput. Netw. 135,
32–43 (2018)

16. Yang, D., Xue, G., Fang, X., Tang, J.: Incentive mechanisms for crowdsensing:
crowdsourcing with smartphones. IEEE/ACM Trans. Netw. 24(3), 1732–1744
(2015)

17. Zhang, X., Jiang, L., Wang, X.: Incentive mechanisms for mobile crowdsensing with
heterogeneous sensing costs. IEEE Trans. Veh. Technol. 68(4), 3992–4002 (2019)

18. Zhou, R., Li, Z., Wu, C.: A truthful online mechanism for location-aware tasks in
mobile crowd sensing. IEEE Trans. Mob. Comput. 17(8), 1737–1749 (2017)

19. Zhu, K., et al.: Privacy-aware double auction with time-dependent valuation for
blockchain-based dynamic spectrum sharing in IoT systems. IEEE Internet Things
J. (2022). https://doi.org/10.1109/JIOT.2022.3165819

20. Zhu, R., Liu, H., Liu, L., Liu, X., Hu, W., Yuan, B.: A blockchain-based two-stage
secure spectrum intelligent sensing and sharing auction mechanism. IEEE Trans.
Industr. Inf. 18(4), 2773–2783 (2021)

http://arxiv.org/abs/2108.05567
https://doi.org/10.1109/TR.2020.3046556
https://doi.org/10.1109/TR.2020.3046556
https://doi.org/10.1007/s00778-019-00568-7
https://doi.org/10.1109/JIOT.2022.3165819

Profit Maximization for Multiple Products
in Community-Based Social Networks

Qiufen Ni1 and Jianxiong Guo2,3(B)

1 School of Computers, Guangdong University of Technology,
Guangzhou 510006, China
niqiufen@gdut.edu.cn

2 Advanced Institute of Natural Sciences, Beijing Normal University,
Zhuhai 519087, China

3 Guangdong Key Lab of AI and Multi-Modal Data Processing,
BNU-HKBU United International College, Zhuhai 519087, China

jianxiongguo@bnu.edu.cn

Abstract. In this paper, we studies the profit maximization problem for
multiple kinds of products in social networks. It is formulated as a Profit
Maximization Problem for Multiple Products (PMPMP), which aims at
selecting a set of seed users within the total budget B such that the total
profit for k kinds of products is maximized. We introduce the commu-
nity structure and assume that different kinds of products are adopted
by different groups of people, and different product information spread
in different communities under the IC information propagation model.
We prove that the objective function satisfies the k-submodularity, and
then use the multilinear extension to relax the objective function. A con-
tinuous greedy algorithm is put forward for the relaxed function, which
can obtain an 1

2
approximation performance guarantee, respectively. The

experimental results on two real world social network datasets show the
effectiveness of the proposed continuous greedy algorithm.

Keywords: Social network · Profit maximization · k-submodular ·
Multilinear extension

1 Introduction

Social networks, such as WeChat, Facebook, Twitter, are embedded in our daily
lives and are important platforms for people to communicate and for business to
advertise. Companies make use of the word-of mouth effect of social networks to
promote their products, this application in social networks is called viral market-
ing. The information spread process in viral marketing is formulated as Influence
Maximization (IM) by Kempe et al. in [1], which aims at selecting a set of users
as seeds to maximize the expected number of users who are influenced by seeds.
In [1], they propose two classic information propagation models: Independent
Cascade (IC) model and Linear Threshold (LT) model, both of them simulate

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 219–230, 2022.
https://doi.org/10.1007/978-3-031-16081-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_19&domain=pdf
http://orcid.org/0000-0002-0462-9549
http://orcid.org/0000-0002-0994-3297
https://doi.org/10.1007/978-3-031-16081-3_19

220 Q. Ni and J. Guo

how influence spreads from a initial seed set in the social networks. They also
formulate the influence maximization problem as a monotone submodular func-
tion, and present a greedy algorithm to solve it, the returned solution can get
an 1 − 1/e approximation performance guarantee.

Most of the existing works focus on the influence maximization related prob-
lem with a single information diffusion, i.e., there is only one product information
spreading in the social network. While in our real life, multiple products may
propagate in the social network at the same time. Given k kinds of products,
a budget B, assume that different products have different activation costs and
different profits can be obtained when the product is purchased, how to allo-
cate the budget to seeds for k kinds of products such that the total profit is
maximized? We study the profit maximization problem for multiple products
in this paper, and assume that each person can purchase only one product. We
aim to allocate discounts to k sets of seed users for k kinds of products. As we
all know, social networks have the characteristics of community structures [2].
Nodes in the same community are closely connected, whereas nodes in differ-
ent communities are sparsely connected. What’s more, influence spreads quickly
within communities, but much more slowly across different communities [3]. We
introduce the community structure of a social network, and let k sets of seeds
are selected from k different communities, respectively. The objective function
that maximizing the total profit of k kinds of products can be formulated as
a k-submodular function. Approximation algorithms with theoretical guarantee
are proposed in our work. We summarize the main contributions in this paper
as follows:

– Community structure is introduced, and we consider that k kinds of product
information spread in k different communities.

– We formulate the profit maximization for multiple products problem as a
k-submodular function with knapsack constraint problem.

– We relax the k-submodular objective function with multilinear extension tech-
nique. A continuous greedy algorithm with constant approximation ratio is
proposed.

– Intensive experiments are conducted to test the performance of the proposed
algorithm, which shows the superiority of our algorithms.

The rest of the paper is arranged as follows. Section 2 is the related work.
Section 3 is the network model and problem formulation. In Sect. 4, the k-
submodularity, relaxation for objective function, continuous greedy algorithm,
the theoretical results are proposed. Comprehensive experiments are conducted
on two real-world social network datasets in Sect. 5. Section 6 is the conclusion
of this work.

2 Related Work

In this paper, we consider the profit maximization problem with multiple prod-
ucts in the network. We summarize the related studies on our work as follows.

Profit Maximization for Multiple Products 221

Influence Maximization with Multiple Information: Most existing
research consider the IM related problem with a single information cascade in the
social network. In recent years, some studies on multiple products information
propagation in the network have been put forward. Bharathi et al. [4] firstly pro-
pose the competitive influence maximization problem, which is solved with the
method of game theory. Wu et al. [5] study the Influence Blocking Maximization
(IBM) problem under two competitive IC diffusion model, they devise Maximum
Influence Arborescence based heuristic algorithms to solve the proposed prob-
lem. Wu et al. [6] study Multiple Influence Maximization (MIM) problem that
multiple information diffuse simultaneously in a network. The objective for this
problem is to maximize the accumulative influence of all the information within
k seed budget. The greedy algorithm is presented to solve the MIM problem
with an 1/3 approximation ratio.

Profit Maximization: Profit maximization is a problem that solves how to
devise optimal strategies to allocate the limited budget such that the total profit
of the product is maximized, it is a transformation of the influence maximization.
Han et al. [7] propose a discount allocation strategy to maximize the revenue
of one product. The objective function is proved to be non-monotone and non-
submodular. Then a “surrogate optimization” algorithm and two randomized
algorithms with constant approximation ratio are put forward to solve the prob-
lem. Zhang et al. [8] investigate the Profit Maximization with Multiple Adoptions
(PM2A) problem. They design two approximation algorithms to maximize the
total profit of multiple products by selecting a set of seeds. Zhang et al. [9] put
forward a multiple product IC (MPIC) model for the viral marketing of multiple
products. Each user can purchase more than one product at the same time. The
objective function is to maximize the total profit of multiple products. They
propose a series of algorithms with approximation performance guarantee and a
heuristic algorithm which has less running time.

k-Submodular: Huber et al. [10] generalize the submodular function as k-
submodular function. Different from the submodular function where the input
only has one set, the input of k-submodular function is k disjoint sets. The k
submodular function becomes the submodular function for k = 1 and bisub-
modular function for k = 2, respectively [11]. Ohsaka et al. [12] propose
greedy algorithms for maximizing a monotone k-submodular function under the
total size constraint and individual size constraint, respectively, both of which
obtain constant approximation factor. Ward and Živnỳ [13] study the maxi-
mization of unconstrained non-monotone and k-submodular function. The algo-
rithm they proposed can obtain an approximation ratio of max { 1

3 , 1
1+a} where

a = max{1,
√

k−1
4 }. They also propose a greedy algorithm for the maximiza-

tion problem of unconstrained monotone k-submodular function, which has an
1
2 approximation performance guarantee.

222 Q. Ni and J. Guo

3 Network Model and Problem Formulation

3.1 The Network Model

A social network is represented as a directed graph G(V,E), where each node
v ∈ V represents a user, and each edge (u, v) ∈ E is the follow relationship of
user u and v. N−(v) and N+(v) are used to denote the incoming neighbor set
and outgoing neighbor set of a node v, respectively. The information propagation
process of the IC model and LT model is formulated in literature [1].

We adopt the IC model for our problem in this paper. Then we introduce
the definition of IC model.

Definition 1 (IC model). Nodes in social networks are either active or inac-
tive state, and the initial state of each node is inactive. Each edge e = (u, v) ∈ E
is associated with an influence probability puv ∈ (0, 1]. When node u is activated
at time t , he has one chance to activate his each inactive outgoing neighbor
v ∈ N+(u) with probability puv. The influence spread process terminates if there
are no new nodes can be activated in the current round.

3.2 Problem Formulation

Give a social network G = (V,E), we consider the community structure charac-
teristic of social networks. We use the algorithm proposed in literature [14] to
partition the network into k disjoint communities C = (C1, C2, · · · , Ck). Assume
that marketers wants to promote k kinds of products in the social network. k
kinds of products information propagate under the IC model at the same time.
We aim to choose k seed sets S = {S1, S2, · · · , Sk} from k different communities
respectively and provide discounts to them. In our problem, we consider that
the influence rarely crosses different communities, i.e., the influence of product i
only spreads within community i. Let σ(Si|Ci) be the expected influence spread
within community i for seed set Si, i.e., the expected number of users who adopt
product i in community i. Let f(Si|Ci) be the total profit that obtained by pur-
chasing product i. Moreover, σ(S|G) and f(S|G) are the expected number of
influenced people and the total profit obtained by adopting k kinds of products,
respectively.

The profit maximization problem for the multiple products marketing at the
same time in the community-based social network can be formulated as follows:

Problem 1 (Profit Maximization Problem for Multiple Products (PM
PMP)). Given a social network graph G = (V,E,C) with community structure
C = {C1, C2, · · · , Ck}, where V =

⋃k
i=1 Ci, k kinds of products, the IC model,

the cost ci that activating a node to purchase product i, the profit pi that a node
can gain when he adopts product i, the total activation cost B for seed set S,
the expected influence spread σ(Si|Ci) for seed set Si. Our target is to select an
optimal seed set S = {S1, S2, · · · , Sk} where Si is the seed set from community
Ci such that the total profit f(S|G) is maximized, i.e.,

Profit Maximization for Multiple Products 223

S∗ = arg max
S∈(k+1)V

f(S|G)

s.t.

k∑
i=1

ci|Si| ≤ B
(1)

From the definition of PMPMP, we can know that f(S|G) =∑k
i=1 piσ(Si|Ci). Kempe et al. [1] proved that the influence maximization prob-

lem under IC and LT model are both NP-hard. When there is only one product,
our PMPMP is equivalent to the traditional influence maximization problem
under the IC model. Therefore, the PMPMP is also a NP-hard problem.

4 Solution for PMPMP

In this section, we solve the PMPMP. Firstly, we analyze the properties of the
objective function for PMPMP.

4.1 Properties of Profit Maximization Function f

Firstly, we introduce the monotonicity and submodularity of a set function. A
function h: 2X → R is monotone if it satisfies h(C) ≤ h(D) when C ⊆ D ⊆ X
and submodular if h(C ∪ {v}) − h(C) ≥ h(D ∪ {v}) − h(D) when C ⊆ D ⊆ X
and v /∈ D.

Then, we introduce the k-submodularity. Let X be a finite non-empty set,
and let (k+1)X := {(U1, · · · , Uk)|Ui ⊆ X,∀i ∈ {1, 2, · · · , k}, Ui ∩Uj = ∅,∀i �= j}
be the family of k disjoint sets. A function h: (k + 1)X → R is k-submodular if
for any U = {U1, · · · , Uk} and W = {W1, · · · ,Wk} in (k + 1)X , we can get

h(U) + h(W) ≥ h(U � W) + h(U W), (2)

where
U W := (U1 ∩ W1, · · · , Uk ∩ Wk),

U � W := (U1 ∪ U1\(
⋃
i�=1

Ui ∪ Wi), · · · , Uk ∪ Wk\(
⋃
i�=k

Ui ∪ Wi)).

When k = 1, the definition of k-submodular in Eq. 2 agrees with the definition
of submodular function, which shows that k-submodular function is a general-
ization of submodular function.

A k-submodular function indicates that it satisfies the properties of orthant
submodularity and pairwise monotonicity. Then, we introduce the marginal
gain in a k-submodular function for better understanding these two proper-
ties. Let � denotes the partial order on (k + 1)X , for U = (U1, · · · , Uk) and
W = (W1, · · · ,Wk), if Ui ⊆ Wi for every i ∈ [k], U � W holds. When an
element e(e /∈ ⋃

l∈[k] Ul and i ∈ [k]) is added to the i-th set of U , the marginal
gain of h can be denoted as

Δe,ih(U) = h(U1, · · · , Ui−1, Ui ∪ {e}, Ui+1, · · · , Uk) − h(U1, · · · , Uk).

224 Q. Ni and J. Guo

When the marginal gain Δe,ih(U) ≥ 0, the function h is monotonicity. It is
pairwise monotonicity, if

Δe,ih(U) + Δe,jh(U) ≥ 0

for j ∈ [k] and i �= j. And it is orthant submodularity if the marginal gain
satisfies:

Δe,ih(U) ≥ Δe,ih(W)

for any U,W ∈ (k + 1)X with U � W , e /∈ ⋃
l∈[k] Wl, and i ∈ [k].

Theorem 1 [15]. A function h: (k + 1)X → R is a k-submodular function if
and only if h satisfies orthant submodularity and pair monotonicity.

The profit maximization function f for PMPMP is clearly monotone since
more cost can use to select more seeds, and more seeds will have more influences
in the network. Then, we explore the submodularity of the objective function f
in Theorem 2 as follows.

Theorem 2. The profit function f for the PMPMP under the IC model is k-
submodular.

Proof. We omit the proof as the limitation of conference pages.

4.2 Relaxation of Profit Function f

The objective function f for PMPMP is a k-submodular function with knapsack
constraint. We are inspired by [16] to devise a continuous greedy algorithm to
solve it, and get an efficient approximation performance guarantee at the same
time. We introduce the definition of multilinear extension at first, which is a
good tool to relax a submodular set function.

Definition 2 (Multilinear Extension). Let h be a monotone submodular set
function h: 2X → R

+. The Multilinear Extension of h is the function H: x ∈
[0, 1]X → R, and it is defined as:

H(x) = ET∼x [h(T)] =
∑

T⊆X

h(T)
∏
i∈T

xi

∏
i∈X\T

(1 − xi).

The multilinear extension can be explained in terms of probability. Given
x ∈ [0, 1]X , let T be a random subset of X, where each element i ∈ X is
independently included to 1 with probability xi and not included with probability
1 − xi. Based on the definition of multilinear extension above, we define the
multilinear extension for a k-submodular function.

Profit Maximization for Multiple Products 225

Definition 3 (Multilinear Extension for a k-submodular function). Let
h be a k-submodular function h: (k + 1)X → R

+. The Multilinear Extension of
h is the function H: P → R, and it is defined as:

H(x) =
∑

T1�···�Tk=T⊆X

h(T1, T2, · · · , Tk)(
∏

j∈[k]

∏
i∈Tj

xi,j)
∏

i∈X\T

(1 −
k∑

j=1

xi,j).

where the polytope P = {x ∈ [0, 1]n×k :
k∑

j=1

xi,j ≤ 1,∀i ∈ [n]} is the

domain of function H, n = |X|, � denotes disjoint union, x = (x1,1, · · · , x1,k,
· · · , xn,1, · · · , xn,k) ∈ [0, 1]n×k. The definition of multilinear extension for a k-
submodular function also can be interpreted from the perspective of probability,

each element i ∈ [n] is selected independently with probability
k∑

j=1

xi,j , and

element i is allocated to set Tj exclusively obeying a categorical distribution

Pr[i ∈ Tj] = xi,j/

k∑
j=1

xi,j .

Corollary 1 [17]. For a k-submodular function h, its multilinear extension
function H satisfies the following properties:

1. H is concave along any direction d ≥ 0.
2. When all the xi′,j are fixed where i′ �= i and j ∈ [k], ∂H

∂xi,j
is a constant.

3. Let zi,j be a one-hot vector, where the (i, j)-th element is equal to 1. Then
for any i1, i2 ∈ [n], H is convex along any direction zi1,j1 − zi2,j2 such that
i1 �= i2 and j1, j2 ∈ [k].

4. Given x ≤ y, then ∂H(x)
∂xi,j

≥ ∂H(y)
∂xi,j

, where i ∈ [n], j ∈ [k].

We introduce a decision vector x ∈ [0, 1]n×k, where n = |V | is the number of
nodes in the given social network graph, k is the number of products. xi,j ∈ x
denotes that node i ∈ {1, 2, · · · , n} is selected for spreading the information of
product j ∈ {1, 2, · · · , k}. Then we relax our objective function for PMPMP
with the multilinear extension as follows:

max
x∈P∩Pc

F (x)

s.t. Pc = {x ∈ [0, 1]n×k :
n∑

i=1

ci

k∑
j=1

xi,j ≤ B},
(3)

where F (x) is the multilinear extension of profit function f(S|G), P = {x ∈

[0, 1]n×k :
k∑

j=1

xi,j ≤ 1,∀i ∈ [n]}, Pc = {x ∈ [0, 1]n×k :
n∑

i=1

ci

k∑
j=1

xi,j ≤ B} is the

knapsack constraint of the individual seed activation cost ci and the total seed
cost budget B.

226 Q. Ni and J. Guo

Algorithm 1. Continuous Greedy Algorithm (CGA)
Input: Graph G; Number of product k; Cost ci; Budget B.
Output: x ∈ [0, 1]n×k.
1: Initialize x(0) ← 0, t ← 0, timestep Δt;
2: while x ∈ P ∩ Pc do
3: Calculate (i(t), j(t)) = argmax{ ∂i,jF (x(t))

ci
: x(t) + Δ(t) · zi,j}.

4:

wi,j =

{
1, if(i, j) = (i(t), j(t)).

0, otherwise.

5: for i ∈ [n] and j ∈ [k] do
6: xi,j(t + 1) ← xi,j(t) + Δtwi,j(t).
7: end for
8: t ← t + 1.
9: end while

10: return x(T).

4.2.1 Continuous Greedy Algorithm
As our objective function is a k-submodular function and the vector x moves
in direction constrained by P ∩ Pc, we can know that F (x) is concave from the
property 1 in Corollary 1. For a concave function, we can make advantage of the
feature of its partial derivative to solve the problem.

In Algorithm 1, we set w to be one-hot vector which takes 1 only on the
node and product pair (i, j) with the largest gradient ∂i,jF (x)

ci
in time t. zi,j is

the changing direction of the gradient ∂i,jF (x(t))
ci

and
∑
j

zi,j = 1 for any i ∈ [n].

wi,j = 1 indicates that when node i is selected as seed for product j at time t,
it is the direction with the largest rate of change of tangent to curve of F (x).
If t increases continuously, we have to calculate the integral of the objective
function, which will be very hard. So we set the timestep as Δt, then t increases
discretely by Δt at each step, which simplifies the calculation.

After we get the fractional vector solution x(T) returned by Algorithm 1,
we need to convert it to the integer solution by randomized rounding technique:
selecting node i to spread the influence of product j with probability xi,j(T) inde-
pendently and making sure that each node can propagate at most one product’s
influence, i.e., xi,j = 1 with probability xi,j(T), while xi,j = 0 with probability
1 − xi,j(T), where

∑
j∈[k]

xi,j ≤ 1 for any i ∈ [n].

4.2.2 Performance Analysis for Continuous Greedy Algorithm

Theorem 3. Let F (x) be the multilinear extension of a monotone k-submodular
function f for PMPMP. x(T) returned by Algorithm 1 satisfies: F (x(T)) ≥
1
2OPT .

Proof. We omit the proof as the limitation of conference pages.

Profit Maximization for Multiple Products 227

Then we have to do the randomized rounding for the solution at the second
stage of Algorithm. It is known that the relationship between the continuous
greedy solution F (x(T)) and the randomized rounding solution FR(x(T)) is
FR(x(T)) ≥ F (x(T)). Then we get the final result FR(x(T)) ≥ 1

2OPT .

5 Experiments

In this section, we compare the efficiency and effectiveness of the proposed CGA
with other algorithms.

5.1 Experimental Setup

All the experiments are done on two different datasets. Dataset 1 is called
NetScience which it is a co-authorship network. The edges represent the co-
authorship that scientists publish papers in the field of network science. It is a
undirected graph and has 400 nodes and 1010 edges, and the average degree is
5. Dataset 2 is called Wikivote which is from a Wikipedia voting set. The edges
represents the relationship of who votes to whom. It is a directed graph and has
914 nodes and 2914 edges. Both of the datasets are from [18].

Influence Model: The information propagation model is IC model in this
paper. The influence spread probability on each edge (ui, vi) is set as pi

uv =
1/|N−(vi)|, which is widely used in prior works [19]. The number of Monte
Carlo simulation which is used to compute the maximum influence marginal
gain for each node is set as 200.

As mentioned before, a social graph can be partitioned into k communities.
For any node in each community Ci, it has a cost ci and a profit pi. In this
experiment, we default the number of community by k = {2, 3, 4}, as well as the
cost ci and profit pi in each community Ci is uniformly sampled from [0.8, 1.2].
The timestep Δt is set as 0.05. Then, we compare our GCA algorithm with some
commonly used baselines, which can be summarized as follows:

– CGA: Continuous Greedy Algorithm, which is shown as Algorithm 1.
– k-Greedy-TS [12]: It selects the node v in Ci such that maximizing the gain

per cost Δv,i∈[k]f(S|G)/ci iteratively until using all budget up.
– MaxDegree-1: It selects the node v in Ci with the largest outdegree per cost

N+(v)/ci iteratively until using all budget up.
– MaxDegree-2: It selects the node v with the largest outdegree N+(v) itera-

tively until using all budget up.
– Random: It selects a node in the graph randomly until using all budget up.

5.2 Experimental Results

In Fig. 1, the results are collected from dataset 1. We compare the proposed
algorithms and with four baseline algorithms. The results in Fig. 1 (a) shows
how the total profit changes when the budget increases from 0 to 50 and the

228 Q. Ni and J. Guo

number of product types is k = 2. We can see that when the budget increases,
the total profit increases for all the five different algorithms, this is because that
more budget can be used to choose more seeds, as the number of seeds selected
increases, it increases the influence of the products, i.e., the number of users
purchasing the products increases, then this leads to the total profits increases.
We can also observe that the total profit obtained by CGA is greater than the
four baseline algorithms, which show the efficiency of the proposed algorithm.
When the number of products increases to k = 3, we can see the changes from
the Fig. 1 (b). The results in Fig. 1 (b) have the same variation trends as it
shows in Fig. 1 (a), therefore, the conclusion found in Fig. 1 (a) can also be
verified in Fig. 1 (b). Comparing the result in Fig. 1 (b) with that in Fig. 1 (a),
we can get that when the budget is the same, the total profit in Fig. 1 (a) is
greater than that in Fig. 1 (b) for the same algorithm, this is because that when
k increases, the number of communities increases, as we know that the influence
is difficult to cross between different communities, therefore, this will reduce the
total influence of k kinds of products in the social network, and the total profits
will also decrease. Similarly, when k goes up to 4 in Fig. 1 (c), the total profit
goes down compared with that in Fig. 1 (b) for the same algorithm, but not as
much as when k increases from 2 to 3.

Fig. 1. Performance comparison achieved by different algorithms with different k under
dataset 1

We also conduct experiments on a larger dataset 2. The effectiveness of the
proposed algorithms can be further verified by observing the conclusion in Fig. 2.
Comparing the total profit in Fig. 1 with that in Fig. 2, we can have that the
profit in Fig. 2 is larger than that in Fig. 1 with the same budget and same
algorithm, which is because the result in Fig. 2 is conducted based on a larger
dataset 2. Based on the results in dataset 2, we can see that the performance
gap between our algorithms and MaxDegree is larger than that in dataset 1,
which further validates the effectiveness of our proposed algorithms in large and
directed social networks.

Profit Maximization for Multiple Products 229

Fig. 2. Performance comparison achieved by different algorithms with different k under
dataset 2

6 Conclusion

We study the profit maximization problem for k kinds of products in social
networks in this paper. We assume that one seed user can only spread one kind
of product’s influence. Then we introduce the community structure of a social
network to the proposed problem, and constrain that each community is used
for promoting only one kind of product. So the goal of the proposed problem is
to select k subsets of users as seeds from k different communities such that the
overall profit for k kinds of products is maximized. We prove that the objective
function satisfies k-submodularity. Then the multilinear extension is introduced
to relax the objective function, and a Continuous Greedy Algorithm is devised
to solve the profit maximization problem, which can obtain an 1

2 approximation
ratio. Comprehensive experiments are conducted on two real world datasets in
social networks, and the experimental results verify the correctness as well as
the effectiveness of the proposed algorithm.

Acknowledgment. This work is supported in part by the Guangdong Basic and
Applied Basic Research Foundation under Grant No. 2021A1515110321 and No.
2022A1515010611 and in part by Guangzhou Basic and Applied Basic Research Foun-
dation under Grant No. 202201010676.

References

1. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: Proceedings of the Ninth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, pp. 137–146. ACM (2003)

2. Ni, Q., Guo, J., Huang, C., Weili, W.: Community-based rumor blocking maxi-
mization in social networks: algorithms and analysis. Theoret. Comput. Sci. 840,
257–269 (2020)

3. Fan, L., Lu, Z., Wu, W., Thuraisingham, B., Ma, H., Bi, Y.: Least cost rumor
blocking in social networks. In: 2013 IEEE 33rd International Conference on Dis-
tributed Computing Systems, pp. 540–549 (2013)

230 Q. Ni and J. Guo

4. Bharathi, S., Kempe, D., Salek, M.: Competitive influence maximization in social
networks. In: Deng, X., Graham, F.C. (eds.) WINE 2007. LNCS, vol. 4858, pp.
306–311. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77105-
0_31

5. Peng, W., Pan, L.: Scalable influence blocking maximization in social networks
under competitive independent cascade models. Comput. Netw. 123, 38–50 (2017)

6. Guanhao, W., Gao, X., Yan, G., Chen, G.: Parallel greedy algorithm to multiple
influence maximization in social network. ACM Trans. Knowl. Disc. Data (TKDD)
15(3), 1–21 (2021)

7. Han, K., Xu, C., Gui, F., Tang, S., Huang, H., Luo, J.: Discount allocation for
revenue maximization in online social networks. In: Proceedings of the Eighteenth
ACM International Symposium on Mobile Ad Hoc Networking and Computing,
pp. 121–130 (2018)

8. Zhang, H., Zhang, H., Kuhnle, A., Thai, M.T.: Profit maximization for multiple
products in online social networks, pp. 1–9 (2016)

9. Zhang, Y., Yang, X., Gao, S., Yang, W.: Budgeted profit maximization under the
multiple products independent cascade model. IEEE Access 7, 20040–20049 (2019)

10. Huber, A., Kolmogorov, V.: Towards minimizing k -submodular functions. In:
Mahjoub, A.R., Markakis, V., Milis, I., Paschos, V.T. (eds.) ISCO 2012. LNCS,
vol. 7422, pp. 451–462. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32147-4_40

11. Singh„ A., Guillory, A., Bilmes, J.: On bisubmodular maximization. In: Artificial
Intelligence and Statistics, pp. 1055–1063 (2012)

12. Ohsaka, N., Yoshida, Y.: Monotone k-submodular function maximization with size
constraints. In: Advances in Neural Information Processing Systems, pp. 694–702
(2015)

13. Ward, J., Živnỳ, S.: Maximizing k-submodular functions and beyond. ACM Trans.
Algorithms (TALG) 12(4), 47 (2016)

14. Ni, Q., Guo, J., Weili, W., Wang, H., Jigang, W.: Continuous influence-based
community partition for social networks. IEEE Trans. Netw. Sci. Eng. 9(3), 1187–
1197 (2021)

15. Ward, J., Zivny, S.: Maximizing k-submodular functions and beyond. ACM Trans.
Algorithms 12(4), 1–26 (2016)

16. Vondrák, J.: Optimal approximation for the submodular welfare problem in the
value oracle model. In: Proceedings of the Fortieth Annual ACM Symposium on
Theory of Computing, pp. 67–74 (2008)

17. Wang, B., Zhou, H.: Multilinear extension of k-submodular functions. arXiv
preprint arXiv:2107.07103 (2021)

18. Rossi, R., Ahmed, N.: The network data repository with interactive graph analytics
and visualization. In: Twenty-Ninth AAAI Conference on Artificial Intelligence, pp.
4292–4293 (2015)

19. Ni, Q., Guo, J., Wu, W., Wang, H.: Influence-based community partition with
sandwich method for social networks. IEEE Trans. Comput. Soc. Syst. (2022).
https://doi.org/10.1109/TCSS.2022.3148411

https://doi.org/10.1007/978-3-540-77105-0_31
https://doi.org/10.1007/978-3-540-77105-0_31
https://doi.org/10.1007/978-3-642-32147-4_40
https://doi.org/10.1007/978-3-642-32147-4_40
http://arxiv.org/abs/2107.07103
https://doi.org/10.1109/TCSS.2022.3148411

MCM: A Robust Map Matching Method
by Tracking Multiple Road Candidates

Wanting Li , Yongcai Wang(B) , Deying Li , and Xiaojia Xu

School of Information, Renmin University of China, Beijing 100872,
People’s Republic of China

ycw@ruc.edu.cn

Abstract. Map matching is to track the positions of vehicles on the road
network based on the positions provided by GPS (Global Positioning
System). Balancing localization accuracy and computation efficiency is
a key problem in online map matching, for which, existing methods HMM
and MHT mainly use Markov assumption which drops early unused data.
Although the roads to explore can be remarkably reduced by the Markov
assumption, miss-of-match and matching breaks may occur if the GPS
data is highly noisy. To address these problems, this paper presents Mul-
tiple Candidate Matching (MCM) to improve the robustness of map
matching by using historical trajectory data. MCM tracks multiple road
candidates in the map matching process while limiting the number of
road candidates by excluding the routes whose likelihood are below
a threshold. Numerical experiments in large-scale data sets show that
MCM is very promising in terms of accuracy, computational efficiency,
and robustness. Mismatching problems caused by Markov assumption
can be resolved effectively when compared with state-of-the-art online
map matching methods.

Keywords: Map matching · Multiple candidate · Road continuity ·
Online

1 Introduction

Tracking vehicles’ exact locations on the road network is a critical problem for
vehicle navigation and various location-based services. Due to the measurement
noise of the GPS equipment, GPS reported positions might deviate from the
real road. The GPS noises may be caused by different reasons, such as when
the vehicles are under bridges or in tunnels [6]. Other errors may occur due
to multi-path satellite signals [2,3,16] that arrive at a receiver via a non-direct
path, such as being reflected off high buildings in built-up city areas.

In order to locate vehicles accurately, researchers proposed to match the
trajectory of a vehicle with the road network. By using the continuity con-
straint of the vehicle’s motion and the continuity characteristics of the roads,

This work was supported in part by the National Natural Science Foundation of China
Grant No. 61972404, 12071478, Public Computing Cloud, Renmin University of China.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 231–243, 2022.
https://doi.org/10.1007/978-3-031-16081-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_20&domain=pdf
http://orcid.org/0000-0002-0092-7020
http://orcid.org/0000-0002-4197-2258
http://orcid.org/0000-0002-7748-5427
http://orcid.org/0000-0001-9949-9451
https://doi.org/10.1007/978-3-031-16081-3_20

232 W. Li et al.

the vehicle localization problem becomes to find the most likely road that can
be matched with the GPS trajectory, which is called map matching problem [1].
Map matching can be classified into online map matching [8,9,12–14] and offline
map matching [5,7,11,15,18–20]. The former estimates the current road segment
the vehicle is on immediately after a GPS data is collected. The latter recovers
the travelled roads by offline processing the collected whole GPS trajectory.

Online map matching requires both matching accuracy and efficiency. For
efficiency purpose, Markov assumption is widely adopted, which assumes the
road-matching state at time t depends only on the states at time t − 1, which is
not related to the states and observations of early times. Based on the Markov
assumption, two categories of methods, i.e., Hidden Markov Model (HMM) based
methods [8,9,12–14] and Multiple Hypothesis Techniques (MHT) [10,13,17] are
mainly proposed in literature for online map matching.

HMM utilizes the state transition probabilities learned from the road topol-
ogy, in which a latent state sequence indicating the route is inferred based on the
observed sequence of the GPS trajectory. Two methods are mainly used to calcu-
late the hidden Markov chain in real time. The first method uses the approximate
algorithm to greedily calculate the current optimal result [12,14]. The approxi-
mation algorithm only retains one current optimal path in each step, which can
not guarantee that the predicted state sequence as a whole is the most likely
state sequence, because the predicted state sequence may have parts that do not
actually occur. The other method uses the sliding window Viterbi algorithm to
calculate the optimal path in a period of time [8,9,13]. However, when using
Viterbi or approximate algorithm for sequence matching, the matching results
before time t − 1 are not traced back. One mismatch at t may lead to cascaded
errors in the later associations, which may cause errors, such as matching break
[4] shown in Fig. 1. The green trajectory is the estimated trajectory using online
HMM method. Because the side road ends at that point, a matching break hap-
pens. In addition, the HMM-based method needs to train the probability model
in advance. The sliding window-based method has a certain delay.

To address the above problems of HMM, MHT [10,13,17] generates a variety
of road hypotheses at time t through utilizing historical transportation informa-
tion to evaluate the probabilities of choosing the subsequent road. This method
mainly uses Bayesian filtering. The goal is to obtain the probability distribu-
tion of the state quantity at time t − 1 when the prior probability is known
and to estimate the posterior probability distribution of the state quantity at
time t when the observation and transition probability matrix at time t are
known. This method does not need to train the model in advance, and it is a
limited state candidate without delay. However, the Markov hypothesis is also
used without considering the influence of historical states. This method will still
be affected by noises. In complex environments with large GPS errors, it still
leads to subsequent matching errors due to a wrong early matching.

MCM: A Robust Map Matching Method 233

Fig. 1. Matching break. The matching break is a common problem in map-matching,
which is mainly caused by trajectory outliers. Because of Markov assumption, HMM
algorithm matches the wrong side road with a higher probability at point p4, but there
is no way to correct it, and a break occurs.

Historical trajectory data has great value and should be fully utilized. This
paper relaxes the Markov assumption but still designs a highly efficient map
matching algorithm, i.e., Multiple route Candidate Matching (MCM). MCM is
essentially to find the longest common sub-sequence between the GPS trajectory
and the potential routes generated from the road network. MCM considers the
topological continuity between the trajectory points and the continuity among
the route segments. These continuity constraints are embedded into the similar-
ity model. MCM has three key points to balance accuracy and efficiency.

(1) The likelihood of multiple route candidates is tracked by a dynamic pro-
gramming process using a similarity matrix.

(2) A “last” label is used in each row of the similarity table to record the histor-
ical matching point.

(3) The most unlikely routes are autonomously excluded to control the number
of “alive” candidates so that the computation is efficient.

MCM shows strong fault tolerance. Even if the matching at t is wrong, the
trajectory points can be corrected to the correct route by subsequent matching.
The validity of MCM is investigated theoretically and experimentally, regarding
both the matching accuracy and matching efficiency. Experiments on one widely
used map matching dataset show that the proposed MCM method provides the
highest mapping accuracy compared with state-of-the-art online map matching
algorithms. MCM is also easy to be carried out without the pain of training the
probability model. We will outsource the codes and provide online demos for
MCM for potential use by society.

2 Problem Model

2.1 Point-to-Road Similarity

There are many ways to define the similarity between a GPS point and a road
segment. In our case, we use point-to-line distance with a threshold to define the
point-to-road similarity. It truncates very low similarity cases for efficiency.

234 W. Li et al.

Fig. 2. AB is the segment; P is the point and C is P ’s projection on AB. (a) C is on
AB; (b) C is not on AB and is closer to A; (c) C is not on AB and is closer to B

Definition 1 (Point-to-Road Similarity). The point-to-road similarity
S(pi, ej) between a point pi ∈ T and a road ej ∈ G is defined by Eq. (1).

S(pi, ej) =
{

ε − ‖pi − ej‖2, if ‖pi − ej‖2 < ε
0, otherwise (1)

ε here is a threshold to eliminate the similarity calculation if the point is too far
away from the road segment, which is helpful to reduce the amount of subsequent
calculation. ‖pi − ej‖2 is the distance from the point pi to the road segment ej ,
which is defined by the shortest distance from the point to the line segment as
shown in Fig. 2.

Let’s assume the line segment is AB and the point is P . The projection from
P to AB is denoted by C. If C is on AB, ‖pP − eAB‖2 = ‖PC‖. If C is not on
AB and C is closer to A, then ‖pP − eAB‖2 = ‖PA‖; If C is not on AB and C
is closer to B, then ‖pP − eAB‖2 = ‖PB‖;

2.2 Trajectory-to-Route Similarity

We then consider to evaluate the similarity between a GPS trajectory T and a
route R on G. Suppose T is composed by a set of successively measured GPS
points, i.e., T = {p1, p2, · · · , pn}. Suppose R is composed by a set of sequentially
connected edge segments, i.e., R = {e1, e2, · · · , em}.

Definition 2 (Trajectory-to-route Similarity). Given T = {p1,p2, · · · ,
pn} and R = {e1, e2, · · · , em}, the trajectory to route similarity M(T, R) is
defined as:

M (T, R) =
n∑

i=1

S (pi, enearest (pi)) (2)

where enearest(pi) is the route on R which has the minimum distance to pi as
shown in Fig. 3.

MCM: A Robust Map Matching Method 235

Then, let’s denote R∗ the route on G, which matches best with T. Then the
goal is to find the route with the best similarity score with T.

R∗ = argmax
R

M (T, R) (3)

where R is any route that can be generated from G.

Fig. 3. Trajectory-to-route similarity by trajectory p1, p2, p3, p4 to route e1 → e2 → e3

3 Multiple Candidate Matching

Enumerating all the possible routes on G is computational complexity explosive.
MCM generates routes in a controlled way. Instead of training the transitional
model or using additional road level or travel speed information, MCM uses only
the trajectory and the roads’ continuity information.

MCM proposes a method by matching the trajectory to the map via gener-
ating multiple candidate routes. It tracks the matching probabilities of multiple
routes and outputs the best matching result. MCM is mainly divided into two
steps. Firstly, the candidate routes are generated based on the current “alive”
matches on the matching table and the continuity constraint of the routes on the
route graph; Secondly, the trajectory-to-road similarities for the multiple route
candidates are evaluated using a dynamic programming model. In this step, the
matching similarities to all potential routes will be evaluated; the best match is
output as the current result, and some unlikely routes will be pruned for keeping
computation efficiency.

MCM proposes an score matrix M to explore the likelihoods of all potential
routes that may match with the GPS trajectory. The values in the matrix M
represent the trajectory-to-road similarities of the candidate routes. The rows of
the matrix represent the edge segments in the road network, and the columns of
the matrix represent the GPS points on the trajectory ordered by the collecting
time. The map matching process is indeed to update the score matrix M. Because
the trajectory points are collected in order, at each time t, when a new point pt
is obtained, we need to fill a new column, i.e., the tth column of M.

The summation of all the point-to-road similarity values of a trajectory
sequence as trajectory-to-route similarity. We call each value in the score matrix
as trajectory-to-route similarity value. Figure 5 shows an example of a score
matrix where n = m = 7. Map matching uses this sparse score matrix. The
concepts used in MCM and the steps to fill the score matrix are as follows.

236 W. Li et al.

3.1 Route Candidates

For finding the route candidates on G that may match with T, we use roads’
continuity information. Based on the neighbor edges we got in the previous step,
If there is a path that conforms to the road topology in the last matching pairs,
it indicates that one of the route candidates can be continued.

Fig. 4. Preceding and successive road set.

Definition 3 (Alive Routes, i.e., Route Candidates). Alive routes in M
records the potential candidates of routes that may match with the trajectory T.
Each route candidate is composed by a sequence of connected edges.

Suppose at time t − 1, there are K alive route candidates in M. For each
route candidate, we record only the last edge of each route to represent the
route. This is because when a route’s similarity score is obtained at time t, we
can trace back the whole route from the last edge of that route in M.

Definition 4 (Last Matching Pair). The last edge on each route is saved as
a last matching pair lastk = (e, p), where e is an edge index and p is a point
index. It means on the kth route, the last matching point p on T matches with
the edge e on G. It also means that the entry (e, p) in M is the endpoint of the
kth alive route.

At the time t, we assume the total number of alive routes is K, and these
K alive routes’ last matching pairs are saved in a queue data structure QLast.
The following functions are defined to return the edge index and point index in
the kth route’s last matching pair.

Definition 5 (The last(·) Function). Suppose lk = (e, p) is the last matching
pair of the kth alive route, the function e(lk) = e returns the edge index saved in
lk and p(lk) = p returns the point index in lk.

Then route generation considers the route continuity information on map G.

MCM: A Robust Map Matching Method 237

Definition 6 (The near(·) Function). A near() function is designed to
restrict MCM to generate only reasonable routes based on the road network topol-
ogy. near(pi, ej) = Pre(ej) ∪ Suc(ej) ∪ ej where Pre(ej) is the preceding road
set of road ej and Suc(ej) is successive road set of road ej in the road net-
work. As shown in Fig. 4, ej is the road segment ebe, the start point ej .S is
point pb and the end point ej .E is point pe. So Pre(ebe) = {eab, ebc, ebd} and
Suc(ebe) = {eef , eei}.

3.2 Updating the Sparse Score Matrix

We use the dynamic programming method to calculate the score matrix, that
is, the summation of all the similarity values of a trajectory sequence.

At time t, when a new GPS point pt is obtained, we check all the alive routes’
last edges, i.e., all the lk ∈ QLast. M(ei, pt) is filled by one of the following two
cases:

(1) For each lk we find near(e(lk)), i.e., all connected edges of the last edge.
Then we calculate the similarity scores S(ei, pt) for every ei ∈ near(e(lk)).
If S(ei, pt) > 0, the score of ei obtained from the kth alive route, denoted
by Mk(ei, pt) is calculated by:

if S (ei, pt) > 0& ei ∈ near(e (lk)),
Mk (ei, pt) = M (e (lk) , p (lk)) + S (ei, pt)

(4)

Then all the K alive routes will be processed to calculate Eq. (4). The updated
score of M(ei, pt), i.e., the score at the ith row and tth column in M is filled by
the highest score calculated from all the K route candidates.

M (ei, pt) = max
k=1:K

Mk (ei, pt) (5)

(2) If an ei is not in the near edge set of any route’s last edge, but S(ei, pt) > 0,
a new route candidate will be generated. Its matching score is filled as:

M(ei, pt)=S(ei, pt), if S(ei, pt)>0&∀lk, ei /∈near(lk) (6)
The overall equation to fill the matching score at M(ei, pt) is therefore given

in

M (ei, pt) =

{
max

k=1:K
{M (e (lk) , p (lk)) + S (ei, pt)} , if S (ei, pt) > 0&ei ∈ near(e(lk))

S(ei, pt), if S(ei, pt) > 0&ei /∈ near(e(lk)), ∀lk
(7)

3.3 MCM for Online Map Matching

In online map matching, the problem is to find the associated roads for the
trajectory up to time t. MCM outputs the candidate matching roads with the
best matching score up to time t. So it find the maximum M(ei, pt), i ∈ [1,m]
at time t in case S(ei, pt) > 0. Then (ei, pt) is the last matching pair of the
best-matched route, and the route can be traced back using this last edge.

So the overall routine in MCM for online matching is as described below.
The pseudocode for MCM is given in Algorithm 1.

238 W. Li et al.

Fig. 5. The figure shows a sparse score matrix. All the route candidates are shown in
the figure. We calculate neighbors for each node (only cells within radius in ε in each
column). The last alive matching pairs are store in queue Qlast and the point-to-road
similarity matrix S. The dotted line is the trajectory which has maximum score.

(1) Initialize sparse score matrix with zero and the last matching pair as empty.
(Line 1–2)

(2) Find neighbor roads within radius in ε for the current view of the vehicle.
(Line 3–7)

(3) Find the route candidates based on the last matching pairs and the neigh-
boring roads. (Line 10)

(4) For each route candidate, calculate the similarity score with point-to-road
similarity values, and update the sparse score matrix. (Line 11 & 14)

(5) Finally, find the best matching road at t and update the last matching pairs.
(Line 18)

An example is shown in Fig. 5. The process of matching by MCM from P2

to P3 is shown in Fig. 5.
After completing the matching at time t2, we get the alive candidate routes as

e1 → e1 and e5 → e5, and the two last matching pairs are (e1, p2) and (e5, p2). At
time t3, we first find neighbor roads {e2, e5}. Then we match the route candidates
based on the last matching pairs and the neighboring roads. In the route e1 → e1,

MCM: A Robust Map Matching Method 239

(e2, p3) satisfies the near(·) function. So we get M(p3, e2) = M(p2, e1)+S(p3, e2)
by Eq. (7). The other alive routes obtained in the same way.

At time t6, only one alive route can be found and the last matching pair is
updated to be (e5, p5) to (e5, p6). Finally we can get the score matrix M which
stores the alive candidate routes as shown in Fig. 5.

Algorithm 1. MCM algorithm
Input: Graph G = {V, E} and trajectory T
Parameter: Threshold ε
Output: matches=Avector containing matching indices

1: global M = initialize(len(G), len(T))// score matrix.
2: global QLast = initialize(1,len(G))// record last alive matching node.
3: for j = 1 to n do
4: if max

i∈[1,m]
S(i, j) > 0 then

5: M(i, :) = S(i, :); Qlast(i) = j;Update near(pi, ej);break;
6: end if
7: end for
8: for j to n do
9: for i = 1 to m do

10: if S(i, j) > 0&&Qlast(k) > 0 then
11: M(i, j) = max

k∈[1,m]
{M(k, j − 1) + S(i, j)}; Qlast(i) = j;Qlast(k) = 0;Update

near(pi, ej);
12: else
13: if S(i, j) > 0 then
14: M(i, j) = S(i, j); Qlast(i) = j;Update near(pi, ej);// Begin again.
15: end if
16: end if
17: end for
18: matches(j)= max

i∈[1,m]
M(ei, pj);

19: end for

For online map matching, we only need to output the road corresponding to
the maximum M value at the current time, that is, select the maximum value
of each column.

4 Experiment

The Washington Dataset was presented by Newson et al. [15] and is one of the
most widely used benchmark data sets for testing online map-matching algo-
rithms. It contains GPS data from a drive around Seattle, WA, USA using SiRF
Star III GPS chipset with WAAS (Wide Area Augmentation System) enabled.
The journey was sampled 1Hz and contains just over two hours of driving in
both challenging inner-city environments and the outer suburbs. The total route
was 80 km long with 7531 data samples containing latitude and longitude pairs.

240 W. Li et al.

Effects of Parameter Selection. Figure 6(a) shows the relationship between
the map matching efficiency and the parameter selection in online matching.
The point-to-road similarity threshold varies from 5 to 40. We can see that the
running time increases with ε. We can also see (Table 1) that even the maximum
running time is much less than 1 s (on a laptop with Intel i7-8550U CPU), so
it can well support online map matching, which generally takes GPS data 1Hz.
Figure 6(b) shows the accuracy of MCM for various sampling intervals and vari-
ous threshold parameters. The horizontal axis represents the similarity threshold,
the bar colors represent the sampling intervals, and the vertical axis represents
the accuracy. We can see larger similarity threshold can help to improve the
matching accuracy.

Table 1. Online run-time of our proposed method with Washington dataset when
ε = 30

Average run-time Maximum run-time Minimum run-time

0.0482 s 0.0731 s 0.0057 s

Fig. 6. (a) Efficiency under different ε for Washington dataset. (b) Different ε and dif-
ferent GPS sampling rate v.s. matching accuracy (% of points matched to correct road
segment) for Washington dataset. (c) MCM vs HMM based method for Washington
dataset.

Accuracy Comparison with Other Methods. In this paper, we hope to
use road information as little as possible to make the MCM method be suitable
for different cases. So for performance comparison, we choose ST matching [12],
Online HMM [8] and MHT [17] as the comparative methods.

Figure 6(c) illustrates that the matching accuracy is the highest when the
sampling rate 10Hz. The term ‘accuracy’ in this context refers to the percent-
age of GPS points that have been matched to the correct segment of the road
network. When the sampling rate decreases, the matching accuracy will decrease
because the previous GPS points provide less information about the current GPS
point. When the sampling rate is too high, unnecessary detour [4] will appear,
and the accuracy of matching will also be reduced. So we need to balance various

MCM: A Robust Map Matching Method 241

factors and choose the best matching sampling rate. In the Washington data set,
10Hz is the best choice, and we choose ε = 30.

From the matching accuracy comparison in Fig. 6(c), we can see that the
matching accuracy of MCM is 95%, which is better than all other three methods
with a high sampling rate. With a low sampling rate, all online methods get
less accuracy, under 90%. But our MCM method still performs better than the
Online-HMM method and ST matching method. MHT is most close to MCM,
and they are always better than the other two methods. MCM also uses less
information than MHT, which is therefore highly suitable for online map match-
ing (Fig. 7).

Fig. 7. Result for Washington dataset. Here is an overpass scene, we can see that our
method can match the side road well, while other methods will match wrong.

5 Conclusion and Future Work

In this paper, a new method, i.e., MCM for online map matching is proposed.
MCM tracks multiple alive route candidates while controlling the scale of candi-
dates according to the continuity of the road by excluding unnecessary match-
ing candidates. MCM does not need to set the noise distribution function and
the transition probability. It needs to set a threshold to specify the maximum
acceptable offset. MCM works well without the pain of preliminary data pro-
cessing work while providing better robustness and accuracy. In future work,
we can also modify the road continuity function, such as introducing semantic
information to better distinguish overpass sections, and conduct road navigation
while conducting map matching.

242 W. Li et al.

References

1. Bernstein, D., Kornhauser, A., et al.: An introduction to map matching for personal
navigation assistants (1996)

2. Blanco-Delgado, N., Nunes, F.D.: Multipath estimation in multicorrelator GNSS
receivers using the maximum likelihood principle. IEEE Trans. Aerosp. Electron.
Syst. 48(4), 3222–3233 (2012)

3. Chaggara, R., Macabiau, C., Chatre, E.: Using GPS multicorrelator receivers for
multipath parameters estimation. In: Proceedings of the 15th International Tech-
nical Meeting of the Satellite Division of The Institute of Navigation (ION GPS
2002), pp. 477–492 (2002)

4. Chao, P., Xu, Y., Hua, W., Zhou, X.: A survey on map-matching algorithms. In:
Borovica-Gajic, R., Qi, J., Wang, W. (eds.) ADC 2020. LNCS, vol. 12008, pp.
121–133. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39469-1_10

5. Chen, B.Y., Yuan, H., Li, Q., Lam, W.H., Shaw, S.L., Yan, K.: Map-matching
algorithm for large-scale low-frequency floating car data. Int. J. Geogr. Inf. Sci.
28(1), 22–38 (2014)

6. Cui, Y., Ge, S.S.: Autonomous vehicle positioning with GPS in urban canyon
environments. IEEE Trans. Robot. Autom. 19(1), 15–25 (2003)

7. Dogramadzi, M., Khan, A.: Accelerated map matching for GPS trajectories. IEEE
Trans. Intell. Transp. Syst. 23(5), 4593–4602 (2021)

8. Goh, C.Y., Dauwels, J., Mitrovic, N., Asif, M.T., Oran, A., Jaillet, P.: Online
map-matching based on Hidden Markov Model for real-time traffic sensing appli-
cations. In: 2012 15th International IEEE Conference on Intelligent Transportation
Systems, pp. 776–781. IEEE (2012)

9. Jagadeesh, G.R., Srikanthan, T.: Online map-matching of noisy and sparse location
data with hidden Markov and route choice models. IEEE Trans. Intell. Transp.
Syst. 18(9), 2423–2434 (2017)

10. Li, G., Lou, L., Zheng, P., et al.: Route restoration method for sparse taxi GPS
trajectory based on Bayesian network. Tehnički vjesnik 28(2), 668–677 (2021)

11. Li, Y., Huang, Q., Kerber, M., Zhang, L., Guibas, L.: Large-scale joint map match-
ing of GPS traces. In: Proceedings of the 21st ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, pp. 214–223 (2013)

12. Lou, Y., Zhang, C., Zheng, Y., Xie, X., Wang, W., Huang, Y.: Map-matching for
low-sampling-rate GPS trajectories. In: Proceedings of the 17th ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information Systems,
pp. 352–361 (2009)

13. Luo, L., Hou, X., Cai, W., Guo, B.: Incremental route inference from low-sampling
GPS data: an opportunistic approach to online map matching. Inf. Sci. 512, 1407–
1423 (2020)

14. Mohamed, R., Aly, H., Youssef, M.: Accurate real-time map matching for challeng-
ing environments. IEEE Trans. Intell. Transp. Syst. 18(4), 847–857 (2016)

15. Newson, P., Krumm, J.: Hidden Markov map matching through noise and sparse-
ness. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, pp. 336–343 (2009)

16. Spangenberg, M., Giremus, A., Poire, P., Tourneret, J.Y.: Multipath estimation in
the global positioning system for multicorrelator receivers. In: 2007 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing-ICASSP’07, vol. 3,
pp. III-1277. IEEE (2007)

https://doi.org/10.1007/978-3-030-39469-1_10

MCM: A Robust Map Matching Method 243

17. Taguchi, S., Koide, S., Yoshimura, T.: Online map matching with route prediction.
IEEE Trans. Intell. Transp. Syst. 20(1), 338–347 (2018)

18. Wei, H., Wang, Y., Forman, G., Zhu, Y., Guan, H.: Fast Viterbi map matching with
tunable weight functions. In: Proceedings of the 20th International Conference on
Advances in Geographic Information Systems, pp. 613–616 (2012)

19. Yuan, J., Zheng, Y., Zhang, C., Xie, X., Sun, G.Z.: An interactive-voting based
map matching algorithm. In: 2010 Eleventh International Conference on Mobile
Data Management, pp. 43–52. IEEE (2010)

20. Zeng, Z., Zhang, T., Li, Q., Wu, Z., Zou, H., Gao, C.: Curvedness feature con-
strained map matching for low-frequency probe vehicle data. Int. J. Geogr. Inf.
Sci. 30(4), 660–690 (2016)

Pilot Pattern Design with Branch
and Bound in PSA-OFDM System

Shuchen Wang , Suixiang Gao(B), and Wenguo Yang

School of Mathematical Sciences, University of Chinese Academy of Sciences,
Beijing 100049, China

wangshuchen191@mails.ucas.ac.cn, {sxgao,yangwg}@ucas.ac.cn

Abstract. Pilot symbol assisted (PSA) channel estimation is an impor-
tant means to improve the communication quality of orthogonal fre-
quency division multiplexing (OFDM) systems. The insertion position
of pilot in frequency domain and time domain of OFDM symbol is called
pilot pattern. Appropriate pilot pattern design can greatly reduce the
channel estimation error and enhance the communication quality. In this
paper, the branch and bound (BnB) method is adopted to design the
pilot pattern BnB-PP for the first time. Specifically, the result of the
linear least mean square error (LMMSE) method is taken as the target
value of channel estimation in PSA-OFDM systems. For branching, pilot
positions are randomly selected one by one in the form of binary tree. For
boundary, the correction term is subtracted from the result to replace it
after the node is filled randomly. The results show that BnB-PP is bet-
ter than the common pilot pattern. The average MSE under all signal
to noise ratio (SNR) of channel estimation for 32 and 64 pilots in 1344
data signals is reduced by 80.68% and 3.88% respectively compared with
lattice-type pilot pattern.

Keywords: Pilot pattern · Branch and bound · PSA-OFDM ·
Channel estimation · LMMSE

1 Introduction

OFDM modulation realizes the parallel transmission of serial data through fre-
quency division multiplexing, which makes it have the ability to resist multipath
fading [24]. In 3G and 4G, OFDM is gradually mature [28], and it is still one of
the most important technologies in 5G wireless communication network [2]. The
wireless channel will fade in both frequency domain [16] and time domain [5],
and there is randomness, which affects the communication quality. Therefore, it
is necessary to estimate the channel state information (CSI). Channel estima-
tion can get the channel impulse response, so as to improve the performance of
OFDM system [4].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 244–254, 2022.
https://doi.org/10.1007/978-3-031-16081-3_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_21&domain=pdf
http://orcid.org/0000-0002-5379-2633
http://orcid.org/0000-0002-8441-7334
https://doi.org/10.1007/978-3-031-16081-3_21

Pilot Pattern Design with Branch and Bound in PSA-OFDM System 245

Channel estimation methods can be divided into blind, semi-blind and
unblinded estimation. Blind and semi-blind channel estimation, such as subspace
decomposition [15], can effectively improve the system capacity, but it is difficult
to deal with fast fading wireless channels due to its poor flexibility. And PSA-
OFDM is the most commonly communication system for non blind estimation.
The pilot signal is the known specific signal data, which is placed at the specific
position of the transmission symbol data of the PSA-OFDM system [3,8]. The
channel condition is estimated by comparing the difference between the pilot
signal at the receiving end and the transmitting end. Least Squares (LS) [9] can
estimate the channel impulse response of the pilot position, and then it needs
to estimate other positions by interpolation [1]. MMSE method is based on LS
[25]. MMSE can obtain the impulse response of the whole channel with higher
accuracy by incorporating the influence of noise into the calculation, but it needs
to obtain or estimate some other characteristics of the channel in advance [23].
LMMSE is an improved version of MMSE with lower computational complexity
[29].

The three most important problems in PSA are where to insert pilots [6],
what data to insert as pilots [11], and channel estimation methods [10,13,21].
In this paper we only focus on the first problem, that is, pilot pattern design.
There are three common pilot pattern in Fig. 1. These are mainly designed by
experience and proved feasible in practice [27]. Intuitively, block-type pilot pat-
tern are more suitable for channels with large frequency selective fading [19],
while comb-type pilot pattern are for large time selective fading [7]. And the
lattice-type pilot pattern has better stability [30]. Some researches have tried
some advanced methods to design non-uniform pilot pattern, such as deep neu-
ral network [22].

Fig. 1. Common pilot pattern. The whole is PSA-OFDM symbol, in which the black
squares are the position of the pilot signal, and the others are the position of the data
signal.

Most of the pilot pattern are designed according to the channel characteris-
tics, while the pilot pattern design in this paper is based on data-driven, which
is more in line with the complex channel in the actual situation. It is essentially
an NP-hard combinatorial optimization problem. And it can be modeled as 0−1

246 S. Wang et al.

mixed integer linear programming (MILP), but due to the poor structure and
large scale, it is still difficult to solve by solver of MILP directly [12,20]. BnB is
a classical algorithm for solving integer programming problems [14,18,26]. We
adopt the framework of BnB with random binary trees branches. It is difficult to
obtain the boundary on each node, so this paper presents an expected boundary
method with correction term. The simulation results confirm the superiority of
BnB-PP.

The main contributions of this paper are summarized as follows:

Method: BnB framework is adopted to solve the pilot pattern design problem
for the first time.

Bound: A heuristic calculation method of boundary in BnB is given.

Accuracy and Generalization: The results show that BnB-PP is better than
the common pilot pattern under most SNR, especially when the number of pilots
is small.

The rest of this paper is outlined as follows: Sect. 2 provides the principle of
channel estimation in PSA-OFDM system, while Sect. 3 discusses the method
of designing pilot pattern with BnB. Section 4 gives the simulation results with
discussion. The conclusion and future works have been provided in Sect. 5.

2 Channel Estimation in PSA-OFDM System

This section introduces channel estimation methods in PSA-OFDM system. The
purpose of pilot pattern design is reducing the error of channel estimation.

Consider the subframe k with n subcarriers and m time slots in PSA-OFDM
system. The received signal in ith subcarrier and jth time slot can be expressed
as:

yk
i,j = hk

i,jx
k
i,j + zk

i,j (1)

where xk
i,j , y

k
i,j , h

k
i,j , z

k
i,j ∈ C are the received signal, transmitted signal, chan-

nel response, and white Gaussian noise respectively. Set N = {(i, j)|i =
1, 2, · · · , n, j = 1, 2, · · · ,m}. P ⊆ N is the pilot pattern. Xk

P , Y k
P ,Hk

P , Zk
P ∈

C
|P |×1 is the value in the pilot position while in particular, Xk

N , Y k
N ,Hk

N , Zk
N is

the value at all symbols. Channel estimation in PSA-OFDM system is estimating
the value of Hk

N by Xk
P and Y k

N and pilot pattern design is constructing P .
LS estimates the channel at the pilot position by minimizing (2) where ‖ · ‖2

is �2 norm and diag is vector diagonalization. The result of the optimization
is Ĥk

P = diag(Xk
P)

−1Y k
P . In order to obtain other channel response, the most

commonly method is interpolation, which is based on the fact that the channel
changes are continuous and small between adjacent symbols in both time domain
and frequency domain.

Pilot Pattern Design with Branch and Bound in PSA-OFDM System 247

Ĥk
P = argmin

H
‖Y k

P − diag(Xk
P)H‖22 (2)

MMSE method obtains the channel estimation Ĥ(k, P) of the whole subframe
k by multiplying Ĥk

P by a coefficient matrix Ŵ k
P ∈ C

|N |×|P |. That is Ĥ(k, P) =
Ŵ k

P Ĥk
P . Ŵ k

P is determined by minimizing the estimation error:

Ŵ k
P = argmin

W
‖Hk

N − WĤk
P ‖22 (3)

The result of Ŵ k
P by solving optimization problem (3) is

Ŵ k
P = RNP (RPP +

σ2
z

σ2
x

I)−1 (4)

where I ∈ R
|P |×|P | is the identity matrix, RPP = E{HP H†

P } ∈ C
|P |×|P | is the

auto-correlation matrix of the pilot and RNP = E{HNH†
P } ∈ C

|N |×|P | is the
cross-correlation matrix between the pilot and all symbols. σ2

x and σ2
z are the

variances of the transmitted signal and the channel noise, respectively.
In fact, RNP and RPP are unknown while sometimes the correlation between

position (i1, j1) and (i2, j2) can be approximated as follows:

r(i1,j1),(i2,j2) =
J0(2πfmaxT (j1 − j2))
1 + j2πτmaxΔf(i1 − i2)

(5)

where J0 is the first kind of zero order Bessel function, fmax is the maximum
Doppler frequency, T is the symbol block time, τmax is the maximum delay
spread, and Δf is the subcarrier spacing.

In LMMSE, σ2
z

σ2
x

is replaced by expectation β
SNR . β is a channel modulation

type parameter. In this method, Ŵ k
P is uniquely determined by the modulation

mode and SNR, which saves a lot of calculation time of matrix multiplication and
inversion in practical application. Therefore, the channel estimation methods in
Sects. 3 and 4 are LMMSE.

3 Pilot Pattern Design with Branch and Bound

Let’s first describe the pilot pattern design problem. Set SP = diag{sP
(i,j)} ∈

{0, 1}|N |×|N | and sP
(i,j) = 1 when (i, j) ∈ P . Then the result of LMMSE for

subframe k with pilot pattern P can be expressed as:

Ĥ(k, P) = RNN [SP (RNN +
β

SNR
I)SP]−1Ĥk

P = WLMMSE(SP)Ĥk
P (6)

The inverse operation here is the pseudo inverse operation.

248 S. Wang et al.

The pilot pattern is designed to determine no more than p pilot insertion
positions to make the channel estimation results on all subframes more accurate:

Obj(P) =
1
K

K∑

k

‖Hk
N − Ĥ(k, P)‖22 (7)

=
1
K

K∑

k

‖Hk
N − WLMMSE(SP)Ĥk

P ‖22 (8)

P̂ = argmin
P, |P |≤p

Obj(P) (9)

where K is the number of PSA-OFDM symbols used to design pilot pattern.
In order to solve (9), BnB is adopted. The diagram of BnB is shown in Fig. 2.

Fig. 2. Branch and bound diagram.

3.1 Branch

Branching repeatedly divides the solution space into smaller and smaller sub-
sets. Each node determines not only a feasible solution PNode, but also a set of
positions that are discarded DNode. In this work, we make full use of binary tree
branching and random strategy. When branching each node, randomly select a
position from UNode = N −(PNode ∪DNode) to generate two new nodes based on
whether to select the location as the pilot location. At the leaf node, PNode = p
or N = (PNode ∪ DNode).

For the node branch priority, the worst boundary strategy and the optimal
target value strategy are adopted alternately.

Pilot Pattern Design with Branch and Bound in PSA-OFDM System 249

3.2 Bound

Boundary is an important index of nodes, which refers to the lower boundary
here. On the one hand, after each branch, no further branch will be made for any
child node whose boundary exceeds the known feasible solution value. In this
way, many nodes can be ignored, thus narrowing the search scope. On the other
hand, the boundary is also an important basis to determine the node branch
priority.

However, the boundary cannot be estimated accurately, so we give a heuristic
method. Take Pr ⊆ UNode at random such that |PNode ∪ Pr| = p, which means
that the pilot number is supplemented to p at random in the alternative set. The
boundary BNode is defined as follows:

BNode = Obj(PNode ∪ Pr) − α · Obj(PNorm) (10)

α = γ(1 − |PNode|
p

)(1 − |PNode| + |DNode|
|N |) (11)

where PNorm is a traditional standard pilot pattern and γ is the correction rate
parameter. Instead of directly taking the target value corresponding to the ran-
domly supplemented pilot mode as the boundary, we subtract a correction term.
The meaning of the correction term is the gap between the random boundary and
the real boundary. The smaller the number of pilot positions selected and deter-
mined not to be selected, the more inaccurate the random term and the larger
the correction term. Here, we default the number of pilot is positive correlation
with the accuracy of channel estimation. And according to this calculation, the
BNode of the child node may be smaller than that of the parent node, so some-
times max operation is performed on the boundary of the node and its parent
node.

The whole process can be expressed as the following algorithm.
The total number of leaf nodes is

∑p
i=0

(
n×m

i

)
. For each different P on the

node, WLMMSE(SP) needs to be calculated. Since there are many 0 in SP , the
calculation of the pseudo inverse in WLMMSE(SP) is actually equivalent to the
calculation of the pseudo inverse of a |P | × |P | matrix. This still requires a
lot of computation and generally, the optimal solution cannot be obtained by
this algorithm. However, due to the consideration of node computing priority
and pruning operation, BnB is still an efficient solution finding strategy in this
problem and has achieved good results in practice.

4 Simulation Results

In this section, we get BnB-PP with different pilot numbers on the simulation
data, and compare the channel estimation results of the pilot pattern we designed
with the common pilot pattern under different SNR.

In the simulation, Vienna 5G Link Level Simulator [17] is introduced to
simulate wireless signal transmission under 5G NR standard. Only one antenna
is set at both transmitter and receiver. The subcarrier interval is 60 kHz. Each

250 S. Wang et al.

Algorithm . Branch and Bound
Require: n, m, p, ε
Ensure: BestNode

N = {(i, j)|i = 1, 2, · · · , n, j = 1, 2, · · · , m}
Obj = Root.obj = +∞, Root.Bound = −∞,
Root.P = Root.D = ∅
Node = {Root}, BsetNode = Root
while Node �= ∅ and Obj > ε do

node = argmax
node∈Node

Priority(Node)

Node = Node − {node}
if |node.P | < p and |node.P | + |node.D| < |N | then

nodeLeft = nodeRight = node
Random select (i, j) ∈ N − node.P − node.D
nodeLeft.P = nodeLeft.P ∪ {(i, j)}
nodeRight.D = nodeRight.D ∪ {(i, j)}
update nodeLeft.Bound and nodeRight.Bound
if nodeLeft.Bound < Obj then

Node = Node ∪ {nodeLeft}
end if
if nodeRight.Bound < Obj then

Node = Node ∪ {nodeRight}
end if
nodeLeft.obj = 1

K

∑K
k ‖Hk

N − Ĥ(k, nodeLeft.P)‖2
2

if nodeLeft.obj < Obj then
Obj = nodeLeft.Obj, BestNode = nodeLeft

end if
end if

end while

frame consists of m = 56 time slot and n = 24 subcarriers. Vehicle-A (VehA)
wireless channel model is adopted, and the center frequency is 2.1GHz. The
modulation mode is 64 Quadrature Amplitude Modulation (16QAM) and β =
2.6854 at this time. The speed of user equipment (UE) is 20m/s.

This paper mainly studies the case when the number of pilots is 32 and
64. As shown in Fig. 3, the pilot pattern is designed by BnB under the data of
SNR = 36. Here, just take a relatively small data scale K = 5, so that the result
can achieve a certain generalization performance. Set correction factor γ = 1.
It can be seen that the pilot pattern are uneven and relatively scattered, which
is consistent with the design idea of the conventional pilot pattern. Taking the
result when the number of pilots is 64 as an example. From the frequency domain,
there is only one subcarrier frequency without pilot. Most of the subcarriers are
equipped with 2 or 3 pilots. From the time domain, there must be pilots on every
three consecutive time slots, and the number of pilots in each time slot does not
exceed 4. And there are few cases where two pilots are adjacent.

Figure 4 shows the impact of different pilot numbers on channel estima-
tion when SNR = 36, and compares BnB-PP with lattice-type pilot pattern.

Pilot Pattern Design with Branch and Bound in PSA-OFDM System 251

Fig. 3. Pilot pattern obtained by branch and bound

Fig. 4. MSE of channel estimation with different pilot numbers.

The channel estimation method here is LMMSE and for visualization, MSE is
converted to dB. The effect is better than lattice type under each pilot number,
and the smaller the pilot number, the better the effect. A smaller number of
pilots means a larger channel capacity, and OFDM symbols can transmit more
information, which fully demonstrates the value of this method.

Figure 5 and Fig. 6 respectively show the comparison of MSE estimated by
the channel under different SNR when the number of pilots is 32 and 64. Due to
the frequency selective fading of this channel, the comb pilot mode also shows
good performance. It can be seen that when the pilot number is 32 and the SNR
is greater than 10, BnB-PP is better than other pilot modes. And in other cases,
the performance of BnB-PP is stable. Table 1 shows the average decline rate of
MSE under all SNR. For example, the average MSE under all SNR of channel
estimation for 32 and 64 pilots is reduced by 80.68% and 3.88% respectively
compared with lattice-type pilot pattern.

252 S. Wang et al.

Fig. 5. MSE of channel estimation when the number of pilots is 32.

Fig. 6. MSE of channel estimation when the number of pilots is 64.

Table 1. Average decline rate of MSE under all SNR

The number of pilots Block-type Comb-type Lattice-type

32 45.75% 17.92% 80.68%

64 60.34% 34.00% 3.88%

5 Conclusion

In this work, we propose a pilot pattern design scheme for BnB based LMMSE
channel estimation in PSA-OFDM systems. And a large number of random
strategies are adopted in branching and boundary calculation. The simulation
results show that the pilot pattern BnB-PP we designed is better than the com-
mon pilot pattern under most SNR, especially when the number of pilots is small,

Pilot Pattern Design with Branch and Bound in PSA-OFDM System 253

which is of great significance to improve the system capacity and communica-
tion quality of PSA-OFDM system. However, this method is not fully integrated
with LMMSE. The computing speed on each node is slow, and there may be a
lot of computational redundancy. In the future work, we will try to reduce the
computing time by matrix operation. And we will consider MIMO system and
analyze the impact of different channel models on pilot pattern design.

References

1. Adegbite, S., Stewart, B., McMeekin, S.: Least squares interpolation methods for
LTE system channel estimation over extended ITU channels. Int. J. Inf. Electron.
Eng. 3(4), 414 (2013)

2. Andrews, J.G., et al.: What will 5G be? IEEE J. Sel. Areas Commun. 32(6),
1065–1082 (2014)

3. Coleri, S., Ergen, M., Puri, A., Bahai, A.: Channel estimation techniques based
on pilot arrangement in OFDM systems. IEEE Trans. Broadcast. 48(3), 223–229
(2002)

4. Colieri, S., Ergen, M., Puri, A., Bahai, A.: A study of channel estimation in OFDM
systems. In: Proceedings IEEE 56th Vehicular Technology Conference, vol. 2, pp.
894–898. IEEE (2002)

5. Fu, A., Modiano, E., Tsitsiklis, J.: Optimal energy allocation for delay-constrained
data transmission over a time-varying channel. In: IEEE INFOCOM 2003. Twenty-
Second Annual Joint Conference of the IEEE Computer and Communications Soci-
eties (IEEE Cat. No. 03Ch37428), vol. 2, pp. 1095–1105. IEEE (2003)

6. He, S., Zhang, Q., Qin, J.: Pilot pattern design for two-dimensional OFDM modu-
lations in time-varying frequency-selective fading channels. IEEE Trans. Wireless
Commun. 21, 1335–1346 (2021)

7. Hsieh, M.H., Wei, C.H.: Channel estimation for OFDM systems based on comb-
type pilot arrangement in frequency selective fading channels. IEEE Trans. Con-
sum. Electron. 44(1), 217–225 (1998)

8. Kewen, L., et al.: Research of MMSE and LS channel estimation in OFDM systems.
In: The 2nd International Conference on Information Science and Engineering, pp.
2308–2311. IEEE (2010)

9. Lin, J.C.: Least-squares channel estimation for mobile OFDM communication on
time-varying frequency-selective fading channels. IEEE Trans. Veh. Technol. 57(6),
3538–3550 (2008)

10. Liu, Y., Tan, Z., Hu, H., Cimini, L.J., Li, G.Y.: Channel estimation for OFDM.
IEEE Commun. Surv. Tutor. 16(4), 1891–1908 (2014)

11. Ma, J., Xue, E., Dong, X.: New pilot signal design on compressive sensing based
random access for machine type communication. In: 2020 IEEE 8th International
Conference on Information, Communication and Networks (ICICN), pp. 69–73.
IEEE (2020)

12. Mallach, S.: Improved mixed-integer programming models for the multiprocessor
scheduling problem with communication delays. J. Comb. Optim. 36(3), 871–895
(2017). https://doi.org/10.1007/s10878-017-0199-9

13. Morelli, M., Mengali, U.: A comparison of pilot-aided channel estimation methods
for OFDM systems. IEEE Trans. Signal Process. 49(12), 3065–3073 (2001)

14. Morrison, D.R., Jacobson, S.H., Sauppe, J.J., Sewell, E.C.: Branch-and-bound
algorithms: a survey of recent advances in searching, branching, and pruning. Dis-
cret. Optim. 19, 79–102 (2016)

https://doi.org/10.1007/s10878-017-0199-9

254 S. Wang et al.

15. Muquet, B., De Courville, M., Duhamel, P.: Subspace-based blind and semi-blind
channel estimation for OFDM systems. IEEE Trans. Signal Process. 50(7), 1699–
1712 (2002)

16. Panta, K.R., Armstrong, J.: Effects of clipping on the error performance of OFDM
in frequency selective fading channels. IEEE Trans. Wireless Commun. 3(2), 668–
671 (2004)

17. Pratschner, S., et al.: Versatile mobile communications simulation: the Vienna 5G
Link Level Simulator. EURASIP J. Wirel. Commun. Netw. 2018(1), 1–17 (2018).
https://doi.org/10.1186/s13638-018-1239-6

18. Quadri, D., Soutif, E., Tolla, P.: Exact solution method to solve large scale integer
quadratic multidimensional knapsack problems. J. Comb. Optim. 17(2), 157–167
(2009)

19. Shi, L., Guo, B., Zhao, L.: Block-type pilot channel estimation for OFDM systems
under frequency selective fading channels (2009)

20. So, J., Kim, D., Lee, Y., Sung, Y.: Pilot signal design for massive MIMO systems:
a received signal-to-noise-ratio-based approach. IEEE Signal Process. Lett. 22(5),
549–553 (2014)

21. Soltani, M., Pourahmadi, V., Mirzaei, A., Sheikhzadeh, H.: Deep learning-based
channel estimation. IEEE Commun. Lett. 23(4), 652–655 (2019)

22. Soltani, M., Pourahmadi, V., Sheikhzadeh, H.: Pilot pattern design for deep
learning-based channel estimation in OFDM systems. IEEE Wireless Commun.
Lett. 9(12), 2173–2176 (2020)

23. Soman, A.M., Nakkeeran, R., Shinu, M.J.: Pilot based MMSE channel estimation
for spatial modulated OFDM systems. Int. J. Electron. Telecommun. 67(4), 685–
691 (2021)

24. Stuber, G.L., Barry, J.R., Mclaughlin, S.W., Li, Y., Ingram, M.A., Pratt, T.G.:
Broadband MIMO-OFDM wireless communications. Proc. IEEE 92(2), 271–294
(2004)

25. Sutar, M.B., Patil, V.S.: LS and MMSE estimation with different fading channels
for OFDM system. In: 2017 International conference of Electronics, Communica-
tion and Aerospace Technology (ICECA), vol. 1, pp. 740–745 (2017). https://doi.
org/10.1109/ICECA.2017.8203641

26. Tian, Y., Li, K., Yang, W., Li, Z.: A new effective branch-and-bound algorithm
to the high order MIMO detection problem. J. Comb. Optim. 33(4), 1395–1410
(2017)

27. Tong, L., Sadler, B.M., Dong, M.: Pilot-assisted wireless transmissions: general
model, design criteria, and signal processing. IEEE Signal Process. Mag. 21(6),
12–25 (2004)

28. Wang, X.: OFDM and its application to 4G. In: 14th Annual International Confer-
ence on Wireless and Optical Communications, WOCC 2005, p. 69. IEEE (2005)

29. Wu, H.: LMMSE channel estimation in OFDM systems: a vector quantization
approach. IEEE Commun. Lett. 25(6), 1994–1998 (2021)

30. Zhang, L., et al.: Lattice pilot aided DMT transmission for optical interconnects
achieving 5.820 bits/HZ per lane (2019)

https://doi.org/10.1186/s13638-018-1239-6
https://doi.org/10.1109/ICECA.2017.8203641
https://doi.org/10.1109/ICECA.2017.8203641

AoI Minimizing of Wireless Rechargeable
Sensor Network Based on Trajectory
Optimization of Laser-Charged UAV

Chuanwen Luo1,2, Yunan Hou1,2, Yi Hong1,2(B), Zhibo Chen1,2, Ning Liu1,2,
and Deying Li3

1 School of Information Science and Technology, Beijing Forestry University,
Beijing 100083, China

{chuanwenluo,hongyi,zhibo}@bjfu.edu.cn
2 Engineering Research Center for Forestry-Oriented Intelligent Information

Processing of National Forestry and Grassland Administration, Beijing 100083, China
3 School of Information, Renmin University of China, Beijing 100872,

People’s Republic of China
deyingli@ruc.edu.cn

Abstract. This paper investigates a new UAV-assisted Wireless
Rechargeable Sensor Network (WRSNs) based on wireless powered tech-
nologies, where the Unmanned Aerial Vehicle (UAV) can not only be
used as wireless aerial mobile base station for gathering data from sen-
sors but also be used as mobile charger to replenish energy for sensors,
and it also can be charged energy by Laser Beam Directors (LBDs) to
overcome the limitation of on-board energy shortage. In such a network,
we study the average Age of Information Optimization (AoIO) problem
whose objective is to minimize the average AoI of data collected from
sensors by UAV. We first prove that the AoIO problem is NP-hard. Since
the average AoI depends on UAV’s flight trajectory, the hovering time
required for data collection, energy power transfer and laser charging,
we propose an approximation algorithm to solve the AoIO problem by
jointly optimizing these factors. Afterwards, we conduct extensive simu-
lation experiments to validate effectiveness of the proposed algorithm.

Keywords: WRSN · Laser-charged UAV · Age of Information

1 Introduction

Wireless Sensor Networks (WSNs) have wide applications in human produc-
tion and life. Data gathering is a fundamental issue in WSNs since they are
typically data centric. Specially, in some real-time status information updating

This work was supported in part by the Fundamental Research Funds for the Central
Universities under grants (2021ZY88), also supported by the National Natural Science
Foundation of China under Grant (62002022, 32071775).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 255–267, 2022.
https://doi.org/10.1007/978-3-031-16081-3_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_22&domain=pdf
https://doi.org/10.1007/978-3-031-16081-3_22

256 C. Luo et al.

applications, such as earthquake monitoring and forest fire protection, the data
generated by sensors are required to delivered to the destination as quickly as
possible for further data processing and analysis. Many research use the metric
of Age of Information (AoI) to characterize the freshness of sensory data [1,2].
The AoI depicts the time difference between the time of data arriving destination
and the time of data collection beginning for any sensor [3].

However, due to the battery capacity of sensors, the energy replenishing
issues of sensors are becoming one of the most critical issues in the applications
of WSNs. With the development of the wireless energy transfer technologies,
such as Frequency Signal (RF) [4], the sensors can be charged through equipping
wireless energy receiving antenna in WSNs. Such networks are called Wireless
Rechargeable Sensor Networks (WRSNs). In WRSNs, the sensors can complete
data transmission task through wireless received energy from mobile chargers.

In WSNs, Unmanned Aerial Vehicle (UAV) can be used as mobile station for
collecting data from sensors [5] and used as mobile Frequency Signal (RF) energy
source to replenish energy for sensors [6] due to their high maneuverability, good
speed, flexibility, and increasing carrying capacity. However, since the UAVs
are powered by batteries, they suffer from a lack of energy during performing
data collection and wireless energy transfer tasks in the network. To solve the
energy limitation problem of UAV, the Laser Beam Directors (LBDs) deployed
at ground are used for providing energy by emitting wireless laser beams [7].

Inspired by the novel wireless energy transfer and laser charging technologies,
joint the benefit of UAV as mobile station for data gathering, in this paper, we
study the average Age of Information Optimization (AoIO) problem in UAV-
assisted WRSNs, whose objective aims at minimizing the average AoI of data
collected from sensors such that the UAV and sensors have enough power to
complete tasks. The contribution of this paper can be summarized as below.

(1) We propose a new laser-charged UAV-assisted WRSN structure, in which
UAV can not only be used as wireless mobile collector for gathering data
from sensors but also be used as mobile charger to replenish energy for
sensors, and it can also be replenished energy by LBDs to work for long
periods of time.

(2) We first prove that the AoIO is NP-hard. Then we propose an approximation
to solve the AoIO problem, which is to design the optimal trajectory of UAV
and hovering times during data gathering, wireless energy transfer and laser
charing to minimize the average AoI of data collected from sensors.

(3) We conduct extensive simulations to illustrate the effectiveness of the pro-
posed algorithm for the AoIO problem.

The rest of the paper is organized as follows. In Sect. 2, we briefly introduce
the literatures related with the investigated problem. In Sect. 3, we introduce the
model and definition for the AoIO problem. In Sect. 4, we propose an approxima-
tion algorithm to solve the AoIO problem. In Sect. 5, we present the simulation
results to verify the validity of the proposed algorithm. In Sect. 6, the paper is
summarized.

AoI Minimizing of Wireless Rechargeable Sensor Network 257

2 Related Works

In this section, we briefly review the literatures related with the AoIO problem.
In [3], Hu et al. investigated the average AoI minimizing problem based on

UAV’s trajectory and time allocation for energy harvesting and data collection
in UAV-assisted wireless powered WSN, where the UAV was used as both mobile
data collector and charger for sensors without considering the limitation of the
energy. In [8], Benmad et al. investigated the data collection problem in UAV-
assisted WSNs powered by harvested energy, whose objective is to minimize the
mission total time of the UAV while serving all sensors by ensuring that each
sensor receives its required energy and transfers its sensed data since the limited
energy of its battery. In [9], Zhang et al. studied the average AoI problem by
optimizing the UAV trajectory in energy recharging UAV-based WSNs, where
the UAV is used as a mobile data collector to gather data from sensors and it can
be replenished energy by ground chargers through wireless energy transfer. In
[10], Lahmeri et al. proposed a Internet of Things (IoTs) structure which consists
of UAVs, IoT devices and LBDs, where the UAVs collect data from IoT devices
and LBDs provide energy for UAVs. Zhao et al. [11] proposed an optimization
network framework for joint optimizing the source, UAV and LBD’s transmitting
powers along with the UAV’s trajectory in a laser-charged UAV-enabled mobile
relaying system to maximize the weighted sum of the energy efficiency, where
the UAV is charged by LBD through emitting laser beams.

Based on the above literatures, this paper proposes a new network frame-
work which consists a UAV, LBDs and sensors, where the UAV is used as mobile
collector for gathering data from sensors and also used to be charger to replenish-
ing energy for sensors, and it is charged by ground LBDs. In such a network, we
investigate the average AoI minimization problem by optimizing jointly UAV’s
trajectory and hovering times required for wireless energy transfer, laser charging
and data collection.

3 Model and Problem Definition

3.1 Network Model

In this paper, we consider a laser charged UAV-assisted WRSN that consists of
a UAV f equipped with half-duplex hybrid access point, n ground sensors repre-
sented as S = {s1, s2, · · · , sn}, m ground LBDs denoted as D = {b1, b2, · · · , bm},
a data center s0 = {xs

0, y
s
0}, as shown in Fig. 1. In the network, sensors are ran-

domly deployed in a monitoring area A to detect environment and each si ∈ S
with Ei energy and Vi data is located at si = (xs

i , y
s
i). The UAV can collect

data from sensors and also transfer energy power to sensors when it hovers.
Assume that the UAV stores initial energy E and flies at a fixed altitude H with
a constant speed v. LBDs that have the same laser transmitting power PL are
distributed in the monitoring area A with uniform distribution, and each bj ∈ D
is located at bj = (xb

j , y
b
j).

258 C. Luo et al.

Since the flight altitude of UAV is H, the UAV completes the charging and
data collection tasks or receiving laser beam energy only when it hovers at H
altitude right above of sensors and LBDs. For any si ∈ S (or bj ∈ D), let s′

i (or
b′
j) be the point at H altitude right above si (or b′

j), and S′ = {s′
1, s

′
2, · · · , s′

n}
and D′ = {b′

1, b
′
2, · · · , b′

m}. For any pair of points u and t in the three dimensional
space, let d(u, t) denote the Euler distance between them, for example, d(s′

i, s
′
k)

represents the Euler distance between s′
i and s′

k. For simplicity, let d(u, t, w)
denotes the sum of d(u, t) and d(t, w).

Fig. 1. An illustrative model of laser-charged UAV-assisted WRSN, where UAV as
mobile collector and charger flies in trajectory s′

µ0 → s′
µ1 , · · · ,→ s′

µ6 → s′
µ0 and is

replenished energy by LBD.

3.2 Data Transmission Model from Sensor to UAV

In this paper, we adopt the LoS ground-to-air channel model between sensor
and UAV with the path loss exponent 2 ≤ α < 4 used by [12]. Therefore, the
data transmission rate from si to UAV can be expressed as

Rf
i = W log2(1 +

β0Pi

σ2dα(si, f)
), (1)

where W represents the channel bandwidth, Pi denotes the data transmission
power of si, β0 denotes the channel power at the reference distance d0 = 1 m,
and σ2 is the Gaussian noise power at the UAV.

3.3 Energy Harvesting Model from UAV to Sensor

In the wireless power transfer stage, the UAV keeps transmitting RF signals to
the sensor with a fixed power Pu. In this paper, we use the RF energy transfer
model proposed in [13]. Therefore, the received power at si from UAV can be
described by

AoI Minimizing of Wireless Rechargeable Sensor Network 259

P r
i =

GtGrη

Lp
(

λ

4π(d(si, f) + β)
)2Pu, (2)

where β is a parameter to adjust the Friis equation for the short distance trans-
mission, λ denotes the average wavelength, Gt represents the transmit gain
parameter, Gr denotes the received gain parameter, Lp is the polarization loss.

3.4 Laser Charging Model from LBD to UAV

In this paper, the LBDs as laser beams transmitters charge for the UAV. We
adopt the theoretical framework of power transfer in [14] from LBDs to UAV,
and the received power of UAV from bj is expressed as

P f
j = PL · ηle · e−δ·d(bj ,f), (3)

where δ is the laser attenuation coefficient, d(bj , f) represents the distance
between bj and f , ηle denotes the laser to electricity conversion efficiency. The
value of δ can be depict as �

μ (∂
χ)−ς , where 	 and χ are two constants, μ is the

visibility of environment, ∂ denotes the wavelength, ς represents the size distri-
bution of the scattering particles.

3.5 Problem Formulation

AoI Model. Suppose that the UAV completes the energy transfer and data
collection tasks for n sensors one by one based on obtained flight trajectory of
UAV, i.e. s′

μ0
→ s′

μ1
→ s′

μ2
· · · → s′

μn
→ s′

μ0
, where s′

μ0
= s′

0 and s′
μi

denotes the
i-th sensor on the flight trajectory. We denote the total flight time of UAV for
completing charging and data collection tasks of network as T . Let t0μi

be the
time of UAV reaching sμi

. According to the definition of AoI [15], we can obtain
that the AoI of data collected from sμi

can be expressed as

Δμi
= T − t0μi

. (4)

The average AoI of all data collected from sensors is defined

Δ̄ =
1
n

n∑

i=1

Δμi
. (5)

Mathematical Problem Model. For any i from 0 to n, we use tcμi
and thμi

to denote the hovering time of UAV for data collection and energy transfer for
sμi

, respectively. Let E0
μi

be the remaining energy of UAV when it is at the time
of leaving s′

μi
, where E0

μ0
= E. We use tbμi

and tbμi,i+1
to denote the charging

time of UAV hovering at b′
μi

and b′
μi,i+1

, respectively, where we can obtain b′
μi

and b′
μi,i+1

by d(s′
μi

, b′
μi

) = min{d(s′
μi

, b′
j)|b′

j ∈ D′} and d(s′
μi

, b′
μi,i+1

, s′
μi+1

) =
min{d(s′

μi
, b′

j , s
′
μi+1

)|b′
j ∈ D′}. For simplicity, we let μn+1 = μ0.

260 C. Luo et al.

We define the binary variables xμi
and xμi,i+1 as below.

xμi
=

{
1 the UAV is charged by bμi

0 otherwise (6)

xμi,i+1 =
{

1 the UAV is charged by bμi,i+1

0 otherwise (7)

Our goal is to design the optimal trajectory of UAV and also allocate the time
for data collection, energy transfer and harvesting energy in order to minimize
Δ̄ of the network. The optimization problem which is called the average Age of
Information Optimization (AoIO) can be mathematically expressed as

min Δ̄ (8)

s.t.

tcμi
Rf

μi
≥ Vμi

(9)

Eμi
+ thμi

P r
μi

≥ tcμi
Pμi

+ Eθ (10)

E ≥ max{d(s′
μi

, b′
μi

) + d(s′
μi

, s′
μi+1

)
v

+ tcμi
+ thμi

|1 ≤ i ≤ n} (11)

min{E,E0
μi

+ tbui,i+1
P f

μi,i+1
− d(s′

μi
, bμi,i+1) + d(bμi,i+1 , s

′
μi+1

)
v

}

≥ d(s′
μi+1

, b′
μi+1

)
v

+ tcμi+1
+ thμi+1

(12)

t0μi
=

i∑

k=1

(
d(s′

μk−1
, s′

μk
)

v
· xμk−1,k

+ (
d(s′

μk−1
, b′

μk−1,k
, s′

μk
)

v
+ tbμk−1,k

)

·xμk−1,k
+ (

2d(s′
μk−1

, b′
μk−1

)
v

+ tbμk−1
) · xμk−1 + tcμk−1

+ thμk−1
)

(13)

E0
μi

= t0μi
−

i∑

k=1

((tbμk
− tbμk

P f
μk

) · xμk
+ (tbμk−1,k

− tbμk−1,k
P f

μk−1,k
) · xμk−1,k

)

+(
2d(s′

μi
, b′

μi
)

v
+ tbμi

) · xμi
+ tcμi

+ thμi

(14)

T = t0μn+1
+ κ, t0μ0

= κ (15)

xμi
, xμi,i+1 ∈ {0, 1}, 0 ≤ i ≤ n (16)

AoI Minimizing of Wireless Rechargeable Sensor Network 261

Constraint (9) is to make sure sμi
successfully transmits Vμi

data to the
UAV within tcμi

time. Constraint (10) ensures that the sum of the initial energy
and charging energy of sμi

is greater than or equal to the sum of threshold
and the energy consumption for data transmission. Constraint (11) guarantees
that the AoIO problem has feasible solution. Constraint (12) ensures that after
replenishing energy at bμi,i+1 , the UAV can complete charging and data collection
tasks for s′

μi+1
and arrive to b′

μi+1
. The Eq. (13) is to compute the time t0μi

which contains the flying time on the trajectory and all hovering times for data
collection, energy transfer and harvesting energy before arriving s′

μi
. The Eq.

(14) is to compute the remaining energy of UAV when is leaving s′
μi

. The Eq.
(15) is to illustrate that T is the time of UAV returning sμ0 .

Theorem 1. The AoIO problem is NP-hard.

Proof. If we set E is a very large value, then the problem can be reduced to the
P1 problem in [3] since the UAV does not need to replenished energy by LBDs.
Since the P1 problem is proved NP-hard and it is a special case of the problem,
the problem is also NP-hard.

4 Algorithm for the AoIO Problem

In this section, we propose an approximation algorithm to solve the AoIO prob-
lem, which is called AoIOA. The algorithm aims at finding an optimal trajectory
of UAV such that the average AoI of the network is minimized. The algorithm
consists of the following four steps.

In the first step, we use the 1.5-approximation algorithm for the TSP problem
to compute the flight trajectory of UAV for S′ ∪ {s′

0} [16], and the order visited
by UAV is denoted as s′

μ0
, s′

μ1
, s′

μ2
, · · · , s′

μn
, where s′

μ0
= s′

0.
In the second step, for any i from 0 to n, we compute the data transmission

rate Rf
μi

from sμi
to UAV as Rf

μi
= W log2(1 + β0Pμi

σ2Hα). Then we compute the
data collection time tcμi

= Vi

Rf
μi

and the energy wireless transfer time thμi
=

max{Eθ+tc
μi

Pμi
−Eμi

,0}
P r

μi

of UAV at s′
i. Afterwards, we select b′

μi
which is closest to

s′
μi

from D′, i.e. d(s′
μi

, b′
μi

) = min{d(s′
μi

, b′
j)|b′

j ∈ D′}.
In the third step, for any i (0 ≤ i ≤ n), we let parameters t0μi

and T �
μi

denote
the time of UAV arriving s′

μi
and leaving s′

μi
, respectively. Then we set t0μ0

= κ

and T �
μ0

= κ, where κ is the vertical flight time from sμ0 to s′
μ0

. After that, for

any i from 0 to n − 1, we set Ei,i+1
c =

d(s′
μi

,s′
μi+1

)

v +
d(s′

μi+1
,b′

μi+1
)

v + tcμi+1
+ thμi+1

,
which is to judge whether the remanning energy of UAV can support UAV to fly
from s′

μi
to s′

μi+1
and complete data collection and energy transfer tasks of s′

μi+1

meanwhile can arrive the nearest LBD for replenishing energy. Then we select
the flight trajectory of UAV as the following three cases by comparing Ei,i+1

c

with the remanning energy Er of UAV.

262 C. Luo et al.

Algorithm 1: AoIOA
Data: D = {b1, b2, · · · , bm}, S = {s1, s2, · · · , sn}, Vi and Ei for each

si ∈ S, v, H, E, Er = E;
Result:

1 Using the 1.5-approximation algorithm for the TSP problem to compute
the flight trajectory of UAV for S′ ∪ {s′

0} [16], and the order visited by
UAV is denoted as s′

μ0
, s′

μ1
, s′

μ2
, · · · , s′

μn
, where s′

μ0
= s′

0;
2 for i from 1 to n do

3 Rf
μi

= W log2(1 + β0Pμi

σ2Hα), tcμi
= Vi

Rf
μi

, thμi
=

max{Eθ+tc
μi

Pμi
−Eμi

,0}
P r

μi

;

4 d(s′
μi

, b′
μi

) = min{d(s′
μi

, b′
j)|b′

j ∈ D′};
5 end
6 t0μ0

= κ, T �
μ0

= κ;
7 for i from 0 to n − 1 do

8 Ei,i+1
c =

d(s′
μi

,s′
μi+1

)+d(s′
μi+1

,b′
μi+1

)

v + tcμi+1
+ thμi+1

;
9 if Ei,i+1

c ≤ Er then

10 t0μi+1
= T �

μi
+

d(s′
μi

,s′
μi+1

)

v , T �
μi+1

= t0μi+1
+ tcμi+1

+ thμi+1
;

11 Er = Er − Ei,i+1
c +

d(s′
μi+1

,b′
μi+1

)

v ;
12 else
13 if Ei,i+1

c − tcμi+1
− thμi+1

≤ Er < Ei,i+1
c then

14 P f
μi+1

= PL · ηle · e−δH , t0μi+1
= T �

μi
+

d(sμi
,sμi+1)

v ;

15 Er = E − Ei,i+1
c + Er − d(s′

μi+1
,b′

μi+1
)

v , tbμi+1
= E

P f
μi+1

;

16 T �
μi+1

= t0μi+1
+ tcμi+1

+ thμi+1
+ tbμi+1

+
2d(s′

μi+1
,b′

μi+1
)

v ;
17 else
18 for j from 1 to m do
19 if d(s′

μi
, b′

j) ≤ v · Er then
20 Qμi

= Qμi
∪ {d(s′

μi
, b′

j , s
′
μi+1

)};
21 end
22 end
23 d(s′

μi
, b′

μi,i+1
, s′

μi+1
) = min{d(s′

μi
, b′

j , s
′
μi+1

)|d(s′
μi

, b′
j , s

′
μi+1

) ∈
Qμi

};

24 P f
μi,i+1

= PL · ηle · e−δH , tbμi,i+1
= E−(Er−

d(s′
μi

,b′
μi,i+1

)

v)

P f
μi,i+1

;

25 t0μi+1
= T �

μi
+

d(sμi
,b′

μi,i+1
)+d(b′

μi,i+1
,sμi+1)

v + tbμi,i+1
;

26 T �
μi+1

= t0μi+1
+ tcμi+1

+ thμi+1
;

27 end
28 end
29 end

30 T = T �
μn

+
d(s′

μn
,s′

μ0
)

v + κ, Δ̄ = 1
n

∑n
i=1(T − t0μi

);

AoI Minimizing of Wireless Rechargeable Sensor Network 263

(1) Ei,i+1
c ≤ Er. The UAV with remanning energy Er not only can arrive s′

μi+1

for completing data collection and energy transfer tasks but also can arrive
the nearest point b′

μi+1
for replenishing energy. Then we compute t0μi+1

=

T �
μi

+
d(s′

μi
,s′

μi+1
)

v and T �
μi+1

= t0μi+1
+ tcμi+1

+ thμi+1
. Afterwards, we update

the remaining time of UAV as Er = Er − Ei,i+1
c +

d(s′
μi+1

,b′
μi+1

)

v .
(2) Ei,i+1

c −tcμi+1
−thμi+1

≤ Er < Ei,i+1
c . The UAV with remanning energy Er can

only arrive s′
μi+1

to complete a part of energy transfer and data collection
tasks. Therefore, the UAV needs to fly to b′

μi+1
for replenishing energy and

returns to s′
μi+1

for completing the remaining tasks. Firstly, we compute
the energy transfer power from b′

μi+1
to UAV as P f

μi,i+1
= PL · ηle · e−δH

and compute the charging time at b′
μi+1

as tbμi+1
= E

P f
μi+1

. Secondly, we

compute the leaving time at s′
μi+1

as T �
μi+1

= t0μi+1
+ tcμi+1

+ thμi+1
+ tbμi+1

+
2d(s′

μi+1
,b′

μi+1
)

v . Finally, we update the remaining energy at the T �
μi+1

time as

Er = E − Ei,i+1
c + Er − d(s′

μi+1
,b′

μi+1
)

v .
(3) Er ≤ Ei,i+1

c −tcμi+1
−thμi+1

. Firstly, for any j from 1 to m, we use the condition
d(s′

μi
, b′

j) ≤ v·Er to judge whether the remanning energy of UAV can support
UAV to arrive b′

j . If it is, then we add d(s′
μi

, b′
j , s

′
μi+1

) to Qμi
. Then we let

d(s′
μi

, b′
μi,i+1

, s′
μi+1

) = min{d(s′
μi

, b′
j , s

′
μi+1

)|d(s′
μi

, b′
j , s

′
μi+1

) ∈ Qμi
}, where

b′
μi,i+1

is an intermediate node connecting s′
μi

and s′
μi+1

to replenish energy
of UAV. Afterwards, we compute the hovering time of UAV for charging at

b′
μi+1

as tbμi,i+1
= E−(Er−

d(s′
μi

,b′
μi,i+1

)

v)

P f
μi,i+1

. Finally, we compute t0μi+1
= T �

μi
+

d(s′
μi

,b′
μi,i+1

)+d(b′
μi,i+1

,s′
μi+1

)

v + tbμi,i+1
and T �

μi+1
= t0μi+1

+ tcμi+1
+ thμi+1

.

Consequently, we can obtain the total time consumption of UAV is T = T �
μn

+
d(s′

μn
,s′

μ0
)

v + κ and the average AoI of data is Δ̄ = 1
n

∑n
i=1(T − t0μi

).
The pseudo-code of the algorithm is given in Algorithm 1.

5 Performance Evaluation

In this section, we give the performance analysis of the AoIOA algorithm through
a large number of experiments using MATLAB and Java programming. In the
simulations, sensors are randomly deployed in the 2000 m ∗ 2000 m square detect-
ing area and each result is the average of 100 runs.

264 C. Luo et al.

To prove the effectiveness of the AoIOA algorithm, we first propose an Enu-
merating Optimal Algorithm (EOA) to compute an optimal solution for a given
laser-charged UAV-assisted WRSN that consists of one base station, one UAV,
3 LBDs and 15 sensors. Then we compare AoIOA with EOA for any sensor in
the network when we set E = 10000 s, Pi = 20 W and Vi = 500 Mb for any
si ∈ S, Pu = 200 W, Pb = 300 W, ηle = 0.15, v = 10 m/s, β0

σ2 = 80 dB, H = 60
m, and W = 1 MB/s. Figure 2(a) gives the AoI �μi

of sμi
achieved by the two

algorithms for any 1 ≤ i ≤ 15. The results show that the AoI of each sensor
obtained by our AoIOA is close to the optimal EOA algorithm. According to
Fig. 2(b), we can find that the gap of the average AoI between AoIOA and EOA
is small and it maintains changeless, which proves the validity of the AoIOA
algorithm.

In the following, we evaluate the impact of the different parameter settings
on the average AoI of the network.

Firstly, we measure the average AoI of the network when we set n = 60,
m = 4, E = 10000 s, Pi = 20 W and Vi = 500 MB for each si ∈ S, ηle = 0.15,
β0
σ2 = 80 dB, v = 10 m/s, Pu =200 W, PL = 300 W, H = 50 m, 60 m, 70 m, 80 m,
90 m and change W from 1 MB to 3.5 MB. As shown in Fig. 3(a), we can find that
the average AoI of the network decreases as W increases. This is because when
W increases, the hovering time of UAV for collecting data from sensors decreases,
which leads to the descend of AoI for each sensor. And we also observe that the
average AoI decreases with the increasing of H since the data transmission rate
from sensors to UAV grows as H decreases.

Fig. 2. The comparison result between AoIOA and EOA.

Secondly, we evaluate the impact of n on the average AoI as we set E = 10000
s, Pi = 20 W and Vi = 500 MB for each si ∈ S, ηle = 0.15, β0

σ2 = 80 dB,
v = 10 m/s, H = 60 m, Pu = 200 W, PL = 300 W, m = 2, 3, 4, 5, 6, and vary
n from 50 to 110 increased by 10. As shown in Fig. 3(b), we can find that the
average AoI grows as n increases since the time arriving at s0 increases with
the increasing of n. We also observe that the average AoI decreases as m grows.
This is because that the flying distance from sensors to LBDs decreases as the
deployment density of LBDs increases.

AoI Minimizing of Wireless Rechargeable Sensor Network 265

1 1.5 2 2.5 3 3.5
BandWidth (MB/s)

800

1000

1200

1400

1600

1800

2000

2200
Th

e
Av

er
ag

e
Ao

I
H=50m
H=60m
H=70m
H=80m
H=90m

(a) Increasing W between 1 to 3.5 MB

50 60 70 80 90 100 110
Number of Sensors

1800

3300

4800

6300

7800

9300

10800

Th
e

Av
er

ag
e

Ao
I

m=2
m=3
m=4
m=5
m=6

(b) Increasing n from 50 to 110

2 4 6 8 10 2 4 6 8
Flight Speed (m/s)

500

1000

1500

2000

2500

3000

3500

4000

4500

Th
e

Av
er

ag
e

Ao
I

Vi=100MB
Vi=200MB
Vi=300MB
Vi=400MB
Vi=500MB

(c) Increasing v from 2 to 8 m/s

100 200 300 400 500 600
Energy Transmission Power (W)

550

600

650

700

750

800
Th

e
Av

er
ag

e
Ao

I
W=1.0MB/s
W=1.5MB/s
W=2.0MB/s
W=2.5MB/s
W=3.0MB/s

(d) Increasing Pu from 100 to 600 W

Fig. 3. The performance of AoIOA under different configurations.

Thirdly, we illustrate the impact of flying speed v on the average AoI when
we set n = 60, E = 10000 s, m = 4, Pi = 20 W for each si ∈ S, ηle = 0.15,
β0
σ2 = 80 dB, v = 10 m/s, H = 60 m, Pu = 200 W, PL = 300 W, Vi = 100 MB, 200
MB, 300 MB, 400 MB, 500 MB, and change v from 2 m/s to 8 m/s. As shown in
Fig. 3(c), we can find that the average AoI decreases with v increasing since the
decrease of flying time give rise to the decrease of AoI for each sensor. We also
observe that the average AoI decreases as Vi diminishes since the hovering time
for collecting time decrease as Vi reduces.

Finally, we measure the average AoI of the network when we set n = 60,
E = 10000 s, m = 4, Pi = 20 W for each si ∈ S, ηle = 0.15, β0

σ2 = 80 dB, v = 10
m/s, H = 60 m, Pu = 200 W, PL = 300 W, W= 1 MB, 1.5 MB, 2 MB, 2.5 MB,
3 MB, and change Pu from 100 W to 600 W. As shown in Fig. 3(d), we can find

266 C. Luo et al.

that the average AoI decreases with Pu increasing since the hovering time for
energy transfer from UAV to sensors decrease as Pu grows. Meanwhile, we can
observe that the result decreases with W increases since the data collection time
decreases as W grows.

6 Conclusion

In this paper, we investigate the average Age of Information Optimization
(AoIO) problem in a new laser-charged UAV-assisted wireless rechargeable sen-
sor network (WRSN). Then we prove that the AoIO problem is NP-hard. After-
wards, we propose an approximation algorithm to solve the problem and prove
the validity with extensive simulations.

References

1. Abedin, S.F., Munir, M.S., Tran, N.H., Han, Z., Hong, C.S.: Data freshness and
energy-efficient UAV navigation optimization: a deep reinforcement learning app-
roach. IEEE Trans. Intell. Transp. Syst. 22(9), 5994–6006 (2020)

2. Liu, J., Tong, P., Wang, X., Bai, B., Dai, H.: UAV-aided data collection for informa-
tion freshness in wireless sensor networks. IEEE Trans. Wireless Commun. 20(4),
2368–2382 (2020)

3. Hu, H., Xiong, K., Qu, G., Ni, Q., Fan, P., Letaief, K.B.: AOI-minimal trajectory
planning and data collection in UAV-assisted wireless powered IoT networks. IEEE
Internet Things J. 8(2), 1211–1223 (2020)

4. Ding, X., et al.: Optimal charger placement for wireless power transfer. Comput.
Netw. 170, 107123 (2020)

5. Luo, C., Satpute, M.N., Li, D., Wang, Y., Chen, W., Wu, W.: Fine-grained tra-
jectory optimization of multiple UAVs for efficient data gathering from WSNs.
IEEE/ACM Trans. Networking 29(1), 162–175 (2020)

6. Wang, H., Wang, J., Ding, G., Wang, L., Tsiftsis, T.A., Sharma, P.K.: Resource
allocation for energy harvesting-powered D2D communication underlaying UAV-
assisted networks. IEEE Trans. Green Commun. Networking 2(1), 14–24 (2017)

7. Liu, W., Zhang, L., Ansari, N.: Laser charging enabled DBS placement for downlink
communications. IEEE Trans. Netw. Sci. Eng. 8(4), 3009–3018 (2021)

8. Benmad, I., Driouch, E., Kardouchi, M.: Data collection in UAV-assisted wire-
less sensor networks powered by harvested energy. In: 2021 IEEE 32nd Annual
International Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC), pp. 1351–1356. IEEE (2021)

9. Zhang, C., Liu, J., Xie, L., He, X.: Age-optimal data gathering and energy recharg-
ing of UAV in wireless sensor networks. In: 2021 3rd International Conference on
Advanced Information Science and System (AISS 2021), pp. 1–6 (2021)

10. Lahmeri, M.-A., Kishk, M.A., Alouini., M.-S.: Charging techniques for UAV-
assisted data collection: is laser power beaming the answer? IEEE Commun. Mag.
60(5), 50–56 (2022)

11. Zhao, M.-M., Shi, Q., Zhao, M.-J.: Efficiency maximization for UAV-enabled
mobile relaying systems with laser charging. IEEE Trans. Wireless Commun. 19(5),
3257–3272 (2020)

AoI Minimizing of Wireless Rechargeable Sensor Network 267

12. Zeng, Y., Zhang, R.: Energy-efficient UAV communication with trajectory opti-
mization. IEEE Trans. Wireless Commun. 16(6), 3747–3760 (2017)

13. He, S., Chen, J., Jiang, F., Yau, D.K.Y., Xing, G., Sun, Y.: Energy provisioning
in wireless rechargeable sensor networks. IEEE Trans. Mobile Comput. 12(10),
1931–1942 (2012)

14. Zhang, Q., Fang, W., Liu, Q., Jun, W., Xia, P., Yang, L.: Distributed laser charging:
a wireless power transfer approach. IEEE Internet Things J. 5(5), 3853–3864 (2018)

15. Kaul, S., Yates, R., Gruteser, M.: Real-time status: How often should one update?
In: 2012 Proceedings IEEE INFOCOM, pp. 2731–2735. IEEE (2012)

16. Du, D., Ko, K.-I., Hu, X., et al.: Design and Analysis of Approximation Algorithms,
vol. 62. Springer, New York (2012). https://doi.org/10.1007/978-1-4614-1701-9

https://doi.org/10.1007/978-1-4614-1701-9

Energy-Constrained Geometric Coverage
Problem

Huan Lan(B)

School of Mathematics and Statistics, Yunnan University,
Kunming 650504, People’s Republic of China

lanhuan0714@163.com

Abstract. Wireless sensor networks have many applications in real life.
We are given m sensors and n users on the plane. The coverage of each
sensor s is a disc area, whose radius r(s) and energy p(s) satisfy that
p(s) = r(s)α, where α ≥ 1 is the attenuation factor. In this paper, we
study the energy-constrained geometric coverage problem, which is to
find an energy allocation scheme such that the total energy does not
exceed a given bound P , and the total profit of the covered points is
maximized. We propose a greedy algorithm whose approximation ratio
is 1 − 1√

e
.

Keywords: Geometric covering · Energy-constrained · Greedy
algorithm · Approximation ratio

1 Introduction

Wireless sensor networks utilize sensors at fixed locations to serve users in a
target area. Assuming that the sensor and the user are in the same plane. The
service area of each sensor s is a disc D(s, r(s)) with a radius r(s), which depends
on the energy provided by the sensor. The relationship between the sensor energy
and the radius is p(s) = r(s)α, where α ≥ 1 is the attenuation factor. A user u
is covered by sensor s if the location of u is in the service disc D(s, r(s)). The
minimum energy coverage problem [1] is to find a minimum energy distribution
scheme to ensure that all users on the plane are covered by the sensor network.
In fact, the minimum energy coverage problem is NP-hard when α > 1 [1,2].

However, in most real environments, the wireless sensor network cannot cover
all users due to energy constraints [4,12–14]. Trade-offs between energy and per-
formance of sensor are important [11]. The energy-constrained geometric cover-
age problem aims to utilize limited energy to maximize coverage profits, which
is defined as follows. Given a user set U , a sensor set S on the plane and an
energy budget P , the profit of user u is wu for any u ∈ U . The goal is to find an
energy allocation scheme such that the total energy does not exceed P and the
total profit of covered users is maximized.

The energy-constrained geometric coverage problem is a special case of the
submodular cost constrained submodular function maximization problem, which
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 268–277, 2022.
https://doi.org/10.1007/978-3-031-16081-3_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_23&domain=pdf
https://doi.org/10.1007/978-3-031-16081-3_23

Energy-Constrained Geometric Coverage Problem 269

is to find a subset S′ of a given collection S of sets such that the submodular
profit of the union of S′ is maximized and the submodular cost of S′ is no
more than a given upper bound P , where an element in S′ can be seen as
the set of users covered by a sensor in S′. Zhang et al. [19] proposed a bi-
criterion generalized greedy algorithm which can achieve an approximation ratio
of 1/2(1−1/e). Iyer et al.[8] proposed a bi-criterion algorithm which achieves an
approximation ratio of 1/kg(1− (Kf−Kg

Kf
)kf), where Kf = max{| x |: f(x) < b},

kf = min{| x |: f(x) < b and ∀j /∈ x : f(x ∪ j) > b}. If the cost function is a
modular function, Wolsey et al. [17] proved that the modified greedy algorithm
can achieve an approximation ratio of (1 − 1/eβ), where β is the unique root
of the equation ex = 2 − x. Khuller et al. [9] proposed an algorithm which
achieves an approximation ratio of 1/2(1−1/e). Recently, Tang et al. [16] proved
that the algorithm in [9] can achieve an approximation ratio of (1 − 1/

√
e).

Sviridenko [15] proposed an algorithm by enumerating three elements which
achieves an approximation ratio of (1 − 1/e). Most recently, Ariel et al. [10]
proposed an algorithm by enumerating only two elements which achieves an
approximation ratio of (1 − 1/e). Yaroslavtsev et al. [18] proposed the Greed+

algorithm, which adds a single element to each iteration of the greedy algorithm
and achieves an approximation ratio of 1/2. Feldman et al. [6] proposed an
improved algorithm which enumerates an element in combination with Greed+

and achieves an approximation ratio of 0.6174.
The energy-constrained geometric coverage problem is a special case of the

maximum coverage problem under grouped budgets, which is to find a subset in
each group such that the number of elements in each group does not violate the
constraint and the total cost does not violate the constraint, and the coverage
profit is maximized. Chekuri et al. [3] proposed the greedy algorithms for the
cardinality constraint and the cost constraints and achieves an approximation
ratio of 1/(1+α) and 1/[6(1+α)], respectively, where α is the approximate ratio
for calling the sub-algorithm.

For the cost grouping constraint, Farbstein et al. [5] proposed an approxi-
mate algorithm and achieves an approximation ratio of α/(3 + 2α). Recently,
Guo et al. [7] used linear programming and rounding techniques to obtain a
pseudopolynomial-time approximation algorithm and achieves an approxima-
tion ratio of (1 − 1/e). They extended the algorithm to the maximum coverage
problem of cost constraints and cardinality grouping constraint.

In this paper, we study the energy-constrained geometric coverage problem,
which is given a user set U , a sensor set S on the plane and an energy budget P ,
the profit of user u is wu for any u ∈ U . The goal is to find an energy allocation
scheme such that the total energy does not exceed P and the total profit of
covered users is maximized. We proposed an greedy algorithm for the energy-
constrained geometric coverage problem and prove that the approximate ratio
of the greedy algorithm is 1 − 1√

e
.

The main structure of this paper is as follows: in Sect. 2, we introduce the
fundamentals of energy-constrained geometric coverage problem. In Sect. 3, we
propose a greedy algorithm. In Sect. 4, we make a summary.

270 H. Lan

2 Preliminaries

We are given a ground set U = {u1, u2, . . . , un} and a set function f : 2U → R.
A set function f is monotonic if ∀X ⊆ Y, f(X) ≤ f(Y). A set function f is
submodular if ∀X ⊆ Y ⊆ U, u /∈ Y ,

f(X ∪ {u}) − f(X) ≥ f(Y ∪ {u}) − f(Y).

We define f(u | X) = f(X ∪ {u}) − f(X).
The energy-constrained geometric coverage problem is described as follows:

Definition 1. Given a ground set of users U = {u1, u2, . . . , un}, each user
has a corresponding weight wu for any u ∈ U . Given a set of sensors S =
{s1, s2, . . . , sm}, each sensor s ∈ S can form a disc D(s, r(s)) by adjusting the
energy p(s). The relationship between energy and radius is p(s) = r(s)α, α ≥ 1.
Given P ∈ R

+, the energy-constrained geometric coverage problem is to find an
energy allocation scheme such that the total energy does not exceed P and the
total profit of covered users is maximized.

For any instance of the energy-constrained geometric coverage problem, the
distance between the sensor and the user is at most n. So a sensor si has at
most n optional discs whose radius is ri1 ≤ ri2 ≤ · · · ≤ rin. Let the optional disc
set of the sensor si be Di = {D(si, ri1), . . . , D(si, rin)} and D = {D1, . . . , Dm}.
The user set covered by D(si, rij) is cov(D(si, rij)). The energy-constrained geo-
metric coverage problem is that each sensor selects a disc from n optional discs
while satisfying the energy constraint and the total profit of covered users is
maximized. The mathematical programming is as follows:

max
n∑

k=1

wu · zk

s.t.
∑

{D(si,rij)|uk∈cov(D(si,rij))} xij ≥ zkk = 1, 2, . . . , n∑m
i=1

∑n
j=0 rα

ijxij ≤ P∑n
j=1 xij ≤ 1 i = 1, 2, . . . ,m

xij ∈ {0, 1} j = 0, 1, . . . , n; i = 1, 2, . . . ,m
zk ∈ {0, 1} k = 1, 2, . . . , n

.

Among them, xij = 1 indicates that the sensor si selects the disc D(si, rij), rα
ij

is the sensor si selects the disc D(si, rij) required energy. The first condition
indicates whether uk is covered. The second condition indicates that the energy
constraint and the third condition indicates that each sensor can only select one
disc.

3 Greedy Algorithm

In this section, we introduces the greedy algorithm for the energy-constrained
geometric coverage problem. Each iteration of the greedy algorithm is to select

Energy-Constrained Geometric Coverage Problem 271

the disc with the largest profit per unit of energy. Until all the discs are consid-
ered. Compare the selected disc set with the maximum profit disc and choose
the better one as the algorithm output.

In the energy-constrained geometric coverage problem, the discs of the
same sensor have a containment relationship, D(si, ri1) ⊆ D(si, ri2) ⊆ · · · ⊆
D(si, rin). Let

c(D∗) =
m∑

i=1

max
D∗∩Di

{rα
ij}

be sum of energy of the largest disc of the sensor. Let

f(D∗) =
∑

u∈cov(D∗)

wu

be sum of the sensor coverage benefits.
For the energy-constrained geometric coverage problem, the cost function

c(·) and the benefit function f(·) are monotone submodular function. In the
following, we use their properties and sensor can only choose one disc to prove
the lower bound of the approximation ratio of the greedy algorithm.

Algorithm 1:
Input: Objective function f , cost function c(·), budget P
Output: argmax

D∗∈{Dg,{ds}}
f(D∗)

1 Initially, let Dg = ∅ and D′ = D.
2 while D′ �= ∅ do
3 for i = 1, 2, . . . , m do
4 di ∈ argmaxd∈Diski

f(Dg∪d)−f(Dg)

c(Dg∪d)−c(Dg)

5 d′ ∈ argmax
i

f(Dg∪di)−f(Dg)

c(Dg∪di)−c(Dg)

6 if c(Dg ∪ d′) ≤ P and f(Dg ∪ d′) − f(Dg) > 0 then
7 Dg := Dg ∪ d′

8 D′ = D′\{d′}
9 ds ∈ argmax

d∈D,c(d)≤P

f(d)

10 Dg := { argmax
Dg∩Diski

c(d) | i = 1, 2, . . . , m}

Let di be the i-th disc added to the greedy solution Dg and Di = {d1, d2, . . . ,
di}, 0 ≤ i ≤| Dg | as the intermediate solution when the di is added. Let Ai is
the set of discs discarded due to budget constraints until di is selected. Let o and
o′ be the first and second disc in the OPT but not added to the Dg due to the
budget constraints. Let Q be the intermediate solutions of the greedy algorithm
when o be chosen.

272 H. Lan

Lemma 1. For the intermediate solution D̄ of the greedy algorithm after a
certain iteration, Ā is the corresponding discarded disc set and k =| D̄ |. Given
any disc assignment T , if T ∩ Ā = ∅, then

f(D̄) ≥ (1 − e
−c(D̄)
c(T))f(T).

Proof. If f(D̄) ≥ f(T), the lemma has been proven. We consider f(D̄) ≤ f(T).
Since f is a monotone sub-modular function, we have:

f(T) ≤ f(Di) +
∑

d∈T\Di

f(d | Di) = f(Di) +
∑

d∈T\Di

(c(d)
f(d | Di)

c(d)
).

According to c(·) is also a monotone submodular function and the greediness,
for any i ≤ k − 1 we have

f(d | Di)
c(d)

≤ f(d | Di)
c(d | Di)

≤ f(di+1 | Di)
c(di+1 | Di)

.

Since T ∩ Ā = ∅ and sensors can only be arranged on a disc, we have

f(T) ≤ f(Di) +
f(di+1 | Di)
c(di+1 | Di)

∑

d∈T\Di

c(d) ≤ f(Di) +
f(di+1 | Di)
c(di+1 | Di)

c(T).

Then

f(T)−f(Di+1) ≤ (1− c(di+1 | Di)
c(T)

)(f(T)−f(Di)) ≤ e− c(di+1|Di)
c(T) (f(T)−f(Di)).

The first inequality holds because the rearrangement inequalities. The second
inequality holds because the inequalities 1 − x ≤ e−x.

Repeating the above inequality, we have

f(T) − f(D̄) = f(T) − f(Dk)

≤ e− c(dk|Dk−1)
c(T) (f(T) − f(Dk−1))

≤ e− c(dk|Dk−1)
c(T) e− c(dk−1|Dk−2)

c(T) (f(T) − f(Dk−2))

= e− c(Dk−c(Dk−2)
c(T) (f(T) − f(Dk−2))

. . .

≤ e− c(Dk)−c(D0)
c(T) (f(T) − f(D0))

= e− c(D̄)
c(T) f(T)

From Lemma1, the intermediate solution Dg of the greedy algorithm satisfies
the following relation.

Energy-Constrained Geometric Coverage Problem 273

Lemma 2. The intermediate solution Dg of the greedy algorithm satisfies

f(Dg) ≥ (1 − e
−c(Q)

P)f(OPT).

Proof. By Lemma 1, let D̄ = Q and OPT ∩ Ā = ∅, let T = OPT , then we have

f(Q) ≥ (1 − e
−c(Q)
OPT)f(OPT).

Since Q ⊆ Dg and c(OPT) ≤ P then

f(Dg) ≥ (1 − e
−c(Q)

P)f(OPT).

Lemma 3. If i ≤ j − 1 then

f(dj+1 | Di)
c(dj+1 | Di)

≥ f(dj+1 | Dj)
c(dj+1 | Dj)

.

Proof. The following will prove from three cases.
If the generated intermediate solutions Dj \Di do not add a disc to the sensor

where dj+1 is located, then c(dj+1 | Di) = c(dj+1 | Dj). The following holds:

f(dj+1 | Di)
c(dj+1 | Di)

≥ f(dj+1 | Dj)
c(dj+1 | Dj)

.

If Dj−1 \ Di does not have the disc of the sensor where dj+1 is located and
dj and dj+1 on the same sensor, then:

f(dj+1 | Di)
c(dj+1 | Di)

≥ f(dj+1 | Dj−1)
c(dj+1 | Dj−1)

.

The inequality above has been proved.

f(dj | Dj−1)
c(dj | Dj−1)

≥ f(dj+1 | Dj−1)
c(dj+1 | Dj−1)

.

The inequality due to greediness. At the same time, f(dj+1 | Dj−1) = f(dj |
Dj−1) + f(dj+1 | Dj). Then there is the following inequality:

f(dj+1 | Di)

c(dj+1 | Di)
≥ f(dj+1 | Dj−1)

c(dj+1 | Dj−1)
=

c(dj | Dj−1)
f(dj |Dj−1)

c(dj |Dj−1)
+ c(dj+1 | Dj)

f(dj+1|Dj)

c(dj+1|Dj)

c(dj+1 | Dj−1)
.

Then
f(dj+1 | Di)
c(dj+1 | Di)

≥ f(dj+1 | Dj)
c(dj+1 | Dj)

.

From Di to Dj , if k discs are added to the sensor where dj+1 is located, the
above two cases and the greediness can be used repeatedly. The Lemma 3 has
been proven. Another inequality of Dg will be proved below.

274 H. Lan

Lemma 4. Given an arbitrary disc assignment T , the intermediate solution Dg

of the greedy algorithm satisfies

f(Dg) ≥ (1 − c(T)
P

)f(T).

Proof. If the T ⊆ Dg, the lemma has been proven.We consider T \ Dg �= ∅.
Let Dl = {d1, . . . , dl} be intermediate solution of the greedy algorithm when the
first disc from T is be selected but not added to Dg due to the budget constraint.
T ′ = T \ Dl. We have

f(d1 | D0)
c(d1 | D0)

≥ f(d2 | D0)
c(d2 | D0)

≥ f(d2 | D1)
c(d2 | D1)

≥ · · · ≥ f(dl | Dl−1)
c(dl | Dl−1)

≥ max
d∈T ′

f(d | Dl)
c(d | Dl)

≥ f(T ′ | Dl)
c(T ′ | Dl)

.

The first inequality holds because of greediness and the second inequality holds
because of Lemma 3. Repeat the above inequality. The last inequality holds
because f(T ′ | Dl) ≤ ∑

d∈T ′ f(d | Dl) and c(T ′ | Dl) =
∑

d∈T ′ c(d | Dl).
Then

f(T ′ | Dl)
c(T ′ | Dl)

≤
∑

d∈T ′ f(d | Dl)∑
d∈T ′ c(d | Dl)

≤
∑

d∈T ′ c(d | Dl)
f(d|Dl)
c(d|Dl)∑

d∈T ′ c(d | Dl)
≤ max

d∈T ′

f(d | Dl)
c(d | Dl)

.

Because
f(T) ≤ f(Dl) + f(T ′ \ Dl)

and

f(Dl) =
l∑

i=1

f(di | Di−1) =
l∑

i=1

c(di | Di−1)
f(di | Di−1)
c(di | Di−1)

≥
l∑

i=1

c(di | Di−1)
f(T ′ | Dl)
c(T ′ | Dl)

≥
l∑

i=1

c(di | Di−1)
f(T ′ | Dl)

c(T ′)

= c(Dl)
f(T ′ | Dl)

c(T ′)
.

By the definition of T ′ we have c(Dl) + c(T ′) > P . Then

f(T) ≤ f(Dl) + f(T ′ \ Dl) ≤ f(Dl) +
c(T ′)
c(Dl)

f(Dl) < (1 +
c(T ′)

P − c(T ′)
)f(Dl).

We use Lemma 4 to prove another relation between the intermediate solution
Dg of the greedy algorithm and OPT .

Lemma 5. Let OPT ′ = OPT \ (Q ∪ {o}) then

f(Dg) ≥ f(Q) + (1 − c(Q)
P − c(Q)

)f(OPT ′ | Q).

Energy-Constrained Geometric Coverage Problem 275

Proof. We know that f(·) is a monotone submodular function, then f(S | Q) is
also a monotone submodular function about S. We have

f(Dg) = f(Q) + f((Dg \ Q) | Q) ≥ f(Q) + (1 − c(OPT ′)
P − c(Q)

)f(OPT ′ | Q).

We also have c(Q) + c(o) > P and c(o) + c(OPT ′) ≤ c(OPT) ≤ P then
c(OPT ′) < c(Q). We have

f(Dg) ≥ f(Q) + (1 − c(Q)
P − c(Q)

)f(OPT ′ | Q).

Theorem 1. For energy-constrained geometric coverage problem, the greedy
algorithm can obtain an approximate lower bound of 1 − 1√

e
.

Proof. Let α∗ be the minimum of the following mathematical programming
problem about α, x1, x2, x3.

min α

s.t. α ≥ x1

α ≥ 1 − x1 − x2

α ≥ x1 + (1 − x3
1−x3

)x2

x1 ≥ 1 − e−x3

α, x1, x2, x3 ∈ [0, 1]

.

where α = f(D∗)
f(OPT) , x1 = f(Q)

f(OPT) , x2 = f(OPT ′|Q)
f(OPT) , x3 = c(Q)

P .
The first condition is due to f(D∗) ≥ f(Q). The second condition is due to

f(Q) + f(o | Q) + f(OPT ′ | Q) ≥ f(Q) + f({o} ∪ OPT ′ | Q) = f(OPT) and
f(D∗) ≥ f(ds) ≥ f(o | Q). The third condition is because of Lemma 5. The
fourth condition is because of Lemma 2.

Lemma 6 [16]. α∗ ≥ 1 − 1√
e
.

4 Discussion

In this paper, we study the energy-constrained geometric coverage problem. For
this problem we propose a greedy algorithm and achieves an approximation ratio
of 1 − 1√

e
.

Uncovered users are not considered in the energy-constrained geometric cov-
erage problem. Giving corresponding penalties to uncovered users and maximiz-
ing the benefit function is a future research direction.

276 H. Lan

References

1. Alt, H., Arkin, E.M., Brönnimann, H., et al.: Minimum-cost coverage of point
sets by disks. In: Amenta, N., Cheong, O. (eds.) Symposium on Computational
Geometry, pp. 449–458. ACM, New York (2006)

2. Bilò, V., Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: Geometric clustering
to minimize the sum of cluster sizes. In: Brodal, G.S., Leonardi, S. (eds.) ESA
2005. LNCS, vol. 3669, pp. 460–471. Springer, Heidelberg (2005). https://doi.org/
10.1007/11561071_42

3. Chekuri, C., Kumar, A.: Maximum coverage problem with group budget con-
straints and applications. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D.
(eds.) APPROX/RANDOM 2004. LNCS, vol. 3122, pp. 72–83. Springer, Heidel-
berg (2004). https://doi.org/10.1007/978-3-540-27821-4_7

4. Dai, H., Deng, B., Li, W., et al.: A note on the minimum power partial cover
problem on the plane. J. Comb. Optim. (2022). https://doi.org/10.1007/s10878-
022-00869-8

5. Farbstein, B., Levin, A.: Maximum coverage problem with group budget con-
straints. Journal of Combinatorial Optimization 34, 725-735 (2017). https://doi.
org/10.1007/s10878-016-0102-0

6. Feldman, M., Nutov, Z., Shoham, E.: Practical budgeted submodular maximiza-
tion. arXiv:2007.04937 (2020)

7. Guo, L., Li, M., Xu, D.: Approximation algorithms for maximum coverage with
group budget constraints. In: Gao, X., Du, H., Han, M. (eds.) COCOA 2017.
LNCS, vol. 10628, pp. 362–376. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-71147-8_25

8. Iyer, R., Bilmes, J.: Submodular optimization subject to submodular cover and sub-
modular knapsack constraints. In: Koyejo, S., Agarwal, A. (eds.) Twenty-Seventh
Conference on Neural Information Processing Systems, Lake Tahoe, Nevada, USA,
vol. 2, pp. 2436–2444 (2013)

9. Khuller, S., Moss, A., Naor, J.: The budgeted maximum coverage problem. Inf.
Process. Lett. 70(1), 39–45 (1999)

10. Kulik, A., Schwartz, R., Shachnai, H.: A refined analysis of submodular greedy.
Oper. Res. Lett. 49, 507–514 (2021)

11. Li, W., Liu, X., Cai, X., Zhang, X.: Approximation algorithm for the energy-aware
profit maximizing problem in heterogeneous computing systems. J. Parallel Distrib.
Comput. 124, 70–77 (2019)

12. Liu, X., Li, W., Dai, H.: Approximation algorithms for the minimum power cover
problem with submodular/linear penalties. Theoret. Comput. Sci. 923, 256–270
(2022)

13. Liu, X., Li, W., Xie, R.: A primal-dual approximation algorithm for the k-prize-
collecting minimum power cover problem. Optim. Lett. (2021).https://doi.org/10.
1007/s11590-021-01831-z

14. Liu, X., Li, W., Yang, J.: A primal-dual approximation algorithm for the k-prize-
collecting minimum vertex cover problem with submodular penalties. Front. Com-
put. Sci. (2022). https://doi.org/10.1007/s11704-022-1665-9

15. Sviridenko, M.: A note on maximizing a submodular set function subject to a
knapsack constraint. Oper. Res. Lett. 32(1), 41–43 (2004)

16. Tang, J., Tang, X., Lim, A., Han, K., Li, C., Yuan, J.: Revisiting modified greedy
algorithm for monotone submodular maximization with a knapsack constraint. In:
Proceedings of the ACM on Measurement and Analysis of Computing Systems,
vol. 5, no. 1, pp. 1–22 (2021)

https://doi.org/10.1007/11561071_42
https://doi.org/10.1007/11561071_42
https://doi.org/10.1007/978-3-540-27821-4_7
https://doi.org/10.1007/s10878-022-00869-8
https://doi.org/10.1007/s10878-022-00869-8
https://doi.org/10.1007/s10878-016-0102-0
https://doi.org/10.1007/s10878-016-0102-0
http://arxiv.org/abs/2007.04937
https://doi.org/10.1007/978-3-319-71147-8_25
https://doi.org/10.1007/978-3-319-71147-8_25
https://doi.org/10.1007/s11590-021-01831-z
https://doi.org/10.1007/s11590-021-01831-z
https://doi.org/10.1007/s11704-022-1665-9

Energy-Constrained Geometric Coverage Problem 277

17. Wolsey, L.: Maximising real-valued submodular functions: primal and dual heuris-
tics for location problems. Math. Oper. Res. 7(3), 410–425 (1982)

18. Yaroslavtsev, G., Zhou, S., Avdiukhin, D.: “Bring Your Own Greedy”+Max: near-
optimal 1/2-approximations for submodular knapsack. In: Chiappa, S., Calandra,
R. (eds.) International Conference on Artificial Intelligence and Statistics, Palermo,
Sicily, Italy, pp. 3263–3274 (2020)

19. Zhang, H., Vorobeychik, Y.: Submodular optimization with routing constraints. In:
Schuurmans, D, Wellman, M.P. (eds.) Proceedings of the 30th AAAI Conference
on Artificial Intelligence, Lake Tahoe, Nevada, pp. 819–826 (2016)

Incremental SDN Deployment to Achieve
Load Balance in ISP Networks

Yunlong Cheng1(B), Hao Zhou1, Xiaofeng Gao1, Jiaqi Zheng2,
and Guihai Chen1

1 MoE Key Lab of Artificial Intelligence, Department of Computer Science
and Engineering, Shanghai Jiao Tong University, Shanghai, China
{aweftr,h-zhou}@sjtu.edu.cn, {gao-xf,gchen}@cs.sjtu.edu.cn

2 Department of Computer Science and Technology, Nanjing University,
Nanjing, China

jzheng@nju.edu.cn

Abstract. Software defined network (SDN) decouples control planes
from data planes and integrates them into a logically centralized con-
troller. With capture of the global view, the controller can dynamically
and timely reply to the changes of network states. However, replacing
the entire traditional networks, e.g., Internet Service Provider (ISP) net-
works, with SDNs is difficult and computationally expensive. Hence,
incremental deployment of partial SDN devices has received much atten-
tion. In this paper, we consider the k-LB problem, i.e., upgrading at most
k legacy switches to SDN switches to achieve load balance. We claim that
k-LB problem is NP-hard and there is no polynomial time (N + M)1−ε-
approximation algorithm for any constant ε > 0 unless P = NP, where
N (M) is the number of switches (links) in the network. Given these neg-
ative results, we propose an effective greedy algorithm and claim that it
reaches an approximation guarantee of

cavg

cmin
M , where cavg (cmin) is the

average (minimum) link capacity. Large-scale simulations on real ISP
networks show that our greedy algorithm achieves near optimal perfor-
mance and decreases the maximum link utilization by 30% on average
compared with the state of the art.

Keywords: SDN · Incremental deployment · Load balance ·
Approximation algorithm

1 Introduction

Software defined network (SDN) is a new network architecture [3,11], which
decouples control planes from data planes and integrates them into a logically
centralized controller. With the global view of network states, the controller can
make flexible management and configuration to data planes. Unlike traditional
networks, SDNs can dynamically and timely adjust network routes to solve many
unexpected problems, e.g., link failures or traffic variations, which provide great
advantages in traffic engineering.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 278–290, 2022.
https://doi.org/10.1007/978-3-031-16081-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_24&domain=pdf
https://doi.org/10.1007/978-3-031-16081-3_24

Incremental SDN Deployment to Achieve Load Balance in ISP Networks 279

Traditional routing protocols, e.g., Open Shortest Path First (OSPF) protocol,
aim to forward packets based on the shortest path, which may cause unbalanced
traffic distribution. Equal Cost Multi-Path (ECMP) strategy makes attempts to
relieve this situation by partitioning flows equally into multiple shortest paths,
which still cannot balance the traffic for the whole networks. On the contrary, in
SDNs, instead of multiple shortest paths with equal partition, the controller can
determine the routing path of each flow and compute the splitting ratio at each
switch to achieve load balance. Because of the great advantages, many enterprises
hope to upgrade the entire traditional networks by SDNs. However, it is impracti-
cal for many reasons. Firstly, traditional networks are required to provide uninter-
rupted services but replacing the entire network causes a temporary break, which
results in a huge monetary loss for network operators. Secondly, upgrading all
the legacy switches or routers is expensive especially in large-scale networks with
many devices, e.g., Internet Service Provider (ISP) networks. Therefore, incremen-
tal deployment of SDN devices to replace partial networks is a reasonable alterna-
tive when making a tradeoff between the cost and the benefits. In addition, our
experiments show that upgrading only 10% legacy switches to SDN switches can
achieve nearly equal performance compared with upgrading all the switches.

Incremental deployment of SDN devices has received much attention in recent
years. Some previous works [9,12,15] believed that programmable traffic, i.e., the
traffic which traverses at least one SDN switch, can increase flexibility in perform-
ing traffic engineering. In order to obtain more programmable traffic, M. Huang
et al. [9] would like to upgrade k nodes with more incident links and fewer traffic
workload on these links. Different from it, K. Poularakis et al. [12] made attempts
to upgrade the entire ISP networks during several phases. Due to the hardness of
the direct incremental deployment to maximize the network throughput, H. Xu
et al. [15] divided this problem into two sub-problems, i.e., programmable traffic
maximization and route selection. However, as shown by our experiments in real
ISP networks, the algorithm to maximize so-called programable traffic does not
behave well for load balance. Another work [8] believed that the node with higher
degree can contribute to greater advantages in performing load balance. Unfor-
tunately, it focused on heuristics algorithms and could not provide performance
guarantee. Based on the above, an effective algorithm and an in-depth analysis
are necessary for the incremental deployment problem with load balance.

In this paper, we consider the problem of upgrading at most a given number
(e.g. k) of legacy nodes to SDN nodes to achieve load balance with the limited
budget, which is defined as k-LB problem. We formulate it as an optimization
problem and conduct the theoretical analysis for computational complexity and
inapproximability. In addition, we propose a greedy algorithm to solve k-LB
problem and show the effectiveness of this greedy algorithm both theoretically
and practically. More specially, our contributions can be summarized as follows:

1. We define the k-LB problem into an optimization problem, and we formulate
it as a complex mixed interger program, which cannot be directly solved as
the scale of networks increases.

2. We analysis the complexity and inapproximability for k-LB problem.

280 Y. Cheng et al.

3. We design an effective greedy algorithm, which has an approximation guar-
antee of cavg

cmin
M .

4. We perform numerical experiments in real ISP networks to evaluate the pro-
posed algorithm and show the excellent and stable performance of our algo-
rithm.

2 Network Model and Problem Formulation

2.1 Network Model and Problem Definition

A network is a directed graph G = (V,E, c, w), where V is a set of the legacy
routers, E is a set of the links connecting two nodes, c(·) and w(·) are capacity
and weight functions of links, respectively. In this paper, we assume that all the
legacy nodes (routers) run the traditional IP routing protocol, like OSPF, i.e.,
the legacy node forwards packets based on the shortest path. Further, we use
SP (s, d) to denote one of the shortest paths from source s to destination d. We
want to upgrade at most k legacy nodes to SDN nodes due to the budget limits,
where we assume that SDN node can split flows and determine the splitting
ratios. In some cases there may be some constraints when splitting a flow,
e.g., unsplittable flows [7,10]. We ignore these constraints because the problem
remains difficult and hard to find approximations when removing the constraints,
and we can get the optimal traffic distribution as a reference for the deployment
of SDN nodes in the removed version. In addition, our analysis and algorithm
can also be easily extended to address these constraints. In all, given the traffic
demand matrix T , we aim to achieve load balance when upgrading at most k
legacy nodes. A common variant of load balance is to minimize the maximum
link utilization. Formally, we present the k-LB problem in Definition 1. More
notations are shown in Table 1.

Definition 1 (k-LB Problem). Given a directed graph G = (V,E, c, w), a
traffic demand matrix T and an integer k, the k-LB problem is to minimize the
maximum link utilization when upgrading at most k legacy nodes to SDN nodes
with flexible flow splitting capacities.

2.2 Problem Formulation

Based on the above model and definition, we formulate the k-LB problem as a
mixed integer program (1). Our objective function is to minimize the maximum
link utilization λ when given Constraint (2)–(7). Constraint (2) ensures that for
each intermediate node v, the sum of flows routed to destination d from source
v plus flows entering into node v from other sources to destination d is equal
to flows exiting from node v destined for d. Notice that if xv = 1, node v is an
SDN node and can split the flows into multiple sub-flows; otherwise, node v is
a legacy node and the flows can only be forwarded to the next hop of node v
according to the shortest path SP (v, d).

Incremental SDN Deployment to Achieve Load Balance in ISP Networks 281

Table 1. Key notations

Notation Description

V The set of switch nodes

E The set of links

N The number of nodes, |V | = N

M The number of links, |E| = M

w(u, v) The weight of link (u, v)

c(u, v) The capacity of link (u, v)

G The directed network graph G = (V, E, w, c)

T The traffic demand matrix

SP (s, d) One of the shortest paths from s to d

NHp(v) The next hop of v in path p

fd(u, v) The sum of flows routed to destination d on the link (u, v)

k The maximum number of legacy nodes to upgrade

λ The maximum link utilization

xv The binary variable, where node v is upgraded if xv = 1

Tv,d +
∑

(u,v)∈E

fd(u, v) = (1 − xv) fd(v,NHSP (v,d)(v))

+ xv

∑

(v,u)∈E

fd(v, u), ∀v ∈ V, d ∈ V \{v}, (2)

Constraint (3) ensures that for each destination d, all flows must enter into
their sink node d completely.

∑

(u,d)∈E

fd(u, d) =
∑

(d,u)∈E

fd(d, u) +
∑

v∈V

Tv,d, ∀d ∈ V, (3)

Constraint (4) guarantees that for each link (u, v), the utilization does not
exceed λ. Constraint (5) means that we can only upgrade at most k legacy nodes
to SDN nodes.

∑

d∈V

fd(u, v) ≤ λ c(u, v), ∀(u, v) ∈ E, (4)

∑

v∈V

xv ≤ k, ∀v ∈ V, (5)

Therefore, the whole mixed integer program can be formulated as follows:

min λ, (1)
s.t. Constraint (2), (3), (4), (5)

fd(u, v) ≥ 0, ∀d ∈ V, (u, v) ∈ E, (6)
xv ∈ {0, 1}, ∀v ∈ V, (7)

282 Y. Cheng et al.

3 Complexity and Inapproximability Analysis

3.1 Hardness of k-LB Problem

We prove that k-LB problem is NP-hard by a reduction from the set cover
problem [4] in Theorem 1.

Definition 2 (Set Cover Problem). Given an universe U = {u1, u2, . . . ,
um}, a family S = {S1,S2, . . . ,Sn} where Si is a subset of U and an integer k,
the set cover problem is to determine whether there is a set cover with size no
more than k, where a cover is defined as a subfamily C ⊆ S of sets whose union
is U .

Theorem 1. k-LB problem is NP-hard.

Proof. Given a set cover problem instance, we construct a polynomial time
reduction to a special instance of k-LB problem. As shown in Fig. 1a, for each
element uj ∈ U , we construct an edge ej = (vj , dj); for each subset Si ∈ S,
we construct a node si. In the set cover problem instance, if uj ∈ Si, we add
two edges (si, vj) and (si, dj). Now we consider the weight of each edge. We set
w(si, vj) = w(vj , dj) = 0 (dotted red lines) and w(si, dj) = 1 (solid black lines).
Therefore, the shortest path from si to dj is path (si → vj → dj) as Fig. 1a
(dotted red lines). Further, there is a flow demand of one unit size from si to
dj . At the beginning, all the flows are along the shortest path (dotted red lines)
since there is no SDN node. For the capacity, we set c(vj , dj) = f(j), where f(j)
is the indegree of node vj , and the capacity of other edges is set as 2 as shown
by Fig. 1b. Thus, each edge ej (∀1 ≤ j ≤ m) has the maximum link utilization
λ = 1. The constructed k-LB problem instance is to upgrade at most k legacy
node to SDN node to minimize the maximum link utilization λ in the network
which is given by Fig. 1. Notice that upgrading node vj or dj is unhelpful since
their outdegree is no more than one. In addition, if node si is upgraded, the
flow from si to dj can be along the arbitrary path, e.g., path (si → dj), which
decreases the utilization of edge ej but increases the utilization of edge (si, dj)
to only 1/2. After the upgrade of at most k legacy nodes, let λ∗ be the solu-
tion for this k-LB instance. Thus, λ∗ < 1 means that the flow on each edge ej

(∀1 ≤ j ≤ m) has been decreased. In other words, each element uj ∈ U (the
corresponding edge ej) has been covered by at most k subsets Si ∈ S (the cor-
responding legacy node si). However, λ∗ = 1 means that there is at least one
edge ej∗ whose utilization is still equal to 1. In other words, element uj∗ cannot
be covered and thus there is no set cover whose size does not exceed k.

3.2 Inapproximability Analysis

ρ-inapproximability. Similarly, we present this inapproximability result by a
reduction from the set cover problem in Lemma 1.

Lemma 1. For any fixed constant ρ ≥ 1, there is a gap-introducing reduc-
tion that transforms a set cover problem instance S(U ,S, k) to a k-LB problem
instance K(G,T, k + |U|) such that

Incremental SDN Deployment to Achieve Load Balance in ISP Networks 283

Fig. 1. Reduction from set cover to k-LB. (Color figure online)

– if S(U ,S, k) is satisfied, OPT(K) <
1
ρ
;

– if not, OPT(K) = 1.

Theorem 2. There is no polynomial time ρ-approximation algorithm for k-LB
problem assuming P �= NP, where ρ is a constant defined in Lemma 1.

Proof. Suppose that on the contrary, there is a polynomial time ρ-approximation
algorithm A for k-LB problem and denote the solution by hA(K), which satisfies

hA(K)
ρ

≤ OPT(K) ≤ hA(K)

Consider the constructed k-LB problem instance in Lemma 1, where OPT(K)
has only two cases, i.e., 1 or < 1/ρ. We have hA(K) ≤ 1 due to λ = 1 even
though we do not upgrade any node. On the one hand, hA(K) = 1 induces that

OPT(K) ≥ hA(K)
ρ

=
1
ρ

Based on Lemma 1, we further get OPT(K) = 1 and S(U ,S, k) cannot be satis-
fied. On the other hand, hA(K) < 1 means

OPT(K) ≤ hA(K) < 1

when S(U ,S, k) can be satisfied, we have OPT(K) < 1/ρ. Therefore, we can
solve set cover problem according to hA(K). It contradicts with our assumption
of P �= NP.

(N+M)1−ε-inapproximability. In fact, we cannot even give an (N +M)1−ε-
approximation algorithm to solve k-LB problem for any constant ε > 0. Similarly,
we construct a gap-introducing reduction from set cover problem as shown by
Lemma 2.

284 Y. Cheng et al.

Lemma 2. For any fixed constant ε > 0, there is a gap-introducing reduc-
tion that transforms a set cover problem instance S(U ,S, k) to a k-LB problem
instance K(Gx, T, k + |U|) such that

– if S(U ,S, k) is satisfied, OPT(K) <
1

(N + M)1−ε
;

– if not, OPT(K) = 1.

where x is a function of (U ,S, k), N is the number of nodes and M is the number
of edges in K(Gx, T, k + |U|).

Based on the above gap-introducing reduction, we can further show the (N +
M)1−ε-inapproximability for k-LB problem. Its proof is somewhat similar to that
of Theorem 2. where we just need to replace ρ with (N + M)1−ε.

Theorem 3. There is no polynomial time (N +M)1−ε-approximation algorithm
for k-LB problem assuming P �= NP, where ε is a constant defined in Lemma 2.

4 Algorithm Design and Analysis

Given these negative results, we try to solve k-LB problem using a greedy algo-
rithm in this subsection. Furthermore, the greedy algorithm can reach a good
approximation bound.

Before further discussion, we first make attempts to minimize the maximum
link utilization when given the upgraded node set C, which is a subroutine in the
greedy algorithm. We denote this problem instance by K(G,T,C) and formulate
it as Program (8). If node v is a SDN node, i.e., v ∈ C, it can split flows to mul-
tiple sub-flows as shown by Constraint (8a). Otherwise, node v forwards them
to next hop based on the shortest path as Constraint (8b). Other constraints
are similar to Program (1). Since the upgraded node set C is determined, Pro-
gram (8) is a linear program which can be solved in polynomial time by using
the standard solver, e.g., Gurobi [2].

min λ

s.t. Tv,d +
∑

(u,v)∈E

fd(u, v) =
∑

(v,u)∈E

fd(v, u), ∀v ∈ C, d ∈ V \{v} (8a)

Tv,d +
∑

(u,v)∈E

fd(u, v) = fd(v,NHSP (v,d)(v)), ∀v ∈ V \C, d ∈ V \{v}

(8b)
∑

(u,d)∈E

fd(u, d) =
∑

(d,u)∈E

fd(d, u) +
∑

v∈V

Tv,d, ∀d ∈ V (8c)

∑

d∈V

fd(u, v) ≤ λ c(u, v), ∀(u, v) ∈ E (8d)

fd(u, v) ≥ 0, ∀d ∈ V, (u, v) ∈ E (8e)

Incremental SDN Deployment to Achieve Load Balance in ISP Networks 285

Now we present the details of the proposed algorithm in Algorithm 1. Let
C be the set of nodes which have been determined to upgraded. First, set C is
initialized with ∅ (line 1). Next, we add nodes into C one by one (line 2), where
the selected node has to satisfy two conditions. Firstly, the upgraded node can
minimize the maximize link utilization when given the current set C (line 3),
and let λ∗ be the minimum value (line 4). Secondly, the upgraded node can
minimize the number of edges whose utilization is equal to λ∗ (line 5). Finally,
we randomly select one from the nodes which satisfy the above two conditions
(line 6) and add it into C (line 7).

Algorithm 1. A Greedy Algorithm for k-LB Problem
Input: G = (V, E, c, w), T, k.
Output: The upgraded node set C.
1: C ← ∅.
2: for i = 1 to k do
3: C1 ← arg minv∈V K(G, T, C ∪ {v}).
4: λ∗ ← minv∈V K(G, T, C ∪ {v}).
5: C2 ← arg minv∈C1 |{e : u(e) = λ∗}|.
6: select v randomly from C2.
7: C ← C ∪ {v}.
8: end for
9: return C.

Now let us begin the formal analysis for Algorithm1.

Theorem 4. Algorithm1 achieves an approximation guarantee of cavg

cmin
M ,

where cavg (cmin) is the average (minimum) capacity of edges and M is the
number of edges.

Proof. We consider the optimal solution and the worst case, respectively. First,
consider the flow distribution in the optimal solution. Since all the flows reach
their destinations through certain edges, the sum of all the demands is smaller
than the sum of flows in all the edges, i.e.,

∑

u,v∈V

Tu,v ≤
∑

(u,v)∈E

f(u, v) (9)

≤
∑

(u,v)∈E

c(u, v)OPT(K) (10)

Inequality (10) is true since OPT(K) is the maximum link utilization, which
further induces that

OPT(K) ≥
∑

u,v∈V Tu,v∑
(u,v)∈E c(u, v)

286 Y. Cheng et al.

In addition, the worst case is that all flows go through the same edge with the
minimum capacity, denoted by WST(K), i.e.,

WST(K) =

∑
u,v∈V Tu,v

cmin

where cmin is the minimum link capacity. We denote the solution of Algorithm 1
by G(K) and further get

G(K)
OPT(K)

≤ WST(K)
OPT(K)

≤
∑

u,v∈V Tu,v

cmin

∑
(u,v)∈E c(u, v)
∑

u,v∈V Tu,v

=

∑
(u,v)∈E c(u, v)

cmin
=

cavg

cmin
M

where cavg is the average link capacity.

5 Numerical Evaluation

In this section, we evaluate the performance of our greedy algorithm, using real-
world and synthetic ISP topologies and traffic matrices. In addition, we also test
several other algorithms with the same dataset as a comparison.

5.1 Experimental Setup

We conduct the whole evaluation based on four real-world ISP topologies and one
synthetic topology. The real-world ISP topologies are large-scale ISP networks
in US and Europe, measured with Rocketfuel in [14]. The synthetic one was
generated using the Delaunay’s Triangulation Algorithm introduced in IGen [13].
The whole dataset can be downloaded in [1] and also used in [6] and [5].

In the original network, we define all the nodes in the network as legacy
nodes which transfer flows based on the OSPF routing protocol. Then we choose
a certain percentage of legacy nodes to upgrade according to different algorithms.

The six compared situations are showed as follows:

1. Legacy Network: This is the original network where all the nodes follow
the OSPF routing protocol.

2. DEG [8]: An heuristic algorithm which upgrades the nodes with the highest
degree (the number of incoming and outgoing adjacent links) in the whole
topology.

3. VOL [8]: An heuristic algorithm which upgrades the nodes with the highest
traffic volume traversing in the whole topology.

4. MODG [12]: An algorithm upgrades nodes to maximize the programmable
traffic, which is defined as the total volume of flows passing through one or
more SDN nodes. In each step it chooses the node which can bring the largest
increment on programmable traffic.

Incremental SDN Deployment to Achieve Load Balance in ISP Networks 287

5. GREEDY: The greedy algorithm in Algorithm 1.
6. Optimal: The optimal solution of SDN nodes selection. We use Gurobi

7.52 [2] to solve the mixed integer program (MIP) presented in Sect. 2.

When given the upgraded nodes which are computed by the above algo-
rithms, we use a linear program to get the optimal traffic distribution and com-
pare the maximum link utilizations.

Fig. 2. Performance comparison.

5.2 Maximum Link Utilization

Figure 2a–2c show the maximum link utilizations computed by different algo-
rithms on different topologies when upgrade percentage is 10%, 20% and 30%.
Notice that the utilization larger than one means congestion.

Overall, we find that all the node-upgrading algorithms work effectively com-
pared to the legacy network, while our greedy algorithm (GREEDY) is more
effective and is very close to the optimal solution. On the contrast, the other
three algorithms work unsteadily and the results vary a lot among different
topologies. With enlarging the upgrade percentage from 10% to 30%, we find
that the maximum link utilizations become smaller and the performance of these
algorithms becomes closer to that of the optimal solution in different degrees.
For ISP2, ISP3 and ISP4, the maximum link utilization of the optimal solution
show no improvement. In fact, it results from the convergence of the maximum
link utilization, which will be further discussed in Subsect. 5.4.

5.3 Upgrade Percentage

Upgrade percentage is the percentage of legacy nodes we choose to upgrade.
Intuitively, the larger the upgrade percentage, the smaller the maximum link

288 Y. Cheng et al.

utilization. Figure 2a–2c show the maximum link utilizations computed by dif-
ferent algorithms with different upgrade percentages under topologies ISP1, ISP2
and ISP3, where other topologies have similar results. Here we can find that in
the early stages of upgrading, all the algorithms decrease the utilization sig-
nificantly while the greedy algorithm decreases fastest and is very close to the
optimal solution. However, other algorithms seem to stagnate or improve very
slowly as upgrade percentage gradually increases while the greedy algorithm con-
vergences very fast. This means that all the algorithms can find some (or major)
crucial nodes while finding all these nodes is difficult for other algorithms. In
other words, our greedy algorithm selects the upgraded nodes more effectively,
with less number of nodes to upgrade but the same or better performance.

5.4 Least Upgrade Percentage to Converge

We define Least Upgrade Percentage to Converge as the smallest upgrade per-
centage required to reach the convergence of the maximum link utilization in
the network, i.e. the smallest percentage which performs the same as upgrading
all the nodes. Figure 2d shows the results of this experiment.

We can see that the Least Upgrade Percentage to Converge varies a lot among
different topologies when we implement the other three algorithms. Combined
with Fig. 2a–2c, we know that these three algorithms cannot find all the crucial
nodes for upgrading. In some special situations, they even have to upgrade all
nodes in order to get the optimal solution. Obviously, in such a situation, the
node-upgrade algorithm loses its meaning. As for our greedy algorithm, we find
that the average Least Upgrade Percentage is 17%, varying from 10% to 30%,
which is quite close to the optimal solution. This result verifies the conclusion
that our greedy algorithm can upgrade the node more effectively.

5.5 Cumulative Distribution Function (CDF)

To observe the details of traffic distribution in the whole network, we conduct
this experiment. We plot the cumulative distribution function (CDF) curve on
link utilization with topology ISP1 and upgrade percentage 10%. Figure 2h shows
that the major part of the link utilizations are less than 0.5. The link utilizations
of the legacy network (in the top left corner of Fig. 2h) distribute disproportion-
ately, many of which aggregate on smaller values and larger values.

After the upgrade, the link utilizations present a more concentrated (or bal-
anced) distribution, which means that more links have a utilization of medium
value, neither too small nor too large. Comparing all the CDF curves, we claim
that our greedy algorithm performs better than other algorithms and is quite
close to the optimal solution (in the bottom right corner of Fig. 2h). In addi-
tion, we can find that the curve has a jump when CDF reaches 1 especially for
GREEDY and Optimal. The reason is that the number of links reaching the
maximum link utilization is large for these two situations. This fact also proves
that our greedy algorithm can produce a more balanced utilization distribution.

Incremental SDN Deployment to Achieve Load Balance in ISP Networks 289

6 Conclusion

In this paper, we studied the incremental SDN deployment to achieve load bal-
ance, named k-LB problem. We conducted the theoretical analysis for computa-
tional complexity and inapproximability of this problem. Given these negative
results, we proposed an effective greedy algorithm to solve k-LB problem. Large-
scale simulations in the real ISP networks showed that our algorithm achieved
near optimal performance and decreased the maximum link utilization by 30%
on average compared to the state of the art.

Acknowledgments. This work was supported by the National Key R&D Pro-
gram of China [2020YFB1707900]; the National Natural Science Foundation of China
[61872238, 61972254], Shanghai Municipal Science and Technology Major Project
[2021SHZDZX0102], and the Huawei Cloud [TC20201127009].

References

1. Declarative and expressive forwarding optimizer. https://sites.uclouvain.be/defo/
2. GUROBI. https://www.gurobi.com/
3. Casado, M., Freedman, M.J., Pettit, J., Luo, J., McKeown, N., Shenker, S.: Ethane:

taking Control of the Enterprise. In: ACM International Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Communications
(SIGCOMM), pp. 1–12 (2007)

4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman (1979)

5. Hartert, R., Schaus, P., Vissicchio, S., Bonaventure, O.: Solving segment routing
problems with hybrid constraint programming techniques. In: Pesant, G. (ed.) CP
2015. LNCS, vol. 9255, pp. 592–608. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-23219-5 41

6. Hartert, R., et al.: A declarative and expressive approach to control forwarding
paths in carrier-grade networks. In: ACM International Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer Communications
(SIGCOMM), vol. 45, no. 5, pp. 15–28 (2015)

7. Hartman, T., Hassidim, A., Kaplan, H., Raz, D., Segalov, M.: How to split a flow?
In: IEEE International Conference on Computer Communications (INFOCOM),
pp. 828–836 (2012)

8. Hong, D.K., Ma, Y., Banerjee, S., Mao, Z.M.: Incremental deployment of SDN in
hybrid enterprise and ISP networks. In: Symposium on SDN Research (SOSR),
pp. 1–7 (2016)

9. Huang, M., Liang, W.: Incremental SDN-enabled switch deployment for hybrid
software-defined networks. In: IEEE International Conference on Computer Com-
munication and Networks (ICCCN), pp. 1–6 (2017)

10. Kleinberg, J.M.: Single-source unsplittable flow. In: IEEE Symposium on Founda-
tions of Computer Science (FOCS), pp. 68–77 (1996)

11. McKeown, N., et al.: OpenFlow: enabling innovation in campus networks. SIG-
COMM Comput. Commun. Rev. 38(2), 69–74 (2008)

12. Poularakis, K., Iosifidis, G., Smaragdakis, G., Tassiulas, L.: One step at a time:
optimizing SDN upgrades in ISP networks. In: IEEE Conference on Computer
Communications (INFOCOM), pp. 1–9 (2017)

https://sites.uclouvain.be/defo/
https://www.gurobi.com/
https://doi.org/10.1007/978-3-319-23219-5_41
https://doi.org/10.1007/978-3-319-23219-5_41

290 Y. Cheng et al.

13. Quoitin, B., den Schrieck, V.V., François, P., Bonaventure, O.: IGen: generation of
router-level internet topologies through network design heuristics. In: IEEE Inter-
national Teletraffic Congress (ITC), pp. 1–8 (2009)

14. Spring, N.T., Mahajan, R., Wetherall, D., Anderson, T.E.: Measuring ISP topolo-
gies with rocketfuel. IEEE/ACM Trans. Netw. (TON) 12(1), 2–16 (2004)

15. Xu, H., Li, X., Huang, L., Deng, H., Huang, H., Wang, H.: Incremental deployment
and throughput maximization routing for a hybrid SDN. IEEE/ACM Trans. Netw.
(TON) 25(3), 1861–1875 (2017)

Graph Theory

Polynomial Time Algorithm
for k-vertex-edge Dominating Problem

in Interval Graphs

Peng Li and Aifa Wang(B)

Chongqing University of Technology, 69 Hongguang Road, Chongqing, China
{lipengcqut,wangaf}@cqut.edu.cn

Abstract. Let G be an interval graph with n vertices and m edges. For
any positive integer k and any subset S of E(G), we design anO(n|S|+m)
time algorithm to find a minimum k-vertex-edge dominating set of G
with respect to S. This shows that the vertex-edge domination problem
and the double vertex-edge domination problem can be solved in linear
time. Furthermore, the k-vertex-edge domination problem can be solved
in O(nm) time algorithm in interval graphs.

Keywords: Vertex-edge domination · Double vertex-edge
domination · k-vertex-edge domination · Polynomial time algorithm ·
Interval graphs

1 Introduction

In this paper, all graphs are assumed to be finite, simple, undirected, and
loopless. Let G be any simple graph with vertex set V = V (G) and edge
set E = E(G). For any v ∈ V (G), the open neighborhood NG(v) is the
set {u ∈ V (G) : uv ∈ E(G)} and the closed neighborhood of v is the set
NG[v] = NG(v) ∪ {v}. A sutset S of V in G is called a dominating set if every
vertex of G is either in S or adjacent to a vertex of S. The domination number
γ(G) is the minimum cardinality of a dominating set in G. In recent years, the
domination and its variations have attracted considerable attention and have
been widely studied, see [5,6].

For any graph G, a map I that assigns to each vertex x ∈ V (G) a nonempty
closed interval I(x) = [�I(x), rI(x)] is called an interval representation of G
provided xy ∈ E(G) if and only if x �= y and I(x)∩I(y) �= ∅ for all x, y ∈ V (G).
If all the endpoints of {I(x) : x ∈ V (G)} are distinct, then we say I is distin-
guishing. Without loss of generality, we assume that all interval representations
are distinguishing in this paper. If rI − �I takes a constant value, we refer to
the interval representation I as a unit interval representation. A graph is an
interval graph if and only if it has an interval representation and a graph is a
unit interval graph if and only if it has a unit interval representation. In fact,
interval graphs arise naturally and frequently in modeling real-life situations,
especially those involving time dependencies or other restrictions that are linear
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 293–302, 2022.
https://doi.org/10.1007/978-3-031-16081-3_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_25&domain=pdf
https://doi.org/10.1007/978-3-031-16081-3_25

294 P. Li and A. Wang

in nature. Since 1985, the study of interval graphs has displayed intrinsic beauty
and interest which attracts much attention of mathematicians simply due to its
elegance [3,4,11–13,18,19].

Let G be a simple graph and k be some positive integer. For any vw ∈ E(G)
and u ∈ V (G), we say vw is vertex-dominated by u if u ∈ NG[v] ∪ NG[w]. A set
D ⊆ V (G) is a vertex-edge dominating set (resp. double vertex-edge dominating
set, k-vertex-edge dominating set), or VEDS (resp. DVEDS, k-VEDS) for short,
if each edge of E(G) is vertex-dominated by one (resp. two, k) vertex of D. Let
S be any subset of E(G). A set D ⊆ V (G) is a k-VEDS of G with respect to S
if each edge of S is vertex-dominated by at least k vertices of D.

The vertex-edge dominating number γve(G) (resp. double vertex-edge dom-
inating number γdve(G), k-vertex-edge dominating number γkve(G)) of G is the
minimum cardinality of a vertex-edge dominating set (resp. double vertex-edge
dominating set, k-vertex-edge dominating set) of G. A set S is called an indepen-
dent vertex-edge dominating set if S is both an independent set and a vertex-edge
dominating set. The independent vertex-edge domination number of a graph G
is the minimum cardinality of an independent vertex-edge dominating set and
is denoted by ive(G).

The vertex-edge domination problem, namely MIN-VEDS, (resp. double
vertex-edge domination problem, namely MIN-DVEDS, k-vertex-edge domination
problem, namely MIN-k-VEDS, independent vertex-edge domination problem) is
to find a minimum VEDS (resp. minimum DVEDS, minimum k-VEDS, mini-
mum independent vertex-edge dominating set) of G. In 1986, Peters [15] intro-
duced the vertex-edge domination problem in his PhD thesis. In 2007, Lewis [15]
introduced some new parameters related to it and obtained some lower bounds on
γve(G) for different graph classes like connected graphs, k-regular graphs, cubic
graphs etc. In addition, Lewis proved that the vertex-edge domination problem
is NP-hard for bipartite, chordal, planar and circle graphs, and the independent
vertex-edge domination problem is NP-hard even when restricted to a bipartite
and chordal graph. Also, approximation algorithms and approximation hardness
results are obtained in [15]. In 2010, Lewis et al. [10] characterized the trees with
equal dominating and vertex-edge dominating number. In 2014, Krishnakumari
et al. [8] got both upper and lower bounds on γve(G) of a tree. In 2016, Boutrig
et al. [1] found some upper bounds on γve(G) and ive(G) and some relation-
ship between γve(G) and other domination parameters have been proved. In
2019, Zylinski [20] showed that for every connected graph G with |V (G)| ≥ 6,
it holds γve(G) ≤ n

3 . Boutrig and Chellali [2] in 2018 and Krishnakumari et
al. [7] in 2017 also studied other variations of vertex-edge dominations. On the
other hand, in 2007, Lewis [15] proposed a linear time algorithm for vertex-edge
domination problem for trees. Recently, Paul and Ranjan [14] constructed an
example for which the algorithm proposed by Lewis fails. They proposed lin-
ear time algorithms for vertex-edge domination and independent vertex-edge
domination problem in block graphs, and a linear time algorithm for weighted
vertex-edge domination problem in trees. They also proved that the MIN-VEDS
problem is NP-hard for undirected path graphs. Furthermore, they character-

Polynomial Time Algorithm for K-vertex-edge 295

ized the trees with equal vertex-edge dominating and independent vertex-edge
dominating numbers.

In this paper, we study the MIN-VEDS and MIN-k-VEDS problems in inter-
val graphs. Given some interval graph G, some positive integer k and any
S ⊆ E(G), we proposed an O(|V (G)||S| + |E(G)|) time algorithm to find a
minimum k-VEDS of G with respect to S, hence the MIN-VEDS and MIN-k-
VEDS problems in interval graphs can be solved in polynomial time.

2 Preliminaries and Notation

For any two integers i and j with i ≤ j, we write [i, j] for the set of integers
k such that i ≤ k ≤ j. Let S be any subset of V (G). We write NG(S) for
(∪v∈SNG(v)) \S and write NG[S] for NG(S)∪S = ∪v∈SNG[v]. Let G[S] denote
the subgraph of G induced by S. Reference to G will be omitted when the
context makes it obvious. For simplicity, we often write G[V (G) − S] as G − S
and write G − S as G − v when S is a singleton set {v}. Let V be a n-vertex
set and σ = (σ1, . . . , σn) be an ordering of V . For any 1 ≤ i ≤ j ≤ n, denote
(σi, . . . , σj) by σ[i, j] and denote (σ1, . . . , σi) by σ[i]. Let G be a graph and
σ = (σ1, . . . , σn) be an ordering of V (G). We call σ an I-ordering if vivk ∈ E(G)
implies vivj ∈ E(G) for all 1 ≤ i < j < k ≤ n. Take any v ∈ V (G). We denote
max{i : σi ∈ NG[v]} by rσ(v) and denote min{i : σi ∈ NG[v]} by �σ(v).

Lemma 2.1. [16,17] A graph is an interval graph if and only if there is an
I-ordering of its vertex set.

The rest of this paper is organized as follows. We begin in Sect. 3 with the
MIN-k-VEDS algorithm for interval graphs as well as the necessary terminolo-
gies. Two examples are given to describe this algorithm in Sect. 3. Next we prove
the the correctness of this algorithm and explains how to implement it in Sect. 4.
We give some interesting problems related to k-vertex edge domination in Sect. 5.

3 The MIN-k-VEDS Algorithm for Interval Graphs

Let G be an interval graph and I be an interval representation of G. For any edge
ab of E(G), denote NG[a]∪NG[b] by NG[ab]. Take any positive integer q. Let T be
a subset of V (G). Suppose that T = {u1, . . . , us}, where rI(u1) > · · · > rI(us)
and q ≤ s. Denote the set {u1, . . . , uq} by Mq

G,I(T). Let uv and ab be two edges
of E(G). Suppose rI(u) < rI(v) and rI(a) < rI(b). If rI(v) < rI(b), or v = b and
rI(u) < rI(a), then we say uv <I ab. Next is the algorithm to find a minimum
k-VEDS of G with respect to a subset S ⊆ E(G).

296 P. Li and A. Wang

Min-kVED(G,S)
1 � Input an interval graph G, a subset S of E(G)
2 � Output a minimum k-VEDS D of G with respect to S
3 If there is some ab ∈ S with |NG[ab]| < k, then return “there
4 is no k-VEDS of G with respect to S”, exit.
5 Else, construct an interval representation I of G.
6 Suppose S = {u1w1, . . . , upwp} and u1w1 <I · · · <I upwp.
7 D ← ∅;
8 for i ← 1 to p
9 do if |D ∩ (NG[uiwi])| < k

10 then Let q = k − |D ∩ (NG[uiwi])|
11 Do D ← D ∪ Mq

G,I((NG[uiwi]) \ D).
12 output D.
13 � exit

Fig. 1. An interval graph and its interval representation.

Example 3.1. Let G, I be the interval graph and interval representation as
depicted in Fig. 1. Let S = {v1v2, v2v3, v3v4, v4v6, v3v7, v8v9, v9v10}. We want to
find a minimum double vertex-dominating set of G with respect to S. Consider
the algorithm MIN-2VED(G,S).

Iteration 0, D = ∅ and i is being increased to 1;
Iteration 1, i = 1, NG[v1v2] = {v3, v2, v1}, |D ∩ (NG[v1v2])| = 0 < 2. At this

iteration, q = 2 − |D ∩ (NG[v1v2])| = 2, Mq
G,I((NG[v1v2]) \ D) = {v3, v2}, then

we do D ← D ∪ Mq
G,I((NG[v1v2]) \ D), now we see D = ∅ ∪ {v3, v2} = {v3, v2}

and i is being increased to 2;
Iteration 2, i = 2, we see D = {v3, v2}, NG[v2v3] = {v7, v4, v3, v2, v1} and

|NG[v2v3] ∩ D| = 2. At this iteration, i is being increased to 3;
Iteration 3, i = 3, it holds D = {v3, v2}, NG[v3v4] = {v7, v6, v4, v3, v2} and

|NG[v3v4] ∩ D| = 2, We do nothing and i is being increased to 4;
Iteration 4, i = 4, we find D = {v3, v2}, NG[v4v6] = {v7, v6, v5, v4, v3} and

|NG[v4v6] ∩ D| = 1 < 2. q = 2 − |D ∩ (NG[v4v6])| = 1, Mq
G,I((NG[v4v6]) \ D) =

{v7}, then we do D ← D ∪ Mq
G,I((NG[v4v6] \ D), we get D = {v3, v2} ∪ {v7} =

{v7, v3, v2} and i is being increased to 5;

Polynomial Time Algorithm for K-vertex-edge 297

Iteration 5, i = 5, D = {v7, v3, v2}, NG[v3v7] = {v8, v7, v6, v5, v4, v3, v2, v1}
and |NG[v3v7] ∩ D| = 3 > 2. At this iteration, we do nothing and i is being
increased to 6;

Iteration 6, i = 6, we have D = {v7, v3, v2}, NG[v8v9] = {v10, v9, v8, v7} and
|NG[v8v9] ∩ D| = 1 < 2. q = 2 − |D ∩ (NG[v8v9])| = 1, Mq

G,I((NG[v8v9]) \ D) =
{v10}, then we do D ← D ∪ Mq

G,I((NG[v8v9]) \ D), we obtain D = {v7, v3, v2} ∪
{v10} = {v10, v7, v3, v2} and i is being increased to 7;

Iteration 7, i = 7, D = {v10, v7, v3, v2}, NG[v9v10] = {v10, v9, v8} and
|NG[v9v10] ∩ D| = 1 < 2. q = 2 − |D ∩ (NG[v9v10])| = 1, Mq

G,I((NG[v9v10]) \
D) = {v9}, then we do D ← D ∪ Mq

G,I((NG[v9v10]) \ D), we obtain D =
{v10, v7, v3, v2} ∪ {v9} = {v10, v9, v7, v3, v2}. Output D, exit. It is easy to check
that D = {v10, v9, v7, v3, v2} is minimum double vertex-dominating set of G with
respect to a subset S.

Fig. 2. An interval graph and its interval representation.

Example 3.2. Let G, I be the interval graph and interval representation as
depicted in Fig. 2. Let S = {v1v2, v2v3, v4v5, v5v6, v2v7, v6v7, v7v8, v8v9, v8v10}.
In order to find a minimum 4-vertex-dominating set of G with respect to S, we
consider the algorithm MIN-4VED(G,S).

Iteration 0, D = ∅ and i is being increased to 1;
Iteration 1, i = 1, NG[v1v2] = {v9, v7, v4, v3, v2, v1}, |D∩(NG[v1v2])| = 0 < 4.

At this step, q = 4−|D∩(NG[v1v2])| = 4, Mq
G,I((NG[v1v2])\D) = {v9, v7, v4, v3},

then we do D ← D ∪ Mq
G,I((NG[v1v2]) \ D), we see D = ∅ ∪ {v9, v7, v4, v3} =

{v9, v7, v4, v3} and i is being increased to 2;
Iteration 2, i = 2, D = {v9, v7, v4, v3}, NG[v2v3] = {v9, v7, v4, v3, v2, v1} and

|NG[v2v3] ∩ D| = 4. We do nothing and i is being increased to 3;
Iteration 3, i = 3, D = {v9, v7, v4, v3},

NG[v4v5] = {v9, v7, v6, v5, v4, v3, v2, v1} and |NG[v4v5] ∩ D| = 4. At this iter-
ation, we do nothing and i is being increased to 4;

Iteration 4, i = 4, D = {v9, v7, v4, v3}, NG[v5v6] = {v9, v8, v7, v6, v5, v4} and
|NG[v4v6] ∩ D| = 3 < 4. q = 4 − |D ∩ (NG[v4v6])| = 1, Mq

G,I((NG[v5v6]) \ D) =
{v8}, then we do D ← D ∪ Mq

G,I((NG[v5v6] \ D), we get D = {v9, v7, v4, v3} ∪
{v8} = {v9, v8, v7, v4, v3} and i is being increased to 5;

Iteration 5, i = 5, D = {v9, v8, v7, v4, v3}, NG[v2v7] = {v10, v9, v8, v7, v6, v5,
v4, v3, v2, v1} and |NG[v3v7] ∩ D| = 5 > 4, i is being increased to 6;

298 P. Li and A. Wang

Iteration 6, i = 6, D = {v9, v8, v7, v4, v3}, NG[v6v7] = {v10, v9, v8, v7, v6, v5,
v4, v3, v2, v1} and |NG[v6v7] ∩ D| = 5 > 4, i is being increased to 7;

Iteration 7, i = 7, D = {v9, v8, v7, v4, v3}, NG[v7v8] = {v10, v9, v8, v7, v6, v5,
v4, v3, v2, v1} and |NG[v7v8] ∩ D| = 5 > 4, i is being increased to 8;

Iteration 8, i = 8, D = {v9, v8, v7, v4, v3}, NG[v8v9] = {v10, v9, v8, v7, v6, v5,
v4, v3, v2} and |NG[v8v9] ∩ D| = 5 > 4, i is being increased to 9;

Iteration 9, i = 9, D = {v9, v8, v7, v4, v3}, NG[v8v10] = {v10, v9, v8, v7, v6}
and |NG[v8v10]∩D| = 3 < 4. q = 4−|D ∩ (NG[v9v10])| = 1, Mq

G,I((NG[v8v10]) \
D) = {v10}, then we do D ← D ∪ Mq

G,I((NG[v8v10]) \ D), we obtain D =
{v9, v8, v7, v4, v3} ∪ {v10} = {v10, v9, v8, v7, v4, v3} and output D, end. We can
check that D = {v10, v9, v8, v7, v4, v3} is a minimum 4-vertex-dominating set of
G with respect to a subset S.

4 Correctness and Implementation of the Algorithm

Let G be an interval graph and V (G) = {v1, . . . , vn}. If there is some interval
representation I of G such that rI(v1) < · · · < rI(vn), then we say (v1, . . . , vn) is
an right endpoint ordering of G, and denote the ordering (v1, . . . , vn) by rI(G).

Lemma 4.1. Let G be an interval graph with n vertices and σ be a right endpoint
ordering of G. Let i, j, k be three integers with 1 ≤ i ≤ j ≤ k ≤ n. If σi ∈ NG[σk],
then σj ∈ NG[σk].

Proof. Let I be an interval representation of G and σ = rI(G). By the definition
of right endpoint ordering, we have rI(σ1) < · · · < rI(σn). Because i ≤ k and
σi ∈ NG[σk], we obtain �I(σk) < rI(σi) ≤ rI(σk). As we see i ≤ j ≤ k, it holds
rI(σi) ≤ rI(σj) ≤ rI(σk), hence �I(σk) < rI(σj) ≤ rI(σk), which implies that
σj ∈ NG[σk], finishing the proof. ��
Lemma 4.2. Let G be an interval graph with n vertices and σ be a right endpoint
ordering of G. Take any i ∈ [n]. Then for each j ∈ [�σ(i), i], it holds σj ∈ NG[σi].
In addition, for each k ∈ [i, rσ(i)], it holds σj ∈ NG[σrσ(i)].

Proof. By the definitions of �σ(i) and rσ(i), it holds that σ�σ(i) ∈ NG[σi] and
σrσ(i) ∈ NG[σi]. Then the lemma follows from Lemma 4.1. ��
Lemma 4.3. Let G be an interval graph with n vertices and I be an inter-
val representation of G. Let S = {u1w1, . . . , upwp} be a subset of E(G) with
u1w1 <I · · · <I upwp and rI(ui) < rI(wi) holds for each j ∈ [p]. Take any posi-
tive integer k and any integer i ∈ [p]. Suppose that D is some k-vertex-edge dom-
inating set of G with respect to Si−1 = {u1w1, . . . , ui−1wi−1}, and there is some
minimum k-VEDS D′ of G with respect to S such that D ⊆ D′. Assume that
|D ∩ (NG[uiwi])| < k. Let q = k − |D ∩ (NG[uiwi])|, W = Mq

G,I((NG[uiwi]) \D)
and D̃ = D ∪ W . Then D̃ is a k-vertex-edge dominating set of G with respect to
Si = {u1w1, . . . , uiwi}. Furthermore, there is some minimum k-VEDS D′′ of G
with respect to S such that D̃ ⊆ D′′.

Polynomial Time Algorithm for K-vertex-edge 299

Proof. By the facts that D is a k-vertex-edge dominating set of G with respect to
Si−1, q = k−|D∩(NG[uiwi])| and D̃ = D∪W = D∪Mq

G,I((NG[uiwi])\D), we see
D̃ is a k-vertex-edge dominating set of G with respect to Si = {u1w1, . . . , uiwi}.
Next we turn to prove that there is some minimum k-VEDS D′′ of G with respect
to S such that D̃ ⊆ D′′.

Since |D∩(NG[uiwi])| < k and D′ is a minimum k-VEDS of G with respect to
S such that D ⊆ D′, it holds |(D′ \D)∩ (NG[uiwi])| ≥ k −|D ∩ (NG[uiwi])| = q.
Let (NG[uiwi]) \ D = {σ1, . . . , σt} with rI(σ1) > · · · > rI(σt). Let (D′ \ D) ∩
(NG[uiwi]) = {σj1 , . . . , σjs

} while q ≤ s ≤ t and 1 ≤ j1 < · · · < js ≤ t. Let
T = {σj1 , . . . , σjq

}. Notice that W = Mq
G,I((NG[uiwi]) \ D) = {σ1, . . . , σq}.

Consider D′′ = (D′ \ T) ∪ W . It is not hard to check that |D′′| = |D′|
since W ∩ (D′ \ T) = ∅ and |W | = |T | = q. To finish the proof, we just need
to show that D′′ is a k-VEDS of G with respect to S. If this were not true,
then there is some edge uj′wj′ ∈ S such that |D′′ ∩ (NG[uj′wj′])| < k. Note
that rI(wj′) > rI(uj′). Since D′ is a k-VEDS of G with respect to S, there
is some vertex σjh

of D′ \ D′′ = T \ W which satisfies that σjh
∈ NG[uj′wj′]

and σh /∈ NG[uj′wj′]. Notice that jh > h, hence rI(σh) > rI(σjh
). Because

σjh
∈ NG[uj′wj′] and σh /∈ NG[uj′wj′], we obtain rI(wj′) < �I(σh). Recall that

σh ∈ NG[uiwi] and rI(ui) < rI(wi), hence �I(σh) < rI(wi), which implies that
rI(wj′) < rI(wi) and uj′wj′ <I uiwi. We further deduce that j′ ≤ i − 1 and
uj′wj′ ∈ Si−1 from the fact uj′wj′ <I uiwi. But we know D is a k-vertex-edge
dominating set of G with respect to Si−1 = {u1w1, . . . , ui−1wi−1}, so it must
holds |D ∩ (NG[uj′wj′])| ≥ k, contradicting with the fact that D ⊆ D′′ and
|D′′ ∩ (NG[uj′wj′])| < k.

Since |D′′| = |D′| and D′ is a minimum k-VEDS of G with respect to S, we
find that D′′ is also a minimum k-VEDS of G with respect to S, completing the
proof. ��
Theorem 4.4. Let k be any positive integer, G be a n-vertex interval graph and
S be a subset of E(G). Assume that |NG[ab]| ≥ k holds for each edge uv ∈ S.
Then the output of MIN-kVED(G,S), say D, is a minimum k-VEDS of G with
respect to S.

Proof. Let V (G) = {v1, . . . , vn} and I be an interval representation of G with
rI(v1) < · · · < rI(vn). Suppose S = {u1w1, . . . , upwp} and u1w1 <I · · · <I
upwp. For each i ∈ [p], denote the set D right after iteration i is completed by
Di and denote the set {u1w1, . . . , uiwi} by Si. Let D0 = S0 = ∅.

We want to prove that for each i ∈ [p], Di is a k-vertex-edge dominating set
of G with respect to Si = {u1w1, . . . , uiwi} and there is some minimum k-VEDS
D′

i of G with respect to S such that Di ⊆ D′
i. We shall proceed by induction

on i.
When i = 1, we see D0 = S0 = ∅, hence D0 is a k-vertex-edge dominating

set of G with respect to S0. Notice that for any minimum k-VEDS D′ of G
with respect to S, D0 = ∅ ⊆ D′. Note that |D0 ∩ (NG[u1w1])| = 0 < k. Let
q = k − |D0 ∩ (NG[u1w1])|, W = Mq

G,I((NG[u1w1]) \ D0) and D̃0 = D0 ∪ W .
By the rule of algorithm MIN-kVED(G,S), we see D1 = D̃0 = D0 ∪ W . By

300 P. Li and A. Wang

Lemma 4.3, we get D1 is a k-vertex-edge dominating set of G with respect to
S1 = {u1w1} and there is some minimum k-VEDS D′

1 of G with respect to S
such that D1 ⊆ D′

1.
Suppose i > 1 and the statement holds for each smaller i. If |Di−1 ∩

(NG[uiwi])| ≥ k, then by the rule of algorithm MIN-kVED(G,S), we get
Di = Di−1, hence Di = Di−1 is also a k-vertex-edge dominating set of G with
respect to Si, and D′

i = D′
i−1 is also a minimum k-VEDS of G with respect to

S such that Di ⊆ D′
i.

Else if |Di−1 ∩ (NG[uiwi])| < k. Let q = k − |Di−1 ∩ (NG[uiwi])|, W =
Mq

G,I((NG[uiwi]) \Di−1) and D̃i−1 = Di−1 ∪W . By the rule of algorithm MIN-
kVED(G,S), we see Di = D̃i−1 = Di−1 ∪W . By Lemma 4.3, we get Di is also a
k-vertex-edge dominating set of G with respect to Si and there is some minimum
k-VEDS D′

i of G with respect to S such that Di ⊆ D′
i.

Now, we have reach the fact that the output of MIN-kVED(G,S), say D =
Dp, is a k-VEDS of G with respect to S and there is some minimum k-VEDS D′

p

of G with respect to S such that D = Dp ⊆ D′
p. Since D is already a k-VEDS

of G with respect to S, it must holds that D = Dp = D′
p, hence D itself is a

minimum k-VEDS D′
p of G with respect to S, finishing the proof. ��

Theorem 4.5. Let G be any interval graph with n vertices and m edges.
For each positive integer k and any subset S of E(G), the algorithm MIN-
kVED(G,S) can be implemented in O(n|S| + m) time.

Proof. Suppose |S| = p. To determine whether there is some ab ∈ S with
|NG[ab]| < k or not takes us O(kp) time. Construct an interval representation
I of G needs O(n + m) time. We need O(p2) time to order the edges of S such
that S = {u1w1, . . . , upwp} and u1w1 <I · · · <I upwp.

For i from 1 to p, at each iteration, computing |D ∩ (NG[uiwi])| and q =
k −|D ∩ (NG[uiwi])| can be done in O(n) time. Do D ← D ∪Mq

G,I((NG[uiwi]) \
D) can also be done in O(n) time. So the algorithm MIN-kVED(G,S) can be
implemented in O(np + m) = O(n|S| + m) time. ��
Corollary 4.6. Let G be any interval graph with n vertices and m edges. The
MIN-VEDS and MIN-DVEDS problems can be solved in linear time. In addition,
for any positive integer k, the MIN-k-VEDS problem can be solved in O(nm) time
in interval graphs.

5 Conclusion

In this paper, we study the MIN-k-VEDS problem for the class of interval graphs.
Let G be an interval graph with n vertices and m edges. For any positive inte-
ger k and any subset S of E(G), we design an O(n|S| + m) time algorithm
to find a minimum k-vertex-edge dominating set of G with respect to S, this
shows that the MIN-VEDS and MIN-DVEDS problems can be solved in linear
time. Furthermore, the MIN-k-VEDS problem can be solved in O(nm) time in
interval graphs. There are still many interesting problems about k-vertex-edge
domination, we list as follows:

Polynomial Time Algorithm for K-vertex-edge 301

(1) Polynomial time algorithms to solve the k-vertex-edge dominating problem
in weighed unit interval graphs;

(2) Polynomial time algorithms to solve the k-vertex-edge dominating problem
in weighed interval graphs;

(3) Polynomial time algorithms to solve the k-vertex-edge dominating problem
in (weighed) strongly chordal graphs, permutation graphs, cocomparability
graphs, or other graph classes.

Acknowledgement. We thank the referees and editors for their constructive input.
This work was supported by the National Natural Science Foundation of China
(11701059), the Natural Science Foundation of Chongqing (cstc2019jcyj-msxmX0156,
cstc2020jcyj-msxmX0272, cstc2021jcyj-msxmX0436), the Youth project of science and
technology research program of Chongqing Education Commission of China(KJQN202
001130, KJQN202001107, KJQN202101130).

References

1. Żyliński, P.: Vertex-edge domination in graphs. Aequationes Math. 93(4), 735–742
(2018). https://doi.org/10.1007/s00010-018-0609-9

2. Boutrig, R., Chellali, M.: Total vertex-edge domination. Int. J. Comput. Math.
95(9), 1820–1828 (2018)

3. Fishburn, P.C.: Interval Orders and Interval Graphs: A Study of Partially Ordered
Sets, John Wiley & Sons Inc., (1985)

4. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 2nd ed., Annals
of Discrete Mathematics, 57, Elsevier, Amsterdam, The Netherlands (2004)

5. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Domination in Graphs: Advanced
Topics. Marcel Dekker Inc, New York (1998)

6. Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in
Graphs. Marcel Dekker Inc, New York (1998)

7. Krishnakumari, B., Chellali, M., Venkatakrishnan, Y.B.: Double vertex-edge dom-
ination. Discrete Math Algorithms Appl. 09(04), 1750045 (2017)

8. Krishnakumari, B., Venkatakrishnan, Y.B., Krzywkowski, M.: Bounds on the
vertex-edge domination number of a tree. C R Math 352(5), 363–366 (2014)

9. Lewis, J.R.: Vertex-edge and edge-vertex parameters in graphs, Ph.D. thesis, Clem-
son, SC, USA, (2007)

10. Lewis, J.R., Hedetniemi, S.T., Haynes, T.W., Fricke, G.H.: Vertex-edge domina-
tion. Util Math 81, 193–213 (2010)

11. Li, P., Wu, Y.: Spanning connectedness and Hamiltonian thickness of graphs and
interval graphs. Discrete Math. Theor. Comput. Sci. 16(2), 125–210 (2015)

12. Li, P., Wu, Y.: A linear time algorithm for the 1-fixed-endpoint path cover problem
on interval graphs. SIAM J. Discret. Math. 31(1), 210–239 (2017)

13. Möhring, R.H.: Algorithmic aspects of comparability graphs and interval graphs.
In: Rival, I. (ed.) Graphs and Orders, pp. 41–101. D. Reidel, Boston (1985)

14. Paul, S., Ranjan, K.: Results on vertex-edge and independent vertex-edge
domination. J. Comb. Optim. 4, 1–28 (2021). https://doi.org/10.1007/s10878-
021-00832-z

15. Peters, J.K.W.: Theoretical and algorithmic results on domination and connectiv-
ity (NordhausCGaddum, Gallai type results, maxCmin relationships, linear time,
seriesCparallel), Ph.D. thesis, Clemson, SC, USA (1986)

https://doi.org/10.1007/s00010-018-0609-9
https://doi.org/10.1007/s10878-021-00832-z
https://doi.org/10.1007/s10878-021-00832-z

302 P. Li and A. Wang

16. Ramalingam, G., Rangan, C.P.: A uniform approach to domination problems on
interval graphs. Inf. Process. Lett. 27, 271–274 (1988)

17. Raychaudhuri, A.: On powers of interval and unit interval graphs. Congr. Numer.
59, 235–242 (1987)

18. Shang, J., Li, P., Shi, Y.: The longest cycle problem is polynomial on interval
graphs. Theoret. Comput. Sci. 859, 37–47 (2021)

19. Trotter, W.T.: New perspectives on interval orders and interval graphs. In: Bailey,
R.A. (ed.) London Mathematical Society Lecture Note Series 241, pp. 237–286.
Cambridge University Press, Cambridge (1997)

20. Żyliński, P.: Vertex-edge domination in graphs. Aequationes Math. 93(4), 735–742
(2018). https://doi.org/10.1007/s00010-018-0609-9

https://doi.org/10.1007/s00010-018-0609-9

Cyclically Orderable Generalized
Petersen Graphs

Xiaofeng Gu1(B) and William Zhang2

1 Department of Computing and Mathematics, University of West Georgia,
Carrollton, GA 30118, USA

xgu@westga.edu
2 Harker High School, San Jose, CA 95129, USA

Abstract. A cyclic base ordering of a connected graph G is a cyclic
ordering of E(G) such that every cyclically consecutive |V (G)| − 1 edges
induce a spanning tree of G. The density of G is defined to be d(G) =
|E(G)|/(|V (G)| − 1); and G is uniformly dense if d(H) ≤ d(G) for every
connected subgraph H of G. It was conjectured by Kajitani, Ueno and
Miyano that G has a cyclic base ordering if and only if G is uniformly
dense. In this paper, we study cyclic base ordering of generalized Petersen
graphs to support this conjecture.

Keywords: Cyclic ordering · Spanning tree · Generalized Petersen
graph

1 Introduction

Let G = (V,E) be a connected graph. A cyclic base ordering or for short CBO
of G is a cyclic ordering of E(G) such that every cyclically consecutive |V (G)|−1
edges induce a spanning tree of G. Equivalently, a cyclic base ordering is a
bijection O : E(G) −→ {1, 2, . . . , |E(G)|} such that for each i = 1, 2, . . . , |E(G)|,
{O−1(k) : k = i, i + 1, . . . , i + |V (G)| − 2} induces a spanning tree of G, where
the labelling k is equivalent to k−|E(G)| if k > |E(G)|. If G has a CBO, then we
say G is cyclically orderable. Clearly, cycles and trees are cyclically orderable.

Following the terminology of Catlin et al. [1,2], we define the density d(G) of
a connected graph G to be d(G) = |E(G)|

|V (G)|−1 . A connected graph G is uniformly
dense if d(H) ≤ d(G) for every connected subgraph H of G.

Cyclic base ordering is closely related to uniformly dense graphs. Kajitani,
Ueno and Miyano [6] conjectured that they are actually equivalent. We may
point out that the original conjecture in [6] was posed for matroids. We study
this conjecture for graphs only and thus describe it in graph terminology below.

Conjecture 1 (Kajitani, Ueno and Miyano [6]). A connected graph G is cyclically
orderable if and only if G is uniformly dense.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 303–315, 2022.
https://doi.org/10.1007/978-3-031-16081-3_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_26&domain=pdf
http://orcid.org/0000-0003-2725-2411
https://doi.org/10.1007/978-3-031-16081-3_26

304 X. Gu and W. Zhang

The necessity was confirmed in [6], however, the sufficiency is still unsolved.
Several families of uniformly dense graphs have been verified to be cyclically
orderable in [4–6], including any uniformly dense simple connected graph with
at most 5 vertices, any graph consisting of exactly 2 edge-disjoint spanning trees,
complete graphs, complete bipartite graphs, maximum 2-degenerate graphs, and
many others.

The generalized Petersen graph was introduced by Coxeter [3], and here
is a notation by Watkins [8]. For k < n/2, let G(n, k) denote the graph with
vertex set {v1, v2, . . . , vn, u1, u2, . . . , un} and edge set {vivi+1, uivi, uiui+k : i =
1, 2, . . . , n}, where the subscripts are equivalent modulo n, that is, if a subscript
j of a vertex is greater than n, then the subscript is actually j − n. The vertices
v1, v2, . . . , vn induce the outer rim and the vertices u1, u2, . . . , un induce the
inner rim. Among all generalized Petersen graphs, G(n, 1) and G(n, 2) are two
most important graph families. In particular, G(n, 1) has an n-gonal prism as
its skeleton, which is also called the prism graph, and equivalently, it can be
constructed as the Cartesian product of the cycle Cn and a single edge K2. The
graph G(n, 2) has a similar structure to the Petersen graph and actually G(5, 2)
is exactly the Petersen graph.

In this paper, we discover cyclic base ordering of generalized Petersen graphs
G(n, 1) and G(n, 2). Our results also show that G(n, 1) and G(n, 2) are uniformly
dense. Given an edge ordering of a graph G, every cyclically consecutive |V (G)|−
1 edges is called a progression. To verify an edge ordering is a CBO, it suffices
to show that any progression of this edge ordering induces a spanning tree.

2 Cyclic Base Ordering of G(n, 1)

Theorem 1. For n ≥ 3, G(n, 1) is cyclically orderable.

Define 3 sets of edges, a, b, c. For every integer i such that 1 ≤ i ≤ n, define
ai to be the edge vivi+1, bi to be the edge viui, and ci to be the edge uiui+1.
We can call them a-edges, b-edges and c-edges, respectively. When the subscript
k > n or k ≤ 0, uk, vk, ak, bk, ck are the same as ur, vr, ar, br, cr respectively,
where r is the (unique) integer such that 1 ≤ r ≤ n and r ≡ k (mod n). We
prove Theorem 1 by considering three cases: n = 3m, n = 3m+1 or n = 3m+2
for some positive integer m.

2.1 The Case n = 3m

Proof. Define an edge ordering O of G(n, 1) by

O = (a1, c2m+1, bm+2, a2, c2m+2, bm+3, . . . , a3m, c5m, b4m+1).

The subscripts are equivalent modulo n, that is, if a subscript k of an edge is
greater than 3m, then the subscript is actually k − 3m. For example, c5m is
actually c2m, and b4m+1 is bm+1. Here is an example for G(6, 1) in Fig. 1.

Cyclically Orderable Generalized Petersen Graphs 305

v1v2

v3

v4 v5

v6

u1u2

u3

u4 u5

u6

1

4

7

10

13

16

1215

18

3 6

9

8

11

14

17

2

5

Fig. 1. CBO of G(6, 1)

We will show that O is a CBO of G(n, 1). By symmetry, any progression
starting with an a-edge has the same structure, and similarly for any progres-
sion starting with a b-edge or a c-edge. Thus it suffices to verify the first 3
progressions. Recall that n = 3m and G(n, 1) has 2n = 6m vertices. Thus any
progression consists of exactly 2n − 1 = 6m − 1 edges.

The first progression is

a1, c2m+1, bm+2, a2, c2m+2, bm+3, . . . , a2m−1, c4m−1, b3m, a2m, c4m.

The a-edges a1, a2, . . . , a2m in this progression induce a path v1v2 · · · v2mv2m+1.
The c-edges are c2m+1, c2m+2, . . . , c3m, c1, . . . , cm, which induce a path
u2m+1 · · ·u3m u1 · · ·umum+1. The b-edges bm+2, bm+3, . . . , b3m induces a match-
ing um+2vm+2, um+3vm+3, . . ., u3mv3m. It is not hard to see that all vertices are
connected by this progression without any cycle, and thus the first progression
induces a spanning tree.

The second progression is

c2m+1, bm+2, a2, c2m+2, bm+3, . . . , a2m−1, c4m−1, b3m, a2m, c4m, b3m+1.

In other words, we remove a1 from the first progression and add b3m+1 (i.e. b1)
to obtain the second progression. The a-edges induce a path v2 · · · v2mv2m+1.
The c-edges induce a path u2m+1 · · ·u3mu1 · · ·umum+1. The b-edges induces a
matching um+2vm+2, um+3vm+3, . . . , u3mv3m, u1v1. Together, these two paths
and the matching form a spanning tree of the graph.

306 X. Gu and W. Zhang

The third progression is

bm+2, a2, c2m+2, bm+3, . . . , a2m−1, c4m−1, b3m, a2m, c4m, b3m+1, a2m+1.

In other words, we remove c2m+1 from the second progression and add a2m+1

to obtain the third progression. The a-edges induce a path v2 · · · v2m+1v2m+2.
The c-edges induce a path u2m+2 · · ·u3mu1 · · ·umum+1. The b-edges induce a
matching um+2vm+2, um+3vm+3, . . . , u3mv3m, u1v1. Together, these two paths
and the matching similarly form another spanning tree of the graph.

2.2 The Case n = 3m + 1

Proof. Define an edge ordering O of G(n, 1) by

O = (a1, bm+2, c2m+3, a2, bm+3, c2m+4, . . . , a3m+1, bm+1, c2m+2).

The subscripts are equivalent modulo n, that is, if a subscript k of an edge is
greater than 3m + 1, then the subscript is actually k − (3m + 1). Here is an
example when n = 7 in Fig. 2.

v1v2

v3

v4

v5

v6

v7

u1u2

u3

u4

u5

u6

u7

1

4

7

10 13

16

19

1417

20

2

5

8

11

6

9

12

15 18

21

3

Fig. 2. CBO of G(7, 1)

We will show that O is a CBO of G(n, 1). Similar to the above, all the
progressions starting with a-edges have the same structure, as do those starting
with b-edges and c-edges. There are 2n = 6m+2 vertices and so each progression
contains exactly 6m + 1 edges.

Cyclically Orderable Generalized Petersen Graphs 307

The first progression is

a1, bm+2, c2m+3, a2, bm+3, c2m+4, . . . , a2m, b3m+1, c4m+2, a2m+1.

The a-edges a1, a2, . . . , a2m+1 in this progression induce a path v1v2 · · · v2m+1

v2m+2, and the b-edges bm+2, bm+3, . . . , b3m+1 induce a matching um+2vm+2,
um+3vm+3, . . ., u3m+1v3m+1. The c-edges are c2m+3, c2m+4, . . . , c3m+1, c1, . . . ,
cm+1, which induce a path u2m+3u2m+4 · · ·u3m+1u1 · · ·um+1um+2. Much sim-
ilar to the above, all the vertices are connected without any cycles, thus the
progression induces a spanning tree.

The second progression is

bm+2, c2m+3, a2, bm+3, c2m+4, a3, . . . , a2m, b3m+1, c4m+2, a2m+1, b3m+2.

In other words, we remove a1 from the first progression and add b3m+2 (i.e. b1)
to obtain the second progression. In this progression, the a-edges induce a path
v2v3 · · · v2m+1v2m+2, the b-edges induce a matching um+2vm+2, um+3vm+3, . . .,
u3m+1v3m+1, u1v1 and the c-edges induce a path u2m+3u2m+4 · · ·u3m+1u1 · · ·
um+1um+2. Together, these two paths and the matching form a spanning tree
of the graph.

The third progression is

c2m+3, a2, bm+3, c2m+4, a3, . . . , a2m, b3m+1, c4m+2, a2m+1, b3m+2, c4m+3.

In other words, we remove bm+2 from the second progression and add
c4m+3 (i.e. cm+2) to obtain the third progression. In this progression, the
a-edges induce a path v2v3 · · · v2m+1v2m+2, the b-edges induce a matching
um+3vm+3, um+4vm+4, . . ., u3m+1v3m+1, u1v1 and the c-edges induce a path
u2m+3u2m+4 · · ·u3m+1u1 · · · um+2um+3. Together, the two paths and matching
form a spanning tree of the graph once again.

2.3 The Case n = 3m + 2

Proof. This case was originally proved in the summer project [7] mentored by
the first author, but did not publish anywhere. For completeness, we include a
proof here. Define an edge ordering O of G(n, 1) by

O = (a1, b3, c3, a4, b6, c6, a7, b9, c9, . . . , a3n−2, b3n, c3n),

where the subscripts are equivalent modulo n. For example, b3n is actually bn.
This ordering can be considered as a list of n ordered triples (a3i+1, b3i+3, c3i+3)
for i = 0, 1, . . . , n − 1. Here is an example for G(8, 1) in Fig. 3.

We will show that O is a CBO of G(n, 1). By symmetry, it suffices to verify
the first three progressions. Notice that n = 3m+2 and G(n, 1) has 2n = 6m+4
vertices. Each progression has 2n − 1 = 6m + 3 edges.

The first progression is

a1, b3, c3, a4, b6, c6, a7, b9, c9, . . . , a6m+1, b6m+3, c6m+3.

308 X. Gu and W. Zhang

v1

v2

v3

v4

v5

v6

v7

v8

u1

u2

u3

u4

u5

u6

u7

u8

1

10

19

4 13

22

7

168

17

2

11

20

5

14

239

18

3

12 21

6

15

24

Fig. 3. CBO of G(8, 1)

All the a-edges in this progression are a1, a4, . . . , a3m−2, a3m+1, a3m+4, . . . ,
a6m+1. If the subscript k is greater than 3m + 2, then the subscript is
actually k − (3m + 2). Thus the a-edges here actually are a1, a4, . . . , a3m−2,
a3m+1, a2, a5, . . . , a3m−1. In other words, the a-edges induce m + 1 short paths
v1v2v3, v4v5v6, . . ., v3m−2v3m−1v3m and v3m+1v3m+2.

All the c-edges in this progression are c3, c6, . . . , c3m, c3m+3, . . . , c6m+3. If the
subscript k is greater than 3m+2, then the subscript is actually k−(3m+2). Thus
the c-edges in this progression actually are c3, c6, . . . , c3m, c1, c4, c7, . . . , c3m+1. In
other words, the c-edges also induce m + 1 short paths, they are u1u2, u3u4u5,
u6u7u8, . . ., u3mu3m+1u3m+2.

All the b-edges in this progression are b3, b6, . . . , b3m, b3m+3, . . . , b6m+3. If the
subscript k is greater than 3m+2, then the subscript is actually k−(3m+2). Thus
the b-edges in this progression actually are b3, b6, . . . , b3m, b1, b4, b7, . . . , b3m+1. It
is not hard to see that each b3i connects the path v3i−2v3i−1v3i and the path
u3iu3i+1u3i+2 for i = 1, 2, . . . ,m. Each b3i+1 connects the path v3i+1v3i+2v3i+3

and the path u3iu3i+1u3i+2 for i = 1, 2, . . . ,m − 1, and b1 connects the path
v1v2v3 and the edge u1u2, while b3m+1 connects the path v3m+1v3m+2 and the
path u3mu3m+1u3m+2. All vertices are connected by this progression and the
progression contains exactly 2n − 1 = |V | − 1 edges, thus it induces a spanning
tree.

Cyclically Orderable Generalized Petersen Graphs 309

The second progression is

b3, c3, a4, b6, c6, a7, b9, c9, . . . , a6m+1, b6m+3, c6m+3, a6m+4.

Notice that a6m+4 is actually a3m+2. It is like to remove a1 from the first pro-
gression and add a3m+2. Removing a1 will disconnect v1 from other vk’s but
adding a3m+2 will connect v1 back to v3m+2. Thus this progression still induces
a spanning tree.

The third progression is

c3, a4, b6, c6, a7, b9, c9, . . . , a6m+1, b6m+3, c6m+3, a6m+4, b6m+6.

Notice that b6m+6 is actually b2. Similarly, it is like to remove b3 from the second
progression and add b2. It is not hard to verify this progression still induces a
spanning tree.

Therefore O is a CBO of G(n, 1).

3 Cyclic Base Ordering of G(n, 2)

Theorem 2. For n ≥ 5, G(n, 2) is cyclically orderable.

Similarly, define 3 sets of edges, a, b, c. For every integer i such that 1 ≤ i ≤ n,
define ai to be the edge vivi+1, bi as the edge viui, and ci as the edge uiui+2.
We can call them a-edges, b-edges and c-edges, respectively. When the subscript
k > n or k ≤ 0, uk, vk, ak, bk, ck are the same as ur, vr, ar, br, cr respectively,
where r is the (unique) integer such that 1 ≤ r ≤ n and r ≡ k (mod n). When

v1

v2

v3 v4

v5

u1

u2

u3 u4

u5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig. 4. CBO of the Petersen graph G(5, 2)

310 X. Gu and W. Zhang

n = 5, G(n, 2) is the Petersen graph and a CBO is shown in Fig. 4. Thus we
focus on n ≥ 6 and it suffices to consider three cases: n = 3m, n = 3m + 1 or
n = 3m + 2 for some integer m ≥ 2.

3.1 The Case n = 3m for m ≥ 2

Proof. Define an edge ordering O of G(n, 2) by

O = (a1, c2m, bm+2, a2, c2m+1, bm+3, . . . , a3m, c5m−1, b4m+1).

The subscripts are equivalent modulo n, that is, if a subscript k of an edge is
greater than 3m, then the subscript is actually k − 3m. To show that O is a
CBO, we only consider even n. The case of odd n is quite similar and will be
omitted. Let n be even, and so m is also even. An example of G(6, 2) is shown
in Fig. 5.

v1v2

v3

v4 v5

v6

u1u2

u3

u4 u5

u6

1

4

7

10

13

16

1215

18

3 6

9

11

14

17 2

5

8

Fig. 5. CBO of G(6, 2)

As the edge ordering O is symmetric, it suffices to verify each of the first
three progressions induces a spanning tree. Since n = 3m and the graph has
2n = 6m vertices, any progression consists of exactly 6m − 1 edges.

The first progression is

a1, c2m, bm+2, a2, c2m+1, bm+3, . . . , a2m−1, c4m−2, b3m, a2m, c4m−1.

Cyclically Orderable Generalized Petersen Graphs 311

The a-edges in this progression induce a path v1v2 · · · v2m+1, while
the b-edges induce a matching um+2vm+2, um+3vm+3, . . . , u3mv3m. The c-
edges are c2m, c2m+1, . . ., c3m, c1, . . . , cm−1, which induce two paths
u2mu2m+2 · · ·u3mu2u4 · · ·um and u2m+1u2m+3 · · ·u3m−1u1u3 · · ·um+1. It is not
hard to see that all vertices have been connected by this progression. Since it
has exactly |V | − 1 = 2n − 1 = 6m − 1 edges, it is a spanning tree.

The second progression is

c2m, bm+2, a2, c2m+1, bm+3, . . . , a2m−1, c4m−2, b3m, a2m, c4m−1, b3m+1.

In other words, it can be obtained from the first progression by deleting the edge
a1 = v1v2 and adding the edge b3m+1 = b1 = u1v1. Since the first progression
induce a spanning tree, the deletion of a1 creates an isolated vertex v1 however
the addition of b1 will connect v1 back. Thus the second progression also induces
a spanning tree.

The third progression is

bm+2, a2, c2m+1, bm+3, . . . , a2m−1, c4m−2, b3m, a2m, c4m−1, b3m+1, a2m+1.

In other words, it can be obtained from the second progression by deleting the
edge c2m = u2mu2m+2 and adding the edge a2m+1 = v2m+1v2m+2. Since the
second progression induce a spanning tree, the deletion of c2m will disconnect
this spanning tree into two components. It is not hard to see that v2m+1 and
v2m+2 are in different components. Clearly the addition of a2m+1 = v2m+1v2m+2

will connect the two components, and thus the third progression also induces a
spanning tree.

3.2 The Case n = 3m + 1 for m ≥ 2

Proof. Define an edge ordering O by

O = (a1, bm+2, c2m+3, a2, bm+3, c2m+4, . . . , a3m+1, b4m+2, c5m+3).

The subscripts are equivalent modulo n, that is, if a subscript k of an edge is
greater than 3m + 1, then the subscript is actually k − (3m + 1). To show that
O is a CBO, we only consider odd n. The case of even n is similar and will be
omitted. Let n be odd, and so m is even. An example of G(7, 2) is shown in
Fig. 6.

By symmetry, it suffices to verify each of the first three progressions induces
a spanning tree. The first progression is

a1, bm+2, c2m+3, a2, bm+3, c2m+4, . . . , a2m, b3m+1, c4m+2, a2m+1.

The a-edges in this progression induce a path v1v2 · · · v2m+1v2m+2, while the
b-edges induce a matching um+2vm+2, um+3vm+3, . . . , u3m+1v3m+1.

The c-edges are c2m+3, c2m+4, . . . , c3m+1, c1, . . . , cm+1, which induce two
paths

312 X. Gu and W. Zhang

v1v2

v3

v4

v5

v6

v7

u1u2

u3

u4

u5

u6

u7

1

4

7

10 13

16

19

1417

20

2

5

8

11

36

9

12
15

18

21

Fig. 6. CBO of G(7, 2)

u2m+3u2m+5 · · ·u3m+1u2u4 · · ·um+2 and u2m+4u2m+6 · · ·u3mu1u3 · · ·um+3. It is
not hard to see that all vertices have been connected by this progression. Since
it has exactly |V | − 1 = 2n − 1 = 6m + 1 edges, it is a spanning tree.

The second progression is

bm+2, c2m+3, a2, bm+3, c2m+4, a3, . . . , b3m+1, c4m+2, a2m+1, b3m+2.

In other words, it can be obtained from the first progression by deleting the edge
a1 = v1v2 and adding the edge b3m+2 = b1 = u1v1. Since the first progression
induce a spanning tree, the deletion of a1 creates an isolated vertex v1 however
the addition of b1 will connect v1 back. Thus the second progression also induces
a spanning tree.

The third progression is

c2m+3, a2, bm+3, c2m+4, a3, bm+4, . . . , c4m+2, a2m+1, b3m+2, c4m+3.

In other words, it can be obtained from the second progression by deleting the
edge bm+2 = um+2vm+2 and adding the edge c4m+3 = cm+2 = um+2um+4.
Since the second progression induce a spanning tree, the deletion of bm+2 will
disconnect this spanning tree. It is not hard to see that um+2 in one component
while um+4 in the other component. Clearly the addition of cm+2 = um+2um+4

will connect the two components, and thus the third progression also induces a
spanning tree.

Cyclically Orderable Generalized Petersen Graphs 313

3.3 The Case n = 3m + 2 for m ≥ 2

Proof. Define an edge ordering O by

O = (a1, b4, c1, a4, b7, c4, . . . , a3n−5, b3n−2, c3n−5, a3n−2, b3n+1, c3n−2),

where the subscripts are equivalent modulo n. For example, b3n+1 is actually b1.
This ordering can be considered as a list of ordered triples (a3i+1, b3i+4, c3i+1)
for i = 0, 1, . . . , n − 1.

v1

v2

v3

v4

v5

v6

v7

v8
u1

u2

u3

u4

u5

u6

u7

u8

1

10

19

4 13

22

7

1623

8

17

2

11

20

5

14

24

9

18

3

12

21

6

15

Fig. 7. CBO of G(8, 2)

An example of G(8, 2) is shown in Fig. 7. The proofs for the cases of even n
and odd n are the same. By symmetry, it suffices to verify each of the first three
progressions induces a spanning tree. Notice that n = 3m + 2 and G(n, 2) has
2n vertices, and so each progression has 2n − 1 = 6m + 3 edges.

The first progression is

a1, b4, c1, a4, b7, c4, a7, b10, c7, . . . , a6m+1, b6m+4, c6m+1.

All the a-edges in this progression are a1, a4, . . . , a3m−2, a3m+1, a3m+4, . . . ,
a6m+1. If the subscript k is greater than 3m + 2, then the sub-
script is actually k − (3m + 2). Thus the a-edges here actually are
a1, a4, . . . , a3m−2, a3m+1, a2, a5, . . . , a3m−1. In other words, the a-edges induce
m + 1 short paths v1v2v3, v4v5v6, . . ., v3m−2v3m−1v3m and v3m+1v3m+2.

314 X. Gu and W. Zhang

All the c-edges in this progression are c1, c4, . . . , c3m−2, c3m+1, c3m+4,
. . . , c6m+1. If the subscript k is greater than 3m + 2, then the sub-
script is actually k − (3m + 2). Thus the c-edges here actually are
c1, c4, . . . , c3m−2, c3m+1, c2, c5, . . . , c3m−1. In other words, the c-edges also induce
m + 1 short paths, they are u2u4u6, u5u7u9, u8u10u12,. . ., u3m−4u3m−2u3m,
u3m−1u3m+1u1u3 and u3m+2.

All the b-edges in this progression are b4, b7, . . . , b3m+1, b3m+4,
b3m+7, . . . , b6m+4. If the subscript k is greater than 3m + 2, then the sub-
script is actually k − (3m+ 2). Thus the b-edges in this progression actually are
b4, b7, . . . , b3m+1, b2, b5, . . . , b3m+2. It is not hard to see that each b3i+2 connects
the path v3i+1v3i+2v3i+3 and the path u3i+2u3i+4u3i+6 for i = 0, 1, . . . ,m − 1.
Each b3i+1 connects the path v3i+1v3i+2v3i+3 and the path u3i−1u3i+1u3i+3 for
i = 1, 2, . . . ,m − 1, and b3m+2 connects the path v3m+1v3m+2 and u3m+2, while
b3m+1 connects the path v3m+1v3m+2 and the path u3m−1u3m+1u1u3. All ver-
tices are connected by this progression and the progression contains exactly
|V (G)| − 1 = 2n − 1 edges, thus it induces a spanning tree.

The second progression is

b4, c1, a4, b7, c4, a7, b10, c7, . . . , a6m+1, b6m+4, c6m+1, a6m+4.

In other words, it can be obtained from the first progression by deleting the
edge a1 = v1v2 and adding the edge a6m+4 = a3m+2 = v3m+2v1. Since the
first progression induce a spanning tree, the deletion of a1 creates an isolated
vertex v1 however the addition of a6m+4 will connect v1 back. Thus the second
progression also induces a spanning tree.

The third progression is

c1, a4, b7, c4, a7, b10, c7, . . . , a6m+1, b6m+4, c6m+1, a6m+4, b6m+7.

In other words, it can be obtained from the second progression by deleting the
edge b4 = u4v4 and adding the edge b6m+7 = b3 = u3v3. Since the second
progression induce a spanning tree, the deletion of b4 will disconnect this span-
ning tree. It is not hard to see that u3 in one component while v3 in the other
component. Clearly the addition of b6m+7 = b3 = u3v3 will connect the two
components, and thus the third progression also induces a spanning tree.

Therefore O is a CBO of G(n, 2).

4 Conclusion

By constructing explicit cyclic base orderings, we proved the “if” part of Con-
jecture 1 for the generalized Petersen graphs G(n, 1) and G(n, 2), supporting the
conjecture and providing further insight into the nature of cyclic base orderings
for certain structures. Besides the theoretical advance, the systematic approach
of constructing the CBOs for these graphs may prove to have real world appli-
cations.

Cyclically Orderable Generalized Petersen Graphs 315

References

1. Catlin, P.A., Grossman, J., Hobbs, A.M.: Graphs with uniform density. Congr.
Numer. 65, 281–285 (1988)

2. Catlin, P.A., Grossman, J.W., Hobbs, A.M., Lai, H.-J.: Fractional arboricity,
strength and principal partitions in graphs and matroids. Discrete Appl. Math.
40, 285–302 (1992)

3. Coxeter, H.: Self-dual configurations and regular graphs. Bull. Amer. Math. Soc.
56, 413–455 (1950)

4. Gu, X., Horacek, K., Lai, H.-J.: Cyclic base orderings in some classes of graphs. J.
Combin. Math. Combin. Comput. 88, 39–50 (2014)

5. Gu, X., Li, J., Yang, E., Zhang, W.: Cyclic base ordering of certain degenerate
graphs, submitted for publication

6. Kajitani, Y., Ueno, S., Miyano, H.: Ordering of the elements of a matroid such that
its consecutive w elements are independent. Discrete Math. 72, 187–194 (1988)

7. Li, J., Yang, E., Zhang, W.: Cyclic Base Ordering of Graphs. arXiv:2110.00892
[math.CO] (2021)

8. Watkins, M.E.: A theorem on Tait colorings with an application to the generalized
Petersen graphs. J. Comb. Theor. 6, 152–164 (1969)

http://arxiv.org/abs/2110.00892

The r-Dynamic Chromatic Number
of Planar Graphs Without Special Short

Cycles

Yuehua Bu1,2, Ruiying Yang1, and Hongguo Zhu1(B)

1 Department of Mathematics, Zhejiang Normal University,
Jinhua 321004, Zhejiang, China

zhuhongguo@zjnu.edu.cn
2 Xingzhi College of Zhejiang Normal University, Jinhua 321004, Zhejiang, China

Abstract. Let k and r be two positive integers. An r-dynamic col-
oring of a graph G is a proper k-coloring ϕ such that | ϕ(NG(v)) |≥
min{dG(v), r} for each v ∈ V (G). In this paper, we study the r-dynamic
coloring of planar graphs without 3-,5-cycle, and 4-cycle is not adjacent
to 7−-cycles. We prove that the upper bound of r-dynamic chromatic
number of such graph is r + 3 if r ≥ 14.

Keywords: r-dynamic coloring · Planar graph · Cycle · Discharging

1 Introduction

There are many generalizations and variations of ordinary graph colorings. One
of the most popular is the dynamic coloring. Let G be a graph and k, r be two
positive integers. A (k, r)-dynamic coloring of a graph G is mapping ϕ : V (G) →
{1, 2, . . . , k} k, r such that ϕ(u) �= ϕ(v) for each uv ∈ E(G), and | ϕ(NG(v)) |≥
min{dG(v), r} for each v ∈ V (G). The r-dynamic chromatic number, introduced
by Montgomery [4] and written as χr(G), is the minimum k such that G has a
(k, r)-dynamic coloring. In particular, we remark that the r-dynamic coloring is
called 2-distance coloring when r = Δ(G).

For 2-distance coloring of planar graphs, namely Δ-dynamic coloring, Wenger
[7] posed the following famous conjecture.

Conjecture 1.1. Let G be a planar graph with maximum degree Δ. If 4 ≤ Δ ≤
7, then χ2(G) ≤ Δ + 5. If Δ ≥ 8, then χ2(G) ≤ � 3Δ

2 � + 8.

Conjecture 1.1 is still open. However, several upper bounds in terms of max-
imum degree Δ have been studied in [1,5,11]. For planar graphs with girth
restriction condition, there are many results about χr(G) (see Table 1).

This work is supported by a research grant NSFC (11271334).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 316–326, 2022.
https://doi.org/10.1007/978-3-031-16081-3_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_27&domain=pdf
https://doi.org/10.1007/978-3-031-16081-3_27

The r-Dynamic Chromatic Number of Planar Graphs 317

Table 1. The uppers of χr(G) for some planar graphs

Conditions Conclusions References

g ≥ 5, r ≥ 15 χr(G) ≤ r + 5 [10]

g ≥ 5, r ≥ 24 χr(G) ≤ r + 4 [8]

g ≥ 6, r ≥ 3 χr(G) ≤ r + 5 [6]

g ≥ 7, r ≥ 16 χr(G) ≤ r + 1 [9]

g ≥ 8, r ≥ 9 χr(G) ≤ r + 1 [3]

For planar graph G without 4,5-cycles, Zhu and Gu [12] proved that χ2(G) ≤
max{29,Δ+3}. Recently, Bu and Cao [2] proved that every planar graph without
3,5-cycles and intersecting 4-cycle and Δ(G) ≥ 15 has χ2(G) ≤ Δ + 3. In this
paper, we study the planar graphs without the special short cycles, and prove
the following theorem.

Theorem 1.2. Let G be a planar graph without 3-,5-cycles, and 4-cycle is not
adjacent to 7−-cycles. If r ≥ 14, then χr(G) ≤ r + 3.

Let G be a simple planar graph. For a face f ∈ F (G), f is a k(or k+, or
k−)-face if d(f) = k (or d(f) ≥ k, or d(f) ≤ k). For a vertex v ∈ V (G), v is
a k(or k+, or k−)-vertex if d(v) = k(or d(v) ≥ k, or d(v) ≤ k). For a k-vertex
v of G, N(v) denotes the set of vertices adjacent to v, d(v) = |N(v)| denotes

the degree of v, N(v) = {vi|1 ≤ i ≤ k}, D(v) =
k∑

i=1

d(vi). Let n2(v) denote the

number of 2-neighbors of v. For f ∈ F (G), we use b(f) to denote the boundary
walk of f and write f = [u1u2 . . . un] if u1, u2, . . . , un are the vertices on b(f)
enumerated in the clockwise. Let f1, f2, . . . , fk denote the incident faces of v
with fi = [. . . vivvi+1 . . .](i = 1, 2, ..., k − 1), fk = [. . . vkvv1 . . .]. A 3-vertex (or
4-vertex) v is called special small if v is not incident with 4-faces. Let v be
a 13+-vertex, if v is incident with two adjacent (6, 6+)-faces and two adjacent
(7, 7+)-faces (or at least three adjacent 8+-faces), then v is called special large.

Let G[V ′] be a induced subgraph of G for V ′ ⊆ V . If there exists a mapping
ϕ : V ′ → [k] is a (k, r)-coloring of G[V ′], then ϕ is called a partial (k, r)-coloring
of G about G[V ′] . Suppose that ϕ is a partial (k, r)-coloring of G. Let {ϕ(v)} = ∅
for v ∈ V − V ′. For each v ∈ V , we define the following color set ϕ[v]:

ϕ[v] =

{
{ϕ(v)}, |ϕ(NG(v))| ≥ r;
{ϕ(v)}⋃

ϕ(NG(v)), |ϕ(NG(v))| < r.

Note that |ϕ[v]| ≤ r by the definition of ϕ[v]. Define the forbidden color set
of v by F (v) =

⋃

u∈N(v)

ϕ[u], the color set by [k] = {1, 2, · · · , k}. We call v can be

colored if |F (v)| < k for each v ∈ V (G).

318 Y. Bu et al.

2 Reducible Configurations

We prove Theorem 1.2 by contradiction. Let G be a counterexample with mini-
mum |V (G)|+|E(G)| of Theorem 1.2. That is to say, G is a planar graph without
3-,5-cycles, and 4-cycle is not adjacent to 7−-cycles, r ≥ 14, but χr(G) ≥ r + 4.
For any edge e of G, we have χr(G − e) ≤ r + 3. Then G is a connected planar
graph.

Lemma 2.1. G is 2-connected.

Proof. By contradiction, suppose that v is a cut vertex of G, that is to
say, there are two connected subgraphs G1, G2 such that G1 ∩ G2 = {v}
and G = G1 ∪ G2. By the minimality of G, Gi has a (k, r)-coloring ϕ(i)
for i = 1, 2. Suppose ϕ1(v) = ϕ2(v). If |ϕ1(NG1(v))

⋃
ϕ2(NG2(v))| ≥

min{dG(v), r}, then we define a new coloring ϕ: V (G) → [k] such that
ϕ(u) = ϕi(u)(1 ≤ i ≤ 2) for each u ∈ V (Gi). Obviously, ϕ is a (k, r)-
coloring of G. If |ϕ1(NG1(v))

⋃
ϕ2(NG2(v))| <min{dG(v), r}, then there is

a vertex vi ∈ NGi
(v)(i = 1, 2) such that ϕ1(v1) = ϕ2(v2). This means

that there is a color c ∈ [k] − ϕ1(NG1(v))
⋃

ϕ2(NG2(v))
⋃{ϕ1(v)}. Now

we can exchange the color c with ϕ2(v2). Repeat the steps above until
|ϕ1(NG1(v))

⋃
ϕ2(NG2(v))| ≥min{dG(v), r}. Thus, we can get a (k, r)-coloring

of G, a contradiction. Suppose ϕ1(v) �= ϕ2(v). Now we exchange the color ϕ1(v)
with ϕ2(v) in G2 such that ϕ1(v) = ϕ2(v) in G. As the same argument above,
ϕ1, ϕ2 can be extended to a (k, r)-coloring of G, a contradiction. �
Lemma 2.2. There is no 2-vertex adjacent to a 2-vertex.

Proof. Otherwise, suppose there is an edge uv such that d(u) = d(v) = 2,
N(u) = {v, u1} and N(v) = {u, v1}. The graph G

′
= G−uv has a (k, r)-coloring

ϕ. First, we remove the colors of u, v. Since |F (u)| ≤ |ϕ[u1]∪{ϕ(v1)}| ≤ r+1 < k,
|F (v)| ≤ |ϕ[v1]∪{ϕ(u1)}| ≤ r+1 < k, we can recolor u, v to get a (k, r)-coloring
of G, a contradiction. �
Lemma 2.3. For each uv ∈ E(G), if D(u) ≤ r + 2, then D(v) ≥ r + 4.

Proof. By contradiction, suppose D(v) ≤ r + 3. Let G′ = G − uv. Now G′ has
a (k, r)-coloring. Remove the colors of u, v. Since |F (v)| ≤ D(v) − 1 ≤ r + 2,
|F (u)| ≤ D(u) − 1 ≤ r + 1, we can recolor u, v, a contradiction. �
Lemma 2.4. Let v be a 3-vertex of G.

(1) If d(v1) = 2, then d(v2) + d(v3) ≥ r + 1;
(2) If n2(v) = 2, suppose d(v1) = d(v2) = 2, then both of v11, v21 are r+-vertices,

and v is not incident with 4-face.

Proof. (1) By contradiction, suppose d(v2)+ d(v3) ≤ r. Let G
′
= G− vv1. Then

G
′

has a (k, r)-coloring. Remove the colors of v, v1. Since |F (v)| ≤ D(v) − 1 ≤
r + 2, |F (u)| ≤ D(u) − 1 ≤ r + 1, we can recolor v1, v to get a (k, r)-coloring of
G, a contradiction.

The r-Dynamic Chromatic Number of Planar Graphs 319

(2) By contradiction, suppose d(v11) ≤ r − 1. Let G
′

= G − vv1. Then
G

′
has a (k, r)-coloring. Remove the colors of v1, v, v2. It is easy to see that

|F (v)| ≤ |ϕ[v3] ∪ {ϕ(v11), ϕ(v21)}| ≤ r + 2, |F (v2)| ≤ |ϕ[v21] ∪ {ϕ(v3)}| ≤ r + 1,
|F (v1)| ≤ |ϕ[v11] ∪ {ϕ(v3)}| ≤ r − 1 + 1 = r. Thus, we can get a (k, r)-coloring
of G by recoloring v, v2, v1 in turn, a contradiction. As the same argument, we
can prove d(v21) ≥ r.

By contradiction, suppose v is incident with a 4-face f . There are three cases
of f . First, assume f = f1 = [v1vv2v11]. Let G

′
= G − vv1. Then G

′
has a

(k, r)-coloring. Remove the colors of v1, v, v2. It is easy to see that |F (v)| ≤
|ϕ[v3] ∪ {ϕ(v11)}| ≤ r + 1, |F (v2)| ≤ |ϕ[v11] ∪ {ϕ(v3)}| ≤ r + 1. So we can
recolor v, v2. For v1, it follows that |F (v1)| ≤ |ϕ[v11] ∪ {ϕ(v), ϕ(v3)}| ≤ r + 2.
Therefore, we can get a (k, r)-coloring of G by recoloring v, v2, v1 in turn, a
contradiction. If f = f2 = [v2vv3v21] or f = f3 = [v3vv1v11 · · ·], then we can
obtain a contradiction by a similar argument of the case f = f1. �
Lemma 2.5. Let v be a 4-vertex of G.

(1) If n2(v) = 4, then v is not incident with 4-face, and d(vi1) ≥ r(1 ≤ i ≤ 4);
(2) Suppose n2(v) = 3. Let d(vi) = 2(1 ≤ i ≤ 3).

(a) If v is incident with two 4-faces, then d(v11) ≥ r, d(v31) ≥ r and d(v4) ≥
r − 1;

(b) If v is incident with exactly one 4-face, then d(v4) ≥ r − 2;
(3) If n2(v) = 2 and v is incident with two 4-faces, then d(vj) + d(vl) ≥ r + 1

for two 3+-neighbors vj , vl.

Proof. (1) Let n2(v) = 4. By contradiction, suppose that f1 = [v1vv2v11] is a
4-face. Let G

′
= G − vv1. Then G

′
admits a (k, r)-coloring. Now we remove the

colors of v, v1. It is easily can be seen that |F (v1)| ≤ |ϕ[v11] ∪ {ϕ(v3), ϕ(v4)}| ≤
r + 2, |F (v)| ≤ |ϕ[v3] ∪ ϕ[v4] ∪ {ϕ(v2), ϕ(v11)}| ≤ 2 + 2 + 2 = 6. Thus, we can
recolor v1, v to get a (k, r)-coloring of G, a contradiction.

Now we show d(vi1) ≥ r(1 ≤ i ≤ 4). By contradiction, w.l.g.o, suppose
d(v11) ≤ r − 1. Let G

′
= G − vv1. Then G

′
admits a (k, r)-coloring. Now we

remove the colors of v, v1. Since |F (v1)| ≤ |ϕ[v11] ∪ {ϕ(v2), ϕ(v3), ϕ(v4)}| ≤
r − 1 + 3 = r + 2, |F (v)| ≤ |ϕ[v2] ∪ ϕ[v3] ∪ ϕ[v4] ∪ {ϕ(v11)}| ≤ 6 + 1 = 7, we can
recolor v1, v, |ϕ[v11]| ≤ r − 3 + 1 = r − 2

(2) Suppose n2(v) = 3. Let d(vi) = 2(1 ≤ i ≤ 3).
(a) Assume that v is incident with two 4-faces f1 = [v1vv2v11], f3 =

[v3vv4v31]. By contradiction, suppose d(v11) ≤ r − 1. By the minimality of G,
G

′
= G − vv1 has a (k, r)-coloring. Now remove the colors of v, v2, v3, v1. It

follows from d(v11) ≤ r − 1 that |ϕ[v11]| ≤ r − 3 + 1 = r − 2. This implies
that |F (v)| ≤ |ϕ[v4] ∪ {ϕ(v11)}| ≤ r + 1, |F (v3)| ≤ |ϕ[v31]| ≤ r, |F (v2)| ≤
|ϕ[v11]∪{ϕ(v4)}| ≤ r−2+1 = r−1, |F (v1)| ≤ |ϕ[v11]∪{ϕ(v4)}| ≤ r−2+1 = r−1.
Therefore, we can recolor v, v3, v2, v1 in turn, a contradiction. As the same argu-
ment before, it is easy to prove that d(v31) ≥ r and d(v4) ≤ r − 2.

(b) If v is incident with exactly one 4-face f . By contradiction, suppose
d(v4) ≤ r−3. First, we consider the case when f = f1 = [v1vv2v11]. Let G

′
= G−

vv1. Then G
′
admits a (k, r)-coloring. Now we remove the colors of v, v2, v3, v1.

320 Y. Bu et al.

It is easy to see that |F (v2)| ≤ |ϕ[v11] ∪ {ϕ(v4)}| ≤ r + 1, |F (v3)| ≤ |ϕ[v31] ∪
{ϕ(v4)}| ≤ r + 1. We can recolor v3, v2 in turn. Then for v1, v, since |F (v1)| ≤
|ϕ[v11] ∪ {ϕ(v3), ϕ(v4)}| ≤ r + 2, |F (v)| ≤ |ϕ[v4] ∪ ϕ[v3] ∪ ϕ[v2]| ≤ r − 3 +
2 + 2 = r + 1, we can recolor v1, v in sequence, a contradiction. Now suppose
f = f4 = [v1vv4v11]. We can show that d(v4) ≥ r − 2 by a similar argument
before.

(3) At first, suppose that the two 2-neighbors of v are incident with one
common face. W.l.o.g, let d(vi) = 2(i = 1, 2). Suppose that the two incident
4-faces of v are f1 = [v1vv2v11] and f3 = [v3vv4v31]. By contradiction, suppose
d(v3) + d(v4) ≤ r. Let G

′
= G − vv1. Then G

′
admits a (k, r)-coloring. Now

we remove the colors of v, v1, v2. First, we recolor v1 since |F (v1)| ≤ |ϕ[v11] ∪
{ϕ(v3), ϕ(v4)}| ≤ r + 2. Then due to |F (v2)| ≤ |ϕ[v11] ∪ {ϕ(v3), ϕ(v4)}| ≤ r + 2,
|F (v)| ≤ |ϕ[v1] ∪ ϕ[v3] ∪ ϕ[v4]| ≤ 2 + d(v3) + d(v4) − 1 ≤ r + 1, we can recolor
v2, v in turn, a contradiction. On the other hand, suppose that the two incident
4-faces of v are f2 = [v2vv3v21] and f4 = [v4vv1v11]. As the same argument
above, we can prove d(v3) + d(v4) ≥ r + 1.

Then, suppose that the two 2-neighbors of v are incident with two different
faces. W.l.o.g, let d(vi) = 2 for i = 1, 3. It is easy to to prove that d(v3)+d(v4) ≥
r + 1 by a similar argument before. �
Lemma 2.6. If a 5(5)-vertex v is incident with two 4-faces f1 = [v1vv2v11] and
f3 = [v3vv4v31], then d(vi1) ≥ r(i = 1, 3).

Proof. Suppose that the lemma is not true. Assume d(v11) ≤ r − 1. Let
G

′
= G − vv1. Then G

′
admits a (k, r)-coloring. Now we remove the colors

of v, v1, v2, v3, v4, v5. Note that |F (v3)| ≤ |ϕ[v31]| ≤ r, |F (v4)| ≤ |ϕ[v31]| ≤ r,
|F (v5)| ≤ |ϕ[v51]| ≤ r, |F (v2)| ≤ |ϕ[v11]| ≤ r − 2, |F (v1)| ≤ |ϕ[v11]| ≤ r − 2,
|F (v)| ≤ |{ϕ(v11), ϕ(v31), ϕ(v51)}| ≤ 3. This means that v3, v4, v5, v1, v2, v can
be recolored in turn, a contradiction. �
Lemma 2.7. Let v be a 6-vertex of G.

(1) If v is a 6(6)-vertex incident with three 4-faces f1 = [v1vv2v11], f3 =
[v3vv4v31], f5 = [v5vv6v51], where vi1 are all (r−1)−-vertices, then d(vi1) =
r − 1 for i = 1, 3, 5;

(2) If v is a 6(5)-vertex incident with three 4-faces f1 = [v1vv2v11], f3 =
[v3vv4v31], f5 = [v5vv6v51], where d(v6) ≤ 8, then d(vi1) ≥ r−1 for i = 1, 3.

Proof. (1) Suppose that the lemma is not true. W.l.o.g., assume d(v51) ≤ r − 2.
Let G

′
= G−vv1. Then G

′
admits a (k, r)-coloring. Now we remove the colors of

v, v1, v2, v3, v4, v5, v6. Since |F (v1)| ≤ |ϕ[v11]| ≤ r − 1, |F (v2)| ≤ |ϕ[v11]| ≤ r − 1,
|F (v3)| ≤ |ϕ[v31]| ≤ r − 1, |F (v4)| ≤ |ϕ[v31]| ≤ r − 1, |F (v5)| ≤ |ϕ[v51]| ≤
r − 3, |F (v6)| ≤ |ϕ[v51]| ≤ r − 3, |F (v)| ≤ |{ϕ(v11), ϕ(v31), ϕ(v51)}| = 3, we can
recolor v1, v2, v3, v4, v5, v6, v in sequence. Thus, we can get a (k, r)-coloring of G,
a contradiction.

(2) W.l.o.g., assume d(v11) ≤ r−2. Let G
′
= G−vv1. Then G

′
admits a (k, r)-

coloring. Now we remove the colors of v, v1, v2, v3, v4, v5. Note that |F (v3)| ≤

The r-Dynamic Chromatic Number of Planar Graphs 321

|ϕ[v31]∪{ϕ(v6)}| ≤ r+1, |F (v4)| ≤ |ϕ[v31]∪{ϕ(v6)}| ≤ r+1, |F (v5)| ≤ |ϕ[v51]| ≤
r, |F (v1)| ≤ |ϕ[v11]∪{ϕ(v6)}| ≤ r−3+1 = r−2, |F (v2)| ≤ |ϕ[v11]∪{ϕ(v6)}| ≤
r − 3 + 1 = r − 2, |F (v)| ≤ |ϕ[v6] ∪ {ϕ(v11), ϕ(v31)}| ≤ 8 + 2 = 10. This means
that we can get a (k, r)-coloring of G by recoloring v3, v4, v5, v1, v2, v in turn, a
contradiction. �

3 Proof of Theorem 1.2

In this section, we prove Theorem 1.2 by contradiction. Let G be a minimal
counterexample of Theorem 1.2. By Euler’s formula |V (G)|+|F (G)|−|E(G)| = 2,
and the fact

∑

v∈V (G)

d(v) =
∑

f∈F (G)

d(f) = 2|E(G)|, we have

∑

v∈V (G)

(d(v) − 4) +
∑

f∈F (G)

(d(f) − 4) = −8. (1)

We define the weight function ω: V (G) ∪ F (G) → N by ω(x) = d(x) − 4 for
each x ∈ V (G), and ω(x) = d(x) − 4 for each x ∈ F (G), then we obtain

∑

x∈V (G)∪F (G)

ω(x) = −8.

We will design several discharging rules and reassign weight accordingly. Once
the discharging is finished, a new weight function ω′ is produced and we will
show that for each x ∈ V (G) ∪ F (G), ω′(x) ≥ 0. However, the total sum of
weights is unchanged. This leads to the following contradiction:

0 ≤
∑

x∈V (G)∪F (G)

ω′(x) =
∑

x∈V (G)∪F (G)

ω(x) = −8. (2)

Let τ(u �→ v) denote the value transferring from u to v according to the
discharging rules. We define the following discharging rules:

• R1 Every 6+-face sends d(f)−4
d(f) to each incident vertex.

• R2 Let u be a 2-vertex incident with two faces f1, f2, and uv ∈ E(G). If
d(f1) = 4 and d(f2) ≥ 8, then τ(v → u) = 3

4 ; If d(f1) = 6 and 6 ≤ d(f2) ≤ 7,
then τ(v → u) = 2

3 ; If d(f1) = 6 and d(f2) ≥ 8 then τ(v → u) = 7
12 ; If

d(f1) = 7 and d(f2) ≥ 7, then τ(v → u) = 4
7 ; If d(f1) ≥ 8 and d(f2) ≥ 8,

then τ(v → u) = 1
2 .

• R3 Suppose that u and v have a common 2-neighbor with 3 ≤ d(u) ≤ 6. If
d(v) ≥ 13 and at least one of u, v is not special vertex, then τ(v → u) =
11
52 ; If d(v) ≥ 13 and u, v are special small vertex and special large vertex,
respectively, then τ(v → u) = 1

3 ; If d(v) = 12, then τ(v → u) = 1
6 ; If

d(v) = 11, then τ(v → u) = 7
44 .

• R4 Let u be a 3-vertex, where uv ∈ E(G). If d(v) = 6, then τ(v → u) = 1
4 ;

If d(v) = 7, then τ(v → u) = 3
8 ; If d(v) = 8, then τ(v → u) = 1

2 ; If d(v) ≥ 9,
then τ(v → u) = 3

4 .

322 Y. Bu et al.

• R5 Let u be a 4-vertex and uv ∈ E(G). If 6 ≤ d(v) ≤ 7, then τ(v → u) = 1
4 ;

If d(v) = 8, then τ(v → u) = 1
2 ; If d(v) ≥ 9, then τ(v → u) = 3

4 .
• R6 If u is a 5-vertex and d(v) ≥ 8, where uv ∈ E(G), then τ(v → u) = 1

2 .
• R7 If u is a 6-vertex and d(v) ≥ 9, where uv ∈ E(G), then τ(v → u) = 1

4 .

First, we prove that ω′(f) = ω(f)− d(f)−4
d(f) ×d(f) = 0 by R1 for each f ∈ F (G)

since d(f) ≥ 4. Now we check ω′(v) ≥ 0 for each v ∈ V (G).
1. d(v) = 2, and then ω(v) = −2.
Assume that v is incident with f1 and f2. W.l.o.g., suppose d(f1) ≤ d(f2).

If f1 is a 4-face, f2 is a 8+-face, then we have that ω′(v) ≥ −2 + 1
2 + 3

4 × 2 = 0
by R1 and R2; If d(f1) = 6 and 6 ≤ d(f2) ≤ 7, then we can obtain that
ω′(v) ≥ −2 + 1

3 × 2 + 2
3 × 2 = 0 by R1 and R2; If d(f1) = 6 and d(f2) ≥ 8, then

ω′(v) ≥ −2 + 1
2 + 7

12 × 2 = 0 by R1 and R2; If d(f1) = 7 and d(f2) ≥ 7, then
ω′(v) ≥ −2 + 3

7 × 2 + 4
7 × 2 = 0 by R1 and R2; If d(f1) ≥ 8 and d(f2) ≥ 8, then

ω′(v) ≥ −2 + 1
2 × 2 + 1

2 × 2 = 0 by R1 and R2.
2. d(v) = 3 and then ω(v) = −1. Note that n2(v) ≤ 2 by Lemma 2.4(1).
2.1. n2(v) = 2.
By Lemma 2.4, v is not incident with 4-face, and d(v3) ≥ r − 1 ≥ 12, which

implies that v is special small. If f1 = [vv1v11 . . . v21v2v] is 6-face or 7-face,
then the faces incident with v are all 6+faces, and v11, v21 are both special
large. Using R3, τ(vi1 → v) = 1

3 (i = 1, 2). By R1, R2, R4, we can acquire that
ω′(v) ≥ −1− 2

3 ×2+ 1
3 ×3+ 1

3 ×2+ 3
4 > 0. If f1 = [vv1v11 . . . v21v2v] is a 8+-face,

then τ(vi1 → v) ≥ 11
52 (i = 1, 2) by R3. This together with R1, R2, R4 yields that

ω′(v) ≥ −1 − 7
12 × 2 + 1

3 × 2 + 1
2 + 11

52 × 2 + 3
4 = 9

52 > 0.
2.2. n2(v) = 1.
It follows from Lemma 2.4(1) that d(v2) + d(v3) ≥ r + 1. This implies

that (d(v2), d(v3)) ∈ {(3, 11+), (4, 10+), (5, 9+), (6, 8+), (7+, 7+)}. So the inci-
dent faces transfer min{1

2 × 2, 1
3 × 3} = 1 to v. By R1, R2, R4, ω′(v) ≥

−1 − 3
4 + 1 + min{ 3

4 , 1
4 + 1

2 , 3
8 × 2} = 0.

2.3. n2(v) = 0.
If v is not incident with 4-face, then ω′(v) ≥ −1 + 1

3 × 3 = 0 by R1. If v is
incident with one 4-face, then the other two faces incident with v are 8+-faces,
which implies that ω′(v) ≥ −1 + 1

2 × 2 = 0 by R1.
3. d(v) = 4 and then ω(v) = 0.
3.1. n2(v) = 4.
Note that 4(4)-vertex is not incident with 4-face by Lemma 2.5(1), which

implies that v is a special small vertex. Suppose v is incident with a 6-face or
7-face f1 = [vv1v11 . . . v21v2v], the other three incident faces of v are written by
f2, f3, f4. Clearly, v11 and v21 are special large vertices. By R3, τ(vi1 → v) =
1
3 (i = 1, 2). If 6 ≤ d(f3) ≤ 7, then v31 and v41 are special large vertices. This
means that τ(vi1 → v) = 1

3 (i = 3, 4) by R3. Therefore, ω′(v) ≥ 0− 2
3 ×4+ 1

3 ×4+
1
3×4 = 0 by R1, R2, R3. If d(f3) ≥ 8, then we have that τ(vi1 → v) ≥ 11

52 (i = 3, 4)
by R3. Thus, ω′(v) ≥ 0− 2

3×2− 7
12×2+ 1

3×3+ 1
2+ 1

3×2+ 11
52×2 > 0 by R1, R2, R3. If

the faces incident with v are all 8+-faces, then ω′(v) ≥ 0− 1
2 ×4+ 1

2 ×4+ 11
52 ×4 > 0

by R1, R2.

The r-Dynamic Chromatic Number of Planar Graphs 323

3.2. n2(v) = 3.
Suppose that the 2-neighbors of v are vi (1 ≤ i ≤ 3). If v is incident with two

4-faces, then d(v11) ≥ r, d(v31) ≥ r, d(v4) ≥ r−1 by Lemma 2.5(2). This implies
that ω′(v) ≥ 0− 3

4 ×3+ 1
2 ×2+ 11

52 ×3+ 3
4 > 0 by R1, R2, R3, R5. If v is incident

with one 4-face, then d(v4) ≥ r − 2 by Lemma 2.5(2). Using R1, R2, R3, R5, we
have ω′(v) ≥ 0 − 3

4 × 2 − 7
12 + 1

2 × 2 + 1
3 + 3

4 = 0. If v is not incident with 4-face
and d(v4) ≥ 10, then ω′(v) ≥ 0− 2

3 × 3+ 1
3 × 4+ 3

4 > 0 by R1, R2, R5. If v is not
incident with 4-face and d(v4) ≤ 9, then we can obtain d(vi1) ≥ r(1 ≤ i ≤ 3) by
Lemma 2.3. If v is incident with at least one l-face for l = 6, 7, then there is at
least one special large vertex in {vi1|1 ≤ i ≤ 3}, and v is a special small vertex.
By R1, R2, R3, R5, we can acquire ω′(v) ≥ 0 − 2

3 × 3 + 1
3 × 4 + 1

3 + 11
52 × 2 > 0.

Otherwise, the incident faces of v are all 8+-faces, which together with R1, R2
yields that ω′(v) ≥ 0 − 2

3 × 3 + 1
2 × 4 > 0.

3.3. n2(v) = 2.
W.l.o.g., suppose that the 2-neighbors of v are v1, v2. If v is incident with two

4-faces, then d(v3) + d(v4) ≥ r + 1 by Lemma 2.5(3). Clearly, (d(v3), d(v4)) ∈
{(3, 11+), (4, 10+), (5, 9+), (6, 8+), (7+, 7+)}. By R1, R2, R5, ω′(v) ≥ 0 − 3

4 × 2 +
1
2×2+min{ 3

4 , 1
2+ 1

4 , 1
4×2} = 0. If v is incident with one 4-face, and d(v3)+d(v4) ≤

r−2, then d(vi1) ≥ r ≥ 13(i = 1, 2) by Lemma 2.3. This means that τ(vi1 → v) ≥
11
52 (i = 1, 2) by R3. If v is incident with one 4-face, and d(v3)+d(v4) ≥ r−1 ≥ 12,
then there is at least one 6+-vertex in {v3, v4}. Using R1, R2, R3, R5, we obtain
ω′(v) ≥ 0 − 3

4 × 2 + 1
2 × 2 + 1

3+min{ 1
4 , 11

52 × 2} > 0. Otherwise, v is not incident
with 4-face. It is easy to see that ω′(v) ≥ 0 − 2

3 × 2 + 1
3 × 4 = 0 by R1, R2.

3.4. n2(v) ≤ 1.
If v is incident with 4-faces, then ω′(v) ≥ 0 − 3

4 + 1
2 × 2 > 0 by R1, R2.

Otherwise, v is not incident with 4-face, then ω′(v) ≥ 0 − 2
3 + 1

3 × 4 > 0 by
R1, R2.

4. d(v) = 5 and then ω(v) = 1.
4.1. n2(v) = 5.
Since D(v) = 10 ≤ r + 2, it follows from Lemma 2.3 that D(vi) ≥ r + 4,

d(vi1) ≥ r + 4 − 5 = r − 1(1 ≤ i ≤ 5). If v is incident with two 4-faces f1 =
[v1vv2v11], f3 = [v3vv4v31], then d(vi1) ≥ r(i = 1, 3) by Lemma 2.6. Using
R1, R2, R3 we have ω′(v) ≥ 1 − 3

4 × 4 − 1
2 + 1

2 × 3 + 11
52 × 4 + 1

6 > 0. If v is
incident with one 4-face, then there are at least two 8+-faces incident with v.
So ω′(v) ≥ 1 − 3

4 × 2 − 7
12 × 2 − 2

3 + 1
2 × 2 + 1

3 × 2 + 1
6 × 5 > 0 by R1, R2, R3.

Otherwise, v is not incident with 4-face. Namely, the incident faces of v are all
6+-faces, which implies that ω′(v) ≥ 1− 2

3 ×5+ 1
3 ×5+ 1

6 ×5 > 0 by R1, R2, R3.
4.2. n2(v) = 4.
Let v5 be a 3+-neighbor of v. If d(v5) ≤ r − 6, then D(vi1) ≥ r + 4 − 5 =

r − 1(1 ≤ i ≤ 4) by Lemma 2.3. Thus, by R1, R2, R3, we have that ω′(v) ≥
1 − 3

4 × 4 + 1
2 × 3 + 1

6 × 4 > 0. Otherwise, d(v5) ≥ r − 5 ≥ 8, it is easy to see
that ω′(v) ≥ 1 − 3

4 × 4 + 1
2 × 3 + 1

2 = 0 by R1, R2, R6.
4.3. n2(v) ≤ 3. It is easy to show that ω′(v) ≥ 1 − 3

4 × 3 + 1
2 × 3 = 1

4 > 0 by
R1, R2.

5. d(v) = 6 and then ω(v) = 2.

324 Y. Bu et al.

5.1. n2(v) = 6.
Since D(v) = 12 ≤ r + 2, it follows from Lemma 2.3 that D(vi) ≥ r + 4,

d(vi1) ≥ r + 4 − 6 = r − 2(1 ≤ i ≤ 6). If v is incident with three 4-faces
f1 = [v1vv2v11], f3 = [v3vv4v31], and f5 = [v5vv6v51], in which d(vi1) ≤ r − 1
for i ∈ {1, 3, 5}, then d(vi1) = r − 1 by Lemma 2.7(1). By R1, R2, R3, we have
that ω′(v) ≥ 2 − 3

4 × 6 + 1
2 × 3 + 1

6 × 6 = 0. If v is incident with three 4-
faces, but there is at least one r+-vertex in {vi1|i = 1, 3, 5}, then we can show
that ω′(v) ≥ 2 − 3

4 × 6 + 1
2 × 3 + 11

52 × 2 + 7
44 × 4 > 0 by R1, R2, R3. If v

is incident with at most two 4-faces, then it is apparent from R1, R2, R3 that
ω′(v) ≥ 2 − 3

4 × 4 − 7
12 × 2 + 1

2 × 3 + 1
3 + 7

44 × 6 > 0.
5.2. n2(v) = 5.
Let v6 be a 3+-neighbor of v. If d(v6) ≤ 8 and v is incident with three 4-faces

f1 = [v1vv2v11], f3 = [v3vv4v31], and f5 = [v5vv6v51], then d(vi1) ≥ r−1(i = 1, 3)
by Lemma 2.7(2). Thus, we can obtain that ω′(v) ≥ 2− 3

4 ×5− 1
4 + 1

2 ×3+ 1
6 ×4 =

1
6 > 0 by R1, R2, R3, R4. If d(v6) ≤ 8 and v is incident with at most two 4-faces,
then it is apparent from R1, R2, R3, R4 that ω′(v) ≥ 2− 3

4 ×4− 7
12 − 1

4 + 1
2 ×3+ 1

3 =
0. If d(v6) ≥ 9, then we have that ω′(v) ≥ 2− 3

4 ×5+ 1
2 ×3+ 1

4 = 0 by R1, R2, R7.
5.3. n2(v) ≤ 4. It is easy to show that ω′(v) ≥ 2 − 3

4 × 4 − 1
4 × 2 + 1

2 × 3 = 0
by R1, R2, R4.

6. d(v) = 7 and then ω(v) = 3.
If n2(v) = 7, then it follows from R1, R2 that ω′(v) ≥ 3− 3

4 ×6− 1
2 + 1

2 ×4 = 0.
Otherwise, n2(v) ≤ 6. by R1, R2 and R4, we can obtain that ω′(v) ≥ 3 − 3

4 ×
6 − 3

8 + 1
2 × 4 > 0.

7. d(v) = 8 and then ω(v) = 4.
Suppose that the number of incident 4-faces of v is t(t ≤ 4). This means that

v is incident with at least t 8+-faces, at most d(v) − 2t l-faces for l = 6, 7. From
R1 ∼ R6, we can acquire ω′(v) ≥ 4− 3

4 ×2t− 2
3 × (8−2t)+ 1

2 × t+ 1
3 × (8−2t) ≥

4
3 − 1

3 t ≥ 0.
8. d(v) = 9 and then ω(v) = 5.
Suppose that the number of incident 4-faces of v is t(1 ≤ t ≤ 4). This implies

that v is incident with at least t + 1 8+-faces, at most d(v) − 2t − 1 l-faces for
l = 6, 7. By R1 ∼ R7, it is easy to show that ω′(v) ≥ d(v) − 4 − 3

4 × d(v) + 1
2 ×

(t + 1) + 1
3 × (d(v) − 2t − 1) ≥ 7

12 × d(v) − 1
6 × t − 4 + 1

6 > 0. On the other hand,
v is not incident with 4-faces, which means that the incident faces of v are all
6+-faces. It follows from R1 ∼ R7 that ω′(v) ≥ 5 − 2

3 × 9 + 1
3 × 9 > 0.

9. d(v) = 10 and then ω(v) = 6.
Suppose that the number of incident 4-faces of v is t(t ≤ 5). It is easy to see

that v is incident with at least t 8+-faces, at most d(v) − 2t l-faces for l = 6, 7.
Thus, we can obtain that ω′(v) ≥ d(v) − 4 − 3

4 × d(v) + 1
2 × t + 1

3 × (d(v) − 2t) ≥
7
12d(v) − 1

6 × t − 4 ≥ 0 by R1 ∼ R7.
10. d(v) = 11 and then ω(v) = 7.
Suppose there are t(1 ≤ t ≤ 5) 4-faces incident with v. It is easy to see that

v is incident with at least t + 1 8+-faces, at most 11 − 2t − 1 l-faces for l = 6, 7.
By R1 ∼ R7, we can arrive at ω′(v) ≥ 7 − (3

4 + 7
44) × 2t − (2

3 + 7
44) × (11 −

2t) + 1
2 × (t + 1) + 1

3 × (11 − 2t − 1) ≥ 7
4 − 1

3 t > 0. If v is not incident with

The r-Dynamic Chromatic Number of Planar Graphs 325

4-faces, then the incident faces of v are all 6+-faces. Using R1 ∼ R7, we have
ω′(v) ≥ 7 − (2

3 + 7
44) × 11 + 1

3 × 11 > 0.
11. d(v) = 12 and then ω(v) = 8.
Suppose that there are t(1 ≤ t ≤ 6) 4-faces incident with v. Clearly, v is

incident with at least t 8+-faces, at most 12 − 2t l-faces for l = 6, 7. Thus, we
can obtain that ω′(v) ≥ 8−(3

4 + 1
6)×2t−(2

3 + 1
6)×(12−2t)+ 1

2 ×t+ 1
3 ×(12−2t) ≥

2 − 1
3 t ≥ 0 by R1 ∼ R7.
12. d(v) ≥ 13 and then ω(v) = d(v) − 4.
12.1. Suppose that v is not special vertex, there are t(1 ≤ t ≤ �d(v)

2 �) 4-
faces incident with v. If d(v) is even, then v is incident with at least t 8+-faces,
at most d(v) − 2t l-faces for l = 6, 7. Using R1 ∼ R7, we can obtain that
ω′(v) ≥ d(v)−4− (3

4 + 11
52)×2t− (2

3 + 11
52)× (d(v)−2t)+ 1

2 × t+ 1
3 × (d(v)−2t) ≥

15
52d(v) − 4 ≥ 0. If d(v) is odd, then v is incident with at least t + 1 8+-faces
for t ≤ d(v)−1

2 , at most d(v) − 2t − 1 l-faces for l = 6, 7. This implies that
ω′(v) ≥ d(v) − 4 − (3

4 + 11
52) × 2t − (2

3 + 11
52) × (d(v) − 2t) + 1

2 × (t + 1) + 1
3 ×

(d(v)− 2t− 1) ≥ 15
52d(v)− 11

3 > 0 by R1 ∼ R7. Otherwise, v is not incident with
4-faces, then the incident faces of v are all 6+-faces. By R1 ∼ R7, it follows that
ω′(v) ≥ d(v) − 4 − (2

3 + 11
52) × d(v) + 1

3 × d(v) ≥ 71
156d(v) − 4 > 0.

12.2. Suppose that v is a special vertex. It follows from the definition of
special vertex that v is incident with at most �d(v)

2 � − 1 4-faces. First, assume
that v is incident with t(1 ≤ t ≤ �d(v)

2 � − 1) 4-faces. Let v1 be a 2-neighbor of
v in which v11 be another neighbor of v1. If v1 is incident with a 4-face, then
v11 is not a special small vertex, which implies that v transfers 3

4 + 11
52 through

its incident edges by R2, R3; If v1 is incident with a 4-face, then v transfers at
most 2

3 + 1
3 through vv1 by R2, R3. Let f1, f2, · · · , fd(v) be the incident faces of

v enumerated in the clockwise. Since v is a special large vertex and t ≥ 1, there
exists i �= j such that fi and fi+1, fj and fj+1 are both 6+-face and 8+-face
(or 8+-face and 6+-face). If d(v) is even, then v is incident with at least t 8+-
faces, at most d(v) − 2t l-faces for l = 6, 7. By R1 ∼ R7, we have that ω′(v) ≥
d(v)−4−(3

4+ 11
52)×2t−(7

12+ 1
3)×2−(2

3+ 1
3)×(d(v)−2t−2)+ 1

2×t+ 1
3×(d(v)−2t) ≥

15
52d(v)− 146

39 ≥ 0. If d(v) is odd, then v is incident with at least t+1 8+-faces for
t ≤ �d(v)

2 �−1 = d(v)−3
2 , at most d(v)−2t−1 l-faces for l = 6, 7. This means that

ω′(v) ≥ d(v)−4−(3
4 + 11

52)×2t−(7
12 + 1

3)×2−(2
3 + 1

3)×(d(v)−2t−2)+ 1
2 ×(t+1)+

1
3 × (d(v) − 2t − 1) ≥ 15

52d(v) − 421
156 > 0 by R1 ∼ R7. On the other hand, v is not

incident with 4-faces, which means that the incident faces of v are all 6+-faces. By
R1 ∼ R7, it follows that ω′(v) ≥ d(v)−4−(2

3+ 1
3)×d(v)+ 1

3×d(v) ≥ 1
3d(v)−4 > 0.

Thus, we have ω′(x) ≥ 0 for each x ∈ V (G)∪F (G), which is a contradiction.
This completes the proof of Theorem 1.2.

References

1. Borodin, O.V., Broersma, H.J., Glebov, A., Heuvel, J.V.D.: Stars and bunches in
planar graphs. Part II: General planar graphs and colourings. CDAM researches
report 2002-05 (2002)

326 Y. Bu et al.

2. Bu, Y.H., Cao, J.J.: 2-distance coloring of planar graph. Discrete Appl. Math. 13,
2150007 (2021)

3. La, H., Montassier, M., Pinlou, A., et al.: r-hued (r+1)-coloring of planar graphs
with girth at least 8 for r≥ 9. Eur. J. Comb. 91, 103219 (2021)

4. Montgomery, B.: Dynamic Coloring of Graphs. West Virginia University, Morgant-
won (2001)

5. Song, H.M., Lai, H.J.: Upper bounds of r-hued colorings of planar graphs. Discrete
Appl. Math. 243, 262–269 (2018)

6. Song, H.M., Lai, H.J., Wu, J.L.: On r-hued coloring of planar graphs with girth at
least 6. Discrete Appl. Math. 198, 251–263 (2016)

7. Wegner, G.: Graphs with given diameter and a coloring problem. Technical Report,
University of Dortmund (1977)

8. Wang, X.F.: r-Dynamic Coloring of Planar Graphs. Zhejiang Noamal University,
Jinhua (2020)

9. Yi, D., Zhu, J.L., Feng, L.X., et al.: Optimal r-dynamic coloring of sparse graphs.
J. Comb. Optim. 38, 545–555 (2019)

10. Zhu, J.L.: L(2, 1)-Labeling and r-Dynamic Coloring. Zhejiang Noamal University,
Jinhua (2019)

11. Zhu, J.L., Bu, Y.H.: Minimum 2-distance coloring of planar graphs and channel
assignment. J. Comb. Optim. 36, 55–64 (2018)

12. Zhu, H., Gu, Y., Sheng, J., Lv, X.: List 2-distance (Δ+3)-coloring of planar graphs
without 4,5-cycles. J. Comb. Optim. 36, 1411–1424 (2018)

Distance Magic Labeling of the Halved
Folded n-Cube

Yi Tian1,2, Na Kang3, Weili Wu4, Ding-Zhu Du4, and Suogang Gao1,5(B)

1 School of Mathematical Sciences, Hebei Normal University,
Shijiazhuang 050024, People’s Republic of China

sggaomail@163.com
2 School of Big Data Science, Hebei Finance University,

Baoding 071051, People’s Republic of China
3 School of Mathematics and Science, Hebei GEO University,

Shijiazhuang 050024, People’s Republic of China
4 Department of Computer Science, University of Texas at Dallas,

Richardson, TX 75080, USA
{weiliwu,dzdu}@utdallas.edu

5 Hebei International Joint Research Center for Mathematics and Interdisciplinary
Science, Shijiazhuang 050024, People’s Republic of China

Abstract. Hypercube is an important structure for computer networks.
The distance plays an important role in its applications. In this paper, we
study a magic labeling of the halved folded n-cube which is a variation
of the n-cube. This labeling is determined by the distance. Let G be a
finite undirected simple connected graph with vertex set V (G), distance
function ∂ and diameter d. Let D ⊆ {0, 1, . . . , d} be a set of distances.
A bijection l : V (G) → {1, 2, . . . , |V (G)|} is called a D-magic labeling of
G whenever

∑

x∈GD(v)

l(x) is a constant for any vertex v ∈ V (G), where

GD(v) = {x ∈ V (G) : ∂(x, v) ∈ D}. A {1}-magic labeling is also called
a distance magic labeling. We show that the halved folded n-cube has
a distance magic labeling (resp. a {0, 1}-magic labeling) if and only if
n = 16q2(resp. n = 16q2 + 16q + 6), where q is a positive integer.

Keywords: D-magic labeling · Distance-regular graph · Halved folded
n-cube · Network · Incomplete tournament

1 Introduction

Hypercube is an important structure for computer networks [4]. Many combi-
natorial structural properties are studied in order to enhance its various appli-
cations [11,13,14,25]. Especially, the distance plays an important role [7]. In
this paper, we study a magic labeling of the halved folded n-cube which is a
variation of the n-cube. This labeling is determined by the distance. And the
magic labeling has its applications in incomplete tournament and in efficient
addressing systems in communication networks, ruler models and radar pulse
codes ([1,2,5,6,9,18]).
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 327–338, 2022.
https://doi.org/10.1007/978-3-031-16081-3_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_28&domain=pdf
https://doi.org/10.1007/978-3-031-16081-3_28

328 Y. Tian et al.

Let G be a finite undirected simple connected graph with vertex set V (G),
distance function ∂ and diameter d. In the early 1960 s Sedláček [19] introduced
the notion of magic labeling of G. The concept is motivated by the construction of
magic squares [1,18]. In 1994, Vilfred [24] introduced the distance magic labeling
as follows.

Definition 1. A bijection l : V (G) → {1, 2, . . . , |V (G)|} is called a distance
magic labeling of G if

∑

x∈N(v)

l(x) is constant for every vertex v ∈ V (G), where

N(v) = {x ∈ V (G) : ∂(x, v) = 1}.
In 2013, O’Neal and Slaterin [17] generalized the distance magic labeling to

the D-magic labeling.

Definition 2. For a graph G and a set of distances D ⊆ {0, 1, . . . , d}, the set
GD(v) = {x ∈ V (G) : ∂(x, v) ∈ D} is called D-neighborhood of v. By a D-
magic labeling of G, we mean a bijection l : V (G) → {1, 2, . . . , |V (G)|} with the
property that there exists a constant k such that w(v) =

∑

x∈GD(v)

l(x) = k for

any vertex v ∈ V (G), where w(v) is the weight of v. The graph G admitting a
D-magic labeling is called a D-magic graph.

Obviously, a {1}-magic labeling of G is precisely a distance magic labeling
of G.

When studying a D-magic labeling, distance-regular graphs are a natural
class of graphs to consider. For the definition of a distance-regular graph, we refer
to Sect. 2. Until now, D-magic labelings of some distance-regular graphs have
been studied. Simanjuntak and Anuwiksa [20] characterized strongly regular
graphs which are D-magic graphs, for all possible distance sets D. Gregor and
Kovář [12] proved that if n ≡ 2 (mod 4), then the n-cube is a {j}-magic graph
for every odd j, where 1 ≤ j ≤ n. Later, Cichacz et al. [10] proved that if the
n-cube is a {1}-magic graph, then n ≡ 2 (mod 4). Anuwiksa et al. [3] gave the
sufficient condition for the n-cube with n ≡ 2 (mod 4) to be D-magic. They also
proved that the n-cube has a {0, 1}-magic labeling if and only if n ≡ 1 (mod
4). Tian et al. [22] showed that the folded n-cube has a {1}-magic (resp. {0, 1}-
magic) labeling if and only if n ≡ 0 (mod 4) (resp. n ≡ 3 (mod 4)). Recently,
Miklavič and Šparl [15] provided a sufficient condition for a Hamming graph to
be a {1}-magic graph and classified {1}-magic folded n-cubes by showing that
the folded n-cube is a {1}-magic graph if and only if n ≡ 0 (mod 4).

In this paper, we focus on a halved folded n-cube with even n ≥ 8 which
is a distance-regular graph. For its definition, we refer to Sect. 2. We show the
necessary and sufficient condition for the halved folded n-cube to be a {1}-magic
graph and a {0, 1}-magic graph, respectively. The difference between this paper
and other references on the D-magic labeling is that one has to choose a non-
square matrix such that the corresponding map is bijective, where D = {1} or
D = {0, 1}; see Notation 1. The main result is as follows.

Theorem 1. For even n ≥ 8, let 1
2FQn−1 denote a halved folded n-cube. Then

the following (i), (ii) hold:

Distance Magic Labeling of the Halved Folded n-Cube 329

(i) 1
2FQn−1 has a distance magic labeling if and only if n = 16q2, where q is a
positive integer;

(ii) 1
2FQn−1 has a {0, 1}-magic labeling if and only if n = 16q2 +16q +6, where
q is a positive integer.

The paper is organized as follows. Section 2 gives some definitions, basic
notations and some facts used in this paper. Section 3 presents the the proof of
Theorem 1.

2 Preliminaries

In this section, we review some definitions, basic notations and some facts.
Recall that G is a finite undirected simple connected graph with vertex set

V (G), distance function ∂ and diameter d. For v ∈ V (G) and i ∈ {0, 1, . . . , d},
let Gi(v) = {x ∈ V (G) : ∂(x, v) = i}. We define G−1(v) = ∅ and Gd+1(v) = ∅.
Particularly, N(v) := G1(v) is called the neighborhood of v, that is, two vertices
u and v are adjacent whenever u ∈ N(v). Furthermore, |N(v)| is called the
degree of v. The graph G is regular if |N(v)| is constant for every v ∈ V (G). By
N [v] := N(v) ∪ {v} we denote the closed neighborhood of v.

The graph G is called a distance-regular graph when for all i ∈ {0, 1, . . . , d}
there are constants ci, ai, bi such that for any vertices x and y with ∂(x, y) = i,
we have |Gi−1(x)∩G1(y)| = ci, |Gi(x)∩G1(y)| = ai and |Gi+1(x)∩G1(y)| = bi.
Observe that G is regular with degree b0 = ai + bi + ci and |Gi(x)| = b0b1...bi−1

c1c2...ci
which is determined by i for 0 ≤ i ≤ d (see [8, p. 127]). If d = 2, then G is
a strongly regular graph. For more information on distance-regular graphs, we
refer to [8].

Now we recall the definitions of a folded n-cube and a halved folded n-cube
with even n ≥ 2.

Let F
n−1
2 be an (n − 1)-dimensional column vector space over F2. Let ei

(1 ≤ i ≤ n− 1) denote the vector in F
n−1
2 such that the i-th component is 1 and

the others are 0, and let 1 = e1 + · · · + en−1.

Definition 3. [21] The folded n-cube denoted by FQn−1 is a graph with vertex
set consisting of all vectors in F

n−1
2 ; two vertices u and v are adjacent whenever

u ∈ {v + ei : 1 ≤ i ≤ n − 1} ∪ {v + 1}.
By [23, p. 23], FQn−1 is a bipartite graph for even n and its halved graph is

the halved folded n-cube. For the definition of the halved graph, we refer to [8, p.
25]. Inspired by [8, pp. 264–265], the halved folded n-cube can also be described
in F

n−1
2 as follows.

Definition 4. Let n ≥ 2 be an even number. The halved folded n-cube denoted
by 1

2FQn−1 is a graph with vertex set consisting of all vectors in F
n−1
2 that

contains an even number of 1’s; two vertices u and v are adjacent whenever
u ∈ {v + ei + ej : 1 ≤ i < j ≤ n − 1} ∪ {v + ei + 1 : i = 1, . . . , n − 1}.

330 Y. Tian et al.

By Definition 4, we have |V (12FQn−1)| = 2n−2 and

N(0) ={e1 + e2, . . . ,e1 + en−1,e2 + e3, . . . ,e2 + en−1, . . . ,

en−2 + en−1,e1 + 1, . . . ,en−1 + 1},

where 0 := (0, . . . , 0)T ∈ V (12FQn−1). In what follows, we use v⊕N(0) to denote
the set of all vectors v + u, where u runs through N(0). Then by Definition 4,
for any v ∈ V (12FQn−1) we obtain

N(v) = v ⊕ N(0), (1)

and thus
N [v] = v ⊕ N [0]. (2)

By [8, p. 265], 1
2FQn−1 with n ≥ 6 is a distance-regular graph of diameter

d = �n
4 and its eigenvalues are θj = 2(n2 − 2j)2 − n

2 (0 ≤ j ≤ d). Particularly,
1
2FQn−1 with n = 6 is the complete graph K16 which is obviously {0, 1}-magic,
but not {1}-magic ([16]). So we assume even n ≥ 8 for the rest of this paper.

Inspired by [3,12], we give the following definitions.

Definition 5. A subset A ⊆ F
n−2
2 is said to be balanced if for every i ∈

{1, 2, . . . , n − 2}
|{v ∈ A : vi = 1}| =

|A|
2

,

where vi denotes the i-th component of v.

Note that balance is invariant under translation. It means that a set A ⊆ F
n−2
2

is balanced if and only if u ⊕ A is balanced, where u ∈ F
n−2
2 .

Definition 6. Suppose H is an (n − 2) × m matrix with entries in F2. Let
ri(H) denote the number of 1’s in the i-th row of H for i ∈ {1, 2, . . . , n − 2}.
The matrix H is said to be balanced whenever the set of its columns is balanced,
that is, ri(H) = m

2 for every i ∈ {1, 2, . . . , n − 2}.
Definition 7. For 1

2FQn−1, let D ⊆ {0, 1, . . . , �n
4 } be a set of distances. A

bijection f : V (12FQn−1) → F
n−2
2 is said to be D-neighbor balanced if the set

f(GD(v)) = {f(u) : u ∈ GD(v)} is balanced for every v ∈ V (12FQn−1). If
D = {1} (resp. D = {0, 1}), then a D-neighbor balanced bijection is also called
neighbor balanced (resp. closed neighbor balanced).

For every regular graph, we may equivalently consider labelings with labels
starting from 0 instead of 1 ([12]). In fact, we work with labels (as well as with the
image of vertices of 1

2FQn−1 under the above map f) in the (n−2)-dimensional
vector space F

n−2
2 over F2, that is, in their binary representation. Using the

arguments similar to Propositions 2.1 and 3.1 for the n-cube in [12], we get the
following lemma for 1

2FQn−1.

Lemma 1. For a set of distances D of 1
2FQn−1, let f : V (12FQn−1) → F

n−2
2 be

a bijection. If f is D-neighbor balanced, then f is a D-magic labeling of 1
2FQn−1.

Distance Magic Labeling of the Halved Folded n-Cube 331

Proof. For every vertex v ∈ V (12FQn−1), we obtain (with the arithmetics in N)

∑

u∈(1
2FQn−1)D(v)

f(u) =
n−2∑

i=1

|{f(u) : (f(u))i = 1}|2i−1

=
|f((12FQn−1)D(v))|

2
(2n−2 − 1) (by Definition 5)

=
|(12FQn−1)D(v)|

2
(2n−2 − 1).

Since 1
2FQn−1 is a distance-regular graph, |(12FQn−1)D(v)| is independent

of the choice of v. Therefore, f is a D-magic labeling of 1
2FQn−1.

From now on, we adopt the following notational convention.

Notation 1. Let N be an (n − 2) × (n − 2) matrix with entries in F2 and let
M =

(
0 N

)
be an (n − 2) × (n − 1) matrix with entries in F2. For 1

2FQn−1, we
define a map

f : V (
1
2
FQn−1) → F

n−2
2

by f(v) = Mv for every v ∈ V (12FQn−1). For v ∈ V (12FQn−1), let v1 be the

first component of v and write v :=
(

v1
ṽ

)

.

Lemma 2. With reference to Notation 1, f is a bijection if and only if the rank
of M is n − 2.

Proof. Suppose f is a bijection. Then for any u, v ∈ V (12FQn−1) if f(u) = f(v),
then u = v. It follows that the system of equations M(u − v) = 0 has only the
trivial solution. Then the system of equations N(ũ− ṽ) = 0 has only the trivial
solution. Thus the rank of N is n − 2, and hence the rank of M is n − 2.

Conversely, since |V (12FQn−1)| = |Fn−2
2 | = 2n−2, it suffices to show that f is

injective. Suppose f(u) = f(v) for u, v ∈ V (12FQn−1). Then M(u − v) = 0. It
follows that N(ũ − ṽ) = 0. Since the rank of M is n − 2, N is invertible. Thus
ũ = ṽ. Combining this with the fact that the number of 1’s in both u and v is
even, we obtain u1 = v1. Therefore, u = v, and hence f is injective.

3 Proof of Theorem 1

In this section, we give the necessary and sufficient condition for 1
2FQn−1 to be

a {1}-magic graph and a {0, 1}-magic graph, respectively. Let B be the (n−1)×
n(n−1)

2 matrix

B =
(
e1 + e2, . . . , e1 + en−1, e2 + e3, . . . , e2 + en−1, . . . , e1 + 1, . . . , en−1 + 1

)
(3)

and let B∗ =
(
0 B

)
, where 0 := (0, . . . , 0)T ∈ V (12FQn−1). Obviously, the

above B (resp. B∗) corresponds to the set N(0) (resp. N [0]). Recall that ri(H)

332 Y. Tian et al.

denotes the number of 1’s in the i-th row of H for i ∈ {1, 2, . . . , n − 2}, where
H is an (n − 2) × m matrix with entries in F2.

Now we show the following lemma.

Lemma 3. With reference to Notation 1, let B, B∗ and ri be as above. Suppose
ri(M) = t for some i ∈ {1, . . . , n − 2}. Then

ri(MB∗) = ri(MB) =

{
(t + 1)(n − 1 − t) if t is odd,
(n − t)t otherwise.

Proof. Since B∗ =
(
0 B

)
, we have MB∗ =

(
0 MB

)
. Then ri(MB∗) =

ri(MB) for every i ∈ {1, . . . , n − 2}.
Suppose ri(M) = t for some i ∈ {1, . . . , n − 2}. Let

M =

⎡

⎢
⎢
⎢
⎣

0 a11 a12 · · · a1,n−2

0 a21 a22 · · · a2,n−2

...
...

...
...

0 an−2,1 an−2,2 · · · an−2,n−2

⎤

⎥
⎥
⎥
⎦

,

where asj ∈ F2 for any s ∈ {1, . . . , n − 2} and any j ∈ {1, . . . , n − 2}. Clearly,
the i-th row of MB is

(ai1, ai2, . . . , ai,n−2, ai1 + ai2, ai1 + ai3, . . . , ai1 + ai,n−2, ai2 + ai3, . . . ,
ai2 + ai,n−2, . . . , ai,n−3 + ai,n−2, ai1 + · · · + ai,n−2, ai2 + · · · + ai,n−2,
ai1 + ai3 + · · · + ai,n−2, . . . , ai1 + · · · + ai,n−3).

We now compute ri(MB) for the fixed i. Since ri(M) = t, we have that the
number of 1’s in (ai1, ai2, . . . , ai,n−2) is t ; the number of 1’s in (ai1 +ai2, ai1 +
ai3, . . . , ai1 + ai,n−2, ai2 + ai3, . . . , ai2 + ai,n−2, . . . , ai,n−3 + ai,n−2) is

C1
t C1

n−2−t = t(n − 2 − t);

ai1 + · · ·+ai,n−2 = 1 if t is odd and ai1 + · · ·+ai,n−2 = 0 otherwise; the number
of 1’s in (ai2 + · · · + ai,n−2, ai1 + ai3 + · · · + ai,n−2, . . . , ai1 + · · · + ai,n−3) is
n − 2 − t if t is odd and t otherwise. Therefore, if t is odd, then

ri(MB) = t + t(n − 2 − t) + 1 + n − 2 − t = (t + 1)(n − 1 − t);

if t is even, then ri(MB) = t + t(n − 2 − t) + 0 + t = (n − t)t.
This completes the proof of the lemma.

3.1 Proof of Theorem 1 (i)

In this subsection, we shall present the necessary and sufficient condition for
1
2FQn−1 to be a {1}-magic graph. We first give the following lemma. It enables
us to determine a neighbor balanced bijection by constructing the appropriate
matrix.

Distance Magic Labeling of the Halved Folded n-Cube 333

Lemma 4. With reference to Notation 1, the following statements are equiva-
lent.

(i) f is neighbor balanced.
(ii) n = 16q2, the rank of M is 16q2 − 2 and ri(M) ∈ {8q2 + 2q − 1, 8q2 − 2q −

1, 8q2 + 2q, 8q2 − 2q} for any given i ∈ {1, . . . , n − 2}, where q is a positive
integer.

Moreover, if (i)–(ii) hold, then f is a {1}-magic labeling of 1
2FQn−1.

Proof. By Notation 1 and (1), for any v ∈ V (12FQn−1), we obtain

f(N(v)) = Mv ⊕ MN(0). (4)

Combining (4) with Definition 7, we know that f is neighbor balanced if and
only if the set Mv ⊕ MN(0) is balanced for every v ∈ V (12FQn−1). Recall that
the set Mv ⊕ MN(0) is balanced if and only if the set MN(0) is balanced.
Furthermore, note that the set MN(0) is precisely the set of columns of the
matrix MB, where B is from (3). It means that the set MN(0) is balanced if
and only if the matrix MB is balanced. Thus f is neighbor balanced if and only
if the matrix MB is balanced.

(i) =⇒ (ii) Since f is neighbor balanced, f is a bijection. It follows from
Lemma 2 that the rank of M is n − 2. Fix any i ∈ {1, . . . , n − 2}, we assume
ri(M) = t. Obviously, t > 0. Next we show (ii) holds according to the parity of
t.

Case (i) t is odd.
By Lemma 3, ri(MB) = (n − 1 − t)(t + 1). By Definition 5 and since the

(n − 2) × n(n−1)
2 matrix MB is balanced, we have (n − 1 − t)(t + 1) = n(n−1)

4 .
Now we let t = 2p − 1 (p ∈ Z

+) since t is odd. Then we have

n ± √
n = 4p. (5)

Since both 4p and n are even,
√

n is even. Now we let
√

n = 2r, where r ≥ 2 as
n ≥ 8. Substituting it into (5), we obtain

2r2 ± r − 2p = 0. (6)

By (6), r is even. Let r = 2q, where q is a positive integer. Then n = (2r)2 =
(4q)2 = 16q2, and hence the rank of M is 16q2 − 2. By (6), we have p = 4q2 ± q.
Then t = 2p − 1 = 2(4q2 ± q) − 1 = 8q2 ± 2q − 1.

Case (ii) t is even.
By Lemma 3, ri(MB) = (n−t)t. By Definition 5 and since the (n−2)× n(n−1)

2

matrix MB is balanced, we have (n − t)t = n(n−1)
4 . Now we let t = 2p since t

is even, where p is a positive integer. Then we obtain n ± √
n = 4p. By using

arguments similar to the proof of case (i) above, we have n = 16q2, the rank of
M is 16q2 − 2 and p = 4q2 ± q, where q is a positive integer. Then t = 8q2 ± 2q.

By the arguments above, (ii) holds.

334 Y. Tian et al.

(ii) =⇒ (i) By Lemma 2 and since the rank of M is n−2, f is a bijection. To
prove that f is neighbor balanced, it suffices to show the (n−2)× n(n−1)

2 matrix
MB is balanced. To do this, by Definition 6 and since n = 16q2, it suffices to
show

ri(MB) =
1
2

n(n − 1)
2

= 64q4 − 4q2 (7)

for every i ∈ {1, . . . , n − 2}.
Fix any i ∈ {1, . . . , n − 2}, we assume ri(M) = t. Next we prove that (7)

holds according to the parity of t.
Case (i) t is odd.
By Lemma 3, we obtain ri(MB) = (t + 1)(n − 1 − t). It is easy to see that

(7) holds if t ∈ {8q2 + 2q − 1, 8q2 − 2q − 1}.
Case (ii) t is even.
By Lemma 3, we obtain ri(MB) = t(n − t). It is easy to see that (7) holds

if t ∈ {8q2 + 2q, 8q2 − 2q}.
By the arguments above, (7) holds, and hence (i) holds.
If (i)–(ii) hold, then by Lemma 1, f is a {1}-magic labeling of 1

2FQn−1.

We list the following lemma which will be used in the proof of Theorem 1
(i).

Lemma 5. [20] If G is a regular graph admitting a {1}-magic labeling, then 0
is an eigenvalue of G.

Now we prove Theorem 1 (i).

Proof of Theorem 1 (i) Suppose that 1
2FQn−1 has a {1}-magic labeling. By

Lemma 5, 0 is an eigenvalue of 1
2FQn−1, that is, there exists j ∈ {0, 1, . . . , �n

4 }
such that θj = 2(n2 − 2j)2 − n

2 = 0. Thus

n = 4(
n

2
− 2j)2. (8)

We claim that n
2 − 2j is even. In fact, assume n

2 − 2j = p, where p is an integer.
Substituting it into (8), we have n = 4p2. It follows that n

2 − 2j = 2p2 − 2j.
So the claim holds. Moreover, by (8) and since n ≥ 8, we have n

2 − 2j ≥ 2. Let
n
2 − 2j = 2q, where q is a positive integer. It follows from (8) that n = 4(2q)2 =
16q2.

Conversely, since n = 16q2, where q is a positive integer, we construct a
(16q2 − 2) × (16q2 − 1) matrix M with entries in F2 as follows:

1 8q2 − 2q − 2 8q2 − 2q − 2 2q 2q 2
8q2 − 2q − 2
8q2 − 2q − 2

2q
2q
2

⎡

⎢
⎢
⎢
⎢
⎣

0 I J 0 0 0
0 J I 0 0 0
0 J 0 I 0 0
0 J 0 0 I 0
0 J 0 0 0 I

⎤

⎥
⎥
⎥
⎥
⎦

,

Distance Magic Labeling of the Halved Folded n-Cube 335

where I denotes the identity matrix and J (resp. 0) denotes the all 1’s (resp. 0’s)
matrix. Obviously, ri(M) = 8q2 − 2q − 1 for every i ∈ {1, . . . , n − 2}. Moreover,
by elementary row operations over F2, M can be transformed to the following
matrix ⎡

⎢
⎢
⎢
⎢
⎣

0 I 0 0 0 0
0 J I 0 0 0
0 J 0 I 0 0
0 J 0 0 I 0
0 J 0 0 0 I

⎤

⎥
⎥
⎥
⎥
⎦

,

which has the same block representation as M and its rank is 16q2 − 2. So the
rank of M is 16q2 − 2. Let f : V (12FQn−1) → F

n−2
2 be given by f(v) = Mv.

By Lemma 4, f is a {1}-magic labeling of 1
2FQn−1. Therefore, 1

2FQn−1 has a
{1}-magic labeling. ��

3.2 Proof of Theorem 1 (ii)

In this subsection, we will present the necessary and sufficient condition for
the halved folded n-cube to be a {0, 1}-magic graph. We first give the follow-
ing lemma. It enables us to determine a closed neighbor balanced bijection by
constructing the appropriate matrix.

Lemma 6. With reference to Notation 1, the following statements are equiva-
lent.

(i) f is closed neighbor balanced.
(ii) n = 16q2+16q+6, the rank of M is 16q2+16q+4 and ri(M) ∈ {8q2+10q+

3, 8q2 + 6q + 1, 8q2 + 10q + 4, 8q2 + 6q + 2} for any given i ∈ {1, . . . , n− 2},
where q is a positive integer.

Moreover, if (i)–(ii) hold, then f is a {0, 1}-magic labeling of 1
2FQn−1.

Proof. By Notation 1 and (2), for any vertex v ∈ V (12FQn−1), we obtain

f(N [v]) = MN [v] = Mv ⊕ MN [0]. (9)

Combining (9) with Definition 7, we know that f is closed neighbor balanced
if and only if the set Mv⊕MN [0] is balanced for every v ∈ V (12FQn−1). Recall
that the set Mv ⊕ MN [0] is balanced if and only if the set MN [0] is balanced.
Moreover, note that the set MN [0] is precisely the set of columns of the matrix
MB∗. It means that the set MN [0] is balanced if and only if the matrix MB∗

is balanced. Thus f is closed neighbor balanced if and only if the matrix MB∗

is balanced.
(i) =⇒ (ii) Since f is closed neighbor balanced, f is a bijection. It follows

from Lemma 2 that the rank of M is n−2. Fix any i ∈ {1, . . . , n−2}, we assume
ri(M) = t. Obviously, t > 0. Next, we show (ii) holds according to the parity
of t.

Case (i) t is odd.

336 Y. Tian et al.

By Lemma 3, ri(MB∗) = (n − 1 − t)(t + 1). By Definition 5 and since the
(n − 2) × (n(n−1)

2 + 1) matrix MB∗ is balanced, we have (n − 1 − t)(t + 1) =
n(n−1)+2

4 . Now we let t = 2p − 1 (p ∈ Z
+) since t is odd. Then we have

n ± √
n − 2 = 4p. (10)

Since both 4p and n are even,
√

n − 2 is even. Now we let
√

n − 2 = 2r, where
r ≥ 2 as n ≥ 8. Substituting it into (10), we obtain

2r2 ± r + 1 − 2p = 0. (11)

It means that r is odd. Let r = 2q + 1, where q is a positive integer. Then
n = (2r)2 + 2 = (4q + 2)2 + 2 = 16q2 + 16q + 6, and hence the rank of M is
16q2 + 16q + 4. By (11), we obtain p = 4q2 + 5q + 2 or 4q2 + 3q + 1. Then
t = 2p − 1 = 8q2 + 10q + 3 or 8q2 + 6q + 1.

Case (ii) t is even.
By using arguments similar to the proof of case (i) above, we have n =

16q2+16q+6, the rank of M is 16q2+16q+4 and t ∈ {8q2+10q+4, 8q2+6q+2},
where q is a positive integer.

By the arguments above, (ii) holds.
(ii) =⇒ (i) By Lemma 2 and since the rank of M is n − 2, f is a bijection.

To prove that f is closed neighbor balanced, it suffices to show that the (n −
2) × (n(n−1)

2 + 1) matrix MB∗ is balanced. To do this, by Definition 6 and since
n = 16q2 + 16q + 6, it suffices to show

ri(MB∗) =
1
2
(
n(n − 1)

2
+ 1) = 64q4 + 128q3 + 108q2 + 44q + 8 (12)

for every i ∈ {1, . . . , n − 2}.
Fix any i ∈ {1, . . . , n − 2}, we assume ri(M) = t. Next we prove that (12)

holds according to the parity of t.
Case (i) t is odd. By Lemma 3, we obtain ri(MB∗) = (t + 1)(n − 1 − t). It

is easy to see that (12) holds if t ∈ {8q2 + 10q + 3, 8q2 + 6q + 1}.
Case (ii) t is even. By Lemma 3, we obtain ri(MB∗) = t(n − t). It is easy

to see that (12) holds if t ∈ {8q2 + 10q + 4, 8q2 + 6q + 2}.
By the arguments above, (12) holds, and hence (i) holds.
If (i)–(ii) hold, then by Lemma 1, f is a {0, 1}-magic labeling of 1

2FQn−1.

To prove Theorem 1 (ii), we use the following lemma.

Lemma 7. [1] If G is a regular graph admitting a {0, 1}-magic labeling, then
−1 is an eigenvalue of G.

Now we prove Theorem 1 (ii).

Proof of Theorem 1 (ii) Suppose that 1
2FQn−1 has a {0, 1}-magic labeling. By

Lemma 7, −1 is an eigenvalue of 1
2FQn−1, that is, there exists j ∈ {0, 1, . . . , �n

4 }
such that θj = 2(n2 − 2j)2 − n

2 = −1. Thus

n = 4(
n

2
− 2j)2 + 2. (13)

Distance Magic Labeling of the Halved Folded n-Cube 337

We claim that n
2 − 2j is odd. In fact, assume n

2 − 2j = p, where p is an integer.
Substituting it into (13), we have n = 4p2+2. It follows that n

2 −2j = 2p2+1−2j.
So the claim holds. Moreover, by (13) and since n ≥ 8, we have n

2 − 2j > 1.
Let n

2 − 2j = 2q + 1, where q is a positive integer. It follows from (13) that
n = 4(2q + 1)2 + 2 = 16q2 + 16q + 6.

Conversely, since n = 16q2+16q+6, where q is a positive integer, we construct
a (16q2 + 16q + 4) × (16q2 + 16q + 5) matrix M with entries in F2 as follows:

1 8q2 + 4q 8q2 + 4q 2q 2q 2q 2q 4
8q2 + 4q
8q2 + 4q

2q
2q
2q
2q
4

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 I J J 0 0 0 0
0 J I J 0 0 0 0
0 J 0 I J 0 0 0
0 J 0 J I 0 0 0
0 J 0 J 0 I 0 0
0 J 0 J 0 0 I 0
0 J 0 J 0 0 0 I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where I denotes the identity matrix and J (resp. 0) denotes the all 1’s (resp. 0’s)
matrix. Obviously, ri(M) = 8q2 + 6q + 1 for every i ∈ {1, . . . , n − 2}. Moreover,
by elementary row operations over F2, M can be transformed to the following
matrix ⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 I 0 0 0 0 0 0
0 J I 0 0 0 0 0
0 J 0 I 0 0 0 0
0 J 0 J I 0 0 0
0 J 0 J 0 I 0 0
0 J 0 J 0 0 I 0
0 J 0 J 0 0 0 I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

which has the same block representation as M and its rank is 16q2 + 16q + 4.
So the rank of M is 16q2 + 16q + 4. Let f : V (12FQn−1) → F

n−2
2 be given by

f(v) = Mv. By Lemma 6, f is a {0, 1}-magic labeling of 1
2FQn−1. Therefore,

1
2FQn−1 has a {0, 1}-magic labeling. ��

Acknowledgements. This work was supported by the National Natural Science
Foundation of China (Grant 11971146) and the National Natural Science Foundation
of Hebei Province (Grant A2017403010).

References

1. Anholcer, M., Cichacz, S., Peterin, I.: Spectra of graphs and closed distance magic
labelings. Discrete Math. 339(7), 1915–1923 (2016). https://doi.org/10.1016/j.
disc.2015.12.025

2. Anholcer, M., Cichacz, S., Peterin, I., Tepeh, A.: Distance magic labeling and two
products of graphs. Graphs Comb. 31(5), 1125–1136 (2014). https://doi.org/10.
1007/s00373-014-1455-8

3. Anuwiksa, P., Munemasa, A., Simanjuntak, R.: D-magic and antimagic labelings
of hypercubes. arXiv:1903.05005v2 [math.CO]

https://doi.org/10.1016/j.disc.2015.12.025
https://doi.org/10.1016/j.disc.2015.12.025
https://doi.org/10.1007/s00373-014-1455-8
https://doi.org/10.1007/s00373-014-1455-8
http://arxiv.org/abs/1903.05005v2

338 Y. Tian et al.

4. Bettayeb, S.: On the k-ary hypercube. Theor. Comput. Sci. 140(2), 333–339 (1995).
https://doi.org/10.1016/0304-3975(94)00197-Q

5. Bloom, G.S., Golomb, S.W.: Applications of numbered undirected graphs. Proc.
IEEE 65, 562–570 (1977)

6. Bloom, G.S., Golomb, S.W.: Numbered complete graphs, unusual rulers, and
assorted applications. In: Alavi, Y., Lick, D.R. (eds.) Theory and Applications
of Graphs. Lecture Notes in Mathematics, vol. 642, pp. 53–65. Springer, Berlin
(1978). https://doi.org/10.1007/BFb0070364

7. Bose, B., Broeg, B., Kwon, Y., Ashir, Y.: Lee distance and topological properties
of k-ary n-cubes. IEEE Trans. Comput. 44(8), 1021–1030 (1995)

8. Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance-Regular Graphs. Springer-
Verlag, Berlin (1989). https://doi.org/10.1007/978-3-642-74341-2

9. Chebotarev, P., Agaev, R.: Matrices of forests, analysis of networks, and ranking
problems. Procedia Comput. Sci. 17, 1134–1141 (2013)

10. Cichacz, S., Fronček, D., Krop, E., Raridan, C.: Distance magic cartesian products
of graphs. Discuss. Math. Graph Theor. 36(2), 299–308 (2016)

11. Day, K., Al-Ayyoub, A.E.: Fault diameter of k-ary n-cube networks. IEEE Trans.
Parallel Distrib. Syst. 8(9), 903–907 (1997)

12. Gregor, P., Kovář, P.: Distance magic labelings of hypercubes. Electron. Notes
Discrete Math. 40, 145–149 (2013). https://doi.org/10.1016/j.endm.2013.05.027

13. Hsieh, S.Y., Chang, Y.H.: Extraconnectivity of k-ary n-cube networks. Theor.
Comput. Sci. 443(20), 63–69 (2012). https://doi.org/10.1016/j.tcs.2012.03.030

14. Lin, C.K., Zhang, L.L., Fan, J.X., Wang, D.J.: Structure connectivity and sub-
structure connectivity of hypercubes. Theor. Comput. Sci. 634, 97–107 (2016)

15. Miklavič, Š., Šparl, P.: On distance magic labelings of Hamming graphs and folded
hypercubes. Discuss. Math. Graph Theor. 0 (2021).https://doi.org/10.7151/dmgt.
2430

16. Miller, M., Rodger, C., Simanjuntak, R.: Distance magic labelings of graphs. Aus-
tralas. J. Combin. 28, 305–315 (2003)

17. O’Neal, A., Slater, P.J.: Uniqueness of vertex magic constants. SIAM J. Discrete
Math. 27(2), 708–716 (2013). https://doi.org/10.1137/110834421

18. Prajeesh, A.V., Paramasivam, K., Kamatchi, N.: A note on handicap incomplete
tournaments. Lect. Notes Comput. Sci. (including subseries Lecture Notes in Arti-
ficial Intelligence and Lecture Notes in Bioinformatics) 11638, 1–9 (2019). https://
doi.org/10.1007/978-3-030-25005-8 1

19. Sedláček, J.: Some properties of interchange graphs. Theory of Graphs and its
Applications (Proc. Sympos. Smolenice, 1963), pp. 145–150. House Czech. Acad.
Sci., Prague (1964)

20. Simanjuntak, R., Anuwiksa, P.: D-magic strongly regular graphs. AKCE Int. J.
Graphs Comb. 17(3), 995–999 (2020)

21. Simó, E., Yebra, J.L.A.: The vulnerability of the diameter of folded n-cubes. Dis-
crete Math. 174(1–3), 317–322 (1997)

22. Tian, Y., Hou, L.H., Hou, B., Gao, S.G.: D-magic labelings of the folded n-cube.
Discrete Math. 344(9), 112520 (2021)

23. van Dam, E.R., Koolen, J.H., Tanaka, H.: Distance-regular graphs. Electron. J.
Combin. DS22 (2016)

24. Vilfred, V.: Sigma labelled graphs and circulant graphs. Ph.D. Thesis, University
of Kerala, (1994)

25. Zhao, S.L., Yang, W.H., Zhang, S.R.: Component connectivity of hypercubes.
Theor. Comput. Sci. 640(C), 115–118 (2016). https://doi.org/10.1016/j.tcs.2016.
05.035

https://doi.org/10.1016/0304-3975(94)00197-Q
https://doi.org/10.1007/BFb0070364
https://doi.org/10.1007/978-3-642-74341-2
https://doi.org/10.1016/j.endm.2013.05.027
https://doi.org/10.1016/j.tcs.2012.03.030
https://doi.org/10.7151/dmgt.2430
https://doi.org/10.7151/dmgt.2430
https://doi.org/10.1137/110834421
https://doi.org/10.1007/978-3-030-25005-8_1
https://doi.org/10.1007/978-3-030-25005-8_1
https://doi.org/10.1016/j.tcs.2016.05.035
https://doi.org/10.1016/j.tcs.2016.05.035

Balanced Graph Partitioning Based
on Mixed 0-1 Linear Programming
and Iteration Vertex Relocation

Algorithm

Zhengxi Yang , Zhipeng Jiang(B) , Wenguo Yang , and Suixiang Gao

School of Mathematical Sciences, University of Chinese Academy of Sciences,
Beijing 100049, China

yangzhengxi20@mails.ucas.ac.cn, {jiangzhipeng,yangwg,sxgao}@ucas.ac.cn

Abstract. Graph partitioning is a classical NP problem. The goal of
graphing partition is to have as few cut edges in the graph as possi-
ble. Meanwhile, the capacity limit of the shard should be satisfied. In
this paper, a model for graph partitioning is proposed. Then the model
is converted into a mixed 0-1 linear programming by introducing vari-
ables. In order to solve this model, we select some variables to design the
vertex relocation model. This work designs a variable selection strategy
according to the effect of vertex relocation on the number of local edges.
For purpose of implementing graph partitioning on large scale graph, we
design iterative algorithm to solve the model by selecting a small num-
ber of variables in each iteration. The algorithm relocates the shard of
the vertex according to the solution of the model. In the experiment, the
method in this paper is simulated and compared with BLP and its related
methods in the different shard sizes on the five social network datasets.
The simulation results show that the method of this paper works well.

Keywords: Graph partitioning · 0-1 mixed linear programming ·
Iteration algorithm

1 Introduction

The graph partitioning problem is a classical graph theory and combinatorial
optimization problem. Meanwhile, the graph partitioning problem is NP-hard
[3], it is difficult for direct graph partitioning methods to obtain an optimal
solution in effective time. The graph partition model can be applied in many
fields. In social network [2], graph partitioning algorithms are involved in friend
recommendation system. Every user in the system will be served by the iden-
tified server. In order to reduce communication costs between different servers,
it is expected that friends who potentially know each other are served by the
same server. Friend recommendation problem can be transformed into a graph
partition problem. Each user is regarded as a vertex. The edges are generated
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 339–350, 2022.
https://doi.org/10.1007/978-3-031-16081-3_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_29&domain=pdf
http://orcid.org/0000-0003-3173-4843
http://orcid.org/0000-0003-3953-1231
http://orcid.org/0000-0002-8441-7334
https://doi.org/10.1007/978-3-031-16081-3_29

340 Z. Yang et al.

according to the user’s relationship. The partition capacity limit in the graph
partitioning problem is reflected in the capacity limit of the server. At the same
time, it is expected that more neighboring vertices are in the same server. Graph
partitioning is also used to design very large scale integrated circuit systems
(VLSI) [9]. The goal of the VLSI design is to reduce the complexity by dividing
the VLSI into smaller components and thus keeping the total length of all wires
to be the shortest [4]. In machine learning and graph neural networks, graph par-
titioning algorithms are also applied. Cluster GCN [5] divides the large graph
into subgraphs through the graph partitioning algorithm.

In this paper, We build a graph partitioning model with the goal of maxi-
mizing the number of local edges while maintaining the partition capacity limit.
The model is converted into a mixed 0-1 linear programming by introducing
variables. Then we select some variables to design the vertex relocation model.
This work designs an iterative algorithm that selects some variables at each iter-
ation and assigns new shards to the vertices corresponding to these variables.
The algorithm first uses hash partitioning to obtain the initial partition of the
graph. Vertices with high gain are given priority to determine the relocated
shard. Then the algorithm assigns the new shard of vertex through the vertex
relocation model. We compare the partitioning effect of BLP, BLP-MC, BLP-KL
and our method on five social network datasets. On these datasets, we also com-
pare the effect of different number of shards. In the experiments, our algorithms
all perform better than the comparison algorithms. Our main contributions in
this work are summarized as follows.

1. Construct a graph partitioning model and remove ′min′ from the objective
function by introducing variables. The model is converted into a mixed 0-1
linear programming.

2. Design an iterative algorithm that selects some variables at each iteration
and relocates corresponding vertices to new shards according to the variables’
value of the solution. The algorithm can solve large scale graph partitioning
problems.

3. Evaluate our algorithms on real-world datasets and compare the results with
some other methods such as BLP, BLP-MC and BLP-KL.

The paper is organized as follows: Sect. 2 summarizes related work on graph
partitioning problem; Sect. 3 proposes a graph partitioning model based on local
edge maximization and converts it into a mixed 0-1 linear programming by
introducing variables; Sect. 4 gives the iteration algorithm; Sect. 5 shows the
numerical results obtained on datasets of different size and topology. Finally, we
draw some conclusions in Sect. 6.

2 Related Work

There is a large number of literature on methods that solve graph partitioning
problem, including spectral partitioning [14], geometric partitioning [8], stream-
ing graph partition [1], linear programing [13] and semi-define programing [12].

Balanced Graph Partitioning and Iteration Vertex Relocation Algorithm 341

For each vertex, the hash partitioning [1] determines the shard in which the
vertex is located based on the vertex number and shard number. Hash partition-
ing can be defined as the mapping function f (v) = hash (v)mod (k) .

The KL algorithm [10] proposed by Kernighan and Lin is a local search
method. The selection strategy finds the swap of vertex assignments that yields
the largest decrease in the total number of cut edge. The algorithm considers
node swaps between 1

2K (K − 1) shard pairs. M. Fiduccia and M. Mattheyses
propose the Fiduccia-Mattheyses (FM) algorithm [7] to improve the KL algo-
rithm. The difference with the KL algorithm is that the FM algorithm uses a
single vertex movement and introduces the bucket list data structure to reduce
the time complexity.

Johan Ugander and Lars Backstrom propose the balanced label propagation
algorithm (BLP) [15] based on linear programming. The idea of this method
is inspired by the label propagation principle, which is vertices tend to move
to the shards with more neighboring vertices. The algorithm first determines
the vertices that tend to be migrated to another shard. Then the vertices with
high gains were prioritized for migration. It transforms a maximally concave
optimization problem into a linear programming problem. The constraints of
linear programming limit the number of adjustable vertices in the shard. Finally,
the node migration strategy is optimized through the solution of the model.

Zishi Deng, Torsten Suel [6] studied the combination of graph partitioning
initialization algorithm and BLP improvement algorithm. They propose three
methods of interruption, probability-based disruption, clustered constrained
relocation, and round-robin Kernighan–Lin swaps, to improve the BLP algo-
rithm. They name the combination of BLP and clustered constrained relocation
as BLP-MC and name the combination of BLP and round-robin Kernighan–Lin
swaps as BLP-KL. In addition, random, SBM and Metis are considered as ini-
tialization methods for graph partitioning. Then they analyze the improvement
degree of BLP and BLP improvement method to the initial partition.

3 Mixed 0-1 Linear Programming Model for Graph
Partitioning

Problem Definition
Balanced graph partitioning of a graph G = (V,E) is a partition {V1, . . . , VK}
of V (G), where K is the shard number and |V | = n. Each shard (subset) in the
partition is subject to the following conditions:

1. Vi ∩ Vj = ∅,∀i �= j, V1 ∪ V2 ∪ . . . ∪ Vk = V
2. |Vi| = |Vj |, i = 1, 2, . . . ,K, j = 1, 2, . . . ,K

The balanced graph partitioning with slack condition is:
2′. lm ≤ |Vi| ≤ um, i = 1, 2, . . . , k.
where lm = (1 − ε) |V |

K , um = (1 + ε) |V |
K .

The goal of balanced graph partitioning is that the number of local edges (with
endpoints in the same shards) is maximized.

342 Z. Yang et al.

Based on the definition of balanced graph partitioning, this work builds a
graph partitioning model based on local edge maximization and converts it into
a mixed 0-1 linear programming by introducing variables.

Notation

xit: Binary variable. Indicating whether the vertex i in shard Vt.

xit =

{
1 i ∈ Vt

0 otherwise

n: Constant. The number of vertices, n = |V |.
K: Constant. The number of shards.
N (i): Constant. The ordered set of the neighbor vertices of vertex i. N (i) =
{j|j > i, e (i, j) ∈ E (G)}.
lm: Constant. Lower limit for the number of vertices in a shard, lm =
(1 − ε) |V |

K .
um: Constant. Upper limit on the number of vertices in a shard, um =
(1 + ε) |V |

K .

The vertex can only stay in one shard. For i = 1, 2, . . . , n,

K∑
t=1

xit = 1 (1)

Balanced graph partitioning requires an equal number of vertices in each shard.
For t = 1, 2, . . . ,K,

lm ≤
n∑

i=1

xit ≤ um (2)

According to the definition of the graph partitioning problem, our objective
function is to maximize the local edges in the graph. We can get the following
model,

max
n∑

i=1

K∑
t=1

∑
j∈N(i)

min {xit, xjt}

s.t.
K∑
t=1

xit = 1, i = 1, 2, . . . , n

lm ≤
n∑

i=1

xit ≤ um, t = 1, 2, . . . ,K

xit ∈ {0, 1} , i = 1, 2, . . . , n, t = 1, 2, . . . ,K

(3)

In order to remove ′min′ from the objective function, some variables are intro-
duced. yit =

∑
j∈N(i) min {xit, xjt} , By a simple derivation we can obtain

Balanced Graph Partitioning and Iteration Vertex Relocation Algorithm 343

yit = min
{

|N (i) |xit,
∑

j∈N(i) xjt

}
, yit is equivalent to the following four con-

straints,

yit ≤ |N (i) |xit, i = 1, 2, . . . , n, t = 1, 2, . . . , K (4)

yit ≤
∑

j∈N(i)

xjt, i = 1, 2, . . . , n, t = 1, 2, . . . ,K (5)

yit ≥ 0, i = 1, 2, . . . , n, t = 1, 2, . . . ,K (6)

yit ≥ |N (i) |xit +
∑

j∈N(i)

xjt − |N (i) |, i = 1, 2, . . . , n, t = 1, 2, . . . ,K (7)

Naturally, the following model 2 is obtained.

max
n∑

i=1

K∑
t=1

yit

s.t.

K∑
t=1

xit = 1, i = 1, 2, . . . , n

lm ≤
n∑

i=1

xit ≤ um, t = 1, 2, . . . ,K

yit ≤ |N (i) |xit, i = 1, 2, . . . , n, t = 1, 2, . . . , K

yit ≤
∑

j∈N(i)

xjt, i = 1, 2, . . . , n, t = 1, 2, . . . , K

yit ≥ 0, i = 1, 2, . . . , n, t = 1, 2, . . . , K

yit ≥ |N (i) |xit +
∑

j∈N(i)

xjt − |N (i) |, i = 1, 2, . . . , n, t = 1, 2, . . . , K

xit ∈ {0, 1} , i = 1, 2, . . . , n, t = 1, 2, . . . , K
(8)

Due to the difficulty in solving large scale integer programming, we cannot solve
Model 2 using the existing integer programming solver. So we consider to design
the iteration algorithm.

4 Iteration Algorithm

Model 2 is a 0-1 mixed linear programming model which is NP hard, cannot
be solved in polynomial time. The number of variables is 2K|V |, where the
number of 0-1 variables is K|V |, the number of constraints is K + |V | + 4K|V |.
When the total number of vertices of the graph is large, the number of variables
and constraints are numerous, it is not feasible to solve in time. Designing the
iterative algorithm, in each round, For all xit, choose a small number of them as
decision variables. Determine yit according to the chosen xit.

344 Z. Yang et al.

Notation

Sx: The set of variables selected. Sx = {xit|xit is selected}.
ns: The number of selected variables. ns = |Sx|
Sxc: The set of variables corresponding to the selected vertices and its current
shard. Sxc = {xis|i ∈ Vs, xit ∈ Sx}.
Sv: The set of vertices associated with variables in Sx. Sv = {i|∃t, xit ∈ Sx}.
Ss: The set of shards associated with variables in Sx. Ss =
{Vs|xit ∈ Sx, i ∈ Vs}.
Syit

: The set of selected variables corresponding to the neighbor vertices of
vertex i in shard Vt. Syit

= {xjt|j ∈ N (i)} ∩ (Sx ∪ Sxc).

The goal of our model is to relocate vertices according to the chosen variables
such that the number of local edges is maximized. The vertices associated with
the selected variables are referred to as the selected vertices. Y1 is the number
of local edges with the selected vertices as endpoints.

Y1 =
∑

xit∈Sx∪Sxc

yit (9)

Y2 is the number of local edges when the selected vertex is an endpoint and the
other endpoint is not selected.

Y2 =
∑

xit∈Sx∪Sxc

∑
j∈N(i)∩Vt,xjt /∈Sxc

xit +
∑
i/∈Sv

∑
xjt∈Sx∪Sxc,j∈N(i)

xjt (10)

Y3 is the number of local edges with unselected vertices as endpoints.

Y3 =
∑
i/∈Sv

∑
j∈N(i)∩Vt,j /∈Sv

1 (11)

Y1 + Y2 + Y3 is equal to the sum of all the local edges in the graph. The goal
of balanced graph partitioning is that the number of local edges is maximized.
Based on the selection of partial variables, we can derive the following model 3,

max Y1 + Y2 + Y3

s.t.
∑

xit∈Sx∪Sxc

xit = 1, i ∈ Sv

lm − |Vt| ≤
∑

xit∈Sx

xit −
∑

xju∈Sx,j∈Vt,u �=t

xju ≤ um − |Vt|, t ∈ Ss

yit ≤ |Syit
|xit, xit ∈ Sx, Syit

�= ∅
yit ≤

∑
xjt∈Syit

xjt, xit ∈ Sx, Syit
�= ∅

yit ≥ 0, xit ∈ Sx, Syit
�= ∅

yit ≥ |Syit
|xit +

∑
xjt∈Syit

xjt − |Syit
|, xit ∈ Sx, Syit

�= ∅

xit ∈ {0, 1} , xit ∈ Sx, Szit �= ∅
(12)

Balanced Graph Partitioning and Iteration Vertex Relocation Algorithm 345

4.1 Variables Selection Strategy

We use the gainit to represent the number of local edges increased after vertex
i relocated to shard Vt. In order to ensure that vertex relocation is considered
among all shard pairs. The selection strategy for variable xit is as follows: The
variable selection strategy is to preferentially select the variable with a large
gain, and then consider all shard pairs. If i ∈ Vs, then (Vs, Vt) is said to be the
shard pair associated with the variable xit. We give the shard pair set associated
with the selected variables set Sx,

SP = {(Vs, Vt) |∀xit ∈ Sx, i ∈ Vs} (13)

If i ∈ Vs, then xit is called the variable corresponding to the shard pair (Vs, Vt).
We denote the set of variables associated with a shard pair is

SPVst = {xit|i ∈ Vs, xit ∈ Sx} (14)

Algorithm 1. Variables Selection
Input gain, Number of partitions K, Number of selected variables n
Output Selected variables set Sx

1: m = � n
K(K−1)

�
2: Sort gain from largest to smallest
3: Sx = ∅, j = 0, SP = ∅, SPVst = ∅, ∀s, t
4: while |SP | ≤ K (K − 1) do
5: Find the xit corresponding to gain[j], where i ∈ Vs

6: M = m
7: if |Sx| <= n then
8: M = 2m
9: end if

10: if |SPVst| < M then
11: Add xit to SPVst

12: Add xit to Sx

13: else if (Vs, Vt) /∈ SP then
14: Add (Vs, Vt) to SP
15: end if
16: j++
17: end while

4.2 Update Parameter

With each iteration, we need to update the vertex gain, the upper and lower
bounds on the number of vertices in the shard. It only need to recalculate the
gain of the relocated vertices and their neighbor vertices, and update the lm, um
values of the shard involved in the vertex relocation.

346 Z. Yang et al.

Algorithm 2. Update Parameters
Input lm, um, gain
Output Updated lm, um, gain

1: repeat
2: if xit = 1 and i ∈ Vs then
3: Shard Vs : um = um + 1, lm = lm + 1
4: Shard Vt : um = um − 1, lm = lm − 1
5: end if
6: until All xit are iterated
7: Update gain

4.3 Iteration Vertex Relocation Algorithm

We use hash partitioning to assign each vertex an initial location. Then we
calculate the number of vertices in each shard of the graph in initial state, the
gain from vertex relocation, and the number of local edges. This paper select
some of the variables according to the variable selection strategy and build the
0-1 mixed linear programming. On the based of the results of the model, the
vertices corresponding to the variables are relocated. We design the following
vertex relocation algorithm (IVRA).

Algorithm 3. Iteration Vertex Relocation Algorithm (IVRA)
Input Graph G (V, E), Relaxation factor ε, Partition number K, Number of variables
n
Output Partition{V1, V2, . . . , VK}
1: Hash Partition
2: Initial um, lm, gain, global opt local edge num
3: improvement flag = True
4: while improvement flag do
5: improvement flag = False
6: Variables Selection
7: Construct and solve model 3
8: Vertex relocation according to the solution variables xit of model 3
9: if The solution objective value of model 3 more than

global opt local edge num then
10: improvement flag = True
11: global opt local edge num = The solution objective value of model 3
12: end if
13: Update Parameters
14: end while

Balanced Graph Partitioning and Iteration Vertex Relocation Algorithm 347

5 Experiments

We performed an evaluation over a number of social networks, with varying
numbers of shards. Social network real dataset Table 1 is from the Stanford
SNAP collection [11]. Due to the ring edges do not become cut edges, this work
removes the ring edges (edges where two endpoints overlap) from the datasets
FB Athletes and FB Companies. All the graphs are undirected graphs. Our
experiments were implemented in C++ and Microsoft Visual Studio Professional
2019. Our algorithm solves the model 3 with CPLEX Optimization Studio 20.1.

Table 1. Graph dataset from the Stanford SNAP collection

Graph name Vertices Edges

FB combined 4,039 88,234

FB Athletes 13,866 86,858

FB Companies 14,113 52,310

Youtube 1,134,890 2,987,624

LiveJournal 3,997,962 34,681,189

In the FB combined, we select 100 variables in each iteration i.e. ns = 100. In
the FB Athletes and FB Companies, we select 200 variables in each iteration i.e.
ns = 200. In the LiveJournal and Youtube, we select 2000 variables in each iter-
ation i.e. ns = 2000. We use CPLEX to solve the 0-1 mixed linear programming
in each iteration.

5.1 Experimental Effect and Comparison

We test the performance of our algorithm on Table 1. The partition results of
livejournal are reported in Fig. 1. In this figure, five different graph partitioning
models, including hash, BLP, BLP-MC, BLP-KL and our method are utilized
for the experiments. BLP-MC and BLP-KL are improved methods of the BLP
algorithm proposed by Zishi Deng, Torsten Suel [6]. BLP, BLP-MC, BLP-KL use
hash partitioning as initialization. Compared with BLP, BLP-MC and BLP-KL
algorithms, our algorithm (IVRA) has the largest improvement on the partition
result of hash initialization. Especially for 90 shards, IVRA is 28.45% better
than BLP algorithm. Considering the shard number of 10, 30, 50, 70 and 90, the
average improvement of IVRA compared to BLP is 22.89%.

348 Z. Yang et al.

Fig. 1. Performance comparison between the BLP and our algorithm in different shard
size of LiveJournal, ns = 2000.

Table 2 shows the local edge ratio of different methods in Facebook combined.
Especially for 11 shards, IVRA is 11.34% better than BLP algorithm. Consid-
ering the shard number of 3, 5, 7, 9 and 11, the average improvement of IVRA
compared to BLP is 7.32%. Table 3 shows the local edge ratio in Facebook Ath-
letes. Especially for 7 shards, IVRA is 14.04% better than BLP algorithm. Con-
sidering the shard number of 3, 5, 7, 9 and 11, the average improvement of IVRA
compared to BLP is 11%. Table 4 shows the local edge ratio in Facebook Com-
panies. The largest improvement is obtained with a shard number of 9, IVRA
is 7.5% better than BLP algorithm. Considering the shard number of 3, 5, 7, 9
and 11, the average improvement of IVRA compared to BLP is 6.43%. Table 5
shows the local edge ratio in Youtube. The largest improvement is obtained with
a shard number of 10, IVRA is 24.97% better than BLP algorithm. Considering
the shard number of 10, 30, 50, 70 and 90, the average improvement of IVRA
compared to BLP is 19.98%. Our algorithm outperforms BLP and its improved
algorithms on all five datasets.

Table 2. Performance comparison in Facebook combined, ns = 100.

Method/shard number 3 5 7 9 11

Hash 0.333964 0.199016 0.139969 0.111034 0.090067

BLP 0.935898 0.883435 0.874549 0.877485 0.824002

BLP-MC 0.935898 0.88348 0.87464 0.877485 0.824195

BLP-KL 0.93592 0.909581 0.912857 0.899404 0.875955

IVRA 0.957409 0.950858 0.951515 0.93481 0.917651

Balanced Graph Partitioning and Iteration Vertex Relocation Algorithm 349

Table 3. Performance comparison in Facebook Athletes, ns = 200.

Method/shard number 3 5 7 9 11

Hash 0.331567 0.200134 0.141847 0.111183 0.091128

BLP 0.773174 0.742487 0.687724 0.656691 0.670261

BLP-MC 0.773842 0.74289 0.688023 0.657106 0.670433

BLP-KL 0.784901 0.745217 0.69846 0.678255 0.702929

IVRA 0.851113 0.782528 0.784278 0.743581 0.752485

Table 4. Performance comparison in Facebook Companies, ns = 200.

Method/shard number 3 5 7 9 11

Hash 0.332464 0.200092 0.141542 0.107873 0.09126

BLP 0.780186 0.728734 0.71377 0.678395 0.689944

BLP-MC 0.783218 0.730288 0.714097 0.678395 0.690538

BLP-KL 0.788321 0.746211 0.719161 0.698519 0.695104

IVRA 0.830277 0.774278 0.757012 0.729271 0.730806

Table 5. Performance comparison in Youtube, ns = 2000.

Method/shard number 10 30 50 70 90

Hash 0.098640 0.032643 0.019643 0.014011 0.010824

BLP 0.605539 0.569444 0.513764 0.507491 0.474939

BLP-MC 0.612002 0.576813 0.520701 0.516207 0.48472

BLP-KL 0.688525 0.630836 0.597185 0.563218 0.51894

IVRA 0.756734 0.658552 0.606803 0.594505 0.589026

6 Conclusion

The graph partitioning problem is a classical NP problem with many application
contexts. We propose a model of vertex relocation based on 0-1 mixed linear pro-
gramming. We design an iterative algorithm that selects some variables at each
iteration and assigns new shards to the vertices corresponding to these variables.
We compare the partitioning effect of BLP, BLP-MC, BLP-KL and our method on
five social network datasets. On these datasets, we also compare the effect of differ-
ent number of shards. In the experiments, compared with BLP and its improved
algorithm, the effect of our method has been significantly improved.

The iterative algorithm solves the model by selecting a small number of
variables for optimization in each round. The choice of variables has a crucial
impact on the partition results. For this reason, our future work will concern
more reasonable method for variables selection strategy. For instance this could
be obtained considering the structure information of different networks.

350 Z. Yang et al.

References

1. Abbas, Z., Kalavri, V., Carbone, P., Vlassov, V.: Streaming graph partitioning: an
experimental study. Proc. VLDB Endow. 11(11), 1590–1603 (2018)

2. Boyd, D.M., Ellison, N.B.: Social network sites: definition, history, and scholarship.
J. Comput. Mediat. Commun. 13(1), 210–230 (2007)

3. Bui, T.N., Jones, C.: Finding good approximate vertex and edge partitions is NP-
hard. Inf. Process. Lett. 42(3), 153–159 (1992)

4. Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent advances in
graph partitioning. In: Kliemann, L., Sanders, P. (eds.) Algorithm Engineering.
LNCS, vol. 9220, pp. 117–158. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-49487-6 4

5. Chiang, W.L., Liu, X., Si, S., Li, Y., Bengio, S., Hsieh, C.J.: Cluster-GCN: an
efficient algorithm for training deep and large graph convolutional networks. In:
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pp. 257–266 (2019)

6. Deng, Z., Suel, T.: Optimizing iterative algorithms for social network sharding. In:
2021 IEEE International Conference on Big Data (Big Data), pp. 400–408. IEEE
(2021)

7. Fiduccia, C.M., Mattheyses, R.M.: A linear-time heuristic for improving network
partitions. In: 19th Design Automation Conference, pp. 175–181. IEEE (1982)

8. Hungershöfer, J., Wierum, J.-M.: On the quality of partitions based on space-filling
curves. In: Sloot, P.M.A., Hoekstra, A.G., Tan, C.J.K., Dongarra, J.J. (eds.) ICCS
2002. LNCS, vol. 2331, pp. 36–45. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-47789-6 4

9. Kahng, A.B., Lienig, J., Markov, I.L., Hu, J.: VLSI Physical Design: From Graph
Partitioning to Timing Closure. Springer, Cham (2011). https://doi.org/10.1007/
978-90-481-9591-6

10. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs.
Bell Syst. Tech. J. 49(2), 291–307 (1970)

11. Leskovec, J., Krevl, A.: Snap datasets (2022). https://snap.stanford.edu/data/
12. Lisser, A., Rendl, F.: Graph partitioning using linear and semidefinite program-

ming. Math. Program. 95(1), 91–101 (2003)
13. Nip, K., Shi, T., Wang, Z.: Some graph optimization problems with weights satis-

fying linear constraints. J. Comb. Optim. 43(1), 200–225 (2022)
14. Pothen, A., Simon, H.D., Liou, K.P.: Partitioning sparse matrices with eigenvectors

of graphs. SIAM J. Matrix Anal. Appl. 11(3), 430–452 (1990)
15. Ugander, J., Backstrom, L.: Balanced label propagation for partitioning massive

graphs. In: Proceedings of the Sixth ACM International Conference on Web Search
and Data Mining, pp. 507–516 (2013)

https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1007/3-540-47789-6_4
https://doi.org/10.1007/3-540-47789-6_4
https://doi.org/10.1007/978-90-481-9591-6
https://doi.org/10.1007/978-90-481-9591-6
https://snap.stanford.edu/data/

Partial Inverse Min-Max Spanning Tree
Problem Under the Weighted Bottleneck

Hamming Distance

Qingzhen Dong, Xianyue Li(B), and Yu Yang

School of Mathematics and Statistics, Lanzhou University,
Lanzhou 730000, Gansu, People’s Republic of China

lixianyue@lzu.edu.cn

Abstract. Given a undirected connected weighted graph G and a forest
F of G, the partial inverse min-max spanning tree problem is to adjust
weight function with minimum cost such that there is a min-max span-
ning tree with respect to the new weight function containing F . In this
paper, we study this problem under the weighted bottleneck Hamming
distance. Firstly, we consider this problem with value of optimal tree
restriction, and present a polynomial time algorithm to solve it. Then,
by characterizing the properties of the value of optimal tree, we present
a strongly polynomial algorithm for this problem with time complexity
O(m2 logm), where m is the number of edges of G. Moreover, we show
that these algorithms can be generalized to solve these problems with
capacitated constraint.

Keywords: Min-max spanning tree · Partial inverse problem ·
Weighted bottleneck Hamming distance · Strongly polynomial time
algorithm

1 Introduction

Given a combinatorial optimization problem A and a feasible solution B, the
inverse problem of A is to adjust the parameters so that B becomes an optimal
solution with respect to the new parameters, and the change of parameters is
required to be least. The change of parameters is usually measured by lp-norm or
Hamming distance. In 1992, Burton and Toint [1] introduced the inverse problem
into the field of combinatorial optimization. They pointed out that the problems
of traffic planning and seismic tomography can be transformed into the inverse
shortest path problem. Heuberger [5] and Demange and Monnot [4] surveyed the
inverse combinatorial optimization problems.

A natural generalization of inverse problem is partial inverse problem. The
partial inverse combinatorial optimization problem is to replace the feasible solu-
tion B in the inverse problem with the partial solution C (a partial solution is a

Supported by National Natural Science Foundation of China (Nos. 11871256,
12071194), and the Basic Research Project of Qinghai (No. 2021-ZJ-703).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 351–362, 2022.
https://doi.org/10.1007/978-3-031-16081-3_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_30&domain=pdf
https://doi.org/10.1007/978-3-031-16081-3_30

352 Q. Dong et al.

part of the feasible solution), and adjust the parameters so that these is an opti-
mal solution with respect to the new parameters contains the partial solution,
and the change of the parameters is required to be least.

Spanning tree is a classical combinatorial optimization problem. A lot of results
have been studied on the partial inverse minimum/maximum spanning tree prob-
lems. In 2008, Cai et al. [2] studied the partial inverse minimum spanning tree prob-
lem in which the weight can only be decreased, and gave a polynomial time algo-
rithm to solve it under any norm. In 2016, Li et al. [6] considered the partial inverse
maximum spanning tree problem in which the weight can only be decreased and
presented a polynomial time algorithm for this problem under l∞-norm. In 2018, Li
et al. [7] considered the partial inverse maximum spanning tree in which the weight
function can only be decreased under lp-norm, and proved that when |E′| ≥ 2, the
problem is APX-Hard; when |E′| = 1, the problem is polynomial solvable, where
E′ is the edge set of the partial solution. In 2019, Li et al. [8] studied the partial
inverse maximum spanning tree under the weighted sum Hamming distance, they
showed that the problem is APX-Hard when the partial solution has at least two
edges, and polynomial solvable when the partial solution has only one edge. In the
same paper, they also proved that this problem is polynomial solvable under the
weighted bottleneck Hamming distance. In 2020, Li et al. [9] gave the approxima-
tion algorithms for partial inverse maximum spanning tree problem. In 2021, Li
et al. [10] showed that partial inverse maximum spanning tree problem under the
l∞-norm is polynomial solvable.

Similar to the minimum/maximum spanning tree, min-max spanning tree is
also a major problem of spanning tree. Let G = (V,E) be a connected graph,
in which V = {v1, v2, . . . , vn} is the vertex set, E = {e1, e2, . . . , em} is the edge
set, and a weight function w defined on E. The min-max spanning tree problem
is to find a spanning tree T ∗ of T such that w(T ∗) = min{w(T)|T ∈ T }, where
T is the set of all spanning trees and w(T) = maxe∈Tw(e). It is known that
this problem can be solved in O(m) [3]. For the inverse min-max spanning tree
problem (abbreviated as IMMST), Yang et al. [14] firstly showed that IMMST
under the l1-norm and l∞-norm can be solved in strongly polynomial time. In
2008, Liu et al. [11] studied IMSST under the weighted sum-type Hamming
distance, they presented a strongly polynomial algorithm to solve it with time
complexity O(n4). In 2009, Liu et al. [12] showed that IMSST under the weighted
bottleneck-type Hamming distance is also polynomial solvable. For the partial
inverse min-max spanning tree problem (abbreviated as PIMMST), Tayyebi and
Sepasian [13] presented two polynomial algorithms to solve this problem under
the l1-norm, this is the first study of PIMMST.

For PIMMST under other measure functions, we haven’t found any results
yet. Thus, it is very meaningful to study whether they have polynomial time
algorithms or they are NP-Hard. In this parer, we consider PIMMST under the
weighted bottleneck Hamming distance and present polynomial time algorithm
to solve it.

This paper is organized as follows. In Sect. 2, we give some basic definitions
and properties, and present an algorithm for determining whether a given weight

PIMMST Under the Weighted Bottleneck Hamming Distance 353

function w is feasible. In Sect. 3, we show the main results. In detail, we firstly
present a polynomial algorithm for PIMMST with value of optimal tree restric-
tion under the weighted bottleneck Hamming distance. Then, by characterizing
the properties of the value of optimal tree, we present a polynomial algorithm of
PIMMST under the weighted bottleneck Hamming distance. In Sect. 4, we study
the capacitated partial inverse min-max spanning tree problem (abbreviated as
CPIMMST) under the weighted bottleneck Hamming distance and present a
polynomial algorithm for this problem. In Sect. 5, we make a conclusion.

2 Preliminary

At the beginning of this section, the definition of PIMMST under the weighted
bottleneck Hamming distance is introduced as follows.

Definition 1. Given an undirected connected graph G = (V,E), in which V
is the vertex set, E is the edge set, a weight function w defined on E, a norm
function c defined on E, and a forest F of G, the goal of PIMMST under
the weighted bottleneck Hamming distance is to find a new weight function w∗

satisfying:

(1) there exists a min-max spanning tree T of G with respect to w∗ such that
E(F) ⊆ E(T);

(2) ‖w∗ − w‖WBH = maxe∈E{c(e) · H(w(e), w∗(e))} is minimum,

where H(w(e), w∗(e)) is the Hamming distance between w(e) and w∗(e), that is,
if w∗(e) = w(e), H(w(e), w∗(e)) = 0; otherwise, H(w(e), w∗(e)) = 1. Further-
more, we call such a tree T in the first condition as optimal tree, and a weight
function w′ is feasible for PIMMST if it satisfies the first condition.

The following lemma is necessary and sufficient conditions for a spanning tree
T of G to be min-max. For the convenience of the following description, for any
weight function w and any real number p, we define E≥

w,p = {e ∈ E | w(e) ≥ p},
that is, E≥

w,p is the set of edges whose weights are greater than or equal to p.

Lemma 1. A spanning tree T of G is a min-max spanning tree with respect to
weight function w if and only if G − E≥

w,w(T) is disconnected.

Proof. Let G′ = G−E≥
w,w(T). We firstly prove the necessity by contradiction. If

G′ is connected, then w(T ′) < w(T) for any spanning tree T ′ of G′. Clearly, T ′

is also a spanning tree of G, which contradicts that T is min-max.
Next, we will prove the sufficiency. Since G′ is disconnected, it implies that

the weight of each spanning tree of G is greater than or equal to w(T). Thus, T
is a min-max spanning tree of G with respect to w. ��

Next, we will explore the properties of an optimal solution of PIMMST under
the weighted bottleneck Hamming distance. Firstly, the definition of fundamental
cut is introduced.

354 Q. Dong et al.

Definition 2. Let G = (V,E) be a connected graph, and T be a spanning tree of
G. For any edge e ∈ E(T), T − e has exactly two components. The set of edges
connecting these two components is called the fundamental cut with respect to T
and e, and denoted by K(T, e).

Clearly, for any edge e′ ∈ K(T, e), T − e + e′ is also a spanning tree of G.

Theorem 1. For any instance I = (G,w, c, F) of PIMMST under the weighted
bottleneck Hamming distance, there exist an optimal solution w∗ and an optimal
tree T ∗ with respect to w∗, such that

(1) for any e /∈ E(F), w∗(e) ≥ w(e);
(2) for any e ∈ E(F), if w∗(e) �= w(e), then w∗(e) = p∗, where p∗ = w(T ∗).

Proof. For part (1), we firstly prove that there exist an optimal solution w∗ and
an optimal tree T ∗ such that for any e ∈ E\E(T ∗), w∗(e) ≥ w(e). Let w∗ be any
optimal solution of I, and T ∗ be an optimal tree with respect to w∗. Suppose
that there exists an edge e′ ∈ E\E(T ∗) with w∗(e′) < w(e′). Let

w′(e) =
{
w(e′), e = e′;
w∗(e), otherwise.

It is obvious that the only difference between w∗ and w′ is on the edge e′, thus
w∗(T ∗) = w′(T ∗) = p∗. If w∗(e′) ≥ p∗, then w′(e′) = w(e′) > w∗(e′) ≥ p∗.
It implies that E≥

w∗,p∗ ⊆ E≥
w′,p∗ . By Lemma 1, G − E≥

w∗,p∗ is disconnected, so
G − E≥

w′,p∗ is also disconnected. By Lemma 1, w′ is a feasible solution of I.
However, we have

‖w′ − w‖WBH ≤ ‖w∗ − w‖WBH .

If ‖w′ −w‖WBH < ‖w∗ −w‖WBH , which contradicts with the optimality of w∗.
Hence, w′ is another optimal solution of I with w′(e′) = w(e′). By repeating the
above process, we can obtain an optimal solution w∗ of I, such that T ∗ is also
an optimal tree and w∗(e) ≥ w(e) for any edge e ∈ E\E(T ∗).

Next, we will prove that there exist an optimal solution w∗ and an optimal
tree T ∗ such that for any e ∈ E(T ∗)\E(F), w∗(e) ≥ w(e). Let w∗ be the weight
function obtain by the above process. Suppose that there exists an edge e′ ∈
E(T ∗)\E(F) with w∗(e′) < w(e′). Let

w′(e) =
{
w(e′), e = e′;
w∗(e), otherwise.

Let e′′ = argmin{w′(e)|e ∈ K(T ∗, e′)}, and T ′ = T ∗−e′+e′′. We will prove that
T ′ is a min-max spanning tree with respect to w′. Since K(T ∗, e′)∩F = ∅, T ′ is
a spanning tree containing F . If w′(e′′) = w′(T ′) = maxe∈T ′w′(e), by the choice
of e′′, we can see that K(T ∗, e′) ⊆ E≥

w′,w′(T ′). By Lemma 1, T ′ is a min-max
spanning tree with respect to w′. Otherwise, w′(e′′) < w′(T ′) ≤ p∗. For any edge
e ∈ E≥

w∗,p∗ , if e = e′, then w′(e′) = w(e′) > w∗(e′) = p∗ ≥ w′(T ′); else e �= e′,

PIMMST Under the Weighted Bottleneck Hamming Distance 355

then w′(e) = w∗(e) ≥ p∗ ≥ w′(T ′). It implies that E≥
w∗,p∗ ⊆ E≥

w′,w′(T ′). Hence,
by Lemma 1, w′ is a feasible solution of I. However, we have

‖w′ − w‖WBH ≤ ‖w∗ − w‖WBH .

If ‖w′ −w‖WBH < ‖w∗ −w‖WBH , which contradicts with the optimality of w∗.
Hence, w′ is another optimal solution of I with w′(e′) = w(e′). Besides, for any
e ∈ E\E(T ′), w′(e) ≥ w(e) since T ′ = T ∗ − e′ + e′′. Hence, by repeating the
above process, we can obtain an optimal solution w∗ of I, such that T ∗ is an
optimal tree and w∗(e) ≥ w(e) for any edge e ∈ E(T ∗)\E(F).

The results of the second part are obvious. ��

Remark 1. The one of main differences between partial inverse minimum span-
ning tree problem (abbreviated as PIMST) and PIMMST is that PIMMST does
not satisfies the separation property. Li et al. [8] showed that for any instance
I of PIMST under the weighted bottleneck Hamming distance, there exists an
optimal solution w∗, such that for any edge e ∈ E(F), w∗(e) ≤ w(e) and for
any edge e /∈ E(F), w∗(e) ≥ w(e). However, Theorem 1 can only ensure that
PIMMST under the weighted bottleneck Hamming distance satisfies the sec-
ond part of separation property. Figure 1 illustrates a counter-example of the
first part. In this instance, the partial solution F = {v1v2, v3v4} (dash edges),
the two parameters on each edge are w(e) and c(e) (for example, w(v1v2) = 4,
c(v1v2) = 1). Obviously, the optimal solution is to increase w(v1v2) from 4 to 6
and maintain the weights of other edges. Therefore, we can not use the research
methods of PIMST to study PIMMST.

Fig. 1. (a) An instance I of PIMMST under the weighted bottleneck Hamming dis-
tance; (b) the optimal solution of I.

At the end of this section, we present the following algorithm to determine
whether a given weight function is a feasible solution of this problem.

Remark 2. The main calculation steps of Algorithm 1 are lines 1, 2, 3, which all
take O(m) time [3].

356 Q. Dong et al.

Algorithm 1: Determine whether a given weight function w is feasible
Input: A connected graph G, a forest F and a weight function w;
Output: “True” or “False”;

1 Find a min-max spanning tree T with respect to w of G;
2 Construct a new graph G′ by contracting all edges in F ;
3 Find a min-max spanning tree T ′ of G′;
4 Set T ′′ := T ′ ∪ F ;
5 if w(T ′′) = w(T) then
6 return “Ture”;
7 else
8 return “False”;
9 end

3 PIMMST Under the Weighted Bottleneck Hamming
Distance

In this section, we study the PIMMST under the weighted bottleneck Hamming
distance. Before solving this problem, we firstly consider a restricted version of
this problem in Subsect. 3.1.

3.1 PIMMST with Value of Optimal Tree Restriction Under
the Weighted Bottleneck Hamming Distance

At the beginning of this subsection, the formal definition of PIMMST with value
of optimal tree restriction (abbreviated as PIMMST VOT) under the weighted
bottleneck Hamming distance is introduced as follows.

Definition 3. Given an undirected connected graph G = (V,E), a weight func-
tion w defined on E, a norm function c defined on E, a forest F of G and a
real number p∗, PIMMST VOT with p∗ under the weighted bottleneck Hamming
distance is to find a new weight function w′, such that

(1) there is a min-max spanning tree T ′ with respect to w′ containing F with
w′(T ′) = p∗;

(2) ‖w′ − w‖WBH is minimum.

Before solving it, according to the characteristics of weighted bottleneck
Hamming distance, we firstly give the decision version of this problem and pro-
pose the following important results.

Given an instance I = (G,w, c, F ; p∗) of PIMMST VOT, and a constant C,
the decision version of PIMMST VOT under the weighted bottleneck Ham-
ming distance is to judge whether there exists a new weight function w′, such
that

(1) there is a min-max spanning tree T ′ with respect to w′ containing F with
w′(T ′) = p∗;

(2) ‖w′ − w‖WBH ≤ C.

PIMMST Under the Weighted Bottleneck Hamming Distance 357

Theorem 2. Let

w′′(e) =
{
p∗, c(e) ≤ C;
w(e), otherwise.

Then, the answer of decision version of PIMMST VOT under the weighted bot-
tleneck Hamming distance is “Ture” if and only if there is a min-max spanning
tree T ′ with respect to w′′ containing F with w′′(T ′) = p∗.

Proof. Let’s prove the sufficiency firstly. By the definition of w′′, we have ‖w′′ −
w‖WBH ≤ C, which satisfies condition (2). So, the answer of decision version of
PIMMST VOT under the weighted bottleneck Hamming distance is “Ture”.

Next, we prove the necessity. Let w′ be a feasible solution of PIMMST VOT,
and T ′ be a min-max spanning tree with respect to w′ containing F with
w′(T ′) = p∗. Since w′(T ′) = p∗, there is an edge e′ ∈ E(T ′), w′(e′) = p∗,
and for any other edge e ∈ E(T ′), w′(e) ≤ p∗. If c(e′) ≤ C, we have w′′(e′) = p∗;
otherwise, w′′(e′) = w(e′) = w′(e′) = p∗. Thus, w′′(e′) = p∗. For any other
edge e ∈ E(T ′), if c(e) ≤ C, we have w′′(e) = p∗; otherwise, we have
w′′(e) = w(e) = w′(e) ≤ p∗. Thus, w′′(e) ≤ p∗. Therefore, w′′(T ′) = p∗.

In the following, we will prove that T ′ is also a min-max spanning tree with
respect to w′′ containing F . Clearly, E(F) ⊆ E(T ′). For any edge e ∈ Ew′,p∗ ,
if c(e) ≤ C, then w′′(e) = p∗; otherwise we have w′′(e) = w(e) = w′(e) ≥ p∗.
It implies that Ew′,p∗ ⊆ Ew′′,p∗ . By Lemma 1, G − E≥

w′,p∗ is disconnected, so
G − E≥

w′′,p∗ is also disconnected. By Lemma 1, T ′ is a min-max spanning tree
with respect to w′′. Therefore, T ′ is a min-max spanning tree with respect to
w′′ containing F . ��

By Theorem 2, we present the following algorithm for the decision version of
PIMMST VOT under the weighted bottleneck Hamming distance.

Algorithm 2: Algorithm for the decision version of PIMMST VOT under
the weighted bottleneck Hamming distance
Input: An intance I = (G,w, c, F ; p∗) of PIMMST VOT, a constant C ≥ 0.
Output: “Ture” or “False”.

1 Set

w′(e) =
{
p∗, c(e) ≤ C;
w(e), otherwise;

(1)

2 Calculate Ew′,p∗ ;

3 Set G′ := G − E≥
w′,p∗ ;

4 if G′ is connected then
5 return “False” ;
6 else
7 Execute Algorithm1 on (G,w′, F);
8 end

358 Q. Dong et al.

Remark 3. In Algorithm 2, we can use Depth First Search or Breadth First
Search to judge whether G′ is connected, which takes O(m) time. Combined
this with the running time of Algorithm1, 2 takes O(m) + O(m) = O(m) time.

Clearly, the optimal value of PIMMST VOT under the weighted bottleneck
Hamming distance must be c(ei) for some edge ei. Hence, combining Binary
search method with Algorithm 2, we give an algorithm for PIMMST VOT under
the weighted bottleneck Hamming distance.

Algorithm 3: Algorithm for PIMMST VOT under the weighted bottle-
neck Hamming distance
Input: An intance I = (G,w, c, F ; p∗) of PIMMST VOT.
Output: An optimal solution w∗

p∗ and optimal value Cp∗
min.

1 Order the edges in E as c(e1) ≤ c(e2) ≤ ≤ c(em);
2 Use Binary search to find the minimum c(ei) such that Algorithm 2 on

(G,w, c, F ; p∗, c(ei)) returns “Ture”;
3 Set Cp∗

min := c(ei) and

w∗
p∗(e) =

{
p∗, c(e) ≤ Cp∗

min;
w(e), otherwise;

(2)

4 return w∗
p∗ , Cp∗

min.

Remark 4. In Algorithm 3, sort the weights of edges takes O(m logm) time.
Binary search takes O(logm) iterations and step 2 takes O(m logm) times. So,
the time complexity of Algorithm 3 is O(m logm).

3.2 PIMMST Under the Weighted Bottleneck Hamming Distance

According to Algorithm3, if we can give a candidate set of values of optimal
trees in polynomial scale for PIMMST under the weighted bottleneck Hamming
distance, we can solve this problem in strongly polynomial time. The following
theorem gives the range of optimal tree value.

Theorem 3. For any instance I = (G,w, c, F) of PIMMST under the weighted
bottleneck Hamming distance, there exists an optimal solution w∗ with its optimal
tree T ∗ such that w∗(T ∗) = w(eh), for some eh ∈ E.

Proof. Let w∗ be an optimal solution of I and T ∗ be an optimal tree with respect
to w∗ such that w∗(T ∗) = p∗. If p∗ = w(eh) for some eh ∈ E, then Theorem 3
already holds. Otherwise, we sort the edges with w(e1) ≤ w(e2) ≤ ... ≤ w(em)
and there are three cases of p∗.

Case 1. w(ei) < p∗ < w(ei+1), for some 1 ≤ i ≤ m − 1.

Now, let

w̄(e) =
{
w(ei), w(ei) < w∗(e) ≤ p∗;
w∗(e), otherwise.

PIMMST Under the Weighted Bottleneck Hamming Distance 359

We will firstly prove that w̄(T ∗) = w(ei). For any e ∈ T ∗, if w∗(e) ≤ w(ei),
then w̄(e) = w∗(e) ≤ w(ei); if w(ei) < w∗(e) ≤ p∗, then w̄(e) = w(ei). Thus,
w̄(T ∗) = w(ei).

Next, we will prove that G − E≥
w̄,w̄(T∗) is disconnected. For any edge e ∈

E≥
w∗,p∗ , if w∗(e) = p∗, then w̄(e) = w(ei) = w̄(T ∗); if w∗(e) > p∗, then w̄(e) =

w∗(e) > p∗ > w̄(T ∗). Thus, E≥
w∗,p∗ ⊆ E≥

w̄,w̄(T∗). By Lemma 1, G − E≥
w∗,p∗ is

disconnected. So, G − E≥
w̄,w̄(T∗) is also disconnected.

By Lemma 1, we can see that w̄ is a feasible solution of I. On the other
hand, for any edge e with w(ei) < w∗(e) ≤ p∗ < w(ei+1), H(w(e), w∗(e)) = 1 ≥
H(w(e), w̄(e)). Hence,

‖w̄ − w‖WBH ≤ ‖w∗ − w‖WBH .

By the optimality of w∗, w̄ is another optimal solution of I, and T ∗ is an optimal
tree with respect to w̄ such that w̄(T ∗) = w(ei).

Case 2. p∗ > w(em).

Let

w̄(e) =
{
w(em), w∗(e) > w(em);
w∗(e), otherwise.

Similar to case 1, we can also prove that w̄ is another optimal solution of I, and
T ∗ is optimal with respect to w̄ such that w̄(T ∗) = w(em).

Case 3. p∗ < w(e1).

Let

w̄(e) =
{
w(e1), w∗(e) < w(e1);
w∗(e), otherwise.

Clearly, for any edge e ∈ T ∗, since w∗(e) ≤ p∗ < w(e1), w̄(e) = w(e1). Thus,
w̄(T ∗) = w(e1).

For any edge e ∈ E, we have w̄(e) ≥ w(e1). Thus, E≥
w̄,w̄(T∗) = E. It implies

that G − E≥
w̄,w̄(T∗) is disconnected. By Lemma 1, w̄ is a feasible solution of

I. On the other hand, for any edge w∗(e) < w(e1), H(w(e), w∗(e)) = 1 ≥
H(w(e), w̄(e)). Hence,

‖w̄ − w‖WBH ≤ ‖w∗ − w‖WBH .

By the optimality of w∗, w̄ is another optimal solution of I, and T ∗ is optimal
with respect to w̄ such that w̄(T ∗) = w(e1). ��

By Theorem 3, we present the following algorithm to solve PIMMST under
the weighted bottleneck Hamming distance.

360 Q. Dong et al.

Algorithm 4: Algorithm for PIMMST under the weighted bottleneck
Hamming distance
Input: An instance I = (G,w, c, F) of PIMMST.
Output: An optimal solution w∗.

1 Sorting the set of weights of all edges in E with p1 < p2 < · · · < pt;
2 for i = 1 to t do
3 Execute Algorithm 3 with (G,w, c, F ; pi);
4 end
5 Set C∗ := minCpi

min, p∗ = arg minCpi

min;
6 Set

w∗(e) =
{
p∗, c(e) ≤ C∗;
w(e), otherwise; (3)

return w∗.

Remark 5. Algorithm 4 needs to execute Algorithm 3 at most m times, so the
time complexity of Algorithm 4 is O(m2 logm).

4 CPIMMST Under the Weighted Bottleneck Hamming
Distance

In this section, we consider the capacitated PIMMST (abbreviated as
CPIMMST) under the weighted bottleneck Hamming distance. CPIMMST is
to add a capacity constraint on PIMMST. That is, there are upper and lower
non-negative bound functions u and l, so that

−l(e) ≤ w∗(e) − w(e) ≤ u(e), for any edge e ∈ E.

Similar to Sect. 3, we firstly consider CPIMMST with value of optimal tree
restriction under the weighted bottleneck Hamming distance.

4.1 CPIMMST with Value of Optimal Tree Restriction Under
the Weighted Bottleneck Hamming Distance

At the beginning of this subsection, the formal definition of CPIMMST with
value of optimal tree restriction (abbreviated as CPIMMST VOT) under the
weighted bottleneck Hamming distance is introduced as follows.

Definition 4. Given an undirected connected graph G = (V,E), a weight func-
tion w defined on E, a norm function c defined on E, a forest F of G, upper and
lower bound functions u and l and a real number p∗, CPIMMST VOT with p∗

under the weighted bottleneck Hamming distance is to find a new weight function
w′, such that

PIMMST Under the Weighted Bottleneck Hamming Distance 361

(1) there is a min-max spanning tree T ′ with respect to w′ containing F with
w′(T ′) = p∗;

(2) −l(e) ≤ w′(e) − w(e) ≤ u(e), for any edge e ∈ E;
(3) ‖w′ − w‖WBH is minimum.

By the same discussion on Subsect. 3.1, we can obtain the following theorem
for the decision version of CPIMMST VOT.

Theorem 4. Let

w′′(e) =

⎧⎨
⎩

max{p∗, w(e) − l(e)}, c(e) ≤ C and w(e) > p∗;
min{p∗, w(e) + u(e)}, c(e) ≤ C and w(e) < p∗;
w(e), otherwise.

Then the answer of decision version of CPIMMST VOT with parameter C under
the weighted bottleneck Hamming distance is “Ture” if and only if there is a min-
max spanning tree T ′′ with respect to w′′ containing F with w′′(T ′′) = p∗.

4.2 CPIMMST Under the Weighted Bottleneck Hamming Distance

Similar to Subsect. 3.2, we can also give the candidate set of p∗ in polynomial
scale for CPIMMST under the weighted bottleneck Hamming distance. The fol-
lowing theorem give the range of optimal tree values.

Theorem 5. For any instance I = (G,w, c, l, u, F) of CPIMMST under the
weighted bottleneck Hamming distance, there exists an optimal solution w∗

with its optimal tree T ∗ such that w∗(T ∗) must be one of the value in W =
{w(eh)|eh ∈ E} ∪ {w(eh) − l(eh)|eh ∈ E} ∪ {w(eh) + u(eh)|eh ∈ E} ∩ [w,∞),
where w = max{w(e) − l(e)|e ∈ E(F)}.

Remark 6. Based on the above results, we can generalize the algorithms for
PIMMST in Sect. 3 to solving CPIMMST directly. In detail, for the decision
version of CPIMMST VOT, we just need to replace Eq. (1) in Algorithm 2 with

w′(e) =

⎧⎨
⎩

max{p∗, w(e) − l(e)}, c(e) ≤ C and w(e) > p∗;
min{p∗, w(e) + u(e)}, c(e) ≤ C and w(e) < p∗;
w(e), otherwise.

For CPIMMST VOT, it just need to replace Eq. (2) in Algorithm 3 with

w′(e) =

⎧⎨
⎩

max{p∗, w(e) − l(e)}, c(e) ≤ Cp∗
min and w(e) > p∗;

min{p∗, w(e) + u(e)}, c(e) ≤ Cp∗
min and w(e) < p∗;

w(e), otherwise.

For CPIMMST, it just to replace Line 1 in Algorithm4 with “Sorting the set of
values in W with p1 < p2 < · · · < pt”, and replace Eq. (3) in Algorithm 4 with

w′(e) =

⎧⎨
⎩

max{p∗, w(e) − l(e)}, c(e) ≤ C∗ and w(e) > pi;
min{p∗, w(e) + u(e)}, c(e) ≤ C∗ and w(e) < pi;
w(e), otherwise.

362 Q. Dong et al.

5 Concluding

In this paper, we study the partial inverse min-max spanning tree problem under
the weighted bottleneck Hamming distance, and present an algorithm to solve
this problem with time complexity O(m2 logm). Moreover, we show that the
algorithm can also solve capacitated partial inverse min-max spanning tree prob-
lem under the weighted bottleneck Hamming distance. In the future research, it
is very meaningful to continue to study partial inverse min-max spanning tree
problem under other measurement standards.

References

1. Burton, D., Toint, P.L.: On an instance of the inverse shortest paths problem.
Math. Program. 53(1–3), 45–61 (1992)

2. Cai, M.-C., Duin, C.W., Yang, X., Zhang, J.: The partial inverse minimum span-
ning tree problem when weight increasing is forbidden. Eur. J. Oper. Res. 188,
348–353 (2008)

3. Camerini, P.M.: The min-max spanning tree problem and some extensions. Inf.
Process. Lett. 7(1), 10–14 (1978)

4. Demange, M., Monnot, J.: An Introduction to Inverse Combinatorial Problems,
2nd edn. In: Paschos, V.T. (ed.) Paradigms of Combinatorial Optimization. Wliey,
Hoboken (2014)

5. Heuberger, C.: Inverse combinatorial optimization: a survey on problems, methods,
and results. J. Comb. Optim. 8(3), 329–361 (2004)

6. Li, S., Zhang, Z., Lai, H.-J.: Algorithms for constraint partial inverse matroid
problem with weight increase forbidden. Theor. Comput. Sci. 640, 119–124 (2016)

7. Li, X., Zhang, Z., Du, D.-Z.: Partial inverse maximum spanning tree in which
weight can only be decreased under lp-norm. J. Global Optim. 70, 677–685 (2018)

8. Li, X., Shu, X., Huang, H., Bai, J.: Capacitated partial inverse maximum spanning
tree under the weighted Hamming distance. J. Comb. Optim. 38, 1005–1018 (2019)

9. Li, X., Zhang, Z., Yang, R., Zhang, H., Du, D.-Z.: Approximation algorithms for
capacitated partial inverse maximum spanning tree problem. J. Global Optim.
77(2), 319–340 (2020)

10. Li, X., Yang, R., Zhang, H., Zhang, Z.: Capacitated partial inverse maximum
spanning tree under the weighted l∞-norm. In: Du, D.-Z., Du, D., Wu, C., Xu,
D. (eds.) COCOA 2021. LNCS, vol. 13135, pp. 389–399. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-92681-6 31

11. Liu, L., Yao, E.: Inverse min-max spanning tree problem under the weighted sum-
type Hamming distance. Theoret. Comput. Sci. 196, 28–34 (2008)

12. Liu, L., Wang, Q.: Constrained inverse min-max spanning tree problems under the
weighted Hamming distance. J. Global Optim. 43, 83–95 (2009)

13. Tayyebi, J., Sepasian, A.R.: Partial inverse min-max spanning tree problem. J.
Comb. Optim. 40, 1–17 (2020)

14. Yang, X., Zhang, J.: Some inverse min-max network problems under weighted l1
and l∞ norms with bound constraints on changes. J. Comb. Optim. 13(2), 123–135
(2007)

https://doi.org/10.1007/978-3-030-92681-6_31

Mixed Metric Dimension of Some Plane
Graphs

Na Kang, Zhiquan Li, Lihang Hou, and Jing Qu(B)

School of Mathematics and Science, Hebei GEO University,
Shijiazhuang 050031, People’s Republic of China

qjhj8079@126.com

Abstract. Let G be a finite undirected simple connected graph with
vertex set V (G) and edge set E(G). A vertex u ∈ V (G) resolves two
elements (vertices or edges) v, w ∈ V (G) ∪ E(G) if d(u, v) �= d(u,w).
A subset Sm of vertices in G is called a mixed metric generator for G
if every two distinct elements (vertices and edges) of G are resolved by
some vertex of Sm. The minimum cardinality of a mixed metric generator
for G is called the mixed metric dimension and is denoted by dimm(G).
In this paper, we study the mixed metric dimension for the plane graph
of web graph Wn and convex polytope Dn.

Keywords: Mixed metric dimension · Mixed metric generator · Plane
graph

1 Introduction

The concept of the metric dimension of graph G was introduced independently
by Slater [18] and Harary and Melter [6]. After these two seminal papers, several
works concerning applications, as well as some theoretical properties, of this
invariant were published. For instance, applications to the navigation of robots
in networks were discussed in [14] and applications to chemistry were discussed
in [2,3,10,11].

Let G be a finite undirected simple connected graph with vertex set V (G)
and edge set E(G). The distance d(u, v) between two vertices u, v ∈ V (G) is
the number of edges in a shortest path between them in G. A vertex x ∈ V (G)
resolves or distinguishes two vertices u, v ∈ V (G) if d(u, x) �= d(v, x). A set
S ⊂ V (G) is a metric generator for G if every two distinct vertices of G can be
distinguished by some vertex in S. A metric basis of G is a metric generator of
minimum cardinality. The cardinality of a metric basis, denoted by dim(G) is
called the metric dimension of G.

Similar to metric dimension, edge metric dimension was introduced by [12]
which uniquely identifies the edges related to a graph. The distance between the
vertex u and edge e = vw is defined as d(e, u) = min{d(v, u), d(w, u)}. The
vertex u ∈ V (G) resolves or distinguishes two edges of a graph e1, e2 ∈ E(G)
if d(e1, u) �= d(e2, u). A set Se ⊂ V (G) is an edge metric generator for G if

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 363–375, 2022.
https://doi.org/10.1007/978-3-031-16081-3_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_31&domain=pdf
https://doi.org/10.1007/978-3-031-16081-3_31

364 N. Kang et al.

every two distinct edges of G can be distinguished by some vertex of Se. An
edge metric basis of G is an edge metric generator of minimum cardinality. The
cardinality of an edge metric basis, denoted by dime(G) is called the edge metric
dimension of G. Recently, this variant has been investigated by [15,19,20].

The mixed metric dimension is the combination of well studied metric and
edge metric dimension. It was introduced by Kelenc et al. [11]. A vertex v ∈ V (G)
resolves or distinguishes two elements (vertices or edges) a, b ∈ V (G) ∪ E(G) if
d(v, a) �= d(v, b). A set Sm ⊂ V (G) ∪ E(G) is a mixed metric generator for G if
every two distinct elements (vertices or edges) of G can be distinguished by some
vertex in Sm. A mixed metric basis of G is a mixed metric generator of minimum
cardinality. The cardinality of a mixed metric basis, denoted by dimm(G) is
called the mixed metric dimension of G. Let Sm = {v1, v2, . . . , vk} be an ordered
subset of V (G). Let a be an element (vertex or edge) of G. The k-tuple r(a|Sm) =
(d(a, v1), d(a, v2), . . . , d(a, vk)) is called mixed metric representation of a with
respect to Sm. Clearly, Sm is a mixed metric generator if and only if for every
two distinct elements (vertices or edges) a, b of G we have r(a|Sm) �= r(b|Sm).
Calculation of the mixed metric dimension of a graph G can be found in [4,5,
16,17].

In this paper, we study the mixed metric dimension of two classes of plane
graphs: web graph Wn, plane graph (convex polytope) Dn. We show that the
mixed metric dimension of Wn is not constant and the mixed metric dimension of
Dn is constant. For Wn, dimm(Wn) = n+1 when n � 3. For Dn, dimm(Dn) = 4
when n � 3.

The organization of the paper is as follows. In the following section, we recall
some results concerning plane graphs: Wn, Dn. In Sect. 3, we study the mixed
metric dimension of Wn. In Sect. 4, we study the mixed metric dimension of Dn.
In the last section, we conclude this paper.

2 Preliminaries

The web graph Wn [13] (Fig. 1) has 3n vertices and 4n edges. We have the vertex
set

V (Wn) = {ai, bi, ci|1 � i � n},
and all edges E(Wn) = {aiai+1, aibi, bibi+1, bici|1 � i � n} (an+1 = a1, bn+1 =
b1).

The plane graph (convex polytope) Dn [1] (Fig. 2) has 4n vertices and 6n
edges. We have the vertex set

V (Dn) = {ai, bi, ci, di|1 � i � n},
and all edges E(Dn) = {aiai+1, aici, cidi, ci+1di, bidi, bibi+1|1 � i � n} (an+1 =
a1, bn+1 = b1, cn+1 = c1). Let A = {ai : 1 � i � n}, B = {bi : 1 � i � n},
C = {ci : 1 � i � n}, D = {di : 1 � i � n}.

Lemma 1. [8] For n � 5, let Wn be a web graph. Then dim(Wn) is equal to 2
if n is odd and 3 if n is even.

Mixed Metric Dimension of Some Plane Graphs 365

Fig. 1. The web graph Wn

Fig. 2. The plane graph Dn

Lemma 2. [7] Let Dn be the graph of convex polytope with n � 4, then we have
dim(Dn) = 3.

Lemma 3. [21] For the web graph Wn with n � 3, we have dime(Wn) = 3.

Lemma 4. [21] For the graph of convex polytope Dn with n � 3, then we have
dime(Dn) = 3.

3 The Mixed Metric Dimension of Web Graph Wn

In this section we intend to present the mixed metric dimension of web graph
Wn (Fig. 1).

Lemma 5. Let Wn be the web graph, where n � 3. Let W = {c1, c2, . . . , cn} be
a subset of V (Wn). For arbitrary mixed metric generators Sm of Wn, we have
W ⊆ Sm.

Proof. Suppose that ci /∈ Sm. Then we have r(bici|Sm) = r(bi|Sm), which is
a contradiction to the fact that Sm is a mixed metric generator. Therefore we
have W ⊆ Sm.

Lemma 6. Let Wn be the web graph, where n � 3. Then dimm(Wn) � n + 1.

Proof. Let Sm be any mixed metric generators for Wn. By Lemma 5, we get
|Sm| � n. If |Sm| = n, then we have Sm = {c1, c2, . . . , cn}. Note that
r(aibi|Sm) = r(bi|Sm), which is a contradiction to the fact that Sm is a mixed
metric generator. Thus, we have dimm(Wn) � n + 1.

366 N. Kang et al.

Theorem 1. Let Wn be the web graph, where n � 3. Then dimm(Wn) = n+1.

Proof. For 3 � n � 5, we find that {a1, c1, c2, . . . , cn} is the mixed metric
basis of Wn by total enumeration, and hence the mixed metric dimension of Wn

is n + 1.
For n � 6, let Sm = {a1, c1, c2, . . . , cn}. We will show that Sm is a mixed

metric generator of Wn in Cases (I) and (II), respectively.
Case (I) n is odd. In this case, we can write n = 2l + 1, where l � 3 is an

integer. Let S1 = {a1, c1, c3, cl+3}. We give mixed metric representations of
any element of V (Wn) ∪ E(Wn) with respect to S1.

r(ai|S1) =

⎧
⎪⎨

⎪⎩

(i − 1, i+ 1, 5 − i, l + i), 1 � i � 2;
(i − 1, i+ 1, i − 1, l + 5 − i), 3 � i � l + 1;
(2l + 2 − i, 2l + 4 − i, i − 1, l + 5 − i), l + 2 � i � l + 3;
(2l + 2 − i, 2l + 4 − i, 2l + 6 − i, i − l − 1), l + 4 � i � 2l + 1.

r(bi|S1) =

⎧
⎪⎨

⎪⎩

(i, i, 4 − i, l + i − 1), 1 � i � 2;
(i, i, i − 2, l − i+ 4), 3 � i � l + 1;
(2l − i+ 3, 2l − i+ 3, i − 2, l − i+ 4), l + 2 � i � l + 3;
(2l + 3 − i, 2l + 3 − i, 2l + 5 − i, i − l − 2), l + 4 � i � 2l + 1.

r(ci|S1) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(2, 0, 4, l + 1), i = 1;
(3, 3, 3, l + 2), i = 2;
(4, 4, 0, l + 2), i = 3;
(i+ 1, i+ 1, i − 1, l + 5 − i), 4 � i � l + 1;
(l + 2, l + 2, l + 1, 3), i = l + 2;
(l + 1, l + 1, l + 2, 0), i = l + 3;
(2l + 4 − i, 2l + 4 − i, 2l + 6 − i, i − l − 1), l + 4 � i � 2l + 1.

r(aiai+1|S1) =

⎧
⎪⎨

⎪⎩

(i − 1, i+ 1, 4 − i, l + i), 1 � i � 2;
(i − 1, i+ 1, i − 1, l − i+ 4), 3 � i � l + 1;
(l − 1, l + 1, l + 1, 2), i = l + 2;
(2l + 1 − i, 2l + 3 − i, 2l + 5 − i, i − l − 1), l + 3 � i � 2l + 1.

r(aibi|S1) =

⎧
⎪⎨

⎪⎩

(i − 1, i, 4 − i, l − 1 + i), 1 � i � 2;
(i − 1, i, i − 2, l + 4 − i), 3 � i � l + 1;
(2l + 2 − i, 2l + 3 − i, i − 2, l + 4 − i), l + 2 � i � l + 3;
(2l + 2 − i, 2l + 3 − i, 2l + 5 − i, i − l − 2), l + 4 � i � 2l + 1.

r(bibi+1|S1) =

⎧
⎪⎨

⎪⎩

(i, i, 3 − i, l − 1 + i), l � i � 2;
(i, i, i − 2, l + 3 − i), 3 � i � l + 1;
(l, l, l, 1), i = l + 2;
(2l − i+ 2, 2l − i+ 2, 2l + 4 − i, i − l − 2), l + 3 � i � 2l + 1.

r(bici|S1) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(1, 0, 3, l), i = 1;
(2, 2, 2, l + 1), i = 2;
(3, 3, 0, l + 1), i = 3;
(i, i, i − 2, l + 4 − i), 4 � i � l + 1;
(l + 1, l + 1, l, 2), i = l + 2;
(l, l, l + 1, 0), i = l + 3;
(2l + 3 − i, 2l + 3 − i, 2l + 5 − i, i − l − 2), l + 4 � i � 2l + 1.

Mixed Metric Dimension of Some Plane Graphs 367

Note that when 1 � i � n and i �= 1, 3, l + 3, we have r(bici|S1) = r(bi|S1).
In other cases, all mixed metric representations with respect to S1 are pairwise
different. Therefore, in other cases, all mixed metric representations with respect
to Sm are pairwise different. However, when 1 � i � n and i �= 1, 3, l+3, we have
r(bici|S1 ∪ci) �= r(bi|S1 ∪ci). It follows that r(bici|Sm) �= r(bi|Sm) for 1 � i � n.
Hence Sm is a mixed metric generator and therefore dimm(Wn) � n + 1. By
Lemma 6 we have dimm(Wn) � n+1. Thus, we obtain that dimm(Wn) = n+1.

Case (II) n is even. In this case, we can write n = 2l, where l � 3 is an
integer. Let S1 = {a1, c1, c3, cl+2}. We give mixed metric representations of
any element of V (Wn) ∪ E(Wn) with respect to S1.

r(ai|S1) =

⎧
⎪⎨

⎪⎩

(i − 1, i+ 1, 5 − i, l + i), 1 � i � 2;
(i − 1, i+ 1, i − 1, l + 4 − i), 3 � i � l + 1;
(l − 1, l + 1, l + 1, 2), i = l + 2;
(2l − i+ 1, 2l − i+ 3, 2l − i+ 5, i − l), l + 3 � i � 2l.

r(bi|S1) =

⎧
⎪⎨

⎪⎩

(i, i, 4 − i, l − 1 + i), 1 � i � 2;
(i, i, i − 2, l + 3 − i), 3 � i � l + 1;
(l, l, l, 1), i = l + 2;
(2l − i+ 2, 2l − i+ 2, 2l − i+ 4, i − l − 1), l + 3 � i � 2l.

r(ci|S1) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2, 0, 4, l + 1), i = 1;
(3, 3, 3, l + 2), i = 2;
(4, 4, 0, l + 1), i = 3;
(i+ 1, i+ 1, i − 1, l + 4 − i), 4 � i � l + 1;
(l + 1, l + 1, l + 1, 0), i = l + 2;
(2l − i+ 3, 2l − i+ 3, 2l − i+ 5, i − l), l + 3 � i � 2l.

r(aiai+1|S1) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(0, 2, 3, l + 1), i = 1;
(1, 3, 2, l + 1), i = 2;
(i − 1, i+ 1, i − 1, l + 3 − i), 3 � i � l;
(l − 1, l + 1, l, 2), i = l + 1;
(l − 2, l, l + 1, 2), i = l + 2;
(2l − i, 2l − i+ 2, 2l − i+ 4, i − l), l + 3 � i � 2l.

r(aibi|S1) =

⎧
⎪⎨

⎪⎩

(i − 1, i, 4 − i, l − 1 + i), 1 � i � 2;
(i − 1, i, i − 2, l + 3 − i), 3 � i � l + 1;
(l − 1, l, l, 1), i = l + 2;
(2l − i+ 1, 2l − i+ 2, 2l − i+ 4, i − l − 1), l + 3 � i � 2l.

r(bibi+1|S1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(1, 1, 2, l), i = 1;
(2, 2, 1, l), i = 2;
(i, i, i − 2, l + 2 − i), 3 � i � l;
(2l − i+ 1, 2l − i+ 1, i − 2, 1), l + 1 � i � l + 2;
(2l − i+ 1, 2l − i+ 1, 2l − i+ 3, i − l − 1), l + 3 � i � 2l.

r(bici|S1) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1, 0, 3, l), i = 1;
(2, 2, 2, l + 1), i = 2;
(3, 3, 0, l), i = 3;
(i, i, i − 2, l + 3 − i), 4 � i � l + 1;
(l, l, l, 0), i = l + 2;
(2l − i+ 2, 2l − i+ 2, 2l − i+ 4, i − l − 1), l + 3 � i � 2l.

368 N. Kang et al.

Note that when 1 � i � n and i �= 1, 3, l + 2, we have r(bici|S1) = r(bi|S1).
In other cases, all mixed metric representations with respect to S1 are pairwise
different. Thus, in other cases, all mixed metric representations with respect to
Sm are pairwise different. However, when 1 � i � n and i �= 1, 3, l + 2, we have
r(bici|S1 ∪ci) �= r(bi|S1 ∪ci). It follows that r(bici|Sm) �= r(bi|Sm) for 1 � i � n.
Hence Sm is a mixed metric generator and therefore dimm(Wn) � n + 1. By
Lemma 6 we have dimm(Wn) � n+1. Thus, we obtain that dimm(Wn) = n+1.

Therefore, for n � 3 we have dimm(Wn) = n + 1.

4 The Mixed Metric Dimension of Plane Graph (Convex
Polytope) Dn

In this section, we intend to present the mixed metric dimension of plane graph
(convex polytope) Dn (Fig. 2).

Lemma 7. Let Dn be the plane graph (convex polytope), where n � 10. Then
dimm(Dn) � 4.

Proof. We consider two cases.
Case (I) n is odd. In this case, we can write n = 2l + 1, where l � 5 is

an integer. Let Sm = {a1, al+1, b2, bl+2}. We will show that Sm is a mixed
metric generator of Dn. We give mixed metric representations of any element of
V (Dn) ∪ E(Dn) with respect to Sm.

r(ai|Sm) =

⎧
⎪⎨

⎪⎩

(i − 1, l − i+ 1, 5 − i, l + i+ 1), 1 � i � 2;
(i − 1, l − i+ 1, i, l − i+ 5), 3 � i � l + 1;
(l, 1, l + 2, 3), i = l + 2;
(2l − i+ 2, i − l − 1, 2l − i+ 6, i − l), l + 3 � i � 2l + 1.

r(bi|Sm) =

⎧
⎪⎨

⎪⎩

(3, l + 2, 1, l), i = 1;
(i+ 2, l − i+ 3, i − 2, l − i+ 2), 2 � i � l;
(2l − i+ 4, i − l + 2, i − 2, l − i+ 2), l + 1 � i � l + 2;
(2l − i+ 4, i − l + 2, 2l − i+ 3, i − l − 2), l + 3 � i � 2l + 1.

r(ci|Sm) =

⎧
⎪⎨

⎪⎩

(i, l − i+ 2, 4 − i, l + i), 1 � i � 2;
(i, l − i+ 2, i − 1, l − i+ 4), 3 � i � l + 1;
(l + 1, 2, l + 1, 2), i = l + 2;
(2l − i+ 3, i − l, 2l − i+ 5, i − l − 1), l + 3 � i � 2l + 1.

r(di|Sm) =

⎧
⎪⎨

⎪⎩

(2, l + 1, 2, l + 1), i = 1;
(i+ 1, l − i+ 2, i − 1, l − i+ 3), 2 � i � l;
(2l − i+ 3, i − l + 1, i − 1, l − i+ 3), l + 1 � i � l + 2;
(2l − i+ 3, i − l + 1, 2l − i+ 4, i − l − 1), l + 3 � i � 2l + 1.

r(aiai+1|Sm) =

⎧
⎪⎨

⎪⎩

(i − 1, l − 1, 3, l + 2), 1 � i � 2;
(i − 1, l − i, i, l − i+ 4), 3 � i � l;
(2l − i+ 1, i − l − 1, i, 3), l + 1 � i � l + 2;
(2l − i+ 1, i − l − 1, 2l − i+ 5, i − l), l + 3 � i � 2l + 1.

Mixed Metric Dimension of Some Plane Graphs 369

r(aici|Sm) =

⎧
⎪⎨

⎪⎩

(i − 1, l − i+ 1, 4 − i, l + i), 1 � i � 2;
(i − 1, l − i+ 1, i − 1, l − i+ 4), 3 � i � l + 1;
(l, 1, l + 1, 2), i = l + 2;
(2l − i+ 2, i − l − 1, 2l − i+ 5, i − l − 1), l + 3 � i � 2l + 1.

r(cidi|Sm) =

⎧
⎪⎨

⎪⎩

(1, l + 1, 2, l + 1), i = 1;
(i, l − i+ 2, i − 1, l − i+ 3), 2 � i � l + 1;
(l + 1, 2, l + 1, 1), i = l + 2;
(2l − i+ 3, i − l, 2l − i+ 4, i − l − 1), l + 3 � i � 2l + 1.

r(ci+1di|Sm) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(2, l, 2, l + 1), i = 1;
(i+ 1, l − i+ 1, i − 1, l − i+ 3), 2 � i � l;
(2l − i+ 2, i − l + 1, i − 1, l − i+ 3), l + 1 � i � l + 2;
(2l − i+ 2, i − l + 1, 2l − i+ 4, i − l − 1), l + 3 � i � 2l;
(1, l + 1, 3, l), i = 2l + 1.

r(bidi|Sm) =

⎧
⎪⎨

⎪⎩

(2, l + 1, 1, l), i = 1;
(i+ 1, l − i+ 2, i − 2, l − i+ 2), 2 � i � l;
(2l − i+ 3, i − l + 1, i − 2, l − i+ 2), l + 1 � i � l + 2;
(2l − i+ 3, i − l + 1, 2l − i+ 3, i − l − 2), l + 3 � i � 2l + 1.

r(bibi+1|Sm) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(3, l + 1, 0, l), i = 1;
(i+ 2, l − i+ 2, i − 2, l − i+ 1), 2 � i � l − 1;
(l + 2, 3, i − 2, l + 1 − i), l � i � l + 1;
(2l − i+ 3, i − l + 2, 2l − i+ 2, i − l − 2), l + 2 � i � 2l;
(3, l + 2, 1, l − 1), i = 2l + 1.

Note that all mixed metric representations with respect to Sm are pairwise dif-
ferent. We deduce that Sm is a mixed metric generator for Dn.

Case (II) n is even. In this case, we can write n = 2l, where l � 5 is an
integer. Let Sm = {a1, al+1, b2, bl+2}. We will show that Sm is a mixed
metric generator of Dn. We give mixed metric representations of any element of
V (Dn) ∪ E(Dn) with respect to Sm.

r(ai|Sm) =

⎧
⎪⎨

⎪⎩

(i − 1, l − i+ 1, 5 − i, l + i), 1 � i � 2;
(i − 1, l − i+ 1, i, l − i+ 5), 3 � i � l + 1;
(l − 1, 1, l + 2, 3), i = l + 2;
(2l − i+ 1, i − l − 1, 2l − i+ 5, i − l), l + 3 � i � 2l.

r(bi|Sm) =

⎧
⎪⎨

⎪⎩

(i+ 2, l − i+ 3, 2 − i, l + i − 2), 1 � i � 2;
(i+ 2, l − i+ 3, i − 2, l − i+ 2), 3 � i � l;
(2l − i+ 3, i − l + 2, i − 2, l − i+ 2), l + 1 � i � l + 2;
(2l − i+ 3, i − l + 2, 2l − i+ 2, i − l − 2), l + 3 � i � 2l.

r(ci|Sm) =

⎧
⎪⎨

⎪⎩

(i, l − i+ 2, 4 − i, l + i − 1), 1 � i � 2;
(i, l − i+ 2, i − 1, l − i+ 4), 3 � i � l + 1;
(l, 2, l + 1, 2), i = l + 2;
(2l − i+ 2, i − l, 2l − i+ 4, i − l − 1), l + 3 � i � 2l.

r(di|Sm) =

⎧
⎪⎨

⎪⎩

(2, l + 1, 2, l), i = 1;
(i+ 1, l − i+ 2, i − 1, l − i+ 3), 2 � i � l;
(2l − i+ 2, i − l + 1, i − 1, l − i+ 3), l + 1 � i � l + 2;
(2l − i+ 2, i − l + 1, 2l − i+ 3, i − l − 1), l + 3 � i � 2l.

370 N. Kang et al.

r(aiai+1|Sm) =

⎧
⎪⎨

⎪⎩

(i − 1, l − 1, 3, l + i), 1 � i � 2;
(i − 1, l − i, i, l − i+ 4), 3 � i � l;
(2l − i, i − l − 1, i, l − i+ 4), l + 1 � i � l + 2;
(2l − i, i − l − 1, 2l − i+ 4, i − l), l + 3 � i � 2l.

r(aici|Sm) =

⎧
⎪⎨

⎪⎩

(i − 1, l − i+ 1, 4 − i, l + i − 1), 1 � i � 2;
(i − 1, l − i+ 1, i − 1, l − i+ 4), 3 � i � l + 1;
(l − 1, 1, l + 1, 2), i = l + 2;
(2l − i+ 1, i − l − 1, 2l − i+ 4, i − l − 1), l + 3 � i � 2l.

r(cidi|Sm) =

⎧
⎪⎨

⎪⎩

(1, l + 1, 2, l), i = 1;
(i, l − i+ 2, i − 1, l − i+ 3), 2 � i � l + 1;
(l, 2, l + 1, 1), i = l + 2;
(2l − i+ 2, i − l, 2l − i+ 3, i − l − 1), l + 3 � i � 2l.

r(ci+1di|Sm) =

⎧
⎪⎨

⎪⎩

(2, l, 2, l), i = 1;
(i+ 1, l − i+ 1, i − 1, l − i+ 3), 2 � i � l;
(2l − i+ 1, i − l + 1, i − 1, l − i+ 3), l + 1 � i � l + 2;
(2l − i+ 1, i − l + 1, 2l − i+ 3, i − l − 1), l + 3 � i � 2l.

r(bidi|Sm) =

⎧
⎪⎨

⎪⎩

(2, l + 1, 1, l − 1), i = 1;
(i+ 1, l − i+ 2, i − 2, l − i+ 2), 2 � i � l;
(2l − i+ 2, i − l + 1, i − 2, l − i+ 2), l + 1 � i � l + 2;
(2l − i+ 2, i − l + 1, 2l − i+ 2, i − l − 2), l + 3 � i � 2l.

r(bibi+1|Sm) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(3, l + 1, 0, l − 1), i = 1;
(i+ 2, l − i+ 2, i − 2, l − i+ 1), 2 � i � l − 1;
(l + 2, 3, l − 2, 1), i = l;
(l + 1, 3, l − 1, 0), i = l + 1;
(2l − i+ 2, i − l + 2, 2l − i+ 1, i − l − 2), l + 2 � i � 2l − 1;
(3, l + 2, 1, l − 2), i = 2l.

Note that all mixed metric representations with respect to Sm are pairwise dif-
ferent. We deduce that Sm is a mixed metric generator for Dn.

Therefore, for n � 10 we have dimm(Dn) � 4.

Lemma 8. Let Dn be the plane graph (convex polytope), where n � 10. Let
Ci = {ci, ci+1, di} ⊂ C ∪D, Di = {di−1, di, ci} ⊂ C ∪D. Then the following (i)
and (ii) hold.

(i) r(bi|B ∪ C ∪ D \ Ci) = r(bidi|B ∪ C ∪ D \ Ci) for 1 � i � n;
(ii) r(ai|A ∪ C ∪ D \ Di) = r(aici|A ∪ C ∪ D \ Di) for 1 � i � n.

Proof. (i) We consider the subsequent two cases depending upon n.
Case (I) n is odd. In this case, we can write n = 2l + 1, where l � 5 is

an integer. Now, we calculate the distance between the vertexs bi and xj , and
the distance between the edges bidi and the vertex xj , where xj ∈ B ∪ C ∪ D,

Mixed Metric Dimension of Some Plane Graphs 371

1 � i, j � n.
{
d(bi, bj) = d(bidi, bj) = |i − j|, |i − j| � l;
d(bi, bj) = d(bidi, bj) = n − |i − j|, l + 1 � |i − j| � 2l.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d(bi, cj) = 2, d(bidi, cj) = 1, j = i, j = i+ 1;
d(bi, cj) = d(bidi, cj) = |i − j| + 1, |i − j| � l and j > i, j � i, j � i+ 1;
d(bi, cj) = d(bidi, cj) = |i − j| + 2, |i − j| � l and j < i, j � i, j � i+ 1;
d(bi, cj) = d(bidi, cj) = n − |i − j| + 2, l + 1 � |i − j| � 2l and i � l;
d(bi, cj) = d(bidi, cj) = n − |i − j| + 1, l + 1 � |i − j| � 2l and l + 1 � i � 2l + 1.

⎧⎨
⎩

d(bi, dj) = 1, d(bidi, dj) = 0, j = i;
d(bi, dj) = d(bidi, dj) = |i − j| + 1, |i − j| � l and j � i;
d(bi, dj) = d(bidi, dj) = n − |i − j| + 1, l + 1 � |i − j| � 2l.

In this case, it is not hard to see that r(bi|B ∪ C ∪ D \ Ci) = r(bidi|B ∪ C ∪
D \ Ci).

Case (II) n is even. Similar to the proof of Case (I) we may obtain r(bi|B ∪
C ∪ D \ Ci) = r(bidi|B ∪ C ∪ D \ Ci).

So (i) holds.
(ii) We consider the subsequent two cases depending upon n.
Case (I) n is odd. In this case, we can write n = 2l + 1, where l � 5 is an

integer. Now, we calculate the distance between the vertexs ai and the vertex xj ,
and the distance between the edges aici and the vertex xj , where xj ∈ A∪C∪D,
1 � i, j � n.

{
d(ai, aj) = d(aici, aj) = |i − j|, |i − j| � l;
d(ai, aj) = d(aici, aj) = n − |i − j|, l + 1 � |i − j| � 2l.

⎧⎨
⎩

d(ai, cj) = 1, d(aici, cj) = 0, j = i;
d(ai, cj) = d(aici, cj) = |i − j| + 1, |i − j| � l and j � i;
d(ai, cj) = d(aici, cj) = n − |i − j| + 1, l + 1 � |i − j| � 2l.⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

d(ai, dj) = 2, d(aici, dj) = 1, j = i, j = i − 1;
d(ai, dj) = d(aici, dj) = |i − j| + 2, |i − j| � l and j > i, j � i, j � i − 1;
d(ai, dj) = d(aici, dj) = |i − j| + 1, |i − j| � l and j < i, j � i, j � i − 1;
d(ai, dj) = d(aici, dj) = n − |i − j| + 1, l + 1 � |i − j| � 2l and i � l;
d(ai, dj) = d(aici, dj) = n − |i − j| + 2, l + 1 � |i − j| � 2l and l + 1 � i � 2l + 1.

In this case, it is not hard to see that r(ai|A∪C ∪D \Di) = r(aici|A∪C ∪
D \ Di).

Case (II) n is even. Similar to the proof of Case (I) we may obtain r(ai|A ∪
C ∪ D \ Di) = r(aici|A ∪ C ∪ D \ Di).

So (ii) holds.

Lemma 9. Let Dn be the plane graph (convex polytope), where n � 10. Then
each mixed metric basis Sm of Dn contains at least one vertex of A and one
vertex of B.

372 N. Kang et al.

Proof. We first show that Sm contains at least one vertex of A. Suppose on the
contrary that Sm does not contain any vertex of A. Then Sm ⊂ B ∪ C ∪ D.
By Lemma 8(i), we have r(bi|B ∪ C ∪ D \ Ci) = r(bidi|B ∪ C ∪ D \ Ci), where
Ci = {ci, ci+1, di} ⊂ C ∪D. This means that Sm contains at least one vertex of
Ci. Also, we observe that

|Ci ∩ Cj | =
{
1, |i − j| = 1;
0, |i − j| �= 1.

From which it follows that Sm contains at least �n
2 	 vertices of C ∪ D. Since

n � 10, then dimm(Dn) � 5. But, dimm(Dn) � 4 by Lemma 7. This is a
contradiction.

Secondly, we show that Sm contains at least one vertex of B. Suppose on
the contrary that Sm does not contain any vertex of B. Then Sm ⊂ A ∪C ∪D.
By Lemma 8(ii), we have r(ai|A ∪ C ∪ D \ Di) = r(aici|A ∪ C ∪ D \ Di), where
Di = {di−1, di, ci} ⊂ C ∪D. This means that Sm contains at least one vertex of
Di. Also, we observe that

|Di ∩ Dj | =
{
1, |i − j| = 1;
0, |i − j| �= 1.

From which it follows that Sm contains at least �n
2 	 vertices of C ∪ D. Since

n � 10, then dimm(Dn) � 5. But, dimm(Dn) � 4 by Lemma 7. This is a
contradiction.

Thus, each mixed metric basis Sm of Dn contains at least one vertex of A
and one vertex of B.
�
Theorem 2. Let Dn be the plane graph (convex polytope), where n � 3. Then
dimm(Dn) = 4.

Proof. For n = 3, we find that {a1, a2, d3, b2} is the mixed metric basis
of Dn by total enumeration, and hence the mixed metric dimension of Dn is
4. For n = 4, we find that {a1, a2, d3, b2} is the mixed metric basis of Dn

by total enumeration, and hence the mixed metric dimension of Dn is 4. For
5 � n � 9, we find that {a1, al+1, b2, bl+2} is the mixed metric basis of Dn by
total enumeration, and hence the mixed metric dimension of Dn is 4. For n � 10,
we consider the following two cases.

Case (I) n is odd. We show that dimm(Dn) �= 3. By Lemma 9 we know that
a mixed metric basis Sm for Dn contains at least one vertex of A and one vertex
of B. Since the vertices of graph Dn are symmetric, without loss of generality, we
assume that a1 and bi are these two vertices, where 1 � i � l+1. By calculating,
there are following four possibilities to be discussed.
(1) If Sm = {a1, bi, aj}, where 1 � i � l + 1 and 2 � j � 2l + 1, then we
obtain

{
r(cl+1|Sm) = r(cl+1dl+1|Sm), 1 � i � l and 2 � j � 2l + 1;
r(c2l+1|Sm) = r(c2l+1d2l+1|Sm), i = l + 1 and 2 � j � 2l + 1.

(2) If Sm = {a1, bi, bj}, where 1 � i � l+1 and 2 � j � 2l+1, then we obtain
r(d2l+1|Sm) = r(c2l+1d2l+1|Sm).

Mixed Metric Dimension of Some Plane Graphs 373

(3) If Sm = {a1, bi, cj}, where 1 � i � l+1 and 1 � j � 2l+1, then we obtain
⎧⎪⎪⎨
⎪⎪⎩

r(a1|Sm) = r(a1a2l+1|Sm), 1 � i � l and 1 � j � l + 1;
r(a1|Sm) = r(a1a2|Sm), 1 � i � l and l + 2 � j � 2l + 1;
r(d2l+1|Sm) = r(c2l+1d2l+1|Sm), i = l + 1 and 1 � j � l;
r(c2l+1|Sm) = r(c2l+1d2l+1|Sm), i = l + 1 and l + 1 � j � 2l + 1.

(4) If Sm = {a1, bi, dj}, where 1 � i � l+ 1 and 1 � j � 2l+ 1, then we obtain
⎧⎪⎪⎨
⎪⎪⎩

r(b1|Sm) = r(b1b2l+1|Sm), i = 1 and 1 � j � l + 1;
r(b1|Sm) = r(b1b2|Sm), i = 1 and l + 2 � j � 2l + 1;
r(dl+2|Sm) = r(cl+2dl+2|Sm), 2 � i � l and 1 � j � 2l + 1 and j �= l, l + 1;
r(cl+2|Sm) = r(cl+2dl+2|Sm), 2 � i � l and j = l, l + 1.

By the above we see that there is no resolving set with three vertices for
V (Dn), then dimm(Dn) � 4. By Lemma 7 we know that dimm(Dn) � 4, so
dimm(Dn) = 4 holds.

Case (II) n is even. We show that dimm(Dn) �= 3. By Lemma 9 we know that
a mixed metric basis Sm for Dn contains at least one vertex of A and one vertex
of B. Since the vertices of graph Dn are symmetric, without loss of generality,
we assume that a1 and bi are these two vertices, where 1 � i � l. By calculating,
there are following four possibilities to be discussed.
(1) If Sm = {a1, bi, aj}, where 1 � i � l and 2 � j � 2l, then we obtain

{
r(cl|Sm) = r(cldl|Sm), 1 � i � l − 1 and 2 � j � 2l;
r(c2l|Sm) = r(c2ld2l|Sm), i = l and 2 � j � 2l.

(2) If Sm = {a1, bi, bj}, where 1 � i � l and 2 � j � 2l, then we obtain
r(d2l|Sm) = r(c2ld2l|Sm).
(3) If Sm = {a1, bi, cj}, where 1 � i � l and 1 � j � 2l, then we obtain

{
r(d2l|Sm) = r(c2ld2l|Sm), 1 � i � l and 1 � j � l;
r(dl|Sm) = r(cldl|Sm), 1 � i � l and l + 1 � j � 2l.

(4) If Sm = {a1, bi, dj}, where 1 � i � l and 1 � j � 2l, then we obtain
⎧⎪⎪⎨
⎪⎪⎩

r(a1|Sm) = r(a1a2l|Sm), i = 1 and 1 � j � l;
r(a1|Sm) = r(a1a2|Sm), i = 1 and l + 1 � j � 2l;
r(dl+2|Sm) = r(cl+2dl+2|Sm), 2 � i � l and 1 � j � 2l and j �= l, l + 1;
r(cl+2|Sm) = r(cl+2dl+2|Sm), 2 � i � l and j = l, l + 1.

From the above we know that there is no resolving set with three vertices
for V (Dn), then dimm(Dn) � 4. By Lemma 7 we know that dimm(Dn) � 4, so
dimm(Dn) = 4 holds.

5 Conclusion

In this paper, we studied the mixed metric dimension for two families of plane
graphs (web graphs and convex polytopes) in metric graph theory. For web
graphs, a lower bound for the mixed metric dimension was proved and a mixed
metric basis was then obtained to determine the mixed metric dimension. For
convex polytopes, an upper bound for the mixed metric dimension was discovered

374 N. Kang et al.

and the above bound was then proved to be tight. The future research can be
thought of as finding the mixed metric dimension for other families of plane
graphs, especially rotationally symmetric ones.

Acknowledgements. This work was supported by the NSF of China (No. 11971146)
and the Doctoral Scientific Research of Shijiazhuang University of Economics of China
(No. BQ201517).

References

1. Bača, M.: Labellings of two classes of convex polytopes. Util. Math. 34, 24–31
(1988)

2. Chartrand, G., Poisson, C., Zhang, P.: Resolvability and the upper dimension of
graphs. Comput. Math. Appl. 39, 19–28 (2000)

3. Chartrand, G., Eroh, L., Johnson, M.A., Oellermann, O.R.: Resolvability in graphs
and the metric dimension of a graph. Discrete. Appl. Math. 105, 99–113 (2000)

4. Danas, M.M.: The mixed metric dimension of flower snarks and wheels. Open
Math. 19(1), 629–640 (2021)

5. Danas, M.M., Kratica, J., Savić, A., Maksimović, Z.L.: Some new general lower
bounds for mixed metric dimension of graphs (2020). arXiv:2007.05808

6. Harary, F., Melter, R.A.: On the metric dimension of a graph. Ars Combin. 2,
191–195 (1976)

7. Imran, M., Baig, A.Q., Ahmad, A.: Families of plane graphs with constant metric
dimension. Util. Math. 88, 43–57 (2012)

8. Imran, M., Baig, A.Q., Bokhary, S.A.: On the metric dimension of rotationally-
symmetric graphs. Ars Combin. 124, 111–128 (2016)

9. Imran, M., Siddiqui, M.K., Naeem, R.: On the metric dimension of generalized
Petersen multigraphs. IEEE. Access. 6, 74328–74338 (2018)

10. Johnson, M.A.: Structure-activity maps for visualizing the graph variables arising
in drug design. J. Biopharm. Stat. 3, 203–236 (1993)

11. Kelenc, A., Kuziak, D., Taranenko, A., Yero, I.G.: Mixed metric dimension of
graphs. Appl. Math. Comput. 314(1), 429–438 (2017)

12. Kelenc, A., Tratnik, N., Yero, I.G.: Uniquely identifying the edges of a graph: the
edge metric dimension. Discrete. Appl. Math. 251, 204–220 (2018)

13. Koh, K.M., Rogers, D.G., Teo, H.K., Yap, K.Y.: Graceful graphs: some further
results and problems. Congr. Numer. 29, 559–571 (1980)

14. Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discret. Appl.
Math. 70, 217–229 (1996)

15. Peterin, I., Yero, I.G.: Edge metric dimension of some graph operations. Bull.
Malays. Math. Sci. Soc. 43(3), 2465–2477 (2019). https://doi.org/10.1007/s40840-
019-00816-7

16. Raza, H., Liu, J.B., Qu, S.: On mixed metric dimension of rotationally symmetric
graphs. IEEE Access. 8, 188146–188153 (2020)

17. Raza, H., Ji, Y.: Computing the mixed metric dimension of a generalized Petersen
graph P (n, 2). Front. Phys. 8: 211. https://doi.org/10.3389/fphy.2020.00211

18. Slater, P.J.: Leaves of trees. Congr. Numer. 14, 549–559 (1975)

http://arxiv.org/abs/2007.05808
https://doi.org/10.1007/s40840-019-00816-7
https://doi.org/10.1007/s40840-019-00816-7
https://doi.org/10.3389/fphy.2020.00211

Mixed Metric Dimension of Some Plane Graphs 375

19. Zhu, E., Taranenko, A., Shao, Z., Xu, J.: On graphs with the maximum edge metric
dimension. Discret. Appl. Math. 257, 317–324 (2019)

20. Zubrilina, N.: On the edge dimension of a graph. Discret. Math. 341(7), 2083–2088
(2018)

21. Zhang, Y.Z., Gao, S.G.: On the edge metric dimension of convex polytopes and its
related graphs. J. Comb. Optim. 39, 334–350 (2020)

On the Transversal Number of k-Uniform
Connected Hypergraphs

Zian Chen1, Bin Chen1, Zhongzheng Tang2 , and Zhuo Diao3(B)

1 Center for Discrete Mathematics, Fuzhou University, Fuzhou 350003, Fujian, China
2 School of Science, Beijing University of Posts and Telecommunications,

Beijing 100876, China
tangzhongzheng@amss.ac.cn

3 School of Statistics and Mathematics, Central University of Finance
and Economics, Beijing 100081, China

diaozhuo@amss.ac.cn

Abstract. For k ≥ 3, let H be a k-uniform connected hypergraph on
n vertices and m edges. The transversal number τ(H) is the minimum
number of vertices that intersect every edge. We prove the following
inequality: τ(H) ≤ (k−1)m+1

k
. Furthermore, the extremal hypergraphs

with equality holds are exactly hypertrees with perfect matching. Based
on the proofs, some combinatorial algorithms on the transversal number
are designed.

Keywords: Transversal · k-uniform · Extremal hypergraph · Perfect
matching

1 Introduction

A simple hypergraph is a hypergraph without loops and multiple edges. Let
H(V,E) be a simple hypergraph with vertex set V and edge set E. As for a
graph, the order of H, denoted by n, is the number of vertices. The number of
edges will be denoted by m.

For each vertex v ∈ V , the degree d(v) is the number of edges in E that
contains v. We say v is an isolated vertex of H if d(v) = 0. Hypergraph H is
k-regular if each vertex’s degree is k (d(v) = k,∀v ∈ V). Hypergraph H is k-
uniform if each edge contains exactly k vertices (| e |= k,∀e ∈ E). Hypergraph
H is called linear if any two distinct edges have at most one common vertex.
(| e1 ∩ e2 | ≤ 1,∀e1, e2 ∈ E). The rank is r(H) = maxe∈E | e |.

For any vertex set S ⊆ V , we write H\S for the sub-hypergraph of H
obtained from H by deleting all vertices in S and all edges incident with some

Supported by National Natural Science Foundation of China under Grant No.
11901605, No. 12101069, the disciplinary funding of Central University of Finance
and Economics, the Emerging Interdisciplinary Project of CUFE, the Fundamental
Research Funds for the Central Universities and Innovation Foundation of BUPT for
Youth (500422309).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 376–387, 2022.
https://doi.org/10.1007/978-3-031-16081-3_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_32&domain=pdf
http://orcid.org/0000-0002-8593-0383
https://doi.org/10.1007/978-3-031-16081-3_32

On the Transversal Number of k-Uniform Connected Hypergraphs 377

vertices in S. For any edge set A ⊆ V , we write H\A for the sub-hypergraph
of H obtained from H by deleting all edges in A and keeping vertices. If S is a
singleton set s, we write H\s instead of H\{s}.

Let k ≥ 2 be an integer. A cycle of length k, denoted as k-cycle, is a vertex-
edge sequence C = v1e1v2e2 · · · vkekv1 with: (1) {e1, e2, . . . , ek} are distinct edges
of H. (2) {v1, v2, . . . , vk} are distinct vertices of H. (3) {vi, vi+1} ⊆ ei for each
i ∈ [k], here vk+1 = v1. We consider the cycle C as a sub-hypergraph of H with
vertex set {vi, i ∈ [k]} and edge set {ej , j ∈ [k]}.

Similarily, a path of length k, denoted as k-path, is a vertex-edge sequence
P = v1e1v2e2 · · · vkekvk+1 with: (1) {e1, e2, . . . , ek} are distinct edges of H. (2)
{v1, v2, . . . , vk+1} are distinct vertices of H. (3) {vi, vi+1} ⊆ ei for each i ∈ [k].
We consider the path P as a sub-hypergraph of H with vertex set {vi, i ∈ [k+1]}
and edge set {ej , j ∈ [k]}.

A hypergraph H = (V,E) is called connected if any two of its vertices are
linked by a path in H. For two distinct vertices u and v, the distance between u
and v is the length of a shortest path connecting u and v, denoted by d(x, y). A
hypergraph H = (V,E) is called a hypertree if H is connected and acyclic, not
containing any cycles, denoted by T (V,E).

Given a hypergraph H(V,E), a set of vertices S ⊆ V is a transversal if
every edge is incident with at least a vertex in S. The transversal number is the
minimum cardinality of a transversal, denoted by τ(H). A set of edges A ⊆ E
is a matching if every two distinct edges have no common vertex. The matching
number is the maximum cardinality of a matching, denoted by ν(H). In this
paper, we consider the transversal number in k-uniform connected hypergraphs.

1.1 Known Results

Hypergraphs are systems of sets which are conceived as natural extensions of
graphs. A subset S of vertices in a hypergraph H is a transversal (also called
vertex cover or hitting set in many papers) if S has a nonempty intersection with
every edge of H. The transversal number τ(H) of H is the minimum size of a
transversal in H. Transversals in hypergraphs are well studied in the literature
[3,6,7,9–13].

Chvátal and McDiarmid [3] established the following upper bound on the
transversal number of a uniform hypergraph in terms of its order and size.

Theorem 1. For k ≥ 2, if H is a k-uniform hypergraph on n vertices with m

edges, then τ(H) ≤ n+� k
2 �m

� 3k
2 � .

Henning and Yeo [5] proposed the following question:

Conjecture 1. For k ≥ 2, let H be a k-uniform hypergraph on n vertices with m
edges. If H is linear, then (k + 1)τ(H) ≤ n + m holds for all k ≥ 2?

The Chvátal and McDiarmid theorem implies that (k + 1)τ(H) ≤ n + m holds
for k ∈ {2, 3} even without the linearity constraint imposed on H. Henning and
Yeo [5] remarked that if H is not linear, then Conjecture 1 is not always true,

378 Z. Chen et al.

showing an example by taking k = 4 and letting F 7 be the complement of the
Fano plane F7. Henning and Yeo [5] proved the following theorem which verified
Conjecture 1 for linear hypergraphs with maximum degree two:

Theorem 2. For k ≥ 2, let H be a k-uniform linear hypergraph satisfying
Δ(H) ≤ 2. Then, (k + 1)τ(H) ≤ n(H) + m(H) with equality if and only if
each component of H consists of a single edge or is the dual of a complete graph
of order k + 1 and k is even.

Henning and Yeo [8] proposed the following conjecture in another paper:

Conjecture 2. τ(H) ≤ n
k + m

6 holds for all uniform hypergraphs with maximum
degree at most 3.

Henning and Yeo [8] showed that τ(H) ≤ n
k + m

6 holds when k = 2 and char-
acterized the hypergraphs for which equality holds. Chvátal and McDiarmid [3]
showed that τ(H) ≤ n

k + m
6 holds when k = 3. Henning and Yeo characterized

the extremal hypergraphs. Henning and Yeo [8] showed that τ(H) ≤ n
k + m

6
holds when Δ(H) ≤ 2 and characterized the hypergraphs for which it holds
with equality in that case.

1.2 Our Results

Chen, Diao, Hu and Tang [2] proved the following theorem on 3-uniform con-
nected linear hypergraphs:

Theorem 3. Let H(V,E) be a 3-uniform connected linear hypergraph with m
edges. Then τ(H) ≤ 2m+1

3 .

Diao [4] proved the same inequality on 3-uniform connected hypergraphs and
characterized the extremal hypergraphs:

Theorem 4. Let H(V,E) be a 3-uniform connected hypergraph with m edges.
Then τ(H) ≤ 2m+1

3 . Furthermore, τ(H) = 2m+1
3 holds if and only if H is a

hypertree with perfect matching.

In this paper, we generalize the above results for k-uniform connected hyper-
graphs, as stated in the following theorem:

Theorem 5. For k ≥ 3, let H(V,E) be a k-uniform connected hypergraph with
m edges. Then τ(H) ≤ (k−1)m+1

k . Furthermore, τ(H) = (k−1)m+1
k holds if and

only if H is a hypertree with perfect matching.

For k-uniform connected hypergraphs, Conjecture 1 and Theorem 5 are related.
If Conjecture 1 holds, combined with n ≤ (k − 1)m + 1, we have

(k + 1)τ(H) ≤ n + m,n ≤ (k − 1)m + 1 ⇒ τ(H) ≤ n + m

k + 1
≤ km + 1

k + 1
,

which is a weaker result of Theorem 5.

On the Transversal Number of k-Uniform Connected Hypergraphs 379

The main content of the article is organized as follows:

– In Sect. 2, we introduce a breaking-cycle operation and prove τ(H) ≤ [(k −
1)m + 1]/k holds for k-uniform connected hypergraphs. Based on the proof,
a polynomial time algorithm is designed to compute a transversal set with
cardinality at most [(k − 1)m + 1]/k.

– In Sect. 3, we characterize the extremal k-uniform connected hypergraphs
with τ(H) = [(k − 1)m + 1]/k. By structure analysis, we prove the extremal
hypergraphs are exactly hypertrees with perfect matching.

2 The Upper Bound for Transversal Number

In this section, we prove τ(H) ≤ (k−1)m+1
k holds for k-uniform connected hyper-

graphs, as stated in Theorem 5.
The content is organized as follows:

– The conception and property of breaking-cycle operations are introduced by
Definition 1 and Lemma 1.

– The upper bound for transversal number is proved in Lemma 2, Lemma 3
and Theorem 7.

– Computing the transversal with cardinality no more than the upper bound
is shown in Algorithm 2.

Definition 1. For a k-uniform connected hypergraph H(V,E), let C = v1e1v2e2
· · · vkekv1 be a cycle in H. The breaking-cycle operation of C is breaking an
adjacent vertex vi in the cycle C, as shown in Fig. 1.

Fig. 1. The schematic diagram of breaking-cycle operation

380 Z. Chen et al.

Lemma 1. The breaking-cycle operation does not decrease the transversal
number.

Proof. Denote ˜H as the hypergraph obtained by the breaking-cycle operation of
C. Obviously, ˜H is k-uniform and connected. vi is the breaking adjacent vertex
in H and ṽi is the corresponding leaf in ˜H; ei(vi, vi+1) is the breaking edge in
H and ẽi(ṽi, vi+1) is the corresponding edge in ˜H, as shown in Fig. 1.

Take a minimum transversal ˜S of ˜H. If ṽi ∈ ˜S, then replace ṽi by vi+1. Thus
there is a minimum transversal ˜S of ˜H and ṽi 	∈ ˜S. Take S = ˜S and S is a
transversal of H. Thus τ(H) ≤ τ(˜H).

Lemma 2. For k-uniform connected hypergraph H(V,E), n ≤ (k − 1)m + 1.

Proof. We prove this lemma by induction on m. When m = 0, H(V,E) is an
isolate vertex, n ≤ (k − 1)m + 1 holds. Assume this lemma holds for m ≤ t.
When m = t + 1, take arbitrarily one edge e and consider the subgraph H\e.
Obviously, H\e has at most k components. Assume H\e has p components
Hi(Vi, Ei) and ni = | Vi |, mi = | Ei | for each i ∈ {1, . . . , p}. Then by our
induction, ni ≤ (k − 1)mi + 1 holds. So we have

n = n1 + · · · + np ≤ (k − 1)m1 + · · · + (k − 1)mp + p = (k − 1)(m − 1) + p

= (k − 1)m + p − k + 1 ≤ (k − 1)m + 1.

By induction, we finish our proof.

Lemma 3. For k-uniform connected hypergraph H(V,E), n = (k − 1)m + 1 if
and only if H is a hypertree.

Proof. Sufficiency: if H is a hypertree, we prove n = (k − 1)m + 1 by induction
on m. When m = 0, H(V,E) is an isolate vertex, n = (k − 1)m + 1 holds.
Assume this lemma holds for m ≤ t. When m = t + 1, take arbitrarily one edge
e and consider the subgraph H\e. Because H is a hypertree, H\e has exactly
k components, denoted by Hi(Vi, Ei) and ni = | Vi |,mi = | Ei | for each
i ∈ {1, . . . , k}. Because every component is a hypertree, thus by our induction,
ni = (k − 1)mi + 1 holds. So we have

n = n1+· · ·+nk = (k−1)m1+· · ·+(k−1)mk+k = (k−1)(m−1)+k = (k−1)m+1.

By induction, we finish the sufficiency proof.
Necessity: We prove by contradiction. If H is not a hypertree, H contain

a cycle C. Take arbitrarily one edge e in C and consider the subgraph H\e.
obviously, H\e has at most k − 1 components. Assume H\e has p components
Hi(Vi, Ei) and ni = | Vi |,mi = | Ei | for each i ∈ {1, . . . , p}. Then by Lemma 2,
ni ≤ (k − 1)mi + 1 holds. So we have

n = n1 + · · · + np ≤ (k − 1)m1 + · · · + (k − 1)mp + p = (k − 1)(m − 1) + p

= (k − 1)m + p − k + 1 ≤ (k − 1)m < (k − 1)m + 1,

which is a contradiction with n = (k − 1)m + 1. Thus H is a hypertree and we
finish our necessity proof.

On the Transversal Number of k-Uniform Connected Hypergraphs 381

Transversals and matchings are related in a prime-dual way. The property
τ(H) = ν(H) is called König Property. The next theorem is useful in our proof:

Theorem 6 [1]. T (V,E) is a hypertree, τ(T) = ν(T).

Theorem 7. For k ≥ 3, let H(V,E) be a k-uniform connected hypergraph with
m edges. Then τ(H) ≤ (k−1)m+1

k .

Proof. Take arbitrarily a sequences of breaking-cycle operations. There is a
sequence of k-uniform connected hypergraphs ˜H1, . . . , ˜Ht. All these hypergraphs
have m edges. ˜Ht is a hypertree and the number of vertices is nt. According to
Lemma 1, we have the following inequalities:

τ(H) ≤ τ(˜H1) ≤ · · · ≤ τ(˜Ht).

˜Ht is a hypertree. According to Theorem 6, we have the following inequalities:

τ(˜Ht) = ν(˜Ht) ≤ nt

k
=

(k − 1)m + 1
k

,

which means τ(H) ≤ (k−1)m+1
k .

The proof of Theorem 7 also implies a combinatorial algorithm for computing
a transversal of k-uniform connected m-edge hypergraph H with cardinality at
most (k−1)m+1

k .
First, if H is a hypertree, then the optimal transversal can be found in

polynomial time as follows.

Algorithm 1. Transversal of Hypertrees

Input: A hypertree T (V,E).

Output: ALG1(T), an optimal transversal of H.

1: if | E |= 0 then

2: return ∅

3: if | E |= 1 then

4: Let u be an arbitrary vertex in V .

5: return {u}
6: Find e ∈ E that contains exactly one vertex v with d(v) ≥ 2.

7: Let T1, T2, . . ., Tl be all components of T \ v.

8: return {v} ∪ ⋃l
i=1 ALG1(Ti)

382 Z. Chen et al.

Remark 1. For any hypertree T with m ≥ 2 edges, the longest path in T is
P = v1e1v2e2 · · · etvt+1 with t ≥ 2. T is acyclic and P is the longest path in T ,
thus e1 has exactly one vertex v2 with degree greater than 1 and et has exactly
one vertex vt with degree greater than 1. The vertices in Step 6 of Algorithm 1
exist.

Theorem 8. For a hypertree T (V,E), Algorithm 1 outputs a minimum
transversal set of T .

Proof. T (V,E) is a hypertree. In the process of Algorithm 1, there is a series of
acyclic hypergraphs, denoted as {Ti, 1 ≤ i ≤ k}. Ti+1 is the subhypergraph by
deleting vi in Ti. T1 is T and Tk is a trivial hyperforest, whose components are
isolated vertices or single edges. For 1 ≤ i ≤ k, Algorithm 1 constructs an vertex
set Si in Ti. We will prove Si is the minimum transversal set of Ti by backward
induction on i.

– For i = k, Tk is a trivial hyperforest. Sk is the set of vertices by taking arbi-
trarily a vertex for each single edge. Obviously, Sk is the minimum transversal
set of Tk.

– Let Si+1 be the minimum transversal set of Ti+1. We need to show that Si

is the minimum transversal set of Ti. Ti+1 = Ti\vi, Si = Si+1 ∪ {vi}. On one
side, for any minimum transversal set S of Ti, there is a vertex v ∈ ei in S and
S\{v} is a transversal set of Ti\v. Ti+1 = Ti\vi is a subhypergraph of Ti\v.
Thus S\{v} is also a transversal set of Ti+1 and the following inequalities
hold:

τ(Ti) = | S |, | S\{v} |= | S | −1 ≥ τ(Ti+1) ⇒ τ(Ti) ≥ τ(Ti+1) + 1.

On the other side, Si+1 is the minimum transversal set of Ti+1 and Si =
Si+1 ∪ {vi} is a transversal set of Ti. Thus the following inequalities hold:

| Si |= | Si+1 ∪ {vi} |= | Si+1 | +1 = τ(Ti+1) + 1 ≥ τ(Ti).

Above all, τ(Ti) = τ(Ti+1) + 1 and Si is the minimum transversal set of Ti.

Take S = S1, T = T1 and Algorithm 1 outputs a minimum transversal set S of
the hypertree T .

Next, we show Algorithm 2, which will call Algorithm 1 as a subprocedure.

Theorem 9. For a k-uniform connected hypergraph H(V,E) with m edges,
Algorithm 2 outputs a transversal set S of H with | S | ≤ (k−1)m+1

k .

Proof. In the process of breaking-cycle operations, there is a series of k-uniform
connected hypergraphs, denoted as { ˜Hi, 1 ≤ i ≤ t}. ˜Hi+1 is generated by
breaking-cycle Ci in ˜Hi, as shown in Fig. 1. ˜H1 is H and ˜Hk is a hypertree T
with the number of vertices nt. All these hypergraphs have m edges. According
to Lemma 3 and Theorem 6, we have the following inequalities:

τ(˜Ht) = ν(˜Ht) ≤ nt

k
=

(k − 1)m + 1
k

.

On the Transversal Number of k-Uniform Connected Hypergraphs 383

Algorithm 2. Transversal of k-Uniform Connected Hypergraphs

Input: A k-uniform connected hypergraph H with m edges.

Output: A transversal of H with cardinality at most (k−1)m+1
k .

1: Set ˜H1 = H and i = 1.

2: while ˜Hi contains some cycle Ci do

3: Do breaking-cycle operation on vertex vi in cycle Ci.

4: Denote the resulting hypergraph as ˜Hi+1.

5: Set i = i + 1.

6: Compute an optimal transversal Si of the hypertree ˜Hi by Algorithm 1.

7: for j = i to 2 do

8: if ṽj−1 ∈ Sj then

9: Take Sj−1 = Sj \ {ṽj−1} ∪ {u} where u is an arbitrarily vertex in

ẽj−1 \ ṽj−1.

10: else

11: Take Sj−1 = Sj .

12: return S1

Algorithm 1 is an exact algorithm to compute transversal number for hypertrees,
which outputs a transversal set | St |= τ(˜Ht) ≤ (k−1)m+1

k .
˜Hi+1 is generated by breaking-cycle Ci in ˜Hi, as shown in Fig. 1. Si+1 is a

transversal set of ˜Hi+1, we can construct a transversal set Si of ˜Hi as follows:

– ṽi ∈ Si+1, take Si = Si+1\{ṽi} ∪ {u}, here u is an arbitrarily vertex in ẽi\ṽi;
– ṽi 	∈ Si+1, take Si = Si+1.

According to the rules, we have | Si | ≤ | Si+1 |. Thus we have a series of
transversal set Si of ˜Hi with

| S1 | ≤ | S2 | ≤ · · · ≤| St | ≤ (k − 1)m + 1
k

.

Take S = S1,H = ˜H1 and Algorithm 1 outputs a transversal set S of H with
| S | ≤ (k−1)m+1

k .

Remark 2. Whenever an operation is executed, the value
∑

v:d(v)≥2 d(v) is
decreased. The number of operations executed is at most km. Thus, Algorithm
2 runs in polynomial time.

Remark 3. Let H be a connected hypergraph with rank k. If H is not k-uniform,
we can construct a connected k-uniform hypergraph H ′ by adding new vertices

384 Z. Chen et al.

to each edge. The simple operation keeps the transversal number. Thus we have

τ(H) = τ(H ′) ≤ (k − 1)m′ + 1
k

=
(k − 1)m + 1

k
,

which states the bound τ(H) ≤ (k−1)m+1
k also holds in rank k hypergraphs.

3 Extremal k-Uniform Connected Hypergraphs

In this subsection, we characterize the extremal hypergraphs achieving the bound
in Theorem 5.

Theorem 10. Let H(V,E) be a connected k-uniform hypergraph with m edges.
Then τ(H) = (k−1)m+1

k if and only if H(V,E) is a hypertree with perfect match-
ing.

Proof. Sufficiency: If H(V,E) is a hypertree with perfect matching, then accord-
ing to Lemma 3 and Theorem 6, we have next equalities:

τ(H) = ν(H) =
n

k
=

(k − 1)m + 1
k

.

Necessity: When τ(H) = (k−1)m+1
k , we need to prove H(V,E) is a hyper-

tree with perfect matching. It is enough to prove H(V,E) is acyclic. Actually, if
H(V,E) is acyclic, according to Lemma 3 and Theorem 6, we have next inequal-
ities:

τ(H) = ν(H) ≤ n

k
=

(k − 1)m + 1
k

.

Combined with τ(H) = (k−1)m+1
k , we have next equalities, which says

H(V,E) is a hypertree with perfect matching.

τ(H) = ν(H) =
n

k
=

(k − 1)m + 1
k

.

By contradiction, let us take out a counterexample H(V,E) with minimum
edges. Then τ(H) = (k−1)m+1

k and H(V,E) contains cycles. We have a series of
claims:

Claim 1 . Every two distinct cycles in H share common edges.

Actually, for every two distinct cycles C1 and C2, if E(C1)∩E(C2) = ∅, then
we can partition the set of edges E(H) into two parts E(H1) and E(H2) such
that E(C1) ⊆ E(H1), E(C2) ⊆ E(H2) and the edge-induced subhypergraphs H1

and H2 are both connected. Because H(V,E) is a counterexample with minimum
edges, we have next inequalities, a contradiction with the assumption τ(H) =
(k−1)m+1

k .

τ(H1) ≤ (k − 1)m1

k
, τ(H2) ≤ (k − 1)m2

k

On the Transversal Number of k-Uniform Connected Hypergraphs 385

⇒ τ(H) ≤ τ(H1) + τ(H2) ≤ (k − 1)m1

k
+

(k − 1)m2

k
=

(k − 1)m
k

.

Let us take out a shortest cycle C. Because τ(C) ≤ mc+1
2 < (k−1)m+1

k ,
we know E(H)\E(C) 	= ∅. Furthermore, according to Claim 1, we know
E(H)\E(C) induces some hypertrees. The next claim is essential.

Claim 2 . Every hypertree induced by E(H)\E(C) must be an edge.

We assume that there exists a hypertree T with | E(T) |≥ 2. Then let us
take arbitrarily a vertex v ∈ T ∩ C and denote the farthest vertex from v in T
as v′. We have next two cases.

Case 1: distance d(v, v′) = 1 in T , we have a partial structure in Fig. 2.
Now we can take {e1, e2} as E1 and other edges as E2. It is easy to see that
the edge-induced subhypergraphs H1 and H2 are both connected. Thus we have
next inequalities, which is contradiction with τ(H) = (k−1)m+1

k .

τ(H) ≤ τ(H1) + τ(H2) ≤ 1 +
(k − 1)(m − 2) + 1

k
=

(k − 1)m − k + 3

k
≤ (k − 1)m

k
.

Fig. 2. distance d(v, v′) = 1 in T Fig. 3. distance d(v, v′) ≥ 2 in T

Case 2: distance d(v, v′) ≥ 2 in T , we have a partial structure in Fig. 3.
Because v′ is the farthest vertex from v in T , for any vertex vi ∈ e1\v1, there
must be d(vi) = 1 in T , which says e1 is the unique edge containing vi in T . We
can take the edges incident with v1 in T as E1 and other edges as E2. It is easy
to know H1 is connected and H2 has at most k − 1 components. Furthermore,
H1 contains e1, e2, thus m1 ≥ 2.

386 Z. Chen et al.

Assume H2 has t components with t ≤ k − 1, denoted as ˜H1, ˜H2, . . . , ˜Ht,
and ˜H1 contains the cycle C. Because H(V,E) is a counterexample with mini-
mum edges, we have next inequalities, also a contradiction with the assumption
τ(H) = (k−1)m+1

k .

τ(˜H1) ≤ (k − 1)m̃1

k
, τ(˜H2) ≤ (k − 1)m̃2 + 1

k
, . . . , τ(˜Ht) ≤ (k − 1)m̃t + 1

k

⇒ τ(H) ≤ τ(H1) + τ(H2) = τ(H1) + τ(˜H1) + τ(˜H2) + · · · + τ(˜Ht)

≤ 1 +
(k − 1)m̃1

k
+

(k − 1)m̃2 + 1

k
+ · · · + (k − 1)m̃t + 1

k
= 1 +

(k − 1)(m − m1) + t − 1

k

≤ 1 +
(k − 1)(m − 2) + k − 2

k
=

(k − 1)m

k
.

Above all, in whatever case, there always exists a contradiction. Thus our
assumption that there exists a hypertree T with | E(T) |≥ 2 doesn’t hold on
and every hypertree induced by E(H)\E(C) must be an edge.

Finally, let us consider the set of single edges induced by E(H)\E(C).
Case 1: there exists a single edge e connected with C by a non-join vertex.

Then we have a partial structure in Fig. 4. Now we can take {e, e′} as E1 and
other edges as E2. Let us consider the edge-induced subhypergraphs H1 and H2.
It is easy to see H1 is connected and H2 has at most k − 2 components.

Assume H2 has t components with t ≤ k − 2, denoted as ˜H1, ˜H2, . . . , ˜Ht.
According to Theorem 7, we have next inequalities, which contradicts τ(H) =
(k−1)m+1

k .

τ(H) ≤ τ(H1) + τ(H2) = τ(H1) + τ(˜H1) + τ(˜H2) + · · · + τ(˜Ht)

≤ 1 +
(k − 1)m̃1 + 1

k
+

(k − 1)m̃2 + 1

k
+ · · · + (k − 1)m̃t + 1

k
= 1 +

(k − 1)(m − 2) + t

k

≤ 1 +
(k − 1)(m − 2) + k − 2

k
=

(k − 1)m

k
.

Case 2: Every single edge e is connected with C by join vertices. This means
every non-join vertex is not connected with the set of single edges induced by
E(H)\E(C). Then we have a partial structure in Fig. 5. Now we can take {e, e′}
as E1 and other edges as E2. Because every non-join vertex is not connected
with the set of single edges induced by E(H)\E(C). It is easy to know the edge-
induced subhypergraphs H1 and H2 are both connected. Thus we have next
inequalities, which is contradiction with τ(H) = (k−1)m+1

k .

τ(H) ≤ τ(H1) + τ(H2) ≤ 1 +
(k − 1)(m − 2) + 1

k
=

(k − 1)m − k + 3

k
≤ (k − 1)m

k
.

Above all, in whatever case, there always exists a contradiction. Thus our
initial assumption that H(V,E) contains cycles doesn’t hold on. Thus H(V,E)
is a hypertree with perfect matching.

On the Transversal Number of k-Uniform Connected Hypergraphs 387

Fig. 4. partial structure in Case 1 Fig. 5. partial structure in Case 2

References

1. Berge, C.: Hypergraphs. North-Holland, Paris (1989)
2. Chen, X., Diao, Z., Hu, X., Tang, Z.: Covering triangles in edge-weighted graphs.

Theory Comput. Syst. 62(6), 1525–1552 (2018). https://doi.org/10.1007/s00224-
018-9860-7

3. Chvátal, V., Mcdiarmid, C.: Small transversals in hypergraphs. Combinatorica
12(1), 19–26 (1992). https://doi.org/10.1007/BF01191201

4. Diao, Z.: On the vertex cover number of 3-uniform hypergraphs. J. Oper. Res. Soc.
China 9, 427–440 (2021). https://doi.org/10.1007/s40305-019-00284-7

5. Dorfling, M., Henning, M.A.: Linear hypergraphs with large transversal number
and maximum degree two. Eur. J. Comb. 36, 231–236 (2014)

6. Henning, M.A., Löwenstein, C.: Hypergraphs with large transversal number and
with edge sizes at least four. Discrete Appl. Math. 10(3), 1133–1140 (2012)

7. Henning, M.A., Yeo, A.: Total domination in 2-connected graphs and in graphs
with no induced 6-cycles. J. Graph Theory 60(1), 55–79 (2010)

8. Henning, M.A., Yeo, A.: Hypergraphs with large transversal number. Discrete
Math. 313(8), 959–966 (2013)

9. Henning, M.A., Yeo, A.: Lower bounds on the size of maximum independent sets
and matchings in hypergraphs of rank three. J. Graph Theory 72(2), 220–245
(2013)

10. Henning, M.A., Yeo, A.: Transversals and matchings in 3-uniform hypergraphs.
Eur. J. Comb. 34(2), 217–228 (2013)

11. Lai, F.C., Chang, G.J.: An upper bound for the transversal numbers of 4-uniform
hypergraphs. J. Comb. Theory Ser. B 50(1), 129–133 (1990)

12. Thomassé, S., Yeo, A.: Total domination of graphs and small transversals of hyper-
graphs. Combinatorica 27(4), 473–487 (2007). https://doi.org/10.1007/s00493-
007-2020-3

13. Tuza, Z.: Covering all cliques of a graph. Discrete Math. 86(1–3), 117–126 (1990)

https://doi.org/10.1007/s00224-018-9860-7
https://doi.org/10.1007/s00224-018-9860-7
https://doi.org/10.1007/BF01191201
https://doi.org/10.1007/s40305-019-00284-7
https://doi.org/10.1007/s00493-007-2020-3
https://doi.org/10.1007/s00493-007-2020-3

An Improvement of the Bound
on the Odd Chromatic Number

of 1-Planar Graphs

Bei Niu and Xin Zhang(B)

School of Mathematics and Statistics, Xidian University, Xi’an 710071, China

beiniu@stu.xidian.edu.cn, xzhang@xidian.edu.cn

Abstract. An odd coloring of a graph is a proper coloring in such a way
that every non-isolated vertex has some color that appears an odd number
of times on its neighborhood. A graph is 1-planar if it has a drawing in
the plane so that each edge is crossed at most once. Cranston, Lafferty,
and Song showed that every 1-planar graph admits an odd 23-coloring
[arXiv:2202.02586v4]. In this paper, we improve their bound to 16.

Keywords: 1-planar graph · Odd coloring · Discharging

1 Introduction

Throughout the paper, all graphs are finite, simple and undirected. By V (G),
E(G), and δ(G), we denote the set of vertices, the set of edges, and the minimum
degree of a graph G, respectively. If G is a plane graph, then F (G) denotes the
set of faces of G, The neighborhood NG(v) of a vertex v is the set of vertices
adjacent to v in G. The degree of a vertex v in G, denoted by dG(v), is the size of
NG(v), and the degree of a face f in a plane graph G, denoted by dG(f), is the
the number of edges that are incident with f in G, where cut-edges are counted
twice. A k-, k+-, and k−-vertex (resp. face) is a vertex (resp. face) of degree k,
at least k and at most k, respectively. For other undefined notation, we refer the
readers to the book [1].

A coloring of vertices of a hypergraph is conflict-free if at least one vertex in
each (hyper-)edge has a unique color, see [6]. Its research was initially motivated
by a frequency assignment problem in cellular networks. Such networks consist
of fixed-position base stations and roaming clients, each base station is assigned
a certain frequency and transmits data in this frequency within some given
region. Roaming clients have a range of communication and come under the
influence of different subsets of base stations. This situation can be modeled
by means of a hypergraph whose vertices correspond to the base stations. The
range of communication of a mobile agent, that is, the set of base stations it can

Supported by the Fundamental Research Funds for the Central Universities
(QTZX22053) and the National Natural Science Foundation of China (11871055).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 388–393, 2022.
https://doi.org/10.1007/978-3-031-16081-3_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_33&domain=pdf
http://orcid.org/0000-0002-2249-8810
http://orcid.org/0000-0001-5250-1657
https://arxiv.org/abs/2202.02586v4
https://doi.org/10.1007/978-3-031-16081-3_33

An Improvement of the Bound on the Odd Chromatic Number 389

communicate with, is represented by a hyperedge e ∈ E. A conflict-free coloring
of such a hypergraph implies an assignment of frequencies, to the base stations,
which enables clients to connect to a base station holding a unique frequency in
the client’s range, thus avoiding interferences.

Recently, Petruševski and Škrekovski [9] introduced the notion of odd col-
oring, which is a relaxation of conflict-free coloring. Formally, an odd c-coloring
of a graph is a proper c-coloring with the additional constraint that each ver-
tex of positive degree has a color appearing an odd number of times among its
neighborhood. A graph G is odd c-colorable if it has an odd c-coloring. The odd
chromatic number of a graph G, denoted χo(G), is the minimum c such that G
has an odd c-coloring. Petruševski and Škrekovski [9] put forward the following
conjecture:

Conjecture 1. ([9]). Every planar graph admits an odd 5-coloring.

The best progress towards this conjecture is due to Petr and Portier [8],
who proved that the odd chromatic number of every planar graph is at most 8,
improving the preceding bound 9 of Petruševski and Škrekovski [9]. Supporting
this conjecture, Cranston [4] showed that every planar graph of girth at least 7
is odd 5-colorable, Caro, Petruševski and Škrekovski [2] also proved that every
outerplanar graph admits an odd 5-coloring. Qi and Zhang [10] later verified
Conjecture 1 for another two subclasses of planar graphs, saying outer-1-planar
graphs and 2-boundary planar graphs, generalizing the result of Petruševski
and Škrekovski [9]. Note that the bound 5 in Conjecture 1 would be sharp as
χo(C5) = 5.

There are normally two ways to generalize the planarity. One way is to allow
a drawing without crossings in a surface, such as a torus, rather than a plane.
In view of this, Metrebian [7] showed that every torodial graph admits an odd
9-coloring. Another generalization can be established in the way of allowing
bounded number of crossings per edge. Ringel [11] introduced the notion of 1-
planarity in 1965. Precisely, a graph is 1-planar if it can be drawn in the plane so
that each edge is crossed by at most one other edge. Recently, Cranston, Lafferty,
and Song [5] showed that every 1-planar graph admits an odd 23-coloring (the
first bound for the odd chromatic number of 1-planar graphs was 47, due to the
first version of [5]).

The aim of this paper is to find a better upper bound for the odd chromatic
number of 1-planar graphs by showing the following.

Theorem 2. Every 1-planar graph admits an odd 16-coloring.

The proof of Theorem 2 is relied on the proof of the odd 23-colorability of
Cranston, Lafferty, and Song [5]. Readers will see that we borrow all structural
lemmas there. However, with our new discharging rules, the counting of final
charges becomes easier and surprisingly the bound descends.

2 The Proof of Theorem 2

Suppose for a contradiction that G is a minimal counterexample (in terms of
|V (G)| + |E(G)|) to this theorem. The associated plane graph G× of G is the

390 B. Niu and X. Zhang

plane graph obtained from G by turning all crossings of G into new vertices
of degree four. Those new 4-vertices are false vertices of G×, and the original
vertices of G are true vertices of G×. A face of G× is false if it is incident with
at least one false vertex, and true otherwise. For each vertex v ∈ V (G), let d2(v)
denote the number of 2-vertices adjacent to v in G. An odd vertex of G is a
vertex having odd degree. If v ∈ V (G) has even degree at most 6 then we call it
small vertex, and if v ∈ V (G) has degree at least 8 then we call it big vertex.

Claim 1. [5, Claim 1] δ(G) ≥ 2.

Claim 2. [5, Claim 2] Every odd vertex in G has degree at least 9.

Claim 3. [5, Claim 3] No two small vertices are adjacent in G.

Claim 4. [5, Claim 4] Every edge incident to a small vertex in G has a crossing.

Claim 5. [3, Lemma 2.1] If v is a vertex with d2(v) ≥ 1, then 2d(v) ≥ d2(v)+16.

Claim 6. [5, Claim 6] The graph G× has no loop or 2-face, and every 3-face
in G× is incident to either three big vertices or two big vertices and one false
4-vertex.

Claim 7. [5, Claim 7] Every 2-vertex in G× is incident to a 5+-face and to
another 4+-face.

Claim 8. [5, in the proof of Claim 9] For a 4-face zz1vz2z and a 6-face
vz1uz3wz2v of G×, if z1, z2, z3 are false vertices, then at most two vertices among
u, v, w are 2-vertices.

Note that Claims 2 and 5 are different from their original forms. However, we
can prove them using the same arguments only with certain numbers changed.
Moreover, although we change the definitions of small and big vertices, compar-
ing to the ones in [5], the proofs of Claims 3, 4, and 7 work in the same logic as
in [5].

We apply the discharging method to G×. Formally, for each vertex v ∈
V (G×), let ch(v) := dG×(v)−4 be its initial charge, and for each face f ∈ F (G×),
let ch(f) := dG×(f) − 4 be its initial charge. Clearly,

∑

x∈V (G×)∪F (G×)

ch(x) = −8 < 0

by the well-known Euler’s formula.
For convenience we use d(v) and d(f) instead of dG×(v) and dG×(f) if v is a

true vertex and f is a face in G×, respectively. The discharging rules are defined
as follows.

R1 Every big vertex sends 1/4 to each of its incidence 2-vertices;
R2 Every big vertex sends 1/3 to each of its incidence true 3-faces;
R3 Every big vertex sends 1/2 to each of its incidence false faces;

An Improvement of the Bound on the Odd Chromatic Number 391

R4 If f is a 4+-face with positive charge after applying R1–R3 and f is
incident with at least one 2-vertex, then f redistribute its positive charge to
each of its incidence 2-vertices equally.

Let ch∗(x) be the charge of x ∈ V (G×) ∪ F (G×) after applying the above
rules. Since our rules only move charge around, and do not affect the sum, we
have ∑

x∈V (G×)∪F (G×)

ch∗(x) =
∑

x∈V (G×)∪F (G×)

ch(x) < 0.

Next, we prove that ch∗(x) ≥ 0 for each x ∈ V (G×) ∪ F (G×) by Propositions 1,
2 and 3. This gives ∑

x∈V (G×)∪F (G×)

ch∗(x) ≥ 0,

a contradiction. Note that every true vertex of G× is either small or big by Claim
2 and the final charge of any false vertex of G× is trivially 0.

Proposition 1. The final charge of every face of G× is non-negative.

Proof. By Claim 6, every face of G× has degree at least 3. If f is a true 3-
face, then f is incident only with big vertices by Claim 6 and thus ch∗(f) =
3−4+3× 1

3 = 0 by R2. If f is a false 3-face, then f is incident with two big vertices
by Claim 6 and thus ch∗(f) = 3 − 4 + 2 × 1

2 = 0 by R3. If f is 4+-face incident
with 2-vertices, then ch∗(f) = 0 by R4. If f is 4+-face incident with no 2-vertex,
then no rules will be applied to f and thus ch∗(f) = ch(f) = d(f) − 4 ≥ 0. ��
Proposition 2. The final charge of every small vertex of G× is non-negative.

Proof. It is sufficient to prove this result for an arbitrary arbitrarily 2-vertex v, as
ch∗(v) = ch(v) for d(v) = 4, 6 by the discharging rules. Assume NG(v) = {x, y}.
By Claim 4, vx and vy are crossed. Assume that vx is crossed by u1u2 at a false
vertex z1, and vy is crossed by w1w2 at a false vertex z2, such that u1, z1, v, z2, w1

are on one face, say f1, and u2, z1, v, z2, w2 are on another face, say f2. It may
be possible that u1 = w1 or u2 = w2. Assume, without loss of generality, that
d(f1) ≤ d(f2). Since v is incident to a 5+-face and to another 4+-face by Claim
7, we consider two cases.

Case 1. d(f1) = 4.
This situation implies u1 = w1 and u2 �= w2. For convenience we let z =

u1 = w1. Note that d(f2) ≥ 5.
Subcase 1.1. z is a big vertex, see Fig. 1(a).
Now f1 sends 1/2 to v by R3 and R4. Next we look at f2. Besides z1, v, z2,

there are at most 	d(f2)−3
2
 2-vertices on f2 by Claim 3. Hence at most 	d(f2)−1

2

2-vertices exist on f2. By R4, f2 sends to v at least

α :=
d(f2) − 4⌈
d(f2)−1

2

⌉ .

392 B. Niu and X. Zhang

Fig. 1. Illustration for the proof of Proposition 2.

If d(f2) ≥ 7, then α ≥ 1.
If d(f2) = 6, then f2 is incidence with at most two 2-vertices by Claim 8.

Hence f2 sends to v at least 6−4
2 = 1, too.

If d(f2) = 5, then u2w2 ∈ E(G). This implies that u2 and w2 are both big
by Claim 4. Hence f2 has charge 5− 4+2× 1

2 = 2 after applying R3, which will
be sent to v by R4.

In each case, v receives at least 1 from f2, 1/2 from f1, and 1/4 from each of
x and y by R1. This gives ch∗(v) ≥ 2 − 4 + 1 + 1

2 + 2 × 1
4 = 0.

Subcase 1.2. z is a small vertex, see Fig. 1(b).
This situation implies u2 and w2 are big by Claim 3.
Now we mainly look at f2. Besides u2, z1, v, z2, w2, there are at most �d(f2)−5

2 �
2-vertices on f2 by Claims 3 and 4. Hence at most �d(f2)−3

2 � 2-vertices exist on
f2. By R3 and R4, f2 sends to v at least

d(f2) − 4 + 2 × 1
2⌊

d(f2)−3
2

⌋ ≥ 2

and thus ch∗(v) ≥ 2 − 4 + 2 = 0.
Case 2. d(f1) ≥ 5.
If ui and wi are big for some i ∈ {1, 2}, then by a similar argument as

in Subcase 1.2, we conclude that fi sends at least 2 to v and thus ch∗(v) ≥
2− 4+2 = 0. Hence we assume u1 is big and w1 is small. By Claim 3, w2 is big.
So we further assume u2 is small, see Fig. 1(c).

Now besides u1, z1, v, z2, there are at most 	d(f1)−4
2
 2-vertices on f1 by

Claim 3. Hence at most 	d(f1)−2
2
 2-vertices exist on f1. By R3 and R4, f1

sends to v at least

d(f1) − 4 + 1
2⌈

d(f1)−2
2

⌉ ≥ 3
4

as d(f1) ≥ 5. By symmetry, f2 sends to v at least 3/4.
Since both x and y sends 1/4 to v by R1, ch∗(v) ≥ 2−−4+2× 3

4 +2× 1
4 = 0.

��

An Improvement of the Bound on the Odd Chromatic Number 393

Proposition 3. The final charge of every big vertex of G× is non-negative.

Proof. Let v be a big vertex. If d2(v) = 0, then ch∗(v) ≥ d(v) − 4 − 1
2d(v) ≥ 0

by R2 and R3 as d(v) ≥ 8. If d2(v) ≥ 1, then d2(v) ≤ 2d(v) − 16 by Claim 5.
Hence

ch∗(v) ≥ d(v) − 4 − 1
4
d2(v) − 1

2
d(v)

≥ d(v) − 4 − 1
4
(2d(v) − 16) − 1

2
d(v)

= 0

by R1–R3. ��

References

1. Bondy, J.A., Murty, U.S.R.: Graph Theory. GTM 244, Springer, New York (2008)
2. Caro, Y., Petruševski, M., Škrekovski, R.: Remarks on odd colorings of graphs.

(2022). arXiv: 2201.03608v1
3. Cho, E.-K., Choi, I., Kwon, H., Park, B.: Odd coloring of sparse graphs and planar

graphs. (2022). arXiv: 2202.11267v1
4. Cranston, D.W.: Odd Colorings of Sparse Graphs (2022).arXiv:2201.01455v1
5. Cranston, D.W., Lafferty, M., Song, Z.-X.: A note on odd coloring of 1-planar

graphs (2022). arXiv: 2202.02586v4
6. Even, G., Lotker, Z., Ron, D., Smorodinsky, S.: Conflict-free colorings of simple

geometric regions with applications to frequency assignment in cellular networks.
SIAM J. Comput. 33, 94–136 (2003)

7. Metrebian, H.: Odd coloring on the torus (2022). arXiv: 2205.05398v1
8. Petr, J., Portier, J.: The odd chromatic number of a planar graph is at most 8

(2022). arXiv: 2201.12381v2
9. Petruševski, M., Škrekovski, R.: Coloring with neighborhood parity condition

(2022). arXiv: 2112.13710v2
10. Qi, M.K., Zhang, X.: Odd coloring of two subclasses of planar graphs (2022).

arXiv: 2205.09317v1
11. Ringel, G.: Ein Sechsfarbenproblem auf der Kugel, Abhandlungen aus dem Math-

ematischen Seminar der Universität Hambur, 29 107–117 (1965)

http://arxiv.org/abs/2201.03608v1
http://arxiv.org/abs/2202.11267v1
http://arxiv.org/abs/2202.02586v4
http://arxiv.org/abs/2205.05398v1
http://arxiv.org/abs/2201.12381v2
http://arxiv.org/abs/2112.13710v2
http://arxiv.org/abs/2205.09317v1

Fast Searching on k-Combinable Graphs

Yuan Xue, Boting Yang(B), and Sandra Zilles

Department of Computer Science, University of Regina, Regina, Canada
{xue228,boting,zilles}@cs.uregina.ca

Abstract. Finding an optimal fast search strategy for graphs is challenging,
sometimes even when graphs have very small treewidth, like cacti, cartesian
product of a tree and an edge, etc. However, it may be easier to find an optimal
fast search strategy for some critical subgraphs of the given graph. Although fast
searching is not subgraph-closed, this observation still motivates us to establish
relationships between optimal fast search strategies for a graph and its subgraphs.
In this paper, we introduce the notion of k-combinable graphs and propose a new
method for computing their fast search number. Assisted by the new method, we
investigate the fast search number of cacti graphs and the cartesian product of a
tree and an edge. Algorithms for producing fast search strategies for the above
graphs, along with rigorous proofs, are given in this paper.

1 Introduction

Inspired by an article of Breisch [3] who considered the problem of finding a lost
explorer in dark complex caves, Parsons [9] first introduced the graph search problem
in which both searchers and fugitive move continuously along edges of a graph. Moti-
vated by applied problems in the real world and theoretical issues in computer science
and mathematics, graph searching has become a hot topic. It has many models, such as
edge searching, node searching, mixed searching, fast searching, etc. These models are
basically defined by the class of graphs, the actions of searchers and fugitives, visibility
of fugitives, and conditions on what constitutes capture [1,2,6,8].

Given a graph that contains an invisible fugitive, the fast search problem is to find
the fast search number, i.e., the minimum number of searchers to capture the fugitive
in the fast search model. This model was first introduced by Dyer, Yang and Yaşar [5]
in 2008. Let G denote an undirected graph. In the fast search model, a fugitive hides
either on vertices or on edges of G. The fugitive can move at a great speed at any
time from one vertex to another along a path that contains no searchers. We call an edge
contaminated if it may contain the fugitive, and we call an edge cleared if we are certain
that it does not contain the fugitive. In order to capture the fugitive, one launches a set
of searchers on some vertices of the graph; these searchers then clear the graph edge by
edge while at the same time guarding the already cleared parts of the graph. There are
two actions for searchers: placing and sliding. An edge is cleared by a sliding action
and every edge must be traversed exactly once. A fast search strategy for a graph is a
sequence of actions of searchers that clear all contaminated edges of the graph. The fast
search number of G, denoted by fs(G), is the smallest number of searchers needed to
capture the fugitive in G. For more details about the model setting, please refer to [5].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 394–405, 2022.
https://doi.org/10.1007/978-3-031-16081-3_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_34&domain=pdf
https://doi.org/10.1007/978-3-031-16081-3_34

Fast Searching on k-Combinable Graphs 395

Dyer et al. [5] proposed a linear time algorithm for computing the fast search num-
ber of trees. Stanley and Yang [10] gave a linear time algorithm for computing the fast
search number of Halin graphs and their extensions. They also presented a quadratic
time algorithm for computing the fast search number of cubic graphs, while the prob-
lem of finding the node search number of cubic graphs is NP-complete [7]. Yang [13]
proved that the problem of finding the fast search number of a graph is NP-complete;
and it remains NP-complete for Eulerian graphs. He also proved that the problem of
determining whether the fast search number of G is a half of the number of odd vertices
in G is NP-complete; and it remains NP-complete for planar graphs with maximum
degree 4. Dereniowski et al. [4] characterized graphs for which 2 or 3 searchers are suf-
ficient in the fast search model. They proved that the fast searching problem is NP-hard
for multigraphs. Dyer et al. [5] considered complete bipartite graphs Km,n, and com-
puted the fast search number of Km,n when m is even. They also presented lower and
upper bounds on the fast search number of Km,n when m is odd. Xue et al. [12] pro-
vided lower bounds and upper bounds on the fast search number of complete k-partite
graphs. They also solved the open problem of determining the fast search number of
complete bipartite graphs. In [11], Xue and Yang provided lower bounds on the fast
search number, and gave formulas for the fast search number of the cartesian product
of an Eulerian graph and a path, as well as variants of the cartesian product.

In this paper, we introduce the notion of k-combinable graphs, and develop a new
method for computing their fast search number. The method can be seen as a general
method for finding lower bounds on the fast search number. Using this new method, we
examine the fast search number of several classes of graphs including cacti graphs and
cartesian product of a tree and an edge.

2 K-Combinable Graphs

We first introduce a class of graphs named k-combinable graphs. Then we describe our
method for finding an optimal fast search strategy for k-combinable graphs. Let G be a
connected graph and let E′

G be the set of all pendant edges of G. The profile of G is an
ordered tuple πG = (π1, . . . , πz) of positive integers, which is defined as follows:

1. If E′
G = ∅, then z = 1 and π1 = fs(G).

2. If E′
G �= ∅ and |E′

G| = k, then z = k!2k and each component πi of πG is associated
with a specific permutation σ and a specific orientation of each edge in E′

G. In
particular, πi is the smallest number of searchers with which a fast search strategy
can clear G if it traverses the edges in E′

G in the order of σ and in the directions as
given by the chosen orientations.

Let G1 be a connected graph that has k1 ≥ 1 pendant edges, and let G2 be a
connected graph having k2 ≥ 1 pendant edges. We choose k to be a constant satisfying
that 1 ≤ k ≤ min{k1, k2}. Let −→e1 = (u1u

′
1, . . . , uku′

k), where uiu
′
i ∈ E(G1) and u′

i

is a leaf node. Let −→e2 = (v1v′
1, . . . , vkv′

k), where viv
′
i ∈ E(G2) and v′

i is a leaf node.
Let H be the graph obtained from G1 and G2 by performing the following operations
on G1 and G2 with respect to

−→e1 and −→e2 :

396 Y. Xue et al.

1. remove edges uiu
′
i and viv

′
i, for 1 ≤ i ≤ k;

2. remove vertices u′
i and v′

i, for 1 ≤ i ≤ k;
3. connect ui and vi by adding a new edge, for 1 ≤ i ≤ k.

Note that the above operations depend on the choice of the sequences −→e1 and −→e2
which we will henceforth call edge pairing sequences. If we permute either of the edge
pairing sequences, this would create a different result. Hence, we define the align oper-
ation on G1 and G2 with respect to

−→e1 and −→e2 , denoted as (G1,
−→e1)�(G2,

−→e2), to be the
graph obtained by performing the above operations.

Definition 1. Let m ≥ 2. Let G1, . . . , Gm be connected graphs. The sequence (G1,
. . . , Gm) is k-combinable if there are edge sequences −→e1 , . . . ,−→em, −→e1,2, . . . ,

−−−−→e1,m−1

such that:

1. For 1 ≤ i ≤ m, −→ei is a sequence of pendant edges of Gi.
2. For 2 ≤ i ≤ m − 1, −→e1,i is a sequence of pendant edges of Hi, where H2 =

(G1,
−→e1)�(G2,

−→e2), and Hi+1 = (Hi,
−→e1,i)�(Gi+1,

−−→ei+1).
3. For 1 ≤ i ≤ m, the set of all edges of Gi, which occur in −→e1 , . . . ,−→em and−→e1,2, . . . ,

−−−−→e1,m−1, has size at most k.
4. For 2 ≤ j ≤ m − 1, the set of all edges of Hj , which occur in −→e1 , . . . ,−→em and−→e1,2, . . . ,

−−−−→e1,m−1, has size at most k.

Further, we call Hm a k-combination of (G1, . . . , Gm), in particular, this is the k-
combination of (G1, . . . , Gm) with respect to −→e1 , . . . ,−→em, −→e1,2, . . . ,

−−−−→e1,m−1.

Obviously, there may exist more than one graph that is a k-combination of (G1, G2,
. . . , Gm). Further, for each k-combination G of (G1, G2, . . . , Gm), there exist specific−→e1,2, . . . ,

−−−−→e1,m−1 and −→e1 , . . . ,−→em for obtaining G. In the remainder of this section, we
always assume that every time an algorithm handles profiles of graphs, it implicitly
associates the profiles with corresponding −→e1,i and −→ej , where 2 ≤ i ≤ m − 1 and
1 ≤ j ≤ m.

Theorem 1. There exists an algorithm that, given the profiles and edge pairing
sequences of G1 and G2 such that G is the k-combination of (G1, G2) with respect
to the edge pairing sequences, runs in O((k1 + k2 − k)!2k1+k2−k) time to compute the
profile of G. Here ki refers to the number of pendant edges of Gi, where 1 ≤ i ≤ 2.

Proof. We briefly introduce the idea of how to compute the profile of G. Since G1

and G2 have k1 and k2 pendant edges respectively, the sizes of profiles of G1 and
G2 are k1!2k1 and k2!2k2 . Let −→e1 and −→e2 denote the edge pairing sequences of G1

and G2 respectively. Consider all the edges in −→e1 and −→e2 . If we are given a set of
rules instructing how these edges are cleared in a strategy, then in accordance with
the rules, we can figure out the number of searchers that need to be placed on the non-
leaf vertices in V (G1) and V (G2). For each parameter in the profile of G, it takes
O(k!2k) time to compute its value. Further, we know the size of the profile of G is
(k1 + k2 − 2k)!2k1+k2−2k. Hence, the time complexity for computing the profile of G
is O((k1 + k2 − k)!2k1+k2−k). 	

Fast Searching on k-Combinable Graphs 397

From Theorem 1, it is easy to see that our method can be applied to find an optimal
fast search strategy for quite complicated graphs, if the graph can be split into two
smaller graphs for which fast search strategies are easy to find. Moreover, if we are
given G that is a k-combination of (G1, . . . , Gm)where m ≥ 3, by repeatedly applying
the procedure presented in the proof of Theorem 1, we can find an optimal fast search
strategy for G as stated in Theorem 2. This novel method reveals an interesting property
of fast searching that has not been exploited systematically in the literature to date.

Theorem 2. Let G be a k-combination of (G1, . . . , Gm) with respect to −→e1 , . . . ,−→em,−→e1,2, . . . ,
−−−−→e1,m−1, where G1, . . . , Gm are connected graphs and k is a constant. There

exists an algorithm which, given (1) the profiles of G1, G2, . . .Gm in sequence, and (2)−→e1 , . . . ,−→em and −→e1,2, . . . ,
−−−−→e1,m−1, runs in polynomial time to compute the profile of G.

Furthermore, the fast search number of G can be found in polynomial time.

In the next section, we will apply Theorem 2 to the finding of optimal fast search
strategy for cacti graphs; further, we also apply the theorem to the finding of optimal
fast search strategies for cartesian product of a tree and an edge. We will show that (1)
how to split a graph into smaller subgraphs, and (2) how to apply Theorem 2 to obtain
an optimal fast search strategy, upon knowing the profiles of all the subgraphs in (1).

3 Cacti Graphs

A connected graph is a cactus if and only if each of its edges is contained in at most
one cycle. In this section, we use G to denote a cactus graph. Let v ∈ V (G) and let
G1, . . . ,Gk be all the connected components from G by deleting v and all its incident
edges. We use Gi

v to denote the subgraph of G induced by V (Gi)∪ {v}, where 1 ≤ i ≤
k. G1

v , . . . , Gk
v are called sub-cacti of G with respect to vertex v. Note that G1

v , . . . ,Gk
v

must satisfy:

(i) V (G1
v) ∪ · · · ∪ V (Gk

v) = V (G),
(ii) V (Gi

v) ∩ V (Gj
v) = v, where 1 ≤ i �= j ≤ k, and

(iii) u1, u2 ∈ V (G) are adjacent, only if there exists i such that u1, u2 ∈ V (Gi
v).

Consider Gi
v , where 1 ≤ i ≤ k. Note that v has degree at most two in Gi

v . If v is
a leaf node in Gi

v , then let u be a vertex in V (Gi
v) satisfying u ∼ v. We use πI(Gi

v) to
denote the minimum number of searchers placed on V (Gi

v)\{v} in a strategy for Gi
v , in

which vu is cleared by sliding a searcher from v to u. An I-strategy for Gi
v is a strategy

in which (1) vu is cleared by sliding a searcher from v to u, and (2) πI(Gi
v) searchers

are placed on V (Gi
v) \ {v}. Note that if vu is cleared by sliding a searcher from v to u

in a strategy, then a searcher must be placed on v at the beginning of the strategy. We
use πO(Gi

v) to denote the minimum number of searchers placed on V (Gi
v) \ {v} in a

strategy for Gi
v , in which vu is cleared by sliding a searcher from u to v. An O-strategy

for Gi
v is a strategy for Gi

v in which (1) vu is cleared by sliding a searcher from u to v,
and (2) πO(Gi

v) searchers are placed on V (Gi
v) \ {v}.

If v has degree two in Gi
v , then let u1 and u2 be the two vertices in V (Gi

v) satisfying
that u1 ∼ v and u2 ∼ v. For i ∈ {1, 2}, we say vui is cleared by a slide-in action if a

398 Y. Xue et al.

searcher slides from v to ui along vui, and we say vui is cleared by a slide-out action
if a searcher slides from ui to v along vui. We use πI,I(Gi

v) to denote the minimum
number of searchers placed on V (Gi

v) \ {v} in a strategy for Gi
v , in which vu1 and vu2

are both cleared by slide-in actions. We use πO,O(Gi
v) to denote the minimum number

of searchers placed on V (Gi
v) \ {v} in a strategy for Gi

v , in which vu1 and vu2 are
both cleared by slide-out actions. We use πI,O(Gi

v) to denote the minimum number of
searchers placed on V (Gi

v)\{v} in a strategy for Gi
v , in which vu1 or vu2 is cleared by a

slide-in action, and later the other edge is cleared by a slide-out action. We use πO,I(Gi
v)

to denote the minimum number of searchers placed on V (Gi
v)\{v} in a strategy for Gi

v ,
in which vu1 or vu2 is cleared by a slide-out action, and later the other edge is cleared
by a slide-in action. A strategy for Gi

v is an II-strategy, in which (1) πI,I(Gi
v) searchers

are placed on V (Gi
v) \ {v}, and (2) vu1 and vu2 are both cleared by slide-in actions. In

a similar way, we define IO-strategy, OI-strategy and OO-strategy for Gi
v respectively.

Definition 2. Consider a sub-cactus of G with respect to vertex v, i.e., Gi
v .

1. If v has exactly one incident edge in Gi
v , then the profile of Gi

v is defined as the pair
(πI(Gi

v), πO(Gi
v)).

2. If v has exactly two incident edges in Gi
v , then the profile of Gi

v is defined as the
4-tuple (πI,I(Gi

v), πI,O(Gi
v), πO,I(Gi

v), πO,O(Gi
v)).

For cactus graph G and v ∈ V (G), we use G′
v to denote the graph obtained by

adding either one or two pendant edges to v. There are two possibilities for G′
v:

(1) v has one added pendant edge in G′
v , say vu. Let πI(G′

v) be the minimum
number of searchers placed on V (G′

v)\{u} in a strategy for G′
v , in which vu is cleared

by sliding a searcher from u to v. An I-strategy for G′
v is a strategy, in which (a) πI(G′

v)
searchers are placed on V (G′

v) \ {u}, and (b) vu is cleared by sliding a searcher from
u to v. In a similar way, we define πO(G′

v) and O-strategy for G′
v . The profile of G′

v is
defined as the pair (πI(G′

v), πO(G′
v)).

(2) v has two added pendant edges in G′
v . Notice that there are four distinct ways

to clear the two added pendant edges of v. In a similar way, we define (1) πI,I(G′
v),

πI,O(G′
v), πO,I(G′

v) and πO,O(G′
v) forG

′
v , and (2) II-strategy, IO-strategy,OI-strategy

and OO-strategy for G′
v . The profile of G′

v is defined as 4-tuple (πI,I(G′
v), πI,O(G′

v),
πO,I(G′

v), πO,O(G′
v)).

Definition 3. For a strategy S for G, let the reversed strategy for S be obtained from S
by making the following modifications:

1. Remove all placing actions from S.
2. For each vertex v ∈ V (G) that contains searchers at the end of S, insert a placing

action at the beginning that places the same number of searchers on v.

Fast Searching on k-Combinable Graphs 399

3. For each edge e ∈ E(G), reverse the sliding action on e by letting searcher move in
the opposite way to clear it.

4. Reverse the order of all sliding actions.

Clearly, the reversed strategy for S uses the same number of searchers to clear G.
Hence, we have πI,I(Gi

v) = πO,O(Gi
v) − 2, and πI(Gi

v) = πO(Gi
v) − 1.

Lemma 1. Gi
v must have one of the following properties:

1. πI,I(Gi
v) = πI,O(Gi

v) = πO,I(Gi
v) = πO,O(Gi

v) − 2;
2. πI,I(Gi

v) = πI,O(Gi
v) = πO,I(Gi

v) − 1 = πO,O(Gi
v) − 2;

3. πI,I(Gi
v) = πI,O(Gi

v) = πO,I(Gi
v) − 2 = πO,O(Gi

v) − 2;
4. πI,I(Gi

v) = πI,O(Gi
v) − 1 = πO,I(Gi

v) − 1 = πO,O(Gi
v) − 2;

5. πI,I(Gi
v) = πI,O(Gi

v) − 1 = πO,I(Gi
v) − 2 = πO,O(Gi

v) − 2;
6. πI,I(Gi

v) = πI,O(Gi
v) − 2 = πO,I(Gi

v) − 2 = πO,O(Gi
v) − 2;

7. πI(Gi
v) = πO(Gi

v) − 1.

For convenience, we say Gi
v satisfies (

i) if it has the i-th property in Lemma 1, where
1 ≤ i ≤ 7. Consider G1

v , . . . , Gk
v . Let χi

v be the number of sub-cacti that satisfy (i),
where 1 ≤ i ≤ 7. Obviously, we have 0 ≤ χi

v ≤ k. Two strategies for G are said to be
equivalent if they use the same number of searchers to clear G.

For any cactus graph G, algorithm FASTSEARCHCACTUS (See Algorithm 1) com-
putes the minimum number of searchers required for clearing G.

Algorithm 1: FASTSEARCHCACTUS(G)

1 Input: A cactus graph G.
2 Output: The fast search number of G.

1: Arbitrarily select a cut vertex v in V (G), whose removal results in k ≥ 2
connected components H1, . . . , Hk. Let Gi denote the subgraph of G induced
by V (Hi) ∪ {v}, where 1 ≤ i ≤ k. Let Ecut denote the edge set consisting of
all edges connecting v and vertices in V (H1). Let G′ be the subgraph of G
induced by V (H2) ∪ · · · ∪ V (Hk) ∪ V (Ecut).

2: Let PGi
be the output of CLEARCACTI1(Gi, v), where 1 ≤ i ≤ k.

3: Let PG′ be the output of CLEARCACTI3(G′, Ecut, v, {PG2 , . . . ,PGk
}).

4: List all the possible combinations of the profiles from PG1 and PG′

respectively with respect to sliding actions on all the edges in Ecut.
5: return the minimum number of searchers in all the combinations.

In algorithm FASTSEARCHCACTUS, we define Gi, where 1 ≤ i ≤ k. Algorithm
CLEARCACTI1 (See Algorithm 2) computes the profiles of Gi. The input of the algo-
rithm includes Gi, along with the cut vertex v ∈ V (G). The output is the profile of
Gi.

400 Y. Xue et al.

Algorithm 2: CLEARCACTI1(Gi, v)
1: If Gi is a tree, then let πI(Gi) be the number of searchers that are placed on V (Gi) \ {v} in the

I-strategy produced by FS(Gi) in [5]. Let πO(Gi) ← πI(Gi) + 1. Let (πI(Gi), πO(Gi)) be the
profile of Gi.

2: If Gi is a simple cycle, then let πI,I(Gi) ← 0, πI,O(Gi) ← 0, πO,I(Gi) ← 2,
and πO,O(Gi) ← 2. Let (πI,I(Gi), πI,O(Gi), πO,I(Gi), πO,O(Gi)) be the
profile of Gi

v .
3: If Gi is neither a tree nor a simple cycle, then there are two subcases:

(i) if v is contained in a cycle of Gi, then let the output of CLEARCACTI2(Gi, v)
be the profile of Gi;

(ii) if v is a leaf node of Gi, then let u ∈ V (Gi) be the vertex such that v ∼ u;
let the output of CLEARCACTI1(Gi − {uv}, u) be the profile of Gi.

4: return the profile of Gi.

Algorithm CLEARCACTI2 (See Algorithm 3) is used to compute the profile of a
sub-cactus in which v is contained in a cycle. The input of the algorithm includes a
sub-cactus Gi and the cut vertex v. The output of the algorithm is the profile of Gi.

Algorithm 3: CLEARCACTI2(Gi, v)
1: Let C = vu1 . . . uk′v be the shortest cycle in Gi that contains v. Let

Hu1 , . . . ,Huk′ denote the k′ connected components that contain u1, . . . , uk′

respectively, which are obtained by deleting all edges in E(C) from Gi. Let
Ej ⊂ E(C) be the set containing the two incident edges of uj , where 1 ≤ j ≤
k′. Let Guj

denote the connected subgraph obtained from Huj
by adding two

edges in Ej to uj .
2: For j ← 1, . . . , k′:
(2.1) Let H1, . . . , Hm denote all the connected components of Huj

after
removing the vertex uj . Let H ′

� be the subgraph of Huj
induced by

V (H�) ∪ {uj}, where 1 ≤ � ≤ m.
(2.2) Let PH′

�
be the output of CLEARCACTI1(H ′

�, uj), where 1 ≤ � ≤ m.
(2.3) Let the output of CLEARCACTI3(Guj

, Ej , uj , {PH′
1
, . . . ,PH′

m
}) be the

profile of Guj
.

3: Let W ← Gu1 . Let j ← 2.
4: Note that W and Gui

have one edge in common. A strategy for W ∪ Guj
can

be obtained from strategies for W and Guj
by reaching an accord on the

sliding action on the common edge of W and Guj
. Note that in the graph

W ∪ Guj
, u1 and uj have one pendent edge in E(C) respectively. Compute the

profile of W ∪ Guj
with respect to the sliding actions on the pendent edges of

u1 and uj , which consists of
πI,I(W ∪ Guj

), πI,O(W ∪ Guj
), πO,I(W ∪ Guj

), πO,O(W ∪ Guj
).

5: Let W ← W ∪ Guj
. If j = k′, then go to Step 6; otherwise, let j ← j + 1

and go to Step 4.
6: return the profile of W .

Fast Searching on k-Combinable Graphs 401

Algorithm CLEARCACTI3 (see Algorithm 4) is used for computing the profile of
G′

v , which is obtained by adding either one or two pendant edges to the cut vertex v.
The input of the algorithm includes G′, Ecut, v and P . The output of the algorithm is
the profile of G′.

Algorithm 4: CLEARCACTI3(G′, Ecut, v, P)

1: If |Ecut| = 1, then let πI(G′) be obtained from the output of
CLEARCACTI4(G′, 1, 1,P). Let πO(G′) ← πI(G′) + 1.

2: If |Ecut| = 2, then:
(i) let πI,I(G′) be the minimum number of searchers required for clearing

G′, where edges in Ecut are cleared by slide-in actions.
(ii) let πO,O(G′) ← πI,I(G′) + 2.
(iii) let πI,O(G′) be the minimum number of searchers required for clearing

G′, where one edge in Ecut is cleared by a slide-in action, followed by the
other edge in Ecut being cleared by a slide-out action.

(iv) let πO,I(G′) be the minimum number of searchers required for clearing
G′, where one edge in Ecut is cleared by a slide-out action, followed by
the other edge in Ecut being cleared by a slide-in action.

3: return the profile of G′.

Algorithm CLEARCACTI4(G′, σ1, σ2,P) (which is omitted due to space limit) is
called by CLEARCACTI3 as a subroutine, which computes the total number of searchers
for clearing G′ under some specific setting. Let P be the set containing the profiles of
all the sub-cacti of G′ − Ecut with respect to vertex v. We use σ1 to record the number
of available searchers on v which could be used in an II-strategy or an I-strategy for
a sub-cactus. We use σ2 to denote the maximum number of searchers residing on v at
some moment in a strategy for G′. For simplicity, σ2 is set to 2 if there exists some
moment in a strategy for G′ at which v contains two or more searchers.

Lemma 2. Consider all the sub-cacti of G with respect to v. For any strategy for G,
there exists an equivalent strategy such that all the sub-cacti are cleared in the following
order:

1. all the sub-cacti that are cleared by an O-strategy or an OO-strategy;
2. all the sub-cacti that are cleared by an OI-strategy (for each sub-cactus, perform all

actions of searchers in its strategy until one of v’s incident edges is cleared);
3. all the sub-cacti that are cleared by an IO-strategy;
4. all the sub-cacti that are cleared by an OI-strategy (for each sub-cactus, perform all

actions of searchers in its strategy after one of v’s incident edges is cleared);
5. all the sub-cacti that are cleared by an I-strategy or an II-strategy.

Lemma 3. Consider all the sub-cacti of G with respect to v, denoted as G1, . . . , Gk.
For any strategy for G, there exists an equivalent strategy in which:

1. if Gi satisfies (1), then it is cleared by an OI-strategy or an OO-strategy;
2. if Gi satisfies (2), then it is cleared by an IO-strategy, an OI-strategy or an OO-

strategy;

402 Y. Xue et al.

3. if Gi satisfies (3), then it is cleared by an IO-strategy or an OO-strategy;
4. if Gi satisfies (4), then it is cleared by an II-strategy, an OI-strategy or an OO-

strategy;
5. if Gi satisfies (5), then it is cleared by an II-strategy, an IO-strategy or an OO-

strategy;
6. if Gi satisfies (6), then it is cleared by an II-strategy, or an OO-strategy.

Definition 4. A strategy is called a standard strategy for G with respect to v, where
v ∈ V (G), if (1) all the sub-cacti with respect to v are cleared in the order given in
Lemma 2, and (2) each sub-cactus Gi

v , where 1 ≤ i ≤ k, is cleared by a strategy in
accordance with Lemma 3.

In the remainder of this section, we assume that every strategy for G′
v is a standard

strategy with respect to v without subscripts.

Theorem 3. For any cactus graph G, the fast search number of G can be computed in
linear time by algorithm FASTSEARCHCACTUS.

Proof. The algorithm FASTSEARCHCACUTS runs in linear time, as we can verify the
time complexity as follows:

1. the profile of the sub-cactus with respect to each vertex in V (G) has constant size;
2. the profile of the sub-cactus with respect to each vertex in V (G) is computed at most

once;
3. the profile of the sub-cactus with respect to each vertex in V (G) is passed as param-

eter at most once when computing the profile of other sub-cactus;
4. the computation of the profile of the sub-cactus with respect to a vertex in V (G)

takes constant time.

Obviously, the algorithm FASTSEARCHCACUTS computes the fast search number
of G in linear time. 	

Theorem 4. For any cactus graph G, we can obtain an optimal fast search strategy in
linear time using FASTSEARCHCACTUS.

Proof. This can be achieved by first using a back-track method to record how every
edge of G is cleared after calling FASTSEARCHCACTUS. In addition, we can record
the vertices of G on which searchers are placed throughout FASTSEARCHCACTUS.
Based on these records, we can easily obtain an optimal fast search strategy for G by
letting those searchers move along edges following the prescribed directions. 	

4 Cartesian Product of a Tree and an Edge

Given two graphs G and H , the cartesian product of G and H , denoted G�H , is the
graph whose vertex set is the cartesian product V (G)×V (H), and in which two vertices
(u, v) and (u′, v′) are adjacent if and only if u = u′ and v is adjacent to v′ in H , or
v = v′ and u is adjacent to u′ in G.

Fast Searching on k-Combinable Graphs 403

In what follows, we apply Theorem 2 to find an optimal fast search strategy for
T�P2, where T has at least three vertices. Let Sn, where n ≥ 3, denote a star graph of
n vertices. Let Hn denote the graph obtained by connecting the center vertices of two
copies of Sn. Without loss of generality, let S1

n and S2
n denote the two copies of Sn in

Hn. For any pair of edges that are from E(S1
n) and E(S2

n) respectively, there are four
distinct ways to clear the two edges in a fast search strategy for Hn:

1. both edges are cleared by sliding a searcher from leaf to center node;
2. one of the two edges is cleared by sliding a searcher from leaf to center node, fol-

lowed by the other edge being cleared by sliding a searcher from center node to
leaf;

3. one of the two edges is cleared by sliding a searcher from center node to leaf, fol-
lowed by the other edge being cleared by sliding a searcher from leaf to center node;

4. both edges are cleared by sliding a searcher from center node to leaf.

For convenience, we use II, IO, OI and OO to represent the above four ways respec-
tively in the remainder of this section. Note that there are two layers in T�P2. Let T1

and T2 be the two layers in T�P2. Let v1
c ∈ V (T1) be a vertex of degree k ≥ 3. Let

v2
c ∈ V (T2) be the vertex where v2

c ∼ v1
c . Let V ′

c be the subset of V (T�P2), which
consists of v1

c , v
2
c and all their adjacent vertices in V (T�P2). Let E′

c be the subset of
E(T�P2), in which v1

c or v2
c is an end point of each edge. We use G′

c to denote the con-
nected subgraph of T�P2, whose vertex set is V ′

c and edge set is E′
c. It is easy to see

that G′
c is the same as Hk. Let G1, . . . , Gk−1 be the connected components after deleting

all edges in E′
c and all isolated vertices from T�P2. We use G′

i, where 1 ≤ i ≤ k − 1,
to denote the subgraph of T�P2, which is obtained from Gi by adding two pendant
edges in E(T�P2) that connect vertices from {v1

c , v2
c} and V (Gi). Note that there are

four ways to clear the two pendant edges of G′
i. We use s1(G′

i) to denote the minimum
numbers of searchers needed to be placed on V (Gi) in a strategy for G′

i, in which the
two pendant edges are cleared by II. In a similar way, we define s2(G′

i), s3(G′
i) and

s4(G′
i).

Lemma 4. G′
i must have one of the following properties:

1. s1(G′
i) = s2(G′

i) = s3(G′
i) = s4(G′

i) − 2;
2. s1(G′

i) = s2(G′
i) = s3(G′

i) − 1 = s4(G′
i) − 2;

3. s1(G′
i) = s2(G′

i) = s3(G′
i) − 2 = s4(G′

i) − 2;
4. s1(G′

i) = s2(G′
i) − 1 = s3(G′

i) − 1 = s4(G′
i) − 2;

5. s1(G′
i) = s2(G′

i) − 1 = s3(G′
i) − 2 = s4(G′

i) − 2.
6. s1(G′

i) = s2(G′
i) − 2 = s3(G′

i) − 2 = s4(G′
i) − 2.

Let G′ be the graph with vertex set V (G1) ∪ · · · ∪ V (Gk−2) ∪ V ′
c and edge set

E(G1) ∪ · · · ∪ E(Gk−2) ∪ E′
c. Given the profiles of G′

i, where 1 ≤ i ≤ k − 2, we can
compute the minimum number of searchers required for clearing G′.

Lemma 5. For each connected component G′
i, where 1 ≤ i ≤ k−2, if we know s1(G′

i),
s2(G′

i), s3(G′
i) and s4(G′

i), then we can compute s1(G′), s2(G′), s3(G′) and s4(G′).

404 Y. Xue et al.

Note that E(G′) and E(G′
j) have exactly two common edges. Given the profiles

of G′ and G′
j , we can list all the possible combinations of the profiles with respect to

the sliding actions on the two edges. The fast search number of T�P2 is the minimum
number of searchers in all the combinations. From Lemma 5, we have the following
result:

Lemma 6. For each connected component G′
i, where 1 ≤ i ≤ k−1, if we know s1(G′

i),
s2(G′

i), s3(G′
i) and s4(G′

i), then we can compute the minimum number of searchers for
clearing T�P2.

Theorem 5. An optimal fast search strategy for T�P2 can be found in polynomial
time.

Proof. We briefly describe a strategy below for finding an optimal fast search strategy
for T�P2.

1. Arbitrarily select a pair of vertices v and v′, where v′ is the corresponding vertex of
v in T�P2.

2. For each of the connected components of T�P2 with respect to v and v′, compute
its profile.

3. Compute the optimal fast search number of T�P2 based on the profiles of all the
connected components.

4. Use a back-track method to record how every edge of T�P2 is cleared, as well as all
vertices that are placed searchers. Based on these records, produce an optimal fast
search strategy for T�P2 by letting those searchers move along edges following the
prescribed directions.

Clearly, the above strategy can find an optimal fast search strategy for T�P2 in
polynomial time. 	

References

1. Bienstock, D.: Graph searching, path-width, tree-width and related problems (a survey).
DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 5, 33–49 (1991)

2. Bonato, A., Yang, B.: Graph searching and related problems. In: Pardalos, P.M., Du, D.-Z.,
Graham, R.L. (eds.) Handbook of Combinatorial Optimization, pp. 1511–1558. Springer,
New York (2013). https://doi.org/10.1007/978-1-4419-7997-1 76

3. Breisch, R.: An intuitive approach to speleotopology. Southwestern Cavers 6(5), 72–78
(1967)

4. Dereniowski, D., Diner, Ö., Dyer, D.: Three-fast-searchable graphs. Discret. Appl. Math.
161(13), 1950–1958 (2013)

5. Dyer, D., Yang, B., Yaşar, Ö.: On the fast searching problem. In: Fleischer, R., Xu, J. (eds.)
AAIM 2008. LNCS, vol. 5034, pp. 143–154. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-68880-8 15

6. Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph searching. The-
oret. Comput. Sci. 399(3), 236–245 (2008)

7. Makedon, F.S., Papadimitriou, C.H., Sudborough, I.H.: Topological bandwidth. SIAM J.
Algebraic Discrete Methods 6(3), 418–444 (1985)

https://doi.org/10.1007/978-1-4419-7997-1_76
https://doi.org/10.1007/978-3-540-68880-8_15
https://doi.org/10.1007/978-3-540-68880-8_15

Fast Searching on k-Combinable Graphs 405

8. Megiddo, N., Hakimi, S.L., Garey, M.R., Johnson, D.S., Papadimitrioum, C.H.: The com-
plexity of searching a graph. J. ACM 35(1), 18–44 (1988)

9. Parsons, T.: Pursuit-evasion in a graph. In: Proceedings of the International Conference on
the Theory and Applications of Graphs, pp. 426–441. Springer-Verlag (1976). https://doi.
org/10.1007/BFb0070400

10. Stanley, D., Yang, B.: Fast searching games on graphs. J. Comb. Optim. 22(4), 763–777
(2011)

11. Xue, Y., Yang, B.: The fast search number of a cartesian product of graphs. Discret. Appl.
Math. 224, 106–119 (2017)

12. Xue, Y., Yang, B., Zhong, F., Zilles, S.: The fast search number of a complete k-partite graph.
Algorithmica 80(12), 3959–3981 (2018)

13. Yang, B.: Fast edge searching and fast searching on graphs. Theoret. Comput. Sci. 412(12),
1208–1219 (2011)

https://doi.org/10.1007/BFb0070400
https://doi.org/10.1007/BFb0070400

Class Ramsey Numbers Involving
Induced Graphs

Yan Li1 and Ye Wang2(B)

1 University of Shanghai for Science and Technology, Shanghai 200093, China
2 Harbin Engineering University, Harbin 150001, China

ywang@hrbeu.edu.cn

Abstract. For graphs F , G and H, the class Ramsey number involving
induced graph r(G;H,F − ind) is defined to be the minimal n such that
any red/blue edge coloring of Kn contains a red G, a blue H or a blue
induced F . In this note, we shall show a general sharp lower bound for
r(G;H,F − ind), and determine some class Ramsey numbers involving
induced graphs.

Keywords: Class Ramsey number · Induced graph · Induced Turán
number

1 Introduction

For graph G with vertex set V (G) and edge set E(G), we write |G| = |V (G)| and
e(G) = |E(G)|. For vertex disjoint graphs G and H, let G ∪ H be the disjoint
union of G and H, and G + H the graph obtained by preserving the edges of
G and H and adding new edges to connect G and H completely. Particularly,
denote by nG the union of n disjoint copies of G. For S ⊆ V (G), we denote by
G \ S the subgraph of G induced by V (G) \ S. For an edge coloring of F by red
and blue and a vertex v of F , we denote the red and blue neighbors of v in F
by NR

F (v) and NB
F (v), respectively. Let dR

F (v) = |NR
F (v)| and dB

F (v) = |NB
F (v)|.

For a graph H and a class G = {G1, G2, . . . , Gn} of graphs, let H
k−→ G denote

that any edge coloring of H with k colors contains at least a monochromatic
Gi ∈ G. We write H

k−→ G for H
k−→ {G} if G = {G} is a singleton. Thus

the Ramsey number is defined as Rk(G) = min{N | KN
k−→ G}, and the class

Ramsey number is defined as Rk(G) = min{N | KN
k−→ G}.

Forbidden subgraph is a basic topic in extremal graph theory. In addition
to Ramsey number, the Turán number ex(n;G) is well known as the largest
number of edges of graphs on n vertices that contains no G. A related topic is
asking what happened if the forbidden subgraph is induced. Recently, Loh, Tait,
Timmons and Zhou introduced the following definition.

Supported in part by Natural Science Foundation of Heilongjiang Province of China
(LH2021A004).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 406–412, 2022.
https://doi.org/10.1007/978-3-031-16081-3_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_35&domain=pdf
http://orcid.org/0000-0002-1699-2337
http://orcid.org/0000-0002-8721-8488
https://doi.org/10.1007/978-3-031-16081-3_35

Class Ramsey Numbers Involving Induced Graphs 407

Definition 1 [7]. For graphs H and F , the induced Turán number

ex(n, {H,F − ind}) = max{e(G) |G contains neither an H nor an induced F with |G| = n}.

For a reasonable version of the following definition in Ramsey number, we shall
note the fact that if the edges of Kn are blue completely, there is neither a red
G nor a blue induced F when F is not complete. In order to define the class
Ramsey number involving induced graphs, let

Kn → (G;H,F − ind)

signify that any red/blue edge coloring of Kn contains a red G, a blue H or a
blue induced F .

Definition 2. For graphs G, H and F , the class Ramsey number involving
induced graphs is defined to be

r(G;H,F − ind) = min
{
n |Kn → (G;H,F − ind)

}
.

It is easy to have the following relation.

Lemma 1. For graphs G, H and F , it holds

r(G, {H,F}) ≤ r(G;H,F − ind) ≤ r(G,H).

Let α(H) be the independent number of H, χ(H) the chromatic number
of H, and σ(H) the chromatic surplus of H, which is the minimum number
of vertices in a color class among vertex coloring of H by χ(H) colors. If G is
connected of order n ≥ σ(H), then

r(G,H) ≥ (χ(H) − 1)(n − 1) + σ(H). (1)

Burr [1] defined G to be H-good if the inequality (1) holds as an equality. In
this note, we shall show a general sharp lower bound for r(G;H,F − ind), and
determine some r(G;H,F − ind) as follows.

Theorem 1. Let G, H and F be connected graphs with n = |G| ≥ σ(H). If F
satisfies one of the following conditions:

(1) F is a non-complete k-partite graph with k ≤ χ(H);
(2) χ(F) ≥ χ(H) + 1;
(3) α(F) ≥ n,

then
r(G;H,F − ind) ≥ (χ(H) − 1)(n − 1) + σ(H). (2)

Furthermore, if G is H-good, then the inequality (2) becomes an equality.

408 Y. Li and Y. Wang

By Theorem 1, we have some particular equalities. For example, as Tn is
Km-good (see [3]),

r(Tn;Km,Ks,t − ind) = (n − 1)(m − 1) + 1

for any m,n ≥ 1 and t ≥ n. As Cn is H-good for large n (see [2]), and thus

r(Cn;H,F − ind) = (n − 1)(χ(H) − 1) + σ(H)

for F with α(F) ≥ n. When H = K3 and F = Ks,t, we shall determine all
r(Cn;K3,Ks,t − ind) as follows.

Theorem 2. Let n, s and t be positive integers with n ≥ 5 and t ≥ s+1. Then

r(Cn;K3,Ks,t − ind) =
{

2n − 1 if t ≥ n,
max{n + s − 1, 2t} otherwise.

In this note, we also have the following results, where Pn is a path on n vertices.

Theorem 3. Let n, s and t be positive integers with t ≥ s. Then

r(Pn;K3,Ks,t − ind) =
{

2n − 1 if t ≥ n,
max{n + s − 1, 2t − 1} otherwise.

Theorem 4. Let n, m, s and t be positive integers with n ≥ m and t ≥ s ≥ 2.
Then

r(nK2;mK2,Ks,t − ind) = 2n + m − 1.

Theorem 5. Let n, m, s and t be positive integers with st ≥ 2. Then

r(Kn;mK2,Ks,t − ind) = n + 2m − 2.

2 Proofs of Main Results

Proof of Theorem 1. Let χ = χ(H), σ = σ(H) and N = (χ−1)(n−1)+σ−1.
Color the edges of KN red and blue such that the red graph is isomorphic to
(χ − 1)Kn−1 ∪ Kσ−1, so it contains no G. The chromatic number of the blue
graph is χ, and the smallest vertex color class has size σ−1, so it contains neither
H nor induced F .

Before proceeding to the proof of Theorem 2, we need some preliminary
lemmas. �	
Lemma 2 [6]. For all n ≥ 4, Cn is K3-good, namely, r(Cn,K3) = 2n − 1.

Lemma 3. For n ≥ 3, if the edges of Kn are colored by red and blue such that
there is neither a red hamiltonian path nor a blue K3, then this Kn can be divided
into two red cliques which are adjacent to each other by blue completely.

Class Ramsey Numbers Involving Induced Graphs 409

Proof. Suppose that the longest red path in Kn is P = v1v2 . . . vs with s ≤ n−1.
As its maximality, any vertex in V (Kn) \ V (P) is adjacent to v1 and vs by blue.
Since there is no blue K3, v1vs is red. Then v1v2 . . . vsv1 is a red cycle such
that vi is adjacent to V (Kn) \ V (P) by blue completely, where i ∈ [s]. As Kn

contains no blue K3, we get two red cliques and the edges between them are
blue completely, completing the proof. �	

For the figures in this note, red edges are solid and blue edges are dashed. If
all the edges between two cliques are red (or blue), a thick solid (or dashed) line
is drawn between the cliques.

Proof of Theorem 2. For t ≥ n, as Cn is K3-good and Ks,t satisfies the con-
dition (3) in Theorem 1, we obtain that r(Cn;K3,Ks,t − ind) = 2n − 1. Now we
consider the case that t ≤ n − 1.

For the lower bound, color the edges of Kn+s−2 red and blue such that the
red graph is isomorphic to Ks−1 ∪ Kn−1 and the blue graph is isomorphic to
Ks−1,n−1. We also color the edges of K2t−1 red and blue such that the red graph
is isomorphic to K1 + 2Kt−1 and the blue graph is isomorphic to Kt−1,t−1. It
is easy to see that neither Kn+s−2 nor K2t−1 contains a red Cn, a blue K3 or a
blue induced Ks,t.

For the upper bound, let N = max{n + s − 1, 2t}. For any red/blue edge
coloring of KN , suppose KN contains no blue K3, and we shall show that KN

must contain either a red Cn or a blue induced Ks,t. Consider the following two
cases.

Case 1. Suppose KN contains no red hamiltonian path. As KN contains neither
a red hamiltonian path nor a blue K3, by Lemma 3, KN can be divided into
two red cliques Q1 and Q2 with |Q1| ≤ |Q2|, which are adjacent to each other
by blue completely. As KN contains no red Cn, we have |Q2| ≤ n − 1. Then

|Q2| ≥
N/2� ≥ t, |Q1| = N − |Q2| ≥ N − n + 1 ≥ s,

which implies a blue induced Ks,t.

Case 2. Suppose KN contains a red hamiltonian path P = v1v2 . . . vN . As KN

contains neither a red Cn nor a blue K3 and N ≥ n, v1vn is blue, and then either
v1vi or vivn must be red, for i ∈ {2, . . . , n− 1}. We may assume v1vj is red with

j = max{i | v1vi is red, 2 ≤ i ≤ n − 1},

then vj−1vn is blue, otherwise there is a red Cn. Since v1vn and vj−1vn are both
blue, v1vj−1 is red. Similarly, vj−1vn, vj−2vn, . . . , v2vn and v1vn are all blue.
Then {v1, v2, . . . , vj−1} induces a red clique. Because of the maximality of j,
v1vj+1, v1vj+2, . . . , v1vn are all blue, and then {vj+1, vj+2, . . . , vn} induces a red
clique.

Subcase 2.1. j = 2.Then v1vn+1 is blue, otherwise we can omit an internal vertex
in P to yield a red Cn. Since v1v3, v1v4, . . . , v1vn+1 are all blue, {v3, v4, . . . , vn+1}
induces a red clique. Continue this procedure, then {v3, v4, . . . , vN} induces a red

410 Y. Li and Y. Wang

clique of order N − 2 ≥ t, which is adjacent to v1 by blue completely. Sup-
pose that there is no red Cn, then N ≤ n + 1, which implies s ≤ 2. If s = 1,
{v1, v3, v4, . . . , vN} induces a blue induced Ks,t. If s = 2, v2 must be adjacent to
{v4, v5, . . . , vN} by blue completely, otherwise we get a red cycle Cn. As N − 3 ≥
2t − 3 ≥ t, {v1, v2, v4, . . . , vN} induces a blue induced Ks,t.

Subcase 2.2. 3 ≤ j ≤ n − 2. Then any edge between {v1, v2, . . . , vj−1}
and {vj+2, vj+3, . . . , vn} is blue. Suppose to the contrary that there is a red edge
ab with a ∈ {v1, v2, . . . , vj−1} and b ∈ {vj+2, vj+3, . . . , vn}. Then we obtain
a red Cn with Cn = abvn . . . vj+1vjv1 . . . a or Cn = abvn . . . vj+1vjvj−1 . . . a.
For N = n, {v1, v2, . . . , vj−1} and {vj+2, vj+3, . . . , vN} induce two red cliques
with the edges between them being blue completely. For N = n + 1, v1vn+1

is blue, otherwise we can omit an internal vertex in P to yield a red Cn. Since
v1vj+1, v1vj+2, . . . , v1vn+1 are all blue, {vj+1, vj+2, . . . , vn+1} induces a red clique.
If vn+1 is adjacent to any vertex a ∈ {v1, v2, . . . , vj−1} by red, we obtain a red
Cn with Cn = avn+1 . . . vj+1vjv1 . . . a or Cn = avn+1 . . . vj+1vjvj−1 . . . a. Thus
KN \ {vj , vj+1} can be divided into two red cliques with the edges between them
being blue completely. Continue this procedure. For N ≥ n, we will get two
red cliques Q1 and Q2 with the edges between them being blue completely with
V (Q1) = {v1, v2, . . . , vj−1} and V (Q2) = {vj+2, vj+3, . . . , vN}, shown in Fig. 1.

v1

v2

vj−1

vN

vn

vj+2

vj vj+1

Fig. 1. The edge coloring of KN for 3 ≤ j ≤ n − 2.

If |Q2| = 1, then N = n = j + 2, which implies s = 1. As

N − 3 ≥ max{2t − 3, n − 3} = max{2t − 3, j − 1} ≥ max{2t − 3, 2} ≥ t,

we obtain that {v1, v2, . . . , vj−1, vN} induces a blue induced K1,t.

Class Ramsey Numbers Involving Induced Graphs 411

If |Q2| ≥ 2, then dR
Q1

(vj) ≥ 2 and dR
Q2

(vj+1) ≥ 2. Without loss of generality,
suppose that |Q2| ≥ |Q1| (if |Q1| > |Q2|, the proof is similar). As KN contains
no red Cn, we have

n − 1 ≥ |Q2| ≥ |Q1| ≥ N − 2 − n + 1 ≥ s − 2.

Suppose that s ≤ t − 2. For |Q1| = s − 2, we have |Q2| = N − 2 − |Q1| ≥
n − 1. Along with vertex vj+1, we obtain a red Cn. For |Q1| = s − 1, we have
|Q2| = N − 2 − |Q1| ≥ max{n − 2, t}. As there is neither a red Cn nor a blue
K3, vj is adjacent to each vertex in Q2 and Q1 by blue and red, respectively.
Then {v1, v2, . . . , vj} induces a red Ks. Note that |Q2| ≥ t, and we obtain a blue
induced Ks,t. For s ≤ |Q1| ≤ t − 2, we have |Q2| = N − 2 − |Q1| ≥ t, yielding
a blue induced Ks,t. For |Q1| ≥ t − 1, we have |Q2| ≥ |Q1| ≥ t − 1. Note that
dR

Q2
(vj) = 0 or dR

Q1
(vj+1) = 0, otherwise there will be a red Cn. Without loss of

generality, let dR
Q2

(vj) = 0. Since the edges between Q1 and Q2 are all blue, vj

is adjacent to any vertex in Q1 by red, yielding a blue induced Ks,t.
If s = t − 1, similarly, we will obtain a blue induced Ks,t.

Subcase 2.3. j = n−1. Then {v1, v2, . . . , vn−2} induces a red clique. For N = n,
we have s = 1. Since n ≥ 5, we have n − 2 ≥ max{2, 2t − 2} ≥ t, which yielding
a blue induced Ks,t. Similarly, for N > n, we have KN \ {vn−1, vn} can be
divided into two red cliques Q1 and Q2 with the edges between them being blue
completely with V (Q1) = {v1, v2, . . . , vn−2} and V (Q2) = {vn+1, . . . , vN}. If
|Q2| ≥ 2, similarly as in Subcase 2.2, there is a blue induced Ks,t. If |Q2| = 1,
then N = n + 1, which implies s ≤ 2. Note that vn must be adjacent to V (Q1)
by blue completely, otherwise we get a red cycle Cn, and

n − 2 ≥ max{3, N − 3} ≥ max{3, 2t − 3} ≥ t.

So {vn+1} ∪ V (Q1) and {vn, vn+1} ∪ V (Q1) induce blue induced K1,t and K2,t,
respectively. �	
Lemma 4 [9]. For positive integers n and m, r(Pn,Km) = (n − 1)(m − 1) + 1.

Proof of Theorem 3. For t ≥ n, as Pn is K3-good and Ks,t satisfies the con-
dition (3) in Theorem 1, we obtain that r(Pn;K3,Ks,t − ind) = 2n − 1. Now we
consider the case that t ≤ n − 1.

For the lower bound, color the edges of Kn+s−2 red and blue such that the
red graph is isomorphic to Ks−1 ∪ Kn−1 and the blue graph is isomorphic to
Ks−1,n−1. We also color the edges of K2t−2 red and blue such that the red graph
is isomorphic to 2Kt−1 and the blue graph is isomorphic to Kt−1,t−1. It is easy
to see that neither Kn+s−2 nor K2t−2 contains a red Pn, a blue K3 or a blue
induced Ks,t.

412 Y. Li and Y. Wang

For the upper bound, let N = max{n + s − 1, 2t − 1}. For any red/blue
edge coloring of KN , suppose KN contains neither a red Pn nor a blue K3, by
Lemma 3, KN can be divided into two red cliques Ka and Kb with a ≤ b, which
are adjacent to each other by blue completely. As KN contains no red Pn, we
have b ≤ n − 1. Then

b ≥
N/2� ≥ t, a = N − b ≥ N − n + 1 ≥ s,

which implies a blue induced Ks,t. �	
Lemma 5 [4,5,8]. For n ≥ m ≥ 1, r(nK2,mK2) = 2n + m − 1.

Proof of Theorem 4. By Lemma 1 and Lemma 5, we obtain that r(nK2;
mK2,Ks,t −ind) ≤ 2n+m−1. For the lower bound, color the edges of K2n+m−2

red and blue such that the red graph is isomorphic to K2n−1 and the blue graph
is isomorphic to (2n − 1)K1 + Km−1. It is easy to see that K2n+m−2 contains
neither a red nK2, a blue mK2 nor a blue induced Ks,t, which implies the lower
bound r(nK2;mK2,Ks,t − ind) ≥ 2n + m − 1. �	
Lemma 6 [8]. For n ≥ 2 and m ≥ 1, r(Kn,mK2) = n + 2m − 2.

Proof of Theorem 5. By Lemma 1 and Lemma 6, we obtain that r(Kn;
mK2,Ks,t −ind) ≤ n+2m−2. For the lower bound, color the edges of Kn+2m−3

red and blue such that the red graph is isomorphic to Kn−2 + (2m − 1)K1 and
the blue graph is isomorphic to K2m−1. If Ks,t �= K1,1, it is easy to see that
Kn+2m−3 contains neither a red Kn, a blue mK2 nor a blue induced Ks,t, which
implies the lower bound r(Kn;mK2,Ks,t − ind) ≥ n + 2m − 2. �	

References

1. Burr, S.: Ramsey numbers involving graphs with long suspended paths. J. London
Math. Soc. 24(3), 405–413 (1981)

2. Burr S., Erdős P.: On the magnitude of generalized Ramsey numbers of graphs. In:
Infinite and Finite Sets, vol. 2, Colloquia Mathematica Societatis Janos Bolyai, 10,
pp. 214–240. North-Holland, Amsterdam/London (1973)

3. Chvátal, V.: Tree-complete graph Ramsey numbers. J. Graph Theory 1(1), 93 (1977)
4. Cockayne, E.J., Lorimer, P.J.: On Ramsey graph numbers for stars and stripes.

Canad. Math. Bull. 18(1), 31–34 (1975)
5. Cockayne, E.J., Lorimer, P.J.: The Ramsey number for stripes. J. Aust. Math. Soc.

Ser. A. 19, 252–256 (1975)
6. Faudree, R.J., Schelp, R.H.: All Ramsey numbers for cycles in graphs. Discrete

Math. 8, 313–329 (1974)
7. Loh, P., Tait, M., Timmons, C., Zhou, R.: Induced Turán numbers. Comb. Probabil.

Comput. 27(2), 274–288 (2018)
8. Lorimer, P.J.: The Ramsey numbers for stripes and one complete graph. J. Graph

Theory 8(1), 177–184 (1984)
9. Parsons, T.D.: The Ramsey numbers r(Pm,Kn). Discret. Math. 6, 159–162 (1973)

Injective Edge Coloring of Power Graphs
and Necklaces

Yuehua Bu1,2, Wenwen Chen1,2, and Junlei Zhu3(B)

1 Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China
2 Zhejiang Normal University Xingzhi College, Jinhua 321004, China
3 College of Data Science, Jiaxing University, Jiaxing 314001, China

zhujl-001@163.com

Abstract. A k-injective-edge coloring of a graph G is an edge coloring c :
E(G) → {1, 2, · · · , k} such that c(e1) �= c(e3) for any three consecutive
edges e1, e2, e3 of a path or a 3-cycle. The minimum integer k such that
G has a k-injective-edge coloring is called the injective chromatic index
of G, denoted by χ′

i(G). In this paper, we determined the exact injective
chromatic index of power graphs of path and necklaces.

Keywords: Injective edge coloring · Power graph · Necklace

1 Introduction

All graphs in this paper are simple and finite. For a planar graph G, we denote its
vertex set, edge set, maximum degree and minimum degree by V (G), E(G), Δ(G)
and δ(G) (simply V , E, Δ and δ) respectively. For v ∈ V (G), let dG(v) (simply
d(v)) denote the degree of v in G. A vertex of degree k (resp. at least k, at most
k) is called a k-vertex (resp. k+-vertex, k−-vertex). For graph G, the k-power
graph Gk of G is defined as V (Gk) = V (G), E(Gk) = E(G) ∪ {uv|d(u, v) = k}.
2-power graph is also called power graph.

A k-injective-edge coloring of a graph G is a mapping c : E(G) →
{1, 2, · · · , k} such that c(e1) �= c(e3) for any three consecutive edges e1, e2, e3
of a path or a 3-cycle. The minimum integer k such that G has a k-injective-
edge coloring is called the injective chromatic index of G, denoted by χ′

i(G).
A k-strong-edge-coloring of a graph G is a mapping f : E(G) → {1, 2, · · · , k}
such that two distinct edges are colored differently if their distance is at most
two. The strong chromatic index of G, written χ′

s(G), is the minimum k such
that G has a k-strong-edge-coloring. Note that an injective edge coloring is not
necessarily an proper edge coloring and a strong edge coloring is a proper edge
coloring. Moreover, χ′

i(G) ≤ χ′
s(G).

The notion of injective edge coloring was introduced in 2015 by Cardoso
et al. [3] motivated by the Packet Radio Network problem. Independently, this
notion was studied as induced star arboricity in 2019 by Axenovich et al. [1].

Supported by National Science Foundation of China under Grant No.11901243.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 413–420, 2022.
https://doi.org/10.1007/978-3-031-16081-3_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_36&domain=pdf
http://orcid.org/0000-0003-1561-5772
https://doi.org/10.1007/978-3-031-16081-3_36

414 Y. Bu et al.

Cardoso et al. [3] proved that it is NP-hard to compute the injective chromatic
index of a graph. In [3], authors gave exact values of injective chromatic index for
some classes of graphs such as paths, cycles, wheels, Petersen graph, complete
graphs and complete bipartite graphs.

Theorem 1. (Cardoso et al. [3])

1. If n ≥ 4, then χ′
i(Pn) = 2.

2. If n ≡ 0(mod4), then χ′
i(Cn) = 2. Otherwise, χ′

i(Cn) = 3.
3. χ′

i(Kp,q) = min{p, q}.
For the case of trees, they proved that the injective chromatic index of a tree

is at most 3. The algorithmic complexity of the injective edge-coloring problem
has been further studied in [5].

Bu and Qi [2] considered upper bounds on injective chromatic index for
subcubic graphs with maximum average degree restriction. Some of their results
have been improved by Ferdjallah et al. [4] and Kostochka et al. [7].

A Halin graph G = T ∪ C is a planar graph G constructed as follows. Let T
be a tree of order at least 4. All vertices of T are either of degree 1 or of degree at
least 3. Let C be a cycle connecting the leaves of T in such a way that C forms
the boundary of the unbounded face. The tree T and the cycle C are called the
characteristic tree and the adjoint cycle of G, respectively.

The necklace is a particular Halin graph whose characteristic tree is a cater-
pillar. A caterpillar is a tree whose interior vertices are all of degree 3 and
the removal of the leaves together with their incident edges becomes a path.
For any positive integer h, a necklace, denoted Neh, is a cubic Halin graph
whose characteristic tree Th consists of the path v0, v1, · · · , vh, vh+1 and leaves
v1′ , v2′ , · · · , vh′ such that the unique neighbor of vi′ in Th is vi for 1 ≤ i ≤ h and
vertices v0, v1′ , · · · , vh′ , vh+1 are connected in order to form the adjoint cycle
Ch+2.

In 2006, Shiu and Tam [8] determined the strong chromatic index for a neck-
lace (see Fig. 1) as follows.

Fig. 1. Necklace Neh

Injective Edge Coloring of Power Graphs and Necklaces 415

Theorem 2. (Shiu and Tam [8])
Let h ≥ 1, then

(1) If h is odd, then χ′
s(Neh) = 6;

(2) If h is even, then χ′
s(Neh) = 7;

(3) If h = 4, then χ′
s(Neh) = 8;

(4) If h = 2, then χ′
s(Neh) = 9;

2 Main Results

Note that χ′
i(G) ≤ χ′

s(G), the strong chromatic index of necklaces in Theorem 2
must be the upper bound of injective chromatic index of necklaces. In this paper,
we shall determine the exact injective chromatic index of necklaces. Moreover,
we shall determine the exact injective chromatic index of power graphs. The
following two theorems are the main results we obtained.

Theorem 3. Let Pn be a path with n vertex.

(1) If n = 3 or n = 4, then χ′
i(P

2
n) = 3.

(2) If n = 5, then χ′
i(P

2
n) = 4.

(3) If n = 6, then χ′
i(P

2
n) = 5.

(4) If n ≥ 7, then χ
′
i(P

2
n) = 6.

Theorem 4. Let h ≥ 1, then we have

(1) If h = 1, 2, then χ′
i(Neh) = 6;

(2) If h = 3, then χ′
i(Neh) = 5;

(3) If h = 4, then χ′
i(Neh) = 4;

(4) If h ≥ 5, then χ′
i(Neh) ≤ 5;

3 Proof of Theorem 3

(1) Note that P 2
3 = K3, we have that χ′

i(P
2
3) = 3.

Note that v1v2v3v1 is a 3-cycle in P 2
4 , we have that χ′

i(P
2
4) ≥ 3. On the

other hand, we can obtain a 3-injective-edge-coloring of P 2
4 as in Fig. 2. Thus,

χ′
i(P

2
4) = 3.

Fig. 2. Power graphs of P4 and P5

416 Y. Bu et al.

(2) Since v1v2v3v1 is a 3-cycle, the edges of this 3-cycle should be colored
with distinct colors. Note that the distance between edge v4v5 and any edge in
3-cycle v1v2v3v1 is two, we have that χ′

i(P
2
5) ≥ 4. On the other hand, we can

check that χ′
i(P

2
5) ≤ 4, see Fig. 2. Thus, χ′

i(P
2
5) = 4.

(3) For P 2
6 , we can see Fig. 3. Note the analysis of P 2

5 , the edges v1v2, v1v3,
v2v3, v4v5 should be colored with distinct colors. For edges v4v6 and v4v5, they
are in the same 3-cycle. For edges v4v6 and any edge in v1v2v3, they are at
distance two. Thus the colors used on v4v5 and v1v2v3 are forbidden for edge
v4v6. Hence, χ′

i(P
2
6) ≥ 5. On the hand, we can obtain a 5-injective-edge-coloring

as in Fig. 3. Hence, χ′
i(P

2
6) = 5.

Fig. 3. 5-injective-edge-coloring of P 2
6

(4) First, we shall prove χ′
i(P

2
n) ≥ 6.

For P 2
7 , we see Fig. 4. By the analysis of P 2

6 , it is easy to see that χ′
i(P

2
7) ≥ 5.

Assume that χ′
i(P

2
7) = 5 and let c be a 5-injective-edge-coloring of P 2

7 . Since
|E(P 2

7)| = 11, there must be at least three edges, denoted by e1, e2, e3, colored
with the same color. Let M = {e1, e2, e3}. Since in P 2

6 , v1v2, v1v3, v2v3, v4v5, v4v6
must be colored with distinct colors, it cannot be hold that M ⊆ E(P 2

6). Thus,
v5v7 ∈ M or v6v7 ∈ M .

Fig. 4. P 2
7

Let v5v7 ∈ M . Note that edges can be colored with the same color on v5v7 can
only be v1v2, v3v5 and v4v5. Moreover, c(v1v2) �= c(v3v5), c(v1v2) �= c(v4v5). And
c(v3v5) �= c(v4v5) since v3v5 and v4v5 are in the same 3-cycle. Thus, |M | ≤ 2,
which is a contradiction. Hence, v5v7 �∈ M .

Injective Edge Coloring of Power Graphs and Necklaces 417

Let v6v7 ∈ M . Note that edges can be colored with the same color on v6v7
can only be v1v2, v1v3, v2v3 and v4v6. Since v1v2v3v1 is a 3-cycle, at most one
edge of v1v2, v1v3, v2v3 belongs to M and thus |M | ≤ 3. Note that the distance
between v4v6 and any edge in 3-cycle v1v2v3v1 is two, we have that |M | ≤ 2,
which is a contradiction. Hence, v6v7 �∈ M .

By analysis above, the assumption that χ′
i(P

2
7) = 5 cannot be hold. Thus,

χ′
i(P

2
7) ≥ 6. Since P 2

7 ⊆ P 2
n(n ≥ 7), we have that χ′

i(P
2
n) ≥ 6.

Next, we shall prove χ′
i(P

2
n) ≤ 6.

Let c : E(P 2
n) → C = {1, 2, 3, 4, 5, 6}. We color the edges of P 2

n according to
the following rules.

We color edges vivi+1(i = 1, 2, · · · , n − 1) with colors 1, 2, 3, 4, 5, 6, 1, 2, 3,
4, 5, 6,· · · , color edges vivi+2(i = 1, 2, · · · , n − 2) with colors 3, 1, 2, 6, 4, 5, 3,
1, 2, 6, 4, 5,· · · .

In the following, we shall prove that c is an injective-edge-coloring of power
graph P 2

n . See Fig. 5.
Let Mi = {e|e ∈ E(P 2

n), c(e) = i}. By the definition of c, we have that
Mi = {vivi+1, vi+6vi+7, · · · , vi+1vi+3, vi+1+6vi+3+6, · · · }, i = 1, 2, 4, 5, Mj =
{vjvj+1, vj+6vj+7, · · · , vj−2vj , vj−2+6vj+6, · · · }, j = 3, 6. It is easy to see that
for any two edges a, b ∈ Mi (1 ≤ i ≤ 6), there is no edge c ∈ E(P 2

n) such that
a, c, b are consecutive in P 2

n . Thus, c is an injective-edge-coloring of P 2
n . Hence,

χ′
i(P

2
n) ≤ 6.

Together with χ′
i(P

2
n) ≥ 6, we have that χ′

i(P
2
n) = 6.

Fig. 5. 6-injective-edge-coloring of P 2
n

4 Proof of Theorem 4

(1) Note that any two edges in Ne1 (see Fig. 6) should be colored with distinct
colors, we have that χ′

i(Ne1) = 6.
For Ne2, we can see Fig. 6. Since v2v3, v2v

′
2, v′

2v3 are in the same 3-cycle,
we should color them with distinct colors. And the distance between any edge in
3-cycle v2v

′
2v3v2 and any edge in 3-cycle v0v1v

′
1v0 is two, we need six colors to

color these edges in 3-cycles v2v
′
2v3v2 and v0v1v

′
1v0. Thus, χ′

i(Ne2) ≥ 6. On the
other hand, we can obtain a 6-injective-edge-coloring of Ne2 as in Fig. 6. Thus,
χ′
i(Ne2) = 6.

418 Y. Bu et al.

Fig. 6. 6-injective-edge-coloring of Ne1 and Ne2

(2) For Ne3, we can see Fig. 7. Note that v0v1v
′
1v0 and v3v

′
3v4v3 are two 3-

cycles and the distance between v3v4 and v0v1 or v0v
′
1 is two, we need at least four

distinct colors to color them to get an injective-edge-coloring of Ne3. And since
the distance between v2v

′
2 and any edge in {v0v1, v0v

′
1, v1v

′
1, v3v4, v3v

′
3, v

′
3v4} is

two, we need at least five distinct colors to color v0v1, v0v
′
1, v1v

′
1, v3v4, v′

3v4,
v3v

′
3, v2v

′
2 and thus χ′

i(Ne3) ≥ 5. On the other hand, we can obtain a 5-injective-
edge-coloring of Ne3 as in Fig. 7. Thus, χ′

i(Ne3) = 5.

Fig. 7. 5-injective-edge-coloring of Ne3

(3) For Ne4, we can see Fig. 8. Since v0v1v
′
1v0 is a 3-cycle, we need three

distinct colors to color it. And since the distance between v2v
′
2 and any edge in

3-cycle v0v1v
′
1v0 is two, we need a new color to color v2v

′
2. Thus, χ′

i(Ne4) ≥ 4.
On the other hand, we can obtain a 4-injective-edge-coloring of Ne4 as in Fig. 8.
Thus, χ′

i(Ne4) = 4.
(4) For h ≥ 5, let G′ = G − vh+1. Let c : E(G) → C = {1, 2, 3, 4, 5}.
Step 1: Color G′ according to the following rules:
Let C3 = v0v1v

′
1. Since the distance between v2v

′
2 and any edge in C3 is

two, we need a fourth color to color edge v2v
′
2 and thus χ′

i(G
′) ≥ 4. See Fig. 9,

let c(v0v′
1) = 1, c(v1v′

1) = 2, c(v0v1) = 3, c(v1v2) = c(v2v′
2) = c(v2v3) = 4,

c(v′
1v

′
2) = 2. We then color edges vivi+1(i = 3, 4, · · · , h − 1) with colors 1, 1, 3,

3, 2, 2, 1, 1, 3, 3, 2, 2, · · · , color edges v′
iv

′
i+1 (i = 2, 3, · · · , h − 1) with colors 3,

3, 2, 2, 1, 1, 3, 3, 2, 2, 1, 1, · · · and color edges viv
′
i (i = 3, 4, · · · , h − 1) with

colors 3, 1, 2, 3, 1, 2, · · · . Then a 4-injective-edge-coloring of G′ is obtained.

Injective Edge Coloring of Power Graphs and Necklaces 419

Fig. 8. 4-injective-edge-coloring of Ne4

Fig. 9. 4-injective-edge-coloring of G′

Step 2: Add a vertex vh+1 to G′ and add three edges vhvh+1, v
′
hvh+1, v0vh+1

to get Neh, i.e. Neh = G′ + vh+1 + vhvh+1 + v′
hvh+1 + v0vh+1. Next, we color

these three edges. Let c(vhvh+1) = c(v0vh+1) = 5, c(vh+1v
′
h) = 4, see Fig. 10.

Fig. 10. 5-injective-edge-coloring of Neh, where h ≥ 5

Note that there are only four colors, 1,2,3,4, have been used for a 4-injective-
edge-coloring of G′, we can get a 5-injective-edge-coloring of G − v′

hvh+1 by
coloring edges vhvh+1, v0vh+1 with color 5. It’s easy to see that N2(v′

hvh+1) =
{v0v1, v0v

′
1, v

′
h−2v

′
h−1, vh−1v

′
h−1, vh−1vh}. By the coloring rules in step 1, only

colors 1, 2 and 3 used for coloring the edges in N2(v′
hvh+1). Thus, we can color

v′
hvh+1 with color 4. Hence, Neh has a 5-injective-edge-coloring.

By analysis above, we complete the proof of Theorem 4.

Acknowledgements. Thank you to anonymous reviewers for comments that
improved this paper.

420 Y. Bu et al.

References

1. Axenovich, M., Dörr, P., Rollin, J., Ueckerdt, T.: Induced and weak induced arboric-
ities. Discrete Math. 342, 511–519 (2019)

2. Bu, Y.H., Qi, C.T.: Injective edge coloring of sparse graphs. Discrete Math. Algo-
rithms Appl. 10(2), 1850022, 16 pp (2018)

3. Cardoso, D.M., Cerdeira, J.O., Cruz, J.P., Dominic, C.: Injective edge chromatic
index of graphs. Filomat 33(19), 6411–6423 (2019)

4. Ferdjallah, B., Kerdjoudj, S., Raspaud, A.: Injective edge-coloring of sparse graphs.
arXiv:1907.09838

5. Foucaud, F., Hocquard, H., Lajou, D.: Complexity and algorithms for injective
edge-coloring in graphs. Inform. Process. Lett., 170,106121, 9pp (2021)

6. Lv, J.B., Zhou, J.X., Nian, N.H.: List injective edge-coloring of subcubic graphs.
Discrete Appl. Math. 302, 163–170 (2021)

7. Kostochka, A., Raspaud, A., Xu, J.: Injective edge-coloring of graphs with given
maximum degree. Eur. J. Comb. 96, 103355, 12 pp (2021)

8. Shiu, W.C., Tam, W.K.: The strong chromatic index of complete cubic Halin graphs.
Appl. Math. Lett. 22, 754–758 (2009)

http://arxiv.org/abs/1907.09838

Total Coloring of Planar Graphs Without
Some Adjacent Cycles

Liting Wang and Huijuan Wang(B)

School of Mathematics and Statistics, Qingdao University, Qingdao 266071, China

sduwhj@163.com

Abstract. Let G = (V, E) be a graph. If x, y ∈ V ∪ E are two adjacent
or incident elements, then a k-total-coloring of graph G is a mapping
ϕ from V ∪ E to {1, 2, . . . , k} on condition that ϕ(x) �= ϕ(y). In this
paper, we define G to be a planar graph with maximum degree Δ ≥ 8.
We prove that if for each vertex v ∈ V (G), there exist two integers iv,
jv ∈ {3, 4, 5, 6, 7, 8} on condition that v is not incident with adjacent
iv-cycles and jv-cycles, then G has a (Δ + 1)-total-coloring.

Keywords: Total coloring · Planar graph · Short cycle

1 Introduction

In this paper, all graphs mentioned are finite, simple and undirected. Undefined
notions and terminologies can be referred to [1]. Suppose G is a graph, then V
and d(v) are used to denote the vertex set and the degree of v. We use F , d(f)
and E to denote the face set, the degree of f and the edge set respectively. Then
Δ = max{d(v)|v ∈ V } is the maximum degree of a graph and δ = min{d(v)|v ∈
V } is the minimum degree. We use n-vertex, n+-vertex, or n−-vertex to denote
the vertex v when d(v) = n, d(v) ≥ n, or d(v) ≤ n respectively. A n-face,
n+-face, or n−-face are analogously defined. We use (n1, n2, . . . , nk) to denote
a k-face and its boundary vertices are ni-vertex (i = 1, 2 . . . , k). Similarly, we
can define a (n1

+, n2
−, . . . , nk)-face. For instance, a (l,m+, n−)-face is a 3-face

whose boundary vertices are l-vertex, m+-vertex and n−-vertex respectively. If
two cycles or faces have at least one common edge, then we call they are adjacent.
We use nk(f) to denote the number of k-vertices that is incident with f . The
number of k+-face incident with f is denoted as nk+(f) and the number of k−-
face incident with f is denoted as nk−(f). We use nk(v) to denote the number of
k-vertices adjacent to v and use fk(v) to denote the number of k-faces incident
with v. If G has a k-total-coloring, then we say that G can be totally colored by
k colors. For the convenience of description, we say that G is total-k-colorable
when G can be totally colored by k colors. If G can be totally colored by at least
k colors, then k is the total chromatic number of G that is defined as χ

′′
. It is

easy to know that χ
′′
(G) ≥ Δ + 1. For the upper bound of χ

′′
, Behzad [2] and

Vizing [3] put forth the Total Coloring Conjecture (for short, TCC):
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 421–432, 2022.
https://doi.org/10.1007/978-3-031-16081-3_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_37&domain=pdf
https://doi.org/10.1007/978-3-031-16081-3_37

422 L. Wang and H. Wang

Conjecture 1. For any graph, Δ + 1 ≤ χ
′′
(G) ≤ Δ + 2.

TCC has attracted lots of researchers’ attention. However, this conjecture
remains open even for planar graphs. In 1971, Rosenfeld [4] and Vijayaditya [5]
confirmed TCC for all graphs with Δ ≤ 3 independently. Kostochka [6] proved
that χ

′′
(G) ≤ Δ + 2 when Δ ≤ 5. For a planar graph, TCC is unsolved only

when Δ = 6 (see [6,18]). With the advances in research, some researchers found
that χ

′′
(G) of some specific graphs have an exact upper bound Δ + 1. In 1989,

Sánchez-Arroyo [7] demonstrated that it is a NP-complete problem to determine
whether χ

′′
(G) = Δ+1 for a specified graph G. Moreover, for every fixed k ≥ 3,

McDiarmid and Sánchez-Arroyo [8] demonstrated that to determine whether a
specific k-regular bipartite graph is total-(Δ + 1)-colorable or not is also a NP-
complete problem. However, it is possible to prove that χ

′′
(G) = Δ + 1 when

G is a planar graph having large maximum degree. It has been proved that
χ

′′
(G) = Δ + 1 on condition that G is a planar graph when Δ(G) ≥ 11 [9],

Δ(G) = 10 [10] and Δ(G) = 9 [11]. It is still open to determine whether a planar
graph is total-(Δ+1)-colorable when Δ = 6, 7 and 8. If G is a planar graph and
Δ(G) = 8, then there are some relevant results obtained by adding some restric-
tions. For instance, for a planar graph with Δ(G) ≥ 8, it is proved that G is
total-(Δ+1)-colorable if G does not contain k-cycles (k = 5, 6) [13], or adjacent
3-cycles [12], or adjacent 4-cycles [14]. Wang et al. [15] proved χ

′′
(G) = Δ + 1

if there exist two integers i, j ∈ {3, 4, 5} such that G does not contain adjacent
i-cycles and j-cycles. Recently, a result has been proved in [20] for a planar graph
with Δ(G) = 8, that is, if for each vertex v ∈ V , there exist two integers iv,
jv ∈ {3, 4, 5, 6, 7} on condition that v is not incident with adjacent iv-cycles and
jv-cycles, then G is total-(Δ+1)-colorable. Now we improve some former results
and get the following theorem.

Theorem 1. Suppose G is a planar graph with maximum degree Δ ≥ 8. If for
each vertex v ∈ V , there exist two integers iv, jv ∈ {3, 4, 5, 6, 7, 8} on condition
that v is not incident with adjacent iv-cycles and jv-cycles. Then G is total-
(Δ + 1)-colorable.

2 Reducible Configurations

Theorem 1 has been proved for Δ ≥ 9 in [11]. So we presume that Δ = 8 in the
rest of this paper. Suppose G = (V,E) is a minimal counterexample to Theorem
1, that is, |V | + |E| is as small as possible. In other words, G cannot be totally
colored by Δ + 1 colors, but every proper subgraph of G can be totally colored
with Δ + 1 colors. In this section, we give some information of configurations
for our minimal counterexample G. A configuration is called to be reducible if
it cannot occur in the minimal counterexample G. Firstly, we show some known
properties of G.

Lemma 1. ([9]). (a) G is 2-connected.

(b) Suppose v1v2 is an edge of G. If d(v1) ≤ 4, then d(v1)+d(v2) ≥ Δ+2 = 10.

Total Coloring of Planar Graphs Without Some Adjacent Cycles 423

(c) Suppose G28 is a subgraph of G that is induced by the edges joining 2-vertices
to 8-vertices. Then G28 is a forest.

Lemma 2. ([16]). G has no subgraph isomorphic to the configurations depicted
in Fig. 1, where 7 − v is used to denote the vertex of degree of seven. If a vertex
is marked by •, then it has no more neighbors that are not depicted in G.

Fig. 1. Reducible configurations of Lemma 2

Lemma 3. ([19]). Suppose v ∈ V , d(v) = d and d ≥ 6. Let v be clockwise
adjacent to v1, . . . , vd and incident with f1, f2, . . . , fd such that vi is the common
vertex of fi−1 and fi (i ∈ {1, 2, . . . , d}). Notice that f0 and fd denote a same
face. Let d(v1) = 2 and N(v1) = {v, u1}. Then G contains none of the following
configurations.(see Fig. 2):

(1) there exists an integer k (2 ≤ k ≤ d − 1) such that d(vk+1) = 2, d(vi) = 3
(2 ≤ i ≤ k) and d(fj) = 4 (1 ≤ j ≤ k).

(2) there exist two integers k and t (2 ≤ k < t ≤ d − 1) such that d(vk) = 2,
d(vi) = 3 (k + 1 ≤ i ≤ t), d(ft) = 3 and d(fj) = 4 (k ≤ j ≤ t − 1).

(3) there exist two integers k and t (3 ≤ k ≤ t ≤ d − 1) such that d(vi) = 3
(k ≤ i ≤ t), d(fk−1) = d(ft) = 3 and d(fj) = 4 (k ≤ j ≤ t − 1).

(4) there exists an integer k (2 ≤ k ≤ d − 2) such that d(vd) = d(vi) = 3
(2 ≤ i ≤ k), d(fk) = 3 and d(fj) = 4 (0 ≤ j ≤ k − 1).

Fig. 2. Reducible configurations of Lemma 3

424 L. Wang and H. Wang

Lemma 4. ([20]). Suppose u is a 6-vertex. If u is incident with one 3-cycle
which is incident with a 4-vertex, then n5+(u) = 5.

Lemma 5. ([17]). G contains no (6, 6, 4+)-cycles.

Lemma 6. Suppose v ∈ G. If d(v) = 8 and n2(v) ≥ 1, then n5+(v) ≥ 1.

Proof. Suppose G
′

is a subgraph of G. The mapping ϕ is said to be a nice
coloring of G if G

′
= G − {v|v ∈ V, d(v) ≤ 4} has a (Δ + 1)-total-coloring. It is

clear that a nice coloring can be easily extended to a (Δ + 1)-total-coloring of
G, because a 4−-vertex has at most 8 forbidden colors. Hence, in the following,
we will always assume that every 4−-vertex is colored in the end.

Contrarily, we assume that G contains a configuration with d(v) = 8, n2(v) ≥
1, and n5+(v) = 0. Suppose v is a 8-vertex. Let v be clockwise adjacent to
v1, v2, . . . , v8 and incident with e1, e2, . . . , e8 such that vi is incident with ei
(i = 1, 2, . . . , 8). Since d(vi) ≤ 4 (i = 1, 2, . . . , 8), we uncolor the adjacent vertices
of v and color them in the end. We may assume that d(v1) = 2. Then the one
edge incident with v1 is e1, and the other edge incident with v1 is denoted as e9.
Because of the minimality of G, H = G−e1 has a nice coloring. Firstly, suppose
ϕ(e9) = 9. Otherwise, we color e1 with 9 to get a nice coloring of G, which is a
contradiction, so ϕ(e9) = 9. We recolor v with 9, and color e1 with 1 to get a
nice coloring of G, which is a contradiction. ��

3 Discharging

In this section, we will accomplish the proof of Theorem 1 by using discharging
method. The discharging method is a familiar and important way to solve col-
oring problems for a planar graph. By Euler’s formula |V | − |E| + |F | = 2, we
have

∑

v∈V

(2d(v) − 6) +
∑

f∈F

(d(f) − 6) = −6(|V | − |E| + |F |) = −12 < 0

We define w(x) of x ∈ V ∪ F to be the original charge function. Let w(v) =
2d(v)−6 for every v ∈ V and w(f) = d(f)−6 for everyf ∈ F . So

∑
v∈V ∪F w(x) <

0. We use ω(x → y) to denote the amount of total charge from x to y. We shall
give proper discharging rules and transfer the original charge to get a new charge.
We have two rounds of discharging rules. We use w∗(x) to denote the charge of
x ∈ V ∪F after the first round of discharging and use w

′
(x) to denote the charge

of x ∈ V ∪ F after the second round of discharging. If there is no discharging
rule for x ∈ V ∪ F , then the last charge of x is equal to the original charge
of x. Notice that the total charge of G is unchangeable after redistributing the
original charge, so

∑
x∈V ∪F w

′
(x) =

∑
x∈V ∪F w(x) = −6χ(Σ) = −12 < 0. We

will get an obvious contradiction by proving that
∑

x∈V ∪F w
′
(x) ≥ 0.

These are the discharging rules:

R1. Suppose v is a 2-vertex. If u is adjacent to v, then ω(u → v) = 1.

Total Coloring of Planar Graphs Without Some Adjacent Cycles 425

R2. Let f be a face which is incident with v. Suppose d(v) = 4 or 5. If
d(f) = 4, then ω(v → f) = 1

2 . If d(f) = 5, then ω(v → f) = 1
3 . Finally v

sends the surplus charge to 3-faces incident with it evenly.
R3. If a 3-face is incident with 6-vertices and 7+-vertices, then it receives 5

4
from 7+-vertices.
R4. Every 7+-face sends d(f)−6

d(f) to its adjacent 3-faces.

If w∗(f) < 0 of a 5−-face after the first round discharging, then we have the
second round discharging:

R5. If w∗(f) < 0, then f receives | w∗(f)
n6+ (v) | from every 6+-vertices incident it

which do not give any charge to f .

Lemma 7. Suppose f is a face which is incident with v.

1. If d(v) = 6, then

ω(v → f) ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5
4 , if d(f) = 3 and n4(f) = 1,

11
10 , if d(f) = 3 and n5(f) ≥ 1,

1, if d(f) = 3 and n6+(f) = 3,

7
8 , if d(f) = 3, n5−(f) = 0 and n7+(f) = 1,

1
2 , if d(f) = 3 and n7+(f) = 2,

2
3 , if d(f) = 4 and n3−(f) = 1,

1
2 , if d(f) = 4 and n3−(f) = 0,

1
3 , if d(f) = 5.

2. If d(v) ≥ 7, then

ω(v → f) ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3
2 , if d(f) = 3 and n3−(f) = 1,

5
4 , if d(f) = 3 and n3−(f) = 0,

1, if d(f) = 4 and n3−(f) = 2,

3
4 , if d(f) = 4, n3−(f) = 1 and n4(f) = 1,

2
3 , if d(f) = 4, n3−(f) = 1 and n5+(f) = 3,

1
2 , if d(f) = 4 and n3−(f) = 0,

1
3 , if d(f) = 5.

Proof. Suppose v is incident with a 4+-face f . Then it is clear that Lemma 7 is
correct by R2 and R5. Now we think about that f is a 3-face that is incident
with v. If d(v) = 6, then there exist no 3−-vertices adjacent to v by Lemma 1(b).
If there exists a 4-vertex incident with f , then f is incident with a 7+-vertex by
Lemma 5. So ω(v → f) ≤ 3 − 5

4 − 1
4 = 5

4 . If n5(f) = 1 and n6+(v) = 2, then

ω(v → f) ≤ 3− 4
5

2 = 11
10 . Suppose n5(f) = 2. If there exists one 5-vertex incident

with five 3-faces, then the other 5-vertex is incident with at least two 6+-faces.
So ω(v → f) ≤ 3 − 4

5 − 4
3 ≤ 11

10 . If there exists one 5-vertex incident with four

426 L. Wang and H. Wang

3-faces, then all of the two 5-vertices are incident with at least one 6+-face. So
ω(v → f) ≤ 3 − 1 × 2 ≤ 11

10 . Suppose n6+(f) = 3. Then ω(v → f) ≤ 3
3 = 1.

If n5−(f) = 0 and n7+(f) = 1, then the 7+-vertex sends 5
4 to f by R4, so

ω(v → f) ≤ 3− 5
4

2 = 7
8 . If n7+(f) = 2, then ω(v → f) ≤ 3 − 5

4 × 2 = 1
2 . If

d(v) ≥ 7, then there exists at most one 3−-vertex adjacent to v, so ω(v → f) ≤ 3
2 .

If n3−(f) = 0, then ω(v → f) ≤ 3− 1
2

2 = 5
4 . ��

Lemma 8. Suppose d(v) = 8. Let v be clockwise adjacent to v1, v2, . . . , vn (n ≥
3) and incident with f1, f2, . . . , fn−1 such that fj is incident with vj and vj+1.
Clearly, f0 and fd denote a same face. If d(v1) = d(vn) = 2 and d(vi) ≥ 3
(i = 2, 3, . . . , n − 1), then

∑n−1
i=1 ω(v → fi) ≤ 5

4n − 9
4 .

Proof. By Lemma 2, we know that d(f1) ≥ 4 and d(fn−1) ≥ 4. Firstly, suppose
d(f1) = 4 and d(fn−1) = 4. If min{d(f2), d(f3), . . . , d(fn−2)} ≥ 5, then n ≥ 4, so∑n−1

i=1 ω(v → fi) ≤ 1×2+ 1
3 (n−3) ≤ 5

4n− 9
4 . If min{d(f2), d(f3), . . . , d(fn−2)} = 4

and max{d(f2), d(f3), . . . , d(fn−2)} = 5, then
∑n−1

i=1 ω(v → fi) ≤ n − 2 + 1
3 ≤

5
4n − 9

4 . If d(f2) = d(f3) = . . . = d(fn−2) = 4, then
∑n−1

i=1 ω(v → fi) ≤ n −
3 + 3

4 × 2 ≤ 5
4n − 9

4 by Lemma 3. Suppose min{d(f2), d(f3), . . . , d(fn−2)} = 3
and max{d(f2), d(f3), . . . , d(fn−2)} = 4. If d(f2) = 4 or d(fn−2) = 4, then
ω(v → f1) + ω(v → f2) ≤ max{1 × 2, 3

4 + 5
4} = 2 and ω(v → fn−2) + ω(v →

fn−1) ≤ max{1 × 2, 3
4 + 5

4} = 2. Moreover, v sends more charge to 3-faces than
4-faces, so we assume that v is incident with 3-faces as more as possible. Hence,∑n−1

i=1 ω(v → fi) ≤ 2 × 2 + 5
4 × (n − 5) ≤ 5

4n − 9
4 . Suppose d(f2) = d(f3) = . . . =

d(fn−2) = 3, then fj (2 ≤ j ≤ n − 2) receives at most 5
4 from v by Lemma 3.

Hence,
∑n−1

i=1 ω(v → fi) ≤ 3
4 × 2 + 5

4 × (n − 3) ≤ 5
4n − 9

4 . Secondly, suppose
min{d(f1), d(fn−1)} = 4 and max{d(f1), d(fn−1)} ≥ 5. If d(f2) = d(f3) = . . . =
d(fn−2) = 3, then

∑n−1
i ω(v → fi) ≤ 3

4 + 1
3 + 3

2 + 5
4 × (n − 4) ≤ 5

4n − 9
4 .

If max{d(f2), d(f3), . . . , d(fn−2)} = 4, then
∑n−1

i=1 ω(v → fi) ≤ 1 × 2 + 1
3 +

3
2 + 5

4 × (n − 5) ≤ 5
4n − 9

4 . Finally, suppose min{d(f1), d(fn−1)} ≥ 5. Then∑n−1
i=1 ω(v → fi) ≤ 1

3 × 2 + 3
2 × 2 + 5

4 × (n − 5) ≤ 5
4n − 9

4 . ��

In the rest of this paper, we can check that w
′
(x) ≥ 0 for every x ∈ V ∪ F

which is a contradiction to our assumption. Let f ∈ F . If d(f) ≥ 7, then w
′
(f) ≥

w(f)− d(f)−6
d(f) ×d(f) = 0 by R4. If f is a 6-face, then w

′
(f) = w(f) = 0. Suppose

d(f) ≤ 5. If n6+(f) ≥ 1, then w
′
(f) ≥ 0 by R5. If n6+(f) = 0, then n5(f) = d(f).

Suppose d(f) = 3 and the boundary vertices of f are consecutively v1, v2 and
v3. Then d(vi) = 5 (i = 1, 2, 3). By R2, 4+-face receives at most 1

2 from incident
4-vertices or 5-vertices. Suppose f3(vi) ≤ 3 (i = 1, 2, 3). Then ω(vi → f) ≥ 1,
so w

′
(f) ≥ 3 − 6 + 1 × 3 = 0. Suppose there exists f3(vi) ≥ 4. Without loss of

generality, assume that f3(v3) ≥ 4. Then we have f3(v1) ≤ 4 and f3(v2) ≤ 4.
Otherwise, f3(v1) = 5 or f3(v2) = 5, then for any integers j, k ∈ {3, 4, 5, 6, 7, 8},
there exists a vertex incident with adjacent j-cycles and k-cycles. So we get a
contradiction to the condition of Theorem 1. If f3(v1) = 4, then v1 is incident
with a 9+-face and v2 is incident with at least two 6+-faces, so ω(v1 → f) ≥ 1

Total Coloring of Planar Graphs Without Some Adjacent Cycles 427

and ω(v2 → f) ≥ 1. Consequently, w
′
(f) ≥ 3 − 6 + 4

5 + 1 + 4
3 > 0. Similarly,

we know that if f3(v2) = 4, then w
′
(f) > 0. Suppose f3(v1) = f3(v2) = 3.

Then v1 and v2 is incident with at least one 6+-face, so ω(vi → f) ≥ 4− 1
2

3 = 7
6 ,

(i = 1, 2). Consequently, w
′
(f) ≥ 3 − 6 + 4

5 + 7
6 × 2 > 0. If d(f) = 4, then

w
′
(f) ≥ 4 − 6 + 1

2 × 4 = 0 by R2. If d(f) = 5, then w
′
(f) ≥ 5 − 6 + 1

3 × 5 > 0 by
R2. So for every f ∈ F , we prove that w

′
(f) ≥ 0. Next, we consider that v ∈ V .

Suppose d(v) = 2. Then it is clear that w(v) = −2, so w
′
(v) = −2 + 1 × 2 = 0

by R1. If d(v) = 3, then w
′
(v) = w(v) = 0. Suppose d(v) = 4 or d(v) = 5. Then

w
′
(v) = 0 by R2.
If v is a 6+-vertex of G. Let v be clockwise adjacent to v1, . . . , vd and

incident with f1, f2, . . . , fd such that vi is the common vertex of fi−1 and
fi (i ∈ {1, 2, . . . , d}). Notice that f0 and fd denote the same face. Suppose
d(v) = 6. Then there exist no 3−-vertices incident with v by Lemma 1 (b).
Clearly, w(v) = 2d(v)−6 = 6. By Lemma 4, there exist at most two 3-faces inci-
dent with a 4-vertex. Hence, if f3(v) ≤ 3, then w

′
(v) ≥ 6− 5

4×2− 11
10×1− 2

3×3 > 0
by R4. Suppose f3(v) = 4. If f5+(v) ≥ 1, then w

′
(v) ≥ 6− 5

4×2− 11
10×2− 2

3− 1
3 > 0.

If f4(v) = 2, then there exist three boundary vertices of the two 4-faces adja-
cent v, that is, all of the two 4-faces are incident with four 4+-vertices. Hence,
w′(v) ≥ 6 − 5

4 × 2 − 11
10 × 2 − 1

2 × 2 > 0. Suppose f3(v) ≥ 5. If v is adjacent
to a 5-vertex v0 and f is a 3-face incident with v and v0, then f3(v0) ≤ 3, so
ω(v0 → f) ≥ 1 and ω(v → f) ≤ 1. Suppose f3(v) = 5. If f5+(v) = 1, then
w

′
(v) ≥ 6 − 5

4 × 2 − 1 × 3 − 1
3 > 0. If f4(v) = 1, then there exist three bound-

ary vertices of the 4-faces adjacent to v, that is, the 4-face is incident with four
4+-vertices. Hence, w

′
(v) ≥ 6 − 5

4 × 2 − 1 × 3 − 1
2 = 0.

Suppose f3(v) = 6, that is, d(fi) = 3 (i = 1, 2, . . . , 6). By Lemma 4, v
is incident with at most one 4-vertex. So we may assume that d(v6) = 4, then
d(v1) ≥ 7 and d(v5) ≥ 7 by Lemma 5. Suppose f6+(v6) = 2. Then ω(v6 → f5) ≥ 1
and ω(v6 → f6) ≥ 1, so ω(v → f5) ≤ 1 and ω(v → f6) ≤ 1. Therefore,
w′(v) ≥ 6 − 1 × 6 = 0. Otherwise, f5−(v) ≥ 3. Let fx be the 5−-face incident
with v6 except f5 and f6. Suppose d(fx) = 5. Then we get a contradiction to
the condition of Theorem 1. Suppose d(fx) = 4. Then v6 is adjacent to v4 and
v1 is adjacent to v3. So we know that f6+(v6) = 1 and ω(v6 → fi) ≥ 2− 1

2
2 = 3

4

(i = 5, 6). Therefore, ω(v → fi) ≤ 3 − 5
4 − 3

4 ≤ 1 (i = 5, 6), and w
′
(v) ≥

6 − 1 × 6 = 0. Suppose d(fx) = 3. Then each of the boundary vertices of f is
adjacent to v. If v6 is adjacent to v4 and v1 is adjacent to v4, then d(v4) ≥ 7 by
Lemma 5. So ω(v4 → f4) = 5

4 and ω(v5 → f4) = 5
4 , then ω(v → f4) ≤ 1

2 and
w

′
(v) ≥ 6 − 5

4 × 2 − 1 × 3 − 1
2 = 0. If v6 is adjacent to v3 and v1 is adjacent

to v3, then d(v3) ≥ 7 by Lemma 5. Suppose d(v2) ≥ 6 and d(v4) ≥ 6. Then
ω(v → fi) ≤ 3− 5

4
2 = 7

8 (i = 1, 2, 3, 4). Hence, w
′
(v) ≥ 6 − 5

4 × 2 − 7
8 × 4 = 0.

Suppose d(v2) = 5 or d(v4) = 5. Without of generality, assume that d(v4) = 5.
Then ω(v4 → f3) ≥ 1 and ω(v4 → f4) ≥ 1. So ω(v → f3) ≤ 3 − 1 − 5

4 = 3
4 and

ω(v → f4) ≤ 3 − 1 − 5
4 = 3

4 . Therefore, w
′
(v) ≥ 6 − 5

4 × 2 − 1 × 2 − 3
4 × 2 = 0.

428 L. Wang and H. Wang

Suppose d(v) = 7. Then it is easy to know that f3(v) ≤ 6 and v is not adjacent
to a 2−-vertices by Lemma 1 (b). Clearly, w(v) = 2d(v) − 6 = 8. Suppose there
exist no 3-faces incident with a 3-vertex. If f3(v) = 6, then f9+(v) = 1, so
w

′
(v) ≥ 8 − 5

4 × 6 > 0 by Lemma 7. If f3(v) = 5, then there exist no 4-faces
incident with two 3−-vertex. So w

′
(v) ≥ 8 − 5

4 × 5 − 3
4 × 2 > 0 by Lemma 7.

If f3(v) ≤ 4, then w
′
(v) ≥ 8 − 5

4 × 4 − 1 × 3 = 0. Now we presume that
there exists at least one 3-face that is incident with a 3-vertex. Then all of the
4-faces are incident with at most one 3−-vertex. By Lemma 2, there exist at
most two 3-faces incident with a 3-vertex. If f3(v) = 6, then f9+(v) = 1, so
w

′
(v) ≥ 8 − 3

2 × 2 − 5
4 × 4 = 0 by Lemma 7. Suppose f3(v) = 5. If v is incident

with at least one 5+-face, then w
′
(v) ≥ 8 − 3

2 × 2 − 5
4 × 3 − 2

3 − 1
3 > 0 by

Lemma 7. Otherwise, f4(v) = 2, then there exist three boundary vertices of the
4-face adjacent to v, so w

′
(v) ≥ 8− 3

2 ×2− 5
4 ×3− 3

4 − 1
2 = 0. Suppose f3(v) ≤ 4.

Then w
′
(v) ≥ 8 − 3

2 × 2 − 5
4 × 2 − 3

4 × 3 > 0 by Lemma 7. If d(v) = 8, then we
know that w(v) = 2 × 8 − 6 = 10, f3(v) ≤ 6 and n2(v) ≤ 7 by Lemma 6. By
Lemma 7 and Lemma 8, we shall consider the following cases by discussing the
number of n2(v).

Fig. 3. n2(v) = 0 and f3(v) = 6

Case 1. n2(v) = 0. Suppose f3(v) = 6. If f6+(v) ≥ 1 or f5+(v) ≥ 2, then
w

′
(v) ≥ 10 − 3

2 × 6 − 1 = 0 by Lemma 7. Otherwise, f6+(v) = 0 and f5+(v) ≤ 1.
Suppose f4(v) = 1 and f5(v) = 1. According to the condition of Theorem 1, there
is only one case in which the location of the faces satisfying the condition of 1. We
depict this case in Fig. 3 (1). It is clear that there exist three boundary vertices
of the 4-faces adjacent to v, and there is at least one 3-face which is not incident
with a 3-vertex by Lemma 2. If the 4-face is incident with at most one 3-vertex,
then w

′
(v) ≥ 10 − 3

2 × 5 − 5
4 − 3

4 − 1
3 > 0. Otherwise, there exist two 3-vertex

incident with the 4-face, then there exist at least two 3-faces that are not incident
with a 3-vertex by Lemma 2. Hence, w

′
(v) ≥ 10− 3

2×4− 5
4×2− 3

4− 1
3 > 0. Suppose

f4(v) = 2. There are only two cases satisfying the condition of Theorem 1. We
depict these cases in Fig. 3(2) and (3). In Fig. 3(2), there exist at least four
3-faces all of which are adjacent to a 8+-face. By R4, if there exists a 8+-face

Total Coloring of Planar Graphs Without Some Adjacent Cycles 429

adjacent to a 3-face, then 8+-face sends 1
4 to the 3-face, so each of the 3-face

adjacent to a 8+-face receives at most 3− 1
4

2 = 11
8 from the boundary vertices.

There exist at most one 4-face incident with two 3-vertices in Fig. 3(2). By
Lemma 2, there exist at least one 3-face that is not incident with a 3-vertex, so
w

′
(v) ≥ 10 − 3

2 − 11
8 × 4 − 5

4 − 1 − 3
4 = 0. In Fig. 3(3), there exist at least four

3-faces all of which are adjacent to a 8+-face. By Lemma 2, there is at most one
4-face incident with two 3-vertices. If all of the two 4-faces are incident with at
most one 3-vertex, then w

′
(v) ≥ 10 − 3

2 × 2 − 11
8 × 4 − 3

4 × 2 = 0. Otherwise,
there exists one 4-face that is incident with two 3-vertices, then there exist at
least three 3-faces that are not incident with a 3-vertex by Lemma 2. Hence,
w

′
(v) ≥ 10− 3

2 ×3− 5
4 ×3−1− 3

4 = 0. Suppose f3(v) = 5. Then by the condition
of Theorem 1, we know that f5+(v) ≥ 1, so w

′
(v) ≥ 10− 3

2 ×5−1×2− 1
3 ×2 > 0.

Case 2. n2(v) = 1. Then 2 × 8 − 6 − 1 = 9.
Case 2.1. Let the 2-vertex be incident with a 3-cycle. It is clear that f3(v) ≤ 6

and there exist no 3-faces incident with a 3-vertex by Lemma 2. So v is incident
with at most one 3-face that receives 3

2 from v. If f3(v) = 6, then by the condition
of Theorem 1, we know that f6+(v) ≥ 1 or f5+(v) ≥ 2, so w

′
(v) ≥ 9− 3

2− 5
4×5 > 0

by Lemma 7. Suppose f3(v) = 5. If f4(v) = 3, then there are at least two
(8, 4+, 4+, 2+)-faces between the three 4-faces by Lemma 2. Hence, w

′ ≥ 9− 3
2 −

5
4×4−1− 3

4×2 = 0. If f4(v) ≤ 2, then we have w
′
(v) ≥ 9− 3

2− 5
4×4−1×2− 1

3 > 0.
Suppose f3(v) = 4. If f4(v) = 4, then there exist at least two (8, 4+, 4+, 2+)-faces
between the four 4-faces by Lemma 2. Hence, w

′ ≥ 9− 3
2 − 5

4 ×3−1×2− 3
4 ×2 > 0.

If f4(v) ≤ 3, then w
′
(v) ≥ 9 − 3

2 − 5
4 × 3 − 1 × 3 − 1

3 > 0. If f3(v) ≤ 3, then
w

′
(v) ≥ 9 − 3

2 − 5
4 × 2 − 1 × 5 = 0.

Case 2.2. Let the 2-vertex not be incident with a 3-cycle. Then f3(v) ≤
6. Suppose f3(v) = 6. Then the six 3-faces are adjacent and f9+(v) = 1, so
there exist at least four (8, 4+, 4+)-faces between the six 3-faces by Lemma 3.
Therefore, w

′
(v) ≥ 9− 3

2 ×2− 5
4 ×4−1×1 > 0 by Lemma 7. Suppose f3(v) = 5.

It is easy to know that f6+(v) ≥ 1 by the condition of Theorem 1. If f4(v) = 2,
then there exist three the boundary vertices of the two 4-faces adjacent to v. So
v is incident with at least two (8, 4+, 4+)-faces and one (8, 4+, 4+, 2+)-face by
Lemma 3. Hence, w

′
(v) ≥ 9− 3

2 ×3− 5
4 ×2−1×1− 3

4 ×1 > 0. If f4(v) = 1, then
there exists at least one (8, 4+, 4+)-face between the five 3-faces. by Lemma 3.
Hence, w

′
(v) ≥ 9 − 3

2 × 4 − 5
4 × 1 − 1 × 1 − 1

3 × 2 > 0. If f4(v) = 0, then
w

′
(v) ≥ 9− 3

2 ×5− 1
3 ×3 > 0. Suppose f3(v) = 4. Then we have f4(v) ≤ 3 by the

condition of Theorem 1. If f4(v) = 3, then there exist at least two (8, 4+, 4+)-
faces between four the 3-faces. Hence, w

′
(v) ≥ 9− 3

2 ×2− 5
4 ×2−1×3− 1

3 ×1 > 0.
If f4(v) ≤ 2, then w

′
(v) ≥ 9 − 3

2 × 4 − 1 × 2 − 1
3 × 2 > 0. Suppose f3(v) = 3. If

there exists a 5+-face incident with v, then w
′
(v) ≥ 9 − 3

2 × 3 − 1 × 4 − 1
3 > 0.

Otherwise, f4(v) = 5, then there exist at least three (8, 4+, 4+, 2+)-faces between
the five 4-faces. Hence, w

′
(v) ≥ 9 − 3

2 × 3 − 1 × 2 − 3
4 × 3 > 0. If f3(v) ≤ 2, then

w
′
(v) ≥ 9 − 3

2 × 2 − 1 × 6 = 0.

430 L. Wang and H. Wang

Fig. 4. n2(v) = 2

Case 3. n2(v) = 2. Then 2 × 8 − 6 − 2 = 8 and there are four cases in
which 2-vertices are located. We depict these cases in Fig. 4. In Fig. 4 (1),
w

′
(v) ≥ 8 − (54 × 8 − 9

4) > 0 by Lemma 8. In Fig. 4 (2), w
′
(v) ≥ 8 − (54 × 7 −

9
4) − (54 × 3 − 9

4) = 0. In Fig. 4 (3), w
′
(v) ≥ 8 − (54 × 6 − 9

4) − (54 × 4 − 9
4) = 0.

In Fig. 4 (4), w
′
(v) ≥ 8 − (54 × 5 − 9

4) × 2 = 0 by Lemma 8.

Fig. 5. n2(v) = 3

Case 4. n2(v) = 3. Then 2 × 8 − 6 − 3 = 7 and there are five cases in which
2-vertices are located. We depict these cases in Fig. 5. In Fig. 5(1), w

′
(v) ≥

7 − (54 × 7 − 9
4) > 0 by Lemma 8. In Fig. 5(2), w

′
(v) ≥ 7 − (54 × 6 − 9

4) −
(54 × 3 − 9

4) > 0. In Fig. 5(3), w
′
(v) ≥ 7 − (54 × 5 − 9

4) − (54 × 4 − 9
4) > 0.

In Fig. 5(4), w
′
(v) ≥ 7 − (54 × 5 − 9

4) − (54 × 3 − 9
4) × 2 = 0. In Fig. 5(5),

w
′
(v) ≥ 7 − (54 × 3 − 9

4) − (54 × 4 − 9
4) × 2 = 0 by Lemma 8.

Case 5. n2(v) = 4. Then 2 × 8 − 6 − 4 = 6 and there are eight cases
in which 2-vertices are located. We depict these cases in Fig. 6. In Fig. 6(1),
w

′
(v) ≥ 6 − (54 × 6 − 9

4) > 0 by Lemma 8. In Fig. 5(2) and (4), w
′
(v) ≥

6−(54×5− 9
4)−(54×3− 9

4) > 0. In Fig. 6(3) and (7), w
′
(v) ≥ 6−(54×4− 9

4)×2 > 0.
In Fig. 6(5) and (6), w

′
(v) ≥ 6 − (54 × 3 − 9

4) × 2 − (54 × 4 − 9
4) > 0. In Fig. 6(8),

w
′
(v) ≥ 6 − (54 × 3 − 9

4) × 4 = 0 by Lemma 8.
Case 6. n2(v) ≥ 5. Suppose n2(v) = 5. Then 2×8−6−5 = 5 and f3(v) ≤ 2.

Suppose f3(v) = 2. Then f6+(v) ≥ 4 by Lemma 2. Consequently, w
′
(v) ≥

5 − 3
2 × 2 − 1 × 2 = 0 by Lemma 7. If f3(v) = 1, then f6+(v) ≥ 3 and f4(v) ≤ 4.

If f4(v) = 4. then all of the four 4-faces are (8, 4+, 4+, 2+)-faces. Hence, w
′
(v) ≥

Total Coloring of Planar Graphs Without Some Adjacent Cycles 431

Fig. 6. n2(v) = 4

5 − 3
2 × 1 − 3

4 × 4 > 0. If f4(v) ≤ 3, then w
′
(v) ≥ 5 − 3

2 × 1 − 1 × 3 − 1
3 > 0.

Suppose f3(v) = 0. Then f6+(v) ≥ 2. If f4(v) = 6, then all of the six 4-faces
are (8, 4+, 4+, 2+)-faces. Hence, w

′
(v) ≥ 5 − 3

4 × 6 > 0. If f4(v) = 5, then
there exist at least four (8, 4+, 4+, 2+)-faces between the five 4-faces. Hence,
w

′
(v) ≥ 5−1×1− 3

4×4− 1
3×1 > 0. If f4(v) ≤ 4, then w

′
(v) ≥ 5−1×4− 1

3×2 > 0.
Suppose n2(v) = 6. Then 2 × 8 − 6 − 6 = 4 and f3(v) ≤ 1. If f3(v) = 1, then
f6+(v) ≥ 5 and f4(v) ≤ 2. So w

′
(v) ≥ 4 − 3

2 − 1 × 2 > 0. If f3(v) = 0, then
f6+(v) ≥ 4. Hence, w

′
(v) ≥ 4−1×4 = 0. Suppose n2(v) = 7. Then by Lemma 2

we know that f6+(v) ≥ 6 by and f3(v) = 0, so w
′
(v) ≥ 10 − 7 − 1 × 2 > 0.

In summary, we know that w
′
(x) ≥ 0 for every x ∈ V ∪F , so

∑
x∈V ∪F w

′
(x) ≥

0. Hence, we get the desired contradiction and finish the proof of Theorem 1.

Acknowledgements. We thanks for the support by Shandong Provincial Natural
Science Foundation of China under Grant ZR2020MA045.

References

1. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. North-Holland,
NewYork (1982)

2. Behzad, M.: Graphs and their chromatic numbers. Ph.D. Thesis, Michigan State
University (1965)

3. Vizing, V.G.: Some unsolved problems in graph theory. UspekhiMat. Nauk 23,
117–134 (1968)

4. Roesnfeld, M.: On the total colorings of certain graphs. Israel J. Math 9, 396–402
(1971). https://doi.org/10.1007/BF02771690

https://doi.org/10.1007/BF02771690

432 L. Wang and H. Wang

5. Vijayaditya, N.: On total chromatic number of a graph. J. London Math. Soc. 3,
405–408 (1971). https://doi.org/10.1112/jlms/s2-3.3.405

6. Kostochka, A.V.: The total chromatic number of any multigraph with maximum
degree five is at most seven. Discrete Math. 162, 199–214 (1996) https://doi.org/
10.1016/0012-365X(95)00286-6

7. Sánchez-Arroyo, A.: Determining the total coloring number is NP-hard. Discrete
Math. 78, 315–319 (1989). https://doi.org/10.1016/0012-365X(89)90187-8

8. McDiarmid, J.H., Sánchez-Arroyo, A.: Total colorings regular bipartite graphs
is NP-hard. Discrete Math. 124, 155–162 (1994) https://doi.org/10.1016/0012-
365X(92)00058-Y

9. Borodin, O.V., Kostochka, A.V., Woodall, D.R.: Total colorings of planar graphs
with large maximum degree. J. Graph Theory 26, 53–59 (1997) https://doi.org/
10.1002/(SICI)1097-0118(199709)26:1〈53::AID-JGT6〉3.0.CO;2-G

10. Wang, W.F.: Total chromatic number of planar graphs with maximum degree ten.
J. Graph Theory 54, 91–102 (2007) https://doi.org/10.1002/jgt.20195

11. Kowalik, �L., Sereni, J.-S., Škrekovski, R.: Total-colorings of plane graphs with
maximum degree nine. SIAM J. Discrete Math. 22, 1462–1479 (2008) https://doi.
org/10.1137/070688389

12. Du, D.Z., Shen, L., Wang, Y.: Planar graphs with maximum degree 8 and without
adjacent triangles are 9-totally-colorable, Discrete Appl. Math. 157, 2778–2784
(2009) https://doi.org/10.1016/j.dam.2009.02.011

13. Hou, J.F., Zhu, Y., Liu, Z.G., Wu, J.L.: Total colorings of planar graphs without
small cycles., Graphs Comb. 24, 91–100 (2008) https://doi.org/10.1007/s00373-
008-0778-8

14. Tan, X., Chen, H.Y., Wu, J.L.: Total colorings of planar graphs without adjacent
4-cycles., Lecture Notes on Operations Research, vol. 10, pp. 167–173 (2009)

15. Wang, H.J., Wu, L.D., Wu, J.L.: Total coloring of planar graphs with maximum
degree 8., Theoret. Comput. Sci. 522, 54–61 (2014) https://doi.org/10.1016/j.tcs.
2013.12.006

16. Chang, J., Wang, H.J., Wu, J.L.: Total coloring of planar graphs with maximum
degree 8 and without 5-cycles with two chords. Theoret. Comput. Sci. 476, 16–23
(2013). https://doi.org/10.1016/j.tcs.2013.01.015

17. Shen, L., Wang, Y.Q.: Total colorings of planar graphs with maximum degree at
least 8. Sci. China Ser A: Math. 52, 1733–1742 (2009). https://doi.org/10.1007/
s11425-008-0155-3

18. Sanders, D.P., Zhao, Y.: On total 9-coloring planar graphs of maximum degree
seven. J. Graph Theory 31, 67–73 (1999) https://doi.org/10.1002/(SICI)1097-
0118(199905)31:1〈67::AID-JGT6〉3.0.CO;2-C

19. Xu, R.Y., Wu, J.L. Wang, H.J.: Total coloring of planar graphs without some
chordal 6-cycles. Bull. Malays. Math. Sci. Soc. 520, 124–129 (2014) https://doi.
org/10.1007/s40840-014-0036-6

20. Wang, H.J., Gu, Y., Liu, B.: Total coloring of planar graphs without adjacent short
cycles. J. Com. Optim. 33(1), 265–274 (2017). https://doi.org/10.1007/s10878-
015-9954-y

https://doi.org/10.1112/jlms/s2-3.3.405
https://doi.org/10.1016/0012-365X(95)00286-6
https://doi.org/10.1016/0012-365X(95)00286-6
https://doi.org/10.1016/0012-365X(89)90187-8
https://doi.org/10.1016/0012-365X(92)00058-Y
https://doi.org/10.1016/0012-365X(92)00058-Y
https://doi.org/10.1002/(SICI)1097-0118(199709)26:1<53::AID-JGT6>3.0.CO;2-G
https://doi.org/10.1002/(SICI)1097-0118(199709)26:1<53::AID-JGT6>3.0.CO;2-G
https://doi.org/10.1002/jgt.20195
https://doi.org/10.1137/070688389
https://doi.org/10.1137/070688389
https://doi.org/10.1016/j.dam.2009.02.011
https://doi.org/10.1007/s00373-008-0778-8
https://doi.org/10.1007/s00373-008-0778-8
https://doi.org/10.1016/j.tcs.2013.12.006
https://doi.org/10.1016/j.tcs.2013.12.006
https://doi.org/10.1016/j.tcs.2013.01.015
https://doi.org/10.1007/s11425-008-0155-3
https://doi.org/10.1007/s11425-008-0155-3
https://doi.org/10.1002/(SICI)1097-0118(199905)31:1<67::AID-JGT6>3.0.CO;2-C
https://doi.org/10.1002/(SICI)1097-0118(199905)31:1<67::AID-JGT6>3.0.CO;2-C
https://doi.org/10.1007/s40840-014-0036-6
https://doi.org/10.1007/s40840-014-0036-6
https://doi.org/10.1007/s10878-015-9954-y
https://doi.org/10.1007/s10878-015-9954-y

Logic and Machine Learning

Security on Ethereum: Ponzi Scheme
Detection in Smart Contract

Hongliang Zhang1, Jiguo Yu2,3(B), Biwei Yan1,2, Ming Jing2,3,
and Jianli Zhao1,2,3

1 School of Computer Science and Technology, Qilu University of Technology
(Shandong Academy of Sciences), Jinan 250353, Shandong,

People’s Republic of China
2 Big Data Institute, Qilu University of Technology, Jinan 250353, Shandong,

People’s Republic of China
jiguoyu@sina.com

3 Shandong Fundamental Research Center for Computer Science, Jinan 250300,

People’s Republic of China

Abstract. Ethereum has many transaction security issues such as Ponzi
schemes, which are hidden in a large number of smart contracts. And
they are difficult to be detected. Therefore, we propose a novel multi-
granularity multi-scale convolutional neural network model (MM-CNN)
to detect Ponzi schemes in smart contracts. A multi-granularity method
is used to compress the smart contract opcodes with similar function to
obtain multi-granularity frequency data of opcodes in MM-CNN. Then,
we use a multi-scale convolution kernel to extract features of frequency
data. The experiments show that the frequency features are the best
measurements to represent the attributes of the Ponzi scheme. In the
multi-granularity method, fine-grained opcode has a stronger ability to
express Ponzi attributes. The recall rate of MM-CNN on the verification
set is 98.07%, which shows the effectiveness of the scheme.

Keywords: Smart contract · Ponzi scheme · Multi-granularity ·
Multi-scale

1 Introduction

With the rapid development of Ethereum, users can use Ethereum to run dis-
tributed applications (Dapps) with various functions based on their wishes.
However, it lacks security supervision and standardization. The most common
method of fraud is to write a smart contract with a Ponzi scheme (Ponzi con-
tracts). The “Ponzi scheme” created by Charles Ponzi is one of the most classic

This work was supported in part by the NSF of China under Grants 61832012 and
61771289, and the Key Research and Development Program of Shandong Province
under Grant 2019JZZY020124, and the Pilot Project for Integrated Innovation of Sci-
ence, Education and Industry of Qilu University of Technology (Shandong Academy
of Sciences) under Grant 2020KJC-ZD02.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 435–443, 2022.
https://doi.org/10.1007/978-3-031-16081-3_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_38&domain=pdf
https://doi.org/10.1007/978-3-031-16081-3_38

436 H. Zhang et al.

scams of the 20th century, which has now appeared on Ethereum. Ethereum cur-
rently has tens of thousands of smart contracts deployed and controls billions of
dollars worth of Ethereum’s cryptocurrency. Smart contract security incidents
are also emerging in an endless stream, and the loss of funds is particularly
serious. Therefore, detecting the Ponzi contract is currently an urgent task.

At present, many researchers use artificial intelligence to detect the security
of smart contracts. The same is true for Ponzi contract detection. However, there
are still many deficiencies in current research on Ponzi contract detection. Firstly,
Peng et al. [1] and Chen et al. [2] convert the bytecode of the smart contract
into an opcode and put frequency features of a single opcode into algorithm for
detection. Although single opcode frequency can reflect part of the function of a
smart contract, the single frequency construction cannot fully reflect the function
of a smart contract. Therefore, more detailed frequency feature construction
methods are needed. Secondly, the opcodes of smart contracts not only have
frequency feature, but also have a sequence feature. Moreover, Wang et al. [3]
found that the sequence information of the opcodes can also reflect the function
of the smart contract. Therefore, other features of the smart contract need to be
constructed to reflect the attributes of ponzi scheme.

To deal with these above deficiencies, we propose a novel multi-granularity
multi-scale convolutional neural network model. The main contributions can be
summarized as follows:

– We construct multiple models from the frequency feature, sequence feature
and account feature to detect the Ponzi scheme. Among models, the proposed
MM-CNN has the strongest detection ability for Ponzi contracts and the recall
rate reached 98.07% in verification set.

– We construct multi-granularity data in opcodes, including fine-grained
opcode, coarse-grained opcode, and coarse-fine-grained opcode. The exper-
iments show that fine-grained opcode is the best expressive ability for detect-
ing Ponzi contracts.

– We compare the expressivity of different modality of smart contract features
for Ponzi schemes. Models that apply frequency features are more accurate
than models that apply account or sequence features.

2 Related Work

Automated auditing is the most common method in code auditing methods,
which is based on symbolic execution and abstract methods. Torres et al. devel-
oped a system called Honeybadger which used symbolic execution to expose
smart contract [4]. The well-known automated auditing systems are Mythril [5],
Oyente [6], Maian [7], and NeuCheck [8]. Compared with manual auditing meth-
ods, the efficiency of automated auditing is greatly improved.

AI auditing is a popular solution today. Chen et al. used the Random Forest
(RF) algorithm for detection in a similar way a year later, which had a high
accuracy rate. However, there was an overfitting phenomenon [9]. Jung et al.
added account features on the basis of Chen’s method, to provide new ideas

Security on Ethereum: Ponzi Scheme Detection in Smart Contract 437

for detecting Ponzi contracts, only machine learning algorithms were used to
explore [10]. M. Bartolett et al. collected a large amount of data through multi-
input heuristic address clustering, and extracted features related to the Ponzi
scheme (for example, focusing on daily transaction volume, money flow, lifecycle,
fraudulent operation, external money flow, and geopolitical information) [11],
which did not use the features of source code for analysis and only extracted
features from the transaction information. The information was greatly affected
by people’s subjective factors and cannot be a key factor in detecting Ponzi
contracts.

We construct multi-granularity data on the Ponzi dataset and multiple mod-
els to detect the Ponzi scheme. Through experimental comparison with SVM
and K-Nearest Neighbor (KNN) algorithms, the experimental results show that
the obtained model has high accuracy.

3 The Experimental Scheme

In Fig. 1, the experimental scheme is divided into 6 steps. The first step is to
obtain the dataset, and then analyze the dataset. The second step is to crawl fea-
tures of smart contracts from the obtained dataset. The third step is to construct
multi-granularity data of opcodes. The fourth step is to construct frequency fea-
tures and sequence features. The fifth step is to balance the dataset with the
SMOTETomek algorithm. The sixth step is to construct models.

Fig. 1. Experimental process.

3.1 Feature Data Collection

The task of collecting the feature data can’t depend on the source code of the
smart contracts, because only 48.62% of those codes are open-source. So we
need to obtain feature data that does not depend on the source code. We use
etherscan to crawl opcodes and transactions on smart contracts. Opcodes and
transactions are called opcode features and account features.

438 H. Zhang et al.

Opcode Features. We collecte 120 different opcodes with operands from crawl-
ing opcodes. We simplify the operand and only retain the opcode. For exam-
ple, PUSH opcodes will have many opcodes with operands such as PUSH1,
PUSH2, PUSH3, PUSH4, PUSH5, PUSH6, and we simplify them as PUSH.
Therefore, there are 67 different opcodes.

Account Features. These transactions have three patterns: (1) When a Ponzi
contract receives a fund, the fund will be sent to some other accounts immedi-
ately. (2) Very few investors’ accounts will receive more funds than their invest-
ments. The creator of those Ponzi contracts usually receives funds through smart
contracts. (3) The rapid return of investment funds will result in a lower bal-
ance of Ponzi contracts. So the transaction attributes of Ponzi contracts can be
used to detect Ponzi schemes, and it is reasonable to construct smart contract
account features..

Based on the transaction attributes, we gathere 7 types of features from
transaction data and name them account features, which include the following
7 features: 1. The balance of the contract (Bal); 2. The number of investments
(InvNum); 3 The number of transactions that have paid return (PayNum);
4. The number of investment funds (InvFun); 5. The number of paying return
funds (PayFun); 6. The difference between the number of investment accounts
and the accounts with paid return (DifAcc); 7. The difference between the
investment funds and the returned funds (DifFun).

3.2 Multi-granularity Data Construction Based on Opcode

We convert the bytecode of the smart contract into 67 different opcodes and treat
different opcodes as fine-grained construction. So we can get the fine-grained
opcode sequence of each smart contract. We calculate the frequency of opcodes
in the fine-grained data. We find that 3 opcodes such as PUSH, SWAP , and
DUP frequently appear and the total proportion is 82%, frequently opcode will
have a negative impact on Ponzi contract detection. So we will exclude PUSH,
SWAP , and DUP opcodes. OTHER represents is not shown in the remaining
opcodes.

Coarse-grained data is a collection of opcodes with similar functions. For
example, grouping ADD, SUB, MUL, and DIV into one type, we call it
arithmetic opcodes. Arithmetic represents coarse-grained data. We split 67
opcodes into 11 types of coarse-grained data, which are called Arithmetic,
Comparison, Bitwise, Cryptography, Jump, Storage, Memory, Stack, Block,
Contract, and Others. The Others include PC, STOP , and UNKWON
(unrecognized opcode).

3.3 Feature Construction of Frequency and Sequence

We use different types of opcodes to construct frequency features. Frequency is
the number of times that different types of opcodes appear in the smart contract.

Security on Ethereum: Ponzi Scheme Detection in Smart Contract 439

The frequency features of opcodes can represent part of the code attributes by
lim = tim

Ti . Among them, tim is the number of the m-th opcode in the i-th smart
contract, T i is the sum of the number of opcodes in the i-th smart contract, and
lim is the frequency attributes of the m-th opcode in the i-th smart contract.
Fine-grained frequency data use the number of 64 opcode types (exclude PUSH,
SWAP , DUP) as the feature.

The logical sequence of codes can reflect the transaction properties of Ponzi
schemes. Therefore, we propose the sequence feature of opcodes. Sequence data
construction is to add sequences based on frequency features. We record the
location of the first occurrence of different types of opcodes in the smart contract.
Then, frequency features of the sorted opcode used as the sequence feature.
Finally, we input sequenced frequency feature into the sequence model.

4 Model Construction

4.1 Frequency Model

We build a multi-scale convolution model based on frequency features. The core
of which is to use multiple convolution kernels with different scales for frequency
feature convolution. CNN can effectively learn corresponding features from a
large number of samples, avoiding the complex feature extraction process. We
employ the multi-granularity data to build a multi-scale convolutional neural
network (MM-CNN).

Before inputting the frequency data into the model, the dimensionality of
the frequency feature needs to be reduced. We use Principal Component Analy-
sis (PCA) for dimensionality reduction and calculate the correlation coefficient
between each frequency feature through the correlation coefficient method. The
Eq. (2) for calculating the correlation coefficient of two random variables is as
follows:

ρXY =
cov(X,Y)

σXσY
=

E [(X − μX) (Y − μY)]
σXσY

= E

[(
X − μX

σX

) (
Y − μY

σY

)]

(1)
Corresponding to our sample, we think that the value of a certain dimension

feature x and y on each sample is a sampling of X and Y . Therefore, ρXY can
be estimated with 1

n

∑n
i=1

(
xi−μX

σX

)(
yi−μY

σY

)
.

Then, the data is sent to the MM-CNN model. The data first enters three
parallel convolutional layers in MM-CNN model, and each convolutional layer is
composed of convolution and pooling to extract frequency features of different
scales, the definition of multiple scale convolution is as follows:

yk,s = Convk∈K,s∈S(X,Wk) + b (2)

The three convolution kernels in K = [k1, k2, k3] are corresponding to the size
of the three convolution kernels, and the three convolution strides are respectively
S = [s1, s2, s3]. k1, k2 and k3 are increasingly larger convolution kernels. s1, s2 and

440 H. Zhang et al.

s3 are larger and larger strides. X is the frequency feature data of the input, and
y is the output value after a series of convolution kernel k and stride s.

We use pool layers of different scales to process data of different dimensions.
After processing the same dimensions, the data of the three scales are added
with the same weight, and the result is processed by the activation function
Relu before entering the fully connected layer.

The Softmax layer performs a softmax operation on the output of the fully
connected layer and converts the value to the probability of its corresponding
classification. The softmax Eq. (4) is as follows:

Softmax (xm) =
exm∑N

n=1 exn

(3)

xm is the m-th element of Softmax input x, N is the total number of elements.
Softmax(xm) is the Softmax result of each classification corresponding to xm

element, the probability that the predicted result is the classification. To optimize
the identification process of Softmax, the loss function is adopted in Eq. (5):

Lloss = −
∑
xm

P (xm) · log Softmax(xm) (4)

P (xm) represents the sign of the xm class (ture is 1, false is 0), and the sum
of m softmax multiplied by P (xm) is loss.

4.2 Sequence Model and Account Model

Faced with problems and tasks that are sensitive to time series, LSTM is usually
more suitable, so it is used to extract the features of opcode sequences. Therefore,
we build a multi-granularity LSTM model (M-LSTM) to learn the patterns of
the multi-granularity sequence features. The purpose is to compare with the
frequency model and check the detection ability of the sequence features on the
Ponzi scheme. The M-LSTM model consists of an input layer, a hidden layer,
and an output layer. The hidden layer is the core part of the model. The hidden
layer is the core part of the model.

We use a simple convolutional neural network for Ponzi scheme detection in
account features (A-CNN). Because the account has fewer features, the core is
a convolutional layer. The significance of the model is to determine whether the
account features are reasonable for Ponzi contracts and contrast with the features
of the other two models. Our purpose is to form a comparative experiment, put
the account features into the traditional SVM and KNN algorithm for detection,
which can judge whether the account features have reference value for identifying
Ponzi contracts.

5 Experimental Analysis

To measure the detection performance of our models, extensive experiments are
taken on Ponzi datasets. Next, we will introduce the experiments in detail.

Security on Ethereum: Ponzi Scheme Detection in Smart Contract 441

We downloaded the Ponzi contract dataset from the website1 Next we con-
ducted experiments on frequency features, sequence features, and account fea-
tures. We use multi-granularity data (fine-grained data, coarse-grained data, and
coarse-fine-grained data) for comparison on the frequency model to select the
best feature construction method. In the sequence model, fine-grained sequence
data and coarse-grained sequence data are used for comparison. Account features
are used in the account model.

After using the SMOTETomek algorithm to balance the dataset, we extract
70% of the dataset as the training dataset and the remaining 30% as the vali-
dation set. The running result is an average of ten runs. we use four evaluation
indicators: accuracy, precision, recall, and F-score to evaluate the performance
of the model.

5.1 Analysis of Experimental Results

We put data of different granularities into three models for experiments and
analyze the experimental results of each model. The experimental result is the
average of five measurements.

Table 1. All evaluation.

Feature Model Feature-grained Accuracy Precision Recall F-score

Frequency MM-CNN Fine-grained 94.81 92.87 97.14 94.95

Coarse-grained 67.78 68.59 65.83 67.17

Coarse-Fine-grained 95.76 93.81 98.07 95.89

KNN Fine-grained 81.52 87.64 73.64 79.96

Coarse-grained 78.71 77.17 81.45 79.25

Coarse-Fine-grained 79.87 86.29 72.92 84.30

SVM Fine-grained 84.39 95.00 72.73 82.39

Coarse-grained 87.18 86.92 87.73 87.32

Coarse-Fine-grained 83.50 88.37 78.45 83.11

Sequence M-LSTM Fine-grained 94.48 95.20 93.80 94.45

Coarse-grained 83.73 82.11 86.68 84.15

Account A-CNN 60.80 58.13 79.01 66.98

KNN 72.43 87.74 51.92 65.23

SVM 61.71 58.49 82.54 68.47

Frequency Model Analysis. Based on our MM-CNN model, machine learning
algorithms such as KNN and SVM are added for comparison. The experimental
results are shown in Table 1.

1 http://xblock.pro.

http://xblock.pro

442 H. Zhang et al.

The accuracy of the SVM algorithm and the KNN algorithm is basically the
same in the fine-grained data, but MM-CNN has the highest accuracy. Explain-
ing that fine-grained data can express the attributes of a Ponzi scheme. In the
coarse-grained data, only SVM has a slight increase in accuracy and the KNN
algorithm is lower than SVM, and the MM-CNN model performs worst. It shows
that the MM-CNN model is difficult to extract key features from the coarse-
grained data. The recall rates of the SVM and KNN in the three frequency data
are relatively low, but the recall rate in MM-CNN is the highest, the verification
set is 98.07%. In fraud detection, the recall rate should be increased as much as
possible under the premise of ensuring the precision rate.

The coarse-grained frequency feature has the worst detection effect in mod-
els or algorithms, while the fine-grained frequency feature has a good detec-
tion effect. Among the coarse-fine-grained frequency feature, only the MM-CNN
model has improved detection results compared to fine-grained data. Therefore,
the fine-grained frequency feature highlights the universality.

Sequence and Account Model Analysis. In the sequence feature, only the
M-LSTM model was used for experiments. In Table 1, it can be seen from the M-
LSTM model that the performance of the model is ideal, and it can identify Ponzi
contracts well. It can also reflect the sequence of Ponzi schemes to a certain extent.
In the fine-grained sequence feature, the accuracy rate and precision rate are high,
all four indicators have reached 95%. Sequence features can be regarded as a ref-
erence. In the coarse-grained sequence feature, indicators are not as good as the
fine-grained sequence feature. The ability of multi-granularity sequence features
to express the Ponzi contract is as follows: The expressive power of fine-grained
sequence features is greater than that of coarse-grained sequence features.

In Table 1, the four reference indicators are not high in these algorithms or
models. The performance of A-CNN is not outstanding, the account features are
less, and it is difficult to accurately reflect Ponzi attributes. The main reason
is that the different amounts of investment funds and the different propaganda
intensity of smart contracts will lead to large differences in account features. Sub-
jective factors can only reflect the attributes of Ponzi to a small extent. Explain-
ing that account features can only be used as reference features for detecting
Ponzi contracts.

6 Summary

We construct features from three modalities, namely the frequency features,
sequence features, and account features. When building opcode features, we
adopted a multi-granularity construction method to explore how to construct
the best feature. When creating the model, the frequency feature uses the MM-
CNN model, the sequence model uses the M-LSTM, and the account feature uses
the A-CNN. Experiments prove that sequence features and account features are
efficient for Ponzi attributes, but the frequency feature detection effect is the
best. In the multi-granularity opcode, fine-grained opcode has a stronger ability
to express Ponzi attributes.

Security on Ethereum: Ponzi Scheme Detection in Smart Contract 443

References

1. Peng, J., Xiao, G.: Detection of smart Ponzi schemes using Opcode. In: Zheng, Z.,
Dai, H.-N., Fu, X., Chen, B. (eds.) BlockSys 2020. CCIS, vol. 1267, pp. 192–204.
Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-9213-3 15

2. Chen, W., Zheng, Z., Cui, J., Ngai, E., Zheng, P., Zhou, Y.: Detecting ponzi
schemes on ethereum: Towards healthier blockchain technology. In: Proceedings
of the 2018 World Wide Web Conference, pp. 1409–1418 (2018)

3. Wang, L., Cheng, H., Zheng, Z., Yang, A., Zhu, X.: Ponzi scheme detection via
oversampling-based long short-term memory for smart contracts. Knowl. Based
Syst. 228, 107312 (2021)

4. Torres, C.F., Steichen, M., et al.: The art of the scam: Demystifying honeypots in
ethereum smart contracts. In: 28th {USENIX} Security Symposium ({USENIX}
Security 2019), pp. 1591–1607 (2019)

5. Bartoletti, M., Carta, S., Cimoli, T., Saia, R.: Dissecting ponzi schemes on
ethereum: identification, analysis, and impact. Futur. Gener. Comput. Syst. 102,
259–277 (2020)

6. Luu, L., Chu, D.-H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 254–269 (2016)

7. Nikolić, I., Kolluri, A., Sergey, I., Saxena, P., Hobor, A.: Finding the greedy, prodi-
gal, and suicidal contracts at scale. In: Proceedings of the 34th Annual Computer
Security Applications Conference, pp. 653–663 (2018)

8. Lu, N., Wang, B., Zhang, Y., Shi, W., Esposito, C.: Neucheck: a more practical
ethereum smart contract security analysis tool. Soft. Practice Exp. 51(10), 2065–
2084 (2021)

9. Chen, W., Xu, Y., Zheng, Z., Zhou, Y., Yang, J.Y., Bian, J.: Detecting “pump &
dump schemes” on cryptocurrency market using an improved apriori algorithm.
In: 2019 IEEE In ternational Conference on Service-Oriented System Engineering
(SOSE), pp. 293–2935. IEEE (2019)

10. Jung, E., Tilly, M.L., Gehani, A., Ge, Y.: Data mining-based ethereum fraud detec-
tion. In: 2019 IEEE International Conference on Blockchain (Blockchain), pp. 266–
273. IEEE (2019)

11. Bartoletti, M., Pes, B., Serusi, S.: Data mining for detecting bitcoin ponzi schemes.
In: 2018 Crypto Valley Conference on Blockchain Technology (CVCBT), pp. 75–84.
IEEE (2018)

https://doi.org/10.1007/978-981-15-9213-3_15

Learning Signed Network Embedding
via Muti-attention Mechanism

Zekun Lu, Qiancheng Yu(B), Xiaofeng Wang, and Xiaoning Li

North Minzu University, Yinchuan 750021, China
1999019@num.edu.cn

Abstract. In consideration of most signed network embeddings only focusing
on the low-order neighbors of the target node, they fail to make effective use
of the high-order neighbors of the target node, and the link direction and sign
of the node neighbors will affect the target node to varying degrees. Therefore, a
SNEMAmodel using structure balance theory amulti head attentionmechanism to
aggregate high-order neighbors is proposed. The model gathers the information of
high-order neighbors based on structural balance theory, captures node neighbors
of different structure types through a multi head attention mechanism, obtains the
low-dimensional feature vector representation of nodes through processing and
learning, and applies the obtained network representation to the downstream task
of link prediction. The experimental results on four real social network data sets
show that the network representation obtained by the SNEMA model helps to
improve the accuracy of link prediction, which shows that the SNEMAmodel has
achieved better results in signed network representation learning.

Keywords: Signed network · Network embedding · Balance theory · Attention
mechanism · Neighbor aggregation

1 Introduction

There are a large number of network structures in the real world, such as social networks,
biological protein networks, citation networks, transportation networks, chemicalmolec-
ular networks, and so on [1]. These network structures are huge and complex, which
implies a lot of rich knowledge. Using complex network analysis methods to study
these network structures will help people better mine the laws hidden in network data.
Common complex network analysis tasks include: node classification, link prediction,
community discovery, influence analysis, network propagationmechanism analysis, net-
work evolution prediction, etc. [2]. In a large number of real networks, there are positive
signs and negative signs on the edge of the network. The positive sign indicates a posi-
tive relationship, including friendship, support, trust, and so on; Negative signs indicate
negative relationships, including: enemy, opposition, distrust, and other relationships;
Such networks are defined as signed networks [3].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 444–455, 2022.
https://doi.org/10.1007/978-3-031-16081-3_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_39&domain=pdf
https://doi.org/10.1007/978-3-031-16081-3_39

Learning Signed Network Embedding via Muti-attention Mechanism 445

Deep learning has made a breakthrough in the fields of natural language processing,
machine vision, and so on. Therefore, people extend the deep learning method to graph
data learning. The network representation learning based on graph deep learning has
become a research hotspot in academic circles. Network representation learning [4]
includes node embedding, edge embedding and graph embedding. Node embedding is
to gather the characteristics of each node and its neighbor nodes, map the topological
proximity to the low-dimensional representation space, and obtain the low-dimensional
vector representation of the node. This representation retains the node characteristics
and network topology as much as possible.

However, the existing network representation learning still can not mine the signed
relationship of nodes and deal with the high-order neighbor information of nodes. Meth-
ods such as DeepWalk [5], GAT [6], and GraphSage [7] cannot handle negative links
in the network; SNE [8], SINE [9], SIGAT [10] ignore node high-order neighbor infor-
mation and are not suitable for processing sparse data sets; SGCN [11], SNEA [12] and
others ignore the different structure types between node pairs and are not suitable for
complex and dense data sets.

2 Preliminaries

In the following, we introduce some necessary definitions and Extended theory facilitate
a better understanding of the problem and our proposed solution.

2.1 Structural Balance Theory

Authors should discuss the results and how they can be interpreted from the perspective
of previous studies and of the working hypotheses. The findings and their implications
should be discussed in the broadest context possible. Future research directions may also
be highlighted.

Structural balance theory originated from the balance model of people’s attitude
towards things proposed by heidery [13]. Cartwright and Harary [14] further extended
the theory proposed by hider to signed networks. The “+” and “-” on the edge represent
positive and negative relations. At present, the structure balance theory is widely used
in the fields of signed network embedding and link prediction algorithms.

(1) Structure balanced triangle: it can be judged by the product of the symbols of
the three sides of the triangle: if it is positive, the triangle structure is balanced;
Otherwise, the structure is unbalanced. From the perspective of sociology and psy-
chology, the judgment of the structural balance of the above triangle is simply
summarized as the following four intuitive understandings: a friend’s friend is my
friend; The enemy of a friend is my enemy; The enemy’s friend is my enemy;
The enemy of the enemy is my friend. The research shows that [15] in real signed
networks, the number of structurally balanced triangles is much larger than that of
structurally unbalanced ones, and the unbalanced network gradually evolves to a
balanced network over time.

446 Z. Lu et al.

(2) Structural balance ring: if an L-ring (L ≥ 3) contains an even number of negative
edges, the structure is balanced, otherwise the structure is unbalanced (Fig. 1).

Fig. 1. Schematic diagram of structural balance (left) and structural imbalance (right)

2.2 Social Status Theory

Structural balance theory provides a theoretical basis for the analysis of unsigned net-
works, but there is a large deviation in directed signed networks. Subsequently, leskovec
and Kleinberg [16] proposed a social status theory suitable for signed networks, which
holds that if a positive edge points from a to B, a has a higher social status than B. If
there is a negative side of a pointing to B, B has a higher social status than a, which is
transitive (Fig. 2).

Fig. 2. Status balance (left) and status imbalance (right)

In the signed network composed of three nodes, the method to determine whether
a triangle conforms to the social status theory is as follows: first, reverse the direction
of all negative links in the triangle, and convert the symbols on the links into positive
signs. If the final triangle can not form a loop, then the triangle conforms to the social
status theory, otherwise it does not conform to the social status theory. If every member
in a system follows the ranking method of the same status without status conflict, the
symbol of the edge can be inferred as long as the direction of the edge is known [24–26].

3 Model Introduction

Based on the previous discussion on sociological theory in signed directed networks,
we will introduce how to design our new SNEMA model in this section. Our model
is divided into three parts: learning first-order neighbor information, aggregating high-
order neighbor information and learning to get the final node vector representation,
Finally, the quality of the model is tested by the experiment of link prediction.

Learning Signed Network Embedding via Muti-attention Mechanism 447

Fig. 3. Schematic diagram of SNEMA framework

3.1 Select Appropriate Node Neighbors

In social networks, the link behavior of user nodes will be affected by neighbor nodes,
and different neighbors have different effects on target nodes. Therefore, when aggre-
gating the neighbors of the target node, it is necessary to distinguish the impact of
different neighbor types on the target node. According to the status balance theory [20],
the proportion of triangular relationship models in line with the status balance theory
reaches 80%–85%, which is significantly higher than the model of random combination
of relationships. Moreover, the combination that does not comply with the triangular
balance relationship is gradually transformed into the combination that complies with
the triangular balance relationship with the passage of time, and finally the relationship
of triangular combination tends to be stable. Therefore, taking eight patterns in line with
the social status theory (the right of Fig. 4) as the sampling pattern of node neighbors
can capture the different influence of neighbors on the target node to the greatest extent.
In order to preserve the integrity of the target node, the neighbors of the target node that
do not conform to the social status theory are classified according to the pattern on the
left of Fig. 3. Finally, the neighbors of the target node sample according to the 12 modes
proposed in Fig. 3. This sampling mode can capture the contribution of different types
of neighbors to the target node.

Fig. 4. Neighbor sampling mode

448 Z. Lu et al.

3.2 Gather 1-layer Neighbor Information

Dealing with negative links when aggregating neighbor information in signed networks
will directly affect the quality of network embedding. At present, using the unique
sociological theory [17, 20] in signed networks to deal with negative links in networks
has achieved good results. SNEMA model is based on sociological theory and gathers
neighbor information through multi head attention mechanism. The SNEMA model
samples the first-order neighbor information based on the 12modes proposed above, and
uses the multi head attention mechanism to gather the first-order neighbor information.

There are two calculation methods of attention mechanism: full graph attention and
self attention mechanism. The whole graph attention mechanism refers to that every
node performs attention operation on any vertex of the graph. This operation method
discards the feature of graph structure, and the effect will be very poor; The self attention
mechanism is only carried out in the neighbor nodes, which retains the characteristics
of the neighbor nodes to the greatest extent. This paper adopts self attention mechanism
to aggregate node neighbors. Because different neighbor types have different effects
on the target node, the node neighbors under different structures can be divided into
differentmodes, andmulti head attention is used to capture the neighbor types of different
target nodes. Fully considering the characteristics of signed networks, the first-order
neighbor sampling can be divided into 12 different structures. As shown in Fig. 4 (3),
this red dashed arrow and the green solid arrow represent negative links and positive links
respectively. Node u represents the target node and gray node represents the neighbors
of the target node. For the target node neighbors in different modes, they use different
attention to learn to obtain the node vector representation. The neighbors of nodes can
be broadly divided into friends and enemies, which have different attribute information.
We assign friend aggregators and enemy aggregators to learn the information of friends
and enemies of nodes respectively. The first-order neighbor aggregation expression for
the target node is as follows:

hB(1)
i = tanh(

1

M

M∑

m=1

∑

j∈N+
i

amij h
(0)
j WB(1)

m) (1)

hU (1)
i = tanh(

1

M

M∑

m=1

∑

j∈N−
i

amij h
(0)
j WU (1)

m) (2)

where M represents the total 12 modes, represents the weight attention coefficient of
node j to node i under different modes, and represents the matrix parameters under the
attention mechanics of balanced structure and unbalanced structure respectively. The
values of parameters am and are trained under each mode, and the weight coefficients
under different modes are calculated under balanced structure and unbalanced structure
respectively.

In the aggregation of the first layer, the importance of node j to node i under different
modes is defined as follows:

eB
m

ij = am(h(0)
i WB(1)

m , h(0)
j WB(1)

m ,Bm) (3)

Learning Signed Network Embedding via Muti-attention Mechanism 449

eU
m

ij = am(h(0)
i WU (1)

m , h(0)
j WU (1)

m ,Um) (4)

The standardized attention coefficient can be calculated by the following formula:

aB
m

ij = exp(eB
m

ij)
∑

t∈N+
i
exp(eB

m

it)
(5)

aU
m

ij = exp(eU
m

ij)
∑

t∈N−
i
exp(eU

m

it)
(6)

3.3 Gather High Layer Neighbor Information

The structural balance theory is used to sample the higher-order neighbors of the target
(the neighbors of layer L). Similarly, the balanced path (or unbalanced path) is expressed
as containing an even (or odd) number of negative links. Therefore, a path from node
to is an even (odd) number of negative links. Then the structural balance theory [17]
believes that there is a positive (negative) link between node and. The neighbor nodes
are aggregated into the balanced structure and the unbalanced structure in turn, and the
nodes on each layer are classified into the structure balanced Bi and the unbalanced
structure along the balanced (and unbalanced) path until all the nodes on the L layer
of the target node are migrated. Figure 5 illustrates the schematic diagram of node i
aggregating high-order neighbor information in a symbolic network.

 Bi(1)

Ui(1)

 Bi(2)

Ui(2)

 Bi(3)

Ui(3)

 Bi(L)

Ui(L)

Fig. 5. Aggregate higher-order neighbors

Different from the convergence of the first layer The aggregation of high-level neigh-
bors of the target node is more complex. When gathering high-order neighbors, the bal-
anced structure gathers the ideas of neighbors: Friends of friends are friends and enemies
of enemies are friends; The unbalanced structure gathers the thoughts of neighbors: the
enemy of friends is the enemy, and the friend of the enemy is the enemy. Using this
idea, all neighbor nodes of each layer are sampled recursively, as shown in the following
formula:

(7)

450 Z. Lu et al.

(8)

where hB(l−1) and hU (l−1) represents the vector representation of the balanced and unbal-
anced structure of the upper layer structure. In order to simplify the formula, φ repre-
sented {Bm,Um}. aσ

ij represents the importance of node i to node j in different modes,
and calculates the weight coefficient between different nodes in different modes with
formula (13):

eφ(l)
ij = aφ(hφ(l−1)

i W φ, hφ(l−1)
j W φ, φ) (9)

Calculate the attention coefficient under different modes with formula (14) and
normalize it:

(10)

For high-order neighbor sampling, based on the principle of structural balance, the target
nodes of different modes are studied by attention mechanism with balanced structure
and unbalanced structure to learn the shared weight matrixW φ and attention coefficient
in each mode. This can better deal with neighbors under different structures. When
aggregating the neighbor information of layer L, the node information of the former (L-1)
layer is aggregated to the balanced aggregation structure Bm and unbalanced aggregation
structure Um. Finally, the target node vector is expressed as:

hi = tanh([hB(l)
i ||hU (l)

i])WM (11)

Splice the finally learned balanced structure hB(l)
i and unbalanced structure hU (l)

i ,
and finally obtain the low dimensional vector representation hi of node i through the
conversion of weight matrix WM , as shown in Fig. 5 (c).

4 Experiment

In order to verify the learning effect of SNEMA model on node vector representation
in signed network, the link prediction experiment is carried out and compared with the
typical benchmark method in four real social network data sets to verify the learning
effect of SNEMA model on node vector representation. In addition, the experiment is
further extended to analyze the influence of super parameter selection on the performance
of the model. SNEMA model is based on Python 3 6. The experimental environment is
CPU i7-6700, six cores and twelve threads, the memory is 12 gb, and the graphics card
is and R7 2 GB.

4.1 Datasets

Experiments in four real signed networks are carried out to verify the authenticity of
the proposed framework. The statistical information of the four data sets is shown in
Table 1:

Learning Signed Network Embedding via Muti-attention Mechanism 451

Table 1. Dataset statistics

Node Positive
links

Negative
links

Proportion

Bit.Alphs 3775 12721 1399 0.90

Wikipedia 5875 18230 3529 0.83

Slashdot 37626 313543 513851 0.74

Epinions 45003 513851 102180 0.83

4.2 Baselines

• DeepWalk [4]: select the node sequence at the network nodes based on random walk,
and then use skip gram model to model the probability of the nodes in the sequence.

• SINE [12]: use the characteristics of signed network to sample and model nodes with
random walk method.

• SiGAT [13]: divide the node neighbors into 38 modes and use the multi head attention
mechanism to gather the neighbor information.

• SGCN [14]: combine the balance theory to sample high-order neighbors, and use the
idea of graph convolution to aggregate node neighbors.

• SNEA[15]: use the attentionmechanism to learn different attentionweight coefficients
between node pairs and aggregate neighbor nodes with different weight coefficients.

4.3 Baseline Model Comparison Experiment

The results of SNEMAmethod and benchmark method in four real signed network data
sets are shown in Table 2 and Table 3. The results show whether the link prediction
between predicted users is correct. In this experiment, 80% of the data set is used as the
training set and 20% as the test set. The evaluation indexes are AUC and F1 values. In
the epinions experiment, the experiment trains 492824 edges and predicts 123207 edges.
The AUC value is calculated according to the calculation results. The AUC value of the
SNE-MAmethod proposed in this paper is 0.868, which is about 14%, 9%, 3%, 6% and
2% higher than that of deepwalk, sine, sigat, sgcn and snea respectively. This is because
deepwalk is designed for unsigned networks.When the number of negative links ismore,
the effect is worse, and sigat fails to pay attention to high-order neighbors, Sgcn does not
pay attention to the different influence of neighbors on the target node, and snea ignores
the different types of neighbors of the node. It can be seen from the comparison that the
SNEMAmethod proposed in this paper has a higher accuracy in the prediction of signed
network links, especially in the data set with more nodes and edges. This is because
the method proposed in this paper makes good use of the structure balance theory to
collect samples of high-order neighbors, uses the multi head attention mechanism to
capture neighbor nodes with different structures, and enhances the learning ability of
vector representation between node pairs.

452 Z. Lu et al.

Table 2. AUC experimental results

Approach BitAlphs Wikipedia Slashdot Epinions

DeepWalk 0.780 0.761 0.723 0.720

SiNE 0.782 0.779 0.764 0.789

SiGAT 0.776 0.792 0.781 0.832

SGCN 0.816 0.801 0.768 0.802

SNEA 0.806 0.798 0.782 0.840

SNEMA 0.812 0.813 0.791 0.868

Table 3. F1 experimental results

Approach BitAlphs Wikipedia Slashdot Epinions

DeepWalk 0.813 0.820 0.782 0.780

SiNE 0.866 0.853 0.831 0.898

SiGAT 0.886 0.896 0.851 0.901

SGCN 0.912 0.899 0.849 0.908

SNEA 0.908 0.901 0.859 0.914

SNEMA 0.918 0.911 0.862 0.928

4.4 Superparametric Analysis

SNEMA parameters include aggregation layers and vector dimensions. This section
mainly verifies the influence of different parameters on the performance of SNEMA
through experiments. In the experiment, except for the verification parameters, other
parameters are set to the default value.

Figures 6 (a) and 6(b) show that with the increase of training rounds, the loss value
gradually decreases, the auc value increases, then gradually converges, and finally tends
to be stable. Figure 6 (c) shows the effect of vector dimension on experimental per-
formance. The SNEMA model has a preliminary effect when it is expressed in the 15
dimensional vector. Then, with the increase of the model dimension, the effect gradually
increases, and the best effect is achieved in about 20 dimensions, and then tends to be
stable. With the increase of dimension, the effect begins to decline. This situation can
be understood as the introduction of relevant noise while maintaining more relationship
information, so as to reduce the generalization ability.

Figure 6 (d) shows the effect of the number of aggregation neighbor layers L on
the experimental performance. It is found that when layer = 1, the performance of the
algorithm is the lowest, because the target node only aggregates the information of the
first-order neighbors. Obviously, the insufficient number of aggregated neighbors will
lead to poor results. Using the structure balance theory to aggregate the neighbors of
the second layer, it can be seen from the fig that the effect is improved when the nodes

Learning Signed Network Embedding via Muti-attention Mechanism 453

Fig. 6. Hyperparameter analysis

aggregate the neighbors of the second layer than that of only one layer. This is because
the nodes aggregate more neighbor information, which makes the vector representation
of the nodes richer, When the number of neighbor layers reaches 2, the effect is the best.
When aggregating higher-level neighbors, the experimental performance is reduced,
because the higher-level neighbors have less influence on the target node. With the
increase of the number of high-level neighbors, the vector features of the nodes are
scattered, but the data noise is increased, resulting in the reduction of the experimental
effect.

5 Conclusion

This paper proposes a signed network embedding model based on multi head attention
mechanism – SNEMA. The framework finds out the positive and negative neighbors
of each order of nodes according to the structural balance theory, and comprehensively
considers 12 neighbor sampling modes derived from the social status theory. The multi
head attention mechanism is used to capture the contribution of neighbors in different
modes to node embedding, and the aggregation of high-order neighbor characteristics
of nodes is realized by stacking multiple convolution layers, so as to fuse the node’s
own attributes and each order neighbor attributes to obtain the low-dimensional vector

454 Z. Lu et al.

representation of nodes. Through the link prediction experiments on four public data
sets, it is proved that the network node embedding based on SNEMA model has better
performance than the benchmark method. In the future work: we will consider introduc-
ing hierarchical attention mechanism to automatically learn the neighbors of different
modes through hierarchical attention, so as to further enhance the expression ability of
the model; The framework proposed in this paper will also be extended to heterogeneous
networks.

Acknowledgements. This work was supported by the National Science Foundation of China
(GrantNos. 62062001); Thisworkwas supported by theNingxia first-class discipline and scientific
research projects (electronic science and technology, NXYLXK2017A07); This work was sup-
ported by the Provincial Natural Science Foundation of NingXia (NZ17111, 2020AAC03219) and
this work was supported by the scientific research platform of “Digital Agriculture Empowering
Ningxia Rural Revitalization Innovation Team” of North Minzu University.

References

1. O’Sullivan, D., Turner, A.: Visibility graphs and landscape visibility analysis. Int. J. Geogr.
Inf. Sci. 15(3), 221–237 (2001)

2. Chen, J., Zhong, M., Li, J., Wang, D., Qian, T., Tu, H.: Effective deep attributed network
representation learning with topology adapted smoothing. IEEE Trans. Cybern. https://doi.
org/10.1109/TCYB.2021.3064092

3. Boccaletti, S., Ivanchenko, M., Latora, V., et al.: Detecting complex network modularity by
dynamical clustering. Phys. Rev. E 75(4), 045102 (2007)

4. Tang, J., Chang, Y., Aggarwal, C., Liu, H.: A survey of signed networkmining in social media.
ACM Comput. Surv. (CSUR) 49(3), 42 (2016)

5. Zhang, Z., Cui, P., Zhu, W.: Deep learning on graphs: a survey. IEEE Trans. Knowl. Data
Eng. (2020)

6. Zhang, D., Yin, J., Zhu, X., et al.: Network representation learning: a survey. IEEE Trans.
Big Data 6(1), 3–28 (2018)

7. Zhou, J., Liu, L.,Wei,W., et al.: Network representation learning: from preprocessing, feature
extraction to node embedding. ACM Comput. Surv. (CSUR) 55(2), 1–35 (2022)

8. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations,
pp. 701–710. ACM Press (2014). ACMSI GKDD, 855–864 (2016)

9. Veličković, P., Cucurull, G., Casanova, A., et al.: Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017)

10. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In:
Advances in Neural Information Processing Systems, pp. 1025–1035 (2017)

11. Yuan, S., Wu, X., Xiang, Y.: SNE: signed network embedding. In: Kim, J., Shim, K., Cao, L.,
Lee, JG., Lin, X., Moon, YS. (eds.) PAKDD 2017. LNCS, vol. 10235, pp. 183–195. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-57529-2_15

12. Wang, S., Tang, J., Aggarwal, C., et al.: Signed network embedding in social media. In:
Proceedings of SIAM International Conference on Data Mining, pp. 327–335. SIAM Press,
Houston (2017)

13. Heider, F.: Attitudes and cognitive organization. J. Psychol. 21(1), 107–112 (1946)
14. Leskovec, J.,Huttenlocher,D.,Kleinberg, J.: Signed networks in socialmedia. In: Proceedings

of SIGCHI Conference on Human Factors in Computing Systems, pp. 1361–1370. ACM
Press, New York (2010)

https://doi.org/10.1109/TCYB.2021.3064092
http://arxiv.org/abs/1710.10903
https://doi.org/10.1007/978-3-319-57529-2_15

Learning Signed Network Embedding via Muti-attention Mechanism 455

15. Girdhar, N., Bharadwaj, K.K.: Signed social networks: a survey. In: Singh, M., Gupta, P.,
Tyagi,V., Sharma,A.,Ören, T.,Grosky,W. (eds.) ICACDS2016.CCIS, vol. 721, pp. 326–335.
Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-5427-3_35

16. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting positive and negative links in online
social networks. In: Proceedings of the 19th International Conference on World Wide Web,
pp. 641−650. ACM Press, New York (2010)

17. Chiang, K.Y., Natarajan, N., Tewari, A., et al.: Exploiting longer cycles for link prediction in
signed networks. In: Proceedings of the 20th ACM International Conference on Information
and Knowledge Management, pp. 1157–1162 (2011)

18. Vaswani, A., Shazeer, N., Parmar, N., et al.: Attention is all you need. In: Advances in Neural
Information Processing Systems, vol. 30 (2017)

https://doi.org/10.1007/978-981-10-5427-3_35

Three Algorithms for Converting Control
Flow Statements from Python to XD-M

Jiarui Wang, Nan Zhang(B), and Zhenhua Duan(B)

Institute of Computing Theory and Technology, and ISN Laboratory,
Xidian University, Xi’an 710071, China

wangjiarui@stu.xidian.edu.cn, nanzhang@xidian.edu.cn,

zhhduan@mail.xidian.edu.cn

Abstract. This paper presents an approach to show how to implement
three complex statements: continue, break, return of Python to XD-M
language. To this end, three algorithms for implementing three com-
plex statements are given in detail. Further, three complex statements
are implemented in XD-M. Finally, a program example is presented to
illustrate how to use the proposed approach to build an XD-M program
equivalent to the original Python program.

Keywords: Programming language · Complex control flow ·
Continue · Break · Return

1 Introduction

Modeling, Simulation and Verification Language (MSVL) is developed from tem-
pol logic [9,10,14]. It is a logic programming language that can model, simulate
and verify software and hardware systems. The underlying logic is Projection
Tempol Logic(PTL) [18,20]. MSVL can be used for three purposes: (1)Model-
ing: Usually MSVL can model complex software and hardware systems, as well
as multi-core parallel systems [19]; (2)Simulation: MSVL programs can also be
executed like imperative programming languages such as C, C++, and Java;
(3)Verification: More importantly, MSVL programs can be used to verify large-
scale software and hardware systems [6,11]. It provides a new way of program
verification, allowing developers to find and correct software and hardware bugs
efficiently.

XD-M is a Python-like language. It is based on MSVL, and therefore, inher-
its advantages and features of MSVL. Basically it is designed to be an easy-
to-use language and facilitated mathematical analysis and reasoning as well as

The research is supported by the National Key Research and Development Program of
China (2018AAA0103202); National Natural Science Foundation of China (62172322,
61751207, 61732013); Shannxi Key Science and Technology Innovation Team Project
(2019TD-001); Natural Science Basic Research Program of Shaanxi Province (2022JM-
367).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 456–465, 2022.
https://doi.org/10.1007/978-3-031-16081-3_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_40&domain=pdf
https://doi.org/10.1007/978-3-031-16081-3_40

Algorithms for Converting Control Flow from Python to XD-M 457

implemented by more functionalities [8]. XD-M contains commonly used data
types and language structures in Python, and XD-M is also an interpreted lan-
guage [17].

Python is an interpreted, high-level and general-purpose programming lan-
guage [3]. It is widely used in artificial intelligence and other scientific computing
fields. The ever-increasing demand for Python programs means that their scales
and structures become more and more complex. To ensure the correctness of
Python programs, it is necessary to find out an effective and efficient way to
verify Python programs. One available approach is to convert Python programs
to XD-M programs so that Python programs can be formally verified using skills
with XD-M.

There are three main complex control flows in Python: continue and break
statements in loops, and return statement in a function definition [4,12]. The
statements in XD-M have timing characteristics, so they are executed according
to the state and interval of each statement. It is not able to support the jump
execution of programs, i.e. continue, break and return statements cannot be
implemented directly.

Therefore, we are required to use existing statements in XD-M language, such
as sequential, conditional and loop statements, to implement the equivalent logic
of continue, break, and return statements.

This paper presents an approach to show how to implement three complex
statements: continue, break, return of Python in XD-M language. To this end,
three algorithms for implementing three complex statements are given in detail.
Further, three complex statements are implemented in XD-M. Finally, a program
example is presented to illustrate how to use the proposed approach to build an
XD-M program equivalent to the original Python program.

This paper is organized as follows. In the next section, we introduce the
equivalent logic implementation of continue, break and return statements in
XD-M. In Sect. 3, We present the validation results of the proposed approach
and show one of the test programs. In Sect. 4, conclusions are drawn.

2 Converting Algorithms of Complex Control Flow

2.1 The Algorithm of Converting continue Statement

The continue statement is used to tell the program to skip the remaining state-
ments in the current loop block and continue with the next loop [7]. The left-hand
side of Fig. 1 shows the execution flow of a Python program that includes a con-
tinue statement. First of all, when the Python program executes the continue
statement, it skips the remaining statements in the loop body, backs to the loop
start, and performs the next loop. In the case where the loop has an else block, if
the while loop is not terminated by break statement, after running all the loops,
the program executes corresponding else block, and finally ends the execution
of the entire while block.

To implement the function of continue statement equivalently in XD-M, we
made some modifications to the original program structure. First of all, we

458 J. Wang et al.

Fig. 1. An example of continue statement in Python and its equivalent implementation
of XD-M

noticed that the Python program will return to the beginning of the loop after
continue statement, and it will always be executed in the program order when it
does not encounter continue statement. It can be seen that the program has two
different execution states to indicate whether it encounters continue statement
or not. To distinguish between these two states, we added a state machine called
continue flag to record the state of the program. We define that the state of
continue flag is 1 after the program encounters the continue statement, and
0 otherwise. The initial state of continue flag is 0, and it will be reinitialized
each time it goes back to the beginning of the loop. We divide the program
into several parts and sort out the differences in the behavior of the program in
different states, as shown in Table 1.

The right-hand side of Fig. 1 shows the equivalent implementation of the
continue logic and its execution flow in the XD-M program. We deal with the
codes of the six parts separately:

1. The first part of the codes will execute normally, but we need to initialize
the continue flag in time, so we added a statement that assigns the con-
tinue flag to 0 at the beginning of the loop. As shown (1) in Fig. 1.

2. We do not make any changes to the part of the if statement that contains
the continue statement before the continue statement.

3. We convert the continue statement to an assign statement that assigns con-
tinue flag to 1. As shown (2) in Fig. 1.

Algorithms for Converting Control Flow from Python to XD-M 459

Table 1. Behavior of the program in different states.

Program location Program running behavior in
continue flag=0

Program running
behavior in
Continue flag=1

Between the beginning of the

loop and the if statement
containing the continue
statement

continue flag must be 0,

execution

continue flag

cannot be 1

The part before continue
statement in the if statement
that contains continue
statement

continue flag must be 0, and
the code executes according to
the if-conditions

continue flag
cannot be 1

Continue statement State transition from 0 to 1 continue flag is 1

The part after continue
statement in the if statement
that contains continue
statement

continue flag cannot be 0 continue flag
must be 1, no
execution

From the next statement of the
if statement containing
continue statement to the end
of the loop

Execution No execution

Else block Execution Execution

4. The part after continue statement in the if statement containing continue
statement, which is statement4 in Fig. 1, will never be executed, so they are
deleted directly.

5. For the part of the codes from the next statement of the if statement con-
taining continue statement to the end of the loop, which is statement5 and
statement6 in Fig. 1, we put this part of the statements into an if condition
statement to judge the state of continue flag at this time, continue flag=
0 means normal execution, otherwise, no execution. As shown (3) in Fig. 1.

6. The else block, which is statement7 and statement8 in Fig. 1, will always
execute regardless of the state, so we add all statements contained in the else
block after the modified while statement. As shown (4) in Fig. 1.

2.2 The Algorithm of Converting break Statement

The break statement is used to break out of the loop body [5,15]. If the loop
is terminated by a break statement, then any code in that loop block will not
be executed. The left-hand side of Fig. 2 shows the execution flow of a Python
program that includes a break statement. When the Python program executes
the break statement, it jumps out of the loop body and jumps out of the else
block corresponding to the loop. When the loop is not terminated by break
statement, the else block corresponding to the loop executes normally.

Similar to the continue statement, there a state machine is also needed
to check whether the break statement has been performed. We added a state

460 J. Wang et al.

Fig. 2. An example of break statement in Python and its equivalent implementation
of XD-M

machine called break flag to record the state of the program. We define that
the state of break flag is 1 after the program encounters the break statement,
and 0 otherwise. The initial state of break flag is 0, and it needs to be initial-
ized at both starting and ending of the loop, as shown (1) and (6) in Fig. 2, which
will keep the program be correct in nested loops. We sort out the differences in
the behavior of the program in different states, as listed in Table 2.

The right-hand side of Fig. 2 shows the equivalent way to implement the break
logic and its execution flow in the XD-M program. Each segment of the code is
discussed separately:

1. We found that as long as the program is in the state of break flag=1, the
entire loop body (including the corresponding else block) will not be executed.
So we added a condition that negates the break flag at the loop condition
judgment so that when the break flag=1, the loop will not be executed. We
added a statement that assigns break flag to 0 before entering the loop. We
made this change for two reasons: 1) If it is not initialized before the loop
body, the loop condition cannot be checked; 2) The implementation logic
does not need to repeatedly initialize the break flag. As shown (1) and (2)
in Fig. 2.

Algorithms for Converting Control Flow from Python to XD-M 461

Table 2. Behavior of the program in different states.

Program location Program running behavior in
break flag=0

Program running
behavior in
break flag=1

Between the beginning of the

loop and the if statement
containing the break statement

Execution No execution

The part before break
statement in the if statement
that contains break statement

Execute according to the
if-condition

No execution

break statement State transition from 0 to 1 break flag is 1

The part after break statement
in the if statement that
contains break statement

break flag cannot be 0 break flag must
be 1, no execution

From the next statement of the
if statement containing break
statement to the end of the loop

Execution No execution

Else block Execution No execution

2. We do not make any changes to the part of the if statement that contains
the break statement before the break statement.

3. We convert the break statement into an assign statement that assigns
break flag to 1. As shown (3) in Fig. 2.

4. We deleted the code after the break statement in the if statement containing
the break statement i.e. statement4 in Fig. 2.

5. For the part of the codes from the next statement of the if statement con-
taining break statement to the end of the loop, which is statement5 and
statement6 in Fig. 2, we put this part of the statements into an if block.
break flag = 0 means normal execution, otherwise, no execution. As shown
(4) in Fig. 2.

6. When the loop is terminated due to the execution of the break statement, the
else block is not executed, whereas when the break statement is not executed,
the loop exits normally, and the else statement block is executed normally.
So we put else block, which is statement7 and statement8 in Fig. 2, into
an if condition statement. If break flag=0, it will be executed normally,
otherwise it will not be executed. As shown (5) in Fig. 2.

2.3 The Algorithm of Converting return Statement

The return statement is used to exit the function [13,16]. The left hand side
of Fig. 3 shows the execution flow of a Python program that includes a return
statement. The Python program will quit the function when the return statement
is executed. Similar to continue and break statements, the program’s behavior is

462 J. Wang et al.

Fig. 3. An example of return statement in Python and its equivalent implementation
of XD-M

related to whether the return statement has executed. We add a state machine
named return flag, and initialize it to 0 when entering the function body, as
shown (1) in Fig. 3. We divide the program into several parts, as listed in Table 3.

The right hand side of Fig. 3 shows the equivalent implementation of the
return logic and its execution flow in XD-M program. We deal with the codes of
the six parts separately:

1. We add a condition th—at negates the return flag at the loop condition
checking, so that when the return flag=1, the loop will not be executed. As
shown (2) in Fig. 3.

2. We do not make any changes to the part of the if statement containing return
statement before the return statement.

3. We record the return value of the function, and convert the return statement
into an assign statement that assigns return flag to 1. As shown (3) in Fig. 3.

4. For the part of the codes from the next statement of the if statement con-
taining return statement to the end of the loop, which is statement5 and
statement6 in Fig. 3, we put this part of the program into the condition
statement, so that the operation of jump out of the loop is realized. As shown
(4) in Fig. 3.

Algorithms for Converting Control Flow from Python to XD-M 463

Table 3. Behavior of the program in different states.

Program location Program running behavior in
return flag=0

Program running
behavior in
return flag=1

From the beginning of the
function to the if statement
containing the return
statement

Execution No execution

The part before return
statement in an if statement
containing return statement

Execute according to the
if-condition

No execution

return statement Record the return value of
the function, and state
transition from 0 to 1

return flag is 1

From the next statement of
the if statement containing
return statement to the end
of the loop

Execution No execution

Else bolck Execution No execution

From next statement of the
else block to the end of the
function

Execution No execution

5. we put the else block corresponding to the loop, which is statement7 and
statement8 in Fig. 3, into the condition statement, so that the operation of
jump out of the else block is realized. As shown (5) in Fig. 3.

6. For the part of the program from the next statement of the else block to the
end of the function, which is statement9 in Fig. 3, we also put it into the
condition statement, so that the operation of exiting the function is realized.
As shown (6) in Fig. 3.

2.4 Put Them All Together

When three statements of continue, break and return, or two of them appear
in an XD-M program at the same time, the conversion approach is the same
as the one presented before. The state machine of the statement is initialized,
the position of each state machine remains unchanged, and the changes of the
respective state machines are set at the positions where the continue, break and
return statements appear. Finally, we add the state detection of their respective
state machines to the statements that might be skipped according to the top-
down sequence of the program. There are two points we need to address:

– If the same segment of the program may be skipped by two or three complex
control flow statements, then the state checking conditions of the respective

464 J. Wang et al.

state machines should be added to the segment at the same time, for example,
the program certain piece of codes may be skipped by break statement or
return statement, so it is necessary to add (!break flag and !return flag)
judgment to this code. Accordingly, it can skip the code when the program
executes break statement without executing return statement, or executes
return statement without executing break statement.

– The state machine break flag needs to be reset to 0 when exiting the loop.
This is because in the nested loops, when the state machine of the inner loop
is used and set as 1, and it is not reset to 0 in time, it will affect the jump
logic of the outer loop body. This may cause the program to skip some code,
which should be executed, resulting in a program error.

3 Verification

3.1 Test Environment

We developed a tool called P2M, which can be used to convert a Python program
to a corresponding XD-M program in an automatical way. With P2M, we can
check whether an XD-M program converted from a Python program containing
three complex control flows is equivalent to the corresponding Python program.

To do so, we can print out the running results of the two programs at the
same time. In this way, we can perform a large number of tests. The experimental
results show that our approach is sound.

We use the AST library to finish syntax analysis of Python program [2]. The
AST module helps Python applications process trees of the Python abstract
syntax grammar. We use the ast.parse() of the library to generate the abstract
syntax tree of the Python program, and use ast.NodeTransformer class to recon-
struct the abstract syntax tree by defining the visitor method in this class.
Finally, we use ast.NodeVisitor class to generate the corresponding XD-M code,
by redefining the visitor method in this class and implementing the conversion
scheme proposed in this paper.

3.2 Test Results

We use the aforementioned platform to test our approach. We constructed 60
Python programs with complex control flows, they have nested loops, nested if
statements, and various combinations of continue, break and return statements.
We list one of the more complex test programs in our repository [1]. This program
includes loop nesting, if nesting, if and loop nesting, and three statements of
continue, break and return appearing in one program at the same time. The
test results of these programs show that the method proposed in this paper can
construct programs with the same function as complex control flows and get
the same running results. The proposed approach in this paper can be used not
only with XD-M language but also with other programming languages without
continue, break and return statements.

Algorithms for Converting Control Flow from Python to XD-M 465

4 Conclusion

This paper proposes three algorithms which can be used to implement three
complex control flow statements, continue, break and return in XD-M programs.
The proposed approach has been realized in a tool P2M. This enables us to
convert a Python program into an XD-M program in an automatical manner.
However, the current version of P2M is only a draft version. It needs a lot of
tests in the future. Furthermore, we need also to build a library of functions for
XD-M.

References

1. P2M: A Python to XD-M translator. https://github.com/FairyJiar/P2M
2. Python AST Document. https://docs.python.org/3/library/ast.html
3. Python Homepage. https://www.python.org/
4. Allen, F.E.: Control flow analysis. ACM SIGPLAN Notices 5(7), 1–19 (1970)
5. Baker, B.S., Kosaraju, S.R.: A comparison of multilevel break and next statements.

J. ACM (JACM) 26(3), 555–566 (1979)
6. Bowman, H., Thompson, S.: A decision procedure and complete axiomatization

of finite interval temporal logic with projection. J. Logic Comput. 13(2), 195–239
(2003)

7. Chen, W.: Loop invariance with break and continue. Sci. Comput. Program. 209,
102679 (2021)

8. Duan, Z.: Temporal Logic and Temporal Logic Programming. Science Press, Bei-
jing (2005)

9. Duan, Z., Tian, C.: A practical decision procedure for propositional projection
temporal logic with infinite models. Theoret. Comput. Sci. 554, 169–190 (2014)

10. Duan, Z., Tian, C., Zhang, N.: A canonical form based decision procedure and
model checking approach for propositional projection temporal logic. Theoret.
Comput. Sci. 609, 544–560 (2016)

11. Duan, Z., Yang, X., Koutny, M.: Framed temporal logic programming. Sci. Com-
put. Program. 70(1), 31–61 (2008)

12. Hammond, M., Robinson, A.: Python Programming on Win32: Help for Windows
Programmers. O’Reilly Media, Inc., Sebastapol (2000)

13. Lomet, D.B.: Control structures and the RETURN statement. In: Watson T.J.,
(ed.) IBM Research Division (1973)

14. Rosner, R., Pnueli, A.: A choppy logic. Weizmann Institute of Science, Department
of Applied Mathematics (1986)

15. Sorva, J., Vihavainen, A.: Break statement considered. ACM Inroads 7(3), 36–41
(2016)

16. Taft, S.T.: Implementing the extended return statement for ADA 2005. In: Pro-
ceedings of the 2008 ACM Annual International Conference on SIGAda Annual
International Conference, pp. 97–104 (2008)

17. Tian, C., Duan, Z., Duan, Z.: Making CEGAR more efficient in software model
checking. IEEE Trans. Softw. Eng. 40(12), 1206–1223 (2014)

18. Wang, X., Tian, C., Duan, Z., Zhao, L.: MSVL: a typed language for temporal
logic programming. Front. Comput. Sci. 11(5), 762–785 (2017)

19. Zhang, N., Duan, Z., Tian, C.: A mechanism of function calls in MSVL. Theoret.
Comput. Sci. 654, 11–25 (2016)

20. Zhang, N., Duan, Z., Tian, C.: Model checking concurrent systems with MSVL.
Sci. China Inf. Sci. 59(11), 1–3 (2016)

https://github.com/FairyJiar/P2M
https://docs.python.org/3/library/ast.html
https://www.python.org/

Hyperspectral Image Reconstruction
for SD-CASSI Systems Based on Residual

Attention Network

Haobin Luo(B), Guowei Su, Yi Wang, Jiajia Zhang, and Luobing Dong

Xidian University, No. 2 South Taibai Road, Xi’an 710071, Shaanxi, China
luo_haobin@stu.xidian.edu.cn

Abstract. Hyperspectral images contain both spatial and spectral information,
which can be utilized to material identification. Therefore, they find significant
advantages in object detection. Hyperspectral images are also believed to play
an important part in geological survey and material classification. As the resolu-
tion of hyperspectral images increases, compressed sensing (CS) is proposed to
reduce the data size, resulting in lower system latency. However, images after CS
require reconstruction for further applications such as object detection. The idea
of numerical optimization is adopted by conventional reconstruction algorithms.
However, these algorithms are time-consuming in iteration. The efficiency and
resulting image quality are also not satisfying. Therefore, deep neural networks
(DNN) are expected tomake better reconstruction algorithms. This paper proposes
a novel reconstruction algorithm for hyperspectral images based on deep learning.
The core idea is to apply a residual attention network. Firstly, convolution layers
of different reception fields are applied to extract different features in hyperspec-
tral images. Then the residual attention blocks satisfying the channel attention
mechanism explore the inter-spectral correlation of hyperspectral images. Our
proposed reconstruction model is tested to be effective and efficiency in experi-
ments. Compared to three conventional algorithms, OMP, TwIST and GPSR, the
proposed algorithm improves PSNR by over 8 db and reconstruction speed by 7
times. Moreover, the model achieves better reconstruction performance compared
to a DNN-based model DNNnet.

Keywords: Deep neural networks · Hyperspectral image reconstruction ·
Attention

1 Introduction

Hyperspectral images refer to spectral images with resolution ranging within 10 nm,
providing spatial and spectral information [1]. For a pixel in the hyperspectral space, the
spectrum curve can be obtained by combining hyperspectral images of different wave-
lengths, which is useful in analyzing the components of a specific material. As a result,
hyperspectral images are widely used in object detection, material identification, as well

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Q. Ni and W. Wu (Eds.): AAIM 2022, LNCS 13513, pp. 466–475, 2022.
https://doi.org/10.1007/978-3-031-16081-3_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-16081-3_41&domain=pdf
https://doi.org/10.1007/978-3-031-16081-3_41

Hyperspectral Image Reconstruction for SD-CASSI Systems 467

as surface identification, atmosphere components and so on. With the development of
hyperspectral technologies, the resolution of hyperspectral images increases. However,
the resulting explosion in data size not only challenges the storage system, but also
requires high data throughput. Image compression at the terminals does not solve the
challenge thoroughly. Compression during data collection is a better idea.

According to the Nyquist theorem [4], the minimum sample rate should be at least
twice the highest frequency component. However, compressed sensing, proposed by
Donoho [2], Candes, Romberg and Tao [3], proves the data can be sampled at a rate
far less than the sample rate required in the Nyquist Theorem. Then reconstruction
algorithms are applied to restore the original signals. By doing so, there is a significant
drop in data size. CS provides new solutions for the hyperspectral compression and
reconstruction.

Based on CS, coded aperture hyperspectral imaging is put forward to realize data
compression at the front-end, which is significant for developing hyperspectral tech-
nologies. In practice, there are three approaches, single exposure, multiple exposure and
push-broom [5], in coded aperture imaging. For single exposure, only one compres-
sive sensed image is required, but the low data size makes it impractical for reliable
reconstruction. Multiple exposure samples several times by the coded aperture mobile
imaging system, requiring no relative motion between the imaging system and the object
scenario. This approach is only applicable in limited scenarios. Push-broom approach
iterates the coded aperture onmobile imaging system line-by-line or column-by-column,
which increases the sampled data size and satisfies the requirements of aerospace imag-
ing. Importantly, the quality of resulting image depends heavily on the CS reconstruction
algorithm. In recent years, algorithms based on convex optimization have been proposed
to reconstruct images through iterations. However, these algorithms are time-consuming
and unable to deliver satisfying reconstructed images in all scenarios. This paper also
studies how to reconstruct hyperspectral image effectively and efficiently.

With the increasing capability of parallel computing, DNN develops rapidly and
plays an important role in computer vision (CV). The underlying features can be learned
in the training stage. Both timeliness and effectiveness are guaranteed by using pretrained
model for inference. In fields like object detection and image classification, DNNoutper-
forms other algorithms. In recent years, hyperspectral images have been applied in CV
to implement tasks including denoising [6], image classification [7] and object detection
[8]. Nevertheless, as for hyperspectral image reconstruction based on CS, existing work
does not take noise into consideration. And the inter-spectral correlation lacks attention.

In this paper, a novel reconstruction model based on residual attention network
is proposed for hyperspectral images. Section 2 introduces existing work regarding
reconstruction algorithms for hyperspectral images based on conventional approaches
andDNN. Section 3 analyzes the design ideas and proposes a novel reconstructionmodel
based on channel attention mechanisms. Experiment setup and results are specified in
Sects. 4 and 5 respectively.

468 H. Luo et al.

2 Related Work

The compressed sensing theory makes it possible for hyperspectral imaging systems
to operate at a much lower sample rate, which helps hyperspectral imaging system in
saving storage effectively. However, the image requires reconstruction and the recon-
structed image quality heavily relies on reconstruction algorithm. Classical reconstruc-
tion approachesmainly adopt iterations to solve convex optimization problems.OMP [9],
TwIST [10] andGPSR [11] are three representative solutions. In recent years,Wang et al.
combined characteristics in space dimension and inter-spectral dimension to reconstruct
hyperspectral images.

In the past few years, DNN is widely used in reconstruction algorithms for hyper-
spectral images. Wang et al. [12] proposed HyperReconNet for dual-dispatchers coded
aperture snapshot spectral imaging (DD-CASSI) systems instead of single-dispatchers
coded aperture snapshot spectral imaging (SD-CASSI) systems. To improve the recon-
struction precision, coded apertures are optimized. They design the repetitive pattern
based on forward modelling. The inner characteristics and correlation in the spectral
dimension are also considered.

Jiang et al. [13] put forward DNNnet to reconstruct hyperspectral images based
on DNN for DD-CASSI systems. The model includes an initial convolution layer and
multiple residual blocks. The initial prediction is firstly obtained by preprocessing. Then
the featuremap is learned by the neural network during training.After training, themodel
is applied to reconstruct hyperspectral images.

Combining neural networks and classical approaches, Choi et al. [14] contributed
a reconstruction model based on the prior knowledge on spectrum. The algorithm con-
structs a convolutional self-encoder for learning nonlinear spectral representations in
real hyperspectral data that allows reconstructing its own input through its encoder and
decoder network. When reconstructing, the method combines the fidelity of the regu-
larized learned nonlinear spectral representation and the gradient in the spatial domain
through a new fidelity prior sparsity of the gradient in the spatial domain.

Miao et al. [15] proposed a two-stage reconstruction model Lambda-Net. The coded
aperture and compressive sampled values are required as inputs to the neural network.
The first stage consists of a generative adversarial network (GAN) based on a self-
attentive mechanism as well as a hierarchical channel reconstruction strategy. Hyper-
spectral 3D data are reconstructed in this stage. In the second stage, each channel of the
hyperspectral image is refined.

AlthoughDNNreaches state-of-the-art reconstruction performance for hyperspectral
images, existing researches mainly focused on single exposure mode on DD-CASSI
systems. The influence of noise has not been taken into consideration. Because SD-
CASSI differs much from DD-CASSI, most reconstruction algorithms for DD-CASSI
systems do not work on SD-CASSI systems [18]. Push-broom mode is widely used in
aerospace andSD-CASSI systems are easier to implement. Therefore, it is of significance
to develop reconstruction algorithms on such platforms.

Hyperspectral Image Reconstruction for SD-CASSI Systems 469

3 Proposed Method

3.1 Network Design

The overall structure of the proposed residual attention network is shown in Fig. 1.
The input of the network is the initial prediction obtained by the inverse transform. The
networkmainly consists of an initial convolution block and residual attention blocks. The
initial convolution block is responsible for extracting the spatial and spectral information
of the image, while the residual attention blocks are responsible for reconstructing the
original hyperspectral image.

Figure 2 shows the initial convolution block. To extract different features from the
input initial predictions, convolution kernels of sizes 3 * 3, 5 * 5 and 7 * 7 are applied.
The convolution kernels provide various perceptual fields.

The structure of residual attention blocks is illustrated in Fig. 3. To prevent per-
formance degradation resulted from gradient explosion or decay, a jump connection is
introduced to fuse the initial feature map with the output of sigmoid function. Moreover,
the real-time ability is improved and the training time is reduced with the presence of
the jump connection.

In hyperspectral images, spectra contain different features. A channel attention mod-
ule is added in the residual attention blocks to emphasize on such features, which assigns
attention weights in the channel dimension to the feature maps. High weights will be
assigned to key regions, therefore the feature information is amplified. In contrast, fea-
ture information in regions with low weights will be suppressed. In the channel attention
module, themaximumpooling and the average pooling are performed respectively. Their
results are passed through both upsampling and downsampling layer with the downsam-
pling ratio t, and then served as inputs to the sigmoid activation function. The result of
the sigmoid function acts as the adaptive weights, as described in Eq. (1), where Y is the
input feature map. WU and WD denote the weights of upsampling layer and downsam-
pling layer respectively. σ(·) and δ(·) represent sigmoid and ReLU activation function
respectively. AP stands for average pooling while MP stands for max pooling.

Q = σ(WU × δ(WD × AP(Y)) +WU × δ(WD ×MP(Y))) (1)

Fig. 1. Structure of the proposed neural network

470 H. Luo et al.

In mth residual attention block, the feature map is calculated according to Eq. (2),
where Q is obtained by equation.W1,W2 andW3 denote the weights of three convolution
layers. Fm−1 is the input feature map and Fm is the output feature map.

Fm = Q ×W3 × δ(W2 × δ(W1 × Fm−1)) + Fm−1 (2)

Fig. 2. Structure of initial convolution block

3.2 Loss Function

In regression tasks, themost common loss functions are L1 Loss, L2 Loss and SmoothL1
Loss. SmoothL1 Loss converges faster than L1 Loss and it is not sensitive to outliers or
abnormal values compared to L2 Loss. Consequently, SmoothL1 Loss is adopted in this
paper.

Loss(θ) = 1

N

∑N

i=1

{
0.5× (Yi − Net(Xi|θ))2, if |Yi − Net(Xi|θ)| < 1

|Yi − Net(Xi|θ)| − 0.5, otherwise
(3)

As shown in Eq. (3). Yi denotes the original hyperspectral image and Xi denotes the
image input to the network. Net(·) represents the network model and θ stands for the
model parameters learned by the neural network. When the prediction is close to the
ground truth, the loss function is calculated based on squared error, while absolute error
is applied in other cases.

Fig. 3. Structure of the residual attention block

Hyperspectral Image Reconstruction for SD-CASSI Systems 471

4 Experiment Setup

The hyperspectral imaging system based on compression sensing used in this paper is
SD-CASSI as shown in Fig. 4. The system mainly consists of coded aperture, dispersive
element and sensor imaging. When imaging, the object image is firstly modulated by the
coded aperture. The modulated image is then scattered by the dispersive element. The
spectral aliased picture is finally formed on the sensor. With given object image size M
by N and the number of spectra L, and the imaging interval between neighboring spectra
1 pixel unit on the sensor, the size of aliased spectrum image is M*(N + L−1).

Fig. 4. The imaging process of SD-CASSI

The experiment is conducted on images in mat format from the open ICVL [16]
hyperspectral image dataset. The size of these images is 1392-by-1300. The spectrum
ranges from400 nm to 700 nm,with an interval of 10 nm,making up 31 spectra, as shown
in Fig. 5. Redundant images from duplicate scenarios are removed. The rest images are
downsampled with padding 128, resulting in hyperspectral pictures in 256 * 256 * 31.
The images are further normalized and sampled by push-broom simulation, introducing
Poisson noises to the images. The initial predictions are then calculated using proposed
theory. 80% of initial predictions are randomly selected as the train set and the rest ones
serve as test set.

Fig. 5. Example images of ICVL dataset

472 H. Luo et al.

The training of the model is realized on PyTorch [17] running on RTX3090. The
downsampling ratio is set to 8. The initial learning rate is 0.0001. The model experi-
ences 100 epoches with batch size 4, resulting in the total iteration time 400000. Adam
optimizer is applied, the hyperparameters are β1 = 0.9, β2 = 0.999, ε = 1e − 5 and
weight_decay = 0 respectively. The performances of popular reconstruction algorithms
OMP [9], GPSR [11], TwIST [10] and DNNnet [12] are also evaluated as comparison.

5 Result and Discussion

The performances on 6 example hyperspectral images are presented in Fig. 6 for com-
parison. The metrics include peak signal to noise ratio (PSNR), structural similarity
index measurement (SSIM). Corresponding reconstruction algorithm, PSNR and SSIM
are captioned below each image. To realize a more comprehensive measurement of
the reconstruction algorithms, the spectral maps belonging to different wavelengths are
also evaluated. The wavelengths of (a), (b) and (c) are 540 nm, 500 nm and 560 nm
respectively and the wavelengths of (d), (e) and (f) are 520 nm, 480 nm and 620 nm
respectively.

Figure 6 indicate that our proposed algorithm delivers reconstructed images of better
quality, achieving higher PSNR and SSIM than the other 4 algorithms. These widely
adopted algorithms introduce noise during reconstruction to different extents. Particu-
larly, there are considerable noises produced by TwIST as well as noticeable loss in local
features. By observing the boxed areas in Fig. 6, the proposed method performs clearer
details and less distortion.

Generally, among conventional algorithms, OMP outperforms TwIST and GPSR.
And our proposed model further increases PSNR by more than 8 db, improves SSIM
by over 0.12. Our proposed method also reaches slightly better performance than the
DNN-based model DNNnet.

The average reconstruction times are also illustrated in Table 1. The proposedmethod
achieves over 7 times faster reconstruction than the conventional methods.

In summary, the proposed reconstruction algorithm not only outperforms OMP,
TwIST and GPSR in both subjective and objective perspectives, but also reaches faster
calculation speed, which proves the effectiveness and rationality of our solution with
high accuracy and low delay.

Table 1. Average reconstruction time of different algorithms

Algorithm OMP TwIST GPSR DNNnet Proposed

Average reconstruction time (ms) 38.91 26.39 15.18 2.11 2.14

Hyperspectral Image Reconstruction for SD-CASSI Systems 473

Fig. 6. Comparison on 6 example hyperspectral images reconstructed by different algorithms

474 H. Luo et al.

6 Conclusion

This paper proposed a reconstruction algorithm for hyperspectral images collected from
push-broom SD-CASSI systems based on DNN. Residual attention blocks and channel
attention mechanisms are utilized in model design to explore spatial and inter-spectral
features. Comparing to conventional algorithms such asOMP,TwIST andGPSR, the pro-
posed model achieves much higher performance as well as high computation efficiency
in our experiment. It also outperforms the DNN-based model DNNnet in hyperspectral
image reconstruction, indicating high effectiveness and efficiency. Compared to existing
algorithms for DD-CASSI systems, it is of greater practical importance due to the broad
use of SD-CASSI systems in aerospace fields.

References

1. Hyperspectral Image – an overview | ScienceDirect Topics. https://www.sciencedirect.com/
topics/computer-science/hyperspectral-image. Accessed 7 June 2022

2. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)
3. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction

from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509
(2006)

4. Nyquist rate – Wikipedia. https://en.wikipedia.org/wiki/Nyquist_rate. Accessed 7 June 2022
5. Liu, Y., et al.: A novel method of coded-aperture push-broom Compton scatter imaging:

principles, simulations and experiments. Nucl. Instrum. Methods Phys. Res., Sect. A 1(940),
30–39 (2019)

6. Wei, K., Fu, Y., Huang, H.: 3-D quasi-recurrent neural network for hyperspectral image
denoising. IEEE Trans. Neural Netw. Learn. Syst. 32(1), 363–375 (2020)

7. Qing, Y., Liu, W.: Hyperspectral image classification based on multi-scale residual network
with attention mechanism. Remote Sens. 13(3), 335 (2021)

8. Zhao, M., Yue, L., Hu, J., Du, S., Li, P., Wang, L.: Salient target detection in hyperspectral
image based on visual attention. IET Image Proc. 15(10), 2301–2308 (2021)

9. Davenport, M.A., Wakin, M.B.: Analysis of orthogonal matching pursuit using the restricted
isometry property. IEEE Trans. Inf. Theory 56(9), 4395–4401 (2010)

10. Bioucas-Dias, J.M., Figueiredo, M.A.: A new TwIST: two-step iterative shrink-
age/thresholding algorithms for image restoration. IEEE Trans. Image Process. 16(12),
2992–3004 (2007)

11. Chen, G., Li, D., Zhang, J.: Iterative gradient projection algorithm for two-dimensional
compressive sensing sparse image reconstruction. Signal Process. 1(104), 15–26 (2014)

12. Wang, L., Zhang, T., Fu, Y., Huang, H.: Hyperreconnet: Joint coded aperture optimization
and image reconstruction for compressive hyperspectral imaging. IEEETrans. Image Process.
28(5), 2257–2270 (2018)

13. Yilin, J., Ran, S., Sanqiang, T.: Generative adversarial networks for hyperspectral image
spatial super-resolution. J. China Univ. Posts Telecommun. 27(4), 8 (2020)

14. Choi, I., Kim, M.H., Gutierrez, D., Jeon, D.S., Nam, G.: High-quality hyperspectral
reconstruction using a spectral prior (2017)

15. Miao, X., Yuan, X., Pu, Y., Athitsos, V.: lambda-net: reconstruct hyperspectral images from a
snapshot measurement. In 2019 IEEE InCVF International Conference on Computer Vision
(ICCV), pp. 4058–4068 (2019)

https://www.sciencedirect.com/topics/computer-science/hyperspectral-image
https://en.wikipedia.org/wiki/Nyquist_rate

Hyperspectral Image Reconstruction for SD-CASSI Systems 475

16. Arad, B., Ben-Shahar, O.: Sparse recovery of hyperspectral signal from natural RGB images.
In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) Computer Vision – ECCV 2016. LNCS,
vol. 9911, pp. 19–34. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_2

17. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. Adv.
Neural Inf. Process. Syst. 32, 1–14 (2019)

18. Multiframe Coded Aperture Spectral Imaging (CASSI) | Duke Information Spaces Project.
https://disp.duke.edu/research/multiframe-coded-aperture-spectral-imaging-cassi. Accessed
7 June 2022

https://doi.org/10.1007/978-3-319-46478-7_2
https://disp.duke.edu/research/multiframe-coded-aperture-spectral-imaging-cassi

Author Index

Bai, Xihua 46
Bu, Yuehua 316, 413

Chen, Bin 376
Chen, Guihai 278
Chen, Jingwen 144
Chen, Wenwen 413
Chen, Zhibo 255
Chen, Zian 376
Cheng, Yunlong 278

Diao, Zhuo 376
Ding, Xingjian 207
Dong, Luobing 466
Dong, Qingzhen 351
Du, Ding-Zhu 327
Du, Hongwei 195
Du, Liman 183
Duan, Zhenhua 456

Gai, Ling 96
Gao, Chuangen 3
Gao, Suixiang 183, 244, 339
Gao, Suogang 15, 28, 327
Gao, Xiaofeng 278
Geng, Mengxue 133
Gong, Shufang 133
Gu, Shuyang 3
Gu, Xiaofeng 303
Guo, Jianxiong 207, 219

Hong, Yi 255
Hou, Bo 15, 28
Hou, Lihang 363
Hou, Yunan 255
Hu, Guojun 83

Jiang, Zhipeng 339
Jing, Ming 435

Kang, Na 327, 363

Lan, Huan 268
Li, Deying 171, 231, 255

Li, Jianping 83
Li, Min 156
Li, Peng 293
Li, Quan-Lin 66
Li, Wanting 231
Li, Weidong 46, 55
Li, Xianyue 351
Li, Xiaoning 444
Li, Yan 406
Li, Yi-Meng 66
Li, Zhiquan 363
Liang, Mengpei 96
Lichen, Junran 83
Liu, Bin 133
Liu, Heng-Li 66
Liu, Ning 255
Liu, Qian 156
Liu, Wen 15, 28
Liu, Xiaofei 35, 55
Lu, Zekun 444
Luo, Chuanwen 255
Luo, Haobin 466

Ma, Jing-Yu 66
Ma, Lei 55

Ni, Qiufen 207, 219
Niu, Bei 388

Pan, Pengxiang 83
Pang, Zhenzhen 28

Qu, Jing 363

Su, Guowei 466
Sun, Ruiqing 35

Tang, Shaojie 109, 121
Tang, Zhongzheng 144, 376
Tian, Yi 327

Wang, Aifa 293
Wang, Chenhao 96, 144
Wang, Huijuan 421

478 Author Index

Wang, Jiarui 456
Wang, Liting 421
Wang, Shuchen 244
Wang, Xiaofeng 444
Wang, Ye 406
Wang, Yi 466
Wang, Yongcai 171, 231
Wang, Zichen 195
Wu, Weili 3, 133, 327

Xiao, Man 46
Xie, Runtao 83
Xu, Xiaojia 171, 231
Xue, Yuan 394

Yan, Biwei 435
Yang, Boting 394
Yang, Ping 83
Yang, Ruiying 316
Yang, Wenguo 183, 244, 339
Yang, Yu 351

Yang, Zhengxi 339
Yu, Jiguo 435
Yu, Kemin 156
Yu, Qiancheng 444
Yuan, Jing 109

Zhang, Hongliang 435
Zhang, Jiajia 466
Zhang, Jiaxuan 15
Zhang, Nan 456
Zhang, William 303
Zhang, Xin 388
Zhang, Yu 171
Zhao, Jianli 435
Zheng, Jiaqi 278
Zhou, Hao 278
Zhou, Yang 156
Zhu, Hongguo 316
Zhu, Junlei 413
Zhu, Yaoyu 55
Zilles, Sandra 394

	 Preface
	 Organization
	 Contents
	Approximation Algorithms
	A Binary Search Double Greedy Algorithm for Non-monotone DR-submodular Maximization
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Algorithm
	5 Conclusions
	References

	An Approximation Algorithm for the Clustered Path Travelling Salesman Problem
	1 Introduction
	2 Preliminaries
	3 Approximation Algorithms for the PSCP
	4 Approximation Algorithm for the CPTSP
	5 Discussion
	References

	Improved Approximation Algorithm for the Asymmetric Prize-Collecting TSP
	1 Introduction
	2 Preliminaries
	3 Approximation Algorithms
	References

	Scheduling Problem and Game Theory
	Approximation Scheme for Single-Machine Rescheduling with Job Delay and Rejection
	1 Introduction
	2 Preliminaries
	3 Dynamic Programming
	4 A Fully Polynomial Time Approximation Scheme
	5 Conclusion
	References

	Online Early Work Maximization Problem on Two Hierarchical Machines with Buffer or Rearrangements
	1 Introduction
	2 Preliminaries
	3 Buffer Model
	4 Rearrangement Model
	5 Discussion
	References

	On-line Single Machine Scheduling with Release Dates and Submodular Rejection Penalties
	1 Introduction
	2 Preliminaries
	3 1|rj,on-line,reject|Cmax+(R)
	3.1 The Offline Problem
	3.2 The On-line Algorithm

	4 Conclusion
	References

	The Optimal Dynamic Rationing Policy in the Stock-Rationing Queue
	1 Introduction
	2 Model Description
	3 Optimization Model Formulation
	3.1 The States and Policies
	3.2 The Stationary Probability Vector
	3.3 The Reward Function
	3.4 The Perturbation Realization Factor
	3.5 The Penalty Cost

	4 Monotonicity and Optimality
	5 Concluding Remarks
	References

	The Constrained Parallel-Machine Scheduling Problem with Divisible Processing Times and Penalties
	1 Introduction
	2 Terminologies and Fundamental Lemmas
	3 An Exact Algorithm to Solve the CPS-DTTP Problem
	4 An Exact Algorithm to Solve the CPS-DTMP Problem
	5 An Exact Algorithm to Solve the CPS-DTBP Problem
	6 Conclusion and Further Work
	References

	Obnoxious Facility Location Games with Candidate Locations
	1 Introduction
	2 Definition and Terminology
	3 Obnoxious Single Facility Location Game
	4 Obnoxious Heterogeneous Two-facility Location Game
	5 Conclusion
	References

	Nonlinear Combinatorial Optimization
	Streaming Adaptive Submodular Maximization
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Items
	3.2 Policies
	3.3 Problem Formulation and Additional Notations

	4 Uniform Cost
	4.1 Algorithm Design
	4.2 Performance Analysis
	4.3 Offline Estimation of favg(*)

	5 Nonuniform Cost
	5.1 Algorithm Design
	5.2 Performance Analysis
	5.3 Offline Estimation of favg(*)

	References

	Constrained Stochastic Submodular Maximization with State-Dependent Costs
	1 Introduction
	2 Preliminaries and Problem Formulation
	3 Continuous Optimization Phase
	4 Rounding Phase
	4.1 Contention Resolution Scheme
	4.2 Algorithm Design
	4.3 Performance Analysis
	4.4 Completing the Last Piece of the Puzzle: Discussion on and

	References

	Bicriteria Algorithms for Maximizing the Difference Between Submodular Function and Linear Function Under Noise
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 The Bicriteria Algorithm Under Noise with the Cardinality Constraint
	5 The Bicriteria Algorithm Under Noise with the Matroid Constraint
	6 Conclusions
	References

	Monotone k-Submodular Knapsack Maximization: An Analysis of the Greedy+Singleton Algorithm
	1 Introduction
	2 Preliminaries
	3 Approximations of Greedy+Singleton
	4 Experiments
	5 Conclusion
	References

	Guarantees for Maximization of k-Submodular Functions with a Knapsack and a Matroid Constraint
	1 Introduction
	2 Preliminaries
	2.1 k-Submodular Function
	2.2 k-Submodular Maximization with a Knapsack and a Matroid Constraint
	2.3 Algorithm

	3 Analysis for Non-monotone k-submodular Maximization with a Knapsack Constraint and a Matroid Constraint
	4 Analysis for Monotone k-Submodular Maximization with a Knapsack and a Matroid Constraint
	5 Discussion
	References

	Network Problems
	Defense of Scapegoating Attack in Network Tomography
	1 Introduction
	2 Problem Formulation
	2.1 Network Tomography Model
	2.2 Scapegoating Attack Model

	3 Defense Strategy
	3.1 What to Defend?
	3.2 Key Observations
	3.3 Defense Methodologies
	3.4 Minimum Number Defending Path Generation

	4 Performance Evaluation
	4.1 Experiment Setup
	4.2 Results of Defense Strategy

	5 Conclusion
	References

	Adaptive Competition-Based Diversified-Profit Maximization with Online Seed Allocation
	1 Introduction
	2 Problem Formulation
	2.1 The CIC Model
	2.2 ACDM Problem

	3 The Algorithm
	4 Experiments Settings and Results
	5 Conclusion
	References

	Collaborative Service Caching in Mobile Edge Nodes
	1 Introduction
	2 Related Work
	3 Preliminary
	3.1 System Model
	3.2 Cache Services at Mobile Edge Nodes
	3.3 The Cost of Serving at the Edge and the Remote Data Center
	3.4 Pricing Strategy of the Edge and the Remote Data Center
	3.5 The Utility of Serving at the Edge and the Remote Data Center
	3.6 The Response Delay of the Edge and the Remote Data Center

	4 Coalition Mechanism for the Collaborative Service Caching Problem with Service Sharing
	4.1 Coalition Mechanism Among MENs
	4.2 Mechanism Analysis

	5 Approximation Algorithm for the Service Caching Problem
	5.1 Problem Formulation
	5.2 Randomized Algorithm

	6 Simulation Results and Discussions
	6.1 Experiment Settings
	6.2 Performance Evaluation

	7 Conclusion
	References

	A Decentralized Auction Framework with Privacy Protection in Mobile Crowdsourcing
	1 Introduction
	2 Crowdsourcing Model and Problem Formulation
	2.1 Crowdsourcing Model
	2.2 Formulation of Decentralized Auction

	3 Design Rationales and Algorithms
	4 Theoretical Analysis
	5 Numerical Simulations
	6 Related Works
	7 Conclusion
	References

	Profit Maximization for Multiple Products in Community-Based Social Networks
	1 Introduction
	2 Related Work
	3 Network Model and Problem Formulation
	3.1 The Network Model
	3.2 Problem Formulation

	4 Solution for PMPMP
	4.1 Properties of Profit Maximization Function f
	4.2 Relaxation of Profit Function f

	5 Experiments
	5.1 Experimental Setup
	5.2 Experimental Results

	6 Conclusion
	References

	MCM: A Robust Map Matching Method by Tracking Multiple Road Candidates
	1 Introduction
	2 Problem Model
	2.1 Point-to-Road Similarity
	2.2 Trajectory-to-Route Similarity

	3 Multiple Candidate Matching
	3.1 Route Candidates
	3.2 Updating the Sparse Score Matrix
	3.3 MCM for Online Map Matching

	4 Experiment
	5 Conclusion and Future Work
	References

	Pilot Pattern Design with Branch and Bound in PSA-OFDM System
	1 Introduction
	2 Channel Estimation in PSA-OFDM System
	3 Pilot Pattern Design with Branch and Bound
	3.1 Branch
	3.2 Bound

	4 Simulation Results
	5 Conclusion
	References

	AoI Minimizing of Wireless Rechargeable Sensor Network Based on Trajectory Optimization of Laser-Charged UAV
	1 Introduction
	2 Related Works
	3 Model and Problem Definition
	3.1 Network Model
	3.2 Data Transmission Model from Sensor to UAV
	3.3 Energy Harvesting Model from UAV to Sensor
	3.4 Laser Charging Model from LBD to UAV
	3.5 Problem Formulation

	4 Algorithm for the AoIO Problem
	5 Performance Evaluation
	6 Conclusion
	References

	Energy-Constrained Geometric Coverage Problem
	1 Introduction
	2 Preliminaries
	3 Greedy Algorithm
	4 Discussion
	References

	Incremental SDN Deployment to Achieve Load Balance in ISP Networks
	1 Introduction
	2 Network Model and Problem Formulation
	2.1 Network Model and Problem Definition
	2.2 Problem Formulation

	3 Complexity and Inapproximability Analysis
	3.1 Hardness of k-LB Problem
	3.2 Inapproximability Analysis

	4 Algorithm Design and Analysis
	5 Numerical Evaluation
	5.1 Experimental Setup
	5.2 Maximum Link Utilization
	5.3 Upgrade Percentage
	5.4 Least Upgrade Percentage to Converge
	5.5 Cumulative Distribution Function (CDF)

	6 Conclusion
	References

	Graph Theory
	Polynomial Time Algorithm for k-vertex-edge Dominating Problem in Interval Graphs
	1 Introduction
	2 Preliminaries and Notation
	3 The MIN-k-VEDS Algorithm for Interval Graphs
	4 Correctness and Implementation of the Algorithm
	5 Conclusion
	References

	Cyclically Orderable Generalized Petersen Graphs
	1 Introduction
	2 Cyclic Base Ordering of G(n,1)
	2.1 The Case n=3m
	2.2 The Case n=3m+1
	2.3 The Case n=3m+2

	3 Cyclic Base Ordering of G(n,2)
	3.1 The Case n=3m for m2
	3.2 The Case n=3m+1 for m2
	3.3 The Case n=3m+2 for m2

	4 Conclusion
	References

	The r-Dynamic Chromatic Number of Planar Graphs Without Special Short Cycles
	1 Introduction
	2 Reducible Configurations
	3 Proof of Theorem 1.2
	References

	Distance Magic Labeling of the Halved Folded n-Cube
	1 Introduction
	2 Preliminaries
	3 Proof of Theorem 1
	3.1 Proof of Theorem 1 (i)
	3.2 Proof of Theorem 1 (ii)

	References

	Balanced Graph Partitioning Based on Mixed 0-1 Linear Programming and Iteration Vertex Relocation Algorithm
	1 Introduction
	2 Related Work
	3 Mixed 0-1 Linear Programming Model for Graph Partitioning
	4 Iteration Algorithm
	4.1 Variables Selection Strategy
	4.2 Update Parameter
	4.3 Iteration Vertex Relocation Algorithm

	5 Experiments
	5.1 Experimental Effect and Comparison

	6 Conclusion
	References

	Partial Inverse Min-Max Spanning Tree Problem Under the Weighted Bottleneck Hamming Distance
	1 Introduction
	2 Preliminary
	3 PIMMST Under the Weighted Bottleneck Hamming Distance
	3.1 PIMMST with Value of Optimal Tree Restriction Under the Weighted Bottleneck Hamming Distance
	3.2 PIMMST Under the Weighted Bottleneck Hamming Distance

	4 CPIMMST Under the Weighted Bottleneck Hamming Distance
	4.1 CPIMMST with Value of Optimal Tree Restriction Under the Weighted Bottleneck Hamming Distance
	4.2 CPIMMST Under the Weighted Bottleneck Hamming Distance

	5 Concluding
	References

	Mixed Metric Dimension of Some Plane Graphs
	1 Introduction
	2 Preliminaries
	3 The Mixed Metric Dimension of Web Graph Wn
	4 The Mixed Metric Dimension of Plane Graph (Convex Polytope) Dn
	5 Conclusion
	References

	On the Transversal Number of k-Uniform Connected Hypergraphs
	1 Introduction
	1.1 Known Results
	1.2 Our Results

	2 The Upper Bound for Transversal Number
	3 Extremal k-Uniform Connected Hypergraphs
	References

	An Improvement of the Bound on the Odd Chromatic Number of 1-Planar Graphs
	1 Introduction
	2 The Proof of Theorem 2
	References

	Fast Searching on k-Combinable Graphs
	1 Introduction
	2 K-Combinable Graphs
	3 Cacti Graphs
	4 Cartesian Product of a Tree and an Edge
	References

	Class Ramsey Numbers Involving Induced Graphs
	1 Introduction
	2 Proofs of Main Results
	References

	Injective Edge Coloring of Power Graphs and Necklaces
	1 Introduction
	2 Main Results
	3 Proof of Theorem 3
	4 Proof of Theorem 4
	References

	Total Coloring of Planar Graphs Without Some Adjacent Cycles
	1 Introduction
	2 Reducible Configurations
	3 Discharging
	References

	Logic and Machine Learning
	Security on Ethereum: Ponzi Scheme Detection in Smart Contract
	1 Introduction
	2 Related Work
	3 The Experimental Scheme
	3.1 Feature Data Collection
	3.2 Multi-granularity Data Construction Based on Opcode
	3.3 Feature Construction of Frequency and Sequence

	4 Model Construction
	4.1 Frequency Model
	4.2 Sequence Model and Account Model

	5 Experimental Analysis
	5.1 Analysis of Experimental Results

	6 Summary
	References

	Learning Signed Network Embedding via Muti-attention Mechanism
	1 Introduction
	2 Preliminaries
	2.1 Structural Balance Theory
	2.2 Social Status Theory

	3 Model Introduction
	3.1 Select Appropriate Node Neighbors
	3.2 Gather 1-layer Neighbor Information
	3.3 Gather High Layer Neighbor Information

	4 Experiment
	4.1 Datasets
	4.2 Baselines
	4.3 Baseline Model Comparison Experiment
	4.4 Superparametric Analysis

	5 Conclusion
	References

	Three Algorithms for Converting Control Flow Statements from Python to XD-M
	1 Introduction
	2 Converting Algorithms of Complex Control Flow
	2.1 The Algorithm of Converting continue Statement
	2.2 The Algorithm of Converting break Statement
	2.3 The Algorithm of Converting return Statement
	2.4 Put Them All Together

	3 Verification
	3.1 Test Environment
	3.2 Test Results

	4 Conclusion
	References

	Hyperspectral Image Reconstruction for SD-CASSI Systems Based on Residual Attention Network
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Network Design
	3.2 Loss Function

	4 Experiment Setup
	5 Result and Discussion
	6 Conclusion
	References

	Author Index

